WorldWideScience

Sample records for barrier reef world

  1. Predicting the location and spatial extent of submerged coral reef habitat in the Great Barrier Reef world heritage area, Australia.

    Directory of Open Access Journals (Sweden)

    Tom Bridge

    Full Text Available AIM: Coral reef communities occurring in deeper waters have received little research effort compared to their shallow-water counterparts, and even such basic information as their location and extent are currently unknown throughout most of the world. Using the Great Barrier Reef as a case study, habitat suitability modelling is used to predict the distribution of deep-water coral reef communities on the Great Barrier Reef, Australia. We test the effectiveness of a range of geophysical and environmental variables for predicting the location of deep-water coral reef communities on the Great Barrier Reef. LOCATION: Great Barrier Reef, Australia. METHODS: Maximum entropy modelling is used to identify the spatial extent of two broad communities of habitat-forming megabenthos phototrophs and heterotrophs. Models were generated using combinations of geophysical substrate properties derived from multibeam bathymetry and environmental data derived from Bio-ORACLE, combined with georeferenced occurrence records of mesophotic coral communities from autonomous underwater vehicle, remotely operated vehicle and SCUBA surveys. Model results are used to estimate the total amount of mesophotic coral reef habitat on the GBR. RESULTS: Our models predict extensive but previously undocumented coral communities occurring both along the continental shelf-edge of the Great Barrier Reef and also on submerged reefs inside the lagoon. Habitat suitability for phototrophs is highest on submerged reefs along the outer-shelf and the deeper flanks of emergent reefs inside the GBR lagoon, while suitability for heterotrophs is highest in the deep waters along the shelf-edge. Models using only geophysical variables consistently outperformed models incorporating environmental data for both phototrophs and heterotrophs. MAIN CONCLUSION: Extensive submerged coral reef communities that are currently undocumented are likely to occur throughout the Great Barrier Reef. High

  2. RESEARCH: Influence of Social, Biophysical, and Managerial Conditions on Tourism Experiences Within the Great Barrier Reef World Heritage Area.

    Science.gov (United States)

    Shafer; Inglis

    2000-07-01

    / Managing protected areas involves balancing the enjoyment of visitors with the protection of a variety of cultural and biophysical resources. Tourism pressures in the Great Barrier Reef World Heritage Area (GBRWHA) are creating concerns about how to strike this balance in a marine environment. Terrestrial-based research has led to conceptual planning and management frameworks that address issues of human use and resource protection. The limits of acceptable change (LAC) framework was used as a conceptual basis for a study of snorkeling at reef sites in the GBRWHA. The intent was to determine if different settings existed among tourism operators traveling to the reef and, if so, to identify specific conditions relating to those settings. Snorkelers (N = 1475) traveling with tourism operations of different sizes who traveled to different sites completed surveys. Results indicated that snorkelers who traveled with larger operations (more people and infrastructure) differed from those traveling with smaller operations (few people and little on-site infrastructure) on benefits received and in the way that specific conditions influenced their enjoyment. Benefits related to nature, escape, and family helped to define reef experiences. Conditions related to coral, fish, and operator staff had a positive influence on the enjoyment of most visitors but, number of people on the trip and site infrastructure may have the greatest potential as setting indicators. Data support the potential usefulness of visitor input in applying the LAC concept to a marine environment where tourism and recreational uses are rapidly changing. PMID:10799642

  3. RESEARCH: Influence of Social, Biophysical, and Managerial Conditions on Tourism Experiences Within the Great Barrier Reef World Heritage Area.

    Science.gov (United States)

    Shafer; Inglis

    2000-07-01

    / Managing protected areas involves balancing the enjoyment of visitors with the protection of a variety of cultural and biophysical resources. Tourism pressures in the Great Barrier Reef World Heritage Area (GBRWHA) are creating concerns about how to strike this balance in a marine environment. Terrestrial-based research has led to conceptual planning and management frameworks that address issues of human use and resource protection. The limits of acceptable change (LAC) framework was used as a conceptual basis for a study of snorkeling at reef sites in the GBRWHA. The intent was to determine if different settings existed among tourism operators traveling to the reef and, if so, to identify specific conditions relating to those settings. Snorkelers (N = 1475) traveling with tourism operations of different sizes who traveled to different sites completed surveys. Results indicated that snorkelers who traveled with larger operations (more people and infrastructure) differed from those traveling with smaller operations (few people and little on-site infrastructure) on benefits received and in the way that specific conditions influenced their enjoyment. Benefits related to nature, escape, and family helped to define reef experiences. Conditions related to coral, fish, and operator staff had a positive influence on the enjoyment of most visitors but, number of people on the trip and site infrastructure may have the greatest potential as setting indicators. Data support the potential usefulness of visitor input in applying the LAC concept to a marine environment where tourism and recreational uses are rapidly changing.

  4. Interactions between a Trawl fishery and spatial closures for biodiversity conservation in the Great Barrier Reef World Heritage Area, Australia.

    Directory of Open Access Journals (Sweden)

    Alana Grech

    Full Text Available BACKGROUND: The Queensland East Coast Otter Trawl Fishery (ECOTF for penaeid shrimp fishes within Australia's Great Barrier Reef World Heritage Area (GBRWHA. The past decade has seen the implementation of conservation and fisheries management strategies to reduce the impact of the ECOTF on the seabed and improve biodiversity conservation. New information from electronic vessel location monitoring systems (VMS provides an opportunity to review the interactions between the ECOTF and spatial closures for biodiversity conservation. METHODOLOGY AND RESULTS: We used fishing metrics and spatial information on the distribution of closures and modelled VMS data in a geographical information system (GIS to assess change in effort of the trawl fishery from 2001-2009 and to quantify the exposure of 70 reef, non-reef and deep water bioregions to trawl fishing. The number of trawlers and the number of days fished almost halved between 2001 and 2009 and new spatial closures introduced in 2004 reduced the area zoned available for trawl fishing by 33%. However, we found that there was only a relatively minor change in the spatial footprint of the fishery as a result of new spatial closures. Non-reef bioregions benefited the most from new spatial closures followed by deep and reef bioregions. CONCLUSIONS/SIGNIFICANCE: Although the catch of non target species remains an issue of concern for fisheries management, the small spatial footprint of the ECOTF relative to the size of the GBRWHA means that the impact on benthic habitats is likely to be negligible. The decline in effort as a result of fishing industry structural adjustment, increasing variable costs and business decisions of fishers is likely to continue a trend to fish only in the most productive areas. This will provide protection for most benthic habitats without any further legislative or management intervention.

  5. The Great Barrier Reef World Heritage Area seagrasses: Managing this iconic Australian ecosystem resource for the future

    Science.gov (United States)

    Coles, Robert G.; Rasheed, Michael A.; McKenzie, Len J.; Grech, Alana; York, Paul H.; Sheaves, Marcus; McKenna, Skye; Bryant, Catherine

    2015-02-01

    The Great Barrier Reef World Heritage Area (GBRWHA) includes one of the world's largest areas of seagrass (35,000 km2) encompassing approximately 20% of the world's species. Mapping and monitoring programs sponsored by the Australian and Queensland Governments and Queensland Port Authorities have tracked a worrying decrease in abundance and area since 2007. This decline has almost certainly been the result of a series of severe tropical storms and associated floods exacerbating existing human induced stressors. A complex variety of marine and terrestrial management actions and plans have been implemented to protect seagrass and other habitats in the GBRWHA. For seagrasses, these actions are inadequate. They provide an impression of effective protection of seagrasses; reduce the sense of urgency needed to trigger action; and waste the valuable and limited supply of "conservation capital". There is a management focus on ports, driven by public concerns about high profile development projects, which exaggerates the importance of these relatively concentrated impacts in comparison to the total range of threats and stressors. For effective management of seagrass at the scale of the GBRWHA, more emphasis needs to be placed on the connectivity between seagrass meadow health, watersheds, and all terrestrial urban and agricultural development associated with human populations. The cumulative impacts to seagrass from coastal and marine processes in the GBRWHA are not evenly distributed, with a mosaic of high and low vulnerability areas. This provides an opportunity to make choices for future coastal development plans that minimise stress on seagrass meadows.

  6. Benthic community composition on submerged reefs in the central Great Barrier Reef

    Science.gov (United States)

    Roberts, T. E.; Moloney, J. M.; Sweatman, H. P. A.; Bridge, T. C. L.

    2015-06-01

    Community dynamics on coral reefs are often examined only in relatively shallow waters, which are most vulnerable to many disturbances. The Great Barrier Reef World Heritage Area (GBRWHA) includes extensive submerged reefs that do not approach sea level and are within depths that support many coral reef taxa that also occur in shallow water. However, the composition of benthic communities on submerged reefs in the GBRWHA is virtually unknown. We examined spatial patterns in benthic community composition on 13 submerged reefs in the central Great Barrier Reef (GBR) at depths of 10-30 m. We show that benthic communities on submerged reefs include similar species groups to those on neighbouring emergent reefs. The spatial distribution of species groups was well explained by depth and cross-shelf gradients that are well-known determinants of community composition on emergent reefs. Many equivalent species groups occurred at greater depths on submerged reefs, likely due to variability in the hydrodynamic environment among reef morphologies. Hard coral cover and species richness were lowest at the shallowest depth (6 m) on emergent reefs and were consistently higher on submerged reefs for any given depth. These results suggest that disturbances are less frequent on submerged reefs, but evidence that a severe tropical cyclone in 2011 caused significant damage to shallow regions of more exposed submerged reefs demonstrates that they are not immune. Our results confirm that submerged reefs in the central GBR support extensive and diverse coral assemblages that deserve greater attention in ecosystem assessments and management decisions.

  7. Adaptive management of the great barrier reef and the Grand Canyon world heritage areas

    NARCIS (Netherlands)

    Hughes, T.P.; Gunderson, L.H.; Folke, C.; Scheffer, M.

    2007-01-01

    Conventional perceptions of the interactions between people and their environment are rapidly transforming. Old paradigms that view humans as separate from nature, natural resources as inexhaustible or endlessly substitutable, and the world as stable, predictable, and in balance are no longer tenabl

  8. Flushing of Bowden Reef lagoon, Great Barrier Reef

    Science.gov (United States)

    Wolanski, Eric; King, Brian

    1990-12-01

    Field and numerical studies were undertaken in 1986 and 1987 of the water circulation around and over Bowden Reef, a 5-km long kidney-shaped coral reef lagoon system in the Great Barrier Reef. In windy conditions, the flushing of the lagoon was primarily due to the intrusion into the lagoon of topographically induced tidal eddies generated offshore. In calm weather, such eddies did not prevail and lagoon flushing was much slower. The observed currents at sites a few kilometres apart in inter-reefal waters, have a significant horizontal shear apparently due to the complex circulation in the reef matrix. Under such conditions, sensitivity tests demonstrate the importance of including this shear in the specification of open boundary conditions of numerical models of the hydrodynamics around reefs. Contrary to established practice, the water circulation around a coral reef should not be modelled by assuming reefs are hydrodynamically isolated from surrounding ones. Little improvement appears likely in the reliability of reef-scale numerical models until the inter-reefal shear can be reliably incorporated in such models.

  9. Holocene development of the Belize Barrier Reef

    Science.gov (United States)

    Gischler, Eberhard; Hudson, J. Harold

    2004-02-01

    Previously, knowledge of the Holocene development of the Belize Barrier Reef (BBR)—the largest reef system in the Atlantic Ocean—was limited to one location (Carrie Bow Cay). We present new data from 11 rotary drill cores taken at 9 locations and 36 radiometric ages that indicate that the BBR was established from >8.26 to 6.68 ky BP on Pleistocene reef limestones, presumably deposited during oxygen isotope stage 5. The nonsynchronous start of Holocene reef growth was a consequence of variation in elevation of antecedent topography, largely controlled by underlying NNE-trending structures. From north to south, Pleistocene elevation decreases along these structural trends, probably reflecting differential subsidence and variations in karst topography. Reef anatomy is characterized by three facies. In order of decreasing abundance, these facies are represented by corals (mainly Acropora palmata and members of the Montastraea annularis group), by unconsolidated sand and rubble, and by well-cemented coral grainstones-rudstones. Holocene reef accumulation rates average 3.25 m/ky. The degree of reef consolidation is negatively correlated with Holocene thicknesses, indicating that slowly growing reefs are better cemented than fast growing ones. We present a Holocene sea-level curve for Belize based on 36 dates from this study and 33 dates from our previous studies in the area.

  10. Framework of barrier reefs threatened by ocean acidification.

    Science.gov (United States)

    Comeau, Steeve; Lantz, Coulson A; Edmunds, Peter J; Carpenter, Robert C

    2016-03-01

    To date, studies of ocean acidification (OA) on coral reefs have focused on organisms rather than communities, and the few community effects that have been addressed have focused on shallow back reef habitats. The effects of OA on outer barrier reefs, which are the most striking of coral reef habitats and are functionally and physically different from back reefs, are unknown. Using 5-m long outdoor flumes to create treatment conditions, we constructed coral reef communities comprised of calcified algae, corals, and reef pavement that were assembled to match the community structure at 17 m depth on the outer barrier reef of Moorea, French Polynesia. Communities were maintained under ambient and 1200 μatm pCO2 for 7 weeks, and net calcification rates were measured at different flow speeds. Community net calcification was significantly affected by OA, especially at night when net calcification was depressed ~78% compared to ambient pCO2 . Flow speed (2-14 cm s(-1) ) enhanced net calcification only at night under elevated pCO2 . Reef pavement also was affected by OA, with dissolution ~86% higher under elevated pCO2 compared to ambient pCO2 . These results suggest that net accretion of outer barrier reef communities will decline under OA conditions predicted within the next 100 years, largely because of increased dissolution of reef pavement. Such extensive dissolution poses a threat to the carbonate foundation of barrier reef communities.

  11. Coral reefs on the edge? Carbon chemistry on inshore reefs of the great barrier reef.

    Science.gov (United States)

    Uthicke, Sven; Furnas, Miles; Lønborg, Christian

    2014-01-01

    While increasing atmospheric carbon dioxide (CO2) concentration alters global water chemistry (Ocean Acidification; OA), the degree of changes vary on local and regional spatial scales. Inshore fringing coral reefs of the Great Barrier Reef (GBR) are subjected to a variety of local pressures, and some sites may already be marginal habitats for corals. The spatial and temporal variation in directly measured parameters: Total Alkalinity (TA) and dissolved inorganic carbon (DIC) concentration, and derived parameters: partial pressure of CO2 (pCO2); pH and aragonite saturation state (Ωar) were measured at 14 inshore reefs over a two year period in the GBR region. Total Alkalinity varied between 2069 and 2364 µmol kg-1 and DIC concentrations ranged from 1846 to 2099 µmol kg-1. This resulted in pCO2 concentrations from 340 to 554 µatm, with higher values during the wet seasons and pCO2 on inshore reefs distinctly above atmospheric values. However, due to temperature effects, Ωar was not further reduced in the wet season. Aragonite saturation on inshore reefs was consistently lower and pCO2 higher than on GBR reefs further offshore. Thermodynamic effects contribute to this, and anthropogenic runoff may also contribute by altering productivity (P), respiration (R) and P/R ratios. Compared to surveys 18 and 30 years ago, pCO2 on GBR mid- and outer-shelf reefs has risen at the same rate as atmospheric values (∼1.7 µatm yr-1) over 30 years. By contrast, values on inshore reefs have increased at 2.5 to 3 times higher rates. Thus, pCO2 levels on inshore reefs have disproportionately increased compared to atmospheric levels. Our study suggests that inshore GBR reefs are more vulnerable to OA and have less buffering capacity compared to offshore reefs. This may be caused by anthropogenically induced trophic changes in the water column and benthos of inshore reefs subjected to land runoff.

  12. Coral reefs on the edge? Carbon chemistry on inshore reefs of the great barrier reef.

    Directory of Open Access Journals (Sweden)

    Sven Uthicke

    Full Text Available While increasing atmospheric carbon dioxide (CO2 concentration alters global water chemistry (Ocean Acidification; OA, the degree of changes vary on local and regional spatial scales. Inshore fringing coral reefs of the Great Barrier Reef (GBR are subjected to a variety of local pressures, and some sites may already be marginal habitats for corals. The spatial and temporal variation in directly measured parameters: Total Alkalinity (TA and dissolved inorganic carbon (DIC concentration, and derived parameters: partial pressure of CO2 (pCO2; pH and aragonite saturation state (Ωar were measured at 14 inshore reefs over a two year period in the GBR region. Total Alkalinity varied between 2069 and 2364 µmol kg-1 and DIC concentrations ranged from 1846 to 2099 µmol kg-1. This resulted in pCO2 concentrations from 340 to 554 µatm, with higher values during the wet seasons and pCO2 on inshore reefs distinctly above atmospheric values. However, due to temperature effects, Ωar was not further reduced in the wet season. Aragonite saturation on inshore reefs was consistently lower and pCO2 higher than on GBR reefs further offshore. Thermodynamic effects contribute to this, and anthropogenic runoff may also contribute by altering productivity (P, respiration (R and P/R ratios. Compared to surveys 18 and 30 years ago, pCO2 on GBR mid- and outer-shelf reefs has risen at the same rate as atmospheric values (∼1.7 µatm yr-1 over 30 years. By contrast, values on inshore reefs have increased at 2.5 to 3 times higher rates. Thus, pCO2 levels on inshore reefs have disproportionately increased compared to atmospheric levels. Our study suggests that inshore GBR reefs are more vulnerable to OA and have less buffering capacity compared to offshore reefs. This may be caused by anthropogenically induced trophic changes in the water column and benthos of inshore reefs subjected to land runoff.

  13. Influence of hydrodynamic energy on Holocene reef flat accretion, Great Barrier Reef

    Science.gov (United States)

    Dechnik, Belinda; Webster, Jody M.; Nothdurft, Luke; Webb, Gregory E.; Zhao, Jian-xin; Duce, Stephanie; Braga, Juan C.; Harris, Daniel L.; Vila-Concejo, Ana; Puotinen, Marji

    2016-01-01

    The response of platform reefs to sea-level stabilization over the past 6 ka is well established for the Great Barrier Reef (GBR), with reefs typically accreting laterally from windward to leeward. However, these observations are based on few cores spread across reef zones and may not accurately reflect a reef's true accretional response to the Holocene stillstand. We present a new record of reef accretion based on 49 U/Th ages from Heron and One Tree reefs in conjunction with re-analyzed data from 14 reefs across the GBR. We demonstrate that hydrodynamic energy is the main driver of accretional direction; exposed reefs accreted primarily lagoon-ward while protected reefs accreted seawards, contrary to the traditional growth model in the GBR. Lateral accretion rates varied from 86.3 m/ka-42.4 m/ka on the exposed One Tree windward reef and 68.35 m/ka-15.7 m/ka on the protected leeward Heron reef, suggesting that wind/wave energy is not a dominant control on lateral accretion rates. This represents the most comprehensive statement of lateral accretion direction and rates from the mid-outer platform reefs of the GBR, confirming great variability in reef flat growth both within and between reef margins over the last 6 ka, and highlighting the need for closely-spaced transects.

  14. Seasonal Dynamical Prediction of Coral Bleaching in the Great Barrier Reef, Australia

    Science.gov (United States)

    Spillman, C. M.; Alves, O.

    2009-05-01

    Sea surface temperature (SST) is now recognised as the primary cause of mass coral bleaching events. Coral bleaching occurs during times of stress, particularly when SSTs exceed the coral colony's tolerance level. Global warming is potentially a serious threat to the future of the world's reef systems with predictions by the international community that bleaching will increase in both frequency and severity. Advance warning of anomalous sea surface temperatures, and thus potential bleaching events, would allow for the implementation of management strategies to minimise reef damage. Seasonal SST forecasts from the coupled ocean-atmosphere model POAMA (Bureau of Meteorology) have skill in the Great Barrier Reef (Australia) several months into the future. We will present model forecasts and probabilistic products for use in reef management, and assess model skill in the region. These products will revolutionise the way in which coral bleaching events are monitored and assessed in the Great Barrier Reef and Australian region.

  15. Distribution, abundance and diversity of crustose coralline algae on the Great Barrier Reef

    Science.gov (United States)

    Dean, Angela J.; Steneck, Robert S.; Tager, Danika; Pandolfi, John M.

    2015-06-01

    The Great Barrier Reef (GBR) is the world's largest coral reef ecosystem. Crustose coralline algae (CCA) are important contributors to reef calcium carbonate and can facilitate coral recruitment. Despite the importance of CCA, little is known about species-level distribution, abundance, and diversity, and how these vary across the continental shelf and key habitat zones within the GBR. We quantified CCA species distributions using line transects ( n = 127) at 17 sites in the northern and central regions of the GBR, distributed among inner-, mid-, and outer-shelf regions. At each site, we identified CCA along replicate transects in three habitat zones: reef flat, reef crest, and reef slope. Taxonomically, CCA species are challenging to identify (especially in the field), and there is considerable disagreement in approach. We used published, anatomically based taxonomic schemes for consistent identification. We identified 30 CCA species among 12 genera; the most abundant species were Porolithon onkodes, Paragoniolithon conicum (sensu Adey), Neogoniolithon fosliei, and Hydrolithon reinboldii. Significant cross-shelf differences were observed in CCA community structure and CCA abundance, with inner-shelf reefs exhibiting lower CCA abundance than outer-shelf reefs. Shelf position, habitat zone, latitude, depth, and the interaction of shelf position and habitat were all significantly associated with variation in composition of CCA communities. Collectively, shelf position, habitat, and their interaction contributed to 22.6 % of the variation in coralline communities. Compared to mid- and outer-shelf sites, inner-shelf sites exhibited lower relative abundances of N. fosliei and Lithophyllum species. Reef crest habitats exhibited greater abundance of N. fosliei than reef flat and reef slope habitats. Reef slope habitats exhibited lower abundance of P. onkodes, but greater abundance of Neogoniolithon clavycymosum than reef crest and reef slope habitats. These findings

  16. Securing the future of the Great Barrier Reef

    Science.gov (United States)

    Hughes, Terry P.; Day, Jon C.; Brodie, Jon

    2015-06-01

    The decline of the Great Barrier Reef can be reversed by improvements to governance and management: current policies that promote fossil fuels and economic development of the Reef region need to be reformed to prioritize long-term protection from climate change and other stressors.

  17. Serpulidae (Annelida) of Lizard Island, Great Barrier Reef, Australia.

    Science.gov (United States)

    Kupriyanova, Elena K; Sun, Yanan; Hove, Harry A Ten; Wong, Eunice; Rouse, Greg W

    2015-09-18

    Serpulidae are obligatory sedentary polychaetes inhabiting calcareous tubes that are most common in subtropical and tropical areas of the world. This paper describes serpulid polychaetes collected from Lizard Island, Great Barrier Reef, Australia in 1983-2013 and deposited in Australian museums and overseas. In total, 17 serpulid genera were recorded, but although the study deals with 44 nominal taxa, the exact number of species remains unclear because a number of genera (i.e., Salmacina, Protula, Serpula, Spirobranchus, and Vermiliopsis) need world-wide revisions. Some species described herein are commonly found in the waters around Lizard Island, but had not previously been formally reported. A new species of Hydroides (H. lirs) and two new species of Semivermilia (S. annehoggettae and S. lylevaili) are described. A taxonomic key to all taxa found at Lizard Island is provided.

  18. Coral reef community composition in the context of disturbance history on the Great Barrier Reef, Australia.

    Directory of Open Access Journals (Sweden)

    Nicholas A J Graham

    Full Text Available Much research on coral reefs has documented differential declines in coral and associated organisms. In order to contextualise this general degradation, research on community composition is necessary in the context of varied disturbance histories and the biological processes and physical features thought to retard or promote recovery. We conducted a spatial assessment of coral reef communities across five reefs of the central Great Barrier Reef, Australia, with known disturbance histories, and assessed patterns of coral cover and community composition related to a range of other variables thought to be important for reef dynamics. Two of the reefs had not been extensively disturbed for at least 15 years prior to the surveys. Three of the reefs had been severely impacted by crown-of-thorns starfish outbreaks and coral bleaching approximately a decade before the surveys, from which only one of them was showing signs of recovery based on independent surveys. We incorporated wave exposure (sheltered and exposed and reef zone (slope, crest and flat into our design, providing a comprehensive assessment of the spatial patterns in community composition on these reefs. Categorising corals into life history groupings, we document major coral community differences in the unrecovered reefs, compared to the composition and covers found on the undisturbed reefs. The recovered reef, despite having similar coral cover, had a different community composition from the undisturbed reefs, which may indicate slow successional processes, or a different natural community dominance pattern due to hydrology and other oceanographic factors. The variables that best correlated with patterns in the coral community among sites included the density of juvenile corals, herbivore fish biomass, fish species richness and the cover of macroalgae. Given increasing impacts to the Great Barrier Reef, efforts to mitigate local stressors will be imperative to encouraging coral

  19. Coral reef community composition in the context of disturbance history on the Great Barrier Reef, Australia.

    Science.gov (United States)

    Graham, Nicholas A J; Chong-Seng, Karen M; Huchery, Cindy; Januchowski-Hartley, Fraser A; Nash, Kirsty L

    2014-01-01

    Much research on coral reefs has documented differential declines in coral and associated organisms. In order to contextualise this general degradation, research on community composition is necessary in the context of varied disturbance histories and the biological processes and physical features thought to retard or promote recovery. We conducted a spatial assessment of coral reef communities across five reefs of the central Great Barrier Reef, Australia, with known disturbance histories, and assessed patterns of coral cover and community composition related to a range of other variables thought to be important for reef dynamics. Two of the reefs had not been extensively disturbed for at least 15 years prior to the surveys. Three of the reefs had been severely impacted by crown-of-thorns starfish outbreaks and coral bleaching approximately a decade before the surveys, from which only one of them was showing signs of recovery based on independent surveys. We incorporated wave exposure (sheltered and exposed) and reef zone (slope, crest and flat) into our design, providing a comprehensive assessment of the spatial patterns in community composition on these reefs. Categorising corals into life history groupings, we document major coral community differences in the unrecovered reefs, compared to the composition and covers found on the undisturbed reefs. The recovered reef, despite having similar coral cover, had a different community composition from the undisturbed reefs, which may indicate slow successional processes, or a different natural community dominance pattern due to hydrology and other oceanographic factors. The variables that best correlated with patterns in the coral community among sites included the density of juvenile corals, herbivore fish biomass, fish species richness and the cover of macroalgae. Given increasing impacts to the Great Barrier Reef, efforts to mitigate local stressors will be imperative to encouraging coral communities to persist into

  20. Coral reef community composition in the context of disturbance history on the Great Barrier Reef, Australia.

    Science.gov (United States)

    Graham, Nicholas A J; Chong-Seng, Karen M; Huchery, Cindy; Januchowski-Hartley, Fraser A; Nash, Kirsty L

    2014-01-01

    Much research on coral reefs has documented differential declines in coral and associated organisms. In order to contextualise this general degradation, research on community composition is necessary in the context of varied disturbance histories and the biological processes and physical features thought to retard or promote recovery. We conducted a spatial assessment of coral reef communities across five reefs of the central Great Barrier Reef, Australia, with known disturbance histories, and assessed patterns of coral cover and community composition related to a range of other variables thought to be important for reef dynamics. Two of the reefs had not been extensively disturbed for at least 15 years prior to the surveys. Three of the reefs had been severely impacted by crown-of-thorns starfish outbreaks and coral bleaching approximately a decade before the surveys, from which only one of them was showing signs of recovery based on independent surveys. We incorporated wave exposure (sheltered and exposed) and reef zone (slope, crest and flat) into our design, providing a comprehensive assessment of the spatial patterns in community composition on these reefs. Categorising corals into life history groupings, we document major coral community differences in the unrecovered reefs, compared to the composition and covers found on the undisturbed reefs. The recovered reef, despite having similar coral cover, had a different community composition from the undisturbed reefs, which may indicate slow successional processes, or a different natural community dominance pattern due to hydrology and other oceanographic factors. The variables that best correlated with patterns in the coral community among sites included the density of juvenile corals, herbivore fish biomass, fish species richness and the cover of macroalgae. Given increasing impacts to the Great Barrier Reef, efforts to mitigate local stressors will be imperative to encouraging coral communities to persist into

  1. Dynamical seasonal prediction of summer sea surface temperatures in the Great Barrier Reef

    Science.gov (United States)

    Spillman, C. M.; Alves, O.

    2009-03-01

    Coral bleaching is a serious problem threatening the world coral reef systems, triggered by high sea surface temperatures (SST) which are becoming more prevalent as a result of global warming. Seasonal forecasts from coupled ocean-atmosphere models can be used to predict anomalous SST months in advance. In this study, we assess the ability of the Australian Bureau of Meteorology seasonal forecast model (POAMA) to forecast SST anomalies in the Great Barrier Reef, Australia, with particular focus on the major 1998 and 2002 bleaching events. Advance warning of potential bleaching events allows for the implementation of management strategies to minimise reef damage. This study represents the first attempt to apply a dynamical seasonal model to the problem of coral bleaching and predict SST over a reef system for up to 6 months lead-time, a potentially invaluable tool for reef managers.

  2. Congruent patterns of connectivity can inform management for broadcast spawning corals on the Great Barrier Reef.

    Science.gov (United States)

    Lukoschek, Vimoksalehi; Riginos, Cynthia; van Oppen, Madeleine J H

    2016-07-01

    Connectivity underpins the persistence and recovery of marine ecosystems. The Great Barrier Reef (GBR) is the world's largest coral reef ecosystem and managed by an extensive network of no-take zones; however, information about connectivity was not available to optimize the network's configuration. We use multivariate analyses, Bayesian clustering algorithms and assignment tests of the largest population genetic data set for any organism on the GBR to date (Acropora tenuis, >2500 colonies; >50 reefs, genotyped for ten microsatellite loci) to demonstrate highly congruent patterns of connectivity between this common broadcast spawning reef-building coral and its congener Acropora millepora (~950 colonies; 20 reefs, genotyped for 12 microsatellite loci). For both species, there is a genetic divide at around 19°S latitude, most probably reflecting allopatric differentiation during the Pleistocene. GBR reefs north of 19°S are essentially panmictic whereas southern reefs are genetically distinct with higher levels of genetic diversity and population structure, most notably genetic subdivision between inshore and offshore reefs south of 19°S. These broadly congruent patterns of higher genetic diversities found on southern GBR reefs most likely represent the accumulation of alleles via the southward flowing East Australia Current. In addition, signatures of genetic admixture between the Coral Sea and outer-shelf reefs in the northern, central and southern GBR provide evidence of recent gene flow. Our connectivity results are consistent with predictions from recently published larval dispersal models for broadcast spawning corals on the GBR, thereby providing robust connectivity information about the dominant reef-building genus Acropora for coral reef managers.

  3. Congruent patterns of connectivity can inform management for broadcast spawning corals on the Great Barrier Reef.

    Science.gov (United States)

    Lukoschek, Vimoksalehi; Riginos, Cynthia; van Oppen, Madeleine J H

    2016-07-01

    Connectivity underpins the persistence and recovery of marine ecosystems. The Great Barrier Reef (GBR) is the world's largest coral reef ecosystem and managed by an extensive network of no-take zones; however, information about connectivity was not available to optimize the network's configuration. We use multivariate analyses, Bayesian clustering algorithms and assignment tests of the largest population genetic data set for any organism on the GBR to date (Acropora tenuis, >2500 colonies; >50 reefs, genotyped for ten microsatellite loci) to demonstrate highly congruent patterns of connectivity between this common broadcast spawning reef-building coral and its congener Acropora millepora (~950 colonies; 20 reefs, genotyped for 12 microsatellite loci). For both species, there is a genetic divide at around 19°S latitude, most probably reflecting allopatric differentiation during the Pleistocene. GBR reefs north of 19°S are essentially panmictic whereas southern reefs are genetically distinct with higher levels of genetic diversity and population structure, most notably genetic subdivision between inshore and offshore reefs south of 19°S. These broadly congruent patterns of higher genetic diversities found on southern GBR reefs most likely represent the accumulation of alleles via the southward flowing East Australia Current. In addition, signatures of genetic admixture between the Coral Sea and outer-shelf reefs in the northern, central and southern GBR provide evidence of recent gene flow. Our connectivity results are consistent with predictions from recently published larval dispersal models for broadcast spawning corals on the GBR, thereby providing robust connectivity information about the dominant reef-building genus Acropora for coral reef managers. PMID:27085309

  4. Benthic foraminifera baseline assemblages from a coastal nearshore reef complex on the central Great Barrier Reef

    Science.gov (United States)

    Johnson, Jamie; Perry, Chris; Smithers, Scott; Morgan, Kyle

    2016-04-01

    Declining water quality due to river catchment modification since European settlement (c. 1850 A.D.) represents a major threat to the health of coral reefs on Australia's Great Barrier Reef (GBR), particularly for those located in the coastal waters of the GBR's inner-shelf. These nearshore reefs are widely perceived to be most susceptible to declining water quality owing to their close proximity to river point sources. Despite this, nearshore reefs have been relatively poorly studied with the impacts and magnitudes of environmental degradation still remaining unclear. This is largely due to ongoing debates concerning the significance of increased sediment yields against naturally high background sedimentary regimes. Benthic foraminifera are increasingly used as tools for monitoring environmental and ecological change on coral reefs. On the GBR, the majority of studies have focussed on the spatial distributions of contemporary benthic foraminiferal assemblages. While baseline assemblages from other environments (e.g. inshore reefs and mangroves) have been described, very few records exist for nearshore reefs. Here, we present preliminary results from the first palaeoecological study of foraminiferal assemblages of nearshore reefs on the central GBR. Cores were recovered from the nearshore reef complex at Paluma Shoals using percussion techniques. Recovery was 100%, capturing the entire Holocene reef sequence of the selected reef structures. Radiocarbon dating and subsequent age-depth modelling techniques were used to identify reef sequences pre-dating European settlement. Benthic foraminifera assemblages were reconstructed from the identified sequences to establish pre-European ecological baselines with the aim of providing a record of foraminiferal distribution during vertical reef accretion and against which contemporary ecological change may be assessed.

  5. The 27-year decline of coral cover on the Great Barrier Reef and its causes.

    Science.gov (United States)

    De'ath, Glenn; Fabricius, Katharina E; Sweatman, Hugh; Puotinen, Marji

    2012-10-30

    The world's coral reefs are being degraded, and the need to reduce local pressures to offset the effects of increasing global pressures is now widely recognized. This study investigates the spatial and temporal dynamics of coral cover, identifies the main drivers of coral mortality, and quantifies the rates of potential recovery of the Great Barrier Reef. Based on the world's most extensive time series data on reef condition (2,258 surveys of 214 reefs over 1985-2012), we show a major decline in coral cover from 28.0% to 13.8% (0.53% y(-1)), a loss of 50.7% of initial coral cover. Tropical cyclones, coral predation by crown-of-thorns starfish (COTS), and coral bleaching accounted for 48%, 42%, and 10% of the respective estimated losses, amounting to 3.38% y(-1) mortality rate. Importantly, the relatively pristine northern region showed no overall decline. The estimated rate of increase in coral cover in the absence of cyclones, COTS, and bleaching was 2.85% y(-1), demonstrating substantial capacity for recovery of reefs. In the absence of COTS, coral cover would increase at 0.89% y(-1), despite ongoing losses due to cyclones and bleaching. Thus, reducing COTS populations, by improving water quality and developing alternative control measures, could prevent further coral decline and improve the outlook for the Great Barrier Reef. Such strategies can, however, only be successful if climatic conditions are stabilized, as losses due to bleaching and cyclones will otherwise increase.

  6. Exploring the hidden shallows: extensive reef development and resilience within the turbid nearshore Great Barrier Reef

    Science.gov (United States)

    Morgan, Kyle; Perry, Chris; Smithers, Scott; Johnson, Jamie; Daniell, James

    2016-04-01

    Mean coral cover on Australia's Great Barrier Reef (GBR) has reportedly declined by over 15% during the last 30 years. Climate change events and outbreaks of coral disease have been major drivers of degradation, often exacerbating the stresses caused by localised human activities (e.g. elevated sediment and nutrient inputs). Here, however, in the first assessment of nearshore reef occurrence and ecology across meaningful spatial scales (15.5 sq km), we show that areas of the GBR shelf have exhibited strong intra-regional variability in coral resilience to declining water quality. Specifically, within the highly-turbid "mesophotic" nearshore (reefs). Of the mapped area, 11% of the seafloor has distinct reef or coral community cover, a density comparable to that measured across the entire GBR shelf (9%). Identified coral taxa (21 genera) exhibited clear depth-stratification corresponding closely to light attenuation and seafloor topography. Reefs have accreted relatively rapidly during the late-Holocene (1.8-3.0 mm y-1) with rates of vertical reef growth influenced by intrinsic shifts in coral assemblages associated with reef development. Indeed, these shallow-water reefs may have similar potential as refugia from large-scale disturbance as their deep-water (>30 m) "mesophotic" equivalents, and also provide a basis from which to model future trajectories of reef growth within nearshore areas.

  7. Assessment of the Water Quality and Ecosystem Health of the Great Barrier Reef (Australia): Conceptual Models

    Science.gov (United States)

    Haynes, David; Brodie, Jon; Waterhouse, Jane; Bainbridge, Zoe; Bass, Deb; Hart, Barry

    2007-12-01

    Run-off containing increased concentrations of sediment, nutrients, and pesticides from land-based anthropogenic activities is a significant influence on water quality and the ecologic conditions of nearshore areas of the Great Barrier Reef World Heritage Area, Australia. The potential and actual impacts of increased pollutant concentrations range from bioaccumulation of contaminants and decreased photosynthetic capacity to major shifts in community structure and health of mangrove, coral reef, and seagrass ecosystems. A detailed conceptual model underpins and illustrates the links between the main anthropogenic pressures or threats (dry-land cattle grazing and intensive sugar cane cropping) and the production of key contaminants or stressors of Great Barrier Reef water quality. The conceptual model also includes longer-term threats to Great Barrier Reef water quality and ecosystem health, such as global climate change, that will potentially confound direct model interrelationships. The model recognises that system-specific attributes, such as monsoonal wind direction, rainfall intensity, and flood plume residence times, will act as system filters to modify the effects of any water-quality system stressor. The model also summarises key ecosystem responses in ecosystem health that can be monitored through indicators at catchment, riverine, and marine scales. Selected indicators include riverine and marine water quality, inshore coral reef and seagrass status, and biota pollutant burdens. These indicators have been adopted as components of a long-term monitoring program to enable assessment of the effectiveness of change in catchment-management practices in improving Great Barrier Reef (and adjacent catchment) water quality under the Queensland and Australian Governments’ Reef Water Quality Protection Plan.

  8. A critical review of environmental management of the 'not so Great' Barrier Reef

    Science.gov (United States)

    Brodie, Jon; Waterhouse, Jane

    2012-06-01

    Recent estimates put average coral cover across the Great Barrier Reef (GBR) at about 20-30%. This is estimated to be a large reduction since the 1960s. The Great Barrier Reef Marine Park Act was enacted in 1975 and the Great Barrier Reef Marine Park Authority (GBRMPA) set up shortly afterwards. So the question is: why has coral cover continued to decline when the GBR is being managed with a management regime often recognised as 'the best managed coral reef system in the world', based on a strong science-for-management ethic. The stressors which are known to be most responsible for the loss of coral cover (and general 'reef health') are terrestrial pollution including the link to outbreaks of crown of thorns starfish, fishing impacts and climate change. These have been established through a long and intensive research effort over the last 30 years. However the management response of the GBRMPA after 1975, while based on a strong science-for-management program, did not concentrate on these issues but instead on managing access through zoning with restrictions on fishing in very limited areas and tourism management. Significant action on fishing, including trawling, did not occur until the Trawl Management Plan of 2000 and the rezoning of the GBR Marine Park in 2004. Effective action on terrestrial pollution did not occur until the Australian Government Reef Rescue initiative which commenced in 2008. Effective action on climate change has yet to begin either nationally or globally. Thus it is not surprising that coral cover on the GBR has reduced to values similar to those seen in other coral reef areas in the world such as Indonesia and the Philippines. Science has always required long periods to acquire sufficient evidence to drive management action and hence there is a considerable time lag between the establishment of scientific evidence and the introduction of effective management. It can still be credibly claimed that the GBR is the best managed coral reef

  9. An observational heat budget analysis of a coral reef, Heron Reef, Great Barrier Reef, Australia

    Science.gov (United States)

    MacKellar, Mellissa C.; McGowan, Hamish A.; Phinn, Stuart R.

    2013-03-01

    Measurements of the surface energy balance, the structure and evolution of the convective atmospheric reef layer (CARL), and local meteorology and hydrodynamics were made during June 2009 and February 2010 at Heron Reef, Australia, to establish the relative partitioning of heating within the water and atmosphere. Horizontal advection was shown to moderate temperature in the CARL and the water, having a cooling influence on the atmosphere, and providing an additional source or sink of energy to the water overlying the reef, depending on tide. The key driver of atmospheric heating was surface sensible heat flux, while heating of the reef water was primarily due to solar radiation, and thermal conduction and convection from the reef substrate. Heating and cooling processes were more defined during winter due to higher sensible and latent heat fluxes and strong diurnal evolution of the CARL. Sudden increases in water temperature were associated with inundation of warmer oceanic water during the flood tide, particularly in winter due to enhanced nocturnal cooling of water overlying the reef. Similarly, cooling of the water over the reef occurred during the ebb tide as heat was transported off the reef to the surrounding ocean. While these results are the first to shed light on the heat budget of a coral reef and overlying CARL, longer-term, systematic measurements of reef thermal budgets are needed under a range of meteorological and hydrodynamic conditions, and across various reef types to elucidate the influence on larger-scale oceanic and atmospheric processes. This is essential for understanding the role of coral reefs in tropical and sub-tropical meteorology; the physical processes that take place during coral bleaching events, and coral and algal community dynamics on coral reefs.

  10. Photochemical activity in waters of the Great Barrier Reef

    Science.gov (United States)

    Szymczak, R.; Waite, T. D.

    1991-12-01

    Photochemical activity in waters of the Great Barrier Reef was investigated through studies on the vertical, horizontal and temporal distribution of hydrogen peroxide and factors influencing its generation and decay processes. Surface hydrogen peroxide concentrations varied from 15 to 110 nM and generally decreased with depth, though a number of anomalies were detected. Photochemical activity decreased with increasing distance from the coast reflecting the positive influence of terrestrial inputs to the hydrogen peroxide generation and decay processes. Increases in photochemical activity were observed in the proximity of coral reefs. Hydrogen peroxide concentrations in the region were influenced by wind-induced mixing processes, atmospheric inputs, anthropogenic activity and seasonal light regimes.

  11. Ocean acidification: Linking science to management solutions using the Great Barrier Reef as a case study.

    Science.gov (United States)

    Albright, Rebecca; Anthony, Kenneth R N; Baird, Mark; Beeden, Roger; Byrne, Maria; Collier, Catherine; Dove, Sophie; Fabricius, Katharina; Hoegh-Guldberg, Ove; Kelly, Ryan P; Lough, Janice; Mongin, Mathieu; Munday, Philip L; Pears, Rachel J; Russell, Bayden D; Tilbrook, Bronte; Abal, Eva

    2016-11-01

    Coral reefs are one of the most vulnerable ecosystems to ocean acidification. While our understanding of the potential impacts of ocean acidification on coral reef ecosystems is growing, gaps remain that limit our ability to translate scientific knowledge into management action. To guide solution-based research, we review the current knowledge of ocean acidification impacts on coral reefs alongside management needs and priorities. We use the world's largest continuous reef system, Australia's Great Barrier Reef (GBR), as a case study. We integrate scientific knowledge gained from a variety of approaches (e.g., laboratory studies, field observations, and ecosystem modelling) and scales (e.g., cell, organism, ecosystem) that underpin a systems-level understanding of how ocean acidification is likely to impact the GBR and associated goods and services. We then discuss local and regional management options that may be effective to help mitigate the effects of ocean acidification on the GBR, with likely application to other coral reef systems. We develop a research framework for linking solution-based ocean acidification research to practical management options. The framework assists in identifying effective and cost-efficient options for supporting ecosystem resilience. The framework enables on-the-ground OA management to be the focus, while not losing sight of CO2 mitigation as the ultimate solution. PMID:27564868

  12. Ocean acidification: Linking science to management solutions using the Great Barrier Reef as a case study.

    Science.gov (United States)

    Albright, Rebecca; Anthony, Kenneth R N; Baird, Mark; Beeden, Roger; Byrne, Maria; Collier, Catherine; Dove, Sophie; Fabricius, Katharina; Hoegh-Guldberg, Ove; Kelly, Ryan P; Lough, Janice; Mongin, Mathieu; Munday, Philip L; Pears, Rachel J; Russell, Bayden D; Tilbrook, Bronte; Abal, Eva

    2016-11-01

    Coral reefs are one of the most vulnerable ecosystems to ocean acidification. While our understanding of the potential impacts of ocean acidification on coral reef ecosystems is growing, gaps remain that limit our ability to translate scientific knowledge into management action. To guide solution-based research, we review the current knowledge of ocean acidification impacts on coral reefs alongside management needs and priorities. We use the world's largest continuous reef system, Australia's Great Barrier Reef (GBR), as a case study. We integrate scientific knowledge gained from a variety of approaches (e.g., laboratory studies, field observations, and ecosystem modelling) and scales (e.g., cell, organism, ecosystem) that underpin a systems-level understanding of how ocean acidification is likely to impact the GBR and associated goods and services. We then discuss local and regional management options that may be effective to help mitigate the effects of ocean acidification on the GBR, with likely application to other coral reef systems. We develop a research framework for linking solution-based ocean acidification research to practical management options. The framework assists in identifying effective and cost-efficient options for supporting ecosystem resilience. The framework enables on-the-ground OA management to be the focus, while not losing sight of CO2 mitigation as the ultimate solution.

  13. The influence of sea level and cyclones on Holocene reef flat development: Middle Island, central Great Barrier Reef

    Science.gov (United States)

    Ryan, E. J.; Smithers, S. G.; Lewis, S. E.; Clark, T. R.; Zhao, J. X.

    2016-09-01

    The geomorphology and chronostratigraphy of the reef flat (including microatoll ages and elevations) were investigated to better understand the long-term development of the reef at Middle Island, inshore central Great Barrier Reef. Eleven cores across the fringing reef captured reef initiation, framework accretion and matrix sediments, allowing a comprehensive appreciation of reef development. Precise uranium-thorium ages obtained from coral skeletons revealed that the reef initiated ~7873 ± 17 years before present (yBP), and most of the reef was emplaced in the following 1000 yr. Average rates of vertical reef accretion ranged between 3.5 and 7.6 mm yr-1. Reef framework was dominated by branching corals ( Acropora and Montipora). An age hiatus of ~5000 yr between 6439 ± 19 and 1617 ± 10 yBP was observed in the core data and attributed to stripping of the reef structure by intense cyclones during the mid- to late-Holocene. Large shingle ridges deposited onshore and basset edges preserved on the reef flat document the influence of cyclones at Middle Island and represent potential sinks for much of the stripped material. Stripping of the upper reef structure around the outer margin of the reef flat by cyclones created accommodation space for a thin (reef growth after 1617 ± 10 yBP that grew over the eroded mid-Holocene reef structure. Although limited fetch and open-water exposure might suggest the reef flat at Middle Island is quite protected, our results show that high-energy waves presumably generated by cyclones have significantly influenced both Holocene reef growth and contemporary reef flat geomorphology.

  14. Oil spill prevention and response initiatives in the Great Barrier Reef

    International Nuclear Information System (INIS)

    The national and international interest in the marine environment, in particular the Great Barrier Reef has escalated at an exponential rate in the last decade and this trend is expected to continue. Australians are extremely conscious of the amenity and economic value of the Great Barrier Reef. There is a real potential to inflict enormous damage to the Great Barrier Reef and to the shipping industry should a major Oil Spill occur on the reef. A major catastrophic incident within the Great Barrier Reef would have extreme environmental, social and economic consequences. (Author)

  15. Recruitment Variability of Coral Reef Sessile Communities of the Far North Great Barrier Reef.

    Science.gov (United States)

    Luter, Heidi M; Duckworth, Alan R; Wolff, Carsten W; Evans-Illidge, Elizabeth; Whalan, Steve

    2016-01-01

    One of the key components in assessing marine sessile organism demography is determining recruitment patterns to benthic habitats. An analysis of serially deployed recruitment tiles across depth (6 and 12 m), seasons (summer and winter) and space (meters to kilometres) was used to quantify recruitment assemblage structure (abundance and percent cover) of corals, sponges, ascidians, algae and other sessile organisms from the northern sector of the Great Barrier Reef (GBR). Polychaetes were most abundant on recruitment titles, reaching almost 50% of total recruitment, yet covered reefs.

  16. Cryptofauna of the epilithic algal matrix on an inshore coral reef, Great Barrier Reef

    Science.gov (United States)

    Kramer, M. J.; Bellwood, D. R.; Bellwood, O.

    2012-12-01

    Composed of a collection of algae, detritus, sediment and invertebrates, the epilithic algal matrix (EAM) is an abundant and ubiquitous feature of coral reefs. Despite its prevalence, there is a paucity of information regarding its associated invertebrate fauna. The cryptofaunal invertebrate community of the EAM was quantitatively investigated in Pioneer Bay on Orpheus Island, Great Barrier Reef. Using a vacuum collection method, a diversity of organisms representing 10 different phyla were identified. Crustacea dominated the samples, with harpacticoid copepods being particularly abundant (2025 ± 132 100 cm-2; mean density ± SE). The volume of coarse particulate matter in the EAM was strongly correlated with the abundance of harpacticoid copepods. The estimated biomass of harpacticoid copepods (0.48 ± 0.05 g m-2; wet weight) suggests that this group is likely to be important for reef trophodynamics and nutrient cycling.

  17. Exploring the hidden shallows: extensive reef development and resilience within the turbid nearshore Great Barrier Reef

    Science.gov (United States)

    Morgan, Kyle; Perry, Chris; Smithers, Scott; Johnson, Jamie; Daniell, James

    2016-04-01

    Mean coral cover on Australia's Great Barrier Reef (GBR) has reportedly declined by over 15% during the last 30 years. Climate change events and outbreaks of coral disease have been major drivers of degradation, often exacerbating the stresses caused by localised human activities (e.g. elevated sediment and nutrient inputs). Here, however, in the first assessment of nearshore reef occurrence and ecology across meaningful spatial scales (15.5 sq km), we show that areas of the GBR shelf have exhibited strong intra-regional variability in coral resilience to declining water quality. Specifically, within the highly-turbid "mesophotic" nearshore (scale disturbance as their deep-water (>30 m) "mesophotic" equivalents, and also provide a basis from which to model future trajectories of reef growth within nearshore areas.

  18. The exposure of the Great Barrier Reef to ocean acidification.

    Science.gov (United States)

    Mongin, Mathieu; Baird, Mark E; Tilbrook, Bronte; Matear, Richard J; Lenton, Andrew; Herzfeld, Mike; Wild-Allen, Karen; Skerratt, Jenny; Margvelashvili, Nugzar; Robson, Barbara J; Duarte, Carlos M; Gustafsson, Malin S M; Ralph, Peter J; Steven, Andrew D L

    2016-02-23

    The Great Barrier Reef (GBR) is founded on reef-building corals. Corals build their exoskeleton with aragonite, but ocean acidification is lowering the aragonite saturation state of seawater (Ωa). The downscaling of ocean acidification projections from global to GBR scales requires the set of regional drivers controlling Ωa to be resolved. Here we use a regional coupled circulation-biogeochemical model and observations to estimate the Ωa experienced by the 3,581 reefs of the GBR, and to apportion the contributions of the hydrological cycle, regional hydrodynamics and metabolism on Ωa variability. We find more detail, and a greater range (1.43), than previously compiled coarse maps of Ωa of the region (0.4), or in observations (1.0). Most of the variability in Ωa is due to processes upstream of the reef in question. As a result, future decline in Ωa is likely to be steeper on the GBR than currently projected by the IPCC assessment report.

  19. The exposure of the Great Barrier Reef to ocean acidification

    Science.gov (United States)

    Mongin, Mathieu; Baird, Mark E.; Tilbrook, Bronte; Matear, Richard J.; Lenton, Andrew; Herzfeld, Mike; Wild-Allen, Karen; Skerratt, Jenny; Margvelashvili, Nugzar; Robson, Barbara J.; Duarte, Carlos M.; Gustafsson, Malin S. M.; Ralph, Peter J.; Steven, Andrew D. L.

    2016-01-01

    The Great Barrier Reef (GBR) is founded on reef-building corals. Corals build their exoskeleton with aragonite, but ocean acidification is lowering the aragonite saturation state of seawater (Ωa). The downscaling of ocean acidification projections from global to GBR scales requires the set of regional drivers controlling Ωa to be resolved. Here we use a regional coupled circulation–biogeochemical model and observations to estimate the Ωa experienced by the 3,581 reefs of the GBR, and to apportion the contributions of the hydrological cycle, regional hydrodynamics and metabolism on Ωa variability. We find more detail, and a greater range (1.43), than previously compiled coarse maps of Ωa of the region (0.4), or in observations (1.0). Most of the variability in Ωa is due to processes upstream of the reef in question. As a result, future decline in Ωa is likely to be steeper on the GBR than currently projected by the IPCC assessment report. PMID:26907171

  20. The exposure of the Great Barrier Reef to ocean acidification.

    Science.gov (United States)

    Mongin, Mathieu; Baird, Mark E; Tilbrook, Bronte; Matear, Richard J; Lenton, Andrew; Herzfeld, Mike; Wild-Allen, Karen; Skerratt, Jenny; Margvelashvili, Nugzar; Robson, Barbara J; Duarte, Carlos M; Gustafsson, Malin S M; Ralph, Peter J; Steven, Andrew D L

    2016-01-01

    The Great Barrier Reef (GBR) is founded on reef-building corals. Corals build their exoskeleton with aragonite, but ocean acidification is lowering the aragonite saturation state of seawater (Ωa). The downscaling of ocean acidification projections from global to GBR scales requires the set of regional drivers controlling Ωa to be resolved. Here we use a regional coupled circulation-biogeochemical model and observations to estimate the Ωa experienced by the 3,581 reefs of the GBR, and to apportion the contributions of the hydrological cycle, regional hydrodynamics and metabolism on Ωa variability. We find more detail, and a greater range (1.43), than previously compiled coarse maps of Ωa of the region (0.4), or in observations (1.0). Most of the variability in Ωa is due to processes upstream of the reef in question. As a result, future decline in Ωa is likely to be steeper on the GBR than currently projected by the IPCC assessment report. PMID:26907171

  1. The exposure of the Great Barrier Reef to ocean acidification

    KAUST Repository

    Mongin, Mathieu

    2016-02-23

    The Great Barrier Reef (GBR) is founded on reef-building corals. Corals build their exoskeleton with aragonite, but ocean acidification is lowering the aragonite saturation state of seawater (Ωa). The downscaling of ocean acidification projections from global to GBR scales requires the set of regional drivers controlling Ωa to be resolved. Here we use a regional coupled circulation–biogeochemical model and observations to estimate the Ωa experienced by the 3,581 reefs of the GBR, and to apportion the contributions of the hydrological cycle, regional hydrodynamics and metabolism on Ωa variability. We find more detail, and a greater range (1.43), than previously compiled coarse maps of Ωa of the region (0.4), or in observations (1.0). Most of the variability in Ωa is due to processes upstream of the reef in question. As a result, future decline in Ωa is likely to be steeper on the GBR than currently projected by the IPCC assessment report.

  2. The large-scale influence of the Great Barrier Reef matrix on wave attenuation

    Science.gov (United States)

    Gallop, Shari L.; Young, Ian R.; Ranasinghe, Roshanka; Durrant, Tom H.; Haigh, Ivan D.

    2014-12-01

    Offshore reef systems consist of individual reefs, with spaces in between, which together constitute the reef matrix. This is the first comprehensive, large-scale study, of the influence of an offshore reef system on wave climate and wave transmission. The focus was on the Great Barrier Reef (GBR), Australia, utilizing a 16-yr record of wave height from seven satellite altimeters. Within the GBR matrix, the wave climate is not strongly dependent on reef matrix submergence. This suggests that after initial wave breaking at the seaward edge of the reef matrix, wave energy that penetrates the matrix has little depth modulation. There is no clear evidence to suggest that as reef matrix porosity (ratio of spaces between individual reefs to reef area) decreases, wave attenuation increases. This is because individual reefs cast a wave shadow much larger than the reef itself; thus, a matrix of isolated reefs is remarkably effective at attenuating wave energy. This weak dependence of transmitted wave energy on depth of reef submergence, and reef matrix porosity, is also evident in the lee of the GBR matrix. Here, wave conditions appear to be dependent largely on local wind speed, rather than wave conditions either seaward, or within the reef matrix. This is because the GBR matrix is a very effective wave absorber, irrespective of water depth and reef matrix porosity.

  3. Temporary refugia for coral reefs in a warming world

    Science.gov (United States)

    van Hooidonk, R.; Maynard, J. A.; Planes, S.

    2013-05-01

    Climate-change impacts on coral reefs are expected to include temperature-induced spatially extensive bleaching events. Bleaching causes mortality when temperature stress persists but exposure to bleaching conditions is not expected to be spatially uniform at the regional or global scale. Here we show the first maps of global projections of bleaching conditions based on ensembles of IPCC AR5 (ref. ) models forced with the new Representative Concentration Pathways (RCPs). For the three RCPs with larger CO2 emissions (RCP 4.5, 6.0 and 8.5) the onset of annual bleaching conditions is associated with ~ 510ppm CO2 equivalent; the median year of all locations is 2040 for the fossil-fuel aggressive RCP 8.5. Spatial patterns in the onset of annual bleaching conditions are similar for each of the RCPs. For RCP 8.5, 26% of reef cells are projected to experience annual bleaching conditions more than 5 years later than the median. Some of these temporary refugia include the western Indian Ocean, Thailand, the southern Great Barrier Reef and central French Polynesia. A reduction in the growth of greenhouse-gas emissions corresponding to the difference between RCP 8.5 and 6.0 delays annual bleaching in ~ 23% of reef cells more than two decades, which might conceivably increase the potential for these reefs to cope with these changes.

  4. The role of sponges in the Mesoamerican Barrier-Reef Ecosystem, Belize.

    Science.gov (United States)

    Rützler, Klaus

    2012-01-01

    Over the past four decades, sponge research has advanced by leaps and bounds through endeavours such as the Caribbean Coral Reef Ecosystems (CCRE) programme at the U.S. National Museum of Natural History in Washington, D.C. Since its founding in the early 1970s, the programme has been dedicated to a detailed multidisciplinary study of a section of the Mesoamerican Barrier Reef, the Atlantic's largest reef complex, and has generated data far beyond the capability of lone investigators and brief expeditions. This reef complex extends 250 km southward from Yucatan, Mexico, into the Gulf of Honduras, most of it lying 20-40 km off the coast of Belize. A relatively unspoiled ecosystem, it features a great variety of habitats in close proximity, ranging from mangrove islands, seagrass meadows, and patch reefs in its lagoon to the barrier reef along the margin of the continental shelf. Among its varied macrobenthos, sponges stand out for their ubiquity, range of colours, rich species and biomass, and ecological importance; they populate rocky substrates, some sandy bottoms, and the subtidal stilt roots and peat banks of mangroves. Working from a field station established in 1972 on Carrie Bow Cay, a sand islet atop the reef off southern Belize, experts in numerous disciplines from both the Museum and academic institutions throughout the world have explored the area's biodiversity in the broadest sense and community development over time. At last count, 113 researchers (88 working on site) have focused on the biological and geological role of Porifera in Carrie Bow's reef communities, with the results reported in 125 scientific papers to date. The majority of these sponge studies have centred on systematics and faunistics, including quantitative distribution among the various habitats. Taxonomic approaches have ranged from basic morphology to fine structure, DNA barcoding, and ecological manipulations and culminated in a mini-workshop involving several experts on Caribbean

  5. The role of sponges in the Mesoamerican Barrier-Reef Ecosystem, Belize.

    Science.gov (United States)

    Rützler, Klaus

    2012-01-01

    Over the past four decades, sponge research has advanced by leaps and bounds through endeavours such as the Caribbean Coral Reef Ecosystems (CCRE) programme at the U.S. National Museum of Natural History in Washington, D.C. Since its founding in the early 1970s, the programme has been dedicated to a detailed multidisciplinary study of a section of the Mesoamerican Barrier Reef, the Atlantic's largest reef complex, and has generated data far beyond the capability of lone investigators and brief expeditions. This reef complex extends 250 km southward from Yucatan, Mexico, into the Gulf of Honduras, most of it lying 20-40 km off the coast of Belize. A relatively unspoiled ecosystem, it features a great variety of habitats in close proximity, ranging from mangrove islands, seagrass meadows, and patch reefs in its lagoon to the barrier reef along the margin of the continental shelf. Among its varied macrobenthos, sponges stand out for their ubiquity, range of colours, rich species and biomass, and ecological importance; they populate rocky substrates, some sandy bottoms, and the subtidal stilt roots and peat banks of mangroves. Working from a field station established in 1972 on Carrie Bow Cay, a sand islet atop the reef off southern Belize, experts in numerous disciplines from both the Museum and academic institutions throughout the world have explored the area's biodiversity in the broadest sense and community development over time. At last count, 113 researchers (88 working on site) have focused on the biological and geological role of Porifera in Carrie Bow's reef communities, with the results reported in 125 scientific papers to date. The majority of these sponge studies have centred on systematics and faunistics, including quantitative distribution among the various habitats. Taxonomic approaches have ranged from basic morphology to fine structure, DNA barcoding, and ecological manipulations and culminated in a mini-workshop involving several experts on Caribbean

  6. Coral bleaching: one disturbance too many for near-shore reefs of the Great Barrier Reef

    Science.gov (United States)

    Thompson, A. A.; Dolman, A. M.

    2010-09-01

    The dynamic nature of coral communities can make it difficult to judge whether a reef system is resilient to the current disturbance regime. To address this question of resilience for near-shore coral communities of the Great Barrier Reef (Australia) a data set consisting of 350 annual observations of benthic community change was compiled from existing monitoring data. These data spanned the period 1985-2007 and were derived from coral reefs within 20 km of the coast. During years without major disturbance events, cover increase of the Acroporidae was much faster than it was for other coral families; a median of 11% per annum compared to medians of less than 4% for other coral families. Conversely, Acroporidae were more severely affected by cyclones and bleaching events than most other families. A simulation model parameterised with these observations indicated that while recovery rates of hard corals were sufficient to compensate for impacts associated with cyclones and crown-of-thorns starfish, the advent of mass bleaching has lead to a significant change in the composition of the community and a rapid decline in hard coral cover. Furthermore, if bleaching events continue to occur with the same frequency and severity as in the recent past, the model predicts that the cover of Acroporidae will continue to decline. Although significant cover of live coral remains on near-shore reefs, and recovery is observed during inter-disturbance periods, it appears that this system will not be resilient to the recent disturbance regime over the long term. Conservation strategies for coral reefs should focus on both mitigating local factors that act synergistically to increase the susceptibility of Acroporidae to climate change while promoting initiatives that maximise the recovery potential from inevitable disturbances.

  7. Nephtyidae (Annelida: Phyllodocida) of Lizard Island, Great Barrier Reef, Australia.

    Science.gov (United States)

    Murray, Anna; Wong, Eunice; Hutchings, Pat

    2015-09-18

    Seven species of the family Nephtyidae are recorded from Lizard Island, none previously reported from the Great Barrier Reef. Two species of Aglaophamus, four species of Micronephthys, one new and one previously unreported from Australia, and one species of Nephtys, were identified from samples collected during the Lizard Island Polychaete Workshop 2013, as well as from ecological studies undertaken during the 1970s and deposited in the Australian Museum marine invertebrate Collections. A dichotomous key to aid identification of these species newly reported from Lizard Island is provided.

  8. Nephtyidae (Annelida: Phyllodocida) of Lizard Island, Great Barrier Reef, Australia.

    Science.gov (United States)

    Murray, Anna; Wong, Eunice; Hutchings, Pat

    2015-01-01

    Seven species of the family Nephtyidae are recorded from Lizard Island, none previously reported from the Great Barrier Reef. Two species of Aglaophamus, four species of Micronephthys, one new and one previously unreported from Australia, and one species of Nephtys, were identified from samples collected during the Lizard Island Polychaete Workshop 2013, as well as from ecological studies undertaken during the 1970s and deposited in the Australian Museum marine invertebrate Collections. A dichotomous key to aid identification of these species newly reported from Lizard Island is provided. PMID:26624076

  9. Disturbance and the Dynamics of Coral Cover on the Great Barrier Reef (1995–2009)

    OpenAIRE

    Kate Osborne; Dolman, Andrew M; Burgess, Scott C.; Johns, Kerryn A.

    2011-01-01

    Coral reef ecosystems worldwide are under pressure from chronic and acute stressors that threaten their continued existence. Most obvious among changes to reefs is loss of hard coral cover, but a precise multi-scale estimate of coral cover dynamics for the Great Barrier Reef (GBR) is currently lacking. Monitoring data collected annually from fixed sites at 47 reefs across 1300 km of the GBR indicate that overall regional coral cover was stable (averaging 29% and ranging from 23% to 33% cover ...

  10. The role the Great Barrier Reef plays in resident wellbeing and implications for its management.

    Science.gov (United States)

    Larson, Silva; Stoeckl, Natalie; Farr, Marina; Esparon, Michelle

    2015-04-01

    Improvements in human wellbeing are dependent on improving ecosystems. Such considerations are particularly pertinent for regions of high ecological, but also social and cultural importance that are facing rapid change. One such region is the Great Barrier Reef (GBR). Although the GBR has world heritage status for its 'outstanding universal value', little is known about resident perceptions of its values. We surveyed 1545 residents, finding that absence of visible rubbish; healthy reef fish, coral cover, and mangroves; and iconic marine species, are considered to be more important to quality of life than the jobs and incomes associated with industry (most respondents were dissatisfied with the benefits they received from industry). Highly educated females placed more importance on environmental non-use values than other respondents; less educated males and those employed in mining found non-market use-values relatively more important. Environmental non-use values emerged as the most important management priority for all.

  11. Impact Of Coral Structures On Wave Directional Spreading Across A Shallow Reef Flat - Lizard Island, Northern Great Barrier Reef

    Science.gov (United States)

    Leon, J. X.; Baldock, T.; Callaghan, D. P.; Hoegh-guldberg, O.; Mumby, P.; Phinn, S. R.; Roelfsema, C. M.; Saunders, M. I.

    2013-12-01

    Coral reef hydrodynamics operate at several and overlapping spatial-temporal scales. Waves have the most important forcing function on shallow (stress, directly mixing water (temperature and nutrients) and transporting sediments, nutrients and plankton. Reef flats are very effective at dissipating wave energy and providing an important ecosystem service by protecting highly valued shorelines. The effectiveness of reef flats to dissipate wave energy is related to the extreme hydraulic roughness of the benthos and substrate composition. Hydraulic roughness is usually obtained empirically from frictional-dissipation calculations, as detailed field measurements of bottom roughness (e.g. chain-method or profile gauges) is a very labour and time-consuming task. In this study we measured the impact of coral structures on wave directional spreading. Field data was collected during October 2012 across a reef flat on Lizard Island, northern Great Barrier Reef. Wave surface levels were measured using an array of self-logging pressure sensors. A rapid in situ close-range photogrammetric method was used to create a high-resolution (0.5 cm) image mosaic and digital elevation model. Individual coral heads were extracted from these datasets using geo-morphometric and object-based image analysis techniques. Wave propagation was modelled using a modified version of the SWAN model which includes the measured coral structures in 2m by 1m cells across the reef. The approach followed a cylinder drag approach, neglecting skin friction and inertial components. Testing against field data included bed skin friction. Our results show, for the first time, how the variability of the reef benthos structures affects wave dissipation across a shallow reef flat. This has important implications globally for coral reefs, due to the large extent of their area occupied by reef flats, particularly, as global-scale degradation in coral reef health is causing a lowering of reef carbonate production that

  12. Guiding principles for the improved governance of port and shipping impacts in the Great Barrier Reef.

    Science.gov (United States)

    Grech, A; Bos, M; Brodie, J; Coles, R; Dale, A; Gilbert, R; Hamann, M; Marsh, H; Neil, K; Pressey, R L; Rasheed, M A; Sheaves, M; Smith, A

    2013-10-15

    The Great Barrier Reef (GBR) region of Queensland, Australia, encompasses a complex and diverse array of tropical marine ecosystems of global significance. The region is also a World Heritage Area and largely within one of the world's best managed marine protected areas. However, a recent World Heritage Committee report drew attention to serious governance problems associated with the management of ports and shipping. We review the impacts of ports and shipping on biodiversity in the GBR, and propose a series of guiding principles to improve the current governance arrangements. Implementing these principles will increase the capacity of decision makers to minimize the impacts of ports and shipping on biodiversity, and will provide certainty and clarity to port operators and developers. A 'business as usual' approach could lead to the GBR's inclusion on the List of World Heritage in Danger in 2014.

  13. Sea level record obtained from submerged the Great Barrier Reef coral reefs

    Science.gov (United States)

    Yokoyama, Y.; Esat, T. M.; Thompson, W. G.; Thomas, A. L.; Webster, J.; Miyairi, Y.; Matsuzaki, H.; Okuno, J.; Fallon, S.; Braga, J.; Humblet, M.; Iryu, Y.; Potts, D. C.

    2013-12-01

    The last glacial is an interesting time in climate history. The growth and decay of large northern hemisphere ice sheets acting in harmony with major changes in ocean circulation amplified climate variations and resulted in severe and rapid climate swings throughout this time. The variability is not limited to climate but includes rapid, large scale changes in sea level recorded by tropical corals (eg., Yokoyama and Esat, 2011 Oceanography). Research done in the last decade using corals provides a better picture of the climate system, though only a few samples older than 15 ka are available. The Integrated Ocean Drilling Program (IODP) Expedition 325 drilled 34 holes across 17 sites in the Great Barrier Reef, Australia to recover fossil coral reef deposits. We recovered reef materials from water depth to 126 m that ranged in age from 9,000 years to older than 30,000 years ago covering several paleoclimatologically important events, including the Last Glacial Maximum. Two transects separated more than 600 km apart show an identical sea-level history thereby verifying the reliability of the records. Radiometrically dated corals and coralline algae indicate periods of rapid sea-level fluctuation at this time, likely due to complex interactions between ocean currents and ice sheets of the North Atlantic.

  14. Symbiodinium (Dinophyceae) diversity in reef-invertebrates along an offshore to inshore reef gradient near Lizard Island, Great Barrier Reef.

    Science.gov (United States)

    Tonk, Linda; Sampayo, Eugenia M; LaJeunesse, Todd C; Schrameyer, Verena; Hoegh-Guldberg, Ove

    2014-06-01

    Despite extensive work on the genetic diversity of reef invertebrate-dinoflagellate symbioses on the Great Barrier Reef (GBR; Australia), large information gaps exist from northern and inshore regions. Therefore, a broad survey was done comparing the community of inshore, mid-shelf and outer reefs at the latitude of Lizard Island. Symbiodinium (Freudenthal) diversity was characterized using denaturing gradient gel electrophoresis fingerprinting and sequencing of the ITS2 region of the ribosomal DNA. Thirty-nine distinct Symbiodinium types were identified from four subgeneric clades (B, C, D, and G). Several Symbiodinium types originally characterized from the Indian Ocean were discovered as well as eight novel types (C1kk, C1LL, C3nn, C26b, C161a, C162, C165, C166). Multivariate analyses on the Symbiodinium species diversity data showed a strong link with host identity, consistent with previous findings. Of the four environmental variables tested, mean austral winter sea surface temperature (SST) influenced Symbiodinium distribution across shelves most significantly. A similar result was found when the analysis was performed on Symbiodinium diversity data of genera with an open symbiont transmission mode separately with chl a and PAR explaining additional variation. This study underscores the importance of SST and water quality related variables as factors driving Symbiodinium distribution on cross-shelf scales. Furthermore, this study expands our knowledge on Symbiodinium species diversity, ecological partitioning (including host-specificity) and geographic ranges across the GBR. The accelerating rate of environmental change experienced by coral reef ecosystems emphasizes the need to comprehend the full complexity of cnidarian symbioses, including the biotic and abiotic factors that shape their current distributions.

  15. Impacts and recovery from severe tropical cyclone Yasi on the Great Barrier Reef.

    Science.gov (United States)

    Beeden, Roger; Maynard, Jeffrey; Puotinen, Marjetta; Marshall, Paul; Dryden, Jen; Goldberg, Jeremy; Williams, Gareth

    2015-01-01

    Full recovery of coral reefs from tropical cyclone (TC) damage can take decades, making cyclones a major driver of habitat condition where they occur regularly. Since 1985, 44 TCs generated gale force winds (≥17 metres/second) within the Great Barrier Reef Marine Park (GBRMP). Of the hurricane strength TCs (≥H1-Saffir Simpson scale; ≥ category 3 Australian scale), TC Yasi (February, 2011) was the largest. In the weeks after TC Yasi crossed the GBRMP, participating researchers, managers and rangers assessed the extent and severity of reef damage via 841 Reef Health and Impact Surveys at 70 reefs. Records were scaled into five damage levels representing increasingly widespread colony-level damage (1, 2, 3) and reef structural damage (4, 5). Average damage severity was significantly affected by direction (north vs south of the cyclone track), reef shelf position (mid-shelf vs outer-shelf) and habitat type. More outer-shelf reefs suffered structural damage than mid-shelf reefs within 150 km of the track. Structural damage spanned a greater latitudinal range for mid-shelf reefs than outer-shelf reefs (400 vs 300 km). Structural damage was patchily distributed at all distances, but more so as distance from the track increased. Damage extended much further from the track than during other recent intense cyclones that had smaller circulation sizes. Just over 15% (3,834 km2) of the total reef area of the GBRMP is estimated to have sustained some level of coral damage, with ~4% (949 km2) sustaining a degree of structural damage. TC Yasi likely caused the greatest loss of coral cover on the GBR in a 24-hour period since 1985. Severely impacted reefs have started to recover; coral cover increased an average of 4% between 2011 and 2013 at re-surveyed reefs. The in situ assessment of impacts described here is the largest in scale ever conducted on the Great Barrier Reef following a reef health disturbance.

  16. Summer hot snaps and winter conditions: modelling white syndrome outbreaks on Great Barrier Reef corals.

    Directory of Open Access Journals (Sweden)

    Scott F Heron

    Full Text Available Coral reefs are under increasing pressure in a changing climate, one such threat being more frequent and destructive outbreaks of coral diseases. Thermal stress from rising temperatures has been implicated as a causal factor in disease outbreaks observed on the Great Barrier Reef, Australia, and elsewhere in the world. Here, we examine seasonal effects of satellite-derived temperature on the abundance of coral diseases known as white syndromes on the Great Barrier Reef, considering both warm stress during summer and deviations from mean temperatures during the preceding winter. We found a high correlation (r(2 = 0.953 between summer warm thermal anomalies (Hot Snap and disease abundance during outbreak events. Inclusion of thermal conditions during the preceding winter revealed that a significant reduction in disease outbreaks occurred following especially cold winters (Cold Snap, potentially related to a reduction in pathogen loading. Furthermore, mild winters (i.e., neither excessively cool nor warm frequently preceded disease outbreaks. In contrast, disease outbreaks did not typically occur following warm winters, potentially because of increased disease resistance of the coral host. Understanding the balance between the effects of warm and cold winters on disease outbreak will be important in a warming climate. Combining the influence of winter and summer thermal effects resulted in an algorithm that yields both a Seasonal Outlook of disease risk at the conclusion of winter and near real-time monitoring of Outbreak Risk during summer. This satellite-derived system can provide coral reef managers with an assessment of risk three-to-six months in advance of the summer season that can then be refined using near-real-time summer observations. This system can enhance the capacity of managers to prepare for and respond to possible disease outbreaks and focus research efforts to increase understanding of environmental impacts on coral disease in

  17. Stochastic dynamics of a warmer Great Barrier Reef.

    Science.gov (United States)

    Cooper, Jennifer K; Spencer, Matthew; Bruno, John F

    2015-07-01

    Pressure on natural communities from human activities continues to increase. Even unique ecosystems like the Great Barrier Reef (GBR), that until recently were considered near-pristine and well-protected, are showing signs of rapid degradation. We collated recent (1996-2006) spatiotemporal relationships between benthic community composition on the GBR and environmental variables (ocean temperature and local threats resulting from human activity). We built multivariate models of the effects of these variables on short-term dynamics, and developed an analytical approach to study their long-term consequences. We used this approach to study the effects of ocean warming under different levels of local threat. Observed short-term changes in benthic community structure (e.g., declining coral cover) were associated with ocean temperature (warming) and local threats. Our model projected that, in the long-term, coral cover of less than 10% was not implausible. With increasing temperature and/or local threats, corals were initially replaced by sponges, gorgonians, and other taxa, with an eventual moderately high probability of domination (> 50%) by macroalgae when temperature increase was greatest (e.g., 3.5 degrees C of warming). Our approach to modeling community dynamics, based on multivariate statistical models, enabled us to project how environmental change (and thus local and international policy decisions) will influence the future state of coral reefs. The same approach could be applied to other systems for which time series of ecological and environmental variables are available.

