WorldWideScience

Sample records for barrier reef sponge

  1. Patterns in the distribution of sponge populations across the central Great Barrier Reef

    Science.gov (United States)

    Wilkinson, Clive R.; Cheshire, Anthony C.

    1989-12-01

    Coral reef sponge populations were surveyed at two spatial scales: different depths and different reef locations across the continental shelf of the central Great Barrier Reef. The surveys were conducted on the forereef slopes of 12 reefs from land-influenced, inner-shelf reefs to those in the oligotrophic waters of the Coral Sea. Few sponges occur in shallow waters and the largest populations are found between 10 and 30 m depth. Sponges are apparently excluded from shallow waters because of excessive turbulence and possibly by high levels of damaging light. Sponge biomass is highest on the innershelf reefs and decreases away from the coast, whereas abundance is generally higher on middle-shelf reefs. There are considerable overlaps in the species composition on middle-, outer-shelf and Coral Sea reefs, but those on inner-shelf reefs are significantly different. The nature and size of sponge populations reflect environmental conditions across the continental shelf. The larger inner-shelf populations probably reflect higher levels of organic and inorganic nutrients and reduced amounts of physical turbulence, whereas sponges on reefs further from shore may be able to resist greater turbulence but appear more sensitive to the effects of fine sediments. These latter populations are smaller, reflecting the reduced availability of organic matter, however, many of these sponges rely on cyanobacterial symbionts to augment nutrition in these clearer, more oligotrophic waters.

  2. The role of sponges in the Mesoamerican Barrier-Reef Ecosystem, Belize.

    Science.gov (United States)

    Rützler, Klaus

    2012-01-01

    Over the past four decades, sponge research has advanced by leaps and bounds through endeavours such as the Caribbean Coral Reef Ecosystems (CCRE) programme at the U.S. National Museum of Natural History in Washington, D.C. Since its founding in the early 1970s, the programme has been dedicated to a detailed multidisciplinary study of a section of the Mesoamerican Barrier Reef, the Atlantic's largest reef complex, and has generated data far beyond the capability of lone investigators and brief expeditions. This reef complex extends 250 km southward from Yucatan, Mexico, into the Gulf of Honduras, most of it lying 20-40 km off the coast of Belize. A relatively unspoiled ecosystem, it features a great variety of habitats in close proximity, ranging from mangrove islands, seagrass meadows, and patch reefs in its lagoon to the barrier reef along the margin of the continental shelf. Among its varied macrobenthos, sponges stand out for their ubiquity, range of colours, rich species and biomass, and ecological importance; they populate rocky substrates, some sandy bottoms, and the subtidal stilt roots and peat banks of mangroves. Working from a field station established in 1972 on Carrie Bow Cay, a sand islet atop the reef off southern Belize, experts in numerous disciplines from both the Museum and academic institutions throughout the world have explored the area's biodiversity in the broadest sense and community development over time. At last count, 113 researchers (88 working on site) have focused on the biological and geological role of Porifera in Carrie Bow's reef communities, with the results reported in 125 scientific papers to date. The majority of these sponge studies have centred on systematics and faunistics, including quantitative distribution among the various habitats. Taxonomic approaches have ranged from basic morphology to fine structure, DNA barcoding, and ecological manipulations and culminated in a mini-workshop involving several experts on Caribbean

  3. Diversity of sponges (Porifera) from cryptic habitats on the Belize barrier reef near Carrie Bow Cay.

    Science.gov (United States)

    Rützler, Klaus; Piantoni, Carla; Van Soest, Rob W M; Díaz, M Cristina

    2014-05-29

    The Caribbean barrier reef near Carrie Bow Cay, Belize, has been a focus of Smithsonian Institution (Washington) reef and mangrove investigations since the early 1970s. Systematics and biology of sponges (Porifera) were addressed by several researchers but none of the studies dealt with cryptic habitats, such as the shaded undersides of coral rubble, reef crevices, and caves, although a high species diversity was recognized and samples were taken for future reference and study. This paper is the result of processing samples taken between 1972 and 2012. In all, 122 species were identified, 14 of them new (including one new genus). The new species are Tetralophophora (new genus) mesoamericana, Geodia cribrata, Placospongia caribica, Prosuberites carriebowensis, Timea diplasterina, Timea oxyasterina, Rhaphidhistia belizensis, Wigginsia curlewensis, Phorbas aurantiacus, Myrmekioderma laminatum, Niphates arenata, Siphonodictyon occultum, Xestospongia purpurea, and Aplysina sciophila. We determined that about 75 of the 122 cryptic sponge species studied (61%) are exclusive members of the sciophilic community, 47 (39 %) occur in both, light-exposed and shaded or dark habitats. Since we estimate the previously known sponge population of Carrie Bow reefs and mangroves at about 200 species, the cryptic fauna makes up 38 % of total diversity.

  4. Phylogenetic diversity and community structure of the symbionts associated with the coralline sponge Astrosclera willeyana of the Great Barrier Reef.

    Science.gov (United States)

    Karlińska-Batres, Klementyna; Wörheide, Gert

    2013-04-01

    The coralline sponge Astrosclera willeyana, considered to be a living representative of the reef-building stromatoporoids of the Mesozoic and the Paleozoic periods, occurs widely throughout the Indo-Pacific oceans. We aimed to examine, for the first time, the phylogenetic diversity of the microbial symbionts associated with A. willeyana using molecular methods and to investigate the spatial variability in the sponge-derived microbial communities of A. willeyana from diverse sites along the Great Barrier Reef (GBR). Both denaturing gradient gel electrophoresis (DGGE) analyses of 12 Astrosclera specimens and sequencing of a 16S rRNA gene clone library, constructed using a specimen of A. willeyana from the Yonge Reef (380 clones), revealed the presence of a complex microbial community with high diversity. An assessment of the 16S rRNA gene sequences to the particular phylogenetic groups showed domination of the Chloroflexi (42 %), followed by the Gammaproteobacteria (14 %), Actinobacteria (11 %), Acidobacteria (8 %), and the Deferribacteres (7 %). Of the microbes that were identified, a further 15 % belonged to the Deltaproteobacteria, Alphaproteobacteria, and Nitrospirae genera. The minor phylogenetic groups Gemmatimonadetes, Spirochaetes, Cyanobacteria, Poribacteria, and the Archaea composed 3 % of the community. Over 94 % of the sequences obtained from A. willeyana grouped together with other sponge- or coral-derived sequences, and of these, 72 % formed, with nearest relatives, 46 sponge-specific or sponge-coral clusters, highlighting the uniqueness of the microbial consortia in sponges. The DGGE results showed clear divisions according to the geographical origin of the samples, indicating closer relationships between the microbial communities with respect to their geographic origin (northern vs. southern GBR).

  5. Reproductive biology of three sponge species of the genus Xestospongia (Porifera: Demospongiae: Petrosida) from the Great Barrier Reef

    Science.gov (United States)

    Fromont, J.; Bergquist, P. R.

    1994-05-01

    The reproductive development of three species of the Petrosida, Xestospongia bergquistia, X. exigua, and X. testudinaria, was monitored for four years on a fringing reef at Orpheus Island, Great Barrier Reef, Australia. All three species were oviparous and female reproductive activity began prior to males becoming active. X. bergquistia and X. testudinaria were gonochoric and broadcast eggs in spawning events that were synchronous within species. Egg development occurred over more than five months in X. bergquistia and X. testudinaria and two months in X. exigua. Spawning was during periods of warm temperature and occurred in October or November for X. bergquistia and X. testudinaria, and January or February for X. exigua. Lunar phase was implicated in timing of spawning of X. testudinaria. Diel timing of spawning in X. testudinaria and X. bergquistia was consistently a morning event.

  6. Purification and characterization of a collagenolytic enzyme from a pathogen of the great barrier reef sponge, Rhopaloeides odorabile.

    Directory of Open Access Journals (Sweden)

    Joydeep Mukherjee

    Full Text Available BACKGROUND: In recent years there has been a global increase in reports of disease affecting marine sponges. While disease outbreaks have the potential to seriously impact on the survival of sponge populations, the ecology of the marine environment and the health of associated invertebrates, our understanding of sponge disease is extremely limited. METHODOLOGY/PRINCIPAL FINDINGS: A collagenolytic enzyme suspected to enhance pathogenicity of bacterial strain NW4327 against the sponge Rhopaloeides odorabile was purified using combinations of size exclusion and anion exchange chromatography. After achieving a 77-fold increase in specific activity, continued purification decreased the yield to 21-fold with 7.2% recovery (specific activity 2575 collagen degrading units mg(-1protein possibly due to removal of co-factors. SDS-PAGE of the partially pure enzyme showed two proteins weighing approximately 116 and 45 kDa with the heavier band being similar to reported molecular weights of collagenases from Clostridium and marine Vibrios. The enzyme degraded tissue fibres of several sponge genera suggesting that NW4327 could be deleterious to other sponge species. Activity towards casein and bird feather keratin indicates that the partially purified collagenase is either a non-selective protease able to digest collagen or is contaminated with non-specific proteases. Enzyme activity was highest at pH 5 (the internal pH of R. odorabile and 30 degrees C (the average ambient seawater temperature. Activity under partially anaerobic conditions also supports the role of this enzyme in the degradation of the spongin tissue. Cultivation of NW4327 in the presence of collagen increased production of collagenase by 30%. Enhanced enzyme activity when NW4327 was cultivated in media formulated in sterile natural seawater indicates the presence of other factors that influence enzyme synthesis. CONCLUSIONS/SIGNIFICANCE: Several aspects of the sponge disease etiology were

  7. Oxygen consumption by a coral reef sponge.

    Science.gov (United States)

    Hadas, Eran; Ilan, Micha; Shpigel, Muki

    2008-07-01

    Oxygen consumption of the Red Sea coral reef sponge Negombata magnifica was measured using both incubation and steady-state methods. The latter method was found to be the more reliable because sponge activity remained stable over time. Oxygen consumption rate was measured during three levels of sponge activity: full activity, reduced activity and basal activity (starved). It was found that the active oxygen consumption rate of N. magnifica averaged 37.3+/-4.6 nmol O2 min(-1) g(-1) wet mass, which is within the upper range reported for other tropical marine sponges. Fully active N. magnifica individuals consumed an average of 41.8+/-3.2 nmol O2 min(-1) g(-1) wet mass. The mean basal respiration rate was 20.2+/-1.2 nmol O2 min(-1) g(-1) wet mass, which is 51.6+/-2.5% of the active respiration rate. Therefore, the oxygen used for water pumping was calculated to be at most 10.6+/-1.8 nmol O2 min(-1) g(-1) wet mass, which is 25.1+/-3.6% of the total respiration. Combined oxygen used for maintenance and water pumping activity was calculated to be 30.8 nmol O2 min(-1) g(-1) wet mass, which is approximately 74% of the sponge's total oxygen requirement. The remaining oxygen is directed to other physiological activities, mainly the energy requirement of growth. These findings suggest that only a relatively minor amount of energy is potentially available for growth, and thus might be a factor in controlling the growth rate of N. magnifica in oligotrophic coral reefs.

  8. Indirect effects of overfishing on Caribbean reefs: sponges overgrow reef-building corals.

    Science.gov (United States)

    Loh, Tse-Lynn; McMurray, Steven E; Henkel, Timothy P; Vicente, Jan; Pawlik, Joseph R

    2015-01-01

    Consumer-mediated indirect effects at the community level are difficult to demonstrate empirically. Here, we show an explicit indirect effect of overfishing on competition between sponges and reef-building corals from surveys of 69 sites across the Caribbean. Leveraging the large-scale, long-term removal of sponge predators, we selected overfished sites where intensive methods, primarily fish-trapping, have been employed for decades or more, and compared them to sites in remote or marine protected areas (MPAs) with variable levels of enforcement. Sponge-eating fishes (angelfishes and parrotfishes) were counted at each site, and the benthos surveyed, with coral colonies scored for interaction with sponges. Overfished sites had >3 fold more overgrowth of corals by sponges, and mean coral contact with sponges was 25.6%, compared with 12.0% at less-fished sites. Greater contact with corals by sponges at overfished sites was mostly by sponge species palatable to sponge predators. Palatable species have faster rates of growth or reproduction than defended sponge species, which instead make metabolically expensive chemical defenses. These results validate the top-down conceptual model of sponge community ecology for Caribbean reefs, as well as provide an unambiguous justification for MPAs to protect threatened reef-building corals. An unanticipated outcome of the benthic survey component of this study was that overfished sites had lower mean macroalgal cover (23.1% vs. 38.1% for less-fished sites), a result that is contrary to prevailing assumptions about seaweed control by herbivorous fishes. Because we did not quantify herbivores for this study, we interpret this result with caution, but suggest that additional large-scale studies comparing intensively overfished and MPA sites are warranted to examine the relative impacts of herbivorous fishes and urchins on Caribbean reefs.

  9. Indirect effects of overfishing on Caribbean reefs: sponges overgrow reef-building corals

    Directory of Open Access Journals (Sweden)

    Tse-Lynn Loh

    2015-04-01

    Full Text Available Consumer-mediated indirect effects at the community level are difficult to demonstrate empirically. Here, we show an explicit indirect effect of overfishing on competition between sponges and reef-building corals from surveys of 69 sites across the Caribbean. Leveraging the large-scale, long-term removal of sponge predators, we selected overfished sites where intensive methods, primarily fish-trapping, have been employed for decades or more, and compared them to sites in remote or marine protected areas (MPAs with variable levels of enforcement. Sponge-eating fishes (angelfishes and parrotfishes were counted at each site, and the benthos surveyed, with coral colonies scored for interaction with sponges. Overfished sites had >3 fold more overgrowth of corals by sponges, and mean coral contact with sponges was 25.6%, compared with 12.0% at less-fished sites. Greater contact with corals by sponges at overfished sites was mostly by sponge species palatable to sponge predators. Palatable species have faster rates of growth or reproduction than defended sponge species, which instead make metabolically expensive chemical defenses. These results validate the top-down conceptual model of sponge community ecology for Caribbean reefs, as well as provide an unambiguous justification for MPAs to protect threatened reef-building corals.An unanticipated outcome of the benthic survey component of this study was that overfished sites had lower mean macroalgal cover (23.1% vs. 38.1% for less-fished sites, a result that is contrary to prevailing assumptions about seaweed control by herbivorous fishes. Because we did not quantify herbivores for this study, we interpret this result with caution, but suggest that additional large-scale studies comparing intensively overfished and MPA sites are warranted to examine the relative impacts of herbivorous fishes and urchins on Caribbean reefs.

  10. Sponge diversity and community composition in Irish bathyal coral reefs

    NARCIS (Netherlands)

    Soest, van R.W.M; Cleary, D.F.R.; Kluijver, de M.J.; Lavaleye, M.S.S.; Maier, C.; Duy, van F.C.

    2007-01-01

    Sponge diversity and community composition in bathyal cold water coral reefs (CWRs) were examined at 500-900 m depth on the southeastern slopes of Rockall Bank and the northwestern slope of Porcupine Bank, to the west of Ireland in 2004 and 2005 with boxcores. A total of 104 boxcore samples, supplem

  11. Coral mucus fuels the sponge loop in warm- and cold-water coral reef ecosystems.

    Science.gov (United States)

    Rix, Laura; de Goeij, Jasper M; Mueller, Christina E; Struck, Ulrich; Middelburg, Jack J; van Duyl, Fleur C; Al-Horani, Fuad A; Wild, Christian; Naumann, Malik S; van Oevelen, Dick

    2016-01-07

    Shallow warm-water and deep-sea cold-water corals engineer the coral reef framework and fertilize reef communities by releasing coral mucus, a source of reef dissolved organic matter (DOM). By transforming DOM into particulate detritus, sponges play a key role in transferring the energy and nutrients in DOM to higher trophic levels on Caribbean reefs via the so-called sponge loop. Coral mucus may be a major DOM source for the sponge loop, but mucus uptake by sponges has not been demonstrated. Here we used laboratory stable isotope tracer experiments to show the transfer of coral mucus into the bulk tissue and phospholipid fatty acids of the warm-water sponge Mycale fistulifera and cold-water sponge Hymedesmia coriacea, demonstrating a direct trophic link between corals and reef sponges. Furthermore, 21-40% of the mucus carbon and 32-39% of the nitrogen assimilated by the sponges was subsequently released as detritus, confirming a sponge loop on Red Sea warm-water and north Atlantic cold-water coral reefs. The presence of a sponge loop in two vastly different reef environments suggests it is a ubiquitous feature of reef ecosystems contributing to the high biogeochemical cycling that may enable coral reefs to thrive in nutrient-limited (warm-water) and energy-limited (cold-water) environments.

  12. Recruitment Variability of Coral Reef Sessile Communities of the Far North Great Barrier Reef.

    Science.gov (United States)

    Luter, Heidi M; Duckworth, Alan R; Wolff, Carsten W; Evans-Illidge, Elizabeth; Whalan, Steve

    2016-01-01

    One of the key components in assessing marine sessile organism demography is determining recruitment patterns to benthic habitats. An analysis of serially deployed recruitment tiles across depth (6 and 12 m), seasons (summer and winter) and space (meters to kilometres) was used to quantify recruitment assemblage structure (abundance and percent cover) of corals, sponges, ascidians, algae and other sessile organisms from the northern sector of the Great Barrier Reef (GBR). Polychaetes were most abundant on recruitment titles, reaching almost 50% of total recruitment, yet covered reefs.

  13. Biocalcification processes in three coralline sponges from the Lizard Island Section (Great Barrier Reef, Australia): The Stromatoporoid Astrosclera, the Chaetetid Spirastrella (Acanthochaetetes) and the Sphinctozoid Vaceletia (Demospongiae)

    OpenAIRE

    Wörheide, Gert; Reitner, Joachim; Gautret, Pascale

    1996-01-01

    The main biocalcification events in the phylogenetically distinct taxa Astrosc/era, S. (Acanthochaetetes) and Vace/ etia are described. Each taxon constructs its secondary calcareous skeleton in its own highly specialized way and provides therefore insight in the biocalcification processes of ancient reef constructors like stromatoporoids, chaetetids, and sphinctozoans.

  14. The Pathogen of the Great Barrier Reef Sponge Rhopaloeides odorabile Is a New Strain of Pseudoalteromonas agarivorans Containing Abundant and Diverse Virulence-Related Genes.

    Science.gov (United States)

    Choudhury, Jayanta D; Pramanik, Arnab; Webster, Nicole S; Llewellyn, Lyndon E; Gachhui, Ratan; Mukherjee, Joydeep

    2015-08-01

    Sponge diseases have increased dramatically, yet the causative agents of disease outbreaks have eluded identification. We undertook a polyphasic taxonomic analysis of the only confirmed sponge pathogen and identified it as a novel strain of Pseudoalteromonas agarivorans. 16S ribosomal RNA (rRNA) and gyraseB (gyrB) gene sequences along with phenotypic characteristics demonstrated that strain NW4327 was most closely related to P. agarivorans. DNA-DNA hybridization and in silico genome comparisons established NW4327 as a novel strain of P. agarivorans. Genes associated with type IV pili, mannose-sensitive hemagglutinin pili, and curli formation were identified in NW4327. One gene cluster encoding ATP-binding cassette (ABC) transporter, HlyD and TolC, and two clusters related to the general secretion pathway indicated the presence of type I secretion system (T1SS) and type II secretion system (T2SS), respectively. A contiguous gene cluster of at least 19 genes related to type VI secretion system (T6SS) which included all 13 core genes was found. The absence of T1SS and T6SS in nonpathogenic P. agarivorans S816 established NW4327 as the virulent strain. Serine proteases and metalloproteases of the classes S8, S9, M4, M6, M48, and U32 were identified in NW4327, many of which can degrade collagen. Collagenase activity in NW4327 and its absence in the nonpathogenic P. agarivorans KMM 255(T) reinforced the invasiveness of NW4327. This is the first report unambiguously identifying a sponge pathogen and providing the first insights into the virulence genes present in any pathogenic Pseudoalteromonas genome. The investigation supports a theoretical study predicting high abundance of terrestrial virulence gene homologues in marine bacteria.

  15. Larval behaviours and their contribution to the distribution of the intertidal coral reef sponge Carteriospongia foliascens.

    Directory of Open Access Journals (Sweden)

    Muhammad Azmi Abdul Wahab

    Full Text Available Sponges (Phylum Porifera are an evolutionary and ecologically significant group; however information on processes influencing sponge population distributions is surprisingly limited. Carteriospongia foliascens is a common Indo-Pacific sponge, which has been reported from the intertidal to the mesophotic. Interestingly, the distribution of C. foliascens at inshore reefs of the Great Barrier Reef is restricted to the intertidal with no individuals evident in adjacent subtidal habitats. The abundance of C. foliascens and substrate availability was first quantified to investigate the influence of substrate limitation on adult distribution. Pre-settlement processes of larval spawning, swimming speeds, phototaxis, vertical migration, and settlement to intertidal and subtidal substrate cues were also quantified. Notably, suitable settlement substrate (coral rubble was not limiting in subtidal habitats. C. foliascens released up to 765 brooded larvae sponge(-1 day(-1 during the day, with larvae (80%±5.77 being negatively phototactic and migrating to the bottom within 40 minutes from release. Subsequently, larvae (up to 58.67%±2.91 migrated to the surface after the loss of the daylight cue (nightfall, and after 34 h post-release >98.67% (±0.67 of larvae had adopted a benthic habit regardless of light conditions. Intertidal and subtidal biofilms initiated similar settlement responses, inducing faster (as early 6 h post-release and more successful metamorphosis (>60% than unconditioned surfaces. C. foliascens has a high larval supply and larval behaviours that support recruitment to the subtidal. The absence of C. foliascens in subtidal habitats at inshore reefs is therefore proposed to be a potential consequence of post-settlement mortalities.

  16. Crustose coralline algae and a cnidarian neuropeptide trigger larval settlement in two coral reef sponges.

    Directory of Open Access Journals (Sweden)

    Steve Whalan

    Full Text Available In sessile marine invertebrates, larval settlement is fundamental to population maintenance and persistence. Cues contributing to the settlement choices and metamorphosis of larvae have important implications for the success of individuals and populations, but cues mediating larval settlement for many marine invertebrates are largely unknown. This study assessed larval settlement in two common Great Barrier Reef sponges, Coscinoderma matthewsi and Rhopaloeides odorabile, to cues that enhance settlement and metamorphosis in various species of scleractinian coral larvae. Methanol extracts of the crustose coralline algae (CCA, Porolithon onkodes, corresponding to a range of concentrations, were used to determine the settlement responses of sponge larvae. Cnidarian neuropeptides (GLW-amide neuropeptides were also tested as a settlement cue. Settlement in both sponge species was approximately two-fold higher in response to live chips of CCA and optimum concentrations of CCA extract compared to 0.2 µm filtered sea water controls. Metamorphosis also increased when larvae were exposed to GLW-amide neuropeptides; R. odorabile mean metamorphosis reached 42.0±5.8% compared to 16.0±2.4% in seawater controls and in C. matthewsi mean metamorphosis reached 68.3±5.4% compared to 36.7±3.3% in seawater controls. These results demonstrate the contributing role chemosensory communication plays in the ability of sponge larvae to identify suitable habitat for successful recruitment. It also raises the possibility that larvae from distinct phyla may share signal transduction pathways involved in metamorphosis.

  17. Crustose coralline algae and a cnidarian neuropeptide trigger larval settlement in two coral reef sponges.

    Science.gov (United States)

    Whalan, Steve; Webster, Nicole S; Negri, Andrew P

    2012-01-01

    In sessile marine invertebrates, larval settlement is fundamental to population maintenance and persistence. Cues contributing to the settlement choices and metamorphosis of larvae have important implications for the success of individuals and populations, but cues mediating larval settlement for many marine invertebrates are largely unknown. This study assessed larval settlement in two common Great Barrier Reef sponges, Coscinoderma matthewsi and Rhopaloeides odorabile, to cues that enhance settlement and metamorphosis in various species of scleractinian coral larvae. Methanol extracts of the crustose coralline algae (CCA), Porolithon onkodes, corresponding to a range of concentrations, were used to determine the settlement responses of sponge larvae. Cnidarian neuropeptides (GLW-amide neuropeptides) were also tested as a settlement cue. Settlement in both sponge species was approximately two-fold higher in response to live chips of CCA and optimum concentrations of CCA extract compared to 0.2 µm filtered sea water controls. Metamorphosis also increased when larvae were exposed to GLW-amide neuropeptides; R. odorabile mean metamorphosis reached 42.0±5.8% compared to 16.0±2.4% in seawater controls and in C. matthewsi mean metamorphosis reached 68.3±5.4% compared to 36.7±3.3% in seawater controls. These results demonstrate the contributing role chemosensory communication plays in the ability of sponge larvae to identify suitable habitat for successful recruitment. It also raises the possibility that larvae from distinct phyla may share signal transduction pathways involved in metamorphosis.

  18. Coral mucus fuels the sponge loop in warm- and cold-water coral reef ecosystems

    NARCIS (Netherlands)

    Rix, L.; de Goeij, J.M.; Mueller, C.E.; Struck, U.; Middelburg, J.J.; van Duyl, F.C.; Al-Horani, F.A.; Wild, C.; Naumann, M.S.; Van Oevelen, D.

    2016-01-01

    Shallow warm-water and deep-sea cold-water corals engineer the coral reef framework and fertilize reef communities by releasing coral mucus, a source of reef dissolved organic matter (DOM). By transforming DOM into particulate detritus, sponges play a key role in transferring the energy and nutrient

  19. Recruitment Variability of Coral Reef Sessile Communities of the Far North Great Barrier Reef.

    Directory of Open Access Journals (Sweden)

    Heidi M Luter

    Full Text Available One of the key components in assessing marine sessile organism demography is determining recruitment patterns to benthic habitats. An analysis of serially deployed recruitment tiles across depth (6 and 12 m, seasons (summer and winter and space (meters to kilometres was used to quantify recruitment assemblage structure (abundance and percent cover of corals, sponges, ascidians, algae and other sessile organisms from the northern sector of the Great Barrier Reef (GBR. Polychaetes were most abundant on recruitment titles, reaching almost 50% of total recruitment, yet covered <5% of each tile. In contrast, mean abundances of sponges, ascidians, algae, and bryozoans combined was generally less than 20% of total recruitment, with percentage cover ranging between 15-30% per tile. Coral recruitment was very low, with <1 recruit per tile identified. A hierarchal analysis of variation over a range of spatial and temporal scales showed significant spatio-temporal variation in recruitment patterns, but the highest variability occurred at the lowest spatial scale examined (1 m-among tiles. Temporal variability in recruitment of both numbers of taxa and percentage cover was also evident across both summer and winter. Recruitment across depth varied for some taxonomic groups like algae, sponges and ascidians, with greatest differences in summer. This study presents some of the first data on benthic recruitment within the northern GBR and provides a greater understanding of population ecology for coral reefs.

  20. Surviving in a marine desert: the sponge loop retains resources within coral reefs.

    Science.gov (United States)

    de Goeij, Jasper M; van Oevelen, Dick; Vermeij, Mark J A; Osinga, Ronald; Middelburg, Jack J; de Goeij, Anton F P M; Admiraal, Wim

    2013-10-04

    Ever since Darwin's early descriptions of coral reefs, scientists have debated how one of the world's most productive and diverse ecosystems can thrive in the marine equivalent of a desert. It is an enigma how the flux of dissolved organic matter (DOM), the largest resource produced on reefs, is transferred to higher trophic levels. Here we show that sponges make DOM available to fauna by rapidly expelling filter cells as detritus that is subsequently consumed by reef fauna. This "sponge loop" was confirmed in aquarium and in situ food web experiments, using (13)C- and (15)N-enriched DOM. The DOM-sponge-fauna pathway explains why biological hot spots such as coral reefs persist in oligotrophic seas--the reef's paradox--and has implications for reef ecosystem functioning and conservation strategies.

  1. Postglacial Fringing-Reef to Barrier-Reef conversion on Tahiti links Darwin's reef types

    Science.gov (United States)

    Blanchon, Paul; Granados-Corea, Marian; Abbey, Elizabeth; Braga, Juan C.; Braithwaite, Colin; Kennedy, David M.; Spencer, Tom; Webster, Jody M.; Woodroffe, Colin D.

    2014-01-01

    In 1842 Charles Darwin claimed that vertical growth on a subsiding foundation caused fringing reefs to transform into barrier reefs then atolls. Yet historically no transition between reef types has been discovered and they are widely considered to develop independently from antecedent foundations during glacio-eustatic sea-level rise. Here we reconstruct reef development from cores recovered by IODP Expedition 310 to Tahiti, and show that a fringing reef retreated upslope during postglacial sea-level rise and transformed into a barrier reef when it encountered a Pleistocene reef-flat platform. The reef became stranded on the platform edge, creating a lagoon that isolated it from coastal sediment and facilitated a switch to a faster-growing coral assemblage dominated by acroporids. The switch increased the reef's accretion rate, allowing it to keep pace with rising sea level, and transform into a barrier reef. This retreat mechanism not only links Darwin's reef types, but explains the re-occupation of reefs during Pleistocene glacio-eustacy. PMID:24845540

  2. Coral cavity sponges depend on reef-derived food resources: stable isotope and fatty acid constraints

    NARCIS (Netherlands)

    van Duyl, F.C.; Moodley, L.; Nieuwland, G.; van IJzerloo, L.; van Soest, R.W.M.; Houtekamer, M.; Meesters, E.H.; Middelburg, J.J.

    2011-01-01

    The diet of cavity sponges on the narrow fringing reefs of Curaçao, Caribbean was studied. The origin and resources of the bulk food of these sponges, i.e., dissolved organic matter (DOM), were identified using stable carbon and nitrogen isotopes and fatty acid biomarkers. We found that phytoplankto

  3. Coral cavity sponges depend on reef-derived food resources: stable isotope and fatty acid constraints

    NARCIS (Netherlands)

    van Duyl, F.C.; Moodley, L.; Nieuwland, G.; van Ijzerloo, L.; van Soest, R.W.M.; Houtekamer, M.; Meesters, E.H.; Middelburg, J.J.

    2011-01-01

    The diet of cavity sponges on the narrow fringing reefs of Cura double dagger ao, Caribbean was studied. The origin and resources of the bulk food of these sponges, i.e., dissolved organic matter (DOM), were identified using stable carbon and nitrogen isotopes and fatty acid biomarkers. We found tha

  4. Coral cavity sponges depend on reef-derived food resources: stable isotope and fatty acid constraints

    NARCIS (Netherlands)

    Duyl, F.C. van; Moodley, L.; Nieuwland, G.; IJzerloo, L. van; Soest, R.W.M. van; Houtekamer, M.; Meesters, E.H.; Middelburg, J.J.

    2011-01-01

    The diet of cavity sponges on the narrow fringing reefs of Curac¸ao, Caribbean was studied. The origin and resources of the bulk food of these sponges, i.e., dissolved organic matter (DOM), were identified using stable carbon and nitrogen isotopes and fatty acid biomarkers. We found that phytoplankt

  5. Cambrian Series 3 carbonate platform of Korea dominated by microbial-sponge reefs

    Science.gov (United States)

    Hong, Jongsun; Lee, Jeong-Hyun; Choh, Suk-Joo; Lee, Dong-Jin

    2016-07-01

    Metazoans have been considered as negligible components of Cambrian Series 3 and Furongian microbial-dominated reefs, in contrast to their presence in earlier Terreneuvian-Cambrian Series 2 microbial-archaeocyath reefs. However, recent discoveries of sponges in Cambrian Series 3-Furongian reefs of Australia, China, Iran, USA, and Korea have raised question regarding their contribution in terms of carbonate platform development, which have never been assessed. This study examines Cambrian Series 3 deposits of the Daegi Formation, Korea to elucidate this question. The 100-m-thick middle part of the Daegi Formation is dominated by boundstone facies, which occupies 45% of the study interval, as well as bioclastic wackestone to packstone, bioclastic grainstone, and ooid packstone to grainstone facies. The Daegi reefs are primarily thrombolitic in composition, with 90% (n = 26/29) of the reefs containing an average of 9% sponges in aerial percentage calculated from thin sections. Lithistid sponges composed of peloidal fabrics, some desma spicules, and spicule networks commonly occupy the interstitial space in microbial clusters, are encrusted by mesoclots and Epiphyton, and are surrounded by micrite. Subordinate non-lithistid demosponges occur within clusters of microbial elements. The middle Daegi Formation can be largely subdivided into shoal environment dominated by grainstone to packstone facies and shallow subtidal platform interior environment located behind shoal with wackestone to packstone facies. The microbial-sponge reefs mainly developed around platform interior as patch reefs. The current study indicates that metazoans in the form of lithistid and non-lithistid demosponges are nearly ubiquitously incorporated in Daegi reefs and contributed greatly to the formation of microbial-sponge reefs as well as carbonate platform during the time. Study of these microbial-sponge reefs and their distribution within the carbonate platform may help us to understand how

  6. CHAMBERED HEXACTINELLID SPONGES FROM UPPER TRIASSIC(NORIAN-RHAETIAN? REEFS OF NAYBAND FORMATION IN CENTRAL IRAN

    Directory of Open Access Journals (Sweden)

    B. SENOWBARI-DARYAN

    2012-07-01

    Full Text Available This paper describes several chambered hexactinellid sponges, including Casearia iranica n.sp., C. vezvanensis n. sp., C. delijanensis n. sp., Esfahanella magna gen. n. n. sp., and E. parva gen. n. n. sp. from reefs of the Upper Triassic (Norian-Rhaetian Nayband Formation exposed south of the town of Delijan in central Iran. The relative abundance of chambered and non-chambered hexactinellid sponges at this locality - as compared to hypercalcified representatives - highlight the importance of this group of sponges in reef and reefal limestones in central and east Tethys (China, Caucasia, Iran. 

  7. Sponge communities on Caribbean coral reefs are structured by factors that are top-down, not bottom-up.

    Directory of Open Access Journals (Sweden)

    Joseph R Pawlik

    Full Text Available Caribbean coral reefs have been transformed in the past few decades with the demise of reef-building corals, and sponges are now the dominant habitat-forming organisms on most reefs. Competing hypotheses propose that sponge communities are controlled primarily by predatory fishes (top-down or by the availability of picoplankton to suspension-feeding sponges (bottom-up. We tested these hypotheses on Conch Reef, off Key Largo, Florida, by placing sponges inside and outside predator-excluding cages at sites with less and more planktonic food availability (15 m vs. 30 m depth. There was no evidence of a bottom-up effect on the growth of any of 5 sponge species, and 2 of 5 species grew more when caged at the shallow site with lower food abundance. There was, however, a strong effect of predation by fishes on sponge species that lacked chemical defenses. Sponges with chemical defenses grew slower than undefended species, demonstrating a resource trade-off between growth and the production of secondary metabolites. Surveys of the benthic community on Conch Reef similarly did not support a bottom-up effect, with higher sponge cover at the shallower depth. We conclude that the structure of sponge communities on Caribbean coral reefs is primarily top-down, and predict that removal of sponge predators by overfishing will shift communities toward faster-growing, undefended species that better compete for space with threatened reef-building corals.

  8. Boring sponges, an increasing threat for coral reefs affected by bleaching events.

    Science.gov (United States)

    Carballo, José L; Bautista, Eric; Nava, Héctor; Cruz-Barraza, José A; Chávez, Jesus A

    2013-04-01

    Coral bleaching is a stress response of corals induced by a variety of factors, but these events have become more frequent and intense in response to recent climate-change-related temperature anomalies. We tested the hypothesis that coral reefs affected by bleaching events are currently heavily infested by boring sponges, which are playing a significant role in the destruction of their physical structure. Seventeen reefs that cover the entire distributional range of corals along the Mexican Pacific coast were studied between 2005/2006, and later between 2009/2010. Most of these coral reefs were previously impacted by bleaching events, which resulted in coral mortalities. Sponge abundance and species richness was used as an indicator of bioerosion, and coral cover was used to describe the present condition of coral reefs. Coral reefs are currently highly invaded (46% of the samples examined) by a very high diversity of boring sponges (20 species); being the coral reef framework the substrate most invaded (56%) followed by the rubbles (45%), and the living colonies (36%). The results also indicated that boring sponges are promoting the dislodgment of live colonies and large fragments from the framework. In summary, the eastern coral reefs affected by bleaching phenomena, mainly provoked by El Niño, present a high diversity and abundance of boring sponges, which are weakening the union of the colony with the reef framework and promoting their dislodgment. These phenomena will probably become even more intense and severe, as temperatures are projected to continue to rise under the scenarios for future climate change, which could place many eastern coral reefs beyond their survival threshold.

  9. Barrier Methods of Birth Control: Spermicide, Condom, Sponge, Diaphragm, and Cervical Cap

    Science.gov (United States)

    ... Advocacy For Patients About ACOG Barrier Methods of Birth Control: Spermicide, Condom, Sponge, Diaphragm, and Cervical Cap Home ... FAQ022, May 2016 PDF Format Barrier Methods of Birth Control: Spermicide, Condom, Sponge, Diaphragm, and Cervical Cap Contraception ...

  10. Phenology of sexual reproduction in the common coral reef sponge, Carteriospongia foliascens

    Science.gov (United States)

    Abdul Wahab, M. A.; de Nys, R.; Webster, N.; Whalan, S.

    2014-06-01

    Understanding processes that contribute to population maintenance is critical to the management and conservation of species. Despite this, very little is currently known about the reproductive biology of Great Barrier Reef (GBR) sponge species. Here, we established reproductive parameters including mode of sexuality and development, seasonality, sex ratios, gametogenesis, reproductive output, and size at sexual maturity for the common phototrophic intertidal sponge, Carteriospongia foliascens, in the central GBR over two reproductive cycles. A population sexual productivity index (PoSPi) integrating key reproductive parameters was formulated to compare population larval supply over time. This study shows that C. foliascens is reproductive all year round, gonochoric and viviparous, with larvae developing asynchronously throughout the mesohyl. The influence of environmental parameters relevant to C. foliascens reproduction [i.e., sea surface temperature (SST), photoperiod, and rainfall] was also examined, and SST was found to have the most significant effect on phenology. C. foliascens reproduction exhibited annual mono-cyclic patterns closely resembling SST fluctuations. Reproductive output was depressed at low SST (28 °C). A twofold increase in maximum larval production (PoSPi) in C. foliascens was observed in the second reproductive cycle, following a depressed PoSPi in the first cycle. This reduction in PoSPi in the first reproductive cycle was associated with elevated SST and rainfall, coinciding with one of the strongest La Niña events on record.

  11. Biological characterisation of Haliclona (?gellius) sp.: sponge and associated microorganisms.

    NARCIS (Netherlands)

    Sipkema, D.; Holmes, B.; Nichols, S.A.; Blanch, H.W.

    2009-01-01

    We have characterised the northern Pacific undescribed sponge Haliclona (?gellius) sp. based on rDNA of the sponge and its associated microorganisms. The sponge is closely related to Amphimedon queenslandica from the Great Barrier Reef as the near-complete 18S rDNA sequences of both sponges were ide

  12. In four shallow and mesophotic tropical reef sponges from Guam the microbial community largely depends on host identity.

    Science.gov (United States)

    Steinert, Georg; Taylor, Michael W; Deines, Peter; Simister, Rachel L; de Voogd, Nicole J; Hoggard, Michael; Schupp, Peter J

    2016-01-01

    Sponges (phylum Porifera) are important members of almost all aquatic ecosystems, and are renowned for hosting often dense and diverse microbial communities. While the specificity of the sponge microbiota seems to be closely related to host phylogeny, the environmental factors that could shape differences within local sponge-specific communities remain less understood. On tropical coral reefs, sponge habitats can span from shallow areas to deeper, mesophotic sites. These habitats differ in terms of environmental factors such as light, temperature, and food availability, as well as anthropogenic impact. In order to study the host specificity and potential influence of varying habitats on the sponge microbiota within a local area, four tropical reef sponges, Rhabdastrella globostellata, Callyspongia sp., Rhaphoxya sp., and Acanthella cavernosa, were collected from exposed shallow reef slopes and a deep reef drop-off. Based on 16S rRNA gene pyrosequencing profiles, beta diversity analyses revealed that each sponge species possessed a specific microbiota that was significantly different to those of the other species and exhibited attributes that are characteristic of high- and/or low-microbial-abundance sponges. These findings emphasize the influence of host identity on the associated microbiota. Dominant sponge- and seawater-associated bacterial phyla were Chloroflexi, Cyanobacteria, and Proteobacteria. Comparison of individual sponge taxa and seawater samples between shallow and deep reef sites revealed no significant variation in alpha diversity estimates, while differences in microbial beta diversity (variation in community composition) were significant for Callyspongia sp. sponges and seawater samples. Overall, the sponge-associated microbiota is significantly shaped by host identity across all samples, while the effect of habitat differentiation seems to be less predominant in tropical reef sponges.

  13. In four shallow and mesophotic tropical reef sponges from Guam the microbial community largely depends on host identity

    Science.gov (United States)

    Steinert, Georg; Taylor, Michael W.; Deines, Peter; Simister, Rachel L.; de Voogd, Nicole J.; Hoggard, Michael

    2016-01-01

    Sponges (phylum Porifera) are important members of almost all aquatic ecosystems, and are renowned for hosting often dense and diverse microbial communities. While the specificity of the sponge microbiota seems to be closely related to host phylogeny, the environmental factors that could shape differences within local sponge-specific communities remain less understood. On tropical coral reefs, sponge habitats can span from shallow areas to deeper, mesophotic sites. These habitats differ in terms of environmental factors such as light, temperature, and food availability, as well as anthropogenic impact. In order to study the host specificity and potential influence of varying habitats on the sponge microbiota within a local area, four tropical reef sponges, Rhabdastrella globostellata, Callyspongia sp., Rhaphoxya sp., and Acanthella cavernosa, were collected from exposed shallow reef slopes and a deep reef drop-off. Based on 16S rRNA gene pyrosequencing profiles, beta diversity analyses revealed that each sponge species possessed a specific microbiota that was significantly different to those of the other species and exhibited attributes that are characteristic of high- and/or low-microbial-abundance sponges. These findings emphasize the influence of host identity on the associated microbiota. Dominant sponge- and seawater-associated bacterial phyla were Chloroflexi, Cyanobacteria, and Proteobacteria. Comparison of individual sponge taxa and seawater samples between shallow and deep reef sites revealed no significant variation in alpha diversity estimates, while differences in microbial beta diversity (variation in community composition) were significant for Callyspongia sp. sponges and seawater samples. Overall, the sponge-associated microbiota is significantly shaped by host identity across all samples, while the effect of habitat differentiation seems to be less predominant in tropical reef sponges. PMID:27114882

  14. New approaches to quantifying bioerosion by endolithic sponge populations: applications to the coral reefs of Grand Cayman

    Science.gov (United States)

    Murphy, G. N.; Perry, C. T.; Chin, P.; McCoy, C.

    2016-09-01

    Bioerosion is a critical process on coral reefs, influencing reef structural integrity and complexity and generating significant amounts of sediment. Excavating sponges are important bioeroders, especially in the Caribbean where sponges dominate macroborer communities. However, the contribution of bioeroding sponge communities to total bioerosion on coral reefs is not well understood; census surveys are rarely employed by monitoring agencies, and there is little data on the erosion rates of different species. Here, we investigated bioerosion by two Caribbean sponge species with different growth forms ( Siphonodictyon brevitubulatum—α-form and Cliona tenuis—β-form). We also described new approaches to estimating bioerosion by sponge communities. By categorising the growth form of different species, we applied newly developed bioerosion rates, along with a previously published rate for C. delitrix, to census surveys and use these to estimate bioerosion by sponge communities on Grand Cayman reefs. Results indicate distinct habitat preferences for the two most abundant sponge species, C. tenuis and C. caribbaea. Mean sponge bioerosion across eight sites was 0.1 kg CaCO3 m-2 yr-1. Visible cover by α-growth-form excavating sponges caused a disproportionately high level of bioerosion in comparison with cover by β-growth-form species. Therefore, it is important to consider growth forms and excavation strategies when assessing bioerosion by sponge communities. Our present level of understanding of bioerosion by sponge species is limited, and more research is clearly required. However, the approaches described here can generate instant, meaningful results on sponge abundance and bioerosion and would complement many current benthic monitoring regimes. Furthermore, they create a framework for the provision of data, which is relevant to both coral reef management and to developing our understanding of how bioeroding sponge populations influence reef structure and

  15. In four shallow and mesophotic tropical reef sponges from Guam the microbial community largely depends on host identity

    Directory of Open Access Journals (Sweden)

    Georg Steinert

    2016-04-01

    Full Text Available Sponges (phylum Porifera are important members of almost all aquatic ecosystems, and are renowned for hosting often dense and diverse microbial communities. While the specificity of the sponge microbiota seems to be closely related to host phylogeny, the environmental factors that could shape differences within local sponge-specific communities remain less understood. On tropical coral reefs, sponge habitats can span from shallow areas to deeper, mesophotic sites. These habitats differ in terms of environmental factors such as light, temperature, and food availability, as well as anthropogenic impact. In order to study the host specificity and potential influence of varying habitats on the sponge microbiota within a local area, four tropical reef sponges, Rhabdastrella globostellata, Callyspongia sp., Rhaphoxya sp., and Acanthella cavernosa, were collected from exposed shallow reef slopes and a deep reef drop-off. Based on 16S rRNA gene pyrosequencing profiles, beta diversity analyses revealed that each sponge species possessed a specific microbiota that was significantly different to those of the other species and exhibited attributes that are characteristic of high- and/or low-microbial-abundance sponges. These findings emphasize the influence of host identity on the associated microbiota. Dominant sponge- and seawater-associated bacterial phyla were Chloroflexi, Cyanobacteria, and Proteobacteria. Comparison of individual sponge taxa and seawater samples between shallow and deep reef sites revealed no significant variation in alpha diversity estimates, while differences in microbial beta diversity (variation in community composition were significant for Callyspongia sp. sponges and seawater samples. Overall, the sponge-associated microbiota is significantly shaped by host identity across all samples, while the effect of habitat differentiation seems to be less predominant in tropical reef sponges.

  16. Thermal and sedimentation stress are unlikely causes of brown spot syndrome in the coral reef sponge, Ianthella basta.

    Directory of Open Access Journals (Sweden)

    Heidi M Luter

    Full Text Available BACKGROUND: Marine diseases are being increasingly linked to anthropogenic factors including global and local stressors. On the Great Barrier Reef, up to 66% of the Ianthella basta population was recently found to be afflicted by a syndrome characterized by brown spot lesions and necrotic tissue. METHODOLOGY/PRINCIPAL FINDINGS: Manipulative experiments were undertaken to ascertain the role of environmental stressors in this syndrome. Specifically, the effects of elevated temperature and sedimentation on sponge health and symbiont stability in I. basta were examined. Neither elevated temperature nor increased sedimentation were responsible for the brown spot lesions, but sponges exposed to 32°C developed substantial discoloration and deterioration of their tissues, resulting in death after eight days and a higher microbial diversity in those samples. No shifts in the microbial community of I. basta were observed across a latitudinal gradient or with increased sedimentation, with three previously described symbionts dominating the community of all sponges (Alphaproteobacteria, Gammaproteobacteria and Thaumarchaea. CONCLUSIONS/SIGNIFICANCE: Results from this study highlight the stable microbial community of I. basta and indicate that thermal and sedimentation stress are not responsible for the brown spot lesions currently affecting this abundant and ecologically important sponge species.

  17. Exploring seascape genetics and kinship in the reef sponge Stylissa carteri in the Red Sea

    KAUST Repository

    Giles, Emily C.

    2015-06-01

    A main goal of population geneticists is to study patterns of gene flow to gain a better understanding of the population structure in a given organism. To date most efforts have been focused on studying gene flow at either broad scales to identify barriers to gene flow and isolation by distance or at fine spatial scales in order to gain inferences regarding reproduction and local dispersal. Few studies have measured connectivity at multiple spatial scales and have utilized novel tools to test the influence of both environment and geography on shaping gene flow in an organism. Here a seascape genetics approach was used to gain insight regarding geographic and ecological barriers to gene flow of a common reef sponge, Stylissa carteri in the Red Sea. Furthermore, a small-scale (<1 km) analysis was also conducted to infer reproductive potential in this organism. At the broad scale, we found that sponge connectivity is not structured by geography alone, but rather, genetic isolation in the southern Red Sea correlates strongly with environmental heterogeneity. At the scale of a 50-m transect, spatial autocorrelation analyses and estimates of full-siblings revealed that there is no deviation from random mating. However, at slightly larger scales (100–200 m) encompassing multiple transects at a given site, a greater proportion of full-siblings was found within sites versus among sites in a given location suggesting that mating and/or dispersal are constrained to some extent at this spatial scale. This study adds to the growing body of literature suggesting that environmental and ecological variables play a major role in the genetic structure of marine invertebrate populations.

  18. Exploring seascape genetics and kinship in the reef sponge Stylissa carteri in the Red Sea.

    Science.gov (United States)

    Giles, Emily C; Saenz-Agudelo, Pablo; Hussey, Nigel E; Ravasi, Timothy; Berumen, Michael L

    2015-07-01

    A main goal of population geneticists is to study patterns of gene flow to gain a better understanding of the population structure in a given organism. To date most efforts have been focused on studying gene flow at either broad scales to identify barriers to gene flow and isolation by distance or at fine spatial scales in order to gain inferences regarding reproduction and local dispersal. Few studies have measured connectivity at multiple spatial scales and have utilized novel tools to test the influence of both environment and geography on shaping gene flow in an organism. Here a seascape genetics approach was used to gain insight regarding geographic and ecological barriers to gene flow of a common reef sponge, Stylissa carteri in the Red Sea. Furthermore, a small-scale (<1 km) analysis was also conducted to infer reproductive potential in this organism. At the broad scale, we found that sponge connectivity is not structured by geography alone, but rather, genetic isolation in the southern Red Sea correlates strongly with environmental heterogeneity. At the scale of a 50-m transect, spatial autocorrelation analyses and estimates of full-siblings revealed that there is no deviation from random mating. However, at slightly larger scales (100-200 m) encompassing multiple transects at a given site, a greater proportion of full-siblings was found within sites versus among sites in a given location suggesting that mating and/or dispersal are constrained to some extent at this spatial scale. This study adds to the growing body of literature suggesting that environmental and ecological variables play a major role in the genetic structure of marine invertebrate populations.

  19. Metazoan microbial framework fabrics in a Mississippian (Carboniferous) coral sponge microbial reef, Monto, Queensland, Australia

    Science.gov (United States)

    Shen, Jian-Wei; Webb, Gregory E.

    2005-07-01

    Microbial fabrics (stromatolites, thrombolites and calcimicrobes) occur in many Paleozoic carbonate buildups and commonly dominated reefs after mass extinction events (e.g., Middle Cambrian, Famennian [Late Devonian] and early Mississippian). By Viséan (middle Mississippian) time, eastern Australian reefs were mostly small, microbialite-dominated structures, but they contained diverse reef-building metazoans (e.g., rugose and tabulate corals, bryozoans) that came to dominate limited reef facies in some cases. Reefs in the Cannindah Limestone at Old Cannindah Homestead, Monto region, Queensland are exceptional in being the largest such reefs and in having the most complex and differentiated reef facies. They occurred on an oolitic-crinoidal bank characterized by long-term continuous carbonate deposition in a shallow, high-energy setting. Cannindah reef framework contained lithistid sponges and diverse corals, but was dominated by microbialite. The microbialites contain diverse thrombolites, microdigitate stromatolites, and calcimicrobes. Abundant syndepositional cavities in the microbial framework supported a diverse cryptic fauna including numerous calcimicrobes (e.g., Renalcis, Palaeomicrocodium, Girvanella, Ortonella, Aphralysia, and problematica), crinoids, and ostracodes. Cavities indicate that the framework was suprastratal both where microbialite-dominated and where skeletal organisms played a role in framework construction. Although these reefs grew following Late Devonian extinction events that affected skeletal reef builders, the dominance of microbialites is difficult to attribute to the absence of appropriate skeletal reef builders. The reefs occurred ˜20 million years after the Devonian-Mississippian transition, and diverse, potentially reef-building corals and algae occur throughout the reefs, but never rose to dominate framework construction. High siliciclastic flux, turbidity, abnormal salinity, low oxygen levels, low light penetration, and

  20. Microbial and sponge loops modify fish production in phase-shifting coral reefs.

    Science.gov (United States)

    Silveira, Cynthia B; Silva-Lima, Arthur W; Francini-Filho, Ronaldo B; Marques, Jomar S M; Almeida, Marcelo G; Thompson, Cristiane C; Rezende, Carlos E; Paranhos, Rodolfo; Moura, Rodrigo L; Salomon, Paulo S; Thompson, Fabiano L

    2015-10-01

    Shifts from coral to algae dominance of corals reefs have been correlated to fish biomass loss and increased microbial metabolism. Here we investigated reef benthic and planktonic primary production, benthic dissolved organic carbon (DOC) release and bacterial growth efficiency in the Abrolhos Bank, South Atlantic. Benthic DOC release rates are higher while water column bacterial growth efficiency is lower at impacted reefs. A trophic model based on the benthic and planktonic primary production was able to predict the observed relative fish biomass in healthy reefs. In contrast, in impacted reefs, the observed omnivorous fish biomass is higher, while that of the herbivorous/coralivorous fish is lower than predicted by the primary production-based model. Incorporating recycling of benthic-derived carbon in the model through microbial and sponge loops explains the difference and predicts the relative fish biomass in both reef types. Increased benthic carbon release rates and bacterial carbon metabolism, but decreased bacterial growth efficiency could lead to carbon losses through respiration and account for the uncoupling of benthic and fish production in phase-shifting reefs. Carbon recycling by microbial and sponge loops seems to promote an increase of small-bodied fish productivity in phase-shifting coral reefs.

  1. Benthic community composition on submerged reefs in the central Great Barrier Reef

    Science.gov (United States)

    Roberts, T. E.; Moloney, J. M.; Sweatman, H. P. A.; Bridge, T. C. L.

    2015-06-01

    Community dynamics on coral reefs are often examined only in relatively shallow waters, which are most vulnerable to many disturbances. The Great Barrier Reef World Heritage Area (GBRWHA) includes extensive submerged reefs that do not approach sea level and are within depths that support many coral reef taxa that also occur in shallow water. However, the composition of benthic communities on submerged reefs in the GBRWHA is virtually unknown. We examined spatial patterns in benthic community composition on 13 submerged reefs in the central Great Barrier Reef (GBR) at depths of 10-30 m. We show that benthic communities on submerged reefs include similar species groups to those on neighbouring emergent reefs. The spatial distribution of species groups was well explained by depth and cross-shelf gradients that are well-known determinants of community composition on emergent reefs. Many equivalent species groups occurred at greater depths on submerged reefs, likely due to variability in the hydrodynamic environment among reef morphologies. Hard coral cover and species richness were lowest at the shallowest depth (6 m) on emergent reefs and were consistently higher on submerged reefs for any given depth. These results suggest that disturbances are less frequent on submerged reefs, but evidence that a severe tropical cyclone in 2011 caused significant damage to shallow regions of more exposed submerged reefs demonstrates that they are not immune. Our results confirm that submerged reefs in the central GBR support extensive and diverse coral assemblages that deserve greater attention in ecosystem assessments and management decisions.

  2. Stochastic dynamics of a warmer Great Barrier Reef.

    Science.gov (United States)

    Cooper, Jennifer K; Spencer, Matthew; Bruno, John F

    2015-07-01

    Pressure on natural communities from human activities continues to increase. Even unique ecosystems like the Great Barrier Reef (GBR), that until recently were considered near-pristine and well-protected, are showing signs of rapid degradation. We collated recent (1996-2006) spatiotemporal relationships between benthic community composition on the GBR and environmental variables (ocean temperature and local threats resulting from human activity). We built multivariate models of the effects of these variables on short-term dynamics, and developed an analytical approach to study their long-term consequences. We used this approach to study the effects of ocean warming under different levels of local threat. Observed short-term changes in benthic community structure (e.g., declining coral cover) were associated with ocean temperature (warming) and local threats. Our model projected that, in the long-term, coral cover of less than 10% was not implausible. With increasing temperature and/or local threats, corals were initially replaced by sponges, gorgonians, and other taxa, with an eventual moderately high probability of domination (> 50%) by macroalgae when temperature increase was greatest (e.g., 3.5 degrees C of warming). Our approach to modeling community dynamics, based on multivariate statistical models, enabled us to project how environmental change (and thus local and international policy decisions) will influence the future state of coral reefs. The same approach could be applied to other systems for which time series of ecological and environmental variables are available.

  3. Novel polymorphic microsatellite markers developed for a common reef sponge, Stylissa carteri

    KAUST Repository

    Giles, E.C.

    2013-04-04

    Despite the ubiquitous role sponges play in reef ecosystem dynamics, little is known about population-level connectivity in these organisms. The general field of population genetics in sponges remains in its infancy. To date, microsatellite markers have only been developed for few sponge species and no sponge population genetics studies using microsatellites have been conducted in the Red Sea. Here, with the use of next-generation sequencing, we characterize 12 novel polymorphic loci for the common reef sponge, Stylissa carteri. The number of alleles per loci ranged between three and eight. Observed heterozygosity frequencies (Ho) ranged from 0.125 to 0.870, whereas expected (He) heterozygosity frequencies ranged from 0.119 to 0.812. Only one locus showed consistent deviations from Hardy-Weinberg equilibrium (HWE) in both populations and two loci consistently showed the possible presence of null alleles. No significant linkage disequilibrium was detected for any pairs of loci. These microsatellites will be of use for numerous ecological studies focused on this common and abundant sponge. 2013 The Author(s).

  4. Framework of barrier reefs threatened by ocean acidification.

    Science.gov (United States)

    Comeau, Steeve; Lantz, Coulson A; Edmunds, Peter J; Carpenter, Robert C

    2016-03-01

    To date, studies of ocean acidification (OA) on coral reefs have focused on organisms rather than communities, and the few community effects that have been addressed have focused on shallow back reef habitats. The effects of OA on outer barrier reefs, which are the most striking of coral reef habitats and are functionally and physically different from back reefs, are unknown. Using 5-m long outdoor flumes to create treatment conditions, we constructed coral reef communities comprised of calcified algae, corals, and reef pavement that were assembled to match the community structure at 17 m depth on the outer barrier reef of Moorea, French Polynesia. Communities were maintained under ambient and 1200 μatm pCO2 for 7 weeks, and net calcification rates were measured at different flow speeds. Community net calcification was significantly affected by OA, especially at night when net calcification was depressed ~78% compared to ambient pCO2 . Flow speed (2-14 cm s(-1) ) enhanced net calcification only at night under elevated pCO2 . Reef pavement also was affected by OA, with dissolution ~86% higher under elevated pCO2 compared to ambient pCO2 . These results suggest that net accretion of outer barrier reef communities will decline under OA conditions predicted within the next 100 years, largely because of increased dissolution of reef pavement. Such extensive dissolution poses a threat to the carbonate foundation of barrier reef communities.

  5. Coral reefs on the edge? Carbon chemistry on inshore reefs of the great barrier reef.

    Directory of Open Access Journals (Sweden)

    Sven Uthicke

    Full Text Available While increasing atmospheric carbon dioxide (CO2 concentration alters global water chemistry (Ocean Acidification; OA, the degree of changes vary on local and regional spatial scales. Inshore fringing coral reefs of the Great Barrier Reef (GBR are subjected to a variety of local pressures, and some sites may already be marginal habitats for corals. The spatial and temporal variation in directly measured parameters: Total Alkalinity (TA and dissolved inorganic carbon (DIC concentration, and derived parameters: partial pressure of CO2 (pCO2; pH and aragonite saturation state (Ωar were measured at 14 inshore reefs over a two year period in the GBR region. Total Alkalinity varied between 2069 and 2364 µmol kg-1 and DIC concentrations ranged from 1846 to 2099 µmol kg-1. This resulted in pCO2 concentrations from 340 to 554 µatm, with higher values during the wet seasons and pCO2 on inshore reefs distinctly above atmospheric values. However, due to temperature effects, Ωar was not further reduced in the wet season. Aragonite saturation on inshore reefs was consistently lower and pCO2 higher than on GBR reefs further offshore. Thermodynamic effects contribute to this, and anthropogenic runoff may also contribute by altering productivity (P, respiration (R and P/R ratios. Compared to surveys 18 and 30 years ago, pCO2 on GBR mid- and outer-shelf reefs has risen at the same rate as atmospheric values (∼1.7 µatm yr-1 over 30 years. By contrast, values on inshore reefs have increased at 2.5 to 3 times higher rates. Thus, pCO2 levels on inshore reefs have disproportionately increased compared to atmospheric levels. Our study suggests that inshore GBR reefs are more vulnerable to OA and have less buffering capacity compared to offshore reefs. This may be caused by anthropogenically induced trophic changes in the water column and benthos of inshore reefs subjected to land runoff.

  6. Coral reefs on the edge? Carbon chemistry on inshore reefs of the great barrier reef.

    Science.gov (United States)

    Uthicke, Sven; Furnas, Miles; Lønborg, Christian

    2014-01-01

    While increasing atmospheric carbon dioxide (CO2) concentration alters global water chemistry (Ocean Acidification; OA), the degree of changes vary on local and regional spatial scales. Inshore fringing coral reefs of the Great Barrier Reef (GBR) are subjected to a variety of local pressures, and some sites may already be marginal habitats for corals. The spatial and temporal variation in directly measured parameters: Total Alkalinity (TA) and dissolved inorganic carbon (DIC) concentration, and derived parameters: partial pressure of CO2 (pCO2); pH and aragonite saturation state (Ωar) were measured at 14 inshore reefs over a two year period in the GBR region. Total Alkalinity varied between 2069 and 2364 µmol kg-1 and DIC concentrations ranged from 1846 to 2099 µmol kg-1. This resulted in pCO2 concentrations from 340 to 554 µatm, with higher values during the wet seasons and pCO2 on inshore reefs distinctly above atmospheric values. However, due to temperature effects, Ωar was not further reduced in the wet season. Aragonite saturation on inshore reefs was consistently lower and pCO2 higher than on GBR reefs further offshore. Thermodynamic effects contribute to this, and anthropogenic runoff may also contribute by altering productivity (P), respiration (R) and P/R ratios. Compared to surveys 18 and 30 years ago, pCO2 on GBR mid- and outer-shelf reefs has risen at the same rate as atmospheric values (∼1.7 µatm yr-1) over 30 years. By contrast, values on inshore reefs have increased at 2.5 to 3 times higher rates. Thus, pCO2 levels on inshore reefs have disproportionately increased compared to atmospheric levels. Our study suggests that inshore GBR reefs are more vulnerable to OA and have less buffering capacity compared to offshore reefs. This may be caused by anthropogenically induced trophic changes in the water column and benthos of inshore reefs subjected to land runoff.

  7. Sponge richness on algae-dominated rocky reefs in the western Antarctic Peninsula and the Magellan Strait

    Directory of Open Access Journals (Sweden)

    César A. Cárdenas

    2016-11-01

    Full Text Available Sponges are important components of high-latitude benthic communities, but their diversity and abundance in algal-dominated rocky reefs has been underestimated because of the difficulty of in situ identification. Further, the influence of canopy-forming algae on sponge richness has been poorly studied in southern high-latitude rocky reefs compared to other latitudes. Here, we quantified taxon richness of sponges in algae-dominated rocky reefs at three sites in the western Antarctic Peninsula (62–64° S and two sites in the Magellan region (53° S. We found higher sponge richness at sites in Antarctica (15 than in Magallanes (8, with Antarctic sponge richness higher than that reported for Arctic algal beds and similar to that reported for temperate regions. Estimated sponge richness at our Antarctic sites highlights diverse sponge assemblages (16–26 taxa between 5 and 20 m that are typically dominated by macroalgae. Our results suggest that sponge assemblages associated with canopy-forming macroalgae on southern high-latitude reefs are more diverse than previously thought.

  8. Bleaching and stress in coral reef ecosystems: hsp70 expression by the giant barrel sponge Xestospongia muta.

    Science.gov (United States)

    López-Legentil, Susanna; Song, Bongkeun; McMurray, Steven E; Pawlik, Joseph R

    2008-04-01

    Sponges are a prominent component of coral reef ecosystems. Like reef-building corals, some sponges have been reported to bleach and die. The giant barrel sponge Xestospongia muta is one of the largest and most important components of Caribbean coral reef communities. Tissues of X. muta contain cyanobacterial symbionts of the Synechococcus group. Two types of bleaching have been described: cyclic bleaching, from which sponges recover, and fatal bleaching, which usually results in sponge death. We quantified hsp70 gene expression as an indicator of stress in X. muta undergoing cyclic and fatal bleaching and in response to thermal and salinity variability in both field and laboratory settings. Chlorophyll a content of sponge tissue was estimated to determine whether hsp70 expression was related to cyanobacterial abundance. We found that fatally bleached sponge tissue presented significantly higher hsp70 gene expression, but cyclically bleached tissue did not, yet both cyclic and fatally bleached tissues had lower chlorophyll a concentrations than nonbleached tissue. These results corroborate field observations suggesting that cyclic bleaching is a temporary, nonstressful state, while fatal bleaching causes significant levels of stress, leading to mortality. Our results support the hypothesis that Synechococcus symbionts are commensals that provide no clear advantage to their sponge host. In laboratory experiments, sponge pieces incubated at 30 degrees C exhibited significantly higher hsp70 expression than control pieces after 1.5 h, with sponge mortality after less than 15 h. In contrast, sponges at different salinities were not significantly stressed after the same period of time. Stress associated with increasing seawater temperatures may result in declining sponge populations in coral reef ecosystems.

  9. Influence of hydrodynamic energy on Holocene reef flat accretion, Great Barrier Reef

    Science.gov (United States)

    Dechnik, Belinda; Webster, Jody M.; Nothdurft, Luke; Webb, Gregory E.; Zhao, Jian-xin; Duce, Stephanie; Braga, Juan C.; Harris, Daniel L.; Vila-Concejo, Ana; Puotinen, Marji

    2016-01-01

    The response of platform reefs to sea-level stabilization over the past 6 ka is well established for the Great Barrier Reef (GBR), with reefs typically accreting laterally from windward to leeward. However, these observations are based on few cores spread across reef zones and may not accurately reflect a reef's true accretional response to the Holocene stillstand. We present a new record of reef accretion based on 49 U/Th ages from Heron and One Tree reefs in conjunction with re-analyzed data from 14 reefs across the GBR. We demonstrate that hydrodynamic energy is the main driver of accretional direction; exposed reefs accreted primarily lagoon-ward while protected reefs accreted seawards, contrary to the traditional growth model in the GBR. Lateral accretion rates varied from 86.3 m/ka-42.4 m/ka on the exposed One Tree windward reef and 68.35 m/ka-15.7 m/ka on the protected leeward Heron reef, suggesting that wind/wave energy is not a dominant control on lateral accretion rates. This represents the most comprehensive statement of lateral accretion direction and rates from the mid-outer platform reefs of the GBR, confirming great variability in reef flat growth both within and between reef margins over the last 6 ka, and highlighting the need for closely-spaced transects.

  10. [Sponges (porifera) distribution along a depth gradient in a coral reef, Parque Nacional San Esteban, Carabobo, Venezuela].

    Science.gov (United States)

    Núñez Flores, Mónica; Rodríguez-Quintal, José Gregorio; Cristina Díaz, María

    2010-10-01

    Sponges constitute one of the most diverse and abundant animal groups in the marine tropical benthos especially in coral reefs, though poorly studied to species level. The aim of this study is to characterize the sponge community along a depth gradient at Isla Larga (Parque Nacional San Esteban, Venezuela) fringe reef. Net and total sedimentation, roughness index, sponge species richness, density and proportion of the bottom covered by sponges, were evaluated at seven depths (1, 3, 6, 9, 12, 15, 18 m), 17 species were identified grouped in 10 demosponges families. The highest densities and coverage corresponded to 6 m of depth (6.03ind/m2; 11%), that coincides with the lowest net sedimentation and highest substrate heterogeneity. Most abundant species were Desmapsamma anchorata, Amphimedon erina and Scopalina rueztleri. Principal component analysis divided this community in three zones according to depth. The shallow zone of the reef (1 and 3 m), where wave force and high irradiance exert a constant stress sponges, shows the lowest density and coverage by sponges. In contrast, medium depth (6, 9 y 12 m) and deep zone (15 y 18 m) with lower light and sedimentation levels seem to enhance sponge growth and survival that are reflected on the higher densities and coverage of sponges.

  11. Securing the future of the Great Barrier Reef

    Science.gov (United States)

    Hughes, Terry P.; Day, Jon C.; Brodie, Jon

    2015-06-01

    The decline of the Great Barrier Reef can be reversed by improvements to governance and management: current policies that promote fossil fuels and economic development of the Reef region need to be reformed to prioritize long-term protection from climate change and other stressors.

  12. Aggregated clumps of lithistid sponges: a singular, reef-like bathyal habitat with relevant paleontological connections.

    Directory of Open Access Journals (Sweden)

    Manuel Maldonado

    Full Text Available The advent of deep-sea exploration using video cameras has uncovered extensive sponge aggregations in virtually all oceans. Yet, a distinct type is herein reported from the Mediterranean: a monospecific reef-like formation built by the lithistid demosponge Leiodermatium pfeifferae. Erect, plate-like individuals (up to 80 cm form bulky clumps, making up to 1.8 m high mounds (1.14 m on average on the bottom, at a 760 m-deep seamount named SSS. The siliceous skeletal frameworks of the lithistids persist after sponge death, serving as a complex 3D substratum where new lithistids recruit, along with a varied fauna of other sessile and vagile organisms. The intricate aggregation of lithistid mounds functions as a "reef" formation, architecturally different from the archetypal "demosponge gardens" with disaggregating siliceous skeletons. Leiodermatium pfeifferae also occurred at two additional, close seamounts (EBJ and EBS, but, unlike at SSS, the isolated individuals never formed accretive clumps. The general oceanographic variables (temperature, salinity, dissolved nutrients, chlorophyll, and oxygen revealed only minimal between-seamount differences, which cannot explain why sponge abundance at SSS is about two orders of magnitude higher than at EBJ or EBS. Large areas of the dense SSS aggregation were damaged, with detached and broken sponges and a few tangled fishing lines. Satellite vessel monitoring revealed low fishing activity around these seamounts. In contrast, international plans for gas and oil extraction at those locations raise serious concerns over the need for protecting urgently this unique, vulnerable habitat to avoid further alteration. Modern lithistids are a relict fauna from Jurassic and Cretaceous reefs and the roots of the very genus Leiodermatium can be traced back to those fossil formations. Therefore, understanding the causes behind the discovered lithistid aggregation is critical not only to its preservation, but also to

  13. Perilous proximity: Does the Janzen-Connell hypothesis explain the distribution of giant barrel sponges on a Florida coral reef?

    Science.gov (United States)

    Deignan, Lindsey K.; Pawlik, Joseph R.

    2015-06-01

    One popular concept used to explain the high biodiversity of some ecosystems is the Janzen-Connell hypothesis, which states that the distribution of conspecifics is controlled by species-specific pathogens or predators that are attracted to adults or to their reproductive output. The distribution of the affected species would then display a distinct pattern, with survivorship increasing at greater distance from the conspecific adult (negative density dependence), leaving a vacant area around the adult where other species can survive. The giant barrel sponge, Xestospongia muta, is an abundant and long-lived sponge on Caribbean coral reefs that is actively grazed by sponge-eating fishes and is susceptible to disease. We tested the Janzen-Connell hypothesis on barrel sponges on Conch Reef, Florida, by examining their distribution as a function of size using spatial point pattern analyses. Clark and Evans tests and a series of Ripley's K function analyses revealed no consistent distribution pattern, with most analyses resulting in a random pattern of sponge distribution. While predation by sponge-eating fishes has recently been discovered to structure sponge communities on reefs across the Caribbean, these top-down effects do not translate to spatial distributions of X. muta that support Janzen-Connell predictions.

  14. Coral reef community composition in the context of disturbance history on the Great Barrier Reef, Australia.

    Directory of Open Access Journals (Sweden)

    Nicholas A J Graham

    Full Text Available Much research on coral reefs has documented differential declines in coral and associated organisms. In order to contextualise this general degradation, research on community composition is necessary in the context of varied disturbance histories and the biological processes and physical features thought to retard or promote recovery. We conducted a spatial assessment of coral reef communities across five reefs of the central Great Barrier Reef, Australia, with known disturbance histories, and assessed patterns of coral cover and community composition related to a range of other variables thought to be important for reef dynamics. Two of the reefs had not been extensively disturbed for at least 15 years prior to the surveys. Three of the reefs had been severely impacted by crown-of-thorns starfish outbreaks and coral bleaching approximately a decade before the surveys, from which only one of them was showing signs of recovery based on independent surveys. We incorporated wave exposure (sheltered and exposed and reef zone (slope, crest and flat into our design, providing a comprehensive assessment of the spatial patterns in community composition on these reefs. Categorising corals into life history groupings, we document major coral community differences in the unrecovered reefs, compared to the composition and covers found on the undisturbed reefs. The recovered reef, despite having similar coral cover, had a different community composition from the undisturbed reefs, which may indicate slow successional processes, or a different natural community dominance pattern due to hydrology and other oceanographic factors. The variables that best correlated with patterns in the coral community among sites included the density of juvenile corals, herbivore fish biomass, fish species richness and the cover of macroalgae. Given increasing impacts to the Great Barrier Reef, efforts to mitigate local stressors will be imperative to encouraging coral

  15. Coral reef community composition in the context of disturbance history on the Great Barrier Reef, Australia.

    Science.gov (United States)

    Graham, Nicholas A J; Chong-Seng, Karen M; Huchery, Cindy; Januchowski-Hartley, Fraser A; Nash, Kirsty L

    2014-01-01

    Much research on coral reefs has documented differential declines in coral and associated organisms. In order to contextualise this general degradation, research on community composition is necessary in the context of varied disturbance histories and the biological processes and physical features thought to retard or promote recovery. We conducted a spatial assessment of coral reef communities across five reefs of the central Great Barrier Reef, Australia, with known disturbance histories, and assessed patterns of coral cover and community composition related to a range of other variables thought to be important for reef dynamics. Two of the reefs had not been extensively disturbed for at least 15 years prior to the surveys. Three of the reefs had been severely impacted by crown-of-thorns starfish outbreaks and coral bleaching approximately a decade before the surveys, from which only one of them was showing signs of recovery based on independent surveys. We incorporated wave exposure (sheltered and exposed) and reef zone (slope, crest and flat) into our design, providing a comprehensive assessment of the spatial patterns in community composition on these reefs. Categorising corals into life history groupings, we document major coral community differences in the unrecovered reefs, compared to the composition and covers found on the undisturbed reefs. The recovered reef, despite having similar coral cover, had a different community composition from the undisturbed reefs, which may indicate slow successional processes, or a different natural community dominance pattern due to hydrology and other oceanographic factors. The variables that best correlated with patterns in the coral community among sites included the density of juvenile corals, herbivore fish biomass, fish species richness and the cover of macroalgae. Given increasing impacts to the Great Barrier Reef, efforts to mitigate local stressors will be imperative to encouraging coral communities to persist into

  16. Benthic foraminifera baseline assemblages from a coastal nearshore reef complex on the central Great Barrier Reef

    Science.gov (United States)

    Johnson, Jamie; Perry, Chris; Smithers, Scott; Morgan, Kyle

    2016-04-01

    Declining water quality due to river catchment modification since European settlement (c. 1850 A.D.) represents a major threat to the health of coral reefs on Australia's Great Barrier Reef (GBR), particularly for those located in the coastal waters of the GBR's inner-shelf. These nearshore reefs are widely perceived to be most susceptible to declining water quality owing to their close proximity to river point sources. Despite this, nearshore reefs have been relatively poorly studied with the impacts and magnitudes of environmental degradation still remaining unclear. This is largely due to ongoing debates concerning the significance of increased sediment yields against naturally high background sedimentary regimes. Benthic foraminifera are increasingly used as tools for monitoring environmental and ecological change on coral reefs. On the GBR, the majority of studies have focussed on the spatial distributions of contemporary benthic foraminiferal assemblages. While baseline assemblages from other environments (e.g. inshore reefs and mangroves) have been described, very few records exist for nearshore reefs. Here, we present preliminary results from the first palaeoecological study of foraminiferal assemblages of nearshore reefs on the central GBR. Cores were recovered from the nearshore reef complex at Paluma Shoals using percussion techniques. Recovery was 100%, capturing the entire Holocene reef sequence of the selected reef structures. Radiocarbon dating and subsequent age-depth modelling techniques were used to identify reef sequences pre-dating European settlement. Benthic foraminifera assemblages were reconstructed from the identified sequences to establish pre-European ecological baselines with the aim of providing a record of foraminiferal distribution during vertical reef accretion and against which contemporary ecological change may be assessed.

