WorldWideScience

Sample records for barrier reef australia

  1. Nephtyidae (Annelida: Phyllodocida) of Lizard Island, Great Barrier Reef, Australia.

    Science.gov (United States)

    Murray, Anna; Wong, Eunice; Hutchings, Pat

    2015-09-18

    Seven species of the family Nephtyidae are recorded from Lizard Island, none previously reported from the Great Barrier Reef. Two species of Aglaophamus, four species of Micronephthys, one new and one previously unreported from Australia, and one species of Nephtys, were identified from samples collected during the Lizard Island Polychaete Workshop 2013, as well as from ecological studies undertaken during the 1970s and deposited in the Australian Museum marine invertebrate Collections. A dichotomous key to aid identification of these species newly reported from Lizard Island is provided.

  2. Coral reef community composition in the context of disturbance history on the Great Barrier Reef, Australia.

    Directory of Open Access Journals (Sweden)

    Nicholas A J Graham

    Full Text Available Much research on coral reefs has documented differential declines in coral and associated organisms. In order to contextualise this general degradation, research on community composition is necessary in the context of varied disturbance histories and the biological processes and physical features thought to retard or promote recovery. We conducted a spatial assessment of coral reef communities across five reefs of the central Great Barrier Reef, Australia, with known disturbance histories, and assessed patterns of coral cover and community composition related to a range of other variables thought to be important for reef dynamics. Two of the reefs had not been extensively disturbed for at least 15 years prior to the surveys. Three of the reefs had been severely impacted by crown-of-thorns starfish outbreaks and coral bleaching approximately a decade before the surveys, from which only one of them was showing signs of recovery based on independent surveys. We incorporated wave exposure (sheltered and exposed and reef zone (slope, crest and flat into our design, providing a comprehensive assessment of the spatial patterns in community composition on these reefs. Categorising corals into life history groupings, we document major coral community differences in the unrecovered reefs, compared to the composition and covers found on the undisturbed reefs. The recovered reef, despite having similar coral cover, had a different community composition from the undisturbed reefs, which may indicate slow successional processes, or a different natural community dominance pattern due to hydrology and other oceanographic factors. The variables that best correlated with patterns in the coral community among sites included the density of juvenile corals, herbivore fish biomass, fish species richness and the cover of macroalgae. Given increasing impacts to the Great Barrier Reef, efforts to mitigate local stressors will be imperative to encouraging coral

  3. Coral reef community composition in the context of disturbance history on the Great Barrier Reef, Australia.

    Science.gov (United States)

    Graham, Nicholas A J; Chong-Seng, Karen M; Huchery, Cindy; Januchowski-Hartley, Fraser A; Nash, Kirsty L

    2014-01-01

    Much research on coral reefs has documented differential declines in coral and associated organisms. In order to contextualise this general degradation, research on community composition is necessary in the context of varied disturbance histories and the biological processes and physical features thought to retard or promote recovery. We conducted a spatial assessment of coral reef communities across five reefs of the central Great Barrier Reef, Australia, with known disturbance histories, and assessed patterns of coral cover and community composition related to a range of other variables thought to be important for reef dynamics. Two of the reefs had not been extensively disturbed for at least 15 years prior to the surveys. Three of the reefs had been severely impacted by crown-of-thorns starfish outbreaks and coral bleaching approximately a decade before the surveys, from which only one of them was showing signs of recovery based on independent surveys. We incorporated wave exposure (sheltered and exposed) and reef zone (slope, crest and flat) into our design, providing a comprehensive assessment of the spatial patterns in community composition on these reefs. Categorising corals into life history groupings, we document major coral community differences in the unrecovered reefs, compared to the composition and covers found on the undisturbed reefs. The recovered reef, despite having similar coral cover, had a different community composition from the undisturbed reefs, which may indicate slow successional processes, or a different natural community dominance pattern due to hydrology and other oceanographic factors. The variables that best correlated with patterns in the coral community among sites included the density of juvenile corals, herbivore fish biomass, fish species richness and the cover of macroalgae. Given increasing impacts to the Great Barrier Reef, efforts to mitigate local stressors will be imperative to encouraging coral communities to persist into

  4. Serpulidae (Annelida) of Lizard Island, Great Barrier Reef, Australia.

    Science.gov (United States)

    Kupriyanova, Elena K; Sun, Yanan; Hove, Harry A Ten; Wong, Eunice; Rouse, Greg W

    2015-09-18

    Serpulidae are obligatory sedentary polychaetes inhabiting calcareous tubes that are most common in subtropical and tropical areas of the world. This paper describes serpulid polychaetes collected from Lizard Island, Great Barrier Reef, Australia in 1983-2013 and deposited in Australian museums and overseas. In total, 17 serpulid genera were recorded, but although the study deals with 44 nominal taxa, the exact number of species remains unclear because a number of genera (i.e., Salmacina, Protula, Serpula, Spirobranchus, and Vermiliopsis) need world-wide revisions. Some species described herein are commonly found in the waters around Lizard Island, but had not previously been formally reported. A new species of Hydroides (H. lirs) and two new species of Semivermilia (S. annehoggettae and S. lylevaili) are described. A taxonomic key to all taxa found at Lizard Island is provided.

  5. An observational heat budget analysis of a coral reef, Heron Reef, Great Barrier Reef, Australia

    Science.gov (United States)

    MacKellar, Mellissa C.; McGowan, Hamish A.; Phinn, Stuart R.

    2013-03-01

    Measurements of the surface energy balance, the structure and evolution of the convective atmospheric reef layer (CARL), and local meteorology and hydrodynamics were made during June 2009 and February 2010 at Heron Reef, Australia, to establish the relative partitioning of heating within the water and atmosphere. Horizontal advection was shown to moderate temperature in the CARL and the water, having a cooling influence on the atmosphere, and providing an additional source or sink of energy to the water overlying the reef, depending on tide. The key driver of atmospheric heating was surface sensible heat flux, while heating of the reef water was primarily due to solar radiation, and thermal conduction and convection from the reef substrate. Heating and cooling processes were more defined during winter due to higher sensible and latent heat fluxes and strong diurnal evolution of the CARL. Sudden increases in water temperature were associated with inundation of warmer oceanic water during the flood tide, particularly in winter due to enhanced nocturnal cooling of water overlying the reef. Similarly, cooling of the water over the reef occurred during the ebb tide as heat was transported off the reef to the surrounding ocean. While these results are the first to shed light on the heat budget of a coral reef and overlying CARL, longer-term, systematic measurements of reef thermal budgets are needed under a range of meteorological and hydrodynamic conditions, and across various reef types to elucidate the influence on larger-scale oceanic and atmospheric processes. This is essential for understanding the role of coral reefs in tropical and sub-tropical meteorology; the physical processes that take place during coral bleaching events, and coral and algal community dynamics on coral reefs.

  6. Nereididae (Annelida: Phyllodocida) of Lizard Island, Great Barrier Reef, Australia.

    Science.gov (United States)

    Glasby, Christopher J

    2015-09-18

    Nereididae is one of the most ubiquitous of polychaete families, yet knowledge of their diversity in the northern Great Barrier Reef is poor; few species have been previously reported from any of the atolls or islands including Lizard Island. In this study, the diversity of the family from Lizard Island and surrounding reefs is documented based on museum collections derived from surveys conducted mostly over the last seven years. The Lizard Island nereidid fauna was found to be represented by 14 genera and 38 species/species groups, including 11 putative new species. Twelve species are newly reported from Lizard Island; four of these are also first records for Australia. For each genus and species, diagnoses and/or taxonomic remarks are provided in addition to notes on their habitat on Lizard Island, and general distribution; the existence of tissue samples tied to vouchered museum specimens is indicated. Fluorescence photography is used to help distinguish closely similar species of Nereis and Platynereis. A key is provided to facilitate identification and encourage further taxonomic, molecular and ecological studies on the group.

  7. Coral reef origins of atmospheric dimethylsulfide at Heron Island, southern Great Barrier Reef, Australia

    Science.gov (United States)

    Swan, Hilton B.; Jones, Graham B.; Deschaseaux, Elisabeth S. M.; Eyre, Bradley D.