  18. Nereididae (Annelida: Phyllodocida) of Lizard Island, Great Barrier Reef, Australia.

    Science.gov (United States)

    Glasby, Christopher J

    2015-09-18

    Nereididae is one of the most ubiquitous of polychaete families, yet knowledge of their diversity in the northern Great Barrier Reef is poor; few species have been previously reported from any of the atolls or islands including Lizard Island. In this study, the diversity of the family from Lizard Island and surrounding reefs is documented based on museum collections derived from surveys conducted mostly over the last seven years. The Lizard Island nereidid fauna was found to be represented by 14 genera and 38 species/species groups, including 11 putative new species. Twelve species are newly reported from Lizard Island; four of these are also first records for Australia. For each genus and species, diagnoses and/or taxonomic remarks are provided in addition to notes on their habitat on Lizard Island, and general distribution; the existence of tissue samples tied to vouchered museum specimens is indicated. Fluorescence photography is used to help distinguish closely similar species of Nereis and Platynereis. A key is provided to facilitate identification and encourage further taxonomic, molecular and ecological studies on the group.

  19. Prey Density Threshold and Tidal Influence on Reef Manta Ray Foraging at an Aggregation Site on the Great Barrier Reef

    Science.gov (United States)

    Armstrong, Asia O.; Armstrong, Amelia J.; Jaine, Fabrice R. A.; Couturier, Lydie I. E.; Fiora, Kym; Uribe-Palomino, Julian; Weeks, Scarla J.; Townsend, Kathy A.; Bennett, Mike B.; Richardson, Anthony J.

    2016-01-01

    Large tropical and sub-tropical marine animals must meet their energetic requirements in a largely oligotrophic environment. Many planktivorous elasmobranchs, whose thermal ecologies prevent foraging in nutrient-rich polar waters, aggregate seasonally at predictable locations throughout tropical oceans where they are observed feeding. Here we investigate the foraging and oceanographic environment around Lady Elliot Island, a known aggregation site for reef manta rays Manta alfredi in the southern Great Barrier Reef. The foraging behaviour of reef manta rays was analysed in relation to zooplankton populations and local oceanography, and compared to long-term sighting records of reef manta rays from the dive operator on the island. Reef manta rays fed at Lady Elliot Island when zooplankton biomass and abundance were significantly higher than other times. The critical prey density threshold that triggered feeding was 11.2 mg m-3 while zooplankton size had no significant effect on feeding. The community composition and size structure of the zooplankton was similar when reef manta rays were feeding or not, with only the density of zooplankton changing. Higher zooplankton biomass was observed prior to low tide, and long-term (~5 years) sighting data confirmed that more reef manta rays are also observed feeding during this tidal phase than other times. This is the first study to examine prey availability at an aggregation site for reef manta rays and it indicates that they feed in locations and at times of higher zooplankton biomass. PMID:27144343

  20. Prey Density Threshold and Tidal Influence on Reef Manta Ray Foraging at an Aggregation Site on the Great Barrier Reef.

    Science.gov (United States)

    Armstrong, Asia O; Armstrong, Amelia J; Jaine, Fabrice R A; Couturier, Lydie I E; Fiora, Kym; Uribe-Palomino, Julian; Weeks, Scarla J; Townsend, Kathy A; Bennett, Mike B; Richardson, Anthony J

    2016-01-01

    Large tropical and sub-tropical marine animals must meet their energetic requirements in a largely oligotrophic environment. Many planktivorous elasmobranchs, whose thermal ecologies prevent foraging in nutrient-rich polar waters, aggregate seasonally at predictable locations throughout tropical oceans where they are observed feeding. Here we investigate the foraging and oceanographic environment around Lady Elliot Island, a known aggregation site for reef manta rays Manta alfredi in the southern Great Barrier Reef. The foraging behaviour of reef manta rays was analysed in relation to zooplankton populations and local oceanography, and compared to long-term sighting records of reef manta rays from the dive operator on the island. Reef manta rays fed at Lady Elliot Island when zooplankton biomass and abundance were significantly higher than other times. The critical prey density threshold that triggered feeding was 11.2 mg m-3 while zooplankton size had no significant effect on feeding. The community composition and size structure of the zooplankton was similar when reef manta rays were feeding or not, with only the density of zooplankton changing. Higher zooplankton biomass was observed prior to low tide, and long-term (~5 years) sighting data confirmed that more reef manta rays are also observed feeding during this tidal phase than other times. This is the first study to examine prey availability at an aggregation site for reef manta rays and it indicates that they feed in locations and at times of higher zooplankton biomass.

  1. Prey Density Threshold and Tidal Influence on Reef Manta Ray Foraging at an Aggregation Site on the Great Barrier Reef.

    Directory of Open Access Journals (Sweden)

    Asia O Armstrong

    Full Text Available Large tropical and sub-tropical marine animals must meet their energetic requirements in a largely oligotrophic environment. Many planktivorous elasmobranchs, whose thermal ecologies prevent foraging in nutrient-rich polar waters, aggregate seasonally at predictable locations throughout tropical oceans where they are observed feeding. Here we investigate the foraging and oceanographic environment around Lady Elliot Island, a known aggregation site for reef manta rays Manta alfredi in the southern Great Barrier Reef. The foraging behaviour of reef manta rays was analysed in relation to zooplankton populations and local oceanography, and compared to long-term sighting records of reef manta rays from the dive operator on the island. Reef manta rays fed at Lady Elliot Island when zooplankton biomass and abundance were significantly higher than other times. The critical prey density threshold that triggered feeding was 11.2 mg m-3 while zooplankton size had no significant effect on feeding. The community composition and size structure of the zooplankton was similar when reef manta rays were feeding or not, with only the density of zooplankton changing. Higher zooplankton biomass was observed prior to low tide, and long-term (~5 years sighting data confirmed that more reef manta rays are also observed feeding during this tidal phase than other times. This is the first study to examine prey availability at an aggregation site for reef manta rays and it indicates that they feed in locations and at times of higher zooplankton biomass.

  2. Prey Density Threshold and Tidal Influence on Reef Manta Ray Foraging at an Aggregation Site on the Great Barrier Reef.

    Science.gov (United States)

    Armstrong, Asia O; Armstrong, Amelia J; Jaine, Fabrice R A; Couturier, Lydie I E; Fiora, Kym; Uribe-Palomino, Julian; Weeks, Scarla J; Townsend, Kathy A; Bennett, Mike B; Richardson, Anthony J

    2016-01-01

    Large tropical and sub-tropical marine animals must meet their energetic requirements in a largely oligotrophic environment. Many planktivorous elasmobranchs, whose thermal ecologies prevent foraging in nutrient-rich polar waters, aggregate seasonally at predictable locations throughout tropical oceans where they are observed feeding. Here we investigate the foraging and oceanographic environment around Lady Elliot Island, a known aggregation site for reef manta rays Manta alfredi in the southern Great Barrier Reef. The foraging behaviour of reef manta rays was analysed in relation to zooplankton populations and local oceanography, and compared to long-term sighting records of reef manta rays from the dive operator on the island. Reef manta rays fed at Lady Elliot Island when zooplankton biomass and abundance were significantly higher than other times. The critical prey density threshold that triggered feeding was 11.2 mg m-3 while zooplankton size had no significant effect on feeding. The community composition and size structure of the zooplankton was similar when reef manta rays were feeding or not, with only the density of zooplankton changing. Higher zooplankton biomass was observed prior to low tide, and long-term (~5 years) sighting data confirmed that more reef manta rays are also observed feeding during this tidal phase than other times. This is the first study to examine prey availability at an aggregation site for reef manta rays and it indicates that they feed in locations and at times of higher zooplankton biomass. PMID:27144343

  3. Anthropogenic contaminants in Indo-Pacific humpback and Australian snubfin dolphins from the central and southern Great Barrier Reef.

    Science.gov (United States)

    Cagnazzi, Daniele; Fossi, Maria Cristina; Parra, Guido J; Harrison, Peter L; Maltese, Silvia; Coppola, Daniele; Soccodato, Alice; Bent, Michael; Marsili, Letizia

    2013-11-01

    We present the first evidence of accumulation of organochlorine compounds (DDTs, PCBs, HCB) and polycyclic aromatic hydrocarbons (PAHs) in Indo-Pacific humpback and Australian snubfin dolphins from the central and southern Great Barrier Reef. These dolphins are considered by the Great Barrier Marine Park Authority to be high priority species for management. Analyses of biopsy samples, collected from free ranging individuals, showed PAHs levels comparable to those reported from highly industrialized countries. DDTs and HCB were found at low levels, while in some individuals, PCBs were above thresholds over which immunosuppression and reproductive anomalies occur. These results highlight the need for ongoing monitoring of these and other contaminants, and their potential adverse effects on dolphins and other marine fauna. This is particularly important given the current strategic assessment of the Great Barrier Reef World Heritage Area being undertaken by the Australian Government and the Queensland Government.

  4. Effects of Great Barrier Reef degradation on recreational reef-trip demand: a contingent behaviour approach

    NARCIS (Netherlands)

    Kragt, M.E.; Roebeling, P.C.; Ruijs, A.J.W.

    2009-01-01

    There is a growing concern that increased nutrient and sediment runoff from river catchments are a potential source of coral reef degradation. Degradation of reefs may affect the number of tourists visiting the reef and, consequently, the economic sectors that rely on healthy reefs for their income

  5. Recruitment Variability of Coral Reef Sessile Communities of the Far North Great Barrier Reef.

    Directory of Open Access Journals (Sweden)

    Heidi M Luter

    Full Text Available One of the key components in assessing marine sessile organism demography is determining recruitment patterns to benthic habitats. An analysis of serially deployed recruitment tiles across depth (6 and 12 m, seasons (summer and winter and space (meters to kilometres was used to quantify recruitment assemblage structure (abundance and percent cover of corals, sponges, ascidians, algae and other sessile organisms from the northern sector of the Great Barrier Reef (GBR. Polychaetes were most abundant on recruitment titles, reaching almost 50% of total recruitment, yet covered <5% of each tile. In contrast, mean abundances of sponges, ascidians, algae, and bryozoans combined was generally less than 20% of total recruitment, with percentage cover ranging between 15-30% per tile. Coral recruitment was very low, with <1 recruit per tile identified. A hierarchal analysis of variation over a range of spatial and temporal scales showed significant spatio-temporal variation in recruitment patterns, but the highest variability occurred at the lowest spatial scale examined (1 m-among tiles. Temporal variability in recruitment of both numbers of taxa and percentage cover was also evident across both summer and winter. Recruitment across depth varied for some taxonomic groups like algae, sponges and ascidians, with greatest differences in summer. This study presents some of the first data on benthic recruitment within the northern GBR and provides a greater understanding of population ecology for coral reefs.

  6. Recruitment Variability of Coral Reef Sessile Communities of the Far North Great Barrier Reef.

    Science.gov (United States)

    Luter, Heidi M; Duckworth, Alan R; Wolff, Carsten W; Evans-Illidge, Elizabeth; Whalan, Steve

    2016-01-01

    One of the key components in assessing marine sessile organism demography is determining recruitment patterns to benthic habitats. An analysis of serially deployed recruitment tiles across depth (6 and 12 m), seasons (summer and winter) and space (meters to kilometres) was used to quantify recruitment assemblage structure (abundance and percent cover) of corals, sponges, ascidians, algae and other sessile organisms from the northern sector of the Great Barrier Reef (GBR). Polychaetes were most abundant on recruitment titles, reaching almost 50% of total recruitment, yet covered recruitment, with percentage cover ranging between 15-30% per tile. Coral recruitment was very low, with recruit per tile identified. A hierarchal analysis of variation over a range of spatial and temporal scales showed significant spatio-temporal variation in recruitment patterns, but the highest variability occurred at the lowest spatial scale examined (1 m-among tiles). Temporal variability in recruitment of both numbers of taxa and percentage cover was also evident across both summer and winter. Recruitment across depth varied for some taxonomic groups like algae, sponges and ascidians, with greatest differences in summer. This study presents some of the first data on benthic recruitment within the northern GBR and provides a greater understanding of population ecology for coral reefs. PMID:27049650

  7. Water quality and coral bleaching thresholds: formalising the linkage for the inshore reefs of the Great Barrier Reef, Australia.

    Science.gov (United States)

    Wooldridge, Scott A

    2009-05-01

    The threats of wide-scale coral bleaching and reef demise associated with anthropogenic climate change are widely known. Here, the additional role of poor water quality in lowering the thermal tolerance (i.e. bleaching 'resistance') of symbiotic reef corals is considered. In particular, a quantitative linkage is established between terrestrially-sourced dissolved inorganic nitrogen (DIN) loading and the upper thermal bleaching thresholds of inshore reefs on the Great Barrier Reef, Australia. Significantly, this biophysical linkage provides concrete evidence for the oft-expressed belief that improved coral reef management will increase the regional-scale survival prospects of corals reefs to global climate change. Indeed, for inshore reef areas with a high runoff exposure risk, it is shown that the potential benefit of this 'local' management imperative is equivalent to approximately 2.0-2.5 degrees C in relation to the upper thermal bleaching limit; though in this case, a potentially cost-prohibitive reduction in end-of-river DIN of >50-80% would be required. An integrated socio-economic modelling framework is outlined that will assist future efforts to understand (optimise) the alternate tradeoffs that the water quality/coral bleaching linkage presents.

  8. Rapid survey protocol that provides dynamic information on reef condition to managers of the Great Barrier Reef.

    Science.gov (United States)

    Beeden, R J; Turner, M A; Dryden, J; Merida, F; Goudkamp, K; Malone, C; Marshall, P A; Birtles, A; Maynard, J A

    2014-12-01

    Managing to support coral reef resilience as the climate changes requires strategic and responsive actions that reduce anthropogenic stress. Managers can only target and tailor these actions if they regularly receive information on system condition and impact severity. In large coral reef areas like the Great Barrier Reef Marine Park (GBRMP), acquiring condition and impact data with good spatial and temporal coverage requires using a large network of observers. Here, we describe the result of ~10 years of evolving and refining participatory monitoring programs used in the GBR that have rangers, tourism operators and members of the public as observers. Participants complete Reef Health and Impact Surveys (RHIS) using a protocol that meets coral reef managers' needs for up-to-date information on the following: benthic community composition, reef condition and impacts including coral diseases, damage, predation and the presence of rubbish. Training programs ensure that the information gathered is sufficiently precise to inform management decisions. Participants regularly report because the demands of the survey methodology have been matched to their time availability. Undertaking the RHIS protocol we describe involves three ~20 min surveys at each site. Participants enter data into an online data management system that can create reports for managers and participants within minutes of data being submitted. Since 2009, 211 participants have completed a total of more than 10,415 surveys at more than 625 different reefs. The two-way exchange of information between managers and participants increases the capacity to manage reefs adaptively, meets education and outreach objectives and can increase stewardship. The general approach used and the survey methodology are both sufficiently adaptable to be used in all reef regions. PMID:25179944

  9. Rapid survey protocol that provides dynamic information on reef condition to managers of the Great Barrier Reef.

    Science.gov (United States)

    Beeden, R J; Turner, M A; Dryden, J; Merida, F; Goudkamp, K; Malone, C; Marshall, P A; Birtles, A; Maynard, J A

    2014-12-01

    Managing to support coral reef resilience as the climate changes requires strategic and responsive actions that reduce anthropogenic stress. Managers can only target and tailor these actions if they regularly receive information on system condition and impact severity. In large coral reef areas like the Great Barrier Reef Marine Park (GBRMP), acquiring condition and impact data with good spatial and temporal coverage requires using a large network of observers. Here, we describe the result of ~10 years of evolving and refining participatory monitoring programs used in the GBR that have rangers, tourism operators and members of the public as observers. Participants complete Reef Health and Impact Surveys (RHIS) using a protocol that meets coral reef managers' needs for up-to-date information on the following: benthic community composition, reef condition and impacts including coral diseases, damage, predation and the presence of rubbish. Training programs ensure that the information gathered is sufficiently precise to inform management decisions. Participants regularly report because the demands of the survey methodology have been matched to their time availability. Undertaking the RHIS protocol we describe involves three ~20 min surveys at each site. Participants enter data into an online data management system that can create reports for managers and participants within minutes of data being submitted. Since 2009, 211 participants have completed a total of more than 10,415 surveys at more than 625 different reefs. The two-way exchange of information between managers and participants increases the capacity to manage reefs adaptively, meets education and outreach objectives and can increase stewardship. The general approach used and the survey methodology are both sufficiently adaptable to be used in all reef regions.

  10. Towards protecting the Great Barrier Reef from land-based pollution.

    Science.gov (United States)

    Kroon, Frederieke J; Thorburn, Peter; Schaffelke, Britta; Whitten, Stuart

    2016-06-01

    The Great Barrier Reef (GBR) is an iconic coral reef system extending over 2000 km along the north-east coast of Australia. Global recognition of its Outstanding Universal Value resulted in the listing of the 348 000 km(2) GBR World Heritage Area (WHA) by UNESCO in 1981. Despite various levels of national and international protection, the condition of GBR ecosystems has deteriorated over the past decades, with land-based pollution from the adjacent catchments being a major and ongoing cause for this decline. To reduce land-based pollution, the Australian and Queensland Governments have implemented a range of policy initiatives since 2003. Here, we evaluate the effectiveness of existing initiatives to reduce discharge of land-based pollutants into the waters of the GBR. We conclude that recent efforts in the GBR catchments to reduce land-based pollution are unlikely to be sufficient to protect the GBR ecosystems from declining water quality within the aspired time frames. To support management decisions for desired ecological outcomes for the GBR WHA, we identify potential improvements to current policies and incentives, as well as potential changes to current agricultural land use, based on overseas experiences and Australia's unique potential. The experience in the GBR may provide useful guidance for the management of other marine ecosystems, as reducing land-based pollution by better managing agricultural sources is a challenge for coastal communities around the world.

  11. Towards protecting the Great Barrier Reef from land-based pollution.

    Science.gov (United States)

    Kroon, Frederieke J; Thorburn, Peter; Schaffelke, Britta; Whitten, Stuart

    2016-06-01

    The Great Barrier Reef (GBR) is an iconic coral reef system extending over 2000 km along the north-east coast of Australia. Global recognition of its Outstanding Universal Value resulted in the listing of the 348 000 km(2) GBR World Heritage Area (WHA) by UNESCO in 1981. Despite various levels of national and international protection, the condition of GBR ecosystems has deteriorated over the past decades, with land-based pollution from the adjacent catchments being a major and ongoing cause for this decline. To reduce land-based pollution, the Australian and Queensland Governments have implemented a range of policy initiatives since 2003. Here, we evaluate the effectiveness of existing initiatives to reduce discharge of land-based pollutants into the waters of the GBR. We conclude that recent efforts in the GBR catchments to reduce land-based pollution are unlikely to be sufficient to protect the GBR ecosystems from declining water quality within the aspired time frames. To support management decisions for desired ecological outcomes for the GBR WHA, we identify potential improvements to current policies and incentives, as well as potential changes to current agricultural land use, based on overseas experiences and Australia's unique potential. The experience in the GBR may provide useful guidance for the management of other marine ecosystems, as reducing land-based pollution by better managing agricultural sources is a challenge for coastal communities around the world. PMID:26922913

  12. Coral community change on a turbid-zone reef complex: developing baseline records for the central Great Barrier Reef's nearshore coral reefs

    Science.gov (United States)

    Johnson, Jamie; Perry, Chris; Smithers, Scott; Morgan, Kyle; Johnson, Kenneth

    2016-04-01

    Understanding past coral community development and reef growth is crucial for placing contemporary ecological and environmental change within appropriate reef-building timescales. Coral reefs located within coastal inner-shelf zones are widely perceived to be most susceptible to declining water quality due to their proximity to modified river catchments. On the inner-shelf of Australia's Great Barrier Reef (GBR) the impacts and magnitude of declining water quality since European settlement (c. 1850 A.D.) still remain unclear. This relates to ongoing debates concerning the significance of increased sediment yields against the naturally high background sedimentary regimes and the paucity of long-term (>decadal) ecological datasets. To provide baseline records for interpreting coral community change within the turbid inner-shelf waters of the GBR, 21 cores were recovered from five nearshore reefs spanning an evolutionary spectrum of reef development. Discrete intervals pre- and post-dating European settlement, but deposited at equivalent water depths, were identified by radiocarbon dating, enabling the discrimination of extrinsic and intrinsic driven shifts within the coral palaeo-record. We report no discernible evidence of anthropogenically-driven disturbance on the coral community records at these sites. Instead, significant transitions in coral community assemblages relating to water depth and vertical reef accretion were observed. We suggest that these records may be used to contextualise observed contemporary ecological change within similar environments on the GBR.

  13. Anthropogenic contaminants in Indo-Pacific humpback and Australian snubfin dolphins from the central and southern Great Barrier Reef

    International Nuclear Information System (INIS)

    We present the first evidence of accumulation of organochlorine compounds (DDTs, PCBs, HCB) and polycyclic aromatic hydrocarbons (PAHs) in Indo-Pacific humpback and Australian snubfin dolphins from the central and southern Great Barrier Reef. These dolphins are considered by the Great Barrier Marine Park Authority to be high priority species for management. Analyses of biopsy samples, collected from free ranging individuals, showed PAHs levels comparable to those reported from highly industrialized countries. DDTs and HCB were found at low levels, while in some individuals, PCBs were above thresholds over which immunosuppression and reproductive anomalies occur. These results highlight the need for ongoing monitoring of these and other contaminants, and their potential adverse effects on dolphins and other marine fauna. This is particularly important given the current strategic assessment of the Great Barrier Reef World Heritage Area being undertaken by the Australian Government and the Queensland Government. -- Potentially hazardous levels of some coastal contaminants were found in two species of dolphins inhabiting the Great Barrier Reef Marine Park coastal region

  14. Great Barrier Reef Project: St. Michael's Beyond Capricorn

    Science.gov (United States)

    Leather, Harry

    The School has an extensive computer network and has a notebook computer programme that involves students in Years 9 through to 12. Over the last few years there have been extensive reviews of curriculum with one of the aims being to deliver more curricula online. The challenge has been to integrate the use of computers into the curriculum so learning outcomes are enhanced. The Great Barrier Reef Project provided an opportunity to do something that was not achievable in the past. Year 10 students were to study VCE Unit 1 Biology while maintaining their study in other subjects. The first trip, in 2000 of what will be part of an expanding programme took place in August and September of that year. Twenty-two students and four staff left Melbourne for Townsville, Queensland. Over four weeks the group spent time at the James Cook University research station on Orpheus Island, Magnetic Island, rainforest at Paluma and James Cook University in Townsville studying the History and Politics of Far North Queensland. In 2001 the experience was repeated with success and a variety of modifications. In 2001 the group took advantage of the opportunity to spend time with an indigenous group from the Northern Queensland rainforests near Tully. This year planning is underway and students are beginning a training program to prepare for the trip.

  15. Assessing loss of coral cover on Australia's Great Barrier Reef over two decades, with implications for longer-term trends

    Science.gov (United States)

    Sweatman, H.; Delean, S.; Syms, C.

    2011-06-01

    While coral reefs in many parts of the world are in decline as a direct consequence of human pressures, Australia's Great Barrier Reef (GBR) is unusual in that direct human pressures are low and the entire system of ~2,900 reefs has been managed as a marine park since the 1980s. In spite of these advantages, standard annual surveys of a large number of reefs showed that from 1986 to 2004, average live coral cover across the GBR declined from 28 to 22%. This overall decline was mainly due to large losses in six (21%) of 29 subregions. Declines in live coral cover on reefs in two inshore subregions coincided with thermal bleaching in 1998, while declines in four mid-self subregions were due to outbreaks of predatory starfish. Otherwise, living coral cover increased in one subregion (3%) and 22 subregions (76%) showed no substantial change. Reefs in the great majority of subregions showed cycles of decline and recovery over the survey period, but with little synchrony among subregions. Two previous studies examined long-term changes in live coral cover on GBR reefs using meta-analyses including historical data from before the mid-1980s. Both found greater rates of loss of coral and recorded a marked decrease in living coral cover on the GBR in 1986, coinciding exactly with the start of large-scale monitoring. We argue that much of the apparent long-term decrease results from combining data from selective, sparse, small-scale studies before 1986 with data from both small-scale studies and large-scale monitoring surveys after that date. The GBR has clearly been changed by human activities and live coral cover has declined overall, but losses of coral in the past 40-50 years have probably been overestimated.

  16. Impacts and recovery from severe tropical cyclone Yasi on the Great Barrier Reef.

    Directory of Open Access Journals (Sweden)

    Roger Beeden

    Full Text Available Full recovery of coral reefs from tropical cyclone (TC damage can take decades, making cyclones a major driver of habitat condition where they occur regularly. Since 1985, 44 TCs generated gale force winds (≥17 metres/second within the Great Barrier Reef Marine Park (GBRMP. Of the hurricane strength TCs (≥H1-Saffir Simpson scale; ≥ category 3 Australian scale, TC Yasi (February, 2011 was the largest. In the weeks after TC Yasi crossed the GBRMP, participating researchers, managers and rangers assessed the extent and severity of reef damage via 841 Reef Health and Impact Surveys at 70 reefs. Records were scaled into five damage levels representing increasingly widespread colony-level damage (1, 2, 3 and reef structural damage (4, 5. Average damage severity was significantly affected by direction (north vs south of the cyclone track, reef shelf position (mid-shelf vs outer-shelf and habitat type. More outer-shelf reefs suffered structural damage than mid-shelf reefs within 150 km of the track. Structural damage spanned a greater latitudinal range for mid-shelf reefs than outer-shelf reefs (400 vs 300 km. Structural damage was patchily distributed at all distances, but more so as distance from the track increased. Damage extended much further from the track than during other recent intense cyclones that had smaller circulation sizes. Just over 15% (3,834 km2 of the total reef area of the GBRMP is estimated to have sustained some level of coral damage, with ~4% (949 km2 sustaining a degree of structural damage. TC Yasi likely caused the greatest loss of coral cover on the GBR in a 24-hour period since 1985. Severely impacted reefs have started to recover; coral cover increased an average of 4% between 2011 and 2013 at re-surveyed reefs. The in situ assessment of impacts described here is the largest in scale ever conducted on the Great Barrier Reef following a reef health disturbance.

  17. Patterns of recruitment and microhabitat associations for three predatory coral reef fishes on the southern Great Barrier Reef, Australia

    Science.gov (United States)

    Wen, C. K. C.; Pratchett, M. S.; Almany, G. R.; Jones, G. P.

    2013-06-01

    This study examined recruitment patterns and microhabitat associations for three carnivorous fishes, Plectropomus maculatus, Lutjanus carponotatus and Epinephelus quoyanus, at the Keppel Islands, southern Great Barrier Reef, Australia. Habitat selectivity was highest for recruits that were found mostly with corymbose Acropora, predominantly on patches of live coral located over loose substrates (sand). Adults were more commonly associated with tabular Acropora. The proportion of P. maculatus (72 %) found with live corals was higher than for L. carponotatus (68 %) and E. quoyanus (44 %). Densities of recruits were highly variable among locations, but this was only partly related to availability of preferred microhabitats. Our findings demonstrate that at least some carnivorous reef fishes, especially during early life-history stages, strongly associate with live corals. Such species will be highly sensitive to increasing degradation of coral reef habitats.

  18. A method for risk analysis across governance systems: a Great Barrier Reef case study

    International Nuclear Information System (INIS)

    Healthy governance systems are key to delivering sound environmental management outcomes from global to local scales. There are, however, surprisingly few risk assessment methods that can pinpoint those domains and sub-domains within governance systems that are most likely to influence good environmental outcomes at any particular scale, or those if absent or dysfunctional, most likely to prevent effective environmental management. This paper proposes a new risk assessment method for analysing governance systems. This method is then tested through its preliminary application to a significant real-world context: governance as it relates to the health of Australia’s Great Barrier Reef (GBR). The GBR exists at a supra-regional scale along most of the north eastern coast of Australia. Brodie et al (2012 Mar. Pollut. Bull. 65 81–100) have recently reviewed the state and trend of the health of the GBR, finding that overall trends remain of significant concern. At the same time, official international concern over the governance of the reef has recently been signalled globally by the International Union for the Conservation of Nature (IUCN). These environmental and political contexts make the GBR an ideal candidate for use in testing and reviewing the application of improved tools for governance risk assessment. (letter)

  19. A method for risk analysis across governance systems: a Great Barrier Reef case study

    Science.gov (United States)

    Dale, Allan; Vella, Karen; Pressey, Robert L.; Brodie, Jon; Yorkston, Hugh; Potts, Ruth

    2013-03-01

    Healthy governance systems are key to delivering sound environmental management outcomes from global to local scales. There are, however, surprisingly few risk assessment methods that can pinpoint those domains and sub-domains within governance systems that are most likely to influence good environmental outcomes at any particular scale, or those if absent or dysfunctional, most likely to prevent effective environmental management. This paper proposes a new risk assessment method for analysing governance systems. This method is then tested through its preliminary application to a significant real-world context: governance as it relates to the health of Australia’s Great Barrier Reef (GBR). The GBR exists at a supra-regional scale along most of the north eastern coast of Australia. Brodie et al (2012 Mar. Pollut. Bull. 65 81-100) have recently reviewed the state and trend of the health of the GBR, finding that overall trends remain of significant concern. At the same time, official international concern over the governance of the reef has recently been signalled globally by the International Union for the Conservation of Nature (IUCN). These environmental and political contexts make the GBR an ideal candidate for use in testing and reviewing the application of improved tools for governance risk assessment.

  20. Coral records of reef-water pH across the central Great Barrier Reef, Australia: assessing the influence of river runoff on inshore reefs

    Science.gov (United States)

    D'Olivo, J. P.; McCulloch, M. T.; Eggins, S. M.; Trotter, J.

    2015-02-01

    The boron isotopic (δ11Bcarb) compositions of long-lived Porites coral are used to reconstruct reef-water pH across the central Great Barrier Reef (GBR) and assess the impact of river runoff on inshore reefs. For the period from 1940 to 2009, corals from both inner- and mid-shelf sites exhibit the same overall decrease in δ11Bcarb of 0.086 ± 0.033‰ per decade, equivalent to a decline in seawater pH (pHsw) of ~0.017 ± 0.007 pH units per decade. This decline is consistent with the long-term effects of ocean acidification based on estimates of CO2 uptake by surface waters due to rising atmospheric levels. We also find that, compared to the mid-shelf corals, the δ11Bcarb compositions of inner-shelf corals subject to river discharge events have higher and more variable values, and hence higher inferred pHsw values. These higher δ11Bcarb values of inner-shelf corals are particularly evident during wet years, despite river waters having lower pH. The main effect of river discharge on reef-water carbonate chemistry thus appears to be from reduced aragonite saturation state and higher nutrients driving increased phytoplankton productivity, resulting in the drawdown of pCO2 and increase in pHsw. Increased primary production therefore has the potential to counter the more transient effects of low-pH river water (pHrw) discharged into near-shore environments. Importantly, however, inshore reefs also show a consistent pattern of sharply declining coral growth that coincides with periods of high river discharge. This occurs despite these reefs having higher pHsw, demonstrating the overriding importance of local reef-water quality and reduced aragonite saturation state on coral reef health.

  1. Coral records of reef-water pH across the central Great Barrier Reef, Australia: assessing the influence of river runoff on inshore reefs

    Directory of Open Access Journals (Sweden)

    J. P. D'Olivo

    2014-07-01

    Full Text Available The boron isotopic (δ11Bcarb compositions of long-lived Porites coral are used to reconstruct reef-water pH across the central Great Barrier Reef (GBR and assess the impact of river runoff on inshore reefs. For the period from 1940 to 2009, corals from both inner as well as mid-shelf sites exhibit the same overall decrease in δ11Bcarb of 0.086 ± 0.033‰ per decade, equivalent to a~decline in seawater pH (pHsw of ~ 0.017 ± 0.007 pH units per decade. This decline is consistent with the long-term effects of ocean acidification based on estimates of CO2 uptake by surface waters due to rising atmospheric levels. We also find that compared to the mid-shelf corals, the δ11Bcarb compositions for inner shelf corals subject to river discharge events, have higher and more variable values and hence higher inferred pHsw values. These higher δ11Bcarb values for inner-shelf corals are particularly evident during wet years, despite river waters having lower pH. The main effect of river discharge on reef-water carbonate chemistry thus appears to be from higher nutrients driving increased phytoplankton productivity, resulting in the drawdown of pCO2 and increase in pHsw. Increased primary production therefore has the potential to counter the more transient effects of low pH river water (pHrw discharged into near-shore environments. Importantly however, inshore reefs also show a consistent pattern of sharply declining coral growth that coincides with periods of high river discharge. This occurs despite these reefs having higher pHsw values and hence higher seawater aragonite saturation states, demonstrating the over-riding importance of local reef-water quality on coral reef health.

  2. The importance of large benthic foraminifera to reef island sediment budget and dynamics at Raine Island, northern Great Barrier Reef

    Science.gov (United States)

    Dawson, John L.; Smithers, Scott G.; Hua, Quan

    2014-10-01

    Low-lying reef islands are among the most vulnerable environments on earth to anthropogenic-induced climate change and sea-level rise over the next century because they are low, composed of unconsolidated sediment that is able to be mobilised by waves and currents, and depend on sediments supplied by reef organisms that are particularly sensitive to environmental changes (e.g. ocean temperatures and chemistry). Therefore, the spatial and temporal links between active carbonate production and island formation and dynamics are fundamental to predicting future island resilience, yet remain poorly quantified. In this paper we present results of a detailed geomorphological and sedimentological study of a reef and sand cay on the northern Great Barrier Reef. We provide an empirical investigation of the temporal linkages between sediment production and reef island development using a large collection of single grain AMS 14C dates. Large benthic foraminifera (LBF) are the single most important contributor to contemporary island sand mass (47%; ranging from 36% to 63%) at Raine Island, reflecting rapid rates of sediment production and delivery. Standing stock data reveal extremely high production rates on the reef (1.8 kg m- 2 yr- 1), while AMS 14C dates of single LBF tests indicate rapid rates of sediment transferral across the reef. We also demonstrate that age is statistically related to preservation and taphonomic grade (severely abraded tests > moderately abraded tests > pristine tests). We construct a contemporary reef and island sediment budget model for Raine Island that shows that LBF (Baculogypsina, Marginopora and Amphistegina) contribute 55% of the sediment produced on the reef annually, of which a large proportion (54%) contribute to the net annual accretion of the island. The tight temporal coupling between LBF growth and island sediment supply combined with the sensitivity of LBF to bleaching and ocean acidification suggests that islands dominated by LBF are

  3. Presence of Symbiodinium spp. in macroalgal microhabitats from the southern Great Barrier Reef

    Science.gov (United States)

    Venera-Ponton, D. E.; Diaz-Pulido, G.; Rodriguez-Lanetty, M.; Hoegh-Guldberg, O.

    2010-12-01

    Coral reefs are highly dependent on the mutualistic symbiosis between reef-building corals and dinoflagellates from the genus Symbiodinium. These dinoflagellates spend part of their life cycle outside the coral host and in the majority of the cases have to re-infect corals each generation. While considerable insight has been gained about Symbiodinium in corals, little is known about the ecology and biology of Symbiodinium in other reef microhabitats. This study documents Symbiodinium associating with benthic macroalgae on the southern Great Barrier Reef, including some Symbiodinium that are genetically close to the symbiotic strains from reef-building corals. It is possible that some of these Symbiodinium were in hospite, associated to soritid foraminifera or ciliates; nevertheless, the presence of Symbiodinium C3 and C15 in macroalgal microhabitats may also suggest a potential link between communities of Symbiodinium associating with both coral hosts and macroalgae.

  4. Trematodes of the Great Barrier Reef, Australia: emerging patterns of diversity and richness in coral reef fishes.

    Science.gov (United States)

    Cribb, Thomas H; Bott, Nathan J; Bray, Rodney A; McNamara, Marissa K A; Miller, Terrence L; Nolan, Mathew J; Cutmore, Scott C

    2014-10-15

    The Great Barrier Reef holds the richest array of marine life found anywhere in Australia, including a diverse and fascinating parasite fauna. Members of one group, the trematodes, occur as sexually mature adult worms in almost all Great Barrier Reef bony fish species. Although the first reports of these parasites were made 100 years ago, the fauna has been studied systematically for only the last 25 years. When the fauna was last reviewed in 1994 there were 94 species known from the Great Barrier Reef and it was predicted that there might be 2,270 in total. There are now 326 species reported for the region, suggesting that we are in a much improved position to make an accurate prediction of true trematode richness. Here we review the current state of knowledge of the fauna and the ways in which our understanding of this fascinating group is changing. Our best estimate of the true richness is now a range, 1,100-1,800 species. However there remains considerable scope for even these figures to be incorrect given that fewer than one-third of the fish species of the region have been examined for trematodes. Our goal is a comprehensive characterisation of this fauna, and we outline what work needs to be done to achieve this and discuss whether this goal is practically achievable or philosophically justifiable.

  5. Geochemical Records of Bleaching Events and the Associated Stressors From the Great Barrier Reef

    Science.gov (United States)

    Roark, E. B.; McCulloch, M.; Ingram, B. L.; Marshall, J. F.

    2003-12-01

    The health of coral reefs world-wide is increasingly threatened by a wide array of stressors. On the Great Barrier Reef (GBR) these stressors include increased sediment flux associated with land use changes, increased sea surface temperatures (SST) and salinity changes due to large floods, the latter two of which are factors in an increased number of bleaching events. The ability to document long-term change in these stressors along with changes in the number of bleaching events would help discern what are natural and anthropogenic changes in this ecosystem. Here we present results of an initial calibration effort aimed at identifying bleaching events and the associated stressors using stable isotopic and trace element analysis in coral cores. Three ˜15-year time series of geochemical measurements (δ 13C, δ 18O, and Sr/Ca) on Porites coral cores obtained from Pandora Reef and the Keppel Islands on the GBR have been developed at near weekly resolution. Since the δ 13C of the coral skeletal carbonate is known to be affected by both environmental factors (e.g. insolation and temperature) and physiological factors (e.g. photosynthesis, calcification, and the statues of the symbiotic relationship between corals and zooxanthellae) it is the most promising proxy for reconstructing past bleaching events. The first record (PAN-98) comes from a coral head that had undergone bleaching and died shortly after the large-scale bleaching events on Pandora Reef in 1998. A second core (PAN-02) was collected from a living coral within 10m of PAN-98 in 2002. Sr/Ca ratios in both cores tracked even the smallest details of an in situ SST record. The increase in SST that occurred three to four weeks prior to bleaching was faithfully recorded by a similar decrease in the Sr/Ca ratio in PAN-98, indicating that calcification continued despite the high SST of 30-31° C. The δ 13C values decreased by about 5‰ , one week after the SST increase, and remained at this value for about 4

  6. The mapping of the Posidonia oceanica (L.) Delile barrier reef meadow in the southeastern Gulf of Tunis (Tunisia)

    Science.gov (United States)

    Hachani, Mohamed Amine; Ziadi, Boutheina; Langar, Habib; Sami, Djallouli Aslem; Turki, Souad; Aleya, Lotfi

    2016-09-01

    Barrier reefs are among the most important ecomorphosis for Posidonia oceanica meadows and have long been subjected to anthropic pressures. The authors mapped the entire Sidi Rais (northeastern Tunisia) Posidonia oceanica barrier reef by means of remote sensing based on processing a satellite image acquired via Google Earth © software, coupled with field observations obtained by snorkeling. The map thus produced represents the P. oceanica barrier reef in its current state, covering a total area of 156.77 ha, the reef being divided into three distinct sections separated by reverse flows with each section subject to varied anthropic factors and disturbances.

  7. Effectiveness of benthic foraminiferal and coral assemblages as water quality indicators on inshore reefs of the Great Barrier Reef, Australia

    Science.gov (United States)

    Uthicke, S.; Thompson, A.; Schaffelke, B.

    2010-03-01

    Although the debate about coral reef decline focuses on global disturbances (e.g., increasing temperatures and acidification), local stressors (nutrient runoff and overfishing) continue to affect reef health and resilience. The effectiveness of foraminiferal and hard-coral assemblages as indicators of changes in water quality was assessed on 27 inshore reefs along the Great Barrier Reef. Environmental variables (i.e., several water quality and sediment parameters) and the composition of both benthic foraminiferal and hard-coral assemblages differed significantly between four regions (Whitsunday, Burdekin, Fitzroy, and the Wet Tropics). Grain size and organic carbon and nitrogen content of sediments, and a composite water column parameter (based on turbidity and concentrations of particulate matter) explained a significant amount of variation in the data (tested by redundancy analyses) in both assemblages. Heterotrophic species of foraminifera were dominant in sediments with high organic content and in localities with low light availability, whereas symbiont-bearing mixotrophic species were dominant elsewhere. A similar suite of parameters explained 89% of the variation in the FORAM index (a Caribbean coral reef health indicator) and 61% in foraminiferal species richness. Coral richness was not related to environmental setting. Coral assemblages varied in response to environmental variables, but were strongly shaped by acute disturbances (e.g., cyclones, Acanthaster planci outbreaks, and bleaching), thus different coral assemblages may be found at sites with the same environmental conditions. Disturbances also affect foraminiferal assemblages, but they appeared to recover more rapidly than corals. Foraminiferal assemblages are effective bioindicators of turbidity/light regimes and organic enrichment of sediments on coral reefs.

  8. A new species of Halacarsantia Wolff, 1989 (Crustacea, Isopoda, Asellota, Santiidae from Wistari Reef, southern Great Barrier Reef, Australia

    Directory of Open Access Journals (Sweden)

    Michitaka Shimomura

    2012-03-01

    Full Text Available Halacarsantia acuta sp. n. is described from Wistari Reef, Capricorn Group, southern Great Barrier Reef, the first record of the genus from Australia. The new species differs from its congeners inantenna flagellum composed of 8 articles; epipod apically acute, without setae, broad maxilliped endite and pereopod 1 basis with a short projection. A key to species of the genus is provided.

  9. Dynamics of seawater carbonate chemistry, production, and calcification of a coral reef flat, Central Great Barrier Reef

    Directory of Open Access Journals (Sweden)

    R. Albright

    2013-05-01

    Full Text Available Ocean acidification is projected to shift coral reefs from a state of net accretion to one of net dissolution this century. Presently, our ability to predict global-scale changes to coral reef calcification is limited by insufficient data relating seawater carbonate chemistry parameters to in situ rates of reef calcification. Here, we investigate natural trends in carbonate chemistry of the Davies Reef flat in the central Great Barrier Reef on diel and seasonal timescales and relate these trends to benthic carbon fluxes by quantifying net ecosystem calcification (nec and net community production (ncp. Results show that seawater carbonate chemistry of the Davies Reef flat is highly variable over both diel and seasonal timescales. pH (total scale ranged from 7.92 to 8.17, pCO2 ranged from 272 to 542 μatm, and aragonite saturation state (Ωarag ranged from 2.9 to 4.1. Diel cycles in carbonate chemistry were primarily driven by ncp, and warming explained 35% and 47% of the seasonal shifts in pCO2 and pH, respectively. Daytime ncp averaged 36 ± 19 mmol C m−2 h−1 in summer and 33 ± 13 mmol C m−2 h−1 in winter; nighttime ncp averaged −22 ± 20 and −7 ± 6 mmol C m−2 h−1 in summer and winter, respectively. Daytime nec averaged 11 ± 4 mmol CaCO3 m−2 h−1 in summer and 8 ± 3 mmol CaCO3 m−2 h−1 in winter, whereas nighttime nec averaged 2 ± 4 mmol and −1 ± 3 mmol CaCO3 m−2 h−1 in summer and winter, respectively. Net ecosystem calcification was positively correlated with Ωarag for both seasons. Linear correlations of nec and Ωarag indicate that the Davies Reef flat may transition from a state of net calcification to net dissolution at Ωarag values of 3.4 in summer and 3.2 in winter. Diel trends in Ωarag indicate that the reef flat is currently below this calcification threshold 29.6% of the time in summer and 14.1% of the time in winter.

  10. Keeping the ‘Great’ in the Great Barrier Reef: large-scale governance of the Great Barrier Reef Marine Park

    OpenAIRE

    Louisa S. Evans; Natalie C. Ban; Michael Schoon; Mateja Nenadovic

    2014-01-01

    As part of an international collaboration to compare large-scale commons, we used the Social-Ecological Systems Meta-Analysis Database (SESMAD) to systematically map out attributes of and changes in the Great Barrier Reef Marine Park (GBRMP) in Australia. We focus on eight design principles from common-pool resource (CPR) theory and other key social-ecological systems governance variables, and explore to what extent they help explain the social and ecological outcomes of park management throu...

  11. Coral skeletons provide historical evidence of phosphorus runoff on the great barrier reef.

    Directory of Open Access Journals (Sweden)

    Jennie Mallela

    Full Text Available Recently, the inshore reefs of the Great Barrier Reef have declined rapidly because of deteriorating water quality. Increased catchment runoff is one potential culprit. The impacts of land-use on coral growth and reef health however are largely circumstantial due to limited long-term data on water quality and reef health. Here we use a 60 year coral core record to show that phosphorus contained in the skeletons (P/Ca of long-lived, near-shore Porites corals on the Great Barrier Reef correlates with annual records of fertiliser application and particulate phosphorus loads in the adjacent catchment. Skeletal P/Ca also correlates with Ba/Ca, a proxy for fluvial sediment loading, again linking near-shore phosphorus records with river runoff. Coral core records suggest that phosphorus levels increased 8 fold between 1949 and 2008 with the greatest levels coinciding with periods of high fertiliser-phosphorus use. Periods of high P/Ca correspond with intense agricultural activity and increased fertiliser application in the river catchment following agricultural expansion and replanting after cyclone damage. Our results demonstrate how coral P/Ca records can be used to assess terrestrial nutrient loading of vulnerable near-shore reefs.

  12. Effects of different disturbance types on butterflyfish communities of Australia's Great Barrier Reef

    Science.gov (United States)

    Emslie, M. J.; Pratchett, M. S.; Cheal, A. J.

    2011-06-01

    The effects of disturbances on coral reef fishes have been extensively documented but most studies have relied on opportunistic sampling following single events. Few studies have the spatial and temporal extent to directly compare the effects of multiple disturbances over a large geographic scale. Here, benthic communities and butterflyfishes on 47 reefs of the Great Barrier Reef were surveyed annually to examine their responses to physical disturbances (cyclones and storms) and/or biological disturbances (bleaching, outbreaks of crown-of-thorns starfish and white syndrome disease). The effects on benthic and butterflyfish communities varied among reefs depending on the structure and geographical setting of each community, on the size and type of disturbance, and on the disturbance history of that reef. There was considerable variability in the response of butterflyfishes to different disturbances: physical disturbances (occurring with or without biological disturbances) produced substantial declines in abundance, whilst biological disturbances occurring on their own did not. Butterflyfishes with the narrowest feeding preferences, such as obligate corallivores, were always the species most affected. The response of generalist feeders varied with the extent of damage. Wholesale changes to the butterflyfish community were only recorded where structural complexity of reefs was drastically reduced. The observed effects of disturbances on butterflyfishes coupled with predictions of increased frequency and intensity of disturbances sound a dire warning for the future of butterflyfish communities in particular and reef fish communities in general.

  13. Wave transformations across a Caribbean fringing-barrier Coral Reef

    Science.gov (United States)

    Lugo-Fernández, Alexis; Roberts, Harry H.; Suhayda, Joseph N.

    1998-08-01

    Wave measurements during three experiments at Tague Reef, St. Croix (U.S.V.I.) in April 1987 showed a net energy decrease across the reef profile of 65-71% between the forereef and crest, wave propagation to the backreef increased energy reduction to 78-88%. Tidally induced water depth changes (range of 0.3 m) increased wave energy dissipation by 15% between forereef and crest and 20% between forereef and backreef. Significant wave heights throughout the experiment were low (reef averaged 0.46 and modulated by the tide (0.32 at low tide vs 0.62 at high tide). The spectral time-delay model applied to analyzed wave transformations across the reef produced attenuation coefficients that averaged 0.62 between 0.05 and 0.1 cps (20-10 s) and afterwards oscillate between 0.22 and 0.35. For waves between the forereef and backreef, the attenuation coefficients from the time-delay model decay exponentially between 0.05 and 0.1 cps, afterwards they oscillate between 0.13 and 0.2. The steady wave-energy model with bottom friction, essentially form drag, and wave breaking dissipation yield wave heights modulated by the tides and errors of 20% at the backreef. The model revealed that while frictional and wave-breaking dissipation are equally important, frictional dissipation is greater.

  14. Disease outbreaks, bleaching and a cyclone drive changes in coral assemblages on an inshore reef of the Great Barrier Reef

    Science.gov (United States)

    Haapkylä, J.; Melbourne-Thomas, J.; Flavell, M.; Willis, B. L.

    2013-09-01

    Coral disease is a major threat to the resilience of coral reefs; thus, understanding linkages between disease outbreaks and disturbances predicted to increase with climate change is becoming increasingly important. Coral disease surveys conducted twice yearly between 2008 and 2011 at a turbid inshore reef in the central Great Barrier Reef spanned two disturbance events, a coral bleaching event in 2009 and a severe cyclone (cyclone `Yasi') in 2011. Surveys of coral cover, community structure and disease prevalence throughout this 4-yr study provide a unique opportunity to explore cumulative impacts of disturbance events and disease for inshore coral assemblages. The principal coral disease at the study site was atramentous necrosis (AtN), and it primarily affected the key inshore, reef-building coral Montipora aequituberculata. Other diseases detected were growth anomalies, white syndrome and brown band syndrome. Diseases affected eight coral genera, although Montipora was, by far, the genus mostly affected. The prevalence of AtN followed a clear seasonal pattern, with disease outbreaks occurring only in wet seasons. Mean prevalence of AtN on Montipora spp. (63.8 % ± 3.03) was three- to tenfold greater in the wet season of 2009, which coincided with the 2009 bleaching event, than in other years. Persistent wet season outbreaks of AtN combined with the impacts of bleaching and cyclone events resulted in a 50-80 % proportional decline in total coral cover. The greatest losses of branching and tabular acroporids occurred following the low-salinity-induced bleaching event of 2009, and the greatest losses of laminar montiporids occurred following AtN outbreaks in 2009 and in 2011 following cyclone Yasi. The shift to a less diverse coral assemblage and the concomitant loss of structural complexity are likely to have long-term consequences for associated vertebrate and invertebrate communities on Magnetic Island reefs.

  15. Remote sensing of sea surface temperatures during 2002 Barrier Reef coral bleaching

    Science.gov (United States)

    Liu, Gang; Strong, Alan E.; Skirving, William

    Early in 2002, satellites of the U.S. National Oceanic and Atmospheric Administration (NOAA) detected anomalously high sea surface temperatures (SST) developing in the western Coral Sea, midway along Australia's Great Barrier Reef (GBR). This was the beginning of what was to become the most significant GBR coral bleaching event on record [Wilkinson, 2002]. During this time, NOAA's National Environmental Satellite, Data, and Information Service (NESDIS) provided satellite data as part of ongoing collaborative work on coral reef health with the Australian Institute of Marine Science (AIMS) and the Great Barrier Reef Marine Park Authority (GBRMPA). These data proved invaluable to AIMS and GBRMPA as they monitored and assessed the development and evolution of SSTs throughout the austral summer, enabling them to keep stakeholders, government, and the general public informed and up to date.

  16. Dynamics of seawater carbonate chemistry, production, and calcification of a coral reef flat, central Great Barrier Reef

    Directory of Open Access Journals (Sweden)

    R. Albright

    2013-10-01

    Full Text Available Ocean acidification is projected to shift coral reefs from a state of net accretion to one of net dissolution this century. Presently, our ability to predict global-scale changes to coral reef calcification is limited by insufficient data relating seawater carbonate chemistry parameters to in situ rates of reef calcification. Here, we investigate diel and seasonal trends in carbonate chemistry of the Davies Reef flat in the central Great Barrier Reef and relate these trends to benthic carbon fluxes by quantifying net ecosystem calcification (nec and net community production (ncp. Results show that seawater carbonate chemistry of the Davies Reef flat is highly variable over both diel and seasonal cycles. pH (total scale ranged from 7.92 to 8.17, pCO2 ranged from 272 to 542 μatm, and aragonite saturation state (Ωarag ranged from 2.9 to 4.1. Diel cycles in carbonate chemistry were primarily driven by ncp, and warming explained 35% and 47% of the seasonal shifts in pCO2 and pH, respectively. Daytime ncp averaged 37 ± 19 mmol C m−2 h−1 in summer and 33 ± 13 mmol C m−2 h−1 in winter; nighttime ncp averaged −30 ± 25 and −7 ± 6 mmol C m−2 h−1 in summer and winter, respectively. Daytime nec averaged 11 ± 4 mmol CaCO3 m−2 h−1 in summer and 8 ± 3 mmol CaCO3 m−2 h−1 in winter, whereas nighttime nec averaged 2 ± 4 mmol and −1 ± 3 mmol CaCO3 m−2 h−1 in summer and winter, respectively. Net ecosystem calcification was highly sensitive to changes in Ωarag for both seasons, indicating that relatively small shifts in Ωarag may drive measurable shifts in calcification rates, and hence carbon budgets, of coral reefs throughout the year.

  17. Jerbarnia stocki, a new species from the Barrier Reef (Crustacea, Amphipoda)

    NARCIS (Netherlands)

    Thomas, James Darwin; Barnard, J.L.

    1990-01-01

    A new species of Jerbarnia is described in 2 meters of depth from Lizard Island on the Great Barrier Reef. It is the first species from depths shallower than 13 m. The species differs from all but J. aquilopacifica (Japan) in the lack of major teeth on pleonites 1-3 and from the latter species in th

  18. Mid-Holocene sea surface conditions and riverine influence on the inshore Great Barrier Reef

    NARCIS (Netherlands)

    Roche, R.C.; Perry, C.T.; Smithers, S.G.; Leng, M.J.; Grove, C.A.; Sloane, H.J.; Unsworth, C.E.

    2014-01-01

    We present measurements of Sr/Ca, d18O, and spectral luminescence ratios (G/B) from a mid-Holocene Porites sp. microatoll recovered from the nearshore Great Barrier Reef (GBR). These records were used as proxies to reconstruct sea surface temperature (SST), the d18O of surrounding seawater (d18Osw),

  19. Coral reef recovery dynamics in a changing world

    Science.gov (United States)

    Graham, N. A. J.; Nash, K. L.; Kool, J. T.

    2011-06-01

    Coral reef ecosystems are degrading through multiple disturbances that are becoming more frequent and severe. The complexities of this degradation have been studied in detail, but little work has assessed characteristics that allow reefs to bounce back and recover between pulse disturbance events. We quantitatively review recovery rates of coral cover from pulse disturbance events among 48 different reef locations, testing the relative roles of disturbance characteristics, reef characteristics, connectivity and anthropogenic influences. Reefs in the western Pacific Ocean had the fastest recovery, whereas reefs in the geographically isolated eastern Pacific Ocean were slowest to recover, reflecting regional differences in coral composition, fish functional diversity and geographic isolation. Disturbances that opened up large areas of benthic space recovered quickly, potentially because of nonlinear recovery where recruitment rates were high. The type of disturbance had a limited effect on subsequent rates of reef recovery, although recovery was faster following crown-of-thorns starfish outbreaks. This inconsequential role of disturbance type may be in part due to the role of unaltered structural complexity in maintaining key reef processes, such as recruitment and herbivory. Few studies explicitly recorded potential ecological determinants of recovery, such as recruitment rates, structural complexity of habitat and the functional composition of reef-associated fish. There was some evidence of slower recovery rates within protected areas compared with other management systems and fished areas, which may reflect the higher initial coral cover in protected areas rather than reflecting a management effect. A better understanding of the driving role of processes, structural complexity and diversity on recovery may enable more appropriate management actions that support coral-dominated ecosystems in our changing climate.

  20. Poorly cemented coral reefs of the eastern tropical Pacific: possible insights into reef development in a high-CO2 world.

    Science.gov (United States)

    Manzello, Derek P; Kleypas, Joan A; Budd, David A; Eakin, C Mark; Glynn, Peter W; Langdon, Chris

    2008-07-29

    Ocean acidification describes the progressive, global reduction in seawater pH that is currently underway because of the accelerating oceanic uptake of atmospheric CO(2). Acidification is expected to reduce coral reef calcification and increase reef dissolution. Inorganic cementation in reefs describes the precipitation of CaCO(3) that acts to bind framework components and occlude porosity. Little is known about the effects of ocean acidification on reef cementation and whether changes in cementation rates will affect reef resistance to erosion. Coral reefs of the eastern tropical Pacific (ETP) are poorly developed and subject to rapid bioerosion. Upwelling processes mix cool, subthermocline waters with elevated pCO(2) (the partial pressure of CO(2)) and nutrients into the surface layers throughout the ETP. Concerns about ocean acidification have led to the suggestion that this region of naturally low pH waters may serve as a model of coral reef development in a high-CO(2) world. We analyzed seawater chemistry and reef framework samples from multiple reef sites in the ETP and found that a low carbonate saturation state (Omega) and trace abundances of cement are characteristic of these reefs. These low cement abundances may be a factor in the high bioerosion rates previously reported for ETP reefs, although elevated nutrients in upwelled waters may also be limiting cementation and/or stimulating bioerosion. ETP reefs represent a real-world example of coral reef growth in low-Omega waters that provide insights into how the biological-geological interface of coral reef ecosystems will change in a high-CO(2) world. PMID:18663220

  1. Temporal clustering of tropical cyclones on the Great Barrier Reef and its ecological importance

    Science.gov (United States)

    Wolff, Nicholas H.; Wong, Aaron; Vitolo, Renato; Stolberg, Kristin; Anthony, Kenneth R. N.; Mumby, Peter J.

    2016-06-01

    Tropical cyclones have been a major cause of reef coral decline during recent decades, including on the Great Barrier Reef (GBR). While cyclones are a natural element of the disturbance regime of coral reefs, the role of temporal clustering has previously been overlooked. Here, we examine the consequences of different types of cyclone temporal distributions (clustered, stochastic or regular) on reef ecosystems. We subdivided the GBR into 14 adjoining regions, each spanning roughly 300 km, and quantified both the rate and clustering of cyclones using dispersion statistics. To interpret the consequences of such cyclone variability for coral reef health, we used a model of observed coral population dynamics. Results showed that clustering occurs on the margins of the cyclone belt, being strongest in the southern reefs and the far northern GBR, which also has the lowest cyclone rate. In the central GBR, where rates were greatest, cyclones had a relatively regular temporal pattern. Modelled dynamics of the dominant coral genus, Acropora, suggest that the long-term average cover might be more than 13 % greater (in absolute cover units) under a clustered cyclone regime compared to stochastic or regular regimes. Thus, not only does cyclone clustering vary significantly along the GBR but such clustering is predicted to have a marked, and management-relevant, impact on the status of coral populations. Additionally, we use our regional clustering and rate results to sample from a library of over 7000 synthetic cyclone tracks for the GBR. This allowed us to provide robust reef-scale maps of annual cyclone frequency and cyclone impacts on Acropora. We conclude that assessments of coral reef vulnerability need to account for both spatial and temporal cyclone distributions.

  2. Environmental Records from Great Barrier Reef Corals: inshore versus offshore drivers.

    Directory of Open Access Journals (Sweden)

    Benjamin D Walther

    Full Text Available The biogenic structures of stationary organisms can be effective recorders of environmental fluctuations. These proxy records of environmental change are preserved as geochemical signals in the carbonate skeletons of scleractinian corals and are useful for reconstructions of temporal and spatial fluctuations in the physical and chemical environments of coral reef ecosystems, including The Great Barrier Reef (GBR. We compared multi-year monitoring of water temperature and dissolved elements with analyses of chemical proxies recorded in Porites coral skeletons to identify the divergent mechanisms driving environmental variation at inshore versus offshore reefs. At inshore reefs, water Ba/Ca increased with the onset of monsoonal rains each year, indicating a dominant control of flooding on inshore ambient chemistry. Inshore multi-decadal records of coral Ba/Ca were also highly periodic in response to flood-driven pulses of terrigenous material. In contrast, an offshore reef at the edge of the continental shelf was subject to annual upwelling of waters that were presumed to be richer in Ba during summer months. Regular pulses of deep cold water were delivered to the reef as indicated by in situ temperature loggers and coral Ba/Ca. Our results indicate that although much of the GBR is subject to periodic environmental fluctuations, the mechanisms driving variation depend on proximity to the coast. Inshore reefs are primarily influenced by variable freshwater delivery and terrigenous erosion of catchments, while offshore reefs are dominated by seasonal and inter-annual variations in oceanographic conditions that influence the propensity for upwelling. The careful choice of sites can help distinguish between the various factors that promote Ba uptake in corals and therefore increase the utility of corals as monitors of spatial and temporal variation in environmental conditions.

  3. Ecological traits influencing range expansion across large oceanic dispersal barriers: insights from tropical Atlantic reef fishes.

    Science.gov (United States)

    Luiz, Osmar J; Madin, Joshua S; Robertson, D Ross; Rocha, Luiz A; Wirtz, Peter; Floeter, Sergio R

    2012-03-01

    How do biogeographically different provinces arise in response to oceanic barriers to dispersal? Here, we analyse how traits related to the pelagic dispersal and adult biology of 985 tropical reef fish species correlate with their establishing populations on both sides of two Atlantic marine barriers: the Mid-Atlantic Barrier (MAB) and the Amazon-Orinoco Plume (AOP). Generalized linear mixed-effects models indicate that predictors for successful barrier crossing are the ability to raft with flotsam for the deep-water MAB, non-reef habitat usage for the freshwater and sediment-rich AOP, and large adult-size and large latitudinal-range for both barriers. Variation in larval-development mode, often thought to be broadly related to larval-dispersal potential, is not a significant predictor in either case. Many more species of greater taxonomic diversity cross the AOP than the MAB. Rafters readily cross both barriers but represent a much smaller proportion of AOP crossers than MAB crossers. Successful establishment after crossing both barriers may be facilitated by broad environmental tolerance associated with large body size and wide latitudinal-range. These results highlight the need to look beyond larval-dispersal potential and assess adult-biology traits when assessing determinants of successful movements across marine barriers.

  4. Factors affecting adoption of improved management practices in the pastoral industry in Great Barrier Reef catchments.

    Science.gov (United States)

    Rolfe, John; Gregg, Daniel

    2015-07-01

    Substantial efforts are being made by industry and government in Australia to reduce adverse impacts of pastoral operations on water quality draining to the Great Barrier Reef. A key target is to achieve rapid adoption of better management practices by landholders, but current theoretical frameworks provide limited guidance about priorities for improving adoption. In this study information from direct surveys with landholders in the two largest catchments draining into the Great Barrier Reef has been collected and analysed. Study outcomes have important implications for policy settings, because they confirm that substantial variations in adoption drivers exist across landholders, enterprises and practices. The results confirm that the three broad barriers to adoption of information gaps, financial incentives and risk perceptions are relevant. This implies that different policy mechanisms, including extension and incentive programs, remain important, although financial incentives were only identified as important to meet capital and transformational costs rather than recurrent costs.

  5. Navigating the transition to ecosystem-based management of the Great Barrier Reef, Australia.

    Science.gov (United States)

    Olsson, Per; Folke, Carl; Hughes, Terry P

    2008-07-15

    We analyze the strategies and actions that enable transitions toward ecosystem-based management using the recent governance changes of the Great Barrier Reef Marine Park as a case study. The interplay among individual actors, organizations, and institutions at multiple levels is central in such transitions. A flexible organization, the Great Barrier Reef Marine Park Authority, was crucial in initiating the transition to ecosystem-based management. This agency was also instrumental in the subsequent transformation of the governance regime and provided leadership throughout the process. Strategies involved internal reorganization and management innovation, leading to an ability to coordinate the scientific community, to increase public awareness of environmental issues and problems, to involve a broader set of stakeholders, and to maneuver the political system for support at critical times. The transformation process was induced by increased pressure on the Great Barrier Reef (from terrestrial runoff, overharvesting, and global warming) that triggered a new sense of urgency to address these challenges. The focus of governance shifted from protection of selected individual reefs to stewardship of the larger-scale seascape. The study emphasizes the significance of stewardship that can change patterns of interactions among key actors and allow for new forms of management and governance to emerge in response to environmental change. This example illustrates that enabling legislations or other social bounds are essential, but not sufficient for shifting governance toward adaptive comanagement of complex marine ecosystems. PMID:18621698

  6. Population growth rates of reef sharks with and without fishing on the great barrier reef: robust estimation with multiple models.

    Directory of Open Access Journals (Sweden)

    Mizue Hisano

    Full Text Available Overfishing of sharks is a global concern, with increasing numbers of species threatened by overfishing. For many sharks, both catch rates and underwater visual surveys have been criticized as indices of abundance. In this context, estimation of population trends using individual demographic rates provides an important alternative means of assessing population status. However, such estimates involve uncertainties that must be appropriately characterized to credibly and effectively inform conservation efforts and management. Incorporating uncertainties into population assessment is especially important when key demographic rates are obtained via indirect methods, as is often the case for mortality rates of marine organisms subject to fishing. Here, focusing on two reef shark species on the Great Barrier Reef, Australia, we estimated natural and total mortality rates using several indirect methods, and determined the population growth rates resulting from each. We used bootstrapping to quantify the uncertainty associated with each estimate, and to evaluate the extent of agreement between estimates. Multiple models produced highly concordant natural and total mortality rates, and associated population growth rates, once the uncertainties associated with the individual estimates were taken into account. Consensus estimates of natural and total population growth across multiple models support the hypothesis that these species are declining rapidly due to fishing, in contrast to conclusions previously drawn from catch rate trends. Moreover, quantitative projections of abundance differences on fished versus unfished reefs, based on the population growth rate estimates, are comparable to those found in previous studies using underwater visual surveys. These findings appear to justify management actions to substantially reduce the fishing mortality of reef sharks. They also highlight the potential utility of rigorously characterizing uncertainty, and

  7. Diel coral reef acidification driven by porewater advection in permeable sands, Heron Island, Great Barrier Reef

    DEFF Research Database (Denmark)

    Santos, Isaac R.; Glud, Ronnie N.; Maher, Damien;

    2011-01-01

    Little is known about how biogeochemical processes in permeable sediments affect the pH of coastal waters. We demonstrate that seawater recirculation in permeable sands can play a major role in proton (H+) cycling in a coral reef lagoon. The diel pH range (up to 0.75 units) in the Heron Island la...... that the metabolism of advection‐dominated carbonate sands may provide a currently unknown feedback to ocean acidification....

  8. Dispersal of adult black marlin (Istiompax indica from a Great Barrier Reef spawning aggregation.

    Directory of Open Access Journals (Sweden)

    Michael L Domeier

    Full Text Available The black marlin (Istiompax indica is one of the largest bony fishes in the world with females capable of reaching a mass of over 700 kg. This highly migratory predator occurs in the tropical regions of the Pacific and Indian Oceans, and is the target of regional recreational and commercial fisheries. Through the sampling of ichthyoplankton and ovaries we provide evidence that the relatively high seasonal abundance of black marlin off the Great Barrier Reef is, in fact, a spawning aggregation. Furthermore, through the tracking of individual black marlin via satellite popup tags, we document the dispersal of adult black marlin away from the spawning aggregation, thereby identifying the catchment area for this spawning stock. Although tag shedding is an issue when studying billfish, we tentatively identify the catchment area for this stock of black marlin to extend throughout the Coral Sea, including the waters of Papua New Guinea, the Solomon Islands, Micronesia, New Caledonia, Kiribati, Vanuatu, Fiji, Tuvalu and Nauru.

  9. Freshwater impacts in the central Great Barrier Reef: 1648-2011

    Science.gov (United States)

    Lough, J. M.; Lewis, S. E.; Cantin, N. E.

    2015-09-01

    The Australian summer monsoon is highly variable from year to year resulting in high variability in the magnitude and extent of freshwater river flood plumes affecting the Great Barrier Reef (GBR). These flood plumes transport terrestrial materials and contaminants to the reef and can have significant impacts on both water quality and ecosystem health. The occurrence and intensity of these freshwater flood plumes are reliably recorded as annual luminescent lines in inshore massive corals and occasional luminescent lines in mid-shelf corals. We use measured luminescence in a long Porites core and four recently collected short cores from Havannah Island (a nearshore reef in the central GBR) to reconstruct Burdekin River flow, 1648-2011, and five recent short cores from Britomart Reef (a mid-shelf reef, 65 km northeast of Havannah Island) to assess the frequency of flood plume events extending beyond the inshore to mid-shelf reefs. The reconstruction highlights that the frequency of high flow events has increased in the GBR from 1 in every 20 yr prior to European settlement (1748-1847) to 1 in every 6 yr reoccurrence (1948-2011). Three of the most extreme events in the past 364 yr have occurred since 1974, including 2011. The reconstruction also shows a shift to higher flows, increased variability from the latter half of the nineteenth century, and likely more frequent freshwater impacts on mid-shelf reefs. This change coincided with European settlement of northern Queensland and substantial changes in land use, which resulted in increased sediment loads exported to the GBR. The consequences of increased sediment loads to the GBR were, therefore, likely exacerbated by this climate shift. This change in Burdekin River flow characteristics appears to be associated with a shift towards greater El Niño-Southern Oscillation variability and rapid warming in the southwest Pacific, evident in independent palaeoclimatic records.

  10. Where in the world are Winslow Reef and Amelia Earhart?

    Science.gov (United States)

    Jacobson, R. S.

    Uncharted or doubtful positions of shoals and reefs have played a large role in the history of maritime navigation and oceanography. Two of these shoals, Winslow Reef and Reef and Sand Bank in the central equatorial Pacific, were the subjects of a fruitless 2-day aerial search in 1937 for Amelia Earhart by planes from the battleship USS Colorado.Sightings before and after 1937 convinced the U.S. Hydrographic Office and later the Defense Mapping Agency to retain these shoals on navigational charts. Yet all of these sightings and positions were based on unreliable celestial and dead-reckoning navigation. Nevertheless, at the time, this aerial search by the Colorado planes was probably the most extensive survey for the poorly determined shoals.

  11. New species of Alcyonacea (Octocorallia) from the Great Barrier Reef, South-East Asia, and the Red Sea

    NARCIS (Netherlands)

    Verseveldt, J.

    1982-01-01

    In this paper four new alcyonaceans are described. They are Alcyonium monticulum from the Great Barrier Reef, Cladiella steinen from Thailand, Lemnalia benayahui from the Red Sea, and Siphonogorgia lobata from Taiwan.

  12. Evidence of reduced mid-Holocene ENSO variance on the Great Barrier Reef, Australia

    Science.gov (United States)

    Leonard, N. D.; Welsh, K. J.; Lough, J. M.; Feng, Y.-x.; Pandolfi, J. M.; Clark, T. R.; Zhao, J.-x.

    2016-09-01

    Globally, coral reefs are under increasing pressure both through direct anthropogenic influence and increases in climate extremes. Understanding past climate dynamics that negatively affected coral reef growth is imperative for both improving management strategies and for modeling coral reef responses to a changing climate. The El Niño-Southern Oscillation (ENSO) is the primary source of climate variability at interannual timescales on the Great Barrier Reef (GBR), northeastern Australia. Applying continuous wavelet transforms to visually assessed coral luminescence intensity in massive Porites corals from the central GBR we demonstrate that these records reliably reproduce ENSO variance patterns for the period 1880-1985. We then applied this method to three subfossil corals from the same reef to reconstruct ENSO variance from ~5200 to 4300 years before present (yBP). We show that ENSO events were less extreme and less frequent after ~5200 yBP on the GBR compared to modern records. Growth characteristics of the corals are consistent with cooler sea surface temperatures (SSTs) between 5200 and 4300 yBP compared to both the millennia prior (~6000 yBP) and modern records. Understanding ENSO dynamics in response to SST variability at geological timescales will be important for improving predictions of future ENSO response to a rapidly warming climate.

  13. Benthic Foraminifera as ecological indicators for water quality on the Great Barrier Reef

    Science.gov (United States)

    Uthicke, Sven; Nobes, Kristie

    2008-07-01

    Benthic foraminifera are established indicators for Water Quality (WQ) in Florida and the Caribbean. However, nearshore coral reefs of the Great Barrier Reef (GBR) and other Pacific regions are also subjected to increased nutrient and sediment loads. Here, we investigate the use of benthic foraminifera as indicators to assess status and trends of WQ on GBR reefs. We quantified several sediment parameters and the foraminiferan assemblage composition on 20 reefs in four geographic regions of the GBR, and along a water column nutrient and turbidity gradient. Twenty-seven easily recognisable benthic foraminiferan taxa (>63 μm) were distinguished. All four geographic regions differed significantly ( p plastids ( Elphidium sp.) where highly characteristic for low light, higher nutrient conditions. Application of the FORAM index to GBR assemblage composition showed a significant increase in the value of this index with increased distance from the mainland in the Whitsunday region ( r2 = 0.75, p < 0.001), and therefore with increasing light and decreased nutrient availability. We conclude that it will be possible to apply this index to GBR and possibly other Pacific reefs after some adaptations and additional experimental work on species-specific limiting factors.

  14. Spatial variation in background mortality among dominant coral taxa on Australia's Great Barrier Reef.

    Science.gov (United States)

    Pisapia, Chiara; Pratchett, Morgan S

    2014-01-01

    Even in the absence of major disturbances (e.g., cyclones, bleaching), corals are consistently subject to high levels of background mortality, which undermines individual fitness and resilience of coral colonies. Partial mortality may impact coral response to climate change by reducing colony ability to recover between major acute stressors. This study quantified proportion of injured versus uninjured colonies (the prevalence of injuries) and instantaneous measures of areal extent of injuries across individual colonies (the severity of injuries), in four common coral species along the Great Barrier Reef in Australia: massive Porites, encrusting Montipora, Acropora hyacinthus and Pocillopora damicornis. A total of 2,276 adult colonies were surveyed three latitudinal sectors, nine reefs and 27 sites along 1000 km2 on the Great Barrier Reef. The prevalence of injuries was very high, especially for Porites spp (91%) and Montipora encrusting (85%) and varied significantly, but most lay at small spatial scales (e.g., among colonies positioned greatly among colonies within the same site and habitat. This study suggests that intraspecific variation in partial mortality between adjacent colonies may be more important than variation between colonies in different latitudinal sectors or reefs. Differences in the prevalence and severity of background partial mortality have significant ramifications for coral capacity to cope with increasing acute disturbances, such as climate-induced coral bleaching. These data are important for understanding coral responses to increasing stressors, and in particular for predicting their capacity to recover between subsequent disturbances.

  15. The 27–year decline of coral cover on the Great Barrier Reef and its causes

    OpenAIRE

    De’ath, Glenn; Fabricius, Katharina E.; Sweatman, Hugh; Puotinen, Marji

    2012-01-01

    The world’s coral reefs are being degraded, and the need to reduce local pressures to offset the effects of increasing global pressures is now widely recognized. This study investigates the spatial and temporal dynamics of coral cover, identifies the main drivers of coral mortality, and quantifies the rates of potential recovery of the Great Barrier Reef. Based on the world’s most extensive time series data on reef condition (2,258 surveys of 214 reefs over 1985–2012), we show a major decline...