  17. Bacterial Diversity Associated with Cinachyra cavernosa and Haliclona pigmentifera, Cohabiting Sponges in the Coral Reef Ecosystem of Gulf of Mannar, Southeast Coast of India.

    Directory of Open Access Journals (Sweden)

    C Jasmin

    Full Text Available Sponges are abundant, diverse and functionally important organisms of coral reef ecosystems. Sponge-associated microorganisms have been receiving greater attention because of their significant contribution to sponge biomass, biogeochemical cycles and biotechnological potentials. However, our understanding of the sponge microbiome is limited to a few species of sponges from restricted geographical locations. Here, we report for the first time the bacterial diversity of two cohabiting sponges, viz. Cinachyra cavernosa and Haliclona pigmentifera, as well as that in the ambient water from the coral reef ecosystems of the Gulf of Mannar, located along the southeast coast of India. Two hundred and fifty two clones in the 16S rRNA gene library of these sponges were grouped into eight distinct phyla, of which four belonged to the core group that are associated only with sponges. Phylogenetic analysis of the core bacteria showed close affinity to other sponge-associated bacteria from different geographical locations. γ-Proteobacteria, Chloroflexi, Planctomycetes and Deferribacter were the core groups in C. cavernosa while β and δ-Proteobacteria performed this role in H. pigmentifera. We observed greater OTU diversity for C. cavernosa (Hǀ 2.07 compared to H. pigmentifera (Hǀ 1.97. UniFrac analysis confirmed the difference in bacterial diversity of the two sponge species and also between the sponges and the reef water (p<0.001. The results of our study restate the existence of a host driven force in shaping the sponge microbiome.

  18. Herbicides: a new threat to the Great Barrier Reef.

    Science.gov (United States)

    Lewis, Stephen E; Brodie, Jon E; Bainbridge, Zoë T; Rohde, Ken W; Davis, Aaron M; Masters, Bronwyn L; Maughan, Mirjam; Devlin, Michelle J; Mueller, Jochen F; Schaffelke, Britta

    2009-01-01

    The runoff of pesticides (insecticides, herbicides and fungicides) from agricultural lands is a key concern for the health of the iconic Great Barrier Reef, Australia. Relatively low levels of herbicide residues can reduce the productivity of marine plants and corals. However, the risk of these residues to Great Barrier Reef ecosystems has been poorly quantified due to a lack of large-scale datasets. Here we present results of a study tracing pesticide residues from rivers and creeks in three catchment regions to the adjacent marine environment. Several pesticides (mainly herbicides) were detected in both freshwater and coastal marine waters and were attributed to specific land uses in the catchment. Elevated herbicide concentrations were particularly associated with sugar cane cultivation in the adjacent catchment. We demonstrate that herbicides reach the Great Barrier Reef lagoon and may disturb sensitive marine ecosystems already affected by other pressures such as climate change.

  19. Estimating Surface Area of Sponges and Marine Gorgonians as Indicators of Habitat Availability on Caribbean Coral Reefs

    Science.gov (United States)

    Surface area and topographical complexity are fundamental attributes of shallow tropical coral reefs and can be used to estimate habitat for fish and invertebrates. This study presents empirical methods for estimating surface area provided by sponges and gorgonians in the Central...

  20. Distribution and covering percentage of sponge (Porifera in different coral reef condition and depth in Barranglompo Island, South Sulawesi

    Directory of Open Access Journals (Sweden)

    SUHARYANTO

    2008-07-01

    Full Text Available In 1996, four specieses of sponge namely Auletta sp., Callyspongia pseudoreticulata, Callyspongia sp., and Halichondria sp. have been potentially identified as bacteriside for fishery commodities. Nevertheless, information on sponge distribution, its covering percentage, and its habitate are still very little. Observation on distribution and abundance of sponge was conducted in the Southeastern and the Northwestern part of Barranglompo Island, South Sulawesi, using scuba diving set and under water writting tools. At first, coral reef condition in 3 and 10 m depths up to 100 m length of shore line were observed in both stations, using “lifeform method”. Then distribution and covering percentage of sponge, biotic and abiotic factor in 3, 6, 9, and 12 m depths in both stations were examined using “square transect method”. The result showed that different coral reef condition qualitatively causes different of sponge species distribution, but quantitatively not significantly different (P>0,05 on its covering percentage. It was also found that generally sponge grows better at the dead coral where no other biotic organism around.

  1. First frozen repository for the Great Barrier Reef coral created.

    Science.gov (United States)

    Hagedorn, Mary; van Oppen, Madeleine J H; Carter, Virginia; Henley, Mike; Abrego, David; Puill-Stephan, Eneour; Negri, Andrew; Heyward, Andrew; MacFarlane, Doug; Spindler, Rebecca

    2012-10-01

    To build new tools for the continued protection and propagation of coral from the Great Barrier Reef (GBR), an international group of coral and cryopreservation scientists known as the Reef Recovery Initiative joined forces during the November 2011 mass-spawning event. The outcome was the creation of the first frozen bank for Australian coral from two important GBR reef-building species, Acropora tenuis and Acropora millepora. Approximately 190 frozen samples each with billions of cells were placed into long-term storage. Sperm cells were successfully cryopreserved, and after thawing, samples were used to fertilize eggs, resulting in functioning larvae. Additionally, developing larvae were dissociated, and these pluripotent cells were cryopreserved and viable after thawing. Now, we are in a unique position to move our work from the laboratory to the reefs to develop collaborative, practical conservation management tools to help secure Australia's coral biodiversity.

  2. The influence of sea level and cyclones on Holocene reef flat development: Middle Island, central Great Barrier Reef

    Science.gov (United States)

    Ryan, E. J.; Smithers, S. G.; Lewis, S. E.; Clark, T. R.; Zhao, J. X.

    2016-09-01

    The geomorphology and chronostratigraphy of the reef flat (including microatoll ages and elevations) were investigated to better understand the long-term development of the reef at Middle Island, inshore central Great Barrier Reef. Eleven cores across the fringing reef captured reef initiation, framework accretion and matrix sediments, allowing a comprehensive appreciation of reef development. Precise uranium-thorium ages obtained from coral skeletons revealed that the reef initiated ~7873 ± 17 years before present (yBP), and most of the reef was emplaced in the following 1000 yr. Average rates of vertical reef accretion ranged between 3.5 and 7.6 mm yr-1. Reef framework was dominated by branching corals ( Acropora and Montipora). An age hiatus of ~5000 yr between 6439 ± 19 and 1617 ± 10 yBP was observed in the core data and attributed to stripping of the reef structure by intense cyclones during the mid- to late-Holocene. Large shingle ridges deposited onshore and basset edges preserved on the reef flat document the influence of cyclones at Middle Island and represent potential sinks for much of the stripped material. Stripping of the upper reef structure around the outer margin of the reef flat by cyclones created accommodation space for a thin (energy waves presumably generated by cyclones have significantly influenced both Holocene reef growth and contemporary reef flat geomorphology.

  3. Exploring the hidden shallows: extensive reef development and resilience within the turbid nearshore Great Barrier Reef

    Science.gov (United States)

    Morgan, Kyle; Perry, Chris; Smithers, Scott; Johnson, Jamie; Daniell, James

    2016-04-01

    Mean coral cover on Australia's Great Barrier Reef (GBR) has reportedly declined by over 15% during the last 30 years. Climate change events and outbreaks of coral disease have been major drivers of degradation, often exacerbating the stresses caused by localised human activities (e.g. elevated sediment and nutrient inputs). Here, however, in the first assessment of nearshore reef occurrence and ecology across meaningful spatial scales (15.5 sq km), we show that areas of the GBR shelf have exhibited strong intra-regional variability in coral resilience to declining water quality. Specifically, within the highly-turbid "mesophotic" nearshore (water reefs may have similar potential as refugia from large-scale disturbance as their deep-water (>30 m) "mesophotic" equivalents, and also provide a basis from which to model future trajectories of reef growth within nearshore areas.

  4. An observational heat budget analysis of a coral reef, Heron Reef, Great Barrier Reef, Australia

    Science.gov (United States)

    MacKellar, Mellissa C.; McGowan, Hamish A.; Phinn, Stuart R.

    2013-03-01

    Measurements of the surface energy balance, the structure and evolution of the convective atmospheric reef layer (CARL), and local meteorology and hydrodynamics were made during June 2009 and February 2010 at Heron Reef, Australia, to establish the relative partitioning of heating within the water and atmosphere. Horizontal advection was shown to moderate temperature in the CARL and the water, having a cooling influence on the atmosphere, and providing an additional source or sink of energy to the water overlying the reef, depending on tide. The key driver of atmospheric heating was surface sensible heat flux, while heating of the reef water was primarily due to solar radiation, and thermal conduction and convection from the reef substrate. Heating and cooling processes were more defined during winter due to higher sensible and latent heat fluxes and strong diurnal evolution of the CARL. Sudden increases in water temperature were associated with inundation of warmer oceanic water during the flood tide, particularly in winter due to enhanced nocturnal cooling of water overlying the reef. Similarly, cooling of the water over the reef occurred during the ebb tide as heat was transported off the reef to the surrounding ocean. While these results are the first to shed light on the heat budget of a coral reef and overlying CARL, longer-term, systematic measurements of reef thermal budgets are needed under a range of meteorological and hydrodynamic conditions, and across various reef types to elucidate the influence on larger-scale oceanic and atmospheric processes. This is essential for understanding the role of coral reefs in tropical and sub-tropical meteorology; the physical processes that take place during coral bleaching events, and coral and algal community dynamics on coral reefs.

  5. Patterns of population structure and dispersal in the long-lived "redwood" of the coral reef, the giant barrel sponge ( Xestospongia muta)

    Science.gov (United States)

    Richards, Vincent P.; Bernard, Andrea M.; Feldheim, Kevin A.; Shivji, Mahmood S.

    2016-09-01

    Sponges are one of the dominant fauna on Florida and Caribbean coral reefs, with species diversity often exceeding that of scleractinian corals. Despite the key role of sponges as structural components, habitat providers, and nutrient recyclers in reef ecosystems, their dispersal dynamics are little understood. We used ten microsatellite markers to study the population structure and dispersal patterns of a prominent reef species, the giant barrel sponge ( Xestospongia muta), the long-lived "redwood" of the reef, throughout Florida and the Caribbean. F-statistics, exact tests of population differentiation, and Bayesian multi-locus genotype analyses revealed high levels of overall genetic partitioning ( F ST = 0.12, P = 0.001) and grouped 363 individuals collected from the Bahamas, Honduras, US Virgin Islands, Key Largo (Florida), and the remainder of the Florida reef tract into at minimum five genetic clusters ( K = 5). Exact tests, however, revealed further differentiation, grouping sponges sampled from five locations across the Florida reef tract (~250 km) into three populations, suggesting a total of six genetic populations across the eight locations sampled. Assignment tests showed dispersal over ecological timescales to be limited to relatively short distances, as the only migration detected among populations was within the Florida reef tract. Consequently, populations of this major coral reef benthic constituent appear largely self-recruiting. A combination of levels of genetic differentiation, genetic distance, and assignment tests support the important role of the Caribbean and Florida currents in shaping patterns of contemporary and historical gene flow in this widespread coral reef species.

  6. Coral reef origins of atmospheric dimethylsulfide at Heron Island, southern Great Barrier Reef, Australia

    Science.gov (United States)

    Swan, Hilton B.; Jones, Graham B.; Deschaseaux, Elisabeth S. M.; Eyre, Bradley D.

    2017-01-01

    Atmospheric dimethylsulfide (DMSa), continually derived from the world's oceans, is a feed gas for the tropospheric production of new sulfate particles, leading to cloud condensation nuclei that influence the formation and properties of marine clouds and ultimately the Earth's radiation budget. Previous studies on the Great Barrier Reef (GBR), Australia, have indicated coral reefs are significant sessile sources of DMSa capable of enhancing the tropospheric DMSa burden mainly derived from phytoplankton in the surface ocean; however, specific environmental evidence of coral reef DMS emissions and their characteristics is lacking. By using on-site automated continuous analysis of DMSa and meteorological parameters at Heron Island in the southern GBR, we show that the coral reef was the source of occasional spikes of DMSa identified above the oceanic DMSa background signal. In most instances, these DMSa spikes were detected at low tide under low wind speeds, indicating they originated from the lagoonal platform reef surrounding the island, although evidence of longer-range transport of DMSa from a 70 km stretch of coral reefs in the southern GBR was also observed. The most intense DMSa spike occurred in the winter dry season at low tide when convective precipitation fell onto the aerially exposed platform reef. This co-occurrence of events appeared to biologically shock the coral resulting in a seasonally aberrant extreme DMSa spike concentration of 45.9 nmol m-3 (1122 ppt). Seasonal DMS emission fluxes for the 2012 wet season and 2013 dry season campaigns at Heron Island were 5.0 and 1.4 µmol m-2 day-1, respectively, of which the coral reef was estimated to contribute 4 % during the wet season and 14 % during the dry season to the dominant oceanic flux.

  7. A Paddock to reef monitoring and modelling framework for the Great Barrier Reef: Paddock and catchment component.

    Science.gov (United States)

    Carroll, Chris; Waters, David; Vardy, Suzanne; Silburn, David M; Attard, Steve; Thorburn, Peter J; Davis, Aaron M; Halpin, Neil; Schmidt, Michael; Wilson, Bruce; Clark, Andrew

    2012-01-01

    Targets for improvements in water quality entering the Great Barrier Reef (GBR) have been set through the Reef Water Quality Protection Plan (Reef Plan). To measure and report on progress towards the targets set a program has been established that combines monitoring and modelling at paddock through to catchment and reef scales; the Paddock to Reef Integrated Monitoring, Modelling and Reporting Program (Paddock to Reef Program). This program aims to provide evidence of links between land management activities, water quality and reef health. Five lines of evidence are used: the effectiveness of management practices to improve water quality; the prevalence of management practice adoption and change in catchment indicators; long-term monitoring of catchment water quality; paddock & catchment modelling to provide a relative assessment of progress towards meeting targets; and finally marine monitoring of GBR water quality and reef ecosystem health. This paper outlines the first four lines of evidence.

  8. Deep genetic divergences among Indo-Pacific populations of the coral reef sponge Leucetta chagosensis (Leucettidae: Founder effects, vicariance, or both?

    Directory of Open Access Journals (Sweden)

    Epp Laura S

    2008-01-01

    Full Text Available Abstract Background An increasing number of studies demonstrate that genetic differentiation and speciation in the sea occur over much smaller spatial scales than previously appreciated given the wide distribution range of many morphologically defined coral reef invertebrate species and the presumed dispersal-enhancing qualities of ocean currents. However, knowledge about the processes that lead to population divergence and speciation is often lacking despite being essential for the understanding, conservation, and management of marine biodiversity. Sponges, a highly diverse, ecologically and economically important reef-invertebrate taxon, exhibit spatial trends in the Indo-West Pacific that are not universally reflected in other marine phyla. So far, however, processes generating those unexpected patterns are not understood. Results We unraveled the phylogeographic structure of the widespread Indo-Pacific coral reef sponge Leucetta chagosensis across its known geographic range using two nuclear markers: the rDNA internal transcribed spacers (ITS 1&2 and a fragment of the 28S gene, as well as the second intron of the ATP synthetase beta subunit-gene (ATPSb-iII. This enabled the detection of several deeply divergent clades congruent over both loci, one containing specimens from the Indian Ocean (Red Sea and Maldives, another one from the Philippines, and two other large and substructured NW Pacific and SW Pacific clades with an area of overlap in the Great Barrier Reef/Coral Sea. Reciprocally monophyletic populations were observed from the Philippines, Red Sea, Maldives, Japan, Samoa, and Polynesia, demonstrating long-standing isolation. Populations along the South Equatorial Current in the south-western Pacific showed isolation-by-distance effects. Overall, the results pointed towards stepping-stone dispersal with some putative long-distance exchange, consistent with expectations from low dispersal capabilities. Conclusion We argue that both

  9. Reef core insights into mid-Holocene water temperatures of the southern Great Barrier Reef

    Science.gov (United States)

    Sadler, James; Webb, Gregory E.; Leonard, Nicole D.; Nothdurft, Luke D.; Clark, Tara R.

    2016-10-01

    The tropical and subtropical oceans of the Southern Hemisphere are poorly represented in present-day climate models, necessitating an increased number of paleoclimate records from this key region to both understand the Earth's climate system and help constrain model simulations. Here we present a site-specific calibration of live collected massive Porites Sr/Ca records against concomitant in situ instrumental water temperature data from the fore-reef slope of Heron Reef, southern Great Barrier Reef (GBR). The resultant calibration, and a previously published Acropora calibration from the same site, was applied to subfossil coral material to investigate Holocene water temperatures at Heron Reef. U-Th-dated samples of massive Porites suggest cooler water temperatures with reduced seasonal amplitude at 5.2 ka (2.76-1.31°C cooler than present) and 7 ka (1.26°C cooler than present) at Heron Reef. These results contrast the previous suggestion of a mid-Holocene Thermal Maximum in the central GBR around 5.35 ka and 4.48 ka, yet may be explained by differences in temperature of the shallow ponded reef flat (central GBR) and the deeper reef slope waters (this study) and potential large reservoir correction errors associated with early radiocarbon dates. Combining coral-based water temperature anomaly reconstructions from the tropical and subtropical western Pacific indicates a coherent temperature response across the meridional gradient from Indonesia and Papua New Guinea down to the southern GBR. This similarity in reconstructed temperature anomalies suggests a high probability of an earlier expression of a mid-Holocene Thermal Maximum on the GBR between 6.8 and 6.0 ka.

  10. Diet and cross-shelf distribution of rabbitfishes (f. Siganidae) on the northern Great Barrier Reef: implications for ecosystem function

    Science.gov (United States)

    Hoey, A. S.; Brandl, S. J.; Bellwood, D. R.

    2013-12-01

    Herbivorous fishes are a critical functional group on coral reefs, and there is a clear need to understand the role and relative importance of individual species in reef processes. While numerous studies have quantified the roles of parrotfishes and surgeonfishes on coral reefs, the rabbitfishes (f. Siganidae) have been largely overlooked. Consequently, they are typically viewed as a uniform group of grazing or browsing fishes. Here, we quantify the diet and distribution of rabbitfish assemblages on six reefs spanning the continental shelf in the northern Great Barrier Reef. Our results revealed marked variation in the diet and distribution of rabbitfish species. Analysis of stomach contents identified four distinct groups: browsers of leathery brown macroalgae ( Siganus canaliculatus, S. javus), croppers of red and green macroalgae ( S. argenteus, S. corallinus, S. doliatus, S. spinus) and mixed feeders of diverse algal material, cyanobacteria, detritus and sediment ( S. lineatus, S. punctatissimus, S. punctatus, S. vulpinus). Surprisingly, the diet of the fourth group ( S. puellus) contained very little algal material (22.5 %) and was instead dominated by sponges (69.1 %). Together with this variation in diet, the distribution of rabbitfishes displayed clear cross-shelf variation. Biomass was greatest on inner-shelf reefs (112.7 ± 18.2 kg.ha-1), decreasing markedly on mid- (37.8 ± 4.6 kg.ha-1) and outer-shelf reefs (9.7 ± 2.2 kg.ha-1). This pattern was largely driven by the browsing S. canaliculatus that accounted for 50 % of the biomass on inner-shelf reefs, but was absent in mid- and outer-shelf reefs. Mixed feeders, although primarily restricted to the reef slope and back reef habitats, also decreased in abundance and biomass from inshore to offshore, while algal cropping taxa were the dominant group on mid-shelf reefs. These results clearly demonstrate the extent to which diet and distribution vary within the Siganidae and emphasise the importance of

  11. The exposure of the Great Barrier Reef to ocean acidification

    KAUST Repository

    Mongin, Mathieu

    2016-02-23

    The Great Barrier Reef (GBR) is founded on reef-building corals. Corals build their exoskeleton with aragonite, but ocean acidification is lowering the aragonite saturation state of seawater (Ωa). The downscaling of ocean acidification projections from global to GBR scales requires the set of regional drivers controlling Ωa to be resolved. Here we use a regional coupled circulation–biogeochemical model and observations to estimate the Ωa experienced by the 3,581 reefs of the GBR, and to apportion the contributions of the hydrological cycle, regional hydrodynamics and metabolism on Ωa variability. We find more detail, and a greater range (1.43), than previously compiled coarse maps of Ωa of the region (0.4), or in observations (1.0). Most of the variability in Ωa is due to processes upstream of the reef in question. As a result, future decline in Ωa is likely to be steeper on the GBR than currently projected by the IPCC assessment report.

  12. The exposure of the Great Barrier Reef to ocean acidification

    Science.gov (United States)

    Mongin, Mathieu; Baird, Mark E.; Tilbrook, Bronte; Matear, Richard J.; Lenton, Andrew; Herzfeld, Mike; Wild-Allen, Karen; Skerratt, Jenny; Margvelashvili, Nugzar; Robson, Barbara J.; Duarte, Carlos M.; Gustafsson, Malin S. M.; Ralph, Peter J.; Steven, Andrew D. L.

    2016-01-01

    The Great Barrier Reef (GBR) is founded on reef-building corals. Corals build their exoskeleton with aragonite, but ocean acidification is lowering the aragonite saturation state of seawater (Ωa). The downscaling of ocean acidification projections from global to GBR scales requires the set of regional drivers controlling Ωa to be resolved. Here we use a regional coupled circulation–biogeochemical model and observations to estimate the Ωa experienced by the 3,581 reefs of the GBR, and to apportion the contributions of the hydrological cycle, regional hydrodynamics and metabolism on Ωa variability. We find more detail, and a greater range (1.43), than previously compiled coarse maps of Ωa of the region (0.4), or in observations (1.0). Most of the variability in Ωa is due to processes upstream of the reef in question. As a result, future decline in Ωa is likely to be steeper on the GBR than currently projected by the IPCC assessment report. PMID:26907171

  13. The exposure of the Great Barrier Reef to ocean acidification.

    Science.gov (United States)

    Mongin, Mathieu; Baird, Mark E; Tilbrook, Bronte; Matear, Richard J; Lenton, Andrew; Herzfeld, Mike; Wild-Allen, Karen; Skerratt, Jenny; Margvelashvili, Nugzar; Robson, Barbara J; Duarte, Carlos M; Gustafsson, Malin S M; Ralph, Peter J; Steven, Andrew D L

    2016-02-23

    The Great Barrier Reef (GBR) is founded on reef-building corals. Corals build their exoskeleton with aragonite, but ocean acidification is lowering the aragonite saturation state of seawater (Ωa). The downscaling of ocean acidification projections from global to GBR scales requires the set of regional drivers controlling Ωa to be resolved. Here we use a regional coupled circulation-biogeochemical model and observations to estimate the Ωa experienced by the 3,581 reefs of the GBR, and to apportion the contributions of the hydrological cycle, regional hydrodynamics and metabolism on Ωa variability. We find more detail, and a greater range (1.43), than previously compiled coarse maps of Ωa of the region (0.4), or in observations (1.0). Most of the variability in Ωa is due to processes upstream of the reef in question. As a result, future decline in Ωa is likely to be steeper on the GBR than currently projected by the IPCC assessment report.

  14. The large-scale influence of the Great Barrier Reef matrix on wave attenuation

    Science.gov (United States)

    Gallop, Shari L.; Young, Ian R.; Ranasinghe, Roshanka; Durrant, Tom H.; Haigh, Ivan D.

    2014-12-01

    Offshore reef systems consist of individual reefs, with spaces in between, which together constitute the reef matrix. This is the first comprehensive, large-scale study, of the influence of an offshore reef system on wave climate and wave transmission. The focus was on the Great Barrier Reef (GBR), Australia, utilizing a 16-yr record of wave height from seven satellite altimeters. Within the GBR matrix, the wave climate is not strongly dependent on reef matrix submergence. This suggests that after initial wave breaking at the seaward edge of the reef matrix, wave energy that penetrates the matrix has little depth modulation. There is no clear evidence to suggest that as reef matrix porosity (ratio of spaces between individual reefs to reef area) decreases, wave attenuation increases. This is because individual reefs cast a wave shadow much larger than the reef itself; thus, a matrix of isolated reefs is remarkably effective at attenuating wave energy. This weak dependence of transmitted wave energy on depth of reef submergence, and reef matrix porosity, is also evident in the lee of the GBR matrix. Here, wave conditions appear to be dependent largely on local wind speed, rather than wave conditions either seaward, or within the reef matrix. This is because the GBR matrix is a very effective wave absorber, irrespective of water depth and reef matrix porosity.

  15. Impact Of Coral Structures On Wave Directional Spreading Across A Shallow Reef Flat - Lizard Island, Northern Great Barrier Reef

    Science.gov (United States)

    Leon, J. X.; Baldock, T.; Callaghan, D. P.; Hoegh-guldberg, O.; Mumby, P.; Phinn, S. R.; Roelfsema, C. M.; Saunders, M. I.

    2013-12-01

    Coral reef hydrodynamics operate at several and overlapping spatial-temporal scales. Waves have the most important forcing function on shallow (labour and time-consuming task. In this study we measured the impact of coral structures on wave directional spreading. Field data was collected during October 2012 across a reef flat on Lizard Island, northern Great Barrier Reef. Wave surface levels were measured using an array of self-logging pressure sensors. A rapid in situ close-range photogrammetric method was used to create a high-resolution (0.5 cm) image mosaic and digital elevation model. Individual coral heads were extracted from these datasets using geo-morphometric and object-based image analysis techniques. Wave propagation was modelled using a modified version of the SWAN model which includes the measured coral structures in 2m by 1m cells across the reef. The approach followed a cylinder drag approach, neglecting skin friction and inertial components. Testing against field data included bed skin friction. Our results show, for the first time, how the variability of the reef benthos structures affects wave dissipation across a shallow reef flat. This has important implications globally for coral reefs, due to the large extent of their area occupied by reef flats, particularly, as global-scale degradation in coral reef health is causing a lowering of reef carbonate production that might lead to a decrease in reef structure and roughness.

  16. How does the proliferation of the coral-killing sponge Terpios hoshinota affect benthic community structure on coral reefs?

    Science.gov (United States)

    Elliott, Jennifer; Patterson, Mark; Summers, Natalie; Miternique, Céline; Montocchio, Emma; Vitry, Eugene

    2016-09-01

    Terpios hoshinota is an encrusting sponge and a fierce space competitor. It kills stony corals by overgrowing them and can impact reefs on the square kilometer scale. We investigated an outbreak of T. hoshinota in 2014 at the island of Mauritius to determine its impacts on coral community structure. Surveys were conducted at the putative outbreak center, an adjacent area, and around the island to determine the extent of spread of the sponge and which organisms it impacted. In addition, quadrats were monitored for 5 months (July-December) to measure the spreading rates of T. hoshinota and Acropora austera in areas both with and without T. hoshinota. The photosynthetic capabilities of T. hoshinota and A. austera were also measured. Terpios hoshinota was well established, covering 13% of an estimated 416 m2 of available hard coral substrate at the putative outbreak center, and 10% of an estimated 588 m2 of available hard coral substrate at the adjacent area. The sponge was observed at only one other site around Mauritius. Terpios hoshinota and A. austera increased their planar areas by 26.9 and 13.9%, respectively, over five months. No new colonies of T. hoshinota were recorded in adjacent sponge-free control areas, suggesting that sponge recruitment is very low during austral winter and spring. The sponge was observed to overgrow five stony corals; however, it showed a preference for branching corals, especially A. austera. This is the first time that a statistically significant coral substrate preference by T. hoshinota has been reported. Terpios hoshinota also had a significantly higher photosynthetic capacity than A. austera at irradiance >500 μmol photons m-2 s-1, a possible explanation for its high spreading rate. We discuss the long-term implications of the proliferation of T. hoshinota on community structure and dynamics of our study site.

  17. A bioindicator system for water quality on inshore coral reefs of the Great Barrier Reef.

    Science.gov (United States)

    Fabricius, Katharina E; Cooper, Timothy F; Humphrey, Craig; Uthicke, Sven; De'ath, Glenn; Davidson, Johnston; LeGrand, Hélène; Thompson, Angus; Schaffelke, Britta

    2012-01-01

    Responses of bioindicator candidates for water quality were quantified in two studies on inshore coral reefs of the Great Barrier Reef (GBR). In Study 1, 33 of the 38 investigated candidate indicators (including coral physiology, benthos composition, coral recruitment, macrobioeroder densities and FORAM index) showed significant relationships with a composite index of 13 water quality variables. These relationships were confirmed in Study 2 along four other water quality gradients (turbidity and chlorophyll). Changes in water quality led to multi-faceted shifts from phototrophic to heterotrophic benthic communities, and from diverse coral dominated communities to low-diversity communities dominated by macroalgae. Turbidity was the best predictor of biota; hence turbidity measurements remain essential to directly monitor water quality on the GBR, potentially complemented by our final calibrated 12 bioindicators. In combination, this bioindicator system may be used to assess changes in water quality, especially where direct water quality data are unavailable.

  18. Coral bleaching: one disturbance too many for near-shore reefs of the Great Barrier Reef

    Science.gov (United States)

    Thompson, A. A.; Dolman, A. M.

    2010-09-01

    The dynamic nature of coral communities can make it difficult to judge whether a reef system is resilient to the current disturbance regime. To address this question of resilience for near-shore coral communities of the Great Barrier Reef (Australia) a data set consisting of 350 annual observations of benthic community change was compiled from existing monitoring data. These data spanned the period 1985-2007 and were derived from coral reefs within 20 km of the coast. During years without major disturbance events, cover increase of the Acroporidae was much faster than it was for other coral families; a median of 11% per annum compared to medians of less than 4% for other coral families. Conversely, Acroporidae were more severely affected by cyclones and bleaching events than most other families. A simulation model parameterised with these observations indicated that while recovery rates of hard corals were sufficient to compensate for impacts associated with cyclones and crown-of-thorns starfish, the advent of mass bleaching has lead to a significant change in the composition of the community and a rapid decline in hard coral cover. Furthermore, if bleaching events continue to occur with the same frequency and severity as in the recent past, the model predicts that the cover of Acroporidae will continue to decline. Although significant cover of live coral remains on near-shore reefs, and recovery is observed during inter-disturbance periods, it appears that this system will not be resilient to the recent disturbance regime over the long term. Conservation strategies for coral reefs should focus on both mitigating local factors that act synergistically to increase the susceptibility of Acroporidae to climate change while promoting initiatives that maximise the recovery potential from inevitable disturbances.

  19. Nephtyidae (Annelida: Phyllodocida) of Lizard Island, Great Barrier Reef, Australia.

    Science.gov (United States)

    Murray, Anna; Wong, Eunice; Hutchings, Pat

    2015-09-18

    Seven species of the family Nephtyidae are recorded from Lizard Island, none previously reported from the Great Barrier Reef. Two species of Aglaophamus, four species of Micronephthys, one new and one previously unreported from Australia, and one species of Nephtys, were identified from samples collected during the Lizard Island Polychaete Workshop 2013, as well as from ecological studies undertaken during the 1970s and deposited in the Australian Museum marine invertebrate Collections. A dichotomous key to aid identification of these species newly reported from Lizard Island is provided.

  20. Symbiodinium (Dinophyceae) diversity in reef-invertebrates along an offshore to inshore reef gradient near Lizard Island, Great Barrier Reef.

    Science.gov (United States)

    Tonk, Linda; Sampayo, Eugenia M; LaJeunesse, Todd C; Schrameyer, Verena; Hoegh-Guldberg, Ove

    2014-06-01

    Despite extensive work on the genetic diversity of reef invertebrate-dinoflagellate symbioses on the Great Barrier Reef (GBR; Australia), large information gaps exist from northern and inshore regions. Therefore, a broad survey was done comparing the community of inshore, mid-shelf and outer reefs at the latitude of Lizard Island. Symbiodinium (Freudenthal) diversity was characterized using denaturing gradient gel electrophoresis fingerprinting and sequencing of the ITS2 region of the ribosomal DNA. Thirty-nine distinct Symbiodinium types were identified from four subgeneric clades (B, C, D, and G). Several Symbiodinium types originally characterized from the Indian Ocean were discovered as well as eight novel types (C1kk, C1LL, C3nn, C26b, C161a, C162, C165, C166). Multivariate analyses on the Symbiodinium species diversity data showed a strong link with host identity, consistent with previous findings. Of the four environmental variables tested, mean austral winter sea surface temperature (SST) influenced Symbiodinium distribution across shelves most significantly. A similar result was found when the analysis was performed on Symbiodinium diversity data of genera with an open symbiont transmission mode separately with chl a and PAR explaining additional variation. This study underscores the importance of SST and water quality related variables as factors driving Symbiodinium distribution on cross-shelf scales. Furthermore, this study expands our knowledge on Symbiodinium species diversity, ecological partitioning (including host-specificity) and geographic ranges across the GBR. The accelerating rate of environmental change experienced by coral reef ecosystems emphasizes the need to comprehend the full complexity of cnidarian symbioses, including the biotic and abiotic factors that shape their current distributions.

  1. Two new desma-less species of Theonella Gray, 1868 (Demospongiae: Astrophorida: Theonellidae), from the Great Barrier Reef, Australia,and a re-evaluation of one species assigned previously to Dercitus Gray, 1867.

    Science.gov (United States)

    Hall, Kathryn A; Ekins, Merrick G; Hooper, John N A

    2014-06-11

    Extensive surveys of the biodiversity on the seafloor of the inter-reef regions of the Great Barrier Reef, Australia, have resulted in the collection of large numbers of sponges, many of which are likely new to science. Identification of these sponges, however, was made difficult by the absence in some specimens of key diagnostic characters, such as megascleres. We used an integrated approach to the taxonomy of these sponges, incorporating morphological examination by SEM, analysis of DNA sequence data (using the COI barcoding fragment of mtDNA) and preliminary studies of the chemistry of the sponges, to describe the new species, which were found to contain no native spicules other than acanthose microrhabds. Here, we propose two new species of Theonella Gray, 1868: Theonella deliqua n. sp. (found in association with a single unidentified species of siliquariid mollusc) and Theonella maricae n. sp. from the Great Barrier Reef. Further, we propose the new combination of Theonella xantha (Sutcliffe, Hooper and Pitcher 2010) n. comb. for another microrhabd-only-bearing species. On the basis of our gene trees, we recognise Theonella (and Theonellidae Lendenfeld, 1903) within Astrophorida Sollas, 1887. We discuss the potential for chemotaxonomic and DNA-based insights into the origins and radiation of species of Theonella and explore the evolutionary significance of the reduced morphology of the three additional species recognised here.

  2. Impacts and recovery from severe tropical cyclone Yasi on the Great Barrier Reef.

    Science.gov (United States)

    Beeden, Roger; Maynard, Jeffrey; Puotinen, Marjetta; Marshall, Paul; Dryden, Jen; Goldberg, Jeremy; Williams, Gareth

    2015-01-01

    Full recovery of coral reefs from tropical cyclone (TC) damage can take decades, making cyclones a major driver of habitat condition where they occur regularly. Since 1985, 44 TCs generated gale force winds (≥17 metres/second) within the Great Barrier Reef Marine Park (GBRMP). Of the hurricane strength TCs (≥H1-Saffir Simpson scale; ≥ category 3 Australian scale), TC Yasi (February, 2011) was the largest. In the weeks after TC Yasi crossed the GBRMP, participating researchers, managers and rangers assessed the extent and severity of reef damage via 841 Reef Health and Impact Surveys at 70 reefs. Records were scaled into five damage levels representing increasingly widespread colony-level damage (1, 2, 3) and reef structural damage (4, 5). Average damage severity was significantly affected by direction (north vs south of the cyclone track), reef shelf position (mid-shelf vs outer-shelf) and habitat type. More outer-shelf reefs suffered structural damage than mid-shelf reefs within 150 km of the track. Structural damage spanned a greater latitudinal range for mid-shelf reefs than outer-shelf reefs (400 vs 300 km). Structural damage was patchily distributed at all distances, but more so as distance from the track increased. Damage extended much further from the track than during other recent intense cyclones that had smaller circulation sizes. Just over 15% (3,834 km2) of the total reef area of the GBRMP is estimated to have sustained some level of coral damage, with ~4% (949 km2) sustaining a degree of structural damage. TC Yasi likely caused the greatest loss of coral cover on the GBR in a 24-hour period since 1985. Severely impacted reefs have started to recover; coral cover increased an average of 4% between 2011 and 2013 at re-surveyed reefs. The in situ assessment of impacts described here is the largest in scale ever conducted on the Great Barrier Reef following a reef health disturbance.

  3. [Community structure of sponges (Porifera) in three reefs at Morrocoy National Park, Venezuela and its correspondence with some environmental variables].

    Science.gov (United States)

    Romero, Marco A; Villamizar, Estrella; Malaver, Nora

    2013-09-01

    Sponges have an important ecological role in coral reef ecosystems. However, when compared to other benthic Phyla, it has been little researched. This research was focused in the variability of the community structure of sponges in three locations at Morrocoy National Park (Cayo Sombrero, Playa Mero and Punta Brava) exposed to different environmental conditions (transparency and currents intensity) and affected in different degree of severity by a mass mortality event in 1996. A total of 15 transects (10 m long and 1 m wide) were evaluated in three strata (between 3 and 15 m depth) in each site, where all the individuals were counted by species. Relative abundance by species, diversity and evenness were calculated. Locations showed differences respect turbidity, wave and current intensity. 27 species were found in Morrocoy; Cayo Sombrero (23), Playa Mero (18) and Punta Brava (15). Agelas sceptrum, Amphimedon erina and Niphates erecta were the most common in first location; Niphates erecta and Dysidea etheria in Playa Mero and Dysidea etheria, Niphates erecta and Amphimedon erina in Punta Brava. The species composition showed statistical differences between all three locations; Cayo Sombrero resulted the most diverse and even, followed by Playa Mero and Punta Brava. According to Sorensen Similarity Index results, Cayo Sombrero and Playa Mero were more similar, while Punta Brava resulted the most different. The variability in environmental conditions and the differential mass mortality effects of 1996 in all three reefs, were probably the main causes of the differences between their sponge communities. Nevertheless, we cannot conclude about the weight of these factors.

  4. Nereididae (Annelida: Phyllodocida) of Lizard Island, Great Barrier Reef, Australia.

    Science.gov (United States)

    Glasby, Christopher J

    2015-09-18

    Nereididae is one of the most ubiquitous of polychaete families, yet knowledge of their diversity in the northern Great Barrier Reef is poor; few species have been previously reported from any of the atolls or islands including Lizard Island. In this study, the diversity of the family from Lizard Island and surrounding reefs is documented based on museum collections derived from surveys conducted mostly over the last seven years. The Lizard Island nereidid fauna was found to be represented by 14 genera and 38 species/species groups, including 11 putative new species. Twelve species are newly reported from Lizard Island; four of these are also first records for Australia. For each genus and species, diagnoses and/or taxonomic remarks are provided in addition to notes on their habitat on Lizard Island, and general distribution; the existence of tissue samples tied to vouchered museum specimens is indicated. Fluorescence photography is used to help distinguish closely similar species of Nereis and Platynereis. A key is provided to facilitate identification and encourage further taxonomic, molecular and ecological studies on the group.

  5. Bacterial diversity associated with Cinachyra cavernosa and Haliclona pigmentifera, cohabiting sponges in the coral reef ecosystem of Gulf of Mannar, southeast coast of India

    Digital Repository Service at National Institute of Oceanography (India)

    Jasmin, C.; Anas, A.; Nair, S.

    cavernosa and Haliclona pigmentifera, as well as that in the ambient water from the coral reef ecosystems of the Gulf of Mannar, located along the southeast coast of India. Two hundred and fifty two clones in the 16S rRNA gene library of these sponges were...

  6. Patterns in the distribution of coral communities across the central Great Barrier Reef

    Science.gov (United States)

    Done, T. J.

    1982-10-01

    Despite the pre-eminence of the Great Barrier Reef, there has been little systematic description of its biotic communities, and in particular, of the corals themselves. Only recently have the problems of coral taxonomy been sufficiently resolved to allow a beginning to be made in rectifying this deficiency. The present study describes seventeen assemblages of corals which occupy the major habitat types found in and near the central Great Barrier Reef. The habitats studied range from the wave swept reef flats of Coral Sea atolls to the slopes of small reefs occupying sheltered, muddy conditions near the coast. These, and the array of reefs between, have characteristic suites of coral communities which provide the basis for a classification of reefs into non- Acropora reefs and various Acropora reefs. It is speculated that the faunistic differences are maintained because reefs are primarily self-seeded and because the majority of larvae from external sources are of species which are already present. The greatest diversity of both species and community types was found on reefs near the middle of the continental shelf, while the oceanic atolls and nearshore silt-affected reefs are almost equally depauperate.

  7. Prey Density Threshold and Tidal Influence on Reef Manta Ray Foraging at an Aggregation Site on the Great Barrier Reef.

    Science.gov (United States)

    Armstrong, Asia O; Armstrong, Amelia J; Jaine, Fabrice R A; Couturier, Lydie I E; Fiora, Kym; Uribe-Palomino, Julian; Weeks, Scarla J; Townsend, Kathy A; Bennett, Mike B; Richardson, Anthony J

    2016-01-01

    Large tropical and sub-tropical marine animals must meet their energetic requirements in a largely oligotrophic environment. Many planktivorous elasmobranchs, whose thermal ecologies prevent foraging in nutrient-rich polar waters, aggregate seasonally at predictable locations throughout tropical oceans where they are observed feeding. Here we investigate the foraging and oceanographic environment around Lady Elliot Island, a known aggregation site for reef manta rays Manta alfredi in the southern Great Barrier Reef. The foraging behaviour of reef manta rays was analysed in relation to zooplankton populations and local oceanography, and compared to long-term sighting records of reef manta rays from the dive operator on the island. Reef manta rays fed at Lady Elliot Island when zooplankton biomass and abundance were significantly higher than other times. The critical prey density threshold that triggered feeding was 11.2 mg m-3 while zooplankton size had no significant effect on feeding. The community composition and size structure of the zooplankton was similar when reef manta rays were feeding or not, with only the density of zooplankton changing. Higher zooplankton biomass was observed prior to low tide, and long-term (~5 years) sighting data confirmed that more reef manta rays are also observed feeding during this tidal phase than other times. This is the first study to examine prey availability at an aggregation site for reef manta rays and it indicates that they feed in locations and at times of higher zooplankton biomass.

  8. Prey Density Threshold and Tidal Influence on Reef Manta Ray Foraging at an Aggregation Site on the Great Barrier Reef.

    Directory of Open Access Journals (Sweden)

    Asia O Armstrong

    Full Text Available Large tropical and sub-tropical marine animals must meet their energetic requirements in a largely oligotrophic environment. Many planktivorous elasmobranchs, whose thermal ecologies prevent foraging in nutrient-rich polar waters, aggregate seasonally at predictable locations throughout tropical oceans where they are observed feeding. Here we investigate the foraging and oceanographic environment around Lady Elliot Island, a known aggregation site for reef manta rays Manta alfredi in the southern Great Barrier Reef. The foraging behaviour of reef manta rays was analysed in relation to zooplankton populations and local oceanography, and compared to long-term sighting records of reef manta rays from the dive operator on the island. Reef manta rays fed at Lady Elliot Island when zooplankton biomass and abundance were significantly higher than other times. The critical prey density threshold that triggered feeding was 11.2 mg m-3 while zooplankton size had no significant effect on feeding. The community composition and size structure of the zooplankton was similar when reef manta rays were feeding or not, with only the density of zooplankton changing. Higher zooplankton biomass was observed prior to low tide, and long-term (~5 years sighting data confirmed that more reef manta rays are also observed feeding during this tidal phase than other times. This is the first study to examine prey availability at an aggregation site for reef manta rays and it indicates that they feed in locations and at times of higher zooplankton biomass.

  9. Particulate organic matter as a food source for a coral reef sponge.

    Science.gov (United States)

    Hadas, E; Shpigel, M; Ilan, M

    2009-11-01

    The ability of sponges to feed in diverse (including oligotrophic) ecosystems significantly contributes to their ubiquitous aquatic distribution. It was hypothesized that sponges that harbour small amounts of symbiotic bacteria in their mass feed mainly on particulate organic matter (POM). We examined the nearly symbiont-free (by microscopic observation) filter-feeding Red Sea sponge Negombata magnifica in order to: (a) study removal efficiency of naturally occurring organic particles, (b) measure the total amount of absorbed particulate organic carbon (POC) and nitrogen (PON), and (c) estimate organic carbon and nitrogen flux in this sponge. Total amount of organic carbon and nitrogen in the Gulf of Aqaba was found to be 48.46+/-5.69 microg l(-1) and 6.45+/-0.7 microg l(-1), respectively. While detritus contributed 54% of POC, most PON (84%) came from planktonic microorganisms, mainly prokaryotes. Particle removal efficiency ranged from 99% (the cyanobacterium Synechococcus sp.) to 37% (for eukaryotic cells >8 microm). On average, N. magnifica ingested 480 microg C day(-1) g(-1) (wet mass, WM) sponge and 76.6 microg N day(-1) g(-1) sponge. Ingested POC balanced 85% of the sponge's energetic demand but more is needed for biomass production because it cannot digest all of the carbon. 54.4+/-16.1 microg N day(-1) g(-1) (WM) nitrogen was excreted as total ammonia nitrogen (TAN); however, nitrogen allowance should be higher because more nitrogen is deposited for sponge biomass during growth. It is hypothesized that the discrepancy in the nutritional requirements should be covered by the sponge absorbing carbon and nitrogen from sources that are not dealt with in the present research, such as dissolved organic carbon and nitrogen. This study highlights the significance of detritus as a carbon source, and prokaryotes as a PON source in sponge feeding.

  10. Serpulidae (Annelida) of Lizard Island, Great Barrier Reef, Australia.

    Science.gov (United States)

    Kupriyanova, Elena K; Sun, Yanan; Hove, Harry A Ten; Wong, Eunice; Rouse, Greg W

    2015-09-18

    Serpulidae are obligatory sedentary polychaetes inhabiting calcareous tubes that are most common in subtropical and tropical areas of the world. This paper describes serpulid polychaetes collected from Lizard Island, Great Barrier Reef, Australia in 1983-2013 and deposited in Australian museums and overseas. In total, 17 serpulid genera were recorded, but although the study deals with 44 nominal taxa, the exact number of species remains unclear because a number of genera (i.e., Salmacina, Protula, Serpula, Spirobranchus, and Vermiliopsis) need world-wide revisions. Some species described herein are commonly found in the waters around Lizard Island, but had not previously been formally reported. A new species of Hydroides (H. lirs) and two new species of Semivermilia (S. annehoggettae and S. lylevaili) are described. A taxonomic key to all taxa found at Lizard Island is provided.

  11. Effects of Great Barrier Reef degradation on recreational reef-trip demand: a contingent behaviour approach

    NARCIS (Netherlands)

    Kragt, M.E.; Roebeling, P.C.; Ruijs, A.J.W.

    2009-01-01

    There is a growing concern that increased nutrient and sediment runoff from river catchments are a potential source of coral reef degradation. Degradation of reefs may affect the number of tourists visiting the reef and, consequently, the economic sectors that rely on healthy reefs for their income

  12. Water quality and coral bleaching thresholds: formalising the linkage for the inshore reefs of the Great Barrier Reef, Australia.

    Science.gov (United States)

    Wooldridge, Scott A

    2009-05-01

    The threats of wide-scale coral bleaching and reef demise associated with anthropogenic climate change are widely known. Here, the additional role of poor water quality in lowering the thermal tolerance (i.e. bleaching 'resistance') of symbiotic reef corals is considered. In particular, a quantitative linkage is established between terrestrially-sourced dissolved inorganic nitrogen (DIN) loading and the upper thermal bleaching thresholds of inshore reefs on the Great Barrier Reef, Australia. Significantly, this biophysical linkage provides concrete evidence for the oft-expressed belief that improved coral reef management will increase the regional-scale survival prospects of corals reefs to global climate change. Indeed, for inshore reef areas with a high runoff exposure risk, it is shown that the potential benefit of this 'local' management imperative is equivalent to approximately 2.0-2.5 degrees C in relation to the upper thermal bleaching limit; though in this case, a potentially cost-prohibitive reduction in end-of-river DIN of >50-80% would be required. An integrated socio-economic modelling framework is outlined that will assist future efforts to understand (optimise) the alternate tradeoffs that the water quality/coral bleaching linkage presents.

  13. Low genetic structuring among Pericharax heteroraphis (Porifera: Calcarea) populations from the Great Barrier Reef (Australia), revealed by analysis of nrDNA and nuclear intron sequences

    Science.gov (United States)

    Bentlage, B.; Wörheide, G.

    2007-12-01

    A new nuclear marker system for sponges, the second intron of the nuclear ATP synthetase beta subunit gene (ATPSbeta-iII), was analysed together with nuclear ribosomal DNA (nrDNA) internal transcribed spacer (ITS) sequences aiming to uncover phylogeographic patterns of the coral reef sponge Pericharax heteroraphis in the south-west Pacific, focussing on the Great Barrier Reef (GBR). Variation among ITS sequences was low (Single-Stranded Conformation Polymorphism (SSCP) analysis proved to be an effective tool for phasing ATPSbeta-iII alleles of 292 bp length. Although sample sizes were limited for most populations and these results await corroboration by an extended sampling regime, a past population subdivision with subsequent range expansion was indicated by a ‘dumb-bell’ shaped statistical parsimony network of GBR ATPSbeta-iII alleles. Although no clear phylogeographic break was discovered on the GBR, the northern GBR was genetically differentiated from the central/southern GBR and Queensland Plateau, based on significant pairwise F st values (0.137-0.275 and p ≤ 0.05) of pooled regional populations. The ATPSbeta-iII used in this study outperformed the frequently employed nrDNA ITS and might also turn out to be useful for phylogeographic studies of other coral reef taxa.

  14. Cold-water coral reefs and adjacent sponge grounds: Hotspots of benthic respiration and organic carbon cycling in the deep sea

    Directory of Open Access Journals (Sweden)

    Cecile eCathalot

    2015-06-01

    Full Text Available Cold-water coral reefs and adjacent sponge grounds are distributed widely in the deep ocean, where only a small fraction of the surface productivity reaches the seafloor as detritus. It remains elusive how these hotspots of biodiversity can thrive in such a food-limited environment, as data on energy flow and organic carbon utilization are critically lacking. Here we report in situ community respiration rates for cold-water coral and sponge ecosystems obtained by the non-invasive aquatic Eddy Correlation technique. Oxygen uptake rates over coral reefs and adjacent sponge grounds in the Træna Coral Field (Norway were 9-20 times higher than those of the surrounding soft sediments. These high respiration rates indicate strong organic matter consumption, and hence suggest a local focusing onto these ecosystems of the downward flux of organic matter that is exported from the surface ocean. Overall, our results show that coral reefs and adjacent sponge grounds are hotspots of carbon processing in the food-limited deep ocean, and that these deep-sea ecosystems play a more prominent role in marine biogeochemical cycles than previously recognized.

  15. Rapid survey protocol that provides dynamic information on reef condition to managers of the Great Barrier Reef.

    Science.gov (United States)

    Beeden, R J; Turner, M A; Dryden, J; Merida, F; Goudkamp, K; Malone, C; Marshall, P A; Birtles, A; Maynard, J A

    2014-12-01

    Managing to support coral reef resilience as the climate changes requires strategic and responsive actions that reduce anthropogenic stress. Managers can only target and tailor these actions if they regularly receive information on system condition and impact severity. In large coral reef areas like the Great Barrier Reef Marine Park (GBRMP), acquiring condition and impact data with good spatial and temporal coverage requires using a large network of observers. Here, we describe the result of ~10 years of evolving and refining participatory monitoring programs used in the GBR that have rangers, tourism operators and members of the public as observers. Participants complete Reef Health and Impact Surveys (RHIS) using a protocol that meets coral reef managers' needs for up-to-date information on the following: benthic community composition, reef condition and impacts including coral diseases, damage, predation and the presence of rubbish. Training programs ensure that the information gathered is sufficiently precise to inform management decisions. Participants regularly report because the demands of the survey methodology have been matched to their time availability. Undertaking the RHIS protocol we describe involves three ~20 min surveys at each site. Participants enter data into an online data management system that can create reports for managers and participants within minutes of data being submitted. Since 2009, 211 participants have completed a total of more than 10,415 surveys at more than 625 different reefs. The two-way exchange of information between managers and participants increases the capacity to manage reefs adaptively, meets education and outreach objectives and can increase stewardship. The general approach used and the survey methodology are both sufficiently adaptable to be used in all reef regions.

  16. Seasonal Dynamical Prediction of Coral Bleaching in the Great Barrier Reef, Australia

    Science.gov (United States)

    Spillman, C. M.; Alves, O.

    2009-05-01

    Sea surface temperature (SST) is now recognised as the primary cause of mass coral bleaching events. Coral bleaching occurs during times of stress, particularly when SSTs exceed the coral colony's tolerance level. Global warming is potentially a serious threat to the future of the world's reef systems with predictions by the international community that bleaching will increase in both frequency and severity. Advance warning of anomalous sea surface temperatures, and thus potential bleaching events, would allow for the implementation of management strategies to minimise reef damage. Seasonal SST forecasts from the coupled ocean-atmosphere model POAMA (Bureau of Meteorology) have skill in the Great Barrier Reef (Australia) several months into the future. We will present model forecasts and probabilistic products for use in reef management, and assess model skill in the region. These products will revolutionise the way in which coral bleaching events are monitored and assessed in the Great Barrier Reef and Australian region.

  17. Distribution, abundance and diversity of crustose coralline algae on the Great Barrier Reef

    Science.gov (United States)

    Dean, Angela J.; Steneck, Robert S.; Tager, Danika; Pandolfi, John M.

    2015-06-01

    The Great Barrier Reef (GBR) is the world's largest coral reef ecosystem. Crustose coralline algae (CCA) are important contributors to reef calcium carbonate and can facilitate coral recruitment. Despite the importance of CCA, little is known about species-level distribution, abundance, and diversity, and how these vary across the continental shelf and key habitat zones within the GBR. We quantified CCA species distributions using line transects ( n = 127) at 17 sites in the northern and central regions of the GBR, distributed among inner-, mid-, and outer-shelf regions. At each site, we identified CCA along replicate transects in three habitat zones: reef flat, reef crest, and reef slope. Taxonomically, CCA species are challenging to identify (especially in the field), and there is considerable disagreement in approach. We used published, anatomically based taxonomic schemes for consistent identification. We identified 30 CCA species among 12 genera; the most abundant species were Porolithon onkodes, Paragoniolithon conicum (sensu Adey), Neogoniolithon fosliei, and Hydrolithon reinboldii. Significant cross-shelf differences were observed in CCA community structure and CCA abundance, with inner-shelf reefs exhibiting lower CCA abundance than outer-shelf reefs. Shelf position, habitat zone, latitude, depth, and the interaction of shelf position and habitat were all significantly associated with variation in composition of CCA communities. Collectively, shelf position, habitat, and their interaction contributed to 22.6 % of the variation in coralline communities. Compared to mid- and outer-shelf sites, inner-shelf sites exhibited lower relative abundances of N. fosliei and Lithophyllum species. Reef crest habitats exhibited greater abundance of N. fosliei than reef flat and reef slope habitats. Reef slope habitats exhibited lower abundance of P. onkodes, but greater abundance of Neogoniolithon clavycymosum than reef crest and reef slope habitats. These findings

  18. Coral community change on a turbid-zone reef complex: developing baseline records for the central Great Barrier Reef's nearshore coral reefs

    Science.gov (United States)

    Johnson, Jamie; Perry, Chris; Smithers, Scott; Morgan, Kyle; Johnson, Kenneth

    2016-04-01

    Understanding past coral community development and reef growth is crucial for placing contemporary ecological and environmental change within appropriate reef-building timescales. Coral reefs located within coastal inner-shelf zones are widely perceived to be most susceptible to declining water quality due to their proximity to modified river catchments. On the inner-shelf of Australia's Great Barrier Reef (GBR) the impacts and magnitude of declining water quality since European settlement (c. 1850 A.D.) still remain unclear. This relates to ongoing debates concerning the significance of increased sediment yields against the naturally high background sedimentary regimes and the paucity of long-term (>decadal) ecological datasets. To provide baseline records for interpreting coral community change within the turbid inner-shelf waters of the GBR, 21 cores were recovered from five nearshore reefs spanning an evolutionary spectrum of reef development. Discrete intervals pre- and post-dating European settlement, but deposited at equivalent water depths, were identified by radiocarbon dating, enabling the discrimination of extrinsic and intrinsic driven shifts within the coral palaeo-record. We report no discernible evidence of anthropogenically-driven disturbance on the coral community records at these sites. Instead, significant transitions in coral community assemblages relating to water depth and vertical reef accretion were observed. We suggest that these records may be used to contextualise observed contemporary ecological change within similar environments on the GBR.

  19. Sponge-associated bacteria of Lakshadweep coral reefs, India: resource for extracellular hydrolytic enzymes

    Digital Repository Service at National Institute of Oceanography (India)

    Feby, A; Nair, S.

    bacteria and o species of the genus Aphanocapsa (Cyano- ted enzymes from marine ant- in marine sponges. Journal of Microbiology sponge Verongia fistularis (Porifera: 990) Comparison of thi, ushova, A., Brummer, F., Barth, S., Lange, S. and , S.... and Colwell, R.R. (1990) Phenotypic bean sclerosponge, Ceratoporella nicholsoni. Applied and Environmental Microbiology, 56(6), 1750-1762. [9] Holt, J.G., Krieg, N.R., Sneath, P.H.A., Staley, J.T. and Williams, S.T. (2000). Bergey's manual of determina...

  20. Evolving polycentric governance of the Great Barrier Reef.

    Science.gov (United States)

    Morrison, Tiffany H

    2017-03-27

    A growing field of sustainability science examines how environments are transformed through polycentric governance. However, many studies are only snapshot analyses of the initial design or the emergent structure of polycentric regimes. There is less systematic analysis of the longitudinal robustness of polycentric regimes. The problem of robustness is approached by focusing not only on the structure of a regime but also on its context and effectiveness. These dimensions are examined through a longitudinal analysis of the Great Barrier Reef (GBR) governance regime, drawing on in-depth interviews and demographic, economic, and employment data, as well as organizational records and participant observation. Between 1975 and 2011, the GBR regime evolved into a robust polycentric structure as evident in an established set of multiactor, multilevel arrangements addressing marine, terrestrial, and global threats. However, from 2005 onward, multiscale drivers precipitated at least 10 types of regime change, ranging from contextual change that encouraged regime drift to deliberate changes that threatened regime conversion. More recently, regime realignment also has occurred in response to steering by international organizations and shocks such as the 2016 mass coral-bleaching event. The results show that structural density and stability in a governance regime can coexist with major changes in that regime's context and effectiveness. Clear analysis of the vulnerability of polycentric governance to both diminishing effectiveness and the masking effects of increasing complexity provides sustainability science and governance actors with a stronger basis to understand and respond to regime change.

  1. Assessing the value of Earth Observation for managing coral reefs: an example from the Great Barrier Reef.

    Science.gov (United States)

    Bouma, Jetske A; Kuik, Onno; Dekker, Arnold G

    2011-10-01

    The Integrated Global Observing Strategy (IGOS, 2003) argues that further investments in Earth Observation information are required to improve coral reef protection worldwide. The IGOS Strategy does not specify what levels of investments are needed nor does it quantify the benefits associated with better-protected reefs. Evaluating costs and benefits is important for determining optimal investment levels and for convincing policy-makers that investments are required indeed. Few studies have quantitatively assessed the economic benefits of Earth Observation information or evaluated the economic value of information for environmental management. This paper uses an expert elicitation approach based on Bayesian Decision Theory to estimate the possible contribution of global Earth Observation to the management of the Great Barrier Reef. The Great Barrier Reef including its lagoon is a World Heritage Area affected by anthropogenic changes in land-use as well as climate change resulting in increased flows of sediments, nutrients and carbon to the GBR lagoon. Since European settlement, nutrient and sediment loads having increased 5-10 times and the change in water quality is causing damages to the reef. Earth Observation information from ocean and coastal color satellite sensors can provide spatially and temporally dense information on sediment flows. We hypothesize that Earth Observation improves decision-making by enabling better-targeted run-off reduction measures and we assess the benefits (cost savings) of this improved targeting by optimizing run-off reductions under different states of the world. The analysis suggests that the benefits of Earth Observation can indeed be substantial, depending on the perceived accuracy of the information and on the prior beliefs of decision-makers. The results indicate that increasing informational accuracy is the most effective way for developers of Earth Observation information to increase the added value of Earth Observation for

  2. Congruent patterns of connectivity can inform management for broadcast spawning corals on the Great Barrier Reef.

    Science.gov (United States)

    Lukoschek, Vimoksalehi; Riginos, Cynthia; van Oppen, Madeleine J H

    2016-07-01

    Connectivity underpins the persistence and recovery of marine ecosystems. The Great Barrier Reef (GBR) is the world's largest coral reef ecosystem and managed by an extensive network of no-take zones; however, information about connectivity was not available to optimize the network's configuration. We use multivariate analyses, Bayesian clustering algorithms and assignment tests of the largest population genetic data set for any organism on the GBR to date (Acropora tenuis, >2500 colonies; >50 reefs, genotyped for ten microsatellite loci) to demonstrate highly congruent patterns of connectivity between this common broadcast spawning reef-building coral and its congener Acropora millepora (~950 colonies; 20 reefs, genotyped for 12 microsatellite loci). For both species, there is a genetic divide at around 19°S latitude, most probably reflecting allopatric differentiation during the Pleistocene. GBR reefs north of 19°S are essentially panmictic whereas southern reefs are genetically distinct with higher levels of genetic diversity and population structure, most notably genetic subdivision between inshore and offshore reefs south of 19°S. These broadly congruent patterns of higher genetic diversities found on southern GBR reefs most likely represent the accumulation of alleles via the southward flowing East Australia Current. In addition, signatures of genetic admixture between the Coral Sea and outer-shelf reefs in the northern, central and southern GBR provide evidence of recent gene flow. Our connectivity results are consistent with predictions from recently published larval dispersal models for broadcast spawning corals on the GBR, thereby providing robust connectivity information about the dominant reef-building genus Acropora for coral reef managers.

  3. Bacterial community composition and predicted functional ecology of sponges, sediment and seawater from the thousand islands reef complex, West Java, Indonesia.

    Science.gov (United States)

    de Voogd, Nicole J; Cleary, Daniel F R; Polónia, Ana R M; Gomes, Newton C M

    2015-04-01

    In the present study, we assessed the composition of Bacteria in four biotopes namely sediment, seawater and two sponge species (Stylissa massa and Xestospongia testudinaria) at four different reef sites in a coral reef ecosystem in West Java, Indonesia. In addition to this, we used a predictive metagenomic approach to estimate to what extent nitrogen metabolic pathways differed among bacterial communities from different biotopes. We observed marked differences in bacterial composition of the most abundant bacterial phyla, classes and orders among sponge species, water and sediment. Proteobacteria were by far the most abundant phylum in terms of both sequences and Operational Taxonomic Units (OTUs). Predicted counts for genes associated with the nitrogen metabolism suggested that several genes involved in the nitrogen cycle were enriched in sponge samples, including nosZ, nifD, nirK, norB and nrfA genes. Our data show that a combined barcoded pyrosequencing and predictive metagenomic approach can provide novel insights into the potential ecological functions of the microbial communities. Not only is this approach useful for our understanding of the vast microbial diversity found in sponges but also to understand the potential response of microbial communities to environmental change.

  4. Coral records of reef-water pH across the central Great Barrier Reef, Australia: assessing the influence of river runoff on inshore reefs

    Science.gov (United States)

    D'Olivo, J. P.; McCulloch, M. T.; Eggins, S. M.; Trotter, J.

    2015-02-01

    The boron isotopic (δ11Bcarb) compositions of long-lived Porites coral are used to reconstruct reef-water pH across the central Great Barrier Reef (GBR) and assess the impact of river runoff on inshore reefs. For the period from 1940 to 2009, corals from both inner- and mid-shelf sites exhibit the same overall decrease in δ11Bcarb of 0.086 ± 0.033‰ per decade, equivalent to a decline in seawater pH (pHsw) of ~0.017 ± 0.007 pH units per decade. This decline is consistent with the long-term effects of ocean acidification based on estimates of CO2 uptake by surface waters due to rising atmospheric levels. We also find that, compared to the mid-shelf corals, the δ11Bcarb compositions of inner-shelf corals subject to river discharge events have higher and more variable values, and hence higher inferred pHsw values. These higher δ11Bcarb values of inner-shelf corals are particularly evident during wet years, despite river waters having lower pH. The main effect of river discharge on reef-water carbonate chemistry thus appears to be from reduced aragonite saturation state and higher nutrients driving increased phytoplankton productivity, resulting in the drawdown of pCO2 and increase in pHsw. Increased primary production therefore has the potential to counter the more transient effects of low-pH river water (pHrw) discharged into near-shore environments. Importantly, however, inshore reefs also show a consistent pattern of sharply declining coral growth that coincides with periods of high river discharge. This occurs despite these reefs having higher pHsw, demonstrating the overriding importance of local reef-water quality and reduced aragonite saturation state on coral reef health.

  5. Coral records of reef-water pH across the central Great Barrier Reef, Australia: assessing the influence of river runoff on inshore reefs

    Directory of Open Access Journals (Sweden)

    J. P. D'Olivo

    2014-07-01

    Full Text Available The boron isotopic (δ11Bcarb compositions of long-lived Porites coral are used to reconstruct reef-water pH across the central Great Barrier Reef (GBR and assess the impact of river runoff on inshore reefs. For the period from 1940 to 2009, corals from both inner as well as mid-shelf sites exhibit the same overall decrease in δ11Bcarb of 0.086 ± 0.033‰ per decade, equivalent to a~decline in seawater pH (pHsw of ~ 0.017 ± 0.007 pH units per decade. This decline is consistent with the long-term effects of ocean acidification based on estimates of CO2 uptake by surface waters due to rising atmospheric levels. We also find that compared to the mid-shelf corals, the δ11Bcarb compositions for inner shelf corals subject to river discharge events, have higher and more variable values and hence higher inferred pHsw values. These higher δ11Bcarb values for inner-shelf corals are particularly evident during wet years, despite river waters having lower pH. The main effect of river discharge on reef-water carbonate chemistry thus appears to be from higher nutrients driving increased phytoplankton productivity, resulting in the drawdown of pCO2 and increase in pHsw. Increased primary production therefore has the potential to counter the more transient effects of low pH river water (pHrw discharged into near-shore environments. Importantly however, inshore reefs also show a consistent pattern of sharply declining coral growth that coincides with periods of high river discharge. This occurs despite these reefs having higher pHsw values and hence higher seawater aragonite saturation states, demonstrating the over-riding importance of local reef-water quality on coral reef health.

  6. Large-scale, multidirectional larval connectivity among coral reef fish populations in the Great Barrier Reef Marine Park

    KAUST Repository

    Williamson, David H.

    2016-11-15

    Larval dispersal is the key process by which populations of most marine fishes and invertebrates are connected and replenished. Advances in larval tagging and genetics have enhanced our capacity to track larval dispersal, assess scales of population connectivity, and quantify larval exchange among no-take marine reserves and fished areas. Recent studies have found that reserves can be a significant source of recruits for populations up to 40 km away, but the scale and direction of larval connectivity across larger seascapes remain unknown. Here, we apply genetic parentage analysis to investigate larval dispersal patterns for two exploited coral reef groupers (Plectropomus maculatus and Plectropomus leopardus) within and among three clusters of reefs separated by 60–220 km within the Great Barrier Reef Marine Park, Australia. A total of 69 juvenile P. maculatus and 17 juvenile P. leopardus (representing 6% and 9% of the total juveniles sampled, respectively) were genetically assigned to parent individuals on reefs within the study area. We identified both short-distance larval dispersal within regions (200 m to 50 km) and long-distance, multidirectional dispersal of up to ~250 km among regions. Dispersal strength declined significantly with distance, with best-fit dispersal kernels estimating median dispersal distances of ~110 km for P. maculatus and ~190 km for P. leopardus. Larval exchange among reefs demonstrates that established reserves form a highly connected network and contribute larvae for the replenishment of fished reefs at multiple spatial scales. Our findings highlight the potential for long-distance dispersal in an important group of reef fishes, and provide further evidence that effectively protected reserves can yield recruitment and sustainability benefits for exploited fish populations.

  7. The importance of large benthic foraminifera to reef island sediment budget and dynamics at Raine Island, northern Great Barrier Reef

    Science.gov (United States)

    Dawson, John L.; Smithers, Scott G.; Hua, Quan

    2014-10-01

    Low-lying reef islands are among the most vulnerable environments on earth to anthropogenic-induced climate change and sea-level rise over the next century because they are low, composed of unconsolidated sediment that is able to be mobilised by waves and currents, and depend on sediments supplied by reef organisms that are particularly sensitive to environmental changes (e.g. ocean temperatures and chemistry). Therefore, the spatial and temporal links between active carbonate production and island formation and dynamics are fundamental to predicting future island resilience, yet remain poorly quantified. In this paper we present results of a detailed geomorphological and sedimentological study of a reef and sand cay on the northern Great Barrier Reef. We provide an empirical investigation of the temporal linkages between sediment production and reef island development using a large collection of single grain AMS 14C dates. Large benthic foraminifera (LBF) are the single most important contributor to contemporary island sand mass (47%; ranging from 36% to 63%) at Raine Island, reflecting rapid rates of sediment production and delivery. Standing stock data reveal extremely high production rates on the reef (1.8 kg m- 2 yr- 1), while AMS 14C dates of single LBF tests indicate rapid rates of sediment transferral across the reef. We also demonstrate that age is statistically related to preservation and taphonomic grade (severely abraded tests > moderately abraded tests > pristine tests). We construct a contemporary reef and island sediment budget model for Raine Island that shows that LBF (Baculogypsina, Marginopora and Amphistegina) contribute 55% of the sediment produced on the reef annually, of which a large proportion (54%) contribute to the net annual accretion of the island. The tight temporal coupling between LBF growth and island sediment supply combined with the sensitivity of LBF to bleaching and ocean acidification suggests that islands dominated by LBF are

  8. Dynamical seasonal prediction of summer sea surface temperatures in the Great Barrier Reef

    Science.gov (United States)

    Spillman, C. M.; Alves, O.

    2009-03-01

    Coral bleaching is a serious problem threatening the world coral reef systems, triggered by high sea surface temperatures (SST) which are becoming more prevalent as a result of global warming. Seasonal forecasts from coupled ocean-atmosphere models can be used to predict anomalous SST months in advance. In this study, we assess the ability of the Australian Bureau of Meteorology seasonal forecast model (POAMA) to forecast SST anomalies in the Great Barrier Reef, Australia, with particular focus on the major 1998 and 2002 bleaching events. Advance warning of potential bleaching events allows for the implementation of management strategies to minimise reef damage. This study represents the first attempt to apply a dynamical seasonal model to the problem of coral bleaching and predict SST over a reef system for up to 6 months lead-time, a potentially invaluable tool for reef managers.

  9. Trematodes of the Great Barrier Reef, Australia: emerging patterns of diversity and richness in coral reef fishes.

    Science.gov (United States)

    Cribb, Thomas H; Bott, Nathan J; Bray, Rodney A; McNamara, Marissa K A; Miller, Terrence L; Nolan, Mathew J; Cutmore, Scott C

    2014-10-15

    The Great Barrier Reef holds the richest array of marine life found anywhere in Australia, including a diverse and fascinating parasite fauna. Members of one group, the trematodes, occur as sexually mature adult worms in almost all Great Barrier Reef bony fish species. Although the first reports of these parasites were made 100 years ago, the fauna has been studied systematically for only the last 25 years. When the fauna was last reviewed in 1994 there were 94 species known from the Great Barrier Reef and it was predicted that there might be 2,270 in total. There are now 326 species reported for the region, suggesting that we are in a much improved position to make an accurate prediction of true trematode richness. Here we review the current state of knowledge of the fauna and the ways in which our understanding of this fascinating group is changing. Our best estimate of the true richness is now a range, 1,100-1,800 species. However there remains considerable scope for even these figures to be incorrect given that fewer than one-third of the fish species of the region have been examined for trematodes. Our goal is a comprehensive characterisation of this fauna, and we outline what work needs to be done to achieve this and discuss whether this goal is practically achievable or philosophically justifiable.

  10. Impact of sea-level rise and coral mortality on the wave dynamics and wave forces on barrier reefs.

    Science.gov (United States)

    Baldock, T E; Golshani, A; Callaghan, D P; Saunders, M I; Mumby, P J

    2014-06-15

    A one-dimensional wave model was used to investigate the reef top wave dynamics across a large suite of idealized reef-lagoon profiles, representing barrier coral reef systems under different sea-level rise (SLR) scenarios. The modeling shows that the impacts of SLR vary spatially and are strongly influenced by the bathymetry of the reef and coral type. A complex response occurs for the wave orbital velocity and forces on corals, such that the changes in the wave dynamics vary reef by reef. Different wave loading regimes on massive and branching corals also leads to contrasting impacts from SLR. For many reef bathymetries, wave orbital velocities increase with SLR and cyclonic wave forces are reduced for certain coral species. These changes may be beneficial to coral health and colony resilience and imply that predicting SLR impacts on coral reefs requires careful consideration of the reef bathymetry and the mix of coral species.