    2017-01-01

    Atmospheric dimethylsulfide (DMSa), continually derived from the world's oceans, is a feed gas for the tropospheric production of new sulfate particles, leading to cloud condensation nuclei that influence the formation and properties of marine clouds and ultimately the Earth's radiation budget. Previous studies on the Great Barrier Reef (GBR), Australia, have indicated coral reefs are significant sessile sources of DMSa capable of enhancing the tropospheric DMSa burden mainly derived from phytoplankton in the surface ocean; however, specific environmental evidence of coral reef DMS emissions and their characteristics is lacking. By using on-site automated continuous analysis of DMSa and meteorological parameters at Heron Island in the southern GBR, we show that the coral reef was the source of occasional spikes of DMSa identified above the oceanic DMSa background signal. In most instances, these DMSa spikes were detected at low tide under low wind speeds, indicating they originated from the lagoonal platform reef surrounding the island, although evidence of longer-range transport of DMSa from a 70 km stretch of coral reefs in the southern GBR was also observed. The most intense DMSa spike occurred in the winter dry season at low tide when convective precipitation fell onto the aerially exposed platform reef. This co-occurrence of events appeared to biologically shock the coral resulting in a seasonally aberrant extreme DMSa spike concentration of 45.9 nmol m-3 (1122 ppt). Seasonal DMS emission fluxes for the 2012 wet season and 2013 dry season campaigns at Heron Island were 5.0 and 1.4 µmol m-2 day-1, respectively, of which the coral reef was estimated to contribute 4 % during the wet season and 14 % during the dry season to the dominant oceanic flux.

  8. Seasonal Dynamical Prediction of Coral Bleaching in the Great Barrier Reef, Australia

    Science.gov (United States)

    Spillman, C. M.; Alves, O.

    2009-05-01

    Sea surface temperature (SST) is now recognised as the primary cause of mass coral bleaching events. Coral bleaching occurs during times of stress, particularly when SSTs exceed the coral colony's tolerance level. Global warming is potentially a serious threat to the future of the world's reef systems with predictions by the international community that bleaching will increase in both frequency and severity. Advance warning of anomalous sea surface temperatures, and thus potential bleaching events, would allow for the implementation of management strategies to minimise reef damage. Seasonal SST forecasts from the coupled ocean-atmosphere model POAMA (Bureau of Meteorology) have skill in the Great Barrier Reef (Australia) several months into the future. We will present model forecasts and probabilistic products for use in reef management, and assess model skill in the region. These products will revolutionise the way in which coral bleaching events are monitored and assessed in the Great Barrier Reef and Australian region.

  9. Water quality and coral bleaching thresholds: formalising the linkage for the inshore reefs of the Great Barrier Reef, Australia.

    Science.gov (United States)

    Wooldridge, Scott A

    2009-05-01

    The threats of wide-scale coral bleaching and reef demise associated with anthropogenic climate change are widely known. Here, the additional role of poor water quality in lowering the thermal tolerance (i.e. bleaching 'resistance') of symbiotic reef corals is considered. In particular, a quantitative linkage is established between terrestrially-sourced dissolved inorganic nitrogen (DIN) loading and the upper thermal bleaching thresholds of inshore reefs on the Great Barrier Reef, Australia. Significantly, this biophysical linkage provides concrete evidence for the oft-expressed belief that improved coral reef management will increase the regional-scale survival prospects of corals reefs to global climate change. Indeed, for inshore reef areas with a high runoff exposure risk, it is shown that the potential benefit of this 'local' management imperative is equivalent to approximately 2.0-2.5 degrees C in relation to the upper thermal bleaching limit; though in this case, a potentially cost-prohibitive reduction in end-of-river DIN of >50-80% would be required. An integrated socio-economic modelling framework is outlined that will assist future efforts to understand (optimise) the alternate tradeoffs that the water quality/coral bleaching linkage presents.

  10. Neosabellides lizae, a new species of Ampharetidae (Annelida) from Lizard Island, Great Barrier Reef, Australia.

    Science.gov (United States)

    Alvestad, Tom; Budaeva, Nataliya

    2015-09-18

    Neosabellides lizae, a new species of Ampharetidae, is described from the intertidal zone off Lizard Island, Great Barrier Reef, Queensland, Australia. The new species is referred to the genus Neosabellides based on the shape of the prostomium, three pairs of branchiae, 14 thoracic segments with notopodia, 12 thoracic uncinigerous segments, and the first two pairs of abdominal uncinigers of thoracic type. The new species differs from all known species of Neosabellides in having 14 abdominal uncinigerous segments.

  11. A new species of Halacarsantia Wolff, 1989 (Crustacea, Isopoda, Asellota, Santiidae from Wistari Reef, southern Great Barrier Reef, Australia

    Directory of Open Access Journals (Sweden)

    Michitaka Shimomura

    2012-03-01

    Full Text Available Halacarsantia acuta sp. n. is described from Wistari Reef, Capricorn Group, southern Great Barrier Reef, the first record of the genus from Australia. The new species differs from its congeners inantenna flagellum composed of 8 articles; epipod apically acute, without setae, broad maxilliped endite and pereopod 1 basis with a short projection. A key to species of the genus is provided.

  12. Three new species of Calyptotheca (Bryozoa: Lanceoporidae) from the Great Barrier Reef, tropical Australia.

    Science.gov (United States)

    Sebastian, Pascal; Cumming, Robyn L

    2016-02-15

    The cheilostome bryozoans Calyptotheca wulguru n. sp. and Calyptotheca tilbrooki n. sp. (Lanceoporidae) are described from inter-reefal, sediment-dominated habitats of the Great Barrier Reef, and Calyptotheca churro n. sp. was washed up on a Heron Island beach, with uncertain origin. Calyptotheca wulguru n. sp. and C. churro n. sp. belong to a subgroup of Calyptotheca species with numerous small, oval, marginal adventitious avicularia and suboral nodular thickening or umbones. The vicarious avicularia of C. tilbrooki n. sp. are elongate-oval, unlike those of other known Calyptotheca species, and C. tilbrooki n. sp. has more pronounced orificial dimorphism than in any other known Calyptotheca species. Calyptotheca churro n. sp. has the most pronounced suboral umbo of all known Calyptotheca species. This study increases the known Calyptotheca species of the Great Barrier Reef to ten, and of tropical Australia to 14.

  13. Trematodes of the Great Barrier Reef, Australia: emerging patterns of diversity and richness in coral reef fishes.

    Science.gov (United States)

    Cribb, Thomas H; Bott, Nathan J; Bray, Rodney A; McNamara, Marissa K A; Miller, Terrence L; Nolan, Mathew J; Cutmore, Scott C

    2014-10-15

    The Great Barrier Reef holds the richest array of marine life found anywhere in Australia, including a diverse and fascinating parasite fauna. Members of one group, the trematodes, occur as sexually mature adult worms in almost all Great Barrier Reef bony fish species. Although the first reports of these parasites were made 100 years ago, the fauna has been studied systematically for only the last 25 years. When the fauna was last reviewed in 1994 there were 94 species known from the Great Barrier Reef and it was predicted that there might be 2,270 in total. There are now 326 species reported for the region, suggesting that we are in a much improved position to make an accurate prediction of true trematode richness. Here we review the current state of knowledge of the fauna and the ways in which our understanding of this fascinating group is changing. Our best estimate of the true richness is now a range, 1,100-1,800 species. However there remains considerable scope for even these figures to be incorrect given that fewer than one-third of the fish species of the region have been examined for trematodes. Our goal is a comprehensive characterisation of this fauna, and we outline what work needs to be done to achieve this and discuss whether this goal is practically achievable or philosophically justifiable.

  14. Evidence of reduced mid-Holocene ENSO variance on the Great Barrier Reef, Australia

    Science.gov (United States)

    Leonard, N. D.; Welsh, K. J.; Lough, J. M.; Feng, Y.-x.; Pandolfi, J. M.; Clark, T. R.; Zhao, J.-x.