  16. Three new species of Calyptotheca (Bryozoa: Lanceoporidae) from the Great Barrier Reef, tropical Australia.

    Science.gov (United States)

    Sebastian, Pascal; Cumming, Robyn L

    2016-02-15

    The cheilostome bryozoans Calyptotheca wulguru n. sp. and Calyptotheca tilbrooki n. sp. (Lanceoporidae) are described from inter-reefal, sediment-dominated habitats of the Great Barrier Reef, and Calyptotheca churro n. sp. was washed up on a Heron Island beach, with uncertain origin. Calyptotheca wulguru n. sp. and C. churro n. sp. belong to a subgroup of Calyptotheca species with numerous small, oval, marginal adventitious avicularia and suboral nodular thickening or umbones. The vicarious avicularia of C. tilbrooki n. sp. are elongate-oval, unlike those of other known Calyptotheca species, and C. tilbrooki n. sp. has more pronounced orificial dimorphism than in any other known Calyptotheca species. Calyptotheca churro n. sp. has the most pronounced suboral umbo of all known Calyptotheca species. This study increases the known Calyptotheca species of the Great Barrier Reef to ten, and of tropical Australia to 14.

  17. Ecology: The Upside-Down World of Coral Reef Predators.

    Science.gov (United States)

    Simpfendorfer, Colin A; Heupel, Michelle R

    2016-08-01

    Examination of a large aggregation of sharks demonstrates that trophic pyramids with greater amounts of high-level predators than prey can occur on coral reefs. This is possible because the high-level predators obtain food from sources outside their home location. PMID:27505241

  18. Social Resilience and Commercial Fishers’ Responses to Management Changes in the Great Barrier Reef Marine Park

    OpenAIRE

    Renae C. Tobin; Stephen G. Sutton

    2012-01-01

    Understanding how social resilience influences resource users’ responses to policy change is important for ensuring the sustainability of social–ecological systems and resource-dependent communities. We use the conceptualization and operationalization of social resilience proposed by Marshall and Marshall (2007) to investigate how resilience level influenced commercial fishers’ perceptions about and adaptation to the 2004 rezoning of the Great Barrier Reef Marine Park. We co...

  19. Neosabellides lizae, a new species of Ampharetidae (Annelida) from Lizard Island, Great Barrier Reef, Australia.

    Science.gov (United States)

    Alvestad, Tom; Budaeva, Nataliya

    2015-09-18

    Neosabellides lizae, a new species of Ampharetidae, is described from the intertidal zone off Lizard Island, Great Barrier Reef, Queensland, Australia. The new species is referred to the genus Neosabellides based on the shape of the prostomium, three pairs of branchiae, 14 thoracic segments with notopodia, 12 thoracic uncinigerous segments, and the first two pairs of abdominal uncinigers of thoracic type. The new species differs from all known species of Neosabellides in having 14 abdominal uncinigerous segments.

  20. Modeling environmental risk and land management trade-offs in the Great Barrier Reef catchment

    OpenAIRE

    Mallawaarachchi, Thilak; Mazur, Kasia; Lawson, Kenton

    2007-01-01

    We develop a catchment scale modeling framework to identify cost-effective strategies for joint onsite abatement and offsite mitigation of land-based pollution from agricultural activities that pose a risk to water quality in the Great Barrier Reef (GBR). An illustrative example of the Barron catchment in north Queensland is used to demonstrate an approach to specify social planner's problem for non-point source pollution management as a cost minimisation model to meet a specified reduction i...

  1. Spatial and temporal genetic structure of Symbiodinium populations within a common reef-building coral on the Great Barrier Reef.

    Science.gov (United States)

    Howells, Emily J; Willis, Bette L; Bay, Line K; van Oppen, Madeleine J H

    2013-07-01

    The dinoflagellate photosymbiont Symbiodinium plays a fundamental role in defining the physiological tolerances of coral holobionts, but little is known about the dynamics of these endosymbiotic populations on coral reefs. Sparse data indicate that Symbiodinium populations show limited spatial connectivity; however, no studies have investigated temporal dynamics for in hospite Symbiodinium populations following significant mortality and recruitment events in coral populations. We investigated the combined influences of spatial isolation and disturbance on the population dynamics of the generalist Symbiodinium type C2 (ITS1 rDNA) hosted by the scleractinian coral Acropora millepora in the central Great Barrier Reef. Using eight microsatellite markers, we genotyped Symbiodinium in a total of 401 coral colonies, which were sampled from seven sites across a 12-year period including during flood plume-induced coral bleaching. Genetic differentiation of Symbiodinium was greatest within sites, explaining 70-86% of the total genetic variation. An additional 9-27% of variation was explained by significant differentiation of populations among sites separated by 0.4-13 km, which is consistent with low levels of dispersal via water movement and historical disturbance regimes. Sampling year accounted for 6-7% of total genetic variation and was related to significant coral mortality following severe bleaching in 1998 and a cyclone in 2006. Only 3% of the total genetic variation was related to coral bleaching status, reflecting generally small (8%) reductions in allelic diversity within bleached corals. This reduction probably reflected a loss of genotypes in hospite during bleaching, although no site-wide changes in genetic diversity were observed. Combined, our results indicate the importance of disturbance regimes acting together with limited oceanographic transport to determine the genetic composition of Symbiodinium types within reefs.

  2. Diurnal warming in shallow coastal seas: Observations from the Caribbean and Great Barrier Reef regions

    Science.gov (United States)

    Zhu, X.; Minnett, P. J.; Berkelmans, R.; Hendee, J.; Manfrino, C.

    2014-07-01

    A good understanding of diurnal warming in the upper ocean is important for the validation of satellite-derived sea surface temperature (SST) against in-situ buoy data and for merging satellite SSTs taken at different times of the same day. For shallow coastal regions, better understanding of diurnal heating could also help improve monitoring and prediction of ecosystem health, such as coral reef bleaching. Compared to its open ocean counterpart which has been studied extensively and modeled with good success, coastal diurnal warming has complicating localized characteristics, including coastline geometry, bathymetry, water types, tidal and wave mixing. Our goal is to characterize coastal diurnal warming using two extensive in-situ temperature and weather datasets from the Caribbean and Great Barrier Reef (GBR), Australia. Results showed clear daily warming patterns in most stations from both datasets. For the three Caribbean stations where solar radiation is the main cause of daily warming, the mean diurnal warming amplitudes were about 0.4 K at depths of 4-7 m and 0.6-0.7 K at shallower depths of 1-2 m; the largest warming value was 2.1 K. For coral top temperatures of the GBR, 20% of days had warming amplitudes >1 K, with the largest >4 K. The bottom warming at shallower sites has higher daily maximum temperatures and lower daily minimum temperatures than deeper sites nearby. The averaged daily warming amplitudes were shown to be closely related to daily average wind speed and maximum insolation, as found in the open ocean. Diurnal heating also depends on local features including water depth, location on different sections of the reef (reef flat vs. reef slope), the relative distance from the barrier reef chain (coast vs. lagoon stations vs. inner barrier reef sites vs. outer rim sites); and the proximity to the tidal inlets. In addition, the influence of tides on daily temperature changes and its relative importance compared to solar radiation was quantified by

  3. Surviving coral bleaching events: porites growth anomalies on the Great Barrier Reef.

    Directory of Open Access Journals (Sweden)

    Neal E Cantin

    Full Text Available Mass coral bleaching affected large parts of the Great Barrier Reef (GBR in 1998 and 2002. In this study, we assessed if signatures of these major thermal stress events were recorded in the growth characteristics of massive Porites colonies. In 2005 a suite of short (<50 cm cores were collected from apparently healthy, surviving Porites colonies, from reefs in the central GBR (18-19°S that have documented observations of widespread bleaching. Sites included inshore (Nelly Bay, Pandora Reef, annually affected by freshwater flood events, midshelf (Rib Reef, only occasionally affected by freshwater floods and offshore (Myrmidon Reef locations primarily exposed to open ocean conditions. Annual growth characteristics (extension, density and calcification were measured in 144 cores from 79 coral colonies and analysed over the common 24-year period, 1980-2003. Visual examination of the annual density bands revealed growth hiatuses associated with the bleaching years in the form of abrupt decreases in annual linear extension rates, high density stress bands and partial mortality. The 1998 mass-bleaching event reduced Porites calcification by 13 and 18% on the two inshore locations for 4 years, followed by recovery to baseline calcification rates in 2002. Evidence of partial mortality was apparent in 10% of the offshore colonies in 2002; however no significant effects of the bleaching events were evident in the calcification rates at the mid shelf and offshore sites. These results highlight the spatial variation of mass bleaching events and that all reef locations within the GBR were not equally stressed by the 1998 and 2002 mass bleaching events, as some models tend to suggest, which enabled recovery of calcification on the GBR within 4 years. The dynamics in annual calcification rates and recovery displayed here should be used to improve model outputs that project how coral calcification will respond to ongoing warming of the tropical oceans.

  4. Surviving coral bleaching events: porites growth anomalies on the Great Barrier Reef.

    Science.gov (United States)

    Cantin, Neal E; Lough, Janice M

    2014-01-01

    Mass coral bleaching affected large parts of the Great Barrier Reef (GBR) in 1998 and 2002. In this study, we assessed if signatures of these major thermal stress events were recorded in the growth characteristics of massive Porites colonies. In 2005 a suite of short (reefs in the central GBR (18-19°S) that have documented observations of widespread bleaching. Sites included inshore (Nelly Bay, Pandora Reef), annually affected by freshwater flood events, midshelf (Rib Reef), only occasionally affected by freshwater floods and offshore (Myrmidon Reef) locations primarily exposed to open ocean conditions. Annual growth characteristics (extension, density and calcification) were measured in 144 cores from 79 coral colonies and analysed over the common 24-year period, 1980-2003. Visual examination of the annual density bands revealed growth hiatuses associated with the bleaching years in the form of abrupt decreases in annual linear extension rates, high density stress bands and partial mortality. The 1998 mass-bleaching event reduced Porites calcification by 13 and 18% on the two inshore locations for 4 years, followed by recovery to baseline calcification rates in 2002. Evidence of partial mortality was apparent in 10% of the offshore colonies in 2002; however no significant effects of the bleaching events were evident in the calcification rates at the mid shelf and offshore sites. These results highlight the spatial variation of mass bleaching events and that all reef locations within the GBR were not equally stressed by the 1998 and 2002 mass bleaching events, as some models tend to suggest, which enabled recovery of calcification on the GBR within 4 years. The dynamics in annual calcification rates and recovery displayed here should be used to improve model outputs that project how coral calcification will respond to ongoing warming of the tropical oceans.

  5. Spionidae (Annelida) from Lizard Island, Great Barrier Reef, Australia: the genera Aonides, Dipolydora, Polydorella, Prionospio, Pseudopolydora, Rhynchospio, and Tripolydora.

    Science.gov (United States)

    Radashevsky, Vasily I

    2015-09-18

    Nineteen species in seven genera of spionid polychaetes are described and illustrated based on new material collected from the intertidal and shallow waters around the Lizard Island Group, northern Great Barrier Reef. Only one of these species had been previously reported from the Reef. Six species are described as new to science, and the taxonomy of seven species should be clarified in the future. Prionospio sensu lato is the most diverse group with 11 species identified in the present study. One species is identified in each of the genera Dipolydora, Polydorella, Rhynchospio and Tripolydora, and two species are identified in each of the genera Aonides and Pseudopolydora. The fauna of spionid polychaetes of the Great Barrier Reef seems to be more diverse than previously described and more species are expected to be found in the future. An identification key is provided to 16 genera of Spionidae reported from or likely to be found on the Great Barrier Reef.

  6. A model of the effects of land-based, human activities on the health of coral reefs in the Great Barrier Reef and in Fouha Bay, Guam, Micronesia

    Science.gov (United States)

    Wolanski, Eric; Richmond, Robert H.; McCook, Laurence

    2004-05-01

    A model is proposed to explain coral and algal abundance on coastal coral reefs as a function of spike-like natural disturbances from tropical cyclones and turbid river floods, followed by long recovery periods where the rate of reef recovery depends on ambient water and substratum quality. The model includes competition for space between corals and algae, coral recruitment and reef connectivity. The model is applied to a 400-km stretch of Australia's Great Barrier Reef and to the 200-m-long reef tract at Fouha Bay, in Guam, Micronesia. For these two sites and at these two scales, the model appears successful at reproducing the observed distribution of algae and coral. For both sites, it is suggested that the reefs have been degraded by human activities on land and that they will recover provided remedial measures are implemented on land to restore the water and substrate conditions. We suggest ways to improve the model and to use the model to guide future ecological research and management efforts on coastal coral reefs.

  7. Phytoplankton, bacterioplankton and virioplankton structure and function across the southern Great Barrier Reef shelf

    Science.gov (United States)

    Alongi, Daniel M.; Patten, Nicole L.; McKinnon, David; Köstner, Nicole; Bourne, David G.; Brinkman, Richard

    2015-02-01

    Bacterioplankton and phytoplankton dynamics, pelagic respiration, virioplankton abundance, and the diversity of pelagic diazotrophs and other bacteria were examined in relation to water-column nutrients and vertical mixing across the southern Great Barrier Reef (GBR) shelf where sharp inshore to offshore gradients in water chemistry and hydrology prevail. A principal component analysis (PCA) revealed station groups clustered geographically, suggesting across-shelf differences in plankton function and structure driven by changes in mixing intensity, sediment resuspension, and the relative contributions of terrestrial, reef and oceanic nutrients. At most stations and sampling periods, microbial abundance and activities peaked both inshore and at channels between outer shelf reefs of the Pompey Reef complex. PCA also revealed that virioplankton numbers and biomass correlated with bacterioplankton numbers and production, and that bacterial growth and respiration correlated with net primary production, suggesting close virus-bacteria-phytoplankton interactions; all plankton groups correlated with particulate C, N, and P. Strong vertical mixing facilitates tight coupling of pelagic and benthic shelf processes as, on average, 37% and 56% of N and P demands of phytoplankton are derived from benthic nutrient regeneration and resuspension. These across-shelf planktonic trends mirror those of the benthic microbial community.

  8. Modelling the fate of marine debris along a complex shoreline: Lessons from the Great Barrier Reef

    Science.gov (United States)

    Critchell, K.; Grech, A.; Schlaefer, J.; Andutta, F. P.; Lambrechts, J.; Wolanski, E.; Hamann, M.

    2015-12-01

    The accumulation of floating anthropogenic debris in marine and coastal areas has environmental, economic, aesthetic, and human health impacts. Until now, modelling the transport of such debris has largely been restricted to the large-scales of open seas. We used oceanographic modelling to identify potential sites of debris accumulation along a rugged coastline with headlands, islands, rocky coasts and beaches. Our study site was the Great Barrier Reef World Heritage Area that has an emerging problem with debris accumulation. We found that the classical techniques of modelling the transport of floating debris models are only moderately successful due to a number of unknowns or assumptions, such as the value of the wind drift coefficient, the variability of the oceanic forcing and of the wind, the resuspension of some floating debris by waves, and the poorly known relative contribution of floating debris from urban rivers and commercial and recreational shipping. Nevertheless the model was successful in reproducing a number of observations such as the existence of hot spots of accumulation. The orientation of beaches to the prevailing wind direction affected the accumulation rate of debris. The wind drift coefficient and the exact timing of the release of the debris at sea affected little the movement of debris originating from rivers but it affected measurably that of debris originating from ships. It was thus possible to produce local hotspot maps for floating debris, especially those originating from rivers. Such modelling can be used to inform local management decisions, and it also identifies likely priority research areas to more reliably predict the trajectory and landing points of floating debris.

  9. Deepwater Chondrichthyan Bycatch of the Eastern King Prawn Fishery in the Southern Great Barrier Reef, Australia.

    Science.gov (United States)

    Rigby, Cassandra L; White, William T; Simpfendorfer, Colin A

    2016-01-01

    The deepwater chondrichthyan fauna of the Great Barrier Reef is poorly known and life history information is required to enable their effective management as they are inherently vulnerable to exploitation. The chondrichthyan bycatch from the deepwater eastern king prawn fishery at the Swain Reefs in the southern Great Barrier Reef was examined to determine the species present and provide information on their life histories. In all, 1533 individuals were collected from 11 deepwater chondrichthyan species, with the Argus skate Dipturus polyommata, piked spurdog Squalus megalops and pale spotted catshark Asymbolus pallidus the most commonly caught. All but one species is endemic to Australia with five species restricted to waters offshore from Queensland. The extent of life history information available for each species varied but the life history traits across all species were characteristic of deep water chondrichthyans with relatively large length at maturity, small litters and low ovarian fecundity; all indicative of low biological productivity. However, variability among these traits and spatial and bathymetric distributions of the species suggests differing degrees of resilience to fishing pressure. To ensure the sustainability of these bycatch species, monitoring of their catches in the deepwater eastern king prawn fishery is recommended.

  10. Spatial variation in background mortality among dominant coral taxa on Australia's Great Barrier Reef.

    Science.gov (United States)

    Pisapia, Chiara; Pratchett, Morgan S

    2014-01-01

    Even in the absence of major disturbances (e.g., cyclones, bleaching), corals are consistently subject to high levels of background mortality, which undermines individual fitness and resilience of coral colonies. Partial mortality may impact coral response to climate change by reducing colony ability to recover between major acute stressors. This study quantified proportion of injured versus uninjured colonies (the prevalence of injuries) and instantaneous measures of areal extent of injuries across individual colonies (the severity of injuries), in four common coral species along the Great Barrier Reef in Australia: massive Porites, encrusting Montipora, Acropora hyacinthus and Pocillopora damicornis. A total of 2,276 adult colonies were surveyed three latitudinal sectors, nine reefs and 27 sites along 1000 km2 on the Great Barrier Reef. The prevalence of injuries was very high, especially for Porites spp (91%) and Montipora encrusting (85%) and varied significantly, but most lay at small spatial scales (e.g., among colonies positioned coral capacity to cope with increasing acute disturbances, such as climate-induced coral bleaching. These data are important for understanding coral responses to increasing stressors, and in particular for predicting their capacity to recover between subsequent disturbances. PMID:24959921

  11. Keeping the ‘Great’ in the Great Barrier Reef: large-scale governance of the Great Barrier Reef Marine Park

    Directory of Open Access Journals (Sweden)

    Louisa S. Evans

    2014-08-01

    Full Text Available As part of an international collaboration to compare large-scale commons, we used the Social-Ecological Systems Meta-Analysis Database (SESMAD to systematically map out attributes of and changes in the Great Barrier Reef Marine Park (GBRMP in Australia. We focus on eight design principles from common-pool resource (CPR theory and other key social-ecological systems governance variables, and explore to what extent they help explain the social and ecological outcomes of park management through time. Our analysis showed that commercial fisheries management and the re-zoning of the GBRMP in 2004 led to improvements in ecological condition of the reef, particularly fisheries. These boundary and rights changes were supported by effective monitoring, sanctioning and conflict resolution. Moderate biophysical connectivity was also important for improved outcomes. However, our analysis also highlighted that continued challenges to improved ecological health in terms of coral cover and biodiversity can be explained by fuzzy boundaries between land and sea, and the significance of external drivers to even large-scale social-ecological systems (SES. While ecological and institutional fit in the marine SES was high, this was not the case when considering the coastal SES. Nested governance arrangements become even more important at this larger scale. To our knowledge, our paper provides the first analysis linking the re-zoning of the GBRMP to CPR and SES theory. We discuss important challenges to coding large-scale systems for meta-analysis.

  12. Climate change disables coral bleaching protection on the Great Barrier Reef.

    Science.gov (United States)

    Ainsworth, Tracy D; Heron, Scott F; Ortiz, Juan Carlos; Mumby, Peter J; Grech, Alana; Ogawa, Daisie; Eakin, C Mark; Leggat, William

    2016-04-15

    Coral bleaching events threaten the sustainability of the Great Barrier Reef (GBR). Here we show that bleaching events of the past three decades have been mitigated by induced thermal tolerance of reef-building corals, and this protective mechanism is likely to be lost under near-future climate change scenarios. We show that 75% of past thermal stress events have been characterized by a temperature trajectory that subjects corals to a protective, sub-bleaching stress, before reaching temperatures that cause bleaching. Such conditions confer thermal tolerance, decreasing coral cell mortality and symbiont loss during bleaching by over 50%. We find that near-future increases in local temperature of as little as 0.5°C result in this protective mechanism being lost, which may increase the rate of degradation of the GBR.

  13. Climate change disables coral bleaching protection on the Great Barrier Reef.

    Science.gov (United States)

    Ainsworth, Tracy D; Heron, Scott F; Ortiz, Juan Carlos; Mumby, Peter J; Grech, Alana; Ogawa, Daisie; Eakin, C Mark; Leggat, William

    2016-04-15

    Coral bleaching events threaten the sustainability of the Great Barrier Reef (GBR). Here we show that bleaching events of the past three decades have been mitigated by induced thermal tolerance of reef-building corals, and this protective mechanism is likely to be lost under near-future climate change scenarios. We show that 75% of past thermal stress events have been characterized by a temperature trajectory that subjects corals to a protective, sub-bleaching stress, before reaching temperatures that cause bleaching. Such conditions confer thermal tolerance, decreasing coral cell mortality and symbiont loss during bleaching by over 50%. We find that near-future increases in local temperature of as little as 0.5°C result in this protective mechanism being lost, which may increase the rate of degradation of the GBR. PMID:27081069

  14. Sea spray aerosol in the Great Barrier Reef and the presence of nonvolatile organics

    Science.gov (United States)

    Mallet, Marc; Cravigan, Luke; Miljevic, Branka; Vaattovaara, Petri; Deschaseaux, Elisabeth; Swan, Hilton; Jones, Graham; Ristovski, Zoran

    2016-06-01

    Sea spray aerosol (SSA) particles produced from the ocean surface in regions of biological activity can vary greatly in size, number and composition, and in their influence on cloud formation. Algal species such as phytoplankton can alter the SSA composition. Numerous studies have investigated nascent SSA properties, but all of these have focused on aerosol particles produced by seawater from noncoral related phytoplankton and in coastal regions. Bubble chamber experiments were performed with seawater samples taken from the reef flat around Heron Island in the Great Barrier Reef during winter 2011. Here we show that the SSA from these samples was composed of an internal mixture of varying fractions of sea salt, semivolatile organics, as well as nonvolatile (below 550°C) organics. A relatively constant volume fraction of semivolatile organics of 10%-13% was observed, while nonvolatile organic volume fractions varied from 29% to 49% for 60 nm SSA. SSA organic fractions were estimated to reduce the activation ratios of SSA to cloud condensation nuclei by up to 14% when compared with artificial sea salt. Additionally, a sea-salt calibration was applied so that a compact time-of-flight aerosol mass spectrometer could be used to quantify the contribution of sea salt to submicron SSA, which yielded organic volume fractions of 3%-6%. Overall, these results indicate a high fraction of organics associated with wintertime Aitken mode SSA generated from Great Barrier Reef seawater. Further work is required to fully distinguish any differences coral reefs have on SSA composition when compared to open oceans.

  15. Spatial variation in background mortality among dominant coral taxa on Australia's Great Barrier Reef.

    Directory of Open Access Journals (Sweden)

    Chiara Pisapia

    Full Text Available Even in the absence of major disturbances (e.g., cyclones, bleaching, corals are consistently subject to high levels of background mortality, which undermines individual fitness and resilience of coral colonies. Partial mortality may impact coral response to climate change by reducing colony ability to recover between major acute stressors. This study quantified proportion of injured versus uninjured colonies (the prevalence of injuries and instantaneous measures of areal extent of injuries across individual colonies (the severity of injuries, in four common coral species along the Great Barrier Reef in Australia: massive Porites, encrusting Montipora, Acropora hyacinthus and Pocillopora damicornis. A total of 2,276 adult colonies were surveyed three latitudinal sectors, nine reefs and 27 sites along 1000 km2 on the Great Barrier Reef. The prevalence of injuries was very high, especially for Porites spp (91% and Montipora encrusting (85% and varied significantly, but most lay at small spatial scales (e.g., among colonies positioned <10-m apart. Similarly, severity of background partial mortality was surprisingly high (between 5% and 21% but varied greatly among colonies within the same site and habitat. This study suggests that intraspecific variation in partial mortality between adjacent colonies may be more important than variation between colonies in different latitudinal sectors or reefs. Differences in the prevalence and severity of background partial mortality have significant ramifications for coral capacity to cope with increasing acute disturbances, such as climate-induced coral bleaching. These data are important for understanding coral responses to increasing stressors, and in particular for predicting their capacity to recover between subsequent disturbances.

  16. The Effect of the Great Barrier Reef on the Propagation of the 2007 Solomon Islands Tsunami Recorded in Northeastern Australia

    Science.gov (United States)

    Baba, Toshitaka; Mleczko, Richard; Burbidge, David; Cummins, Phil R.; Thio, Hong Kie

    2008-12-01

    The effect of offshore coral reefs on the impact from a tsunami remains controversial. For example, field surveys after the 2004 Indian Ocean tsunami indicate that the energy of the tsunami was reduced by natural coral reef barriers in Sri Lanka, but there was no indication that coral reefs off Banda Aceh, Indonesia had any effect on the tsunami. In this paper, we investigate whether the Great Barrier Reef (GBR) offshore Queensland, Australia, may have weakened the tsunami impact from the 2007 Solomon Islands earthquake. The fault slip distribution of the 2007 Solomon Islands earthquake was firstly obtained by teleseismic inversion. The tsunami was then propagated to shallow water just offshore the coast by solving the linear shallow water equations using a staggered grid finite-difference method. We used a relatively high resolution (approximately 250 m) bathymetric grid for the region just off the coast containing the reef. The tsunami waveforms recorded at tide gauge stations along the Australian coast were then compared to the results from the tsunami simulation when using both the realistic 250 m resolution bathymetry and with two grids having fictitious bathymetry: One in which the the GBR has been replaced by a smooth interpolation from depths outside the GBR to the coast (the “No GBR” grid), and one in which the GBR has been replaced by a flat plane at a depth equal to the mean water depth of the GBR (the “Average GBR” grid). From the comparison between the synthetic waveforms both with and without the Great Barrier Reef, we found that the Great Barrier Reef significantly weakened the tsunami impact. According to our model, the coral reefs delayed the tsunami arrival time by 5-10 minutes, decreased the amplitude of the first tsunami pulse to half or less, and lengthened the period of the tsunami.

  17. Coral-macroalgal phase shifts or reef resilience: links with diversity and functional roles of herbivorous fishes on the Great Barrier Reef

    Science.gov (United States)

    Cheal, A. J.; MacNeil, M. Aaron; Cripps, E.; Emslie, M. J.; Jonker, M.; Schaffelke, B.; Sweatman, H.

    2010-12-01

    Changes from coral to macroalgal dominance following disturbances to corals symbolize the global degradation of coral reefs. The development of effective conservation measures depends on understanding the causes of such phase shifts. The prevailing view that coral-macroalgal phase shifts commonly occur due to insufficient grazing by fishes is based on correlation with overfishing and inferences from models and small-scale experiments rather than on long-term quantitative field studies of fish communities at affected and resilient sites. Consequently, the specific characteristics of herbivorous fish communities that most promote reef resilience under natural conditions are not known, though this information is critical for identifying vulnerable ecosystems. In this study, 11 years of field surveys recorded the development of the most persistent coral-macroalgal phase shift (>7 years) yet observed on Australia’s Great Barrier Reef (GBR). This shift followed extensive coral mortality caused by thermal stress (coral bleaching) and damaging storms. Comparisons with two similar reefs that suffered similar disturbances but recovered relatively rapidly demonstrated that the phase shift occurred despite high abundances of one herbivore functional group (scraping/excavating parrotfishes: Labridae). However, the shift was strongly associated with low fish herbivore diversity and low abundances of algal browsers (predominantly Siganidae) and grazers/detritivores (Acanthuridae), suggesting that one or more of these factors underpin reef resilience and so deserve particular protection. Herbivorous fishes are not harvested on the GBR, and the phase shift was not enhanced by unusually high nutrient levels. This shows that unexploited populations of herbivorous fishes cannot ensure reef resilience even under benign conditions and suggests that reefs could lose resilience under relatively low fishing pressure. Predictions of more severe and widespread coral mortality due to global

  18. Inadequate evaluation and management of threats in Australia's Marine Parks, including the Great Barrier Reef, misdirect Marine conservation.

    Science.gov (United States)

    Kearney, Bob; Farebrother, Graham

    2014-01-01

    The magnificence of the Great Barrier Reef and its worthiness of extraordinary efforts to protect it from whatever threats may arise are unquestioned. Yet almost four decades after the establishment of the Great Barrier Reef Marine Park, Australia's most expensive and intensely researched Marine Protected Area, the health of the Reef is reported to be declining alarmingly. The management of the suite of threats to the health of the reef has clearly been inadequate, even though there have been several notable successes. It is argued that the failure to prioritise correctly all major threats to the reef, coupled with the exaggeration of the benefits of calling the park a protected area and zoning subsets of areas as 'no-take', has distracted attention from adequately addressing the real causes of impact. Australia's marine conservation efforts have been dominated by commitment to a National Representative System of Marine Protected Areas. In so doing, Australia has displaced the internationally accepted primary priority for pursuing effective protection of marine environments with inadequately critical adherence to the principle of having more and bigger marine parks. The continuing decline in the health of the Great Barrier Reef and other Australian coastal areas confirms the limitations of current area management for combating threats to marine ecosystems. There is great need for more critical evaluation of how marine environments can be protected effectively and managed efficiently.

  19. Coral-mucus-associated Vibrio integrons in the Great Barrier Reef: genomic hotspots for environmental adaptation

    OpenAIRE

    Koenig, Jeremy E.; Bourne, David G; Curtis, Bruce; Dlutek, Marlena; Stokes, H. W.; Doolittle, W Ford; Boucher, Yan

    2011-01-01

    Integron cassette arrays in a dozen cultivars of the most prevalent group of Vibrio isolates obtained from mucus expelled by a scleractinian coral (Pocillopora damicornis) colony living on the Great Barrier Reef were sequenced and compared. Although all cultivars showed >99% identity across recA, pyrH and rpoB genes, no two had more than 10% of their integron-associated gene cassettes in common, and some individuals shared cassettes exclusively with distantly-related members of the genus. Of ...

  20. Effects of High Dissolved Inorganic and Organic Carbon Availability on the Physiology of the Hard Coral Acropora millepora from the Great Barrier Reef.

    Science.gov (United States)

    Meyer, Friedrich W; Vogel, Nikolas; Diele, Karen; Kunzmann, Andreas; Uthicke, Sven; Wild, Christian

    2016-01-01

    Coral reefs are facing major global and local threats due to climate change-induced increases in dissolved inorganic carbon (DIC) and because of land-derived increases in organic and inorganic nutrients. Recent research revealed that high availability of labile dissolved organic carbon (DOC) negatively affects scleractinian corals. Studies on the interplay of these factors, however, are lacking, but urgently needed to understand coral reef functioning under present and near future conditions. This experimental study investigated the individual and combined effects of ambient and high DIC (pCO2 403 μatm/ pHTotal 8.2 and 996 μatm/pHTotal 7.8) and DOC (added as Glucose 0 and 294 μmol L-1, background DOC concentration of 83 μmol L-1) availability on the physiology (net and gross photosynthesis, respiration, dark and light calcification, and growth) of the scleractinian coral Acropora millepora (Ehrenberg, 1834) from the Great Barrier Reef over a 16 day interval. High DIC availability did not affect photosynthesis, respiration and light calcification, but significantly reduced dark calcification and growth by 50 and 23%, respectively. High DOC availability reduced net and gross photosynthesis by 51% and 39%, respectively, but did not affect respiration. DOC addition did not influence calcification, but significantly increased growth by 42%. Combination of high DIC and high DOC availability did not affect photosynthesis, light calcification, respiration or growth, but significantly decreased dark calcification when compared to both controls and DIC treatments. On the ecosystem level, high DIC concentrations may lead to reduced accretion and growth of reefs dominated by Acropora that under elevated DOC concentrations will likely exhibit reduced primary production rates, ultimately leading to loss of hard substrate and reef erosion. It is therefore important to consider the potential impacts of elevated DOC and DIC simultaneously to assess real world scenarios, as

  1. Effects of High Dissolved Inorganic and Organic Carbon Availability on the Physiology of the Hard Coral Acropora millepora from the Great Barrier Reef.

    Directory of Open Access Journals (Sweden)

    Friedrich W Meyer

    Full Text Available Coral reefs are facing major global and local threats due to climate change-induced increases in dissolved inorganic carbon (DIC and because of land-derived increases in organic and inorganic nutrients. Recent research revealed that high availability of labile dissolved organic carbon (DOC negatively affects scleractinian corals. Studies on the interplay of these factors, however, are lacking, but urgently needed to understand coral reef functioning under present and near future conditions. This experimental study investigated the individual and combined effects of ambient and high DIC (pCO2 403 μatm/ pHTotal 8.2 and 996 μatm/pHTotal 7.8 and DOC (added as Glucose 0 and 294 μmol L-1, background DOC concentration of 83 μmol L-1 availability on the physiology (net and gross photosynthesis, respiration, dark and light calcification, and growth of the scleractinian coral Acropora millepora (Ehrenberg, 1834 from the Great Barrier Reef over a 16 day interval. High DIC availability did not affect photosynthesis, respiration and light calcification, but significantly reduced dark calcification and growth by 50 and 23%, respectively. High DOC availability reduced net and gross photosynthesis by 51% and 39%, respectively, but did not affect respiration. DOC addition did not influence calcification, but significantly increased growth by 42%. Combination of high DIC and high DOC availability did not affect photosynthesis, light calcification, respiration or growth, but significantly decreased dark calcification when compared to both controls and DIC treatments. On the ecosystem level, high DIC concentrations may lead to reduced accretion and growth of reefs dominated by Acropora that under elevated DOC concentrations will likely exhibit reduced primary production rates, ultimately leading to loss of hard substrate and reef erosion. It is therefore important to consider the potential impacts of elevated DOC and DIC simultaneously to assess real world

  2. Towards environmental management of water turbidity within open coastal waters of the Great Barrier Reef.

    Science.gov (United States)

    Macdonald, Rachael K; Ridd, Peter V; Whinney, James C; Larcombe, Piers; Neil, David T

    2013-09-15

    Water turbidity and suspended sediment concentration (SSC) are commonly used as part of marine monitoring and water quality plans. Current management plans utilise threshold SSC values derived from mean-annual turbidity concentrations. Little published work documents typical ranges of turbidity for reefs within open coastal waters. Here, time-series turbidity measurements from 61 sites in the Great Barrier Reef (GBR) and Moreton Bay, Australia, are presented as turbidity exceedance curves and derivatives. This contributes to the understanding of turbidity and SSC in the context of environmental management in open-coastal reef environments. Exceedance results indicate strong spatial and temporal variability in water turbidity across inter/intraregional scales. The highest turbidity across 61 sites, at 50% exceedance (T50) is 15.3 NTU and at 90% exceedance (T90) 4.1 NTU. Mean/median turbidity comparisons show strong differences between the two, consistent with a strongly skewed turbidity regime. Results may contribute towards promoting refinement of water quality management protocols.

  3. Biogeochemical responses following coral mass spawning on the Great Barrier Reef: pelagic-benthic coupling

    Science.gov (United States)

    Wild, C.; Jantzen, C.; Struck, U.; Hoegh-Guldberg, O.; Huettel, M.

    2008-03-01

    This study quantified how the pulse of organic matter from the release of coral gametes triggered a chain of pelagic and benthic processes during an annual mass spawning event on the Australian Great Barrier Reef. Particulate organic matter (POM) concentrations in reef waters increased by threefold to 11-fold the day after spawning and resulted in a stimulation of pelagic oxygen consumption rates that lasted for at least 1 week. Water column microbial communities degraded the organic carbon of gametes of the broadcast-spawning coral Acropora millepora at a rate of >15% h-1, which is about three times faster than the degradation rate measured for larvae of the brooding coral Stylophora pistillata. Stable isotope signatures of POM in the water column reflected the fast transfer of organic matter from coral gametes into higher levels of the food chain, and the amount of POM reaching the seafloor immediately increased after coral spawning and then tailed-off in the next 2 weeks. Short-lasting phytoplankton blooms developed within a few days after the spawning event, indicating a prompt recycling of nutrients released through the degradation of spawning products. These data show the profound effects of coral mass spawning on the reef community and demonstrate the tight recycling of nutrients in this oligotrophic ecosystem.

  4. Disturbance and the dynamics of coral cover on the Great Barrier Reef (1995-2009.

    Directory of Open Access Journals (Sweden)

    Kate Osborne

    Full Text Available Coral reef ecosystems worldwide are under pressure from chronic and acute stressors that threaten their continued existence. Most obvious among changes to reefs is loss of hard coral cover, but a precise multi-scale estimate of coral cover dynamics for the Great Barrier Reef (GBR is currently lacking. Monitoring data collected annually from fixed sites at 47 reefs across 1300 km of the GBR indicate that overall regional coral cover was stable (averaging 29% and ranging from 23% to 33% cover across years with no net decline between 1995 and 2009. Subregional trends (10-100 km in hard coral were diverse with some being very dynamic and others changing little. Coral cover increased in six subregions and decreased in seven subregions. Persistent decline of corals occurred in one subregion for hard coral and Acroporidae and in four subregions in non-Acroporidae families. Change in Acroporidae accounted for 68% of change in hard coral. Crown-of-thorns starfish (Acanthaster planci outbreaks and storm damage were responsible for more coral loss during this period than either bleaching or disease despite two mass bleaching events and an increase in the incidence of coral disease. While the limited data for the GBR prior to the 1980's suggests that coral cover was higher than in our survey, we found no evidence of consistent, system-wide decline in coral cover since 1995. Instead, fluctuations in coral cover at subregional scales (10-100 km, driven mostly by changes in fast-growing Acroporidae, occurred as a result of localized disturbance events and subsequent recovery.

  5. Disturbance and the dynamics of coral cover on the Great Barrier Reef (1995-2009).

    Science.gov (United States)

    Osborne, Kate; Dolman, Andrew M; Burgess, Scott C; Johns, Kerryn A

    2011-03-10

    Coral reef ecosystems worldwide are under pressure from chronic and acute stressors that threaten their continued existence. Most obvious among changes to reefs is loss of hard coral cover, but a precise multi-scale estimate of coral cover dynamics for the Great Barrier Reef (GBR) is currently lacking. Monitoring data collected annually from fixed sites at 47 reefs across 1300 km of the GBR indicate that overall regional coral cover was stable (averaging 29% and ranging from 23% to 33% cover across years) with no net decline between 1995 and 2009. Subregional trends (10-100 km) in hard coral were diverse with some being very dynamic and others changing little. Coral cover increased in six subregions and decreased in seven subregions. Persistent decline of corals occurred in one subregion for hard coral and Acroporidae and in four subregions in non-Acroporidae families. Change in Acroporidae accounted for 68% of change in hard coral. Crown-of-thorns starfish (Acanthaster planci) outbreaks and storm damage were responsible for more coral loss during this period than either bleaching or disease despite two mass bleaching events and an increase in the incidence of coral disease. While the limited data for the GBR prior to the 1980's suggests that coral cover was higher than in our survey, we found no evidence of consistent, system-wide decline in coral cover since 1995. Instead, fluctuations in coral cover at subregional scales (10-100 km), driven mostly by changes in fast-growing Acroporidae, occurred as a result of localized disturbance events and subsequent recovery.

  6. Reef sharks exhibit site-fidelity and higher relative abundance in marine reserves on the Mesoamerican Barrier Reef.

    Directory of Open Access Journals (Sweden)

    Mark E Bond

    Full Text Available Carcharhinid sharks can make up a large fraction of the top predators inhabiting tropical marine ecosystems and have declined in many regions due to intense fishing pressure. There is some support for the hypothesis that carcharhinid species that complete their life-cycle within coral reef ecosystems, hereafter referred to as "reef sharks", are more abundant inside no-take marine reserves due to a reduction in fishing pressure (i.e., they benefit from marine reserves. Key predictions of this hypothesis are that (a individual reef sharks exhibit high site-fidelity to these protected areas and (b their relative abundance will generally be higher in these areas compared to fished reefs. To test this hypothesis for the first time in Caribbean coral reef ecosystems we combined acoustic monitoring and baited remote underwater video (BRUV surveys to measure reef shark site-fidelity and relative abundance, respectively. We focused on the Caribbean reef shark (Carcharhinus perezi, the most common reef shark in the Western Atlantic, at Glover's Reef Marine Reserve (GRMR, Belize. Acoustically tagged sharks (N = 34 were detected throughout the year at this location and exhibited strong site-fidelity. Shark presence or absence on 200 BRUVs deployed at GRMR and three other sites (another reserve site and two fished reefs showed that the factor "marine reserve" had a significant positive effect on reef shark presence. We rejected environmental factors or site-environment interactions as predominant drivers of this pattern. These results are consistent with the hypothesis that marine reserves can benefit reef shark populations and we suggest new hypotheses to determine the underlying mechanism(s involved: reduced fishing mortality or enhanced prey availability.

  7. New tool to manage coral reefs

    Science.gov (United States)

    Showstack, Randy

    The National Oceanic and Atmospheric Administration is making available a new tool for coral reef managers to monitor the cumulative thermal stress of several coral reefs around the world, including the Great Barrier Reef, and reefs by the Galapagos Islands, the agency announced on 25 February.The agency's "Degree Heating Weeks" product uses satellite-derived information to allow continuous monitoring of the extent and acuteness of thermal stress, which are key predictors of coral bleaching, and which contribute to coral reef degradation.

  8. The ecology of 'Acroporid white syndrome', a coral disease from the southern Great Barrier Reef.

    Directory of Open Access Journals (Sweden)

    George Roff

    Full Text Available Outbreaks of coral disease have increased worldwide over the last few decades. Despite this, remarkably little is known about the ecology of disease in the Indo-Pacific Region. Here we report the spatiotemporal dynamics of a coral disease termed 'Acroporid white syndrome' observed to affect tabular corals of the genus Acropora on the southern Great Barrier Reef. The syndrome is characterised by rapid tissue loss initiating in the basal margins of colonies, and manifests as a distinct lesion boundary between apparently healthy tissue and exposed white skeleton. Surveys of eight sites around Heron Reef in 2004 revealed a mean prevalence of 8.1±0.9%, affecting the three common species (Acropora cytherea, A. hyacinthus, A. clathrata and nine other tabular Acropora spp. While all sizes of colonies were affected, white syndrome disproportionately affected larger colonies of tabular Acroporids (>80 cm. The prevalence of white syndrome was strongly related to the abundance of tabular Acroporids within transects, yet the incidence of the syndrome appears unaffected by proximity to other colonies, suggesting that while white syndrome is density dependant, it does not exhibit a strongly aggregated spatial pattern consistent with previous coral disease outbreaks. Acroporid white syndrome was not transmitted by either direct contact in the field or by mucus in aquaria experiments. Monitoring of affected colonies revealed highly variable rates of tissue loss ranging from 0 to 1146 cm(-2 week(-1, amongst the highest documented for a coral disease. Contrary to previous links between temperature and coral disease, rates of tissue loss in affected colonies increased threefold during the winter months. Given the lack of spatial pattern and non-infectious nature of Acroporid white syndrome, further studies are needed to determine causal factors and longer-term implications of disease outbreaks on the Great Barrier Reef.

  9. Expectations and Outcomes of Reserve Network Performance following Re-zoning of the Great Barrier Reef Marine Park.

    Science.gov (United States)

    Emslie, Michael J; Logan, Murray; Williamson, David H; Ayling, Anthony M; MacNeil, M Aaron; Ceccarelli, Daniela; Cheal, Alistair J; Evans, Richard D; Johns, Kerryn A; Jonker, Michelle J; Miller, Ian R; Osborne, Kate; Russ, Garry R; Sweatman, Hugh P A

    2015-04-20

    Networks of no-take marine reserves (NTMRs) are widely advocated for preserving exploited fish stocks and for conserving biodiversity. We used underwater visual surveys of coral reef fish and benthic communities to quantify the short- to medium-term (5 to 30 years) ecological effects of the establishment of NTMRs within the Great Barrier Reef Marine Park (GBRMP). The density, mean length, and biomass of principal fishery species, coral trout (Plectropomus spp., Variola spp.), were consistently greater in NTMRs than on fished reefs over both the short and medium term. However, there were no clear or consistent differences in the structure of fish or benthic assemblages, non-target fish density, fish species richness, or coral cover between NTMR and fished reefs. There was no indication that the displacement and concentration of fishing effort reduced coral trout populations on fished reefs. A severe tropical cyclone impacted many survey reefs during the study, causing similar declines in coral cover and fish density on both NTMR and fished reefs. However, coral trout biomass declined only on fished reefs after the cyclone. The GBRMP is performing as expected in terms of the protection of fished stocks and biodiversity for a developed country in which fishing is not excessive and targets a narrow range of species. NTMRs cannot protect coral reefs directly from acute regional-scale disturbance but, after a strong tropical cyclone, impacted NTMR reefs supported higher biomass of key fishery-targeted species and so should provide valuable sources of larvae to enhance population recovery and long-term persistence.

  10. Environmental triggers for primary outbreaks of crown-of-thorns starfish on the Great Barrier Reef, Australia.

    Science.gov (United States)

    Wooldridge, Scott A; Brodie, Jon E

    2015-12-30

    In this paper, we postulate a unique environmental triggering sequence for primary outbreaks of crown-of-thorns starfish (COTS, Acanthaster planci) on the central Great Barrier Reef (GBR, Australia). Notably, we extend the previous terrestrial runoff hypothesis, viz. nutrient-enriched terrestrial runoff → elevated phytoplankton 'bloom' concentrations → enhanced COTS larval survival, to include the additional importance of strong larvae retention around reefs or within reef groups (clusters) that share enhanced phytoplankton concentrations. For the central GBR, this scenario is shown to occur when El Niño-Southern Oscillation (ENSO) linked hydrodynamic conditions cause the 'regional' larval connectivity network to fragment into smaller 'local' reef clusters due to low ocean current velocities. As inter-annual variations in hydrodynamic circulation patterns are not amenable to direct management intervention, the ability to reduce the future frequency of COTS outbreaks on the central GBR is shown to be contingent on reducing terrestrial bioavailable nutrient loads ~20-40%.

  11. New constraints on the origin of the Australian Great Barrier Reef: Results from an international project of deep coring

    Science.gov (United States)

    ConsortiumGreat Barrier Reef Drilling, International

    2001-06-01

    Two new boreholes provide the first direct evidence of the age of the Australian Great Barrier Reef. An inner shelf sequence (total depth, 86 m; basal age = 210 ± 40 ka) comprises a dominantly siliciclastic unit (thickness ˜52 86 m), overlain by four carbonate units (total thickness 0 34 m). A shelf-edge and slope sequence (total depth 210 m) reveals three major sections: (1) a lower section of resedimented flows deposited on a lower slope, (2) a mid-section including intervals of corals, rhodoliths, and calcarenites with low- angle graded laminae, and (3) an upper section of four shelf- margin coral-reef units separated by karst surfaces bearing paleosols. Sr isotope and magnetostratigraphic data indicate that the central Great Barrier Reef is relatively young (post Brühnes-Matuyama boundary time), and our best estimate for the onset of reef growth on the outer barrier system is ca. 600 ± 280 ka. This date suggests that reef initiation may have been related to the onset of full eccentricity-dominated glacio-eustatic sea-level oscillation as inferred from large-amplitude “saw-tooth” 100 k.y. δ18O cycles (after marine isotope stage 17), rather than to some regional environmental parameter. A major question raised by our study is whether reef margins globally display a similar growth history. The possibility of a global reef initiation event has important implications for basin to shelf partitioning of CaCO3, atmospheric carbon dioxide levels, and global temperature change during Quaternary time.

  12. Temporal consistency in background mortality of four dominant coral taxa along Australia's Great Barrier Reef

    Science.gov (United States)

    Pisapia, C.; Anderson, K. D.; Pratchett, M. S.

    2016-09-01

    Studies on the population and community dynamics of scleractinian corals typically focus on catastrophic mortality associated with acute disturbances (e.g., coral bleaching and outbreaks of crown-of-thorns starfish), though corals are subject to high levels of background mortality and injuries caused by routine and chronic processes. This study quantified prevalence (proportion of colonies with injuries) and severity (areal extent of injuries on individual colonies) of background mortality and injuries for four common coral taxa (massive Porites, encrusting Montipora, Acropora hyacinthus and branching Pocillopora) on the Great Barrier Reef, Australia. Sampling was conducted over three consecutive years during which there were no major acute disturbances. A total of 2276 adult colonies were surveyed across 27 sites, within nine reefs and three distinct latitudinal sectors. The prevalence of injuries was very high (>83%) across all four taxa, but highest for Porites (91%) and Montipora (85%). For these taxa ( Montipora and Pocillopora), there was also significant temporal and spatial variation in prevalence of partial mortality. The severity of injuries ranged from 3% to more than 80% and varied among coral taxa, but was fairly constant spatially and temporally. This shows that some injuries have considerable longevity and that corals may invest relatively little in regenerating tissue over sites of previous injuries. Inter-colony variation in the severity of injury also had no apparent effect on the realized growth of individual colonies, suggesting that energy diverted to regeneration has a limited bearing on overall energetic allocation, or impacts on other life-history processes (e.g., reproduction) rather than growth. Establishing background levels of injury and regeneration is important for understanding energy investment and life-history consequences for reef-building corals as well as for predicting susceptibility to, and capacity to recover from, acute

  13. Great Barrier Reef Marine Park and Development of Marine Protected Areas in Australia%大堡礁海洋公园与澳大利亚海洋保护区建设

    Institute of Scientific and Technical Information of China (English)

    梅宏

    2012-01-01

    In order to protect the unique ecosystem of the Great Barrier Reef, Australia has developed several bills for it and launched the "Great Barrier Reef Coastal Wetlands Protection Project". There are several highlights in the management of Great Barrier Reef Marine Park, such as division of the protected area into different function zones, workable scheme of collecting environmental management fee, and unique boat management measures. In June 2012, Australian Commonwealth government announced the proposal to construct the world's largest marine protected area. New opportunities have been placed in front of the Great Barrier Reef Marine Park managers.%为保护大堡礁独特的生态系统,澳大利亚制定多部法案,启动“大堡礁滨海湿地保护项目”.健全的多功能分区保护制度、可操作性较强的环境管理费征收制度和独具特色的船舶管理措施,已成为大堡礁海洋公园管理中的亮点.2012年6月,澳大利亚联邦政府宣布计划建成全球最大的海洋保护区,这是进一步加强大堡礁海洋公园管理的机遇.

  14. New evidence of an early Pridoli barrier reef in the southern part of the Baltic Silurian basin based on three-dimensional seismic survey, Lithuania

    Directory of Open Access Journals (Sweden)

    Donatas Kaminskas

    2015-02-01

    Full Text Available Reefs and a barrier reef have been newly identified and mapped by three-dimensional (3D seismic survey in Lithuania. Seismic data analysis has allowed the size and geometry of these reefs to be determined. The largest reefs occur at Pavasaris and South Bliudziai. They have a similar shape and are about 1.5 km long and 1 km wide. A circle-shaped smaller patch reef at North Bliudziai is 1 km in diameter. The overall heights of the studied structures do not exceed 30–40 m. The reefs consist of coarse-grained bioclastic stromatoporoid limestone. A barrier reef rising structurally from SW to NE was established in the west of the mapped area. The stratigraphic position (early Minija Regional Stage and lateral distribution of the barrier reef suggest it started to form earlier than the group of patch reefs. The development of patch reefs was related to the transgression of the Silurian Baltic basin.

  15. Unique Sequence of Events Triggers Manta Ray Feeding Frenzy in the Southern Great Barrier Reef, Australia

    Directory of Open Access Journals (Sweden)

    Scarla J. Weeks

    2015-03-01

    Full Text Available Manta rays are classified as Vulnerable to Extinction on the IUCN Red List for Threatened Species. In Australia, a key aggregation site for reef manta rays is Lady Elliot Island (LEI on the Great Barrier Reef, ~7 km from the shelf edge. Here, we investigate the environmental processes that triggered the largest manta ray feeding aggregation yet observed in Australia, in early 2013. We use MODIS sea surface temperature (SST, chlorophyll-a concentration and photic depth data, together with in situ data, to show that anomalous river discharges led to high chlorophyll (anomalies: 10–15 mg∙m−3 and turbid (photic depth anomalies: −15 m river plumes extending out to LEI, and that these became entrained offshore around the periphery of an active cyclonic eddy. Eddy dynamics led to cold bottom intrusions along the shelf edge (6 °C temperature decrease, and at LEI (5 °C temperature decrease. Strongest SST gradients (>1 °C∙km−1 were at the convergent frontal zone between the shelf and eddy-influenced waters, directly overlying LEI. Here, the front intensified on the spring ebb tide to attract and shape the aggregation pattern of foraging manta rays. Future research could focus on mapping the probability and persistence of these ecologically significant frontal zones via remote sensing to aid the management and conservation of marine species.

  16. Joint estimation of crown of thorns (Acanthaster planci) densities on the Great Barrier Reef.

    Science.gov (United States)

    MacNeil, M Aaron; Mellin, Camille; Pratchett, Morgan S; Hoey, Jessica; Anthony, Kenneth R N; Cheal, Alistair J; Miller, Ian; Sweatman, Hugh; Cowan, Zara L; Taylor, Sascha; Moon, Steven; Fonnesbeck, Chris J

    2016-01-01

    Crown-of-thorns starfish (CoTS; Acanthaster spp.) are an outbreaking pest among many Indo-Pacific coral reefs that cause substantial ecological and economic damage. Despite ongoing CoTS research, there remain critical gaps in observing CoTS populations and accurately estimating their numbers, greatly limiting understanding of the causes and sources of CoTS outbreaks. Here we address two of these gaps by (1) estimating the detectability of adult CoTS on typical underwater visual count (UVC) surveys using covariates and (2) inter-calibrating multiple data sources to estimate CoTS densities within the Cairns sector of the Great Barrier Reef (GBR). We find that, on average, CoTS detectability is high at 0.82 [0.77, 0.87] (median highest posterior density (HPD) and [95% uncertainty intervals]), with CoTS disc width having the greatest influence on detection. Integrating this information with coincident surveys from alternative sampling programs, we estimate CoTS densities in the Cairns sector of the GBR averaged 44 [41, 48] adults per hectare in 2014.

  17. Understanding Biophysical Interactions In The Great Barrier Reef Catchments: Better Landscape Management For Water Quality Outcomes

    Science.gov (United States)

    Bui, E. N.; Wilkinson, S. N.; Bartley, R.

    2014-12-01

    Sediment input to the Great Barrier Reef (GBR) lagoon has had deleterious impacts on seagrass and coral ecosystems. The response of the Australian government has been to develop policies to: (i) reverse the impact of threats from sediments and nutrients, and improve water quality and aquatic health of the GBR lagoon; and (ii) to facilitate the uptake of sustainable farming and land management practices that deliver improved ecosystem services, by at least 30 per cent of farmers. The Reef2050 Long term sustainability plan aims to identify priority locations for on-ground investment of remediation options that will result in a reduction of constituent loads to the GBR. Recent sediment tracing studies indicate that subsoil from erosion features such as gullies and channel banks are the dominant contributors of sediment in the GBR catchments. Better control of gully and streambank erosion and restoration of riparian habitats are therefore necessary. Here we review the evidence for bank erosion in the GBR catchments and how scientific evidence on feedback relationships between climate- geochemistry-vegetation-landforms can be used to develop better guidelines for streambank and gully re-vegetation.

  18. Joint estimation of crown of thorns (Acanthaster planci) densities on the Great Barrier Reef

    Science.gov (United States)

    Mellin, Camille; Pratchett, Morgan S.; Hoey, Jessica; Anthony, Kenneth R.N.; Cheal, Alistair J.; Miller, Ian; Sweatman, Hugh; Cowan, Zara L.; Taylor, Sascha; Moon, Steven; Fonnesbeck, Chris J.

    2016-01-01

    Crown-of-thorns starfish (CoTS; Acanthaster spp.) are an outbreaking pest among many Indo-Pacific coral reefs that cause substantial ecological and economic damage. Despite ongoing CoTS research, there remain critical gaps in observing CoTS populations and accurately estimating their numbers, greatly limiting understanding of the causes and sources of CoTS outbreaks. Here we address two of these gaps by (1) estimating the detectability of adult CoTS on typical underwater visual count (UVC) surveys using covariates and (2) inter-calibrating multiple data sources to estimate CoTS densities within the Cairns sector of the Great Barrier Reef (GBR). We find that, on average, CoTS detectability is high at 0.82 [0.77, 0.87] (median highest posterior density (HPD) and [95% uncertainty intervals]), with CoTS disc width having the greatest influence on detection. Integrating this information with coincident surveys from alternative sampling programs, we estimate CoTS densities in the Cairns sector of the GBR averaged 44 [41, 48] adults per hectare in 2014. PMID:27635314

  19. DMSP in Corals and Benthic Algae from the Great Barrier Reef

    Science.gov (United States)

    Broadbent, A. D.; Jones, G. B.; Jones, R. J.

    2002-10-01

    In this study the first measurements of DMSP in six species of corals and ten species of benthic algae collected from four coral reefs in the Great Barrier Reef are reported, together with DMSP measurements made on cultured zooxanthellae. Concentrations ranged from 21 to 3831 (mean=743) fmol DMSP zooxanthellae -1 in corals, 0·16 to 2·96 nmol DMSP cm -2 (mean=90) for benthic macroalgae, and 48-285 fmol DMSP zooxanthellae -1 (mean=153) for cultured zooxanthellae. The highest concentrations of DMSP in corals occurred in Acropora formosa (mean=371 fmol DMSP zooxanthellae -1) and Acropora palifera (mean=3341 fmol DMSP zooxanthellae -1) with concentrations in A. palifera the highest DMSP concentrations reported in corals examined to date. As well as inter-specific differences in DMSP, intra-specific variation was also observed. Adjacent colonies of A. formosa that are known to have different thermal bleaching thresholds and morphologically distinct zooxanthellae, were also observed to have different DMSP concentrations, with the zooxanthellae in the colony that bleached containing DMSP at an average concentration of 436 fmol zooxanthellae -1, whilst the non-bleaching colony contained DMSP at an average concentration of 171 fmol zooxanthellae -1. The results of the present study have been used to calculate the area normalized DMSP concentrations in benthic algae (mean=0·015 mmol m -2) and corals (mean=2·22 mmol m -2) from the GBR. This data indicates that benthic algae and corals are a significant reservoir of DMSP in GBR waters.

  20. Relationships between temperature, bleaching and white syndrome on the Great Barrier Reef

    Science.gov (United States)

    Ban, S. S.; Graham, N. A. J.; Connolly, S. R.

    2013-03-01

    Coral bleaching and disease have often been hypothesized to be mutually reinforcing or co-occurring, but much of the research supporting this has only drawn an implicit connection through common environmental predictors. In this study, we examine whether an explicit relationship between white syndrome and bleaching exists using assemblage-level monitoring data from up to 112 sites on reef slopes spread throughout the Great Barrier Reef over 11 years of monitoring. None of the temperature metrics commonly used to predict mass bleaching performed strongly when applied to these data. Furthermore, the inclusion of bleaching as a predictor did not improve model skill over baseline models for predicting white syndrome. Similarly, the inclusion of white syndrome as a predictor did not improve models of bleaching. Evidence for spatial co-occurrence of bleaching and white syndrome at the assemblage level in this data set was also very weak. These results suggest the hypothesized relationship between bleaching and disease events may be weaker than previously thought, and more likely to be driven by common responses to environmental stressors, rather than directly facilitating one another.

  1. Impacts of Cyclone Yasi on nearshore, terrigenous sediment-dominated reefs of the central Great Barrier Reef, Australia

    Science.gov (United States)

    Perry, C. T.; Smithers, S. G.; Kench, P. S.; Pears, B.

    2014-10-01

    Tropical Cyclone (TC) Yasi (Category 5) was a large (~ 700 km across) cyclone that crossed Australia's Queensland coast on the 3rd of February 2011. TC Yasi was one of the region's most powerful recorded cyclones, with winds gusting to 290 km/h and wave heights exceeding 7 m. Here we describe the impacts of TC Yasi on a number of nearshore, turbid-zone coral reefs, that include several in the immediate vicinity of the cyclone's landfall path (King Reef, Lugger Shoal and Dunk Island), as well as a more distally located reef (Paluma Shoals) ~ 150 km to the south in Halifax Bay. These reefs were the focus of recent (between 2006 and 2009) pre-Yasi studies into their geomorphology, sedimentology and community structure, and here we discuss data from a recent (August 2011) post-Yasi re-assessment. This provided a unique opportunity to identify and describe the impacts of an intense tropical cyclone on nearshore reefs, which are often assumed to be vulnerable to physical disturbance and reworking due to their poorly lithified framework. Observed impacts of TC Yasi were site specific and spatially highly heterogeneous, but appear to have been strongly influenced by the contemporary evolutionary stage and ecological make-up of the individual reefs, with site setting (i.e. exposure to prevailing wave action) apparently more important than proximity to the landfall path. The most significant ecological impacts occurred at King Reef (probably a result of freshwater bleaching) and at Paluma Shoals, where widespread physical destruction of branched Acropora occurred. New coral recruits are, however, common at all sites and colony re-growth clearly evident at King Reef. Only localised geomorphic change was evident, mainly in the form of coral fracturing, rubble deposition, and sediment movement, but again these impacts were highly site specific. The dominant impact at Paluma Shoals was localised storm ridge/shingle sheet deposition, at Lugger Shoal major offshore fine sediment

  2. Diet and cross-shelf distribution of rabbitfishes (f. Siganidae) on the northern Great Barrier Reef: implications for ecosystem function

    Science.gov (United States)

    Hoey, A. S.; Brandl, S. J.; Bellwood, D. R.

    2013-12-01

    Herbivorous fishes are a critical functional group on coral reefs, and there is a clear need to understand the role and relative importance of individual species in reef processes. While numerous studies have quantified the roles of parrotfishes and surgeonfishes on coral reefs, the rabbitfishes (f. Siganidae) have been largely overlooked. Consequently, they are typically viewed as a uniform group of grazing or browsing fishes. Here, we quantify the diet and distribution of rabbitfish assemblages on six reefs spanning the continental shelf in the northern Great Barrier Reef. Our results revealed marked variation in the diet and distribution of rabbitfish species. Analysis of stomach contents identified four distinct groups: browsers of leathery brown macroalgae ( Siganus canaliculatus, S. javus), croppers of red and green macroalgae ( S. argenteus, S. corallinus, S. doliatus, S. spinus) and mixed feeders of diverse algal material, cyanobacteria, detritus and sediment ( S. lineatus, S. punctatissimus, S. punctatus, S. vulpinus). Surprisingly, the diet of the fourth group ( S. puellus) contained very little algal material (22.5 %) and was instead dominated by sponges (69.1 %). Together with this variation in diet, the distribution of rabbitfishes displayed clear cross-shelf variation. Biomass was greatest on inner-shelf reefs (112.7 ± 18.2 kg.ha-1), decreasing markedly on mid- (37.8 ± 4.6 kg.ha-1) and outer-shelf reefs (9.7 ± 2.2 kg.ha-1). This pattern was largely driven by the browsing S. canaliculatus that accounted for 50 % of the biomass on inner-shelf reefs, but was absent in mid- and outer-shelf reefs. Mixed feeders, although primarily restricted to the reef slope and back reef habitats, also decreased in abundance and biomass from inshore to offshore, while algal cropping taxa were the dominant group on mid-shelf reefs. These results clearly demonstrate the extent to which diet and distribution vary within the Siganidae and emphasise the importance of

  3. Reproductive biology of a new hesionid polychaete from the Great Barrier Reef.

    Science.gov (United States)

    Pleijel, Fredrik; Rouse, Greg W

    2005-02-01

    We describe Lizardia hirschi, a new hesionid genus and species, from shallow water on the Great Barrier Reef. It is characterized by small size (maximally around 2 mm long) and by males with paired penes on the last segment or the pygidium. The sperm are elongated, with a conical acrosome; extended, cylindrical nucleus; and three mitochondria. The females have three to four pairs of eggs in segments 10-13, up to 150 microm in diameter. The female reproductive system consists of spermathecae, situated in the notopodia of segments 10-12, and oviducts opening ventrally on segment 11. Fertilization may be internal. The female (but not the male) reproductive system appears to be homologous to that in another small hesionid, capricornia. The phylogenetic position of L. hirschi within Hesionidae is currently uncertain due to the retention of many apparently larval features in the adults. PMID:15713814

  4. Six genetically distinct clades of Palola (Eunicidae, Annelida) from Lizard Island, Great Barrier Reef, Australia.

    Science.gov (United States)

    Schulze, Anja

    2015-09-18

    A total of 36 lots of Palola spp. (Eunicidae, Annelida) were collected during the Lizard Island Polychaete Workshop on Lizard Island, Great Barrier Reef, Queensland, Australia. Of these, 21 specimens were sequenced for a portion of the mitochondrial cytochrome c oxidase I gene. These sequences were analysed in conjunction with existing sequences of Palola spp. from other geographic regions. The samples from Lizard Island form six distinct clades, although none of them can clearly be assigned to any of the nominal species. Four of the six Lizard Island clades fall into species group A and the remaining two into species group B (which also includes the type species, Palola viridis). All sequenced specimens were characterized morphologically as far as possible and a dichotomous key was assembled. Based on this key, the remaining samples were identified as belonging to one of the clades.

  5. An assessment of an environmental gradient using coral geochemical records, Whitsunday Islands, Great Barrier Reef, Australia.

    Science.gov (United States)

    Lewis, S E; Brodie, J E; McCulloch, M T; Mallela, J; Jupiter, S D; Williams, H Stuart; Lough, J M; Matson, E G

    2012-01-01

    Coral cores were collected along an environmental and water quality gradient through the Whitsunday Island group, Great Barrier Reef (Australia), for trace element and stable isotope analysis. The primary aim of the study was to examine if this gradient could be detected in coral records and, if so, whether the gradient has changed over time with changing land use in the adjacent river catchments. Y/Ca was the trace element ratio which varied spatially across the gradient, with concentrations progressively decreasing away from the river mouths. The Ba/Ca and Y/Ca ratios were the only indicators of change in the gradient through time, increasing shortly after European settlement. The Mn/Ca ratio responded to local disturbance related to the construction of tourism infrastructure. Nitrogen isotope ratios showed no apparent trend over time. This study highlights the importance of site selection when using coral records to record regional environmental signals. PMID:22030106

  6. SPATIAL HETEROGENEITY OF PHOTOSYNTHETIC ACTIVITY WITHIN DISEASED CORALS FROM THE GREAT BARRIER REEF

    DEFF Research Database (Denmark)

    Roff, George; Ulstrup, Karin Elizabeth; Fine, Maoz;

    2008-01-01

    Morphological diagnosis and descriptions of seven disease-like syndromes affecting scleractinian corals were characterized from the southern Great Barrier Reef (GBR). Chl a fluorescence of PSII was measured using an Imaging-PAM (pulse amplitude modulated) fluorometer, enabling visualization...... to hypoxic conditions caused by the black band cyanobacterial mat. Two out of three syndromes associated with pathological change of intact tissue with no active tissue loss (type b) showed variable photophysiological responses (neoplasia and pigmentation response). Only the bleached foci associated...... with white patch syndrome appeared to impact primarily on the symbiotic dinoflagellates, as evidenced by declines in minimum fluorescence (F0) and maximum quantum yield (Fv/Fm), with no indication of degeneration in the host tissues. Our results suggest that for the majority of coral syndromes from the GBR...

  7. High genetic differentiation and cross-shelf patterns of genetic diversity among Great Barrier Reef populations of Symbiodinium

    Science.gov (United States)

    Howells, E. J.; van Oppen, M. J. H.; Willis, B. L.

    2009-03-01

    The resilience of Symbiodinium harboured by corals is dependent on the genetic diversity and extent of connectivity among reef populations. This study presents genetic analyses of Great Barrier Reef (GBR) populations of clade C Symbiodinium hosted by the alcyonacean coral, Sinularia flexibilis. Allelic variation at four newly developed microsatellite loci demonstrated that Symbiodinium populations are genetically differentiated at all spatial scales from 16 to 1,360 km (pairwise ΦST = 0.01-0.47, mean = 0.22); the only exception being two neighbouring populations in the Cairns region separated by 17 km. This indicates that gene flow is restricted for Symbiodinium C hosted by S. flexibilis on the GBR. Patterns of population structure reflect longshore circulation patterns and limited cross-shelf mixing, suggesting that passive transport by currents is the primary mechanism of dispersal in Symbiodinium types that are acquired horizontally. There was no correlation between the genetic structure of Symbiodinium populations and their host S. flexibilis, most likely because different factors affect the dispersal and recruitment of each partner in the symbiosis. The genetic diversity of these Symbiodinium reef populations is on average 1.5 times lower on inshore reefs than on offshore reefs. Lower inshore diversity may reflect the impact of recent bleaching events on Sinularia assemblages, which have been more widespread and severe on inshore reefs, but may also have been shaped by historical sea level fluctuations or recent migration patterns.

  8. Spatial patterns in benthic communities and the dynamics of a mosaic ecosystem on the Great Barrier Reef, Australia

    Science.gov (United States)

    Ninio, R.; Meekan, M.

    2002-04-01

    The benthic communities of the Great Barrier Reef (GBR) have been characterized as a mosaic with patches at scales of tens to hundreds of kilometres formed by clusters of reefs with comparable environmental settings and histories of disturbance. We use data sets of changes in cover of abundant benthic organisms to examine the relationship between community composition and the dynamics of this mosaic. Our data were compiled from seven annual video surveys of permanent transects on the north-east flanks of up to 52 reefs at different shelf positions throughout most of the GBR. Classification analysis of these data sets identified three distinct groups of reefs, the first dominated by poritid hard corals and alcyoniid soft corals, the second by hard corals of the genus Acropora, and the third by xeniid soft corals. These groups underwent different amounts of change in cover during the period of our study. As acroporan corals are fast growing but susceptible to mortality due to predators and wave action, the group of reefs dominated by this genus displayed rapid rates of growth and loss of cover. In contrast, cover in the remaining groups changed very slowly or remained stable. Some evidence suggests that competition for space may limit growth of acroporan corals and thus rates of change in the group dominated by xeniid soft corals. These contrasting patterns imply that susceptibility to, and recovery from, disturbances such as cyclones, predators, and bleaching events will differ among these groups of reefs.

  9. The potential benefits of herbicide regulation: a cautionary note for the Great Barrier Reef catchment area.

    Science.gov (United States)

    Davis, A M; Lewis, S E; Brodie, J E; Benson, Ash

    2014-08-15

    Industry transitions away from traditional photosystem II inhibiting (PSII) herbicides towards an 'alternative' herbicide suite are now widely advocated as a key component of improved environmental outcomes for Australia's Great Barrier Reef and improved environmental stewardship on the part of the Queensland sugar industry. A systematic desktop risk analysis found that based on current farming practices, traditional PSII herbicides can pose significant environmental risks. Several of the 'alternatives' that can directly fill a specific pre-emergent ('soil residual') weed control function similar to regulated PSII herbicides also, however, presented a similar environmental risk profile, regardless of farming systems and bio-climatic zones being considered. Several alternatives with a pre-emergent residual function as well as alternative post-emergent (contact or 'knockdown') herbicides were, predicted to pose lower environmental risks than the regulated PSII herbicides to most trophic levels, although environmental risks could still be present. While several herbicides may well be viable alternatives in terms of weed control, they can still present equal or possibly higher risks to the environment. Imposing additional regulations (or even de-registrations) on particular herbicides could result in marginal, and possibly perverse environmental impacts in the long term, if usage shifts to alternative herbicides with similar risk profiles. Regardless of any regulatory efforts, improved environmental sustainability outcomes in pesticide practices within the Great Barrier Reef catchment area will hinge primarily on the continuing adoption of integrated, strategic pest management systems and technologies applied to both traditional and 'alternative' herbicides. One of the emerging policy challenges is ensuring the requisite technical and extension support for cane growers to ensure effective adoption of rapidly evolving farming system technologies, in a very dynamic and

  10. Reef Fish Community Biomass and Trophic Structure Changes across Shallow to Upper-Mesophotic Reefs in the Mesoamerican Barrier Reef, Caribbean.

    Directory of Open Access Journals (Sweden)

    Dominic A Andradi-Brown

    Full Text Available Mesophotic coral ecosystems (MCEs; reefs 30-150m depth are of increased research interest because of their potential role as depth refuges from many shallow reef threats. Yet few studies have identified patterns in fish species composition and trophic group structure between MCEs and their shallow counterparts. Here we explore reef fish species and biomass distributions across shallow to upper-MCE Caribbean reef gradients (5-40m around Utila, Honduras, using a diver-operated stereo-video system. Broadly, we found reef fish species richness, abundance and biomass declining with depth. At the trophic group level we identified declines in herbivores (both total and relative community biomass with depth, mostly driven by declines in parrotfish (Scaridae. Piscivores increased as a proportion of the community with increased depth while, in contrast to previous studies, we found no change in relative planktivorous reef fish biomass across the depth gradient. In addition, we also found evidence of ontogenetic migrations in the blue tang (Acanthurus coeruleus, striped parrotfish (Scarus iserti, blue chromis (Chromis cyanea, creole wrasse (Clepticus parrae, bluehead wrasse (Thalassoma bifasciatum and yellowtail snapper (Ocyurus chrysurus, with a higher proportion of larger individuals at mesophotic and near-mesophotic depths than on shallow reefs. Our results highlight the importance of using biomass measures when considering fish community changes across depth gradients, with biomass generating different results to simple abundance counts.

  11. Seven new species of Paleanotus (Annelida: Chrysopetalidae) described from Lizard Island, Great Barrier Reef, and coral reefs of northern Australia and the Indo-Pacific: two cryptic species pairs revealed between western Pacific Ocean and the eastern Indian Ocean.

    Science.gov (United States)

    Watson, Charlotte

    2015-09-18

    Morphological investigation into the paleate genus Paleanotus Schmarda 1861 of the family Chrysopetalidae from northern Australian coral reefs, primarily Lizard Island and outlying reefs, included a complex of very small, slender individuals (length Great Barrier Reef to the Philippines, western Pacific Ocean. Cryptic morphology and potential genetic diversity is discussed in Paleanotus inornatus n. sp. and P. adornatus n. sp. that possess overlapping widespread distribution patterns across northern Australia and Indo-Pacific reefs. The smallest bodied taxon, Paleanotus chrysos n. sp. is the only species with a Coral Sea range encompassing Lizard Island, Heron Island and New Caledonia.

  12. High macroalgal cover and low coral recruitment undermines the potential resilience of the world's southernmost coral reef assemblages

    KAUST Repository

    Hoey, Andrew

    2011-10-03

    Coral reefs are under increasing pressure from anthropogenic and climate-induced stressors. The ability of reefs to reassemble and regenerate after disturbances (i.e., resilience) is largely dependent on the capacity of herbivores to prevent macroalgal expansion, and the replenishment of coral populations through larval recruitment. Currently there is a paucity of this information for higher latitude, subtropical reefs. To assess the potential resilience of the benthic reef assemblages of Lord Howe Island (31°32?S, 159°04?E), the worlds\\' southernmost coral reef, we quantified the benthic composition, densities of juvenile corals (as a proxy for coral recruitment), and herbivorous fish communities. Despite some variation among habitats and sites, benthic communities were dominated by live scleractinian corals (mean cover 37.4%) and fleshy macroalgae (20.9%). Live coral cover was higher than in most other subtropical reefs and directly comparable to lower latitude tropical reefs. Juvenile coral densities (0.8 ind.m -2), however, were 5-200 times lower than those reported for tropical reefs. Overall, macroalgal cover was negatively related to the cover of live coral and the density of juvenile corals, but displayed no relationship with herbivorous fish biomass. The biomass of herbivorous fishes was relatively low (204 kg.ha -1), and in marked contrast to tropical reefs was dominated by macroalgal browsing species (84.1%) with relatively few grazing species. Despite their extremely low biomass, grazing fishes were positively related to both the density of juvenile corals and the cover of bare substrata, suggesting that they may enhance the recruitment of corals through the provision of suitable settlement sites. Although Lord Howe Islands\\' reefs are currently coral-dominated, the high macroalgal cover, coupled with limited coral recruitment and low coral growth rates suggest these reefs may be extremely susceptible to future disturbances. © 2011 Hoey et al.

  13. High macroalgal cover and low coral recruitment undermines the potential resilience of the world's southernmost coral reef assemblages.