  11. The mapping of the Posidonia oceanica (L.) Delile barrier reef meadow in the southeastern Gulf of Tunis (Tunisia)

    Science.gov (United States)

    Hachani, Mohamed Amine; Ziadi, Boutheina; Langar, Habib; Sami, Djallouli Aslem; Turki, Souad; Aleya, Lotfi

    2016-09-01

    Barrier reefs are among the most important ecomorphosis for Posidonia oceanica meadows and have long been subjected to anthropic pressures. The authors mapped the entire Sidi Rais (northeastern Tunisia) Posidonia oceanica barrier reef by means of remote sensing based on processing a satellite image acquired via Google Earth © software, coupled with field observations obtained by snorkeling. The map thus produced represents the P. oceanica barrier reef in its current state, covering a total area of 156.77 ha, the reef being divided into three distinct sections separated by reverse flows with each section subject to varied anthropic factors and disturbances.

  12. Effectiveness of benthic foraminiferal and coral assemblages as water quality indicators on inshore reefs of the Great Barrier Reef, Australia

    Science.gov (United States)

    Uthicke, S.; Thompson, A.; Schaffelke, B.

    2010-03-01

    Although the debate about coral reef decline focuses on global disturbances (e.g., increasing temperatures and acidification), local stressors (nutrient runoff and overfishing) continue to affect reef health and resilience. The effectiveness of foraminiferal and hard-coral assemblages as indicators of changes in water quality was assessed on 27 inshore reefs along the Great Barrier Reef. Environmental variables (i.e., several water quality and sediment parameters) and the composition of both benthic foraminiferal and hard-coral assemblages differed significantly between four regions (Whitsunday, Burdekin, Fitzroy, and the Wet Tropics). Grain size and organic carbon and nitrogen content of sediments, and a composite water column parameter (based on turbidity and concentrations of particulate matter) explained a significant amount of variation in the data (tested by redundancy analyses) in both assemblages. Heterotrophic species of foraminifera were dominant in sediments with high organic content and in localities with low light availability, whereas symbiont-bearing mixotrophic species were dominant elsewhere. A similar suite of parameters explained 89% of the variation in the FORAM index (a Caribbean coral reef health indicator) and 61% in foraminiferal species richness. Coral richness was not related to environmental setting. Coral assemblages varied in response to environmental variables, but were strongly shaped by acute disturbances (e.g., cyclones, Acanthaster planci outbreaks, and bleaching), thus different coral assemblages may be found at sites with the same environmental conditions. Disturbances also affect foraminiferal assemblages, but they appeared to recover more rapidly than corals. Foraminiferal assemblages are effective bioindicators of turbidity/light regimes and organic enrichment of sediments on coral reefs.

  13. A new species of Halacarsantia Wolff, 1989 (Crustacea, Isopoda, Asellota, Santiidae from Wistari Reef, southern Great Barrier Reef, Australia

    Directory of Open Access Journals (Sweden)

    Michitaka Shimomura

    2012-03-01

    Full Text Available Halacarsantia acuta sp. n. is described from Wistari Reef, Capricorn Group, southern Great Barrier Reef, the first record of the genus from Australia. The new species differs from its congeners inantenna flagellum composed of 8 articles; epipod apically acute, without setae, broad maxilliped endite and pereopod 1 basis with a short projection. A key to species of the genus is provided.

  14. A simple model of growth form-dependent recovery from disease in coral reef sponges, and implications for monitoring

    Science.gov (United States)

    Wulff, Janie L.

    2006-08-01

    For clonal organisms that can suffer high levels of partial mortality and still recover, the conditions that influence infection and development of disease (e.g., abiotic stressors, population density) may be very different from the conditions that influence recovery. Recovery from infectious disease may increase if an individual can mount a defense before infection spreads throughout its body. If pathogens spread within an organism from an initial infection point, growth form—in conjunction with size—can influence the amount of time before all the tissue is diseased, and recovery precluded. A simple model of pathogen progression within individual sponges predicts that species with massive growth forms will be most susceptible to being overwhelmed by pathogen infection, and branching species will be most likely to recover. These predictions may help to explain the seemingly contradictory observations that branching species had the greatest prevalence of disease, and massive species the greatest rate of loss, in a monitored coral reef community. Disease may be observed disproportionately frequently in the organisms that are most likely to recover, resulting in underestimation, by standard monitoring procedures, of the effect of disease on losses from the community.

  15. Dynamics of seawater carbonate chemistry, production, and calcification of a coral reef flat, Central Great Barrier Reef

    Directory of Open Access Journals (Sweden)

    R. Albright

    2013-05-01

    Full Text Available Ocean acidification is projected to shift coral reefs from a state of net accretion to one of net dissolution this century. Presently, our ability to predict global-scale changes to coral reef calcification is limited by insufficient data relating seawater carbonate chemistry parameters to in situ rates of reef calcification. Here, we investigate natural trends in carbonate chemistry of the Davies Reef flat in the central Great Barrier Reef on diel and seasonal timescales and relate these trends to benthic carbon fluxes by quantifying net ecosystem calcification (nec and net community production (ncp. Results show that seawater carbonate chemistry of the Davies Reef flat is highly variable over both diel and seasonal timescales. pH (total scale ranged from 7.92 to 8.17, pCO2 ranged from 272 to 542 μatm, and aragonite saturation state (Ωarag ranged from 2.9 to 4.1. Diel cycles in carbonate chemistry were primarily driven by ncp, and warming explained 35% and 47% of the seasonal shifts in pCO2 and pH, respectively. Daytime ncp averaged 36 ± 19 mmol C m−2 h−1 in summer and 33 ± 13 mmol C m−2 h−1 in winter; nighttime ncp averaged −22 ± 20 and −7 ± 6 mmol C m−2 h−1 in summer and winter, respectively. Daytime nec averaged 11 ± 4 mmol CaCO3 m−2 h−1 in summer and 8 ± 3 mmol CaCO3 m−2 h−1 in winter, whereas nighttime nec averaged 2 ± 4 mmol and −1 ± 3 mmol CaCO3 m−2 h−1 in summer and winter, respectively. Net ecosystem calcification was positively correlated with Ωarag for both seasons. Linear correlations of nec and Ωarag indicate that the Davies Reef flat may transition from a state of net calcification to net dissolution at Ωarag values of 3.4 in summer and 3.2 in winter. Diel trends in Ωarag indicate that the reef flat is currently below this calcification threshold 29.6% of the time in summer and 14.1% of the time in winter.

  16. Same, same but different: symbiotic bacterial associations in GBR sponges

    Directory of Open Access Journals (Sweden)

    Nicole S Webster

    2013-01-01

    Full Text Available Symbioses in marine sponges involve diverse consortia of microorganisms that contribute to the health and ecology of their hosts. The microbial communities of 13 taxonomically diverse Great Barrier Reef (GBR sponge species were assessed by DGGE and 16S rRNA gene sequencing to determine intra and inter species variation in bacterial symbiont composition. Microbial profiling revealed communities that were largely conserved within different individuals of each species with intra species similarity ranging from 65-100%. 16S rRNA gene sequencing revealed that the communities were dominated by Proteobacteria, Chloroflexi, Acidobacteria, Actinobacteria, Nitrospira and Cyanobacteria. Sponge-associated microbes were also highly host-specific with no operational taxonomic units (OTUs common to all species and the most ubiquitous OTU found in only 5 of the 13 sponge species. In total, 91% of the OTUs were restricted to a single sponge species. However, GBR sponge microbes were more closely related to other sponge-derived bacteria than they were to environmental communities with sequences falling within 50 of the 173 previously defined sponge-(or sponge-coral specific sequence clusters. These sequence clusters spanned the Acidobacteria, Actinobacteria, Proteobacteria, Bacteroidetes, Chloroflexi, Cyanobacteria, Gemmatimonadetes, Nitrospira and the Planctomycetes-Verrucomicrobia-Chlamydiae superphylum. The number of sequences assigned to these sponge-specific clusters across all species ranged from 0% to 92%. No relationship between host phylogeny and symbiont communities were observed across the different sponge orders, although the highest level of similarity was detected in two closely related Xestospongia species. This study identifies the core microbial inhabitants in a range of GBR sponges thereby providing the basis for future studies on sponge symbiotic function and research aiming to predict how sponge holobionts will respond to environmental

  17. Coral skeletons provide historical evidence of phosphorus runoff on the great barrier reef.

    Directory of Open Access Journals (Sweden)

    Jennie Mallela

    Full Text Available Recently, the inshore reefs of the Great Barrier Reef have declined rapidly because of deteriorating water quality. Increased catchment runoff is one potential culprit. The impacts of land-use on coral growth and reef health however are largely circumstantial due to limited long-term data on water quality and reef health. Here we use a 60 year coral core record to show that phosphorus contained in the skeletons (P/Ca of long-lived, near-shore Porites corals on the Great Barrier Reef correlates with annual records of fertiliser application and particulate phosphorus loads in the adjacent catchment. Skeletal P/Ca also correlates with Ba/Ca, a proxy for fluvial sediment loading, again linking near-shore phosphorus records with river runoff. Coral core records suggest that phosphorus levels increased 8 fold between 1949 and 2008 with the greatest levels coinciding with periods of high fertiliser-phosphorus use. Periods of high P/Ca correspond with intense agricultural activity and increased fertiliser application in the river catchment following agricultural expansion and replanting after cyclone damage. Our results demonstrate how coral P/Ca records can be used to assess terrestrial nutrient loading of vulnerable near-shore reefs.

  18. The 27-year decline of coral cover on the Great Barrier Reef and its causes.

    Science.gov (United States)

    De'ath, Glenn; Fabricius, Katharina E; Sweatman, Hugh; Puotinen, Marji

    2012-10-30

    The world's coral reefs are being degraded, and the need to reduce local pressures to offset the effects of increasing global pressures is now widely recognized. This study investigates the spatial and temporal dynamics of coral cover, identifies the main drivers of coral mortality, and quantifies the rates of potential recovery of the Great Barrier Reef. Based on the world's most extensive time series data on reef condition (2,258 surveys of 214 reefs over 1985-2012), we show a major decline in coral cover from 28.0% to 13.8% (0.53% y(-1)), a loss of 50.7% of initial coral cover. Tropical cyclones, coral predation by crown-of-thorns starfish (COTS), and coral bleaching accounted for 48%, 42%, and 10% of the respective estimated losses, amounting to 3.38% y(-1) mortality rate. Importantly, the relatively pristine northern region showed no overall decline. The estimated rate of increase in coral cover in the absence of cyclones, COTS, and bleaching was 2.85% y(-1), demonstrating substantial capacity for recovery of reefs. In the absence of COTS, coral cover would increase at 0.89% y(-1), despite ongoing losses due to cyclones and bleaching. Thus, reducing COTS populations, by improving water quality and developing alternative control measures, could prevent further coral decline and improve the outlook for the Great Barrier Reef. Such strategies can, however, only be successful if climatic conditions are stabilized, as losses due to bleaching and cyclones will otherwise increase.

  19. Effects of different disturbance types on butterflyfish communities of Australia's Great Barrier Reef

    Science.gov (United States)

    Emslie, M. J.; Pratchett, M. S.; Cheal, A. J.

    2011-06-01

    The effects of disturbances on coral reef fishes have been extensively documented but most studies have relied on opportunistic sampling following single events. Few studies have the spatial and temporal extent to directly compare the effects of multiple disturbances over a large geographic scale. Here, benthic communities and butterflyfishes on 47 reefs of the Great Barrier Reef were surveyed annually to examine their responses to physical disturbances (cyclones and storms) and/or biological disturbances (bleaching, outbreaks of crown-of-thorns starfish and white syndrome disease). The effects on benthic and butterflyfish communities varied among reefs depending on the structure and geographical setting of each community, on the size and type of disturbance, and on the disturbance history of that reef. There was considerable variability in the response of butterflyfishes to different disturbances: physical disturbances (occurring with or without biological disturbances) produced substantial declines in abundance, whilst biological disturbances occurring on their own did not. Butterflyfishes with the narrowest feeding preferences, such as obligate corallivores, were always the species most affected. The response of generalist feeders varied with the extent of damage. Wholesale changes to the butterflyfish community were only recorded where structural complexity of reefs was drastically reduced. The observed effects of disturbances on butterflyfishes coupled with predictions of increased frequency and intensity of disturbances sound a dire warning for the future of butterflyfish communities in particular and reef fish communities in general.

  20. Coral reefs of the turbid inner-shelf of the Great Barrier Reef, Australia: An environmental and geomorphic perspective on their occurrence, composition and growth

    Science.gov (United States)

    Browne, N. K.; Smithers, S. G.; Perry, C. T.

    2012-10-01

    Investigations of the geomorphic and sedimentary context in which turbid zone reefs exist, both in the modern and fossil reef record, can inform key ecological debates regarding species tolerances and adaptability to elevated turbidity and sedimentation. Furthermore, these investigations can address critical geological and palaeoecological questions surrounding longer-term coral-sediment interactions and reef growth histories. Here we review current knowledge about turbid zone reefs from the inner-shelf regions of the Great Barrier Reef (GBR) in Australia to consider these issues and to evaluate reef growth in the period prior to and post European settlement. We also consider the future prospects of these reefs under reported changing water quality regimes. Turbid zone reefs on the GBR are relatively well known compared to those in other reef regions. They occur within 20 km of the mainland coast where reef development may be influenced by continual or episodic terrigenous sediment inputs, fluctuating salinities (24-36 ppt), and reduced water quality through increased nutrient and pollutant delivery from urban and agricultural runoff. Individually, and in synergy, these environmental conditions are widely viewed as unfavourable for sustained and vigorous coral reef growth, and thus these reefs are widely perceived as marginal compared to clear water reef systems. However, recent research has revealed that this view is misleading, and that in fact many turbid zone reefs in this region are resilient, exhibit relatively high live coral cover (> 30%) and have distinctive community assemblages dominated by fast growing (Acropora, Montipora) and/or sediment tolerant species (Turbinaria, Goniopora, Galaxea, Porites). Palaeoecological reconstructions based on the analysis of reef cores show that community assemblages are relatively stable at millennial timescales, and that many reefs are actively accreting (average 2-7 mm/year) where accommodation space is available

  1. Disease outbreaks, bleaching and a cyclone drive changes in coral assemblages on an inshore reef of the Great Barrier Reef

    Science.gov (United States)

    Haapkylä, J.; Melbourne-Thomas, J.; Flavell, M.; Willis, B. L.

    2013-09-01

    Coral disease is a major threat to the resilience of coral reefs; thus, understanding linkages between disease outbreaks and disturbances predicted to increase with climate change is becoming increasingly important. Coral disease surveys conducted twice yearly between 2008 and 2011 at a turbid inshore reef in the central Great Barrier Reef spanned two disturbance events, a coral bleaching event in 2009 and a severe cyclone (cyclone `Yasi') in 2011. Surveys of coral cover, community structure and disease prevalence throughout this 4-yr study provide a unique opportunity to explore cumulative impacts of disturbance events and disease for inshore coral assemblages. The principal coral disease at the study site was atramentous necrosis (AtN), and it primarily affected the key inshore, reef-building coral Montipora aequituberculata. Other diseases detected were growth anomalies, white syndrome and brown band syndrome. Diseases affected eight coral genera, although Montipora was, by far, the genus mostly affected. The prevalence of AtN followed a clear seasonal pattern, with disease outbreaks occurring only in wet seasons. Mean prevalence of AtN on Montipora spp. (63.8 % ± 3.03) was three- to tenfold greater in the wet season of 2009, which coincided with the 2009 bleaching event, than in other years. Persistent wet season outbreaks of AtN combined with the impacts of bleaching and cyclone events resulted in a 50-80 % proportional decline in total coral cover. The greatest losses of branching and tabular acroporids occurred following the low-salinity-induced bleaching event of 2009, and the greatest losses of laminar montiporids occurred following AtN outbreaks in 2009 and in 2011 following cyclone Yasi. The shift to a less diverse coral assemblage and the concomitant loss of structural complexity are likely to have long-term consequences for associated vertebrate and invertebrate communities on Magnetic Island reefs.

  2. Remote sensing of sea surface temperatures during 2002 Barrier Reef coral bleaching

    Science.gov (United States)

    Liu, Gang; Strong, Alan E.; Skirving, William

    Early in 2002, satellites of the U.S. National Oceanic and Atmospheric Administration (NOAA) detected anomalously high sea surface temperatures (SST) developing in the western Coral Sea, midway along Australia's Great Barrier Reef (GBR). This was the beginning of what was to become the most significant GBR coral bleaching event on record [Wilkinson, 2002]. During this time, NOAA's National Environmental Satellite, Data, and Information Service (NESDIS) provided satellite data as part of ongoing collaborative work on coral reef health with the Australian Institute of Marine Science (AIMS) and the Great Barrier Reef Marine Park Authority (GBRMPA). These data proved invaluable to AIMS and GBRMPA as they monitored and assessed the development and evolution of SSTs throughout the austral summer, enabling them to keep stakeholders, government, and the general public informed and up to date.

  3. The evolution of the Great Barrier Reef during the Last Interglacial Period

    Science.gov (United States)

    Dechnik, Belinda; Webster, Jody M.; Webb, Gregory E.; Nothdurft, Luke; Dutton, Andrea; Braga, Juan-Carlos; Zhao, Jian-xin; Duce, Stephanie; Sadler, James

    2017-02-01

    Reef response to Last Interglacial (LIG) sea level and palaeoenvironmental change has been well documented at a limited number of far-field sites remote from former ice sheets. However, the age and development of LIG reefs in the Great Barrier Reef (GBR) remain poorly understood due to their location beneath modern living reefs. Here we report thirty-nine new mass spectrometry U-Th ages from seven LIG platform reefs across the northern, central and southern GBR. Two distinct geochemical populations of corals were observed, displaying activity ratios consistent with either closed or open system evolution. Our closed-system ages ( 129-126 ka) provide the first reliable LIG ages for the entire GBR. Combined with our open-system model ages, we are able to constrain the interval of significant LIG reef growth in the southern GBR to between 129-121 ka. Using age-elevation data in conjunction with newly defined coralgal assemblages and sedimentary facies analysis we have defined three distinct phases of LIG reef development in response to major sea level and oceanographic changes. These phases include: Phase 1 (> 129 ka), a shallow-water coralgal colonisation phase following initial flooding of the older, likely Marine Isotope Stage 7 (MIS7) antecedent platform; Phase 2 ( 129 ka), a near drowning event in response to rapid sea level rise and greater nutrient-rich upwelling and; Phase 3 ( 128-121 ka), establishment of significant reef framework through catch-up reef growth, initially characterised by deeper, more turbid coralgal assemblages (Phase 3a) that transition to shallow-water assemblages following sea level stabilisation (Phase 3b). Coralgal assemblage analysis indicates that the palaeoenvironments during initial reef growth phases (1 and 2) of the LIG were significantly different than the initial reef growth phases in the Holocene. However, the similar composition of ultimate shallow-water coralgal assemblages and slow reef accretion rates following stabilisation

  4. Dynamics of seawater carbonate chemistry, production, and calcification of a coral reef flat, central Great Barrier Reef

    Directory of Open Access Journals (Sweden)

    R. Albright

    2013-10-01

    Full Text Available Ocean acidification is projected to shift coral reefs from a state of net accretion to one of net dissolution this century. Presently, our ability to predict global-scale changes to coral reef calcification is limited by insufficient data relating seawater carbonate chemistry parameters to in situ rates of reef calcification. Here, we investigate diel and seasonal trends in carbonate chemistry of the Davies Reef flat in the central Great Barrier Reef and relate these trends to benthic carbon fluxes by quantifying net ecosystem calcification (nec and net community production (ncp. Results show that seawater carbonate chemistry of the Davies Reef flat is highly variable over both diel and seasonal cycles. pH (total scale ranged from 7.92 to 8.17, pCO2 ranged from 272 to 542 μatm, and aragonite saturation state (Ωarag ranged from 2.9 to 4.1. Diel cycles in carbonate chemistry were primarily driven by ncp, and warming explained 35% and 47% of the seasonal shifts in pCO2 and pH, respectively. Daytime ncp averaged 37 ± 19 mmol C m−2 h−1 in summer and 33 ± 13 mmol C m−2 h−1 in winter; nighttime ncp averaged −30 ± 25 and −7 ± 6 mmol C m−2 h−1 in summer and winter, respectively. Daytime nec averaged 11 ± 4 mmol CaCO3 m−2 h−1 in summer and 8 ± 3 mmol CaCO3 m−2 h−1 in winter, whereas nighttime nec averaged 2 ± 4 mmol and −1 ± 3 mmol CaCO3 m−2 h−1 in summer and winter, respectively. Net ecosystem calcification was highly sensitive to changes in Ωarag for both seasons, indicating that relatively small shifts in Ωarag may drive measurable shifts in calcification rates, and hence carbon budgets, of coral reefs throughout the year.

  5. Phylogeography of western Pacific Leucetta 'chagosensis' (Porifera: Calcarea) from ribosomal DNA sequences: implications for population history and conservation of the Great Barrier Reef World Heritage Area (Australia).

    Science.gov (United States)

    Wörheide, Gert; Hooper, John N A; Degnan, Bernard M

    2002-09-01

    Leucetta 'chagosensis' is a widespread calcareous sponge, occurring in shaded habitats of Indo-Pacific coral reefs. In this study we explore relationships among 19 ribosomal DNA sequence types (the ITS1-5.8S-ITS2 region plus flanking gene sequences) found among 54 individuals from 28 locations throughout the western Pacific, with focus on the Great Barrier Reef (GBR). Maximum parsimony analysis revealed phylogeographical structuring into four major clades (although not highly supported by bootstrap analysis) corresponding to the northern/central GBR with Guam and Taiwan, the southern GBR and subtropical regions south to Brisbane, Vanuatu and Indonesia. Subsequent nested clade analysis (NCA) confirmed this structure with a probability of > 95%. After NCA of geographical distances, a pattern of range expansion from the internal Indonesian clade was inferred at the total cladogram level, as the Indonesian clade was found to be the internal and therefore oldest clade. Two distinct clades were found on the GBR, which narrowly overlap geographically in a line approximately from the Whitsunday Islands to the northern Swain Reefs. At various clade levels, NCA inferred that the northern GBR clade was influenced by past fragmentation and contiguous range expansion events, presumably during/after sea level low stands in the Pleistocene, after which the northern GBR might have been recolonized from the Queensland Plateau in the Coral Sea. The southern GBR clade is most closely related to subtropical L. 'chagosensis', and we infer that the southern GBR probably was recolonized from there after sea level low stands, based on our NCA results and supported by oceanographic data. Our results have important implications for conservation and management of the GBR, as they highlight the importance of marginal transition zones in the generation and maintenance of species rich zones, such as the Great Barrier Reef World Heritage Area.

  6. Mid-Holocene sea surface conditions and riverine influence on the inshore Great Barrier Reef

    NARCIS (Netherlands)

    Roche, R.C.; Perry, C.T.; Smithers, S.G.; Leng, M.J.; Grove, C.A.; Sloane, H.J.; Unsworth, C.E.

    2014-01-01

    We present measurements of Sr/Ca, d18O, and spectral luminescence ratios (G/B) from a mid-Holocene Porites sp. microatoll recovered from the nearshore Great Barrier Reef (GBR). These records were used as proxies to reconstruct sea surface temperature (SST), the d18O of surrounding seawater (d18Osw),

  7. Jerbarnia stocki, a new species from the Barrier Reef (Crustacea, Amphipoda)

    NARCIS (Netherlands)

    Thomas, James Darwin; Barnard, J.L.

    1990-01-01

    A new species of Jerbarnia is described in 2 meters of depth from Lizard Island on the Great Barrier Reef. It is the first species from depths shallower than 13 m. The species differs from all but J. aquilopacifica (Japan) in the lack of major teeth on pleonites 1-3 and from the latter species in th

  8. Differential responses of emergent intertidal coral reef fauna to a large-scale El-Niño southern oscillation event: sponge and coral resilience.

    Science.gov (United States)

    Kelmo, Francisco; Bell, James J; Moraes, Simone Souza; Gomes, Rilza da Costa Tourinho; Mariano-Neto, Eduardo; Attrill, Martin J

    2014-01-01

    There is a paucity of information on the impacts of the 1997-8 El Niño event and subsequent climatic episodes on emergent intertidal coral reef assemblages. Given the environmental variability intertidal reefs experience, such reefs may potentially be more resilient to climatic events and provide important insights into the adaptation of reef fauna to future ocean warming. Here we report the results of a 17-year (1995-2011) biodiversity survey of four emergent coral reef ecosystems in Bahia, Brazil, to assess the impact of a major El Niño event on the reef fauna, and determine any subsequent recovery. The densities of two species of coral, Favia gravida and Siderastrea stellata, did not vary significantly across the survey period, indicating a high degree of tolerance to the El Niño associated stress. However, there were marked decreases in the diversity of other taxa. Molluscs, bryozoans and ascidians suffered severe declines in diversity and abundance and had not recovered to pre-El Niño levels by the end of the study. Echinoderms were reduced to a single species in 1999, Echinometra lucunter, although diversity levels had recovered by 2002. Sponge assemblages were not impacted by the 1997-8 event and their densities had increased by the study end. Multivariate analysis indicated that a stable invertebrate community had re-established on the reefs after the El Niño event, but it has a different overall composition to the pre-El Niño community. It is unclear if community recovery will continue given more time, but our study highlights that any increase in the frequency of large-scale climatic events to more than one a decade is likely to result in a persistent lower-diversity state. Our results also suggest some coral and sponge species are particularly resilient to the El Niño-associated stress and therefore represent suitable models to investigate temperature adaptation in reef organisms.

  9. Ocean acidification: Linking science to management solutions using the Great Barrier Reef as a case study.

    Science.gov (United States)

    Albright, Rebecca; Anthony, Kenneth R N; Baird, Mark; Beeden, Roger; Byrne, Maria; Collier, Catherine; Dove, Sophie; Fabricius, Katharina; Hoegh-Guldberg, Ove; Kelly, Ryan P; Lough, Janice; Mongin, Mathieu; Munday, Philip L; Pears, Rachel J; Russell, Bayden D; Tilbrook, Bronte; Abal, Eva

    2016-11-01

    Coral reefs are one of the most vulnerable ecosystems to ocean acidification. While our understanding of the potential impacts of ocean acidification on coral reef ecosystems is growing, gaps remain that limit our ability to translate scientific knowledge into management action. To guide solution-based research, we review the current knowledge of ocean acidification impacts on coral reefs alongside management needs and priorities. We use the world's largest continuous reef system, Australia's Great Barrier Reef (GBR), as a case study. We integrate scientific knowledge gained from a variety of approaches (e.g., laboratory studies, field observations, and ecosystem modelling) and scales (e.g., cell, organism, ecosystem) that underpin a systems-level understanding of how ocean acidification is likely to impact the GBR and associated goods and services. We then discuss local and regional management options that may be effective to help mitigate the effects of ocean acidification on the GBR, with likely application to other coral reef systems. We develop a research framework for linking solution-based ocean acidification research to practical management options. The framework assists in identifying effective and cost-efficient options for supporting ecosystem resilience. The framework enables on-the-ground OA management to be the focus, while not losing sight of CO2 mitigation as the ultimate solution.

  10. A critical review of environmental management of the 'not so Great' Barrier Reef

    Science.gov (United States)

    Brodie, Jon; Waterhouse, Jane

    2012-06-01

    Recent estimates put average coral cover across the Great Barrier Reef (GBR) at about 20-30%. This is estimated to be a large reduction since the 1960s. The Great Barrier Reef Marine Park Act was enacted in 1975 and the Great Barrier Reef Marine Park Authority (GBRMPA) set up shortly afterwards. So the question is: why has coral cover continued to decline when the GBR is being managed with a management regime often recognised as 'the best managed coral reef system in the world', based on a strong science-for-management ethic. The stressors which are known to be most responsible for the loss of coral cover (and general 'reef health') are terrestrial pollution including the link to outbreaks of crown of thorns starfish, fishing impacts and climate change. These have been established through a long and intensive research effort over the last 30 years. However the management response of the GBRMPA after 1975, while based on a strong science-for-management program, did not concentrate on these issues but instead on managing access through zoning with restrictions on fishing in very limited areas and tourism management. Significant action on fishing, including trawling, did not occur until the Trawl Management Plan of 2000 and the rezoning of the GBR Marine Park in 2004. Effective action on terrestrial pollution did not occur until the Australian Government Reef Rescue initiative which commenced in 2008. Effective action on climate change has yet to begin either nationally or globally. Thus it is not surprising that coral cover on the GBR has reduced to values similar to those seen in other coral reef areas in the world such as Indonesia and the Philippines. Science has always required long periods to acquire sufficient evidence to drive management action and hence there is a considerable time lag between the establishment of scientific evidence and the introduction of effective management. It can still be credibly claimed that the GBR is the best managed coral reef

  11. Community calcification in Lizard Island, Great Barrier Reef: A 33 year perspective

    Science.gov (United States)

    Silverman, J.; Schneider, K.; Kline, D. I.; Rivlin, T.; Rivlin, A.; Hamylton, S.; Lazar, B.; Erez, J.; Caldeira, K.

    2014-11-01

    Measurements of community calcification (Gnet) were made during September 2008 and October 2009 on a reef flat in Lizard Island, Great Barrier Reef, Australia, 33 years after the first measurements were made there by the LIMER expedition in 1975. In 2008 and 2009 we measured Gnet = 61 ± 12 and 54 ± 13 mmol CaCO3 m-2·day-1, respectively. These rates are 27-49% lower than those measured during the same season in 1975-76. These rates agree well with those estimated from the measured temperature and degree of aragonite saturation using a reef calcification rate equation developed from observations in a Red Sea coral reef. Community structure surveys across the Lizard Island reef flat during our study using the same methods employed in 1978 showed that live coral coverage had not changed significantly (∼8%). However, it should be noted that the uncertainty in the live coral coverage estimates in this study and in 1978 were fairly large and inherent to this methodology. Using the reef calcification rate equation while assuming that seawater above the reef was at equilibrium with atmospheric PCO2 and given that live coral cover had not changed Gnet should have declined by 30 ± 8% since the LIMER study as indeed observed. We note, however, that the error in estimated Gnet decrease relative to the 1970's could be much larger due to the uncertainties in the coral coverage measurements. Nonetheless, the similarity between the predicted and the measured decrease in Gnet suggests that ocean acidification may be the primary cause for the lower CaCO3 precipitation rate on the Lizard Island reef flat.

  12. Temporal clustering of tropical cyclones on the Great Barrier Reef and its ecological importance

    Science.gov (United States)

    Wolff, Nicholas H.; Wong, Aaron; Vitolo, Renato; Stolberg, Kristin; Anthony, Kenneth R. N.; Mumby, Peter J.

    2016-06-01

    Tropical cyclones have been a major cause of reef coral decline during recent decades, including on the Great Barrier Reef (GBR). While cyclones are a natural element of the disturbance regime of coral reefs, the role of temporal clustering has previously been overlooked. Here, we examine the consequences of different types of cyclone temporal distributions (clustered, stochastic or regular) on reef ecosystems. We subdivided the GBR into 14 adjoining regions, each spanning roughly 300 km, and quantified both the rate and clustering of cyclones using dispersion statistics. To interpret the consequences of such cyclone variability for coral reef health, we used a model of observed coral population dynamics. Results showed that clustering occurs on the margins of the cyclone belt, being strongest in the southern reefs and the far northern GBR, which also has the lowest cyclone rate. In the central GBR, where rates were greatest, cyclones had a relatively regular temporal pattern. Modelled dynamics of the dominant coral genus, Acropora, suggest that the long-term average cover might be more than 13 % greater (in absolute cover units) under a clustered cyclone regime compared to stochastic or regular regimes. Thus, not only does cyclone clustering vary significantly along the GBR but such clustering is predicted to have a marked, and management-relevant, impact on the status of coral populations. Additionally, we use our regional clustering and rate results to sample from a library of over 7000 synthetic cyclone tracks for the GBR. This allowed us to provide robust reef-scale maps of annual cyclone frequency and cyclone impacts on Acropora. We conclude that assessments of coral reef vulnerability need to account for both spatial and temporal cyclone distributions.

  13. Ecological traits influencing range expansion across large oceanic dispersal barriers: insights from tropical Atlantic reef fishes.

    Science.gov (United States)

    Luiz, Osmar J; Madin, Joshua S; Robertson, D Ross; Rocha, Luiz A; Wirtz, Peter; Floeter, Sergio R

    2012-03-01

    How do biogeographically different provinces arise in response to oceanic barriers to dispersal? Here, we analyse how traits related to the pelagic dispersal and adult biology of 985 tropical reef fish species correlate with their establishing populations on both sides of two Atlantic marine barriers: the Mid-Atlantic Barrier (MAB) and the Amazon-Orinoco Plume (AOP). Generalized linear mixed-effects models indicate that predictors for successful barrier crossing are the ability to raft with flotsam for the deep-water MAB, non-reef habitat usage for the freshwater and sediment-rich AOP, and large adult-size and large latitudinal-range for both barriers. Variation in larval-development mode, often thought to be broadly related to larval-dispersal potential, is not a significant predictor in either case. Many more species of greater taxonomic diversity cross the AOP than the MAB. Rafters readily cross both barriers but represent a much smaller proportion of AOP crossers than MAB crossers. Successful establishment after crossing both barriers may be facilitated by broad environmental tolerance associated with large body size and wide latitudinal-range. These results highlight the need to look beyond larval-dispersal potential and assess adult-biology traits when assessing determinants of successful movements across marine barriers.

  14. Factors affecting adoption of improved management practices in the pastoral industry in Great Barrier Reef catchments.

    Science.gov (United States)

    Rolfe, John; Gregg, Daniel

    2015-07-01

    Substantial efforts are being made by industry and government in Australia to reduce adverse impacts of pastoral operations on water quality draining to the Great Barrier Reef. A key target is to achieve rapid adoption of better management practices by landholders, but current theoretical frameworks provide limited guidance about priorities for improving adoption. In this study information from direct surveys with landholders in the two largest catchments draining into the Great Barrier Reef has been collected and analysed. Study outcomes have important implications for policy settings, because they confirm that substantial variations in adoption drivers exist across landholders, enterprises and practices. The results confirm that the three broad barriers to adoption of information gaps, financial incentives and risk perceptions are relevant. This implies that different policy mechanisms, including extension and incentive programs, remain important, although financial incentives were only identified as important to meet capital and transformational costs rather than recurrent costs.

  15. Navigating the transition to ecosystem-based management of the Great Barrier Reef, Australia.

    Science.gov (United States)

    Olsson, Per; Folke, Carl; Hughes, Terry P

    2008-07-15

    We analyze the strategies and actions that enable transitions toward ecosystem-based management using the recent governance changes of the Great Barrier Reef Marine Park as a case study. The interplay among individual actors, organizations, and institutions at multiple levels is central in such transitions. A flexible organization, the Great Barrier Reef Marine Park Authority, was crucial in initiating the transition to ecosystem-based management. This agency was also instrumental in the subsequent transformation of the governance regime and provided leadership throughout the process. Strategies involved internal reorganization and management innovation, leading to an ability to coordinate the scientific community, to increase public awareness of environmental issues and problems, to involve a broader set of stakeholders, and to maneuver the political system for support at critical times. The transformation process was induced by increased pressure on the Great Barrier Reef (from terrestrial runoff, overharvesting, and global warming) that triggered a new sense of urgency to address these challenges. The focus of governance shifted from protection of selected individual reefs to stewardship of the larger-scale seascape. The study emphasizes the significance of stewardship that can change patterns of interactions among key actors and allow for new forms of management and governance to emerge in response to environmental change. This example illustrates that enabling legislations or other social bounds are essential, but not sufficient for shifting governance toward adaptive comanagement of complex marine ecosystems.

  16. Population growth rates of reef sharks with and without fishing on the great barrier reef: robust estimation with multiple models.

    Directory of Open Access Journals (Sweden)

    Mizue Hisano

    Full Text Available Overfishing of sharks is a global concern, with increasing numbers of species threatened by overfishing. For many sharks, both catch rates and underwater visual surveys have been criticized as indices of abundance. In this context, estimation of population trends using individual demographic rates provides an important alternative means of assessing population status. However, such estimates involve uncertainties that must be appropriately characterized to credibly and effectively inform conservation efforts and management. Incorporating uncertainties into population assessment is especially important when key demographic rates are obtained via indirect methods, as is often the case for mortality rates of marine organisms subject to fishing. Here, focusing on two reef shark species on the Great Barrier Reef, Australia, we estimated natural and total mortality rates using several indirect methods, and determined the population growth rates resulting from each. We used bootstrapping to quantify the uncertainty associated with each estimate, and to evaluate the extent of agreement between estimates. Multiple models produced highly concordant natural and total mortality rates, and associated population growth rates, once the uncertainties associated with the individual estimates were taken into account. Consensus estimates of natural and total population growth across multiple models support the hypothesis that these species are declining rapidly due to fishing, in contrast to conclusions previously drawn from catch rate trends. Moreover, quantitative projections of abundance differences on fished versus unfished reefs, based on the population growth rate estimates, are comparable to those found in previous studies using underwater visual surveys. These findings appear to justify management actions to substantially reduce the fishing mortality of reef sharks. They also highlight the potential utility of rigorously characterizing uncertainty, and

  17. Syllidae (Annelida: Phyllodocida) from Lizard Island, Great Barrier Reef, Australia.

    Science.gov (United States)

    Aguado, M Teresa; Murray, Anna; Hutchings, Pat

    2015-09-18

    Thirty species of the family Syllidae (Annelida, Phyllodocida) from Lizard Island have been identified. Three subfamilies (Eusyllinae, Exogoninae and Syllinae) are represented, as well as the currently unassigned genera Amblyosyllis and Westheidesyllis. The genus Trypanobia (Imajima & Hartman 1964), formerly considered a subgenus of Trypanosyllis, is elevated to genus rank. Seventeen species are new reports for Queensland and two are new species. Odontosyllis robustus n. sp. is characterized by a robust body and distinct colour pattern in live specimens consisting of lateral reddish-brown pigmentation on several segments, and bidentate, short and distally broad falcigers. Trypanobia cryptica n. sp. is found in association with sponges and characterized by a distinctive bright red colouration in live specimens, and one kind of simple chaeta with a short basal spur.

  18. Diel coral reef acidification driven by porewater advection in permeable sands, Heron Island, Great Barrier Reef

    DEFF Research Database (Denmark)

    Santos, Isaac R.; Glud, Ronnie N.; Maher, Damien

    2011-01-01

    Little is known about how biogeochemical processes in permeable sediments affect the pH of coastal waters. We demonstrate that seawater recirculation in permeable sands can play a major role in proton (H+) cycling in a coral reef lagoon. The diel pH range (up to 0.75 units) in the Heron Island...... lagoon was the broadest ever reported for reef waters, and the night‐time pH (7.69) was comparable to worst‐case scenario predictions for seawater pH in 2100. The net contribution of coarse carbonate sands to the whole system H+ fluxes was only 9% during the day, but approached 100% at night when small...... scale (i.e., flow and topography‐induced pressure gradients) and large scale (i.e., tidal pumping as traced by radon) seawater recirculation processes were synergistic. Reef lagoon sands were a net sink for H+, and the sink strength was a function of porewater flushing rate. Our observations suggest...

  19. Freshwater impacts in the central Great Barrier Reef: 1648-2011

    Science.gov (United States)

    Lough, J. M.; Lewis, S. E.; Cantin, N. E.

    2015-09-01

    The Australian summer monsoon is highly variable from year to year resulting in high variability in the magnitude and extent of freshwater river flood plumes affecting the Great Barrier Reef (GBR). These flood plumes transport terrestrial materials and contaminants to the reef and can have significant impacts on both water quality and ecosystem health. The occurrence and intensity of these freshwater flood plumes are reliably recorded as annual luminescent lines in inshore massive corals and occasional luminescent lines in mid-shelf corals. We use measured luminescence in a long Porites core and four recently collected short cores from Havannah Island (a nearshore reef in the central GBR) to reconstruct Burdekin River flow, 1648-2011, and five recent short cores from Britomart Reef (a mid-shelf reef, 65 km northeast of Havannah Island) to assess the frequency of flood plume events extending beyond the inshore to mid-shelf reefs. The reconstruction highlights that the frequency of high flow events has increased in the GBR from 1 in every 20 yr prior to European settlement (1748-1847) to 1 in every 6 yr reoccurrence (1948-2011). Three of the most extreme events in the past 364 yr have occurred since 1974, including 2011. The reconstruction also shows a shift to higher flows, increased variability from the latter half of the nineteenth century, and likely more frequent freshwater impacts on mid-shelf reefs. This change coincided with European settlement of northern Queensland and substantial changes in land use, which resulted in increased sediment loads exported to the GBR. The consequences of increased sediment loads to the GBR were, therefore, likely exacerbated by this climate shift. This change in Burdekin River flow characteristics appears to be associated with a shift towards greater El Niño-Southern Oscillation variability and rapid warming in the southwest Pacific, evident in independent palaeoclimatic records.

  20. New species of Alcyonacea (Octocorallia) from the Great Barrier Reef, South-East Asia, and the Red Sea

    NARCIS (Netherlands)

    Verseveldt, J.

    1982-01-01

    In this paper four new alcyonaceans are described. They are Alcyonium monticulum from the Great Barrier Reef, Cladiella steinen from Thailand, Lemnalia benayahui from the Red Sea, and Siphonogorgia lobata from Taiwan.

  1. Evidence of reduced mid-Holocene ENSO variance on the Great Barrier Reef, Australia

    Science.gov (United States)

    Leonard, N. D.; Welsh, K. J.; Lough, J. M.; Feng, Y.-x.; Pandolfi, J. M.; Clark, T. R.; Zhao, J.-x.

    2016-09-01

    Globally, coral reefs are under increasing pressure both through direct anthropogenic influence and increases in climate extremes. Understanding past climate dynamics that negatively affected coral reef growth is imperative for both improving management strategies and for modeling coral reef responses to a changing climate. The El Niño-Southern Oscillation (ENSO) is the primary source of climate variability at interannual timescales on the Great Barrier Reef (GBR), northeastern Australia. Applying continuous wavelet transforms to visually assessed coral luminescence intensity in massive Porites corals from the central GBR we demonstrate that these records reliably reproduce ENSO variance patterns for the period 1880-1985. We then applied this method to three subfossil corals from the same reef to reconstruct ENSO variance from ~5200 to 4300 years before present (yBP). We show that ENSO events were less extreme and less frequent after ~5200 yBP on the GBR compared to modern records. Growth characteristics of the corals are consistent with cooler sea surface temperatures (SSTs) between 5200 and 4300 yBP compared to both the millennia prior (~6000 yBP) and modern records. Understanding ENSO dynamics in response to SST variability at geological timescales will be important for improving predictions of future ENSO response to a rapidly warming climate.

  2. Symbiont acquisition strategy drives host-symbiont associations in the southern Great Barrier Reef

    Science.gov (United States)

    Stat, M.; Loh, W. K. W.; Hoegh-Guldberg, O.; Carter, D. A.

    2008-12-01

    Coral larvae acquire populations of the symbiotic dinoflagellate Symbiodinium from the external environment (horizontal acquisition) or inherit their symbionts from the parent colony (maternal or vertical acquisition). The effect of the symbiont acquisition strategy on Symbiodinium-host associations has not been fully resolved. Previous studies have provided mixed results, probably due to factors such as low sample replication of Symbiodinium from a single coral host, biogeographic differences in Symbiodinium diversity, and the presence of some apparently host-specific symbiont lineages in coral with either symbiont acquisition strategies. This study set out to assess the effect of the symbiont acquisition strategy by sampling Symbiodinium from 10 coral species (five with a horizontal and five with a vertical symbiont acquisition strategy) across two adjacent reefs in the southern Great Barrier Reef. Symbiodinium diversity was assessed using single-stranded conformational polymorphism of partial nuclear large subunit rDNA and denaturing gradient gel electrophoresis of the internal transcribed spacer 2 region. The Symbiodinium population in hosts with a vertical symbiont acquisition strategy partitioned according to coral species, while hosts with a horizontal symbiont acquisition strategy shared a common symbiont type across the two reef environments. Comparative analysis of existing data from the southern Great Barrier Reef found that the majority of corals with a vertical symbiont acquisition strategy associated with distinct species- or genus-specific Symbiodinium lineages, but some could also associate with symbiont types that were more commonly found in hosts with a horizontal symbiont acquisition strategy.

  3. Spatial variation in background mortality among dominant coral taxa on Australia's Great Barrier Reef.

    Science.gov (United States)

    Pisapia, Chiara; Pratchett, Morgan S

    2014-01-01

    Even in the absence of major disturbances (e.g., cyclones, bleaching), corals are consistently subject to high levels of background mortality, which undermines individual fitness and resilience of coral colonies. Partial mortality may impact coral response to climate change by reducing colony ability to recover between major acute stressors. This study quantified proportion of injured versus uninjured colonies (the prevalence of injuries) and instantaneous measures of areal extent of injuries across individual colonies (the severity of injuries), in four common coral species along the Great Barrier Reef in Australia: massive Porites, encrusting Montipora, Acropora hyacinthus and Pocillopora damicornis. A total of 2,276 adult colonies were surveyed three latitudinal sectors, nine reefs and 27 sites along 1000 km2 on the Great Barrier Reef. The prevalence of injuries was very high, especially for Porites spp (91%) and Montipora encrusting (85%) and varied significantly, but most lay at small spatial scales (e.g., among colonies positioned reefs. Differences in the prevalence and severity of background partial mortality have significant ramifications for coral capacity to cope with increasing acute disturbances, such as climate-induced coral bleaching. These data are important for understanding coral responses to increasing stressors, and in particular for predicting their capacity to recover between subsequent disturbances.

  4. In four shallow and mesophotic tropical reef sponges from Guam the microbial community largely depends on host identity

    NARCIS (Netherlands)

    Steinert, Georg; Taylor, Michael W.; Deines, Peter; Simister, Rachel L.; Voogd, De Nicole J.; Hoggard, Michael; Schupp, Peter J.

    2016-01-01

    Sponges (phylum Porifera) are important members of almost all aquatic ecosystems, and are renowned for hosting often dense and diverse microbial communities. While the specificity of the sponge microbiota seems to be closely related to host phylogeny, the environmental factors that could shape di

  5. Three new species of Calyptotheca (Bryozoa: Lanceoporidae) from the Great Barrier Reef, tropical Australia.

    Science.gov (United States)

    Sebastian, Pascal; Cumming, Robyn L

    2016-02-15

    The cheilostome bryozoans Calyptotheca wulguru n. sp. and Calyptotheca tilbrooki n. sp. (Lanceoporidae) are described from inter-reefal, sediment-dominated habitats of the Great Barrier Reef, and Calyptotheca churro n. sp. was washed up on a Heron Island beach, with uncertain origin. Calyptotheca wulguru n. sp. and C. churro n. sp. belong to a subgroup of Calyptotheca species with numerous small, oval, marginal adventitious avicularia and suboral nodular thickening or umbones. The vicarious avicularia of C. tilbrooki n. sp. are elongate-oval, unlike those of other known Calyptotheca species, and C. tilbrooki n. sp. has more pronounced orificial dimorphism than in any other known Calyptotheca species. Calyptotheca churro n. sp. has the most pronounced suboral umbo of all known Calyptotheca species. This study increases the known Calyptotheca species of the Great Barrier Reef to ten, and of tropical Australia to 14.

  6. Neosabellides lizae, a new species of Ampharetidae (Annelida) from Lizard Island, Great Barrier Reef, Australia.

    Science.gov (United States)

    Alvestad, Tom; Budaeva, Nataliya

    2015-09-18

    Neosabellides lizae, a new species of Ampharetidae, is described from the intertidal zone off Lizard Island, Great Barrier Reef, Queensland, Australia. The new species is referred to the genus Neosabellides based on the shape of the prostomium, three pairs of branchiae, 14 thoracic segments with notopodia, 12 thoracic uncinigerous segments, and the first two pairs of abdominal uncinigers of thoracic type. The new species differs from all known species of Neosabellides in having 14 abdominal uncinigerous segments.

  7. Spatial and temporal genetic structure of Symbiodinium populations within a common reef-building coral on the Great Barrier Reef.

    Science.gov (United States)

    Howells, Emily J; Willis, Bette L; Bay, Line K; van Oppen, Madeleine J H

    2013-07-01

    The dinoflagellate photosymbiont Symbiodinium plays a fundamental role in defining the physiological tolerances of coral holobionts, but little is known about the dynamics of these endosymbiotic populations on coral reefs. Sparse data indicate that Symbiodinium populations show limited spatial connectivity; however, no studies have investigated temporal dynamics for in hospite Symbiodinium populations following significant mortality and recruitment events in coral populations. We investigated the combined influences of spatial isolation and disturbance on the population dynamics of the generalist Symbiodinium type C2 (ITS1 rDNA) hosted by the scleractinian coral Acropora millepora in the central Great Barrier Reef. Using eight microsatellite markers, we genotyped Symbiodinium in a total of 401 coral colonies, which were sampled from seven sites across a 12-year period including during flood plume-induced coral bleaching. Genetic differentiation of Symbiodinium was greatest within sites, explaining 70-86% of the total genetic variation. An additional 9-27% of variation was explained by significant differentiation of populations among sites separated by 0.4-13 km, which is consistent with low levels of dispersal via water movement and historical disturbance regimes. Sampling year accounted for 6-7% of total genetic variation and was related to significant coral mortality following severe bleaching in 1998 and a cyclone in 2006. Only 3% of the total genetic variation was related to coral bleaching status, reflecting generally small (8%) reductions in allelic diversity within bleached corals. This reduction probably reflected a loss of genotypes in hospite during bleaching, although no site-wide changes in genetic diversity were observed. Combined, our results indicate the importance of disturbance regimes acting together with limited oceanographic transport to determine the genetic composition of Symbiodinium types within reefs.

  8. Diurnal warming in shallow coastal seas: Observations from the Caribbean and Great Barrier Reef regions

    Science.gov (United States)

    Zhu, X.; Minnett, P. J.; Berkelmans, R.; Hendee, J.; Manfrino, C.

    2014-07-01

    A good understanding of diurnal warming in the upper ocean is important for the validation of satellite-derived sea surface temperature (SST) against in-situ buoy data and for merging satellite SSTs taken at different times of the same day. For shallow coastal regions, better understanding of diurnal heating could also help improve monitoring and prediction of ecosystem health, such as coral reef bleaching. Compared to its open ocean counterpart which has been studied extensively and modeled with good success, coastal diurnal warming has complicating localized characteristics, including coastline geometry, bathymetry, water types, tidal and wave mixing. Our goal is to characterize coastal diurnal warming using two extensive in-situ temperature and weather datasets from the Caribbean and Great Barrier Reef (GBR), Australia. Results showed clear daily warming patterns in most stations from both datasets. For the three Caribbean stations where solar radiation is the main cause of daily warming, the mean diurnal warming amplitudes were about 0.4 K at depths of 4-7 m and 0.6-0.7 K at shallower depths of 1-2 m; the largest warming value was 2.1 K. For coral top temperatures of the GBR, 20% of days had warming amplitudes >1 K, with the largest >4 K. The bottom warming at shallower sites has higher daily maximum temperatures and lower daily minimum temperatures than deeper sites nearby. The averaged daily warming amplitudes were shown to be closely related to daily average wind speed and maximum insolation, as found in the open ocean. Diurnal heating also depends on local features including water depth, location on different sections of the reef (reef flat vs. reef slope), the relative distance from the barrier reef chain (coast vs. lagoon stations vs. inner barrier reef sites vs. outer rim sites); and the proximity to the tidal inlets. In addition, the influence of tides on daily temperature changes and its relative importance compared to solar radiation was quantified by

  9. Interpreting environmental signals from the coralline sponge Astrosclera willeyana

    Energy Technology Data Exchange (ETDEWEB)

    Fallon, S J; McCulloch, M T; Guilderson, T P

    2004-06-30

    Coralline sponges (sclerosponges) have been proposed as a new source for paleo subsurface temperature reconstructions by utilizing methods developed for reef-building corals. However unlike corals, coralline sponges do not have density variations making age determination difficult. In this study we examined multiple elemental rations (B, Mg, Sr, Ba, U) in the coralline sponge Astrosclera willeyana. We also measured skeletal density profiles along the outer ''living'' edge of the sponges and this data indicates significant thickening of skeletal material over intervals of 2-3 mm or 2-3 years. This suggests that any skeletal recovered environmental record from Astrosclera willeyana is an integration of signals over a 2-3 year period. Sponge Sr/Ca seemed to hold the most promise as a recorder of water temperature and we compared Sr/Ca from 2 sponges in the Great Barrier Reef and one from Truk in Micronesia to their respective sea surface temperature record. The correlations were not that strong ({approx} r=-0.5) but they were significant. It appears that the signal smoothing due to thickening or perhaps even some biologic control on Sr skeletal partitioning limits the use of Sr/Ca as an indicator of water temperature in Astrosclera willeyana.

  10. Surviving coral bleaching events: porites growth anomalies on the Great Barrier Reef.

    Directory of Open Access Journals (Sweden)

    Neal E Cantin

    Full Text Available Mass coral bleaching affected large parts of the Great Barrier Reef (GBR in 1998 and 2002. In this study, we assessed if signatures of these major thermal stress events were recorded in the growth characteristics of massive Porites colonies. In 2005 a suite of short (<50 cm cores were collected from apparently healthy, surviving Porites colonies, from reefs in the central GBR (18-19°S that have documented observations of widespread bleaching. Sites included inshore (Nelly Bay, Pandora Reef, annually affected by freshwater flood events, midshelf (Rib Reef, only occasionally affected by freshwater floods and offshore (Myrmidon Reef locations primarily exposed to open ocean conditions. Annual growth characteristics (extension, density and calcification were measured in 144 cores from 79 coral colonies and analysed over the common 24-year period, 1980-2003. Visual examination of the annual density bands revealed growth hiatuses associated with the bleaching years in the form of abrupt decreases in annual linear extension rates, high density stress bands and partial mortality. The 1998 mass-bleaching event reduced Porites calcification by 13 and 18% on the two inshore locations for 4 years, followed by recovery to baseline calcification rates in 2002. Evidence of partial mortality was apparent in 10% of the offshore colonies in 2002; however no significant effects of the bleaching events were evident in the calcification rates at the mid shelf and offshore sites. These results highlight the spatial variation of mass bleaching events and that all reef locations within the GBR were not equally stressed by the 1998 and 2002 mass bleaching events, as some models tend to suggest, which enabled recovery of calcification on the GBR within 4 years. The dynamics in annual calcification rates and recovery displayed here should be used to improve model outputs that project how coral calcification will respond to ongoing warming of the tropical oceans.

  11. Lista de esponjas marinas asociadas al arrecife Tuxpan, Veracruz, México Checklist of marine sponges from Tuxpan Reef, Veracruz, Mexico

    Directory of Open Access Journals (Sweden)

    Carlos González-Gándara

    2009-04-01

    Full Text Available Se presenta la lista de esponjas marinas (Porifera: Demospongiae del arrecife Tuxpan, Veracruz, México, colectadas en 2004, 2005 y 2006 mediante buceo libre y con equipo autónomo SCUBA. Los resultados muestran la presencia de 18 especies pertenecientes a 13 géneros y 13 familias, 17 de estas especies son nuevos registros para los arrecifes coralinos del norte de Veracruz y una (Aplysina cauliformis Carter, 1882 para el estado. La información puede auxiliar para definir las estrategias de manejo, monitoreo y protección de estas formaciones arrecifales que recientemente han sido propuestas como área de protección de flora y fauna.A checklist of marine sponge species (Porifera: Demospongiae from Tuxpan reef, Veracruz, Mexico, collected during 2004, 2005 and 2006 by free and SCUBA diving equipment, is presented. The results show the presence of 18 species belonging to 13 genera and 13 families. 17 speices represent new records for the northern coral reefs of Veracruz, and the 18th species (Aplysina cauliformis Carter, 1882 is a new record for the state. This information may help to define appropriate management, monitoring and protection strategies for the coral reefs of the north of Veracruz, which have been proposed as a natural preserve area recently.

  12. Spionidae (Annelida) from Lizard Island, Great Barrier Reef, Australia: the genera Aonides, Dipolydora, Polydorella, Prionospio, Pseudopolydora, Rhynchospio, and Tripolydora.

    Science.gov (United States)

    Radashevsky, Vasily I

    2015-09-18

    Nineteen species in seven genera of spionid polychaetes are described and illustrated based on new material collected from the intertidal and shallow waters around the Lizard Island Group, northern Great Barrier Reef. Only one of these species had been previously reported from the Reef. Six species are described as new to science, and the taxonomy of seven species should be clarified in the future. Prionospio sensu lato is the most diverse group with 11 species identified in the present study. One species is identified in each of the genera Dipolydora, Polydorella, Rhynchospio and Tripolydora, and two species are identified in each of the genera Aonides and Pseudopolydora. The fauna of spionid polychaetes of the Great Barrier Reef seems to be more diverse than previously described and more species are expected to be found in the future. An identification key is provided to 16 genera of Spionidae reported from or likely to be found on the Great Barrier Reef.

  13. A model of the effects of land-based, human activities on the health of coral reefs in the Great Barrier Reef and in Fouha Bay, Guam, Micronesia

    Science.gov (United States)

    Wolanski, Eric; Richmond, Robert H.; McCook, Laurence

    2004-05-01

    A model is proposed to explain coral and algal abundance on coastal coral reefs as a function of spike-like natural disturbances from tropical cyclones and turbid river floods, followed by long recovery periods where the rate of reef recovery depends on ambient water and substratum quality. The model includes competition for space between corals and algae, coral recruitment and reef connectivity. The model is applied to a 400-km stretch of Australia's Great Barrier Reef and to the 200-m-long reef tract at Fouha Bay, in Guam, Micronesia. For these two sites and at these two scales, the model appears successful at reproducing the observed distribution of algae and coral. For both sites, it is suggested that the reefs have been degraded by human activities on land and that they will recover provided remedial measures are implemented on land to restore the water and substrate conditions. We suggest ways to improve the model and to use the model to guide future ecological research and management efforts on coastal coral reefs.

  14. Phytoplankton, bacterioplankton and virioplankton structure and function across the southern Great Barrier Reef shelf

    Science.gov (United States)

    Alongi, Daniel M.; Patten, Nicole L.; McKinnon, David; Köstner, Nicole; Bourne, David G.; Brinkman, Richard

    2015-02-01

    Bacterioplankton and phytoplankton dynamics, pelagic respiration, virioplankton abundance, and the diversity of pelagic diazotrophs and other bacteria were examined in relation to water-column nutrients and vertical mixing across the southern Great Barrier Reef (GBR) shelf where sharp inshore to offshore gradients in water chemistry and hydrology prevail. A principal component analysis (PCA) revealed station groups clustered geographically, suggesting across-shelf differences in plankton function and structure driven by changes in mixing intensity, sediment resuspension, and the relative contributions of terrestrial, reef and oceanic nutrients. At most stations and sampling periods, microbial abundance and activities peaked both inshore and at channels between outer shelf reefs of the Pompey Reef complex. PCA also revealed that virioplankton numbers and biomass correlated with bacterioplankton numbers and production, and that bacterial growth and respiration correlated with net primary production, suggesting close virus-bacteria-phytoplankton interactions; all plankton groups correlated with particulate C, N, and P. Strong vertical mixing facilitates tight coupling of pelagic and benthic shelf processes as, on average, 37% and 56% of N and P demands of phytoplankton are derived from benthic nutrient regeneration and resuspension. These across-shelf planktonic trends mirror those of the benthic microbial community.

  15. Deepwater Chondrichthyan Bycatch of the Eastern King Prawn Fishery in the Southern Great Barrier Reef, Australia.

    Science.gov (United States)

    Rigby, Cassandra L; White, William T; Simpfendorfer, Colin A

    2016-01-01

    The deepwater chondrichthyan fauna of the Great Barrier Reef is poorly known and life history information is required to enable their effective management as they are inherently vulnerable to exploitation. The chondrichthyan bycatch from the deepwater eastern king prawn fishery at the Swain Reefs in the southern Great Barrier Reef was examined to determine the species present and provide information on their life histories. In all, 1533 individuals were collected from 11 deepwater chondrichthyan species, with the Argus skate Dipturus polyommata, piked spurdog Squalus megalops and pale spotted catshark Asymbolus pallidus the most commonly caught. All but one species is endemic to Australia with five species restricted to waters offshore from Queensland. The extent of life history information available for each species varied but the life history traits across all species were characteristic of deep water chondrichthyans with relatively large length at maturity, small litters and low ovarian fecundity; all indicative of low biological productivity. However, variability among these traits and spatial and bathymetric distributions of the species suggests differing degrees of resilience to fishing pressure. To ensure the sustainability of these bycatch species, monitoring of their catches in the deepwater eastern king prawn fishery is recommended.

  16. The role the Great Barrier Reef plays in resident wellbeing and implications for its management.

    Science.gov (United States)

    Larson, Silva; Stoeckl, Natalie; Farr, Marina; Esparon, Michelle

    2015-04-01

    Improvements in human wellbeing are dependent on improving ecosystems. Such considerations are particularly pertinent for regions of high ecological, but also social and cultural importance that are facing rapid change. One such region is the Great Barrier Reef (GBR). Although the GBR has world heritage status for its 'outstanding universal value', little is known about resident perceptions of its values. We surveyed 1545 residents, finding that absence of visible rubbish; healthy reef fish, coral cover, and mangroves; and iconic marine species, are considered to be more important to quality of life than the jobs and incomes associated with industry (most respondents were dissatisfied with the benefits they received from industry). Highly educated females placed more importance on environmental non-use values than other respondents; less educated males and those employed in mining found non-market use-values relatively more important. Environmental non-use values emerged as the most important management priority for all.

  17. Climate change disables coral bleaching protection on the Great Barrier Reef.

    Science.gov (United States)

    Ainsworth, Tracy D; Heron, Scott F; Ortiz, Juan Carlos; Mumby, Peter J; Grech, Alana; Ogawa, Daisie; Eakin, C Mark; Leggat, William

    2016-04-15

    Coral bleaching events threaten the sustainability of the Great Barrier Reef (GBR). Here we show that bleaching events of the past three decades have been mitigated by induced thermal tolerance of reef-building corals, and this protective mechanism is likely to be lost under near-future climate change scenarios. We show that 75% of past thermal stress events have been characterized by a temperature trajectory that subjects corals to a protective, sub-bleaching stress, before reaching temperatures that cause bleaching. Such conditions confer thermal tolerance, decreasing coral cell mortality and symbiont loss during bleaching by over 50%. We find that near-future increases in local temperature of as little as 0.5°C result in this protective mechanism being lost, which may increase the rate of degradation of the GBR.

  18. PAHs in the Great Barrier Reef Lagoon reach potentially toxic levels from coal port activities

    Science.gov (United States)

    Burns, Kathryn A.

    2014-05-01

    In view of the controversy over expanding the coastal coal ports bordering the Great Barrier Reef (GBR) Lagoon and the World Heritage Area, I re-evaluated the data published in Burns and Brinkman (2011). I used the US EPA procedures for the determination of Equilibrium Partitioning Sediment Benchmarks (ESBs) for the protection of benthic organisms (Hansen et al., 2003), and the new proposed ANZECC/ARMCANZ (2013) sediment quality guidelines (Simpson et al., 2013) and determined that the coastal sediments offshore from the Hay Point coal terminal and suspended sediments caught in sediment traps inshore and at the offshore coral reefs contained levels of PAHs that approach the estimates for toxicity to benthic and water column organisms. This result is discussed in relation to risks posed to the GBR ecosystem by the port practices and the imminent expansion of the Abbott Point, Hay Point and other coal terminals.

  19. Surviving coral bleaching events: porites growth anomalies on the Great Barrier Reef.

    Science.gov (United States)

    Cantin, Neal E; Lough, Janice M

    2014-01-01

    Mass coral bleaching affected large parts of the Great Barrier Reef (GBR) in 1998 and 2002. In this study, we assessed if signatures of these major thermal stress events were recorded in the growth characteristics of massive Porites colonies. In 2005 a suite of short (bleaching. Sites included inshore (Nelly Bay, Pandora Reef), annually affected by freshwater flood events, midshelf (Rib Reef), only occasionally affected by freshwater floods and offshore (Myrmidon Reef) locations primarily exposed to open ocean conditions. Annual growth characteristics (extension, density and calcification) were measured in 144 cores from 79 coral colonies and analysed over the common 24-year period, 1980-2003. Visual examination of the annual density bands revealed growth hiatuses associated with the bleaching years in the form of abrupt decreases in annual linear extension rates, high density stress bands and partial mortality. The 1998 mass-bleaching event reduced Porites calcification by 13 and 18% on the two inshore locations for 4 years, followed by recovery to baseline calcification rates in 2002. Evidence of partial mortality was apparent in 10% of the offshore colonies in 2002; however no significant effects of the bleaching events were evident in the calcification rates at the mid shelf and offshore sites. These results highlight the spatial variation of mass bleaching events and that all reef locations within the GBR were not equally stressed by the 1998 and 2002 mass bleaching events, as some models tend to suggest, which enabled recovery of calcification on the GBR within 4 years. The dynamics in annual calcification rates and recovery displayed here should be used to improve model outputs that project how coral calcification will respond to ongoing warming of the tropical oceans.

  20. Summer hot snaps and winter conditions: modelling white syndrome outbreaks on Great Barrier Reef corals.

    Directory of Open Access Journals (Sweden)

    Scott F Heron

    Full Text Available Coral reefs are under increasing pressure in a changing climate, one such threat being more frequent and destructive outbreaks of coral diseases. Thermal stress from rising temperatures has been implicated as a causal factor in disease outbreaks observed on the Great Barrier Reef, Australia, and elsewhere in the world. Here, we examine seasonal effects of satellite-derived temperature on the abundance of coral diseases known as white syndromes on the Great Barrier Reef, considering both warm stress during summer and deviations from mean temperatures during the preceding winter. We found a high correlation (r(2 = 0.953 between summer warm thermal anomalies (Hot Snap and disease abundance during outbreak events. Inclusion of thermal conditions during the preceding winter revealed that a significant reduction in disease outbreaks occurred following especially cold winters (Cold Snap, potentially related to a reduction in pathogen loading. Furthermore, mild winters (i.e., neither excessively cool nor warm frequently preceded disease outbreaks. In contrast, disease outbreaks did not typically occur following warm winters, potentially because of increased disease resistance of the coral host. Understanding the balance between the effects of warm and cold winters on disease outbreak will be important in a warming climate. Combining the influence of winter and summer thermal effects resulted in an algorithm that yields both a Seasonal Outlook of disease risk at the conclusion of winter and near real-time monitoring of Outbreak Risk during summer. This satellite-derived system can provide coral reef managers with an assessment of risk three-to-six months in advance of the summer season that can then be refined using near-real-time summer observations. This system can enhance the capacity of managers to prepare for and respond to possible disease outbreaks and focus research efforts to increase understanding of environmental impacts on coral disease in

  1. Sea spray aerosol in the Great Barrier Reef and the presence of nonvolatile organics

    Science.gov (United States)

    Mallet, Marc; Cravigan, Luke; Miljevic, Branka; Vaattovaara, Petri; Deschaseaux, Elisabeth; Swan, Hilton; Jones, Graham; Ristovski, Zoran

    2016-06-01

    Sea spray aerosol (SSA) particles produced from the ocean surface in regions of biological activity can vary greatly in size, number and composition, and in their influence on cloud formation. Algal species such as phytoplankton can alter the SSA composition. Numerous studies have investigated nascent SSA properties, but all of these have focused on aerosol particles produced by seawater from noncoral related phytoplankton and in coastal regions. Bubble chamber experiments were performed with seawater samples taken from the reef flat around Heron Island in the Great Barrier Reef during winter 2011. Here we show that the SSA from these samples was composed of an internal mixture of varying fractions of sea salt, semivolatile organics, as well as nonvolatile (below 550°C) organics. A relatively constant volume fraction of semivolatile organics of 10%-13% was observed, while nonvolatile organic volume fractions varied from 29% to 49% for 60 nm SSA. SSA organic fractions were estimated to reduce the activation ratios of SSA to cloud condensation nuclei by up to 14% when compared with artificial sea salt. Additionally, a sea-salt calibration was applied so that a compact time-of-flight aerosol mass spectrometer could be used to quantify the contribution of sea salt to submicron SSA, which yielded organic volume fractions of 3%-6%. Overall, these results indicate a high fraction of organics associated with wintertime Aitken mode SSA generated from Great Barrier Reef seawater. Further work is required to fully distinguish any differences coral reefs have on SSA composition when compared to open oceans.

  2. Spatial variation in background mortality among dominant coral taxa on Australia's Great Barrier Reef.

    Directory of Open Access Journals (Sweden)

    Chiara Pisapia

    Full Text Available Even in the absence of major disturbances (e.g., cyclones, bleaching, corals are consistently subject to high levels of background mortality, which undermines individual fitness and resilience of coral colonies. Partial mortality may impact coral response to climate change by reducing colony ability to recover between major acute stressors. This study quantified proportion of injured versus uninjured colonies (the prevalence of injuries and instantaneous measures of areal extent of injuries across individual colonies (the severity of injuries, in four common coral species along the Great Barrier Reef in Australia: massive Porites, encrusting Montipora, Acropora hyacinthus and Pocillopora damicornis. A total of 2,276 adult colonies were surveyed three latitudinal sectors, nine reefs and 27 sites along 1000 km2 on the Great Barrier Reef. The prevalence of injuries was very high, especially for Porites spp (91% and Montipora encrusting (85% and varied significantly, but most lay at small spatial scales (e.g., among colonies positioned <10-m apart. Similarly, severity of background partial mortality was surprisingly high (between 5% and 21% but varied greatly among colonies within the same site and habitat. This study suggests that intraspecific variation in partial mortality between adjacent colonies may be more important than variation between colonies in different latitudinal sectors or reefs. Differences in the prevalence and severity of background partial mortality have significant ramifications for coral capacity to cope with increasing acute disturbances, such as climate-induced coral bleaching. These data are important for understanding coral responses to increasing stressors, and in particular for predicting their capacity to recover between subsequent disturbances.

  3. Coral-macroalgal phase shifts or reef resilience: links with diversity and functional roles of herbivorous fishes on the Great Barrier Reef

    Science.gov (United States)

    Cheal, A. J.; MacNeil, M. Aaron; Cripps, E.; Emslie, M. J.; Jonker, M.; Schaffelke, B.; Sweatman, H.

    2010-12-01

    Changes from coral to macroalgal dominance following disturbances to corals symbolize the global degradation of coral reefs. The development of effective conservation measures depends on understanding the causes of such phase shifts. The prevailing view that coral-macroalgal phase shifts commonly occur due to insufficient grazing by fishes is based on correlation with overfishing and inferences from models and small-scale experiments rather than on long-term quantitative field studies of fish communities at affected and resilient sites. Consequently, the specific characteristics of herbivorous fish communities that most promote reef resilience under natural conditions are not known, though this information is critical for identifying vulnerable ecosystems. In this study, 11 years of field surveys recorded the development of the most persistent coral-macroalgal phase shift (>7 years) yet observed on Australia’s Great Barrier Reef (GBR). This shift followed extensive coral mortality caused by thermal stress (coral bleaching) and damaging storms. Comparisons with two similar reefs that suffered similar disturbances but recovered relatively rapidly demonstrated that the phase shift occurred despite high abundances of one herbivore functional group (scraping/excavating parrotfishes: Labridae). However, the shift was strongly associated with low fish herbivore diversity and low abundances of algal browsers (predominantly Siganidae) and grazers/detritivores (Acanthuridae), suggesting that one or more of these factors underpin reef resilience and so deserve particular protection. Herbivorous fishes are not harvested on the GBR, and the phase shift was not enhanced by unusually high nutrient levels. This shows that unexploited populations of herbivorous fishes cannot ensure reef resilience even under benign conditions and suggests that reefs could lose resilience under relatively low fishing pressure. Predictions of more severe and widespread coral mortality due to global

  4. Inadequate evaluation and management of threats in Australia's Marine Parks, including the Great Barrier Reef, misdirect Marine conservation.

    Science.gov (United States)

    Kearney, Bob; Farebrother, Graham

    2014-01-01

    The magnificence of the Great Barrier Reef and its worthiness of extraordinary efforts to protect it from whatever threats may arise are unquestioned. Yet almost four decades after the establishment of the Great Barrier Reef Marine Park, Australia's most expensive and intensely researched Marine Protected Area, the health of the Reef is reported to be declining alarmingly. The management of the suite of threats to the health of the reef has clearly been inadequate, even though there have been several notable successes. It is argued that the failure to prioritise correctly all major threats to the reef, coupled with the exaggeration of the benefits of calling the park a protected area and zoning subsets of areas as 'no-take', has distracted attention from adequately addressing the real causes of impact. Australia's marine conservation efforts have been dominated by commitment to a National Representative System of Marine Protected Areas. In so doing, Australia has displaced the internationally accepted primary priority for pursuing effective protection of marine environments with inadequately critical adherence to the principle of having more and bigger marine parks. The continuing decline in the health of the Great Barrier Reef and other Australian coastal areas confirms the limitations of current area management for combating threats to marine ecosystems. There is great need for more critical evaluation of how marine environments can be protected effectively and managed efficiently.

  5. SPATIAL HETEROGENEITY OF PHOTOSYNTHETIC ACTIVITY WITHIN DISEASED CORALS FROM THE GREAT BARRIER REEF

    DEFF Research Database (Denmark)

    Roff, George; Ulstrup, Karin Elizabeth; Fine, Maoz

    2008-01-01

    Morphological diagnosis and descriptions of seven disease-like syndromes affecting scleractinian corals were characterized from the southern Great Barrier Reef (GBR). Chl a fluorescence of PSII was measured using an Imaging-PAM (pulse amplitude modulated) fluorometer, enabling visualization...... with white patch syndrome appeared to impact primarily on the symbiotic dinoflagellates, as evidenced by declines in minimum fluorescence (F0) and maximum quantum yield (Fv/Fm), with no indication of degeneration in the host tissues. Our results suggest that for the majority of coral syndromes from the GBR......, pathogenesis occurs in the host tissue, while the impact on the zooxanthellae populations residing in affected corals is minimal....