    2016-09-01

    Globally, coral reefs are under increasing pressure both through direct anthropogenic influence and increases in climate extremes. Understanding past climate dynamics that negatively affected coral reef growth is imperative for both improving management strategies and for modeling coral reef responses to a changing climate. The El Niño-Southern Oscillation (ENSO) is the primary source of climate variability at interannual timescales on the Great Barrier Reef (GBR), northeastern Australia. Applying continuous wavelet transforms to visually assessed coral luminescence intensity in massive Porites corals from the central GBR we demonstrate that these records reliably reproduce ENSO variance patterns for the period 1880-1985. We then applied this method to three subfossil corals from the same reef to reconstruct ENSO variance from ~5200 to 4300 years before present (yBP). We show that ENSO events were less extreme and less frequent after ~5200 yBP on the GBR compared to modern records. Growth characteristics of the corals are consistent with cooler sea surface temperatures (SSTs) between 5200 and 4300 yBP compared to both the millennia prior (~6000 yBP) and modern records. Understanding ENSO dynamics in response to SST variability at geological timescales will be important for improving predictions of future ENSO response to a rapidly warming climate.

  15. Spatial variation in background mortality among dominant coral taxa on Australia's Great Barrier Reef.

    Science.gov (United States)

    Pisapia, Chiara; Pratchett, Morgan S

    2014-01-01

    Even in the absence of major disturbances (e.g., cyclones, bleaching), corals are consistently subject to high levels of background mortality, which undermines individual fitness and resilience of coral colonies. Partial mortality may impact coral response to climate change by reducing colony ability to recover between major acute stressors. This study quantified proportion of injured versus uninjured colonies (the prevalence of injuries) and instantaneous measures of areal extent of injuries across individual colonies (the severity of injuries), in four common coral species along the Great Barrier Reef in Australia: massive Porites, encrusting Montipora, Acropora hyacinthus and Pocillopora damicornis. A total of 2,276 adult colonies were surveyed three latitudinal sectors, nine reefs and 27 sites along 1000 km2 on the Great Barrier Reef. The prevalence of injuries was very high, especially for Porites spp (91%) and Montipora encrusting (85%) and varied significantly, but most lay at small spatial scales (e.g., among colonies positioned reefs. Differences in the prevalence and severity of background partial mortality have significant ramifications for coral capacity to cope with increasing acute disturbances, such as climate-induced coral bleaching. These data are important for understanding coral responses to increasing stressors, and in particular for predicting their capacity to recover between subsequent disturbances.

  16. Deepwater Chondrichthyan Bycatch of the Eastern King Prawn Fishery in the Southern Great Barrier Reef, Australia.

    Science.gov (United States)

    Rigby, Cassandra L; White, William T; Simpfendorfer, Colin A

    2016-01-01

    The deepwater chondrichthyan fauna of the Great Barrier Reef is poorly known and life history information is required to enable their effective management as they are inherently vulnerable to exploitation. The chondrichthyan bycatch from the deepwater eastern king prawn fishery at the Swain Reefs in the southern Great Barrier Reef was examined to determine the species present and provide information on their life histories. In all, 1533 individuals were collected from 11 deepwater chondrichthyan species, with the Argus skate Dipturus polyommata, piked spurdog Squalus megalops and pale spotted catshark Asymbolus pallidus the most commonly caught. All but one species is endemic to Australia with five species restricted to waters offshore from Queensland. The extent of life history information available for each species varied but the life history traits across all species were characteristic of deep water chondrichthyans with relatively large length at maturity, small litters and low ovarian fecundity; all indicative of low biological productivity. However, variability among these traits and spatial and bathymetric distributions of the species suggests differing degrees of resilience to fishing pressure. To ensure the sustainability of these bycatch species, monitoring of their catches in the deepwater eastern king prawn fishery is recommended.

  17. Spatial variation in background mortality among dominant coral taxa on Australia's Great Barrier Reef.

    Directory of Open Access Journals (Sweden)

    Chiara Pisapia

    Full Text Available Even in the absence of major disturbances (e.g., cyclones, bleaching, corals are consistently subject to high levels of background mortality, which undermines individual fitness and resilience of coral colonies. Partial mortality may impact coral response to climate change by reducing colony ability to recover between major acute stressors. This study quantified proportion of injured versus uninjured colonies (the prevalence of injuries and instantaneous measures of areal extent of injuries across individual colonies (the severity of injuries, in four common coral species along the Great Barrier Reef in Australia: massive Porites, encrusting Montipora, Acropora hyacinthus and Pocillopora damicornis. A total of 2,276 adult colonies were surveyed three latitudinal sectors, nine reefs and 27 sites along 1000 km2 on the Great Barrier Reef. The prevalence of injuries was very high, especially for Porites spp (91% and Montipora encrusting (85% and varied significantly, but most lay at small spatial scales (e.g., among colonies positioned <10-m apart. Similarly, severity of background partial mortality was surprisingly high (between 5% and 21% but varied greatly among colonies within the same site and habitat. This study suggests that intraspecific variation in partial mortality between adjacent colonies may be more important than variation between colonies in different latitudinal sectors or reefs. Differences in the prevalence and severity of background partial mortality have significant ramifications for coral capacity to cope with increasing acute disturbances, such as climate-induced coral bleaching. These data are important for understanding coral responses to increasing stressors, and in particular for predicting their capacity to recover between subsequent disturbances.

  18. Inadequate evaluation and management of threats in Australia's Marine Parks, including the Great Barrier Reef, misdirect Marine conservation.

    Science.gov (United States)

    Kearney, Bob; Farebrother, Graham

    2014-01-01

    The magnificence of the Great Barrier Reef and its worthiness of extraordinary efforts to protect it from whatever threats may arise are unquestioned. Yet almost four decades after the establishment of the Great Barrier Reef Marine Park, Australia's most expensive and intensely researched Marine Protected Area, the health of the Reef is reported to be declining alarmingly. The management of the suite of threats to the health of the reef has clearly been inadequate, even though there have been several notable successes. It is argued that the failure to prioritise correctly all major threats to the reef, coupled with the exaggeration of the benefits of calling the park a protected area and zoning subsets of areas as 'no-take', has distracted attention from adequately addressing the real causes of impact. Australia's marine conservation efforts have been dominated by commitment to a National Representative System of Marine Protected Areas. In so doing, Australia has displaced the internationally accepted primary priority for pursuing effective protection of marine environments with inadequately critical adherence to the principle of having more and bigger marine parks. The continuing decline in the health of the Great Barrier Reef and other Australian coastal areas confirms the limitations of current area management for combating threats to marine ecosystems. There is great need for more critical evaluation of how marine environments can be protected effectively and managed efficiently.

  19. Unique Sequence of Events Triggers Manta Ray Feeding Frenzy in the Southern Great Barrier Reef, Australia

    Directory of Open Access Journals (Sweden)

    Scarla J. Weeks

    2015-03-01

    Full Text Available Manta rays are classified as Vulnerable to Extinction on the IUCN Red List for Threatened Species. In Australia, a key aggregation site for reef manta rays is Lady Elliot Island (LEI on the Great Barrier Reef, ~7 km from the shelf edge. Here, we investigate the environmental processes that triggered the largest manta ray feeding aggregation yet observed in Australia, in early 2013. We use MODIS sea surface temperature (SST, chlorophyll-a concentration and photic depth data, together with in situ data, to show that anomalous river discharges led to high chlorophyll (anomalies: 10–15 mg∙m−3 and turbid (photic depth anomalies: −15 m river plumes extending out to LEI, and that these became entrained offshore around the periphery of an active cyclonic eddy. Eddy dynamics led to cold bottom intrusions along the shelf edge (6 °C temperature decrease, and at LEI (5 °C temperature decrease. Strongest SST gradients (>1 °C∙km−1 were at the convergent frontal zone between the shelf and eddy-influenced waters, directly overlying LEI. Here, the front intensified on the spring ebb tide to attract and shape the aggregation pattern of foraging manta rays. Future research could focus on mapping the probability and persistence of these ecologically significant frontal zones via remote sensing to aid the management and conservation of marine species.

  20. The importance of coastal altimetry retracking and detiding: A case study around the Great Barrier Reef, Australia

    DEFF Research Database (Denmark)

    Idris, Nurul H.; Deng, Xiaoli; Andersen, Ole Baltazar

    2014-01-01

    waveforms in the area of the Great Barrier Reef, Australia. Comparing the retrieved SLAs with in situ tide gauge data from Townsville and Bundaberg stations showed that the SLAs from this study generally outperform those from conventional methods, demonstrating that adequate waveform retracking and detiding...

  1. An assessment of an environmental gradient using coral geochemical records, Whitsunday Islands, Great Barrier Reef, Australia.