    Directory of Open Access Journals (Sweden)

    Andrew S Hoey

    Full Text Available Coral reefs are under increasing pressure from anthropogenic and climate-induced stressors. The ability of reefs to reassemble and regenerate after disturbances (i.e., resilience is largely dependent on the capacity of herbivores to prevent macroalgal expansion, and the replenishment of coral populations through larval recruitment. Currently there is a paucity of this information for higher latitude, subtropical reefs. To assess the potential resilience of the benthic reef assemblages of Lord Howe Island (31°32'S, 159°04'E, the worlds' southernmost coral reef, we quantified the benthic composition, densities of juvenile corals (as a proxy for coral recruitment, and herbivorous fish communities. Despite some variation among habitats and sites, benthic communities were dominated by live scleractinian corals (mean cover 37.4% and fleshy macroalgae (20.9%. Live coral cover was higher than in most other subtropical reefs and directly comparable to lower latitude tropical reefs. Juvenile coral densities (0.8 ind.m(-2, however, were 5-200 times lower than those reported for tropical reefs. Overall, macroalgal cover was negatively related to the cover of live coral and the density of juvenile corals, but displayed no relationship with herbivorous fish biomass. The biomass of herbivorous fishes was relatively low (204 kg.ha(-1, and in marked contrast to tropical reefs was dominated by macroalgal browsing species (84.1% with relatively few grazing species. Despite their extremely low biomass, grazing fishes were positively related to both the density of juvenile corals and the cover of bare substrata, suggesting that they may enhance the recruitment of corals through the provision of suitable settlement sites. Although Lord Howe Islands' reefs are currently coral-dominated, the high macroalgal cover, coupled with limited coral recruitment and low coral growth rates suggest these reefs may be extremely susceptible to future disturbances.

  14. Smart-Geology for the World's largest fossil oyster reef

    Science.gov (United States)

    Dorninger, Peter; Nothegger, Clemens; Djuricic, Ana; Rasztovits, Sascha; Harzhauser, Mathias

    2014-05-01

    The geo-edutainment park "Fossilienwelt Weinviertel" at Stetten in Lower Austria exposes the world's largest fossil oyster biostrome. In the past decade, significant progress has been made in 3D digitizing sensor technology. To cope with the high amount of data, processing methods have been automated to a high degree. Consequently, we formulated the hypothesis that appropriate application of state-of-the-art 3D digitizing, data processing, and visualization technologies allows for a significant automation in paleontological prospection, making an evaluation of huge areas commercially feasible in both time and costs. We call the necessary processing steps "Smart Geology", being characterized by automation and large volumes of data. The Smart Geology project (FWF P 25883-N29) investigates three topics, 3D digitizing, automated geological and paleontological analysis and interpretation and finally investigating the applicability of smart devices for on-site accessibility of project data in order to support the two scientific hypotheses concerning the emerging process of the shell bed, i.e. was it formed by a tsunami or a major storm, and does it preserve pre- and post-event features. This contribution concentrates on the innovative and sophisticated 3D documentation and visualization processes being applied to virtualise approximately 15.000 fossil oysters at the approximately 25 by 17 m accessible shell bad. We decided to use a Terrestrial Laserscanner (TLS) for the determination of the geometrical 3D structures. The TLS achieves about 2 mm single point measurement accuracy. The scanning campaign provides a "raw" point cloud of approximately 1 bio. points at the respective area. Due to the scanning configuration used, the occurrence of occluded ares is minimized hence the full 3D structure of this unique site can be modelled. In addition, approximately 300 photos were taken with a nominal resolution of 0.6 mm per pixel. Sophisticated artificial lightning (close to

  15. Remote video bioassays reveal the potential feeding impact of the rabbitfish Siganus canaliculatus (f: Siganidae) on an inner-shelf reef of the Great Barrier Reef

    Science.gov (United States)

    Fox, R. J.; Bellwood, D. R.

    2008-09-01

    Herbivores are widely acknowledged as key elements maintaining the health and resilience of terrestrial and aquatic ecosystems. Understanding and quantifying the impact of herbivores in ecosystems are fundamental to our ability to manage these systems. The traditional method of quantifying the impact of herbivorous fishes on coral reefs has been to use transplanted pieces of seagrass or algae as “bioassays”. However, these experiments leave a key question unanswered, namely: Which species are responsible for the impact being quantified? This study revisits the use of bioassays and tested the assumption that the visual abundance of species reflects their role in the removal of assay material. Using remote video cameras to film removal of assay material on an inner-shelf reef of the Great Barrier Reef, the species responsible for assay-based herbivory were identified. The video footage revealed that Siganus canaliculatus, a species not previously recorded at the study site, was primarily responsible for removal of macroalgal biomass. The average percentage decrease in thallus length of whole plants of Sargassum at the reef crest was 54 ± 8.9% (mean ± SE), and 50.4 ± 9.8% for individually presented Sargassum strands (for a 4.5-h deployment). Of the 14,656 bites taken from Sargassum plants and strands across all reef zones, nearly half (6,784 bites or 46%) were taken by S. canaliculatus, with the majority of the remainder attributable to Siganus doliatus. However, multiple regression analysis demonstrated that only the bites of S. canaliculatus were removing macroalgal biomass. The results indicate that, even with detailed observations, the species of herbivore that may be responsible for maintaining benthic community structure can go unnoticed. Some of our fundamental ideas of the relative importance of individual species in ecosystem processes may be in need of re-evaluation.

  16. Quantifying water flow within aquatic ecosystems using load cell sensors: a profile of currents experienced by coral reef organisms around Lizard Island, Great Barrier Reef, Australia.

    Science.gov (United States)

    Johansen, Jacob L

    2014-01-01

    Current velocity in aquatic environments has major implications for the diversity, abundance and ecology of aquatic organisms, but quantifying these currents has proven difficult. This study utilises a simple and inexpensive instrument (reef system around Lizard Island (Great Barrier Reef, Australia) at a spatial and temporal scale relevant to the ecology of individual benthos and fish. The instrument uses load-cell sensors to provide a correlation between sensor output and ambient current velocity of 99%. Each instrument is able to continuously record current velocities to >500 cms⁻¹ and wave frequency to >100 Hz over several weeks. Sensor data are registered and processed at 16 MHz and 10 bit resolution, with a measuring precision of 0.06±0.04%, and accuracy of 0.51±0.65% (mean ±S.D.). Each instrument is also pressure rated to 120 m and shear stresses ≤20 kNm⁻² allowing deployment in harsh environments. The instrument was deployed across 27 coral reef sites covering the crest (3 m), mid-slope (6 m) and deep-slope (9 m depth) of habitats directly exposed, oblique or sheltered from prevailing winds. Measurements demonstrate that currents over the reef slope and crest varies immensely depending on depth and exposure: currents differ up to 9-fold within habitats only separated by 3 m depth and 15-fold between exposed, oblique and sheltered habitats. Comparisons to ambient weather conditions reveal that currents around Lizard Island are largely wind driven. Zero to 22.5 knot winds correspond directly to currents of 0 to >82 cms⁻¹, while tidal currents rarely exceed 5.5 cms⁻¹. Rather, current velocity increases exponentially as a function of wave height (0 to 1.6 m) and frequency (0.54 to 0.20 Hz), emphasizing the enormous effect of wind and waves on organisms in these shallow coral reef habitats.

  17. Diuron tolerance and potential degradation by pelagic microbiomes in the Great Barrier Reef lagoon.

    Science.gov (United States)

    Angly, Florent E; Pantos, Olga; Morgan, Thomas C; Rich, Virginia; Tonin, Hemerson; Bourne, David G; Mercurio, Philip; Negri, Andrew P; Tyson, Gene W

    2016-01-01

    Diuron is a herbicide commonly used in agricultural areas where excess application causes it to leach into rivers, reach sensitive marine environments like the Great Barrier Reef (GBR) lagoon and pose risks to marine life. To investigate the impact of diuron on whole prokaryotic communities that underpin the marine food web and are integral to coral reef health, GBR lagoon water was incubated with diuron at environmentally-relevant concentration (8 µg/L), and sequenced at specific time points over the following year. 16S rRNA gene amplicon profiling revealed no significant short- or long-term effect of diuron on microbiome structure. The relative abundance of prokaryotic phototrophs was not significantly altered by diuron, which suggests that they were largely tolerant at this concentration. Assembly of a metagenome derived from waters sampled at a similar location in the GBR lagoon did not reveal the presence of mutations in the cyanobacterial photosystem that could explain diuron tolerance. However, resident phages displayed several variants of this gene and could potentially play a role in tolerance acquisition. Slow biodegradation of diuron was reported in the incubation flasks, but no correlation with the relative abundance of heterotrophs was evident. Analysis of metagenomic reads supports the hypothesis that previously uncharacterized hydrolases carried by low-abundance species may mediate herbicide degradation in the GBR lagoon. Overall, this study offers evidence that pelagic phototrophs of the GBR lagoon may be more tolerant of diuron than other tropical organisms, and that heterotrophs in the microbial seed bank may have the potential to degrade diuron and alleviate local anthropogenic stresses to inshore GBR ecosystems. PMID:26989611

  18. Diuron tolerance and potential degradation by pelagic microbiomes in the Great Barrier Reef lagoon.

    Science.gov (United States)

    Angly, Florent E; Pantos, Olga; Morgan, Thomas C; Rich, Virginia; Tonin, Hemerson; Bourne, David G; Mercurio, Philip; Negri, Andrew P; Tyson, Gene W

    2016-01-01

    Diuron is a herbicide commonly used in agricultural areas where excess application causes it to leach into rivers, reach sensitive marine environments like the Great Barrier Reef (GBR) lagoon and pose risks to marine life. To investigate the impact of diuron on whole prokaryotic communities that underpin the marine food web and are integral to coral reef health, GBR lagoon water was incubated with diuron at environmentally-relevant concentration (8 µg/L), and sequenced at specific time points over the following year. 16S rRNA gene amplicon profiling revealed no significant short- or long-term effect of diuron on microbiome structure. The relative abundance of prokaryotic phototrophs was not significantly altered by diuron, which suggests that they were largely tolerant at this concentration. Assembly of a metagenome derived from waters sampled at a similar location in the GBR lagoon did not reveal the presence of mutations in the cyanobacterial photosystem that could explain diuron tolerance. However, resident phages displayed several variants of this gene and could potentially play a role in tolerance acquisition. Slow biodegradation of diuron was reported in the incubation flasks, but no correlation with the relative abundance of heterotrophs was evident. Analysis of metagenomic reads supports the hypothesis that previously uncharacterized hydrolases carried by low-abundance species may mediate herbicide degradation in the GBR lagoon. Overall, this study offers evidence that pelagic phototrophs of the GBR lagoon may be more tolerant of diuron than other tropical organisms, and that heterotrophs in the microbial seed bank may have the potential to degrade diuron and alleviate local anthropogenic stresses to inshore GBR ecosystems.

  19. Predicting outbreaks of a climate-driven coral disease in the Great Barrier Reef

    Science.gov (United States)

    Maynard, J. A.; Anthony, K. R. N.; Harvell, C. D.; Burgman, M. A.; Beeden, R.; Sweatman, H.; Heron, S. F.; Lamb, J. B.; Willis, B. L.

    2011-06-01

    Links between anomalously high sea temperatures and outbreaks of coral diseases known as White Syndromes (WS) represent a threat to Indo-Pacific reefs that is expected to escalate in a changing climate. Further advances in understanding disease aetiologies, determining the relative importance of potential risk factors for outbreaks and in trialing management actions are hampered by not knowing where or when outbreaks will occur. Here, we develop a tool to target research and monitoring of WS outbreaks in the Great Barrier Reef (GBR). The tool is based on an empirical regression model and takes the form of user-friendly interactive ~1.5-km resolution maps. The maps denote locations where long-term monitoring suggests that coral cover exceeds 26% and summer temperature stress (measured by a temperature metric termed the mean positive summer anomaly) is equal to or exceeds that experienced at sites in 2002 where the only severe WS outbreaks documented on the GBR to date were observed. No WS outbreaks were subsequently documented at 45 routinely surveyed sites from 2003 to 2008, and model hindcasts for this period indicate that outbreak likelihood was never high. In 2009, the model indicated that outbreak likelihood was high at north-central GBR sites. The results of the regression model and targeted surveys in 2009 revealed that the threshold host density for an outbreak decreases as thermal stress increases, suggesting that bleaching could be a more important precursor to WS outbreaks than previously anticipated, given that bleaching was severe at outbreak sites in 2002 but not at any of the surveyed sites in 2009. The iterative approach used here has led to an improved understanding of disease causation, will facilitate management responses and can be applied to other coral diseases and/or other regions.

  20. Pathways and Hydrography in the Mesoamerican Barrier Reef System Part 1: Circulation

    Science.gov (United States)

    Carrillo, L.; Johns, E. M.; Smith, R. H.; Lamkin, J. T.; Largier, J. L.

    2015-10-01

    Acoustic Doppler Current Profiler (ADCP) measurements and surface drifters released from two oceanographic cruises conducted during March 2006 and January/February 2007 are used to investigate the circulation off the Mesoamerican Barrier Reef System (MBRS). We show that the MBRS circulation can be divided into two distinct regimes, a northern region dominated by the strong, northward-flowing Yucatan Current, and a southern region with weaker southward coastal currents and the presence of the Honduras Gyre. The latitude of impingement of the Cayman Current onto the coastline varies with time, and creates a third region, which acts as a boundary between the northern and southern circulation regimes. This circulation pattern yields two zones in terms of dispersal, with planktonic propagules in the northern region being rapidly exported to the north, whereas plankton in the southern and impingement regions may be retained locally or regionally. The latitude of the impingement region shifts interannually and intra-annually up to 3° in latitude. Sub-mesoscale features are observed in association with topography, e.g., flow bifurcation around Cozumel Island, flow wake north of Chinchorro Bank and separation of flow from the coast just north of Bahia de la Ascencion. This third feature is evident as cyclonic recirculation in coastal waters, which we call the Ascencion-Cozumel Coastal Eddy. An understanding of the implications of these different circulation regimes on water mass distributions, population connectivity, and the fate of land-based pollutants in the MBRS is critically important to better inform science-based resource management and conservation plans for the MBRS coral reefs.

  1. Evidence of large-scale chronic eutrophication in the Great Barrier Reef: quantification of chlorophyll a thresholds for sustaining coral reef communities.

    Science.gov (United States)

    Bell, Peter R F; Elmetri, Ibrahim; Lapointe, Brian E

    2014-04-01

    Long-term monitoring data show that hard coral cover on the Great Barrier Reef (GBR) has reduced by >70 % over the past century. Although authorities and many marine scientists were in denial for many years, it is now widely accepted that this reduction is largely attributable to the chronic state of eutrophication that exists throughout most of the GBR. Some reefs in the far northern GBR where the annual mean chlorophyll a (Chl a) is in the lower range of the proposed Eutrophication Threshold Concentration for Chl a (~0.2-0.3 mg m⁻³) show little or no evidence of degradation over the past century. However, the available evidence suggests that coral diseases and the crown-of-thorns starfish will proliferate in such waters and hence the mandated eutrophication Trigger values for Chl a (~0.4-0.45 mg m⁻³) will need to be decreased to ~0.2 mg m⁻³ for sustaining coral reef communities.

  2. Minke whale song, spacing, and acoustic communication on the Great Barrier Reef, Australia

    Science.gov (United States)

    Gedamke, Jason

    An inquisitive population of minke whale (Balaenoptera acutorostrata ) that concentrates on the Great Barrier Reef during its suspected breeding season offered a unique opportunity to conduct a multi-faceted study of a little-known Balaenopteran species' acoustic behavior. Chapter one investigates whether the minke whale is the source of an unusual, complex, and stereotyped sound recorded, the "star-wars" vocalization. A hydrophone array was towed from a vessel to record sounds from circling whales for subsequent localization of sound sources. These acoustic locations were matched with shipboard and in-water observations of the minke whale, demonstrating the minke whale was the source of this unusual sound. Spectral and temporal features of this sound and the source levels at which it is produced are described. The repetitive "star-wars" vocalization appears similar to the songs of other whale species and has characteristics consistent with reproductive advertisement displays. Chapter two investigates whether song (i.e. the "star-wars" vocalization) has a spacing function through passive monitoring of singer spatial patterns with a moored five-sonobuoy array. Active song playback experiments to singers were also conducted to further test song function. This study demonstrated that singers naturally maintain spatial separations between them through a nearest-neighbor analysis and animated tracks of singer movements. In response to active song playbacks, singers generally moved away and repeated song more quickly suggesting that song repetition interval may help regulate spatial interaction and singer separation. These results further indicate the Great Barrier Reef may be an important reproductive habitat for this species. Chapter three investigates whether song is part of a potentially graded repertoire of acoustic signals. Utilizing both vessel-based recordings and remote recordings from the sonobuoy array, temporal and spectral features, source levels, and

  3. Carbon Cycle Model of a Hawaiian Barrier Reef under Rising Ocean Acidification and Temperature Conditions of the Anthropocene

    Science.gov (United States)

    Drupp, P. S.; Mackenzie, F. T.; De Carlo, E. H.; Guidry, M.

    2015-12-01

    A CO2-carbonic acid system biogeochemical box model (CRESCAM, Coral Reef and Sediment Carbonate Model) of the barrier reef flat in Kaneohe Bay, Hawai'i was developed to determine how increasing temperature and dissolved inorganic carbon (DIC) content of open ocean source waters, resulting from rising anthropogenic CO2 emissions and ocean acidification, affect the CaCO3budget of coral reef ecosystems. CRESCAM consists of 17 reservoirs and 59 fluxes, including a surface water column domain, a two-layer permeable sediment domain, and a coral framework domain. Physical, chemical, and biological processes such as advection, carbonate precipitation/dissolution, and net ecosystem production and calcification were modeled. The initial model parameters were constrained by experimental and field data from previous coral reef studies, mostly in Kaneohe Bay over the past 50 years. The field studies include data collected by our research group for both the water column and sediment-porewater system.The model system, initially in a quasi-steady state condition estimated for the early 21st century, was perturbed using future projections to the year 2100 of the Anthropocene of atmospheric CO2 ­concentrations, temperature, and source water DIC. These perturbations were derived from the most recent (2013) IPCC's Representative Concentration Pathway (RCP) scenarios, which predict CO2 atmospheric concentrations and temperature anomalies out to 2100. A series of model case studies were also performed whereby one or more parameters (e.g., coral calcification response to declining surface water pH) were altered to investigate potential future outcomes. Our model simulations predict that although the Kaneohe Bay barrier reef will likely see a significant decline in NEC over the coming century, it is unlikely to reach a state of net erosion - a result contrary to several global coral reef model projections. In addition, we show that depending on the future response of NEP and NEC to OA

  4. Joeropsididae Nordenstam, 1933 (Crustacea, Isopoda, Asellota) from the Lizard Island region of the Great Barrier Reef, Queensland, Australia.

    Science.gov (United States)

    Bruce, Niel L

    2015-01-01

    The marine isopod family Joeropsididae (Asellota) is documented for the Lizard Island region of the Great Barrier Reef, Australia. Fifteen species of Joeropsis are recorded, including ten new species; descriptive notes are provided for five species that lacked adequate material for description. A revised family and genus diagnosis is presented together with comments on the most useful characters for species identification and a key to Joeropsis of the Lizard Island region.

  5. Joeropsididae Nordenstam, 1933 (Crustacea, Isopoda, Asellota from the Lizard Island region of the Great Barrier Reef, Queensland, Australia

    Directory of Open Access Journals (Sweden)

    Niel L. Bruce

    2015-03-01

    Full Text Available The marine isopod family Joeropsididae (Asellota is documented for the Lizard Island region of the Great Barrier Reef, Australia. Fifteen species of Joeropsis are recorded, including ten new species; descriptive notes are provided for five species that lacked adequate material for description. A revised family and genus diagnosis is presented together with comments on the most useful characters for species identification and a key to Joeropsis of the Lizard Island region.

  6. The Ecology of ‘Acroporid White Syndrome', a Coral Disease from the Southern Great Barrier Reef

    OpenAIRE

    George Roff; Kvennefors, E. Charlotte E.; Maoz Fine; Juan Ortiz; Davy, Joanne E.; Ove Hoegh-Guldberg

    2011-01-01

    Outbreaks of coral disease have increased worldwide over the last few decades. Despite this, remarkably little is known about the ecology of disease in the Indo-Pacific Region. Here we report the spatiotemporal dynamics of a coral disease termed 'Acroporid white syndrome' observed to affect tabular corals of the genus Acropora on the southern Great Barrier Reef. The syndrome is characterised by rapid tissue loss initiating in the basal margins of colonies, and manifests as a distinct lesion b...

  7. Origins and Implications of a Primary Crown-of-Thorns Starfish Outbreak in the Southern Great Barrier Reef

    OpenAIRE

    Ian Miller; Hugh Sweatman; Alistair Cheal; Mike Emslie; Kerryn Johns; Michelle Jonker; Kate Osborne

    2015-01-01

    The crown-of-thorns starfish (COTS) is a major predator of hard corals. Repeated COTS outbreaks in the Cairns and Central sections of the Great Barrier Reef (GBR) have been responsible for greater declines in coral cover than any other type of disturbance, including cyclones, disease, and coral bleaching. Knowledge of the precise timing and location of primary outbreaks could reveal the initial drivers of outbreaks and so could indicate possible management measures. In the central GBR, COTS o...

  8. Influence of Trichodesmium red tides on trace metal cycling at a coastal station in the Great Barrier Reef Lagoon

    OpenAIRE

    Jones, G.; Burdon-jones, C; Thomas, F.

    1982-01-01

    Investigations carried out at a coastal station in the Great Barrier Reef lagoon (GBRL) at Townsville, Australia have shown that the cycling of several trace metals (Fe, Mn, Zn, Cu, Ni, Cd, and Pb) was significantly influenced by the presence of Trichodesmium , a blue-green alga, which throughout the year, frequently forms red tide densities along much of the Queensland coral coast. Whilst decomposition of large masses of Trichodesmium significantly affected metal concentrations, metal specia...

  9. Climate change, coral bleaching and the future of the world's coral reefs

    Energy Technology Data Exchange (ETDEWEB)

    Hoegh-Guldberg, O. [University of Sydney, Sydney, NSW (Australia). School of Biological Sciences

    1999-07-01

    Sea temperatures in many tropical regions have increased by almost 1{degree}C over the past 100 years, and are currently increasing at about 1-2{degree}C per century. Mass coral bleaching has occurred in association with episodes of elevated sea temperatures over the past 20 years and involves the loss of the zooxanthellae following chronic photoinhibition. Mass bleaching has resulted in significant losses of live coral in many parts of the world. This paper considers the biochemical, physiological and ecological perspectives of coral bleaching. It also uses the outputs of four runs from three models of global climate change which simulate changes in sea temperature and hence how the frequency and intensity of bleaching events will change over the next 100 years. The results suggest that the thermal tolerances of reef-building corals are likely to be exceeded every year within the next few decades. Events as severe as the 1998 event, the worst on record, are likely to become commonplace within 20 years. Most information suggests that the capacity for acclimation by corals has already been exceeded, and that adaptation will be too slow to avert a decline in the quality of the world's reefs.

  10. pH homeostasis during coral calcification in a free ocean CO2 enrichment (FOCE) experiment, Heron Island reef flat, Great Barrier Reef.

    Science.gov (United States)

    Georgiou, Lucy; Falter, James; Trotter, Julie; Kline, David I; Holcomb, Michael; Dove, Sophie G; Hoegh-Guldberg, Ove; McCulloch, Malcolm

    2015-10-27

    Geochemical analyses (δ(11)B and Sr/Ca) are reported for the coral Porites cylindrica grown within a free ocean carbon enrichment (FOCE) experiment, conducted on the Heron Island reef flat (Great Barrier Reef) for a 6-mo period from June to early December 2010. The FOCE experiment was designed to simulate the effects of CO2-driven acidification predicted to occur by the end of this century (scenario RCP4.5) while simultaneously maintaining the exposure of corals to natural variations in their environment under in situ conditions. Analyses of skeletal growth (measured from extension rates and skeletal density) showed no systematic differences between low-pH FOCE treatments (ΔpH = ∼-0.05 to -0.25 units below ambient) and present day controls (ΔpH = 0) for calcification rates or the pH of the calcifying fluid (pHcf); the latter was derived from boron isotopic compositions (δ(11)B) of the coral skeleton. Furthermore, individual nubbins exhibited near constant δ(11)B compositions along their primary apical growth axes (±0.02 pHcf units) regardless of the season or treatment. Thus, under the highly dynamic conditions of the Heron Island reef flat, P. cylindrica up-regulated the pH of its calcifying fluid (pHcf ∼8.4-8.6), with each nubbin having near-constant pHcf values independent of the large natural seasonal fluctuations of the reef flat waters (pH ∼7.7 to ∼8.3) or the superimposed FOCE treatments. This newly discovered phenomenon of pH homeostasis during calcification indicates that coral living in highly dynamic environments exert strong physiological controls on the carbonate chemistry of their calcifying fluid, implying a high degree of resilience to ocean acidification within the investigated ranges.

  11. Genetic structure of juvenile cohorts of bicolor damselfish ( Stegastes partitus) along the Mesoamerican barrier reef: chaos through time

    Science.gov (United States)

    Hepburn, R. I.; Sale, P. F.; Dixon, B.; Heath, Daniel D.

    2009-03-01

    Dispersal in marine systems is a critical component of the ecology, evolution, and conservation of such systems; however, estimating dispersal is logistically difficult, especially in coral reef fish. Juvenile bicolor damselfish ( Stegastes partitus) were sampled at 13 sites along the Mesoamerican Barrier Reef System (MBRS), the barrier reefs on the east coast of Central America extending from the Yucatan, Mexico to Honduras, to evaluate genetic structure among recently settled cohorts. Using genotype data at eight microsatellite loci genetic structure was estimated at large and small spatial scales using exact tests for allele frequency differences and hierarchical analysis of molecular variance (AMOVA). Isolation-by-distance models of divergence were assessed at both spatial scales. Results showed genetic homogeneity of recently settled S. partitus at large geographic scales with subtle, but significant, genetic structure at smaller geographic scales. Genetic temporal stability was tested for using archived juvenile S. partitus collected earlier in the same year (nine sites), and in the previous year (six sites). The temporal analyses indicated that allele frequency differences among sites were not generally conserved over time, nor were pairwise genetic distances correlated through time, indicative of temporal instability. These results indicate that S. partitus larvae undergo high levels of dispersal along the MBRS, and that the structure detected at smaller spatial scales is likely driven by stochastic effects on dispersal coupled with microgeographic effects. Temporal variation in juvenile cohort genetic signature may be a fundamental characteristic of connectivity patterns in coral reef fishes, with various species and populations differing only in the magnitude of that instability. Such a scenario provides a basis for the reconciliation of conflicting views regarding levels of genetic structuring in S. partitus and possibly other coral reef fish species.

  12. Pathways and hydrography in the Mesoamerican Barrier Reef System Part 2: Water masses and thermohaline structure

    Science.gov (United States)

    Carrillo, L.; Johns, E. M.; Smith, R. H.; Lamkin, J. T.; Largier, J. L.

    2016-06-01

    Hydrographic data from two oceanographic cruises conducted during March 2006 and January/February 2007 are used to investigate the thermohaline structure related to the observed circulation along the Mesoamerican Barrier Reef System (MBRS). From our observations we identify three water masses in the MBRS: the Caribbean Surface Water (CSW), North Atlantic Subtropical Underwater (SUW), and Tropical Atlantic Central Water (TACW). Little vertical structure in temperature is observed in the upper 100 m of the water column, but important differences are observed in the salinity distribution both horizontally and with depth. Freshwater inputs to the system from the mainland can be traced in the surface layer, with two possible sources: one from surface rivers located along the southern portion of the MBRS, and the other originating from an underground river system located along the northern portion of the MBRS. The thermohaline structure in the MBRS reflects the dynamics of the observed circulation. Uplifted isopycnals along most of the central and northern coastline of the MBRS reflect the effects of the strong geostrophic circulation flowing northward, i.e. the Yucatan Current. To the south along the MBRS, much weaker velocities are observed, with the Honduras Gyre dominating the flow in this region as presented during January/February 2007. These two regions are separated by onshore and divergent alongshore flow associated with the impingement of the Cayman Current on the shore and the MBRS.

  13. Structural and Psycho-Social Limits to Climate Change Adaptation in the Great Barrier Reef Region.

    Science.gov (United States)

    Evans, Louisa S; Hicks, Christina C; Adger, W Neil; Barnett, Jon; Perry, Allison L; Fidelman, Pedro; Tobin, Renae

    2016-01-01

    Adaptation, as a strategy to respond to climate change, has limits: there are conditions under which adaptation strategies fail to alleviate impacts from climate change. Research has primarily focused on identifying absolute bio-physical limits. This paper contributes empirical insight to an emerging literature on the social limits to adaptation. Such limits arise from the ways in which societies perceive, experience and respond to climate change. Using qualitative data from multi-stakeholder workshops and key-informant interviews with representatives of the fisheries and tourism sectors of the Great Barrier Reef region, we identify psycho-social and structural limits associated with key adaptation strategies, and examine how these are perceived as more or less absolute across levels of organisation. We find that actors experience social limits to adaptation when: i) the effort of pursuing a strategy exceeds the benefits of desired adaptation outcomes; ii) the particular strategy does not address the actual source of vulnerability, and; iii) the benefits derived from adaptation are undermined by external factors. We also find that social limits are not necessarily more absolute at higher levels of organisation: respondents perceived considerable opportunities to address some psycho-social limits at the national-international interface, while they considered some social limits at the local and regional levels to be effectively absolute.

  14. The effects of river run-off on water clarity across the central Great Barrier Reef.

    Science.gov (United States)

    Fabricius, K E; Logan, M; Weeks, S; Brodie, J

    2014-07-15

    Changes in water clarity across the shallow continental shelf of the central Great Barrier Reef were investigated from ten years of daily river load, oceanographic and MODIS-Aqua data. Mean photic depth (i.e., the depth of 10% of surface irradiance) was related to river loads after statistical removal of wave and tidal effects. Across the ∼25,000 km(2) area, photic depth was strongly related to river freshwater and phosphorus loads (R(2)=0.65 and 0.51, respectively). In the six wetter years, photic depth was reduced by 19.8% and below water quality guidelines for 156 days, compared to 9 days in the drier years. After onset of the seasonal river floods, photic depth was reduced for on average 6-8 months, gradually returning to clearer baseline values. Relationships were strongest inshore and midshelf (∼12-80 km from the coast), and weaker near the chronically turbid coast. The data show that reductions in river loads would measurably improve shelf water clarity, with significant ecosystem health benefits.

  15. The density-driven circulation of the coastal hypersaline system of the Great Barrier Reef, Australia.

    Science.gov (United States)

    Salamena, Gerry G; Martins, Flávio; Ridd, Peter V

    2016-04-15

    The coastal hypersaline system of the Great Barrier Reef (GBR) in the dry season, was investigated for the first time using a 3D baroclinic model. In the shallow coastal embayments, salinity increases to c.a. 1‰ above typical offshore salinity (~35.4‰). This salinity increase is due to high evaporation rates and negligible freshwater input. The hypersalinity drifts longshore north-westward due to south-easterly trade winds and may eventually pass capes or headlands, e.g. Cape Cleveland, where the water is considerably deeper (c.a. 15m). Here, a pronounced thermohaline circulation is predicted to occur which flushes the hypersalinity offshore at velocities of up to 0.08m/s. Flushing time of the coastal embayments is around 2-3weeks. During the dry season early summer, the thermohaline circulation reduces and therefore, flushing times are predicted to be slight longer due to the reduced onshore-offshore density gradient compared to that in the dry season winter period.

  16. Coral community responses to declining water quality: Whitsunday Islands, Great Barrier Reef, Australia

    Science.gov (United States)

    Thompson, Angus; Schroeder, Thomas; Brando, Vittorio E.; Schaffelke, Britta

    2014-12-01

    A five-year period (2002-2006) of below-median rainfall followed by a six-year period (2007-2012) of above-median rainfall and seasonal flooding allowed a natural experiment into the effects of runoff on the water quality and subsequent coral community responses in the Whitsunday Islands, Great Barrier Reef (Australia). Satellite-derived water quality estimates of total suspended solids (TSS) and chlorophyll- a (Chl) concentration showed marked seasonal variability that was exaggerated during years with high river discharge. During above-median rainfall years, Chl was aseasonally high for a period of 3 months during the wet season (February-April), while TSS was elevated for four months, extending into the dry season (March-June). Coinciding with these extremes in water quality was a reduction in the abundance and shift in the community composition, of juvenile corals. The incidence of coral disease was at a maximum during the transition from years of below-median to years of above-median river discharge. In contrast to juvenile corals, the cover of larger corals remained stable, although the composition of communities varied along environmental gradients. In combination, these results suggest opportunistic recruitment of corals during periods of relatively low environmental stress with selection for more tolerant species occurring during periods of environmental extremes.

  17. Intensification of the meridional temperature gradient in the Great Barrier Reef following the Last Glacial Maximum.

    Science.gov (United States)

    Felis, Thomas; McGregor, Helen V; Linsley, Braddock K; Tudhope, Alexander W; Gagan, Michael K; Suzuki, Atsushi; Inoue, Mayuri; Thomas, Alexander L; Esat, Tezer M; Thompson, William G; Tiwari, Manish; Potts, Donald C; Mudelsee, Manfred; Yokoyama, Yusuke; Webster, Jody M

    2014-06-17

    Tropical south-western Pacific temperatures are of vital importance to the Great Barrier Reef (GBR), but the role of sea surface temperatures (SSTs) in the growth of the GBR since the Last Glacial Maximum remains largely unknown. Here we present records of Sr/Ca and δ(18)O for Last Glacial Maximum and deglacial corals that show a considerably steeper meridional SST gradient than the present day in the central GBR. We find a 1-2 °C larger temperature decrease between 17° and 20°S about 20,000 to 13,000 years ago. The result is best explained by the northward expansion of cooler subtropical waters due to a weakening of the South Pacific gyre and East Australian Current. Our findings indicate that the GBR experienced substantial meridional temperature change during the last deglaciation, and serve to explain anomalous deglacial drying of northeastern Australia. Overall, the GBR developed through significant SST change and may be more resilient than previously thought.

  18. Structural and Psycho-Social Limits to Climate Change Adaptation in the Great Barrier Reef Region.

    Directory of Open Access Journals (Sweden)

    Louisa S Evans

    Full Text Available Adaptation, as a strategy to respond to climate change, has limits: there are conditions under which adaptation strategies fail to alleviate impacts from climate change. Research has primarily focused on identifying absolute bio-physical limits. This paper contributes empirical insight to an emerging literature on the social limits to adaptation. Such limits arise from the ways in which societies perceive, experience and respond to climate change. Using qualitative data from multi-stakeholder workshops and key-informant interviews with representatives of the fisheries and tourism sectors of the Great Barrier Reef region, we identify psycho-social and structural limits associated with key adaptation strategies, and examine how these are perceived as more or less absolute across levels of organisation. We find that actors experience social limits to adaptation when: i the effort of pursuing a strategy exceeds the benefits of desired adaptation outcomes; ii the particular strategy does not address the actual source of vulnerability, and; iii the benefits derived from adaptation are undermined by external factors. We also find that social limits are not necessarily more absolute at higher levels of organisation: respondents perceived considerable opportunities to address some psycho-social limits at the national-international interface, while they considered some social limits at the local and regional levels to be effectively absolute.

  19. Coral-mucus-associated Vibrio integrons in the Great Barrier Reef: genomic hotspots for environmental adaptation.

    Science.gov (United States)

    Koenig, Jeremy E; Bourne, David G; Curtis, Bruce; Dlutek, Marlena; Stokes, H W; Doolittle, W Ford; Boucher, Yan

    2011-06-01

    Integron cassette arrays in a dozen cultivars of the most prevalent group of Vibrio isolates obtained from mucus expelled by a scleractinian coral (Pocillopora damicornis) colony living on the Great Barrier Reef were sequenced and compared. Although all cultivars showed >99% identity across recA, pyrH and rpoB genes, no two had more than 10% of their integron-associated gene cassettes in common, and some individuals shared cassettes exclusively with distantly-related members of the genus. Of cassettes shared within the population, a number appear to have been transferred between Vibrio isolates, as assessed by phylogenetic analysis. Prominent among the mucus Vibrio cassettes with potentially inferable functions are acetyltransferases, some with close similarity to known antibiotic-resistance determinants. A subset of these potential resistance cassettes were shared exclusively between the mucus Vibrio cultivars, Vibrio coral pathogens and human pathogens, thus illustrating a direct link between these microbial niches through exchange of integron-associated gene cassettes. PMID:21270840

  20. Metagenomic analysis of the coral holobiont during a natural bleaching event on the Great Barrier Reef.

    Science.gov (United States)

    Littman, Raechel; Willis, Bette L; Bourne, David G

    2011-12-01

    Understanding the effects of elevated seawater temperatures on each member of the coral holobiont (the complex comprised of coral polyps and associated symbiotic microorganisms, including Bacteria, viruses, Fungi, Archaea and endolithic algae) is becoming increasingly important as evidence accumulates that microbial members contribute to overall coral health, particularly during thermal stress. Here we use a metagenomic approach to identify metabolic and taxonomic shifts in microbial communities associated with the hard coral Acropora millepora throughout a natural thermal bleaching event at Magnetic Island (Great Barrier Reef). A direct comparison of metagenomic data sets from healthy versus bleached corals indicated major shifts in microbial associates during heat stress, including Bacteria, Archaea, viruses, Fungi and micro-algae. Overall, metabolism of the microbial community shifted from autotrophy to heterotrophy, including increases in genes associated with the metabolism of fatty acids, proteins, simple carbohydrates, phosphorus and sulfur. In addition, the proportion of virulence genes was higher in the bleached library, indicating an increase in microorganisms capable of pathogenesis following bleaching. These results demonstrate that thermal stress results in shifts in coral-associated microbial communities that may lead to deteriorating coral health. PMID:23761353

  1. Metagenomic analysis of the coral holobiont during a natural bleaching event on the Great Barrier Reef.

    Science.gov (United States)

    Littman, Raechel; Willis, Bette L; Bourne, David G

    2011-12-01

    Understanding the effects of elevated seawater temperatures on each member of the coral holobiont (the complex comprised of coral polyps and associated symbiotic microorganisms, including Bacteria, viruses, Fungi, Archaea and endolithic algae) is becoming increasingly important as evidence accumulates that microbial members contribute to overall coral health, particularly during thermal stress. Here we use a metagenomic approach to identify metabolic and taxonomic shifts in microbial communities associated with the hard coral Acropora millepora throughout a natural thermal bleaching event at Magnetic Island (Great Barrier Reef). A direct comparison of metagenomic data sets from healthy versus bleached corals indicated major shifts in microbial associates during heat stress, including Bacteria, Archaea, viruses, Fungi and micro-algae. Overall, metabolism of the microbial community shifted from autotrophy to heterotrophy, including increases in genes associated with the metabolism of fatty acids, proteins, simple carbohydrates, phosphorus and sulfur. In addition, the proportion of virulence genes was higher in the bleached library, indicating an increase in microorganisms capable of pathogenesis following bleaching. These results demonstrate that thermal stress results in shifts in coral-associated microbial communities that may lead to deteriorating coral health.

  2. Understanding Recreational Fishers' Compliance with No-take Zones in the Great Barrier Reef Marine Park

    Directory of Open Access Journals (Sweden)

    Adrian Arias

    2013-12-01

    Full Text Available Understanding fishers' compliance is essential for the successful management of marine protected areas. We used the random response technique (RRT to assess recreational fishers' compliance with no-take zones in the Great Barrier Reef Marine Park (GBRMP. The RRT allowed the asking of a sensitive question, i.e., "Did you, knowingly, fish within in a Green Zone during the last 12 months?" while protecting respondents' confidentiality. Application of the RRT through a survey of recreational fishers indicated that the majority of recreational fishers, 90%, comply with no-take zones. Likewise, most fishers, 92%, reported not personally knowing anyone who had intentionally fished in a no-take zone, indicating that fishers' perceive high levels of compliance among their peers. Fishers were motivated to comply with no-take zones primarily by their beliefs about penalties for noncompliance, followed by beliefs about the fishery benefits of no-take zones. Results suggest that compliance-related communication efforts by the managing authority have partially succeeded in maintaining appropriate compliance levels and that future efforts should accentuate normative compliance drivers that will encourage voluntary compliance. We conclude that compliance monitoring should be integrated into the adaptive management of the GBRMP and other protected areas; in this case social surveys using the RRT are effective tools.

  3. What's Behind the Spread of White Syndrome in Great Barrier Reef Corals?

    OpenAIRE

    John F. Bruno; Elizabeth R Selig; Casey, Kenneth S.; Cathie A Page; Willis, Bette L.; C Drew Harvell; Hugh Sweatman; Amy M Melendy

    2007-01-01

    Author Summary Coral reefs have been decimated over the last several decades. The global decline of reef-building corals is of particular concern. Infectious diseases are thought to be key to this mass coral mortality, and many reef ecologists suspect that anomalously high ocean temperatures contribute to the increased incidence and severity of disease outbreaks. This hypothesis is supported by local observations—for example, that some coral diseases become more prevalent in the summertime—bu...

  4. Dactylogyrids (Monogenoidea) parasitizing the gills of spinefoots (Teleostei: Siganidae): proposal of Glyphidohaptor n. gen., with two new species from the Great Barrier Reef, Australia, and G. plectocirra n. comb. from Ras Mohammed National Park, Egypt.

    Science.gov (United States)

    Kritsky, Delane C; Galli, Paolo; Yang, Tingbao

    2007-02-01

    Nine species of Siganus (Perciformes: Siganidae) were examined for dactylogyrids (Monogenoidea) from the Red Sea, Egypt; the Great Barrier Reef, Australia; and the South China Sea, China. Species of Tetrancistrum were found on siganids from all 3 localities; Pseudohaliotrema spp. were restricted to siganids from the Great Barrier Reef; and species representing Glyphidohaptor n. gen. were found on siganids from the Red Sea and Great Barrier Reef. Siganus argenteus from the Red Sea and Siganus vulpinus from the Great Barrier Reef were negative for dactylogyrid parasites. Glyphidohaptor n. gen. is proposed for 3 species (2 species new to science) and the new species are described: Glyphidohaptor phractophallus n. sp. from Siganus fuscescens from the Great Barrier Reef; Glyphidohaptor sigani n. sp. from Siganus doliatus (type host), Siganus punctatus, Siganus corallinus, and Siganus lineatus from the Great Barrier Reef; and Glyphidohaptor plectocirra (Paperna, 1972) n. comb. (= Pseudohaliotrema plectocirra Paperna, 1972) from Siganus luridus and Siganus rivulatus from the Red Sea. PMID:17436940

  5. COLLABORATIVE GUIDE: A REEF MANAGER'S GUIDE TO CORAL BLEACHING

    Science.gov (United States)

    Innovative strategies to conserve the world's coral reefs are included in a new guide released today by NOAA, and the Australian Great Barrier Reef Marine Park Authority, with author contributions from a variety of international partners from government agencies, non-governmental...

  6. Palaeoecological evidence of a historical collapse of corals at Pelorus Island, inshore Great Barrier Reef, following European settlement.

    Science.gov (United States)

    Roff, George; Clark, Tara R; Reymond, Claire E; Zhao, Jian-xin; Feng, Yuexing; McCook, Laurence J; Done, Terence J; Pandolfi, John M

    2013-01-01

    The inshore reefs of the Great Barrier Reef (GBR) have undergone significant declines in water quality following European settlement (approx. 1870 AD). However, direct evidence of impacts on coral assemblages is limited by a lack of historical baselines prior to the onset of modern monitoring programmes in the early 1980s. Through palaeoecological reconstructions, we report a previously undocumented historical collapse of Acropora assemblages at Pelorus Island (central GBR). High-precision U-series dating of dead Acropora fragments indicates that this collapse occurred between 1920 and 1955, with few dates obtained after 1980. Prior to this event, our results indicate remarkable long-term stability in coral community structure over centennial scales. We suggest that chronic increases in sediment flux and nutrient loading following European settlement acted as the ultimate cause for the lack of recovery of Acropora assemblages following a series of acute disturbance events (SST anomalies, cyclones and flood events). Evidence for major degradation in reef condition owing to human impacts prior to modern ecological surveys indicates that current monitoring of inshore reefs on the GBR may be predicated on a significantly shifted baseline.

  7. Ecologically based targets for bioavailable (reactive) nitrogen discharge from the drainage basins of the Wet Tropics region, Great Barrier Reef.

    Science.gov (United States)

    Wooldridge, Scott A; Brodie, Jon E; Kroon, Frederieke J; Turner, Ryan D R

    2015-08-15

    A modelling framework is developed for the Wet Tropics region of the Great Barrier Reef that links a quantitative river discharge parameter (viz. dissolved inorganic nitrogen concentration, DIN) with an eutrophication indicator within the marine environment (viz. chlorophyll-a concentration, chl-a). The model predicts catchment-specific levels of reduction (%) in end-of-river DIN concentrations (as a proxy for total potentially reactive nitrogen, PRN) needed to ensure compliance with chl-a 'trigger' guidelines for the ecologically distinct, but PRN-related issues of crown-of-thorns starfish (COTS) outbreaks, reef biodiversity loss, and thermal bleaching sensitivity. The results indicate that even for river basins dominated by agricultural land uses, quite modest reductions in end-of-river PRN concentrations (∼20-40%) may assist in mitigating the risk of primary COTS outbreaks from the mid-shelf reefs of the Wet Tropics. However, more significant reductions (∼60-80%) are required to halt and reverse declines in reef biodiversity, and loss of thermal bleaching resistance.

  8. Predictable pollution: an assessment of weather balloons and associated impacts on the marine environment--an example for the Great Barrier Reef, Australia.

    Science.gov (United States)

    O'Shea, Owen R; Hamann, Mark; Smith, Walter; Taylor, Heidi

    2014-02-15

    Efforts to curb pollution in the marine environment are covered by national and international legislation, yet weather balloons are released into the environment with no salvage agenda. Here, we assess impacts associated with weather balloons in the Great Barrier Reef World Heritage Area (GBRWHA). We use modeling to assess the probability of ocean endpoints for released weather balloons and predict pathways post-release. In addition, we use 21 months of data from beach cleanup events to validate our results and assess the abundance and frequency of weather balloon fragments in the GBRWHA. We found between 65% and 70% of balloons land in the ocean and ocean currents largely determine final endpoints. Beach cleanup data revealed 2460 weather balloon fragments were recovered from 24 sites within the GBRWHA. This is the first attempt to quantify this problem and these data will add support to a much-needed mitigation strategy for weather balloon waste.

  9. The importance of coral larval recruitment for the recovery of reefs impacted by cyclone Yasi in the central Great Barrier Reef.

    Directory of Open Access Journals (Sweden)

    Vimoksalehi Lukoschek

    Full Text Available Cyclone Yasi, one of the most severe tropical storms on record, crossed the central Great Barrier Reef (GBR in February 2011, bringing wind speeds of up to 285 km hr⁻¹ and wave heights of at least 10 m, and causing massive destruction to exposed reefs in the Palm Island Group. Following the cyclone, mean (± S.E. hard coral cover ranged from just 2.1 (0.2 % to 5.3 (0.4 % on exposed reefs and no reproductively mature colonies of any species of Acropora remained. Although no fragments of Acropora were found at impacted exposed sites following the cyclone, small juvenile colonies of Acropora (<10 cm diameter were present, suggesting that their small size and compact morphologies enabled them to survive the cyclone. By contrast, sheltered reefs appeared to be unaffected by the cyclone. Mean (± S.E. hard coral cover ranged from 18.2 (2.4 % to 30.0 (1.0 % and a large proportion of colonies of Acropora were reproductively mature. Macroalgae accounted for 8 to 16% of benthic cover at exposed sites impacted by cyclone Yasi but were absent at sheltered sites. Mean (± S.E. recruitment of acroporids to settlement tiles declined from 25.3 (4.8 recruits tile⁻¹ in the pre-cyclone spawning event (2010 to 15.4 (2.2 recruits tile⁻¹ in the first post-cyclone spawning event (2011. Yet, post-cyclone recruitment did not differ between exposed (15.2±2.1 S.E. and sheltered sites (15.6±2.2 S.E., despite the loss of reproductive colonies at the exposed sites, indicating larval input from external sources. Spatial variation in impacts, the survival of small colonies, and larval replenishment to impacted reefs suggest that populations of Acropora have the potential to recover from this severe disturbance, provided that the Palm Islands are not impacted by acute disturbances or suffer additional chronic stressors in the near future.

  10. A population genetic assessment of coral recovery on highly disturbed reefs of the Keppel Island archipelago in the southern Great Barrier Reef.

    Science.gov (United States)

    van Oppen, Madeleine J H; Lukoschek, Vimoksalehi; Berkelmans, Ray; Peplow, Lesa M; Jones, Alison M

    2015-01-01

    Coral reefs surrounding the islands lying close to the coast are unique to the Great Barrier Reef (GBR) in that they are frequently exposed to disturbance events including floods caused by cyclonic rainfall, strong winds and occasional periods of prolonged above-average temperatures during summer. In one such group of islands in the southern GBR, the Keppel Island archipelago, climate-driven disturbances frequently result in major coral mortality. Whilst these island reefs have clearly survived such dramatic disturbances in the past, the consequences of extreme mortality events may include the loss of genetic diversity, and hence adaptive potential, and a reduction in fitness due to inbreeding, especially if new recruitment from external sources is limited. Here we examined the level of isolation of the Keppel Island group as well as patterns of gene flow within the Keppel Islands using 10 microsatellite markers in nine populations of the coral, Acropora millepora. Bayesian cluster analysis and assignment tests indicated gene flow is restricted, but not absent, between the outer and inner Keppel Island groups, and that extensive gene flow exists within each of these island groups. Comparison of the Keppel Island data with results from a previous GBR-wide study that included a single Keppel Island population, confirmed that A. millepora in the Keppel Islands is genetically distinct from populations elsewhere on the GBR, with exception of the nearby inshore High Peak Reef just north of the Keppel Islands. We compared patterns of genetic diversity in the Keppel Island populations with those from other GBR populations and found them to be slightly, but significantly lower, consistent with the archipelago being geographically isolated, but there was no evidence for recent bottlenecks or deviation from mutation-drift equilibrium. A high incidence of private alleles in the Keppel Islands, particularly in the outer islands, supports their relative isolation and contributes

  11. Using MODIS data for understanding changes in seagrass meadow health: a case study in the Great Barrier Reef (Australia).

    Science.gov (United States)

    Petus, Caroline; Collier, Catherine; Devlin, Michelle; Rasheed, Michael; McKenna, Skye

    2014-07-01

    Stretching more than 2000 km along the Queensland coast, the Great Barrier Reef Marine Park (GBR) shelters over 43,000 square km of seagrass meadows. Despite the status of marine protected area and World Heritage listing of the GBR, local seagrass meadows are under stress from reduced water quality levels; with reduction in the amount of light available for seagrass photosynthesis defined as the primary cause of seagrass loss throughout the GBR. Methods have been developed to map GBR plume water types by using MODIS quasi-true colour (hereafter true colour) images reclassified in function of their dominant colour. These data can be used as an interpretative tool for understanding changes in seagrass meadow health (as defined in this study by the seagrass area and abundance) at different spatial and temporal scales. We tested this method in Cleveland Bay, in the northern GBR, where substantial loss in seagrass area and biomass was detected by annual monitoring from 2007 to 2011. A strong correlation was found between bay-wide seagrass meadow area and biomass and exposure to turbid Primary (sediment-dominated) water type. There was also a strong correlation between the changes of biomass and area of individual meadows and exposure of seagrass ecosystems to Primary water type over the 5-year period. Seagrass meadows were also grouped according to the dominant species within each meadow, irrespective of location within Cleveland Bay. These consolidated community types did not correlate well with the exposure to Primary water type, and this is likely to be due to local environmental conditions with the individual meadows that comprise these groupings. This study proved that remote sensing data provide the synoptic window and repetitivity required to investigate changes in water quality conditions over time. Remote sensing data provide an opportunity to investigate the risk of marine-coastal ecosystems to light limitation due to increased water turbidity when in situ

  12. Using MODIS data for understanding changes in seagrass meadow health: a case study in the Great Barrier Reef (Australia).

    Science.gov (United States)

    Petus, Caroline; Collier, Catherine; Devlin, Michelle; Rasheed, Michael; McKenna, Skye

    2014-07-01

    Stretching more than 2000 km along the Queensland coast, the Great Barrier Reef Marine Park (GBR) shelters over 43,000 square km of seagrass meadows. Despite the status of marine protected area and World Heritage listing of the GBR, local seagrass meadows are under stress from reduced water quality levels; with reduction in the amount of light available for seagrass photosynthesis defined as the primary cause of seagrass loss throughout the GBR. Methods have been developed to map GBR plume water types by using MODIS quasi-true colour (hereafter true colour) images reclassified in function of their dominant colour. These data can be used as an interpretative tool for understanding changes in seagrass meadow health (as defined in this study by the seagrass area and abundance) at different spatial and temporal scales. We tested this method in Cleveland Bay, in the northern GBR, where substantial loss in seagrass area and biomass was detected by annual monitoring from 2007 to 2011. A strong correlation was found between bay-wide seagrass meadow area and biomass and exposure to turbid Primary (sediment-dominated) water type. There was also a strong correlation between the changes of biomass and area of individual meadows and exposure of seagrass ecosystems to Primary water type over the 5-year period. Seagrass meadows were also grouped according to the dominant species within each meadow, irrespective of location within Cleveland Bay. These consolidated community types did not correlate well with the exposure to Primary water type, and this is likely to be due to local environmental conditions with the individual meadows that comprise these groupings. This study proved that remote sensing data provide the synoptic window and repetitivity required to investigate changes in water quality conditions over time. Remote sensing data provide an opportunity to investigate the risk of marine-coastal ecosystems to light limitation due to increased water turbidity when in situ

  13. Batch fecundity of Lutjanus carponotatus (Lutjanidae) and implications of no-take marine reserves on the Great Barrier Reef, Australia

    Science.gov (United States)

    Evans, R. D.; Russ, G. R.; Kritzer, J. P.

    2008-03-01

    This study investigated body size to fecundity relationships of a reef fish species targeted by line fishing, and examines the potential benefits of increased batch fecundity in no-take reserves compared to fished areas around the Palm, Whitsunday and Keppel Island Groups, Great Barrier Reef, Australia. Lutjanus carponotatus batch fecundity increased with fork length in a non-linear relationship that was best described by a power function. Batch fecundity differed by more than 100-fold among individuals, with a range from 7,074 to 748,957 eggs in fish ranging from 184 to 305 mm fork length. Furthermore, egg diameter increased with fish size. Based on underwater visual census, the potential batch fecundity per unit area in all three island groups ranged from 1.0 to 4.2 times greater in the no-take reserves than in the fished areas between 2001 and 2004. In 2002, a mean 2.3-fold difference in biomass between no-take reserves and fished areas converted to a mean 2.5-fold difference in batch fecundity per unit area. Greater batch fecundity, longer spawning seasons and potentially greater larval survival due to larger egg size from bigger individuals might significantly enhance the potential benefits of no-take marine reserves on the Great Barrier Reef.

  14. Stability of coral-endosymbiont associations during and after a thermal stress event in the southern Great Barrier Reef

    Science.gov (United States)

    Stat, M.; Loh, W. K. W.; Lajeunesse, T. C.; Hoegh-Guldberg, O.; Carter, D. A.

    2009-09-01

    Shifts in the community of symbiotic dinoflagellates to those that are better suited to the prevailing environmental condition may provide reef-building corals with a rapid mechanism by which to adapt to changes in the environment. In this study, the dominant Symbiodinium in 10 coral species in the southern Great Barrier Reef was monitored over a 1-year period in 2002 that coincided with a thermal stress event. Molecular genetic profiling of Symbiodinium communities using single strand conformational polymorphism of the large subunit rDNA and denaturing gradient gel electrophoresis of the internal transcribed spacer 2 region did not detect any changes in the communities during and after this thermal-stress event. Coral colonies of seven species bleached but recovered with their original symbionts. This study suggests that the shuffling or switching of symbionts in response to thermal stress may be restricted to certain coral species and is probably not a universal feature of the coral-symbiont relationship.

  15. Reproductive biology of three sponge species of the genus Xestospongia (Porifera: Demospongiae: Petrosida) from the Great Barrier Reef

    Science.gov (United States)

    Fromont, J.; Bergquist, P. R.

    1994-05-01

    The reproductive development of three species of the Petrosida, Xestospongia bergquistia, X. exigua, and X. testudinaria, was monitored for four years on a fringing reef at Orpheus Island, Great Barrier Reef, Australia. All three species were oviparous and female reproductive activity began prior to males becoming active. X. bergquistia and X. testudinaria were gonochoric and broadcast eggs in spawning events that were synchronous within species. Egg development occurred over more than five months in X. bergquistia and X. testudinaria and two months in X. exigua. Spawning was during periods of warm temperature and occurred in October or November for X. bergquistia and X. testudinaria, and January or February for X. exigua. Lunar phase was implicated in timing of spawning of X. testudinaria. Diel timing of spawning in X. testudinaria and X. bergquistia was consistently a morning event.

  16. Evidence for ocean acidification in the Great Barrier Reef of Australia

    Science.gov (United States)

    Wei, Gangjian; McCulloch, Malcolm T.; Mortimer, Graham; Deng, Wengfeng; Xie, Luhua

    2009-04-01

    Geochemical records preserved in the long-lived carbonate skeleton of corals provide one of the few means to reconstruct changes in seawater pH since the commencement of the industrial era. This information is important in not only determining the response of the surface oceans to ocean acidification from enhanced uptake of CO 2, but also to better understand the effects of ocean acidification on carbonate secreting organisms such as corals, whose ability to calcify is highly pH dependent. Here we report an ˜200 year δ 11B isotopic record, extracted from a long-lived Porites coral from the central Great Barrier Reef of Australia. This record covering the period from 1800 to 2004 was sampled at yearly increments from 1940 to the present and 5-year increments prior to 1940. The δ 11B isotopic compositions reflect variations in seawater pH, and the δ 13C changes in the carbon composition of surface water due to fossil fuel burning over this period. In addition complementary Ba/Ca, δ 18O and Mg/Ca data was obtained providing proxies for terrestrial runoff, salinity and temperature changes over the past 200 years in this region. Positive thermal ionization mass spectrometry (PTIMS) method was utilized in order to enable the highest precision and most accurate measurements of δ 11B values. The internal precision and reproducibility for δ 11B of our measurements are better than ±0.2‰ (2 σ), which translates to a precision of better than ±0.02 pH units. Our results indicate that the long-term pre-industrial variation of seawater pH in this region is partially related to the decadal-interdecadal variability of atmospheric and oceanic anomalies in the Pacific. In the periods around 1940 and 1998 there are also rapid oscillations in δ 11B compositions equivalent changes in pH of almost 0.5 U. The 1998 oscillation is co-incident with a major coral bleaching event indicating the sensitivity of skeletal δ 11B compositions to loss of zooxanthellate symbionts

  17. Do clouds save the great barrier reef? satellite imagery elucidates the cloud-SST relationship at the local scale.

    Directory of Open Access Journals (Sweden)

    Susannah M Leahy

    Full Text Available Evidence of global climate change and rising sea surface temperatures (SSTs is now well documented in the scientific literature. With corals already living close to their thermal maxima, increases in SSTs are of great concern for the survival of coral reefs. Cloud feedback processes may have the potential to constrain SSTs, serving to enforce an "ocean thermostat" and promoting the survival of coral reefs. In this study, it was hypothesized that cloud cover can affect summer SSTs in the tropics. Detailed direct and lagged relationships between cloud cover and SST across the central Great Barrier Reef (GBR shelf were investigated using data from satellite imagery and in situ temperature and light loggers during two relatively hot summers (2005 and 2006 and two relatively cool summers (2007 and 2008. Across all study summers and shelf positions, SSTs exhibited distinct drops during periods of high cloud cover, and conversely, SST increases during periods of low cloud cover, with a three-day temporal lag between a change in cloud cover and a subsequent change in SST. Cloud cover alone was responsible for up to 32.1% of the variation in SSTs three days later. The relationship was strongest in both El Niño (2005 and La Niña (2008 study summers and at the inner-shelf position in those summers. SST effects on subsequent cloud cover were weaker and more variable among study summers, with rising SSTs explaining up to 21.6% of the increase in cloud cover three days later. This work quantifies the often observed cloud cooling effect on coral reefs. It highlights the importance of incorporating local-scale processes into bleaching forecasting models, and encourages the use of remote sensing imagery to value-add to coral bleaching field studies and to more accurately predict risks to coral reefs.

  18. Do clouds save the great barrier reef? satellite imagery elucidates the cloud-SST relationship at the local scale.

    Science.gov (United States)

    Leahy, Susannah M; Kingsford, Michael J; Steinberg, Craig R

    2013-01-01

    Evidence of global climate change and rising sea surface temperatures (SSTs) is now well documented in the scientific literature. With corals already living close to their thermal maxima, increases in SSTs are of great concern for the survival of coral reefs. Cloud feedback processes may have the potential to constrain SSTs, serving to enforce an "ocean thermostat" and promoting the survival of coral reefs. In this study, it was hypothesized that cloud cover can affect summer SSTs in the tropics. Detailed direct and lagged relationships between cloud cover and SST across the central Great Barrier Reef (GBR) shelf were investigated using data from satellite imagery and in situ temperature and light loggers during two relatively hot summers (2005 and 2006) and two relatively cool summers (2007 and 2008). Across all study summers and shelf positions, SSTs exhibited distinct drops during periods of high cloud cover, and conversely, SST increases during periods of low cloud cover, with a three-day temporal lag between a change in cloud cover and a subsequent change in SST. Cloud cover alone was responsible for up to 32.1% of the variation in SSTs three days later. The relationship was strongest in both El Niño (2005) and La Niña (2008) study summers and at the inner-shelf position in those summers. SST effects on subsequent cloud cover were weaker and more variable among study summers, with rising SSTs explaining up to 21.6% of the increase in cloud cover three days later. This work quantifies the often observed cloud cooling effect on coral reefs. It highlights the importance of incorporating local-scale processes into bleaching forecasting models, and encourages the use of remote sensing imagery to value-add to coral bleaching field studies and to more accurately predict risks to coral reefs.

  19. Social Resilience and Commercial Fishers’ Responses to Management Changes in the Great Barrier Reef Marine Park

    Directory of Open Access Journals (Sweden)

    Renae C. Tobin

    2012-09-01

    Full Text Available Understanding how social resilience influences resource users’ responses to policy change is important for ensuring the sustainability of social–ecological systems and resource-dependent communities. We use the conceptualization and operationalization of social resilience proposed by Marshall and Marshall (2007 to investigate how resilience level influenced commercial fishers’ perceptions about and adaptation to the 2004 rezoning of the Great Barrier Reef Marine Park. We conducted face-to-face interviews with 114 commercial and charter fishers to measure their social resilience level and their responses and adaptation strategies to the 2004 zoning plan. Fishers with higher resilience were more likely to believe that the zoning plan was necessary, more likely to be supportive of the plan, and more likely to have adapted their fishing business and fishing activity to the plan than were fishers with lower social resilience. High-resilience fishers were also less likely to perceive negative impacts of the plan on their fishing business, less likely to have negative attitudes toward the consultation process used to develop and implement the plan, and less likely to have applied for financial compensation under the structural adjustment program. Results confirm the utility of the social resilience construct for identifying fishers who are likely to be vulnerable to changes, and those who are struggling to cope with change events. We conclude that managing for social resilience in the GBR would aid in the design and implementation of policies that minimize the impacts on resource users and lead to more inclusive and sustainable management, but that further research is necessary to better understand social resilience, how it can be fostered and sustained, and how it can be effectively incorporated into management.

  20. Shoreline and beach volume change between 1967 and 2007 at Raine Island, Great Barrier Reef, Australia

    Science.gov (United States)

    Dawson, John L.; Smithers, Scott G.

    2010-06-01

    Raine Island is a vegetated coral cay located on the far northern outer Great Barrier Reef (GBR), recognised as a globally significant turtle rookery. Cay geomorphology, specifically the morphology of the beach and swale, dictate the availability of nesting sites and influence nesting success. Understanding short and long-term shoreline change is critical for managers charged with protecting the nesting habitat, particularly as climate change progresses. Historical topographic surveys, a simple numerical model and geographic information system (GIS) techniques were used to reconstruct a 40-year (1967-2007) shoreline history of Raine Island. Results show that significant shoreline change has occurred on 78% of the island's shoreline between 1967 and 2007; 34% experienced net retreat and 44% net progradation during the study interval. Shoreline retreat is mainly concentrated on the east-southeast section of the shoreline (average annual rate of - 0.3 ± 0.3 m/yr), while the shore on the western side of the island prograded at a similar rate (0.4 ± 0.2 m/yr). A seasonal signal was detected relating to oscillations in wind direction and intensity, with the southeast and west-southwest shorelines migrating an average of ˜ 17 m from season to season. The volume of sediment deposited on Raine Island between 1967 and 2007 increased by ˜ 68,000 m 3 net, but accretion rates varied significantly seasonally and from year to year. The largest volumetric changes have typically occurred over the last 23 years (1984-2007). Despite the recent concern that Raine Island is rapidly eroding, our data demonstrate net island growth (6% area, 4% volume) between 1967 and 2007. Perceptions of erosion probably reflect large morphological changes arising from seasonal, inter-annual and inter-decadal patterns of sediment redistribution rather than net loss from the island's sediment budget.

  1. Using an isolated population boom to explore barriers to recovery in the keystone Caribbean coral reef herbivore Diadema antillarum

    Science.gov (United States)

    Bodmer, Max D. V.; Rogers, Alex D.; Speight, Martin R.; Lubbock, Natalie; Exton, Dan A.

    2015-12-01

    Recovery of the keystone herbivore Diadema antillarum after the 1983-1984 mass mortality event poses one of the greatest challenges to Caribbean coral reef conservation, yet our understanding of the problem remains severely limited. Whilst some recovery has been observed, this has been restricted to the shallows (≤5 m). We report a newly discovered, isolated population recovery on Banco Capiro, Honduras, representing the largest recorded post-mortality densities beyond the shallowest environments (0.74-2.27 individuals m-2 at depths ≥10 m) alongside an unusually high mean percentage scleractinian coral cover of 49-62 %, likely no coincidence. On the nearby island of Utila, we report D. antillarum densities of 0.003-0.012 individuals m-2 and scleractinian coral cover of 12 % at depths ≥10 m, "typical" for a contemporary Caribbean coral reef. The three order of magnitude disparity in population density between sites separated by <60 km presents a unique opportunity to investigate barriers preventing their region-wide recovery by simultaneously addressing a range of previously proposed hypotheses. Despite concerns over the impacts of asynchronous spawning in low-density populations, we find that recruitment is occurring on Utila. This suggests that, whilst Allee effects are likely to be a contributing factor, the major barriers suppressing recovery are instead impacting juvenile survival into adulthood. Similarly, variations in heterospecific echinoids, interspecific competitors, and nutrient availability fail to account for population differences. Instead, we highlight a lack of structural complexity on contemporary Caribbean reefs as the most likely explanation for the limited recovery through a lack of provision of juvenile predation refugia, representing a further consequence of the recent ubiquitous phase shifts throughout the region. Using these findings, we propose future management strategies to stimulate recovery and, consequently, reef health

  2. A species pair of Bivesicula Yamaguti, 1934 (Trematoda: Bivesiculidae) in unrelated Great Barrier Reef fishes: implications for the basis of speciation in coral reef fish trematodes.

    Science.gov (United States)

    Trieu, Nancy; Cutmore, Scott C; Miller, Terrence L; Cribb, Thomas H

    2015-07-01

    Combined morphological and molecular analysis shows that a species of Bivesicula Yamaguti, 1934 from four species of Apogonidae Günther [Nectamia fusca (Quoy & Gaimard), Ostorhinchus angustatus (Smith & Radcliffe), O. cookii (Macleay) and Taeniamia fucata (Cantor)] on the Great Barrier Reef is morphologically similar to, but clearly distinct from B. unexpecta Cribb, Bray & Barker, 1994 which infects a sympatric pomacentrid, Acanthochromis polyacanthus (Bleeker). Bivesicula neglecta n. sp. is proposed for the form from apogonids. Novel ITS2 rDNA sequences generated for the two species differ at just one consistent base position, implying that the two species are closely related. The combination of their close relationship, high but distinct specificity and co-occurrence suggests that speciation was driven by a recent host switching event enabled by similar dietary ecomorphology.

  3. Marine debris is selected as nesting material by the brown booby (Sula leucogaster) within the Swain Reefs, Great Barrier Reef, Australia.

    Science.gov (United States)

    Verlis, K M; Campbell, M L; Wilson, S P

    2014-10-15

    Many seabirds are impacted by marine debris through its presence in foraging and nesting areas. To determine the extent of this problem, marine debris use in nest material of the brown booby (Sula leucogaster) in the Great Barrier Reef, Australia, was investigated. Nine cays were examined using beach and nest surveys. On average, four marine debris items were found per nest (n=96) with 58.3% of surveyed nests containing marine debris. The source of marine debris in nests and transects were primarily oceanic. Hard plastic items dominated both nest (56.8%) and surveyed beaches (72.8%), however only two item types were significantly correlated between these surveys. Nest surveys indicated higher levels of black and green items compared to beach transects. This selectivity for colours and items suggest these nests are not good indicators of environmental loads. This is the first study to examine S. leucogaster nests for marine debris in this location.

  4. A species pair of Bivesicula Yamaguti, 1934 (Trematoda: Bivesiculidae) in unrelated Great Barrier Reef fishes: implications for the basis of speciation in coral reef fish trematodes.

    Science.gov (United States)

    Trieu, Nancy; Cutmore, Scott C; Miller, Terrence L; Cribb, Thomas H

    2015-07-01

    Combined morphological and molecular analysis shows that a species of Bivesicula Yamaguti, 1934 from four species of Apogonidae Günther [Nectamia fusca (Quoy & Gaimard), Ostorhinchus angustatus (Smith & Radcliffe), O. cookii (Macleay) and Taeniamia fucata (Cantor)] on the Great Barrier Reef is morphologically similar to, but clearly distinct from B. unexpecta Cribb, Bray & Barker, 1994 which infects a sympatric pomacentrid, Acanthochromis polyacanthus (Bleeker). Bivesicula neglecta n. sp. is proposed for the form from apogonids. Novel ITS2 rDNA sequences generated for the two species differ at just one consistent base position, implying that the two species are closely related. The combination of their close relationship, high but distinct specificity and co-occurrence suggests that speciation was driven by a recent host switching event enabled by similar dietary ecomorphology. PMID:26063300

  5. Tropical Cyclones Cause CaCO3 Undersaturation of Coral Reef Seawater in a High-CO2 World

    Science.gov (United States)

    Manzello, D.; Enochs, I.; Carlton, R.; Musielewicz, S.; Gledhill, D. K.

    2013-12-01

    Ocean acidification is the global decline in seawater pH and calcium carbonate (CaCO3) saturation state (Ω) due to the uptake of anthropogenic CO2 by the world's oceans. Acidification impairs CaCO3 shell and skeleton construction by marine organisms. Coral reefs are particularly vulnerable, as they are constructed by the CaCO3 skeletons of corals and other calcifiers. We understand relatively little about how coral reefs will respond to ocean acidification in combination with other disturbances, such as tropical cyclones. Seawater carbonate chemistry data collected from two reefs in the Florida Keys before, during, and after Tropical Storm Isaac provide the most thorough data to-date on how tropical cyclones affect the seawater CO2-system of coral reefs. Tropical Storm Isaac caused both an immediate and prolonged decline in seawater pH. Aragonite saturation state was depressed by 1.0 for a full week after the storm impact. Based on current 'business-as-usual' CO2 emissions scenarios, we show that tropical cyclones with high rainfall and runoff can cause periods of undersaturation (Ω < 1.0) for high-Mg calcite and aragonite mineral phases at acidification levels before the end of this century. Week-long periods of undersaturation occur for 18 mol% high-Mg calcite after storms by the end of the century. In a high-CO2 world, CaCO3 undersaturation of coral reef seawater can occur as a result of even modest tropical cyclones. The expected increase in the strength, frequency, and rainfall of the most severe tropical cyclones with climate change in combination with ocean acidification will negatively impact the structural persistence of coral reefs over this century.

  6. A new gnathiid (Crustacea: Isopoda) parasitizing two species of requiem sharks from Lizard Island, Great Barrier Reef, Australia.

    Science.gov (United States)

    Coetzee, Maryke L; Smit, Nico J; Grutter, Alexandra S; Davies, Angela J

    2008-06-01

    Third-stage juveniles (praniza 3) of Gnathia grandilaris n. sp. were collected from the gill filaments and septa of 5 requiem sharks, including a white tip reef shark, Triaenodon obesus, and 4 grey reef sharks, Carcharhinus amblyrhynchos, at Lizard Island, Great Barrier Reef, Australia, in March 2002. Some juvenile gnathiids were then maintained in fresh sea water until they molted to adults. Adult males appeared 19 days following detachment of juveniles from host fishes, but no juveniles molted successfully into females. The current description is based, therefore, on bright field and scanning electron microscopy observations of adult males and third-stage juveniles. Unique features of the male include the triangular-shaped inferior medio-frontal process, 2 areolae on the dorsal surface of the pylopod, and a slender pleotelson (twice as long as wide) with lateral concavities. The third-stage juvenile has distinctive white pigmentation on the black pereon when alive, while the mandible has 9 triangular backwardly directed teeth. This species has the largest male and third-stage juvenile of any Gnathia spp. from Australia and of any gnathiid isopods associated with elasmobranchs. PMID:18605791

  7. A new gnathiid (Crustacea: Isopoda) parasitizing two species of requiem sharks from Lizard Island, Great Barrier Reef, Australia.

    Science.gov (United States)

    Coetzee, Maryke L; Smit, Nico J; Grutter, Alexandra S; Davies, Angela J

    2008-06-01

    Third-stage juveniles (praniza 3) of Gnathia grandilaris n. sp. were collected from the gill filaments and septa of 5 requiem sharks, including a white tip reef shark, Triaenodon obesus, and 4 grey reef sharks, Carcharhinus amblyrhynchos, at Lizard Island, Great Barrier Reef, Australia, in March 2002. Some juvenile gnathiids were then maintained in fresh sea water until they molted to adults. Adult males appeared 19 days following detachment of juveniles from host fishes, but no juveniles molted successfully into females. The current description is based, therefore, on bright field and scanning electron microscopy observations of adult males and third-stage juveniles. Unique features of the male include the triangular-shaped inferior medio-frontal process, 2 areolae on the dorsal surface of the pylopod, and a slender pleotelson (twice as long as wide) with lateral concavities. The third-stage juvenile has distinctive white pigmentation on the black pereon when alive, while the mandible has 9 triangular backwardly directed teeth. This species has the largest male and third-stage juvenile of any Gnathia spp. from Australia and of any gnathiid isopods associated with elasmobranchs.