  6. Microbial diversity in the coralline sponge Vaceletia crypta.

    Science.gov (United States)

    Karlińska-Batres, Klementyna; Wörheide, Gert

    2013-05-01

    Coralline sponges of the genus Vaceletia are regarded as 'living fossils', the only recent members of the so-called 'sphinctozoan-type' sponges that contributed to reef-building during the Palaeozoic and Mesozoic eras. Vaceletia species were thought to be extinct until the discovery of Vaceletia crypta in the 1970s. Here, we used molecular methods to provide first insights into the microbial diversity of these coralline sponges. Both denaturing gradient gel electrophoresis (DGGE) analyses of 19 Vaceletia specimens and the analysis of 427 clones from a bacterial 16S rRNA gene clone library of a specimen of V. crypta from the Great Barrier Reef (Australia) revealed high diversity and a complex composition with a relatively uniform phylogenetic distribution. Only a single archaeal 16S rRNA phylotype was recovered. The most abundant bacteria were the Chloroflexi (35 %). Of the microbial community, 58 % consisted of the Gammaproteobacteria, Gemmatimonadetes, Actinobacteria, Nitrospira, Deltaproteobacteria, Deferribacteres and Acidobacteria, with nearly equal representation. Less abundant members of the microbial community belonged to the Alphaproteobacteria (3 %), as well as to the Poribacteria, Betaproteobacteria, Cyanobacteria, Spirochaetes, Bacteroidetes, Deinococcus-Thermus and Archaea (all together 4 %). Of the established 96 OTUs, 88 % were closely related to other sponge-derived sequences and thereof 71 OTUs fell into sponge- or sponge-coral specific clusters, which underscores that the "living fossil" coralline sponge Vaceletia shares features of its microbial community with other sponges. The DGGE cluster analysis indicated distinct microbial communities in the different growth forms (solitary and colonial) of Vaceletia species.

  7. Towards environmental management of water turbidity within open coastal waters of the Great Barrier Reef.

    Science.gov (United States)

    Macdonald, Rachael K; Ridd, Peter V; Whinney, James C; Larcombe, Piers; Neil, David T

    2013-09-15

    Water turbidity and suspended sediment concentration (SSC) are commonly used as part of marine monitoring and water quality plans. Current management plans utilise threshold SSC values derived from mean-annual turbidity concentrations. Little published work documents typical ranges of turbidity for reefs within open coastal waters. Here, time-series turbidity measurements from 61 sites in the Great Barrier Reef (GBR) and Moreton Bay, Australia, are presented as turbidity exceedance curves and derivatives. This contributes to the understanding of turbidity and SSC in the context of environmental management in open-coastal reef environments. Exceedance results indicate strong spatial and temporal variability in water turbidity across inter/intraregional scales. The highest turbidity across 61 sites, at 50% exceedance (T50) is 15.3 NTU and at 90% exceedance (T90) 4.1 NTU. Mean/median turbidity comparisons show strong differences between the two, consistent with a strongly skewed turbidity regime. Results may contribute towards promoting refinement of water quality management protocols.

  8. Journey to the Reef

    Science.gov (United States)

    Bryson, Linda

    2010-01-01

    Despite their experiences with a cartoon sponge, most elementary students know little about the diverse inhabitants of coral reefs. Therefore, with vivid photography and video, diverse coral reef inhabitants were brought to life for the author's fifth-grade students. Students shared their knowledge in language arts and even explored coral reefs in…

  9. Disturbance and the dynamics of coral cover on the Great Barrier Reef (1995-2009.

    Directory of Open Access Journals (Sweden)

    Kate Osborne

    Full Text Available Coral reef ecosystems worldwide are under pressure from chronic and acute stressors that threaten their continued existence. Most obvious among changes to reefs is loss of hard coral cover, but a precise multi-scale estimate of coral cover dynamics for the Great Barrier Reef (GBR is currently lacking. Monitoring data collected annually from fixed sites at 47 reefs across 1300 km of the GBR indicate that overall regional coral cover was stable (averaging 29% and ranging from 23% to 33% cover across years with no net decline between 1995 and 2009. Subregional trends (10-100 km in hard coral were diverse with some being very dynamic and others changing little. Coral cover increased in six subregions and decreased in seven subregions. Persistent decline of corals occurred in one subregion for hard coral and Acroporidae and in four subregions in non-Acroporidae families. Change in Acroporidae accounted for 68% of change in hard coral. Crown-of-thorns starfish (Acanthaster planci outbreaks and storm damage were responsible for more coral loss during this period than either bleaching or disease despite two mass bleaching events and an increase in the incidence of coral disease. While the limited data for the GBR prior to the 1980's suggests that coral cover was higher than in our survey, we found no evidence of consistent, system-wide decline in coral cover since 1995. Instead, fluctuations in coral cover at subregional scales (10-100 km, driven mostly by changes in fast-growing Acroporidae, occurred as a result of localized disturbance events and subsequent recovery.

  10. Disturbance and the dynamics of coral cover on the Great Barrier Reef (1995-2009).

    Science.gov (United States)

    Osborne, Kate; Dolman, Andrew M; Burgess, Scott C; Johns, Kerryn A

    2011-03-10

    Coral reef ecosystems worldwide are under pressure from chronic and acute stressors that threaten their continued existence. Most obvious among changes to reefs is loss of hard coral cover, but a precise multi-scale estimate of coral cover dynamics for the Great Barrier Reef (GBR) is currently lacking. Monitoring data collected annually from fixed sites at 47 reefs across 1300 km of the GBR indicate that overall regional coral cover was stable (averaging 29% and ranging from 23% to 33% cover across years) with no net decline between 1995 and 2009. Subregional trends (10-100 km) in hard coral were diverse with some being very dynamic and others changing little. Coral cover increased in six subregions and decreased in seven subregions. Persistent decline of corals occurred in one subregion for hard coral and Acroporidae and in four subregions in non-Acroporidae families. Change in Acroporidae accounted for 68% of change in hard coral. Crown-of-thorns starfish (Acanthaster planci) outbreaks and storm damage were responsible for more coral loss during this period than either bleaching or disease despite two mass bleaching events and an increase in the incidence of coral disease. While the limited data for the GBR prior to the 1980's suggests that coral cover was higher than in our survey, we found no evidence of consistent, system-wide decline in coral cover since 1995. Instead, fluctuations in coral cover at subregional scales (10-100 km), driven mostly by changes in fast-growing Acroporidae, occurred as a result of localized disturbance events and subsequent recovery.

  11. Reef sharks exhibit site-fidelity and higher relative abundance in marine reserves on the Mesoamerican Barrier Reef.

    Science.gov (United States)

    Bond, Mark E; Babcock, Elizabeth A; Pikitch, Ellen K; Abercrombie, Debra L; Lamb, Norlan F; Chapman, Demian D

    2012-01-01

    Carcharhinid sharks can make up a large fraction of the top predators inhabiting tropical marine ecosystems and have declined in many regions due to intense fishing pressure. There is some support for the hypothesis that carcharhinid species that complete their life-cycle within coral reef ecosystems, hereafter referred to as "reef sharks", are more abundant inside no-take marine reserves due to a reduction in fishing pressure (i.e., they benefit from marine reserves). Key predictions of this hypothesis are that (a) individual reef sharks exhibit high site-fidelity to these protected areas and (b) their relative abundance will generally be higher in these areas compared to fished reefs. To test this hypothesis for the first time in Caribbean coral reef ecosystems we combined acoustic monitoring and baited remote underwater video (BRUV) surveys to measure reef shark site-fidelity and relative abundance, respectively. We focused on the Caribbean reef shark (Carcharhinus perezi), the most common reef shark in the Western Atlantic, at Glover's Reef Marine Reserve (GRMR), Belize. Acoustically tagged sharks (N = 34) were detected throughout the year at this location and exhibited strong site-fidelity. Shark presence or absence on 200 BRUVs deployed at GRMR and three other sites (another reserve site and two fished reefs) showed that the factor "marine reserve" had a significant positive effect on reef shark presence. We rejected environmental factors or site-environment interactions as predominant drivers of this pattern. These results are consistent with the hypothesis that marine reserves can benefit reef shark populations and we suggest new hypotheses to determine the underlying mechanism(s) involved: reduced fishing mortality or enhanced prey availability.

  12. Reef sharks exhibit site-fidelity and higher relative abundance in marine reserves on the Mesoamerican Barrier Reef.

    Directory of Open Access Journals (Sweden)

    Mark E Bond

    Full Text Available Carcharhinid sharks can make up a large fraction of the top predators inhabiting tropical marine ecosystems and have declined in many regions due to intense fishing pressure. There is some support for the hypothesis that carcharhinid species that complete their life-cycle within coral reef ecosystems, hereafter referred to as "reef sharks", are more abundant inside no-take marine reserves due to a reduction in fishing pressure (i.e., they benefit from marine reserves. Key predictions of this hypothesis are that (a individual reef sharks exhibit high site-fidelity to these protected areas and (b their relative abundance will generally be higher in these areas compared to fished reefs. To test this hypothesis for the first time in Caribbean coral reef ecosystems we combined acoustic monitoring and baited remote underwater video (BRUV surveys to measure reef shark site-fidelity and relative abundance, respectively. We focused on the Caribbean reef shark (Carcharhinus perezi, the most common reef shark in the Western Atlantic, at Glover's Reef Marine Reserve (GRMR, Belize. Acoustically tagged sharks (N = 34 were detected throughout the year at this location and exhibited strong site-fidelity. Shark presence or absence on 200 BRUVs deployed at GRMR and three other sites (another reserve site and two fished reefs showed that the factor "marine reserve" had a significant positive effect on reef shark presence. We rejected environmental factors or site-environment interactions as predominant drivers of this pattern. These results are consistent with the hypothesis that marine reserves can benefit reef shark populations and we suggest new hypotheses to determine the underlying mechanism(s involved: reduced fishing mortality or enhanced prey availability.

  13. Crowding Norms in Marine Settings: A Case Study of Snorkeling on the Great Barrier Reef.

    Science.gov (United States)

    Inglis; Johnson; Ponte

    1999-10-01

    / Research on crowding in natural environments has traditionally been concerned with encounters in terrestrial settings. Increased visitation to tropical marine environments, however, has meant that evaluations of aesthetic quality are increasingly becoming issues for managers of marine parks. In this study, we used image-capture techniques to develop a series of above- and below-water images depicting different numbers of people snorkeling in acoral reef setting. The presence of safety facilities in the above-water settings was manipulated to examine the influence of human-made structures on perception of crowding. Four respondent groups-a scuba-diving club, local residents, tourists, and US university students-representing different levels of experience in marine recreation on the Great Barrier Reef, were asked to rate the acceptability of each image. Ratings were significantly influenced by the number of people in the images, the prior experience and gender of the respondents, and the presence of safety infrastructure. Experienced scuba divers preferred scenes without people or infrastructure, while novices regarded the presence of both as more acceptable. The results suggest that evaluations of social density and crowding may vary between below-water scenes and the more familiar above-water setting. A lack of concordance between how respondents rated the images and their nominated preferences for the number of other people in the settings highlights a need for more research on how perceptions of resource conditions should be measured in marine environments.KEY WORDS: Recreation; Great Barrier Reef Marine Park; Image capture technology; Crowding norms; Snorkelinghttp://link.springer-ny.com/link/service/journals/00267/bibs/24n3p369.html

  14. Expectations and Outcomes of Reserve Network Performance following Re-zoning of the Great Barrier Reef Marine Park.

    Science.gov (United States)

    Emslie, Michael J; Logan, Murray; Williamson, David H; Ayling, Anthony M; MacNeil, M Aaron; Ceccarelli, Daniela; Cheal, Alistair J; Evans, Richard D; Johns, Kerryn A; Jonker, Michelle J; Miller, Ian R; Osborne, Kate; Russ, Garry R; Sweatman, Hugh P A

    2015-04-20

    Networks of no-take marine reserves (NTMRs) are widely advocated for preserving exploited fish stocks and for conserving biodiversity. We used underwater visual surveys of coral reef fish and benthic communities to quantify the short- to medium-term (5 to 30 years) ecological effects of the establishment of NTMRs within the Great Barrier Reef Marine Park (GBRMP). The density, mean length, and biomass of principal fishery species, coral trout (Plectropomus spp., Variola spp.), were consistently greater in NTMRs than on fished reefs over both the short and medium term. However, there were no clear or consistent differences in the structure of fish or benthic assemblages, non-target fish density, fish species richness, or coral cover between NTMR and fished reefs. There was no indication that the displacement and concentration of fishing effort reduced coral trout populations on fished reefs. A severe tropical cyclone impacted many survey reefs during the study, causing similar declines in coral cover and fish density on both NTMR and fished reefs. However, coral trout biomass declined only on fished reefs after the cyclone. The GBRMP is performing as expected in terms of the protection of fished stocks and biodiversity for a developed country in which fishing is not excessive and targets a narrow range of species. NTMRs cannot protect coral reefs directly from acute regional-scale disturbance but, after a strong tropical cyclone, impacted NTMR reefs supported higher biomass of key fishery-targeted species and so should provide valuable sources of larvae to enhance population recovery and long-term persistence.

  15. Environmental triggers for primary outbreaks of crown-of-thorns starfish on the Great Barrier Reef, Australia.

    Science.gov (United States)

    Wooldridge, Scott A; Brodie, Jon E

    2015-12-30

    In this paper, we postulate a unique environmental triggering sequence for primary outbreaks of crown-of-thorns starfish (COTS, Acanthaster planci) on the central Great Barrier Reef (GBR, Australia). Notably, we extend the previous terrestrial runoff hypothesis, viz. nutrient-enriched terrestrial runoff → elevated phytoplankton 'bloom' concentrations → enhanced COTS larval survival, to include the additional importance of strong larvae retention around reefs or within reef groups (clusters) that share enhanced phytoplankton concentrations. For the central GBR, this scenario is shown to occur when El Niño-Southern Oscillation (ENSO) linked hydrodynamic conditions cause the 'regional' larval connectivity network to fragment into smaller 'local' reef clusters due to low ocean current velocities. As inter-annual variations in hydrodynamic circulation patterns are not amenable to direct management intervention, the ability to reduce the future frequency of COTS outbreaks on the central GBR is shown to be contingent on reducing terrestrial bioavailable nutrient loads ~20-40%.

  16. Ongoing effects of no-take marine reserves on commercially exploited coral trout populations on the Great Barrier Reef.

    Science.gov (United States)

    Miller, Ian; Cheal, Alistair J; Emslie, Michael J; Logan, Murray; Sweatman, Hugh

    2012-08-01

    Networks of no-take marine reserves (NTMRs) are widely used for managing marine resources. Because they restrict fishing, managers need to monitor reserves to reassure stakeholders that they are achieving the intended results. In 2004, the Great Barrier Reef (GBR) Marine Park was rezoned and the area of NTMRs was greatly increased. Using manta tow we assessed the effectiveness of the new NTMRs in conserving coral trout (Plectropomus and Variola spp.), the principle targets of the GBR reef line fishery. Over a six year period, we sampled regional groups of matched pairs of similar reefs, ones closed to fishing under the rezoning and ones that remained open. Coral trout populations were significantly higher in NTMRs. While coral trout populations declined on reefs open to fishing, stocks were maintained in NTMRs, highlighting the ongoing benefits of marine reserves.

  17. New constraints on the origin of the Australian Great Barrier Reef: Results from an international project of deep coring

    Science.gov (United States)

    ConsortiumGreat Barrier Reef Drilling, International

    2001-06-01

    Two new boreholes provide the first direct evidence of the age of the Australian Great Barrier Reef. An inner shelf sequence (total depth, 86 m; basal age = 210 ± 40 ka) comprises a dominantly siliciclastic unit (thickness ˜52 86 m), overlain by four carbonate units (total thickness 0 34 m). A shelf-edge and slope sequence (total depth 210 m) reveals three major sections: (1) a lower section of resedimented flows deposited on a lower slope, (2) a mid-section including intervals of corals, rhodoliths, and calcarenites with low- angle graded laminae, and (3) an upper section of four shelf- margin coral-reef units separated by karst surfaces bearing paleosols. Sr isotope and magnetostratigraphic data indicate that the central Great Barrier Reef is relatively young (post Brühnes-Matuyama boundary time), and our best estimate for the onset of reef growth on the outer barrier system is ca. 600 ± 280 ka. This date suggests that reef initiation may have been related to the onset of full eccentricity-dominated glacio-eustatic sea-level oscillation as inferred from large-amplitude “saw-tooth” 100 k.y. δ18O cycles (after marine isotope stage 17), rather than to some regional environmental parameter. A major question raised by our study is whether reef margins globally display a similar growth history. The possibility of a global reef initiation event has important implications for basin to shelf partitioning of CaCO3, atmospheric carbon dioxide levels, and global temperature change during Quaternary time.

  18. The importance of coastal altimetry retracking and detiding: A case study around the Great Barrier Reef, Australia

    DEFF Research Database (Denmark)

    Idris, Nurul H.; Deng, Xiaoli; Andersen, Ole Baltazar

    2014-01-01

    waveforms in the area of the Great Barrier Reef, Australia. Comparing the retrieved SLAs with in situ tide gauge data from Townsville and Bundaberg stations showed that the SLAs from this study generally outperform those from conventional methods, demonstrating that adequate waveform retracking and detiding...

  19. Geochemical Records of Bleaching Events and the Associated Stressors From the Great Barrier Reef

    Science.gov (United States)

    Roark, E. B.; McCulloch, M.; Ingram, B. L.; Marshall, J. F.

    2003-12-01

    The health of coral reefs world-wide is increasingly threatened by a wide array of stressors. On the Great Barrier Reef (GBR) these stressors include increased sediment flux associated with land use changes, increased sea surface temperatures (SST) and salinity changes due to large floods, the latter two of which are factors in an increased number of bleaching events. The ability to document long-term change in these stressors along with changes in the number of bleaching events would help discern what are natural and anthropogenic changes in this ecosystem. Here we present results of an initial calibration effort aimed at identifying bleaching events and the associated stressors using stable isotopic and trace element analysis in coral cores. Three ˜15-year time series of geochemical measurements (δ 13C, δ 18O, and Sr/Ca) on Porites coral cores obtained from Pandora Reef and the Keppel Islands on the GBR have been developed at near weekly resolution. Since the δ 13C of the coral skeletal carbonate is known to be affected by both environmental factors (e.g. insolation and temperature) and physiological factors (e.g. photosynthesis, calcification, and the statues of the symbiotic relationship between corals and zooxanthellae) it is the most promising proxy for reconstructing past bleaching events. The first record (PAN-98) comes from a coral head that had undergone bleaching and died shortly after the large-scale bleaching events on Pandora Reef in 1998. A second core (PAN-02) was collected from a living coral within 10m of PAN-98 in 2002. Sr/Ca ratios in both cores tracked even the smallest details of an in situ SST record. The increase in SST that occurred three to four weeks prior to bleaching was faithfully recorded by a similar decrease in the Sr/Ca ratio in PAN-98, indicating that calcification continued despite the high SST of 30-31° C. The δ 13C values decreased by about 5‰ , one week after the SST increase, and remained at this value for about 4

  20. Temporal consistency in background mortality of four dominant coral taxa along Australia's Great Barrier Reef

    Science.gov (United States)

    Pisapia, C.; Anderson, K. D.; Pratchett, M. S.

    2016-09-01

    Studies on the population and community dynamics of scleractinian corals typically focus on catastrophic mortality associated with acute disturbances (e.g., coral bleaching and outbreaks of crown-of-thorns starfish), though corals are subject to high levels of background mortality and injuries caused by routine and chronic processes. This study quantified prevalence (proportion of colonies with injuries) and severity (areal extent of injuries on individual colonies) of background mortality and injuries for four common coral taxa (massive Porites, encrusting Montipora, Acropora hyacinthus and branching Pocillopora) on the Great Barrier Reef, Australia. Sampling was conducted over three consecutive years during which there were no major acute disturbances. A total of 2276 adult colonies were surveyed across 27 sites, within nine reefs and three distinct latitudinal sectors. The prevalence of injuries was very high (>83%) across all four taxa, but highest for Porites (91%) and Montipora (85%). For these taxa ( Montipora and Pocillopora), there was also significant temporal and spatial variation in prevalence of partial mortality. The severity of injuries ranged from 3% to more than 80% and varied among coral taxa, but was fairly constant spatially and temporally. This shows that some injuries have considerable longevity and that corals may invest relatively little in regenerating tissue over sites of previous injuries. Inter-colony variation in the severity of injury also had no apparent effect on the realized growth of individual colonies, suggesting that energy diverted to regeneration has a limited bearing on overall energetic allocation, or impacts on other life-history processes (e.g., reproduction) rather than growth. Establishing background levels of injury and regeneration is important for understanding energy investment and life-history consequences for reef-building corals as well as for predicting susceptibility to, and capacity to recover from, acute

  1. Risk analysis of the governance system affecting outcomes in the Great Barrier Reef.

    Science.gov (United States)

    Dale, Allan P; Vella, Karen; Pressey, Robert L; Brodie, Jon; Gooch, Margaret; Potts, Ruth; Eberhard, Rachel

    2016-12-01

    The state and trend of the Great Barrier Reef's (GBR's) ecological health remains problematic, influencing United Nations Educational, Scientific and Cultural Organization (UNESCO) statements regarding GBR governance. While UNESCO's concerns triggered separate strategic assessments by the Australian and Queensland governments, there has been no independent and integrated review of the key risks within the overall system of governance influencing GBR outcomes. As a case study of international significance, this paper applies Governance Systems Analysis (GSA), a novel analytical framework that identifies the governance themes, domains and subdomains most likely to influence environmental and socio-economic outcomes in complex natural systems. This GBR-focussed application of GSA identifies governance subdomains that present high, medium, or low risk of failure to produce positive outcomes for the Reef. This enabled us to determine that three "whole of system" governance problems could undermine GBR outcomes. First, we stress the integrative importance of the Long Term Sustainability Plan (LTSP) Subdomain. Sponsored by the Australian and Queensland governments, this subdomain concerns the primary institutional arrangements for coordinated GBR planning and delivery, but due to its recent emergence, it faces several internal governance challenges. Second, we find a major risk of implementation failure in the achievement of GBR water quality actions due to a lack of system-wide focus on building strong and stable delivery systems at catchment scale. Finally, we conclude that the LTSP Subdomain currently has too limited a mandate/capacity to influence several high-risk subdomains that have not been, but must be more strongly aligned with Reef management (e.g. the Greenhouse Gas Emission Management Subdomain). Our analysis enables exploration of governance system reforms needed to address environmental trends in the GBR and reflects on the potential application of GSA in

  2. Unique Sequence of Events Triggers Manta Ray Feeding Frenzy in the Southern Great Barrier Reef, Australia

    Directory of Open Access Journals (Sweden)

    Scarla J. Weeks

    2015-03-01

    Full Text Available Manta rays are classified as Vulnerable to Extinction on the IUCN Red List for Threatened Species. In Australia, a key aggregation site for reef manta rays is Lady Elliot Island (LEI on the Great Barrier Reef, ~7 km from the shelf edge. Here, we investigate the environmental processes that triggered the largest manta ray feeding aggregation yet observed in Australia, in early 2013. We use MODIS sea surface temperature (SST, chlorophyll-a concentration and photic depth data, together with in situ data, to show that anomalous river discharges led to high chlorophyll (anomalies: 10–15 mg∙m−3 and turbid (photic depth anomalies: −15 m river plumes extending out to LEI, and that these became entrained offshore around the periphery of an active cyclonic eddy. Eddy dynamics led to cold bottom intrusions along the shelf edge (6 °C temperature decrease, and at LEI (5 °C temperature decrease. Strongest SST gradients (>1 °C∙km−1 were at the convergent frontal zone between the shelf and eddy-influenced waters, directly overlying LEI. Here, the front intensified on the spring ebb tide to attract and shape the aggregation pattern of foraging manta rays. Future research could focus on mapping the probability and persistence of these ecologically significant frontal zones via remote sensing to aid the management and conservation of marine species.

  3. Joint estimation of crown of thorns (Acanthaster planci) densities on the Great Barrier Reef.

    Science.gov (United States)

    MacNeil, M Aaron; Mellin, Camille; Pratchett, Morgan S; Hoey, Jessica; Anthony, Kenneth R N; Cheal, Alistair J; Miller, Ian; Sweatman, Hugh; Cowan, Zara L; Taylor, Sascha; Moon, Steven; Fonnesbeck, Chris J

    2016-01-01

    Crown-of-thorns starfish (CoTS; Acanthaster spp.) are an outbreaking pest among many Indo-Pacific coral reefs that cause substantial ecological and economic damage. Despite ongoing CoTS research, there remain critical gaps in observing CoTS populations and accurately estimating their numbers, greatly limiting understanding of the causes and sources of CoTS outbreaks. Here we address two of these gaps by (1) estimating the detectability of adult CoTS on typical underwater visual count (UVC) surveys using covariates and (2) inter-calibrating multiple data sources to estimate CoTS densities within the Cairns sector of the Great Barrier Reef (GBR). We find that, on average, CoTS detectability is high at 0.82 [0.77, 0.87] (median highest posterior density (HPD) and [95% uncertainty intervals]), with CoTS disc width having the greatest influence on detection. Integrating this information with coincident surveys from alternative sampling programs, we estimate CoTS densities in the Cairns sector of the GBR averaged 44 [41, 48] adults per hectare in 2014.

  4. Understanding Biophysical Interactions In The Great Barrier Reef Catchments: Better Landscape Management For Water Quality Outcomes

    Science.gov (United States)

    Bui, E. N.; Wilkinson, S. N.; Bartley, R.

    2014-12-01

    Sediment input to the Great Barrier Reef (GBR) lagoon has had deleterious impacts on seagrass and coral ecosystems. The response of the Australian government has been to develop policies to: (i) reverse the impact of threats from sediments and nutrients, and improve water quality and aquatic health of the GBR lagoon; and (ii) to facilitate the uptake of sustainable farming and land management practices that deliver improved ecosystem services, by at least 30 per cent of farmers. The Reef2050 Long term sustainability plan aims to identify priority locations for on-ground investment of remediation options that will result in a reduction of constituent loads to the GBR. Recent sediment tracing studies indicate that subsoil from erosion features such as gullies and channel banks are the dominant contributors of sediment in the GBR catchments. Better control of gully and streambank erosion and restoration of riparian habitats are therefore necessary. Here we review the evidence for bank erosion in the GBR catchments and how scientific evidence on feedback relationships between climate- geochemistry-vegetation-landforms can be used to develop better guidelines for streambank and gully re-vegetation.

  5. Towards protecting the Great Barrier Reef from land-based pollution.

    Science.gov (United States)

    Kroon, Frederieke J; Thorburn, Peter; Schaffelke, Britta; Whitten, Stuart

    2016-06-01

    The Great Barrier Reef (GBR) is an iconic coral reef system extending over 2000 km along the north-east coast of Australia. Global recognition of its Outstanding Universal Value resulted in the listing of the 348 000 km(2) GBR World Heritage Area (WHA) by UNESCO in 1981. Despite various levels of national and international protection, the condition of GBR ecosystems has deteriorated over the past decades, with land-based pollution from the adjacent catchments being a major and ongoing cause for this decline. To reduce land-based pollution, the Australian and Queensland Governments have implemented a range of policy initiatives since 2003. Here, we evaluate the effectiveness of existing initiatives to reduce discharge of land-based pollutants into the waters of the GBR. We conclude that recent efforts in the GBR catchments to reduce land-based pollution are unlikely to be sufficient to protect the GBR ecosystems from declining water quality within the aspired time frames. To support management decisions for desired ecological outcomes for the GBR WHA, we identify potential improvements to current policies and incentives, as well as potential changes to current agricultural land use, based on overseas experiences and Australia's unique potential. The experience in the GBR may provide useful guidance for the management of other marine ecosystems, as reducing land-based pollution by better managing agricultural sources is a challenge for coastal communities around the world.

  6. DMSP in Corals and Benthic Algae from the Great Barrier Reef

    Science.gov (United States)

    Broadbent, A. D.; Jones, G. B.; Jones, R. J.

    2002-10-01

    In this study the first measurements of DMSP in six species of corals and ten species of benthic algae collected from four coral reefs in the Great Barrier Reef are reported, together with DMSP measurements made on cultured zooxanthellae. Concentrations ranged from 21 to 3831 (mean=743) fmol DMSP zooxanthellae -1 in corals, 0·16 to 2·96 nmol DMSP cm -2 (mean=90) for benthic macroalgae, and 48-285 fmol DMSP zooxanthellae -1 (mean=153) for cultured zooxanthellae. The highest concentrations of DMSP in corals occurred in Acropora formosa (mean=371 fmol DMSP zooxanthellae -1) and Acropora palifera (mean=3341 fmol DMSP zooxanthellae -1) with concentrations in A. palifera the highest DMSP concentrations reported in corals examined to date. As well as inter-specific differences in DMSP, intra-specific variation was also observed. Adjacent colonies of A. formosa that are known to have different thermal bleaching thresholds and morphologically distinct zooxanthellae, were also observed to have different DMSP concentrations, with the zooxanthellae in the colony that bleached containing DMSP at an average concentration of 436 fmol zooxanthellae -1, whilst the non-bleaching colony contained DMSP at an average concentration of 171 fmol zooxanthellae -1. The results of the present study have been used to calculate the area normalized DMSP concentrations in benthic algae (mean=0·015 mmol m -2) and corals (mean=2·22 mmol m -2) from the GBR. This data indicates that benthic algae and corals are a significant reservoir of DMSP in GBR waters.

  7. Relationships between temperature, bleaching and white syndrome on the Great Barrier Reef

    Science.gov (United States)

    Ban, S. S.; Graham, N. A. J.; Connolly, S. R.

    2013-03-01

    Coral bleaching and disease have often been hypothesized to be mutually reinforcing or co-occurring, but much of the research supporting this has only drawn an implicit connection through common environmental predictors. In this study, we examine whether an explicit relationship between white syndrome and bleaching exists using assemblage-level monitoring data from up to 112 sites on reef slopes spread throughout the Great Barrier Reef over 11 years of monitoring. None of the temperature metrics commonly used to predict mass bleaching performed strongly when applied to these data. Furthermore, the inclusion of bleaching as a predictor did not improve model skill over baseline models for predicting white syndrome. Similarly, the inclusion of white syndrome as a predictor did not improve models of bleaching. Evidence for spatial co-occurrence of bleaching and white syndrome at the assemblage level in this data set was also very weak. These results suggest the hypothesized relationship between bleaching and disease events may be weaker than previously thought, and more likely to be driven by common responses to environmental stressors, rather than directly facilitating one another.

  8. Joint estimation of crown of thorns (Acanthaster planci densities on the Great Barrier Reef

    Directory of Open Access Journals (Sweden)

    M. Aaron MacNeil

    2016-08-01

    Full Text Available Crown-of-thorns starfish (CoTS; Acanthaster spp. are an outbreaking pest among many Indo-Pacific coral reefs that cause substantial ecological and economic damage. Despite ongoing CoTS research, there remain critical gaps in observing CoTS populations and accurately estimating their numbers, greatly limiting understanding of the causes and sources of CoTS outbreaks. Here we address two of these gaps by (1 estimating the detectability of adult CoTS on typical underwater visual count (UVC surveys using covariates and (2 inter-calibrating multiple data sources to estimate CoTS densities within the Cairns sector of the Great Barrier Reef (GBR. We find that, on average, CoTS detectability is high at 0.82 [0.77, 0.87] (median highest posterior density (HPD and [95% uncertainty intervals], with CoTS disc width having the greatest influence on detection. Integrating this information with coincident surveys from alternative sampling programs, we estimate CoTS densities in the Cairns sector of the GBR averaged 44 [41, 48] adults per hectare in 2014.

  9. A method for risk analysis across governance systems: a Great Barrier Reef case study

    Science.gov (United States)

    Dale, Allan; Vella, Karen; Pressey, Robert L.; Brodie, Jon; Yorkston, Hugh; Potts, Ruth

    2013-03-01

    Healthy governance systems are key to delivering sound environmental management outcomes from global to local scales. There are, however, surprisingly few risk assessment methods that can pinpoint those domains and sub-domains within governance systems that are most likely to influence good environmental outcomes at any particular scale, or those if absent or dysfunctional, most likely to prevent effective environmental management. This paper proposes a new risk assessment method for analysing governance systems. This method is then tested through its preliminary application to a significant real-world context: governance as it relates to the health of Australia’s Great Barrier Reef (GBR). The GBR exists at a supra-regional scale along most of the north eastern coast of Australia. Brodie et al (2012 Mar. Pollut. Bull. 65 81-100) have recently reviewed the state and trend of the health of the GBR, finding that overall trends remain of significant concern. At the same time, official international concern over the governance of the reef has recently been signalled globally by the International Union for the Conservation of Nature (IUCN). These environmental and political contexts make the GBR an ideal candidate for use in testing and reviewing the application of improved tools for governance risk assessment.

  10. Relationships between butterflyfish (Chaetodontidae) feeding rates and coral consumption on the Great Barrier Reef

    Science.gov (United States)

    Gregson, M. A.; Pratchett, M. S.; Berumen, M. L.; Goodman, B. A.

    2008-09-01

    This study explored differences in the feeding rate among 20 species of coral reef butterflyfishes (Chaetodontidae) from Lizard Island, Great Barrier Reef. Feeding rate, measured as bites per minute (b.p.m.), varied between 2.98 ± 0.65 and 12.29 ± 0.27 (mean ± SE) according to species and was positively related to the proportional consumption of coral ( r 2 = 0.40, n = 20, P < 0.01), independent of phylogeny (standardised independent contrasts r 2 = 0.29, n = 19, P < 0.05). All species fed actively throughout the day, with obligate corallivores having a higher feeding rate at all times than either facultative corallivores or non-corallivores. The feeding rate of the obligate corallivores was also highest during the middle of the day. For eight of the species for which data was available, there was a positive correlation between bite rate and competitive dominance ( r = 0.71, P < 0.05). Chaetodon ephippium was the only species for which the feeding rate of pairs was higher than for solitary individuals.

  11. Impacts of Cyclone Yasi on nearshore, terrigenous sediment-dominated reefs of the central Great Barrier Reef, Australia

    Science.gov (United States)

    Perry, C. T.; Smithers, S. G.; Kench, P. S.; Pears, B.

    2014-10-01

    Tropical Cyclone (TC) Yasi (Category 5) was a large (~ 700 km across) cyclone that crossed Australia's Queensland coast on the 3rd of February 2011. TC Yasi was one of the region's most powerful recorded cyclones, with winds gusting to 290 km/h and wave heights exceeding 7 m. Here we describe the impacts of TC Yasi on a number of nearshore, turbid-zone coral reefs, that include several in the immediate vicinity of the cyclone's landfall path (King Reef, Lugger Shoal and Dunk Island), as well as a more distally located reef (Paluma Shoals) ~ 150 km to the south in Halifax Bay. These reefs were the focus of recent (between 2006 and 2009) pre-Yasi studies into their geomorphology, sedimentology and community structure, and here we discuss data from a recent (August 2011) post-Yasi re-assessment. This provided a unique opportunity to identify and describe the impacts of an intense tropical cyclone on nearshore reefs, which are often assumed to be vulnerable to physical disturbance and reworking due to their poorly lithified framework. Observed impacts of TC Yasi were site specific and spatially highly heterogeneous, but appear to have been strongly influenced by the contemporary evolutionary stage and ecological make-up of the individual reefs, with site setting (i.e. exposure to prevailing wave action) apparently more important than proximity to the landfall path. The most significant ecological impacts occurred at King Reef (probably a result of freshwater bleaching) and at Paluma Shoals, where widespread physical destruction of branched Acropora occurred. New coral recruits are, however, common at all sites and colony re-growth clearly evident at King Reef. Only localised geomorphic change was evident, mainly in the form of coral fracturing, rubble deposition, and sediment movement, but again these impacts were highly site specific. The dominant impact at Paluma Shoals was localised storm ridge/shingle sheet deposition, at Lugger Shoal major offshore fine sediment

  12. Polychlorinated dibenzo-p-dioxins and dibenzofurans in Great Barrier Reef (Australia) dugongs (Dugong dugon).

    Science.gov (United States)

    Haynes, D; Müller, J F; McLachlan, M S

    1999-01-01

    Fat tissue samples from dugong (Dugong dugon) carcasses stranded at three sites along the Great Barrier Reef were analysed for polychlorinated dibenzo-p-dioxins (PCDDs) and dibenzofurans (PCDFs). Relatively high levels of PCDDs were determined in all three dugongs. In particular OCDD, the PCDD/F congener that is usually considered the least bioavailable of all 2,3,7,8 substituted congeners, was found at levels higher than reported for other marine mammals. Tissue accumulation of PCDDs by dugongs may be a consequence of sediment and/or seagrass ingestion during feeding, microbial biotransformation of PCDD precursors in the animal's hindgut or, alternatively, the possession of a selective degradation capability for PCDFs.

  13. An assessment of an environmental gradient using coral geochemical records, Whitsunday Islands, Great Barrier Reef, Australia.

    Science.gov (United States)

    Lewis, S E; Brodie, J E; McCulloch, M T; Mallela, J; Jupiter, S D; Williams, H Stuart; Lough, J M; Matson, E G

    2012-01-01

    Coral cores were collected along an environmental and water quality gradient through the Whitsunday Island group, Great Barrier Reef (Australia), for trace element and stable isotope analysis. The primary aim of the study was to examine if this gradient could be detected in coral records and, if so, whether the gradient has changed over time with changing land use in the adjacent river catchments. Y/Ca was the trace element ratio which varied spatially across the gradient, with concentrations progressively decreasing away from the river mouths. The Ba/Ca and Y/Ca ratios were the only indicators of change in the gradient through time, increasing shortly after European settlement. The Mn/Ca ratio responded to local disturbance related to the construction of tourism infrastructure. Nitrogen isotope ratios showed no apparent trend over time. This study highlights the importance of site selection when using coral records to record regional environmental signals.

  14. Guiding principles for the improved governance of port and shipping impacts in the Great Barrier Reef.

    Science.gov (United States)

    Grech, A; Bos, M; Brodie, J; Coles, R; Dale, A; Gilbert, R; Hamann, M; Marsh, H; Neil, K; Pressey, R L; Rasheed, M A; Sheaves, M; Smith, A

    2013-10-15

    The Great Barrier Reef (GBR) region of Queensland, Australia, encompasses a complex and diverse array of tropical marine ecosystems of global significance. The region is also a World Heritage Area and largely within one of the world's best managed marine protected areas. However, a recent World Heritage Committee report drew attention to serious governance problems associated with the management of ports and shipping. We review the impacts of ports and shipping on biodiversity in the GBR, and propose a series of guiding principles to improve the current governance arrangements. Implementing these principles will increase the capacity of decision makers to minimize the impacts of ports and shipping on biodiversity, and will provide certainty and clarity to port operators and developers. A 'business as usual' approach could lead to the GBR's inclusion on the List of World Heritage in Danger in 2014.

  15. Six genetically distinct clades of Palola (Eunicidae, Annelida) from Lizard Island, Great Barrier Reef, Australia.

    Science.gov (United States)

    Schulze, Anja

    2015-09-18

    A total of 36 lots of Palola spp. (Eunicidae, Annelida) were collected during the Lizard Island Polychaete Workshop on Lizard Island, Great Barrier Reef, Queensland, Australia. Of these, 21 specimens were sequenced for a portion of the mitochondrial cytochrome c oxidase I gene. These sequences were analysed in conjunction with existing sequences of Palola spp. from other geographic regions. The samples from Lizard Island form six distinct clades, although none of them can clearly be assigned to any of the nominal species. Four of the six Lizard Island clades fall into species group A and the remaining two into species group B (which also includes the type species, Palola viridis). All sequenced specimens were characterized morphologically as far as possible and a dichotomous key was assembled. Based on this key, the remaining samples were identified as belonging to one of the clades.

  16. Adaptive management of the Great Barrier Reef and the Grand Canyon world heritage areas.

    Science.gov (United States)

    Hughes, Terence P; Gunderson, Lance H; Folke, Carl; Baird, Andrew H; Bellwood, David; Berkes, Fikret; Crona, Beatrice; Helfgott, Ariella; Leslie, Heather; Norberg, Jon; Nyström, Magnus; Olsson, Per; Osterblom, Henrik; Scheffer, Marten; Schuttenberg, Heidi; Steneck, Robert S; Tengö, Maria; Troell, Max; Walker, Brian; Wilson, James; Worm, Boris

    2007-11-01

    Conventional perceptions of the interactions between people and their environment are rapidly transforming. Old paradigms that view humans as separate from nature, natural resources as inexhaustible or endlessly substitutable, and the world as stable, predictable, and in balance are no longer tenable. New conceptual frameworks are rapidly emerging based on an adaptive approach that focuses on learning and flexible management in a dynamic social-ecological landscape. Using two iconic World Heritage Areas as case studies (the Great Barrier Reef and the Grand Canyon) we outline how an improved integration of the scientific and social aspects of natural resource management can guide the evolution of multiscale systems of governance that confront and cope with uncertainty, risk, and change in an increasingly human-dominated world.

  17. High genetic differentiation and cross-shelf patterns of genetic diversity among Great Barrier Reef populations of Symbiodinium

    Science.gov (United States)

    Howells, E. J.; van Oppen, M. J. H.; Willis, B. L.

    2009-03-01

    The resilience of Symbiodinium harboured by corals is dependent on the genetic diversity and extent of connectivity among reef populations. This study presents genetic analyses of Great Barrier Reef (GBR) populations of clade C Symbiodinium hosted by the alcyonacean coral, Sinularia flexibilis. Allelic variation at four newly developed microsatellite loci demonstrated that Symbiodinium populations are genetically differentiated at all spatial scales from 16 to 1,360 km (pairwise ΦST = 0.01-0.47, mean = 0.22); the only exception being two neighbouring populations in the Cairns region separated by 17 km. This indicates that gene flow is restricted for Symbiodinium C hosted by S. flexibilis on the GBR. Patterns of population structure reflect longshore circulation patterns and limited cross-shelf mixing, suggesting that passive transport by currents is the primary mechanism of dispersal in Symbiodinium types that are acquired horizontally. There was no correlation between the genetic structure of Symbiodinium populations and their host S. flexibilis, most likely because different factors affect the dispersal and recruitment of each partner in the symbiosis. The genetic diversity of these Symbiodinium reef populations is on average 1.5 times lower on inshore reefs than on offshore reefs. Lower inshore diversity may reflect the impact of recent bleaching events on Sinularia assemblages, which have been more widespread and severe on inshore reefs, but may also have been shaped by historical sea level fluctuations or recent migration patterns.

  18. Spatial patterns in benthic communities and the dynamics of a mosaic ecosystem on the Great Barrier Reef, Australia

    Science.gov (United States)

    Ninio, R.; Meekan, M.

    2002-04-01

    The benthic communities of the Great Barrier Reef (GBR) have been characterized as a mosaic with patches at scales of tens to hundreds of kilometres formed by clusters of reefs with comparable environmental settings and histories of disturbance. We use data sets of changes in cover of abundant benthic organisms to examine the relationship between community composition and the dynamics of this mosaic. Our data were compiled from seven annual video surveys of permanent transects on the north-east flanks of up to 52 reefs at different shelf positions throughout most of the GBR. Classification analysis of these data sets identified three distinct groups of reefs, the first dominated by poritid hard corals and alcyoniid soft corals, the second by hard corals of the genus Acropora, and the third by xeniid soft corals. These groups underwent different amounts of change in cover during the period of our study. As acroporan corals are fast growing but susceptible to mortality due to predators and wave action, the group of reefs dominated by this genus displayed rapid rates of growth and loss of cover. In contrast, cover in the remaining groups changed very slowly or remained stable. Some evidence suggests that competition for space may limit growth of acroporan corals and thus rates of change in the group dominated by xeniid soft corals. These contrasting patterns imply that susceptibility to, and recovery from, disturbances such as cyclones, predators, and bleaching events will differ among these groups of reefs.

  19. The potential benefits of herbicide regulation: a cautionary note for the Great Barrier Reef catchment area.

    Science.gov (United States)

    Davis, A M; Lewis, S E; Brodie, J E; Benson, Ash

    2014-08-15

    Industry transitions away from traditional photosystem II inhibiting (PSII) herbicides towards an 'alternative' herbicide suite are now widely advocated as a key component of improved environmental outcomes for Australia's Great Barrier Reef and improved environmental stewardship on the part of the Queensland sugar industry. A systematic desktop risk analysis found that based on current farming practices, traditional PSII herbicides can pose significant environmental risks. Several of the 'alternatives' that can directly fill a specific pre-emergent ('soil residual') weed control function similar to regulated PSII herbicides also, however, presented a similar environmental risk profile, regardless of farming systems and bio-climatic zones being considered. Several alternatives with a pre-emergent residual function as well as alternative post-emergent (contact or 'knockdown') herbicides were, predicted to pose lower environmental risks than the regulated PSII herbicides to most trophic levels, although environmental risks could still be present. While several herbicides may well be viable alternatives in terms of weed control, they can still present equal or possibly higher risks to the environment. Imposing additional regulations (or even de-registrations) on particular herbicides could result in marginal, and possibly perverse environmental impacts in the long term, if usage shifts to alternative herbicides with similar risk profiles. Regardless of any regulatory efforts, improved environmental sustainability outcomes in pesticide practices within the Great Barrier Reef catchment area will hinge primarily on the continuing adoption of integrated, strategic pest management systems and technologies applied to both traditional and 'alternative' herbicides. One of the emerging policy challenges is ensuring the requisite technical and extension support for cane growers to ensure effective adoption of rapidly evolving farming system technologies, in a very dynamic and

  20. Ecosystem health of the Great Barrier Reef: Time for effective management action based on evidence

    Science.gov (United States)

    Brodie, Jon; Pearson, Richard G.

    2016-12-01

    The Great Barrier Reef (GBR) is a World Heritage site off the north-eastern coast of Australia. The GBR is worth A 15-20 billion/year to the Australian economy and provides approximately 64,000 full time jobs. Many of the species and ecosystems of the GBR are in poor condition and continue to decline. The principal causes of the decline are catchment pollutant runoff associated with agricultural and urban land uses, climate change impacts and the effects of fishing. Many important ecosystems of the GBR region are not included inside the boundaries of the World Heritage Area. The current management regime for catchment pollutant runoff and climate change is clearly inadequate to prevent further decline. We propose a refocus of management on a "Greater GBR" (containing not only the major ecosystems and species of the GBR, but also its catchment) and on a set of management actions to halt the decline of the GBR. Proposed actions include: (1) Strengthen management in the areas of the Greater GBR where ecosystems are in good condition, with Torres Strait, northern Cape York and Hervey Bay being the systems with highest current integrity; (2) Investigate methods of cross-boundary management to achieve simultaneous cost-effective terrestrial, freshwater and marine ecosystem protection in the Greater GBR; (3) Develop a detailed, comprehensive, costed water quality management plan for the Greater GBR; (4) Use the Great Barrier Reef Marine Park Act and the Environment Protection and Biodiversity Conservation Act to regulate catchment activities that lead to damage to the Greater GBR, in conjunction with the relevant Queensland legislation; (5) Fund catchment and coastal management to the required level to solve pollution issues for the Greater GBR by 2025, before climate change impacts on Greater GBR ecosystems become overwhelming; (6) Continue enforcement of the zoning plan; (7) Australia to show commitment to protecting the Greater GBR through greenhouse gas emissions

  1. Advances in monitoring the human dimension of natural resource systems: an example from the Great Barrier Reef

    Science.gov (United States)

    Marshall, N. A.; Bohensky, E.; Curnock, M.; Goldberg, J.; Gooch, M.; Nicotra, B.; Pert, P.; Scherl, L. M.; Stone-Jovicich, S.; Tobin, R. C.

    2016-11-01

    The aim of this paper is to demonstrate the feasibility and potential utility of decision-centric social-economic monitoring using data collected from Great Barrier Reef (Reef) region. The social and economic long term monitoring program (SELTMP) for the Reef is a novel attempt to monitor the social and economic dimensions of social-ecological change in a globally and nationally important region. It represents the current status and condition of the major user groups of the Reef with the potential to simultaneously consider trends, interconnections, conflicts, dependencies and vulnerabilities. Our approach was to combine a well-established conceptual framework with a strong governance structure and partnership arrangement that enabled the co-production of knowledge. The framework is a modification of the Millennium Ecosystem Assessment and it was used to guide indicator choice. Indicators were categorised as; (i) resource use and dependency, (ii) ecosystem benefits and well-being, and (iii) drivers of change. Data were collected through secondary datasets where existing and new datasets were created where not, using standard survey techniques. Here we present an overview of baseline results of new survey data from commercial-fishers (n = 210), marine-based tourism operators (n = 119), tourists (n = 2877), local residents (n = 3181), and other Australians (n = 2002). The indicators chosen describe both social and economic components of the Reef system and represent an unprecedented insight into the ways in which people currently use and depend on the Reef, the benefits that they derive, and how they perceive, value and relate to the Reef and each other. However, the success of a program such as the SELTMP can only occur with well-translated cutting-edge data and knowledge that are collaboratively produced, adaptive, and directly feeds into current management processes. We discuss how data from the SELTMP have already been incorporated into Reef management decision

  2. Seven new species of Paleanotus (Annelida: Chrysopetalidae) described from Lizard Island, Great Barrier Reef, and coral reefs of northern Australia and the Indo-Pacific: two cryptic species pairs revealed between western Pacific Ocean and the eastern Indian Ocean.

    Science.gov (United States)

    Watson, Charlotte

    2015-09-18

    Morphological investigation into the paleate genus Paleanotus Schmarda 1861 of the family Chrysopetalidae from northern Australian coral reefs, primarily Lizard Island and outlying reefs, included a complex of very small, slender individuals (length Great Barrier Reef to the Philippines, western Pacific Ocean. Cryptic morphology and potential genetic diversity is discussed in Paleanotus inornatus n. sp. and P. adornatus n. sp. that possess overlapping widespread distribution patterns across northern Australia and Indo-Pacific reefs. The smallest bodied taxon, Paleanotus chrysos n. sp. is the only species with a Coral Sea range encompassing Lizard Island, Heron Island and New Caledonia.

  3. Reef Fish Community Biomass and Trophic Structure Changes across Shallow to Upper-Mesophotic Reefs in the Mesoamerican Barrier Reef, Caribbean.

    Directory of Open Access Journals (Sweden)

    Dominic A Andradi-Brown

    Full Text Available Mesophotic coral ecosystems (MCEs; reefs 30-150m depth are of increased research interest because of their potential role as depth refuges from many shallow reef threats. Yet few studies have identified patterns in fish species composition and trophic group structure between MCEs and their shallow counterparts. Here we explore reef fish species and biomass distributions across shallow to upper-MCE Caribbean reef gradients (5-40m around Utila, Honduras, using a diver-operated stereo-video system. Broadly, we found reef fish species richness, abundance and biomass declining with depth. At the trophic group level we identified declines in herbivores (both total and relative community biomass with depth, mostly driven by declines in parrotfish (Scaridae. Piscivores increased as a proportion of the community with increased depth while, in contrast to previous studies, we found no change in relative planktivorous reef fish biomass across the depth gradient. In addition, we also found evidence of ontogenetic migrations in the blue tang (Acanthurus coeruleus, striped parrotfish (Scarus iserti, blue chromis (Chromis cyanea, creole wrasse (Clepticus parrae, bluehead wrasse (Thalassoma bifasciatum and yellowtail snapper (Ocyurus chrysurus, with a higher proportion of larger individuals at mesophotic and near-mesophotic depths than on shallow reefs. Our results highlight the importance of using biomass measures when considering fish community changes across depth gradients, with biomass generating different results to simple abundance counts.

  4. Anthropogenic contaminants in Indo-Pacific humpback and Australian snubfin dolphins from the central and southern Great Barrier Reef.

    Science.gov (United States)

    Cagnazzi, Daniele; Fossi, Maria Cristina; Parra, Guido J; Harrison, Peter L; Maltese, Silvia; Coppola, Daniele; Soccodato, Alice; Bent, Michael; Marsili, Letizia

    2013-11-01

    We present the first evidence of accumulation of organochlorine compounds (DDTs, PCBs, HCB) and polycyclic aromatic hydrocarbons (PAHs) in Indo-Pacific humpback and Australian snubfin dolphins from the central and southern Great Barrier Reef. These dolphins are considered by the Great Barrier Marine Park Authority to be high priority species for management. Analyses of biopsy samples, collected from free ranging individuals, showed PAHs levels comparable to those reported from highly industrialized countries. DDTs and HCB were found at low levels, while in some individuals, PCBs were above thresholds over which immunosuppression and reproductive anomalies occur. These results highlight the need for ongoing monitoring of these and other contaminants, and their potential adverse effects on dolphins and other marine fauna. This is particularly important given the current strategic assessment of the Great Barrier Reef World Heritage Area being undertaken by the Australian Government and the Queensland Government.

  5. Lower Mesophotic Coral Communities (60-125 m Depth) of the Northern Great Barrier Reef and Coral Sea

    Science.gov (United States)

    Englebert, Norbert; Bongaerts, Pim; Muir, Paul R.; Hay, Kyra B.; Pichon, Michel; Hoegh-Guldberg, Ove

    2017-01-01

    Mesophotic coral ecosystems in the Indo-Pacific remain relatively unexplored, particularly at lower mesophotic depths (≥60 m), despite their potentially large spatial extent. Here, we used a remotely operated vehicle to conduct a qualitative assessment of the zooxanthellate coral community at lower mesophotic depths (60–125 m) at 10 different locations in the Great Barrier Reef Marine Park and the Coral Sea Commonwealth Marine Reserve. Lower mesophotic coral communities were present at all 10 locations, with zooxanthellate scleractinian corals extending down to ~100 metres on walls and ~125 m on steep slopes. Lower mesophotic coral communities were most diverse in the 60–80 m zone, while at depths of ≥100 m the coral community consisted almost exclusively of the genus Leptoseris. Collections of coral specimens (n = 213) between 60 and 125 m depth confirmed the presence of at least 29 different species belonging to 18 genera, including several potential new species and geographic/depth range extensions. Overall, this study highlights that lower mesophotic coral ecosystems are likely to be ubiquitous features on the outer reefs of the Great Barrier Reef and atolls of the Coral Sea, and harbour a generic and species richness of corals that is much higher than thus far reported. Further research efforts are urgently required to better understand and manage these ecosystems as part of the Great Barrier Reef Marine Park and Coral Sea Commonwealth Marine Reserve. PMID:28146574

  6. Impact of sea-level rise on cross-shore sediment transport on fetch-limited barrier reef island beaches under modal and cyclonic conditions.

    Science.gov (United States)

    Baldock, T E; Golshani, A; Atkinson, A; Shimamoto, T; Wu, S; Callaghan, D P; Mumby, P J

    2015-08-15

    A one-dimensional wave model is combined with an analytical sediment transport model to investigate the likely influence of sea-level rise on net cross-shore sediment transport on fetch-limited barrier reef and lagoon island beaches. The modelling considers if changes in the nearshore wave height and wave period in the lagoon induced by different water levels over the reef flat are likely to lead to net offshore or onshore movement of sediment. The results indicate that the effects of SLR on net sediment movement are highly variable and controlled by the bathymetry of the reef and lagoon. A significant range of reef-lagoon bathymetry, and notably shallow and narrow reefs, appears to lead hydrodynamic conditions and beaches that are likely to be stable or even accrete under SLR. Loss of reef structural complexity, particularly on the reef flat, increases the chance of sediment transport away from beaches and offshore.

  7. Ocean acidification accelerates reef bioerosion.

    Directory of Open Access Journals (Sweden)

    Max Wisshak

    Full Text Available In the recent discussion how biotic systems may react to ocean acidification caused by the rapid rise in carbon dioxide partial pressure (pCO(2 in the marine realm, substantial research is devoted to calcifiers such as stony corals. The antagonistic process - biologically induced carbonate dissolution via bioerosion - has largely been neglected. Unlike skeletal growth, we expect bioerosion by chemical means to be facilitated in a high-CO(2 world. This study focuses on one of the most detrimental bioeroders, the sponge Cliona orientalis, which attacks and kills live corals on Australia's Great Barrier Reef. Experimental exposure to lowered and elevated levels of pCO(2 confirms a significant enforcement of the sponges' bioerosion capacity with increasing pCO(2 under more acidic conditions. Considering the substantial contribution of sponges to carbonate bioerosion, this finding implies that tropical reef ecosystems are facing the combined effects of weakened coral calcification and accelerated bioerosion, resulting in critical pressure on the dynamic balance between biogenic carbonate build-up and degradation.

  8. Quantifying water flow within aquatic ecosystems using load cell sensors: a profile of currents experienced by coral reef organisms around Lizard Island, Great Barrier Reef, Australia.

    Science.gov (United States)

    Johansen, Jacob L

    2014-01-01

    Current velocity in aquatic environments has major implications for the diversity, abundance and ecology of aquatic organisms, but quantifying these currents has proven difficult. This study utilises a simple and inexpensive instrument (reef system around Lizard Island (Great Barrier Reef, Australia) at a spatial and temporal scale relevant to the ecology of individual benthos and fish. The instrument uses load-cell sensors to provide a correlation between sensor output and ambient current velocity of 99%. Each instrument is able to continuously record current velocities to >500 cms⁻¹ and wave frequency to >100 Hz over several weeks. Sensor data are registered and processed at 16 MHz and 10 bit resolution, with a measuring precision of 0.06±0.04%, and accuracy of 0.51±0.65% (mean ±S.D.). Each instrument is also pressure rated to 120 m and shear stresses ≤20 kNm⁻² allowing deployment in harsh environments. The instrument was deployed across 27 coral reef sites covering the crest (3 m), mid-slope (6 m) and deep-slope (9 m depth) of habitats directly exposed, oblique or sheltered from prevailing winds. Measurements demonstrate that currents over the reef slope and crest varies immensely depending on depth and exposure: currents differ up to 9-fold within habitats only separated by 3 m depth and 15-fold between exposed, oblique and sheltered habitats. Comparisons to ambient weather conditions reveal that currents around Lizard Island are largely wind driven. Zero to 22.5 knot winds correspond directly to currents of 0 to >82 cms⁻¹, while tidal currents rarely exceed 5.5 cms⁻¹. Rather, current velocity increases exponentially as a function of wave height (0 to 1.6 m) and frequency (0.54 to 0.20 Hz), emphasizing the enormous effect of wind and waves on organisms in these shallow coral reef habitats.

  9. Remote video bioassays reveal the potential feeding impact of the rabbitfish Siganus canaliculatus (f: Siganidae) on an inner-shelf reef of the Great Barrier Reef

    Science.gov (United States)

    Fox, R. J.; Bellwood, D. R.

    2008-09-01

    Herbivores are widely acknowledged as key elements maintaining the health and resilience of terrestrial and aquatic ecosystems. Understanding and quantifying the impact of herbivores in ecosystems are fundamental to our ability to manage these systems. The traditional method of quantifying the impact of herbivorous fishes on coral reefs has been to use transplanted pieces of seagrass or algae as “bioassays”. However, these experiments leave a key question unanswered, namely: Which species are responsible for the impact being quantified? This study revisits the use of bioassays and tested the assumption that the visual abundance of species reflects their role in the removal of assay material. Using remote video cameras to film removal of assay material on an inner-shelf reef of the Great Barrier Reef, the species responsible for assay-based herbivory were identified. The video footage revealed that Siganus canaliculatus, a species not previously recorded at the study site, was primarily responsible for removal of macroalgal biomass. The average percentage decrease in thallus length of whole plants of Sargassum at the reef crest was 54 ± 8.9% (mean ± SE), and 50.4 ± 9.8% for individually presented Sargassum strands (for a 4.5-h deployment). Of the 14,656 bites taken from Sargassum plants and strands across all reef zones, nearly half (6,784 bites or 46%) were taken by S. canaliculatus, with the majority of the remainder attributable to Siganus doliatus. However, multiple regression analysis demonstrated that only the bites of S. canaliculatus were removing macroalgal biomass. The results indicate that, even with detailed observations, the species of herbivore that may be responsible for maintaining benthic community structure can go unnoticed. Some of our fundamental ideas of the relative importance of individual species in ecosystem processes may be in need of re-evaluation.

  10. Sponge-microbe associations survive high nutrients and temperatures.

    Directory of Open Access Journals (Sweden)

    Rachel Simister

    Full Text Available Coral reefs are under considerable pressure from global stressors such as elevated sea surface temperature and ocean acidification, as well as local factors including eutrophication and poor water quality. Marine sponges are diverse, abundant and ecologically important components of coral reefs in both coastal and offshore environments. Due to their exceptionally high filtration rates, sponges also form a crucial coupling point between benthic and pelagic habitats. Sponges harbor extensive microbial communities, with many microbial phylotypes found exclusively in sponges and thought to contribute to the health and survival of their hosts. Manipulative experiments were undertaken to ascertain the impact of elevated nutrients and seawater temperature on health and microbial community dynamics in the Great Barrier Reef sponge Rhopaloeides odorabile. R. odorabile exposed to elevated nutrient levels including 10 µmol/L total nitrogen at 31°C appeared visually similar to those maintained under ambient seawater conditions after 7 days. The symbiotic microbial community, analyzed by 16S rRNA gene pyrotag sequencing, was highly conserved for the duration of the experiment at both phylum and operational taxonomic unit (OTU (97% sequence similarity levels with 19 bacterial phyla and 1743 OTUs identified across all samples. Additionally, elevated nutrients and temperatures did not alter the archaeal associations in R. odorabile, with sequencing of 16S rRNA gene libraries revealing similar Thaumarchaeota diversity and denaturing gradient gel electrophoresis (DGGE revealing consistent amoA gene patterns, across all experimental treatments. A conserved eukaryotic community was also identified across all nutrient and temperature treatments by DGGE. The highly stable microbial associations indicate that R. odorabile symbionts are capable of withstanding short-term exposure to elevated nutrient concentrations and sub-lethal temperatures.

  11. Adaptive management of the Great Barrier Reef: a globally significant demonstration of the benefits of networks of marine reserves.

    Science.gov (United States)

    McCook, Laurence J; Ayling, Tony; Cappo, Mike; Choat, J Howard; Evans, Richard D; De Freitas, Debora M; Heupel, Michelle; Hughes, Terry P; Jones, Geoffrey P; Mapstone, Bruce; Marsh, Helene; Mills, Morena; Molloy, Fergus J; Pitcher, C Roland; Pressey, Robert L; Russ, Garry R; Sutton, Stephen; Sweatman, Hugh; Tobin, Renae; Wachenfeld, David R; Williamson, David H

    2010-10-26

    The Great Barrier Reef (GBR) provides a globally significant demonstration of the effectiveness of large-scale networks of marine reserves in contributing to integrated, adaptive management. Comprehensive review of available evidence shows major, rapid benefits of no-take areas for targeted fish and sharks, in both reef and nonreef habitats, with potential benefits for fisheries as well as biodiversity conservation. Large, mobile species like sharks benefit less than smaller, site-attached fish. Critically, reserves also appear to benefit overall ecosystem health and resilience: outbreaks of coral-eating, crown-of-thorns starfish appear less frequent on no-take reefs, which consequently have higher abundance of coral, the very foundation of reef ecosystems. Effective marine reserves require regular review of compliance: fish abundances in no-entry zones suggest that even no-take zones may be significantly depleted due to poaching. Spatial analyses comparing zoning with seabed biodiversity or dugong distributions illustrate significant benefits from application of best-practice conservation principles in data-poor situations. Increases in the marine reserve network in 2004 affected fishers, but preliminary economic analysis suggests considerable net benefits, in terms of protecting environmental and tourism values. Relative to the revenue generated by reef tourism, current expenditure on protection is minor. Recent implementation of an Outlook Report provides regular, formal review of environmental condition and management and links to policy responses, key aspects of adaptive management. Given the major threat posed by climate change, the expanded network of marine reserves provides a critical and cost-effective contribution to enhancing the resilience of the Great Barrier Reef.

  12. Assessing loss of coral cover on Australia's Great Barrier Reef over two decades, with implications for longer-term trends

    Science.gov (United States)

    Sweatman, H.; Delean, S.; Syms, C.

    2011-06-01

    While coral reefs in many parts of the world are in decline as a direct consequence of human pressures, Australia's Great Barrier Reef (GBR) is unusual in that direct human pressures are low and the entire system of ~2,900 reefs has been managed as a marine park since the 1980s. In spite of these advantages, standard annual surveys of a large number of reefs showed that from 1986 to 2004, average live coral cover across the GBR declined from 28 to 22%. This overall decline was mainly due to large losses in six (21%) of 29 subregions. Declines in live coral cover on reefs in two inshore subregions coincided with thermal bleaching in 1998, while declines in four mid-self subregions were due to outbreaks of predatory starfish. Otherwise, living coral cover increased in one subregion (3%) and 22 subregions (76%) showed no substantial change. Reefs in the great majority of subregions showed cycles of decline and recovery over the survey period, but with little synchrony among subregions. Two previous studies examined long-term changes in live coral cover on GBR reefs using meta-analyses including historical data from before the mid-1980s. Both found greater rates of loss of coral and recorded a marked decrease in living coral cover on the GBR in 1986, coinciding exactly with the start of large-scale monitoring. We argue that much of the apparent long-term decrease results from combining data from selective, sparse, small-scale studies before 1986 with data from both small-scale studies and large-scale monitoring surveys after that date. The GBR has clearly been changed by human activities and live coral cover has declined overall, but losses of coral in the past 40-50 years have probably been overestimated.

  13. Sponge biomass and bioerosion rates increase under ocean warming and acidification.

    Science.gov (United States)

    Fang, James K H; Mello-Athayde, Matheus A; Schönberg, Christine H L; Kline, David I; Hoegh-Guldberg, Ove; Dove, Sophie

    2013-12-01

    The combination of ocean warming and acidification as a result of increasing atmospheric carbon dioxide (CO2 ) is considered to be a significant threat to calcifying organisms and their activities on coral reefs. How these global changes impact the important roles of decalcifying organisms (bioeroders) in the regulation of carbonate budgets, however, is less understood. To address this important question, the effects of a range of past, present and future CO2 emission scenarios (temperature + acidification) on the excavating sponge Cliona orientalis Thiele, 1900 were explored over 12 weeks in early summer on the southern Great Barrier Reef. C. orientalis is a widely distributed bioeroder on many reefs, and hosts symbiotic dinoflagellates of the genus Symbiodinium. Our results showed that biomass production and bioerosion rates of C. orientalis were similar under a pre-industrial scenario and a present day (control) scenario. Symbiodinium population density in the sponge tissue was the highest under the pre-industrial scenario, and decreased towards the two future scenarios with sponge replicates under the 'business-as-usual' CO2 emission scenario exhibiting strong bleaching. Despite these changes, biomass production and the ability of the sponge to erode coral carbonate materials both increased under the future scenarios. Our study suggests that C. orientalis will likely grow faster and have higher bioerosion rates in a high CO2 future than at present, even with significant bleaching. Assuming that our findings hold for excavating sponges in general, increased sponge biomass coupled with accelerated bioerosion may push coral reefs towards net erosion and negative carbonate budgets in the future.

  14. Pathways and Hydrography in the Mesoamerican Barrier Reef System Part 1: Circulation

    Science.gov (United States)

    Carrillo, L.; Johns, E. M.; Smith, R. H.; Lamkin, J. T.; Largier, J. L.

    2015-10-01

    Acoustic Doppler Current Profiler (ADCP) measurements and surface drifters released from two oceanographic cruises conducted during March 2006 and January/February 2007 are used to investigate the circulation off the Mesoamerican Barrier Reef System (MBRS). We show that the MBRS circulation can be divided into two distinct regimes, a northern region dominated by the strong, northward-flowing Yucatan Current, and a southern region with weaker southward coastal currents and the presence of the Honduras Gyre. The latitude of impingement of the Cayman Current onto the coastline varies with time, and creates a third region, which acts as a boundary between the northern and southern circulation regimes. This circulation pattern yields two zones in terms of dispersal, with planktonic propagules in the northern region being rapidly exported to the north, whereas plankton in the southern and impingement regions may be retained locally or regionally. The latitude of the impingement region shifts interannually and intra-annually up to 3° in latitude. Sub-mesoscale features are observed in association with topography, e.g., flow bifurcation around Cozumel Island, flow wake north of Chinchorro Bank and separation of flow from the coast just north of Bahia de la Ascencion. This third feature is evident as cyclonic recirculation in coastal waters, which we call the Ascencion-Cozumel Coastal Eddy. An understanding of the implications of these different circulation regimes on water mass distributions, population connectivity, and the fate of land-based pollutants in the MBRS is critically important to better inform science-based resource management and conservation plans for the MBRS coral reefs.

  15. Diuron tolerance and potential degradation by pelagic microbiomes in the Great Barrier Reef lagoon.

    Science.gov (United States)

    Angly, Florent E; Pantos, Olga; Morgan, Thomas C; Rich, Virginia; Tonin, Hemerson; Bourne, David G; Mercurio, Philip; Negri, Andrew P; Tyson, Gene W

    2016-01-01

    Diuron is a herbicide commonly used in agricultural areas where excess application causes it to leach into rivers, reach sensitive marine environments like the Great Barrier Reef (GBR) lagoon and pose risks to marine life. To investigate the impact of diuron on whole prokaryotic communities that underpin the marine food web and are integral to coral reef health, GBR lagoon water was incubated with diuron at environmentally-relevant concentration (8 µg/L), and sequenced at specific time points over the following year. 16S rRNA gene amplicon profiling revealed no significant short- or long-term effect of diuron on microbiome structure. The relative abundance of prokaryotic phototrophs was not significantly altered by diuron, which suggests that they were largely tolerant at this concentration. Assembly of a metagenome derived from waters sampled at a similar location in the GBR lagoon did not reveal the presence of mutations in the cyanobacterial photosystem that could explain diuron tolerance. However, resident phages displayed several variants of this gene and could potentially play a role in tolerance acquisition. Slow biodegradation of diuron was reported in the incubation flasks, but no correlation with the relative abundance of heterotrophs was evident. Analysis of metagenomic reads supports the hypothesis that previously uncharacterized hydrolases carried by low-abundance species may mediate herbicide degradation in the GBR lagoon. Overall, this study offers evidence that pelagic phototrophs of the GBR lagoon may be more tolerant of diuron than other tropical organisms, and that heterotrophs in the microbial seed bank may have the potential to degrade diuron and alleviate local anthropogenic stresses to inshore GBR ecosystems.

  16. Diuron tolerance and potential degradation by pelagic microbiomes in the Great Barrier Reef lagoon

    Directory of Open Access Journals (Sweden)

    Florent E. Angly

    2016-03-01

    Full Text Available Diuron is a herbicide commonly used in agricultural areas where excess application causes it to leach into rivers, reach sensitive marine environments like the Great Barrier Reef (GBR lagoon and pose risks to marine life. To investigate the impact of diuron on whole prokaryotic communities that underpin the marine food web and are integral to coral reef health, GBR lagoon water was incubated with diuron at environmentally-relevant concentration (8 µg/L, and sequenced at specific time points over the following year. 16S rRNA gene amplicon profiling revealed no significant short- or long-term effect of diuron on microbiome structure. The relative abundance of prokaryotic phototrophs was not significantly altered by diuron, which suggests that they were largely tolerant at this concentration. Assembly of a metagenome derived from waters sampled at a similar location in the GBR lagoon did not reveal the presence of mutations in the cyanobacterial photosystem that could explain diuron tolerance. However, resident phages displayed several variants of this gene and could potentially play a role in tolerance acquisition. Slow biodegradation of diuron was reported in the incubation flasks, but no correlation with the relative abundance of heterotrophs was evident. Analysis of metagenomic reads supports the hypothesis that previously uncharacterized hydrolases carried by low-abundance species may mediate herbicide degradation in the GBR lagoon. Overall, this study offers evidence that pelagic phototrophs of the GBR lagoon may be more tolerant of diuron than other tropical organisms, and that heterotrophs in the microbial seed bank may have the potential to degrade diuron and alleviate local anthropogenic stresses to inshore GBR ecosystems.

  17. Predicting outbreaks of a climate-driven coral disease in the Great Barrier Reef

    Science.gov (United States)

    Maynard, J. A.; Anthony, K. R. N.; Harvell, C. D.; Burgman, M. A.; Beeden, R.; Sweatman, H.; Heron, S. F.; Lamb, J. B.; Willis, B. L.

    2011-06-01

    Links between anomalously high sea temperatures and outbreaks of coral diseases known as White Syndromes (WS) represent a threat to Indo-Pacific reefs that is expected to escalate in a changing climate. Further advances in understanding disease aetiologies, determining the relative importance of potential risk factors for outbreaks and in trialing management actions are hampered by not knowing where or when outbreaks will occur. Here, we develop a tool to target research and monitoring of WS outbreaks in the Great Barrier Reef (GBR). The tool is based on an empirical regression model and takes the form of user-friendly interactive ~1.5-km resolution maps. The maps denote locations where long-term monitoring suggests that coral cover exceeds 26% and summer temperature stress (measured by a temperature metric termed the mean positive summer anomaly) is equal to or exceeds that experienced at sites in 2002 where the only severe WS outbreaks documented on the GBR to date were observed. No WS outbreaks were subsequently documented at 45 routinely surveyed sites from 2003 to 2008, and model hindcasts for this period indicate that outbreak likelihood was never high. In 2009, the model indicated that outbreak likelihood was high at north-central GBR sites. The results of the regression model and targeted surveys in 2009 revealed that the threshold host density for an outbreak decreases as thermal stress increases, suggesting that bleaching could be a more important precursor to WS outbreaks than previously anticipated, given that bleaching was severe at outbreak sites in 2002 but not at any of the surveyed sites in 2009. The iterative approach used here has led to an improved understanding of disease causation, will facilitate management responses and can be applied to other coral diseases and/or other regions.

  18. New constraints on the spatial distribution and morphology of the Halimeda bioherms of the Great Barrier Reef, Australia

    Science.gov (United States)

    McNeil, Mardi A.; Webster, Jody M.; Beaman, Robin J.; Graham, Trevor L.

    2016-12-01

    Halimeda bioherms occur as extensive geological structures on the northern Great Barrier Reef (GBR), Australia. We present the most complete, high-resolution spatial mapping of the northern GBR Halimeda bioherms, based on new airborne lidar and multibeam echosounder bathymetry data. Our analysis reveals that bioherm morphology does not conform to the previous model of parallel ridges and troughs, but is far more complex than previously thought. We define and describe three morphological sub-types: reticulate, annulate, and undulate, which are distributed in a cross-shelf pattern of reduced complexity from east to west. The northern GBR bioherms cover an area of 6095 km2, three times larger than the original estimate, exceeding the area and volume of calcium carbonate in the adjacent modern shelf-edge barrier reefs. We have mapped a 1740 km2 bioherm complex north of Raine Island in the Cape York region not previously recorded, extending the northern limit by more than 1° of latitude. Bioherm formation and distribution are controlled by a complex interaction of outer-shelf geometry, regional and local currents, coupled with the morphology and depth of continental slope submarine canyons determining the delivery of cool, nutrient-rich water upwelling through inter-reef passages. Distribution and mapping of Halimeda bioherms in relation to Great Barrier Reef Marine Park Authority bioregion classifications and management zones are inconsistent and currently poorly defined due to a lack of high-resolution data not available until now. These new estimates of bioherm spatial distribution and morphology have implications for understanding the role these geological features play as structurally complex and productive inter-reef habitats, and as calcium carbonate sinks which record a complete history of the Holocene post-glacial marine transgression in the northern GBR.