    Science.gov (United States)

    Lewis, S E; Brodie, J E; McCulloch, M T; Mallela, J; Jupiter, S D; Williams, H Stuart; Lough, J M; Matson, E G

    2012-01-01

    Coral cores were collected along an environmental and water quality gradient through the Whitsunday Island group, Great Barrier Reef (Australia), for trace element and stable isotope analysis. The primary aim of the study was to examine if this gradient could be detected in coral records and, if so, whether the gradient has changed over time with changing land use in the adjacent river catchments. Y/Ca was the trace element ratio which varied spatially across the gradient, with concentrations progressively decreasing away from the river mouths. The Ba/Ca and Y/Ca ratios were the only indicators of change in the gradient through time, increasing shortly after European settlement. The Mn/Ca ratio responded to local disturbance related to the construction of tourism infrastructure. Nitrogen isotope ratios showed no apparent trend over time. This study highlights the importance of site selection when using coral records to record regional environmental signals.

  2. Six genetically distinct clades of Palola (Eunicidae, Annelida) from Lizard Island, Great Barrier Reef, Australia.

    Science.gov (United States)

    Schulze, Anja

    2015-09-18

    A total of 36 lots of Palola spp. (Eunicidae, Annelida) were collected during the Lizard Island Polychaete Workshop on Lizard Island, Great Barrier Reef, Queensland, Australia. Of these, 21 specimens were sequenced for a portion of the mitochondrial cytochrome c oxidase I gene. These sequences were analysed in conjunction with existing sequences of Palola spp. from other geographic regions. The samples from Lizard Island form six distinct clades, although none of them can clearly be assigned to any of the nominal species. Four of the six Lizard Island clades fall into species group A and the remaining two into species group B (which also includes the type species, Palola viridis). All sequenced specimens were characterized morphologically as far as possible and a dichotomous key was assembled. Based on this key, the remaining samples were identified as belonging to one of the clades.

  3. Temporal consistency in background mortality of four dominant coral taxa along Australia's Great Barrier Reef

    Science.gov (United States)

    Pisapia, C.; Anderson, K. D.; Pratchett, M. S.

    2016-09-01

    Studies on the population and community dynamics of scleractinian corals typically focus on catastrophic mortality associated with acute disturbances (e.g., coral bleaching and outbreaks of crown-of-thorns starfish), though corals are subject to high levels of background mortality and injuries caused by routine and chronic processes. This study quantified prevalence (proportion of colonies with injuries) and severity (areal extent of injuries on individual colonies) of background mortality and injuries for four common coral taxa (massive Porites, encrusting Montipora, Acropora hyacinthus and branching Pocillopora) on the Great Barrier Reef, Australia. Sampling was conducted over three consecutive years during which there were no major acute disturbances. A total of 2276 adult colonies were surveyed across 27 sites, within nine reefs and three distinct latitudinal sectors. The prevalence of injuries was very high (>83%) across all four taxa, but highest for Porites (91%) and Montipora (85%). For these taxa ( Montipora and Pocillopora), there was also significant temporal and spatial variation in prevalence of partial mortality. The severity of injuries ranged from 3% to more than 80% and varied among coral taxa, but was fairly constant spatially and temporally. This shows that some injuries have considerable longevity and that corals may invest relatively little in regenerating tissue over sites of previous injuries. Inter-colony variation in the severity of injury also had no apparent effect on the realized growth of individual colonies, suggesting that energy diverted to regeneration has a limited bearing on overall energetic allocation, or impacts on other life-history processes (e.g., reproduction) rather than growth. Establishing background levels of injury and regeneration is important for understanding energy investment and life-history consequences for reef-building corals as well as for predicting susceptibility to, and capacity to recover from, acute

  4. Coral reefs of the turbid inner-shelf of the Great Barrier Reef, Australia: An environmental and geomorphic perspective on their occurrence, composition and growth

    Science.gov (United States)

    Browne, N. K.; Smithers, S. G.; Perry, C. T.

    2012-10-01

    Investigations of the geomorphic and sedimentary context in which turbid zone reefs exist, both in the modern and fossil reef record, can inform key ecological debates regarding species tolerances and adaptability to elevated turbidity and sedimentation. Furthermore, these investigations can address critical geological and palaeoecological questions surrounding longer-term coral-sediment interactions and reef growth histories. Here we review current knowledge about turbid zone reefs from the inner-shelf regions of the Great Barrier Reef (GBR) in Australia to consider these issues and to evaluate reef growth in the period prior to and post European settlement. We also consider the future prospects of these reefs under reported changing water quality regimes. Turbid zone reefs on the GBR are relatively well known compared to those in other reef regions. They occur within 20 km of the mainland coast where reef development may be influenced by continual or episodic terrigenous sediment inputs, fluctuating salinities (24-36 ppt), and reduced water quality through increased nutrient and pollutant delivery from urban and agricultural runoff. Individually, and in synergy, these environmental conditions are widely viewed as unfavourable for sustained and vigorous coral reef growth, and thus these reefs are widely perceived as marginal compared to clear water reef systems. However, recent research has revealed that this view is misleading, and that in fact many turbid zone reefs in this region are resilient, exhibit relatively high live coral cover (> 30%) and have distinctive community assemblages dominated by fast growing (Acropora, Montipora) and/or sediment tolerant species (Turbinaria, Goniopora, Galaxea, Porites). Palaeoecological reconstructions based on the analysis of reef cores show that community assemblages are relatively stable at millennial timescales, and that many reefs are actively accreting (average 2-7 mm/year) where accommodation space is available

  5. Environmental triggers for primary outbreaks of crown-of-thorns starfish on the Great Barrier Reef, Australia.

    Science.gov (United States)

    Wooldridge, Scott A; Brodie, Jon E

    2015-12-30

    In this paper, we postulate a unique environmental triggering sequence for primary outbreaks of crown-of-thorns starfish (COTS, Acanthaster planci) on the central Great Barrier Reef (GBR, Australia). Notably, we extend the previous terrestrial runoff hypothesis, viz. nutrient-enriched terrestrial runoff → elevated phytoplankton 'bloom' concentrations → enhanced COTS larval survival, to include the additional importance of strong larvae retention around reefs or within reef groups (clusters) that share enhanced phytoplankton concentrations. For the central GBR, this scenario is shown to occur when El Niño-Southern Oscillation (ENSO) linked hydrodynamic conditions cause the 'regional' larval connectivity network to fragment into smaller 'local' reef clusters due to low ocean current velocities. As inter-annual variations in hydrodynamic circulation patterns are not amenable to direct management intervention, the ability to reduce the future frequency of COTS outbreaks on the central GBR is shown to be contingent on reducing terrestrial bioavailable nutrient loads ~20-40%.

  6. Joeropsididae Nordenstam, 1933 (Crustacea, Isopoda, Asellota) from the Lizard Island region of the Great Barrier Reef, Queensland, Australia.

    Science.gov (United States)

    Bruce, Niel L

    2015-01-01

    The marine isopod family Joeropsididae (Asellota) is documented for the Lizard Island region of the Great Barrier Reef, Australia. Fifteen species of Joeropsis are recorded, including ten new species; descriptive notes are provided for five species that lacked adequate material for description. A revised family and genus diagnosis is presented together with comments on the most useful characters for species identification and a key to Joeropsis of the Lizard Island region.

  7. Joeropsididae Nordenstam, 1933 (Crustacea, Isopoda, Asellota from the Lizard Island region of the Great Barrier Reef, Queensland, Australia

    Directory of Open Access Journals (Sweden)

    Niel L. Bruce

    2015-03-01

    Full Text Available The marine isopod family Joeropsididae (Asellota is documented for the Lizard Island region of the Great Barrier Reef, Australia. Fifteen species of Joeropsis are recorded, including ten new species; descriptive notes are provided for five species that lacked adequate material for description. A revised family and genus diagnosis is presented together with comments on the most useful characters for species identification and a key to Joeropsis of the Lizard Island region.