  8. Flood impacts in Keppel Bay, southern great barrier reef in the aftermath of cyclonic rainfall.

    Science.gov (United States)

    Jones, Alison M; Berkelmans, Ray

    2014-01-01

    In December 2010, the highest recorded Queensland rainfall associated with Tropical Cyclone 'Tasha' caused flooding of the Fitzroy River in Queensland, Australia. A massive flood plume inundated coral reefs lying 12 km offshore of the Central Queensland coast near Yeppoon and caused 40-100% mortality to coral fringing many of the islands of Keppel Bay down to a depth of ∼8 m. The severity of coral mortality was influenced by the level of exposure to low salinity seawater as a result of the reef's distance from the flood plume and to a lesser extent, water depth and whether or not the reef faced the plume source. There was no evidence in this study of mortality resulting from pollutants derived from the nearby Fitzroy Catchment, at least in the short term, suggesting that during a major flood, the impact of low salinity on corals outweighs that of pollutants. Recovery of the reefs in Keppel Bay from the 2010/2011 Fitzroy River flood is likely to take 10-15 years based on historical recovery periods from a similar event in 1991; potentially impacting visitor numbers for tourism and recreational usage. In the meantime, activities like snorkeling, diving and coral viewing will be focused on the few shallow reefs that survived the flood, placing even further pressure on their recovery. Reef regeneration, restoration and rehabilitation are measures that may be needed to support tourism in the short term. However, predictions of a warming climate, lower rainfall and higher intensity summer rain events in the Central and Coastal regions of Australia over the next decade, combined with the current anthropogenic influences on water quality, are likely to slow regeneration with consequent impact on long-term reef resilience. PMID:24427294

  9. Flood impacts in Keppel Bay, southern great barrier reef in the aftermath of cyclonic rainfall.

    Directory of Open Access Journals (Sweden)

    Alison M Jones

    Full Text Available In December 2010, the highest recorded Queensland rainfall associated with Tropical Cyclone 'Tasha' caused flooding of the Fitzroy River in Queensland, Australia. A massive flood plume inundated coral reefs lying 12 km offshore of the Central Queensland coast near Yeppoon and caused 40-100% mortality to coral fringing many of the islands of Keppel Bay down to a depth of ∼8 m. The severity of coral mortality was influenced by the level of exposure to low salinity seawater as a result of the reef's distance from the flood plume and to a lesser extent, water depth and whether or not the reef faced the plume source. There was no evidence in this study of mortality resulting from pollutants derived from the nearby Fitzroy Catchment, at least in the short term, suggesting that during a major flood, the impact of low salinity on corals outweighs that of pollutants. Recovery of the reefs in Keppel Bay from the 2010/2011 Fitzroy River flood is likely to take 10-15 years based on historical recovery periods from a similar event in 1991; potentially impacting visitor numbers for tourism and recreational usage. In the meantime, activities like snorkeling, diving and coral viewing will be focused on the few shallow reefs that survived the flood, placing even further pressure on their recovery. Reef regeneration, restoration and rehabilitation are measures that may be needed to support tourism in the short term. However, predictions of a warming climate, lower rainfall and higher intensity summer rain events in the Central and Coastal regions of Australia over the next decade, combined with the current anthropogenic influences on water quality, are likely to slow regeneration with consequent impact on long-term reef resilience.

  10. The Gulf Coast Vulnerability Assessment: Mangrove, Tidal Emergent Marsh, Barrier Islands, and Oyster Reef

    Science.gov (United States)

    Watson, Amanda; Reece, Joshua S.; Tirpak, Blair; Edwards, Cynthia Kallio; Geselbracht, Laura; Woodrey, Mark; LaPeyre, Megan K.; Dalyander, Patricia (Soupy)

    2015-01-01

    Climate, sea level rise, and urbanization are undergoing unprecedented levels of combined change and are expected to have large effects on natural resources—particularly along the Gulf of Mexico coastline (Gulf Coast). Management decisions to address these effects (i.e., adaptation) require an understanding of the relative vulnerability of various resources to these stressors. To meet this need, the four Landscape Conservation Cooperatives along the Gulf partnered with the Gulf of Mexico Alliance to conduct this Gulf Coast Vulnerability Assessment (GCVA). Vulnerability in this context incorporates the aspects of exposure and sensitivity to threats, coupled with the adaptive capacity to mitigate those threats. Potential impact and adaptive capacity reflect natural history features of target species and ecosystems. The GCVA used an expert opinion approach to qualitatively assess the vulnerability of four ecosystems: mangrove, oyster reef, tidal emergent marsh, and barrier islands, and a suite of wildlife species that depend on them. More than 50 individuals participated in the completion of the GCVA, facilitated via Ecosystem and Species Expert Teams. Of the species assessed, Kemp’s ridley sea turtle was identified as the most vulnerable species across the Gulf Coast. Experts identified the main threats as loss of nesting habitat to sea level rise, erosion, and urbanization. Kemp’s ridley also had an overall low adaptive capacity score due to their low genetic diversity, and higher nest site fidelity as compared to other assessed species. Tidal emergent marsh was the most vulnerable ecosystem, due in part to sea level rise and erosion. In general, avian species were more vulnerable than fish because of nesting habitat loss to sea level rise, erosion, and potential increases in storm surge. Assessors commonly indicated a lack of information regarding impacts due to projected changes in the disturbance regime, biotic interactions, and synergistic effects in both

  11. IODP Expedition 325: Great Barrier Reefs Reveals Past Sea-Level, Climate and Environmental Changes Since the Last Ice Age

    Directory of Open Access Journals (Sweden)

    Sally Morgan

    2011-09-01

    Full Text Available The timing and courses of deglaciations are key components in understanding the global climate system. Cyclic changes in global climate have occurred, with growth and decay of high latitude ice sheets, for the last two million years. It is believed that these fluctuations are mainly controlled by periodic changes to incoming solar radiation due to the changes in Earth’s orbit around the sun. However, not all climate variations can be explained by this process, and there is the growing awareness of the important role of internalclimate feedback mechanisms. Understanding the nature of these feedbacks with regard to the timing of abrupt global sea-level and climate changes is of prime importance. The tropical ocean is one of the major components of the feedback system, and hence reconstructions of temporal variations in sea-surface conditions will greatly improve our understanding of the climate system. The Integrated Ocean Drilling Program (IODP Expedition 325 drilled 34 holes across 17 sites in the Great Barrier Reef, Australia to recoverfossil coral reef deposits. The main aim of the expedition was to understand the environmental changes that occurred during the last ice age and subsequent deglaciation, and more specifically (1 establish the course of sea-level change, (2 reconstruct the oceanographic conditions, and (3 determine the response of the reef to these changes. We recovered coral reef deposits from water depths down to 126 m that ranged in age from 9,000 years to older than 30,000 years ago. Given that the interval of the dated materials covers several paleoclimatologically important events, includingthe Last Glacial Maximum, we expect that ongoing scientific analyses will fulfill the objectives of the expedition.

  12. IODP Expedition 325: Great Barrier Reefs Reveals Past Sea-Level, Climate and Environmental Changes Since the Last Ice Age

    Science.gov (United States)

    Yokoyama, Y.; Webster, J. M.; Cotterill, C.; Braga, J. C.; Jovane, L.; Mills, H.; Morgan, S.; Suzuki, A.; IODP Expedition 325 Scientists, the

    2011-09-01

    The timing and courses of deglaciations are key components in understanding the global climate system. Cyclic changes in global climate have occurred, with growth and decay of high latitude ice sheets, for the last two million years. It is believed that these fluctuations are mainly controlled by periodic changes to incoming solar radiation due to the changes in Earth's orbit around the sun. However, not all climate variations can be explained by this process, and there is the growing awareness of the important role of internal climate feedback mechanisms. Understanding the nature of these feedbacks with regard to the timing of abrupt global sea-level and climate changes is of prime importance. The tropical ocean is one of the major components of the feedback system, and hence reconstructions of temporal variations in sea-surface conditions will greatly improve our understanding of the climate system. The Integrated Ocean Drilling Program (IODP) Expedition 325 drilled 34 holes across 17 sites in the Great Barrier Reef, Australia to recover fossil coral reef deposits. The main aim of the expedition was to understand the environmental changes that occurred during the last ice age and subsequent deglaciation, and more specifically (1) establish the course of sea-level change, (2) reconstruct the oceanographic conditions, and (3) determine the response of the reef to these changes. We recovered coral reef deposits from water depths down to 126 m that ranged in age from 9,000 years to older than 30,000 years ago. Given that the interval of the dated materials covers several paleoclimatologically important events, including the Last Glacial Maximum, we expect that ongoing scientific analyses will fulfill the objectives of the expedition. doi:10.2204/iodp.sd.12.04.2011

  13. Environmental factors controlling the distribution of symbiodinium harboured by the coral Acropora millepora on the Great Barrier Reef.

    Directory of Open Access Journals (Sweden)

    Timothy F Cooper

    Full Text Available BACKGROUND: The Symbiodinium community associated with scleractinian corals is widely considered to be shaped by seawater temperature, as the coral's upper temperature tolerance is largely contingent on the Symbiodinium types harboured. Few studies have challenged this paradigm as knowledge of other environmental drivers on the distribution of Symbiodinium is limited. Here, we examine the influence of a range of environmental variables on the distribution of Symbiodinium associated with Acropora millepora collected from 47 coral reefs spanning 1,400 km on the Great Barrier Reef (GBR, Australia. METHODOLOGY/PRINCIPAL FINDINGS: The environmental data included Moderate Resolution Imaging Spectroradiometer (MODIS satellite data at 1 km spatial resolution from which a number of sea surface temperature (SST and water quality metrics were derived. In addition, the carbonate and mud composition of sediments were incorporated into the analysis along with in situ water quality samples for a subset of locations. Analyses were conducted at three spatio-temporal scales [GBR (regional-scale, Whitsunday Islands (local-scale and Keppel Islands/Trunk Reef (temporal] to examine the effects of scale on the distribution patterns. While SST metrics were important drivers of the distribution of Symbiodinium types at regional and temporal scales, our results demonstrate that spatial variability in water quality correlates significantly with Symbiodinium distribution at local scales. Background levels of Symbiodinium types were greatest at turbid inshore locations of the Whitsunday Islands where SST predictors were not as important. This was not the case at regional scales where combinations of mud and carbonate sediment content coupled with SST anomalies and mean summer SST explained 51.3% of the variation in dominant Symbiodinium communities. CONCLUSIONS/SIGNIFICANCE: Reef corals may respond to global-scale stressors such as climate change through changes in their

  14. Biogeochemistry of modern Porifera and microbialites from Lizard Island (Great Barrier Reef, Australia) and fossil analogues

    OpenAIRE

    Thiel, Volker; Reitner, Joachim; Michaelis, Walter

    1996-01-01

    Organic geochemical techniques were applied to study the lipid conte nt of living reef organisms and rock sampies trom different carbonate facies. The characterization of individual organic compounds ("biomarkers") yields information on the biology and paleontology of microbially derived carbonate rocks, sponges and sponge-microbiota communities on a molecular level.

  15. Coral Luminescence Identifies the Pacific Decadal Oscillation as a Primary Driver of River Runoff Variability Impacting the Southern Great Barrier Reef

    NARCIS (Netherlands)

    Rodriguez-Ramirez, A.; Grove, C.A.; Zinke, J.; Pandolfi, J.M.; Zhao, J.-X.

    2014-01-01

    The Pacific Decadal Oscillation (PDO) is a large-scale climatic phenomenon modulating ocean-atmosphere variability on decadal time scales. While precipitation and river flow variability in the Great Barrier Reef (GBR) catchments are sensitive to PDO phases, the extent to which the PDO influences cor

  16. The rare mantis shrimp Areosquilla indica (Hansen, 1976) (Crustacea, Stomatopoda) from the Great Barrier Reef: first Australian records of the genus and species.

    Science.gov (United States)

    Ahyong, Shane T; Wassenberg, Theodore J

    2015-08-18

    The rare mantis shrimp genus Areosquilla is recorded from Australia for the first time based on nine specimens of A. indica (Hansen, 1926) collected from the Great Barrier Reef. Morphological variation beyond that observed in previous accounts is reported. The present record and other recent discoveries bring the Australian stomatopod fauna to 152 species and 68 genera.

  17. Marine microbial communities of the Great Barrier Reef lagoon are influenced by riverine floodwaters and seasonal weather events.

    Science.gov (United States)

    Angly, Florent E; Heath, Candice; Morgan, Thomas C; Tonin, Hemerson; Rich, Virginia; Schaffelke, Britta; Bourne, David G; Tyson, Gene W

    2016-01-01

    The role of microorganisms in maintaining coral reef health is increasingly recognized. Riverine floodwater containing herbicides and excess nutrients from fertilizers compromises water quality in the inshore Great Barrier Reef (GBR), with unknown consequences for planktonic marine microbial communities and thus coral reefs. In this baseline study, inshore GBR microbial communities were monitored along a 124 km long transect between 2011 and 2013 using 16S rRNA gene amplicon sequencing. Members of the bacterial orders Rickettsiales (e.g., Pelagibacteraceae) and Synechococcales (e.g., Prochlorococcus), and of the archaeal class Marine Group II were prevalent in all samples, exhibiting a clear seasonal dynamics. Microbial communities near the Tully river mouth included a mixture of taxa from offshore marine sites and from the river system. The environmental parameters collected could be summarized into four groups, represented by salinity, rainfall, temperature and water quality, that drove the composition of microbial communities. During the wet season, lower salinity and a lower water quality index resulting from higher river discharge corresponded to increases in riverine taxa at sites near the river mouth. Particularly large, transient changes in microbial community structure were seen during the extreme wet season 2010-11, and may be partially attributed to the effects of wind and waves, which resuspend sediments and homogenize the water column in shallow near-shore regions. This work shows that anthropogenic floodwaters and other environmental parameters work in conjunction to drive the spatial distribution of microorganisms in the GBR lagoon, as well as their seasonal and daily dynamics.

  18. Effect of colony size and surrounding substrate on corals experiencing a mild bleaching event on Heron Island reef flat (southern Great Barrier Reef, Australia)

    Science.gov (United States)

    Ortiz, J. C.; Gomez-Cabrera, M. Del C.; Hoegh-Guldberg, O.

    2009-12-01

    In January-May 2006, Heron Island in the Great Barrier Reef experienced a mild bleaching event. The effect of colony size, morphology and surrounding substrate on the extent of bleaching was explored. In contrast with previous studies, colony size did not influence bleaching sensitivity, suggesting that there may be a threshold of light and temperature stress beyond which size plays a role. Also contrasting with previous studies, massive corals were more affected by bleaching than branching corals. Massive corals surrounded by sand were more affected than the ones surrounded by rubble or dead coral. It is hypothesized that light reflectance from sand increases stress levels experienced by the colonies. This effect is maximized in massive corals as opposed to branching corals that form dense thickets on Heron Island. These results emphasize the importance of the ecological dynamics of coral communities experiencing low, moderate and high levels of bleaching for the understanding of how coral communities may change under the stress of climate change.

  19. Differences in demographic traits of four butterflyfish species between two reefs of the Great Barrier Reef separated by 1,200 km

    KAUST Repository

    Berumen, Michael L.

    2011-11-16

    Many species demonstrate variation in life history attributes in response to gradients in environmental conditions. For fishes, major drivers of life history variation are changes in temperature and food availability. This study examined large-scale variation in the demography of four species of butterflyfishes (Chaetodon citrinellus, Chaetodon lunulatus, Chaetodon melannotus, and Chaetodon trifascialis) between two locations on Australia\\'s Great Barrier Reef (Lizard Island and One Tree Island, separated by approximately 1,200 km). Variation in age-based demographic parameters was assessed using the re-parameterised von Bertalanffy growth function. All species displayed measurable differences in body size between locations, with individuals achieving a larger adult size at the higher latitude site (One Tree Island) for three of the four species examined. Resources and abundances of the study species were also measured, revealing some significant differences between locations. For example, for C. trifascialis, there was no difference in its preferred resource or in abundance between locations, yet it achieved a larger body size at the higher latitude location, suggesting a response to temperature. For some species, resources and abundances did vary between locations, limiting the ability to distinguish between a demographic response to temperature as opposed to a response to food or competition. Future studies of life histories and demographics at large spatial scales will need to consider the potentially confounding roles of temperature, resource usage and availability, and abundance/competition to disentangle the effects of these environmental variables. © 2011 Springer-Verlag.

  20. Exposure of clownfish larvae to suspended sediment levels found on the Great Barrier Reef: Impacts on gill structure and microbiome.

    Science.gov (United States)

    Hess, Sybille; Wenger, Amelia S; Ainsworth, Tracy D; Rummer, Jodie L

    2015-06-22

    Worldwide, increasing coastal development has played a major role in shaping coral reef species assemblages, but the mechanisms underpinning distribution patterns remain poorly understood. Recent research demonstrated delayed development in larval fishes exposed to suspended sediment, highlighting the need to further understand the interaction between suspended sediment as a stressor and energetically costly activities such as growth and development that are essential to support biological fitness. We examined the gill morphology and the gill microbiome in clownfish larvae (Amphiprion percula) exposed to suspended sediment concentrations (using Australian bentonite) commonly found on the inshore Great Barrier Reef. The gills of larvae exposed to 45 mg L(-1) of suspended sediment had excessive mucous discharge and growth of protective cell layers, resulting in a 56% thicker gill epithelium compared to fish from the control group. Further, we found a shift from 'healthy' to pathogenic bacterial communities on the gills, which could increase the disease susceptibility of larvae. The impact of suspended sediments on larval gills may represent an underlying mechanism behind the distribution patterns of fish assemblages. Our findings underscore the necessity for future coastal development to consider adverse effects of suspended sediments on fish recruitment, and consequently fish populations and ecosystem health.

  1. Origins and Implications of a Primary Crown-of-Thorns Starfish Outbreak in the Southern Great Barrier Reef

    Directory of Open Access Journals (Sweden)

    Ian Miller

    2015-01-01

    Full Text Available The crown-of-thorns starfish (COTS is a major predator of hard corals. Repeated COTS outbreaks in the Cairns and Central sections of the Great Barrier Reef (GBR have been responsible for greater declines in coral cover than any other type of disturbance, including cyclones, disease, and coral bleaching. Knowledge of the precise timing and location of primary outbreaks could reveal the initial drivers of outbreaks and so could indicate possible management measures. In the central GBR, COTS outbreaks appear to follow major flooding events, but despite many years of observations, no primary outbreak has ever been unequivocally identified in the central and northern GBR. Here we locate a primary outbreak of COTS on the southern GBR which is not correlated with flooding. Instead it appears to have been the result of a combination of life history traits of COTS and prevailing oceanographic conditions. The hydrodynamic setting implies that the outbreak could disperse larvae to other reefs in the region.

  2. Regional-scale variation in the distribution and abundance of farming damselfishes on Australia's Great Barrier Reef

    KAUST Repository

    Emslie, Michael J.

    2012-03-15

    Territorial damselfishes that manipulate ("farm") the algae in their territories can have a marked effect on benthic community structure and may influence coral recovery following disturbances. Despite the numerical dominance of farming species on many reefs, the importance of their grazing activities is often overlooked, with most studies only examining their roles over restricted spatial and temporal scales. We used the results of field surveys covering 9.5° of latitude of the Great Barrier Reef to describe the distribution, abundance and temporal dynamics of farmer communities. Redundancy analysis revealed unique subregional assemblages of farming species that were shaped by the combined effects of shelf position and, to a lesser extent, by latitude. These spatial patterns were largely stable through time, except when major disturbances altered the benthic community. Such disturbances affected the functional guilds of farmers in different ways. Since different guilds of farmers modify benthic community structure and affect survival of juvenile corals in different ways, these results have important implications for coral recovery following disturbances. © 2012 Springer-Verlag.

  3. Poorly cemented coral reefs of the eastern tropical Pacific: Possible insights into reef development in a high-CO2 world

    OpenAIRE

    Manzello, Derek P.; Kleypas, Joan A.; Budd, David A.; Eakin, C. Mark; Glynn, Peter W.; Langdon, Chris

    2008-01-01

    Ocean acidification describes the progressive, global reduction in seawater pH that is currently underway because of the accelerating oceanic uptake of atmospheric CO2. Acidification is expected to reduce coral reef calcification and increase reef dissolution. Inorganic cementation in reefs describes the precipitation of CaCO3 that acts to bind framework components and occlude porosity. Little is known about the effects of ocean acidification on reef cementation and whether changes in cementa...

  4. Cross-shelf exchanges between the Coral Sea and the Great Barrier Reef lagoon determined from a regional-scale numerical model

    Science.gov (United States)

    Schiller, Andreas; Herzfeld, Mike; Brinkman, Richard; Rizwi, Farhan; Andrewartha, John

    2015-10-01

    Analyses of the variability in a 3.5-year run of a hydrodynamic model developed for simulating the circulation of the Great Barrier Reef (GBR) are presented. Sea-surface temperature, salinity, currents and cross-shelf transports between the GBR lagoon and the deep ocean offshore are investigated and compare well to available observations. Water mass intrusions and flushing events are critical factors in determining the health of coral reef and continental shelf ecosystems. Results from tracer release experiments provide a synoptic view of the variability of residence times within the GBR and identify critical regions of shelf-ocean exchange. One such region of significant tracer contribution to the shelf is identified in the vicinity of the Pompey Reefs in an area characterised by increased frequency of upslope transported water. Another location of enhanced flux on to the shelf exists in the region bracketing Palm Passage, where the reef matrix is very open, and provides little obstacle to cross-shelf exchange. The Palm Passage location is the origin of a northwards plume of elevated concentration. The model circulation provides a robust and useful picture of the Great Barrier Reef, rendering the model suitable for providing input to biogeochemical and sediment models to simulate, at a broad scale, the ecosystem health, water quality, transport and fate of water and waterborne material, moving through catchments and into the GBR lagoon.

  5. A rapid genetic assay for the identification of the most common Pocillopora damicornis genetic lineages on the Great Barrier Reef.

    Directory of Open Access Journals (Sweden)

    Gergely Torda

    Full Text Available Pocillopora damicornis (Linnaeus, 1758; Scleractinia, Pocilloporidae has recently been found to comprise at least five distinct genetic lineages in Eastern Australia, some of which likely represent cryptic species. Due to similar and plastic gross morphology of these lineages, field identification is often difficult. Here we present a quick, cost effective genetic assay as well as three novel microsatellite markers that distinguish the two most common lineages found on the Great Barrier Reef. The assay is based on PCR amplification of two regions within the mitochondrial putative control region, which show consistent and easily identifiable fragment size differences for the two genetic lineages after Alu1 restriction enzyme digestion of the amplicons.

  6. Clustered parrotfish feeding scars trigger partial coral mortality of massive Porites colonies on the inshore Great Barrier Reef

    Science.gov (United States)

    Welsh, J. Q.; Bonaldo, R. M.; Bellwood, D. R.

    2015-03-01

    Coral predation by parrotfishes can cause damage to coral colonies, but research into the dynamics of their feeding scars on Indo-Pacific corals is limited. We monitored feeding scars of the parrotfish Chlorurus microrhinos on massive Porites colonies at Orpheus Island (inshore Great Barrier Reef) over 4 months. Of the 30 marks monitored, 11 were single feeding scars, which all healed completely. The remaining 19 feeding marks consisted of clusters of scars. Eight began to recover, while 11 increased in size by 1,576 ± 252 % (mean ± SE). A logistic regression predicted that a single feeding scar on a Porites colony had a 97 % probability of healing; however, where more than three feeding scars were present, this dropped below 50 %. As excavating parrotfishes in the Indo-Pacific often take multiple focused bites, they may have a significant impact on the growth and mortality of massive Porites colonies at Orpheus Island.

  7. The importance of coastal altimetry retracking and detiding: A case study around the Great Barrier Reef, Australia

    DEFF Research Database (Denmark)

    Idris, Nurul H.; Deng, Xiaoli; Andersen, Ole Baltazar

    2014-01-01

    A new approach for improving the accuracy of altimetry-derived sea level anomalies (SLAs) near the coast is presented. Estimation of SLAs is optimized using optimal waveform retracking through a fuzzy multiple retracking system and the most appropriate detiding method. With the retracking system......, fuzzy-retracked SLAs become available within 5 km of the coast; meanwhile it becomes more important to use pointwise tide modelling rather than state-of-the-art global tidal models, as the latter leave residual ocean tide signals in retracked SLAs. These improvements are demonstrated for Jason-2...... waveforms in the area of the Great Barrier Reef, Australia. Comparing the retrieved SLAs with in situ tide gauge data from Townsville and Bundaberg stations showed that the SLAs from this study generally outperform those from conventional methods, demonstrating that adequate waveform retracking and detiding...

  8. Historical photographs revisited: A case study for dating and characterizing recent loss of coral cover on the inshore Great Barrier Reef

    Science.gov (United States)

    Clark, Tara R.; Leonard, Nicole D.; Zhao, Jian-Xin; Brodie, Jon; McCook, Laurence J.; Wachenfeld, David R.; Duc Nguyen, Ai; Markham, Hannah L.; Pandolfi, John M.

    2016-01-01

    Long-term data with high-precision chronology are essential to elucidate past ecological changes on coral reefs beyond the period of modern-day monitoring programs. In 2012 we revisited two inshore reefs within the central Great Barrier Reef, where a series of historical photographs document a loss of hard coral cover between c.1890–1994 AD. Here we use an integrated approach that includes high-precision U-Th dating specifically tailored for determining the age of extremely young corals to provide a robust, objective characterisation of ecological transition. The timing of mortality for most of the dead in situ corals sampled from the historical photograph locations was found to coincide with major flood events in 1990–1991 at Bramston Reef and 1970 and 2008 at Stone Island. Evidence of some recovery was found at Bramston Reef with living coral genera similar to what was described in c.1890 present in 2012. In contrast, very little sign of coral re-establishment was found at Stone Island suggesting delayed recovery. These results provide a valuable reference point for managers to continue monitoring the recovery (or lack thereof) of coral communities at these reefs.

  9. Discerning the timing and cause of historical mortality events in modern Porites from the Great Barrier Reef

    Science.gov (United States)

    Clark, Tara R.; Zhao, Jian-xin; Roff, George; Feng, Yue-xing; Done, Terence J.; Nothdurft, Luke D.; Pandolfi, John M.

    2014-08-01

    The life history strategies of massive Porites corals make them a valuable resource not only as key providers of reef structure, but also as recorders of past environmental change. Yet recent documented evidence of an unprecedented increase in the frequency of mortality in Porites warrants investigation into the history of mortality and associated drivers. To achieve this, both an accurate chronology and an understanding of the life history strategies of Porites are necessary. Sixty-two individual Uranium-Thorium (U-Th) dates from 50 dead massive Porites colonies from the central inshore region of the Great Barrier Reef (GBR) revealed the timing of mortality to have occurred predominantly over two main periods from 1989.2 ± 4.1 to 2001.4 ± 4.1, and from 2006.4 ± 1.8 to 2008.4 ± 2.2 A.D., with a small number of colonies dating earlier. Overall, the peak ages of mortality are significantly correlated with maximum sea-surface temperature anomalies. Despite potential sampling bias, the frequency of mortality increased dramatically post-1980. These observations are similar to the results reported for the Southern South China Sea. High resolution measurements of Sr/Ca and Mg/Ca obtained from a well preserved sample that died in 1994.6 ± 2.3 revealed that the time of death occurred at the peak of sea surface temperatures (SST) during the austral summer. In contrast, Sr/Ca and Mg/Ca analysis in two colonies dated to 2006.9 ± 3.0 and 2008.3 ± 2.0, suggest that both died after the austral winter. An increase in Sr/Ca ratios and the presence of low Mg-calcite cements (as determined by SEM and elemental ratio analysis) in one of the colonies was attributed to stressful conditions that may have persisted for some time prior to mortality. For both colonies, however, the timing of mortality coincides with the 4th and 6th largest flood events reported for the Burdekin River in the past 60 years, implying that factors associated with terrestrial runoff may have been

  10. On the variability of the flow along the Meso-American Barrier Reef system: a numerical model study of the influence of the Caribbean current and eddies

    Science.gov (United States)

    Ezer, Tal; Thattai, Deeptha V.; Kjerfve, Björn; Heyman, William D.

    2005-12-01

    A high resolution (3-8 km grid), 3D numerical ocean model of the West Caribbean Sea (WCS) is used to investigate the variability and the forcing of flows near the Meso-American Barrier Reef System (MBRS) which runs along the coasts of Mexico, Belize, Guatemala and Honduras. Mesoscale variations in velocity and temperature along the reef were found in seasonal model simulations and in observations; these variations are associated with meandering of the Caribbean current (CC) and the propagation of Caribbean eddies. Diagnostic calculations and a simple assimilation technique are combined to infer the dynamically adjusted flow associated with particular eddies. The results demonstrate that when a cyclonic eddy (negative sea surface height anomaly (SSHA)) is found near the MBRS the CC shifts offshore, the cyclonic circulation in the Gulf of Honduras (GOH) intensifies, and a strong southward flow results along the reef. However, when an anticyclonic eddy (positive SSHA) is found near the reef, the CC moves onshore and the flow is predominantly westward across the reef. The model results help to explain how drifters are able to propagate in a direction opposite to the mean circulation when eddies cause a reversal of the coastal circulation. The effect of including the Meso-American Lagoon west of the Belize Reef in the model topography was also investigated, to show the importance of having accurate coastal topography in determining the variations of transports across the MBRS. The variations found in transports across the MBRS (on seasonal and mesoscale time scales) may have important consequences for biological activities along the reef such as spawning aggregations; better understanding the nature of these variations will help ongoing efforts in coral reef conservation and maintaining the health of the ecosystem in the region.

  11. Community and connectivity: summary of a community based monitoring program set up to assess the movement of nutrients and sediments into the Great Barrier Reef during high flow events.

    Science.gov (United States)

    Devlin, M; Waterhouse, J; Brodie, J

    2001-01-01

    The Great Barrier Reef (GBR) system encompasses the largest system of corals and related life forms anywhere in the world. The health of this extensive system, particularly the inshore area, is dependent on the relationship between the GBR and adjacent coastal catchments. The major impact of agricultural practices on the GBR is the degradation of water quality in receiving (rivers) waters, caused by increased inputs of nutrients, suspended sediments and other pollutants. For the past three years, the Great Barrier Reef Marine Park Authority (GBRMPA) has been involved with the co-ordination of a river-monitoring program, specifically targeting the sampling of rivers during flood events. Representative sites were set up along two North Queensland rivers, the Russell-Mulgrave and Barron Rivers. This monitoring program is run in conjunction with the Queensland Department of Natural Resources' Waterwatch program. The program involves intensive sampling of first flush, extreme flow and post flood conditions over the two rivers. Extreme flow conditions are sampled over a limited time span (48 hours) with trained volunteers at 4-hour intervals. Concentrations measured in the flood events are dependent on land use characteristic, and extent of flow. Concentrations of dissolved and particulate nutrients are higher if the extreme flow event is part of the first flush cycle. Concentrations of DIN and DIP measured before, during and after a major flood event suggest that there is a large storage of inorganic material within the Barron and Russell-Mulgrave agricultural subcatchments that move over a period of days, and perhaps weeks. This program created a forum in which GBRMPA liased with the Barron and Russell-Mulgrave community about the connectivity existing between the river and the Great Barrier Reef lagoon.

  12. A new species of Numbakullidae Guţu & Heard, 2002 (Tanaidacea, Peracarida, Crustacea from the Great Barrier Reef, Australia

    Directory of Open Access Journals (Sweden)

    Anna Stępień

    2013-10-01

    Full Text Available A new species of Numbakulla Guţu & Heard, 2002 (Tanaidacea is described from Heron Island (southern Great Barrier Reef, Queensland collected during the Census of Coral Reefs Ecosystem (CReefs program. The new species is the third member of the family and can be recognized by the combination of characters as: length/width ratio of the body, which is 6:7, pereonite 4 longer than the rest, the presence of eyes, a blunt rostrum, antenna article 2 elongated, cheliped carpus with row of inner setae, pereopod 6 carpus with spines, pleopod endopod with denticles.

  13. 1300 km long late Pleistocene-Holocene shelf edge barrier reef system along the western continental shelf of India: Occurrence and significance

    Digital Repository Service at National Institute of Oceanography (India)

    Vora, K.H.; Wagle, B.G.; Veerayya, M.; Almeida, F.; Karisiddaiah, S.M.

    .A. Arthur for their extensive suggestions for improvements of the manuscript. Thanks are also due to colleagues who helped in the data collection. References Adey, W.H., Macintyre, LG. and Stuckenrath, R., 1977. Relict Barrier reef system off St. Croix...-1107. Hashimi, N.H., Nigam, R., Nair, R.R. and Rajagopalan, G., 1995. Holocene sea level fluctuations on western Indian con- tinental margin-an update. J. Geol. Sot. Ind., 46(2): 157-162. Macintyre, LG., 1967. Submerged coral reefs-west of Barba- dos, West...

  14. Dynamics of a deep-water seagrass population on the Great Barrier Reef: annual occurrence and response to a major dredging program.

    Science.gov (United States)

    York, Paul H; Carter, Alex B; Chartrand, Kathryn; Sankey, Tonia; Wells, Linda; Rasheed, Michael A

    2015-08-17

    Global seagrass research efforts have focused on shallow coastal and estuarine seagrass populations where alarming declines have been recorded. Comparatively little is known about the dynamics of deep-water seagrasses despite evidence that they form extensive meadows in some parts of the world. Deep-water seagrasses are subject to similar anthropogenic threats as shallow meadows, particularly along the Great Barrier Reef lagoon where they occur close to major population centres. We examine the dynamics of a deep-water seagrass population in the GBR over an 8 year period during which time a major capital dredging project occurred. Seasonal and inter-annual changes in seagrasses were assessed as well as the impact of dredging. The seagrass population was found to occur annually, generally present between July and December each year. Extensive and persistent turbid plumes from a large dredging program over an 8 month period resulted in a failure of the seagrasses to establish in 2006, however recruitment occurred the following year and the regular annual cycle was re-established. Results show that despite considerable inter annual variability, deep-water seagrasses had a regular annual pattern of occurrence, low resistance to reduced water quality but a capacity for rapid recolonisation on the cessation of impacts.

  15. Ecology and Pathology of Novel Plaque-Like Growth Anomalies Affecting a Reef-Building Coral on the Great Barrier Reef

    Directory of Open Access Journals (Sweden)

    Lisa Ann Kelly

    2016-08-01

    Full Text Available Here we identify ecological and structural characteristics of a novel plaque-like growth anomaly (GA at outbreak levels in a population of the staghorn coral, Acropora muricata, on the Great Barrier Reef. The smooth appearance of the plaques results from thickening of skeletal structures comprising the coenosteum, leading to infilling of spaces between corallites, and was associated with hyperplasia and hypertrophy of calicodermal cells. This resulted in a 2-fold reduction in corallite height, a 1.6-fold increase in corallite width, and a 2.3-fold increase in the thickness of the calicodermal layer compared to healthy corallites. Plaque-like GAs affected ~67% of corals surveyed, and on average, encased 50% of the surface area of diseased branches. Progression rates along branches averaged 0.22mm day-1 over a 2.5-month period. GAs spread throughout colonies but their presence did not affect the linear extension rates of branches. Reproductive products were absent in 55% of GA tissues, and when present, mean oocyte and spermary numbers were reduced by 50%. However, when present, mean sizes of oocytes and spermaries did not differ between healthy and GA tissues. Symbiodinium densities were also reduced by 50% in polyps within GA tissues, which were characterized by an absence of polyp structure and chaotic arrangement of gastrovascular canals, compromising host nutrition. A 3-fold increase in stores of the immune-related precursor, prophenoloxidase, within GA tissues compared to healthy tissue suggests a primed immune response. Concomitantly, only 35% of prophenoloxidase was converted to the active enzyme phenoloxidase compared to 81% in healthy tissues, consistent with inhibition of immune-related enzymatic reactions by an unknown causative agent. The increasing frequency of emerging disease hotspots highlights the importance of understanding sublethal effects of diseases that have important implications for the fitness and long-term resilience of

  16. The role of marine reserves in the replenishment of a locally impacted population of anemonefish on the Great Barrier Reef.

    Science.gov (United States)

    Bonin, Mary C; Harrison, Hugo B; Williamson, David H; Frisch, Ashley J; Saenz-Agudelo, Pablo; Berumen, Michael L; Jones, Geoffrey P

    2016-01-01

    The development of parentage analysis to track the dispersal of juvenile offspring has given us unprecedented insight into the population dynamics of coral reef fishes. These tools now have the potential to inform fisheries management and species conservation, particularly for small fragmented populations under threat from exploitation and disturbance. In this study, we resolve patterns of larval dispersal for a population of the anemonefish Amphiprion melanopus in the Keppel Islands (southern Great Barrier Reef). Habitat loss and fishing appear to have impacted this population and a network of no-take marine reserves currently protects 75% of the potential breeders. Using parentage analysis, we estimate that 21% of recruitment in the island group was generated locally and that breeding adults living in reserves were responsible for 79% (31 of 39) of these of locally produced juveniles. Overall, the network of reserves was fully connected via larval dispersal; however, one reserve was identified as a critical source of larvae for the island group. The population in the Keppel Islands also appears to be well-connected to other source populations at least 60 km away, given that 79% (145 of 184) of the juveniles sampled remained unassigned in the parentage analysis. We estimated the effective size of the A. melanopus metapopulation to be 745 (582-993 95% CI) and recommend continued monitoring of its genetic status. Maintaining connectivity with populations beyond the Keppel Islands and recovery of local recruitment habitat, potentially through active restoration of host anemone populations, will be important for its long-term persistence.

  17. Evaluation of annual resolution coral geochemical records as climate proxies in the Great Barrier Reef of Australia

    Science.gov (United States)

    Deng, Wenfeng; Wei, Gangjian; McCulloch, Malcolm; Xie, Luhua; Liu, Ying; Zeng, Ti

    2014-12-01

    Sampling of annually banded massive coral skeletons at annual (or higher) resolutions is increasingly being used to obtain replicate long-term time series of changing seawater conditions. However, few of these studies have compared and calibrated the lower annual resolution records based on coral geochemical tracers with the corresponding instrumental climate records, although some studies have inferred the climatic significance of annual coral series derived from averages of monthly or sub-annual records. Here, we present annual resolution analysis of coral records of elemental and stable isotopic composition that are approximately 70 years long. These records were preserved in two coexisting colonies of Porites sp. from Arlington Reef, on the Great Barrier Reef in Australia, and are used to evaluate the climatic significance of annually resolved coral geochemical proxies. The geochemical records of coral sample "10AR2," with its faster and relatively constant annual growth rate, appear to have been independent of skeletal growth rate and other vital effects. The annual resolution of Sr/Ca and Δδ18O time series was shown to be a good proxy for annual sea surface temperature (SST; r = -0.67, n = 73, p < 0.0000001) and rainfall records ( r = -0.34, n = 67, p < 0.01). However, a slower growing coral sample, "10AR1" showed significantly lower correlations ( r = -0.20, n = 71, p = 0.05 for Sr/Ca and SST; r = -0.19, n = 67, p = 0.06 for Δδ18O and rainfall), indicating its greater susceptibility to biological/metabolic effects. Our results suggest that while annually resolved coral records are potentially a valuable tool for determining, in particular, long timescale climate variability such as Pacific Decadal Oscillation, Interdecadal Pacific Oscillation, and other climatic factors, the selection of the coral sample is important, and replication is essential.

  18. Chimerism in wild adult populations of the broadcast spawning coral Acropora millepora on the Great Barrier Reef.

    Directory of Open Access Journals (Sweden)

    Eneour Puill-Stephan

    Full Text Available BACKGROUND: Chimeras are organisms containing tissues or cells of two or more genetically distinct individuals, and are known to exist in at least nine phyla of protists, plants, and animals. Although widespread and common in marine invertebrates, the extent of chimerism in wild populations of reef corals is unknown. METHODOLOGY/PRINCIPAL FINDINGS: The extent of chimerism was explored within two populations of a common coral, Acropora millepora, on the Great Barrier Reef, Australia, by using up to 12 polymorphic DNA microsatellite loci. At least 2% and 5% of Magnetic Island and Pelorus Island populations of A. millepora, respectively, were found to be chimeras (3% overall, based on conservative estimates. A slightly less conservative estimate indicated that 5% of colonies in each population were chimeras. These values are likely to be vast underestimates of the true extent of chimerism, as our sampling protocol was restricted to a maximum of eight branches per colony, while most colonies consist of hundreds of branches. Genotypes within chimeric corals showed high relatedness, indicating that genetic similarity is a prerequisite for long-term acceptance of non-self genotypes within coral colonies. CONCLUSIONS/SIGNIFICANCE: While some brooding corals have been shown to form genetic chimeras in their early life history stages under experimental conditions, this study provides the first genetic evidence of the occurrence of coral chimeras in the wild and of chimerism in a broadcast spawning species. We hypothesize that chimerism is more widespread in corals than previously thought, and suggest that this has important implications for their resilience, potentially enhancing their capacity to compete for space and respond to stressors such as pathogen infection.

  19. The role of marine reserves in the replenishment of a locally impacted population of anemonefish on the Great Barrier Reef.

    Science.gov (United States)

    Bonin, Mary C; Harrison, Hugo B; Williamson, David H; Frisch, Ashley J; Saenz-Agudelo, Pablo; Berumen, Michael L; Jones, Geoffrey P

    2016-01-01

    The development of parentage analysis to track the dispersal of juvenile offspring has given us unprecedented insight into the population dynamics of coral reef fishes. These tools now have the potential to inform fisheries management and species conservation, particularly for small fragmented populations under threat from exploitation and disturbance. In this study, we resolve patterns of larval dispersal for a population of the anemonefish Amphiprion melanopus in the Keppel Islands (southern Great Barrier Reef). Habitat loss and fishing appear to have impacted this population and a network of no-take marine reserves currently protects 75% of the potential breeders. Using parentage analysis, we estimate that 21% of recruitment in the island group was generated locally and that breeding adults living in reserves were responsible for 79% (31 of 39) of these of locally produced juveniles. Overall, the network of reserves was fully connected via larval dispersal; however, one reserve was identified as a critical source of larvae for the island group. The population in the Keppel Islands also appears to be well-connected to other source populations at least 60 km away, given that 79% (145 of 184) of the juveniles sampled remained unassigned in the parentage analysis. We estimated the effective size of the A. melanopus metapopulation to be 745 (582-993 95% CI) and recommend continued monitoring of its genetic status. Maintaining connectivity with populations beyond the Keppel Islands and recovery of local recruitment habitat, potentially through active restoration of host anemone populations, will be important for its long-term persistence. PMID:26589106

  20. Sea surface temperature as a tracer to estimate cross-shelf turbulent diffusivity and flushing time in the Great Barrier Reef lagoon

    Science.gov (United States)

    Mao, Yadan; Ridd, Peter V.

    2015-06-01

    Accurate parameterization of spatially variable diffusivity in complex shelf regions such as the Great Barrier Reef (GBR) lagoon is an unresolved issue for hydrodynamic models. This leads to large uncertainties to the flushing time derived from them and to the evaluation of ecosystem resilience to terrestrially derived pollution. In fact, numerical hydrodynamic models and analytical cross-shore diffusion models have predicted very different flushing times for the GBR lagoon. Nevertheless, scarcity of in situ measurements used previously in the latter method prevents derivation of detailed diffusivity profiles. Here detailed cross-shore profiles of diffusivity were calculated explicitly in a closed form for the first time from the steady state transects of sea surface temperature for different sections of the GBR lagoon. We find that diffusivity remains relatively constant within the inner lagoon (reef-devoid regions, but increases dramatically where the reef matrixes start and fluctuates with reef size and density. The cross-shelf profile of steady state salinity calculated using the derived diffusivity values agrees well with field measurements. The calculated diffusivity values are also consistent with values derived from satellite-tracked drifters. Flushing time by offshore diffusion is of the order of 1 month, suggesting the important role of turbulent diffusion in flushing the lagoon, especially in reef-distributed regions. The results imply that previous very large residence times predicted by numerical hydrodynamic models may result from underestimation of diffusivity. Our findings can guide parameterization of diffusivity in hydrodynamic modeling.

  1. Drawing a Roadmap: Barriers and Challenges to Designing the Ideal Virtual World for Higher Education

    Science.gov (United States)

    Johnson, Chris

    2008-01-01

    The goal of this article is to draw a roadmap for designing an "ideal" virtual world for higher education, pointing decision-makers in a general direction for implementing virtual worlds and noting various barriers along the way. When using a roadmap, one can take many different paths to reach a desired destination. Similarly, institutions can…

  2. Monorchiid trematodes of the painted sweetlips, Diagramma labiosum (Perciformes: Haemulidae), from the southern Great Barrier Reef, including a new genus and three new species.

    Science.gov (United States)

    Searle, Emily L; Cutmore, Scott C; Cribb, Thomas H

    2014-07-01

    Five monorchiid species are reported from Diagramma labiosum Macleay (Perciformes: Haemulidae) collected from Heron Island on the southern Great Barrier Reef (GBR): two described species, Helicometroides longicollis Yamaguti, 1934 and Diplomonorchis kureh Machida, 2005 and three new species, including one new genus, Asymmetrostoma heronensis n. g., n. sp., Lasiotocus arrhichostoma n. sp. and Proctotrema addisoni n. sp. Helicometroides longicollis and D. kureh were previously reported from the closely related species Diagramma pictum (Thunberg) from Japan. Two further monorchiid species known from D. pictum, Genolopa plectorhynchi (Yamaguti, 1934) and Paraproctotrema fusiforme Yamaguti, 1934, appear to be absent from the southern Great Barrier Reef. Previous reports of two other monorchiids from D. labiosum from the GBR, Paramonorcheides pseudocaranxi Dove & Cribb, 1998 and Helicometroides vitellosus (Durio & Manter, 1968), are shown to have been made in error. The high richness of monorchiids and other trematode families in D. labiosum is consistent with that seen in other haemulids elsewhere.

  3. A new genus of Stenetriidae Hansen, 1905 (Asellota: Isopoda: Crustacea) from the Great Barrier Reef, Australia and the southwestern Pacific.

    Science.gov (United States)

    Bruce, Niel L; Cumming, R L

    2015-04-02

    Onychatrium gen. nov. is described, with five included species: Onychatrium forceps sp. nov., the type species and Onychatrium torosus sp. nov., both from the Great Barrier Reef; Onychatrium entale (Nordenstam, 1946) comb. nov., from Tapateuen (= Tabiteue Island), Gilbert Islands; Onychatrium thomasi (Bolstad & Kensley, 1999) comb. nov., from Madang, Papua New Guinea; and Onychatrium echiurum (Nobili, 1906) comb. nov., and species inquirenda from the Tumaotu Islands, Eastern French Polynesia. The primary distinguishing characters for Onychatrium gen. nov. are a trapezoid pseudosrostrum, the male pereopod 1 with elongate dactylus (4.7-7.3 as long as proximal width), propodus with strongly produced and acute lobe, carpus with a distally acute, flat, ventrally directed process (except O. torosus sp. nov., which has a short and truncate process) and the merus with a distally directed inferodistal lobe. The genus is known only from the southern Pacific, from the Tuamotus (eastern French Polynesia) to the Great Barrier Reef and northern Papua New Guinea.

  4. Crossing the Virtual World Barrier with OpenAvatar

    Science.gov (United States)

    Joy, Bruce; Kavle, Lori; Tan, Ian

    2012-01-01

    There are multiple standards and formats for 3D models in virtual environments. The problem is that there is no open source platform for generating models out of discrete parts; this results in the process of having to "reinvent the wheel" when new games, virtual worlds and simulations want to enable their users to create their own avatars or easily customize in-world objects. OpenAvatar is designed to provide a framework to allow artists and programmers to create reusable assets which can be used by end users to generate vast numbers of complete models that are unique and functional. OpenAvatar serves as a framework which facilitates the modularization of 3D models allowing parts to be interchanged within a set of logical constraints.

  5. Long-term records of coral calcification across the central Great Barrier Reef: assessing the impacts of river runoff and climate change

    Science.gov (United States)

    D'Olivo, J. P.; McCulloch, M. T.; Judd, K.

    2013-12-01

    Calcification rates are reported for 41 long-lived Porites corals from 7 reefs, in an inshore to offshore transect across the central Great Barrier Reef (GBR). Over multi-decadal timescales, corals in the mid-shelf (1947-2008) and outer reef (1952-2004) regions of the GBR exhibit a significant increase in calcification of 10.9 ± 1.1 % (1.4 ± 0.2 % per decade; ±1 SE) and 11.1 ± 3.9 % (2.1 ± 0.8 % per decade), respectively, while inner-shelf (1930-2008), reefs show a decline of 4.6 ± 1.3 % (0.6 ± 0.2 % per decade). This long-term decline in calcification for the inner GBR is attributed to the persistent ongoing effects of high sediment/nutrients loads from wet season river discharges, compounded by the effects of thermal stress, especially during the 1998 bleaching event. For the recent period (1990-2008), our data show recovery from the 1998 bleaching event, with no significant trend in the rates of calcification (1.1 ± 2.0 %) for the inner reefs, while corals from the mid-shelf central GBR show a decline of 3.3 ± 0.9 %. These results are in marked contrast to the extreme reef-wide declines of 14.2 % reported by De'ath et al. (2009) for the period of 1990-2005. The De'ath et al. (2009) results are, however, found to be compromised by the inclusion of incomplete final years, duplicated records, together with a bias toward inshore reefs strongly affected by the 1998 bleaching. Our new findings nevertheless continue to raise concerns, with the inner-shelf reefs continuing to show long-term declines in calcification consistent with increased disturbance from land-based effects. In contrast, the more `pristine' mid- and outer-shelf reefs appear to be undergoing a transition from increasing to decreasing rates of calcification, possibly reflecting the effects of CO2-driven climate change. Our study highlights the importance of properly undertaken, regular assessments of coral calcification that are representative of the distinctive cross-shelf environments and

  6. Cyanotoxins are not implicated in the etiology of coral black band disease outbreaks on Pelorus Island, Great Barrier Reef.

    Science.gov (United States)

    Glas, Martin S; Motti, Cherie A; Negri, Andrew P; Sato, Yui; Froscio, Suzanne; Humpage, Andrew R; Krock, Bernd; Cembella, Allan; Bourne, David G

    2010-07-01

    Cyanobacterial toxins (i.e. microcystins) produced within the microbial mat of coral black band disease (BBD) have been implicated in disease pathogenicity. This study investigated the presence of toxins within BBD lesions and other cyanobacterial patch (CP) lesions, which, in some instances ( approximately 19%), facilitated the onset of BBD, from an outbreak site at Pelorus Island on the inshore, central Great Barrier Reef (GBR). Cyanobacterial species that dominated the biomass of CP and BBD lesions were cultivated and identified, based on morphology and 16S rRNA gene sequences, as Blennothrix- and Oscillatoria-affiliated species, respectively, and identical to cyanobacterial sequences retrieved from previous molecular studies from this site. The presence of the cyanotoxins microcystin, cylindrospermopsin, saxitoxin, nodularin and anatoxin and their respective gene operons in field samples of CP and BBD lesions and their respective culture isolations was tested using genetic (PCR-based screenings), chemical (HPLC-UV, FTICR-MS and LC/MS(n)) and biochemical (PP2A) methods. Cyanotoxins and cyanotoxin synthetase genes were not detected in any of the samples. Cyanobacterial species dominant within CP and BBD lesions were phylogenetically distinct from species previously shown to produce cyanotoxins and isolated from BBD lesions. The results from this study demonstrate that cyanobacterial toxins appear to play no role in the pathogenicity of CP and BBD at this site on the GBR.

  7. Six new species of the genus Armandia Filippi, 1861 (Polychaeta, Opheliidae) from Lizard Island (Great Barrier Reef, Australia).

    Science.gov (United States)

    Parapar, Julio; Moreira, Juan

    2015-09-18

    From the study of the material collected during the Polychaete Workshop held in Lizard Island (Great Barrier Reef, Australia) in August 2013, six species belonging to the genus Armandia (Polychaeta, Opheliidae) are newly described. Armandia bifida n. sp. is characterised by the bifid shape of the prechaetal lobe in CH1-CH3, A. dolio n. sp. by the barrel-shaped anal (=pygidial) tube (=funnel), A. filibranchia n. sp. by the extremely long and thin branchiae, A. laminosa n. sp. by the foliose shape and large size of the prechaetal lobe in CH1-CH3, A. paraintermedia n. sp. by the squared-shaped anal tube and size and shape of anal cirri, and A. tubulata n. sp. by the tubular shape of the anal tube. All species are fully described and illustrated, and compared with similar species. Several body characters of taxonomic relevance (e.g., anal tube and parapodia shape) are studied based on SEM micrographs. A key of the Armandia species hitherto described or reported in South-East Asia and Australasia is provided based on features of the anal tube.

  8. Altered transcription levels of endocrine associated genes in two fisheries species collected from the Great Barrier Reef catchment and lagoon.

    Science.gov (United States)

    Kroon, Frederieke J; Hook, Sharon E; Jones, Dean; Metcalfe, Suzanne; Henderson, Brent; Smith, Rachael; Warne, Michael St J; Turner, Ryan D; McKeown, Adam; Westcott, David A

    2015-03-01

    The Great Barrier Reef (GBR) is chronically exposed to agricultural run-off containing pesticides, many of which are known endocrine disrupting chemicals (EDCs). Here, we measure mRNA transcript abundance of two EDC biomarkers in wild populations of barramundi (Lates calcarifer) and coral trout (Plectropomus leopardus and Plectropomus maculatus). Transcription levels of liver vitellogenin (vtg) differed significantly in both species amongst sites with different exposures to agricultural run-off; brain aromatase (cyp19a1b) revealed some differences for barramundi only. Exposure to run-off from sugarcane that contains pesticides is a likely pathway given (i) significant associations between barramundi vtg transcription levels, catchment sugarcane land use, and river pesticide concentrations, and (ii) consistency between patterns of coral trout vtg transcription levels and pesticide distribution in the GBR lagoon. Given the potential consequences of such exposure for reproductive fitness and population dynamics, these results are cause for concern for the sustainability of fisheries resources downstream from agricultural land uses.

  9. Sphaerodoridae (Annelida) from Lizard Island, Great Barrier Reef, Australia, including the description of two new species and reproductive notes.

    Science.gov (United States)

    Capa, María; Rouse, Greg W

    2015-09-18

    Sphaerodorids are scarce at Lizard Island archipelago and other localities in the Great Barrier Reef, Australia. Intensive collections at a variety of habitats within the Lizard Island archipelago over the last four decades have resulted in a total of just 11 specimens. Nevertheless, they represent two new species and a new record for Lizard Island. Sphaerodoropsis aurantica n. sp. is characterised by nine longitudinal rows of sessile and spherical dorsal macrotubercles, arranged in a single transverse row per segment; parapodia with around 10 spherical papillae; and compound chaetae with thin shafts and long blades. Sphaerodoropsis plurituberculata n. sp. is characterised by more than 12 more or less clearly arranged longitudinal rows of sessile spherical dorsal tubercles (variable in size), in four transverse rows per segment; parapodia lacking papillae; and semi-compound chaetae with distally enlarged shaft and short blades. Ephesiella australiensis is reported for the first time in Lizard Island. Laboratory observations of live specimens of Sphaerodoropsis plurituberculata n. sp., revealed the use of spermatophores by males. These were found attached externally to the body surface of both sexes, indicating pseudo-copulation.

  10. Comparing bleaching and mortality responses of hard corals between southern Kenya and the Great Barrier Reef, Australia.

    Science.gov (United States)

    McClanahan, T R; Baird, A H; Marshall, P A; Toscano, M A

    2004-02-01

    We compared the bleaching and mortality response (BMI) of 19 common scleractinian corals to an anomalous warm-water event in 1998 to determine the degree of variation between depths, sites, and regions. Mombasa corals experienced a greater temperature anomaly than those on the Great Barrier Reef (GBR) sites and this was reflected in the greater BMI response of most taxa. Comparing coral taxa in different sites at the same depth produced high correlation coefficients in the bleaching response in Kenya at 2 m (r=0.86) and GBR at 6 m depth sites (r=0.80) but less in the GBR for shallow 2 m sites (r=0.49). The pattern of taxa susceptibility was remarkably consistent between the regions. Coral taxa explained 52% of the variation in the response of colonies to bleaching between these two regions (Kenya BMI=0.90 GBR BMI+26; F(1,19) - 18.3; p bleaching is phylogenetically constrained, emphasizing the importance of features of the host's physiology or morphology in determining the response to thermal stress.

  11. Circulation in the southern Great Barrier Reef studied through an integration of multiple remote sensing and in situ measurements

    Science.gov (United States)

    Mao, Yadan; Luick, John L.

    2014-03-01

    New mechanisms for stratification and upwelling in the southern Great Barrier Reef (GBR) are identified, and dynamic details of Capricorn Eddy, a transient feature located off the shelf at the southern extremity of the GBR, are revealed using the newly available surface current from High Frequency (HF) radar combined with other remote sensing and mooring data. The HF radar surface currents were used for tidal harmonic analysis and current-wind correlation analysis. These analyses, combined with Sea Surface Temperature (SST) data, mooring data, and altimetry-based geostrophic currents, enabled the effects of forcing from the large-scale oceanic currents (including the East Australian Current (EAC)), wind, and tides in a topographically complex flow regime to be separately identified. Within the indentation region where the width of the shelf abruptly narrows, current is strongly coupled with the EAC. Here strong residual flows, identified on current maps and SST images, fall into three patterns: southward flow, northwestward flow, and an eddy. Multiple data sets shed light on the prerequisite for the formation of the eddy, the reasons for its geometric variation, and its evolution with time. Intrusions of the eddy onto the shelf result in stratification characterized by a significant increase of surface temperature. Upwelling driven by wind or oceanic inflow is shown to cause stratification of previously well-mixed shelf water. The upwelling appears to be associated with equatorward-traveling coastal-trapped waves. The integrative method of analysis embodied here is applicable to other coastal regions with complex circulation.

  12. Barriers to Mental Health Treatment: Results from the WHO World Mental Health (WMH) Surveys

    Science.gov (United States)

    Andrade, L. H.; Alonso, J.; Mneimneh, Z.; Wells, J. E.; Al-Hamzawi, A.; Borges, G.; Bromet, E.; Bruffaerts, R.; de Girolamo, G.; de Graaf, R.; Florescu, S.; Gureje, O.; Hinkov, H. R.; Hu, C.; Huang, Y.; Hwang, I.; Jin, R.; Karam, E. G.; Kovess-Masfety, V.; Levinson, D.; Matschinger, H.; O’Neill, S.; Posada-Villa, J.; Sagar, R.; Sampson, N. A.; Sasu, C.; Stein, D.; Takeshima, T.; Viana, M. C.; Xavier, M.; Kessler, R. C.

    2014-01-01

    Background To examine barriers to initiation and continuation of mental health treatment among individuals with common mental disorders. Methods Data are from the WHO World Mental Health (WMH) Surveys. Representative household samples were interviewed face-to-face in 24 countries. Reasons to initiate and continue treatment were examined in a subsample (n= 63,678) and analyzed at different levels of clinical severity. Results Among those with a DSM-IV disorder in the past twelve months, low perceived need was the most common reason for not initiating treatment and more common among moderate and mild than severe cases. Women and younger people with disorders were more likely to recognize a need for treatment. Desire to handle the problem on one’s own was the most common barrier among respondents with a disorder who perceived a need for treatment (63.8%). Attitudinal barriers were much more important than structural barriers both to initiating and continuing treatment. However, attitudinal barriers dominated for mild-moderate cases and structural barriers for severe cases. Perceived ineffectiveness of treatment was the most commonly reported reason for treatment dropout (39.3%) followed by negative experiences with treatment providers (26.9% of respondents with severe disorders). Conclusions Low perceived need and attitudinal barriers are the major barriers to seeking and staying in treatment among individuals with common mental disorders worldwide. Apart from targeting structural barriers, mainly in countries with poor resources, increasing population mental health literacy is an important endeavor worldwide. PMID:23931656

  13. Holocene sea level instability in the southern Great Barrier Reef, Australia: high-precision U-Th dating of fossil microatolls

    Science.gov (United States)

    Leonard, Nicole D.; Zhao, J.-x.; Welsh, K. J.; Feng, Y.-x.; Smithers, S. G.; Pandolfi, J. M.; Clark, T. R.

    2016-06-01

    Three emergent subfossil reef flats from the inshore Keppel Islands, Great Barrier Reef (GBR), Australia, were used to reconstruct relative sea level (RSL). Forty-two high-precision uranium-thorium (U-Th) dates obtained from coral microatolls and coral colonies (2σ age errors from ±8 to 37 yr) in conjunction with elevation surveys provide evidence in support of a nonlinear RSL regression throughout the Holocene. RSL was as least 0.75 m above present from ~6500 to 5500 yr before present (yr BP; where "present" is 1950). Following this highstand, two sites indicated a coeval lowering of RSL of at least 0.4 m from 5500 to 5300 yr BP which was maintained for ~200 yr. After the lowstand, RSL returned to higher levels before a 2000-yr hiatus in reef flat corals after 4600 yr BP at all three sites. A second possible RSL lowering event of ~0.3 m from ~2800 to 1600 yr BP was detected before RSL stabilised ~0.2 m above present levels by 900 yr BP. While the mechanism of the RSL instability is still uncertain, the alignment with previously reported RSL oscillations, rapid global climate changes and mid-Holocene reef "turn-off" on the GBR are discussed.

  14. A too acid world for coral reefs; Un monde trop acide pour les recifs coralliens

    Energy Technology Data Exchange (ETDEWEB)

    Allemand, D.; Reynaud, St. [Centre Scientifique de Monaco (Monaco); Universite de Nice-Sofia Antipolis, 06 (France); Salvat, B. [Universite de Perpignan, USR-3278 CNRS - EPHE, 66 (France)

    2010-09-15

    While briefly presenting how corals grow and exchange with their environment and after having recalled that temperature increase was already a threat for them, this article outlines that ocean acidification is now considered as another danger. This acidification is due to the dissolution in sea water of CO{sub 2} produced by human activities. This entails a slower calcification which is the process by which corals grow their skeleton. But, some researches showed that some corals manage to survive normally in such acid conditions, and even without skeleton for some other species. Anyhow, coral reefs will tend to disappear with environmental and socio-economical consequences

  15. Invasive lionfish preying on critically endangered reef fish

    Science.gov (United States)

    Rocha, Luiz A.; Rocha, Claudia R.; Baldwin, Carole C.; Weigt, Lee A.; McField, Melanie

    2015-09-01

    Caribbean coral reef ecosystems are at the forefront of a global decline and are now facing a new threat: elimination of vulnerable species by the invasive lionfish ( Pterois spp.). In addition to being threatened by habitat destruction and pollution, the critically endangered social wrasse ( Halichoeres socialis), endemic to Belize's inner barrier reef, has a combination of biological traits (small size, schooling, and hovering behavior) that makes it a target for the invasive lionfish. Based on stomach content analyses, this small fish comprises almost half of the lionfish diet at the inner barrier reef in Belize. The combination of lionfish predation, limited range, and ongoing habitat destruction makes the social wrasse the most threatened coral reef fish in the world. Other species with small range and similar traits occur elsewhere in the Caribbean and face similar risks.

  16. Transport of Australian Continental Dust to Australia's Great Barrier Reef Region: First Results From Sampling, Remote Sensing, Synoptic and Trajectory Analyses

    Science.gov (United States)

    Tapper, N.; O'Loingsigh, T.; de Deckker, P.; Cohen, D.

    2009-04-01

    As part of a large multi-disciplinary project funded by the Australian Research Council and in collaboration with the Australian Nuclear Science and Technology Organisation, we established in mid-2008 three PM 2.5 samplers in eastern Australia to determine possible transport of continental dust from the major dust source region of the Lake Eyre Basin (LEB). These samplers were located at Fowlers Gap, New South Wales [NSW] (31.09S, 141.70E), Mount Stromlo, NSW (35.30S, 149.00E) and Heron Island, Queensland (23.44S, 151.83E). The latter location is of particular significance because of its proximity to the World Heritage Great Barrier Reef (GBR) and to the tropical rainforest of coastal North Queensland. In previous studies, dust and associated organic material of African origin has been associated with rainforest fertilisation in Amazonia and coral bleaching in the Carribean. In this presentation three case studies of continental dust transport to Heron Island that occurred in the first four months of sampling are examined. In each case transport of soil material from the LEB region and/or western NSW is confirmed by the nature of material sampled, by remote sensing of the dust, by forward and backward air parcel trajectory analysis and by synoptic analysis. In each case the dust arrived over Heron Island 3-7 days after passing over the southern samplers, generally having followed an anti-clockwise curved path to approach Heron Island from the southeast. The potential significance of this finding for the GBR is briefly discussed.

  17. Air-sea energy exchanges measured by eddy covariance during a localised coral bleaching event, Heron Reef, Great Barrier Reef, Australia

    Science.gov (United States)

    MacKellar, Mellissa C.; McGowan, Hamish A.

    2010-12-01

    Despite the widely claimed association between climate change and coral bleaching, a paucity of data exists relating to exchanges of heat, moisture and momentum between the atmosphere and the reef-water surface. We present in situ measurements of reef-water-air energy exchanges made using the eddy covariance method during a summer coral bleaching event at Heron Reef, Australia. Under settled, cloud-free conditions and light winds, daily net radiation exceeded 800 W m-2, with up to 95% of the net radiation during the morning partitioned into heating the water column, substrate and benthic cover including corals. Heating was exacerbated by a mid-afternoon low tide when shallow reef flat water reached 34°C and near-bottom temperatures 33°C, exceeding the thermal tolerance of corals, causing bleaching. Results suggest that local to synoptic scale meteorology, particularly clear skies, solar heating, light winds and the timing of low tide were the primary controls on coral bleaching.

  18. High Macroalgal Cover and Low Coral Recruitment Undermines the Potential Resilience of the World's Southernmost Coral Reef Assemblages

    OpenAIRE

    Hoey, Andrew S.; Pratchett, Morgan S; Christopher Cvitanovic

    2011-01-01

    Coral reefs are under increasing pressure from anthropogenic and climate-induced stressors. The ability of reefs to reassemble and regenerate after disturbances (i.e., resilience) is largely dependent on the capacity of herbivores to prevent macroalgal expansion, and the replenishment of coral populations through larval recruitment. Currently there is a paucity of this information for higher latitude, subtropical reefs. To assess the potential resilience of the benthic reef assemblages of Lor...

  19. The Best Job in the World in the Great Barrier Reef

    Institute of Scientific and Technical Information of China (English)

    李传雨

    2009-01-01

    为了宣传和推广澳大利亚当地丰富的旅游资源,昆士兰州旅游局于2009年年初面向全球招聘大堡礁哈密尔顿岛“护岛人”,这份被称为“世界上最好的工作”吸引了200多个国家和地区的3万多名应聘者。经过近4个月的选拔,现年34岁的英国男子本·绍索尔赢得了这份工作。大堡礁上有哪些迷人的风景,得以吸引了这么多参与者呢?让我们一同来了解一下!

  20. Coral reproduction in the world's warmest reefs: southern Persian Gulf (Dubai, United Arab Emirates)

    Science.gov (United States)

    Bauman, A. G.; Baird, A. H.; Cavalcante, G. H.

    2011-06-01

    Despite extensive research on coral reproduction from numerous geographic locations, there remains limited knowledge within the Persian Gulf. Given that corals in the Persian Gulf exist in one of the most stressful environments for reef corals, with annual variations in sea surface temperature (SST) of 12°C and maximum summer mean SSTs of 36°C, understanding coral reproductive biology in the Gulf may provide clues as to how corals may cope with global warming. In this study, we examined six locally common coral species on two shallow reef sites in Dubai, United Arab Emirates (UAE), in 2008 and 2009 to investigate the patterns of reproduction, in particular the timing and synchrony of spawning. In total, 71% colonies in April 2008 and 63% colonies in April 2009 contained mature oocytes. However, the presence of mature gametes in May indicated that spawning was potentially split between April and May in all species. These results demonstrate that coral reproduction patterns within this region are highly seasonal and that multi-species spawning synchrony is highly probable. Acropora downingi, Cyphastrea microphthalma and Platygyra daedalea were all hermaphroditic broadcast spawners with a single annual gametogenic cycle. Furthermore, fecundity and mature oocyte sizes were comparable to those in other regions. We conclude that the reproductive biology of corals in the southern Persian Gulf is similar to other regions, indicating that these species have adapted to the extreme environmental conditions in the southern Persian Gulf.

  1. Reef grief

    Science.gov (United States)

    2011-10-01

    As the first of the world's ecosystems faces extermination at our hands, coral reef ecologist Peter Sale -- Assistant Director of the Institute of Water, Environment and Health at the United Nations University in Ontario, Canada, and author of Our Dying Planet (published this autumn) -- talks to Nature Climate Change.

  2. First-generation fitness consequences of interpopulational hybridisation in a Great Barrier Reef coral and its implications for assisted migration management

    Science.gov (United States)

    van Oppen, M. J. H.; Puill-Stephan, E.; Lundgren, P.; De'ath, G.; Bay, L. K.

    2014-09-01

    The translocation of populations within their natural distribution ranges to instigate crossings between genetic stocks may enhance adaptive potential and resilience. Colonies of the reef-building coral, Acropora millepora, collected in the warmer central Great Barrier Reef (GBR) were experimentally crossed with conspecific colonies from the cooler southern GBR. Fertilisation success was high in all purebred and regional hybrid crosses (>83 %). After 4 months in the field at the southern location, survival rates differed as follows: native purebreds > regional hybrids > central GBR purebreds. The southern GBR purebreds were smaller at settlement compared with the other groups, but this difference disappeared towards the end of the grow-out period. While no benefit of genetic mixing in the F1 generation of this species was evident from our work, it is possible that hybrid vigour exists for other traits, such as thermal tolerance, and over different spatial scales, for different species, or in later generations.

  3. A complex of species related to Paradiscogaster glebulae (Digenea: Faustulidae) in chaetodontid fishes (Teleostei: Perciformes) of the Great Barrier Reef.

    Science.gov (United States)

    Diaz, Pablo E; Bray, Rodney A; Cutmore, Scott C; Ward, Selina; Cribb, Thomas H

    2015-10-01

    A total of 1523 individuals of 34 species of chaetodontids from the Great Barrier Reef were examined for faustulid trematodes. Specimens resembling Paradiscogaster glebulae Bray, Cribb & Barker, 1994 were found in nine chaetodontid species at three localities. These specimens are shown, on the basis of combined morphological and molecular analyses, to comprise a complex of morphologically similar and partly cryptic species. The complex may comprise as many as six distinct species of which three are resolved here. The true P. glebulae is identified in Chaetodon ornatissimus Cuvier, 1831, Chaetodon aureofasciatus Macleay, 1878, Chaetodon plebeius Cuvier, 1831, Chaetodon rainfordi McCulloch, 1923 and Chaetodon speculum Cuvier, 1831. Two new species are described, Paradiscogaster munozae n. sp. from Heniochus varius (Cuvier, 1829), Heniochus chrysostomus Cuvier, 1831 and Chaetodon citrinellus Cuvier, 1831 and Paradiscogaster melendezi n. sp. from Chaetodon kleinii Bloch, 1790. In terms of morphology the three species differ most clearly in the development of the appendages on the ventral sucker. The three species differ at 3-6consistent bp of ITS2 rDNA. The host-specificity of the three species differs strikingly. P. melendezi n. sp. infects just one fish species, P. glebulae infects species of only one clade of Chaetodon, and P. munozae n. sp. infects quite unrelated species. The basis of this unusual pattern of host-specificity requires further exploration. Two of the species recognised here, P. glebulae and P. munozae n. sp., showed apparent intra-individual variation in the ITS2 rDNA sequences as demonstrated by clear, replicated double peaks in the electropherograms.

  4. Large-scale expansion of no-take closures within the Great Barrier Reef has not enhanced fishery production.

    Science.gov (United States)

    Fletcher, W J; Kearney, R E; Wise, B S; Nash, W J

    2015-07-01

    A rare opportunity to test hypotheses about potential fishery benefits of large-scale closures was initiated in July 2004 when an additional 28.4% of the 348 000 km2 Great Barrier Reef (GBR) region of Queensland, Australia was closed to all fishing. Advice to the Australian and Queensland governments that supported this initiative predicted these additional closures would generate minimal (10%) initial reductions in both catch and landed value within the GBR area, with recovery of catches becoming apparent after three years. To test these predictions, commercial fisheries data from the GBR area and from the two adjacent (non-GBR) areas of Queensland were compared for the periods immediately before and after the closures were implemented. The observed means for total annual catch and value within the GBR declined from preclosure (2000-2003) levels of 12780 Mg and Australian $160 million, to initial post-closure (2005-2008) levels of 8143 Mg and $102 million; decreases of 35% and 36% respectively. Because the reference areas in the non-GBR had minimal changes in catch and value, the beyond-BACI (before, after, control, impact) analyses estimated initial net reductions within the GBR of 35% for both total catch and value. There was no evidence of recovery in total catch levels or any comparative improvement in catch rates within the GBR nine years after implementation. These results are not consistent with the advice to governments that the closures would have minimal initial impacts and rapidly generate benefits to fisheries in the GBR through increased juvenile recruitment and adult spillovers. Instead, the absence of evidence of recovery in catches to date currently supports an alternative hypothesis that where there is already effective fisheries management, the closing of areas to all fishing will generate reductions in overall catches similar to the percentage of the fished area that is closed.

  5. Changes in water clarity in response to river discharges on the Great Barrier Reef continental shelf: 2002-2013

    Science.gov (United States)

    Fabricius, K. E.; Logan, M.; Weeks, S. J.; Lewis, S. E.; Brodie, J.

    2016-05-01

    Water clarity is a key factor for the health of marine ecosystems. The Australian Great Barrier Reef (GBR) is located on a continental shelf, with >35 major seasonal rivers discharging into this 344,000 km2 tropical to subtropical ecosystem. This work investigates how river discharges affect water clarity in different zones along and across the GBR. For each day over 11 years (2002-2013) we calculated 'photic depth' as a proxy measure of water clarity (calibrated to be equivalent to Secchi depth), for each 1 km2 pixel from MODIS-Aqua remote sensing data. Long-term and seasonal changes in photic depth were related to the daily discharge volumes of the nearest rivers, after statistically removing the effects of waves and tides on photic depth. The relationships between photic depths and rivers differed across and along the GBR. They typically declined from the coastal to offshore zones, and were strongest in proximity to rivers in agriculturally modified catchments. In most southern inner zones, photic depth declined consistently throughout the 11-year observation period; such long-term trend was not observed offshore nor in the northern regions. Averaged across the GBR, photic depths declined to 47% of local maximum values soon after the onset of river floods, and recovery to 95% of maximum values took on average 6 months (range: 150-260 days). The river effects were strongest at latitude 14.5°-19.0°S, where river loads are high and the continental shelf is narrow. Here, even offshore zones showed a >40% seasonal decline in photic depth, and 17-24% reductions in annual mean photic depth in years with large river nutrients and sediment loads. Our methodology is based on freely available data and tools and may be applied to other shelf systems, providing valuable insights in support of ecosystem management.

  6. Tolerance of endolithic algae to elevated temperature and light in the coral Montipora monasteriata from the southern Great Barrier Reef.

    Science.gov (United States)

    Fine, Maoz; Meroz-Fine, Efrat; Hoegh-Guldberg, Ove

    2005-01-01

    Photosynthetic endolithic algae and cyanobacteria live within the skeletons of many scleractinians. Under normal conditions, less than 5% of the photosynthetically active radiation (PAR) reaches the green endolithic algae because of the absorbance of light by the endosymbiotic dinoflagellates and the carbonate skeleton. When corals bleach (loose dinoflagellate symbionts), however, the tissue of the corals become highly transparent and photosynthetic microendoliths may be exposed to high levels of both thermal and solar stress. This study explores the consequence of these combined stresses on the phototrophic endoliths inhabiting the skeleton of Montipora monasteriata, growing at Heron Island, on the southern Great Barrier Reef. Endoliths that were exposed to sun after tissue removal were by far more susceptible to thermal photoinhibition and photo-damage than endoliths under coral tissue that contained high concentrations of brown dinoflagellate symbionts. While temperature or light alone did not result in decreased photosynthetic efficiency of the endoliths, combined thermal and solar stress caused a major decrease and delayed recovery. Endoliths protected under intact tissue recovered rapidly and photoacclimated soon after exposure to elevated sea temperatures. Endoliths under naturally occurring bleached tissue of M. monasteriata colonies (bleaching event in March 2004 at Heron Island) acclimated to increased irradiance as the brown symbionts disappeared. We suggest that two major factors determine the outcome of thermal bleaching to the endolith community. The first is the microhabitat and light levels under which a coral grows, and the second is the susceptibility of the coral-dinoflagellates symbiosis to thermal stress. More resistant corals may take longer to bleach allowing endoliths time to acclimate to a new light environment. This in turn may have implications for coral survival.

  7. Lichen Monitoring Delineates Biodiversity on a Great Barrier Reef Coral Cay

    Directory of Open Access Journals (Sweden)

    Paul C. Rogers

    2015-05-01

    Full Text Available Coral islands around the world are threatened by changing climates. Rising seas, drought, and increased tropical storms are already impacting island ecosystems. We aim to better understand lichen community ecology of coral island forests. We used an epiphytic lichen community survey to gauge Pisonia (Pisonia grandis R.BR., which dominates forest conditions on Heron Island, Australia. Nine survey plots were sampled for lichen species presence and abundance, all tree diameters and species, GPS location, distance to forest-beach edge, and dominant forest type. Results found only six unique lichens and two lichen associates. A Multi-Response Permutation Procedures (MRPP test found statistically distinct lichen communities among forest types. The greatest group differences were between interior Pisonia and perimeter forest types. Ordinations were performed to further understand causes for distinctions in lichen communities. Significant explanatory gradients were distance to forest edge, tree density (shading, and Pisonia basal area. Each of these variables was negatively correlated with lichen diversity and abundance, suggesting that interior, successionally advanced, Pisonia forests support fewer lichens. Island edge and presumably younger forests—often those with greater tree diversity and sunlight penetration—supported the highest lichen diversity. Heron Island’s Pisonia-dominated forests support low lichen diversity which mirrors overall biodiversity patterns. Lichen biomonitoring may provide a valuable indicator for assessing island ecosystems for conservation purposes regionally.