  19. Evidence of large-scale chronic eutrophication in the Great Barrier Reef: quantification of chlorophyll a thresholds for sustaining coral reef communities.

    Science.gov (United States)

    Bell, Peter R F; Elmetri, Ibrahim; Lapointe, Brian E

    2014-04-01

    Long-term monitoring data show that hard coral cover on the Great Barrier Reef (GBR) has reduced by >70 % over the past century. Although authorities and many marine scientists were in denial for many years, it is now widely accepted that this reduction is largely attributable to the chronic state of eutrophication that exists throughout most of the GBR. Some reefs in the far northern GBR where the annual mean chlorophyll a (Chl a) is in the lower range of the proposed Eutrophication Threshold Concentration for Chl a (~0.2-0.3 mg m⁻³) show little or no evidence of degradation over the past century. However, the available evidence suggests that coral diseases and the crown-of-thorns starfish will proliferate in such waters and hence the mandated eutrophication Trigger values for Chl a (~0.4-0.45 mg m⁻³) will need to be decreased to ~0.2 mg m⁻³ for sustaining coral reef communities.

  20. Minke whale song, spacing, and acoustic communication on the Great Barrier Reef, Australia

    Science.gov (United States)

    Gedamke, Jason

    An inquisitive population of minke whale (Balaenoptera acutorostrata ) that concentrates on the Great Barrier Reef during its suspected breeding season offered a unique opportunity to conduct a multi-faceted study of a little-known Balaenopteran species' acoustic behavior. Chapter one investigates whether the minke whale is the source of an unusual, complex, and stereotyped sound recorded, the "star-wars" vocalization. A hydrophone array was towed from a vessel to record sounds from circling whales for subsequent localization of sound sources. These acoustic locations were matched with shipboard and in-water observations of the minke whale, demonstrating the minke whale was the source of this unusual sound. Spectral and temporal features of this sound and the source levels at which it is produced are described. The repetitive "star-wars" vocalization appears similar to the songs of other whale species and has characteristics consistent with reproductive advertisement displays. Chapter two investigates whether song (i.e. the "star-wars" vocalization) has a spacing function through passive monitoring of singer spatial patterns with a moored five-sonobuoy array. Active song playback experiments to singers were also conducted to further test song function. This study demonstrated that singers naturally maintain spatial separations between them through a nearest-neighbor analysis and animated tracks of singer movements. In response to active song playbacks, singers generally moved away and repeated song more quickly suggesting that song repetition interval may help regulate spatial interaction and singer separation. These results further indicate the Great Barrier Reef may be an important reproductive habitat for this species. Chapter three investigates whether song is part of a potentially graded repertoire of acoustic signals. Utilizing both vessel-based recordings and remote recordings from the sonobuoy array, temporal and spectral features, source levels, and

  1. Joeropsididae Nordenstam, 1933 (Crustacea, Isopoda, Asellota) from the Lizard Island region of the Great Barrier Reef, Queensland, Australia.

    Science.gov (United States)

    Bruce, Niel L

    2015-01-01

    The marine isopod family Joeropsididae (Asellota) is documented for the Lizard Island region of the Great Barrier Reef, Australia. Fifteen species of Joeropsis are recorded, including ten new species; descriptive notes are provided for five species that lacked adequate material for description. A revised family and genus diagnosis is presented together with comments on the most useful characters for species identification and a key to Joeropsis of the Lizard Island region.

  2. Joeropsididae Nordenstam, 1933 (Crustacea, Isopoda, Asellota from the Lizard Island region of the Great Barrier Reef, Queensland, Australia

    Directory of Open Access Journals (Sweden)

    Niel L. Bruce

    2015-03-01

    Full Text Available The marine isopod family Joeropsididae (Asellota is documented for the Lizard Island region of the Great Barrier Reef, Australia. Fifteen species of Joeropsis are recorded, including ten new species; descriptive notes are provided for five species that lacked adequate material for description. A revised family and genus diagnosis is presented together with comments on the most useful characters for species identification and a key to Joeropsis of the Lizard Island region.

  3. CaCO3 dissolution by holothurians (sea cucumber): a case study from One Tree Reef, Great Barrier Reef

    Science.gov (United States)

    Schneider, K.; Silverman, J.; Kravitz, B.; Woolsey, E.; Eriksson, H.; Schneider-Mor, A.; Barbosa, S.; Rivlin, T.; Byrne, M.; Caldeira, K.

    2012-12-01

    Holothurians (sea cucumbers) are among the largest and most important deposit feeder in coral reefs. They play a role in nutrient and CaCO3 cycling within the reef structure. As a result of their digestive process they secrete alkalinity due to CaCO3 dissolution and organic matter degradation forming CO2 and ammonium. In a survey at station DK13 on One Three Reef we found that the population density of holothurians was > 1 individual m-2. The dominant sea cucumber species Holothuria leucospilota was collected from DK13. The increase in alkalinity due to CaCO3 dissolution in aquaria incubations was measured to be 47±7 μmol kg-1 in average per individual. Combining this dissolution rate with the sea cucumbers concentrations at DK13 suggest that they may account for a dissolution rate of 34.9±17.8 mmol m-2 day-1, which is equivalent to about half of night time community dissolution measured in DK13. This indicates that in reefs where the sea cucumber population is healthy and protected from fishing they can be locally important in the CaCO3 cycle. Preliminary result suggests that the CaCO3 dissolution rates are not affected by the chemistry of the sea water they are incubated in. Measurements of the empty digestive track volume of two sea cucumbers H. atra and Stichopus herrmanni were 36 ± 4 ml and 151 ± 14 ml, respectively. Based on these measurements it is estimated that these species process 19 ± 2kg and 80 ± 7kg CaCO3 sand yr-1 per individual, respectively. The annual dissolution rates of H. atra and S. herrmanni are 6.5±1.9g and 9.6±1.4g, respectively, suggest that 0.05±0.02% and 0.1±0.02% of the CaCO3 processed through their gut annually is dissolved. During the incubations the CaCO3 dissolution was 0.07±0.01%, 0.04±0.01% and 0.21±0.05% of the fecal casts for H. atra, H. leucospilota and S. herrmanni, respectively. Our result that the primary parameter determining the CaCO3 dissolution by sea cucumber is the amount of carbonate send in their gut

  4. pH homeostasis during coral calcification in a free ocean CO2 enrichment (FOCE) experiment, Heron Island reef flat, Great Barrier Reef.

    Science.gov (United States)

    Georgiou, Lucy; Falter, James; Trotter, Julie; Kline, David I; Holcomb, Michael; Dove, Sophie G; Hoegh-Guldberg, Ove; McCulloch, Malcolm

    2015-10-27

    Geochemical analyses (δ(11)B and Sr/Ca) are reported for the coral Porites cylindrica grown within a free ocean carbon enrichment (FOCE) experiment, conducted on the Heron Island reef flat (Great Barrier Reef) for a 6-mo period from June to early December 2010. The FOCE experiment was designed to simulate the effects of CO2-driven acidification predicted to occur by the end of this century (scenario RCP4.5) while simultaneously maintaining the exposure of corals to natural variations in their environment under in situ conditions. Analyses of skeletal growth (measured from extension rates and skeletal density) showed no systematic differences between low-pH FOCE treatments (ΔpH = ∼-0.05 to -0.25 units below ambient) and present day controls (ΔpH = 0) for calcification rates or the pH of the calcifying fluid (pHcf); the latter was derived from boron isotopic compositions (δ(11)B) of the coral skeleton. Furthermore, individual nubbins exhibited near constant δ(11)B compositions along their primary apical growth axes (±0.02 pHcf units) regardless of the season or treatment. Thus, under the highly dynamic conditions of the Heron Island reef flat, P. cylindrica up-regulated the pH of its calcifying fluid (pHcf ∼8.4-8.6), with each nubbin having near-constant pHcf values independent of the large natural seasonal fluctuations of the reef flat waters (pH ∼7.7 to ∼8.3) or the superimposed FOCE treatments. This newly discovered phenomenon of pH homeostasis during calcification indicates that coral living in highly dynamic environments exert strong physiological controls on the carbonate chemistry of their calcifying fluid, implying a high degree of resilience to ocean acidification within the investigated ranges.

  5. Genetic structure of juvenile cohorts of bicolor damselfish ( Stegastes partitus) along the Mesoamerican barrier reef: chaos through time

    Science.gov (United States)

    Hepburn, R. I.; Sale, P. F.; Dixon, B.; Heath, Daniel D.

    2009-03-01

    Dispersal in marine systems is a critical component of the ecology, evolution, and conservation of such systems; however, estimating dispersal is logistically difficult, especially in coral reef fish. Juvenile bicolor damselfish ( Stegastes partitus) were sampled at 13 sites along the Mesoamerican Barrier Reef System (MBRS), the barrier reefs on the east coast of Central America extending from the Yucatan, Mexico to Honduras, to evaluate genetic structure among recently settled cohorts. Using genotype data at eight microsatellite loci genetic structure was estimated at large and small spatial scales using exact tests for allele frequency differences and hierarchical analysis of molecular variance (AMOVA). Isolation-by-distance models of divergence were assessed at both spatial scales. Results showed genetic homogeneity of recently settled S. partitus at large geographic scales with subtle, but significant, genetic structure at smaller geographic scales. Genetic temporal stability was tested for using archived juvenile S. partitus collected earlier in the same year (nine sites), and in the previous year (six sites). The temporal analyses indicated that allele frequency differences among sites were not generally conserved over time, nor were pairwise genetic distances correlated through time, indicative of temporal instability. These results indicate that S. partitus larvae undergo high levels of dispersal along the MBRS, and that the structure detected at smaller spatial scales is likely driven by stochastic effects on dispersal coupled with microgeographic effects. Temporal variation in juvenile cohort genetic signature may be a fundamental characteristic of connectivity patterns in coral reef fishes, with various species and populations differing only in the magnitude of that instability. Such a scenario provides a basis for the reconciliation of conflicting views regarding levels of genetic structuring in S. partitus and possibly other coral reef fish species.

  6. The effects of river run-off on water clarity across the central Great Barrier Reef.

    Science.gov (United States)

    Fabricius, K E; Logan, M; Weeks, S; Brodie, J

    2014-07-15

    Changes in water clarity across the shallow continental shelf of the central Great Barrier Reef were investigated from ten years of daily river load, oceanographic and MODIS-Aqua data. Mean photic depth (i.e., the depth of 10% of surface irradiance) was related to river loads after statistical removal of wave and tidal effects. Across the ∼25,000 km(2) area, photic depth was strongly related to river freshwater and phosphorus loads (R(2)=0.65 and 0.51, respectively). In the six wetter years, photic depth was reduced by 19.8% and below water quality guidelines for 156 days, compared to 9 days in the drier years. After onset of the seasonal river floods, photic depth was reduced for on average 6-8 months, gradually returning to clearer baseline values. Relationships were strongest inshore and midshelf (∼12-80 km from the coast), and weaker near the chronically turbid coast. The data show that reductions in river loads would measurably improve shelf water clarity, with significant ecosystem health benefits.

  7. Coral community responses to declining water quality: Whitsunday Islands, Great Barrier Reef, Australia

    Science.gov (United States)

    Thompson, Angus; Schroeder, Thomas; Brando, Vittorio E.; Schaffelke, Britta

    2014-12-01

    A five-year period (2002-2006) of below-median rainfall followed by a six-year period (2007-2012) of above-median rainfall and seasonal flooding allowed a natural experiment into the effects of runoff on the water quality and subsequent coral community responses in the Whitsunday Islands, Great Barrier Reef (Australia). Satellite-derived water quality estimates of total suspended solids (TSS) and chlorophyll- a (Chl) concentration showed marked seasonal variability that was exaggerated during years with high river discharge. During above-median rainfall years, Chl was aseasonally high for a period of 3 months during the wet season (February-April), while TSS was elevated for four months, extending into the dry season (March-June). Coinciding with these extremes in water quality was a reduction in the abundance and shift in the community composition, of juvenile corals. The incidence of coral disease was at a maximum during the transition from years of below-median to years of above-median river discharge. In contrast to juvenile corals, the cover of larger corals remained stable, although the composition of communities varied along environmental gradients. In combination, these results suggest opportunistic recruitment of corals during periods of relatively low environmental stress with selection for more tolerant species occurring during periods of environmental extremes.

  8. Intensification of the meridional temperature gradient in the Great Barrier Reef following the Last Glacial Maximum.

    Science.gov (United States)

    Felis, Thomas; McGregor, Helen V; Linsley, Braddock K; Tudhope, Alexander W; Gagan, Michael K; Suzuki, Atsushi; Inoue, Mayuri; Thomas, Alexander L; Esat, Tezer M; Thompson, William G; Tiwari, Manish; Potts, Donald C; Mudelsee, Manfred; Yokoyama, Yusuke; Webster, Jody M

    2014-06-17

    Tropical south-western Pacific temperatures are of vital importance to the Great Barrier Reef (GBR), but the role of sea surface temperatures (SSTs) in the growth of the GBR since the Last Glacial Maximum remains largely unknown. Here we present records of Sr/Ca and δ(18)O for Last Glacial Maximum and deglacial corals that show a considerably steeper meridional SST gradient than the present day in the central GBR. We find a 1-2 °C larger temperature decrease between 17° and 20°S about 20,000 to 13,000 years ago. The result is best explained by the northward expansion of cooler subtropical waters due to a weakening of the South Pacific gyre and East Australian Current. Our findings indicate that the GBR experienced substantial meridional temperature change during the last deglaciation, and serve to explain anomalous deglacial drying of northeastern Australia. Overall, the GBR developed through significant SST change and may be more resilient than previously thought.

  9. Dispersal of adult black marlin (Istiompax indica from a Great Barrier Reef spawning aggregation.

    Directory of Open Access Journals (Sweden)

    Michael L Domeier

    Full Text Available The black marlin (Istiompax indica is one of the largest bony fishes in the world with females capable of reaching a mass of over 700 kg. This highly migratory predator occurs in the tropical regions of the Pacific and Indian Oceans, and is the target of regional recreational and commercial fisheries. Through the sampling of ichthyoplankton and ovaries we provide evidence that the relatively high seasonal abundance of black marlin off the Great Barrier Reef is, in fact, a spawning aggregation. Furthermore, through the tracking of individual black marlin via satellite popup tags, we document the dispersal of adult black marlin away from the spawning aggregation, thereby identifying the catchment area for this spawning stock. Although tag shedding is an issue when studying billfish, we tentatively identify the catchment area for this stock of black marlin to extend throughout the Coral Sea, including the waters of Papua New Guinea, the Solomon Islands, Micronesia, New Caledonia, Kiribati, Vanuatu, Fiji, Tuvalu and Nauru.

  10. Pathways and hydrography in the Mesoamerican Barrier Reef System Part 2: Water masses and thermohaline structure

    Science.gov (United States)

    Carrillo, L.; Johns, E. M.; Smith, R. H.; Lamkin, J. T.; Largier, J. L.

    2016-06-01

    Hydrographic data from two oceanographic cruises conducted during March 2006 and January/February 2007 are used to investigate the thermohaline structure related to the observed circulation along the Mesoamerican Barrier Reef System (MBRS). From our observations we identify three water masses in the MBRS: the Caribbean Surface Water (CSW), North Atlantic Subtropical Underwater (SUW), and Tropical Atlantic Central Water (TACW). Little vertical structure in temperature is observed in the upper 100 m of the water column, but important differences are observed in the salinity distribution both horizontally and with depth. Freshwater inputs to the system from the mainland can be traced in the surface layer, with two possible sources: one from surface rivers located along the southern portion of the MBRS, and the other originating from an underground river system located along the northern portion of the MBRS. The thermohaline structure in the MBRS reflects the dynamics of the observed circulation. Uplifted isopycnals along most of the central and northern coastline of the MBRS reflect the effects of the strong geostrophic circulation flowing northward, i.e. the Yucatan Current. To the south along the MBRS, much weaker velocities are observed, with the Honduras Gyre dominating the flow in this region as presented during January/February 2007. These two regions are separated by onshore and divergent alongshore flow associated with the impingement of the Cayman Current on the shore and the MBRS.

  11. Understanding Recreational Fishers' Compliance with No-take Zones in the Great Barrier Reef Marine Park

    Directory of Open Access Journals (Sweden)

    Adrian Arias

    2013-12-01

    Full Text Available Understanding fishers' compliance is essential for the successful management of marine protected areas. We used the random response technique (RRT to assess recreational fishers' compliance with no-take zones in the Great Barrier Reef Marine Park (GBRMP. The RRT allowed the asking of a sensitive question, i.e., "Did you, knowingly, fish within in a Green Zone during the last 12 months?" while protecting respondents' confidentiality. Application of the RRT through a survey of recreational fishers indicated that the majority of recreational fishers, 90%, comply with no-take zones. Likewise, most fishers, 92%, reported not personally knowing anyone who had intentionally fished in a no-take zone, indicating that fishers' perceive high levels of compliance among their peers. Fishers were motivated to comply with no-take zones primarily by their beliefs about penalties for noncompliance, followed by beliefs about the fishery benefits of no-take zones. Results suggest that compliance-related communication efforts by the managing authority have partially succeeded in maintaining appropriate compliance levels and that future efforts should accentuate normative compliance drivers that will encourage voluntary compliance. We conclude that compliance monitoring should be integrated into the adaptive management of the GBRMP and other protected areas; in this case social surveys using the RRT are effective tools.

  12. Structural and Psycho-Social Limits to Climate Change Adaptation in the Great Barrier Reef Region.

    Directory of Open Access Journals (Sweden)

    Louisa S Evans

    Full Text Available Adaptation, as a strategy to respond to climate change, has limits: there are conditions under which adaptation strategies fail to alleviate impacts from climate change. Research has primarily focused on identifying absolute bio-physical limits. This paper contributes empirical insight to an emerging literature on the social limits to adaptation. Such limits arise from the ways in which societies perceive, experience and respond to climate change. Using qualitative data from multi-stakeholder workshops and key-informant interviews with representatives of the fisheries and tourism sectors of the Great Barrier Reef region, we identify psycho-social and structural limits associated with key adaptation strategies, and examine how these are perceived as more or less absolute across levels of organisation. We find that actors experience social limits to adaptation when: i the effort of pursuing a strategy exceeds the benefits of desired adaptation outcomes; ii the particular strategy does not address the actual source of vulnerability, and; iii the benefits derived from adaptation are undermined by external factors. We also find that social limits are not necessarily more absolute at higher levels of organisation: respondents perceived considerable opportunities to address some psycho-social limits at the national-international interface, while they considered some social limits at the local and regional levels to be effectively absolute.

  13. Structural and Psycho-Social Limits to Climate Change Adaptation in the Great Barrier Reef Region.

    Science.gov (United States)

    Evans, Louisa S; Hicks, Christina C; Adger, W Neil; Barnett, Jon; Perry, Allison L; Fidelman, Pedro; Tobin, Renae

    2016-01-01

    Adaptation, as a strategy to respond to climate change, has limits: there are conditions under which adaptation strategies fail to alleviate impacts from climate change. Research has primarily focused on identifying absolute bio-physical limits. This paper contributes empirical insight to an emerging literature on the social limits to adaptation. Such limits arise from the ways in which societies perceive, experience and respond to climate change. Using qualitative data from multi-stakeholder workshops and key-informant interviews with representatives of the fisheries and tourism sectors of the Great Barrier Reef region, we identify psycho-social and structural limits associated with key adaptation strategies, and examine how these are perceived as more or less absolute across levels of organisation. We find that actors experience social limits to adaptation when: i) the effort of pursuing a strategy exceeds the benefits of desired adaptation outcomes; ii) the particular strategy does not address the actual source of vulnerability, and; iii) the benefits derived from adaptation are undermined by external factors. We also find that social limits are not necessarily more absolute at higher levels of organisation: respondents perceived considerable opportunities to address some psycho-social limits at the national-international interface, while they considered some social limits at the local and regional levels to be effectively absolute.

  14. The density-driven circulation of the coastal hypersaline system of the Great Barrier Reef, Australia.

    Science.gov (United States)

    Salamena, Gerry G; Martins, Flávio; Ridd, Peter V

    2016-04-15

    The coastal hypersaline system of the Great Barrier Reef (GBR) in the dry season, was investigated for the first time using a 3D baroclinic model. In the shallow coastal embayments, salinity increases to c.a. 1‰ above typical offshore salinity (~35.4‰). This salinity increase is due to high evaporation rates and negligible freshwater input. The hypersalinity drifts longshore north-westward due to south-easterly trade winds and may eventually pass capes or headlands, e.g. Cape Cleveland, where the water is considerably deeper (c.a. 15m). Here, a pronounced thermohaline circulation is predicted to occur which flushes the hypersalinity offshore at velocities of up to 0.08m/s. Flushing time of the coastal embayments is around 2-3weeks. During the dry season early summer, the thermohaline circulation reduces and therefore, flushing times are predicted to be slight longer due to the reduced onshore-offshore density gradient compared to that in the dry season winter period.

  15. Metagenomic analysis of the coral holobiont during a natural bleaching event on the Great Barrier Reef.

    Science.gov (United States)

    Littman, Raechel; Willis, Bette L; Bourne, David G

    2011-12-01

    Understanding the effects of elevated seawater temperatures on each member of the coral holobiont (the complex comprised of coral polyps and associated symbiotic microorganisms, including Bacteria, viruses, Fungi, Archaea and endolithic algae) is becoming increasingly important as evidence accumulates that microbial members contribute to overall coral health, particularly during thermal stress. Here we use a metagenomic approach to identify metabolic and taxonomic shifts in microbial communities associated with the hard coral Acropora millepora throughout a natural thermal bleaching event at Magnetic Island (Great Barrier Reef). A direct comparison of metagenomic data sets from healthy versus bleached corals indicated major shifts in microbial associates during heat stress, including Bacteria, Archaea, viruses, Fungi and micro-algae. Overall, metabolism of the microbial community shifted from autotrophy to heterotrophy, including increases in genes associated with the metabolism of fatty acids, proteins, simple carbohydrates, phosphorus and sulfur. In addition, the proportion of virulence genes was higher in the bleached library, indicating an increase in microorganisms capable of pathogenesis following bleaching. These results demonstrate that thermal stress results in shifts in coral-associated microbial communities that may lead to deteriorating coral health.

  16. Dactylogyrids (Monogenoidea) parasitizing the gills of spinefoots (Teleostei: Siganidae): proposal of Glyphidohaptor n. gen., with two new species from the Great Barrier Reef, Australia, and G. plectocirra n. comb. from Ras Mohammed National Park, Egypt.

    Science.gov (United States)

    Kritsky, Delane C; Galli, Paolo; Yang, Tingbao

    2007-02-01

    Nine species of Siganus (Perciformes: Siganidae) were examined for dactylogyrids (Monogenoidea) from the Red Sea, Egypt; the Great Barrier Reef, Australia; and the South China Sea, China. Species of Tetrancistrum were found on siganids from all 3 localities; Pseudohaliotrema spp. were restricted to siganids from the Great Barrier Reef; and species representing Glyphidohaptor n. gen. were found on siganids from the Red Sea and Great Barrier Reef. Siganus argenteus from the Red Sea and Siganus vulpinus from the Great Barrier Reef were negative for dactylogyrid parasites. Glyphidohaptor n. gen. is proposed for 3 species (2 species new to science) and the new species are described: Glyphidohaptor phractophallus n. sp. from Siganus fuscescens from the Great Barrier Reef; Glyphidohaptor sigani n. sp. from Siganus doliatus (type host), Siganus punctatus, Siganus corallinus, and Siganus lineatus from the Great Barrier Reef; and Glyphidohaptor plectocirra (Paperna, 1972) n. comb. (= Pseudohaliotrema plectocirra Paperna, 1972) from Siganus luridus and Siganus rivulatus from the Red Sea.

  17. Extracting growth rates from the non-laminated coralline sponge Astrosclera willeyana using "bomb" radiocarbon

    Energy Technology Data Exchange (ETDEWEB)

    Fallon, S; Guilderson, T

    2004-06-30

    Coralline sponges have the potential to fill in gaps in our understanding of subsurface oceanographic variability. However, one disadvantage they have compared to hermatypic reef building coral proxies is that they do not have annual density bands and need to be radiometrically dated for an age determination. To elucidate growth rate variability we have measured radiocarbon in 1 mm increments from Astrosclera willeyana sponges collected off the Central and Northern Great Barrier Reef (GBR) and from Truk in the Caroline Islands and compared these radiocarbon profiles to independently dated coral radiocarbon records. Growth rates of the GBR sponges average 1.2 {+-} 0.3 and 1.0 {+-} 0.3 mm yr{sup -1}, north and central respectively but can vary by a factor of two. The growth rate of the Truk sponge averages 1.2 {+-} 0.1 mm yr{sup -1}. These growth rates are significantly faster to those measured for other GBR Astrosclera willeyana sponges (0.2 mm yr{sup -1}) by Calcein staining (Woerheide 1988).

  18. Assessing community values for reducing agricultural emissions to improve water quality and protect coral health in the Great Barrier Reef

    Science.gov (United States)

    Rolfe, John; Windle, Jill

    2011-12-01

    Policymakers wanting to increase protection of the Great Barrier Reef from pollutants generated by agriculture need to identify when measures to improve water quality generate benefits to society that outweigh the costs involved. The research reported in this paper makes a contribution in several ways. First, it uses the improved science understanding about the links between management changes and reef health to bring together the analysis of costs and benefits of marginal changes, helping to demonstrate the appropriate way of addressing policy questions relating to reef protection. Second, it uses the scientific relationships to frame a choice experiment to value the benefits of improved reef health, with the results of mixed logit (random parameter) models linking improvements explicitly to changes in "water quality units." Third, the research demonstrates how protection values are consistent across a broader population, with some limited evidence of distance effects. Fourth, the information on marginal costs and benefits that are reported provide policymakers with information to help improve management decisions. The results indicate that while there is potential for water quality improvements to generate net benefits, high cost water quality improvements are generally uneconomic. A major policy implication is that cost thresholds for key pollutants should be set to avoid more expensive water quality proposals being selected.

  19. Palaeoecological evidence of a historical collapse of corals at Pelorus Island, inshore Great Barrier Reef, following European settlement.

    Science.gov (United States)

    Roff, George; Clark, Tara R; Reymond, Claire E; Zhao, Jian-xin; Feng, Yuexing; McCook, Laurence J; Done, Terence J; Pandolfi, John M

    2013-01-01

    The inshore reefs of the Great Barrier Reef (GBR) have undergone significant declines in water quality following European settlement (approx. 1870 AD). However, direct evidence of impacts on coral assemblages is limited by a lack of historical baselines prior to the onset of modern monitoring programmes in the early 1980s. Through palaeoecological reconstructions, we report a previously undocumented historical collapse of Acropora assemblages at Pelorus Island (central GBR). High-precision U-series dating of dead Acropora fragments indicates that this collapse occurred between 1920 and 1955, with few dates obtained after 1980. Prior to this event, our results indicate remarkable long-term stability in coral community structure over centennial scales. We suggest that chronic increases in sediment flux and nutrient loading following European settlement acted as the ultimate cause for the lack of recovery of Acropora assemblages following a series of acute disturbance events (SST anomalies, cyclones and flood events). Evidence for major degradation in reef condition owing to human impacts prior to modern ecological surveys indicates that current monitoring of inshore reefs on the GBR may be predicated on a significantly shifted baseline.

  20. Ecologically based targets for bioavailable (reactive) nitrogen discharge from the drainage basins of the Wet Tropics region, Great Barrier Reef.

    Science.gov (United States)

    Wooldridge, Scott A; Brodie, Jon E; Kroon, Frederieke J; Turner, Ryan D R

    2015-08-15

    A modelling framework is developed for the Wet Tropics region of the Great Barrier Reef that links a quantitative river discharge parameter (viz. dissolved inorganic nitrogen concentration, DIN) with an eutrophication indicator within the marine environment (viz. chlorophyll-a concentration, chl-a). The model predicts catchment-specific levels of reduction (%) in end-of-river DIN concentrations (as a proxy for total potentially reactive nitrogen, PRN) needed to ensure compliance with chl-a 'trigger' guidelines for the ecologically distinct, but PRN-related issues of crown-of-thorns starfish (COTS) outbreaks, reef biodiversity loss, and thermal bleaching sensitivity. The results indicate that even for river basins dominated by agricultural land uses, quite modest reductions in end-of-river PRN concentrations (∼20-40%) may assist in mitigating the risk of primary COTS outbreaks from the mid-shelf reefs of the Wet Tropics. However, more significant reductions (∼60-80%) are required to halt and reverse declines in reef biodiversity, and loss of thermal bleaching resistance.

  1. RESEARCH: Influence of Social, Biophysical, and Managerial Conditions on Tourism Experiences Within the Great Barrier Reef World Heritage Area.

    Science.gov (United States)

    Shafer; Inglis

    2000-07-01

    / Managing protected areas involves balancing the enjoyment of visitors with the protection of a variety of cultural and biophysical resources. Tourism pressures in the Great Barrier Reef World Heritage Area (GBRWHA) are creating concerns about how to strike this balance in a marine environment. Terrestrial-based research has led to conceptual planning and management frameworks that address issues of human use and resource protection. The limits of acceptable change (LAC) framework was used as a conceptual basis for a study of snorkeling at reef sites in the GBRWHA. The intent was to determine if different settings existed among tourism operators traveling to the reef and, if so, to identify specific conditions relating to those settings. Snorkelers (N = 1475) traveling with tourism operations of different sizes who traveled to different sites completed surveys. Results indicated that snorkelers who traveled with larger operations (more people and infrastructure) differed from those traveling with smaller operations (few people and little on-site infrastructure) on benefits received and in the way that specific conditions influenced their enjoyment. Benefits related to nature, escape, and family helped to define reef experiences. Conditions related to coral, fish, and operator staff had a positive influence on the enjoyment of most visitors but, number of people on the trip and site infrastructure may have the greatest potential as setting indicators. Data support the potential usefulness of visitor input in applying the LAC concept to a marine environment where tourism and recreational uses are rapidly changing.

  2. Seasonal organic matter dynamics in the Great Barrier Reef lagoon: Contribution of carbohydrates and proteins

    Science.gov (United States)

    Lønborg, Christian; Doyle, Jason; Furnas, Miles; Menendez, Patricia; Benthuysen, Jessica A.; Carreira, Cátia

    2017-04-01

    Organic matter (OM) plays a fundamental role in sustaining the high productivity of coral reef ecosystems. Carbohydrates and proteins constitute two of the major chemical classes identified in the OM pool and are used as indicators of bioavailability due to their fast turn-over. We conducted three cruises across the southern shelf of the Great Barrier Reef (GBR) during the early dry, late dry and wet seasons in 2009-2010 to 1) assess the relative bioavailability of particulate (POM) and dissolved (DOM) organic matter, 2) track the temporal and spatial variability in the carbohydrate and protein contribution to the OM pool, and 3) assess factors influencing protein and carbohydrate fractions of the OM pool. Generally, higher concentrations of particulate carbohydrates were found during the wet season, while similar concentrations of particulate protein were found during the three seasons. Both the dissolved carbohydrates and proteins had highest levels during the early dry season and lowest during the wet season, suggesting seasonal variations in the chemical composition of the DOM pool. Spatially, carbohydrates showed higher concentrations at the inshore stations, while no clear spatial pattern was found for the protein concentrations. On average carbohydrates and proteins accounted for a similar fraction (13±5 and 12±6% respectively) of POM, while carbohydrates accounted for a smaller fraction of the DOM than the proteins (6±3 and 13±10%). This suggests that the POM bioavailability was similar between seasons, while the DOM bioavailability varied seasonally with highest levels during the early dry season. This demonstrates that carbohydrates and proteins in the GBR have temporal and spatial variations. Our statistical analysis showed that 1) both carbohydrates and proteins were related with the POM and DOM C:N:P stoichiometry, demonstrating that both bulk estimates (stoichiometry) and specific compounds (CHO and Prot) provide useful measures of OM

  3. The importance of coral larval recruitment for the recovery of reefs impacted by cyclone Yasi in the central Great Barrier Reef.

    Directory of Open Access Journals (Sweden)

    Vimoksalehi Lukoschek

    Full Text Available Cyclone Yasi, one of the most severe tropical storms on record, crossed the central Great Barrier Reef (GBR in February 2011, bringing wind speeds of up to 285 km hr⁻¹ and wave heights of at least 10 m, and causing massive destruction to exposed reefs in the Palm Island Group. Following the cyclone, mean (± S.E. hard coral cover ranged from just 2.1 (0.2 % to 5.3 (0.4 % on exposed reefs and no reproductively mature colonies of any species of Acropora remained. Although no fragments of Acropora were found at impacted exposed sites following the cyclone, small juvenile colonies of Acropora (<10 cm diameter were present, suggesting that their small size and compact morphologies enabled them to survive the cyclone. By contrast, sheltered reefs appeared to be unaffected by the cyclone. Mean (± S.E. hard coral cover ranged from 18.2 (2.4 % to 30.0 (1.0 % and a large proportion of colonies of Acropora were reproductively mature. Macroalgae accounted for 8 to 16% of benthic cover at exposed sites impacted by cyclone Yasi but were absent at sheltered sites. Mean (± S.E. recruitment of acroporids to settlement tiles declined from 25.3 (4.8 recruits tile⁻¹ in the pre-cyclone spawning event (2010 to 15.4 (2.2 recruits tile⁻¹ in the first post-cyclone spawning event (2011. Yet, post-cyclone recruitment did not differ between exposed (15.2±2.1 S.E. and sheltered sites (15.6±2.2 S.E., despite the loss of reproductive colonies at the exposed sites, indicating larval input from external sources. Spatial variation in impacts, the survival of small colonies, and larval replenishment to impacted reefs suggest that populations of Acropora have the potential to recover from this severe disturbance, provided that the Palm Islands are not impacted by acute disturbances or suffer additional chronic stressors in the near future.

  4. A population genetic assessment of coral recovery on highly disturbed reefs of the Keppel Island archipelago in the southern Great Barrier Reef.

    Science.gov (United States)

    van Oppen, Madeleine J H; Lukoschek, Vimoksalehi; Berkelmans, Ray; Peplow, Lesa M; Jones, Alison M

    2015-01-01

    Coral reefs surrounding the islands lying close to the coast are unique to the Great Barrier Reef (GBR) in that they are frequently exposed to disturbance events including floods caused by cyclonic rainfall, strong winds and occasional periods of prolonged above-average temperatures during summer. In one such group of islands in the southern GBR, the Keppel Island archipelago, climate-driven disturbances frequently result in major coral mortality. Whilst these island reefs have clearly survived such dramatic disturbances in the past, the consequences of extreme mortality events may include the loss of genetic diversity, and hence adaptive potential, and a reduction in fitness due to inbreeding, especially if new recruitment from external sources is limited. Here we examined the level of isolation of the Keppel Island group as well as patterns of gene flow within the Keppel Islands using 10 microsatellite markers in nine populations of the coral, Acropora millepora. Bayesian cluster analysis and assignment tests indicated gene flow is restricted, but not absent, between the outer and inner Keppel Island groups, and that extensive gene flow exists within each of these island groups. Comparison of the Keppel Island data with results from a previous GBR-wide study that included a single Keppel Island population, confirmed that A. millepora in the Keppel Islands is genetically distinct from populations elsewhere on the GBR, with exception of the nearby inshore High Peak Reef just north of the Keppel Islands. We compared patterns of genetic diversity in the Keppel Island populations with those from other GBR populations and found them to be slightly, but significantly lower, consistent with the archipelago being geographically isolated, but there was no evidence for recent bottlenecks or deviation from mutation-drift equilibrium. A high incidence of private alleles in the Keppel Islands, particularly in the outer islands, supports their relative isolation and contributes

  5. A population genetic assessment of coral recovery on highly disturbed reefs of the Keppel Island archipelago in the southern Great Barrier Reef

    Directory of Open Access Journals (Sweden)

    Madeleine J.H. van Oppen

    2015-07-01

    Full Text Available Coral reefs surrounding the islands lying close to the coast are unique to the Great Barrier Reef (GBR in that they are frequently exposed to disturbance events including floods caused by cyclonic rainfall, strong winds and occasional periods of prolonged above-average temperatures during summer. In one such group of islands in the southern GBR, the Keppel Island archipelago, climate-driven disturbances frequently result in major coral mortality. Whilst these island reefs have clearly survived such dramatic disturbances in the past, the consequences of extreme mortality events may include the loss of genetic diversity, and hence adaptive potential, and a reduction in fitness due to inbreeding, especially if new recruitment from external sources is limited. Here we examined the level of isolation of the Keppel Island group as well as patterns of gene flow within the Keppel Islands using 10 microsatellite markers in nine populations of the coral, Acropora millepora. Bayesian cluster analysis and assignment tests indicated gene flow is restricted, but not absent, between the outer and inner Keppel Island groups, and that extensive gene flow exists within each of these island groups. Comparison of the Keppel Island data with results from a previous GBR-wide study that included a single Keppel Island population, confirmed that A. millepora in the Keppel Islands is genetically distinct from populations elsewhere on the GBR, with exception of the nearby inshore High Peak Reef just north of the Keppel Islands. We compared patterns of genetic diversity in the Keppel Island populations with those from other GBR populations and found them to be slightly, but significantly lower, consistent with the archipelago being geographically isolated, but there was no evidence for recent bottlenecks or deviation from mutation-drift equilibrium. A high incidence of private alleles in the Keppel Islands, particularly in the outer islands, supports their relative

  6. Stability of coral-endosymbiont associations during and after a thermal stress event in the southern Great Barrier Reef

    Science.gov (United States)

    Stat, M.; Loh, W. K. W.; Lajeunesse, T. C.; Hoegh-Guldberg, O.; Carter, D. A.

    2009-09-01

    Shifts in the community of symbiotic dinoflagellates to those that are better suited to the prevailing environmental condition may provide reef-building corals with a rapid mechanism by which to adapt to changes in the environment. In this study, the dominant Symbiodinium in 10 coral species in the southern Great Barrier Reef was monitored over a 1-year period in 2002 that coincided with a thermal stress event. Molecular genetic profiling of Symbiodinium communities using single strand conformational polymorphism of the large subunit rDNA and denaturing gradient gel electrophoresis of the internal transcribed spacer 2 region did not detect any changes in the communities during and after this thermal-stress event. Coral colonies of seven species bleached but recovered with their original symbionts. This study suggests that the shuffling or switching of symbionts in response to thermal stress may be restricted to certain coral species and is probably not a universal feature of the coral-symbiont relationship.

  7. Interactions between a Trawl fishery and spatial closures for biodiversity conservation in the Great Barrier Reef World Heritage Area, Australia.

    Directory of Open Access Journals (Sweden)

    Alana Grech

    Full Text Available BACKGROUND: The Queensland East Coast Otter Trawl Fishery (ECOTF for penaeid shrimp fishes within Australia's Great Barrier Reef World Heritage Area (GBRWHA. The past decade has seen the implementation of conservation and fisheries management strategies to reduce the impact of the ECOTF on the seabed and improve biodiversity conservation. New information from electronic vessel location monitoring systems (VMS provides an opportunity to review the interactions between the ECOTF and spatial closures for biodiversity conservation. METHODOLOGY AND RESULTS: We used fishing metrics and spatial information on the distribution of closures and modelled VMS data in a geographical information system (GIS to assess change in effort of the trawl fishery from 2001-2009 and to quantify the exposure of 70 reef, non-reef and deep water bioregions to trawl fishing. The number of trawlers and the number of days fished almost halved between 2001 and 2009 and new spatial closures introduced in 2004 reduced the area zoned available for trawl fishing by 33%. However, we found that there was only a relatively minor change in the spatial footprint of the fishery as a result of new spatial closures. Non-reef bioregions benefited the most from new spatial closures followed by deep and reef bioregions. CONCLUSIONS/SIGNIFICANCE: Although the catch of non target species remains an issue of concern for fisheries management, the small spatial footprint of the ECOTF relative to the size of the GBRWHA means that the impact on benthic habitats is likely to be negligible. The decline in effort as a result of fishing industry structural adjustment, increasing variable costs and business decisions of fishers is likely to continue a trend to fish only in the most productive areas. This will provide protection for most benthic habitats without any further legislative or management intervention.

  8. Do clouds save the great barrier reef? satellite imagery elucidates the cloud-SST relationship at the local scale.

    Directory of Open Access Journals (Sweden)

    Susannah M Leahy

    Full Text Available Evidence of global climate change and rising sea surface temperatures (SSTs is now well documented in the scientific literature. With corals already living close to their thermal maxima, increases in SSTs are of great concern for the survival of coral reefs. Cloud feedback processes may have the potential to constrain SSTs, serving to enforce an "ocean thermostat" and promoting the survival of coral reefs. In this study, it was hypothesized that cloud cover can affect summer SSTs in the tropics. Detailed direct and lagged relationships between cloud cover and SST across the central Great Barrier Reef (GBR shelf were investigated using data from satellite imagery and in situ temperature and light loggers during two relatively hot summers (2005 and 2006 and two relatively cool summers (2007 and 2008. Across all study summers and shelf positions, SSTs exhibited distinct drops during periods of high cloud cover, and conversely, SST increases during periods of low cloud cover, with a three-day temporal lag between a change in cloud cover and a subsequent change in SST. Cloud cover alone was responsible for up to 32.1% of the variation in SSTs three days later. The relationship was strongest in both El Niño (2005 and La Niña (2008 study summers and at the inner-shelf position in those summers. SST effects on subsequent cloud cover were weaker and more variable among study summers, with rising SSTs explaining up to 21.6% of the increase in cloud cover three days later. This work quantifies the often observed cloud cooling effect on coral reefs. It highlights the importance of incorporating local-scale processes into bleaching forecasting models, and encourages the use of remote sensing imagery to value-add to coral bleaching field studies and to more accurately predict risks to coral reefs.

  9. Do clouds save the great barrier reef? satellite imagery elucidates the cloud-SST relationship at the local scale.

    Science.gov (United States)

    Leahy, Susannah M; Kingsford, Michael J; Steinberg, Craig R

    2013-01-01

    Evidence of global climate change and rising sea surface temperatures (SSTs) is now well documented in the scientific literature. With corals already living close to their thermal maxima, increases in SSTs are of great concern for the survival of coral reefs. Cloud feedback processes may have the potential to constrain SSTs, serving to enforce an "ocean thermostat" and promoting the survival of coral reefs. In this study, it was hypothesized that cloud cover can affect summer SSTs in the tropics. Detailed direct and lagged relationships between cloud cover and SST across the central Great Barrier Reef (GBR) shelf were investigated using data from satellite imagery and in situ temperature and light loggers during two relatively hot summers (2005 and 2006) and two relatively cool summers (2007 and 2008). Across all study summers and shelf positions, SSTs exhibited distinct drops during periods of high cloud cover, and conversely, SST increases during periods of low cloud cover, with a three-day temporal lag between a change in cloud cover and a subsequent change in SST. Cloud cover alone was responsible for up to 32.1% of the variation in SSTs three days later. The relationship was strongest in both El Niño (2005) and La Niña (2008) study summers and at the inner-shelf position in those summers. SST effects on subsequent cloud cover were weaker and more variable among study summers, with rising SSTs explaining up to 21.6% of the increase in cloud cover three days later. This work quantifies the often observed cloud cooling effect on coral reefs. It highlights the importance of incorporating local-scale processes into bleaching forecasting models, and encourages the use of remote sensing imagery to value-add to coral bleaching field studies and to more accurately predict risks to coral reefs.

  10. Evidence for ocean acidification in the Great Barrier Reef of Australia

    Science.gov (United States)

    Wei, Gangjian; McCulloch, Malcolm T.; Mortimer, Graham; Deng, Wengfeng; Xie, Luhua

    2009-04-01

    Geochemical records preserved in the long-lived carbonate skeleton of corals provide one of the few means to reconstruct changes in seawater pH since the commencement of the industrial era. This information is important in not only determining the response of the surface oceans to ocean acidification from enhanced uptake of CO 2, but also to better understand the effects of ocean acidification on carbonate secreting organisms such as corals, whose ability to calcify is highly pH dependent. Here we report an ˜200 year δ 11B isotopic record, extracted from a long-lived Porites coral from the central Great Barrier Reef of Australia. This record covering the period from 1800 to 2004 was sampled at yearly increments from 1940 to the present and 5-year increments prior to 1940. The δ 11B isotopic compositions reflect variations in seawater pH, and the δ 13C changes in the carbon composition of surface water due to fossil fuel burning over this period. In addition complementary Ba/Ca, δ 18O and Mg/Ca data was obtained providing proxies for terrestrial runoff, salinity and temperature changes over the past 200 years in this region. Positive thermal ionization mass spectrometry (PTIMS) method was utilized in order to enable the highest precision and most accurate measurements of δ 11B values. The internal precision and reproducibility for δ 11B of our measurements are better than ±0.2‰ (2 σ), which translates to a precision of better than ±0.02 pH units. Our results indicate that the long-term pre-industrial variation of seawater pH in this region is partially related to the decadal-interdecadal variability of atmospheric and oceanic anomalies in the Pacific. In the periods around 1940 and 1998 there are also rapid oscillations in δ 11B compositions equivalent changes in pH of almost 0.5 U. The 1998 oscillation is co-incident with a major coral bleaching event indicating the sensitivity of skeletal δ 11B compositions to loss of zooxanthellate symbionts

  11. Using an isolated population boom to explore barriers to recovery in the keystone Caribbean coral reef herbivore Diadema antillarum

    Science.gov (United States)

    Bodmer, Max D. V.; Rogers, Alex D.; Speight, Martin R.; Lubbock, Natalie; Exton, Dan A.

    2015-12-01

    Recovery of the keystone herbivore Diadema antillarum after the 1983-1984 mass mortality event poses one of the greatest challenges to Caribbean coral reef conservation, yet our understanding of the problem remains severely limited. Whilst some recovery has been observed, this has been restricted to the shallows (≤5 m). We report a newly discovered, isolated population recovery on Banco Capiro, Honduras, representing the largest recorded post-mortality densities beyond the shallowest environments (0.74-2.27 individuals m-2 at depths ≥10 m) alongside an unusually high mean percentage scleractinian coral cover of 49-62 %, likely no coincidence. On the nearby island of Utila, we report D. antillarum densities of 0.003-0.012 individuals m-2 and scleractinian coral cover of 12 % at depths ≥10 m, "typical" for a contemporary Caribbean coral reef. The three order of magnitude disparity in population density between sites separated by <60 km presents a unique opportunity to investigate barriers preventing their region-wide recovery by simultaneously addressing a range of previously proposed hypotheses. Despite concerns over the impacts of asynchronous spawning in low-density populations, we find that recruitment is occurring on Utila. This suggests that, whilst Allee effects are likely to be a contributing factor, the major barriers suppressing recovery are instead impacting juvenile survival into adulthood. Similarly, variations in heterospecific echinoids, interspecific competitors, and nutrient availability fail to account for population differences. Instead, we highlight a lack of structural complexity on contemporary Caribbean reefs as the most likely explanation for the limited recovery through a lack of provision of juvenile predation refugia, representing a further consequence of the recent ubiquitous phase shifts throughout the region. Using these findings, we propose future management strategies to stimulate recovery and, consequently, reef health

  12. Modelling the fate of marine debris along a complex shoreline: Lessons from the Great Barrier Reef

    Science.gov (United States)

    Critchell, K.; Grech, A.; Schlaefer, J.; Andutta, F. P.; Lambrechts, J.; Wolanski, E.; Hamann, M.

    2015-12-01

    The accumulation of floating anthropogenic debris in marine and coastal areas has environmental, economic, aesthetic, and human health impacts. Until now, modelling the transport of such debris has largely been restricted to the large-scales of open seas. We used oceanographic modelling to identify potential sites of debris accumulation along a rugged coastline with headlands, islands, rocky coasts and beaches. Our study site was the Great Barrier Reef World Heritage Area that has an emerging problem with debris accumulation. We found that the classical techniques of modelling the transport of floating debris models are only moderately successful due to a number of unknowns or assumptions, such as the value of the wind drift coefficient, the variability of the oceanic forcing and of the wind, the resuspension of some floating debris by waves, and the poorly known relative contribution of floating debris from urban rivers and commercial and recreational shipping. Nevertheless the model was successful in reproducing a number of observations such as the existence of hot spots of accumulation. The orientation of beaches to the prevailing wind direction affected the accumulation rate of debris. The wind drift coefficient and the exact timing of the release of the debris at sea affected little the movement of debris originating from rivers but it affected measurably that of debris originating from ships. It was thus possible to produce local hotspot maps for floating debris, especially those originating from rivers. Such modelling can be used to inform local management decisions, and it also identifies likely priority research areas to more reliably predict the trajectory and landing points of floating debris.

  13. Social Resilience and Commercial Fishers' Responses to Management Changes in the Great Barrier Reef Marine Park

    Directory of Open Access Journals (Sweden)

    Stephen G. Sutton

    2012-09-01

    Full Text Available Understanding how social resilience influences resource users' responses to policy change is important for ensuring the sustainability of social-ecological systems and resource-dependent communities. We use the conceptualization and operationalization of social resilience proposed by Marshall and Marshall (2007 to investigate how resilience level influenced commercial fishers' perceptions about and adaptation to the 2004 rezoning of the Great Barrier Reef Marine Park. We conducted face-to-face interviews with 114 commercial and charter fishers to measure their social resilience level and their responses and adaptation strategies to the 2004 zoning plan. Fishers with higher resilience were more likely to believe that the zoning plan was necessary, more likely to be supportive of the plan, and more likely to have adapted their fishing business and fishing activity to the plan than were fishers with lower social resilience. High-resilience fishers were also less likely to perceive negative impacts of the plan on their fishing business, less likely to have negative attitudes toward the consultation process used to develop and implement the plan, and less likely to have applied for financial compensation under the structural adjustment program. Results confirm the utility of the social resilience construct for identifying fishers who are likely to be vulnerable to changes, and those who are struggling to cope with change events. We conclude that managing for social resilience in the GBR would aid in the design and implementation of policies that minimize the impacts on resource users and lead to more inclusive and sustainable management, but that further research is necessary to better understand social resilience, how it can be fostered and sustained, and how it can be effectively incorporated into management.

  14. A species pair of Bivesicula Yamaguti, 1934 (Trematoda: Bivesiculidae) in unrelated Great Barrier Reef fishes: implications for the basis of speciation in coral reef fish trematodes.

    Science.gov (United States)

    Trieu, Nancy; Cutmore, Scott C; Miller, Terrence L; Cribb, Thomas H

    2015-07-01

    Combined morphological and molecular analysis shows that a species of Bivesicula Yamaguti, 1934 from four species of Apogonidae Günther [Nectamia fusca (Quoy & Gaimard), Ostorhinchus angustatus (Smith & Radcliffe), O. cookii (Macleay) and Taeniamia fucata (Cantor)] on the Great Barrier Reef is morphologically similar to, but clearly distinct from B. unexpecta Cribb, Bray & Barker, 1994 which infects a sympatric pomacentrid, Acanthochromis polyacanthus (Bleeker). Bivesicula neglecta n. sp. is proposed for the form from apogonids. Novel ITS2 rDNA sequences generated for the two species differ at just one consistent base position, implying that the two species are closely related. The combination of their close relationship, high but distinct specificity and co-occurrence suggests that speciation was driven by a recent host switching event enabled by similar dietary ecomorphology.

  15. Marine debris is selected as nesting material by the brown booby (Sula leucogaster) within the Swain Reefs, Great Barrier Reef, Australia.

    Science.gov (United States)

    Verlis, K M; Campbell, M L; Wilson, S P

    2014-10-15

    Many seabirds are impacted by marine debris through its presence in foraging and nesting areas. To determine the extent of this problem, marine debris use in nest material of the brown booby (Sula leucogaster) in the Great Barrier Reef, Australia, was investigated. Nine cays were examined using beach and nest surveys. On average, four marine debris items were found per nest (n=96) with 58.3% of surveyed nests containing marine debris. The source of marine debris in nests and transects were primarily oceanic. Hard plastic items dominated both nest (56.8%) and surveyed beaches (72.8%), however only two item types were significantly correlated between these surveys. Nest surveys indicated higher levels of black and green items compared to beach transects. This selectivity for colours and items suggest these nests are not good indicators of environmental loads. This is the first study to examine S. leucogaster nests for marine debris in this location.

  16. Bacteria associated with an encrusting sponge (Terpios hoshinota) and the corals partially covered by the sponge.

    Science.gov (United States)

    Tang, Sen-Lin; Hong, Mei-Jhu; Liao, Ming-Hui; Jane, Wann-Neng; Chiang, Pei-Wen; Chen, Chung-Bin; Chen, Chaolun A

    2011-05-01

    Terpios hoshinota, a dark encrusting sponge, is known to be a competitor for space in coral reef environments, and facilitates the death of corals. Although numerous cyanobacteria have been detected in the sponge, little is known of the sponge-associated bacterial community. This study examined the sponge-associated bacterial community and the difference between the bacterial communities in the sponge and the coral partially covered by the sponge by analysis of 16S rRNA gene sequences of samples isolated from the sponge covering the corals Favia complanata, Isopora palifera, Millepora sp., Montipora efflorescens and Porites lutea. The sponge-associated bacterial community was mainly (61-98%) composed of cyanobacteria, with approximately 15% of these alphaproteobacteria and gammaproteobacteria, although the proportions varied in different sponge samples. The dominant cyanobacteria group was an isolated group closely related to Prochloron sp. The comparison of the bacterial communities isolated from sponge-free and the sponge-covered P. lutea showed that covering by the sponge caused changes in the coral-associated bacterial communities, with the presence of bacteria similar to those detected in black-band disease, suggesting the sponge might benefit from the presence of bacteria associated with unhealthy coral, particularly in the parts of the coral closest to the margin of the sponge.

  17. A new gnathiid (Crustacea: Isopoda) parasitizing two species of requiem sharks from Lizard Island, Great Barrier Reef, Australia.

    Science.gov (United States)

    Coetzee, Maryke L; Smit, Nico J; Grutter, Alexandra S; Davies, Angela J

    2008-06-01

    Third-stage juveniles (praniza 3) of Gnathia grandilaris n. sp. were collected from the gill filaments and septa of 5 requiem sharks, including a white tip reef shark, Triaenodon obesus, and 4 grey reef sharks, Carcharhinus amblyrhynchos, at Lizard Island, Great Barrier Reef, Australia, in March 2002. Some juvenile gnathiids were then maintained in fresh sea water until they molted to adults. Adult males appeared 19 days following detachment of juveniles from host fishes, but no juveniles molted successfully into females. The current description is based, therefore, on bright field and scanning electron microscopy observations of adult males and third-stage juveniles. Unique features of the male include the triangular-shaped inferior medio-frontal process, 2 areolae on the dorsal surface of the pylopod, and a slender pleotelson (twice as long as wide) with lateral concavities. The third-stage juvenile has distinctive white pigmentation on the black pereon when alive, while the mandible has 9 triangular backwardly directed teeth. This species has the largest male and third-stage juvenile of any Gnathia spp. from Australia and of any gnathiid isopods associated with elasmobranchs.

  18. Flood impacts in Keppel Bay, southern great barrier reef in the aftermath of cyclonic rainfall.

    Science.gov (United States)

    Jones, Alison M; Berkelmans, Ray

    2014-01-01

    In December 2010, the highest recorded Queensland rainfall associated with Tropical Cyclone 'Tasha' caused flooding of the Fitzroy River in Queensland, Australia. A massive flood plume inundated coral reefs lying 12 km offshore of the Central Queensland coast near Yeppoon and caused 40-100% mortality to coral fringing many of the islands of Keppel Bay down to a depth of ∼8 m. The severity of coral mortality was influenced by the level of exposure to low salinity seawater as a result of the reef's distance from the flood plume and to a lesser extent, water depth and whether or not the reef faced the plume source. There was no evidence in this study of mortality resulting from pollutants derived from the nearby Fitzroy Catchment, at least in the short term, suggesting that during a major flood, the impact of low salinity on corals outweighs that of pollutants. Recovery of the reefs in Keppel Bay from the 2010/2011 Fitzroy River flood is likely to take 10-15 years based on historical recovery periods from a similar event in 1991; potentially impacting visitor numbers for tourism and recreational usage. In the meantime, activities like snorkeling, diving and coral viewing will be focused on the few shallow reefs that survived the flood, placing even further pressure on their recovery. Reef regeneration, restoration and rehabilitation are measures that may be needed to support tourism in the short term. However, predictions of a warming climate, lower rainfall and higher intensity summer rain events in the Central and Coastal regions of Australia over the next decade, combined with the current anthropogenic influences on water quality, are likely to slow regeneration with consequent impact on long-term reef resilience.

  19. Flood impacts in Keppel Bay, southern great barrier reef in the aftermath of cyclonic rainfall.

    Directory of Open Access Journals (Sweden)

    Alison M Jones

    Full Text Available In December 2010, the highest recorded Queensland rainfall associated with Tropical Cyclone 'Tasha' caused flooding of the Fitzroy River in Queensland, Australia. A massive flood plume inundated coral reefs lying 12 km offshore of the Central Queensland coast near Yeppoon and caused 40-100% mortality to coral fringing many of the islands of Keppel Bay down to a depth of ∼8 m. The severity of coral mortality was influenced by the level of exposure to low salinity seawater as a result of the reef's distance from the flood plume and to a lesser extent, water depth and whether or not the reef faced the plume source. There was no evidence in this study of mortality resulting from pollutants derived from the nearby Fitzroy Catchment, at least in the short term, suggesting that during a major flood, the impact of low salinity on corals outweighs that of pollutants. Recovery of the reefs in Keppel Bay from the 2010/2011 Fitzroy River flood is likely to take 10-15 years based on historical recovery periods from a similar event in 1991; potentially impacting visitor numbers for tourism and recreational usage. In the meantime, activities like snorkeling, diving and coral viewing will be focused on the few shallow reefs that survived the flood, placing even further pressure on their recovery. Reef regeneration, restoration and rehabilitation are measures that may be needed to support tourism in the short term. However, predictions of a warming climate, lower rainfall and higher intensity summer rain events in the Central and Coastal regions of Australia over the next decade, combined with the current anthropogenic influences on water quality, are likely to slow regeneration with consequent impact on long-term reef resilience.

  20. The Gulf Coast Vulnerability Assessment: Mangrove, Tidal Emergent Marsh, Barrier Islands, and Oyster Reef

    Science.gov (United States)

    Watson, Amanda; Reece, Joshua S.; Tirpak, Blair; Edwards, Cynthia Kallio; Geselbracht, Laura; Woodrey, Mark; LaPeyre, Megan K.; Dalyander, Patricia (Soupy)

    2015-01-01

    Climate, sea level rise, and urbanization are undergoing unprecedented levels of combined change and are expected to have large effects on natural resources—particularly along the Gulf of Mexico coastline (Gulf Coast). Management decisions to address these effects (i.e., adaptation) require an understanding of the relative vulnerability of various resources to these stressors. To meet this need, the four Landscape Conservation Cooperatives along the Gulf partnered with the Gulf of Mexico Alliance to conduct this Gulf Coast Vulnerability Assessment (GCVA). Vulnerability in this context incorporates the aspects of exposure and sensitivity to threats, coupled with the adaptive capacity to mitigate those threats. Potential impact and adaptive capacity reflect natural history features of target species and ecosystems. The GCVA used an expert opinion approach to qualitatively assess the vulnerability of four ecosystems: mangrove, oyster reef, tidal emergent marsh, and barrier islands, and a suite of wildlife species that depend on them. More than 50 individuals participated in the completion of the GCVA, facilitated via Ecosystem and Species Expert Teams. Of the species assessed, Kemp’s ridley sea turtle was identified as the most vulnerable species across the Gulf Coast. Experts identified the main threats as loss of nesting habitat to sea level rise, erosion, and urbanization. Kemp’s ridley also had an overall low adaptive capacity score due to their low genetic diversity, and higher nest site fidelity as compared to other assessed species. Tidal emergent marsh was the most vulnerable ecosystem, due in part to sea level rise and erosion. In general, avian species were more vulnerable than fish because of nesting habitat loss to sea level rise, erosion, and potential increases in storm surge. Assessors commonly indicated a lack of information regarding impacts due to projected changes in the disturbance regime, biotic interactions, and synergistic effects in both

  1. Variation in the composition of corals, fishes, sponges, echinoderms, ascidians, molluscs, foraminifera and macroalgae across a pronounced in-to-offshore environmental gradient in the Jakarta Bay-Thousand Islands coral reef complex.

    Science.gov (United States)

    Cleary, D F R; Polónia, A R M; Renema, W; Hoeksema, B W; Rachello-Dolmen, P G; Moolenbeek, R G; Budiyanto, A; Yahmantoro; Tuti, Y; Giyanto; Draisma, S G A; Prud'homme van Reine, W F; Hariyanto, R; Gittenberger, A; Rikoh, M S; de Voogd, N J

    2016-09-30

    Substrate cover, water quality parameters and assemblages of corals, fishes, sponges, echinoderms, ascidians, molluscs, benthic foraminifera and macroalgae were sampled across a pronounced environmental gradient in the Jakarta Bay-Thousand Islands reef complex. Inshore sites mainly consisted of sand, rubble and turf algae with elevated temperature, dissolved oxygen, pH and chlorophyll concentrations and depauperate assemblages of all taxa. Live coral cover was very low inshore and mainly consisted of sparse massive coral heads and a few encrusting species. Faunal assemblages were more speciose and compositionally distinct mid- and offshore compared to inshore. There were, however, small-scale differences among taxa. Certain midshore sites, for example, housed assemblages resembling those typical of the inshore environment but this differed depending on the taxon. Substrate, water quality and spatial variables together explained from 31% (molluscs) to 72% (foraminifera) of the variation in composition. In general, satellite-derived parameters outperformed locally measured parameters.

  2. Coral Luminescence Identifies the Pacific Decadal Oscillation as a Primary Driver of River Runoff Variability Impacting the Southern Great Barrier Reef

    NARCIS (Netherlands)

    Rodriguez-Ramirez, A.; Grove, C.A.; Zinke, J.; Pandolfi, J.M.; Zhao, J.-X.

    2014-01-01

    The Pacific Decadal Oscillation (PDO) is a large-scale climatic phenomenon modulating ocean-atmosphere variability on decadal time scales. While precipitation and river flow variability in the Great Barrier Reef (GBR) catchments are sensitive to PDO phases, the extent to which the PDO influences cor

  3. The rare mantis shrimp Areosquilla indica (Hansen, 1976) (Crustacea, Stomatopoda) from the Great Barrier Reef: first Australian records of the genus and species.

    Science.gov (United States)

    Ahyong, Shane T; Wassenberg, Theodore J

    2015-08-18

    The rare mantis shrimp genus Areosquilla is recorded from Australia for the first time based on nine specimens of A. indica (Hansen, 1926) collected from the Great Barrier Reef. Morphological variation beyond that observed in previous accounts is reported. The present record and other recent discoveries bring the Australian stomatopod fauna to 152 species and 68 genera.

  4. Corrigendum to "PAHs in the Great Barrier Reef Lagoon reach potentially toxic levels from coal port activities" [Estuar. Coast. Shelf Sci. 144, 39-45

    Science.gov (United States)

    Burns, Kathryn A.

    2014-08-01

    Erratum with respect to the paper: Burns, K A, 2014 PAHs in the Great Barrier Reef Lagoon reach potentially toxic levels from coal port activities. Estuarine Coastal and Shelf Science 144, 39-45. DOI 10.1016/j.ecss.2014.04.001.

  5. Sponge exhalent seawater contains a unique chemical profile of dissolved organic matter

    Directory of Open Access Journals (Sweden)

    Cara L. Fiore

    2017-01-01

    Full Text Available Sponges are efficient filter feeders, removing significant portions of particulate and dissolved organic matter (POM, DOM from the water column. While the assimilation and respiration of POM and DOM by sponges and their abundant microbial symbiont communities have received much attention, there is virtually no information on the impact of sponge holobiont metabolism on the composition of DOM at a molecular-level. We applied untargeted and targeted metabolomics techniques to characterize DOM in seawater samples prior to entering the sponge (inhalant reef water, in samples exiting the sponge (exhalent seawater, and in samples collected just outside the reef area (off reef seawater. Samples were collected from two sponge species, Ircinia campana and Spheciospongia vesparium, on a near-shore hard bottom reef in the Florida Keys. Metabolic profiles generated from untargeted metabolomics analysis indicated that many more compounds were enhanced in the exhalent samples than in the inhalant samples. Targeted metabolomics analysis revealed differences in diversity and concentration of metabolites between exhalent and off reef seawater. For example, most of the nucleosides were enriched in the exhalent seawater, while the aromatic amino acids, caffeine and the nucleoside xanthosine were elevated in the off reef water samples. Although the metabolic profile of the exhalent seawater was unique, the impact of sponge metabolism on the overall reef DOM profile was spatially limited in our study. There were also no significant differences in the metabolic profiles of exhalent water between the two sponge species, potentially indicating that there is a characteristic DOM profile in the exhalent seawater of Caribbean sponges. Additional work is needed to determine whether the impact of sponge DOM is greater in habitats with higher sponge cover and diversity. This work provides the first insight into the molecular-level impact of sponge holobiont metabolism on

  6. Differences in demographic traits of four butterflyfish species between two reefs of the Great Barrier Reef separated by 1,200 km

    KAUST Repository

    Berumen, Michael L.

    2011-11-16

    Many species demonstrate variation in life history attributes in response to gradients in environmental conditions. For fishes, major drivers of life history variation are changes in temperature and food availability. This study examined large-scale variation in the demography of four species of butterflyfishes (Chaetodon citrinellus, Chaetodon lunulatus, Chaetodon melannotus, and Chaetodon trifascialis) between two locations on Australia\\'s Great Barrier Reef (Lizard Island and One Tree Island, separated by approximately 1,200 km). Variation in age-based demographic parameters was assessed using the re-parameterised von Bertalanffy growth function. All species displayed measurable differences in body size between locations, with individuals achieving a larger adult size at the higher latitude site (One Tree Island) for three of the four species examined. Resources and abundances of the study species were also measured, revealing some significant differences between locations. For example, for C. trifascialis, there was no difference in its preferred resource or in abundance between locations, yet it achieved a larger body size at the higher latitude location, suggesting a response to temperature. For some species, resources and abundances did vary between locations, limiting the ability to distinguish between a demographic response to temperature as opposed to a response to food or competition. Future studies of life histories and demographics at large spatial scales will need to consider the potentially confounding roles of temperature, resource usage and availability, and abundance/competition to disentangle the effects of these environmental variables. © 2011 Springer-Verlag.

  7. Effect of colony size and surrounding substrate on corals experiencing a mild bleaching event on Heron Island reef flat (southern Great Barrier Reef, Australia)

    Science.gov (United States)

    Ortiz, J. C.; Gomez-Cabrera, M. Del C.; Hoegh-Guldberg, O.

    2009-12-01

    In January-May 2006, Heron Island in the Great Barrier Reef experienced a mild bleaching event. The effect of colony size, morphology and surrounding substrate on the extent of bleaching was explored. In contrast with previous studies, colony size did not influence bleaching sensitivity, suggesting that there may be a threshold of light and temperature stress beyond which size plays a role. Also contrasting with previous studies, massive corals were more affected by bleaching than branching corals. Massive corals surrounded by sand were more affected than the ones surrounded by rubble or dead coral. It is hypothesized that light reflectance from sand increases stress levels experienced by the colonies. This effect is maximized in massive corals as opposed to branching corals that form dense thickets on Heron Island. These results emphasize the importance of the ecological dynamics of coral communities experiencing low, moderate and high levels of bleaching for the understanding of how coral communities may change under the stress of climate change.

  8. Differences in demographic traits of four butterflyfish species between two reefs of the Great Barrier Reef separated by 1,200 km

    Science.gov (United States)

    Berumen, M. L.; Trip, E. D. L.; Pratchett, M. S.; Choat, J. H.

    2012-03-01

    Many species demonstrate variation in life history attributes in response to gradients in environmental conditions. For fishes, major drivers of life history variation are changes in temperature and food availability. This study examined large-scale variation in the demography of four species of butterflyfishes ( Chaetodon citrinellus, Chaetodon lunulatus, Chaetodon melannotus, and Chaetodon trifascialis) between two locations on Australia's Great Barrier Reef (Lizard Island and One Tree Island, separated by approximately 1,200 km). Variation in age-based demographic parameters was assessed using the re-parameterised von Bertalanffy growth function. All species displayed measurable differences in body size between locations, with individuals achieving a larger adult size at the higher latitude site (One Tree Island) for three of the four species examined. Resources and abundances of the study species were also measured, revealing some significant differences between locations. For example, for C. trifascialis, there was no difference in its preferred resource or in abundance between locations, yet it achieved a larger body size at the higher latitude location, suggesting a response to temperature. For some species, resources and abundances did vary between locations, limiting the ability to distinguish between a demographic response to temperature as opposed to a response to food or competition. Future studies of life histories and demographics at large spatial scales will need to consider the potentially confounding roles of temperature, resource usage and availability, and abundance/competition to disentangle the effects of these environmental variables.

  9. Marine microbial communities of the Great Barrier Reef lagoon are influenced by riverine floodwaters and seasonal weather events.

    Science.gov (United States)

    Angly, Florent E; Heath, Candice; Morgan, Thomas C; Tonin, Hemerson; Rich, Virginia; Schaffelke, Britta; Bourne, David G; Tyson, Gene W

    2016-01-01

    The role of microorganisms in maintaining coral reef health is increasingly recognized. Riverine floodwater containing herbicides and excess nutrients from fertilizers compromises water quality in the inshore Great Barrier Reef (GBR), with unknown consequences for planktonic marine microbial communities and thus coral reefs. In this baseline study, inshore GBR microbial communities were monitored along a 124 km long transect between 2011 and 2013 using 16S rRNA gene amplicon sequencing. Members of the bacterial orders Rickettsiales (e.g., Pelagibacteraceae) and Synechococcales (e.g., Prochlorococcus), and of the archaeal class Marine Group II were prevalent in all samples, exhibiting a clear seasonal dynamics. Microbial communities near the Tully river mouth included a mixture of taxa from offshore marine sites and from the river system. The environmental parameters collected could be summarized into four groups, represented by salinity, rainfall, temperature and water quality, that drove the composition of microbial communities. During the wet season, lower salinity and a lower water quality index resulting from higher river discharge corresponded to increases in riverine taxa at sites near the river mouth. Particularly large, transient changes in microbial community structure were seen during the extreme wet season 2010-11, and may be partially attributed to the effects of wind and waves, which resuspend sediments and homogenize the water column in shallow near-shore regions. This work shows that anthropogenic floodwaters and other environmental parameters work in conjunction to drive the spatial distribution of microorganisms in the GBR lagoon, as well as their seasonal and daily dynamics.

  10. Exposure of clownfish larvae to suspended sediment levels found on the Great Barrier Reef: Impacts on gill structure and microbiome.

    Science.gov (United States)

    Hess, Sybille; Wenger, Amelia S; Ainsworth, Tracy D; Rummer, Jodie L

    2015-06-22

    Worldwide, increasing coastal development has played a major role in shaping coral reef species assemblages, but the mechanisms underpinning distribution patterns remain poorly understood. Recent research demonstrated delayed development in larval fishes exposed to suspended sediment, highlighting the need to further understand the interaction between suspended sediment as a stressor and energetically costly activities such as growth and development that are essential to support biological fitness. We examined the gill morphology and the gill microbiome in clownfish larvae (Amphiprion percula) exposed to suspended sediment concentrations (using Australian bentonite) commonly found on the inshore Great Barrier Reef. The gills of larvae exposed to 45 mg L(-1) of suspended sediment had excessive mucous discharge and growth of protective cell layers, resulting in a 56% thicker gill epithelium compared to fish from the control group. Further, we found a shift from 'healthy' to pathogenic bacterial communities on the gills, which could increase the disease susceptibility of larvae. The impact of suspended sediments on larval gills may represent an underlying mechanism behind the distribution patterns of fish assemblages. Our findings underscore the necessity for future coastal development to consider adverse effects of suspended sediments on fish recruitment, and consequently fish populations and ecosystem health.

  11. Origins and Implications of a Primary Crown-of-Thorns Starfish Outbreak in the Southern Great Barrier Reef

    Directory of Open Access Journals (Sweden)

    Ian Miller

    2015-01-01

    Full Text Available The crown-of-thorns starfish (COTS is a major predator of hard corals. Repeated COTS outbreaks in the Cairns and Central sections of the Great Barrier Reef (GBR have been responsible for greater declines in coral cover than any other type of disturbance, including cyclones, disease, and coral bleaching. Knowledge of the precise timing and location of primary outbreaks could reveal the initial drivers of outbreaks and so could indicate possible management measures. In the central GBR, COTS outbreaks appear to follow major flooding events, but despite many years of observations, no primary outbreak has ever been unequivocally identified in the central and northern GBR. Here we locate a primary outbreak of COTS on the southern GBR which is not correlated with flooding. Instead it appears to have been the result of a combination of life history traits of COTS and prevailing oceanographic conditions. The hydrodynamic setting implies that the outbreak could disperse larvae to other reefs in the region.

  12. Regional-scale variation in the distribution and abundance of farming damselfishes on Australia's Great Barrier Reef

    KAUST Repository

    Emslie, Michael J.

    2012-03-15

    Territorial damselfishes that manipulate ("farm") the algae in their territories can have a marked effect on benthic community structure and may influence coral recovery following disturbances. Despite the numerical dominance of farming species on many reefs, the importance of their grazing activities is often overlooked, with most studies only examining their roles over restricted spatial and temporal scales. We used the results of field surveys covering 9.5° of latitude of the Great Barrier Reef to describe the distribution, abundance and temporal dynamics of farmer communities. Redundancy analysis revealed unique subregional assemblages of farming species that were shaped by the combined effects of shelf position and, to a lesser extent, by latitude. These spatial patterns were largely stable through time, except when major disturbances altered the benthic community. Such disturbances affected the functional guilds of farmers in different ways. Since different guilds of farmers modify benthic community structure and affect survival of juvenile corals in different ways, these results have important implications for coral recovery following disturbances. © 2012 Springer-Verlag.