  8. Coral community responses to declining water quality: Whitsunday Islands, Great Barrier Reef, Australia

    Science.gov (United States)

    Thompson, Angus; Schroeder, Thomas; Brando, Vittorio E.; Schaffelke, Britta

    2014-12-01

    A five-year period (2002-2006) of below-median rainfall followed by a six-year period (2007-2012) of above-median rainfall and seasonal flooding allowed a natural experiment into the effects of runoff on the water quality and subsequent coral community responses in the Whitsunday Islands, Great Barrier Reef (Australia). Satellite-derived water quality estimates of total suspended solids (TSS) and chlorophyll- a (Chl) concentration showed marked seasonal variability that was exaggerated during years with high river discharge. During above-median rainfall years, Chl was aseasonally high for a period of 3 months during the wet season (February-April), while TSS was elevated for four months, extending into the dry season (March-June). Coinciding with these extremes in water quality was a reduction in the abundance and shift in the community composition, of juvenile corals. The incidence of coral disease was at a maximum during the transition from years of below-median to years of above-median river discharge. In contrast to juvenile corals, the cover of larger corals remained stable, although the composition of communities varied along environmental gradients. In combination, these results suggest opportunistic recruitment of corals during periods of relatively low environmental stress with selection for more tolerant species occurring during periods of environmental extremes.

  9. Impacts of Cyclone Yasi on nearshore, terrigenous sediment-dominated reefs of the central Great Barrier Reef, Australia

    Science.gov (United States)

    Perry, C. T.; Smithers, S. G.; Kench, P. S.; Pears, B.

    2014-10-01

    Tropical Cyclone (TC) Yasi (Category 5) was a large (~ 700 km across) cyclone that crossed Australia's Queensland coast on the 3rd of February 2011. TC Yasi was one of the region's most powerful recorded cyclones, with winds gusting to 290 km/h and wave heights exceeding 7 m. Here we describe the impacts of TC Yasi on a number of nearshore, turbid-zone coral reefs, that include several in the immediate vicinity of the cyclone's landfall path (King Reef, Lugger Shoal and Dunk Island), as well as a more distally located reef (Paluma Shoals) ~ 150 km to the south in Halifax Bay. These reefs were the focus of recent (between 2006 and 2009) pre-Yasi studies into their geomorphology, sedimentology and community structure, and here we discuss data from a recent (August 2011) post-Yasi re-assessment. This provided a unique opportunity to identify and describe the impacts of an intense tropical cyclone on nearshore reefs, which are often assumed to be vulnerable to physical disturbance and reworking due to their poorly lithified framework. Observed impacts of TC Yasi were site specific and spatially highly heterogeneous, but appear to have been strongly influenced by the contemporary evolutionary stage and ecological make-up of the individual reefs, with site setting (i.e. exposure to prevailing wave action) apparently more important than proximity to the landfall path. The most significant ecological impacts occurred at King Reef (probably a result of freshwater bleaching) and at Paluma Shoals, where widespread physical destruction of branched Acropora occurred. New coral recruits are, however, common at all sites and colony re-growth clearly evident at King Reef. Only localised geomorphic change was evident, mainly in the form of coral fracturing, rubble deposition, and sediment movement, but again these impacts were highly site specific. The dominant impact at Paluma Shoals was localised storm ridge/shingle sheet deposition, at Lugger Shoal major offshore fine sediment

  10. Effects of different disturbance types on butterflyfish communities of Australia's Great Barrier Reef

    Science.gov (United States)

    Emslie, M. J.; Pratchett, M. S.; Cheal, A. J.

    2011-06-01

    The effects of disturbances on coral reef fishes have been extensively documented but most studies have relied on opportunistic sampling following single events. Few studies have the spatial and temporal extent to directly compare the effects of multiple disturbances over a large geographic scale. Here, benthic communities and butterflyfishes on 47 reefs of the Great Barrier Reef were surveyed annually to examine their responses to physical disturbances (cyclones and storms) and/or biological disturbances (bleaching, outbreaks of crown-of-thorns starfish and white syndrome disease). The effects on benthic and butterflyfish communities varied among reefs depending on the structure and geographical setting of each community, on the size and type of disturbance, and on the disturbance history of that reef. There was considerable variability in the response of butterflyfishes to different disturbances: physical disturbances (occurring with or without biological disturbances) produced substantial declines in abundance, whilst biological disturbances occurring on their own did not. Butterflyfishes with the narrowest feeding preferences, such as obligate corallivores, were always the species most affected. The response of generalist feeders varied with the extent of damage. Wholesale changes to the butterflyfish community were only recorded where structural complexity of reefs was drastically reduced. The observed effects of disturbances on butterflyfishes coupled with predictions of increased frequency and intensity of disturbances sound a dire warning for the future of butterflyfish communities in particular and reef fish communities in general.

  11. Evidence for ocean acidification in the Great Barrier Reef of Australia

    Science.gov (United States)

    Wei, Gangjian; McCulloch, Malcolm T.; Mortimer, Graham; Deng, Wengfeng; Xie, Luhua

    2009-04-01

    Geochemical records preserved in the long-lived carbonate skeleton of corals provide one of the few means to reconstruct changes in seawater pH since the commencement of the industrial era. This information is important in not only determining the response of the surface oceans to ocean acidification from enhanced uptake of CO 2, but also to better understand the effects of ocean acidification on carbonate secreting organisms such as corals, whose ability to calcify is highly pH dependent. Here we report an ˜200 year δ 11B isotopic record, extracted from a long-lived Porites coral from the central Great Barrier Reef of Australia. This record covering the period from 1800 to 2004 was sampled at yearly increments from 1940 to the present and 5-year increments prior to 1940. The δ 11B isotopic compositions reflect variations in seawater pH, and the δ 13C changes in the carbon composition of surface water due to fossil fuel burning over this period. In addition complementary Ba/Ca, δ 18O and Mg/Ca data was obtained providing proxies for terrestrial runoff, salinity and temperature changes over the past 200 years in this region. Positive thermal ionization mass spectrometry (PTIMS) method was utilized in order to enable the highest precision and most accurate measurements of δ 11B values. The internal precision and reproducibility for δ 11B of our measurements are better than ±0.2‰ (2 σ), which translates to a precision of better than ±0.02 pH units. Our results indicate that the long-term pre-industrial variation of seawater pH in this region is partially related to the decadal-interdecadal variability of atmospheric and oceanic anomalies in the Pacific. In the periods around 1940 and 1998 there are also rapid oscillations in δ 11B compositions equivalent changes in pH of almost 0.5 U. The 1998 oscillation is co-incident with a major coral bleaching event indicating the sensitivity of skeletal δ 11B compositions to loss of zooxanthellate symbionts

  12. Navigating the transition to ecosystem-based management of the Great Barrier Reef, Australia.

    Science.gov (United States)

    Olsson, Per; Folke, Carl; Hughes, Terry P

    2008-07-15

    We analyze the strategies and actions that enable transitions toward ecosystem-based management using the recent governance changes of the Great Barrier Reef Marine Park as a case study. The interplay among individual actors, organizations, and institutions at multiple levels is central in such transitions. A flexible organization, the Great Barrier Reef Marine Park Authority, was crucial in initiating the transition to ecosystem-based management. This agency was also instrumental in the subsequent transformation of the governance regime and provided leadership throughout the process. Strategies involved internal reorganization and management innovation, leading to an ability to coordinate the scientific community, to increase public awareness of environmental issues and problems, to involve a broader set of stakeholders, and to maneuver the political system for support at critical times. The transformation process was induced by increased pressure on the Great Barrier Reef (from terrestrial runoff, overharvesting, and global warming) that triggered a new sense of urgency to address these challenges. The focus of governance shifted from protection of selected individual reefs to stewardship of the larger-scale seascape. The study emphasizes the significance of stewardship that can change patterns of interactions among key actors and allow for new forms of management and governance to emerge in response to environmental change. This example illustrates that enabling legislations or other social bounds are essential, but not sufficient for shifting governance toward adaptive comanagement of complex marine ecosystems.

  13. Effectiveness of benthic foraminiferal and coral assemblages as water quality indicators on inshore reefs of the Great Barrier Reef, Australia

    Science.gov (United States)

    Uthicke, S.; Thompson, A.; Schaffelke, B.