  8. Do Clouds Save the Great Barrier Reef? Satellite Imagery Elucidates the Cloud-SST Relationship at the Local Scale

    OpenAIRE

    Susannah M Leahy; Michael J Kingsford; Steinberg, Craig R.

    2013-01-01

    Evidence of global climate change and rising sea surface temperatures (SSTs) is now well documented in the scientific literature. With corals already living close to their thermal maxima, increases in SSTs are of great concern for the survival of coral reefs. Cloud feedback processes may have the potential to constrain SSTs, serving to enforce an "ocean thermostat" and promoting the survival of coral reefs. In this study, it was hypothesized that cloud cover can affect summer SSTs in the trop...

  9. Spatial variability of initial 230Th/ 232Th in modern Porites from the inshore region of the Great Barrier Reef

    Science.gov (United States)

    Clark, Tara R.; Zhao, Jian-xin; Feng, Yue-xing; Done, Terry J.; Jupiter, Stacy; Lough, Janice; Pandolfi, John M.

    2012-02-01

    The main limiting factor in obtaining precise and accurate uranium-series (U-series) ages of corals that lived during the last few hundred years is the ability to constrain and correct for initial thorium-230 ( 230Th 0), which is proportionally much higher in younger samples. This is becoming particularly important in palaeoecological research where accurate chronologies, based on the 230Th chronometer, are required to pinpoint changes in coral community structure and the timing of mortality events in recent time (e.g. since European settlement of northern Australia in the 1850s). In this study, thermal ionisation mass spectrometry (TIMS) U-series dating of 43 samples of known ages collected from living Porites spp. from the far northern, central and southern inshore regions of the Great Barrier Reef (GBR) was performed to spatially constrain initial 230Th/ 232Th ( 230Th/ 232Th 0) variability. In these living Porites corals, the majority of 230Th/ 232Th 0 values fell within error of the conservative bulk Earth 230Th/ 232Th atomic value of 4.3 ± 4.3 × 10 -6 (2 σ) generally assumed for 230Th 0 corrections where the primary source is terrestrially derived. However, the results of this study demonstrate that the accuracy of 230Th ages can be further improved by using locally determined 230Th/ 232Th 0 values for correction, supporting the conclusion made by Shen et al. (2008) for the Western Pacific. Despite samples being taken from regions adjacent to contrasting levels of land modification, no significant differences were found in 230Th/ 232Th 0 between regions exposed to varying levels of sediment during river runoff events. Overall, 39 of the total 43 230Th/ 232Th 0 atomic values measured in samples from inshore reefs across the entire region show a normal distribution ranging from 3.5 ± 1.1 to 8.1 ± 1.1 × 10 -6, with a weighted mean of 5.76 ± 0.34 × 10 -6 (2 σ, MSWD = 8.1). Considering the scatter of the data, the weighted mean value with a more

  10. Risk assessment and predator learning in a changing world: understanding the impacts of coral reef degradation

    Science.gov (United States)

    Chivers, Douglas P.; McCormick, Mark I.; Allan, Bridie J. M.; Ferrari, Maud C. O.

    2016-01-01

    Habitat degradation is among the top drivers of the loss of global biodiversity. This problem is particularly acute in coral reef system. Here we investigated whether coral degradation influences predator risk assessment and learning for damselfish. When in a live coral environment, Ambon damselfish were able to learn the identity of an unknown predator upon exposure to damselfish alarm cues combined with predator odour and were able to socially transmit this learned recognition to naïve conspecifics. However, in the presence of dead coral water, damselfish failed to learn to recognize the predator through alarm cue conditioning and hence could not transmit the information socially. Unlike alarm cues of Ambon damselfish that appear to be rendered unusable in degraded coral habitats, alarm cues of Nagasaki damselfish remain viable in this same environment. Nagasaki damselfish were able to learn predators through conditioning with alarm cues in degraded habitats and subsequently transmit the information socially to Ambon damselfish. Predator-prey dynamics may be profoundly affected as habitat degradation proceeds; the success of one species that appears to have compromised predation assessment and learning, may find itself reliant on other species that are seemingly unaffected by the same degree of habitat degradation. PMID:27611870

  11. Risk assessment and predator learning in a changing world: understanding the impacts of coral reef degradation.

    Science.gov (United States)

    Chivers, Douglas P; McCormick, Mark I; Allan, Bridie J M; Ferrari, Maud C O

    2016-01-01

    Habitat degradation is among the top drivers of the loss of global biodiversity. This problem is particularly acute in coral reef system. Here we investigated whether coral degradation influences predator risk assessment and learning for damselfish. When in a live coral environment, Ambon damselfish were able to learn the identity of an unknown predator upon exposure to damselfish alarm cues combined with predator odour and were able to socially transmit this learned recognition to naïve conspecifics. However, in the presence of dead coral water, damselfish failed to learn to recognize the predator through alarm cue conditioning and hence could not transmit the information socially. Unlike alarm cues of Ambon damselfish that appear to be rendered unusable in degraded coral habitats, alarm cues of Nagasaki damselfish remain viable in this same environment. Nagasaki damselfish were able to learn predators through conditioning with alarm cues in degraded habitats and subsequently transmit the information socially to Ambon damselfish. Predator-prey dynamics may be profoundly affected as habitat degradation proceeds; the success of one species that appears to have compromised predation assessment and learning, may find itself reliant on other species that are seemingly unaffected by the same degree of habitat degradation. PMID:27611870

  12. Quantifying water flow within aquatic ecosystems using load cell sensors: a profile of currents experienced by coral reef organisms around Lizard Island, Great Barrier Reef, Australia.

    Directory of Open Access Journals (Sweden)

    Jacob L Johansen

    Full Text Available Current velocity in aquatic environments has major implications for the diversity, abundance and ecology of aquatic organisms, but quantifying these currents has proven difficult. This study utilises a simple and inexpensive instrument (500 cms⁻¹ and wave frequency to >100 Hz over several weeks. Sensor data are registered and processed at 16 MHz and 10 bit resolution, with a measuring precision of 0.06±0.04%, and accuracy of 0.51±0.65% (mean ±S.D.. Each instrument is also pressure rated to 120 m and shear stresses ≤20 kNm⁻² allowing deployment in harsh environments. The instrument was deployed across 27 coral reef sites covering the crest (3 m, mid-slope (6 m and deep-slope (9 m depth of habitats directly exposed, oblique or sheltered from prevailing winds. Measurements demonstrate that currents over the reef slope and crest varies immensely depending on depth and exposure: currents differ up to 9-fold within habitats only separated by 3 m depth and 15-fold between exposed, oblique and sheltered habitats. Comparisons to ambient weather conditions reveal that currents around Lizard Island are largely wind driven. Zero to 22.5 knot winds correspond directly to currents of 0 to >82 cms⁻¹, while tidal currents rarely exceed 5.5 cms⁻¹. Rather, current velocity increases exponentially as a function of wave height (0 to 1.6 m and frequency (0.54 to 0.20 Hz, emphasizing the enormous effect of wind and waves on organisms in these shallow coral reef habitats.

  13. Contrasting patterns of reef utilization and recruitment of coral trout ( Plectropomus leopardus) and snapper ( Lutjanus carponotatus) at One Tree Island, southern Great Barrier Reef

    Science.gov (United States)

    Kingsford, M. J.

    2009-03-01

    Patterns of abundance, age structure and recruitment of coral trout ( Plectropomus leopardus) and snapper ( Lutjanus carponotatus) were described in different environments, which varied in benthic cover, in a 12-yr study at One Tree Island. It was hypothesized that both taxa would show strong preferences to different environments and benthic cover and that patterns would be consistent through time. Plectropomus leopardus were abundant on the reef slope and seaward edge of the lagoon, where live coral cover was high, and recruitment was generally low, in all environments. The population was sustained by a trickle of recruits, and total abundance varied little after 10 to 25 yr of protection in a no-take area, suggesting P. leopardus had reached an environment-related carrying capacity. Protogynous P. leopardus recruited to shallow environments at sites with 20% or more hard live coral and age data indicated the abundance of fish on the reef slope was from redistribution. Most recruits of gonochoristic L. carponotatus (<150 mm Standard length, SL) were found in the lagoonal environments, and adults were rare on the reef slope. Abundance of recruit L. carponotatus and P. leopardus did not correlate with percent cover of live and soft coral within environments. Recruits of L. carponotatus were usually rare in all lagoonal environments, but in 2003, many recruits (80 to 120 mm SL) were found in lagoonal environments with low and high hard live coral cover. A substantial proportion of the population (age max 18 yr) was from strong recruitment events. In 2003 and 2004, total abundance of L. carponotatus was supported by 1 year class 51.7 and 41% respectively. The utilization of environments and types of substrata varied among taxa and in some cases among life-history stages. There was also temporal variation in the importance of some environments (e.g. Lagoon Centre).

  14. Water Quality and River Plume Monitoring in the Great Barrier Reef: An Overview of Methods Based on Ocean Colour Satellite Data

    Directory of Open Access Journals (Sweden)

    Michelle J. Devlin

    2015-09-01

    Full Text Available A strong driver of water quality change in the Great Barrier Reef (GBR is the pulsed or intermittent nature of terrestrial inputs into the GBR lagoon, including delivery of increased loads of sediments, nutrients, and toxicants via flood river plumes (hereafter river plumes during the wet season. Cumulative pressures from extreme weather with a high frequency of large scale flooding in recent years has been linked to the large scale reported decline in the health of inshore seagrass systems and coral reefs in the central areas of the GBR, with concerns for the recovery potential of these impacted ecosystems. Management authorities currently rely on remotely-sensed (RS and in situ data for water quality monitoring to guide their assessment of water quality conditions in the GBR. The use of remotely-sensed satellite products provides a quantitative and accessible tool for scientists and managers. These products, coupled with in situ data, and more recently modelled data, are valuable for quantifying the influence of river plumes on seagrass and coral reef habitat in the GBR. This article reviews recent remote sensing techniques developed to monitor river plumes and water quality in the GBR. We also discuss emerging research that integrates hydrodynamic models with remote sensing and in situ data, enabling us to explore impacts of different catchment management strategies on GBR water quality.

  15. Gnathia trimaculata n. sp. (Crustacea: Isopoda: Gnathiidae), an ectoparasite found parasitising requiem sharks from off Lizard Island, Great Barrier Reef, Australia.

    Science.gov (United States)

    Coetzee, Maryke L; Smit, Nico J; Grutter, Alexandra S; Davies, Angela J

    2009-02-01

    Gnathia trimaculata n. sp. is described from one black tip reef shark Carcharinus melanopterus Quoy & Gaimard and four grey reef sharks C. amblyrhynchos Bleeker collected off Lizard Island, Great Barrier Reef, Australia. Third-stage juveniles (praniza 3) were maintained in fresh seawater until they moulted into adults. Male adults emerged seven days post-removal (d.p.r) of pranizae from host fishes, whereas the female pranizae completed their moult into adult females 24 d.p.r. Distinctive features include the relatively large size of all stages and the unique mediofrontal process of the male, which is divided into two lobes forming a key-hole shape between them. The female frontal border is characterised by paired simple, pappose setae on the sides of the mid-dorsal area, as well as four long, pappose setae on the mid-dorsal region. The pranizae have eight teeth on each mandible. Live pranizae have stripes and three pairs of distinctive black spots within yellow circles on the sides of the pereonites and this pigmentation pattern persists in the adults. This represents the second description of a gnathiid parasitising elasmobranchs off Australia.

  16. Low genetic structuring among Pericharax heteroraphis (Porifera: Calcarea) populations from the Great Barrier Reef (Australia), revealed by analysis of nrDNA and nuclear intron sequences

    Science.gov (United States)

    Bentlage, B.; Wörheide, G.

    2007-12-01

    A new nuclear marker system for sponges, the second intron of the nuclear ATP synthetase beta subunit gene (ATPSbeta-iII), was analysed together with nuclear ribosomal DNA (nrDNA) internal transcribed spacer (ITS) sequences aiming to uncover phylogeographic patterns of the coral reef sponge Pericharax heteroraphis in the south-west Pacific, focussing on the Great Barrier Reef (GBR). Variation among ITS sequences was low (<1.1% p-distance), in contrast to ATPSbeta-iII (<8.3% p-distance). Single-Stranded Conformation Polymorphism (SSCP) analysis proved to be an effective tool for phasing ATPSbeta-iII alleles of 292 bp length. Although sample sizes were limited for most populations and these results await corroboration by an extended sampling regime, a past population subdivision with subsequent range expansion was indicated by a ‘dumb-bell’ shaped statistical parsimony network of GBR ATPSbeta-iII alleles. Although no clear phylogeographic break was discovered on the GBR, the northern GBR was genetically differentiated from the central/southern GBR and Queensland Plateau, based on significant pairwise F st values (0.137-0.275 and p ≤ 0.05) of pooled regional populations. The ATPSbeta-iII used in this study outperformed the frequently employed nrDNA ITS and might also turn out to be useful for phylogeographic studies of other coral reef taxa.

  17. Sediments and herbivory as sensitive indicators of coral reef degradation

    Directory of Open Access Journals (Sweden)

    Christopher H. R. Goatley

    2016-03-01

    Full Text Available Around the world, the decreasing health of coral reef ecosystems has highlighted the need to better understand the processes of reef degradation. The development of more sensitive tools, which complement traditional methods of monitoring coral reefs, may reveal earlier signs of degradation and provide an opportunity for pre-emptive responses. We identify new, sensitive metrics of ecosystem processes and benthic composition that allow us to quantify subtle, yet destabilizing, changes in the ecosystem state of an inshore coral reef on the Great Barrier Reef. Following severe climatic disturbances over the period 2011-2012, the herbivorous reef fish community of the reef did not change in terms of biomass or functional groups present. However, fish-based ecosystem processes showed marked changes, with grazing by herbivorous fishes declining by over 90%. On the benthos, algal turf lengths in the epilithic algal matrix increased more than 50% while benthic sediment loads increased 37-fold. The profound changes in processes, despite no visible change in ecosystem state, i.e., no shift to macroalgal dominance, suggest that although the reef has not undergone a visible regime-shift, the ecosystem is highly unstable, and may sit on an ecological knife-edge. Sensitive, process-based metrics of ecosystem state, such as grazing or browsing rates thus appear to be effective in detecting subtle signs of degradation and may be critical in identifying ecosystems at risk for the future.

  18. Combining multiple measurement and isotope techniques to help target erosion hot-spots in the Great Barrier Reef catchments

    Science.gov (United States)

    Bartley, Rebecca; Croke, Jacky; Bainbridge, Zoe; Wilkinson, Scott; Hancock, Gary; Austin, Jen; Kuhnert, Petra

    2016-04-01

    There is considerable evidence that the amount of sediment reaching the Great Barrier Reef (GBR), Australia, has increased since agricultural development commenced in the 1870's. This is having deleterious effects on freshwater and marine ecosystems. However, understanding the primary source and processes driving the increased sediment delivery has been challenging due to the large size and hydrogeomorphic diversity of adjacent catchments. This paper presents the results from several projects that employed a diverse range of measurement techniques all aimed at understanding the spatial and temporal changes in sediment yield from the 130,000 km2 Burdekin catchment, Australia. Cosmogenic nuclides (10Be) were combined with contemporary sediment flux monitoring to help identify high risk sub-catchments that have anthropogenically accelerated erosion. Within the sub-catchments, fallout radionuclides (137Cs, 7Pb and 7Be) were uses to determine the dominant erosion process (surface vs sub-surface erosion). Long term monitoring of improved grazing land management (using nested flumes and gauges), were used to evaluate the effectiveness of land management changes on sediment yields at paddock and catchment scales over 10 years. The results suggest that the Bowen and Upper Burdekin sub-catchments are the dominant anthropogenic source of sediment to the GBR having an accelerated erosion factor of 7.47 (± 3.71) and 3.64 (± 0.5), respectively. Within these sub-catchments, most of the fine sediment is coming from vertical channel walls (50%) or horizontal sub-surface soils (~42%). Remediating these catchments and reducing sediment delivery is likely to take greater than 10 years, and will require a range of approaches including pasture and rangeland management, as well as targeted erosion control in highly gullied landscapes. Together, these data sets help elucidate the often complex sediment delivery processes to the GBR. This helps policy and management determine where to

  19. Satellite-Derived Photic Depth on the Great Barrier Reef: Spatio-Temporal Patterns of Water Clarity

    Directory of Open Access Journals (Sweden)

    Scarla Weeks

    2012-11-01

    Full Text Available Detecting changes to the transparency of the water column is critical for understanding the responses of marine organisms, such as corals, to light availability. Long-term patterns in water transparency determine geographical and depth distributions, while acute reductions cause short-term stress, potentially mortality and may increase the organisms’ vulnerability to other environmental stressors. Here, we investigated the optimal, operational algorithm for light attenuation through the water column across the scale of the Great Barrier Reef (GBR, Australia. We implemented and tested a quasi-analytical algorithm to determine the photic depth in GBR waters and matched regional Secchi depth (ZSD data to MODIS-Aqua (2002–2010 and SeaWiFS (1997–2010 satellite data. The results of the in situ ZSD/satellite data matchup showed a simple bias offset between the in situ and satellite retrievals. Using a Type II linear regression of log-transformed satellite and in situ data, we estimated ZSD and implemented the validated ZSD algorithm to generate a decadal satellite time series (2002–2012 for the GBR. Water clarity varied significantly in space and time. Seasonal effects were distinct, with lower values during the austral summer, most likely due to river runoff and increased vertical mixing, and a decline in water clarity between 2008–2012, reflecting a prevailing La Niña weather pattern. The decline in water clarity was most pronounced in the inshore area, where a significant decrease in mean inner shelf ZSD of 2.1 m (from 8.3 m to 6.2 m occurred over the decade. Empirical Orthogonal Function Analysis determined the dominance of Mode 1 (51.3%, with the greatest variation in water clarity along the mid-shelf, reflecting the strong influence of oceanic intrusions on the spatio-temporal patterns of water clarity. The newly developed photic depth product has many potential applications for the GBR from water quality monitoring to analyses of

  20. Simulating reef response to sea-level rise at Lizard Island: A geospatial approach

    Science.gov (United States)

    Hamylton, S. M.; Leon, J. X.; Saunders, M. I.; Woodroffe, C. D.

    2014-10-01

    Sea-level rise will result in changes in water depth over coral reefs, which will influence reef platform growth as a result of carbonate production and accretion. This study simulates the pattern of reef response on the reefs around Lizard Island in the northern Great Barrier Reef. Two sea-level rise scenarios are considered to capture the range of likely projections: 0.5 m and 1.2 m above 1990 levels by 2100. Reef topography has been established through extensive bathymetric profiling, together with available data, including LiDAR, single beam bathymetry, multibeam swath bathymetry, LADS and digitised chart data. The reef benthic cover around Lizard Island has been classified using a high resolution WorldView-2 satellite image, which is calibrated and validated against a ground referencing dataset of 364 underwater video records of the reef benthic character. Accretion rates are parameterised using published hydrochemical measurements taken in-situ and rules are applied using Boolean logic to incorporate geomorphological transitions associated with different depth ranges, such as recolonisation of the reef flat when it becomes inundated as sea level rises. Simulations indicate a variable platform response to the different sea-level rise scenarios. For the 0.5 m rise, the shallower reef flats are gradually colonised by corals, enabling this active geomorphological zone to keep up with the lower rate of rise while the other sand dominated areas get progressively deeper. In the 1.2 m scenario, a similar pattern is evident for the first 30 years of rise, beyond which the whole reef platform begins to slowly drown. To provide insight on reef response to sea-level rise in other areas, simulation results of four different reef settings are discussed and compared at the southeast reef flat (barrier reef), Coconut Beach (fringing reef), Watson's Bay (leeward bay with coral patches) and Mangrove Beach (sheltered lagoonal embayment). The reef sites appear to accrete upwards

  1. Using MODIS data for mapping of water types within river plumes in the Great Barrier Reef, Australia: towards the production of river plume risk maps for reef and seagrass ecosystems.

    Science.gov (United States)

    Petus, Caroline; da Silva, Eduardo Teixeira; Devlin, Michelle; Wenger, Amelia S; Alvarez-Romero, Jorge G

    2014-05-01

    River plumes are the major transport mechanism for nutrients, sediments and other land-based pollutants into the Great Barrier Reef (GBR, Australia) and are a major threat to coastal and marine ecosystems such as coral reefs and seagrass beds. Understanding the spatial extent, frequency of occurrence, loads and ecological impacts of land-based pollutants discharged through river plumes is essential to drive catchment management actions. In this study, a framework to produce river plume risk maps for seagrass and coral ecosystems, using supervised classification of MODIS Level 2 (L2) satellite products, is presented. Based on relevant L2 thresholds, river plumes are classified into Primary, Secondary, and Tertiary water types, which represent distinct water quality (WQ) parameters concentrations and combinations. Annual water type maps are produced over three wet seasons (2010-2013) as a case of study. These maps provide a synoptic basis to assess the likelihood and magnitude of the risk of reduced coastal WQ associated with the river discharge (river plume risk) and in combination with sound knowledge of the regional ecosystems can serve as the basis to assess potential ecological impacts for coastal and marine GBR ecosystems. The methods described herein provide relevant and easily reproducible large-scale information for river plume risk assessment and management.

  2. Using MODIS data for mapping of water types within river plumes in the Great Barrier Reef, Australia: towards the production of river plume risk maps for reef and seagrass ecosystems.

    Science.gov (United States)

    Petus, Caroline; da Silva, Eduardo Teixeira; Devlin, Michelle; Wenger, Amelia S; Alvarez-Romero, Jorge G

    2014-05-01

    River plumes are the major transport mechanism for nutrients, sediments and other land-based pollutants into the Great Barrier Reef (GBR, Australia) and are a major threat to coastal and marine ecosystems such as coral reefs and seagrass beds. Understanding the spatial extent, frequency of occurrence, loads and ecological impacts of land-based pollutants discharged through river plumes is essential to drive catchment management actions. In this study, a framework to produce river plume risk maps for seagrass and coral ecosystems, using supervised classification of MODIS Level 2 (L2) satellite products, is presented. Based on relevant L2 thresholds, river plumes are classified into Primary, Secondary, and Tertiary water types, which represent distinct water quality (WQ) parameters concentrations and combinations. Annual water type maps are produced over three wet seasons (2010-2013) as a case of study. These maps provide a synoptic basis to assess the likelihood and magnitude of the risk of reduced coastal WQ associated with the river discharge (river plume risk) and in combination with sound knowledge of the regional ecosystems can serve as the basis to assess potential ecological impacts for coastal and marine GBR ecosystems. The methods described herein provide relevant and easily reproducible large-scale information for river plume risk assessment and management. PMID:24632405

  3. Indicators of fishing mortality on reef-shark populations in the world's first shark sanctuary: the need for surveillance and enforcement

    Science.gov (United States)

    Vianna, Gabriel M. S.; Meekan, Mark G.; Ruppert, Jonathan L. W.; Bornovski, Tova H.; Meeuwig, Jessica J.

    2016-09-01

    Shark sanctuaries are promoted as a management tool to achieve conservation goals following global declines of shark populations. We assessed the status of reef-shark populations and indicators of fishing pressure across the world's first shark sanctuary in Palau. Using underwater surveys and stereophotogrammetry, we documented large differences in abundance and size structure of shark populations across the sanctuary, with a strong negative relationship between shark densities and derelict fishing gear on reefs. Densities of 10.9 ± 4.7 (mean ± SE) sharks ha-1 occurred on reefs adjacent to the most populated islands of Palau, contrasting with lower densities of 1.6 ± 0.8 sharks ha-1 on remote uninhabited reefs, where surveillance and enforcement was limited. Our observations suggest that fishing still remains a major factor structuring shark populations in Palau, demonstrating that there is an urgent need for better enforcement and surveillance that targets both illegal and licensed commercial fisheries to provide effective protection for sharks within the sanctuary.

  4. Using an isolated population boom to explore barriers to recovery in the keystone Caribbean coral reef herbivore Diadema antillarum

    Science.gov (United States)

    Bodmer, Max D. V.; Rogers, Alex D.; Speight, Martin R.; Lubbock, Natalie; Exton, Dan A.

    2015-12-01

    Recovery of the keystone herbivore Diadema antillarum after the 1983-1984 mass mortality event poses one of the greatest challenges to Caribbean coral reef conservation, yet our understanding of the problem remains severely limited. Whilst some recovery has been observed, this has been restricted to the shallows (≤5 m). We report a newly discovered, isolated population recovery on Banco Capiro, Honduras, representing the largest recorded post-mortality densities beyond the shallowest environments (0.74-2.27 individuals m-2 at depths ≥10 m) alongside an unusually high mean percentage scleractinian coral cover of 49-62 %, likely no coincidence. On the nearby island of Utila, we report D. antillarum densities of 0.003-0.012 individuals m-2 and scleractinian coral cover of 12 % at depths ≥10 m, "typical" for a contemporary Caribbean coral reef. The three order of magnitude disparity in population density between sites separated by account for population differences. Instead, we highlight a lack of structural complexity on contemporary Caribbean reefs as the most likely explanation for the limited recovery through a lack of provision of juvenile predation refugia, representing a further consequence of the recent ubiquitous phase shifts throughout the region. Using these findings, we propose future management strategies to stimulate recovery and, consequently, reef health throughout the Caribbean.

  5. Nitrogen isotopic composition of organic matter from a 168 year-old coral skeleton: Implications for coastal nutrient cycling in the Great Barrier Reef Lagoon

    Science.gov (United States)

    Erler, Dirk V.; Wang, Xingchen T.; Sigman, Daniel M.; Scheffers, Sander R.; Martínez-García, Alfredo; Haug, Gerald H.

    2016-01-01

    Ongoing human activities are known to affect nitrogen cycling on coral reefs, but the full history of anthropogenic impact is unclear due to a lack of continuous records. We have used the nitrogen isotopic composition of skeleton-bound organic matter (CS-δ15N) in a coastal Porites coral from Magnetic Island in the Great Barrier Reef as a proxy for N cycle changes over a 168 yr period (1820-1987 AD). The Magnetic Island inshore reef environment is considered to be relatively degraded by terrestrial runoff; given prior CS-δ15N studies from other regions, there was an expectation of both secular change and oscillations in CS-δ15N since European settlement of the mainland in the mid 1800s. Surprisingly, CS-δ15N varied by less than 1.5‰ despite significant land use change on the adjacent mainland over the 168-yr measurement period. After 1930, CS-δ15N may have responded to changes in local river runoff, but the effect was weak. We propose that natural buffering against riverine nitrogen load in this region between 1820 and 1987 is responsible for the observed stability in CS-δ15N. In addition to coral derived skeletal δ15N, we also report, for the first time, δ15N measurements of non-coral derived organic N occluded within the coral skeleton, which appear to record significant changes in the nature of terrestrial N inputs. In the context of previous CS-δ15N records, most of which yield CS-δ15N changes of at least 5‰, the Magnetic Island coral suggests that the inherent down-core variability of the CS-δ15N proxy is less than 2‰ for Porites.

  6. The physiological response of two green calcifying algae from the Great Barrier Reef towards high dissolved inorganic and organic carbon (DIC and DOC) availability.

    Science.gov (United States)

    Meyer, Friedrich Wilhelm; Vogel, Nikolas; Teichberg, Mirta; Uthicke, Sven; Wild, Christian

    2015-01-01

    Increasing dissolved inorganic carbon (DIC) concentrations associated with ocean acidification can affect marine calcifiers, but local factors, such as high dissolved organic carbon (DOC) concentrations through sewage and algal blooms, may interact with this global factor. For calcifying green algae of the genus Halimeda, a key tropical carbonate producer that often occurs in coral reefs, no studies on these interactions have been reported. These data are however urgently needed to understand future carbonate production. Thus, we investigated the independent and combined effects of DIC (pCO2 402 μatm/ pHtot 8.0 and 996 μatm/ pHtot 7.7) and DOC (added as glucose in 0 and 294 μmol L-1) on growth, calcification and photosynthesis of H. macroloba and H. opuntia from the Great Barrier Reef in an incubation experiment over 16 days. High DIC concentrations significantly reduced dark calcification of H. opuntia by 130 % and led to net dissolution, but did not affect H. macroloba. High DOC concentrations significantly reduced daily oxygen production of H. opuntia and H. macroloba by 78 % and 43 %, respectively, and significantly reduced dark calcification of H. opuntia by 70%. Combined high DIC and DOC did not show any interactive effects for both algae, but revealed additive effects for H. opuntia where the combination of both factors reduced dark calcification by 162 % compared to controls. Such species-specific differences in treatment responses indicate H. opuntia is more susceptible to a combination of high DIC and DOC than H. macroloba. From an ecological perspective, results further suggest a reduction of primary production for Halimeda-dominated benthic reef communities under high DOC concentrations and additional decreases of carbonate accretion under elevated DIC concentrations, where H. opuntia dominates the benthic community. This may reduce biogenic carbonate sedimentation rates and hence the buffering capacity against further ocean acidification.

  7. The physiological response of two green calcifying algae from the Great Barrier Reef towards high dissolved inorganic and organic carbon (DIC and DOC availability.

    Directory of Open Access Journals (Sweden)

    Friedrich Wilhelm Meyer

    Full Text Available Increasing dissolved inorganic carbon (DIC concentrations associated with ocean acidification can affect marine calcifiers, but local factors, such as high dissolved organic carbon (DOC concentrations through sewage and algal blooms, may interact with this global factor. For calcifying green algae of the genus Halimeda, a key tropical carbonate producer that often occurs in coral reefs, no studies on these interactions have been reported. These data are however urgently needed to understand future carbonate production. Thus, we investigated the independent and combined effects of DIC (pCO2 402 μatm/ pHtot 8.0 and 996 μatm/ pHtot 7.7 and DOC (added as glucose in 0 and 294 μmol L-1 on growth, calcification and photosynthesis of H. macroloba and H. opuntia from the Great Barrier Reef in an incubation experiment over 16 days. High DIC concentrations significantly reduced dark calcification of H. opuntia by 130 % and led to net dissolution, but did not affect H. macroloba. High DOC concentrations significantly reduced daily oxygen production of H. opuntia and H. macroloba by 78 % and 43 %, respectively, and significantly reduced dark calcification of H. opuntia by 70%. Combined high DIC and DOC did not show any interactive effects for both algae, but revealed additive effects for H. opuntia where the combination of both factors reduced dark calcification by 162 % compared to controls. Such species-specific differences in treatment responses indicate H. opuntia is more susceptible to a combination of high DIC and DOC than H. macroloba. From an ecological perspective, results further suggest a reduction of primary production for Halimeda-dominated benthic reef communities under high DOC concentrations and additional decreases of carbonate accretion under elevated DIC concentrations, where H. opuntia dominates the benthic community. This may reduce biogenic carbonate sedimentation rates and hence the buffering capacity against further ocean

  8. 10Be constrains the sediment sources and sediment yields to the Great Barrier Reef from the tropical Barron River catchment, Queensland, Australia

    Science.gov (United States)

    Nichols, K. K.; Bierman, P. R.; Rood, D. H.

    2014-12-01

    Estimates of long-term, background sediment generation rates place current and future sediment fluxes to the Great Barrier Reef in context. Without reliable estimates of sediment generation rates and without identification of the sources of sediment delivered to the reef prior to European settlement (c. 1850), determining the necessity and effectiveness of contemporary landscape management efforts is difficult. Using the ~2100-km2 Barron River catchment in Queensland, Australia, as a test case, we use in situ-produced 10Be to derive sediment generation rate estimates and use in situ and meteoric 10Be to identify the source of that sediment, which enters the Coral Sea near Cairns. Previous model-based calculations suggested that background sediment yields were up to an order of magnitude lower than contemporary sediment yields. In contrast, in situ 10Be data indicate that background (43 t km-2 y-1) and contemporary sediment yields (~45 t km-2 y-1) for the Barron River are similar. These data suggest that the reef became established in a sediment flux similar to what it receives today. Since western agricultural practices increased erosion rates, large amounts of sediment mobilized from hillslopes during the last century are probably stored in Queensland catchments and will eventually be transported to the coast, most likely in flows triggered by rare but powerful tropical cyclones that were more common before European settlement and may increase in strength as climate change warms the south Pacific Ocean. In situ and meteoric 10Be concentrations of Coral Sea beach sand near Cairns are similar to those in rivers on the Atherton Tablelands, suggesting that most sediment is derived from the extensive, low-gradient uplands rather than the steep, more rapidly eroding but beach proximal escarpment.

  9. Outbreak of coral-eating Crown-of-Thorns creates continuous cloud of larvae over 320 km of the Great Barrier Reef.

    Science.gov (United States)

    Uthicke, S; Doyle, J; Duggan, S; Yasuda, N; McKinnon, A D

    2015-11-23

    Coral reefs are in decline worldwide due to a combination of local and global causes. Over 40% of the recent coral loss on Australia's Great Barrier Reef (GBR) has been attributed to outbreaks of the coral-eating Crown-of-Thorns Seastar (CoTS). Testing of the hypotheses explaining these outbreaks is hampered by an inability to investigate the spatio-temporal distribution of larvae because they resemble other planktotrophic echinoderm larvae. We developed a genetic marker and tested it on 48 plankton samples collected during the 2014 spawning season in the northern GBR, and verified the method by PCR amplification of single larva. Surprisingly, most samples collected contained CoTS larvae. Larvae were detected 100 km south of current outbreaks of adult seastars, highlighting the potential for rapid expansion of the outbreak. A minimum estimate suggested that larvae numbers in the outbreak area (>10(10)) are about 4 orders of magnitude higher than adults (~10(6)) in the same area, implying that attempts to halt outbreaks by removing adults may be futile.

  10. Dynamics of seasonal outbreaks of black band disease in an assemblage of Montipora species at Pelorus Island (Great Barrier Reef, Australia).

    Science.gov (United States)

    Sato, Yui; Bourne, David G; Willis, Bette L

    2009-08-01

    Recurring summer outbreaks of black band disease (BBD) on an inshore reef in the central Great Barrier Reef (GBR) constitute the first recorded BBD epizootic in the region. In a 2.7 year study of 485 colonies of Montipora species, BBD affected up to 10 per cent of colonies in the assemblage. Mean maximum abundance of BBD reached 16+/-6 colonies per 100 m(2) (n=3 quadrats, each 100 m(2)) in summer, and decreased to 0-1 colony per 100 m(2) in winter. On average, BBD lesions caused 40 per cent tissue loss and 5 per cent of infections led to whole colony mortality. BBD reappearance on previously infected colonies and continuous tissue loss after the BBD signs had disappeared suggest that the disease impacts are of longer duration than indicated by the presence of characteristic signs. Rates of new infections and linear progression of lesions were both positively correlated with seasonal fluctuations in sea water temperatures and light, suggesting that seasonal increases in these environmental parameters promote virulence of the disease. Overall, the impacts of BBD are greater than previously reported on the GBR and likely to escalate with ocean warming.

  11. Estimating the Exposure of Coral Reefs and Seagrass Meadows to Land-Sourced Contaminants in River Flood Plumes of the Great Barrier Reef: Validating a Simple Satellite Risk Framework with Environmental Data

    Directory of Open Access Journals (Sweden)

    Caroline Petus

    2016-03-01

    Full Text Available River runoff and associated flood plumes (hereafter river plumes are a major source of land-sourced contaminants to the marine environment, and are a significant threat to coastal and marine ecosystems worldwide. Remote sensing monitoring products have been developed to map the spatial extent, composition and frequency of occurrence of river plumes in the Great Barrier Reef (GBR, Australia. There is, however, a need to incorporate these monitoring products into Risk Assessment Frameworks as management decision tools. A simple Satellite Risk Framework has been recently proposed to generate maps of potential risk to seagrass and coral reef ecosystems in the GBR focusing on the Austral tropical wet season. This framework was based on a “magnitude × likelihood” risk management approach and GBR plume water types mapped from satellite imagery. The GBR plume water types (so called “Primary” for the inshore plume waters, “Secondary” for the midshelf-plume waters and “Tertiary” for the offshore plume waters represent distinct concentrations and combinations of land-sourced and marine contaminants. The current study aimed to test and refine the methods of the Satellite Risk Framework. It compared predicted pollutant concentrations in plume water types (multi-annual average from 2005–2014 to published ecological thresholds, and combined this information with similarly long-term measures of seagrass and coral ecosystem health. The Satellite Risk Framework and newly-introduced multi-annual risk scores were successful in demonstrating where water conditions were, on average, correlated to adverse biological responses. Seagrass meadow abundance (multi-annual change in % cover was negatively correlated to the multi-annual risk score at the site level (R2 = 0.47, p < 0.05. Relationships between multi-annual risk scores and multi-annual changes in proportional macroalgae cover (as an index for coral reef health were more complex (R2 = 0.04, p

  12. The Oweniidae (Annelida; Polychaeta) from Lizard Island (Great Barrier Reef, Australia) with the description of two new species of Owenia Delle Chiaje, 1844.

    Science.gov (United States)

    Parapar, Julio; Moreira, Juan

    2015-09-18

    Study of the Oweniidae specimens (Annelida; Polychaeta) from Lizard Island (Great Barrier Reef, Australia) stored at the Australian Museum, Sydney and newly collected in August 2013 revealed the presence of three species, namely Galathowenia quelis Capa et al., 2012 and two new species belonging to the genus Owenia Delle Chiaje, 1844. Owenia dichotoma n. sp. is characterised by a very short branchial crown of about 1/3 of thoracic length which bears short, dichotomously-branched tentacles provided with the major division close to the base of the crown. Owenia picta n. sp. is characterised by a long branchial crown of about 4/5 of thoracic length provided with no major divisions, ventral pigmentation on thorax and the presence of deep ventro-lateral groove on the first thoracic chaetiger. A key of Owenia species hitherto described or reported in South East Asia and Australasia regions is provided based on characters of the branchial crown.

  13. 210Pb-226Ra chronology reveals rapid growth rate of Madrepora oculata and Lophelia pertusa on world's largest cold-water coral reef

    OpenAIRE

    Tisnérat-Laborde, N.; L. Bordier; Frank, N.; Colin, C.; Hall-Spencer, J. M.; J.-L. Reyss; Sabatier, P.; Douville, E

    2012-01-01

    Here we show the use of the 210Pb-226Ra excess method to determine the growth rate of two corals from the world's largest known cold-water coral reef, Røst Reef, north of the Arctic circle off Norway. Colonies of each of the two species that build the reef, Lophelia pertusa and Madrepora oculata, were collected alive at 350 m depth using a submersible. Pb and Ra isotopes were measured along the major growth axis of both specimens using low level alpha and gamma spectrometry and trace element ...

  14. 210Pb-226Ra chronology reveals rapid growth rate of Madrepora oculata and Lophelia pertusa on world's largest cold-water coral reef

    OpenAIRE

    Tisnérat-Laborde, N.; L. Bordier; Frank, N.; Colin, C.; Hall-Spencer, J. M.; J.-L. Reyss; Sabatier, P.; Douville, E

    2011-01-01

    Here we show the use of the 210Pb-226Ra excess method to determine the growth rate of corals from one of the world's largest known cold-water coral reef, the Røst Reef off Norway. Two large branching framework-forming cold-water coral specimens, one Lophelia pertusa and one Madrepora oculata were collected alive at 350 m water depth from the Røst Reef at ~67° N and ~9° E. Pb and Ra isotopes were measured along the major growth axis of both specimens using low level alpha and g...

  15. The role of marine reserves in the replenishment of a locally-impacted population of anemonefish on the Great Barrier Reef

    KAUST Repository

    Bonin, Mary C.

    2015-11-21

    The development of parentage analysis to track the dispersal of juvenile offspring has given us unprecedented insight into the population dynamics of coral reef fishes. These tools now have the potential to inform fisheries management and species conservation, particularly for small fragmented populations under threat from exploitation and disturbance. In this study we resolve patterns of larval dispersal for a population of the anemonefish Amphiprion melanopus in the Keppel Islands (southern Great Barrier Reef). Habitat loss and fishing appear to have impacted this population and a network of no-take marine reserves currently protects 75% of the potential breeders. Using parentage analysis, we estimate that 21% of recruitment in the island group was generated locally, and that breeding adults living in reserves were responsible for 79% (31 out of 39) of these of locally-produced juveniles. Overall, the network of reserves was fully connected via larval dispersal; however one reserve was identified as a critical source of larvae for the island group. The population in the Keppel Islands also appears to be well-connected to other source populations at least 60 km away, given that 79% (145 out of 184) of the juveniles sampled remained unassigned in the parentage analysis. We estimated the effective size of the A. melanopus metapopulation to be 745 (582-993 95% CI) and recommend continued monitoring of its genetic status. Maintaining connectivity with populations beyond the Keppel Islands and recovery of local recruitment habitat, potentially through active restoration of host anemone populations, will be important for its long-term persistence.

  16. A Modern Sr/Ca-δ18O-Sea Surface Temperature Calibration for Isopora Corals in the Great Barrier Reef

    Science.gov (United States)

    Brenner, L. D.; Linsley, B. K.; Potts, D. C.

    2014-12-01

    Most coral-based paleoceanographic studies have used massive colonies of Porites or Faviidae, due to their long, continuously accreted skeletal records and sub-annual resolution, but other sub-massive corals provide an untapped resource. The genus Isopora is a dominant reef builder in some high-energy environments in the tropical western Pacific, and was a major component of cores recovered on IODP Leg 325 off the Great Barrier Reef (GBR). Despite its abundance, Isopora remains largely unexplored and hence underutilized in paleoceanographic studies. We present a modern Sr/Ca-δ18O-Sea Surface Temperature (SST) calibration of modern Isopora corals (n=3) collected from inner and outer reef locations ranging from 1-13m depth by Heron Island in the southern GBR in 2012. Pairing the Isopora Sr/Ca record with monthly SST yielded an average relationship of SST=-11.48×(Sr/Ca)+131.1 (r2 = 0.42-0.78). The Sr/Ca sensitivity of -0.087 mmol/mol/°C is similar to the sensitivity for Porites that was corrected for tissue layer smoothing effects determined by Gagan et al. (2012). The similarity between our Sr/Ca-SST sensitivity and the corrected sensitivity for Porites suggests tissue layer effects are minimal in Isopora. The mean annual SST amplitude recorded by the corals from 2008-2011 (full annual cycles) was 5.3°C and the average δ18O annual cycle of 1.1‰ approximates that expected if salinity had little effect on coral δ18O, assuming a previously established conversion of -0.23‰ (δ18O)/°C for biogenic aragonite. The average annual salinity amplitude of 0.3 in gridded data from around Heron Island supports our conclusion that δ18O variability is forced almost completely by SST. This modern Sr/Ca-SST calibration will expand the paleoceanographic utility of Isopora and, by assisting interpretation of Sr/Ca data from fossil corals collected during IODP 325, will better constrain the timing and magnitude of sea level changes and surface conditions since the Last

  17. Asexual reproduction does not produce clonal populations of the brooding coral Pocillopora damicornis on the Great Barrier Reef, Australia

    Science.gov (United States)

    Sherman, C. D. H.; Ayre, D. J.; Miller, K. J.

    2006-03-01

    We have investigated the relationship between genotypic diversity, the mode of production of brooded larvae and disturbance in a range of reef habitats, in order to resolve the disparity between the reproductive mode and population structure reported for the brooding coral Pocillopora damicornis. Within 14 sites across six habitats, the ratio of the observed ( G o) to the expected ( G e) genotypic diversity ranged from 69 to 100% of that expected for random mating. At three other sites in two habitats the G o /G e ranged from 35 to 53%. Two of these sites were recently bleached, suggesting that asexual recruitment may be favoured after disturbance. Nevertheless, our data suggest that brooded larvae, from each of five habitats surveyed, were asexually produced. While clonal recruitment may be important in disturbed habitats, the lack of clonality detected, both in this and earlier surveys of 40 other sites, implies that a disturbance is normally insufficient to explain this species’ continued investment in clonal reproduction.

  18. Biological and Archaeological Analysis of Deepwater Shipwrecks in the Gulf of Mexico: Studying the Artificial Reef Effect of Six World War II Shipwrecks

    Science.gov (United States)

    Church, R. A.; Irion, J. B.; Schroeder, W. W.; Warren, D. J.

    2006-12-01

    In the summer of 2004 researchers from across the United States and Canada partnered together to investigate biological and archaeological questions relating to six World War II era shipwrecks discovered in the Gulf of Mexico. The science team included microbiologists, marine vertebrate and invertebrate zoologists, a molecular biologist, an oceanographer, marine archaeologists, remotely operated vehicle (ROV) technicians, and a professional marine survey crew. The United States Department of the Interior, Minerals Management Service, and the NOAA Office of Ocean Exploration sponsored this multidisciplinary project under the auspices of the National Oceanographic Partnership Program. The organizational involvement included six universities, two non-profit organizations, three commercial companies, and three U. S. federal agencies. The depth of the shipwrecks ranged from 87 to 1,964 meters. All six shipwrecks were war casualties, found during the past two decades on oil and gas surveys. These wrecks serve as artificial reefs sunk on well- documented dates, thereby offering biologists a unique opportunity to study the "artificial reef effect" of man- made structures in deep water. Taken together, these sites are an underwater battlefield, and a vital historical resource documenting a little-studied area in a crucial period of world history. They preserve information vital to scholarly and popular understanding of the war's impact in the Gulf of Mexico, on the American home front, and the global conflict. This paper will discuss the field methodology and touch on many of the scientific and technical aspects, and findings of the project.

  19. Early-Middle Permian Reef Frameworks and Reef-building Models in the Eastern Kunlun Mountains

    Institute of Scientific and Technical Information of China (English)

    田树刚; 范嘉松

    2001-01-01

    Reef frameworks and building models of the Early-Middle Permian in the eastern Kunlun Mountains have been verified through studies of reef-building communities, palaeoecology and carbonate facies. The eastern Kunlun reefs are built mainly by 6 reef-building communities, which include 11 major categories of frame-building organisms and 6 categories of reef-associated organisms. Eight types of reef-frames have been distinguished and eleven kinds of rocks identified to belong to 6 reef facies. Three sorts of reefs classified by previous researchers, namely mudmounds, knoll reefs and walled reefs, are well developed in the study area. Such reef-facies association and reef distribution show that there are 4 models of reef growth and development, i.e. the tidal-bank knoll-reef model, the plateau-margin wall-reef model, the composite wall-reef model and the deep-water mudmound model. The reefs are mainly constructed by calcareous sponge and calcareous algae, which are similar to all Permian reefs in other areas of South China and the world. Their great scales indicate a secular stable platform-marginal environment.

  20. Intensification of the meridional temperature gradient in the Great Barrier Reef following the Last Glacial Maximum - Results from IODP Expedition 325

    Science.gov (United States)

    Felis, Thomas; McGregor, Helen V.; Linsley, Braddock K.; Tudhope, Alexander W.; Gagan, Michael K.; Suzuki, Atsushi; Inoue, Mayuri; Thomas, Alexander L.; Esat, Tezer M.; Thompson, William G.; Tiwari, Manish; Potts, Donald C.; Mudelsee, Manfred; Yokoyama, Yusuke; Webster, Jody M.

    2015-04-01

    Tropical south-western Pacific temperatures are of vital importance to the Great Barrier Reef (GBR), but the role of sea surface temperatures (SSTs) in the growth of the GBR since the Last Glacial Maximum remains largely unknown. Here we present records of Sr/Ca and δ18O for Last Glacial Maximum and deglacial corals that were drilled by Integrated Ocean Drilling Program (IODP) Expedition 325 along the shelf edge seaward of the modern GBR. The Sr/Ca and δ18O records of the precisely U-Th dated fossil shallow-water corals show a considerably steeper meridional SST gradient than the present day in the central GBR. We find a 1-2 ° C larger temperature decrease between 17° S and 20° S about 20,000 to 13,000 years ago. The result is best explained by the northward expansion of cooler subtropical waters due to a weakening of the South Pacific gyre and East Australian Current. Our findings indicate that the GBR experienced substantial and regionally differing temperature change during the last deglaciation, much larger temperature changes than previously recognized. Furthermore, our findings suggest a northward contraction of the Western Pacific Warm Pool during the LGM and last deglaciation, and serve to explain anomalous drying of northeastern Australia at that time. Overall, the GBR developed through significant SST change and, considering temperature alone, may be more resilient than previously thought. Webster, J. M., Yokoyama, Y. & Cotteril, C. & the Expedition 325 Scientists. Proceedings of the Integrated Ocean Drilling Program Vol. 325 (Integrated Ocean Drilling Program Management International Inc., 2011). Felis, T., McGregor, H. V., Linsley, B. K., Tudhope, A. W., Gagan, M. K., Suzuki, A., Inoue, M., Thomas, A. L., Esat, T. M., Thompson, W. G., Tiwari, M., Potts, D. C., Mudelsee, M., Yokoyama, Y., Webster, J. M. Intensification of the meridional temperature gradient in the Great Barrier Reef following the Last Glacial Maximum. Nature Communications 5, 4102

  1. Discovery of the corallivorous polyclad flatworm, Amakusaplana acroporae, on the Great Barrier Reef, Australia--the first report from the wild.

    Directory of Open Access Journals (Sweden)

    Kate A Rawlinson

    Full Text Available The role of corallivory is becoming increasingly recognised as an important factor in coral health at a time when coral reefs around the world face a number of other stressors. The polyclad flatworm, Amakusaplana acroporae, is a voracious predator of Indo-Pacific acroporid corals in captivity, and its inadvertent introduction into aquaria has lead to the death of entire coral colonies. While this flatworm has been a pest to the coral aquaculture community for over a decade, it has only been found in aquaria and has never been described from the wild. Understanding its biology and ecology in its natural environment is crucial for identifying viable biological controls for more successful rearing of Acropora colonies in aquaria, and for our understanding of what biotic interactions are important to coral growth and fitness on reefs. Using morphological, histological and molecular techniques we determine that a polyclad found on Acropora valida from Lizard Island, Australia is A. acroporae. The presence of extracellular Symbiodinium in the gut and parenchyma and spirocysts in the gut indicates that it is a corallivore in the wild. The examination of a size-range of individuals shows maturation of the sexual apparatus and increases in the number of eyes with increased body length. Conservative estimates of abundance show that A. acroporae occurred on 7 of the 10 coral colonies collected, with an average of 2.6±0.65 (mean ±SE animals per colony. This represents the first report of A. acroporae in the wild, and sets the stage for future studies of A. acroporae ecology and life history in its natural habitat.

  2. Second Life in Higher Education: Assessing the Potential for and the Barriers to Deploying Virtual Worlds in Learning and Teaching

    Science.gov (United States)

    Warburton, Steven

    2009-01-01

    "Second Life" (SL) is currently the most mature and popular multi-user virtual world platform being used in education. Through an in-depth examination of SL, this article explores its potential and the barriers that multi-user virtual environments present to educators wanting to use immersive 3-D spaces in their teaching. The context is set by…

  3. Pseudobacciger cheneyae n. sp. (Digenea: Gymnophalloidea) from Weber's chromis (Chromis weberi Fowler & Bean) (Perciformes: Pomacentridae) at Lizard Island, Great Barrier Reef, Australia.

    Science.gov (United States)

    Sun, Derek; Bray, Rodney A; Yong, Russell Q-Y; Cutmore, Scott C; Cribb, Thomas H

    2014-06-01

    A new species of digenean, Pseudobacciger cheneyae n. sp., is described from the intestines of Weber's chromis (Chromis weberi Fowler & Bean) from off Lizard Island, Great Barrier Reef, Australia. This species differs from the three described species of Pseudobacciger Nahhas & Cable, 1964 [P. cablei Madhavi, 1975, P. harengulae Yamaguti, 1938 and P. manteri Nahhas & Cable, 1964] in combinations of the size of the suckers and the length of the caeca. The host of the present species is a perciform (Family Pomacentridae) which contrasts with previous records of the genus which are almost exclusively from clupeiform fishes. The genus Pseudobacciger is presently recognised within the family Faustulidae (Poche, 1926) but phylogenetic analyses of 28S and ITS2 rDNA show that the new species bears no relationship to species of four other faustulid genera (Antorchis Linton, 1911, Bacciger Nicoll, 1924, Paradiscogaster Yamaguti, 1934 and Trigonocryptus Martin, 1958) but that instead it is nested within the Gymnophalloidea (Odhner, 1905) as sister to the Tandanicolidae (Johnston, 1927). This result suggests that the Faustulidae is polyphyletic.

  4. Sabellariidae from Lizard Island, Great Barrier Reef, including a new species of Lygdamis and notes on external morphology of the median organ.

    Science.gov (United States)

    Capa, María; Faroni-Perez, Larisse; Hutchings, Pat

    2015-09-18

    We document herein the occurrence of three species of Sabellariidae at Lizard Island, Great Barrier Reef, including a new Lygdamis species. Sabellaria lungalla, described from Northern Territory, is reported for Queensland for the first time. The genus Gesaia, represented by a planktonic larva collected in shallow waters of the Archipelago, is a new record for Australia. Lygdamis nasutus n. sp. is characterised by one of the most conspicuous median organ described in the family (cylindrical, distally pigmented and is provided with a flattened, teardrop corona), its paleae morphology (with straight paleae, outer ones with asymmetrical pointed tips and subtle thecal sculpture and inner paleae with blunt tips and smooth surface), three lateral lobes on chaetiger 2, abdominal chaetigers with two type of neurochaetae, and notopodial uncini with 1-4 longitudinal rows of teeth. Comparison of the external morphology of the medial organ and median ridge of several species has been undertaken. Even though its function remains uncertain, the median organ morphology seems species specific and may provide relevant information about the evolutionary history and adaptations of sabellariids.

  5. A taxonomic guide to the fanworms (Sabellidae, Annelida) of Lizard Island, Great Barrier Reef, Australia, including new species and new records.

    Science.gov (United States)

    Capa, María; Murray, Anna

    2015-09-18

    This comprehensive taxonomic work is the result of the study of fan worms (Sabellidae, Annelida) collected over the last 40 years from around the Lizard Island Archipelago, Great Barrier Reef, Australia. Some species described herein are commonly found in Lizard Island waters but had not previously been formally reported in the literature. Most species appear to be not particularly abundant, and few specimens have been collected despite the sampling effort in the area over this time period. After this study, the overall sabellid diversity of the archipelago has been greatly increased (by more than 650%). Before this revision, only four sabellid species had been recorded for Lizard Island, and in this paper we report 31 species, 13 of which belong to nominal species, six are formally described as new species (Euchone danieloi n. sp., Euchone glennoi n. sp., Jasmineira gustavoi n. sp., Megalomma jubata n. sp., Myxicola nana n. sp., and Paradialychone ambigua n. sp.), and the identity of 12 species is still unknown (those referred as cf. or sp.). Two species are newly recorded in Australia and two in Queensland. The invasive species Branchiomma bairdi is reported for the first time at Lizard Island. The genus Paradialychone is reported for Australia for the first time. Standardised descriptions, general photographs of live and/or preserved specimens and distribution data are provided for all species. New species descriptions are accompanied by detailed illustrations and exhaustive morphological information. A dichotomous key for sabellid identification is also included.

  6. The Australian REEFREP System: A Coastal Vessel Traffic Information Service and Ship Reporting System for the Torres Strait Region and the Inner Route of the Great Barrier Reef

    Science.gov (United States)

    MacDonald, John C.

    The new Australian ship reporting system, identifier , will be the core component of a Vessel Traffic Information Service (VTIS) covering the Torres Strait region and the Great Barrier Reef (GBR). It is the first such system to be considered by the International Maritime Organization (IMO) under the terms of the new SOLAS 74 regulation v/8-1, which entered into force on 1 January 1996 and allows for ship reporting systems adopted by the Organization to be made mandatory for all, or certain categories of vessels.The REEFREP system, planned for implementation on 1 January 1997, extends for some 900 n.m. or about 1500 km along the Queensland coastline. It will be a VHF radio-based system with radars covering three selected focal points in the Torres Strait, off Cairns and in the southern approaches to the inner route. The system will provide a capability for a single Ship Reporting Centre to interact with shipping, enabling the provision of improved information on the presence, movements and patterns of shipping in the area and the ability to respond more quickly to an incident or pollution should this occur.An interesting feature and a major factor in the system design is the remoteness of most equipment sites and the limited infrastructure available to support communications and data transmission requiring the application of advanced technology and video transmission, solar power generation and software engineering skills of a high order.

  7. Regional-scale nitrogen and phosphorus budgets for the northern (14°S) and central (17°S) Great Barrier Reef shelf ecosystem

    Science.gov (United States)

    Furnas, M.; Alongi, D.; McKinnon, D.; Trott, L.; Skuza, M.

    2011-12-01

    Seasonally averaged N and P box model budgets were constructed for two regional-scale sections of the Great Barrier Reef (GBR) shelf, one in the near-pristine far-northern GBR (13.5-14.5°S) and the other in the central GBR (17-18°S) adjacent to more intensively farmed wet tropics watersheds. We were unable to simultaneously balance shelf-scale N and P budgets within seasonal or annual time frames, indicating that magnitudes of a number of key input and, especially, loss processes are still poorly constrained. In most cases, current estimates of system-level N and P sources (rainfall, runoff, upwelling, N-fixation) are less than estimated loss processes (denitrification, cross-shelfbreak mixing and burial). Nutrient dynamics in both shelf sections are dominated by the tightly coupled uptake and mineralization of soluble N and P in the water column and the sedimentation-resuspension of particulate detritus. On an area-averaged basis, internal cycling fluxes are an order of magnitude greater than input-output fluxes. Denitrification in shelf sediments is a significant sink for N while lateral mixing is both a source and sink for P.

  8. Determining the extent and characterizing coral reef habitats of the northern latitudes of the Florida Reef Tract (Martin County.

    Directory of Open Access Journals (Sweden)

    Brian K Walker

    Full Text Available Climate change has recently been implicated in poleward shifts of many tropical species including corals; thus attention focused on higher-latitude coral communities is warranted to investigate possible range expansions and ecosystem shifts due to global warming. As the northern extension of the Florida Reef Tract (FRT, the third-largest barrier reef ecosystem in the world, southeast Florida (25-27° N latitude is a prime region to study such effects. Most of the shallow-water FRT benthic habitats have been mapped, however minimal data and limited knowledge exist about the coral reef communities of its northernmost reaches off Martin County. First benthic habitat mapping was conducted using newly acquired high resolution LIDAR bathymetry and aerial photography where possible to map the spatial extent of coral reef habitats. Quantitative data were collected to characterize benthic cover and stony coral demographics and a comprehensive accuracy assessment was performed. The data were then analyzed in a habitat biogeography context to determine if a new coral reef ecosystem region designation was warranted. Of the 374 km(2 seafloor mapped, 95.2% was Sand, 4.1% was Coral Reef and Colonized Pavement, and 0.7% was Other Delineations. Map accuracy assessment yielded an overall accuracy of 94.9% once adjusted for known map marginal proportions. Cluster analysis of cross-shelf habitat type and widths indicated that the benthic habitats were different than those further south and warranted designation of a new coral reef ecosystem region. Unlike the FRT further south, coral communities were dominated by cold-water tolerant species and LIDAR morphology indicated no evidence of historic reef growth during warmer climates. Present-day hydrographic conditions may be inhibiting poleward expansion of coral communities along Florida. This study provides new information on the benthic community composition of the northern FRT, serving as a baseline for future

  9. Organizational intelligence dismounting barriers prioritization: A real-world case study

    Directory of Open Access Journals (Sweden)

    Ali Shahabi

    2012-09-01

    Full Text Available Organizational intelligence plays an important role developing business units and organizations. Understating the barriers surrounding an organization helps us take possible actions to remove any issues. In this paper, we present an empirical investigation to find barriers in university located in Province of Semnan, Iran. The proposed study of this paper first detects important barriers and then prioritize them using analytical hierarchy process. Based on the results of this paper, structural barriers are considered as the most important issue follows by legal barriers, cultural and executive barriers. The results of our survey indicate that lack of organizational knowledge management relation with daily activities, project complexity, lack of the knowledge exchanging and sharing in the organization, lack of suitable business context and absence of a documented program for the organizational intelligence dismounting are among the most important barriers according to our AHP implementation results.

  10. Coral reefs in crisis.

    Science.gov (United States)

    Hinrichsen, D

    1997-01-01

    This article reports on the crisis facing reefs throughout the world and the struggle to save them. Coral reefs, one of the biological wonders of the world, are among the largest and oldest living communities of plants and animals on earth, having been evolved between 200 and 450 million years ago. Located mostly in the Pacific region, most established coral reefs are now dead and only the upper layer is covered by a thin changeable skin of living coral. Reefs, over the years, have been the main source of animal protein for over 1 billion people in Asia. Countries near the coastlines, which relied on the seas, have resorted to dynamite fishing, poisoning and other illegal and dangerous techniques. Overpopulation and pollution has caused the deteriorating conditions of the 600,000 sq. km of coral reefs worldwide. Despite these conditions, the government has ignored this problem as they struggle to develop their economies at the expense of common resources. In addition, this article narrates the efforts that are exerted by governments in promoting coral reef protection and management of these coastal resources, setting the Apo Island in the Philippines as an example of good management and sustainability.

  11. Health system and societal barriers for gestational diabetes mellitus (GDM) services - lessons from World Diabetes Foundation supported GDM projects

    DEFF Research Database (Denmark)

    Nielsen, Karoline Kragelund; de Courten, Maximilian; Kapur, Anil

    2012-01-01

    Background Maternal mortality and morbidity remains high in many low- and middle-income countries (LMIC). Gestational Diabetes Mellitus (GDM) represents an underestimated and unrecognised impediment to optimal maternal health in LMIC; left untreated – it also has severe consequences...... for the offspring. A better understanding of the barriers hindering detection and treatment of GDM is needed. Based on experiences from World Diabetes Foundation (WDF) supported GDM projects this paper seeks to investigate societal and health system barriers to such efforts. Methods Questionnaires were filled out...

  12. Two new desma-less species of Theonella Gray, 1868 (Demospongiae: Astrophorida: Theonellidae), from the Great Barrier Reef, Australia,and a re-evaluation of one species assigned previously to Dercitus Gray, 1867.

    Science.gov (United States)

    Hall, Kathryn A; Ekins, Merrick G; Hooper, John N A

    2014-06-11

    Extensive surveys of the biodiversity on the seafloor of the inter-reef regions of the Great Barrier Reef, Australia, have resulted in the collection of large numbers of sponges, many of which are likely new to science. Identification of these sponges, however, was made difficult by the absence in some specimens of key diagnostic characters, such as megascleres. We used an integrated approach to the taxonomy of these sponges, incorporating morphological examination by SEM, analysis of DNA sequence data (using the COI barcoding fragment of mtDNA) and preliminary studies of the chemistry of the sponges, to describe the new species, which were found to contain no native spicules other than acanthose microrhabds. Here, we propose two new species of Theonella Gray, 1868: Theonella deliqua n. sp. (found in association with a single unidentified species of siliquariid mollusc) and Theonella maricae n. sp. from the Great Barrier Reef. Further, we propose the new combination of Theonella xantha (Sutcliffe, Hooper and Pitcher 2010) n. comb. for another microrhabd-only-bearing species. On the basis of our gene trees, we recognise Theonella (and Theonellidae Lendenfeld, 1903) within Astrophorida Sollas, 1887. We discuss the potential for chemotaxonomic and DNA-based insights into the origins and radiation of species of Theonella and explore the evolutionary significance of the reduced morphology of the three additional species recognised here.

  13. The status of coral reef ecology research in the Red Sea

    Science.gov (United States)

    Berumen, M. L.; Hoey, A. S.; Bass, W. H.; Bouwmeester, J.; Catania, D.; Cochran, J. E. M.; Khalil, M. T.; Miyake, S.; Mughal, M. R.; Spaet, J. L. Y.; Saenz-Agudelo, P.

    2013-09-01

    The Red Sea has long been recognized as a region of high biodiversity and endemism. Despite this diversity and early history of scientific work, our understanding of the ecology of coral reefs in the Red Sea has lagged behind that of other large coral reef systems. We carried out a quantitative assessment of ISI-listed research published from the Red Sea in eight specific topics (apex predators, connectivity, coral bleaching, coral reproductive biology, herbivory, marine protected areas, non-coral invertebrates and reef-associated bacteria) and compared the amount of research conducted in the Red Sea to that from Australia's Great Barrier Reef (GBR) and the Caribbean. On average, for these eight topics, the Red Sea had 1/6th the amount of research compared to the GBR and about 1/8th the amount of the Caribbean. Further, more than 50 % of the published research from the Red Sea originated from the Gulf of Aqaba, a small area (reef systems and organisms to adapt to global climate change. As one of the world's most biodiverse coral reef regions, the Red Sea may yet have a significant role to play in our understanding of coral reef ecology at a global scale.

  14. The reality, use and potential for cryopreservation of coral reefs.

    Science.gov (United States)

    Hagedorn, Mary; Spindler, Rebecca

    2014-01-01

    Throughout the world coral reefs are being degraded at unprecedented rates. Locally, reefs are damaged by pollution, nutrient overload and sedimentation from out-dated land-use, fishing and mining practices. Globally, increased greenhouse gases are warming and acidifying oceans, making corals more susceptible to stress, bleaching and newly emerging diseases. The coupling of climate change impacts and local anthropogenic stressors has caused a widespread and well-recognized reef crisis. Although in situ conservation practices, such as the establishment and enforcement of marine protected areas, reduce these stressors and may help slow the loss of genetic diversity on reefs, the global effects of climate change will continue to cause population declines. Gamete cryopreservation has already acted as an effective insurance policy to maintain the genetic diversity of many wildlife species, but has only just begun to be explored for coral. Already we have had a great deal of success with cryopreserving sperm and larval cells from a variety of coral species. Building on this success, we have now begun to establish genetic banks using frozen samples, to help offset these threats to the Great Barrier Reef and other areas.

  15. Wave transformation across coral reefs under changing sea levels

    Science.gov (United States)

    Harris, Daniel; Power, Hannah; Vila-Conejo, Ana; Webster, Jody

    2015-04-01

    The transformation of swell waves from deep water across reef flats is the primary process regulating energy regimes in coral reef systems. Coral reefs are effective barriers removing up to 99% of wave energy during breaking and propagation across reef flats. Consequently back-reef environments are often considered low energy with only limited sediment transport and geomorphic change during modal conditions. Coral reefs, and specifically reef flats, therefore provide important protection to tropical coastlines from coastal erosion and recession. However, changes in sea level could lead to significant changes in the dissipation of swell wave energy in coral reef systems with wave heights dependent on the depth over the reef flat. This suggests that a rise in sea level would also lead to significantly higher energy conditions exacerbating the transgressive effects of sea level rise on tropical beaches and reef islands. This study examines the potential implications of different sea level scenarios on the transformation of waves across the windward reef flats of One Tree Reef, southern Great Barrier Reef. Waves were measured on the reef flats and back-reef sand apron of One Tree Reef. A one-dimensional wave model was calibrated and used to investigate wave processes on the reef flats under different mean sea level (MSL) scenarios (present MSL, +1 m MSL, and +2 m MSL). These scenarios represent both potential future sea level states and also the paleo sea level of the late Holocene in the southern Great Barrier Reef. Wave heights were shown to increase under sea level rise, with greater wave induced orbital velocities affecting the bed under higher sea levels. In general waves were more likely to entrain and transport sediment both on the reef flat and in the back reef environment under higher sea levels which has implications for not only forecasted climate change scenarios but also for interpreting geological changes during the late Holocene when sea levels were 1

  16. A review of acid sulfate soil impacts, actions and policies that impact on water quality in Great Barrier Reef catchments, including a case study on remediation at East Trinity.

    Science.gov (United States)

    Powell, B; Martens, M

    2005-01-01

    An estimated 666,000 ha of acid sulfate soils (ASS) occur within the Great Barrier Reef (GBR) catchments of Queensland, Australia. Extensive areas have been drained causing acidification, metal contamination, deoxygenation and iron precipitation in reef receiving waters. The close proximity of ASS to reef waters makes them a substantial threat to water quality. Another important issue linked with ASS is their release of soluble iron, which is known to stimulate nuisance marine algal blooms, in particular Lyngbya majuscula. Known blooms of the cyanobacteria in reef waters have been confirmed at Shoalwater Bay, Corio Bay, the Whitsunday area and Hinchinbrook Channel. Acid sulfate soils are intimately related to coastal wetland landscapes. Where landscapes containing ASS have been disturbed (such as for agriculture, aquaculture, marinas, etc.) the biodiversity of adjacent wetlands can be adversely affected. However, there is no clear knowledge of the real extent of the so-called "hotspot" ASS areas that occur within the GBR catchments. Management of ASS in reef catchments has benefited from the implementation of the Queensland Acid Sulfate Soils Management Strategy through policy development, mapping, training programs, an advisory service, research and community participation. However, major gaps remain in mapping the extent and nature of ASS. Areas of significant acidification (i.e. hotspots) need to be identified and policies developed for their remediation. Research has a critical role to play in understanding ASS risk and finding solutions, to prevent the adverse impacts that may be caused by ASS disturbance. A case study is presented of the East Trinity site near Cairns, a failed sugar cane development that episodically discharges large amounts of acid into Trinity Inlet, resulting in periodic fish kills. Details are presented of scientific investigations, and a lime-assisted tidal exchange strategy that are being undertaken to remediate a serious ASS problem

  17. Ocean acidification accelerates reef bioerosion.

    Directory of Open Access Journals (Sweden)

    Max Wisshak

    Full Text Available In the recent discussion how biotic systems may react to ocean acidification caused by the rapid rise in carbon dioxide partial pressure (pCO(2 in the marine realm, substantial research is devoted to calcifiers such as stony corals. The antagonistic process - biologically induced carbonate dissolution via bioerosion - has largely been neglected. Unlike skeletal growth, we expect bioerosion by chemical means to be facilitated in a high-CO(2 world. This study focuses on one of the most detrimental bioeroders, the sponge Cliona orientalis, which attacks and kills live corals on Australia's Great Barrier Reef. Experimental exposure to lowered and elevated levels of pCO(2 confirms a significant enforcement of the sponges' bioerosion capacity with increasing pCO(2 under more acidic conditions. Considering the substantial contribution of sponges to carbonate bioerosion, this finding implies that tropical reef ecosystems are facing the combined effects of weakened coral calcification and accelerated bioerosion, resulting in critical pressure on the dynamic balance between biogenic carbonate build-up and degradation.

  18. High-intensity cardiac infections of Phthinomita heinigerae n. sp. (Digenea: Aporocotylidae) in the orangelined cardinalfish, Taeniamia fucata (Cantor), off Heron Island on the Great Barrier Reef.

    Science.gov (United States)

    Nolan, Matthew J; Cantacessi, Cinzia; Cutmore, Scott C; Cribb, Thomas H; Miller, Terrence L

    2016-10-01

    We report a new species of aporocotylid trematode (Platyhelminthes: Digenea) from the heart of the orangelined cardinalfish, Taeniamia fucata (Cantor), from off Heron Island on the southern Great Barrier Reef. We used an integrated approach, analysing host distribution, morphology, and genetic data from the internal transcribed spacer 2 of the ribosomal DNA, to circumscribe Phthinomita heinigerae n. sp. This is the first species of Phthinomita Nolan & Cribb, 2006 reported from the Apogonidae; existing species and known 'types' are recorded from species of the Labridae, Mullidae, and Siganidae. The new species is distinguished from its 11 congeners in having a body 2977-3539 long and 16.5-22.4 times longer than wide, an anterior testis 6.2-8.2 times longer than wide and 8.3-13.0 times longer than the posterior testis, a posterior testis whose width is 35-56% of the body width, and an ovary positioned 11-13% of the body length from the posterior end, and is entirely anterior to the posterior margin of the anterior testis. In addition, 2-34 base differences (0.4-7.0% sequence divergence over 485 base positions) were detected among the ITS2 sequence representing P. heinigerae n. sp. and the 14 representing other Phthinomita species/molecular types. Prevalence and intensity of infection with P. heinigerae n. sp. was relatively high within the heart tissue of T. fucata, with 19 of 20 fish examined from off Heron Island infected (95%) with 7-25 adult worms (arithmetic mean 16.6). Infections by these parasites accounted for an occupation of 7-30% of the total estimated heart volume.

  19. Integrating Multiple Measurement Techniques to Understand how the Delivery of Sediments to the Great Barrier Reef has Changed Over Space and Time

    Science.gov (United States)

    Bartley, R.; Bainbridge, Z. T.; Lewis, S.; Wilkinson, S. N.; Croke, J.; Bastin, G.; Brodie, J. E.

    2014-12-01

    Based on the ratio of various trace-elements from coral cores, there is considerable evidence that the amount of sediment reaching the Great Barrier Reef (GBR), Australia, has increased since agricultural development commenced in the 1870's. However, understanding the primary source and processes driving the increase in sediment delivery has been challenging due to the variable geology and episodic hydrology of adjacent catchments. This paper presents the results from several projects that use a range of measurement techniques all aimed at understanding the spatial and temporal changes in sediment yield from the Burdekin watershed, Australia. Cosmogenic nuclide analysis (10Be) was combined with contemporary sediment flux monitoring to help identify the high risk sub-watersheds. Particle size analysis of the sediment loads from the sub-watersheds has determined the primary source areas for the fine (clay) sediment fractions. Within the sub-watersheds, fallout radionuclides (137Cs, 7Pb and 7Be) showed that most of the fine sediment is coming from vertical channel walls (50%) or horizontal sub-surface soils (~42%). Changes to in-stream sedimentation rates, derived from OSL dating, suggest that sediment delivery to channels lags behind reductions to vegetative ground cover. Historical archives of remotely sensed ground cover data were then linked to animal stocking rates in the area. Together, these data sets help elucidate the often complex sediment delivery processes and provide a stronger link between grazing land management and sediment flux to the GBR. This study highlights the benefit of using a range of techniques and data sets to identify the major sediment sources in these highly variable systems. The implications for land management restoration, policy and investment are discussed.

  20. 210Pb-226Ra chronology reveals rapid growth rate of Madrepora oculata and Lophelia pertusa on world's largest cold-water coral reef

    Science.gov (United States)

    Sabatier, P.; Reyss, J.-L.; Hall-Spencer, J. M.; Colin, C.; Frank, N.; Tisnérat-Laborde, N.; Bordier, L.; Douville, E.