  13. Diversity and abundance of photosynthetic sponges in temperate Western Australia

    Directory of Open Access Journals (Sweden)

    Brümmer Franz

    2009-02-01

    Full Text Available Abstract Background Photosynthetic sponges are important components of reef ecosystems around the world, but are poorly understood. It is often assumed that temperate regions have low diversity and abundance of photosynthetic sponges, but to date no studies have investigated this question. The aim of this study was to compare the percentages of photosynthetic sponges in temperate Western Australia (WA with previously published data on tropical regions, and to determine the abundance and diversity of these associations in a range of temperate environments. Results We sampled sponges on 5 m belt transects to determine the percentage of photosynthetic sponges and identified at least one representative of each group of symbionts using 16S rDNA sequencing together with microscopy techniques. Our results demonstrate that photosynthetic sponges are abundant in temperate WA, with an average of 63% of sponge individuals hosting high levels of photosynthetic symbionts and 11% with low to medium levels. These percentages of photosynthetic sponges are comparable to those found on tropical reefs and may have important implications for ecosystem function on temperate reefs in other areas of the world. A diverse range of symbionts sometimes occurred within a small geographic area, including the three "big" cyanobacterial clades, Oscillatoria spongeliae, "Candidatus Synechococcus spongiarum" and Synechocystis species, and it appears that these clades all occur in a wide range of sponges. Additionally, spongin-permeating red algae occurred in at least 7 sponge species. This study provides the first investigation of the molecular phylogeny of rhodophyte symbionts in sponges. Conclusion Photosynthetic sponges are abundant and diverse in temperate WA, with comparable percentages of photosynthetic to non-photosynthetic sponges to tropical zones. It appears that there are three common generalist clades of cyanobacterial symbionts of sponges which occur in a wide

  14. Cross-shelf exchanges between the Coral Sea and the Great Barrier Reef lagoon determined from a regional-scale numerical model

    Science.gov (United States)

    Schiller, Andreas; Herzfeld, Mike; Brinkman, Richard; Rizwi, Farhan; Andrewartha, John

    2015-10-01

    Analyses of the variability in a 3.5-year run of a hydrodynamic model developed for simulating the circulation of the Great Barrier Reef (GBR) are presented. Sea-surface temperature, salinity, currents and cross-shelf transports between the GBR lagoon and the deep ocean offshore are investigated and compare well to available observations. Water mass intrusions and flushing events are critical factors in determining the health of coral reef and continental shelf ecosystems. Results from tracer release experiments provide a synoptic view of the variability of residence times within the GBR and identify critical regions of shelf-ocean exchange. One such region of significant tracer contribution to the shelf is identified in the vicinity of the Pompey Reefs in an area characterised by increased frequency of upslope transported water. Another location of enhanced flux on to the shelf exists in the region bracketing Palm Passage, where the reef matrix is very open, and provides little obstacle to cross-shelf exchange. The Palm Passage location is the origin of a northwards plume of elevated concentration. The model circulation provides a robust and useful picture of the Great Barrier Reef, rendering the model suitable for providing input to biogeochemical and sediment models to simulate, at a broad scale, the ecosystem health, water quality, transport and fate of water and waterborne material, moving through catchments and into the GBR lagoon.

  15. A rapid genetic assay for the identification of the most common Pocillopora damicornis genetic lineages on the Great Barrier Reef.

    Directory of Open Access Journals (Sweden)

    Gergely Torda

    Full Text Available Pocillopora damicornis (Linnaeus, 1758; Scleractinia, Pocilloporidae has recently been found to comprise at least five distinct genetic lineages in Eastern Australia, some of which likely represent cryptic species. Due to similar and plastic gross morphology of these lineages, field identification is often difficult. Here we present a quick, cost effective genetic assay as well as three novel microsatellite markers that distinguish the two most common lineages found on the Great Barrier Reef. The assay is based on PCR amplification of two regions within the mitochondrial putative control region, which show consistent and easily identifiable fragment size differences for the two genetic lineages after Alu1 restriction enzyme digestion of the amplicons.

  16. Clustered parrotfish feeding scars trigger partial coral mortality of massive Porites colonies on the inshore Great Barrier Reef

    Science.gov (United States)

    Welsh, J. Q.; Bonaldo, R. M.; Bellwood, D. R.

    2015-03-01

    Coral predation by parrotfishes can cause damage to coral colonies, but research into the dynamics of their feeding scars on Indo-Pacific corals is limited. We monitored feeding scars of the parrotfish Chlorurus microrhinos on massive Porites colonies at Orpheus Island (inshore Great Barrier Reef) over 4 months. Of the 30 marks monitored, 11 were single feeding scars, which all healed completely. The remaining 19 feeding marks consisted of clusters of scars. Eight began to recover, while 11 increased in size by 1,576 ± 252 % (mean ± SE). A logistic regression predicted that a single feeding scar on a Porites colony had a 97 % probability of healing; however, where more than three feeding scars were present, this dropped below 50 %. As excavating parrotfishes in the Indo-Pacific often take multiple focused bites, they may have a significant impact on the growth and mortality of massive Porites colonies at Orpheus Island.

  17. Historical photographs revisited: A case study for dating and characterizing recent loss of coral cover on the inshore Great Barrier Reef

    Science.gov (United States)

    Clark, Tara R.; Leonard, Nicole D.; Zhao, Jian-Xin; Brodie, Jon; McCook, Laurence J.; Wachenfeld, David R.; Duc Nguyen, Ai; Markham, Hannah L.; Pandolfi, John M.

    2016-01-01

    Long-term data with high-precision chronology are essential to elucidate past ecological changes on coral reefs beyond the period of modern-day monitoring programs. In 2012 we revisited two inshore reefs within the central Great Barrier Reef, where a series of historical photographs document a loss of hard coral cover between c.1890–1994 AD. Here we use an integrated approach that includes high-precision U-Th dating specifically tailored for determining the age of extremely young corals to provide a robust, objective characterisation of ecological transition. The timing of mortality for most of the dead in situ corals sampled from the historical photograph locations was found to coincide with major flood events in 1990–1991 at Bramston Reef and 1970 and 2008 at Stone Island. Evidence of some recovery was found at Bramston Reef with living coral genera similar to what was described in c.1890 present in 2012. In contrast, very little sign of coral re-establishment was found at Stone Island suggesting delayed recovery. These results provide a valuable reference point for managers to continue monitoring the recovery (or lack thereof) of coral communities at these reefs.

  18. Historical photographs revisited: A case study for dating and characterizing recent loss of coral cover on the inshore Great Barrier Reef.

    Science.gov (United States)

    Clark, Tara R; Leonard, Nicole D; Zhao, Jian-Xin; Brodie, Jon; McCook, Laurence J; Wachenfeld, David R; Duc Nguyen, Ai; Markham, Hannah L; Pandolfi, John M

    2016-01-27

    Long-term data with high-precision chronology are essential to elucidate past ecological changes on coral reefs beyond the period of modern-day monitoring programs. In 2012 we revisited two inshore reefs within the central Great Barrier Reef, where a series of historical photographs document a loss of hard coral cover between c.1890-1994 AD. Here we use an integrated approach that includes high-precision U-Th dating specifically tailored for determining the age of extremely young corals to provide a robust, objective characterisation of ecological transition. The timing of mortality for most of the dead in situ corals sampled from the historical photograph locations was found to coincide with major flood events in 1990-1991 at Bramston Reef and 1970 and 2008 at Stone Island. Evidence of some recovery was found at Bramston Reef with living coral genera similar to what was described in c.1890 present in 2012. In contrast, very little sign of coral re-establishment was found at Stone Island suggesting delayed recovery. These results provide a valuable reference point for managers to continue monitoring the recovery (or lack thereof) of coral communities at these reefs.

  19. On the variability of the flow along the Meso-American Barrier Reef system: a numerical model study of the influence of the Caribbean current and eddies

    Science.gov (United States)

    Ezer, Tal; Thattai, Deeptha V.; Kjerfve, Björn; Heyman, William D.

    2005-12-01

    A high resolution (3-8 km grid), 3D numerical ocean model of the West Caribbean Sea (WCS) is used to investigate the variability and the forcing of flows near the Meso-American Barrier Reef System (MBRS) which runs along the coasts of Mexico, Belize, Guatemala and Honduras. Mesoscale variations in velocity and temperature along the reef were found in seasonal model simulations and in observations; these variations are associated with meandering of the Caribbean current (CC) and the propagation of Caribbean eddies. Diagnostic calculations and a simple assimilation technique are combined to infer the dynamically adjusted flow associated with particular eddies. The results demonstrate that when a cyclonic eddy (negative sea surface height anomaly (SSHA)) is found near the MBRS the CC shifts offshore, the cyclonic circulation in the Gulf of Honduras (GOH) intensifies, and a strong southward flow results along the reef. However, when an anticyclonic eddy (positive SSHA) is found near the reef, the CC moves onshore and the flow is predominantly westward across the reef. The model results help to explain how drifters are able to propagate in a direction opposite to the mean circulation when eddies cause a reversal of the coastal circulation. The effect of including the Meso-American Lagoon west of the Belize Reef in the model topography was also investigated, to show the importance of having accurate coastal topography in determining the variations of transports across the MBRS. The variations found in transports across the MBRS (on seasonal and mesoscale time scales) may have important consequences for biological activities along the reef such as spawning aggregations; better understanding the nature of these variations will help ongoing efforts in coral reef conservation and maintaining the health of the ecosystem in the region.

  20. A new species of Numbakullidae Guţu & Heard, 2002 (Tanaidacea, Peracarida, Crustacea from the Great Barrier Reef, Australia

    Directory of Open Access Journals (Sweden)

    Anna Stępień

    2013-10-01

    Full Text Available A new species of Numbakulla Guţu & Heard, 2002 (Tanaidacea is described from Heron Island (southern Great Barrier Reef, Queensland collected during the Census of Coral Reefs Ecosystem (CReefs program. The new species is the third member of the family and can be recognized by the combination of characters as: length/width ratio of the body, which is 6:7, pereonite 4 longer than the rest, the presence of eyes, a blunt rostrum, antenna article 2 elongated, cheliped carpus with row of inner setae, pereopod 6 carpus with spines, pleopod endopod with denticles.

  1. Strategies of dissolved inorganic carbon use in macroalgae across a gradient of terrestrial influence: implications for the Great Barrier Reef in the context of ocean acidification

    Science.gov (United States)

    Diaz-Pulido, Guillermo; Cornwall, Christopher; Gartrell, Patrick; Hurd, Catriona; Tran, Dien V.

    2016-12-01

    Macroalgae are generally used as indicators of coral reef status; thus, understanding the drivers and mechanisms leading to increased macroalgal abundance are of critical importance. Ocean acidification (OA) due to elevated carbon dioxide (CO2) concentrations has been suggested to stimulate macroalgal growth and abundance on reefs. However, little is known about the physiological mechanisms by which reef macroalgae use CO2 from the bulk seawater for photosynthesis [i.e., (1) direct uptake of bicarbonate (HCO3 -) and/or CO2 by means of carbon concentrating mechanisms (CCM) and (2) the diffusive uptake of CO2], which species could benefit from increased CO2 or which habitats may be more susceptible to acidification-induced algal proliferations. Here, we provide the first quantitative examination of CO2-use strategies in coral reef macroalgae and provide information on how the proportion of species and the proportional abundance of species utilising each of the carbon acquisition strategies varies across a gradient of terrestrial influence (from inshore to offshore reefs) in the Great Barrier Reef (GBR). Four macroalgal groups were identified based on their carbon uptake strategies: (1) CCM-only (HCO3 - only users); (2) CCM-HCO3 -/CO2 (active uptake HCO3 - and/or CO2 use); (3) Non-CCM species (those relying on diffusive CO2 uptake); and (4) Calcifiers. δ13C values of macroalgae, confirmed by pH drift assays, show that diffusive CO2 use is more prevalent in deeper waters, possibly due to low light availability that limits activity of CCMs. Inshore shallow reefs had a higher proportion of CCM-only species, while reefs further away from terrestrial influence and exposed to better water quality had a higher number of non-CCM species than inshore and mid-shelf reefs. As non-CCM macroalgae are more responsive to increased seawater CO2 and OA, reef slopes of the outer reefs are probably the habitats most vulnerable to the impacts of OA. Our results suggest a potentially

  2. Ecology and Pathology of Novel Plaque-Like Growth Anomalies Affecting a Reef-Building Coral on the Great Barrier Reef

    Directory of Open Access Journals (Sweden)

    Lisa Ann Kelly

    2016-08-01

    Full Text Available Here we identify ecological and structural characteristics of a novel plaque-like growth anomaly (GA at outbreak levels in a population of the staghorn coral, Acropora muricata, on the Great Barrier Reef. The smooth appearance of the plaques results from thickening of skeletal structures comprising the coenosteum, leading to infilling of spaces between corallites, and was associated with hyperplasia and hypertrophy of calicodermal cells. This resulted in a 2-fold reduction in corallite height, a 1.6-fold increase in corallite width, and a 2.3-fold increase in the thickness of the calicodermal layer compared to healthy corallites. Plaque-like GAs affected ~67% of corals surveyed, and on average, encased 50% of the surface area of diseased branches. Progression rates along branches averaged 0.22mm day-1 over a 2.5-month period. GAs spread throughout colonies but their presence did not affect the linear extension rates of branches. Reproductive products were absent in 55% of GA tissues, and when present, mean oocyte and spermary numbers were reduced by 50%. However, when present, mean sizes of oocytes and spermaries did not differ between healthy and GA tissues. Symbiodinium densities were also reduced by 50% in polyps within GA tissues, which were characterized by an absence of polyp structure and chaotic arrangement of gastrovascular canals, compromising host nutrition. A 3-fold increase in stores of the immune-related precursor, prophenoloxidase, within GA tissues compared to healthy tissue suggests a primed immune response. Concomitantly, only 35% of prophenoloxidase was converted to the active enzyme phenoloxidase compared to 81% in healthy tissues, consistent with inhibition of immune-related enzymatic reactions by an unknown causative agent. The increasing frequency of emerging disease hotspots highlights the importance of understanding sublethal effects of diseases that have important implications for the fitness and long-term resilience of

  3. Degradation of mangrove-derived organic matter in mangrove associated sponges

    NARCIS (Netherlands)

    Hunting, E.R.; de Goeij, J.M.; Asselman, M.; van Soest, R.W.M.; van der Geest, H.G.

    2010-01-01

    Sponge communities found in Caribbean mangroves are typical to this habitat: partly endemic and very distinct from sponge communities on nearby reefs. A trade-off between resistance to competitors and predators appears to influence success of individual sponge species in mangrove habitats. We specul

  4. Upper Triassic (Norian-Rhaetian new thalamid sponges from northern Calabria (southern Italy

    Directory of Open Access Journals (Sweden)

    Baba Senowbari-Daryan

    2003-09-01

    Full Text Available Two new “sphinctozoan” sponges, Calabrisiphonella labyrinthica nov. gen., nov. sp. and Calabrispongia globosa nov. gen., nov. sp., are described from reef boulders derived from Triassic dolomites (“Dolomia principale“ of the Argentino valley in Northern Calabria (Southern Italy. Calabrisiphonella is an Amblysiphonella-type sponge characterized by having a complicated canal system (labyrinth-like within the chamber walls. The structure of Calabrispongia is similar to some Paleozoic or Jurassic "Stromatoporoidea“, which are attributed to the sponges. The systemtic position of both sponges, described here, is discussed. The age of the sponge-bearing reefs represented in the boulders is Norian-Rhaetian.

  5. Evaluation of annual resolution coral geochemical records as climate proxies in the Great Barrier Reef of Australia

    Science.gov (United States)

    Deng, Wenfeng; Wei, Gangjian; McCulloch, Malcolm; Xie, Luhua; Liu, Ying; Zeng, Ti

    2014-12-01

    Sampling of annually banded massive coral skeletons at annual (or higher) resolutions is increasingly being used to obtain replicate long-term time series of changing seawater conditions. However, few of these studies have compared and calibrated the lower annual resolution records based on coral geochemical tracers with the corresponding instrumental climate records, although some studies have inferred the climatic significance of annual coral series derived from averages of monthly or sub-annual records. Here, we present annual resolution analysis of coral records of elemental and stable isotopic composition that are approximately 70 years long. These records were preserved in two coexisting colonies of Porites sp. from Arlington Reef, on the Great Barrier Reef in Australia, and are used to evaluate the climatic significance of annually resolved coral geochemical proxies. The geochemical records of coral sample "10AR2," with its faster and relatively constant annual growth rate, appear to have been independent of skeletal growth rate and other vital effects. The annual resolution of Sr/Ca and Δδ18O time series was shown to be a good proxy for annual sea surface temperature (SST; r = -0.67, n = 73, p < 0.0000001) and rainfall records ( r = -0.34, n = 67, p < 0.01). However, a slower growing coral sample, "10AR1" showed significantly lower correlations ( r = -0.20, n = 71, p = 0.05 for Sr/Ca and SST; r = -0.19, n = 67, p = 0.06 for Δδ18O and rainfall), indicating its greater susceptibility to biological/metabolic effects. Our results suggest that while annually resolved coral records are potentially a valuable tool for determining, in particular, long timescale climate variability such as Pacific Decadal Oscillation, Interdecadal Pacific Oscillation, and other climatic factors, the selection of the coral sample is important, and replication is essential.

  6. Chimerism in wild adult populations of the broadcast spawning coral Acropora millepora on the Great Barrier Reef.

    Directory of Open Access Journals (Sweden)

    Eneour Puill-Stephan

    Full Text Available BACKGROUND: Chimeras are organisms containing tissues or cells of two or more genetically distinct individuals, and are known to exist in at least nine phyla of protists, plants, and animals. Although widespread and common in marine invertebrates, the extent of chimerism in wild populations of reef corals is unknown. METHODOLOGY/PRINCIPAL FINDINGS: The extent of chimerism was explored within two populations of a common coral, Acropora millepora, on the Great Barrier Reef, Australia, by using up to 12 polymorphic DNA microsatellite loci. At least 2% and 5% of Magnetic Island and Pelorus Island populations of A. millepora, respectively, were found to be chimeras (3% overall, based on conservative estimates. A slightly less conservative estimate indicated that 5% of colonies in each population were chimeras. These values are likely to be vast underestimates of the true extent of chimerism, as our sampling protocol was restricted to a maximum of eight branches per colony, while most colonies consist of hundreds of branches. Genotypes within chimeric corals showed high relatedness, indicating that genetic similarity is a prerequisite for long-term acceptance of non-self genotypes within coral colonies. CONCLUSIONS/SIGNIFICANCE: While some brooding corals have been shown to form genetic chimeras in their early life history stages under experimental conditions, this study provides the first genetic evidence of the occurrence of coral chimeras in the wild and of chimerism in a broadcast spawning species. We hypothesize that chimerism is more widespread in corals than previously thought, and suggest that this has important implications for their resilience, potentially enhancing their capacity to compete for space and respond to stressors such as pathogen infection.

  7. The role of marine reserves in the replenishment of a locally impacted population of anemonefish on the Great Barrier Reef.

    Science.gov (United States)

    Bonin, Mary C; Harrison, Hugo B; Williamson, David H; Frisch, Ashley J; Saenz-Agudelo, Pablo; Berumen, Michael L; Jones, Geoffrey P

    2016-01-01

    The development of parentage analysis to track the dispersal of juvenile offspring has given us unprecedented insight into the population dynamics of coral reef fishes. These tools now have the potential to inform fisheries management and species conservation, particularly for small fragmented populations under threat from exploitation and disturbance. In this study, we resolve patterns of larval dispersal for a population of the anemonefish Amphiprion melanopus in the Keppel Islands (southern Great Barrier Reef). Habitat loss and fishing appear to have impacted this population and a network of no-take marine reserves currently protects 75% of the potential breeders. Using parentage analysis, we estimate that 21% of recruitment in the island group was generated locally and that breeding adults living in reserves were responsible for 79% (31 of 39) of these of locally produced juveniles. Overall, the network of reserves was fully connected via larval dispersal; however, one reserve was identified as a critical source of larvae for the island group. The population in the Keppel Islands also appears to be well-connected to other source populations at least 60 km away, given that 79% (145 of 184) of the juveniles sampled remained unassigned in the parentage analysis. We estimated the effective size of the A. melanopus metapopulation to be 745 (582-993 95% CI) and recommend continued monitoring of its genetic status. Maintaining connectivity with populations beyond the Keppel Islands and recovery of local recruitment habitat, potentially through active restoration of host anemone populations, will be important for its long-term persistence.

  8. Sea surface temperature as a tracer to estimate cross-shelf turbulent diffusivity and flushing time in the Great Barrier Reef lagoon

    Science.gov (United States)

    Mao, Yadan; Ridd, Peter V.

    2015-06-01

    Accurate parameterization of spatially variable diffusivity in complex shelf regions such as the Great Barrier Reef (GBR) lagoon is an unresolved issue for hydrodynamic models. This leads to large uncertainties to the flushing time derived from them and to the evaluation of ecosystem resilience to terrestrially derived pollution. In fact, numerical hydrodynamic models and analytical cross-shore diffusion models have predicted very different flushing times for the GBR lagoon. Nevertheless, scarcity of in situ measurements used previously in the latter method prevents derivation of detailed diffusivity profiles. Here detailed cross-shore profiles of diffusivity were calculated explicitly in a closed form for the first time from the steady state transects of sea surface temperature for different sections of the GBR lagoon. We find that diffusivity remains relatively constant within the inner lagoon (reef-devoid regions, but increases dramatically where the reef matrixes start and fluctuates with reef size and density. The cross-shelf profile of steady state salinity calculated using the derived diffusivity values agrees well with field measurements. The calculated diffusivity values are also consistent with values derived from satellite-tracked drifters. Flushing time by offshore diffusion is of the order of 1 month, suggesting the important role of turbulent diffusion in flushing the lagoon, especially in reef-distributed regions. The results imply that previous very large residence times predicted by numerical hydrodynamic models may result from underestimation of diffusivity. Our findings can guide parameterization of diffusivity in hydrodynamic modeling.

  9. Reproductive ecology of four scleratinian species at Lizard Island, Great Barrier Reef

    Science.gov (United States)

    Harriott, V. J.

    1983-08-01

    Reproductive ecology of four scleractinian species, Lobophyllia corymbosa, Favia favus, Porties lutea and Porites australiensis was studied for two years on a patch reef near Lizard Island. Two major reproductive patterns were found: L. corymbosa and F. favus were simultaneous hermaphrodites and released gametes over several days in summer; and P. lutea, and P. australiensis were dioecious and released gametes over several weeks to several months respectively, in summer. Three of the four species spawned predominantly in the lunar period between the full and last quarter moon. In all four species, ovaries began developing several months earlier than testes. Number of ova per colony varied greatly amongst the species and was inversely related to mature egg size. The results presented here contrast with earlier assumptions of almost uniform viviparity of corals and supports the generalization that a brief annual spawning period with larvae developing externally may prove to be the dominant form of sexual reproduction in hermatypic corals.

  10. Monorchiid trematodes of the painted sweetlips, Diagramma labiosum (Perciformes: Haemulidae), from the southern Great Barrier Reef, including a new genus and three new species.

    Science.gov (United States)

    Searle, Emily L; Cutmore, Scott C; Cribb, Thomas H

    2014-07-01

    Five monorchiid species are reported from Diagramma labiosum Macleay (Perciformes: Haemulidae) collected from Heron Island on the southern Great Barrier Reef (GBR): two described species, Helicometroides longicollis Yamaguti, 1934 and Diplomonorchis kureh Machida, 2005 and three new species, including one new genus, Asymmetrostoma heronensis n. g., n. sp., Lasiotocus arrhichostoma n. sp. and Proctotrema addisoni n. sp. Helicometroides longicollis and D. kureh were previously reported from the closely related species Diagramma pictum (Thunberg) from Japan. Two further monorchiid species known from D. pictum, Genolopa plectorhynchi (Yamaguti, 1934) and Paraproctotrema fusiforme Yamaguti, 1934, appear to be absent from the southern Great Barrier Reef. Previous reports of two other monorchiids from D. labiosum from the GBR, Paramonorcheides pseudocaranxi Dove & Cribb, 1998 and Helicometroides vitellosus (Durio & Manter, 1968), are shown to have been made in error. The high richness of monorchiids and other trematode families in D. labiosum is consistent with that seen in other haemulids elsewhere.

  11. A new genus of Stenetriidae Hansen, 1905 (Asellota: Isopoda: Crustacea) from the Great Barrier Reef, Australia and the southwestern Pacific.

    Science.gov (United States)

    Bruce, Niel L; Cumming, R L

    2015-04-02

    Onychatrium gen. nov. is described, with five included species: Onychatrium forceps sp. nov., the type species and Onychatrium torosus sp. nov., both from the Great Barrier Reef; Onychatrium entale (Nordenstam, 1946) comb. nov., from Tapateuen (= Tabiteue Island), Gilbert Islands; Onychatrium thomasi (Bolstad & Kensley, 1999) comb. nov., from Madang, Papua New Guinea; and Onychatrium echiurum (Nobili, 1906) comb. nov., and species inquirenda from the Tumaotu Islands, Eastern French Polynesia. The primary distinguishing characters for Onychatrium gen. nov. are a trapezoid pseudosrostrum, the male pereopod 1 with elongate dactylus (4.7-7.3 as long as proximal width), propodus with strongly produced and acute lobe, carpus with a distally acute, flat, ventrally directed process (except O. torosus sp. nov., which has a short and truncate process) and the merus with a distally directed inferodistal lobe. The genus is known only from the southern Pacific, from the Tuamotus (eastern French Polynesia) to the Great Barrier Reef and northern Papua New Guinea.

  12. Long-term records of coral calcification across the central Great Barrier Reef: assessing the impacts of river runoff and climate change

    Science.gov (United States)

    D'Olivo, J. P.; McCulloch, M. T.; Judd, K.

    2013-12-01

    Calcification rates are reported for 41 long-lived Porites corals from 7 reefs, in an inshore to offshore transect across the central Great Barrier Reef (GBR). Over multi-decadal timescales, corals in the mid-shelf (1947-2008) and outer reef (1952-2004) regions of the GBR exhibit a significant increase in calcification of 10.9 ± 1.1 % (1.4 ± 0.2 % per decade; ±1 SE) and 11.1 ± 3.9 % (2.1 ± 0.8 % per decade), respectively, while inner-shelf (1930-2008), reefs show a decline of 4.6 ± 1.3 % (0.6 ± 0.2 % per decade). This long-term decline in calcification for the inner GBR is attributed to the persistent ongoing effects of high sediment/nutrients loads from wet season river discharges, compounded by the effects of thermal stress, especially during the 1998 bleaching event. For the recent period (1990-2008), our data show recovery from the 1998 bleaching event, with no significant trend in the rates of calcification (1.1 ± 2.0 %) for the inner reefs, while corals from the mid-shelf central GBR show a decline of 3.3 ± 0.9 %. These results are in marked contrast to the extreme reef-wide declines of 14.2 % reported by De'ath et al. (2009) for the period of 1990-2005. The De'ath et al. (2009) results are, however, found to be compromised by the inclusion of incomplete final years, duplicated records, together with a bias toward inshore reefs strongly affected by the 1998 bleaching. Our new findings nevertheless continue to raise concerns, with the inner-shelf reefs continuing to show long-term declines in calcification consistent with increased disturbance from land-based effects. In contrast, the more `pristine' mid- and outer-shelf reefs appear to be undergoing a transition from increasing to decreasing rates of calcification, possibly reflecting the effects of CO2-driven climate change. Our study highlights the importance of properly undertaken, regular assessments of coral calcification that are representative of the distinctive cross-shelf environments and

  13. Crouching shells, hidden sponges: Unusual Late Ordovician cavities containing sponges

    Science.gov (United States)

    Park, Jino; Lee, Jeong-Hyun; Hong, Jongsun; Choh, Suk-Joo; Lee, Dong-Chan; Lee, Dong-Jin

    2017-01-01

    Marine cavities harbouring cryptic organisms have been ubiquitous throughout the Phanerozoic. However, our knowledge of early cryptic communities is as yet insufficient, and how metazoans began to utilize such habitats remains unknown. In this study, we document demosponge remains within intraskeletal cavities embedded in the micritic succession of a shallow carbonate platform in the Upper Ordovician (Katian) Xiazhen Formation of South China. Molluscs (gastropods, bivalves, and nautiloids) and corals (the solitary rugosan Tryplasma and colonial agetolitids) within the succession commonly contain patches of "spicular" demosponge remains (11%; n = 45/415), mainly occupying intraskeletal spaces with areas of 1-30 mm2 in thin-section. Sponge occurrence varies according to sedimentary facies: within lime mudstone facies, sponges commonly occur both inside and outside intraskeletal cavities, suggesting that sponges would have inhabited and become preserved within any available space in this environment. In contrast, when other sessile organisms co-occur in wackestone to packstone facies, there are fewer sponge occurrences both inside and outside cavities, possibly due to competition in open habitats and/or their poorer preservation in such environments. Overall, this result suggests that sponges would have exploited cryptic habitats by normal expansion of the open-surface biota. In addition, compared with coeval reef and hardground crypts, the Xiazhen intraskeletal cryptic biota is monotonous in composition, suggesting "decoupled" occupation of cryptic habitats in different environments.

  14. Effects of High Dissolved Inorganic and Organic Carbon Availability on the Physiology of the Hard Coral Acropora millepora from the Great Barrier Reef.

    Directory of Open Access Journals (Sweden)

    Friedrich W Meyer

    Full Text Available Coral reefs are facing major global and local threats due to climate change-induced increases in dissolved inorganic carbon (DIC and because of land-derived increases in organic and inorganic nutrients. Recent research revealed that high availability of labile dissolved organic carbon (DOC negatively affects scleractinian corals. Studies on the interplay of these factors, however, are lacking, but urgently needed to understand coral reef functioning under present and near future conditions. This experimental study investigated the individual and combined effects of ambient and high DIC (pCO2 403 μatm/ pHTotal 8.2 and 996 μatm/pHTotal 7.8 and DOC (added as Glucose 0 and 294 μmol L-1, background DOC concentration of 83 μmol L-1 availability on the physiology (net and gross photosynthesis, respiration, dark and light calcification, and growth of the scleractinian coral Acropora millepora (Ehrenberg, 1834 from the Great Barrier Reef over a 16 day interval. High DIC availability did not affect photosynthesis, respiration and light calcification, but significantly reduced dark calcification and growth by 50 and 23%, respectively. High DOC availability reduced net and gross photosynthesis by 51% and 39%, respectively, but did not affect respiration. DOC addition did not influence calcification, but significantly increased growth by 42%. Combination of high DIC and high DOC availability did not affect photosynthesis, light calcification, respiration or growth, but significantly decreased dark calcification when compared to both controls and DIC treatments. On the ecosystem level, high DIC concentrations may lead to reduced accretion and growth of reefs dominated by Acropora that under elevated DOC concentrations will likely exhibit reduced primary production rates, ultimately leading to loss of hard substrate and reef erosion. It is therefore important to consider the potential impacts of elevated DOC and DIC simultaneously to assess real world

  15. Effects of High Dissolved Inorganic and Organic Carbon Availability on the Physiology of the Hard Coral Acropora millepora from the Great Barrier Reef.

    Science.gov (United States)

    Meyer, Friedrich W; Vogel, Nikolas; Diele, Karen; Kunzmann, Andreas; Uthicke, Sven; Wild, Christian

    2016-01-01

    Coral reefs are facing major global and local threats due to climate change-induced increases in dissolved inorganic carbon (DIC) and because of land-derived increases in organic and inorganic nutrients. Recent research revealed that high availability of labile dissolved organic carbon (DOC) negatively affects scleractinian corals. Studies on the interplay of these factors, however, are lacking, but urgently needed to understand coral reef functioning under present and near future conditions. This experimental study investigated the individual and combined effects of ambient and high DIC (pCO2 403 μatm/ pHTotal 8.2 and 996 μatm/pHTotal 7.8) and DOC (added as Glucose 0 and 294 μmol L-1, background DOC concentration of 83 μmol L-1) availability on the physiology (net and gross photosynthesis, respiration, dark and light calcification, and growth) of the scleractinian coral Acropora millepora (Ehrenberg, 1834) from the Great Barrier Reef over a 16 day interval. High DIC availability did not affect photosynthesis, respiration and light calcification, but significantly reduced dark calcification and growth by 50 and 23%, respectively. High DOC availability reduced net and gross photosynthesis by 51% and 39%, respectively, but did not affect respiration. DOC addition did not influence calcification, but significantly increased growth by 42%. Combination of high DIC and high DOC availability did not affect photosynthesis, light calcification, respiration or growth, but significantly decreased dark calcification when compared to both controls and DIC treatments. On the ecosystem level, high DIC concentrations may lead to reduced accretion and growth of reefs dominated by Acropora that under elevated DOC concentrations will likely exhibit reduced primary production rates, ultimately leading to loss of hard substrate and reef erosion. It is therefore important to consider the potential impacts of elevated DOC and DIC simultaneously to assess real world scenarios, as

  16. The Great Barrier Reef World Heritage Area seagrasses: Managing this iconic Australian ecosystem resource for the future

    Science.gov (United States)

    Coles, Robert G.; Rasheed, Michael A.; McKenzie, Len J.; Grech, Alana; York, Paul H.; Sheaves, Marcus; McKenna, Skye; Bryant, Catherine

    2015-02-01

    The Great Barrier Reef World Heritage Area (GBRWHA) includes one of the world's largest areas of seagrass (35,000 km2) encompassing approximately 20% of the world's species. Mapping and monitoring programs sponsored by the Australian and Queensland Governments and Queensland Port Authorities have tracked a worrying decrease in abundance and area since 2007. This decline has almost certainly been the result of a series of severe tropical storms and associated floods exacerbating existing human induced stressors. A complex variety of marine and terrestrial management actions and plans have been implemented to protect seagrass and other habitats in the GBRWHA. For seagrasses, these actions are inadequate. They provide an impression of effective protection of seagrasses; reduce the sense of urgency needed to trigger action; and waste the valuable and limited supply of "conservation capital". There is a management focus on ports, driven by public concerns about high profile development projects, which exaggerates the importance of these relatively concentrated impacts in comparison to the total range of threats and stressors. For effective management of seagrass at the scale of the GBRWHA, more emphasis needs to be placed on the connectivity between seagrass meadow health, watersheds, and all terrestrial urban and agricultural development associated with human populations. The cumulative impacts to seagrass from coastal and marine processes in the GBRWHA are not evenly distributed, with a mosaic of high and low vulnerability areas. This provides an opportunity to make choices for future coastal development plans that minimise stress on seagrass meadows.

  17. Six new species of the genus Armandia Filippi, 1861 (Polychaeta, Opheliidae) from Lizard Island (Great Barrier Reef, Australia).

    Science.gov (United States)

    Parapar, Julio; Moreira, Juan

    2015-09-18

    From the study of the material collected during the Polychaete Workshop held in Lizard Island (Great Barrier Reef, Australia) in August 2013, six species belonging to the genus Armandia (Polychaeta, Opheliidae) are newly described. Armandia bifida n. sp. is characterised by the bifid shape of the prechaetal lobe in CH1-CH3, A. dolio n. sp. by the barrel-shaped anal (=pygidial) tube (=funnel), A. filibranchia n. sp. by the extremely long and thin branchiae, A. laminosa n. sp. by the foliose shape and large size of the prechaetal lobe in CH1-CH3, A. paraintermedia n. sp. by the squared-shaped anal tube and size and shape of anal cirri, and A. tubulata n. sp. by the tubular shape of the anal tube. All species are fully described and illustrated, and compared with similar species. Several body characters of taxonomic relevance (e.g., anal tube and parapodia shape) are studied based on SEM micrographs. A key of the Armandia species hitherto described or reported in South-East Asia and Australasia is provided based on features of the anal tube.

  18. Altered transcription levels of endocrine associated genes in two fisheries species collected from the Great Barrier Reef catchment and lagoon.

    Science.gov (United States)

    Kroon, Frederieke J; Hook, Sharon E; Jones, Dean; Metcalfe, Suzanne; Henderson, Brent; Smith, Rachael; Warne, Michael St J; Turner, Ryan D; McKeown, Adam; Westcott, David A

    2015-03-01

    The Great Barrier Reef (GBR) is chronically exposed to agricultural run-off containing pesticides, many of which are known endocrine disrupting chemicals (EDCs). Here, we measure mRNA transcript abundance of two EDC biomarkers in wild populations of barramundi (Lates calcarifer) and coral trout (Plectropomus leopardus and Plectropomus maculatus). Transcription levels of liver vitellogenin (vtg) differed significantly in both species amongst sites with different exposures to agricultural run-off; brain aromatase (cyp19a1b) revealed some differences for barramundi only. Exposure to run-off from sugarcane that contains pesticides is a likely pathway given (i) significant associations between barramundi vtg transcription levels, catchment sugarcane land use, and river pesticide concentrations, and (ii) consistency between patterns of coral trout vtg transcription levels and pesticide distribution in the GBR lagoon. Given the potential consequences of such exposure for reproductive fitness and population dynamics, these results are cause for concern for the sustainability of fisheries resources downstream from agricultural land uses.

  19. Sphaerodoridae (Annelida) from Lizard Island, Great Barrier Reef, Australia, including the description of two new species and reproductive notes.

    Science.gov (United States)

    Capa, María; Rouse, Greg W

    2015-09-18

    Sphaerodorids are scarce at Lizard Island archipelago and other localities in the Great Barrier Reef, Australia. Intensive collections at a variety of habitats within the Lizard Island archipelago over the last four decades have resulted in a total of just 11 specimens. Nevertheless, they represent two new species and a new record for Lizard Island. Sphaerodoropsis aurantica n. sp. is characterised by nine longitudinal rows of sessile and spherical dorsal macrotubercles, arranged in a single transverse row per segment; parapodia with around 10 spherical papillae; and compound chaetae with thin shafts and long blades. Sphaerodoropsis plurituberculata n. sp. is characterised by more than 12 more or less clearly arranged longitudinal rows of sessile spherical dorsal tubercles (variable in size), in four transverse rows per segment; parapodia lacking papillae; and semi-compound chaetae with distally enlarged shaft and short blades. Ephesiella australiensis is reported for the first time in Lizard Island. Laboratory observations of live specimens of Sphaerodoropsis plurituberculata n. sp., revealed the use of spermatophores by males. These were found attached externally to the body surface of both sexes, indicating pseudo-copulation.

  20. Comparing bleaching and mortality responses of hard corals between southern Kenya and the Great Barrier Reef, Australia.

    Science.gov (United States)

    McClanahan, T R; Baird, A H; Marshall, P A; Toscano, M A

    2004-02-01

    We compared the bleaching and mortality response (BMI) of 19 common scleractinian corals to an anomalous warm-water event in 1998 to determine the degree of variation between depths, sites, and regions. Mombasa corals experienced a greater temperature anomaly than those on the Great Barrier Reef (GBR) sites and this was reflected in the greater BMI response of most taxa. Comparing coral taxa in different sites at the same depth produced high correlation coefficients in the bleaching response in Kenya at 2 m (r=0.86) and GBR at 6 m depth sites (r=0.80) but less in the GBR for shallow 2 m sites (r=0.49). The pattern of taxa susceptibility was remarkably consistent between the regions. Coral taxa explained 52% of the variation in the response of colonies to bleaching between these two regions (Kenya BMI=0.90 GBR BMI+26; F(1,19) - 18.3; p bleaching is phylogenetically constrained, emphasizing the importance of features of the host's physiology or morphology in determining the response to thermal stress.

  1. Cyanotoxins are not implicated in the etiology of coral black band disease outbreaks on Pelorus Island, Great Barrier Reef.

    Science.gov (United States)

    Glas, Martin S; Motti, Cherie A; Negri, Andrew P; Sato, Yui; Froscio, Suzanne; Humpage, Andrew R; Krock, Bernd; Cembella, Allan; Bourne, David G

    2010-07-01

    Cyanobacterial toxins (i.e. microcystins) produced within the microbial mat of coral black band disease (BBD) have been implicated in disease pathogenicity. This study investigated the presence of toxins within BBD lesions and other cyanobacterial patch (CP) lesions, which, in some instances ( approximately 19%), facilitated the onset of BBD, from an outbreak site at Pelorus Island on the inshore, central Great Barrier Reef (GBR). Cyanobacterial species that dominated the biomass of CP and BBD lesions were cultivated and identified, based on morphology and 16S rRNA gene sequences, as Blennothrix- and Oscillatoria-affiliated species, respectively, and identical to cyanobacterial sequences retrieved from previous molecular studies from this site. The presence of the cyanotoxins microcystin, cylindrospermopsin, saxitoxin, nodularin and anatoxin and their respective gene operons in field samples of CP and BBD lesions and their respective culture isolations was tested using genetic (PCR-based screenings), chemical (HPLC-UV, FTICR-MS and LC/MS(n)) and biochemical (PP2A) methods. Cyanotoxins and cyanotoxin synthetase genes were not detected in any of the samples. Cyanobacterial species dominant within CP and BBD lesions were phylogenetically distinct from species previously shown to produce cyanotoxins and isolated from BBD lesions. The results from this study demonstrate that cyanobacterial toxins appear to play no role in the pathogenicity of CP and BBD at this site on the GBR.

  2. Microsatellites Reveal Genetic Homogeneity among Outbreak Populations of Crown-of-Thorns Starfish (Acanthaster cf. solaris) on Australia’s Great Barrier Reef

    KAUST Repository

    Harrison, Hugo

    2017-03-10

    Specific patterns in the initiation and spread of reef-wide outbreaks of crown-of-thorns starfish are important, both to understand potential causes (or triggers) of outbreaks and to develop more effective and highly targeted management and containment responses. Using analyses of genetic diversity and structure (based on 17 microsatellite loci), this study attempted to resolve the specific origin for recent outbreaks of crown-of-thorns on Australia’s Great Barrier Reef (GBR). We assessed the genetic structure amongst 2705 starfish collected from 13 coral reefs in four regions that spanned ~1000 km of the GBR. Our results indicate that populations sampled across the full length of the GBR are genetically homogeneous (G’ST = −0.001; p = 0.948) with no apparent genetic structure between regions. Approximate Bayesian computational analyses suggest that all sampled populations had a common origin and that current outbreaking populations of crown-of-thorns starfish (CoTS) in the Swains are not independent of outbreak populations in the northern GBR. Despite hierarchical sampling and large numbers of CoTS genotyped from individual reefs and regions, limited genetic structure meant we were unable to determine a putative source population for the current outbreak of CoTS on the GBR. The very high genetic homogeneity of sampled populations and limited evidence of inbreeding indicate rapid expansion in population size from multiple, undifferentiated latent populations.

  3. Holocene sea level instability in the southern Great Barrier Reef, Australia: high-precision U-Th dating of fossil microatolls

    Science.gov (United States)

    Leonard, Nicole D.; Zhao, J.-x.; Welsh, K. J.; Feng, Y.-x.; Smithers, S. G.; Pandolfi, J. M.; Clark, T. R.

    2016-06-01

    Three emergent subfossil reef flats from the inshore Keppel Islands, Great Barrier Reef (GBR), Australia, were used to reconstruct relative sea level (RSL). Forty-two high-precision uranium-thorium (U-Th) dates obtained from coral microatolls and coral colonies (2σ age errors from ±8 to 37 yr) in conjunction with elevation surveys provide evidence in support of a nonlinear RSL regression throughout the Holocene. RSL was as least 0.75 m above present from ~6500 to 5500 yr before present (yr BP; where "present" is 1950). Following this highstand, two sites indicated a coeval lowering of RSL of at least 0.4 m from 5500 to 5300 yr BP which was maintained for ~200 yr. After the lowstand, RSL returned to higher levels before a 2000-yr hiatus in reef flat corals after 4600 yr BP at all three sites. A second possible RSL lowering event of ~0.3 m from ~2800 to 1600 yr BP was detected before RSL stabilised ~0.2 m above present levels by 900 yr BP. While the mechanism of the RSL instability is still uncertain, the alignment with previously reported RSL oscillations, rapid global climate changes and mid-Holocene reef "turn-off" on the GBR are discussed.

  4. Air-sea energy exchanges measured by eddy covariance during a localised coral bleaching event, Heron Reef, Great Barrier Reef, Australia

    Science.gov (United States)

    MacKellar, Mellissa C.; McGowan, Hamish A.

    2010-12-01

    Despite the widely claimed association between climate change and coral bleaching, a paucity of data exists relating to exchanges of heat, moisture and momentum between the atmosphere and the reef-water surface. We present in situ measurements of reef-water-air energy exchanges made using the eddy covariance method during a summer coral bleaching event at Heron Reef, Australia. Under settled, cloud-free conditions and light winds, daily net radiation exceeded 800 W m-2, with up to 95% of the net radiation during the morning partitioned into heating the water column, substrate and benthic cover including corals. Heating was exacerbated by a mid-afternoon low tide when shallow reef flat water reached 34°C and near-bottom temperatures 33°C, exceeding the thermal tolerance of corals, causing bleaching. Results suggest that local to synoptic scale meteorology, particularly clear skies, solar heating, light winds and the timing of low tide were the primary controls on coral bleaching.

  5. Cell kinetics during regeneration in the sponge Halisarca caerulea: how local is the response to tissue damage?

    NARCIS (Netherlands)

    Alexander, B.E.; Achlatis, M.; Osinga, R.; Geest, van der H.G.; Cleutjens, J.P.M.; Schutte, B.; Goeij, de J.M.

    2015-01-01

    Sponges have a remarkable capacity to rapidly regenerate in response to wound infliction. In addition, sponges rapidly renew their filter systems (choanocytes) to maintain a healthy population of cells. This study describes the cell kinetics of choanocytes in the encrusting reef sponge Halisarca cae

  6. A complex of species related to Paradiscogaster glebulae (Digenea: Faustulidae) in chaetodontid fishes (Teleostei: Perciformes) of the Great Barrier Reef.

    Science.gov (United States)

    Diaz, Pablo E; Bray, Rodney A; Cutmore, Scott C; Ward, Selina; Cribb, Thomas H

    2015-10-01

    A total of 1523 individuals of 34 species of chaetodontids from the Great Barrier Reef were examined for faustulid trematodes. Specimens resembling Paradiscogaster glebulae Bray, Cribb & Barker, 1994 were found in nine chaetodontid species at three localities. These specimens are shown, on the basis of combined morphological and molecular analyses, to comprise a complex of morphologically similar and partly cryptic species. The complex may comprise as many as six distinct species of which three are resolved here. The true P. glebulae is identified in Chaetodon ornatissimus Cuvier, 1831, Chaetodon aureofasciatus Macleay, 1878, Chaetodon plebeius Cuvier, 1831, Chaetodon rainfordi McCulloch, 1923 and Chaetodon speculum Cuvier, 1831. Two new species are described, Paradiscogaster munozae n. sp. from Heniochus varius (Cuvier, 1829), Heniochus chrysostomus Cuvier, 1831 and Chaetodon citrinellus Cuvier, 1831 and Paradiscogaster melendezi n. sp. from Chaetodon kleinii Bloch, 1790. In terms of morphology the three species differ most clearly in the development of the appendages on the ventral sucker. The three species differ at 3-6consistent bp of ITS2 rDNA. The host-specificity of the three species differs strikingly. P. melendezi n. sp. infects just one fish species, P. glebulae infects species of only one clade of Chaetodon, and P. munozae n. sp. infects quite unrelated species. The basis of this unusual pattern of host-specificity requires further exploration. Two of the species recognised here, P. glebulae and P. munozae n. sp., showed apparent intra-individual variation in the ITS2 rDNA sequences as demonstrated by clear, replicated double peaks in the electropherograms.

  7. Large-scale expansion of no-take closures within the Great Barrier Reef has not enhanced fishery production.

    Science.gov (United States)

    Fletcher, W J; Kearney, R E; Wise, B S; Nash, W J

    2015-07-01

    A rare opportunity to test hypotheses about potential fishery benefits of large-scale closures was initiated in July 2004 when an additional 28.4% of the 348 000 km2 Great Barrier Reef (GBR) region of Queensland, Australia was closed to all fishing. Advice to the Australian and Queensland governments that supported this initiative predicted these additional closures would generate minimal (10%) initial reductions in both catch and landed value within the GBR area, with recovery of catches becoming apparent after three years. To test these predictions, commercial fisheries data from the GBR area and from the two adjacent (non-GBR) areas of Queensland were compared for the periods immediately before and after the closures were implemented. The observed means for total annual catch and value within the GBR declined from preclosure (2000-2003) levels of 12780 Mg and Australian $160 million, to initial post-closure (2005-2008) levels of 8143 Mg and $102 million; decreases of 35% and 36% respectively. Because the reference areas in the non-GBR had minimal changes in catch and value, the beyond-BACI (before, after, control, impact) analyses estimated initial net reductions within the GBR of 35% for both total catch and value. There was no evidence of recovery in total catch levels or any comparative improvement in catch rates within the GBR nine years after implementation. These results are not consistent with the advice to governments that the closures would have minimal initial impacts and rapidly generate benefits to fisheries in the GBR through increased juvenile recruitment and adult spillovers. Instead, the absence of evidence of recovery in catches to date currently supports an alternative hypothesis that where there is already effective fisheries management, the closing of areas to all fishing will generate reductions in overall catches similar to the percentage of the fished area that is closed.

  8. Tolerance of endolithic algae to elevated temperature and light in the coral Montipora monasteriata from the southern Great Barrier Reef.

    Science.gov (United States)

    Fine, Maoz; Meroz-Fine, Efrat; Hoegh-Guldberg, Ove

    2005-01-01

    Photosynthetic endolithic algae and cyanobacteria live within the skeletons of many scleractinians. Under normal conditions, less than 5% of the photosynthetically active radiation (PAR) reaches the green endolithic algae because of the absorbance of light by the endosymbiotic dinoflagellates and the carbonate skeleton. When corals bleach (loose dinoflagellate symbionts), however, the tissue of the corals become highly transparent and photosynthetic microendoliths may be exposed to high levels of both thermal and solar stress. This study explores the consequence of these combined stresses on the phototrophic endoliths inhabiting the skeleton of Montipora monasteriata, growing at Heron Island, on the southern Great Barrier Reef. Endoliths that were exposed to sun after tissue removal were by far more susceptible to thermal photoinhibition and photo-damage than endoliths under coral tissue that contained high concentrations of brown dinoflagellate symbionts. While temperature or light alone did not result in decreased photosynthetic efficiency of the endoliths, combined thermal and solar stress caused a major decrease and delayed recovery. Endoliths protected under intact tissue recovered rapidly and photoacclimated soon after exposure to elevated sea temperatures. Endoliths under naturally occurring bleached tissue of M. monasteriata colonies (bleaching event in March 2004 at Heron Island) acclimated to increased irradiance as the brown symbionts disappeared. We suggest that two major factors determine the outcome of thermal bleaching to the endolith community. The first is the microhabitat and light levels under which a coral grows, and the second is the susceptibility of the coral-dinoflagellates symbiosis to thermal stress. More resistant corals may take longer to bleach allowing endoliths time to acclimate to a new light environment. This in turn may have implications for coral survival.

  9. Changes in water clarity in response to river discharges on the Great Barrier Reef continental shelf: 2002-2013

    Science.gov (United States)

    Fabricius, K. E.; Logan, M.; Weeks, S. J.; Lewis, S. E.; Brodie, J.

    2016-05-01

    Water clarity is a key factor for the health of marine ecosystems. The Australian Great Barrier Reef (GBR) is located on a continental shelf, with >35 major seasonal rivers discharging into this 344,000 km2 tropical to subtropical ecosystem. This work investigates how river discharges affect water clarity in different zones along and across the GBR. For each day over 11 years (2002-2013) we calculated 'photic depth' as a proxy measure of water clarity (calibrated to be equivalent to Secchi depth), for each 1 km2 pixel from MODIS-Aqua remote sensing data. Long-term and seasonal changes in photic depth were related to the daily discharge volumes of the nearest rivers, after statistically removing the effects of waves and tides on photic depth. The relationships between photic depths and rivers differed across and along the GBR. They typically declined from the coastal to offshore zones, and were strongest in proximity to rivers in agriculturally modified catchments. In most southern inner zones, photic depth declined consistently throughout the 11-year observation period; such long-term trend was not observed offshore nor in the northern regions. Averaged across the GBR, photic depths declined to 47% of local maximum values soon after the onset of river floods, and recovery to 95% of maximum values took on average 6 months (range: 150-260 days). The river effects were strongest at latitude 14.5°-19.0°S, where river loads are high and the continental shelf is narrow. Here, even offshore zones showed a >40% seasonal decline in photic depth, and 17-24% reductions in annual mean photic depth in years with large river nutrients and sediment loads. Our methodology is based on freely available data and tools and may be applied to other shelf systems, providing valuable insights in support of ecosystem management.

  10. Prevalence of virus-like particles within a staghorn scleractinian coral ( Acropora muricata) from the Great Barrier Reef

    Science.gov (United States)

    Patten, N. L.; Harrison, P. L.; Mitchell, J. G.

    2008-09-01

    Transmission electron microscopy (TEM) was used to determine whether Acropora muricata coral colonies from the Great Barrier Reef (GBR), Australia, harboured virus-like particles (VLPs). VLPs were present in all coral colonies sampled at Heron Island (southern GBR) and in tagged coral colonies sampled in at least two of the three sampling periods at Lizard Island (northern GBR). VLPs were observed within gastrodermal and epidermal tissues, and on rarer occasions, within the mesoglea. These VLPs had similar morphologies to known prokaryotic and eukaryotic viruses in other systems. Icosahedral VLPs were observed most frequently, however, filamentous VLPs (FVLPs) and phage were also noted. There were no clear differences in VLP size, morphology or location within the tissues with respect to sample date, coral health status or site. The most common VLP morphotype exhibited icosahedral symmetry, 120-150 nm in diameter, with an electron-dense core and an electronlucent membrane. Larger VLPs of similar morphology were also common. VLPs occurred as single entities, in groups, or in dense clusters, either as free particles within coral tissues, or within membrane-bound vacuoles. VLPs were commonly observed within the perinuclear region, with mitochondria, golgi apparatus and crescent-shaped particles frequently observed within close proximity. The host(s) of these observed VLPs was not clear; however, the different sizes and morphologies of VLPs observed within A. muricata tissues suggest that viruses are infecting either the coral animal, zooxanthellae, intracellular bacteria and/or other coral-associated microbiota, or that the one host is susceptible to infection from more than one type of virus. These results add to the limited but emerging body of evidence that viruses represent another potentially important component of the coral holobiont.

  11. Using MODIS data for understanding changes in seagrass meadow health: a case study in the Great Barrier Reef (Australia).

    Science.gov (United States)

    Petus, Caroline; Collier, Catherine; Devlin, Michelle; Rasheed, Michael; McKenna, Skye

    2014-07-01

    Stretching more than 2000 km along the Queensland coast, the Great Barrier Reef Marine Park (GBR) shelters over 43,000 square km of seagrass meadows. Despite the status of marine protected area and World Heritage listing of the GBR, local seagrass meadows are under stress from reduced water quality levels; with reduction in the amount of light available for seagrass photosynthesis defined as the primary cause of seagrass loss throughout the GBR. Methods have been developed to map GBR plume water types by using MODIS quasi-true colour (hereafter true colour) images reclassified in function of their dominant colour. These data can be used as an interpretative tool for understanding changes in seagrass meadow health (as defined in this study by the seagrass area and abundance) at different spatial and temporal scales. We tested this method in Cleveland Bay, in the northern GBR, where substantial loss in seagrass area and biomass was detected by annual monitoring from 2007 to 2011. A strong correlation was found between bay-wide seagrass meadow area and biomass and exposure to turbid Primary (sediment-dominated) water type. There was also a strong correlation between the changes of biomass and area of individual meadows and exposure of seagrass ecosystems to Primary water type over the 5-year period. Seagrass meadows were also grouped according to the dominant species within each meadow, irrespective of location within Cleveland Bay. These consolidated community types did not correlate well with the exposure to Primary water type, and this is likely to be due to local environmental conditions with the individual meadows that comprise these groupings. This study proved that remote sensing data provide the synoptic window and repetitivity required to investigate changes in water quality conditions over time. Remote sensing data provide an opportunity to investigate the risk of marine-coastal ecosystems to light limitation due to increased water turbidity when in situ

  12. Two distinct microbial communities revealed in the sponge Cinachyrella

    Directory of Open Access Journals (Sweden)

    Marie Laure Cuvelier

    2014-11-01

    Full Text Available Marine sponges are vital components of benthic and coral reef ecosystems, providing shelter and nutrition for many organisms. In addition, sponges act as an essential carbon and nutrient link between the pelagic and benthic environment by filtering large quantities of seawater. Many sponge species harbor a diverse microbial community (including Archaea, Bacteria and Eukaryotes, which can constitute up to 50% of the sponge biomass. Sponges of the genus Cinachyrella are common in Caribbean and Floridian reefs and their archaeal and bacterial microbiomes were explored here using 16S rDNA tag pyrosequencing. Cinachyrella specimens and seawater samples were collected from the same South Florida reef at two different times of year. In total, 639 OTUs (12 archaeal and 627 bacterial belonging to 2 archaeal and 21 bacterial phyla were detected in the sponges. Based on their microbiomes, the six sponge samples formed two distinct groups, namely sponge group 1 (SG1 with low diversity (Shannon-Weiner index: 3.73 ± 0.22 and SG2 with higher diversity (Shannon-Weiner index: 5.95 ± 0.25. Hosts’ 28S rDNA sequences further confirmed that the sponge specimens were composed of two taxa closely related to Cinachyrella kuekenthalli. Both sponge groups were dominated by Proteobacteria, but Alphaproteobacteria were significantly more abundant in SG1. SG2 harbored many bacterial phyla (>1% of sequences present in low abundance or below detection limits (<0.07% in SG1 including: Acidobacteria, Chloroflexi, Gemmatimonadetes, Nitrospirae, PAUC34f, Poribacteria and Verrucomicrobia. Furthermore, SG1 and SG2 only had 95 OTUs in common, representing 30.5% and 22.4% of SG1 and SG2’s total OTUs, respectively. These results suggest that the sponge host may exert a pivotal influence on the nature and structure of the microbial community and may only be marginally affected by external environment parameters.

  13. Preliminary assessment of sponge biodiversity on Saba Bank, Netherlands Antilles.

    Directory of Open Access Journals (Sweden)

    Robert W Thacker

    Full Text Available BACKGROUND: Saba Bank Atoll, Netherlands Antilles, is one of the three largest atolls on Earth and provides habitat for an extensive coral reef community. To improve our knowledge of this vast marine resource, a survey of biodiversity at Saba Bank included a multi-disciplinary team that sampled fishes, mollusks, crustaceans, macroalgae, and sponges. METHODOLOGY/PRINCIPAL FINDINGS: A single member of the dive team conducted surveys of sponge biodiversity during eight dives at six locations, at depths ranging from 15 to 30 m. This preliminary assessment documented the presence of 45 species pooled across multiple locations. Rarefaction analysis estimated that only 48 to 84% of species diversity was sampled by this limited effort, clearly indicating a need for additional surveys. An analysis of historical collections from Saba and Saba Bank revealed an additional 36 species, yielding a total of 81 sponge species recorded from this area. CONCLUSIONS/SIGNIFICANCE: This observed species composition is similar to that found on widespread Caribbean reefs, indicating that the sponge fauna of Saba Bank is broadly representative of the Caribbean as a whole. A robust population of the giant barrel sponge, Xestospongia muta, appeared healthy with none of the signs of disease or bleaching reported from other Caribbean reefs; however, more recent reports of anchor chain damage to these sponges suggests that human activities can have dramatic impacts on these communities. Opportunities to protect this extremely large habitat should be pursued, as Saba Bank may serve as a significant reservoir of sponge species diversity.

  14. Contrasting responses of coral reef fauna and foraminiferal assemblages to human influence in La Parguera, Puerto Rico

    Science.gov (United States)

    Coral reef biota including stony corals, sponges, gorgonians, fish, benthic macroinvertebrates and foraminifera were surveyed in coastal waters near La Parguera, in southwestern Puerto Rico. The goal was to evaluate sensitivity of coral reef biological indicators to human distur...

  15. Contrasting patterns of reef utilization and recruitment of coral trout ( Plectropomus leopardus) and snapper ( Lutjanus carponotatus) at One Tree Island, southern Great Barrier Reef

    Science.gov (United States)

    Kingsford, M. J.

    2009-03-01

    Patterns of abundance, age structure and recruitment of coral trout ( Plectropomus leopardus) and snapper ( Lutjanus carponotatus) were described in different environments, which varied in benthic cover, in a 12-yr study at One Tree Island. It was hypothesized that both taxa would show strong preferences to different environments and benthic cover and that patterns would be consistent through time. Plectropomus leopardus were abundant on the reef slope and seaward edge of the lagoon, where live coral cover was high, and recruitment was generally low, in all environments. The population was sustained by a trickle of recruits, and total abundance varied little after 10 to 25 yr of protection in a no-take area, suggesting P. leopardus had reached an environment-related carrying capacity. Protogynous P. leopardus recruited to shallow environments at sites with 20% or more hard live coral and age data indicated the abundance of fish on the reef slope was from redistribution. Most recruits of gonochoristic L. carponotatus (<150 mm Standard length, SL) were found in the lagoonal environments, and adults were rare on the reef slope. Abundance of recruit L. carponotatus and P. leopardus did not correlate with percent cover of live and soft coral within environments. Recruits of L. carponotatus were usually rare in all lagoonal environments, but in 2003, many recruits (80 to 120 mm SL) were found in lagoonal environments with low and high hard live coral cover. A substantial proportion of the population (age max 18 yr) was from strong recruitment events. In 2003 and 2004, total abundance of L. carponotatus was supported by 1 year class 51.7 and 41% respectively. The utilization of environments and types of substrata varied among taxa and in some cases among life-history stages. There was also temporal variation in the importance of some environments (e.g. Lagoon Centre).

  16. Quantifying water flow within aquatic ecosystems using load cell sensors: a profile of currents experienced by coral reef organisms around Lizard Island, Great Barrier Reef, Australia.

    Directory of Open Access Journals (Sweden)

    Jacob L Johansen

    Full Text Available Current velocity in aquatic environments has major implications for the diversity, abundance and ecology of aquatic organisms, but quantifying these currents has proven difficult. This study utilises a simple and inexpensive instrument (500 cms⁻¹ and wave frequency to >100 Hz over several weeks. Sensor data are registered and processed at 16 MHz and 10 bit resolution, with a measuring precision of 0.06±0.04%, and accuracy of 0.51±0.65% (mean ±S.D.. Each instrument is also pressure rated to 120 m and shear stresses ≤20 kNm⁻² allowing deployment in harsh environments. The instrument was deployed across 27 coral reef sites covering the crest (3 m, mid-slope (6 m and deep-slope (9 m depth of habitats directly exposed, oblique or sheltered from prevailing winds. Measurements demonstrate that currents over the reef slope and crest varies immensely depending on depth and exposure: currents differ up to 9-fold within habitats only separated by 3 m depth and 15-fold between exposed, oblique and sheltered habitats. Comparisons to ambient weather conditions reveal that currents around Lizard Island are largely wind driven. Zero to 22.5 knot winds correspond directly to currents of 0 to >82 cms⁻¹, while tidal currents rarely exceed 5.5 cms⁻¹. Rather, current velocity increases exponentially as a function of wave height (0 to 1.6 m and frequency (0.54 to 0.20 Hz, emphasizing the enormous effect of wind and waves on organisms in these shallow coral reef habitats.

  17. Water Quality and River Plume Monitoring in the Great Barrier Reef: An Overview of Methods Based on Ocean Colour Satellite Data

    Directory of Open Access Journals (Sweden)

    Michelle J. Devlin

    2015-09-01

    Full Text Available A strong driver of water quality change in the Great Barrier Reef (GBR is the pulsed or intermittent nature of terrestrial inputs into the GBR lagoon, including delivery of increased loads of sediments, nutrients, and toxicants via flood river plumes (hereafter river plumes during the wet season. Cumulative pressures from extreme weather with a high frequency of large scale flooding in recent years has been linked to the large scale reported decline in the health of inshore seagrass systems and coral reefs in the central areas of the GBR, with concerns for the recovery potential of these impacted ecosystems. Management authorities currently rely on remotely-sensed (RS and in situ data for water quality monitoring to guide their assessment of water quality conditions in the GBR. The use of remotely-sensed satellite products provides a quantitative and accessible tool for scientists and managers. These products, coupled with in situ data, and more recently modelled data, are valuable for quantifying the influence of river plumes on seagrass and coral reef habitat in the GBR. This article reviews recent remote sensing techniques developed to monitor river plumes and water quality in the GBR. We also discuss emerging research that integrates hydrodynamic models with remote sensing and in situ data, enabling us to explore impacts of different catchment management strategies on GBR water quality.

  18. Gnathia trimaculata n. sp. (Crustacea: Isopoda: Gnathiidae), an ectoparasite found parasitising requiem sharks from off Lizard Island, Great Barrier Reef, Australia.

    Science.gov (United States)

    Coetzee, Maryke L; Smit, Nico J; Grutter, Alexandra S; Davies, Angela J

    2009-02-01

    Gnathia trimaculata n. sp. is described from one black tip reef shark Carcharinus melanopterus Quoy & Gaimard and four grey reef sharks C. amblyrhynchos Bleeker collected off Lizard Island, Great Barrier Reef, Australia. Third-stage juveniles (praniza 3) were maintained in fresh seawater until they moulted into adults. Male adults emerged seven days post-removal (d.p.r) of pranizae from host fishes, whereas the female pranizae completed their moult into adult females 24 d.p.r. Distinctive features include the relatively large size of all stages and the unique mediofrontal process of the male, which is divided into two lobes forming a key-hole shape between them. The female frontal border is characterised by paired simple, pappose setae on the sides of the mid-dorsal area, as well as four long, pappose setae on the mid-dorsal region. The pranizae have eight teeth on each mandible. Live pranizae have stripes and three pairs of distinctive black spots within yellow circles on the sides of the pereonites and this pigmentation pattern persists in the adults. This represents the second description of a gnathiid parasitising elasmobranchs off Australia.

  19. Medullary Sponge Kidney

    Science.gov (United States)

    ... Sponge Kidney? Complications of medullary sponge kidney include hematuria, or blood in the urine kidney stones urinary ... both kidneys. Complications of medullary sponge kidney include hematuria, or blood in the urine kidney stones urinary ...

  20. Tolerance of sponge assemblages to temperature anomalies: resilience and proliferation of sponges following the 1997-8 El-Nino southern oscillation.

    Directory of Open Access Journals (Sweden)

    Francisco Kelmo

    Full Text Available Coral reefs across the world are under threat from a range of stressors, and while there has been considerable focus on the impacts of these stressors on corals, far less is known about their effect on other reef organisms. The 1997-8 El-Niño Southern Oscillation (ENSO had notable and severe impacts on coral reefs worldwide, but not all reef organisms were negatively impacted by this large-scale event. Here we describe how the sponge fauna at Bahia, Brazil was influenced by the 1997-8 ENSO event. Sponge assemblages from three contrasting reef habitats (reef tops, walls and shallow banks at four sites were assessed annually from 1995 to 2011. The within-habitat sponge diversity did not vary significantly across the study period; however, there was a significant increase in density in all habitats. Multivariate analyses revealed no significant difference in sponge assemblage composition (ANOSIM between pre- and post-ENSO years for any of the habitats, suggesting that neither the 1997-8 nor any subsequent smaller ENSO events have had any measurable impact on the reef sponge assemblage. Importantly, this is in marked contrast to the results previously reported for a suite of other taxa (including corals, echinoderms, bryozoans, and ascidians, which all suffered mass mortalities as a result of the ENSO event. Our results suggest that of all reef taxa, sponges have the potential to be resilient to large-scale thermal stress events and we hypothesize that sponges might be less affected by projected increases in sea surface temperature compared to other major groups of reef organisms.

  1. Satellite-Derived Photic Depth on the Great Barrier Reef: Spatio-Temporal Patterns of Water Clarity

    Directory of Open Access Journals (Sweden)

    Scarla Weeks

    2012-11-01

    Full Text Available Detecting changes to the transparency of the water column is critical for understanding the responses of marine organisms, such as corals, to light availability. Long-term patterns in water transparency determine geographical and depth distributions, while acute reductions cause short-term stress, potentially mortality and may increase the organisms’ vulnerability to other environmental stressors. Here, we investigated the optimal, operational algorithm for light attenuation through the water column across the scale of the Great Barrier Reef (GBR, Australia. We implemented and tested a quasi-analytical algorithm to determine the photic depth in GBR waters and matched regional Secchi depth (ZSD data to MODIS-Aqua (2002–2010 and SeaWiFS (1997–2010 satellite data. The results of the in situ ZSD/satellite data matchup showed a simple bias offset between the in situ and satellite retrievals. Using a Type II linear regression of log-transformed satellite and in situ data, we estimated ZSD and implemented the validated ZSD algorithm to generate a decadal satellite time series (2002–2012 for the GBR. Water clarity varied significantly in space and time. Seasonal effects were distinct, with lower values during the austral summer, most likely due to river runoff and increased vertical mixing, and a decline in water clarity between 2008–2012, reflecting a prevailing La Niña weather pattern. The decline in water clarity was most pronounced in the inshore area, where a significant decrease in mean inner shelf ZSD of 2.1 m (from 8.3 m to 6.2 m occurred over the decade. Empirical Orthogonal Function Analysis determined the dominance of Mode 1 (51.3%, with the greatest variation in water clarity along the mid-shelf, reflecting the strong influence of oceanic intrusions on the spatio-temporal patterns of water clarity. The newly developed photic depth product has many potential applications for the GBR from water quality monitoring to analyses of

  2. Combining multiple measurement and isotope techniques to help target erosion hot-spots in the Great Barrier Reef catchments

    Science.gov (United States)

    Bartley, Rebecca; Croke, Jacky; Bainbridge, Zoe; Wilkinson, Scott; Hancock, Gary; Austin, Jen; Kuhnert, Petra

    2016-04-01

    There is considerable evidence that the amount of sediment reaching the Great Barrier Reef (GBR), Australia, has increased since agricultural development commenced in the 1870's. This is having deleterious effects on freshwater and marine ecosystems. However, understanding the primary source and processes driving the increased sediment delivery has been challenging due to the large size and hydrogeomorphic diversity of adjacent catchments. This paper presents the results from several projects that employed a diverse range of measurement techniques all aimed at understanding the spatial and temporal changes in sediment yield from the 130,000 km2 Burdekin catchment, Australia. Cosmogenic nuclides (10Be) were combined with contemporary sediment flux monitoring to help identify high risk sub-catchments that have anthropogenically accelerated erosion. Within the sub-catchments, fallout radionuclides (137Cs, 7Pb and 7Be) were uses to determine the dominant erosion process (surface vs sub-surface erosion). Long term monitoring of improved grazing land management (using nested flumes and gauges), were used to evaluate the effectiveness of land management changes on sediment yields at paddock and catchment scales over 10 years. The results suggest that the Bowen and Upper Burdekin sub-catchments are the dominant anthropogenic source of sediment to the GBR having an accelerated erosion factor of 7.47 (± 3.71) and 3.64 (± 0.5), respectively. Within these sub-catchments, most of the fine sediment is coming from vertical channel walls (50%) or horizontal sub-surface soils (~42%). Remediating these catchments and reducing sediment delivery is likely to take greater than 10 years, and will require a range of approaches including pasture and rangeland management, as well as targeted erosion control in highly gullied landscapes. Together, these data sets help elucidate the often complex sediment delivery processes to the GBR. This helps policy and management determine where to

  3. Field and laboratory investigations of budding in the tetillid sponge Cinachyrella cavernosa

    Digital Repository Service at National Institute of Oceanography (India)

    Singh, A.; Thakur, N.L.

    of the nutritional condition in juveniles of Ruditapes decussatus. Scientia marina 59: 95-101. Chu JW & Leys SP. 2010. High resolution mapping of community structure in three glass sponge reefs (Porifera, Hexactinellida). Marine Ecology Progress Series 417: 97...

  4. Using MODIS data for mapping of water types within river plumes in the Great Barrier Reef, Australia: towards the production of river plume risk maps for reef and seagrass ecosystems.

    Science.gov (United States)

    Petus, Caroline; da Silva, Eduardo Teixeira; Devlin, Michelle; Wenger, Amelia S; Alvarez-Romero, Jorge G

    2014-05-01

    River plumes are the major transport mechanism for nutrients, sediments and other land-based pollutants into the Great Barrier Reef (GBR, Australia) and are a major threat to coastal and marine ecosystems such as coral reefs and seagrass beds. Understanding the spatial extent, frequency of occurrence, loads and ecological impacts of land-based pollutants discharged through river plumes is essential to drive catchment management actions. In this study, a framework to produce river plume risk maps for seagrass and coral ecosystems, using supervised classification of MODIS Level 2 (L2) satellite products, is presented. Based on relevant L2 thresholds, river plumes are classified into Primary, Secondary, and Tertiary water types, which represent distinct water quality (WQ) parameters concentrations and combinations. Annual water type maps are produced over three wet seasons (2010-2013) as a case of study. These maps provide a synoptic basis to assess the likelihood and magnitude of the risk of reduced coastal WQ associated with the river discharge (river plume risk) and in combination with sound knowledge of the regional ecosystems can serve as the basis to assess potential ecological impacts for coastal and marine GBR ecosystems. The methods described herein provide relevant and easily reproducible large-scale information for river plume risk assessment and management.

  5. Cultivation of marine sponges

    Institute of Scientific and Technical Information of China (English)

    QU Yi; ZHANG Wei; LI Hua; YU Xingju; JIN Meifang

    2005-01-01

    Sponges are the most primitive of multicellular animals, and are major pharmaceutical sources of marine secondary metabolites. A wide variety of new compounds have been isolated from sponges. In order to produce sufficient amounts of the compounds of the needed, it is necessary to obtain large amount of sponges.The production of sponge biomass has become a focus of marine biotechnology.

  6. Root-derived organic matter confines sponge community composition in mangrove ecosystems

    NARCIS (Netherlands)

    Hunting, E.R.; Ubels, S.M.; Kraak, M.H.S.; van der Geest, H.G.

    2013-01-01

    Introduction Caribbean mangrove-associated sponge communities are very distinct from sponge communities living on nearby reefs, but the mechanisms that underlie this distinction remain uncertain. It has been hypothesized that dissolved organic matter (DOM) leaching from mangrove roots and the abilit

  7. ABOUT SPONGE FARMING

    Directory of Open Access Journals (Sweden)

    Marijana Pećarević

    2005-04-01

    Full Text Available Sponges are the simplest multicellular animals. Farming of sponges is facilitated by their asexual reproduction and great ability of regeneration. Farming of filter-feeding sponges is environment friendly, and it can positively influence on environmental impact of other aquaculture activities. Natural populations of sponges in Mediterranean Sea are endangered by inappropriate overfishing. Farming of sponges is possible solution for regeneration and protection of natural populations.