    2010-03-01

    Although the debate about coral reef decline focuses on global disturbances (e.g., increasing temperatures and acidification), local stressors (nutrient runoff and overfishing) continue to affect reef health and resilience. The effectiveness of foraminiferal and hard-coral assemblages as indicators of changes in water quality was assessed on 27 inshore reefs along the Great Barrier Reef. Environmental variables (i.e., several water quality and sediment parameters) and the composition of both benthic foraminiferal and hard-coral assemblages differed significantly between four regions (Whitsunday, Burdekin, Fitzroy, and the Wet Tropics). Grain size and organic carbon and nitrogen content of sediments, and a composite water column parameter (based on turbidity and concentrations of particulate matter) explained a significant amount of variation in the data (tested by redundancy analyses) in both assemblages. Heterotrophic species of foraminifera were dominant in sediments with high organic content and in localities with low light availability, whereas symbiont-bearing mixotrophic species were dominant elsewhere. A similar suite of parameters explained 89% of the variation in the FORAM index (a Caribbean coral reef health indicator) and 61% in foraminiferal species richness. Coral richness was not related to environmental setting. Coral assemblages varied in response to environmental variables, but were strongly shaped by acute disturbances (e.g., cyclones, Acanthaster planci outbreaks, and bleaching), thus different coral assemblages may be found at sites with the same environmental conditions. Disturbances also affect foraminiferal assemblages, but they appeared to recover more rapidly than corals. Foraminiferal assemblages are effective bioindicators of turbidity/light regimes and organic enrichment of sediments on coral reefs.

  14. Assessing loss of coral cover on Australia's Great Barrier Reef over two decades, with implications for longer-term trends

    Science.gov (United States)

    Sweatman, H.; Delean, S.; Syms, C.

    2011-06-01

    While coral reefs in many parts of the world are in decline as a direct consequence of human pressures, Australia's Great Barrier Reef (GBR) is unusual in that direct human pressures are low and the entire system of ~2,900 reefs has been managed as a marine park since the 1980s. In spite of these advantages, standard annual surveys of a large number of reefs showed that from 1986 to 2004, average live coral cover across the GBR declined from 28 to 22%. This overall decline was mainly due to large losses in six (21%) of 29 subregions. Declines in live coral cover on reefs in two inshore subregions coincided with thermal bleaching in 1998, while declines in four mid-self subregions were due to outbreaks of predatory starfish. Otherwise, living coral cover increased in one subregion (3%) and 22 subregions (76%) showed no substantial change. Reefs in the great majority of subregions showed cycles of decline and recovery over the survey period, but with little synchrony among subregions. Two previous studies examined long-term changes in live coral cover on GBR reefs using meta-analyses including historical data from before the mid-1980s. Both found greater rates of loss of coral and recorded a marked decrease in living coral cover on the GBR in 1986, coinciding exactly with the start of large-scale monitoring. We argue that much of the apparent long-term decrease results from combining data from selective, sparse, small-scale studies before 1986 with data from both small-scale studies and large-scale monitoring surveys after that date. The GBR has clearly been changed by human activities and live coral cover has declined overall, but losses of coral in the past 40-50 years have probably been overestimated.

  15. New constraints on the spatial distribution and morphology of the Halimeda bioherms of the Great Barrier Reef, Australia

    Science.gov (United States)

    McNeil, Mardi A.; Webster, Jody M.; Beaman, Robin J.; Graham, Trevor L.

    2016-12-01

    Halimeda bioherms occur as extensive geological structures on the northern Great Barrier Reef (GBR), Australia. We present the most complete, high-resolution spatial mapping of the northern GBR Halimeda bioherms, based on new airborne lidar and multibeam echosounder bathymetry data. Our analysis reveals that bioherm morphology does not conform to the previous model of parallel ridges and troughs, but is far more complex than previously thought. We define and describe three morphological sub-types: reticulate, annulate, and undulate, which are distributed in a cross-shelf pattern of reduced complexity from east to west. The northern GBR bioherms cover an area of 6095 km2, three times larger than the original estimate, exceeding the area and volume of calcium carbonate in the adjacent modern shelf-edge barrier reefs. We have mapped a 1740 km2 bioherm complex north of Raine Island in the Cape York region not previously recorded, extending the northern limit by more than 1° of latitude. Bioherm formation and distribution are controlled by a complex interaction of outer-shelf geometry, regional and local currents, coupled with the morphology and depth of continental slope submarine canyons determining the delivery of cool, nutrient-rich water upwelling through inter-reef passages. Distribution and mapping of Halimeda bioherms in relation to Great Barrier Reef Marine Park Authority bioregion classifications and management zones are inconsistent and currently poorly defined due to a lack of high-resolution data not available until now. These new estimates of bioherm spatial distribution and morphology have implications for understanding the role these geological features play as structurally complex and productive inter-reef habitats, and as calcium carbonate sinks which record a complete history of the Holocene post-glacial marine transgression in the northern GBR.

  16. A new gnathiid (Crustacea: Isopoda) parasitizing two species of requiem sharks from Lizard Island, Great Barrier Reef, Australia.

    Science.gov (United States)

    Coetzee, Maryke L; Smit, Nico J; Grutter, Alexandra S; Davies, Angela J

    2008-06-01

    Third-stage juveniles (praniza 3) of Gnathia grandilaris n. sp. were collected from the gill filaments and septa of 5 requiem sharks, including a white tip reef shark, Triaenodon obesus, and 4 grey reef sharks, Carcharhinus amblyrhynchos, at Lizard Island, Great Barrier Reef, Australia, in March 2002. Some juvenile gnathiids were then maintained in fresh sea water until they molted to adults. Adult males appeared 19 days following detachment of juveniles from host fishes, but no juveniles molted successfully into females. The current description is based, therefore, on bright field and scanning electron microscopy observations of adult males and third-stage juveniles. Unique features of the male include the triangular-shaped inferior medio-frontal process, 2 areolae on the dorsal surface of the pylopod, and a slender pleotelson (twice as long as wide) with lateral concavities. The third-stage juvenile has distinctive white pigmentation on the black pereon when alive, while the mandible has 9 triangular backwardly directed teeth. This species has the largest male and third-stage juvenile of any Gnathia spp. from Australia and of any gnathiid isopods associated with elasmobranchs.

  17. Interactions between a Trawl fishery and spatial closures for biodiversity conservation in the Great Barrier Reef World Heritage Area, Australia.

    Directory of Open Access Journals (Sweden)

    Alana Grech

    Full Text Available BACKGROUND: The Queensland East Coast Otter Trawl Fishery (ECOTF for penaeid shrimp fishes within Australia's Great Barrier Reef World Heritage Area (GBRWHA. The past decade has seen the implementation of conservation and fisheries management strategies to reduce the impact of the ECOTF on the seabed and improve biodiversity conservation. New information from electronic vessel location monitoring systems (VMS provides an opportunity to review the interactions between the ECOTF and spatial closures for biodiversity conservation. METHODOLOGY AND RESULTS: We used fishing metrics and spatial information on the distribution of closures and modelled VMS data in a geographical information system (GIS to assess change in effort of the trawl fishery from 2001-2009 and to quantify the exposure of 70 reef, non-reef and deep water bioregions to trawl fishing. The number of trawlers and the number of days fished almost halved between 2001 and 2009 and new spatial closures introduced in 2004 reduced the area zoned available for trawl fishing by 33%. However, we found that there was only a relatively minor change in the spatial footprint of the fishery as a result of new spatial closures. Non-reef bioregions benefited the most from new spatial closures followed by deep and reef bioregions. CONCLUSIONS/SIGNIFICANCE: Although the catch of non target species remains an issue of concern for fisheries management, the small spatial footprint of the ECOTF relative to the size of the GBRWHA means that the impact on benthic habitats is likely to be negligible. The decline in effort as a result of fishing industry structural adjustment, increasing variable costs and business decisions of fishers is likely to continue a trend to fish only in the most productive areas. This will provide protection for most benthic habitats without any further legislative or management intervention.

  18. Coral records of reef-water pH across the central Great Barrier Reef, Australia: assessing the influence of river runoff on inshore reefs

    Science.gov (United States)

    D'Olivo, J. P.; McCulloch, M. T.; Eggins, S. M.; Trotter, J.