    2012-03-01

    Here we show the use of the 210Pb-226Ra excess method to determine the growth rate of two corals from the world's largest known cold-water coral reef, Røst Reef, north of the Arctic circle off Norway. Colonies of each of the two species that build the reef, Lophelia pertusa and Madrepora oculata, were collected alive at 350 m depth using a submersible. Pb and Ra isotopes were measured along the major growth axis of both specimens using low level alpha and gamma spectrometry and trace element compositions were studied. 210Pb and 226Ra differ in the way they are incorporated into coral skeletons. Hence, to assess growth rates, we considered the exponential decrease of initially incorporated 210Pb, as well as the increase in 210Pb from the decay of 226Ra and contamination with 210Pb associated with Mn-Fe coatings that we were unable to remove completely from the oldest parts of the skeletons. 226Ra activity was similar in both coral species, so, assuming constant uptake of 210Pb through time, we used the 210Pb-226Ra chronology to calculate growth rates. The 45.5 cm long branch of M. oculata was 31 yr with an average linear growth rate of 14.4 ± 1.1 mm yr-1 (2.6 polyps per year). Despite cleaning, a correction for Mn-Fe oxide contamination was required for the oldest part of the colony; this correction corroborated our radiocarbon date of 40 yr and a mean growth rate of 2 polyps yr-1. This rate is similar to the one obtained in aquarium experiments under optimal growth conditions. For the 80 cm-long L. pertusa colony, metal-oxide contamination remained in both the middle and basal part of the coral skeleton despite cleaning, inhibiting similar age and growth rate estimates. The youngest part of the colony was free of metal oxides and this 15 cm section had an estimated a growth rate of 8 mm yr-1, with high uncertainty (~1 polyp every two to three years). We are less certain of this 210Pb growth rate estimate which is within the lowermost ranges of previous growth

  1. 210Pb-226Ra chronology reveals rapid growth rate of Madrepora oculata and Lophelia pertusa on world's largest cold-water coral reef

    Directory of Open Access Journals (Sweden)

    N. Tisnérat-Laborde

    2012-03-01

    Full Text Available Here we show the use of the 210Pb-226Ra excess method to determine the growth rate of two corals from the world's largest known cold-water coral reef, Røst Reef, north of the Arctic circle off Norway. Colonies of each of the two species that build the reef, Lophelia pertusa and Madrepora oculata, were collected alive at 350 m depth using a submersible. Pb and Ra isotopes were measured along the major growth axis of both specimens using low level alpha and gamma spectrometry and trace element compositions were studied. 210Pb and 226Ra differ in the way they are incorporated into coral skeletons. Hence, to assess growth rates, we considered the exponential decrease of initially incorporated 210Pb, as well as the increase in 210Pb from the decay of 226Ra and contamination with 210Pb associated with Mn-Fe coatings that we were unable to remove completely from the oldest parts of the skeletons. 226Ra activity was similar in both coral species, so, assuming constant uptake of 210Pb through time, we used the 210Pb-226Ra chronology to calculate growth rates. The 45.5 cm long branch of M. oculata was 31 yr with an average linear growth rate of 14.4 ± 1.1 mm yr−1 (2.6 polyps per year. Despite cleaning, a correction for Mn-Fe oxide contamination was required for the oldest part of the colony; this correction corroborated our radiocarbon date of 40 yr and a mean growth rate of 2 polyps yr−1. This rate is similar to the one obtained in aquarium experiments under optimal growth conditions. For the 80 cm-long L. pertusa colony, metal-oxide contamination remained in both the middle and basal part of the coral skeleton despite cleaning, inhibiting similar age and growth rate estimates. The youngest part of the colony was free of metal oxides and this 15 cm section had an estimated a growth rate of 8 mm yr−1, with high uncertainty (~1 polyp every two to three years. We are less certain of this 210Pb growth rate estimate which is within the lowermost

  2. Doom and boom on a resilient reef: climate change, algal overgrowth and coral recovery.

    Directory of Open Access Journals (Sweden)

    Guillermo Diaz-Pulido

    Full Text Available BACKGROUND: Coral reefs around the world are experiencing large-scale degradation, largely due to global climate change, overfishing, diseases and eutrophication. Climate change models suggest increasing frequency and severity of warming-induced coral bleaching events, with consequent increases in coral mortality and algal overgrowth. Critically, the recovery of damaged reefs will depend on the reversibility of seaweed blooms, generally considered to depend on grazing of the seaweed, and replenishment of corals by larvae that successfully recruit to damaged reefs. These processes usually take years to decades to bring a reef back to coral dominance. METHODOLOGY/PRINCIPAL FINDINGS: In 2006, mass bleaching of corals on inshore reefs of the Great Barrier Reef caused high coral mortality. Here we show that this coral mortality was followed by an unprecedented bloom of a single species of unpalatable seaweed (Lobophora variegata, colonizing dead coral skeletons, but that corals on these reefs recovered dramatically, in less than a year. Unexpectedly, this rapid reversal did not involve reestablishment of corals by recruitment of coral larvae, as often assumed, but depended on several ecological mechanisms previously underestimated. CONCLUSIONS/SIGNIFICANCE: These mechanisms of ecological recovery included rapid regeneration rates of remnant coral tissue, very high competitive ability of the corals allowing them to out-compete the seaweed, a natural seasonal decline in the particular species of dominant seaweed, and an effective marine protected area system. Our study provides a key example of the doom and boom of a highly resilient reef, and new insights into the variability and mechanisms of reef resilience under rapid climate change.

  3. A new family Lepidocharontidae with description of Lepidocharon gen. n., from the Great Barrier Reef, Australia, and redefinition of the Microparasellidae (Isopoda, Asellota).

    Science.gov (United States)

    Galassi, Diana M P; Bruce, Niel L; Fiasca, Barbara; Dole-Olivier, Marie-José

    2016-01-01

    Lepidocharontidae Galassi & Bruce, fam. n. is erected, containing Lepidocharon Galassi & Bruce, gen. n. and two genera transferred from the family Microparasellidae Karaman, 1934: Microcharon Karaman, 1934 and Janinella Albuquerque, Boulanouar & Coineau, 2014. The genus Angeliera Chappuis & Delamare Deboutteville, 1952 is placed as genus incertae sedis in this family. The Lepidocharontidae is characterised by having rectangular or trapezoidal somites in dorsal view, a single free pleonite, a tendency to reduction of the coxal plates, and the unique uropodal morphology of a large and long uropodal protopod on which the slender uropodal exopod articulates separately and anteriorly to the endopod. Lepidocharon Galassi & Bruce, gen. n. has a 6-segmented antennula, a well-developed antennal scale (rudimentary exopod), long and slender pereiopods 1-7 directed outwards, coxal plates rudimentary, incorporated to the lateral side of the sternites, not discernible in dorsal view, the single pleonite narrower than pereionite 7, scale-like elements bordering the proximal part of male pleopod 1 on posterior side, and stylet-guiding grooves of male pleopod 1 which run parallel to the outer lateral margins of the same pleopod. Lepidocharon priapus Galassi & Bruce, sp. n., type species for the genus, and Lepidocharon lizardensis Galassi & Bruce, sp. n. are described from Lizard Island, northern Great Barrier Reef. The most similar genus is Microcharon, both genera sharing the same general organization of the male pleopods 1 and 2, topology and architecture of the stylet-guiding groove of male pleopod 1, morphology of female operculum, presence of 2 robust claws of different lengths on pereiopodal dactylus 1-7, not sexually dimorphic. Lepidocharon gen. n. differs from Microcharon in the shape of the pereionites, very reduced coxal plates, the presence of imbricate scale-like elements bordering the proximal postero-lateral margins of the male pleopod 1, and the topology of the

  4. U-Th age distribution of coral fragments from multiple rubble ridges within the Frankland Islands, Great Barrier Reef: Implications for past storminess history

    Science.gov (United States)

    Liu, Entao; Zhao, Jian-xin; Feng, Yue-xing; Leonard, Nicole D.; Clark, Tara R.; Roff, George

    2016-07-01

    Prograded coral rubble ridges have been widely used as archives for reconstructing long-term storm or storminess history. Chronologies of ridge systems in previous studies are often based on a limited number of low-resolution radiocarbon or optically-stimulated luminescence (OSL) ages per ridge (usually only one age per ridge), which carry intrinsic age uncertainties and make interpretation of storm histories problematic. To test the fidelity of storm ridges as palaeo-storm archives, we used high-precision U-Th dating to examine whether different samples from a single ridge are temporally constrained. We surveyed three transects of ridge systems from two continental islands (Normanby Island and High Island) within the Frankland Islands, Great Barrier Reef (GBR), and obtained 96 U-Th dates from coral rubble samples collected from within and between different ridges. Our results revealed significant differences in age ranges between the two islands. The steeper and more defined rubble ridges present on Normanby Island revealed that the majority of U-Th ages (over 60%) from a single ridge clustered within a narrow age range (∼100 years). By contrast, the lower and less defined ridges on High Island, which were more likely formed during both storm and non-storm high-energy events, revealed significant scatter in age distribution (>>200 years) with no notable clustering. The narrower age ranges obtained from the steeper and more defined rubble ridges suggest that previous approaches of using either limited samples from a single ridge or low-precision dating methods to establish chronologies are generally valid at centennial to millennial timescales, although caution must be taken to use such approaches for storm history reconstruction on shorter timescales (e.g. decadal). The correlation between U-Th mortality ages of coral rubble and historical stormy periods highlights the possibility of using coral rubble age distribution from rubble ridges to reconstruct the long

  5. The effect of sub-lethal increases in temperature on the growth and population trajectories of three scleractinian corals on the southern Great Barrier Reef.

    Science.gov (United States)

    Edmunds, Peter J

    2005-12-01

    To date, coral death has been the most conspicuous outcome of warming tropical seas, but as temperatures stabilize at higher values, the consequences for the corals remaining will be mediated by their demographic responses to the sub-lethal effects of temperature. To gain insight into the nature of these responses, here I develop a model to test the effect of increased temperature on populations of three pocilloporid corals at One Tree Island, near the southern extreme of the Great Barrier Reef (GBR). Using Seriatopora hystrix, S. caliendrum and Pocillopora damicornis as study species, the effects of temperature on growth were determined empirically, and the dynamics of their populations determined under natural temperatures over a 6-month period between 1999 and 2000 [defined as the study year (SY)]. The two data sets were combined in a demographic test of the possibility that the thermal regime projected for the southern GBR in the next 55-83 years--warmer by 3 degrees C than the study year (the SY+3 regime), which is equivalent to 1.4 degrees C warmer than the recent warm year of 1998--would alter coral population trajectories through the effects on coral growth alone; the analyses first were completed by species, then by family after pooling among species. Laboratory experiments showed that growth rates (i.e., calcification) varied significantly among species and temperatures, and displayed curvilinear thermal responses with growth maxima at approximately 27.1 degrees C. Based on these temperature-growth responses, the SY+3 regime is projected to: (1) increase annualized growth rates of all taxa by 24-39%, and defer the timing of peak growth from the summer to the autumn and spring, (2) alter the intrinsic rate of population growth (lambda) for S. hystrix (lambda decreases 26%) and S. caliendrum (lambda increases 5%), but not for P. damicornis, and (3) have a minor effect on lambda (a 0.3% increase) for the Pocilloporidae, largely because lambda varies more

  6. Sit down at the ball game: How trade barriers make the world less food secure

    NARCIS (Netherlands)

    Rutten, M.M.; Shutes, L.J.; Meijerink, G.W.

    2013-01-01

    This paper analyses the impacts of trade policy responses to rising world food prices by carrying out a series of stylised experiments in the wheat market using a world trade model, GTAP. The sequence of events that is modelled comprises a negative wheat supply shock and subsequent implementation of

  7. {sup 137}Cs and excess {sup 210}Pb deposition patterns in estuarine and marine sediment in the central region of the Great Barrier Reef Lagoon, north-eastern Australia

    Energy Technology Data Exchange (ETDEWEB)

    Pfitzner, John E-mail: j.pfitzner@aims.gov.au; Brunskill, Gregg E-mail: g.brunskill@aims.gov.au; Zagorskis, Irena E-mail: i.zagorskis@aims.gov.au

    2004-07-01

    This paper focuses on the distribution of {sup 137}Cs and {sup 210}Pb{sub xs} in 51 estuarine and marine sediment cores collected between the Upstart Bay and Rockingham Bay in the Great Barrier Reef Lagoon, north-eastern Australia. Historical records of {sup 210}Pb{sub xs} and {sup 137}Cs atmospheric deposition and present day terrestrial inventories in north-eastern Australia are presented. {sup 210}Pb{sub xs} and {sup 137}Cs fluxes measured on suspended sediments in the Burdekin River are considered to be a source of recent inputs of these nuclides to the nearshore region of this part of the Great Barrier Reef. Direct correlations between sediment nuclide inventories, maximum detectable depths, and sediment mass accumulation rates (MARs), calculated using both {sup 137}Cs and {sup 210}Pb{sub xs}, are explored. In relation to inventories of {sup 210}Pb{sub xs}, 60% of atmospheric fallout {sup 137}Cs appears to be missing from the sediments. The reasons for these differences in two tracers, primarily of atmospheric origin, are discussed in terms of the geochemical properties of these two nuclides. Evidence is presented to support the hypothesis that the {sup 137}Cs distribution in these cores can be a useful independent tracer which provides confirmation of MARs calculated from the decay of {sup 210}Pb{sub xs}.

  8. Health system and societal barriers for gestational diabetes mellitus (GDM services - lessons from World Diabetes Foundation supported GDM projects

    Directory of Open Access Journals (Sweden)

    Nielsen Karoline Kragelund

    2012-12-01

    Full Text Available Abstract Background Maternal mortality and morbidity remains high in many low- and middle-income countries (LMIC. Gestational Diabetes Mellitus (GDM represents an underestimated and unrecognised impediment to optimal maternal health in LMIC; left untreated – it also has severe consequences for the offspring. A better understanding of the barriers hindering detection and treatment of GDM is needed. Based on experiences from World Diabetes Foundation (WDF supported GDM projects this paper seeks to investigate societal and health system barriers to such efforts. Methods Questionnaires were filled out by 10 WDF supported GDM project partners implementing projects in eight different LMIC. In addition, interviews were conducted with the project partners. The interviews were analysed using content analysis. Results Barriers to improving maternal health related to GDM nominated by project implementers included lack of trained health care providers - especially female doctors; high staff turnover; lack of standard protocols, consumables and equipment; financing of health services and treatment; lack of or poor referral systems, feedback mechanisms and follow-up systems; distance to health facility; perceptions of female body size and weight gain/loss in relation to pregnancy; practices related to pregnant women’s diet; societal negligence of women’s health; lack of decision-making power among women regarding their own health; stigmatisation; role of women in society and expectations that the pregnant woman move to her maternal home for delivery. Conclusions A number of barriers within the health system and society exist. Programmes need to consider and address these barriers in order to improve GDM care and thereby maternal health in LMIC.

  9. Cardicola beveridgei n. sp. (Digenea: Aporocotylidae) from the mangrove jack, Lutjanus argentimaculatus (Perciformes: Lutjanidae), and C. bullardi n. sp. from the Australian spotted mackerel, Scomberomorus munroi (Perciformes: Scombridae), from the northern Great Barrier Reef.

    Science.gov (United States)

    Nolan, Matthew J; Miller, Terrence L; Cutmore, Scott C; Cantacessi, Cinzia; Cribb, Thomas H

    2014-10-01

    Cardicola Short, 1953 is a genus of the Aporocotylidae Odhner, 1912 (Digenea), with 25 currently recognised species described from 32 species of Perciformes and Mugiliformes fishes around the world, including eight species from the Great Barrier Reef. Here, we describe two new species from this region, namely Cardicola beveridgei n. sp. from the ventricle and atrium of the mangrove jack, Lutjanus argentimaculatus (Forsskål) (Perciformes: Lutjanidae), and Cardicola bullardi n. sp. from the ventricle of the Australian spotted mackerel, Scomberomorus munroi Collette & Russo (Perciformes: Scombridae), from off Lizard Island, Queensland, Australia. These two new species are most easily distinguished from the 25 current members of Cardicola in having the combination of i) a spinous oral sucker, ii) an anteriorly intercaecal ovary, iii) a uterus that extends anteriorly from the oötype, iv) the number of spines per ventrolateral transverse row, and in v) body size and the length/width ratio, vi) the oesophagus and caecal length(s) relative to body total length, vii) the length of the posterior caeca relative to the anterior pair, viii) the testis length/width ratio and its total size relative to that of the body, ix) the postovarian field as a percentage of body length, and x) egg size. In addition, C. beveridgei n. sp. is further differentiated by possessing a female genital pore that opens anterodextral to the male pore while C. bullardi n. sp. differs further in possessing a testis that is almost entirely intercaecal and does not extend anteriorly to the level of the intestinal bifurcation. Employing genetic analysis of ITS2 rDNA sequence data, representing these species and a further 13 recognised and three putative species of Cardicola, we were able to unequivocally confirm these specimens as distinct (9-22% different over 420 nucleotide positions). Distance analysis of ITS2 showed that i) species of Cardicola from the Siganidae formed a monophyletic clade, to the

  10. The status of coral reef ecology research in the Red Sea

    KAUST Repository

    Berumen, Michael L.

    2013-06-21

    The Red Sea has long been recognized as a region of high biodiversity and endemism. Despite this diversity and early history of scientific work, our understanding of the ecology of coral reefs in the Red Sea has lagged behind that of other large coral reef systems. We carried out a quantitative assessment of ISI-listed research published from the Red Sea in eight specific topics (apex predators, connectivity, coral bleaching, coral reproductive biology, herbivory, marine protected areas, non-coral invertebrates and reef-associated bacteria) and compared the amount of research conducted in the Red Sea to that from Australia\\'s Great Barrier Reef (GBR) and the Caribbean. On average, for these eight topics, the Red Sea had 1/6th the amount of research compared to the GBR and about 1/8th the amount of the Caribbean. Further, more than 50 % of the published research from the Red Sea originated from the Gulf of Aqaba, a small area (<2 % of the area of the Red Sea) in the far northern Red Sea. We summarize the general state of knowledge in these eight topics and highlight the areas of future research priorities for the Red Sea region. Notably, data that could inform science-based management approaches are badly lacking in most Red Sea countries. The Red Sea, as a geologically "young" sea located in one of the warmest regions of the world, has the potential to provide insight into pressing topics such as speciation processes as well as the capacity of reef systems and organisms to adapt to global climate change. As one of the world\\'s most biodiverse coral reef regions, the Red Sea may yet have a significant role to play in our understanding of coral reef ecology at a global scale. © 2013 Springer-Verlag Berlin Heidelberg.

  11. 210Pb-226Ra chronology reveals rapid growth rate of Madrepora oculata and Lophelia pertusa on world's largest cold-water coral reef

    Directory of Open Access Journals (Sweden)

    N. Tisnérat-Laborde

    2011-12-01

    Full Text Available Here we show the use of the 210Pb-226Ra excess method to determine the growth rate of corals from one of the world's largest known cold-water coral reef, the Røst Reef off Norway. Two large branching framework-forming cold-water coral specimens, one Lophelia pertusa and one Madrepora oculata were collected alive at 350 m water depth from the Røst Reef at ~67° N and ~9° E. Pb and Ra isotopes were measured along the major growth axis of both specimens using low level alpha and gamma spectrometry and the corals trace element compositions were studied using ICP-QMS. Due to the different chemical behaviors of Pb and Ra in the marine environment, 210Pb and 226Ra were not incorporated the same way into the aragonite skeleton of those two cold-water corals. Thus to assess of the growth rates of both specimens we have here taken in consideration the exponential decrease of initially incorporated 210Pb as well as the ingrowth of 210Pb from the decay of 226Ra. Moreover a~post-depositional 210Pb incorporation is found in relation to the Mn-Fe coatings that could not be entirely removed from the oldest parts of the skeletons. The 226Ra activities in both corals were fairly constant, then assuming constant uptake of 210Pb through time the 210Pb-226Ra chronology can be applied to calculate linear growth rate. The 45.5 cm long branch of M. oculata reveals an age of 31 yr and a~linear growth rate of 14.4 ± 1.1 mm yr−1, i.e. 2.6 polyps per year. However, a correction regarding a remaining post-depositional Mn-Fe oxide coating is needed for the base of the specimen. The corrected age tend to confirm the radiocarbon derived basal age of 40 yr (using 14C bomb peak with a mean growth rate of 2 polyps yr−1. This rate is similar to the one obtained in Aquaria experiments under optimal growth conditions. For the 80 cm-long specimen of L. pertusa a remaining contamination of metal-oxides is observed for the middle and basal part of the coral skeleton, inhibiting

  12. Adaptive avoidance of reef noise.

    Directory of Open Access Journals (Sweden)

    Stephen D Simpson

    Full Text Available Auditory information is widely used throughout the animal kingdom in both terrestrial and aquatic environments. Some marine species are dependent on reefs for adult survival and reproduction, and are known to use reef noise to guide orientation towards suitable habitat. Many others that forage in food-rich inshore waters would, however, benefit from avoiding the high density of predators resident on reefs, but nothing is known about whether acoustic cues are used in this context. By analysing a sample of nearly 700,000 crustaceans, caught during experimental playbacks in light traps in the Great Barrier Reef lagoon, we demonstrate an auditory capability in a broad suite of previously neglected taxa, and provide the first evidence in any marine organisms that reef noise can act as a deterrent. In contrast to the larvae of species that require reef habitat for future success, which showed an attraction to broadcasted reef noise, taxa with a pelagic or nocturnally emergent lifestyle actively avoided it. Our results suggest that a far greater range of invertebrate taxa than previously thought can respond to acoustic cues, emphasising yet further the potential negative impact of globally increasing levels of underwater anthropogenic noise.

  13. Painting the world REDD: addressing scientific barriers to monitoring emissions from tropical forests

    Science.gov (United States)

    Asner, Gregory P.

    2011-06-01

    project scale to program readiness is a big step for all involved, and many are finding that it is not easy. Current barriers to national monitoring of forest carbon stocks and emissions range from technical to scientific, and from institutional to operational. In fact, a recent analysis suggested that about 3% of tropical countries currently have the capacity to monitor and report on changes in forest cover and carbon stocks (Herold 2009). But until now, the scientific and policy-development communities have had little quantitative information on exactly which aspects of national-scale monitoring are most uncertain, and how that uncertainty will affect REDD+ performance reporting. A new and remarkable study by Pelletier, Ramankutty and Potvin (2011) uses an integrated, spatially-explicit modeling technique to explore and quantify sources of uncertainty in carbon emissions mapping throughout the Republic of Panama. Their findings are sobering: deforestation rates would need to be reduced by a full 50% in Panama in order to be detectable above the statistical uncertainty caused by several current major monitoring problems. The number one uncertainty, accounting for a sum total of about 77% of the error, rests in the spatial variation of aboveground carbon stocks in primary forests, secondary forests and on fallow land. The poor quality of and insufficient time interval between land-cover maps account for the remainder of the overall uncertainty. These findings are a show-stopper for REDD+ under prevailing science and technology conditions. The Pelletier et al study highlights the pressing need to improve the accuracy of forest carbon and land cover mapping assessments in order for REDD+ to become viable, but how can the uncertainties be overcome? First, with REDD+ nations required to report their emissions, and with verification organizations wanting to check on the reported numbers, there is a clear need for shared measurement and monitoring approaches. One of the major

  14. A Global Estimate of the Number of Coral Reef Fishers.

    Directory of Open Access Journals (Sweden)

    Louise S L Teh

    Full Text Available Overfishing threatens coral reefs worldwide, yet there is no reliable estimate on the number of reef fishers globally. We address this data gap by quantifying the number of reef fishers on a global scale, using two approaches - the first estimates reef fishers as a proportion of the total number of marine fishers in a country, based on the ratio of reef-related to total marine fish landed values. The second estimates reef fishers as a function of coral reef area, rural coastal population, and fishing pressure. In total, we find that there are 6 million reef fishers in 99 reef countries and territories worldwide, of which at least 25% are reef gleaners. Our estimates are an improvement over most existing fisher population statistics, which tend to omit accounting for gleaners and reef fishers. Our results suggest that slightly over a quarter of the world's small-scale fishers fish on coral reefs, and half of all coral reef fishers are in Southeast Asia. Coral reefs evidently support the socio-economic well-being of numerous coastal communities. By quantifying the number of people who are employed as reef fishers, we provide decision-makers with an important input into planning for sustainable coral reef fisheries at the appropriate scale.

  15. Real-time PCR reveals a high incidence of Symbiodinium clade D at low levels in four scleractinian corals across the Great Barrier Reef : implications for symbiont shuffling

    NARCIS (Netherlands)

    Mieog, J. C.; van Oppen, M. J. H.; Cantin, N. E.; Stam, W. T.; Olsen, J. L.

    2007-01-01

    Reef corals form associations with an array of genetically and physiologically distinct endosymbionts from the genus Symbiodinium. Some corals harbor different clades of symbionts simultaneously, and over time the relative abundances of these clades may change through a process called symbiont shuff

  16. Land-use effects on fluxes of suspended sediment, nitrogen and phosphorus from a river catchment of the Great Barrier Reef, Australia

    Science.gov (United States)

    Hunter, Heather M.; Walton, Richard S.

    2008-07-01

    SummaryA 6-year study was conducted in the Johnstone River system in the wet tropics of north-eastern Australia, to address concerns that the Great Barrier Reef is at risk from elevated levels of suspended sediment (SS) and nutrients discharged from its river catchments. Aims were to quantify: (i) fluxes of SS, phosphorus (P) and nitrogen (N) exported annually from the catchment and (ii) the influence of rural land uses on these fluxes. Around 55% of the 1602 km2 catchment was native rainforest, with the reminder developed mainly for livestock and crop production. Water quality and stream flow were monitored at 16 sites, with the emphasis on sampling major runoff events. Monitoring data were used to calibrate a water quality model for the catchment (HSPF), which was run with 39 years of historical precipitation and evaporation data. Modelled specific fluxes from the catchment of 1.2 ± 1.1 t SS ha-1 y-1, 2.2 ± 1.8 kg P ha-1 y-1 and 11.4 ± 7.3 kg N ha-1y-1 were highly variable between and within years. Fluxes of SS and P were strongly dominated by major events, with 91% of SS and 84% of P exported during the highest 10% of daily flows. On average, sediment P comprised 81% of the total P flux. The N flux was less strongly dominated by major events and sediment N comprised 46% of total N exports. Specific fluxes of SS, N and P from areas receiving precipitation of 3545 mm y-1 were around 3-4 times those from areas receiving 1673 mm y-1. For a given mean annual precipitation, specific fluxes of SS and P from beef pastures, dairy pastures and unsewered residential areas were similar to those from rainforest, while fluxes from areas of sugar cane and bananas were 3-4 times higher. Specific fluxes of N from areas with an annual precipitation of 3545 mm ranged from 8.9 ± 6.5 kg N ha-1 y-1 (rainforest) to 72 ± 50 kg N ha-1 y-1 (unsewered residential). Aggregated across the entire catchment, disproportionately large fluxes of SS, total P and total N were derived from

  17. Artificial Reefs

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — An artificial reef is a human-made underwater structure, typically built to promote marine life in areas with a generally featureless bottom, control erosion, block...

  18. Will Coral Islands maintain their growth over the next century? A deterministic model of sediment availability at Lady Elliot Island, Great Barrier Reef.

    Science.gov (United States)

    Hamylton, Sarah

    2014-01-01

    A geomorphic assessment of reef system calcification is conducted for past (3200 Ka to present), present and future (2010-2100) time periods. Reef platform sediment production is estimated at 569 m3 yr-1 using rate laws that express gross community carbonate production as a function of seawater aragonite saturation, community composition and rugosity and incorporating estimates of carbonate removal from the reef system. Key carbonate producers including hard coral, crustose coralline algae and Halimeda are mapped accurately (mean R2 = 0.81). Community net production estimates correspond closely to independent census-based estimates made in-situ (R2 = 0.86). Reef-scale outputs are compared with historic rates of production generated from (i) radiocarbon evidence of island deposition initiation around 3200 years ago, and (ii) island volume calculated from a high resolution island digital elevation model. Contemporary carbonate production rates appear to be remarkably similar to historical values of 573 m3 yr-1. Anticipated future seawater chemistry parameters associated with an RCP8.5 emissions scenario are employed to model rates of net community calcification for the period 2000-2100 on the basis of an inorganic aragonite precipitation law, under the assumption of constant benthic community character. Simulations indicate that carbonate production will decrease linearly to a level of 118 m3 yr-1 by 2100 and that by 2150 aragonite saturation levels may no longer support the positive budgetary status necessary to sustain island accretion. Novel aspects of this assessment include the development of rate law parameters to realistically represent the variable composition of coral reef benthic carbonate producers, incorporation of three dimensional rugosity of the entire reef platform and the coupling of model outputs with both historical radiocarbon dating evidence and forward hydrochemical projections to conduct an assessment of island evolution through time

  19. Connectivity in grey reef sharks (Carcharhinus amblyrhynchos) determined using empirical and simulated genetic data

    OpenAIRE

    Paolo Momigliano; Robert Harcourt; Robbins, William D.; Adam Stow

    2015-01-01

    Grey reef sharks (Carcharhinus amblyrhynchos) can be one of the numerically dominant high order predators on pristine coral reefs, yet their numbers have declined even in the highly regulated Australian Great Barrier Reef (GBR) Marine Park. Knowledge of both large scale and fine scale genetic connectivity of grey reef sharks is essential for their effective management, but no genetic data are yet available. We investigated grey reef shark genetic structure in the GBR across a 1200 km latitudi...

  20. Barriers to colorectal cancer screening in the developing world:The view from Pakistan

    Institute of Scientific and Technical Information of China (English)

    Furqaan; Ahmed

    2013-01-01

    Colorectal cancer screening has become a defining concern of current gastroenterological practice in many Western nations.This same focus does not exist in many developing countries,including Pakistan.There is a need to develop a model for the developing world.Here are several areas that need to be pursued:(1) epidemiological research;(2) physician and public education;(3) training of gastroenterologists,especially female ones;(4) less expensive and more culturally acceptable screening options(fecal occult blood testing); and(5) cost-effectiveness analyses.Gastroenterologists in developing countries need to step up to educate people and promote,where possible and in keeping with local conditions,the prevention and early diagnosis of colorectal cancer.

  1. Painting the world REDD: addressing scientific barriers to monitoring emissions from tropical forests

    Science.gov (United States)

    Asner, Gregory P.

    2011-06-01

    project scale to program readiness is a big step for all involved, and many are finding that it is not easy. Current barriers to national monitoring of forest carbon stocks and emissions range from technical to scientific, and from institutional to operational. In fact, a recent analysis suggested that about 3% of tropical countries currently have the capacity to monitor and report on changes in forest cover and carbon stocks (Herold 2009). But until now, the scientific and policy-development communities have had little quantitative information on exactly which aspects of national-scale monitoring are most uncertain, and how that uncertainty will affect REDD+ performance reporting. A new and remarkable study by Pelletier, Ramankutty and Potvin (2011) uses an integrated, spatially-explicit modeling technique to explore and quantify sources of uncertainty in carbon emissions mapping throughout the Republic of Panama. Their findings are sobering: deforestation rates would need to be reduced by a full 50% in Panama in order to be detectable above the statistical uncertainty caused by several current major monitoring problems. The number one uncertainty, accounting for a sum total of about 77% of the error, rests in the spatial variation of aboveground carbon stocks in primary forests, secondary forests and on fallow land. The poor quality of and insufficient time interval between land-cover maps account for the remainder of the overall uncertainty. These findings are a show-stopper for REDD+ under prevailing science and technology conditions. The Pelletier et al study highlights the pressing need to improve the accuracy of forest carbon and land cover mapping assessments in order for REDD+ to become viable, but how can the uncertainties be overcome? First, with REDD+ nations required to report their emissions, and with verification organizations wanting to check on the reported numbers, there is a clear need for shared measurement and monitoring approaches. One of the major

  2. The impact of farmers’ participation in field trials in creating awareness and stimulating compliance with the World Health Organization’s farm-based multiple-barrier approach

    DEFF Research Database (Denmark)

    Amponsah, Owusu; Vigre, Håkan; Schou, Torben Wilde;

    2016-01-01

    The results of a study aimed as assessing the extent to which urban vegetable farmers’ participation in field trials can impact on their awareness and engender compliance with the World Health Organization’s farm-based multiple-barrier approach are presented in this paper. Both qualitative...

  3. Refuge-seeking impairments mirror metabolic recovery following fisheries-related stressors in the Spanish flag snapper (Lutjanus carponotatus) on the Great Barrier Reef.

    Science.gov (United States)

    Cooke, Steven J; Messmer, Vanessa; Tobin, Andrew J; Pratchett, Morgan S; Clark, Timothy D

    2014-01-01

    Fisheries and marine park management strategies for large predatory reef fish can mean that a large proportion of captured fish are released. Despite being released, these fish may experience high mortality while they traverse the water column to locate suitable refuge to avoid predators, all the while recovering from the stress of capture. The predatory reef fish Spanish flag snapper (Lutjanus carponotatus) is frequently released because of a minimum-size or bag limit or by fishers targeting more desirable species. Using L. carponotatus as a model, we tested whether simulated fishing stress (exercise and air exposure) resulted in impairments in reflexes (e.g., response to stimuli) and the ability to identify and use refuge in a laboratory arena and whether any impairments were associated with blood physiology or metabolic recovery. Control fish were consistently responsive to reflex tests and rapidly located and entered refugia in the arena within seconds. Conversely, treatment fish (exhausted and air exposed) were unresponsive to stimuli, took longer to search for refugia, and were more apprehensive to enter the refuge once it was located. Consequently, treatment fish took more than 70 times longer than control fish to enter the coral refuge (26.12 vs. 0.36 min, respectively). The finding that fish exposed to stress were hesitant to use refugia suggests that there was likely cognitive, visual, and/or physiological impairment. Blood lactate, glucose, and hematocrit measures were perturbed at 15 and 30 min after the stressor, relative to controls. However, measurements of oxygen consumption rate revealed that about 50% of metabolic recovery occurred within 30 min after the stressor, coinciding with apparent cognitive/visual/physiological recovery. Recovering the treatment fish in aerated, flow-through chambers for 30 min before introduction to the behavioral arena restored reflexes, and "recovered" fish behaved more similarly to controls. Therefore, we suggest that

  4. Refuge-seeking impairments mirror metabolic recovery following fisheries-related stressors in the Spanish flag snapper (Lutjanus carponotatus) on the Great Barrier Reef.

    Science.gov (United States)

    Cooke, Steven J; Messmer, Vanessa; Tobin, Andrew J; Pratchett, Morgan S; Clark, Timothy D

    2014-01-01

    Fisheries and marine park management strategies for large predatory reef fish can mean that a large proportion of captured fish are released. Despite being released, these fish may experience high mortality while they traverse the water column to locate suitable refuge to avoid predators, all the while recovering from the stress of capture. The predatory reef fish Spanish flag snapper (Lutjanus carponotatus) is frequently released because of a minimum-size or bag limit or by fishers targeting more desirable species. Using L. carponotatus as a model, we tested whether simulated fishing stress (exercise and air exposure) resulted in impairments in reflexes (e.g., response to stimuli) and the ability to identify and use refuge in a laboratory arena and whether any impairments were associated with blood physiology or metabolic recovery. Control fish were consistently responsive to reflex tests and rapidly located and entered refugia in the arena within seconds. Conversely, treatment fish (exhausted and air exposed) were unresponsive to stimuli, took longer to search for refugia, and were more apprehensive to enter the refuge once it was located. Consequently, treatment fish took more than 70 times longer than control fish to enter the coral refuge (26.12 vs. 0.36 min, respectively). The finding that fish exposed to stress were hesitant to use refugia suggests that there was likely cognitive, visual, and/or physiological impairment. Blood lactate, glucose, and hematocrit measures were perturbed at 15 and 30 min after the stressor, relative to controls. However, measurements of oxygen consumption rate revealed that about 50% of metabolic recovery occurred within 30 min after the stressor, coinciding with apparent cognitive/visual/physiological recovery. Recovering the treatment fish in aerated, flow-through chambers for 30 min before introduction to the behavioral arena restored reflexes, and "recovered" fish behaved more similarly to controls. Therefore, we suggest that

  5. A systematic review of patient self-reported barriers of adherence to antihypertensive medications using the world health organization multidimensional adherence model.

    Science.gov (United States)

    AlGhurair, Suliman A; Hughes, Christine A; Simpson, Scot H; Guirguis, Lisa M

    2012-12-01

    Multiple barriers can influence adherence to antihypertensive medications. The aim of this systematic review was to determine what adherence barriers were included in each instrument and to describe the psychometric properties of the identified surveys. Barriers were characterized using the World Health Organization (WHO) Multidimensional Adherence Model with patient, condition, therapy, socioeconomic, and health care system/team-related barriers. Five databases (Medline, Embase, Health and Psychological Instruments, CINHAL, and International Pharmaceutical Abstracts [IPA]) were searched from 1980 to September 2011. Our search identified 1712 citations; 74 articles met inclusion criteria and 51 unique surveys were identified. The Morisky Medication Adherence Scale was the most commonly used survey. Only 20 surveys (39%) have established reliability and validity evidence. According to the WHO Adherence Model domains, patient-related barriers were most commonly addressed, while condition, therapy, and socioeconomic barriers were underrepresented. The complexity of adherence behavior requires robust self-report measurements and the inclusion of barriers relevant to each unique patient population and intervention.

  6. Mapping Oyster Reef Habitats in Mobile Bay

    Science.gov (United States)

    Bolte, Danielle

    2011-01-01

    Oyster reefs around the world are declining rapidly, and although they haven t received as much attention as coral reefs, they are just as important to their local ecosystems and economies. Oyster reefs provide habitats for many species of fish, invertebrates, and crustaceans, as well as the next generations of oysters. Oysters are also harvested from many of these reefs and are an important segment of many local economies, including that of Mobile Bay, where oysters rank in the top five commercial marine species both by landed weight and by dollar value. Although the remaining Mobile Bay oyster reefs are some of the least degraded in the world, projected climate change could have dramatic effects on the health of these important ecosystems. The viability of oyster reefs depends on water depth and temperature, appropriate pH and salinity levels, and the amount of dissolved oxygen in the water. Projected increases in sea level, changes in precipitation and runoff patterns, and changes in pH resulting from increases in the amount of carbon dioxide dissolved in the oceans could all affect the viability of oyster reefs in the future. Human activities such as dredging and unsustainable harvesting practices are also adversely impacting the oyster reefs. Fortunately, several projects are already under way to help rebuild or support existing or previously existing oyster reefs. The success of these projects will depend on the local effects of climate change on the current and potential habitats and man s ability to recognize and halt unsustainable harvesting practices. As the extent and health of the reefs changes, it will have impacts on the Mobile Bay ecosystem and economy, changing the resources available to the people who live there and to the rest of the country, since Mobile Bay is an important national source of seafood. This project identified potential climate change impacts on the oyster reefs of Mobile Bay, including the possible addition of newly viable

  7. The Global Coral Reef Crisis: Trends and Solutions (Coral Reefs: Values, Threats, and the Marine Aquarium Trade)

    Energy Technology Data Exchange (ETDEWEB)

    Shuman, Craig S. (Reef Check, UCLA)

    2003-02-05

    Second only to tropical rainforests, coral reefs support one of the world's most diverse natural habitats. Over 350 million individuals depend on coral reef resources for food and income. Unfortunately, the Earth is in the midst of a coral reef crisis. Anthropogenic impacts including overfishing, destructive fishing practices, sedimentation and pollution, as well as global climate change, have served to disrupt the natural processes that maintain the health of these ecosystems. Until recently, however, the global extent of the coral reef crisis was unknown. Reef Check was developed in 1996 as a volunteer, community-based monitoring protocol designed to measure the health of coral reefs on a global scale. With goals of education, monitoring, and management, Reef Check has activities in over 60 countries and territories. They have not only provided scientific evidence of the global extent of the coral reef crisis, but have provided the first community based steps to alleviate this urgent situation.

  8. Validation of Reef-Scale Thermal Stress Satellite Products for Coral Bleaching Monitoring

    OpenAIRE

    Heron, Scott F.; Lyza Johnston; Gang Liu; Erick F. Geiger; Maynard, Jeffrey A; Jacqueline L. De La Cour; Steven Johnson; Ryan Okano; David Benavente; Timothy F. R. Burgess; John Iguel; Denise I. Perez; Skirving, William J.; Alan E. Strong; Kyle Tirak

    2016-01-01

    Satellite monitoring of thermal stress on coral reefs has become an essential component of reef management practice around the world. A recent development by the U.S. National Oceanic and Atmospheric Administration’s Coral Reef Watch (NOAA CRW) program provides daily global monitoring at 5 km resolution—at or near the scale of most coral reefs. In this paper, we introduce two new monitoring products in the CRW Decision Support System for coral reef management: Regional Virtual Stations, a reg...

  9. Hypoxia in paradise: widespread hypoxia tolerance in coral reef fishes.

    OpenAIRE

    Nilsson, Göran E.; Ostlund-Nilsson, Sara

    2004-01-01

    Using respirometry, we examined the hypoxia tolerance of 31 teleost fish species (seven families) inhabiting coral reefs at a 2-5 m depth in the lagoon at Lizard Island (Great Barrier Reef, Australia). All fishes studied maintained their rate of oxygen consumption down to relatively severe hypoxia (20-30% air saturation). Indeed, most fishes appeared unaffected by hypoxia until the oxygen level fell below 10% of air saturation. This, hitherto unrecognized, hypoxia tolerance among coral reef f...

  10. Annual recapture and survival rates of two non-breeding adult populations of Roseate Terns Stema dougallii captured on the Great Barrier Reef, Australia, and estimates of their population sizes

    Science.gov (United States)

    O'Neill, P.; Minton, C.D.T.; Nisbet, I.C.T.; Hines, J.E.

    2008-01-01

    Capture-recapture data from two disparate breeding populations of Roseate Terns (Sterna dougallii) captured together as non-breeding individuals from 2002 to 2007 in the southern Great Barrier Reef. Australia were analyzed for both survival rate and recapture rate. The average annual survival rate for the birds from the Asian population (S. d. bangsi) (0.901) is higher than that of the other population of unknown breeding origin (0.819). There was large variability in survival in both populations among years, but the average survival rate of 0.85 is similar to estimates for the same species in North America. The Cormack-Jolly-Seber models used in program MARK to estimate survival rates also produced estimated of recapture probabilities and population sizes. These estimates of population size were 29,000 for S. D. bangsi and 8,300 for the study area and much larger than the documented numbers in the likely breeding areas, suggesting that many breeding sites are currently unknown.

  11. Impacts of Artificial Reefs and Diving Tourism

    Directory of Open Access Journals (Sweden)

    Sandra Jakšić

    2013-10-01

    Full Text Available Coral reefs are currently endangered throughout the world. One of the main activities responsible for this is scuba-diving. Scuba-diving on coral reefs was not problematic in the begging, but due to popularization of the new sport, more and more tourists desired to participate in the activity. Mass tourism, direct contact of the tourists with the coral reefs and unprofessional behavior underwater has a negative effect on the coral reefs. The conflict between nature preservation and economy benefits related to scuba-diving tourism resulted in the creation of artificial reefs, used both to promote marine life and as tourists attractions, thereby taking the pressure off the natural coral reefs. Ships, vehicles and other large structures can be found on the coastal sea floor in North America, Australia, Japan and Europe. The concept of artificial reefs as a scuba-diving attraction was developed in Florida. The main goal was to promote aquaculture, with the popularization of scuba-diving attractions being a secondary effect. The aim of this paper is to determine the effects of artificial reefs on scuba-diving tourism, while taking into account the questionnaire carried out among 18 divers

  12. Ecological Processes and Contemporary Coral Reef Management

    OpenAIRE

    Angela Dikou

    2010-01-01

    Top-down controls of complex foodwebs maintain the balance among the critical groups of corals, algae, and herbivores, thus allowing the persistence of corals reefs as three-dimensional, biogenic structures with high biodiversity, heterogeneity, resistance, resilience and connectivity, and the delivery of essential goods and services to societies. On contemporary reefs world-wide, however, top-down controls have been weakened due to reduction in herbivory levels (overfishing or disease outbre...

  13. 大堡礁和托雷斯海峡航路新变化%Latest Changes in Great Barrier Reef and Torres Strait Navigation

    Institute of Scientific and Technical Information of China (English)

    许永强

    2007-01-01

    大堡礁(Great Barrier Reef)位于澳大利亚东北部昆士兰州海岸外,从北部的Cape York(1041S 14232E),向东南延伸到Lady Elliot Island(2407S 15243E),绵延约两千多公里,是世界上最大的珊瑚礁群。托雷斯海峡(TorresStrait)位于约克角半岛和巴布亚新几内亚之间.连接珊瑚海和阿拉弗拉海。由于地理条件的特殊性,

  14. Management of Bleached and Severely Damaged Coral Reefs

    OpenAIRE

    Westmacott, Susie; Teleki, Kristian; Wells, Sue; West, Jordan

    2000-01-01

    Coral reefs are one of the most threatened ecosystems in the world. Rivalling terrestrial rainforests in their biological diversity, and providing major economic benefits from fisheries and tourism, coral reefs ecosystems are of global concern. In addition, reefs provide many vital functions in developing countries, especially in Small Island Developing States. Until recently, stresses caused by human activities – such as land-based sources of pollution and destructive...

  15. Variability in reef connectivity in the Coral Triangle

    Science.gov (United States)

    Thompson, D. M.; Kleypas, J. A.; Castruccio, F. S.; Watson, J. R.; Curchitser, E. N.

    2015-12-01

    The Coral Triangle (CT) is not only the global center of marine biodiversity, it also supports the livelihoods of millions of people. Unfortunately, it is also considered the most threatened of all reef regions, with rising temperature and coral bleaching already taking a toll. Reproductive connectivity between reefs plays a critical role in the reef's capacity to recover after such disturbances. Thus, oceanographic modeling efforts to understand patterns of reef connectivity are essential to the effective design of a network of Marine Protected Areas (MPAs) to conserve marine ecosystems in the Coral Triangle. Here, we combine a Regional Ocean Modeling System developed for the Coral Triangle (CT-ROMS) with a Lagrangian particle tracking tool (TRACMASS) to investigate the probability of coral larval transport between reefs. A 47-year hindcast simulation (1960-2006) was used to investigate the variability in larval transport of a broadcasting coral following mass spawning events in April and September. Potential connectivity between reefs was highly variable and stochastic from year to year, emphasizing the importance of decadal or longer simulations in identifying connectivity patterns, key source and sink regions, and thus marine management targets for MPAs. The influence of temperature on realized connectivity (future work) may add further uncertainty to year-to-year patterns of connectivity between reefs. Nonetheless, the potential connectivity results we present here suggest that although reefs in this region are primarily self-seeded, rare long-distance dispersal may promote recovery and genetic exchange between reefs in the region. The spatial pattern of "subpopulations" based solely on the physical drivers of connectivity between reefs closely match regional patterns of biodiversity, suggesting that physical barriers to larval dispersal may be a key driver of reef biodiversity. Finally, 21st Century simulations driven by the Community Earth System Model (CESM

  16. The small genetic world of Seriatopora hystrix

    Directory of Open Access Journals (Sweden)

    Stuart Kininmonth

    2012-03-01

    Full Text Available The exchange of genetic information among coral reefs, through the transport of larvae, is critical to the function of Australia's Great Barrier Reef because it influences recruitment rates and resilience to disturbance. For many species the genetic composition is not homogeneous and is determined, in part, by the character of the complex dispersal pathways that connect the populations situated on each coral reef. One method of measuring these genetic connections is to examine the microsatellite composition of individual corals and then statistically compare populations across the region. We use these connection strengths, derived from a population similarity measure, to create complex networks to describe and analyse the genetic exchange of the brooding coral, Seriatopora hystrix. The network, based on determining the putative parental origin of individual coral colonies, involved sampling 2163 colonies from 47 collection sites and examining 10 microsatellites. A dispersal network was created from the genetic distance DLR values that measure the genetic similarity of each population (defined by the local sampling effort to every other sampled population based on the microsatellite composition. Graph theory methods show that this network exhibited infrequent long distance links and population clustering which is commonly referred to as small world topology. Comparison with a hydrodynamic based network indicates that the genetic population network topology is similar. This approach shows the genetic structure of the S. hystrix coral follows a small world pattern which supports the results derived from previous hydrodynamic modelling.

  17. Reef odor: a wake up call for navigation in reef fish larvae.

    Directory of Open Access Journals (Sweden)

    Claire B Paris

    Full Text Available The behavior of reef fish larvae, equipped with a complex toolbox of sensory apparatus, has become a central issue in understanding their transport in the ocean. In this study pelagic reef fish larvae were monitored using an unmanned open-ocean tracking device, the drifting in-situ chamber (DISC, deployed sequentially in oceanic waters and in reef-born odor plumes propagating offshore with the ebb flow. A total of 83 larvae of two taxonomic groups of the families Pomacentridae and Apogonidae were observed in the two water masses around One Tree Island, southern Great Barrier Reef. The study provides the first in-situ evidence that pelagic reef fish larvae discriminate reef odor and respond by changing their swimming speed and direction. It concludes that reef fish larvae smell the presence of coral reefs from several kilometers offshore and this odor is a primary component of their navigational system and activates other directional sensory cues. The two families expressed differences in their response that could be adapted to maintain a position close to the reef. In particular, damselfish larvae embedded in the odor plume detected the location of the reef crest and swam westward and parallel to shore on both sides of the island. This study underlines the critical importance of in situ Lagrangian observations to provide unique information on larval fish behavioral decisions. From an ecological perspective the central role of olfactory signals in marine population connectivity raises concerns about the effects of pollution and acidification of oceans, which can alter chemical cues and olfactory responses.

  18. Barriers and Enablers to the Use of Virtual Worlds in Higher Education: An Exploration of Educator Perceptions, Attitudes and Experiences

    Science.gov (United States)

    Gregory, Sue; Scutter, Sheila; Jacka, Lisa; McDonald, Marcus; Farley, Helen; Newman, Chris

    2015-01-01

    Three-dimensional (3D) virtual worlds have been used for more than a decade in higher education for teaching and learning. Since the 1980s, academics began using virtual worlds as an exciting and innovative new technology to provide their students with new learning experiences that were difficult to provide any other way. But since that time,…

  19. Protection, Participation, and Public Awareness : Indonesia Coral Reef Rehabilitation and Management Project

    OpenAIRE

    Kuehnast, Kathleen

    2001-01-01

    The Indonesia Coral Reef Rehabilitation and Management Project (COREMAP) is the first operation supported by the World Bank to focus exclusively on coral reef ecosystems. COREMAP is being implemented in 10 provinces over 15 years, during which period the communities are given incentives, training, and resources to protect the coral reefs. Social Development best practice elements identifie...

  20. Large-scale movement and reef fidelity of grey reef sharks.

    Directory of Open Access Journals (Sweden)

    Michelle R Heupel

    Full Text Available Despite an Indo-Pacific wide distribution, the movement patterns of grey reef sharks (Carcharhinus amblyrhynchos and fidelity to individual reef platforms has gone largely unstudied. Their wide distribution implies that some individuals have dispersed throughout tropical waters of the Indo-Pacific, but data on large-scale movements do not exist. We present data from nine C. amblyrhynchos monitored within the Great Barrier Reef and Coral Sea off the coast of Australia. Shark presence and movements were monitored via an array of acoustic receivers for a period of six months in 2008. During the course of this monitoring few individuals showed fidelity to an individual reef suggesting that current protective areas have limited utility for this species. One individual undertook a large-scale movement (134 km between the Coral Sea and Great Barrier Reef, providing the first evidence of direct linkage of C. amblyrhynchos populations between these two regions. Results indicate limited reef fidelity and evidence of large-scale movements within northern Australian waters.

  1. NMFS Reef Survey Forms

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Reef Environmental Survey Project (REEF) mission to educate and enlist divers in the conservation of marine habitats is accomplished primarily through its Fish...

  2. ReefSAM - Reef Sedimentary Accretion Model: A new 3D coral reef evolution model/simulator

    Science.gov (United States)

    Barrett, Samuel; Webster, Jody

    2013-04-01

    Coral reefs show characteristic morphological patterns (e.g. coral dominated margins with detrital carbonate dominated lagoons/back-reef) and temporal development (e.g. Hopley et al. 2007). While the processes which lead to predictable patterns on a range of scales have been discussed qualitatively, a full quantitative understanding of the range of processes and parameters involved requires modelling. Previous attempts to model complex Holocene reef systems (i.e. One Tree Reef, GBR - Barrett and Webster 2012) using a carbonate stratigraphic forward model (Carbonate3D - Warrlich et al. 2002) identified a number of important but unsimulated processes and potential model improvements. ReefSAM has been written from scratch in Matlab using these findings and experiences from using Carbonate3D. It simulates coralgal accretion and carbonate sand production and transport. Specific improvements include: 1. a more complex hydrodynamic model based on wave refraction and incorporating vertical (depth) and lateral (substrate dependent) variations in transport energy and erosion. 2. a complex reef growth model incorporating depth, wave energy/turbidity and substrate composition. 3. Paleo-water depth, paleo-wave energy and bio-zone (combination of paleo-water depth and wave energy) model outputs allowing coralgal habitat changes through time and space to be simulated and compared to observational data. The model is compared to the well studied One Tree Reef - tests similar to those undertaken in Barrett and Webster 2012 with Carbonate3D are presented. Model development coincides with plans for further intensive drilling at One Tree Reef (mid 2013) providing an opportunity to test the model predictively. The model is still in active development. References: Barrett, S.J., Webster, J.M.,2012. Holocene evolution of the Great Barrier Reef: Insights from 3D numerical modelling. Sedimentary Geology 265-266, 56-71. Warrlich, G.M.D., Waltham, D.A., Bosence D.W.J., 2002. Quantifying the

  3. Current status, crisis and conservation of coral reef ecosystems in China

    OpenAIRE

    ShaoHong Wu; WenJun Zhang

    2012-01-01

    Harboring rich marine species and playing important ecological functions, coral reef ecosystems have attracted widespread concern around the world. Ecosystem diversity, conservation and management of coral reefs are becoming a hot research area. Coral reefs in China are mainly distributed in the South China Sea and Hainan, Taiwan, Hong Kong, Guangdong, and Guangxi coastal waters. In recent years, due to the global climate change and the growing impact of human activities, coral reef biodivers...

  4. Impact of Global Warming on Coral Reefs

    Directory of Open Access Journals (Sweden)

    Sirilak CHUMKIEW

    2011-06-01

    Full Text Available In this paper, we review coral reef responses to climate variability and discuss the possible mechanisms by which climate impacts the coral reef ecosystem. Effects of oceanographic variables such as sea temperature, turbulence, salinity, and nutrients on the coral reef are discussed in terms of their influence on coral growth, reproduction, mortality, acclimation and adaptation. Organisms tend to be limited to specific thermal ranges with experimental findings showing that sufficient oxygen supply by ventilation and circulation only occurs within these ranges. Indirect effects of climate change on the food web are also discussed. Further integrative studies are required to improve our knowledge of the processes linking coral reef responses to future climate change scenarios.Graphical abstract► Incidence of coral reef bleaching on a worldwide scale: location of bleaching reports during 1979 - 2010. Maps are from ReefBase, www.reefbase.org: 1, Arabian Gulf (United Arab Emirates, Qatar, Iran; 2, Red Sea; 3, east Africa; 4, southern Africa (Mozambique, South Africa; 5, Madagascar; 6, Mauritius, Reunion; 7, Seychelles; 8, Chagos; 9, Maldives; 10, Sri Lanka/southern India; 11, Andaman Sea (Andamans, Thailand, Malaysia; 12, South China Sea (Vietnam, Paracel Islands; 13, Philippines; 14, Indonesia; 15, western Australia; 16, Great Barrier Reef; 17, Ryukyu Islands; 18, Mariana Islands; 19, Palau; 20, Papua New Guinea, Vanuatu; 21, Fiji; 22, Samoa; 23, French Polynesia (including Moorea; 24, Hawaiian Islands; 25, Easter Island; 26, Galapagos Islands; 27, equatorial eastern Pacific (Costa Rica, Cocos Island, Panama´, Colombia, Ecuador; 28, subtropical eastern Pacific (Mexico; 29, Mesoamerican reef system (Mexico, Belize, Honduras, Nicaragua; 30, Greater Antilles (Cuba, Haiti, Dominican Republic, Puerto Rico, Virgin Islands; 31, Bahamas, Florida; 32, Bermuda; 33, Lesser Antilles; 34, Curaçao, Aruba, Bonaire, Los Roques; 35, Brazil.

  5. Zero entry barriers in an NP-complete world: Transaction streams and the complexity of electronic commerce

    OpenAIRE

    Subirana, Brian

    1999-01-01

    The adoption of electronic markets in an industry has a disintermediation potential because it can create a direct link between the producer and the consumer (without the need for the intermediation role of distributors). Electronic markets lower the search cost, allowing customers to choose among more providers (which ultimately reduces both the costs for the customer and the profits for the producer). Electronic markets on the Internet have the opposite effect: they lower some entry barrier...

  6. Maintenance of fish diversity on disturbed coral reefs

    Science.gov (United States)

    Wilson, S. K.; Dolman, A. M.; Cheal, A. J.; Emslie, M. J.; Pratchett, M. S.; Sweatman, H. P. A.

    2009-03-01

    Habitat perturbations play a major role in shaping community structure; however, the elements of disturbance-related habitat change that affect diversity are not always apparent. This study examined the effects of habitat disturbances on species richness of coral reef fish assemblages using annual surveys of habitat and 210 fish species from 10 reefs on the Great Barrier Reef (GBR). Over a period of 11 years, major disturbances, including localised outbreaks of crown-of-thorns sea star ( Acanthaster planci), severe storms or coral bleaching, resulted in coral decline of 46-96% in all the 10 reefs. Despite declines in coral cover, structural complexity of the reef framework was retained on five and species richness of coral reef fishes maintained on nine of the disturbed reefs. Extensive loss of coral resulted in localised declines of highly specialised coral-dependent species, but this loss of diversity was more than compensated for by increases in the number of species that feed on the epilithic algal matrix (EAM). A unimodal relationship between areal coral cover and species richness indicated species richness was greatest at approximately 20% coral cover declining by 3-4 species (6-8% of average richness) at higher and lower coral cover. Results revealed that declines in coral cover on reefs may have limited short-term impact on the diversity of coral reef fishes, though there may be fundamental changes in the community structure of fishes.

  7. Do tabular corals constitute keystone structures for fishes on coral reefs?

    Science.gov (United States)

    Kerry, J. T.; Bellwood, D. R.

    2015-03-01

    This study examined the changes in community composition of reef fishes by experimentally manipulating the availability of shelter provided by tabular structures on a mid-shelf reef on the Great Barrier Reef. At locations where access to tabular corals ( Acropora hyacinthus and Acropora cytherea) was excluded, a rapid and sustained reduction in the abundance of large reef fishes occurred. At locations where tabular structure was added, the abundance and diversity of large reef fishes increased and the abundance of small reef fishes tended to decrease, although over a longer time frame. Based on their response to changes in the availability of tabular structures, nine families of large reef fishes were separated into three categories; designated as obligate, facultative or non-structure users. This relationship may relate to the particular ecological demands of each family, including avoidance of predation and ultraviolet radiation, access to feeding areas and reef navigation. This study highlights the importance of tabular corals for large reef fishes in shallow reef environments and provides a possible mechanism for local changes in the abundance of reef fishes following loss of structural complexity on coral reefs. Keystone structures have a distinct structure and disproportionate effect on their ecosystem relative to their abundance, as such the result of this study suggests tabular corals may constitute keystone structures on shallow coral reefs.

  8. Reassessing the trophic role of reef sharks as apex predators on coral reefs

    Science.gov (United States)

    Frisch, Ashley J.; Ireland, Matthew; Rizzari, Justin R.; Lönnstedt, Oona M.; Magnenat, Katalin A.; Mirbach, Christopher E.; Hobbs, Jean-Paul A.

    2016-06-01

    Apex predators often have strong top-down effects on ecosystem components and are therefore a priority for conservation and management. Due to their large size and conspicuous predatory behaviour, reef sharks are typically assumed to be apex predators, but their functional role is yet to be confirmed. In this study, we used stomach contents and stable isotopes to estimate diet, trophic position and carbon sources for three common species of reef shark ( Triaenodon obesus, Carcharhinus melanopterus and C. amblyrhynchos) from the Great Barrier Reef (Australia) and evaluated their assumed functional role as apex predators by qualitative and quantitative comparisons with other sharks and large predatory fishes. We found that reef sharks do not occupy the apex of coral reef food chains, but instead have functional roles similar to those of large predatory fishes such as snappers, emperors and groupers, which are typically regarded as high-level mesopredators. We hypothesise that a degree of functional redundancy exists within this guild of predators, potentially explaining why shark-induced trophic cascades are rare or subtle in coral reef ecosystems. We also found that reef sharks participate in multiple food webs (pelagic and benthic) and are sustained by multiple sources of primary production. We conclude that large conspicuous predators, be they elasmobranchs or any other taxon, should not axiomatically be regarded as apex predators without thorough analysis of their diet. In the case of reef sharks, our dietary analyses suggest they should be reassigned to an alternative trophic group such as high-level mesopredators. This change will facilitate improved understanding of how reef communities function and how removal of predators (e.g., via fishing) might affect ecosystem properties.

  9. Re-creating missing population baselines for Pacific reef sharks.

    Science.gov (United States)

    Nadon, Marc O; Baum, Julia K; Williams, Ivor D; McPherson, Jana M; Zgliczynski, Brian J; Richards, Benjamin L; Schroeder, Robert E; Brainard, Russell E

    2012-06-01

    Sharks and other large predators are scarce on most coral reefs, but studies of their historical ecology provide qualitative evidence that predators were once numerous in these ecosystems. Quantifying density of sharks in the absence of humans (baseline) is, however, hindered by a paucity of pertinent time-series data. Recently researchers have used underwater visual surveys, primarily of limited spatial extent or nonstandard design, to infer negative associations between reef shark abundance and human populations. We analyzed data from 1607 towed-diver surveys (>1 ha transects surveyed by observers towed behind a boat) conducted at 46 reefs in the central-western Pacific Ocean, reefs that included some of the world's most pristine coral reefs. Estimates of shark density from towed-diver surveys were substantially lower (sharks observed in towed-diver surveys and human population in models that accounted for the influence of oceanic primary productivity, sea surface temperature, reef area, and reef physical complexity. We used these models to estimate the density of sharks in the absence of humans. Densities of gray reef sharks (Carcharhinus amblyrhynchos), whitetip reef sharks (Triaenodon obesus), and the group "all reef sharks" increased substantially as human population decreased and as primary productivity and minimum sea surface temperature (or reef area, which was highly correlated with temperature) increased. Simulated baseline densities of reef sharks under the absence of humans were 1.1-2.4/ha for the main Hawaiian Islands, 1.2-2.4/ha for inhabited islands of American Samoa, and 0.9-2.1/ha for inhabited islands in the Mariana Archipelago, which suggests that density of reef sharks has declined to 3-10% of baseline levels in these areas. PMID:22536842

  10. NOAA's National Coral Reef Monitoring Program (NCRMP) Data Collection

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Coral reefs provide nearly $30 billion in net benefits in goods and services to world economies each year, including tourism, fisheries, and coastal protection, and...

  11. Eco-geomorphological zonation of the Bangaram reef, Lakshadweep

    Digital Repository Service at National Institute of Oceanography (India)

    Deshmukh, B.; Bahuguna, A.; Nayak, S.; Dhargalkar, V.K.; Jagtap, T.G.

    Coral reefs, which are known for rich biological diversity and productivity, are being threatened throughout the world by various natural and anthropogenic activities. The present study concentrates on establishing methodology to zone the geo...

  12. Colour thresholds in a coral reef fish

    Science.gov (United States)

    Vorobyev, M.; Marshall, N. J.

    2016-01-01

    Coral reef fishes are among the most colourful animals in the world. Given the diversity of lifestyles and habitats on the reef, it is probable that in many instances coloration is a compromise between crypsis and communication. However, human observation of this coloration is biased by our primate visual system. Most animals have visual systems that are ‘tuned’ differently to humans; optimized for different parts of the visible spectrum. To understand reef fish colours, we need to reconstruct the appearance of colourful patterns and backgrounds as they are seen through the eyes of fish. Here, the coral reef associated triggerfish, Rhinecanthus aculeatus, was tested behaviourally to determine the limits of its colour vision. This is the first demonstration of behavioural colour discrimination thresholds in a coral reef species and is a critical step in our understanding of communication and speciation in this vibrant colourful habitat. Fish were trained to discriminate between a reward colour stimulus and series of non-reward colour stimuli and the discrimination thresholds were found to correspond well with predictions based on the receptor noise limited visual model and anatomy of the eye. Colour discrimination abilities of both reef fish and a variety of animals can therefore now be predicted using the parameters described here. PMID:27703704

  13. Reefscape proxies for the conservation of Caribbean coral reef biodiversity

    OpenAIRE

    JE Arias-González; E Núñez-Lara; FA Rodríguez-Zaragoza; Legendre, P.

    2011-01-01

    The explanatory value of four hypotheses for geographic variation in total species richness and species richness was evaluated per family in coral and fish communities in the North Sector of the Mesoamerican Barrier Reef System (NS-MBRS). The four hypotheses emphasize different reefscape attributes that are important for coral and fish: reef area (RA), live coral cover (LCC), habitat complexity (HC), and coral richness itself and for fish. For both coral and fish communities, we estimated the...

  14. Coral reef invertebrate microbiomes correlate with the presence of photosymbionts

    OpenAIRE

    Bourne, David G.; Dennis, Paul G.; Uthicke, Sven; Soo, Rochelle M; Tyson, Gene W; Nicole WEBSTER

    2013-01-01

    Coral reefs provide habitat for an array of marine invertebrates that host symbiotic microbiomes. Photosynthetic symbionts including Symbiodinium dinoflagellates and diatoms potentially influence the diversity of their host-associated microbiomes by releasing carbon-containing photosynthates and other organic compounds that fuel microbial metabolism. Here we used 16S ribosomal RNA (rRNA) gene amplicon pyrosequencing to characterise the microbiomes of 11 common Great Barrier Reef marine invert...

  15. A novel reef coral symbiosis

    Science.gov (United States)

    Pantos, O.; Bythell, J. C.

    2010-09-01

    Reef building corals form close associations with unicellular microalgae, fungi, bacteria and archaea, some of which are symbiotic and which together form the coral holobiont. Associations with multicellular eukaryotes such as polychaete worms, bivalves and sponges are not generally considered to be symbiotic as the host responds to their presence by forming physical barriers with an active growth edge in the exoskeleton isolating the invader and, at a subcellular level, activating innate immune responses such as melanin deposition. This study describes a novel symbiosis between a newly described hydrozoan ( Zanclea margaritae sp. nov.) and the reef building coral Acropora muricata (= A. formosa), with the hydrozoan hydrorhiza ramifying throughout the coral tissues with no evidence of isolation or activation of the immune systems of the host. The hydrorhiza lacks a perisarc, which is typical of symbiotic species of this and related genera, including species that associate with other cnidarians such as octocorals. The symbiosis was observed at all sites investigated from two distant locations on the Great Barrier Reef, Australia, and appears to be host species specific, being found only in A. muricata and in none of 30 other species investigated at these sites. Not all colonies of A. muricata host the hydrozoans and both the prevalence within the coral population (mean = 66%) and density of emergent hydrozoan hydranths on the surface of the coral (mean = 4.3 cm-2, but up to 52 cm-2) vary between sites. The form of the symbiosis in terms of the mutualism-parasitism continuum is not known, although the hydrozoan possesses large stenotele nematocysts, which may be important for defence from predators and protozoan pathogens. This finding expands the known A. muricata holobiont and the association must be taken into account in future when determining the corals’ abilities to defend against predators and withstand stress.

  16. Potential contribution of fish restocking to the recovery of deteriorated coral reefs: an alternative restoration method?

    Science.gov (United States)

    Obolski, Uri; Hadany, Lilach; Abelson, Avigdor

    2016-01-01

    Counteracting the worldwide trend of coral reef degeneration is a major challenge for the scientific community. A crucial management approach to minimizing stress effects on healthy reefs and helping the recovery of disturbed reefs is reef protection. However, the current rapid decline of the world's reefs suggests that protection might be insufficient as a viable stand-alone management approach for some reefs. We thus suggest that the ecological restoration of coral reefs (CRR) should be considered as a valid component of coral reef management, in addition to protection, if the applied method is economically applicable and scalable. This theoretical study examines the potential applicability and outcomes of restocking grazers as a restoration tool for coral reef recovery-a tool that has not been applied so far in reef restoration projects. We studied the effect of restocking grazing fish as a restoration method using a mathematical model of degrading reefs, and analyzed the financial outcomes of the restocking intervention. The results suggest that applying this restoration method, in addition to protection, can facilitate reef recovery. Moreover, our analysis suggests that the restocking approach almost always becomes profitable within several years. Considering the relatively low cost of this restoration approach and the feasibility of mass production of herbivorous fish, we suggest that this approach should be considered and examined as an additional viable restoration tool for coral reefs.

  17. Composition and temporal stability of turf sediments on inner-shelf coral reefs.

    Science.gov (United States)

    Gordon, Sophie E; Goatley, Christopher H R; Bellwood, David R

    2016-10-15

    Elevated sediment loads within the epilithic algal matrix (EAM) of coral reefs can increase coral mortality and inhibit herbivory. Yet the composition, distribution and temporal variability of EAM sediment loads are poorly known, especially on inshore reefs. This study quantified EAM sediment loads (including organic particulates) and algal length across the reef profile of two bays at Orpheus Island (inner-shelf Great Barrier Reef) over a six month period. We examined the total sediment mass, organic load, carbonate and silicate content, and the particle sizes of EAM sediments. Throughout the study period, all EAM sediment variables exhibited marked variation among reef zones. However, EAM sediment loads and algal length were consistent between bays and over time, despite major seasonal variation in climate including a severe tropical cyclone. This study provides a comprehensive description of EAM sediments on inshore reefs and highlights the exceptional temporal stability of EAM sediments on coral reefs.

  18. Species Richness and Community Structure on a High Latitude Reef: Implications for Conservation and Management

    OpenAIRE

    Wayne Houston; Jones, Alison M.; Ray Berkelmans

    2011-01-01

    In spite of the wealth of research on the Great Barrier Reef, few detailed biodiversity assessments of its inshore coral communities have been conducted. Effective conservation and management of marine ecosystems begins with fine-scale biophysical assessments focused on diversity and the architectural species that build the structural framework of the reef. In this study, we investigate key coral diversity and environmental attributes of an inshore reef system surrounding the Keppel Bay Islan...

  19. Helping people build a better world? Barriers to more environmentally friendly energy production in China: the case of Shell

    Energy Technology Data Exchange (ETDEWEB)

    Buan, Inga Fritzen

    2008-03-15

    China's rapid industrialization and economic expansion are causing massive environmental damage, with consequences beyond the country's borders, especially due to the use of fossil fuels' effect on climate change. Shell China can contribute to making energy production, if not clean and sustainable, then cleaner and more sustainable by making existing energy production more environmentally friendly; by diversifying and developing alternative energy sources; and by creating precedence influencing others to follow in its footsteps. The first goal of this report is to identify and analyze changes that have happened in the Shell Group since the 1990s when energy companies started their 'greening' processes. These changed happened due to stricter environmental legislation, increased civil society pressure and media scrutiny. Changes on the global and headquarters level in a company do not, however, necessitate similar developments in its national and local level operations. The second goal is thus to analyze to which degree the changes in the Shell Group have had relevance for Shell China and whether barriers in the Chinese context influence its prospects to operate in a more environmentally friendly way. (author). 64 refs

  20. Uncovering and negotiating barriers to intercultural communication at Greenmarket Square, Cape Town’s ‘world in miniature’: An insider’s perspective

    Directory of Open Access Journals (Sweden)

    Foncha J Wankah

    2011-08-01

    Full Text Available Intercultural communication (ICC is one of the most relevant fields for investigation in post-colonial Africa and post-apartheid South Africa, given the freedom of movement between African countries and the wide range of attractions, both economic and social, that South Africa holds for people from other African countries. This article is based on research conducted at Greenmarket Square in the heart of Cape Town, well-known as a hub for informal traders (mainly from other parts of Africa, local people and tourists from all over the world. It discusses three of the major barriers to ICC in this space which emerged from our research. These three major ‘intercultural fault-lines’ (Olahan, 2000 are identified as non-verbal communication, ethnocentrism/xenophobia and the contrasting communication styles of people from High Context Cultures and Low Context Cultures (Katan, 2004. The paper concludes with some suggestions on how such barriers can be overcome if people in this space learn to become more ‘interculturally competent’ (Jandt, 2004.

  1. Octocoral Species Assembly and Coexistence in Caribbean Coral Reefs.

    Directory of Open Access Journals (Sweden)

    Johanna Velásquez

    Full Text Available What are the determinant factors of community assemblies in the most diverse ecosystem in the ocean? Coral reefs can be divided in continental (i.e., reefs that develop on the continental shelf, including siliciclastic reefs and oceanic (i.e., far off the continental shelf, usually on volcanic substratum; whether or not these habitat differences impose community-wide ecological divergence or species exclusion/coexistence with evolutionary consequences, is unknown.Studying Caribbean octocorals as model system, we determined the phylogenetic community structure in a coral reef community, making emphasis on species coexistence evidenced on trait evolution and environmental feedbacks. Forty-nine species represented in five families constituted the species pool from which a phylogenetic tree was reconstructed using mtDNA. We included data from 11 localities in the Western Caribbean (Colombia including most reef types. To test diversity-environment and phenotype-environment relationships, phylogenetic community structure and trait evolution we carried out comparative analyses implementing ecological and evolutionary approaches.Phylogenetic inferences suggest clustering of oceanic reefs (e.g., atolls contrasting with phylogenetic overdispersion of continental reefs (e.g., reefs banks. Additionally, atolls and barrier reefs had the highest species diversity (Shannon index whereas phylogenetic diversity was higher in reef banks. The discriminant component analysis supported this differentiation between oceanic and continental reefs, where continental octocoral species tend to have greater calyx apertures, thicker branches, prominent calyces and azooxanthellate species. This analysis also indicated a clear separation between the slope and the remaining habitats, caused by the presence or absence of Symbiodinium. K statistic analysis showed that this trait is conserved as well as the branch shape.There was strong octocoral community structure with opposite

  2. Understanding the future impacts of rapid ocean warming and acidification on the carbonate balance of coral reefs. ecosystems.

    Science.gov (United States)

    Hoegh-Guldberg, O.; Dove, S. G.

    2011-12-01

    Marine organisms and ecosystems are undergoing fundamental changes as a consequence of ocean warming and acidification, which must be understood if we are to anticipate and respond to the resulting changes to ecosystem services and functions. We have been investigating potential changes to the calcification and bioerosion rates of coral reefs using flow-through mesocosms at Heron Island on the southern Great Barrier Reef. In these experiments, we have been manipulating the temperature and pCO2 in order to simulate future ocean conditions described by IPCC scenarios (specifically B2, A1FI). We have also created pre-industrial conditions for comparison. Importantly, our system not only provides fine control over experimental conditions but also allows temperature and pCO2 to fluctuate with daily and seasonal changes measured (integrated over 3 h) at specific locations of interest on the Heron Island Reef, which allows a more 'realistic' analysis of the combined influences of ocean warming and acidification. In our first set of experiments, we have examined the impact of IPCC scenarios (year 2100) for a range of ecosystem phenomena relating to the carbonate balance of coral reefs including (1) phototrophic microborers within the dead skeletons of two coral species; (2) calcareous coralline algae, (3) turf algal communities in the presence and absence of grazing damselfish; (4) the calcification, growth, mortality and recruitment of the reef-building corals, and (5) microbial communities associated with corals. The overall conclusion of the studies conducted to date strongly suggests rapid movement to a negative carbonate balance for shallow water tropical coral reefs even under medium (B2) climate scenarios that involve SST increases of approximately +1.5oC and +250 ppm pCO2. Our conclusion is based on observations regarding key organisms that are involved in establishing the carbonate balance of coral reef organisms, and on the observed impacts of these conditions on

  3. Summary of the presentations at the international workshop on reducing carbon dioxide emissions from the developing world: Assessment of benefits, costs and barriers

    International Nuclear Information System (INIS)

    The ''International Workshop on Reducing Carbon Dioxide Emissions from the Developing World: Assessment of Benefits, Costs and Barriers'' was the second workshop held as part of a project being conducted by the International Energy Studies Group of Lawrence Berkeley Laboratory, in collaboration with experts from leading institutions across the developing world. The goal of the project is to analyze long-range energy consumption in developing countries and its potential contribution to global climate change. The US Environmental Protection Agency (EPA) is supporting this work, the results of which already have made a key contribution to the technical analysis being used as the basis for discussion by the Energy and Industry Sub-group of the Intergovernmental Panel on Climate Change (IPCC). The main purpose of this workshop was two-fold: (1) to discuss the feasibility of implementing the efficiency improvements and fuel switching measures incorporated into the long-term energy scenarios created for 17 developing countries and (2) to examine the costs and benefits of reducing energy-related carbon dioxide emissions generated by developing countries

  4. Summary of the presentations at the international workshop on reducing carbon dioxide emissions from the developing world: Assessment of benefits, costs and barriers

    Energy Technology Data Exchange (ETDEWEB)

    Sathaye, J.; Goldman, N. [eds.