  8. Great Barrier Reef Marine Park and Development of Marine Protected Areas in Australia%大堡礁海洋公园与澳大利亚海洋保护区建设

    Institute of Scientific and Technical Information of China (English)

    梅宏

    2012-01-01

    In order to protect the unique ecosystem of the Great Barrier Reef, Australia has developed several bills for it and launched the "Great Barrier Reef Coastal Wetlands Protection Project". There are several highlights in the management of Great Barrier Reef Marine Park, such as division of the protected area into different function zones, workable scheme of collecting environmental management fee, and unique boat management measures. In June 2012, Australian Commonwealth government announced the proposal to construct the world's largest marine protected area. New opportunities have been placed in front of the Great Barrier Reef Marine Park managers.%为保护大堡礁独特的生态系统,澳大利亚制定多部法案,启动“大堡礁滨海湿地保护项目”.健全的多功能分区保护制度、可操作性较强的环境管理费征收制度和独具特色的船舶管理措施,已成为大堡礁海洋公园管理中的亮点.2012年6月,澳大利亚联邦政府宣布计划建成全球最大的海洋保护区,这是进一步加强大堡礁海洋公园管理的机遇.

  9. Nitrogen isotopic composition of organic matter from a 168 year-old coral skeleton: Implications for coastal nutrient cycling in the Great Barrier Reef Lagoon

    Science.gov (United States)

    Erler, Dirk V.; Wang, Xingchen T.; Sigman, Daniel M.; Scheffers, Sander R.; Martínez-García, Alfredo; Haug, Gerald H.

    2016-01-01

    Ongoing human activities are known to affect nitrogen cycling on coral reefs, but the full history of anthropogenic impact is unclear due to a lack of continuous records. We have used the nitrogen isotopic composition of skeleton-bound organic matter (CS-δ15N) in a coastal Porites coral from Magnetic Island in the Great Barrier Reef as a proxy for N cycle changes over a 168 yr period (1820-1987 AD). The Magnetic Island inshore reef environment is considered to be relatively degraded by terrestrial runoff; given prior CS-δ15N studies from other regions, there was an expectation of both secular change and oscillations in CS-δ15N since European settlement of the mainland in the mid 1800s. Surprisingly, CS-δ15N varied by less than 1.5‰ despite significant land use change on the adjacent mainland over the 168-yr measurement period. After 1930, CS-δ15N may have responded to changes in local river runoff, but the effect was weak. We propose that natural buffering against riverine nitrogen load in this region between 1820 and 1987 is responsible for the observed stability in CS-δ15N. In addition to coral derived skeletal δ15N, we also report, for the first time, δ15N measurements of non-coral derived organic N occluded within the coral skeleton, which appear to record significant changes in the nature of terrestrial N inputs. In the context of previous CS-δ15N records, most of which yield CS-δ15N changes of at least 5‰, the Magnetic Island coral suggests that the inherent down-core variability of the CS-δ15N proxy is less than 2‰ for Porites.

  10. The physiological response of two green calcifying algae from the Great Barrier Reef towards high dissolved inorganic and organic carbon (DIC and DOC) availability.

    Science.gov (United States)

    Meyer, Friedrich Wilhelm; Vogel, Nikolas; Teichberg, Mirta; Uthicke, Sven; Wild, Christian

    2015-01-01

    Increasing dissolved inorganic carbon (DIC) concentrations associated with ocean acidification can affect marine calcifiers, but local factors, such as high dissolved organic carbon (DOC) concentrations through sewage and algal blooms, may interact with this global factor. For calcifying green algae of the genus Halimeda, a key tropical carbonate producer that often occurs in coral reefs, no studies on these interactions have been reported. These data are however urgently needed to understand future carbonate production. Thus, we investigated the independent and combined effects of DIC (pCO2 402 μatm/ pHtot 8.0 and 996 μatm/ pHtot 7.7) and DOC (added as glucose in 0 and 294 μmol L-1) on growth, calcification and photosynthesis of H. macroloba and H. opuntia from the Great Barrier Reef in an incubation experiment over 16 days. High DIC concentrations significantly reduced dark calcification of H. opuntia by 130 % and led to net dissolution, but did not affect H. macroloba. High DOC concentrations significantly reduced daily oxygen production of H. opuntia and H. macroloba by 78 % and 43 %, respectively, and significantly reduced dark calcification of H. opuntia by 70%. Combined high DIC and DOC did not show any interactive effects for both algae, but revealed additive effects for H. opuntia where the combination of both factors reduced dark calcification by 162 % compared to controls. Such species-specific differences in treatment responses indicate H. opuntia is more susceptible to a combination of high DIC and DOC than H. macroloba. From an ecological perspective, results further suggest a reduction of primary production for Halimeda-dominated benthic reef communities under high DOC concentrations and additional decreases of carbonate accretion under elevated DIC concentrations, where H. opuntia dominates the benthic community. This may reduce biogenic carbonate sedimentation rates and hence the buffering capacity against further ocean acidification.

  11. The physiological response of two green calcifying algae from the Great Barrier Reef towards high dissolved inorganic and organic carbon (DIC and DOC availability.

    Directory of Open Access Journals (Sweden)

    Friedrich Wilhelm Meyer

    Full Text Available Increasing dissolved inorganic carbon (DIC concentrations associated with ocean acidification can affect marine calcifiers, but local factors, such as high dissolved organic carbon (DOC concentrations through sewage and algal blooms, may interact with this global factor. For calcifying green algae of the genus Halimeda, a key tropical carbonate producer that often occurs in coral reefs, no studies on these interactions have been reported. These data are however urgently needed to understand future carbonate production. Thus, we investigated the independent and combined effects of DIC (pCO2 402 μatm/ pHtot 8.0 and 996 μatm/ pHtot 7.7 and DOC (added as glucose in 0 and 294 μmol L-1 on growth, calcification and photosynthesis of H. macroloba and H. opuntia from the Great Barrier Reef in an incubation experiment over 16 days. High DIC concentrations significantly reduced dark calcification of H. opuntia by 130 % and led to net dissolution, but did not affect H. macroloba. High DOC concentrations significantly reduced daily oxygen production of H. opuntia and H. macroloba by 78 % and 43 %, respectively, and significantly reduced dark calcification of H. opuntia by 70%. Combined high DIC and DOC did not show any interactive effects for both algae, but revealed additive effects for H. opuntia where the combination of both factors reduced dark calcification by 162 % compared to controls. Such species-specific differences in treatment responses indicate H. opuntia is more susceptible to a combination of high DIC and DOC than H. macroloba. From an ecological perspective, results further suggest a reduction of primary production for Halimeda-dominated benthic reef communities under high DOC concentrations and additional decreases of carbonate accretion under elevated DIC concentrations, where H. opuntia dominates the benthic community. This may reduce biogenic carbonate sedimentation rates and hence the buffering capacity against further ocean

  12. 10Be constrains the sediment sources and sediment yields to the Great Barrier Reef from the tropical Barron River catchment, Queensland, Australia

    Science.gov (United States)

    Nichols, K. K.; Bierman, P. R.; Rood, D. H.

    2014-12-01

    Estimates of long-term, background sediment generation rates place current and future sediment fluxes to the Great Barrier Reef in context. Without reliable estimates of sediment generation rates and without identification of the sources of sediment delivered to the reef prior to European settlement (c. 1850), determining the necessity and effectiveness of contemporary landscape management efforts is difficult. Using the ~2100-km2 Barron River catchment in Queensland, Australia, as a test case, we use in situ-produced 10Be to derive sediment generation rate estimates and use in situ and meteoric 10Be to identify the source of that sediment, which enters the Coral Sea near Cairns. Previous model-based calculations suggested that background sediment yields were up to an order of magnitude lower than contemporary sediment yields. In contrast, in situ 10Be data indicate that background (43 t km-2 y-1) and contemporary sediment yields (~45 t km-2 y-1) for the Barron River are similar. These data suggest that the reef became established in a sediment flux similar to what it receives today. Since western agricultural practices increased erosion rates, large amounts of sediment mobilized from hillslopes during the last century are probably stored in Queensland catchments and will eventually be transported to the coast, most likely in flows triggered by rare but powerful tropical cyclones that were more common before European settlement and may increase in strength as climate change warms the south Pacific Ocean. In situ and meteoric 10Be concentrations of Coral Sea beach sand near Cairns are similar to those in rivers on the Atherton Tablelands, suggesting that most sediment is derived from the extensive, low-gradient uplands rather than the steep, more rapidly eroding but beach proximal escarpment.

  13. Outbreak of coral-eating Crown-of-Thorns creates continuous cloud of larvae over 320 km of the Great Barrier Reef.

    Science.gov (United States)

    Uthicke, S; Doyle, J; Duggan, S; Yasuda, N; McKinnon, A D

    2015-11-23

    Coral reefs are in decline worldwide due to a combination of local and global causes. Over 40% of the recent coral loss on Australia's Great Barrier Reef (GBR) has been attributed to outbreaks of the coral-eating Crown-of-Thorns Seastar (CoTS). Testing of the hypotheses explaining these outbreaks is hampered by an inability to investigate the spatio-temporal distribution of larvae because they resemble other planktotrophic echinoderm larvae. We developed a genetic marker and tested it on 48 plankton samples collected during the 2014 spawning season in the northern GBR, and verified the method by PCR amplification of single larva. Surprisingly, most samples collected contained CoTS larvae. Larvae were detected 100 km south of current outbreaks of adult seastars, highlighting the potential for rapid expansion of the outbreak. A minimum estimate suggested that larvae numbers in the outbreak area (>10(10)) are about 4 orders of magnitude higher than adults (~10(6)) in the same area, implying that attempts to halt outbreaks by removing adults may be futile.

  14. Dynamics of seasonal outbreaks of black band disease in an assemblage of Montipora species at Pelorus Island (Great Barrier Reef, Australia).

    Science.gov (United States)

    Sato, Yui; Bourne, David G; Willis, Bette L

    2009-08-01

    Recurring summer outbreaks of black band disease (BBD) on an inshore reef in the central Great Barrier Reef (GBR) constitute the first recorded BBD epizootic in the region. In a 2.7 year study of 485 colonies of Montipora species, BBD affected up to 10 per cent of colonies in the assemblage. Mean maximum abundance of BBD reached 16+/-6 colonies per 100 m(2) (n=3 quadrats, each 100 m(2)) in summer, and decreased to 0-1 colony per 100 m(2) in winter. On average, BBD lesions caused 40 per cent tissue loss and 5 per cent of infections led to whole colony mortality. BBD reappearance on previously infected colonies and continuous tissue loss after the BBD signs had disappeared suggest that the disease impacts are of longer duration than indicated by the presence of characteristic signs. Rates of new infections and linear progression of lesions were both positively correlated with seasonal fluctuations in sea water temperatures and light, suggesting that seasonal increases in these environmental parameters promote virulence of the disease. Overall, the impacts of BBD are greater than previously reported on the GBR and likely to escalate with ocean warming.

  15. Assessment of Invasiveness of the Orange Keyhole Sponge Mycale Armata in Kaneohe Bay, Oahu, Hawaii Based on Surveys 2005-2006, Year 2 of Hawaii Coral Reef Initiative (NODC Accession 0033380)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Orange Keyhole Sponge, Mycale armata Thiele, was unknown in Hawaii prior to 1996. It was first reported in Pearl Harbor and has been reported in low abundance...

  16. Ecology of the ciguatera causing dinoflagellates from the Northern Great Barrier Reef: changes in community distribution and coastal eutrophication.

    Science.gov (United States)

    Skinner, Mark P; Lewis, Richard J; Morton, Steve

    2013-12-15

    Ciguatera fish poisoning (CFP) is known to be caused by the ciguatoxins from the dinoflagellate genus Gambierdiscus, however, there is the potential for other toxins such as okadaic acid and dinophysistoxins from the genus Prorocentrum, and palytoxin from the genus Ostreopsis, to contaminate seafood. These genera may also be indicators of ecosystem health and potentially impact on coral reef ecosystems and the role they may play in the succession of coral to macroalgae dominated reefs has not been researched. Sixteen GBR field sites spanning inshore, mid-lagoon and outer lagoon (offshore) regions were studied. Samples were collected from September 2006 to December 2007 and abundance of benthic dinoflagellates on different host macroalgae and concentration of nutrients present in the water column were determined. The maximum abundance of Prorocentrum, Ostreopsis and Gambierdiscus found was 112, 793 and 50 cells per gram wet weight of host macroalgae, respectively. The average level of Dissolved Inorganic Nitrogen (DIN) in the water column across all sites (0.03 mg/L) was found to be more than double the threshold critical value (0.013 mg/L) for healthy coral reefs. Compared to a previous study 1984, there is evidence of a major shift in the distribution and abundance of these dinoflagellates. Inshore reefs have either of Prorocentrum (as at Green Island) or Ostreopsis (as at Magnetic Island) dominating the macroalgal surface niche which was once dominated by Gambierdiscus, whilst at offshore regions Gambierdiscus is still dominant. This succession may be linked to the ongoing eutrophication of the GBR lagoon and have consequences for the sources of toxins for ongoing cases of ciguatera.

  17. The Oweniidae (Annelida; Polychaeta) from Lizard Island (Great Barrier Reef, Australia) with the description of two new species of Owenia Delle Chiaje, 1844.

    Science.gov (United States)

    Parapar, Julio; Moreira, Juan

    2015-09-18

    Study of the Oweniidae specimens (Annelida; Polychaeta) from Lizard Island (Great Barrier Reef, Australia) stored at the Australian Museum, Sydney and newly collected in August 2013 revealed the presence of three species, namely Galathowenia quelis Capa et al., 2012 and two new species belonging to the genus Owenia Delle Chiaje, 1844. Owenia dichotoma n. sp. is characterised by a very short branchial crown of about 1/3 of thoracic length which bears short, dichotomously-branched tentacles provided with the major division close to the base of the crown. Owenia picta n. sp. is characterised by a long branchial crown of about 4/5 of thoracic length provided with no major divisions, ventral pigmentation on thorax and the presence of deep ventro-lateral groove on the first thoracic chaetiger. A key of Owenia species hitherto described or reported in South East Asia and Australasia regions is provided based on characters of the branchial crown.

  18. Predictable pollution: an assessment of weather balloons and associated impacts on the marine environment--an example for the Great Barrier Reef, Australia.

    Science.gov (United States)

    O'Shea, Owen R; Hamann, Mark; Smith, Walter; Taylor, Heidi

    2014-02-15

    Efforts to curb pollution in the marine environment are covered by national and international legislation, yet weather balloons are released into the environment with no salvage agenda. Here, we assess impacts associated with weather balloons in the Great Barrier Reef World Heritage Area (GBRWHA). We use modeling to assess the probability of ocean endpoints for released weather balloons and predict pathways post-release. In addition, we use 21 months of data from beach cleanup events to validate our results and assess the abundance and frequency of weather balloon fragments in the GBRWHA. We found between 65% and 70% of balloons land in the ocean and ocean currents largely determine final endpoints. Beach cleanup data revealed 2460 weather balloon fragments were recovered from 24 sites within the GBRWHA. This is the first attempt to quantify this problem and these data will add support to a much-needed mitigation strategy for weather balloon waste.

  19. Inferring coastal processes from regional-scale mapping of {sup 222}Radon and salinity: examples from the Great Barrier Reef, Australia

    Energy Technology Data Exchange (ETDEWEB)

    Stieglitz, Thomas C., E-mail: thomas.stieglitz@jcu.edu.a [AIMS-JCU, Townsville (Australia); Australian Institute of Marine Science, PMB NO 3, Townsville QLD 4810 (Australia); School of Engineering and Physical Sciences, James Cook University, Townsville QLD 4811 (Australia); Cook, Peter G., E-mail: peter.g.cook@csiro.a [CSIRO Land and Water, Private Bag 2, Glen Osmond SA 5064 (Australia); Burnett, William C., E-mail: wburnett@mailer.fsu.ed [Department of Oceanography, Florida State University, Tallahassee, FL 32306 (United States)

    2010-07-15

    The radon isotope {sup 222}Rn and salinity in coastal surface water were mapped on regional scales, to improve the understanding of coastal processes and their spatial variability. Radon was measured with a surface-towed, continuously recording multi-detector setup on a moving vessel. Numerous processes and locations of land-ocean interaction along the Central Great Barrier Reef coastline were identified and interpreted based on the data collected. These included riverine fluxes, terrestrially-derived fresh submarine groundwater discharge (SGD) and the tidal pumping of seawater through mangrove forests. Based on variations in the relationship of the tracers radon and salinity, some aspects of regional freshwater inputs to the coastal zone and to estuaries could be assessed. Concurrent mapping of radon and salinity allowed an efficient qualitative assessment of land-ocean interaction on various spatial and temporal scales, indicating that such surveys on coastal scales can be a useful tool to obtain an overview of SGD locations and processes.

  20. Sand and nest temperatures and an estimate of hatchling sex ratio from the Heron Island green turtle ( Chelonia mydas) rookery, Southern Great Barrier Reef

    Science.gov (United States)

    Booth, David T.; Freeman, Candida

    2006-11-01

    Sand and nest temperatures were monitored during the 2002-2003 nesting season of the green turtle, Chelonia mydas, at Heron Island, Great Barrier Reef, Australia. Sand temperatures increased from ˜ 24°C early in the season to 27-29°C in the middle, before decreasing again. Beach orientation affected sand temperature at nest depth throughout the season; the north facing beach remained 0.7°C warmer than the east, which was 0.9°C warmer than the south, but monitored nest temperatures were similar across all beaches. Sand temperature at 100 cm depth was cooler than at 40 cm early in the season, but this reversed at the end. Nest temperatures increased 2-4°C above sand temperatures during the later half of incubation due to metabolic heating. Hatchling sex ratio inferred from nest temperature profiles indicated a strong female bias.

  1. Sense of place as a determinant of people's attitudes towards the environment: implications for natural resources management and planning in the Great Barrier Reef, Australia.

    Science.gov (United States)

    Larson, Silva; De Freitas, Debora M; Hicks, Christina C

    2013-03-15

    Integrating people's values and perceptions into planning is essential for the successful management of natural resources. However, successful implementation of natural resources management decisions on the ground is a complex task, which requires a comprehensive understanding of a system's social and ecological linkages. This paper investigates the relationship between sense of place and people's attitudes towards their natural environment. Sense of place contributes towards shaping peoples' beliefs, values and commitments. Here, we set out to explore how these theoretical contributions can be operationalized for natural resources management planning in the Great Barrier Reef region of Australia. We hypothesise that the region's diverse range of natural resources, conservation values and management pressures might be reflected in people's attachment to place. To tests this proposition, variables capturing socio-demographics, personal wellbeing and a potential for sense of place were collected via mail-out survey of 372 residents of the region, and tested for relationships using multivariate regression and redundancy orientation analyses. Results indicate that place of residence within the region, involvement in community activities, country of birth and the length of time respondents lived in the region are important determinants of the values assigned to factors related to the natural environment. This type of information is readily available from National Census and thus could be incorporated into the planning of community engagement strategies early in the natural resources management planning process. A better understanding of the characteristics that allow sense of place meanings to develop can facilitate a better understanding of people's perceptions towards environmental and biodiversity issues. We suggest that the insights gained from this study can benefit environmental decision making and planning in the Great Barrier Reef region; and that sense of place

  2. Differential recycling of coral and algal dissolved organic matter via the sponge loop

    NARCIS (Netherlands)

    Rix, L.; de Goeij, J.M.; Van Oevelen, D.; Struck, U.; Al-Horani, F.A.; Wild, C.; Naumann, M.S.

    2016-01-01

    1. Corals and macroalgae release large quantities of dissolved organic matter (DOM), one ofthe largest sources of organic matter produced on coral reefs. By rapidly taking up DOM andtransforming it into particulate detritus, coral reef sponges are proposed to play a key role intransferring the energ

  3. The role of marine reserves in the replenishment of a locally-impacted population of anemonefish on the Great Barrier Reef

    KAUST Repository

    Bonin, Mary C.

    2015-11-21

    The development of parentage analysis to track the dispersal of juvenile offspring has given us unprecedented insight into the population dynamics of coral reef fishes. These tools now have the potential to inform fisheries management and species conservation, particularly for small fragmented populations under threat from exploitation and disturbance. In this study we resolve patterns of larval dispersal for a population of the anemonefish Amphiprion melanopus in the Keppel Islands (southern Great Barrier Reef). Habitat loss and fishing appear to have impacted this population and a network of no-take marine reserves currently protects 75% of the potential breeders. Using parentage analysis, we estimate that 21% of recruitment in the island group was generated locally, and that breeding adults living in reserves were responsible for 79% (31 out of 39) of these of locally-produced juveniles. Overall, the network of reserves was fully connected via larval dispersal; however one reserve was identified as a critical source of larvae for the island group. The population in the Keppel Islands also appears to be well-connected to other source populations at least 60 km away, given that 79% (145 out of 184) of the juveniles sampled remained unassigned in the parentage analysis. We estimated the effective size of the A. melanopus metapopulation to be 745 (582-993 95% CI) and recommend continued monitoring of its genetic status. Maintaining connectivity with populations beyond the Keppel Islands and recovery of local recruitment habitat, potentially through active restoration of host anemone populations, will be important for its long-term persistence.

  4. A Modern Sr/Ca-δ18O-Sea Surface Temperature Calibration for Isopora Corals in the Great Barrier Reef

    Science.gov (United States)

    Brenner, L. D.; Linsley, B. K.; Potts, D. C.

    2014-12-01

    Most coral-based paleoceanographic studies have used massive colonies of Porites or Faviidae, due to their long, continuously accreted skeletal records and sub-annual resolution, but other sub-massive corals provide an untapped resource. The genus Isopora is a dominant reef builder in some high-energy environments in the tropical western Pacific, and was a major component of cores recovered on IODP Leg 325 off the Great Barrier Reef (GBR). Despite its abundance, Isopora remains largely unexplored and hence underutilized in paleoceanographic studies. We present a modern Sr/Ca-δ18O-Sea Surface Temperature (SST) calibration of modern Isopora corals (n=3) collected from inner and outer reef locations ranging from 1-13m depth by Heron Island in the southern GBR in 2012. Pairing the Isopora Sr/Ca record with monthly SST yielded an average relationship of SST=-11.48×(Sr/Ca)+131.1 (r2 = 0.42-0.78). The Sr/Ca sensitivity of -0.087 mmol/mol/°C is similar to the sensitivity for Porites that was corrected for tissue layer smoothing effects determined by Gagan et al. (2012). The similarity between our Sr/Ca-SST sensitivity and the corrected sensitivity for Porites suggests tissue layer effects are minimal in Isopora. The mean annual SST amplitude recorded by the corals from 2008-2011 (full annual cycles) was 5.3°C and the average δ18O annual cycle of 1.1‰ approximates that expected if salinity had little effect on coral δ18O, assuming a previously established conversion of -0.23‰ (δ18O)/°C for biogenic aragonite. The average annual salinity amplitude of 0.3 in gridded data from around Heron Island supports our conclusion that δ18O variability is forced almost completely by SST. This modern Sr/Ca-SST calibration will expand the paleoceanographic utility of Isopora and, by assisting interpretation of Sr/Ca data from fossil corals collected during IODP 325, will better constrain the timing and magnitude of sea level changes and surface conditions since the Last

  5. Asexual reproduction does not produce clonal populations of the brooding coral Pocillopora damicornis on the Great Barrier Reef, Australia

    Science.gov (United States)

    Sherman, C. D. H.; Ayre, D. J.; Miller, K. J.

    2006-03-01

    We have investigated the relationship between genotypic diversity, the mode of production of brooded larvae and disturbance in a range of reef habitats, in order to resolve the disparity between the reproductive mode and population structure reported for the brooding coral Pocillopora damicornis. Within 14 sites across six habitats, the ratio of the observed ( G o) to the expected ( G e) genotypic diversity ranged from 69 to 100% of that expected for random mating. At three other sites in two habitats the G o /G e ranged from 35 to 53%. Two of these sites were recently bleached, suggesting that asexual recruitment may be favoured after disturbance. Nevertheless, our data suggest that brooded larvae, from each of five habitats surveyed, were asexually produced. While clonal recruitment may be important in disturbed habitats, the lack of clonality detected, both in this and earlier surveys of 40 other sites, implies that a disturbance is normally insufficient to explain this species’ continued investment in clonal reproduction.

  6. Variability in chemical defense across a shallow to mesophotic depth gradient in the Caribbean sponge Plakortis angulospiculatus

    Science.gov (United States)

    Slattery, Marc; Gochfeld, Deborah J.; Diaz, M. Cristina; Thacker, Robert W.; Lesser, Michael P.

    2016-03-01

    The transition between shallow and mesophotic coral reef communities in the tropics is characterized by a significant gradient in abiotic and biotic conditions that could result in potential trade-offs in energy allocation. The mesophotic reefs in the Bahamas and the Cayman Islands have a rich sponge fauna with significantly greater percent cover of sponges than in their respective shallow reef communities, but relatively low numbers of spongivores. Plakortis angulospiculatus, a common sponge species that spans the depth gradient from shallow to mesophotic reefs in the Caribbean, regenerates faster following predation and invests more energy in protein synthesis at mesophotic depths compared to shallow reef conspecifics. However, since P. angulospiculatus from mesophotic reefs typically contain lower concentrations of chemical feeding deterrents, they are not able to defend new tissue from predation as efficiently as conspecifics from shallow reefs. Nonetheless, following exposure to predators on shallow reefs, transplanted P. angulospiculatus from mesophotic depths developed chemical deterrence to predatory fishes. A survey of bioactive extracts indicated that a specific defensive metabolite, plakortide F, varied in concentration with depth, producing altered deterrence between shallow and mesophotic reef P. angulospiculatus. Different selective pressures in shallow and mesophotic habitats have resulted in phenotypic plasticity within this sponge species that is manifested in variable chemical defense and tissue regeneration at wound sites.

  7. Intensification of the meridional temperature gradient in the Great Barrier Reef following the Last Glacial Maximum - Results from IODP Expedition 325

    Science.gov (United States)

    Felis, Thomas; McGregor, Helen V.; Linsley, Braddock K.; Tudhope, Alexander W.; Gagan, Michael K.; Suzuki, Atsushi; Inoue, Mayuri; Thomas, Alexander L.; Esat, Tezer M.; Thompson, William G.; Tiwari, Manish; Potts, Donald C.; Mudelsee, Manfred; Yokoyama, Yusuke; Webster, Jody M.

    2015-04-01

    Tropical south-western Pacific temperatures are of vital importance to the Great Barrier Reef (GBR), but the role of sea surface temperatures (SSTs) in the growth of the GBR since the Last Glacial Maximum remains largely unknown. Here we present records of Sr/Ca and δ18O for Last Glacial Maximum and deglacial corals that were drilled by Integrated Ocean Drilling Program (IODP) Expedition 325 along the shelf edge seaward of the modern GBR. The Sr/Ca and δ18O records of the precisely U-Th dated fossil shallow-water corals show a considerably steeper meridional SST gradient than the present day in the central GBR. We find a 1-2 ° C larger temperature decrease between 17° S and 20° S about 20,000 to 13,000 years ago. The result is best explained by the northward expansion of cooler subtropical waters due to a weakening of the South Pacific gyre and East Australian Current. Our findings indicate that the GBR experienced substantial and regionally differing temperature change during the last deglaciation, much larger temperature changes than previously recognized. Furthermore, our findings suggest a northward contraction of the Western Pacific Warm Pool during the LGM and last deglaciation, and serve to explain anomalous drying of northeastern Australia at that time. Overall, the GBR developed through significant SST change and, considering temperature alone, may be more resilient than previously thought. Webster, J. M., Yokoyama, Y. & Cotteril, C. & the Expedition 325 Scientists. Proceedings of the Integrated Ocean Drilling Program Vol. 325 (Integrated Ocean Drilling Program Management International Inc., 2011). Felis, T., McGregor, H. V., Linsley, B. K., Tudhope, A. W., Gagan, M. K., Suzuki, A., Inoue, M., Thomas, A. L., Esat, T. M., Thompson, W. G., Tiwari, M., Potts, D. C., Mudelsee, M., Yokoyama, Y., Webster, J. M. Intensification of the meridional temperature gradient in the Great Barrier Reef following the Last Glacial Maximum. Nature Communications 5, 4102

  8. Cultivation of Marine Sponges.

    Science.gov (United States)

    Osinga; Tramper; Wijffels

    1999-11-01

    There is increasing interest in biotechnological production of marine sponge biomass owing to the discovery of many commercially important secondary metabolites in this group of animals. In this article, different approaches to producing sponge biomass are reviewed, and several factors that possibly influence culture success are evaluated. In situ sponge aquacultures, based on old methods for producing commercial bath sponges, are still the easiest and least expensive way to obtain sponge biomass in bulk. However, success of cultivation with this method strongly depends on the unpredictable and often suboptimal natural environment. Hence, a better-defined production system would be desirable. Some progress has been made with culturing sponges in semicontrolled systems, but these still use unfiltered natural seawater. Cultivation of sponges under completely controlled conditions has remained a problem. When designing an in vitro cultivation method, it is important to determine both qualitatively and quantitatively the nutritional demands of the species that is to be cultured. An adequate supply of food seems to be the key to successful sponge culture. Recently, some progress has been made with sponge cell cultures. The advantage of cell cultures is that they are completely controlled and can easily be manipulated for optimal production of the target metabolites. However, this technique is still in its infancy: a continuous cell line has yet to be established. Axenic cultures of sponge aggregates (primmorphs) may provide an alternative to cell culture. Some sponge metabolites are, in fact, produced by endosymbiotic bacteria or algae that live in the sponge tissue. Only a few of these endosymbionts have been cultivated so far. The biotechnology for the production of sponge metabolites needs further development. Research efforts should be continued to enable commercial exploitation of this valuable natural resource in the near future.

  9. Pseudobacciger cheneyae n. sp. (Digenea: Gymnophalloidea) from Weber's chromis (Chromis weberi Fowler & Bean) (Perciformes: Pomacentridae) at Lizard Island, Great Barrier Reef, Australia.

    Science.gov (United States)

    Sun, Derek; Bray, Rodney A; Yong, Russell Q-Y; Cutmore, Scott C; Cribb, Thomas H

    2014-06-01

    A new species of digenean, Pseudobacciger cheneyae n. sp., is described from the intestines of Weber's chromis (Chromis weberi Fowler & Bean) from off Lizard Island, Great Barrier Reef, Australia. This species differs from the three described species of Pseudobacciger Nahhas & Cable, 1964 [P. cablei Madhavi, 1975, P. harengulae Yamaguti, 1938 and P. manteri Nahhas & Cable, 1964] in combinations of the size of the suckers and the length of the caeca. The host of the present species is a perciform (Family Pomacentridae) which contrasts with previous records of the genus which are almost exclusively from clupeiform fishes. The genus Pseudobacciger is presently recognised within the family Faustulidae (Poche, 1926) but phylogenetic analyses of 28S and ITS2 rDNA show that the new species bears no relationship to species of four other faustulid genera (Antorchis Linton, 1911, Bacciger Nicoll, 1924, Paradiscogaster Yamaguti, 1934 and Trigonocryptus Martin, 1958) but that instead it is nested within the Gymnophalloidea (Odhner, 1905) as sister to the Tandanicolidae (Johnston, 1927). This result suggests that the Faustulidae is polyphyletic.

  10. Sabellariidae from Lizard Island, Great Barrier Reef, including a new species of Lygdamis and notes on external morphology of the median organ.

    Science.gov (United States)

    Capa, María; Faroni-Perez, Larisse; Hutchings, Pat

    2015-09-18

    We document herein the occurrence of three species of Sabellariidae at Lizard Island, Great Barrier Reef, including a new Lygdamis species. Sabellaria lungalla, described from Northern Territory, is reported for Queensland for the first time. The genus Gesaia, represented by a planktonic larva collected in shallow waters of the Archipelago, is a new record for Australia. Lygdamis nasutus n. sp. is characterised by one of the most conspicuous median organ described in the family (cylindrical, distally pigmented and is provided with a flattened, teardrop corona), its paleae morphology (with straight paleae, outer ones with asymmetrical pointed tips and subtle thecal sculpture and inner paleae with blunt tips and smooth surface), three lateral lobes on chaetiger 2, abdominal chaetigers with two type of neurochaetae, and notopodial uncini with 1-4 longitudinal rows of teeth. Comparison of the external morphology of the medial organ and median ridge of several species has been undertaken. Even though its function remains uncertain, the median organ morphology seems species specific and may provide relevant information about the evolutionary history and adaptations of sabellariids.

  11. A taxonomic guide to the fanworms (Sabellidae, Annelida) of Lizard Island, Great Barrier Reef, Australia, including new species and new records.

    Science.gov (United States)

    Capa, María; Murray, Anna

    2015-09-18

    This comprehensive taxonomic work is the result of the study of fan worms (Sabellidae, Annelida) collected over the last 40 years from around the Lizard Island Archipelago, Great Barrier Reef, Australia. Some species described herein are commonly found in Lizard Island waters but had not previously been formally reported in the literature. Most species appear to be not particularly abundant, and few specimens have been collected despite the sampling effort in the area over this time period. After this study, the overall sabellid diversity of the archipelago has been greatly increased (by more than 650%). Before this revision, only four sabellid species had been recorded for Lizard Island, and in this paper we report 31 species, 13 of which belong to nominal species, six are formally described as new species (Euchone danieloi n. sp., Euchone glennoi n. sp., Jasmineira gustavoi n. sp., Megalomma jubata n. sp., Myxicola nana n. sp., and Paradialychone ambigua n. sp.), and the identity of 12 species is still unknown (those referred as cf. or sp.). Two species are newly recorded in Australia and two in Queensland. The invasive species Branchiomma bairdi is reported for the first time at Lizard Island. The genus Paradialychone is reported for Australia for the first time. Standardised descriptions, general photographs of live and/or preserved specimens and distribution data are provided for all species. New species descriptions are accompanied by detailed illustrations and exhaustive morphological information. A dichotomous key for sabellid identification is also included.

  12. Complementarity of no-take marine reserves and individual transferable catch quotas for managing the line fishery of the great barrier reef.

    Science.gov (United States)

    Little, L R; Grafton, R Q; Kompas, T; Smith, A D M; Punt, A E; Mapstone, B D

    2011-04-01

    Changes in the management of the fin fish fishery of the Great Barrier Reef motivated us to investigate the combined effects on economic returns and fish biomass of no-take areas and regulated total allowable catch allocated in the form of individual transferable quotas (such quotas apportion the total allowable catch as fishing rights and permits the buying and selling of these rights among fishers). We built a spatially explicit biological and economic model of the fishery to analyze the trade-offs between maintaining given levels of fish biomass and the net financial returns from fishing under different management regimes. Results of the scenarios we modeled suggested that a decrease in total allowable catch at high levels of harvest either increased net returns or lowered them only slightly, but increased biomass by up to 10% for a wide range of reserve sizes and an increase in the reserve area from none to 16% did not greatly change net returns at any catch level. Thus, catch shares and no-take reserves can be complementary and when these methods are used jointly they promote lower total allowable catches when harvest is relatively high and encourage larger no-take areas when they are small.

  13. Regional-scale nitrogen and phosphorus budgets for the northern (14°S) and central (17°S) Great Barrier Reef shelf ecosystem

    Science.gov (United States)

    Furnas, M.; Alongi, D.; McKinnon, D.; Trott, L.; Skuza, M.

    2011-12-01

    Seasonally averaged N and P box model budgets were constructed for two regional-scale sections of the Great Barrier Reef (GBR) shelf, one in the near-pristine far-northern GBR (13.5-14.5°S) and the other in the central GBR (17-18°S) adjacent to more intensively farmed wet tropics watersheds. We were unable to simultaneously balance shelf-scale N and P budgets within seasonal or annual time frames, indicating that magnitudes of a number of key input and, especially, loss processes are still poorly constrained. In most cases, current estimates of system-level N and P sources (rainfall, runoff, upwelling, N-fixation) are less than estimated loss processes (denitrification, cross-shelfbreak mixing and burial). Nutrient dynamics in both shelf sections are dominated by the tightly coupled uptake and mineralization of soluble N and P in the water column and the sedimentation-resuspension of particulate detritus. On an area-averaged basis, internal cycling fluxes are an order of magnitude greater than input-output fluxes. Denitrification in shelf sediments is a significant sink for N while lateral mixing is both a source and sink for P.

  14. Dynamics of a deep-water seagrass population on the Great Barrier Reef: annual occurrence and response to a major dredging program.

    Science.gov (United States)

    York, Paul H; Carter, Alex B; Chartrand, Kathryn; Sankey, Tonia; Wells, Linda; Rasheed, Michael A

    2015-08-17

    Global seagrass research efforts have focused on shallow coastal and estuarine seagrass populations where alarming declines have been recorded. Comparatively little is known about the dynamics of deep-water seagrasses despite evidence that they form extensive meadows in some parts of the world. Deep-water seagrasses are subject to similar anthropogenic threats as shallow meadows, particularly along the Great Barrier Reef lagoon where they occur close to major population centres. We examine the dynamics of a deep-water seagrass population in the GBR over an 8 year period during which time a major capital dredging project occurred. Seasonal and inter-annual changes in seagrasses were assessed as well as the impact of dredging. The seagrass population was found to occur annually, generally present between July and December each year. Extensive and persistent turbid plumes from a large dredging program over an 8 month period resulted in a failure of the seagrasses to establish in 2006, however recruitment occurred the following year and the regular annual cycle was re-established. Results show that despite considerable inter annual variability, deep-water seagrasses had a regular annual pattern of occurrence, low resistance to reduced water quality but a capacity for rapid recolonisation on the cessation of impacts.

  15. Biological Activities of Aqueous and Organic Extracts from Tropical Marine Sponges

    Directory of Open Access Journals (Sweden)

    Tom Turk

    2010-04-01

    Full Text Available We report on screening tests of 66 extracts obtained from 35 marine sponge species from the Caribbean Sea (Curaçao and from eight species from the Great Barrier Reef (Lizard Island. Extracts were prepared in aqueous and organic solvents and were tested for hemolytic, hemagglutinating, antibacterial and anti-acetylcholinesterase (AChE activities, as well as their ability to inhibit or activate cell protein phosphatase 1 (PP1. The most interesting activities were obtained from extracts of Ircinia felix, Pandaros acanthifolium, Topsentia ophiraphidites, Verongula rigida and Neofibularia nolitangere. Aqueous and organic extracts of I. felix and V. rigida showed strong antibacterial activity. Topsentia aqueous and some organic extracts were strongly hemolytic, as were all organic extracts from I. felix. The strongest hemolytic activity was observed in aqueous extracts from P. acanthifolium. Organic extracts of N. nolitangere and I. felix inhibited PP1. The aqueous extract from Myrmekioderma styx possessed the strongest hemagglutinating activity, whilst AChE inhibiting activity was found only in a few sponges and was generally weak, except in the methanolic extract of T. ophiraphidites.

  16. Cyanobacteria in Coral Reef Ecosystems: A Review

    Directory of Open Access Journals (Sweden)

    L. Charpy

    2012-01-01

    Full Text Available Cyanobacteria have dominated marine environments and have been reef builders on Earth for more than three million years (myr. Cyanobacteria still play an essential role in modern coral reef ecosystems by forming a major component of epiphytic, epilithic, and endolithic communities as well as of microbial mats. Cyanobacteria are grazed by reef organisms and also provide nitrogen to the coral reef ecosystems through nitrogen fixation. Recently, new unicellular cyanobacteria that express nitrogenase were found in the open ocean and in coral reef lagoons. Furthermore, cyanobacteria are important in calcification and decalcification. All limestone surfaces have a layer of boring algae in which cyanobacteria often play a dominant role. Cyanobacterial symbioses are abundant in coral reefs; the most common hosts are sponges and ascidians. Cyanobacteria use tactics beyond space occupation to inhibit coral recruitment. Cyanobacteria can also form pathogenic microbial consortia in association with other microbes on living coral tissues, causing coral tissue lysis and death, and considerable declines in coral reefs. In deep lagoons, coccoid cyanobacteria are abundant and are grazed by ciliates, heteroflagellates, and the benthic coral reef community. Cyanobacteria produce metabolites that act as attractants for some species and deterrents for some grazers of the reef communities.

  17. A modern Sr/Ca-δ18O-sea surface temperature calibration for Isopora corals on the Great Barrier Reef

    Science.gov (United States)

    Brenner, Logan D.; Linsley, Braddock K.; Potts, Donald C.

    2017-02-01

    Isopora (Acroporidae) is a genus of often encrusting, branching to submassive corals that are common in many shallow habitats on modern and fossil Indo-West Pacific reefs. Although abundant, Isopora is largely absent from paleoceanographic literature. The scarcity of large Porites and the abundance of Isopora retrieved from the Great Barrier Reef (GBR) on Integrated Ocean Drilling Program Expedition 325 focused paleoceanographic attention on Isopora. Here we provide the first independent high-resolution calibration of both Sr/Ca and δ18O for temperature analyses based on Isopora and demonstrate its consistency with Porites records. We developed modern skeletal Sr/Ca- and δ18O-sea surface temperature (SST) calibrations based on five modern Isopora colonies from Heron Island in the southern GBR. Pairing the coral Sr/Ca record with monthly SST data yielded Sr/Ca-SST sensitivities from -0.061 ± 0.004 (centered) to -0.083 ± 0.007 (raw) mmol/mol °C-1 based on reduced major axis regressions. These sensitivities are in the middle of the range of published Porites values and overlap most published values for Isopora, -0.075 ± 0.011 to -0.065 ± 0.011 mmol/mol °C-1. The δ18O-SST sensitivities range from -0.184 ± 0.014 (centered) to -0.185 ± 0.014 (raw) ‰ °C-1, assuming that all seasonal variation in δ18O was due to SST. These δ18O-SST sensitivities are smaller than the widely accepted value of -0.23‰ °C-1 for biogenic aragonite but are at the upper end of high-resolution Porites-defined sensitivities that are consistently less than the aforementioned established value. Our results validate the use of Isopora as an alternative source of paleoceanographic records in habitats where large massive Porites are scarce or absent.

  18. New tool to manage coral reefs

    Science.gov (United States)

    Showstack, Randy

    The National Oceanic and Atmospheric Administration is making available a new tool for coral reef managers to monitor the cumulative thermal stress of several coral reefs around the world, including the Great Barrier Reef, and reefs by the Galapagos Islands, the agency announced on 25 February.The agency's "Degree Heating Weeks" product uses satellite-derived information to allow continuous monitoring of the extent and acuteness of thermal stress, which are key predictors of coral bleaching, and which contribute to coral reef degradation.

  19. Wave transformation across coral reefs under changing sea levels

    Science.gov (United States)

    Harris, Daniel; Power, Hannah; Vila-Conejo, Ana; Webster, Jody

    2015-04-01

    The transformation of swell waves from deep water across reef flats is the primary process regulating energy regimes in coral reef systems. Coral reefs are effective barriers removing up to 99% of wave energy during breaking and propagation across reef flats. Consequently back-reef environments are often considered low energy with only limited sediment transport and geomorphic change during modal conditions. Coral reefs, and specifically reef flats, therefore provide important protection to tropical coastlines from coastal erosion and recession. However, changes in sea level could lead to significant changes in the dissipation of swell wave energy in coral reef systems with wave heights dependent on the depth over the reef flat. This suggests that a rise in sea level would also lead to significantly higher energy conditions exacerbating the transgressive effects of sea level rise on tropical beaches and reef islands. This study examines the potential implications of different sea level scenarios on the transformation of waves across the windward reef flats of One Tree Reef, southern Great Barrier Reef. Waves were measured on the reef flats and back-reef sand apron of One Tree Reef. A one-dimensional wave model was calibrated and used to investigate wave processes on the reef flats under different mean sea level (MSL) scenarios (present MSL, +1 m MSL, and +2 m MSL). These scenarios represent both potential future sea level states and also the paleo sea level of the late Holocene in the southern Great Barrier Reef. Wave heights were shown to increase under sea level rise, with greater wave induced orbital velocities affecting the bed under higher sea levels. In general waves were more likely to entrain and transport sediment both on the reef flat and in the back reef environment under higher sea levels which has implications for not only forecasted climate change scenarios but also for interpreting geological changes during the late Holocene when sea levels were 1

  20. First documentation of tidal-channel sponge biostromes (upper Pleistocene, southeastern Florida)

    Science.gov (United States)

    Cunningham, K.J.; Rigby, J.K.; Wacker, M.A.; Curran, H.A.

    2007-01-01

    Sponges are not a common principal component of Cenozoic reefs and are more typically dominant in deep-water and/or cold-water localities. Here we report the discovery of extensive upper Pleistocene shallow-marine, tropical sponge biostromes from the Mami Limestone of southeastern Florida built by a new ceractinomorph demosponge. These upright, barrel- to vase-shaped sponges occur in monospecific aggregations constructed within the tidal channels of an oolitic tidal-bar belt similar to modern examples on the Great Bahama Bank. The biostromes appear to have a ribbon-like geometry, with densely spaced sponges populating a paleochannel along a 3.5 km extent in the most lengthy biostrome. These are very large (as high as 2 m and 1.8 m in diameter), particularly well-preserved calcified sponges with walls as hard as concrete. Quartz grains are the most common particles agglutinated in the structure of the sponge walls. Where exposed, sediment fill between the sponges is commonly a highly burrowed or cross-bedded ooid-bearing grainstone and, locally, quartz sand. It is postulated that the dense, localized distribution of these particular sponges was due to a slight edge over competitors for food or energy supply and space in a stressed environment of tidal-influenced salinity and nutrient changes, strong currents, and frequently shifting submarine sand dunes. To our knowledge, this represents the first documentation of sponge biostromes composed of very large upright sponges within high-energy tidal channels between ooid shoals. The remarkably well-preserved accumulations provide an alternative example of sponge reefs for comparative paleoenvironmental studies. ?? 2007 The Geological Society of America.

  1. Biodiversity of Macrofauna Associated with Sponges across Ecological Gradients in the Central Red Sea

    KAUST Repository

    Kandler, Nora

    2015-12-01

    Between 33 and 91 percent of marine species are currently undescribed, with the majority occurring in tropical and offshore environments. Sponges act as important microhabitats and promote biodiversity by harboring a wide variety of macrofauna and microbiota, but little is known about the relationships between the sponges and their symbionts. This study uses DNA barcoding to examine the macrofaunal communities associated with sponges of the central Saudi Arabian Red Sea, a drastically understudied ecosystem with high biodiversity and endemism. In total, 185 epifaunal and infaunal operational taxonomic units (OTUs) were distinguished from the 1399 successfully-sequenced macrofauna individuals from 129 sponges representing seven sponge species, one of which (Stylissa carteri) was intensively studied. A significant difference was found in the macrofaunal community composition of Stylissa carteri along a cross-shelf gradient using relative OTU abundance (Bray-Curtis diversity index). The abundance of S. carteri also follows a cross-shelf gradient, increasing with proximity to shore. The difference in macrofaunal communities of several species of sponges at one location was found to be significant as well, using OTU presence (binary Jaccard diversity index). Four of the seven sponge species collected were dominated by a single annelid OTU, each unique to one sponge species. A fifth was dominated by four arthropod OTUs, all species-specific as well. Region-based diversity differences may be attributed to environmental factors such as reef morphology, water flow, and sedimentation, whereas species-based differences may be caused by sponge morphology, microbial abundances, and chemical defenses. As climate change and ocean acidification continue to modify coral reef ecosystems, understanding the ecology of sponges and their role as microhabitats may become more important. This thesis also includes a supplemental document in the form of a spreadsheet showing the number of

  2. Sponge cell culture

    NARCIS (Netherlands)

    Schippers, K.J.

    2013-01-01

    Marine sponges are a rich source of bioactive compounds with pharmaceutical potential and are the most prolific source of newly discovered bioactive compounds with more than 7,000 novel molecules discovered in 40 years. Despite its enormous potential, only a few sponge-derived bioactive compounds ha

  3. Cultivation of marine sponges

    NARCIS (Netherlands)

    Osinga, R.; Tramper, J.; Wijffels, R.H.

    1999-01-01

    There is increasing interest in biotechnological production of marine sponge biomass owing to the discovery of many commercially important secondary metabolites in this group of animals. In this article, different approaches to producing sponge biomass are reviewed, and several factors that possibly

  4. High-intensity cardiac infections of Phthinomita heinigerae n. sp. (Digenea: Aporocotylidae) in the orangelined cardinalfish, Taeniamia fucata (Cantor), off Heron Island on the Great Barrier Reef.

    Science.gov (United States)

    Nolan, Matthew J; Cantacessi, Cinzia; Cutmore, Scott C; Cribb, Thomas H; Miller, Terrence L

    2016-10-01

    We report a new species of aporocotylid trematode (Platyhelminthes: Digenea) from the heart of the orangelined cardinalfish, Taeniamia fucata (Cantor), from off Heron Island on the southern Great Barrier Reef. We used an integrated approach, analysing host distribution, morphology, and genetic data from the internal transcribed spacer 2 of the ribosomal DNA, to circumscribe Phthinomita heinigerae n. sp. This is the first species of Phthinomita Nolan & Cribb, 2006 reported from the Apogonidae; existing species and known 'types' are recorded from species of the Labridae, Mullidae, and Siganidae. The new species is distinguished from its 11 congeners in having a body 2977-3539 long and 16.5-22.4 times longer than wide, an anterior testis 6.2-8.2 times longer than wide and 8.3-13.0 times longer than the posterior testis, a posterior testis whose width is 35-56% of the body width, and an ovary positioned 11-13% of the body length from the posterior end, and is entirely anterior to the posterior margin of the anterior testis. In addition, 2-34 base differences (0.4-7.0% sequence divergence over 485 base positions) were detected among the ITS2 sequence representing P. heinigerae n. sp. and the 14 representing other Phthinomita species/molecular types. Prevalence and intensity of infection with P. heinigerae n. sp. was relatively high within the heart tissue of T. fucata, with 19 of 20 fish examined from off Heron Island infected (95%) with 7-25 adult worms (arithmetic mean 16.6). Infections by these parasites accounted for an occupation of 7-30% of the total estimated heart volume.

  5. Integrating Multiple Measurement Techniques to Understand how the Delivery of Sediments to the Great Barrier Reef has Changed Over Space and Time

    Science.gov (United States)

    Bartley, R.; Bainbridge, Z. T.; Lewis, S.; Wilkinson, S. N.; Croke, J.; Bastin, G.; Brodie, J. E.

    2014-12-01

    Based on the ratio of various trace-elements from coral cores, there is considerable evidence that the amount of sediment reaching the Great Barrier Reef (GBR), Australia, has increased since agricultural development commenced in the 1870's. However, understanding the primary source and processes driving the increase in sediment delivery has been challenging due to the variable geology and episodic hydrology of adjacent catchments. This paper presents the results from several projects that use a range of measurement techniques all aimed at understanding the spatial and temporal changes in sediment yield from the Burdekin watershed, Australia. Cosmogenic nuclide analysis (10Be) was combined with contemporary sediment flux monitoring to help identify the high risk sub-watersheds. Particle size analysis of the sediment loads from the sub-watersheds has determined the primary source areas for the fine (clay) sediment fractions. Within the sub-watersheds, fallout radionuclides (137Cs, 7Pb and 7Be) showed that most of the fine sediment is coming from vertical channel walls (50%) or horizontal sub-surface soils (~42%). Changes to in-stream sedimentation rates, derived from OSL dating, suggest that sediment delivery to channels lags behind reductions to vegetative ground cover. Historical archives of remotely sensed ground cover data were then linked to animal stocking rates in the area. Together, these data sets help elucidate the often complex sediment delivery processes and provide a stronger link between grazing land management and sediment flux to the GBR. This study highlights the benefit of using a range of techniques and data sets to identify the major sediment sources in these highly variable systems. The implications for land management restoration, policy and investment are discussed.

  6. Transport of Australian Continental Dust to Australia's Great Barrier Reef Region: First Results From Sampling, Remote Sensing, Synoptic and Trajectory Analyses

    Science.gov (United States)

    Tapper, N.; O'Loingsigh, T.; de Deckker, P.; Cohen, D.

    2009-04-01

    As part of a large multi-disciplinary project funded by the Australian Research Council and in collaboration with the Australian Nuclear Science and Technology Organisation, we established in mid-2008 three PM 2.5 samplers in eastern Australia to determine possible transport of continental dust from the major dust source region of the Lake Eyre Basin (LEB). These samplers were located at Fowlers Gap, New South Wales [NSW] (31.09S, 141.70E), Mount Stromlo, NSW (35.30S, 149.00E) and Heron Island, Queensland (23.44S, 151.83E). The latter location is of particular significance because of its proximity to the World Heritage Great Barrier Reef (GBR) and to the tropical rainforest of coastal North Queensland. In previous studies, dust and associated organic material of African origin has been associated with rainforest fertilisation in Amazonia and coral bleaching in the Carribean. In this presentation three case studies of continental dust transport to Heron Island that occurred in the first four months of sampling are examined. In each case transport of soil material from the LEB region and/or western NSW is confirmed by the nature of material sampled, by remote sensing of the dust, by forward and backward air parcel trajectory analysis and by synoptic analysis. In each case the dust arrived over Heron Island 3-7 days after passing over the southern samplers, generally having followed an anti-clockwise curved path to approach Heron Island from the southeast. The potential significance of this finding for the GBR is briefly discussed.

  7. The vaginal contraceptive sponge.

    Science.gov (United States)

    Edelman, D A

    1984-06-01

    The vaginal contraceptive sponge, approved on April 1, 1983 by the US Food Administration (FDA) for sale in the US as a single use, disposable, over-the-counter contraceptive, is made of polyurethane and designed to be biocompatible with the vaginal environment. The sponge is available in a single size, is round, and about 5.5 cm in diameter and 2.5 cm thick. An indentation on 1 side helps to ensure the sponge's correct placement against the cervix. A polyester retrieval loop attached to the sponge facilitates removal. Postcoital tests of the sponge without the spermicide indicated that it was ineffective in preventing sperm from entering the cervical canal. Before insertion, the contraceptive sponge is moistened with tap water to activate the spermicide and is inserted into the vagina with the indentation placed against the cervis. The sponge has been designed to provide continuous protection against pregnancy for at least 24 hours after insertion. Following a successful phase ii clinical trail of the sponge, in 1979 comparative phase iii clinical trials were initiated by Family Health International. The following trials were conducted: sponge versus the diaphragm (arcing-spring) used with a spermicide (nonoxynol-9) at 13 clinics in the US (1439 subjects) and at 2 clinics in Canada and the UK (502 subjects); sponge versus a foaming spermicidal (menfegol) suppository at 5 clinics in Yugoslavia, Taiwan, and Bangladesh (1386) subjects); and sponge versus spermicidal (nonoxynol-9) foam at 2 clinics in Israel and Thailand (366 subjects). In all trials the contraceptive methods were raondomly assigned. Clinics were required to follow up subjects for 1 year. Only the US study has been completed. In the comparative trials of the sponge and diaphragm (both US based and overseas) the pregnancy rates were significantly higher for the sponge. In the comparative trials of the sponge and foaming suppositories or spermicidal foam there were no significant differences between the

  8. Will the Increasing of Anthropogenic Pressures Reduce the Biopotential Value of Sponges?

    Directory of Open Access Journals (Sweden)

    Hedi Indra Januar

    2015-01-01

    Full Text Available Production of bioactive compounds from marine benthic organisms is suggested to relate ecologically with environment. However, anthropogenic pressures cause a considerable damage to coral reefs environment. This research aimed to define the pattern sponges biopotential values at the increasing of anthropogenic pressures to coral reef environment. Three representative sponges were selected (Theonella sp., Hyrtios sp., and Niphates sp. and study had been conducted in Hoga Island, Indonesia, to define the relationship between seawater variables (DO, pH, phosphate, and ammonia ions, sponges spatial competition, and their bioactivity level (Brine Shrimp Lethality Test. The study showed anthropogenic pressures affect the reef environment, as abiotic cover was increased and eutrophication was detected at the site closer to the run-off domesticated area. Statistical multivariate analyses revealed sponges spatial competition was significantly different (P<0.05 between groups of high, moderate, and low bioactivity level. Abiotic cover was detected as the major factor (36.19% contributed to the differences and also the most discriminant factor distinguishing sponges spatial competition in the groups of bioactivity level (93.91%. These results showed the increasing anthropogenic pressures may result in a higher abiotic area and may directly be a consequence to the lower production of bioactive compounds in sponges.

  9. Community and connectivity: summary of a community based monitoring program set up to assess the movement of nutrients and sediments into the Great Barrier Reef during high flow events.

    Science.gov (United States)

    Devlin, M; Waterhouse, J; Brodie, J

    2001-01-01

    The Great Barrier Reef (GBR) system encompasses the largest system of corals and related life forms anywhere in the world. The health of this extensive system, particularly the inshore area, is dependent on the relationship between the GBR and adjacent coastal catchments. The major impact of agricultural practices on the GBR is the degradation of water quality in receiving (rivers) waters, caused by increased inputs of nutrients, suspended sediments and other pollutants. For the past three years, the Great Barrier Reef Marine Park Authority (GBRMPA) has been involved with the co-ordination of a river-monitoring program, specifically targeting the sampling of rivers during flood events. Representative sites were set up along two North Queensland rivers, the Russell-Mulgrave and Barron Rivers. This monitoring program is run in conjunction with the Queensland Department of Natural Resources' Waterwatch program. The program involves intensive sampling of first flush, extreme flow and post flood conditions over the two rivers. Extreme flow conditions are sampled over a limited time span (48 hours) with trained volunteers at 4-hour intervals. Concentrations measured in the flood events are dependent on land use characteristic, and extent of flow. Concentrations of dissolved and particulate nutrients are higher if the extreme flow event is part of the first flush cycle. Concentrations of DIN and DIP measured before, during and after a major flood event suggest that there is a large storage of inorganic material within the Barron and Russell-Mulgrave agricultural subcatchments that move over a period of days, and perhaps weeks. This program created a forum in which GBRMPA liased with the Barron and Russell-Mulgrave community about the connectivity existing between the river and the Great Barrier Reef lagoon.

  10. Estimates of particulate organic carbon flowing from the pelagic environment to the benthos through sponge assemblages.

    Science.gov (United States)

    Perea-Blázquez, Alejandra; Davy, Simon K; Bell, James J

    2012-01-01

    Despite the importance of trophic interactions between organisms, and the relationship between primary production and benthic diversity, there have been few studies that have quantified the carbon flow from pelagic to benthic environments as a result of the assemblage level activity of suspension-feeding organisms. In this study, we examine the feeding activity of seven common sponge species from the Taputeranga marine reserve on the south coast of Wellington in New Zealand. We analysed the diet composition, feeding efficiency, pumping rates, and the number of food particles (specifically picoplanktonic prokaryotic cells) retained by sponges. We used this information, combined with abundance estimates of the sponges and estimations of the total amount of food available to sponges in a known volume of water (89,821 m(3)), to estimate: (1) particulate organic carbon (POC) fluxes through sponges as a result of their suspension-feeding activities on picoplankton; and (2) the proportion of the available POC from picoplankton that sponges consume. The most POC acquired by the sponges was from non-photosynthetic bacterial cells (ranging from 0.09 to 4.69 g C d(-1) with varying sponge percentage cover from 0.5 to 5%), followed by Prochlorococcus (0.07 to 3.47 g C d(-1)) and then Synechococcus (0.05 to 2.34 g C d(-1)) cells. Depending on sponge abundance, the amount of POC that sponges consumed as a proportion of the total POC available was 0.2-12.1% for Bac, 0.4-21.3% for Prochlo, and 0.3-15.8% for Synecho. The flux of POC for the whole sponge assemblage, based on the consumption of prokaryotic picoplankton, ranged from 0.07-3.50 g C m(2) d(-1). This study is the first to estimate the contribution of a sponge assemblage (rather than focusing on individual sponge species) to POC flow from three groups of picoplankton in a temperate rocky reef through the feeding activity of sponges and demonstrates the importance of sponges to energy flow in rocky reef environments.

  11. Intermittent hypoxia and prolonged suboxia measured in situ in a marine sponge

    Directory of Open Access Journals (Sweden)

    Adi Lavy

    2016-12-01

    Full Text Available High Microbial Abundance (HMA sponges constitute a guild of suspension-feeding sponges that host vast populations of symbiotic microbes. These symbionts mediate a complex series of biogeochemical transformations that fuel the holobiont’s metabolism. Although sponges are aerobic animals, suboxic and anaerobic bacteria are known to reside within their bodies. However, little is known about the chemical characteristics of the sponge environment in which they occur and almost no data are available regarding the dissolved oxygen (DO dynamics inside the holobiont in its natural habitat. In this study we examined the oxygen dynamics in situ in the HMA sponge Theonella swinhoei. A submersed data-logging system equipped with micro-sensors was used to continuously record DO concentrations inside the sponge body and in its outflowing water for up to 48 hours. Actively pumping sponges exhibited high DO removal rates punctuated with short bursts of extreme DO uptake (>90 µmol DO Lpumped-1, never before observed in sponges. Such a high DO removal rate indicates the consumption of a considerable amount of reduced matter, far exceeding the available sources in the surrounding water of the oligotrophic coral-reef ecosystem inhabited by this sponge. The inner body of the sponge remained suboxic throughout the experiments, with short events of further rapid DO concentration decline. Moreover, DO concentrations measured in the body and in the outflowing water were found to be uncorrelated. Our findings support a previous hypothesis of bacterial symbiont farming by the sponge as a potential source for acquiring reduced material. Moreover, this suggests a complex and highly localized control of the holobiont’s metabolism, probably associated with the microbial community’s metabolism. Our results indicate that temporal micro-environments exist in the sponge at alternating locations, providing suitable conditions for the activity of its anaerobic microbial

  12. Freshwater sponges of Suriname

    NARCIS (Netherlands)

    Ezcurra de Drago, Inés

    1975-01-01

    This paper is the first contribution to the knowledge of the freshwater sponges of Suriname. Four species have been identified up till now: Metania spinata (Carter, 1881), Trochospongilla paulula (Bowerbank, 1863), Radiospongilla crateriformis (Potts, 1882), and Drulia uruguayensis Bonetto & Ezcurra

  13. A new family Lepidocharontidae with description of Lepidocharon gen. n., from the Great Barrier Reef, Australia, and redefinition of the Microparasellidae (Isopoda, Asellota).

    Science.gov (United States)

    Galassi, Diana M P; Bruce, Niel L; Fiasca, Barbara; Dole-Olivier, Marie-José

    2016-01-01

    Lepidocharontidae Galassi & Bruce, fam. n. is erected, containing Lepidocharon Galassi & Bruce, gen. n. and two genera transferred from the family Microparasellidae Karaman, 1934: Microcharon Karaman, 1934 and Janinella Albuquerque, Boulanouar & Coineau, 2014. The genus Angeliera Chappuis & Delamare Deboutteville, 1952 is placed as genus incertae sedis in this family. The Lepidocharontidae is characterised by having rectangular or trapezoidal somites in dorsal view, a single free pleonite, a tendency to reduction of the coxal plates, and the unique uropodal morphology of a large and long uropodal protopod on which the slender uropodal exopod articulates separately and anteriorly to the endopod. Lepidocharon Galassi & Bruce, gen. n. has a 6-segmented antennula, a well-developed antennal scale (rudimentary exopod), long and slender pereiopods 1-7 directed outwards, coxal plates rudimentary, incorporated to the lateral side of the sternites, not discernible in dorsal view, the single pleonite narrower than pereionite 7, scale-like elements bordering the proximal part of male pleopod 1 on posterior side, and stylet-guiding grooves of male pleopod 1 which run parallel to the outer lateral margins of the same pleopod. Lepidocharon priapus Galassi & Bruce, sp. n., type species for the genus, and Lepidocharon lizardensis Galassi & Bruce, sp. n. are described from Lizard Island, northern Great Barrier Reef. The most similar genus is Microcharon, both genera sharing the same general organization of the male pleopods 1 and 2, topology and architecture of the stylet-guiding groove of male pleopod 1, morphology of female operculum, presence of 2 robust claws of different lengths on pereiopodal dactylus 1-7, not sexually dimorphic. Lepidocharon gen. n. differs from Microcharon in the shape of the pereionites, very reduced coxal plates, the presence of imbricate scale-like elements bordering the proximal postero-lateral margins of the male pleopod 1, and the topology of the

  14. U-Th age distribution of coral fragments from multiple rubble ridges within the Frankland Islands, Great Barrier Reef: Implications for past storminess history

    Science.gov (United States)

    Liu, Entao; Zhao, Jian-xin; Feng, Yue-xing; Leonard, Nicole D.; Clark, Tara R.; Roff, George

    2016-07-01

    Prograded coral rubble ridges have been widely used as archives for reconstructing long-term storm or storminess history. Chronologies of ridge systems in previous studies are often based on a limited number of low-resolution radiocarbon or optically-stimulated luminescence (OSL) ages per ridge (usually only one age per ridge), which carry intrinsic age uncertainties and make interpretation of storm histories problematic. To test the fidelity of storm ridges as palaeo-storm archives, we used high-precision U-Th dating to examine whether different samples from a single ridge are temporally constrained. We surveyed three transects of ridge systems from two continental islands (Normanby Island and High Island) within the Frankland Islands, Great Barrier Reef (GBR), and obtained 96 U-Th dates from coral rubble samples collected from within and between different ridges. Our results revealed significant differences in age ranges between the two islands. The steeper and more defined rubble ridges present on Normanby Island revealed that the majority of U-Th ages (over 60%) from a single ridge clustered within a narrow age range (∼100 years). By contrast, the lower and less defined ridges on High Island, which were more likely formed during both storm and non-storm high-energy events, revealed significant scatter in age distribution (>>200 years) with no notable clustering. The narrower age ranges obtained from the steeper and more defined rubble ridges suggest that previous approaches of using either limited samples from a single ridge or low-precision dating methods to establish chronologies are generally valid at centennial to millennial timescales, although caution must be taken to use such approaches for storm history reconstruction on shorter timescales (e.g. decadal). The correlation between U-Th mortality ages of coral rubble and historical stormy periods highlights the possibility of using coral rubble age distribution from rubble ridges to reconstruct the long

  15. The effect of sub-lethal increases in temperature on the growth and population trajectories of three scleractinian corals on the southern Great Barrier Reef.

    Science.gov (United States)

    Edmunds, Peter J

    2005-12-01

    To date, coral death has been the most conspicuous outcome of warming tropical seas, but as temperatures stabilize at higher values, the consequences for the corals remaining will be mediated by their demographic responses to the sub-lethal effects of temperature. To gain insight into the nature of these responses, here I develop a model to test the effect of increased temperature on populations of three pocilloporid corals at One Tree Island, near the southern extreme of the Great Barrier Reef (GBR). Using Seriatopora hystrix, S. caliendrum and Pocillopora damicornis as study species, the effects of temperature on growth were determined empirically, and the dynamics of their populations determined under natural temperatures over a 6-month period between 1999 and 2000 [defined as the study year (SY)]. The two data sets were combined in a demographic test of the possibility that the thermal regime projected for the southern GBR in the next 55-83 years--warmer by 3 degrees C than the study year (the SY+3 regime), which is equivalent to 1.4 degrees C warmer than the recent warm year of 1998--would alter coral population trajectories through the effects on coral growth alone; the analyses first were completed by species, then by family after pooling among species. Laboratory experiments showed that growth rates (i.e., calcification) varied significantly among species and temperatures, and displayed curvilinear thermal responses with growth maxima at approximately 27.1 degrees C. Based on these temperature-growth responses, the SY+3 regime is projected to: (1) increase annualized growth rates of all taxa by 24-39%, and defer the timing of peak growth from the summer to the autumn and spring, (2) alter the intrinsic rate of population growth (lambda) for S. hystrix (lambda decreases 26%) and S. caliendrum (lambda increases 5%), but not for P. damicornis, and (3) have a minor effect on lambda (a 0.3% increase) for the Pocilloporidae, largely because lambda varies more

  16. Pyrosequencing of bacterial symbionts within Axinella corrugata sponges: diversity and seasonal variability.

    Directory of Open Access Journals (Sweden)

    James R White

    Full Text Available BACKGROUND: Marine sponge species are of significant interest to many scientific fields including marine ecology, conservation biology, genetics, host-microbe symbiosis and pharmacology. One of the most intriguing aspects of the sponge "holobiont" system is the unique physiology, interaction with microbes from the marine environment and the development of a complex commensal microbial community. However, intraspecific variability and temporal stability of sponge-associated bacterial symbionts remain relatively unknown. METHODOLOGY/PRINCIPAL FINDINGS: We have characterized the bacterial symbiont community biodiversity of seven different individuals of the Caribbean reef sponge Axinella corrugata, from two different Florida reef locations during variable seasons using multiplex 454 pyrosequencing of 16 S rRNA amplicons. Over 265,512 high-quality 16 S rRNA sequences were generated and analyzed. Utilizing versatile bioinformatics methods and analytical software such as the QIIME and CloVR packages, we have identified 9,444 distinct bacterial operational taxonomic units (OTUs. Approximately 65,550 rRNA sequences (24% could not be matched to bacteria at the class level, and may therefore represent novel taxa. Differentially abundant classes between seasonal Axinella communities included Gammaproteobacteria, Flavobacteria, Alphaproteobacteria, Cyanobacteria, Acidobacter and Nitrospira. Comparisons with a proximal outgroup sponge species (Amphimedon compressa, and the growing sponge symbiont literature, indicate that this study has identified approximately 330 A. corrugata-specific symbiotic OTUs, many of which are related to the sulfur-oxidizing Ectothiorhodospiraceae. This family appeared exclusively within A. corrugata, comprising >34.5% of all sequenced amplicons. Other A. corrugata symbionts such as Deltaproteobacteria, Bdellovibrio, and Thiocystis among many others are described. CONCLUSIONS/SIGNIFICANCE: Slight shifts in several bacterial taxa

  17. Madreporaria from the Togian Reefs (Gulf of Tomini, North-Celebes)

    NARCIS (Netherlands)

    Umbgrove, J.H.F.

    1940-01-01

    INTRODUCTION The coral reefs of the Togian islands grow up as steep barrier reefs and atolls. Moreover small fringing reefs occur along the islands. The geological structure of the islands, as well as the history and morphology of the reefs are treated in a separate paper 1). I will here mention onl

  18. 1300 km long late Pleistocene-Holocene shelf edge barrier reef system along the western continental shelf of India: Occurrence and significance

    Digital Repository Service at National Institute of Oceanography (India)

    Vora, K.H.; Wagle, B.G.; Veerayya, M.; Almeida, F.; Karisiddaiah, S.M.

    developed shelf edge reefs occur on almost all the tracks [ 131 between Ratnagiri and Mormugao, implying some continuity along this 200 km K.H. Vera et al./Marine Geology 134 (1996) I4S-162 Table 1 Salient features of the shelf edge reefs observed... to a subsidence of several meters. This is well possible since the Konkan Coast is believed to be subsiding (Bruckner, 1989). The initial topography might 158 K.H. Vera et aLlMarine Geology 134 (1996) 145-162 Table 3 River discharge along the west...

  19. Nocturnal relocation of adult and juvenile coral reef fishes in response to reef noise

    Science.gov (United States)

    Simpson, S. D.; Jeffs, A.; Montgomery, J. C.; McCauley, R. D.; Meekan, M. G.

    2008-03-01

    Juvenile and adult reef fishes often undergo migration, ontogenic habitat shifts, and nocturnal foraging movements. The orientation cues used for these behaviours are largely unknown. In this study, the use of sound as an orientation cue guiding the nocturnal movements of adult and juvenile reef fishes at Lizard Island, Great Barrier Reef was examined. The first experiment compared the movements of fishes to small patch reefs where reef noise was broadcast, with those to silent reefs. No significant responses were found in the 79 adults that were collected, but the 166 juveniles collected showed an increased diversity each morning on the reefs with broadcast noise, and significantly greater numbers of juveniles from three taxa (Apogonidae, Gobiidae and Pinguipedidae) were collected from reefs with broadcast noise. The second experiment compared the movement of adult and juvenile fishes to reefs broadcasting high (>570 Hz), or low (Gobiidae and Blenniidae) preferred these reefs. A similar trend was observed in the 372 juveniles collected, with higher diversity at the reefs with low frequency noises. This preference was seen in the juvenile apogonids; however, juvenile gobiids were attracted to both high and low sound treatments equally, and juvenile stage Acanthuridae preferred the high frequency noises. This evidence that juvenile and adult reef fishes orientate with respect to the soundscape raises important issues for management, conservation and the protection of sound cues used in natural behaviour.

  20. Sponge erosion under acidification and warming scenarios: differential impacts on living and dead coral.

    Science.gov (United States)

    Stubler, Amber D; Furman, Bradley T; Peterson, Bradley J

    2015-11-01

    Ocean acidification will disproportionately impact the growth of calcifying organisms in coral reef ecosystems. Simultaneously, sponge bioerosion rates have been shown to increase as seawater pH decreases. We conducted a 20-week experiment that included a 4-week acclimation period with a high number of replicate tanks and a fully orthogonal design with two levels of temperature (ambient and +1 °C), three levels of pH (8.1, 7.8, and 7.6), and two levels of boring sponge (Cliona varians, present and absent) to account for differences in sponge attachment and carbonate change for both living and dead coral substrate (Porites furcata). Net coral calcification, net dissolution/bioerosion, coral and sponge survival, sponge attachment, and sponge symbiont health were evaluated. Additionally, we used the empirical data from the experiment to develop a stochastic simulation of carbonate change for small coral clusters (i.e., simulated reefs). Our findings suggest differential impacts of temperature, pH and sponge presence for living and dead corals. Net coral calcification (mg CaCO3  cm(-2)  day(-1) ) was significantly reduced in treatments with increased temperature (+1 °C) and when sponges were present; acidification had no significant effect on coral calcification. Net dissolution of dead coral was primarily driven by pH, regardless of sponge presence or seawater temperature. A reevaluation of the current paradigm of coral carbonate change under future acidification and warming scenarios should include ecologically relevant timescales, species interactions, and community organization to more accurately predict ecosystem-level response to future conditions.

  1. Sponge cell culture? A molecular identification method for sponge cells

    NARCIS (Netherlands)

    Sipkema, D.; Heilig, G.H.J.; Akkermans, A.D.L.; Osinga, R.; Tramper, J.; Wijffels, R.H.

    2003-01-01

    Dissociated sponge cells are easily confused with unicellular organisms. This has been an obstacle in the development of sponge-cell lines. We developed a molecular detection method to identify cells of the sponge Dysidea avara in dissociated cell cultures. The 18S ribosomal RNA gene from a Dysidea

  2. Episodes of reef growth at Lord Howe Island, the southernmost reef in the southwest Pacific

    Science.gov (United States)

    Woodroffe, C. D.; Dickson, M. E.; Brooke, B. P.; Kennedy, D. M.