    2015-02-01

    The boron isotopic (δ11Bcarb) compositions of long-lived Porites coral are used to reconstruct reef-water pH across the central Great Barrier Reef (GBR) and assess the impact of river runoff on inshore reefs. For the period from 1940 to 2009, corals from both inner- and mid-shelf sites exhibit the same overall decrease in δ11Bcarb of 0.086 ± 0.033‰ per decade, equivalent to a decline in seawater pH (pHsw) of ~0.017 ± 0.007 pH units per decade. This decline is consistent with the long-term effects of ocean acidification based on estimates of CO2 uptake by surface waters due to rising atmospheric levels. We also find that, compared to the mid-shelf corals, the δ11Bcarb compositions of inner-shelf corals subject to river discharge events have higher and more variable values, and hence higher inferred pHsw values. These higher δ11Bcarb values of inner-shelf corals are particularly evident during wet years, despite river waters having lower pH. The main effect of river discharge on reef-water carbonate chemistry thus appears to be from reduced aragonite saturation state and higher nutrients driving increased phytoplankton productivity, resulting in the drawdown of pCO2 and increase in pHsw. Increased primary production therefore has the potential to counter the more transient effects of low-pH river water (pHrw) discharged into near-shore environments. Importantly, however, inshore reefs also show a consistent pattern of sharply declining coral growth that coincides with periods of high river discharge. This occurs despite these reefs having higher pHsw, demonstrating the overriding importance of local reef-water quality and reduced aragonite saturation state on coral reef health.

  19. Coral records of reef-water pH across the central Great Barrier Reef, Australia: assessing the influence of river runoff on inshore reefs

    Directory of Open Access Journals (Sweden)

    J. P. D'Olivo

    2014-07-01

    Full Text Available The boron isotopic (δ11Bcarb compositions of long-lived Porites coral are used to reconstruct reef-water pH across the central Great Barrier Reef (GBR and assess the impact of river runoff on inshore reefs. For the period from 1940 to 2009, corals from both inner as well as mid-shelf sites exhibit the same overall decrease in δ11Bcarb of 0.086 ± 0.033‰ per decade, equivalent to a~decline in seawater pH (pHsw of ~ 0.017 ± 0.007 pH units per decade. This decline is consistent with the long-term effects of ocean acidification based on estimates of CO2 uptake by surface waters due to rising atmospheric levels. We also find that compared to the mid-shelf corals, the δ11Bcarb compositions for inner shelf corals subject to river discharge events, have higher and more variable values and hence higher inferred pHsw values. These higher δ11Bcarb values for inner-shelf corals are particularly evident during wet years, despite river waters having lower pH. The main effect of river discharge on reef-water carbonate chemistry thus appears to be from higher nutrients driving increased phytoplankton productivity, resulting in the drawdown of pCO2 and increase in pHsw. Increased primary production therefore has the potential to counter the more transient effects of low pH river water (pHrw discharged into near-shore environments. Importantly however, inshore reefs also show a consistent pattern of sharply declining coral growth that coincides with periods of high river discharge. This occurs despite these reefs having higher pHsw values and hence higher seawater aragonite saturation states, demonstrating the over-riding importance of local reef-water quality on coral reef health.

  20. Quantifying water flow within aquatic ecosystems using load cell sensors: a profile of currents experienced by coral reef organisms around Lizard Island, Great Barrier Reef, Australia.

    Science.gov (United States)

    Johansen, Jacob L

    2014-01-01

    Current velocity in aquatic environments has major implications for the diversity, abundance and ecology of aquatic organisms, but quantifying these currents has proven difficult. This study utilises a simple and inexpensive instrument (reef system around Lizard Island (Great Barrier Reef, Australia) at a spatial and temporal scale relevant to the ecology of individual benthos and fish. The instrument uses load-cell sensors to provide a correlation between sensor output and ambient current velocity of 99%. Each instrument is able to continuously record current velocities to >500 cms⁻¹ and wave frequency to >100 Hz over several weeks. Sensor data are registered and processed at 16 MHz and 10 bit resolution, with a measuring precision of 0.06±0.04%, and accuracy of 0.51±0.65% (mean ±S.D.). Each instrument is also pressure rated to 120 m and shear stresses ≤20 kNm⁻² allowing deployment in harsh environments. The instrument was deployed across 27 coral reef sites covering the crest (3 m), mid-slope (6 m) and deep-slope (9 m depth) of habitats directly exposed, oblique or sheltered from prevailing winds. Measurements demonstrate that currents over the reef slope and crest varies immensely depending on depth and exposure: currents differ up to 9-fold within habitats only separated by 3 m depth and 15-fold between exposed, oblique and sheltered habitats. Comparisons to ambient weather conditions reveal that currents around Lizard Island are largely wind driven. Zero to 22.5 knot winds correspond directly to currents of 0 to >82 cms⁻¹, while tidal currents rarely exceed 5.5 cms⁻¹. Rather, current velocity increases exponentially as a function of wave height (0 to 1.6 m) and frequency (0.54 to 0.20 Hz), emphasizing the enormous effect of wind and waves on organisms in these shallow coral reef habitats.

  1. Seven new species of Paleanotus (Annelida: Chrysopetalidae) described from Lizard Island, Great Barrier Reef, and coral reefs of northern Australia and the Indo-Pacific: two cryptic species pairs revealed between western Pacific Ocean and the eastern Indian Ocean.

    Science.gov (United States)

    Watson, Charlotte

    2015-09-18

    Morphological investigation into the paleate genus Paleanotus Schmarda 1861 of the family Chrysopetalidae from northern Australian coral reefs, primarily Lizard Island and outlying reefs, included a complex of very small, slender individuals (length Great Barrier Reef to the Philippines, western Pacific Ocean. Cryptic morphology and potential genetic diversity is discussed in Paleanotus inornatus n. sp. and P. adornatus n. sp. that possess overlapping widespread distribution patterns across northern Australia and Indo-Pacific reefs. The smallest bodied taxon, Paleanotus chrysos n. sp. is the only species with a Coral Sea range encompassing Lizard Island, Heron Island and New Caledonia.

  2. Polychlorinated dibenzo-p-dioxins and dibenzofurans in Great Barrier Reef (Australia) dugongs (Dugong dugon).

    Science.gov (United States)

    Haynes, D; Müller, J F; McLachlan, M S

    1999-01-01

    Fat tissue samples from dugong (Dugong dugon) carcasses stranded at three sites along the Great Barrier Reef were analysed for polychlorinated dibenzo-p-dioxins (PCDDs) and dibenzofurans (PCDFs). Relatively high levels of PCDDs were determined in all three dugongs. In particular OCDD, the PCDD/F congener that is usually considered the least bioavailable of all 2,3,7,8 substituted congeners, was found at levels higher than reported for other marine mammals. Tissue accumulation of PCDDs by dugongs may be a consequence of sediment and/or seagrass ingestion during feeding, microbial biotransformation of PCDD precursors in the animal's hindgut or, alternatively, the possession of a selective degradation capability for PCDFs.

  3. Marine debris is selected as nesting material by the brown booby (Sula leucogaster) within the Swain Reefs, Great Barrier Reef, Australia.

    Science.gov (United States)

    Verlis, K M; Campbell, M L; Wilson, S P

    2014-10-15

    Many seabirds are impacted by marine debris through its presence in foraging and nesting areas. To determine the extent of this problem, marine debris use in nest material of the brown booby (Sula leucogaster) in the Great Barrier Reef, Australia, was investigated. Nine cays were examined using beach and nest surveys. On average, four marine debris items were found per nest (n=96) with 58.3% of surveyed nests containing marine debris. The source of marine debris in nests and transects were primarily oceanic. Hard plastic items dominated both nest (56.8%) and surveyed beaches (72.8%), however only two item types were significantly correlated between these surveys. Nest surveys indicated higher levels of black and green items compared to beach transects. This selectivity for colours and items suggest these nests are not good indicators of environmental loads. This is the first study to examine S. leucogaster nests for marine debris in this location.