    1991-06-01

    The ``International Workshop on Reducing Carbon Dioxide Emissions from the Developing World: Assessment of Benefits, Costs and Barriers`` was the second workshop held as part of a project being conducted by the International Energy Studies Group of Lawrence Berkeley Laboratory, in collaboration with experts from leading institutions across the developing world. The goal of the project is to analyze long-range energy consumption in developing countries and its potential contribution to global climate change. The US Environmental Protection Agency (EPA) is supporting this work, the results of which already have made a key contribution to the technical analysis being used as the basis for discussion by the Energy and Industry Sub-group of the Intergovernmental Panel on Climate Change (IPCC). The main purpose of this workshop was two-fold: (1) to discuss the feasibility of implementing the efficiency improvements and fuel switching measures incorporated into the long-term energy scenarios created for 17 developing countries and (2) to examine the costs and benefits of reducing energy-related carbon dioxide emissions generated by developing countries.

  5. Summary of the presentations at the international workshop on reducing carbon dioxide emissions from the developing world: Assessment of benefits, costs and barriers

    Energy Technology Data Exchange (ETDEWEB)

    Sathaye, J.; Goldman, N. (eds.)

    1991-06-01

    The International Workshop on Reducing Carbon Dioxide Emissions from the Developing World: Assessment of Benefits, Costs and Barriers'' was the second workshop held as part of a project being conducted by the International Energy Studies Group of Lawrence Berkeley Laboratory, in collaboration with experts from leading institutions across the developing world. The goal of the project is to analyze long-range energy consumption in developing countries and its potential contribution to global climate change. The US Environmental Protection Agency (EPA) is supporting this work, the results of which already have made a key contribution to the technical analysis being used as the basis for discussion by the Energy and Industry Sub-group of the Intergovernmental Panel on Climate Change (IPCC). The main purpose of this workshop was two-fold: (1) to discuss the feasibility of implementing the efficiency improvements and fuel switching measures incorporated into the long-term energy scenarios created for 17 developing countries and (2) to examine the costs and benefits of reducing energy-related carbon dioxide emissions generated by developing countries.

  6. Infection of type I interferon receptor-deficient mice with various old world arenaviruses: a model for studying virulence and host species barriers.

    Science.gov (United States)

    Rieger, Toni; Merkler, Doron; Günther, Stephan

    2013-01-01

    Lassa virus causes hemorrhagic Lassa fever in humans, while the related Old World arenaviruses Mopeia, Morogoro, and Mobala are supposedly apathogenic to humans and cause only inapparent infection in non-human primates. Here, we studied whether the virulence of Old World arenaviruses in humans and non-human primates is reflected in type I interferon receptor deficient (IFNAR(-/-)) mice by testing several strains of Lassa virus vs. the apathogenic viruses Mopeia, Morogoro, and Mobala. All Lassa virus strains tested-Josiah, AV, BA366, and Nig04-10-replicated to high titers in blood, lung, kidney, heart, spleen, brain, and liver and caused disease as evidenced by weight loss and elevation of aspartate and alanine aminotransferase (AST and ALT) levels with a high AST/ALT ratio. Lassa fever-like pathology included acute hepatitis, interstitial pneumonia, and pronounced disturbance of splenic cytoarchitecture. Infiltrations of activated monocytes/macrophages expressing inducible nitric oxide synthase and T cells were found in liver and lung. In contrast, Mopeia, Morogoro, and Mobala virus replicated poorly in the animals and acute inflammatory alterations were not noted. Depletion of CD4(+) and CD8(+) T cells strongly enhanced susceptibility of IFNAR(-/-) mice to the apathogenic viruses. In conclusion, the virulence of Old World arenaviruses in IFNAR(-/-) mice correlates with their virulence in humans and non-human primates. In addition to the type I interferon system, T cells seem to regulate whether or not an arenavirus can productively infect non-host rodent species. The observation that Lassa virus overcomes the species barrier without artificial depletion of T cells suggests it is able to impair T cell functionality in a way that corresponds to depletion.

  7. Infection of type I interferon receptor-deficient mice with various old world arenaviruses: a model for studying virulence and host species barriers.

    Directory of Open Access Journals (Sweden)

    Toni Rieger

    Full Text Available Lassa virus causes hemorrhagic Lassa fever in humans, while the related Old World arenaviruses Mopeia, Morogoro, and Mobala are supposedly apathogenic to humans and cause only inapparent infection in non-human primates. Here, we studied whether the virulence of Old World arenaviruses in humans and non-human primates is reflected in type I interferon receptor deficient (IFNAR(-/- mice by testing several strains of Lassa virus vs. the apathogenic viruses Mopeia, Morogoro, and Mobala. All Lassa virus strains tested-Josiah, AV, BA366, and Nig04-10-replicated to high titers in blood, lung, kidney, heart, spleen, brain, and liver and caused disease as evidenced by weight loss and elevation of aspartate and alanine aminotransferase (AST and ALT levels with a high AST/ALT ratio. Lassa fever-like pathology included acute hepatitis, interstitial pneumonia, and pronounced disturbance of splenic cytoarchitecture. Infiltrations of activated monocytes/macrophages expressing inducible nitric oxide synthase and T cells were found in liver and lung. In contrast, Mopeia, Morogoro, and Mobala virus replicated poorly in the animals and acute inflammatory alterations were not noted. Depletion of CD4(+ and CD8(+ T cells strongly enhanced susceptibility of IFNAR(-/- mice to the apathogenic viruses. In conclusion, the virulence of Old World arenaviruses in IFNAR(-/- mice correlates with their virulence in humans and non-human primates. In addition to the type I interferon system, T cells seem to regulate whether or not an arenavirus can productively infect non-host rodent species. The observation that Lassa virus overcomes the species barrier without artificial depletion of T cells suggests it is able to impair T cell functionality in a way that corresponds to depletion.

  8. Turning up the Heat: Increasing Temperature and Coral Bleaching at the High Latitude Coral Reefs of the Houtman Abrolhos Islands

    OpenAIRE

    David A Abdo; Bellchambers, Lynda M.; Scott N Evans

    2012-01-01

    BACKGROUND: Coral reefs face increasing pressures particularly when on the edge of their distributions. The Houtman Abrolhos Islands (Abrolhos) are the southernmost coral reef system in the Indian Ocean, and one of the highest latitude reefs in the world. These reefs have a unique mix of tropical and temperate marine fauna and flora and support 184 species of coral, dominated by Acropora species. A significant La Niña event during 2011 produced anomalous conditions of increased temperature al...

  9. New protection initiatives announced for coral reefs

    Science.gov (United States)

    Showstack, Randy

    Off the coasts of some of the South Pacific's most idyllic-sounding atolls, Austin Bowden-Kerby has seen first-hand the heavy damage to coral reefs from dynamite and cyanide fishing. For instance, while snorkeling near Chuuk, an island in Micronesia, he has observed craters and rubble beds of coral, which locals have told him date to World War II ordnance.A marine biologist and project scientist for the Coral Gardens Initiative of the Foundation for the Peoples of the South Pacific, Bowden-Kerby has also identified what he says are some public health effects related to destroyed coral reefs and their dying fisheries. These problems include protein and vitamin A deficiency and blindness, all of which may—in some instances—be linked to poor nutrition resulting from lower reef fish consumption by islanders, according to Bowden-Kerby.

  10. Residence times of neutrally-buoyant matter such as larvae, sewage or nutrients on coral reefs

    Science.gov (United States)

    Black, Kerry P.; Gay, Stephen L.; Andrews, John C.

    1990-12-01

    Coral reef flushing times at an individual reef scale are specified and a general formula to determine these times is developed. The formula is confirmed by comparison with residence times predicted by numerical small-scale reef models, including those from a 4 month unsteady current simulation of John Brewer Reef on Australia's Great Barrier Reef. The method proves to be a satisfactory alternative to the numerical modelling. When neutrally-buoyant material around a reef is removed by the currents, the concentrations decay exponentially. The decay rate depends primarily on free stream current and reef dimensions. Secondary factors are the tidal excursion, shelf depth, lagoon size and residual current in the lee of the reef. These factors, when combined into a decay coefficient, specify the rate of loss of neutrally-buoyant material (e.g. some larvae, pollutants and sewage) from a coral reef and its surrounds. The analytical formula can be used to predict the flushing rates or the percentage of material still remaining on a reef after a selected time interval. We demonstrate that material can remain on or near typical reefs in common weather conditions for several weeks.

  11. Sanctuary Reef Extension, Density, and Calcification Data for 1501 to 1984

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Extension, Density, and Calcification data from 35 Porites coral cores covering the entire length of the Great Barrier Reef, Australia. Data set contains 35...

  12. Britomart Reef Extension, Density, and Calcification Data for 1574 to 1986

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Extension, Density, and Calcification data from 35 Porites coral cores covering the entire length of the Great Barrier Reef, Australia. Data set contains 35...

  13. Yankee Reef Extension, Density, and Calcification Data for 1888 to 1984

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Extension, Density, and Calcification data from 35 Porites coral cores covering the entire length of the Great Barrier Reef, Australia. Data set contains 35...

  14. Stanley Reef Extension, Density, and Calcification Data for 1912 to 1985

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Extension, Density, and Calcification data from 35 Porites coral cores covering the entire length of the Great Barrier Reef, Australia. Data set contains 35...

  15. Abraham Reef Extension, Density, and Calcification Data for 1479 to 1985

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Extension, Density, and Calcification data from 35 Porites coral cores covering the entire length of the Great Barrier Reef, Australia. Data set contains 35...

  16. Flinders Reef Extension, Density, and Calcification Data for 1718 to 1991

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Extension, Density, and Calcification data from 35 Porites coral cores covering the entire length of the Great Barrier Reef, Australia. Data set contains 35...

  17. Otter Reef Extension, Density, and Calcification Data for 1792 to 1987

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Extension, Density, and Calcification data from 35 Porites coral cores covering the entire length of the Great Barrier Reef, Australia. Data set contains 35...

  18. Lodestone Reef Extension, Density, and Calcification Data for 1615 to 1983

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Extension, Density, and Calcification data from 35 Porites coral cores covering the entire length of the Great Barrier Reef, Australia. Data set contains 35...

  19. Rib Reef Extension, Density, and Calcification Data for 1853 to 1983

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Extension, Density, and Calcification data from 35 Porites coral cores covering the entire length of the Great Barrier Reef, Australia. Data set contains 35...

  20. Wheeler Reef Extension, Density, and Calcification Data for 1744 to 1984

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Extension, Density, and Calcification data from 35 Porites coral cores covering the entire length of the Great Barrier Reef, Australia. Data set contains 35...

  1. Pandora Reef Extension, Density, and Calcification Data for 1875 to 1982

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Extension, Density, and Calcification data from 35 Porites coral cores covering the entire length of the Great Barrier Reef, Australia. Data set contains 35...

  2. Agincourt Reef Extension, Density, and Calcification Data for 1779 to 1988

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Extension, Density, and Calcification data from 35 Porites coral cores covering the entire length of the Great Barrier Reef, Australia. Data set contains 35...

  3. Ecological Processes and Contemporary Coral Reef Management

    Directory of Open Access Journals (Sweden)

    Angela Dikou

    2010-05-01

    Full Text Available Top-down controls of complex foodwebs maintain the balance among the critical groups of corals, algae, and herbivores, thus allowing the persistence of corals reefs as three-dimensional, biogenic structures with high biodiversity, heterogeneity, resistance, resilience and connectivity, and the delivery of essential goods and services to societies. On contemporary reefs world-wide, however, top-down controls have been weakened due to reduction in herbivory levels (overfishing or disease outbreak while bottom-up controls have increased due to water quality degradation (increase in sediment and nutrient load and climate forcing (seawater warming and acidification leading to algal-dominated alternate benthic states of coral reefs, which are indicative of a trajectory towards ecological extinction. Management to reverse common trajectories of degradation for coral reefs necessitates a shift from optimization in marine resource use and conservation towards building socio-economic resilience into coral reef systems while attending to the most manageable human impacts (fishing and water quality and the global-scale causes (climate change.

  4. The geological effects of hurricanes on coral reefs and the interpretation of storm deposits

    Science.gov (United States)

    Scoffin, T. P.

    1993-11-01

    Hurricanes occur in belts 7° to 25° north and south of the equator. Reefs growing in these belts suffer periodic damage from hurricane-generated waves and storm surge. Corals down to 20m depth may be broken and removed, branching colonies being much more susceptible to breakage than upright massive forms. Sand cays may be washed away and former storm ridges may migrate to leeward across reef flats to link with islands. Reef crest and reef front coral debris accumulate as talus at the foot of the fore-reef slope, on submarine terraces and grooves, on the intertidal reef flat as storm ridges of shingle or boulders and isolated blocks of reef framework, as accreting beach ridges of leeward migrating shingle, as lobes and wedges of debris in back-reef lagoons, as drapes of carbonate sand and mud in deep off-reef locations in the fore-reef and lagoonal areas. In addition to the coarse debris deposited, other features may aid the recognition of former hurricane events, including the assemblage of reef biota, its species composition and the structure of the skeletons; graded internal sediments in framework cavities; characteristic sequences of encrusting organisms; characteristic shapes of reef flat microatoll corals; and submarine cement crusts over truncated reef surfaces. The abundance of reef flat storm deposits whose ages cluster around 3000 4000 y BP in certain parts of the world most likely relate to a slight fall in relative sea level rather than an increase in storminess during that period. A higher frequency of storms need not result in more reef flat storm deposits. The violence of the storm relative to normal fair-weather conditions influences the extent of damage; the length of time since the previous major storm influences the amount of coral debris created; the length of time after the hurricane, and before a subsequent storm influences the degree of stabilization of reef-top storm deposits and hence their chances of preservation.

  5. Patterns of the benthic community structure in coral reefs of the north western Caribbean

    OpenAIRE

    Borges-Souza, J.M.; Chávez, E.A.

    2007-01-01

    Data on the benthic community structure of six coral reefs of the Mexican portion of the Mesoamerican Barrier Reef System using the photographic-transect method, aimed to describe the structural patterns in each reef, and comparing differences between shallow and deep reefs. In the shallow stratum (Colombia 6-7m, Chankanaab 6m, Majahual 1-6m and Akumal 8m) hexacorals, sponges and algae dominated, with 38%, 34.6% and 14.5% of abundance, respectively. The species most commonly found were: Monta...

  6. Spatial and Temporal Variability of Remotely Sensed Ocean Color Parameters in Coral Reef Regions

    Science.gov (United States)

    Otis, Daniel Brooks

    The variability of water-column absorption due to colored dissolved organic matter (CDOM) and phytoplankton in coral reef regions is the focus of this study. Hydrographic and CDOM absorption measurements made on the Bahamas Banks and in Exuma Sound during the spring of 1999 and 2000 showed that values of salinity and CDOM absorption at 440nm were higher on the banks (37.18 psu, 0.06 m. -1), compared to Exuma Sound (37.04 psu, 0.03 m. -1). Spatial patternsof CDOM absorption in Exuma Sound revealed that plumes of CDOM-rich water flow into Exuma Sound from the surrounding banks. To examine absorption variability in reef regions throughout the world, a thirteen-year time series of satellite-derived estimates of water-column absorption due to CDOM and phytoplankton were created from Sea-viewing Wide Field-of-view Sensor (SeaWiFS) and Moderate Resolution Imaging Spectroradiometer (MODIS) data. Time series data extracted adjacent to coral reef regions showed that variability in absorption depends on oceanographic conditions such as circulation patterns and winds as well as proximity to sources of light-absorbing materials that enter the water column, such as from terrestrial runoff. Waters near reef regions are generally clear, exhibiting a lower "baseline" level of CDOM absorption of approximately 0.01 m. -1 at 443nm. The main differences between regions lie in the periodsduring the year when increased levels of absorption are observed, which can be triggered by inputs of terrestrially-derived material, as in the Great Barrier Reef lagoon, or wind-driven upwelling as in the Andaman Sea and eastern Pacific Ocean near Panama. The lowest CDOM absorption levels found were approximately 0.003 m. -1 at 443nm near the islands of Palau and Yap, which are removed fromsources of colored materials. The highest absorption levels near reefs were associated with wind-driven upwelling during the northeast monsoon on the Andaman coast of Thailand where values of CDOM absorption at 443nm

  7. Current status, crisis and conservation of coral reef ecosystems in China

    Directory of Open Access Journals (Sweden)

    ShaoHong Wu

    2012-03-01

    Full Text Available Harboring rich marine species and playing important ecological functions, coral reef ecosystems have attracted widespread concern around the world. Ecosystem diversity, conservation and management of coral reefs are becoming a hot research area. Coral reefs in China are mainly distributed in the South China Sea and Hainan, Taiwan, Hong Kong, Guangdong, and Guangxi coastal waters. In recent years, due to the global climate change and the growing impact of human activities, coral reef biodiversity in China have been reducing and the ecological functions of coral reef ecosystems are severely degenerating. In this paper we summarized the current status, crisis and conservation of coral reef ecosystems in China. Some progress in coral reef research was discussed.

  8. Associations among coral reef macroalgae influence feeding by herbivorous fishes

    Science.gov (United States)

    Loffler, Z.; Bellwood, D. R.; Hoey, A. S.

    2015-03-01

    Benthic macroalgae often occur in close association with other macroalgae, yet the implications of such associations on coral reefs are unclear. We selected three pairs of commonly associated macroalgae on inshore reefs of the Great Barrier Reef and exposed them, either independently or paired, to herbivore assemblages. Pairing the palatable alga Acanthophora with the calcified and chemically defended Galaxaura resulted in a 69 % reduction in the consumption of Acanthophora, but had no effect on the consumption of Galaxaura. The reduced consumption of Acanthophora was related to 53-85 % reductions in the feeding rates of two herbivorous fish species, Kyphosus vaigiensis and Siganus doliatus. Neither Acanthophora nor Sargassum were afforded protection when paired with the brown macroalga Turbinaria. Although limited to one of the three species pairings, such associations between algae may allow the ecological persistence of palatable species in the face of intense herbivory, enhancing macroalgal diversity on coral reefs.

  9. Dynamics of seagrasses and associated algae in coral reef lagoons

    OpenAIRE

    van Tussenbroek, Brigitta I.

    2011-01-01

    Seagrass communities in tropical reef systems are situated in a distinct environmental setting than other seagrass beds around the world: they are exposed to high light intensities and low nutrient concentrations in carbonate sediments. Little is known about the forces which determine the community dynamics in these systems. Here we review studies realized over the last two decades at Puerto Morelos reef lagoon, Mexican Caribbean (Latitude 20o52´N) which highlight the dynamics of seagrasses a...

  10. Near-reef elemental signals in the otoliths of settling Pomacentrus amboinensis (Pomacentridae)

    Science.gov (United States)

    Sih, Tiffany L.; Kingsford, Michael J.

    2016-03-01

    Settlement is a key life history transition for coral reef fishes, and how long a fish spends close to a reef prior to settlement is poorly understood. We used laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) and otolith microstructure analysis (daily increments and settlement marks) to determine the length of time larval fish spend near a reef prior to settlement. The otoliths of Pomacentrus amboinensis collected from four neighbouring reefs in the southern Great Barrier Reef showed clear and consistent differences in their elemental signatures prior to and following settlement. Elevated Ba:Ca near settlement and post-settlement was found in fish from all four reefs. However, there was individual variation in elemental profiles, with an increased otolith Ba-to-Ca ratio (near-reef signature) at settlement in 33 % of fish, and up to 8 d prior to settlement in others. Increment widths, often used as a proxy for growth, decreased approaching the settlement mark for all fish, providing further evidence for a "search phase" in larvae. We demonstrated experimentally that otoliths of fish kept in reefal or inter-reefal waters had different elemental chemistry. There were differences in the elemental composition of water samples within the study area, but no consistent trends with distance from reefs. There was poor discrimination of multi-element signatures among fish from different reefs during their pre-settlement phases. However, discrimination improved in the settlement and post-settlement phases of otoliths, indicating that reef waters and perhaps stage of ontogeny affected otolith chemistry. This study demonstrated clear near-reef elemental signatures in fish around settlement. We suggest these differences are due to a combination of water chemistry and physiological influences (e.g., growth). Combining LA-ICP-MS with otolith microstructure analysis can provide high-resolution information on the early life history of reef fishes. Further, a

  11. Contrasting movements and connectivity of reef-associated sharks using acoustic telemetry: implications for management.

    Science.gov (United States)

    Espinoza, Mario; Lédée, Elodie J I; Simpfendorfer, Colin A; Tobin, Andrew J; Heupel, Michelle R

    2015-12-01

    Understanding the efficacy of marine protected areas (MPAs) for wide-ranging predators is essential to designing effective management and conservation approaches. The use of acoustic monitoring and network analysis can improve our understanding of the spatial ecology and functional connectivity of reef-associated species, providing a useful approach for reef-based conservation planning. This study compared and contrasted the movement and connectivity of sharks with different degrees of reef association. We examined the residency, dispersal, degree of reef connectivity, and MPA use of grey reef (Carcharhinus amblyrhynchos), silvertip (C. albimarginatus), and bull (C. leucas) sharks monitored in the central Great Barrier Reef (GBR). An array of 56 acoustic receivers was used to monitor shark movements on 17 semi-isolated reefs. Carcharhinus amblyrhynchos and C. albimarginatus were detected most days at or near their tagging reef. However, while C. amblyrhynchos spent 80% of monitoring days in the array, C. albimarginatus was only detected 50% of the time. Despite both species moving similar distances (reefs and moved more frequently between reefs and management zones than C. amblyrhynchos. Carcharhinus leucas was detected less than 20% of the time within the tagging array, and 42% of the population undertook long-range migrations to other arrays in the GBR. Networks derived for C. leucas were larger and more complex than those for C. amblyrhynchos and C. albimarginatus. Our findings suggest that protecting specific reefs based on prior knowledge (e.g., healthier reefs with high fish biomass) and increasing the level of protection to include nearby, closely spaced reef habitats (reef predators displaying a range of movement patterns.

  12. Linking demographic processes of juvenile corals to benthic recovery trajectories in two common reef habitats.

    Directory of Open Access Journals (Sweden)

    Christopher Doropoulos

    Full Text Available Tropical reefs are dynamic ecosystems that host diverse coral assemblages with different life-history strategies. Here, we quantified how juvenile (<50 mm coral demographics influenced benthic coral structure in reef flat and reef slope habitats on the southern Great Barrier Reef, Australia. Permanent plots and settlement tiles were monitored every six months for three years in each habitat. These environments exhibited profound differences: the reef slope was characterised by 95% less macroalgal cover, and twice the amount of available settlement substrata and rates of coral settlement than the reef flat. Consequently, post-settlement coral survival in the reef slope was substantially higher than that of the reef flat, and resulted in a rapid increase in coral cover from 7 to 31% in 2.5 years. In contrast, coral cover on the reef flat remained low (~10%, whereas macroalgal cover increased from 23 to 45%. A positive stock-recruitment relationship was found in brooding corals in both habitats; however, brooding corals were not directly responsible for the observed changes in coral cover. Rather, the rapid increase on the reef slope resulted from high abundances of broadcast spawning Acropora recruits. Incorporating our results into transition matrix models demonstrated that most corals escape mortality once they exceed 50 mm, but for smaller corals mortality in brooders was double those of spawners (i.e. acroporids and massive corals. For corals on the reef flat, sensitivity analysis demonstrated that growth and mortality of larger juveniles (21-50 mm highly influenced population dynamics; whereas the recruitment, growth and mortality of smaller corals (<20 mm had the highest influence on reef slope population dynamics. Our results provide insight into the population dynamics and recovery trajectories in disparate reef habitats, and highlight the importance of acroporid recruitment in driving rapid increases in coral cover following large

  13. The Reefs of Mauritius

    OpenAIRE

    Daby, D.; Hardman, E.; Turner, J.; Persands, S.; Klaus, R; Fagoonee, I.; Baghooli, R.

    2000-01-01

    The study investigated whether the coral reefs of Mauritius had suffered a mass bleaching event during 1998 as had been reported for other Indian Ocean reefs. Sea-surface temperature (SST) anomaly charts produced by NOAA show that SST was raised 1o C - 1.25o C above the climatological maximum for this region during February 1998, but the extent of bleaching around Mauritius was thought not to be severe, but was not recorded. A rapid assessment of the degree of coral bleaching on reefs around ...

  14. Coral mucus functions as an energy carrier and particle trap in the reef ecosystem

    DEFF Research Database (Denmark)

    Wild, C.; Huettel, M.; Klueter, A.;

    2004-01-01

    Zooxanthellae, endosymbiotic algae of reef-building corals, substantially contribute to the high gross primary production of coral reefs(1), but corals exude up to half of the carbon assimilated by their zooxanthellae as mucus(2,3). Here we show that released coral mucus efficiently traps organic...... matter from the water column and rapidly carries energy and nutrients to the reef lagoon sediment, which acts as a biocatalytic mineralizing filter. In the Great Barrier Reef, the dominant genus of hard corals, Acropora, exudes up to 4.8 litres of mucus per square metre of reef area per day. Between 56......% and 80% of this mucus dissolves in the reef water, which is filtered through the lagoon sands. Here, coral mucus is degraded at a turnover rate of at least 7% per hour. Detached undissolved mucus traps suspended particles, increasing its initial organic carbon and nitrogen content by three orders...

  15. Mangroves enhance the biomass of coral reef fish communities in the Caribbean

    OpenAIRE

    Mumby, P.J.; Edwards, A J; Arias-Gonzalez, J.E.; Lindeman, K.C.; Blackwell, P. G.; Gall, A; Gorczynska, M.I.; Harborne, A. R.; Pescod, C.L.; Renken, H.; Wabnitz, C.C.C.; Llewellyn, G

    2004-01-01

    Mangrove forests are one of the world's most threatened tropical ecosystems with global loss exceeding 35% (ref. 1). Juvenile coral reef fish often inhabit mangroves, but the importance of these nurseries to reef fish population dynamics has not been quantified. Indeed, mangroves might be expected to have negligible influence on reef fish communities: juvenile fish can inhabit alternative habitats and fish populations may be regulated by other limiting factors such as larval supply or fishing...

  16. Spectrographic imaging: A bird's-eye view of the health of coral reefs

    Science.gov (United States)

    Mumby, Peter J.; Chisholm, John R. M.; Clark, Chris D.; Hedley, John D.; Jaubert, Jean

    2001-09-01

    Almost three-quarters of the world's coral reefs are thought to be deteriorating as a consequence of environmental stress. Until now, it has been possible to evaluate reef health only by field survey, which is labour-intensive and time-consuming. Here we map live coral cover from the air by remote imaging, a technique that will enable the state of shallow reefs to be monitored swiftly and over large areas.

  17. Carbonate Production by Benthic Communities on Shallow Coralgal Reefs of Abrolhos Bank, Brazil.

    Directory of Open Access Journals (Sweden)

    Vanessa Moura Dos Reis

    Full Text Available The abundance of reef builders, non-builders and the calcium carbonate produced by communities established in Calcification Accretion Units (CAUs were determined in three Abrolhos Bank shallow reefs during the period from 2012 to 2014. In addition, the seawater temperature, the irradiance, and the amount and composition of the sediments were determined. The inner and outer reef arcs were compared. CAUs located on the inner reef shelf were under the influence of terrigenous sediments. On the outer reefs, the sediments were composed primarily of marine biogenic carbonates. The mean carbonate production in shallow reefs of Abrolhos was 579 ± 98 g m-2 y-1. The builder community was dominated by crustose coralline algae, while the non-builder community was dominated by turf. A marine heat wave was detected during the summer of 2013-2014, and the number of consecutive days with a temperature above or below the summer mean was positively correlated with the turf cover increase. The mean carbonate production of the shallow reefs of Abrolhos Bank was greater than the estimated carbonate production measured for artificial structures on several other shallow reefs of the world. The calcimass was higher than the non-calcareous mass, suggesting that the Abrolhos reefs are still in a positive carbonate production balance. Given that marine heat waves produce an increase of turf cover on the shallow reefs of the Abrolhos, a decrease in the cover represented by reef builders and shifting carbonate production are expected in the near future.

  18. Residency and spatial use by reef sharks of an isolated seamount and its implications for conservation.

    Science.gov (United States)

    Barnett, Adam; Abrantes, Kátya G; Seymour, Jamie; Fitzpatrick, Richard

    2012-01-01

    Although marine protected areas (MPAs) are a common conservation strategy, these areas are often designed with little prior knowledge of the spatial behaviour of the species they are designed to protect. Currently, the Coral Sea area and its seamounts (north-east Australia) are under review to determine if MPAs are warranted. The protection of sharks at these seamounts should be an integral component of conservation plans. Therefore, knowledge on the spatial ecology of sharks at the Coral Sea seamounts is essential for the appropriate implementation of management and conservation plans. Acoustic telemetry was used to determine residency, site fidelity and spatial use of three shark species at Osprey Reef: whitetip reef sharks Triaenodon obesus, grey reef sharks Carcharhinus amblyrhynchos and silvertip sharks Carcharhinus albimarginatus. Most individuals showed year round residency at Osprey Reef, although five of the 49 individuals tagged moved to the neighbouring Shark Reef (~14 km away) and one grey reef shark completed a round trip of ~250 km to the Great Barrier Reef. Additionally, individuals of white tip and grey reef sharks showed strong site fidelity to the areas they were tagged, and there was low spatial overlap between groups of sharks tagged at different locations. Spatial use at Osprey Reef by adult sharks is generally restricted to the north-west corner. The high residency and limited spatial use of Osprey Reef suggests that reef sharks would be highly vulnerable to targeted fishing pressure and that MPAs incorporating no-take of sharks would be effective in protecting reef shark populations at Osprey and Shark Reef.

  19. Residency and spatial use by reef sharks of an isolated seamount and its implications for conservation.

    Science.gov (United States)

    Barnett, Adam; Abrantes, Kátya G; Seymour, Jamie; Fitzpatrick, Richard

    2012-01-01

    Although marine protected areas (MPAs) are a common conservation strategy, these areas are often designed with little prior knowledge of the spatial behaviour of the species they are designed to protect. Currently, the Coral Sea area and its seamounts (north-east Australia) are under review to determine if MPAs are warranted. The protection of sharks at these seamounts should be an integral component of conservation plans. Therefore, knowledge on the spatial ecology of sharks at the Coral Sea seamounts is essential for the appropriate implementation of management and conservation plans. Acoustic telemetry was used to determine residency, site fidelity and spatial use of three shark species at Osprey Reef: whitetip reef sharks Triaenodon obesus, grey reef sharks Carcharhinus amblyrhynchos and silvertip sharks Carcharhinus albimarginatus. Most individuals showed year round residency at Osprey Reef, although five of the 49 individuals tagged moved to the neighbouring Shark Reef (~14 km away) and one grey reef shark completed a round trip of ~250 km to the Great Barrier Reef. Additionally, individuals of white tip and grey reef sharks showed strong site fidelity to the areas they were tagged, and there was low spatial overlap between groups of sharks tagged at different locations. Spatial use at Osprey Reef by adult sharks is generally restricted to the north-west corner. The high residency and limited spatial use of Osprey Reef suggests that reef sharks would be highly vulnerable to targeted fishing pressure and that MPAs incorporating no-take of sharks would be effective in protecting reef shark populations at Osprey and Shark Reef. PMID:22615782

  20. Residency and spatial use by reef sharks of an isolated seamount and its implications for conservation.

    Directory of Open Access Journals (Sweden)

    Adam Barnett

    Full Text Available Although marine protected areas (MPAs are a common conservation strategy, these areas are often designed with little prior knowledge of the spatial behaviour of the species they are designed to protect. Currently, the Coral Sea area and its seamounts (north-east Australia are under review to determine if MPAs are warranted. The protection of sharks at these seamounts should be an integral component of conservation plans. Therefore, knowledge on the spatial ecology of sharks at the Coral Sea seamounts is essential for the appropriate implementation of management and conservation plans. Acoustic telemetry was used to determine residency, site fidelity and spatial use of three shark species at Osprey Reef: whitetip reef sharks Triaenodon obesus, grey reef sharks Carcharhinus amblyrhynchos and silvertip sharks Carcharhinus albimarginatus. Most individuals showed year round residency at Osprey Reef, although five of the 49 individuals tagged moved to the neighbouring Shark Reef (~14 km away and one grey reef shark completed a round trip of ~250 km to the Great Barrier Reef. Additionally, individuals of white tip and grey reef sharks showed strong site fidelity to the areas they were tagged, and there was low spatial overlap between groups of sharks tagged at different locations. Spatial use at Osprey Reef by adult sharks is generally restricted to the north-west corner. The high residency and limited spatial use of Osprey Reef suggests that reef sharks would be highly vulnerable to targeted fishing pressure and that MPAs incorporating no-take of sharks would be effective in protecting reef shark populations at Osprey and Shark Reef.

  1. Digital Reef Rugosity Estimates Coral Reef Habitat Complexity

    OpenAIRE

    Phillip Dustan; Orla Doherty; Shinta Pardede

    2013-01-01

    Ecological habitats with greater structural complexity contain more species due to increased niche diversity. This is especially apparent on coral reefs where individual coral colonies aggregate to give a reef its morphology, species zonation, and three dimensionality. Structural complexity is classically measured with a reef rugosity index, which is the ratio of a straight line transect to the distance a flexible chain of equal length travels when draped over the reef substrate; yet, other t...

  2. Particulate organic matter fluxes and hydrodynamics at the Tisler cold-water coral reef

    Science.gov (United States)

    Wagner, Hannes; Purser, Autun; Thomsen, Laurenz; Jesus, Carlos César; Lundälv, Tomas

    2011-03-01

    Cold-water coral reefs occur in many regions of the world's oceans. Fundamental questions regarding their functioning remain unanswered. These include the biogeochemical influence of reefs on their environment ("reef effects") and the influence of hydrodynamic processes on reef nutrition. In a succession of field campaigns in 2007 and 2008, these questions were addressed at the Tisler cold-water coral reef, which is centered on a sill peak in the Norwegian Skagerrak. A variety of methodological approaches were used. These consisted of the collection of CTD and chlorophyll profiles, current measurements, sampling of particulate organic matter (POM) in the benthic boundary layer (BBL) across the reef with subsequent chemical analyses, and the chemical analysis of freshly released Lophelia pertusa mucus. CTD and chlorophyll profiles indicated that downstream of the sill crest, downwelling delivered warmer, fresher and chlorophyll richer water masses down to the BBL. Both sides of the reef received downwelling nutrition delivery, as flow direction over the reef reversed periodically. Several chemical composition indicators revealed that suspended POM was significantly fresher on the downstream side of the reef than on the upstream side. L. pertusa mucus from the Tisler Reef was labile in composition, as indicated by a low C/N ratio and a high amino acid degradation index (DI) value. Particulate organic carbon (POC) content in the BBL was significantly depleted across the reef. Lateral depositional fluxes were calculated to be 18-1485 mg POC m -2 d -1, with a mean of 459 mg POC m -2 d -1. We propose that the combination of fresh, downwelling POM with mucus released from the reef was the cause of the greater lability of the downstream POM. Our data on POC depletion across the reef suggest that cold-water coral reefs could play an important role in carbon cycling along continental margins.

  3. Evidence of extensive reef development and high coral cover in nearshore environments: implications for understanding coral adaptation in turbid settings

    Science.gov (United States)

    Morgan, Kyle M.; Perry, Chris T.; Smithers, Scott G.; Johnson, Jamie A.; Daniell, James J.

    2016-07-01

    Mean coral cover has reportedly declined by over 15% during the last 30 years across the central Great Barrier Reef (GBR). Here, we present new data that documents widespread reef development within the more poorly studied turbid nearshore areas (30 m) mesophotic equivalents and may have similar potential as refugia from large-scale disturbances.

  4. CRCP-Navassa reef assessment

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Episodic cruises ( every 2 years) were conducted to perform assessments of Navassa Island coral reef resources including reeffish visual census, benthic reef...

  5. Predicting the distribution of Montastraea reefs using wave exposure

    Science.gov (United States)

    Chollett, I.; Mumby, P. J.

    2012-06-01

    In the Caribbean region, forereef habitats dominated by Montastraea spp. have the highest biodiversity and support the largest number of ecosystem processes and services. Here we show that the distribution of this species-rich habitat can be explained by one environmental predictor: wave exposure. The relationship between wave exposure and the occurrence of Montastraea reefs was modelled using logistic regression for reefs throughout the Belize Barrier Reef, one of the largest and most topographically complex systems in the region. The model was able to predict correctly the occurrence of Montastraea reefs with an accuracy of 81%. Consistent with historical qualitative patterns, the distribution of Montastraea reefs is constrained in environments of high exposure. This pattern is likely to be driven by high rates of chronic sediment scour that constrain recruitment. The wide range of wave exposure conditions used to parameterize the model in Belize suggest that it should be transferable throughout much of the Caribbean region, constituting a fast and inexpensive alternative to traditional habitat mapping and complementing global efforts to map reef extent.

  6. Population Genetics of an Ecosystem-Defining Reef Coral Pocillopora damicornis in the Tropical Eastern Pacific

    OpenAIRE

    Combosch, David J.; Vollmer, Steven V.

    2011-01-01

    BACKGROUND: Coral reefs in the Tropical Eastern Pacific (TEP) are amongst the most peripheral and geographically isolated in the world. This isolation has shaped the biology of TEP organisms and lead to the formation of numerous endemic species. For example, the coral Pocillopora damicornis is a minor reef-builder elsewhere in the Indo-West Pacific, but is the dominant reef-building coral in the TEP, where it forms large, mono-specific stands, covering many hectares of reef. Moreover, TEP P. ...

  7. Movement patterns of silvertip sharks ( Carcharhinus albimarginatus) on coral reefs

    Science.gov (United States)

    Espinoza, Mario; Heupel, Michelle. R.; Tobin, Andrew J.; Simpfendorfer, Colin A.

    2015-09-01

    Understanding how sharks use coral reefs is essential for assessing risk of exposure to fisheries, habitat loss, and climate change. Despite a wide Indo-Pacific distribution, little is known about the spatial ecology of silvertip sharks ( Carcharhinus albimarginatus), compromising the ability to effectively manage their populations. We examined the residency and movements of silvertip sharks in the central Great Barrier Reef (GBR). An array of 56 VR2W acoustic receivers was used to monitor shark movements on 17 semi-isolated reefs. Twenty-seven individuals tagged with acoustic transmitters were monitored from 70 to 731 d. Residency index to the study site ranged from 0.05 to 0.97, with a mean residency (±SD) of 0.57 ± 0.26, but most individuals were detected at or near their tagging reef. Clear seasonal patterns were apparent, with fewer individuals detected between September and February. A large proportion of the tagged population (>71 %) moved regularly between reefs. Silvertip sharks were detected less during daytime and exhibited a strong diel pattern in depth use, which may be a strategy for optimizing energetic budgets and foraging opportunities. This study provides the first detailed examination of the spatial ecology and behavior of silvertip sharks on coral reefs. Silvertip sharks remained resident at coral reef habitats over long periods, but our results also suggest this species may have more complex movement patterns and use larger areas of the GBR than common reef shark species. Our findings highlight the need to further understand the movement ecology of silvertip sharks at different spatial and temporal scales, which is critical for developing effective management approaches.

  8. Stephanostomum spp. (Digenea: Acanthocolpidae from scombrids and carangids (Perciformes from the Great Barrier Reef, with the description of two new species Stephanostomum spp. (Digenea: Acanthocolpidae de escómbridos y carángidos (Perciformes del arrecife de la Gran Barrera, con descripción de dos especies nuevas

    Directory of Open Access Journals (Sweden)

    Rodney A. Bray

    2008-08-01

    Full Text Available Two new species and 4 Stephanostomum spp. as new host and/or locality records from Percifomes from the Great Barrier Reef are described: Stephanostomum lamothei n. sp. from Grammatorcynus bilineatus (type-host and G. bicarinatus, Lizard Island and Swain Reefs, is characterised by its 50-55 circum-oral spines and >than 20% of the hindbody length lacking vitelline follicles; Stephanostomum Tupatupa n. sp. from Caranx papuensis, Lizard Island, is characterised by its 34-36 circum-oral spines and Se describen 2 especies nuevas del género Stephanostomum y se redescriben 4 más parásitas de perciformes del arrecife de la Gran Barrera australiana. Stephanostomum lamothei n. sp., parásito de Grammatorcynus bilineatus (hospedero-tipo y de G. bicarinatus, de la isla Lizard y de los arrecifes Swain, se caracteriza por sus 50-55 espinas circumorales y por carecer de folículos vitelinos en más del 20% de la longitud del cuerpo; Stephanostomum Tupatupa n. sp. de Caranx papuensis de la isla Lizard, exhibe como rasgos diagnósticos 34-36 espinas circumorales y folículos vitelinos en menos del 8% de la longitud del cuerpo; Stephanostomum ditrematis (Yamaguti, 1939 se registra en Gnathanodon speciosus de las islas Heron y Lizard; Stephanostomum hawaiiense Yamaguti, 1970 y Stephanostomum carangi Liu, 1998 se recolectaron en Carangoides fulvoguttatus y finalmente, Stephanostomum nyoomwa Bray and Cribb, 2003 se encontró parasitando a Caranx sexfasciatus, ambos peces de la isla Lizard.

  9. Reef Oil and Gas Exploration Status in China

    Institute of Scientific and Technical Information of China (English)

    Du Xiaodi; Zhao Bangliu

    2010-01-01

    @@ Reef and beach reservoir has greal exploration significance Oil and gas resources are rich in reef reservoir.Statistics of the International Chemistry Industry Association(CIA)in 1977 show that recoverable reselwes of the reefbeach oil and gas fields that have been discovered in the world were 100 and 120 billion barrels of oil equivalent(BOE),which accounted for about 19% of proved and probable reserves in all types of reservoirs in the world,about 47% of proved recoverable reserves of all limestone reservoirs.

  10. Understanding Resilience in a Vulnerable Industry: the Case of Reef Tourism in Australia

    Directory of Open Access Journals (Sweden)

    Duan Biggs

    2011-03-01

    Full Text Available Understanding the resilience of vulnerable sectors of social-ecological systems is critical in an era of escalating global change. The coral reef tourism sector is highly vulnerable not only to ecological effects of climate change and other anthropogenic disturbances on reefs, but also to shocks such as economic recession and energy price escalation. Commercial tourism enterprises are key players in reef tourism in Australia and elsewhere. However, the factors that confer resilience to reef-based tourism enterprises, or the reef tourism sector more broadly, in the face of large disturbances have not been investigated to date. This paper empirically examines the perceived resilience of reef tourism enterprises on Australia's Great Barrier Reef to large disturbances or shocks. Binary logistic regression analysis of two measures of enterprise resilience demonstrates the importance of human capital in strengthening enterprise resilience. Lifestyle identity, measured as the extent to which owners and senior managers are active in reef tourism as a lifestyle choice, is positively related to enterprise resilience. Finally, reef tourism enterprises indicate that financial and marketing support are the most important actions that government can take to support enterprises in the face of a large shock.

  11. Newly found submerged reefs on the Miyako-Sone platform, Ryukyu Arc, northwestern Pacific

    Science.gov (United States)

    Arai, K.; Matsuda, H.; Sasaki, K.; Machiyama, H.; Inoue, T.; Iryu, Y.

    2013-12-01

    Bathymetric mapping and observations of the seafloor using a remotely operated vehicle were carried out on the top of the Miyako-Sone submarine platform, northeast of Miyako-jima, Ryukyu Islands, northwestern Pacific. The high-resolution bathymetric map provides a detailed geomorphology and spatial distribution of submerged reefs and terraces on the platform. Our observations show that a submerged reef occurs at a water depth of ca. 55 m as a barrier reef that are up to 500 m across (from east to west) and 1,000 m lonng (from north to south) with a prominent ridge structure (reef crest). The submerged reef deepens westward from the crest along which spurs and grooves are well developed. A shallow lagoon extends on the east of the crest. Submersible observations confirm that the submerged reef now serves a hard substrate on which soft corals and algae grow. Terraces form at a water depth of ca. 110 m around a submerged reef on the northwestern Miyako-Sone platform. Submersible observations show the terrace surface is extensivbely covered with modern rhodoliths and living larger benthic foraminifers. Well-preserved coral-reef topography likely indicates limited sediment transportion from Miyako-jima and Okinwa-jima islands to the Miyako-Sone submarine platform. We plan to provide chronological constraint by direct sampling from the submerged reef and terraces, which enable to delineate a global deglacial sea-level history especially during early deglacial times in the northwestern Pacific.

  12. Spatial and temporal variations in coral growth on an inshore turbid reef subjected to multiple disturbances.

    Science.gov (United States)

    Browne, N K

    2012-06-01

    Coral growth rates (linear extension, density, calcification rates) of three fast-growing corals (Acropora, Montipora, Turbinaria) were studied in situ on Middle Reef, an inshore reef located on the central Great Barrier Reef (GBR), to assess the influence of changing environmental conditions on coral condition and reef growth. Middle Reef is subjected to both local (e.g. high sediment loads) and global (e.g. coral bleaching) disturbance events, usually associated with reduced coral growth. Results indicated, however, that Acropora growth rates (mean linear extension = 6.3 cm/year) were comparable to those measured at similar depths on offshore reefs on the GBR. Montipora linear extension (2.9 cm/year) was greater than estimates available from both clear-water and turbid reefs, and Turbinaria's dense skeleton (1.3 g/cm(3)) may be more resilient to physical damage as ocean pH falls. Coral growth was found to vary between reef habitats due to spatial differences in water motion and sediment dynamics, and temporally with lower calcification rates during the summer months when SSTs (monthly average 29 °C) and rainfall (monthly total >500 mm) were high. In summary, corals on Middle Reef are robust and resilient to their marginal environmental conditions, but are susceptible to anthropogenic disturbances during the summer months.

  13. The Carboniferous reefs in China

    Institute of Scientific and Technical Information of China (English)

    2012-01-01

    The Carboniferous period was a unique period for reef developments during the Late Paleozoic;however,in past years,studies dealing with the Carboniferous reefs in China were very rare.In recent years,the Carboniferous reefs were studied in detail and diverse types of reefs have been discovered in different areas of China.In these areas,the Mississippian reefs were primarily built of bryozoans and rugose corals,which were associated with various kinds of calcareous algae.During the Pennsylvanian,in South China,the reef builders were composed of the rugose coral Fomichevella and phylloid algae,whereas in North China,the reef builders were composed of Chaetetes,bryozoans and corals.There are two main reef-building communities within Carboniferous reefs in China;an algal reef-building community and a reef-building community dominated by colonial coral.No evolutionary relationships between these two types of communities can be detected,thus indicating that two different linerages of reef-building communities evolved during the Carboniferous;the former community consists of cyanobacteria,bacteria and calcareous algae,while the latter one consists of various skeletal metazoan organisms.Through careful study of the developments of Chinese Carboniferous reefs,the evidence indicates that various communities of organisms played important reef-building functions during this period.The occurrence of these metazoan framework reefs also indicates that,during the Carboniferous,most areas in China would have been dominated by the environments with a tropical or subtropical climate.

  14. Contrasting movements and connectivity of reef-associated sharks using acoustic telemetry: implications for management.

    Science.gov (United States)

    Espinoza, Mario; Lédée, Elodie J I; Simpfendorfer, Colin A; Tobin, Andrew J; Heupel, Michelle R

    2015-12-01

    Understanding the efficacy of marine protected areas (MPAs) for wide-ranging predators is essential to designing effective management and conservation approaches. The use of acoustic monitoring and network analysis can improve our understanding of the spatial ecology and functional connectivity of reef-associated species, providing a useful approach for reef-based conservation planning. This study compared and contrasted the movement and connectivity of sharks with different degrees of reef association. We examined the residency, dispersal, degree of reef connectivity, and MPA use of grey reef (Carcharhinus amblyrhynchos), silvertip (C. albimarginatus), and bull (C. leucas) sharks monitored in the central Great Barrier Reef (GBR). An array of 56 acoustic receivers was used to monitor shark movements on 17 semi-isolated reefs. Carcharhinus amblyrhynchos and C. albimarginatus were detected most days at or near their tagging reef. However, while C. amblyrhynchos spent 80% of monitoring days in the array, C. albimarginatus was only detected 50% of the time. Despite both species moving similar distances (long-range migrations to other arrays in the GBR. Networks derived for C. leucas were larger and more complex than those for C. amblyrhynchos and C. albimarginatus. Our findings suggest that protecting specific reefs based on prior knowledge (e.g., healthier reefs with high fish biomass) and increasing the level of protection to include nearby, closely spaced reef habitats (ranging sharks like C. leucas, a combination of spatial planning and other alternative measures is critical. Our findings demonstrate that acoustic monitoring can serve as a useful platform for designing more effective MPA networks for reef predators displaying a range of movement patterns. PMID:26910942

  15. Linking demographic processes of juvenile corals to benthic recovery trajectories in two common reef habitats.

    Science.gov (United States)

    Doropoulos, Christopher; Ward, Selina; Roff, George; González-Rivero, Manuel; Mumby, Peter J

    2015-01-01

    Tropical reefs are dynamic ecosystems that host diverse coral assemblages with different life-history strategies. Here, we quantified how juvenile (coral demographics influenced benthic coral structure in reef flat and reef slope habitats on the southern Great Barrier Reef, Australia. Permanent plots and settlement tiles were monitored every six months for three years in each habitat. These environments exhibited profound differences: the reef slope was characterised by 95% less macroalgal cover, and twice the amount of available settlement substrata and rates of coral settlement than the reef flat. Consequently, post-settlement coral survival in the reef slope was substantially higher than that of the reef flat, and resulted in a rapid increase in coral cover from 7 to 31% in 2.5 years. In contrast, coral cover on the reef flat remained low (~10%), whereas macroalgal cover increased from 23 to 45%. A positive stock-recruitment relationship was found in brooding corals in both habitats; however, brooding corals were not directly responsible for the observed changes in coral cover. Rather, the rapid increase on the reef slope resulted from high abundances of broadcast spawning Acropora recruits. Incorporating our results into transition matrix models demonstrated that most corals escape mortality once they exceed 50 mm, but for smaller corals mortality in brooders was double those of spawners (i.e. acroporids and massive corals). For corals on the reef flat, sensitivity analysis demonstrated that growth and mortality of larger juveniles (21-50 mm) highly influenced population dynamics; whereas the recruitment, growth and mortality of smaller corals (recruitment in driving rapid increases in coral cover following large-scale perturbation in reef slope environments. PMID:26009892

  16. Nitrification in reef corals

    Digital Repository Service at National Institute of Oceanography (India)

    Wafar, M.V.M.; Wafar, S.; David, J.J.

    - increase and discuss its importance in reef N economy. Live coral colonies were collected from the leeward reef of Agatti atoll (Lakshad- weep archipelago) and held in the dark in running seawater for 1 or 2 d to minimize dark uptake of NH...,’ by the zooxanthellae (Muscatine and D’Elia 1978). Subsequent- ly, each coral was transferred in the dark to 2-liter beakers, with 1 liter of Millipore-fil- tered seawater (MFSW). NO,- and NH4+ production rates were measured after a 2-h incubation. Each experiment...

  17. Coral reef resilience through biodiversity

    Science.gov (United States)

    Rogers, Caroline S.

    2013-01-01

    Irrefutable evidence of coral reef degradation worldwide and increasing pressure from rising seawater temperatures and ocean acidification associated with climate change have led to a focus on reef resilience and a call to “manage” coral reefs for resilience. Ideally, global action to reduce emission of carbon dioxide and other greenhouse gases will be accompanied by local action. Effective management requires reduction of local stressors, identification of the characteristics of resilient reefs, and design of marine protected area networks that include potentially resilient reefs. Future research is needed on how stressors interact, on how climate change will affect corals, fish, and other reef organisms as well as overall biodiversity, and on basic ecological processes such as connectivity. Not all reef species and reefs will respond similarly to local and global stressors. Because reef-building corals and other organisms have some potential to adapt to environmental changes, coral reefs will likely persist in spite of the unprecedented combination of stressors currently affecting them. The biodiversity of coral reefs is the basis for their remarkable beauty and for the benefits they provide to society. The extraordinary complexity of these ecosystems makes it both more difficult to predict their future and more likely they will have a future.

  18. Marine protected areas increase resilience among coral reef communities.

    Science.gov (United States)

    Mellin, Camille; Aaron MacNeil, M; Cheal, Alistair J; Emslie, Michael J; Julian Caley, M

    2016-06-01

    With marine biodiversity declining globally at accelerating rates, maximising the effectiveness of conservation has become a key goal for local, national and international regulators. Marine protected areas (MPAs) have been widely advocated for conserving and managing marine biodiversity yet, despite extensive research, their benefits for conserving non-target species and wider ecosystem functions remain unclear. Here, we demonstrate that MPAs can increase the resilience of coral reef communities to natural disturbances, including coral bleaching, coral diseases, Acanthaster planci outbreaks and storms. Using a 20-year time series from Australia's Great Barrier Reef, we show that within MPAs, (1) reef community composition was 21-38% more stable; (2) the magnitude of disturbance impacts was 30% lower and (3) subsequent recovery was 20% faster that in adjacent unprotected habitats. Our results demonstrate that MPAs can increase the resilience of marine communities to natural disturbance possibly through herbivory, trophic cascades and portfolio effects.

  19. Marine protected areas increase resilience among coral reef communities.

    Science.gov (United States)

    Mellin, Camille; Aaron MacNeil, M; Cheal, Alistair J; Emslie, Michael J; Julian Caley, M

    2016-06-01

    With marine biodiversity declining globally at accelerating rates, maximising the effectiveness of conservation has become a key goal for local, national and international regulators. Marine protected areas (MPAs) have been widely advocated for conserving and managing marine biodiversity yet, despite extensive research, their benefits for conserving non-target species and wider ecosystem functions remain unclear. Here, we demonstrate that MPAs can increase the resilience of coral reef communities to natural disturbances, including coral bleaching, coral diseases, Acanthaster planci outbreaks and storms. Using a 20-year time series from Australia's Great Barrier Reef, we show that within MPAs, (1) reef community composition was 21-38% more stable; (2) the magnitude of disturbance impacts was 30% lower and (3) subsequent recovery was 20% faster that in adjacent unprotected habitats. Our results demonstrate that MPAs can increase the resilience of marine communities to natural disturbance possibly through herbivory, trophic cascades and portfolio effects. PMID:27038889

  20. Abrolhos bank reef health evaluated by means of water quality, microbial diversity, benthic cover, and fish biomass data.

    Directory of Open Access Journals (Sweden)

    Thiago Bruce

    Full Text Available The health of the coral reefs of the Abrolhos Bank (Southwestern Atlantic was characterized with a holistic approach using measurements of four ecosystem components: (i inorganic and organic nutrient concentrations, [1] fish biomass, [1] macroalgal and coral cover and (iv microbial community composition and abundance. The possible benefits of protection from fishing were particularly evaluated by comparing sites with varying levels of protection. Two reefs within the well-enforced no-take area of the National Marine Park of Abrolhos (Parcel dos Abrolhos and California were compared with two unprotected coastal reefs (Sebastião Gomes and Pedra de Leste and one legally protected but poorly enforced coastal reef (the "paper park" of Timbebas Reef. The fish biomass was lower and the fleshy macroalgal cover was higher in the unprotected reefs compared with the protected areas. The unprotected and protected reefs had similar seawater chemistry. Lower vibrio CFU counts were observed in the fully protected area of California Reef. Metagenome analysis showed that the unprotected reefs had a higher abundance of archaeal and viral sequences and more bacterial pathogens, while the protected reefs had a higher abundance of genes related to photosynthesis. Similar to other reef systems in the world, there was evidence that reductions in the biomass of herbivorous fishes and the consequent increase in macroalgal cover in the Abrolhos Bank may be affecting microbial diversity and abundance. Through the integration of different types of ecological data, the present study showed that protection from fishing may lead to greater reef health. The data presented herein suggest that protected coral reefs have higher microbial diversity, with the most degraded reef (Sebastião Gomes showing a marked reduction in microbial species richness. It is concluded that ecological conditions in unprotected reefs may promote the growth and rapid evolution of opportunistic

  1. Rapid Smothering of Coral Reef Organisms by Muddy Marine Snow

    Science.gov (United States)

    Fabricius, K. E.; Wolanski, E.

    2000-01-01

    Estuarine mud, when resuspended in nutrient-rich near-shore water, aggregates to marine snow, and within minutes to hours can exert detrimental or even lethal effects on small coral reef organisms. In a pilot study, estuarine mud was suspended in near-shore and off-shore waters of the Great Barrier Reef to a final concentration of 170 mg l -1. The short-term responses of a coral ( Acropora sp.) and coral-inhabiting barnacles (subfamily Pyrgomatidae), exposed to either near-shore or off-shore water, were microscopically observed and video recorded. In the off-shore water treatment, flocculation was minor, and aggregate sizes were c. 50 μm. The organisms were able to clean themselves from these small settling aggregates at low siltation (mucus only at high siltation (4-5 mg cm -2). In contrast, in near-shore, nutrient-enriched waters, the suspended mud aggregated into large sticky flocs of marine snow (200-2000 μm diameter). The organisms responded to a thin coat of deposited flocs with vigorous cleaning by cirri and tentacle beating. After 5 min struggle, the barnacle stopped moving, calanoid copepods were entangled in the aggregates, and thick layers of mucus were exuded by the coral polyps. Both barnacle and copepods died after coral reefs. Enhanced nutrient concentrations are known to contribute to enhance biologically mediated flocculation. This pilot study suggests that the concentration of suspended mud, and extent of stickiness and flocculation, can synergistically affect reef benthos organisms after short exposure. The enclosed macro video recordings clearly visualize these effects, and help convey the important implications for managers: that inshore reefs of the Great Barrier Reef cannot be sustainably managed without managing the adjacent land.

  2. Atlantic reef fish biogeography and evolution

    Science.gov (United States)

    Floeter, S.R.; Rocha, L.A.; Robertson, D.R.; Joyeux, J.C.; Smith-Vaniz, W.F.; Wirtz, P.; Edwards, A.J.; Barreiros, J.P.; Ferreira, C.E.L.; Gasparini, J.L.; Brito, A.; Falcon, J.M.; Bowen, B.W.; Bernardi, G.

    2008-01-01

    Aim: To understand why and when areas of endemism (provinces) of the tropical Atlantic Ocean were formed, how they relate to each other, and what processes have contributed to faunal enrichment. Location: Atlantic Ocean. Methods: The distributions of 2605 species of reef fishes were compiled for 25 areas of the Atlantic and southern Africa. Maximum-parsimony and distance analyses were employed to investigate biogeographical relationships among those areas. A collection of 26 phylogenies of various Atlantic reef fish taxa was used to assess patterns of origin and diversification relative to evolutionary scenarios based on spatio-temporal sequences of species splitting produced by geological and palaeoceanographic events. We present data on faunal (species and genera) richness, endemism patterns, diversity buildup (i.e. speciation processes), and evaluate the operation of the main biogeographical barriers and/or filters. Results: Phylogenetic (proportion of sister species) and distributional (number of shared species) patterns are generally concordant with recognized biogeographical provinces in the Atlantic. The highly uneven distribution of species in certain genera appears to be related to their origin, with highest species richness in areas with the greatest phylogenetic depth. Diversity buildup in Atlantic reef fishes involved (1) diversification within each province, (2) isolation as a result of biogeographical barriers, and (3) stochastic accretion by means of dispersal between provinces. The timing of divergence events is not concordant among taxonomic groups. The three soft (non-terrestrial) inter-regional barriers (mid-Atlantic, Amazon, and Benguela) clearly act as 'filters' by restricting dispersal but at the same time allowing occasional crossings that apparently lead to the establishment of new populations and species. Fluctuations in the effectiveness of the filters, combined with ecological differences among provinces, apparently provide a mechanism

  3. New records of Cotylea (Polycladida, Platyhelminthes) from Lizard Island, Great Barrier Reef, Australia, with remarks on the distribution of the Pseudoceros Lang, 1884 and Pseudobiceros Faubel, 1984 species of the Indo-Pacific Marine Region.

    Science.gov (United States)

    Marquina, Daniel; Aguado, M Teresa; Noreña, Carolina

    2015-09-18

    In the present work eleven polyclad species of Lizard Island are studied. Seven of them are new records for this locality of the Australian coral reef and one is new to science, Lurymare clavocapitata n. sp. (Family Prosthiostomidae). The remaining recorded species belong to the genera Pseudoceros (P. bimarginatus, P. jebborum, P. stimpsoni, P. zebra, P. paralaticlavus and P. prudhoei) and Pseudobiceros (Pb. hancockanus, Pb. hymanae, Pb. flowersi and Pb. uniarborensis). Regardless of the different distribution patterns, all pseudocerotid species show brilliant colours, but similar internal morphology. Furthermore, differences in the form and size of the stylet are characteristic, because it is a sclerotic structure that is not affected during fixation. In Pseudoceros, the distance between the sucker and the female pore also differs among species. These features do not vary enough to be considered as diagnostic, but they provide information that can help to disentangle similarly coloured species complexes. A key of the genera Pseudoceros and Pseudobiceros of the Indo-Pacific region is provided, in order to facilitate the identification of species from this area.

  4. Testing new approaches to carbonate system simulation at the reef scale: the ReefSam model first results, application to a question in reef morphology and future challenges.

    Science.gov (United States)

    Barrett, Samuel; Webster, Jody

    2016-04-01

    morphology and development are compared with observational data. Despite being a test-bed and work in progress, ReefSAM was able to simulate the Holocene development of One Tree Reef in the Southern Great Barrier Reef (Australia) and was able to improve upon previous modelling attempts in terms of both quantitative measures and qualitative outputs, such as the presence of previously un-simulated reef features. Given the success of the model in simulating the Holocene development of OTR, we used it to quantitatively explore the effect of basement substrate depth and morphology on reef maturity/lagoonal filling (as discussed by Purdy and Gischer 2005). Initial results show a number of non-linear relationships between basement substrate depth, lagoonal filling and volume of sand produced on the reef rims and deposited in the lagoon. Lastly, further testing of the model has revealed new challenges which are likely to manifest in any attempt at reef-scale simulation. Subtly different sets of energy direction and magnitude input parameters (different in each time step but with identical probability distributions across the entire model run) resulted in a wide range of quantitative model outputs. Time step length is a likely contributing factor and the results of further testing to address this challenge will be presented.

  5. The "real world" barriers and solutions to Candida vaccine patent prosecutions: an analysis of U.S. Patent and Trademark Office actions on related applications.

    Science.gov (United States)

    Wang, Shyh-Jen

    2012-10-01

    The US Patent and Trademark Office (USPTO) adopts recent patent courts' opinions (such as KSR In re Fisher and Ariad v. Lilly) in patent examinations, which would certainly create barriers to biotech patent prosecution. To identify the barriers to Candida vaccine patent prosecution, we analyzed 99 US-granted patents from January 2001 to May 2012 related to Candida vaccines. The rejections were based on factors that included obviousness, novelty, indefiniteness, double patenting, enablement, written description and utility. Based on this investigation, we find that some of these rejections were actually avoidable, and then further provide workable solutions to avoid some of the barriers, especially those related to patentability. These principles recited in this study should also be applicable to other fields of vaccines and immunotherapeutics. PMID:22894949

  6. Long-term movement patterns of a coral reef predator

    Science.gov (United States)

    Heupel, M. R.; Simpfendorfer, C. A.

    2015-06-01

    Long-term monitoring is required to fully define periodicity and patterns in animal movement. This is particularly relevant for defining what factors are driving the presence, location, and movements of individuals. The long-term movement and space use patterns of grey reef sharks, Carcharhinus amblyrhynchos, were examined on a whole of reef scale in the southern Great Barrier Reef to define whether movement and activity space varied through time. Twenty-nine C. amblyrhynchos were tracked for over 2 years to define movement patterns. All individuals showed high residency within the study site, but also had high roaming indices. This indicated that individuals remained in the region and used all of the monitored habitat (i.e., the entire reef perimeter). Use of space was consistent through time with high reuse of areas most of the year. Therefore, individuals maintained discrete home ranges, but undertook broader movements around the reef at times. Mature males showed greatest variation in movement with larger activity spaces and movement into new regions during the mating season (August-September). Depth use patterns also differed, suggesting behaviour or resource requirements varied between sexes. Examination of the long-term, reef-scale movements of C. amblyrhynchos has revealed that reproductive activity may play a key role in space use and activity patterns. It was unclear whether mating behaviour or an increased need for food to sustain reproductive activity and development played a greater role in these patterns. Reef shark movement patterns are becoming more clearly defined, but research is still required to fully understand the biological drivers for the observed patterns.

  7. Scleractinian settlement patterns to natural cleared reef substrata and artificial settlement panels on an Indonesian coral reef

    Science.gov (United States)

    Salinas-de-León, Pelayo; Costales-Carrera, Alba; Zeljkovic, Stephen; Smith, David J.; Bell, James J.

    2011-05-01

    Recruitment is a key factor driving the population dynamics of scleractinian corals, but despite its importance, we still have a poor understanding of recruitment processes in the Coral triangle region, which contains the most biodiverse marine ecosystems in the world. This study aimed to compare settlement rates to artificial settlement panels with cleared areas of natural reef in order to assess whether panels are a suitable indicator of natural coral settlement rates. We recorded coral settlement rates to panels made of two different materials (concrete and terracotta), attached to the reef at two different orientations (vertical and horizontal), and compared these settlement rates to those on cleared areas of natural reef positioned on vertical reef walls, over a 12 month period. We examined settlement rates at four sites in the Wakatobi National Marine Park, south-east Sulawesi, Indonesia; two reefs were light-limited, highly sedimented sites with low coral cover (coral cover (approx. 40%) and lower sedimentation rates. Panels were directly attached to the reef at 6-7 m depth. The number of coral spat per tile ranged from 0 to 34 and no significant differences were reported between the settlement rates to cleared natural reef areas and settlement panels. Significantly higher numbers of spat settled on the cryptic (back) side of the panels, while no significant difference was found between settlement rates to the different panel materials, or between the different orientations or any combination of these two factors. There is, however, a significant difference in the settlement rates between sites, for both settlement panels and permanent cleared areas, with higher settlement rates at the sites with higher live coral cover. We conclude that both concrete and terracotta panels yield similar settlement rates, and orientation makes no difference to settlement rates when panels are directly attached to the reef. Our results demonstrate that artificial substrata

  8. Among-habitat algal selectivity by browsing herbivores on an inshore coral reef

    Science.gov (United States)

    Loffler, Zoe; Bellwood, David R.; Hoey, Andrew S.

    2015-06-01

    Understanding how the impact of different herbivores varies spatially on coral reefs is important in qualifying the resistance of coral reefs to disturbance events and identifying the processes that structure algal communities. We used assays of six common macroalgae ( Acanthophora spicifera, Caulerpa taxifolia, Galaxaura rugosa, Laurencia sp. Sargassum sp., and Turbinaria ornata) and remote underwater video cameras to quantify herbivory in two habitats (reef crest and slope) across multiple sites on Orpheus Island, Great Barrier Reef. Rates of herbivory varied among macroalgal taxa, habitats, and sites. Reductions in algal biomass were greatest for Sargassum sp. (36 % 4 h-1), intermediate for A. spicifera, Laurencia sp., C. taxifolia, and T. ornata (17-33 % 4 h-1) and lowest for G. rugosa (6 % 4 h-1). Overall, rates of herbivory were generally greater on the reef crest (30 % 4 h-1) than the reef slope (21 % 4 h-1). This difference in rates of herbivory coincided with a marked shift in the dominant herbivores between habitats. Kyphosus vaigiensis, despite only feeding on three species of macroalgae ( Sargassum sp., T. ornata, and A. spicifera), was responsible for 34 % of all bites recorded on the reef crest yet did not take a single bite from algae on the reef slope. In contrast, Siganus doliatus took bites on every species of algae in both habitats, accounting for 40 % of bites on the reef crest and 74 % of all bites recorded on the reef slope. This difference in the number of macroalgal species targeted by herbivores and the habitat/s in which they feed adds another dimension of complexity to our understanding of coral reef herbivore dynamics.

  9. Spatial and seasonal reef calcification in corals and calcareous crusts in the central Red Sea

    KAUST Repository

    Roik, Anna

    2015-12-14

    The existence of coral reef ecosystems critically relies on the reef carbonate framework produced by scleractinian corals and calcareous crusts (i.e., crustose coralline algae). While the Red Sea harbors one of the longest connected reef systems in the world, detailed calcification data are only available from the northernmost part. To fill this knowledge gap, we measured in situ calcification rates of primary and secondary reef builders in the central Red Sea. We collected data on the major habitat-forming coral genera Porites, Acropora, and Pocillopora and also on calcareous crusts (CC) in a spatio-seasonal framework. The scope of the study comprised sheltered and exposed sites of three reefs along a cross-shelf gradient and over four seasons of the year. Calcification of all coral genera was consistent across the shelf and highest in spring. In addition, Pocillopora showed increased calcification at exposed reef sites. In contrast, CC calcification increased from nearshore, sheltered to offshore, exposed reef sites, but also varied over seasons. Comparing our data to other reef locations, calcification in the Red Sea was in the range of data collected from reefs in the Caribbean and Indo-Pacific; however, Acropora calcification estimates were at the lower end of worldwide rates. Our study shows that the increasing coral cover from nearshore to offshore environments aligned with CC calcification but not coral calcification, highlighting the potentially important role of CC in structuring reef cover and habitats. While coral calcification maxima have been typically observed during summer in many reef locations worldwide, calcification maxima during spring in the central Red Sea indicate that summer temperatures exceed the optima of reef calcifiers in this region. This study provides a foundation for comparative efforts and sets a baseline to quantify impact of future environmental change in the central Red Sea.

  10. Spatial and seasonal reef calcification in corals and calcareous crusts in the central Red Sea

    Science.gov (United States)

    Roik, Anna; Roder, Cornelia; Röthig, Till; Voolstra, Christian R.

    2016-06-01

    The existence of coral reef ecosystems critically relies on the reef carbonate framework produced by scleractinian corals and calcareous crusts (i.e., crustose coralline algae). While the Red Sea harbors one of the longest connected reef systems in the world, detailed calcification data are only available from the northernmost part. To fill this knowledge gap, we measured in situ calcification rates of primary and secondary reef builders in the central Red Sea. We collected data on the major habitat-forming coral genera Porites, Acropora, and Pocillopora and also on calcareous crusts (CC) in a spatio-seasonal framework. The scope of the study comprised sheltered and exposed sites of three reefs along a cross-shelf gradient and over four seasons of the year. Calcification of all coral genera was consistent across the shelf and highest in spring. In addition, Pocillopora showed increased calcification at exposed reef sites. In contrast, CC calcification increased from nearshore, sheltered to offshore, exposed reef sites, but also varied over seasons. Comparing our data to other reef locations, calcification in the Red Sea was in the range of data collected from reefs in the Caribbean and Indo-Pacific; however, Acropora calcification estimates were at the lower end of worldwide rates. Our study shows that the increasing coral cover from nearshore to offshore environments aligned with CC calcification but not coral calcification, highlighting the potentially important role of CC in structuring reef cover and habitats. While coral calcification maxima have been typically observed during summer in many reef locations worldwide, calcification maxima during spring in the central Red Sea indicate that summer temperatures exceed the optima of reef calcifiers in this region. This study provides a foundation for comparative efforts and sets a baseline to quantify impact of future environmental change in the central Red Sea.

  11. Field observations of wave-driven water-level gradients across a coral reef flat

    Science.gov (United States)

    Jago, O. K.; Kench, P. S.; Brander, R. W.

    2007-06-01

    Field measurements of still water surface elevations were obtained across a narrow leeward reef flat on Lady Elliot Island, Great Barrier Reef, Australia in June 2003. Stilling wells were deployed from the reef crest landward to the island beach, and waves and mean water levels were monitored over both rising and falling tides during low to moderate wave energy conditions. Wave setup of up to 13.8 cm above still water level occurred in the presence of incident waves of 0.4 m yielding maximum water surface slopes greater than 6°. Results show that the magnitude of wave setup varies both temporally and spatially across the reef with changing water depth. Setup is dominant on the reef edge at low tide, evolving into a dual setup system at both the reef edge and shoreline at midtide and finally a dominant shoreline setup at high tide. On Lady Elliot Island the dual setup system is considered to result from spatial differences in transformation and breaking of swell and wind waves at midtide stages. The presence of a dual setup system across a reef flat has not been previously identified in field or modeling studies and has potentially significant implications for reefal current development, sediment transport, and the stability of reef island shorelines.

  12. Connectivity in grey reef sharks (Carcharhinus amblyrhynchos) determined using empirical and simulated genetic data.

    Science.gov (United States)

    Momigliano, Paolo; Harcourt, Robert; Robbins, William D; Stow, Adam

    2015-01-01

    Grey reef sharks (Carcharhinus amblyrhynchos) can be one of the numerically dominant high order predators on pristine coral reefs, yet their numbers have declined even in the highly regulated Australian Great Barrier Reef (GBR) Marine Park. Knowledge of both large scale and fine scale genetic connectivity of grey reef sharks is essential for their effective management, but no genetic data are yet available. We investigated grey reef shark genetic structure in the GBR across a 1200 km latitudinal gradient, comparing empirical data with models simulating different levels of migration. The empirical data did not reveal any genetic structuring along the entire latitudinal gradient sampled, suggesting regular widespread dispersal and gene flow of the species throughout most of the GBR. Our simulated datasets indicate that even with substantial migrations (up to 25% of individuals migrating between neighboring reefs) both large scale genetic structure and genotypic spatial autocorrelation at the reef scale were maintained. We suggest that present migration rates therefore exceed this level. These findings have important implications regarding the effectiveness of networks of spatially discontinuous Marine Protected Areas to protect reef sharks. PMID:26314287

  13. The role of coral reef rugosity in dissipating wave energy and coastal protection

    Science.gov (United States)

    Harris, Daniel; Rovere, Alessio; Parravicini, Valeriano; Casella, Elisa

    2016-04-01

    Coral reefs are the most effective natural barrier in dissipating wave energy through breaking and bed friction. The attenuation of wave energy by coral reef flats is essential in the protection and stability of coral reef aligned coasts and reef islands. However, the effectiveness of wave energy dissipation by coral reefs may be diminished under future climate change scenarios with a potential reduction of coral reef rugosity due to increased stress environmental stress on corals. The physical roughness or rugosity of coral reefs is directly related to ecological diversity, reef health, and hydrodynamic roughness. However, the relationship between physical roughness and hydrodynamic roughness is not well understood despite the crucial role of bed friction in dissipating wave energy in coral reef aligned coasts. We examine the relationship between wave energy dissipation across a fringing reef in relation to the cross-reef ecological zonation and the benthic hydrodynamic roughness. Waves were measured by pressure transducers in a cross-reef transect on the reefs flats and post processed on a wave by wave basis to determine wave statistics such as significant wave height and wave period. Results from direct wave measurement were then used to calibrate a 1D wave dissipation model that incorporates dissipation functions due to bed friction and wave breaking. This model was used to assess the bed roughness required to produce the observed wave height dissipation during propagation from deep water and across the coral reef flats. Changes in wave dissipation was also examined under future scenarios of sea level rise and reduced bed roughness. Three dimensional models of the benthic reef structure were produced through structure-from-motion photogrammetry surveys. Reef rugosity was then determined from these surveys and related to the roughness results from the calibrated model. The results indicate that applying varying roughness coefficients as the benthic ecological

  14. Wave transformation over coral reefs

    Science.gov (United States)

    Young, Ian R.

    1989-07-01

    Ocean wave attenuation on coral reefs is discussed using data obtained from a preliminary field experiment and from the Seasat altimeter. Marked attenuation of the waves is observed, the rate being consistent with existing theories of bottom friction and wave breaking decay. In addition, there is a significant broadening of the spectrum during propagation across reefs. Three-dimensional effects, such as refraction and defraction, can also lead to substantial wave height reduction for significant distances adjacent to coral reefs. As a result, a matrix of such reefs provides significantly more wave attenuation than may initially be expected.

  15. Global warming and coral reefs

    Digital Repository Service at National Institute of Oceanography (India)

    Wafar, M.V.M.

    warming up on the coral reefs of India. The latter is more pertinent, since Indian reefs not only hold a potential for commercial resources (potential fish yield alone from Indian reefs is equivalent to 10% of total annual m "rine fish production in India... in ocean current patterns. Its likelihood is uncertain, but in the event it happens, the conse quence, with respect to adult corals, will be an en hanced mortality if cooler or more warmer waters are advected onto a reef. Changing current patterns would...

  16. Biological impacts of oil pollution: coral reefs. V. 3

    International Nuclear Information System (INIS)

    Coral reefs are the largest structures made by living things and exist as extremely productive ecosystems in tropical and sub-tropical areas of the world. Their location in nearshore waters means that there is a po