    2005-12-01

    Lord Howe Island lies at the present latitudinal limit to reef growth in the Pacific and preserves evidence of episodes of reef development over the Late Quaternary. A modern fringing reef flanks the western shore of Lord Howe Island, enclosing a Holocene lagoon, and Late Quaternary eolianites veneer the island. Coral-bearing beach and shallow-water calcarenites record a sea level around 2-3 m above present during the Last Interglacial. No reefs or subaerial carbonate deposits occur on, or around, Balls Pyramid, 25 km to the south. The results of chronostratigraphic studies of the modern Lord Howe Island reef and lagoon indicate prolific coral production during the mid-Holocene, but less extensive coral cover during the late Holocene. Whereas the prolific mid-Holocene reefs might appear to reflect warmer sea-surface temperatures, the pattern of dates and reef growth history are similar to those throughout the Great Barrier Reef and across much of the Indo-Pacific and are more likely correlated with availability of suitable substrate. Little direct evidence of a Last Interglacial reef is now preserved, and the only evidence for older periods of reef establishment comes from clasts of coral in a well-cemented limestone unit below a coral that has been dated to the Last Interglacial age in a core at the jetty. However, a massive reef structure occurs near the centre of the wide shelf around Lord Howe Island, veneered with Holocene coralline algae. Its base is 40-50 m deep and it rises to water depths of less than 30 m. This fossil reef is several times more extensive than either Holocene or Last Interglacial reefs appear to have been. Holocene give-up reef growth is inferred during the postglacial transgression, but an alternative interpretation is that this is a much older landform, indicating reefs that were much more extensive than modern reefs at this marginal site.

  3. Comparison between the sponge fauna living outside and inside the coralligenous bioconstruction. A quantitative approach

    Directory of Open Access Journals (Sweden)

    B. CALCINAI

    2015-07-01

    Full Text Available Coralligenous habitat results from a multi-stratified accumulation of crustose coralline algae and animal builders in a dynamic equilibrium with disruptive agents. The result is a complex architecture crossed by crevices and holes. Due to this three-dimensional structure, coralligenous may host a rich and diversified fauna, more abundant than any other Mediterranean habitat. Unfortunately, very few data are available about the cryptic fauna that lives inside the conglomerate. As already reported for coral reefs, the cryptic fauna plays an important role in the exchange of material and energy between water column and benthic assemblages. Here we compare the sponge community present inside and outside the coralligenous framework of Portofino Promontory (Ligurian Sea at different depths (15 and 30 meters not only in terms of taxonomic diversity but for the first time also in term of biomass. Sponges present on the surface of each block were collected, weighed and identified; after blocks dissolution in HCl, target cryptic sponges were separated from other organisms, weighed, and identified. We recorded a total of 62 sponge species. The average number of sponge taxa occurring outside the coralligenous accretions is lower than the number of taxa identified inside. This pattern is confirmed also regarding sponge biomass. These results underlines that studies focused on coralligenous functioning should take in account the important contribution of cryptic fauna, as recently evidenced also for tropical reef habitats.

  4. Growth and metabolism of sponges

    NARCIS (Netherlands)

    Koopmans, M.

    2009-01-01

    Sponges (phylum Porifera) are multi cellular filter-feeding invertebrate animals living attached to a substratum in mostly marine but also in freshwater habitats. The interest in sponges has increased rapidly since the discovery of potential new pharmaceutical compounds produced by many sponges. An

  5. Sponge bioerosion accelerated by ocean acidification across species and latitudes?

    Science.gov (United States)

    Wisshak, M.; Schönberg, C. H. L.; Form, A.; Freiwald, A.

    2014-06-01

    In many marine biogeographic realms, bioeroding sponges dominate the internal bioerosion of calcareous substrates such as mollusc beds and coral reef framework. They biochemically dissolve part of the carbonate and liberate so-called sponge chips, a process that is expected to be facilitated and accelerated in a more acidic environment inherent to the present global change. The bioerosion capacity of the demosponge Cliona celata Grant, 1826 in subfossil oyster shells was assessed via alkalinity anomaly technique based on 4 days of experimental exposure to three different levels of carbon dioxide partial pressure ( pCO2) at ambient temperature in the cold-temperate waters of Helgoland Island, North Sea. The rate of chemical bioerosion at present-day pCO2 was quantified with 0.08-0.1 kg m-2 year-1. Chemical bioerosion was positively correlated with increasing pCO2, with rates more than doubling at carbon dioxide levels predicted for the end of the twenty-first century, clearly confirming that C. celata bioerosion can be expected to be enhanced with progressing ocean acidification (OA). Together with previously published experimental evidence, the present results suggest that OA accelerates sponge bioerosion (1) across latitudes and biogeographic areas, (2) independent of sponge growth form, and (3) for species with or without photosymbionts alike. A general increase in sponge bioerosion with advancing OA can be expected to have a significant impact on global carbonate (re)cycling and may result in widespread negative effects, e.g. on the stability of wild and farmed shellfish populations, as well as calcareous framework builders in tropical and cold-water coral reef ecosystems.

  6. Land-use effects on fluxes of suspended sediment, nitrogen and phosphorus from a river catchment of the Great Barrier Reef, Australia

    Science.gov (United States)

    Hunter, Heather M.; Walton, Richard S.

    2008-07-01

    SummaryA 6-year study was conducted in the Johnstone River system in the wet tropics of north-eastern Australia, to address concerns that the Great Barrier Reef is at risk from elevated levels of suspended sediment (SS) and nutrients discharged from its river catchments. Aims were to quantify: (i) fluxes of SS, phosphorus (P) and nitrogen (N) exported annually from the catchment and (ii) the influence of rural land uses on these fluxes. Around 55% of the 1602 km2 catchment was native rainforest, with the reminder developed mainly for livestock and crop production. Water quality and stream flow were monitored at 16 sites, with the emphasis on sampling major runoff events. Monitoring data were used to calibrate a water quality model for the catchment (HSPF), which was run with 39 years of historical precipitation and evaporation data. Modelled specific fluxes from the catchment of 1.2 ± 1.1 t SS ha-1 y-1, 2.2 ± 1.8 kg P ha-1 y-1 and 11.4 ± 7.3 kg N ha-1y-1 were highly variable between and within years. Fluxes of SS and P were strongly dominated by major events, with 91% of SS and 84% of P exported during the highest 10% of daily flows. On average, sediment P comprised 81% of the total P flux. The N flux was less strongly dominated by major events and sediment N comprised 46% of total N exports. Specific fluxes of SS, N and P from areas receiving precipitation of 3545 mm y-1 were around 3-4 times those from areas receiving 1673 mm y-1. For a given mean annual precipitation, specific fluxes of SS and P from beef pastures, dairy pastures and unsewered residential areas were similar to those from rainforest, while fluxes from areas of sugar cane and bananas were 3-4 times higher. Specific fluxes of N from areas with an annual precipitation of 3545 mm ranged from 8.9 ± 6.5 kg N ha-1 y-1 (rainforest) to 72 ± 50 kg N ha-1 y-1 (unsewered residential). Aggregated across the entire catchment, disproportionately large fluxes of SS, total P and total N were derived from

  7. Artificial Reefs

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — An artificial reef is a human-made underwater structure, typically built to promote marine life in areas with a generally featureless bottom, control erosion, block...

  8. Will Coral Islands maintain their growth over the next century? A deterministic model of sediment availability at Lady Elliot Island, Great Barrier Reef.

    Science.gov (United States)

    Hamylton, Sarah

    2014-01-01

    A geomorphic assessment of reef system calcification is conducted for past (3200 Ka to present), present and future (2010-2100) time periods. Reef platform sediment production is estimated at 569 m3 yr-1 using rate laws that express gross community carbonate production as a function of seawater aragonite saturation, community composition and rugosity and incorporating estimates of carbonate removal from the reef system. Key carbonate producers including hard coral, crustose coralline algae and Halimeda are mapped accurately (mean R2 = 0.81). Community net production estimates correspond closely to independent census-based estimates made in-situ (R2 = 0.86). Reef-scale outputs are compared with historic rates of production generated from (i) radiocarbon evidence of island deposition initiation around 3200 years ago, and (ii) island volume calculated from a high resolution island digital elevation model. Contemporary carbonate production rates appear to be remarkably similar to historical values of 573 m3 yr-1. Anticipated future seawater chemistry parameters associated with an RCP8.5 emissions scenario are employed to model rates of net community calcification for the period 2000-2100 on the basis of an inorganic aragonite precipitation law, under the assumption of constant benthic community character. Simulations indicate that carbonate production will decrease linearly to a level of 118 m3 yr-1 by 2100 and that by 2150 aragonite saturation levels may no longer support the positive budgetary status necessary to sustain island accretion. Novel aspects of this assessment include the development of rate law parameters to realistically represent the variable composition of coral reef benthic carbonate producers, incorporation of three dimensional rugosity of the entire reef platform and the coupling of model outputs with both historical radiocarbon dating evidence and forward hydrochemical projections to conduct an assessment of island evolution through time

  9. Chemical ecology of marine sponges

    Digital Repository Service at National Institute of Oceanography (India)

    Thakur, N.L.; Singh, A.

    proto- cols of chemical isolation, and the estimation of natural concentration might not be a true repre- sentative of actual concentrations of the natural product in this sponge (Ma et al. 2009). Besides chemical clues, visual clues such as colour... of the prey can also determine the feeding behaviour. One of the major predators of Antarctic sponges is sea stars which lack visual organ. It was hypo- thesized that the present-day Antarctic sponges still retain visual pigments (e.g. discorhabdins...

  10. Coral zonation and diagenesis of an emergent Pleistocene patch reef, Belize, Central America

    Energy Technology Data Exchange (ETDEWEB)

    Lighty, R.G.; Russell, K.L.

    1985-01-01

    Transect mapping and petrologic studies reveal a new depositional model and limited diagenesis of a well-exposed Pleistocene reef outcrop at Ambergris Cay, northern Belize. This emergent shelf-edge reef forms a rocky wave-washed headland at the northern terminus of the present-day 250 km long flourishing Belize Barrier Reef. Previously, the Belize reef outcrop was thought to extend southward in the subsurface beneath the modern barrier reef as a Pleistocene equivalent. The authors study indicate that this outcrop is a large, coral patch reef and not part of a barrier reef trend. Sixteen transects 12.5 m apart described in continuous cm increments from fore reef to back reef identified: extensive deposits of broken Acropora cervicornis; small thickets of A. palmata with small, oriented branches; and muddy skeletal sediments with few corals or reef rubble. Thin section and SEM studies show three phases of early submarine cementation: syntaxial and rosette aragonite; Mg-calcite rim cement and peloids; and colloidal Mg-calcite geopetal fill. Subaerial exposure in semi-arid northern Belize caused only minor skeletal dissolution, some precipitation of vadose whisker calcite, and no meteoric phreatic diagenesis. Facies geometry, coral assemblages, lack of rubble deposits, coralline algal encrustations and Millepora framework, and recognition of common but discrete submarine cements, all indicate that this Pleistocene reef was an isolated, coral-fringed sediment buildup similar to may large patch reefs existing today in moderate-energy shelf environments behind the modern barrier reef in central and southern Belize.

  11. Reef grief

    Science.gov (United States)

    2011-10-01

    As the first of the world's ecosystems faces extermination at our hands, coral reef ecologist Peter Sale -- Assistant Director of the Institute of Water, Environment and Health at the United Nations University in Ontario, Canada, and author of Our Dying Planet (published this autumn) -- talks to Nature Climate Change.

  12. Unusual symbiotic cyanobacteria association in the genetically diverse intertidal marine sponge Hymeniacidon perlevis (Demospongiae, Halichondrida.

    Directory of Open Access Journals (Sweden)

    Anoop Alex

    Full Text Available Cyanobacteria represent one of the most common members of the sponge-associated bacterial community and are abundant symbionts of coral reef ecosystems. In this study we used Transmission Electron Microscopy (TEM and molecular techniques (16S rRNA gene marker to characterize the spatial distribution of cyanobionts in the widely dispersed marine intertidal sponge Hymeniacidon perlevis along the coast of Portugal (Atlantic Ocean. We described new sponge associated cyanobacterial morphotypes (Xenococcus-like and we further observed Acaryochloris sp. as a sponge symbiont, previously only reported in association with ascidians. Besides these two unique cyanobacteria, H. perlevis predominantly harbored Synechococcus sp. and uncultured marine cyanobacteria. Our study supports the hypothesis that the community of sponge cyanobionts varies irrespective of the geographical location and is likely influenced by seasonal fluctuations. The observed multiple cyanobacterial association among sponges of the same host species over a large distance may be attributed to horizontal transfer of symbionts. This may explain the absence of a co-evolutionary pattern between the sponge host and its symbionts. Finally, in spite of the short geographic sampling distance covered, we observed an unexpected high intra-specific genetic diversity in H. perlevis using the mitochondrial genes ATP6 (π = 0.00177, COI (π = 0.00241 and intergenic spacer SP1 (π = 0.00277 relative to the levels of genetic variation of marine sponges elsewhere. Our study suggests that genotypic variation among the sponge host H. perlevis and the associated symbiotic cyanobacteria diversity may be larger than previously recognized.

  13. Refuge-seeking impairments mirror metabolic recovery following fisheries-related stressors in the Spanish flag snapper (Lutjanus carponotatus) on the Great Barrier Reef.

    Science.gov (United States)

    Cooke, Steven J; Messmer, Vanessa; Tobin, Andrew J; Pratchett, Morgan S; Clark, Timothy D

    2014-01-01

    Fisheries and marine park management strategies for large predatory reef fish can mean that a large proportion of captured fish are released. Despite being released, these fish may experience high mortality while they traverse the water column to locate suitable refuge to avoid predators, all the while recovering from the stress of capture. The predatory reef fish Spanish flag snapper (Lutjanus carponotatus) is frequently released because of a minimum-size or bag limit or by fishers targeting more desirable species. Using L. carponotatus as a model, we tested whether simulated fishing stress (exercise and air exposure) resulted in impairments in reflexes (e.g., response to stimuli) and the ability to identify and use refuge in a laboratory arena and whether any impairments were associated with blood physiology or metabolic recovery. Control fish were consistently responsive to reflex tests and rapidly located and entered refugia in the arena within seconds. Conversely, treatment fish (exhausted and air exposed) were unresponsive to stimuli, took longer to search for refugia, and were more apprehensive to enter the refuge once it was located. Consequently, treatment fish took more than 70 times longer than control fish to enter the coral refuge (26.12 vs. 0.36 min, respectively). The finding that fish exposed to stress were hesitant to use refugia suggests that there was likely cognitive, visual, and/or physiological impairment. Blood lactate, glucose, and hematocrit measures were perturbed at 15 and 30 min after the stressor, relative to controls. However, measurements of oxygen consumption rate revealed that about 50% of metabolic recovery occurred within 30 min after the stressor, coinciding with apparent cognitive/visual/physiological recovery. Recovering the treatment fish in aerated, flow-through chambers for 30 min before introduction to the behavioral arena restored reflexes, and "recovered" fish behaved more similarly to controls. Therefore, we suggest that

  14. Hydrodynamic Regimes Affect Coral Reef Resilience to Ocean Acidification

    Science.gov (United States)

    Teneva, L. T.; Dunbar, R. B.; Koseff, J. R.; Fleischfresser, J. D.; Koweek, D.

    2013-05-01

    Caribbean reefs hold tremendous value as sources of food, income, coastal protection, in addition to their cultural significance. Recently, studies showed that Caribbean reef growth has been surpassed in places by excessive rates of erosion due to climate change. The rates of coral reef response to ocean pH changes and warming and the implications for ecosystem resilience remain largely unknown. One way to investigate the potential structural resilience of reefs to climate change is to measure the physical oceanographic conditions in the area. Determining the hydrodynamic regimes and residence time of water in a particular reef environment is crucial to understanding the rates of future warming and acidification a reef site would experience. Our work on Pacific Islands' hydrodynamics - Central Equatorial Pacific, Great Barrier Reef, and Western Pacific -- would be of interest to Caribbean physical oceanographers and coral reef scientists. We use a combination of Acoustic Doppler Current Profilers, Acoustic Doppler Velocimeters, temperature and salinity sensors, and pressure sensors to characterize reef hydrodynamic regimes. Our work indicates that shallower, more protected reef habitats are characterized by longer residence times, their biological signals are strongly tidally modulated, essentially subjecting such habitats to higher rates of warming and acidification in the future. Reef crest environments and fore reef habitats, on the other hand, are well-mixed with open-ocean water. The hydrodynamic regimes there condition such reef sites to more attenuated temperature and pH ranges, conditions more typical of the open ocean. Our work suggests that investigating the geomorphology and resulting localized hydrodynamics in a reef area can provide insights into the relative rates at which a reef could resist or succumb to impacts of ocean acidification. Such information for different reef islands, in the Pacific or Caribbean basins, could provide helpful insights

  15. Discovery of the corallivorous polyclad flatworm, Amakusaplana acroporae, on the Great Barrier Reef, Australia--the first report from the wild.

    Directory of Open Access Journals (Sweden)

    Kate A Rawlinson

    Full Text Available The role of corallivory is becoming increasingly recognised as an important factor in coral health at a time when coral reefs around the world face a number of other stressors. The polyclad flatworm, Amakusaplana acroporae, is a voracious predator of Indo-Pacific acroporid corals in captivity, and its inadvertent introduction into aquaria has lead to the death of entire coral colonies. While this flatworm has been a pest to the coral aquaculture community for over a decade, it has only been found in aquaria and has never been described from the wild. Understanding its biology and ecology in its natural environment is crucial for identifying viable biological controls for more successful rearing of Acropora colonies in aquaria, and for our understanding of what biotic interactions are important to coral growth and fitness on reefs. Using morphological, histological and molecular techniques we determine that a polyclad found on Acropora valida from Lizard Island, Australia is A. acroporae. The presence of extracellular Symbiodinium in the gut and parenchyma and spirocysts in the gut indicates that it is a corallivore in the wild. The examination of a size-range of individuals shows maturation of the sexual apparatus and increases in the number of eyes with increased body length. Conservative estimates of abundance show that A. acroporae occurred on 7 of the 10 coral colonies collected, with an average of 2.6±0.65 (mean ±SE animals per colony. This represents the first report of A. acroporae in the wild, and sets the stage for future studies of A. acroporae ecology and life history in its natural habitat.

  16. 21 CFR 886.4790 - Ophthalmic sponge.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Ophthalmic sponge. 886.4790 Section 886.4790 Food... DEVICES OPHTHALMIC DEVICES Surgical Devices § 886.4790 Ophthalmic sponge. (a) Identification. An ophthalmic sponge is a device that is an absorbant sponge, pad, or spear made of folded gauze,...

  17. Ecological interactions of sea sponges (Animalia, Porifera according to artisanal fishermen from Camamu Bay, Bahia, Brazil

    Directory of Open Access Journals (Sweden)

    Loyana Docio

    2010-09-01

    Full Text Available This article represents the first ethnospongiological study in Brazil, and it aimed at recording artisanal fishermen’s knowledge about sea sponges and their ecological interactions. The study was carried out in the Ilha do Contrato community at Camamu Bay, Bahia State, Brazil. The data were obtained by means of open-ended interviews and projective tests, and followed the usual techniques of ethnographic surveys. The interviewees had knowledge regarding ecological interactions among fish, sea sponges and sponge endofaunal composition. According to the results, there is some congruence between folk wisdom and scientific knowledge. The importance of integrating local knowledge into management and conservation plans designed for the Camamu Bay region, as well as the set of data on ecology of reef communities, should be considered.

  18. Asymmetric competition prevents the outbreak of an opportunistic species after coral reef degradation.

    Science.gov (United States)

    González-Rivero, Manuel; Bozec, Yves-Marie; Chollett, Iliana; Ferrari, Renata; Schönberg, Christine H L; Mumby, Peter J

    2016-05-01

    Disturbance releases space and allows the growth of opportunistic species, excluded by the old stands, with a potential to alter community dynamics. In coral reefs, abundances of fast-growing, and disturbance-tolerant sponges are expected to increase and dominate as space becomes available following acute coral mortality events. Yet, an increase in abundance of these opportunistic species has been reported in only a few studies, suggesting certain mechanisms may be acting to regulate sponge populations. To gain insights into mechanisms of population control, we simulated the dynamics of the common reef-excavating sponge Cliona tenuis in the Caribbean using an individual-based model. An orthogonal hypothesis testing approach was used, where four candidate mechanisms-algal competition, stock-recruitment limitation, whole and partial mortality-were incorporated sequentially into the model and the results were tested against independent field observations taken over a decade in Belize, Central America. We found that releasing space after coral mortality can promote C. tenuis outbreaks, but such outbreaks can be curtailed by macroalgal competition. The asymmetrical competitive superiority of macroalgae, given by their capacity to pre-empt space and outcompete with the sponge in a size-dependant fashion, supports their capacity to steal the opportunity from other opportunists. While multiple system stages can be expected in coral reefs following intense perturbation macroalgae may prevent the growth of other space-occupiers, such as bioeroding sponges, under low grazing pressure.

  19. Annual recapture and survival rates of two non-breeding adult populations of Roseate Terns Stema dougallii captured on the Great Barrier Reef, Australia, and estimates of their population sizes

    Science.gov (United States)

    O'Neill, P.; Minton, C.D.T.; Nisbet, I.C.T.; Hines, J.E.

    2008-01-01

    Capture-recapture data from two disparate breeding populations of Roseate Terns (Sterna dougallii) captured together as non-breeding individuals from 2002 to 2007 in the southern Great Barrier Reef. Australia were analyzed for both survival rate and recapture rate. The average annual survival rate for the birds from the Asian population (S. d. bangsi) (0.901) is higher than that of the other population of unknown breeding origin (0.819). There was large variability in survival in both populations among years, but the average survival rate of 0.85 is similar to estimates for the same species in North America. The Cormack-Jolly-Seber models used in program MARK to estimate survival rates also produced estimated of recapture probabilities and population sizes. These estimates of population size were 29,000 for S. D. bangsi and 8,300 for the study area and much larger than the documented numbers in the likely breeding areas, suggesting that many breeding sites are currently unknown.

  20. Retained surgical sponge: An enigma

    Directory of Open Access Journals (Sweden)

    Gurjit Singh

    2013-01-01

    Full Text Available Retained surgical sponge in the body following a surgery is called "gossypiboma". A 27-year-old female who had undergone lower segment cesarean section 4 months earlier was admitted with complaints of pain abdomen with a palpable mass in left iliac fossa. X-ray, ultrasonography, and CT scan findings were suggestive of retained surgical sponge. Surgical sponge was removed following laparotomy. Surgeons must be aware of the risk factors that lead to gossypiboma, and measures should be taken to prevent it. Besides increasing morbidity and possible mortality, it may result in libel suit for compensation.

  1. Coral Reef Remote Sensing: Helping Managers Protect Reefs in a Changing Climate

    Science.gov (United States)

    Eakin, C.; Liu, G.; Li, J.; Muller-Karger, F. E.; Heron, S. F.; Gledhill, D. K.; Christensen, T.; Rauenzahn, J.; Morgan, J.; Parker, B. A.; Skirving, W. J.; Nim, C.; Burgess, T.; Strong, A. E.

    2010-12-01

    Climate change and ocean acidification are already having severe impacts on coral reef ecosystems. Warming oceans have caused corals to bleach, or expel their symbiotic algae (zooxanthellae) with alarming frequency and severity and have contributed to a rise in coral infectious diseases. Ocean acidification is reducing the availability of carbonate ions needed by corals and many other marine organisms to build structural components like skeletons and shells and may already be slowing the coral growth. These two impacts are already killing corals and slowing reef growth, reducing biodiversity and the structure needed to provide crucial ecosystem services. NOAA’s Coral Reef Watch (CRW) uses a combination of satellite data, in situ observations, and models to provide coral reef managers, scientists, and others with information needed to monitor threats to coral reefs. The advance notice provided by remote sensing and models allows resource managers to protect corals, coral reefs, and the services they provide, although managers often encounter barriers to implementation of adaptation strategies. This talk will focus on application of NOAA’s satellite and model-based tools that monitor the risk of mass coral bleaching on a global scale, ocean acidification in the Caribbean, and coral disease outbreaks in selected regions, as well as CRW work to train managers in their use, and barriers to taking action to adapt to climate change. As both anthropogenic CO2 and temperatures will continue to rise, local actions to protect reefs are becoming even more important.

  2. Deep-water sponges (Porifera) from Bonaire and Klein Curaçao, Southern Caribbean.

    Science.gov (United States)

    Van Soest, Rob W M; Meesters, Erik H W G; Becking, Leontine E

    2014-10-29

    Four submersible dives off the coast of Bonaire (Caribbean Netherlands) and Klein Curaçao (Curaçao) to depths of 99.5-242 m, covering lower mesophotic and upper dysphotic zones, yielded 52 sponge specimens belonging to 31 species. Among these we identified 13 species as new to science. These are Plakinastrella stinapa n. sp., Pachastrella pacoi n. sp., Characella pachastrelloides n. sp., Geodia curacaoensis n. sp., Caminus carmabi n. sp., Discodermia adhaerens n. sp., Clathria (Microciona) acarnoides n. sp., Antho (Acarnia) pellita n. sp., Parahigginsia strongylifera n. sp., Calyx magnoculata n. sp., Neopetrosia dutchi n. sp., Neopetrosia ovata n. sp. and Neopetrosia eurystomata n. sp. We also report an euretid hexactinellid, which belongs to the rare genus Verrucocoeloidea, recently described (2014) as V. liberatorii Reiswig & Dohrmann. The remaining 18 already known species are all illustrated by photos of the habit, either in situ or 'on deck', but only briefly characterized in an annotated table to confirm their occurrence in the Southern Caribbean. The habitat investigated-steep limestone rocks, likely representing Pleistocene fossil reefs--is similar to deep-water fossil reefs at Barbados of which the sponges were sampled and studied by Van Soest and Stentoft (1988). A comparison is made between the two localities, showing a high degree of similarity in sponge composition: 53% of the present Bonaire-Klein Curaçao species were also retrieved at Barbados. At the level of higher taxa (genera, families) Bonaire-Klein Curaçao shared approximately 80% of its lower mesophotic and upper dysphotic sponge fauna with Barbados, despite a distance between them of 1000 km, indicating high faunal homogeneity. We also preliminarily compared the shallow-water (euphotic) sponge fauna of Curaçao with the combined data available for the Barbados, Bonaire and Klein Curaçao mesophotic and upper dysphotic sponges, which resulted in the conclusion that the two faunas show only

  3. Population structure and dispersal of the coral-excavating sponge Cliona delitrix.

    Science.gov (United States)

    Chaves-Fonnegra, Andia; Feldheim, Kevin A; Secord, Jesse; Lopez, Jose V

    2015-04-01

    Some excavating sponges of the genus Cliona compete with live reef corals, often killing and bioeroding entire colonies. Important aspects affecting distribution of these species, such as dispersal capability and population structure, remain largely unknown. Thus, the aim of this study was to determine levels of genetic connectivity and dispersal of Cliona delitrix across the Greater Caribbean (Caribbean Sea, Bahamas and Florida), to understand current patterns and possible future trends in their distribution and effects on coral reefs. Using ten species-specific microsatellite markers, we found high levels of genetic differentiation between six genetically distinct populations: one in the Atlantic (Florida-Bahamas), one specific to Florida and four in the South Caribbean Sea. In Florida, two independent breeding populations are likely separated by depth. Gene flow and ecological dispersal occur among other populations in the Florida reef tract, and between some Florida locations and the Bahamas. Similarly, gene flow occurs between populations in the South Caribbean Sea, but appears restricted between the Caribbean Sea and the Atlantic (Florida-Bahamas). Dispersal of C. delitrix was farther than expected for a marine sponge and favoured in areas where currents are strong enough to transport sponge eggs or larvae over longer distances. Our results support the influence of ocean current patterns on genetic connectivity, and constitute a baseline to monitor future C. delitrix trends under climate change.

  4. Intraspecific Variation in Microbial Symbiont Communities of the Sun Sponge, Hymeniacidon heliophila, from Intertidal and Subtidal Habitats.

    Science.gov (United States)

    Weigel, Brooke L; Erwin, Patrick M

    2015-11-13

    Sponges host diverse and complex communities of microbial symbionts that display a high degree of host specificity. The microbiomes of conspecific sponges are relatively constant, even across distant locations, yet few studies have directly examined the influence of abiotic factors on intraspecific variation in sponge microbial community structure. The contrast between intertidal and subtidal environments is an ideal system to assess the effect of environmental variation on sponge-microbe symbioses, producing two drastically different environments on a small spatial scale. Here, we characterized the microbial communities of individual intertidal and subtidal Hymeniacidon heliophila sponges, ambient seawater, and sediment from a North Carolina oyster reef habitat by partial (Illumina sequencing) and nearly full-length (clone libraries) 16S rRNA gene sequence analyses. Clone library sequences were compared to H. heliophila symbiont communities from the Gulf of Mexico and Brazil, revealing strong host specificity of dominant symbiont taxa across expansive geographic distances. Sediment and seawater samples yielded clearly distinct microbial communities from those found in H. heliophila. Despite the close proximity of the sponges sampled, significant differences between subtidal and intertidal sponges in the diversity, structure, and composition of their microbial communities were detected. Differences were driven by changes in the relative abundance of a few dominant microbial symbiont taxa, as well as the presence or absence of numerous rare microbial taxa. These findings suggest that extreme abiotic fluctuations, such as periodic air exposure in intertidal habitats, can drive intraspecific differences in complex host-microbe symbioses.

  5. Marine sponges (Porifera: Demospongiae) from the Gulf of México, new records and redescription of Erylus trisphaerus (de Laubenfels, 1953).

    Science.gov (United States)

    Ugalde, Diana; Gómez, Patricia; Simões, Nuno

    2015-01-19

    Marine sponges usually constitute the most diverse group of the benthic community in coral reefs. Although they are reasonably well studied at the northern Gulf of Mexico (GMx), the southern GMx is poorly known and lacks records from many major reef systems that lie off the Mexican coast. The present taxonomic study is the first sponge account from Alacranes reef, the largest coral reef system in the GMx, and from the shallow reef banks of Sisal, both in the northwest Yucatan Peninsula. The 19 species herein described represent the first sponge fauna records from these reefs. Among these, seven species represent new record for GMx: Erylus formosus, Cliona flavifodina, Spirastrella aff. mollis, Strongylacidon bermuda, Topsentia bahamensis, Agelas tubulata and Chelonaplysilla aff. erecta. Twelve species are new records for the Southern GMx: Erylus trisphaerus, Cliona amplicavata, Chondrilla caribensis, Halichondria lutea, Hymeniacidon caerulea, Axinella corrugata, Dragmacidon reticulatum, Chalinula molitba, Amphimedon caribica, A. complanata, Hyatella cavernosa and Dysidea variabilis. Additionally, a redescription of Erylus trisphaerus is presented which had not been reviewed since its original description in 1953 off Western Florida, except that it was listed for north La Habana, Cuba. 

  6. Bioactive alkaloids from marine sponges

    Digital Repository Service at National Institute of Oceanography (India)

    Singh, K.S.; Majik, M.S.

    of the molecules obtained from marine sponges have entered in market, while many are under clinical and preclinical trials. There is convincing report about the role of ecology on the production of these valuable secondary metabolites by marine organisms including...

  7. Variability in reef connectivity in the Coral Triangle

    Science.gov (United States)

    Thompson, D. M.; Kleypas, J. A.; Castruccio, F. S.; Watson, J. R.; Curchitser, E. N.

    2015-12-01

    The Coral Triangle (CT) is not only the global center of marine biodiversity, it also supports the livelihoods of millions of people. Unfortunately, it is also considered the most threatened of all reef regions, with rising temperature and coral bleaching already taking a toll. Reproductive connectivity between reefs plays a critical role in the reef's capacity to recover after such disturbances. Thus, oceanographic modeling efforts to understand patterns of reef connectivity are essential to the effective design of a network of Marine Protected Areas (MPAs) to conserve marine ecosystems in the Coral Triangle. Here, we combine a Regional Ocean Modeling System developed for the Coral Triangle (CT-ROMS) with a Lagrangian particle tracking tool (TRACMASS) to investigate the probability of coral larval transport between reefs. A 47-year hindcast simulation (1960-2006) was used to investigate the variability in larval transport of a broadcasting coral following mass spawning events in April and September. Potential connectivity between reefs was highly variable and stochastic from year to year, emphasizing the importance of decadal or longer simulations in identifying connectivity patterns, key source and sink regions, and thus marine management targets for MPAs. The influence of temperature on realized connectivity (future work) may add further uncertainty to year-to-year patterns of connectivity between reefs. Nonetheless, the potential connectivity results we present here suggest that although reefs in this region are primarily self-seeded, rare long-distance dispersal may promote recovery and genetic exchange between reefs in the region. The spatial pattern of "subpopulations" based solely on the physical drivers of connectivity between reefs closely match regional patterns of biodiversity, suggesting that physical barriers to larval dispersal may be a key driver of reef biodiversity. Finally, 21st Century simulations driven by the Community Earth System Model (CESM

  8. 大堡礁和托雷斯海峡航路新变化%Latest Changes in Great Barrier Reef and Torres Strait Navigation

    Institute of Scientific and Technical Information of China (English)

    许永强

    2007-01-01

    大堡礁(Great Barrier Reef)位于澳大利亚东北部昆士兰州海岸外,从北部的Cape York(1041S 14232E),向东南延伸到Lady Elliot Island(2407S 15243E),绵延约两千多公里,是世界上最大的珊瑚礁群。托雷斯海峡(TorresStrait)位于约克角半岛和巴布亚新几内亚之间.连接珊瑚海和阿拉弗拉海。由于地理条件的特殊性,

  9. Bivalve reefs from the Upper Triassic of Iran

    Directory of Open Access Journals (Sweden)

    Franz T. Fürsich

    2005-10-01

    Full Text Available In the Upper Triassic Nayband Formation of east-central Iran, bivalves repeatedly form small patch reefson a mid to outer mixed carbonate-siliciclastic ramp in close stratigraphic neighbourhood to coral and coralspongereefs. In contrast to other Triassic-Jurassic bivalve-dominated patch reefs, the bivalve reefs of theNayband Formation are characterized by a comparatively high diversity of framebuilding taxa. These includetaxa from three different families, i.e., the ostreids Umbostrea emamii, U. iranica and U.? aff. parasiticum, the prospondylids Newaagia stocklini and Persia monstrosa, and the plicatulids Eoplicatula parvadehensis and Pseudoplacunopsis asymmetrica. The bivalve reef constructors may have had a competitive advantage over coral and calcareous sponges in environments characterized by a higher degree of turbidity and/or higher nutrient contents.

  10. A Study of Devonian Reefs from Southern China

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Three Devonian reefs (bioherms) from Yunnan and Guangxi, southern China, are studied in detail.Six microfacies types are differentiated. Colonial rugose corals (Columnaria, Disphyllum and Hexagonaria) at Qujing, tabulate corals (Alveolites) with massive stromatoporoids (Actinostroma and Stromatoporella) and sponges at Panxi, and massive stromatoporoids (Actinostroma, Trupetostroma and Stromatoporella) at Yangshuo belong to the most important reef builders. All the three reefs studied clearly reveal a successive evolution history. They developed on the carbonate banks, shallow carbonate platforms and platform margins in the Late Givetian and terminated in the Frasnian due to sea-level falls related to local uplifts of platforms. This coincides with a eustatic fall of relative sea level at the Frasnian/Famennian transition.

  11. Natural Diet of Coral-Excavating Sponges Consists Mainly of Dissolved Organic Carbon (DOC)

    Science.gov (United States)

    Mueller, Benjamin; de Goeij, Jasper M.; Vermeij, Mark J. A.; Mulders, Yannick; van der Ent, Esther; Ribes, Marta; van Duyl, Fleur C.

    2014-01-01

    Coral-excavating sponges are the most important bioeroders on Caribbean reefs and increase in abundance throughout the region. This increase is commonly attributed to a concomitant increase in food availability due to eutrophication and pollution. We therefore investigated the uptake of organic matter by the two coral-excavating sponges Siphonodictyon sp. and Cliona delitrix and tested whether they are capable of consuming dissolved organic carbon (DOC) as part of their diet. A device for simultaneous sampling of water inhaled and exhaled by the sponges was used to directly measure the removal of DOC and bacteria in situ. During a single passage through their filtration system 14% and 13% respectively of the total organic carbon (TOC) in the inhaled water was removed by the sponges. 82% (Siphonodictyon sp.; mean±SD; 13±17 μmol L−1) and 76% (C. delitrix; 10±12 μmol L−1) of the carbon removed was taken up in form of DOC, whereas the remainder was taken up in the form of particulate organic carbon (POC; bacteria and phytoplankton) despite high bacteria retention efficiency (72±15% and 87±10%). Siphonodictyon sp. and C. delitrix removed DOC at a rate of 461±773 and 354±562 μmol C h−1 respectively. Bacteria removal was 1.8±0.9×1010 and 1.7±0.6×1010 cells h−1, which equals a carbon uptake of 46.0±21.2 and 42.5±14.0 μmol C h−1 respectively. Therefore, DOC represents 83 and 81% of the TOC taken up by Siphonodictyon sp. and C. delitrix per hour. These findings suggest that similar to various reef sponges coral-excavating sponges also mainly rely on DOC to meet their carbon demand. We hypothesize that excavating sponges may also benefit from an increasing production of more labile algal-derived DOC (as compared to coral-derived DOC) on reefs as a result of the ongoing coral-algal phase shift. PMID:24587253

  12. Reef odor: a wake up call for navigation in reef fish larvae.

    Directory of Open Access Journals (Sweden)

    Claire B Paris

    Full Text Available The behavior of reef fish larvae, equipped with a complex toolbox of sensory apparatus, has become a central issue in understanding their transport in the ocean. In this study pelagic reef fish larvae were monitored using an unmanned open-ocean tracking device, the drifting in-situ chamber (DISC, deployed sequentially in oceanic waters and in reef-born odor plumes propagating offshore with the ebb flow. A total of 83 larvae of two taxonomic groups of the families Pomacentridae and Apogonidae were observed in the two water masses around One Tree Island, southern Great Barrier Reef. The study provides the first in-situ evidence that pelagic reef fish larvae discriminate reef odor and respond by changing their swimming speed and direction. It concludes that reef fish larvae smell the presence of coral reefs from several kilometers offshore and this odor is a primary component of their navigational system and activates other directional sensory cues. The two families expressed differences in their response that could be adapted to maintain a position close to the reef. In particular, damselfish larvae embedded in the odor plume detected the location of the reef crest and swam westward and parallel to shore on both sides of the island. This study underlines the critical importance of in situ Lagrangian observations to provide unique information on larval fish behavioral decisions. From an ecological perspective the central role of olfactory signals in marine population connectivity raises concerns about the effects of pollution and acidification of oceans, which can alter chemical cues and olfactory responses.

  13. Martian 'Kitchen Sponge'

    Science.gov (United States)

    2000-01-01

    This picture is illuminated by sunlight from the upper left. It shows a tiny 1 kilometer by 1 kilometer (0.62 x 0.62 mile) area of the martian north polar residual ice cap as it appears in summertime.The surface looks somewhat like that of a kitchen sponge--it is flat on top and has many closely-spaced pits of no more than 2 meters (5.5 ft) depth. The upper, flat surface in this image has a medium-gray tone, while the pit interiors are darker gray. Each pit is generally 10 to 20 meters (33-66 feet) across. The pits probably form as water ice sublimes--going directly from solid to vapor--during the martian northern summer seasons. The pits probably develop over thousands of years. This texture is very different from what is seen in the south polar cap, where considerably larger and more circular depressions are found to resemble slices of swiss cheese rather than a kitchen sponge.This picture was taken by the Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) during northern summer on March 8, 1999. It was one of the very last 'calibration' images taken before the start of the Mapping Phase of the MGS mission, and its goal was to determine whether the MOC was properly focused. The crisp appearance of the edges of the pits confirmed that the instrument was focused and ready for its 1-Mars Year mapping mission. The scene is located near 86.9oN, 207.5oW, and has a resolution of about 1.4 meters (4 ft, 7 in) per pixel.Malin Space Science Systems and the California Institute of Technology built the MOC using spare hardware from the Mars Observer mission. MSSS operates the camera from its facilities in San Diego, CA. The Jet Propulsion Laboratory's Mars Surveyor Operations Project operates the Mars Global Surveyor spacecraft with its industrial partner, Lockheed Martin Astronautics, from facilities in Pasadena, CA and Denver, CO.

  14. Early Silurian (Aeronian East Point Coral Patch Reefs of Anticosti Island, Eastern Canada: First Reef Recovery from the Ordovician/Silurian Mass Extinction in Eastern Laurentia

    Directory of Open Access Journals (Sweden)

    Jisuo Jin

    2012-05-01

    Full Text Available An extensive late Aeronian patch reef swarm outcrops for 60–70 km on Anticosti Island, eastern Canada, located in the inner to mid-shelf area of a prominent tropical carbonate platform of southeastern Laurentia, at 20°–25° S paleolatitude of the southern typhoon belt. This complex, described here for the first time, includes more than 100 patch reefs, up to 60–80 m in diameter and 10 m high. Reefs are exposed three-dimensionally on present-day tidal flats, as well as inland along roads and rivers. Down the gentle 1°–2° paleoslope, the reefs grade into coral-sponge biostromes, and westerly they grade into inter-reef or deeper ‘crinoidal meadow’ facies. The reef builders were dominantly tabulate and rugose corals, with lesser stromatoporoids. Other components include crinoids, brachiopods, green algae (especially paleoporellids, and encrusting cyanobacteria: reefs display some of the earliest known symbiotic intergrowths of corals and stromatoporoids. Reefs were variably built on a base of crinoidal grainstones, meadows of baffling tabulate corals, brachiopod shells, or chlorophytes. These reefs mark an early phase of reef recovery after a prominent reef gap of 5–6 million years following the Ordovician/Silurian mass extinction events. The reefs feature a maximal diversity of calcifying cyanobacteria, corals and stromatoporoids, but low diversity of brachiopods, nautiloids and crinoids. Following the North American Stratigraphic Code, we define herein the Menier Formation, encompassing the lower two members of the existing Jupiter Formation.

  15. Coral reefs - Specialized ecosystems

    Digital Repository Service at National Institute of Oceanography (India)

    Wafar, M.V.M.

    This paper discusses briefly some aspects that characterize and differentiate coral reef ecosystems from other tropical marine ecosystems. A brief account on the resources that are extractable from coral reefs, their susceptibility to natural...

  16. NMFS Reef Survey Forms

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Reef Environmental Survey Project (REEF) mission to educate and enlist divers in the conservation of marine habitats is accomplished primarily through its Fish...

  17. ReefSAM - Reef Sedimentary Accretion Model: A new 3D coral reef evolution model/simulator

    Science.gov (United States)

    Barrett, Samuel; Webster, Jody

    2013-04-01

    Coral reefs show characteristic morphological patterns (e.g. coral dominated margins with detrital carbonate dominated lagoons/back-reef) and temporal development (e.g. Hopley et al. 2007). While the processes which lead to predictable patterns on a range of scales have been discussed qualitatively, a full quantitative understanding of the range of processes and parameters involved requires modelling. Previous attempts to model complex Holocene reef systems (i.e. One Tree Reef, GBR - Barrett and Webster 2012) using a carbonate stratigraphic forward model (Carbonate3D - Warrlich et al. 2002) identified a number of important but unsimulated processes and potential model improvements. ReefSAM has been written from scratch in Matlab using these findings and experiences from using Carbonate3D. It simulates coralgal accretion and carbonate sand production and transport. Specific improvements include: 1. a more complex hydrodynamic model based on wave refraction and incorporating vertical (depth) and lateral (substrate dependent) variations in transport energy and erosion. 2. a complex reef growth model incorporating depth, wave energy/turbidity and substrate composition. 3. Paleo-water depth, paleo-wave energy and bio-zone (combination of paleo-water depth and wave energy) model outputs allowing coralgal habitat changes through time and space to be simulated and compared to observational data. The model is compared to the well studied One Tree Reef - tests similar to those undertaken in Barrett and Webster 2012 with Carbonate3D are presented. Model development coincides with plans for further intensive drilling at One Tree Reef (mid 2013) providing an opportunity to test the model predictively. The model is still in active development. References: Barrett, S.J., Webster, J.M.,2012. Holocene evolution of the Great Barrier Reef: Insights from 3D numerical modelling. Sedimentary Geology 265-266, 56-71. Warrlich, G.M.D., Waltham, D.A., Bosence D.W.J., 2002. Quantifying the

  18. DEMONSTRATION BULLETIN: FORAGER™ SPONGE TECHNOLOGY - DYNAPHORE, INC.

    Science.gov (United States)

    The Forager™ Sponge is an open-celled cellulose sponge incorporating an amine-containing chelating polymer that has selective affinity for dissolved heavy metals in both cationic and anionic states. The Forager™ Sponge technology can be utilized to remove and concentrate heavy me...

  19. Antimicrobial activities of secondary metabolites and phylogenetic study of sponge endosymbiotic bacteria, Bacillus sp. at Agatti Island, Lakshadweep Archipelago

    Directory of Open Access Journals (Sweden)

    Gopi Mohan

    2016-09-01

    Full Text Available Twenty-one species of sponges were recorded under the class of Demospongiae and Calcareous sponges of which 19 species were new to Agatti reef. A total of 113 Sponge endosymbiotic bacterial strains were isolated from twenty-one species of sponges and screened for antimicrobial activity. Five bacterial strains of sponge endosymbiotic bacteria (SEB namely SEB32, SEB33, SEB36, SEB43 and SEB51 showed antimicrobial activity against virulent marine fish pathogens such as Vibrio alginolyticus, Vibrio vulnificus, Vibrio parahaemolyticus, Aeromonas salmonicida, Flavobacterium sp., Edwardsiella sp., Proteus mirabilis and Citrobacter brackii. The secondary metabolites produced by SEB32 from sponge Dysidea fragilis (Montagu, 1818 [48] was selected with broad range of antibacterial activity and subjected for production, characterization by series of chromatography techniques and spectroscopic methods. Based on the results of FT-IR and mass spectrometry, the active molecule was tentatively predicted as “Pyrrol” and the structure is Pyrrolo[1,2-a]pyrazine-1,4-dione, hexahydro- with molecular formula of C7H10N2O2. The LC50 of active molecule was 31 μg/ml and molecular weight of the metabolites was 154. The potential strain SEB32 was identified by gene sequence (GenBank Accession number JX985748 and identified as Bacillus sp. from GenBank database.

  20. Impact of Global Warming on Coral Reefs

    Directory of Open Access Journals (Sweden)

    Sirilak CHUMKIEW

    2011-06-01

    Full Text Available In this paper, we review coral reef responses to climate variability and discuss the possible mechanisms by which climate impacts the coral reef ecosystem. Effects of oceanographic variables such as sea temperature, turbulence, salinity, and nutrients on the coral reef are discussed in terms of their influence on coral growth, reproduction, mortality, acclimation and adaptation. Organisms tend to be limited to specific thermal ranges with experimental findings showing that sufficient oxygen supply by ventilation and circulation only occurs within these ranges. Indirect effects of climate change on the food web are also discussed. Further integrative studies are required to improve our knowledge of the processes linking coral reef responses to future climate change scenarios.Graphical abstract► Incidence of coral reef bleaching on a worldwide scale: location of bleaching reports during 1979 - 2010. Maps are from ReefBase, www.reefbase.org: 1, Arabian Gulf (United Arab Emirates, Qatar, Iran; 2, Red Sea; 3, east Africa; 4, southern Africa (Mozambique, South Africa; 5, Madagascar; 6, Mauritius, Reunion; 7, Seychelles; 8, Chagos; 9, Maldives; 10, Sri Lanka/southern India; 11, Andaman Sea (Andamans, Thailand, Malaysia; 12, South China Sea (Vietnam, Paracel Islands; 13, Philippines; 14, Indonesia; 15, western Australia; 16, Great Barrier Reef; 17, Ryukyu Islands; 18, Mariana Islands; 19, Palau; 20, Papua New Guinea, Vanuatu; 21, Fiji; 22, Samoa; 23, French Polynesia (including Moorea; 24, Hawaiian Islands; 25, Easter Island; 26, Galapagos Islands; 27, equatorial eastern Pacific (Costa Rica, Cocos Island, Panama´, Colombia, Ecuador; 28, subtropical eastern Pacific (Mexico; 29, Mesoamerican reef system (Mexico, Belize, Honduras, Nicaragua; 30, Greater Antilles (Cuba, Haiti, Dominican Republic, Puerto Rico, Virgin Islands; 31, Bahamas, Florida; 32, Bermuda; 33, Lesser Antilles; 34, Curaçao, Aruba, Bonaire, Los Roques; 35, Brazil.

  1. Maintenance of fish diversity on disturbed coral reefs

    Science.gov (United States)

    Wilson, S. K.; Dolman, A. M.; Cheal, A. J.; Emslie, M. J.; Pratchett, M. S.; Sweatman, H. P. A.

    2009-03-01

    Habitat perturbations play a major role in shaping community structure; however, the elements of disturbance-related habitat change that affect diversity are not always apparent. This study examined the effects of habitat disturbances on species richness of coral reef fish assemblages using annual surveys of habitat and 210 fish species from 10 reefs on the Great Barrier Reef (GBR). Over a period of 11 years, major disturbances, including localised outbreaks of crown-of-thorns sea star ( Acanthaster planci), severe storms or coral bleaching, resulted in coral decline of 46-96% in all the 10 reefs. Despite declines in coral cover, structural complexity of the reef framework was retained on five and species richness of coral reef fishes maintained on nine of the disturbed reefs. Extensive loss of coral resulted in localised declines of highly specialised coral-dependent species, but this loss of diversity was more than compensated for by increases in the number of species that feed on the epilithic algal matrix (EAM). A unimodal relationship between areal coral cover and species richness indicated species richness was greatest at approximately 20% coral cover declining by 3-4 species (6-8% of average richness) at higher and lower coral cover. Results revealed that declines in coral cover on reefs may have limited short-term impact on the diversity of coral reef fishes, though there may be fundamental changes in the community structure of fishes.

  2. Do tabular corals constitute keystone structures for fishes on coral reefs?

    Science.gov (United States)

    Kerry, J. T.; Bellwood, D. R.

    2015-03-01

    This study examined the changes in community composition of reef fishes by experimentally manipulating the availability of shelter provided by tabular structures on a mid-shelf reef on the Great Barrier Reef. At locations where access to tabular corals ( Acropora hyacinthus and Acropora cytherea) was excluded, a rapid and sustained reduction in the abundance of large reef fishes occurred. At locations where tabular structure was added, the abundance and diversity of large reef fishes increased and the abundance of small reef fishes tended to decrease, although over a longer time frame. Based on their response to changes in the availability of tabular structures, nine families of large reef fishes were separated into three categories; designated as obligate, facultative or non-structure users. This relationship may relate to the particular ecological demands of each family, including avoidance of predation and ultraviolet radiation, access to feeding areas and reef navigation. This study highlights the importance of tabular corals for large reef fishes in shallow reef environments and provides a possible mechanism for local changes in the abundance of reef fishes following loss of structural complexity on coral reefs. Keystone structures have a distinct structure and disproportionate effect on their ecosystem relative to their abundance, as such the result of this study suggests tabular corals may constitute keystone structures on shallow coral reefs.

  3. Distribution of fish in seagrass, mangroves and coral reefs: life-stage dependent habitat use in Honduras

    OpenAIRE

    2012-01-01

    Many coral reef fish exhibit habitat partitioning throughout their lifetimes. Such patterns are evident in the Caribbean where research has been predominantly conducted in the Eastern region. This work addressed the paucity of data regarding Honduran reef fish distribution in three habitat types (seagrass, mangroves, and coral reefs), by surveying fish on the islands of Utila and Cayos Cochinos off the coast of Honduras (part of the Mesoamerican barrier reef). During July 2nd - Aug 27th 2007 ...

  4. Svenzea, a new genus of Dictyonellidae (Porifera: Demospongiae) from tropical reef environments, with description of two new species

    NARCIS (Netherlands)

    Alvarez, Belinda; Soest, van Rob W.M.; Rützler, Klaus

    2002-01-01

    The new genus Svenzea is created to group three sponge species from tropical reef environments of the Caribbean Sea and Indonesia: Pseudaxinella (?) zeai Alvarez, Van Soest & Rützler, Svenzea cristinae n. sp. and S. devoogdae n. sp. The genus shows affinities with members of both Halichondrida and H

  5. Reassessing the trophic role of reef sharks as apex predators on coral reefs

    Science.gov (United States)

    Frisch, Ashley J.; Ireland, Matthew; Rizzari, Justin R.; Lönnstedt, Oona M.; Magnenat, Katalin A.; Mirbach, Christopher E.; Hobbs, Jean-Paul A.

    2016-06-01

    Apex predators often have strong top-down effects on ecosystem components and are therefore a priority for conservation and management. Due to their large size and conspicuous predatory behaviour, reef sharks are typically assumed to be apex predators, but their functional role is yet to be confirmed. In this study, we used stomach contents and stable isotopes to estimate diet, trophic position and carbon sources for three common species of reef shark ( Triaenodon obesus, Carcharhinus melanopterus and C. amblyrhynchos) from the Great Barrier Reef (Australia) and evaluated their assumed functional role as apex predators by qualitative and quantitative comparisons with other sharks and large predatory fishes. We found that reef sharks do not occupy the apex of coral reef food chains, but instead have functional roles similar to those of large predatory fishes such as snappers, emperors and groupers, which are typically regarded as high-level mesopredators. We hypothesise that a degree of functional redundancy exists within this guild of predators, potentially explaining why shark-induced trophic cascades are rare or subtle in coral reef ecosystems. We also found that reef sharks participate in multiple food webs (pelagic and benthic) and are sustained by multiple sources of primary production. We conclude that large conspicuous predators, be they elasmobranchs or any other taxon, should not axiomatically be regarded as apex predators without thorough analysis of their diet. In the case of reef sharks, our dietary analyses suggest they should be reassigned to an alternative trophic group such as high-level mesopredators. This change will facilitate improved understanding of how reef communities function and how removal of predators (e.g., via fishing) might affect ecosystem properties.

  6. Genomic insights into the marine sponge microbiome.

    Science.gov (United States)

    Hentschel, Ute; Piel, Jörn; Degnan, Sandie M; Taylor, Michael W

    2012-09-01

    Marine sponges (phylum Porifera) often contain dense and diverse microbial communities, which can constitute up to 35% of the sponge biomass. The genome of one sponge, Amphimedon queenslandica, was recently sequenced, and this has provided new insights into the origins of animal evolution. Complementary efforts to sequence the genomes of uncultivated sponge symbionts have yielded the first glimpse of how these intimate partnerships are formed. The remarkable microbial and chemical diversity of the sponge-microorganism association, coupled with its postulated antiquity, makes sponges important model systems for the study of metazoan host-microorganism interactions, and their evolution, as well as for enabling access to biotechnologically important symbiont-derived natural products. In this Review, we discuss our current understanding of the interactions between marine sponges and their microbial symbiotic consortia, and highlight recent insights into these relationships from genomic studies.

  7. Sponge Hybridomas: Applications and Implications

    NARCIS (Netherlands)

    Pomponi, S.A.; Jevitt, A.; Patel, J.; Diaz, M.C.

    2013-01-01

    Many sponge-derived natural products with applications to human health have been discovered over the past three decades. In vitro production has been proposed as one biological alternative to ensure adequate supply of marine natural products for preclinical and clinical development of drugs. Althoug

  8. Cardicola beveridgei n. sp. (Digenea: Aporocotylidae) from the mangrove jack, Lutjanus argentimaculatus (Perciformes: Lutjanidae), and C. bullardi n. sp. from the Australian spotted mackerel, Scomberomorus munroi (Perciformes: Scombridae), from the northern Great Barrier Reef.

    Science.gov (United States)

    Nolan, Matthew J; Miller, Terrence L; Cutmore, Scott C; Cantacessi, Cinzia; Cribb, Thomas H

    2014-10-01

    Cardicola Short, 1953 is a genus of the Aporocotylidae Odhner, 1912 (Digenea), with 25 currently recognised species described from 32 species of Perciformes and Mugiliformes fishes around the world, including eight species from the Great Barrier Reef. Here, we describe two new species from this region, namely Cardicola beveridgei n. sp. from the ventricle and atrium of the mangrove jack, Lutjanus argentimaculatus (Forsskål) (Perciformes: Lutjanidae), and Cardicola bullardi n. sp. from the ventricle of the Australian spotted mackerel, Scomberomorus munroi Collette & Russo (Perciformes: Scombridae), from off Lizard Island, Queensland, Australia. These two new species are most easily distinguished from the 25 current members of Cardicola in having the combination of i) a spinous oral sucker, ii) an anteriorly intercaecal ovary, iii) a uterus that extends anteriorly from the oötype, iv) the number of spines per ventrolateral transverse row, and in v) body size and the length/width ratio, vi) the oesophagus and caecal length(s) relative to body total length, vii) the length of the posterior caeca relative to the anterior pair, viii) the testis length/width ratio and its total size relative to that of the body, ix) the postovarian field as a percentage of body length, and x) egg size. In addition, C. beveridgei n. sp. is further differentiated by possessing a female genital pore that opens anterodextral to the male pore while C. bullardi n. sp. differs further in possessing a testis that is almost entirely intercaecal and does not extend anteriorly to the level of the intestinal bifurcation. Employing genetic analysis of ITS2 rDNA sequence data, representing these species and a further 13 recognised and three putative species of Cardicola, we were able to unequivocally confirm these specimens as distinct (9-22% different over 420 nucleotide positions). Distance analysis of ITS2 showed that i) species of Cardicola from the Siganidae formed a monophyletic clade, to the

  9. Global diversity of sponges (Porifera.

    Directory of Open Access Journals (Sweden)

    Rob W M Van Soest

    Full Text Available With the completion of a single unified classification, the Systema Porifera (SP and subsequent development of an online species database, the World Porifera Database (WPD, we are now equipped to provide a first comprehensive picture of the global biodiversity of the Porifera. An introductory overview of the four classes of the Porifera is followed by a description of the structure of our main source of data for this paper, the WPD. From this we extracted numbers of all 'known' sponges to date: the number of valid Recent sponges is established at 8,553, with the vast majority, 83%, belonging to the class Demospongiae. We also mapped for the first time the species richness of a comprehensive set of marine ecoregions of the world, data also extracted from the WPD. Perhaps not surprisingly, these distributions appear to show a strong bias towards collection and taxonomy efforts. Only when species richness is accumulated into large marine realms does a pattern emerge that is also recognized in many other marine animal groups: high numbers in tropical regions, lesser numbers in the colder parts of the world oceans. Preliminary similarity analysis of a matrix of species and marine ecoregions extracted from the WPD failed to yield a consistent hierarchical pattern of ecoregions into marine provinces. Global sponge diversity information is mostly generated in regional projects and resources: results obtained demonstrate that regional approaches to analytical biogeography are at present more likely to achieve insights into the biogeographic history of sponges than a global perspective, which appears currently too ambitious. We also review information on invasive sponges that might well have some influence on distribution patterns of the future.

  10. Global diversity of sponges (Porifera).

    Science.gov (United States)

    Van Soest, Rob W M; Boury-Esnault, Nicole; Vacelet, Jean; Dohrmann, Martin; Erpenbeck, Dirk; De Voogd, Nicole J; Santodomingo, Nadiezhda; Vanhoorne, Bart; Kelly, Michelle; Hooper, John N A

    2012-01-01

    With the completion of a single unified classification, the Systema Porifera (SP) and subsequent development of an online species database, the World Porifera Database (WPD), we are now equipped to provide a first comprehensive picture of the global biodiversity of the Porifera. An introductory overview of the four classes of the Porifera is followed by a description of the structure of our main source of data for this paper, the WPD. From this we extracted numbers of all 'known' sponges to date: the number of valid Recent sponges is established at 8,553, with the vast majority, 83%, belonging to the class Demospongiae. We also mapped for the first time the species richness of a comprehensive set of marine ecoregions of the world, data also extracted from the WPD. Perhaps not surprisingly, these distributions appear to show a strong bias towards collection and taxonomy efforts. Only when species richness is accumulated into large marine realms does a pattern emerge that is also recognized in many other marine animal groups: high numbers in tropical regions, lesser numbers in the colder parts of the world oceans. Preliminary similarity analysis of a matrix of species and marine ecoregions extracted from the WPD failed to yield a consistent hierarchical pattern of ecoregions into marine provinces. Global sponge diversity information is mostly generated in regional projects and resources: results obtained demonstrate that regional approaches to analytical biogeography are at present more likely to achieve insights into the biogeographic history of sponges than a global perspective, which appears currently too ambitious. We also review information on invasive sponges that might well have some influence on distribution patterns of the future.

  11. Marine Sponge Dysidea herbacea revisited: Another Brominated Diphenyl Ether

    Directory of Open Access Journals (Sweden)

    Bruce F. Bowden

    2005-03-01

    Full Text Available Abstract: A pentabrominated phenolic diphenyl ether (1 that has not previously been reported from marine sources has been isolated from Dysidea herbacea collected at Pelorus Island, Great Barrier Reef, Australia. The structure was determined by comparison of NMR data with those of known structurally-related metabolites. NMR spectral assignments for (1 are discussed in context with those of three previously reported isomeric pentabrominated phenolic diphenyl ethers.

  12. Insight into the microbial community structure of a Norwegian deep-water coral reef environment

    Science.gov (United States)

    Jensen, Sigmund; Neufeld, Josh D.; Birkeland, Nils-Kåre; Hovland, Martin; Murrell, J. Colin

    2008-11-01

    Deep-water coral reefs support rich biological communities below the photic zone of fjords and continental shelves around the world. In this environment, life is enclosed within cold permanent darkness, in stark contrast to life in tropical coral reefs. We collected samples of water, sediment and a Desmacidon sp. sponge from a deep-water coral reef off the coast of Norway, and characterised bacterial communities with focus on primary producers in the dark. Following DNA extraction, PCR amplification and 16S rRNA gene library sequencing, bioinformatic analyses demonstrated significant differences between bacterial communities associated with the three samples. The finding that 50% of the clones showed cultured bacteria reflects the novel and uncharacterised diversity associated with these deep-water coral reefs. A total of 13 bacterial phyla were identified. Acidobacteria dominated the sponge library and Proteobacteria dominated the bacterioplankton and sediment libraries. Phylogenetic analysis revealed a possible new clade of sponge-associated Acidobacteria, which includes representatives from the Desmacidon sp. (Norway), Rhopaloeides odorabile (Australia) and Discodermia dissoluta (Curacao). Furthermore, the targeted recovery of a particulate methane monooxygenase ( pmoA) gene from the Desmacidon sp. DNA extract suggests that as yet uncultivated type I methanotrophs may mediate methane oxidation in this deep-water coral reef. Methanotrophs were not identified in the 16S rRNA gene libraries, but the presence of a high number (8%) of clones related to sulfide-, nitrite- and iodide-oxidising bacteria suggests chemosynthesis to be involved with maintenance of the deep-water coral reef ecosystem.

  13. Sediments and herbivory as sensitive indicators of coral reef degradation

    Directory of Open Access Journals (Sweden)

    Christopher H. R. Goatley

    2016-03-01

    Full Text Available Around the world, the decreasing health of coral reef ecosystems has highlighted the need to better understand the processes of reef degradation. The development of more sensitive tools, which complement traditional methods of monitoring coral reefs, may reveal earlier signs of degradation and provide an opportunity for pre-emptive responses. We identify new, sensitive metrics of ecosystem processes and benthic composition that allow us to quantify subtle, yet destabilizing, changes in the ecosystem state of an inshore coral reef on the Great Barrier Reef. Following severe climatic disturbances over the period 2011-2012, the herbivorous reef fish community of the reef did not change in terms of biomass or functional groups present. However, fish-based ecosystem processes showed marked changes, with grazing by herbivorous fishes declining by over 90%. On the benthos, algal turf lengths in the epilithic algal matrix increased more than 50% while benthic sediment loads increased 37-fold. The profound changes in processes, despite no visible change in ecosystem state, i.e., no shift to macroalgal dominance, suggest that although the reef has not undergone a visible regime-shift, the ecosystem is highly unstable, and may sit on an ecological knife-edge. Sensitive, process-based metrics of ecosystem state, such as grazing or browsing rates thus appear to be effective in detecting subtle signs of degradation and may be critical in identifying ecosystems at risk for the future.

  14. Connectivity in a Red Sea Sponge across an Environmental Gradient

    KAUST Repository

    Giles, Emily C.

    2014-08-01

    While geographic distance is a variable often used to explain population genetic differentiation, dynamic processes leading to stochastic population structure are more likely driving factors. The following thesis presents the population structure of a common reef sponge, Stylissa carteri, and yields hypotheses on the influence of environmental heterogeneity as a predictor of the observed population structure. This project represents the largest population genetics study thus conducted in the Red Sea and also includes the first population genetics data gathered for sites off the coast of Sudan and Soccotra. The study herein presented includes both a large scale (36 reef sites covering over 1000km of coastline) and small-scale (16 transects of 50m each) analysis of gene flow in a benthic dwelling organism. The variable effect of geography and environmental conditions on S. carteri population structure is assessed using a seascape genetics approach. Environmental factors from a nine-year dataset accessed from the NASA Giovanni website including chlorophyll a, sea surface temperature, dissolved and particulate organic matter for both the annual and winter temporal scale were considered.

  15. Octocoral Species Assembly and Coexistence in Caribbean Coral Reefs.

    Directory of Open Access Journals (Sweden)

    Johanna Velásquez

    Full Text Available What are the determinant factors of community assemblies in the most diverse ecosystem in the ocean? Coral reefs can be divided in continental (i.e., reefs that develop on the continental shelf, including siliciclastic reefs and oceanic (i.e., far off the continental shelf, usually on volcanic substratum; whether or not these habitat differences impose community-wide ecological divergence or species exclusion/coexistence with evolutionary consequences, is unknown.Studying Caribbean octocorals as model system, we determined the phylogenetic community structure in a coral reef community, making emphasis on species coexistence evidenced on trait evolution and environmental feedbacks. Forty-nine species represented in five families constituted the species pool from which a phylogenetic tree was reconstructed using mtDNA. We included data from 11 localities in the Western Caribbean (Colombia including most reef types. To test diversity-environment and phenotype-environment relationships, phylogenetic community structure and trait evolution we carried out comparative analyses implementing ecological and evolutionary approaches.Phylogenetic inferences suggest clustering of oceanic reefs (e.g., atolls contrasting with phylogenetic overdispersion of continental reefs (e.g., reefs banks. Additionally, atolls and barrier reefs had the highest species diversity (Shannon index whereas phylogenetic diversity was higher in reef banks. The discriminant component analysis supported this differentiation between oceanic and continental reefs, where continental octocoral species tend to have greater calyx apertures, thicker branches, prominent calyces and azooxanthellate species. This analysis also indicated a clear separation between the slope and the remaining habitats, caused by the presence or absence of Symbiodinium. K statistic analysis showed that this trait is conserved as well as the branch shape.There was strong octocoral community structure with opposite

  16. Metabolite variability in Caribbean sponges of the genus Aplysina

    Directory of Open Access Journals (Sweden)

    Monica Puyana

    2015-12-01

    Full Text Available Abstract Sponges of the genus Aplysina are among the most common benthic animals on reefs of the Caribbean, and display a wide diversity of morphologies and colors. Tissues of these sponges lack mineralized skeletal elements, but contain a dense spongin skeleton and an elaborate series of tyrosine-derived brominated alkaloid metabolites that function as chemical defenses against predatory fishes, but do not deter some molluscs. Among the earliest marine natural products to be isolated and identified, these metabolites remain the subject of intense interest for commercial applications because of their activities in various bioassays. In this study, crude organic extracts from 253 sponges from ten morphotypes among the species Aplysina archeri,Aplysina bathyphila,Aplysina cauliformis,Aplysina fistularis,Aplysina fulva,A. insularis, and Aplysina lacunosa were analyzed by liquid chromatography–mass spectrometry (LC–MS to characterize the pattern of intra- and interspecific variabilities of the twelve major secondary metabolites present therein. Patterns across Aplysina species ranged from the presence of mostly a single compound, fistularin-3, in A. cauliformis, to a mixture of metabolites present in the other species. These patterns did not support the biotransformation hypothesis for conversion of large molecular weight molecules to smaller ones for the purpose of enhanced defense. Discriminant analyses of the metabolite data revealed strong taxonomic patterns that support a close relationship between A. fistularis,A. fulva and A. insularis, while two morphotypes of A. cauliformis (lilac creeping vs. brown erect were very distinct. Two morphotypes of A. lacunosa, one with hard tissue consistency, the other soft and thought to belong to a separate genus (Suberea, had very similar chemical profiles. Of the twelve metabolites found among samples, variation in fistularin-3, dideoxyfistularin-3 and hydroxyaerothionin provided the most predictive

  17. Cell kinetics during regeneration in the sponge Halisarca caerulea: how local is the response to tissue damage?

    Directory of Open Access Journals (Sweden)

    Brittany E. Alexander

    2015-03-01

    Full Text Available Sponges have a remarkable capacity to rapidly regenerate in response to wound infliction. In addition, sponges rapidly renew their filter systems (choanocytes to maintain a healthy population of cells. This study describes the cell kinetics of choanocytes in the encrusting reef sponge Halisarca caerulea during early regeneration (0–8 h following experimental wound infliction. Subsequently, we investigated the spatial relationship between regeneration and cell proliferation over a six-day period directly adjacent to the wound, 1 cm, and 3 cm from the wound. Cell proliferation was determined by the incorporation of 5-bromo-2′-deoxyuridine (BrdU. We demonstrate that during early regeneration, the growth fraction of the choanocytes (i.e., the percentage of proliferative cells adjacent to the wound is reduced (7.0 ± 2.5% compared to steady-state, undamaged tissue (46.6 ± 2.6%, while the length of the cell cycle remained short (5.6 ± 3.4 h. The percentage of proliferative choanocytes increased over time in all areas and after six days of regeneration choanocyte proliferation rates were comparable to steady-state tissue. Tissue areas farther from the wound had higher rates of choanocyte proliferation than areas closer to the wound, indicating that more resources are demanded from tissue in the immediate vicinity of the wound. There was no difference in the number of proliferative mesohyl cells in regenerative sponges compared to steady-state sponges. Our data suggest that the production of collagen-rich wound tissue is a key process in tissue regeneration for H. caerulea, and helps to rapidly occupy the bare substratum exposed by the wound. Regeneration and choanocyte renewal are competing and negatively correlated life-history traits, both essential to the survival of sponges. The efficient allocation of limited resources to these life-history traits has enabled the ecological success and diversification of sponges.

  18. Reef Education Evaluation: Environmental Knowledge and Reef Experience

    Science.gov (United States)

    Stepath, Carl M.

    2005-01-01

    Background: The Reef education evaluation: environmental knowledge and reef experience report concerns PhD research about marine education, and the investigation of learning with high school students and the effect of coral reef monitoring marine experiential education interventions. The effectiveness of classroom learning and reef trips were…

  19. Stanley Reef Extension, Density, and Calcification Data for 1912 to 1985

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Extension, Density, and Calcification data from 35 Porites coral cores covering the entire length of the Great Barrier Reef, Australia. Data set contains 35...

  20. Agincourt Reef Extension, Density, and Calcification Data for 1779 to 1988

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Extension, Density, and Calcification data from 35 Porites coral cores covering the entire length of the Great Barrier Reef, Australia. Data set contains 35...

  1. Sanctuary Reef Extension, Density, and Calcification Data for 1501 to 1984

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Extension, Density, and Calcification data from 35 Porites coral cores covering the entire length of the Great Barrier Reef, Australia. Data set contains 35...

  2. Yankee Reef Extension, Density, and Calcification Data for 1888 to 1984

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Extension, Density, and Calcification data from 35 Porites coral cores covering the entire length of the Great Barrier Reef, Australia. Data set contains 35...

  3. Pandora Reef Extension, Density, and Calcification Data for 1875 to 1982

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Extension, Density, and Calcification data from 35 Porites coral cores covering the entire length of the Great Barrier Reef, Australia. Data set contains 35...

  4. Abraham Reef Extension, Density, and Calcification Data for 1479 to 1985

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Extension, Density, and Calcification data from 35 Porites coral cores covering the entire length of the Great Barrier Reef, Australia. Data set contains 35...

  5. Lodestone Reef Extension, Density, and Calcification Data for 1615 to 1983

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Extension, Density, and Calcification data from 35 Porites coral cores covering the entire length of the Great Barrier Reef, Australia. Data set contains 35...

  6. Rib Reef Extension, Density, and Calcification Data for 1853 to 1983

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Extension, Density, and Calcification data from 35 Porites coral cores covering the entire length of the Great Barrier Reef, Australia. Data set contains 35...

  7. Wheeler Reef Extension, Density, and Calcification Data for 1744 to 1984

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Extension, Density, and Calcification data from 35 Porites coral cores covering the entire length of the Great Barrier Reef, Australia. Data set contains 35...

  8. Flinders Reef Extension, Density, and Calcification Data for 1718 to 1991

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Extension, Density, and Calcification data from 35 Porites coral cores covering the entire length of the Great Barrier Reef, Australia. Data set contains 35...

  9. Britomart Reef Extension, Density, and Calcification Data for 1574 to 1986

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Extension, Density, and Calcification data from 35 Porites coral cores covering the entire length of the Great Barrier Reef, Australia. Data set contains 35...

  10. Otter Reef Extension, Density, and Calcification Data for 1792 to 1987

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Extension, Density, and Calcification data from 35 Porites coral cores covering the entire length of the Great Barrier Reef, Australia. Data set contains 35...

  11. Simulating reef response to sea-level rise at Lizard Island: A geospatial approach

    Science.gov (United States)

    Hamylton, S. M.; Leon, J. X.; Saunders, M. I.; Woodroffe, C. D.

    2014-10-01

    Sea-level rise will result in changes in water depth over coral reefs, which will influence reef platform growth as a result of carbonate production and accretion. This study simulates the pattern of reef response on the reefs around Lizard Island in the northern Great Barrier Reef. Two sea-level rise scenarios are considered to capture the range of likely projections: 0.5 m and 1.2 m above 1990 levels by 2100. Reef topography has been established through extensive bathymetric profiling, together with available data, including LiDAR, single beam bathymetry, multibeam swath bathymetry, LADS and digitised chart data. The reef benthic cover around Lizard Island has been classified using a high resolution WorldView-2 satellite image, which is calibrated and validated against a ground referencing dataset of 364 underwater video records of the reef benthic character. Accretion rates are parameterised using published hydrochemical measurements taken in-situ and rules are applied using Boolean logic to incorporate geomorphological transitions associated with different depth ranges, such as recolonisation of the reef flat when it becomes inundated as sea level rises. Simulations indicate a variable platform response to the different sea-level rise scenarios. For the 0.5 m rise, the shallower reef flats are gradually colonised by corals, enabling this active geomorphological zone to keep up with the lower rate of rise while the other sand dominated areas get progressively deeper. In the 1.2 m scenario, a similar pattern is evident for the first 30 years of rise, beyond which the whole reef platform begins to slowly drown. To provide insight on reef response to sea-level rise in other areas, simulation results of four different reef settings are discussed and compared at the southeast reef flat (barrier reef), Coconut Beach (fringing reef), Watson's Bay (leeward bay with coral patches) and Mangrove Beach (sheltered lagoonal embayment). The reef sites appear to accrete upwards

  12. Phylogenetic posit