  4. Minke whale song, spacing, and acoustic communication on the Great Barrier Reef, Australia

    Science.gov (United States)

    Gedamke, Jason

    An inquisitive population of minke whale (Balaenoptera acutorostrata ) that concentrates on the Great Barrier Reef during its suspected breeding season offered a unique opportunity to conduct a multi-faceted study of a little-known Balaenopteran species' acoustic behavior. Chapter one investigates whether the minke whale is the source of an unusual, complex, and stereotyped sound recorded, the "star-wars" vocalization. A hydrophone array was towed from a vessel to record sounds from circling whales for subsequent localization of sound sources. These acoustic locations were matched with shipboard and in-water observations of the minke whale, demonstrating the minke whale was the source of this unusual sound. Spectral and temporal features of this sound and the source levels at which it is produced are described. The repetitive "star-wars" vocalization appears similar to the songs of other whale species and has characteristics consistent with reproductive advertisement displays. Chapter two investigates whether song (i.e. the "star-wars" vocalization) has a spacing function through passive monitoring of singer spatial patterns with a moored five-sonobuoy array. Active song playback experiments to singers were also conducted to further test song function. This study demonstrated that singers naturally maintain spatial separations between them through a nearest-neighbor analysis and animated tracks of singer movements. In response to active song playbacks, singers generally moved away and repeated song more quickly suggesting that song repetition interval may help regulate spatial interaction and singer separation. These results further indicate the Great Barrier Reef may be an important reproductive habitat for this species. Chapter three investigates whether song is part of a potentially graded repertoire of acoustic signals. Utilizing both vessel-based recordings and remote recordings from the sonobuoy array, temporal and spectral features, source levels, and

  5. The density-driven circulation of the coastal hypersaline system of the Great Barrier Reef, Australia.

    Science.gov (United States)

    Salamena, Gerry G; Martins, Flávio; Ridd, Peter V

    2016-04-15

    The coastal hypersaline system of the Great Barrier Reef (GBR) in the dry season, was investigated for the first time using a 3D baroclinic model. In the shallow coastal embayments, salinity increases to c.a. 1‰ above typical offshore salinity (~35.4‰). This salinity increase is due to high evaporation rates and negligible freshwater input. The hypersalinity drifts longshore north-westward due to south-easterly trade winds and may eventually pass capes or headlands, e.g. Cape Cleveland, where the water is considerably deeper (c.a. 15m). Here, a pronounced thermohaline circulation is predicted to occur which flushes the hypersalinity offshore at velocities of up to 0.08m/s. Flushing time of the coastal embayments is around 2-3weeks. During the dry season early summer, the thermohaline circulation reduces and therefore, flushing times are predicted to be slight longer due to the reduced onshore-offshore density gradient compared to that in the dry season winter period.

  6. Spionidae (Annelida) from Lizard Island, Great Barrier Reef, Australia: the genera Aonides, Dipolydora, Polydorella, Prionospio, Pseudopolydora, Rhynchospio, and Tripolydora.

    Science.gov (United States)

    Radashevsky, Vasily I

    2015-09-18

    Nineteen species in seven genera of spionid polychaetes are described and illustrated based on new material collected from the intertidal and shallow waters around the Lizard Island Group, northern Great Barrier Reef. Only one of these species had been previously reported from the Reef. Six species are described as new to science, and the taxonomy of seven species should be clarified in the future. Prionospio sensu lato is the most diverse group with 11 species identified in the present study. One species is identified in each of the genera Dipolydora, Polydorella, Rhynchospio and Tripolydora, and two species are identified in each of the genera Aonides and Pseudopolydora. The fauna of spionid polychaetes of the Great Barrier Reef seems to be more diverse than previously described and more species are expected to be found in the future. An identification key is provided to 16 genera of Spionidae reported from or likely to be found on the Great Barrier Reef.

  7. Dactylogyrids (Monogenoidea) parasitizing the gills of spinefoots (Teleostei: Siganidae): proposal of Glyphidohaptor n. gen., with two new species from the Great Barrier Reef, Australia, and G. plectocirra n. comb. from Ras Mohammed National Park, Egypt.

    Science.gov (United States)

    Kritsky, Delane C; Galli, Paolo; Yang, Tingbao

    2007-02-01

    Nine species of Siganus (Perciformes: Siganidae) were examined for dactylogyrids (Monogenoidea) from the Red Sea, Egypt; the Great Barrier Reef, Australia; and the South China Sea, China. Species of Tetrancistrum were found on siganids from all 3 localities; Pseudohaliotrema spp. were restricted to siganids from the Great Barrier Reef; and species representing Glyphidohaptor n. gen. were found on siganids from the Red Sea and Great Barrier Reef. Siganus argenteus from the Red Sea and Siganus vulpinus from the Great Barrier Reef were negative for dactylogyrid parasites. Glyphidohaptor n. gen. is proposed for 3 species (2 species new to science) and the new species are described: Glyphidohaptor phractophallus n. sp. from Siganus fuscescens from the Great Barrier Reef; Glyphidohaptor sigani n. sp. from Siganus doliatus (type host), Siganus punctatus, Siganus corallinus, and Siganus lineatus from the Great Barrier Reef; and Glyphidohaptor plectocirra (Paperna, 1972) n. comb. (= Pseudohaliotrema plectocirra Paperna, 1972) from Siganus luridus and Siganus rivulatus from the Red Sea.

  8. Evaluation of annual resolution coral geochemical records as climate proxies in the Great Barrier Reef of Australia

    Science.gov (United States)

    Deng, Wenfeng; Wei, Gangjian; McCulloch, Malcolm; Xie, Luhua; Liu, Ying; Zeng, Ti

    2014-12-01

    Sampling of annually banded massive coral skeletons at annual (or higher) resolutions is increasingly being used to obtain replicate long-term time series of changing seawater conditions. However, few of these studies have compared and calibrated the lower annual resolution records based on coral geochemical tracers with the corresponding instrumental climate records, although some studies have inferred the climatic significance of annual coral series derived from averages of monthly or sub-annual records. Here, we present annual resolution analysis of coral records of elemental and stable isotopic composition that are approximately 70 years long. These records were preserved in two coexisting colonies of Porites sp. from Arlington Reef, on the Great Barrier Reef in Australia, and are used to evaluate the climatic significance of annually resolved coral geochemical proxies. The geochemical records of coral sample "10AR2," with its faster and relatively constant annual growth rate, appear to have been independent of skeletal growth rate and other vital effects. The annual resolution of Sr/Ca and Δδ18O time series was shown to be a good proxy for annual sea surface temperature (SST; r = -0.67, n = 73, p < 0.0000001) and rainfall records ( r = -0.34, n = 67, p < 0.01). However, a slower growing coral sample, "10AR1" showed significantly lower correlations ( r = -0.20, n = 71, p = 0.05 for Sr/Ca and SST; r = -0.19, n = 67, p = 0.06 for Δδ18O and rainfall), indicating its greater susceptibility to biological/metabolic effects. Our results suggest that while annually resolved coral records are potentially a valuable tool for determining, in particular, long timescale climate variability such as Pacific Decadal Oscillation, Interdecadal Pacific Oscillation, and other climatic factors, the selection of the coral sample is important, and replication is essential.

  9. Six new species of the genus Armandia Filippi, 1861 (Polychaeta, Opheliidae) from Lizard Island (Great Barrier Reef, Australia).

    Science.gov (United States)

    Parapar, Julio; Moreira, Juan

    2015-09-18

    From the study of the material collected during the Polychaete Workshop held in Lizard Island (Great Barrier Reef, Australia) in August 2013, six species belonging to the genus Armandia (Polychaeta, Opheliidae) are newly described. Armandia bifida n. sp. is characterised by the bifid shape of the prechaetal lobe in CH1-CH3, A. dolio n. sp. by the barrel-shaped anal (=pygidial) tube (=funnel), A. filibranchia n. sp. by the extremely long and thin branchiae, A. laminosa n. sp. by the foliose shape and large size of the prechaetal lobe in CH1-CH3, A. paraintermedia n. sp. by the squared-shaped anal tube and size and shape of anal cirri, and A. tubulata n. sp. by the tubular shape of the anal tube. All species are fully described and illustrated, and compared with similar species. Several body characters of taxonomic relevance (e.g., anal tube and parapodia shape) are studied based on SEM micrographs. A key of the Armandia species hitherto described or reported in South-East Asia and Australasia is provided based on features of the anal tube.

  10. Sphaerodoridae (Annelida) from Lizard Island, Great Barrier Reef, Australia, including the description of two new species and reproductive notes.

    Science.gov (United States)

    Capa, María; Rouse, Greg W

    2015-09-18

    Sphaerodorids are scarce at Lizard Island archipelago and other localities in the Great Barrier Reef, Australia. Intensive collections at a variety of habitats within the Lizard Island archipelago over the last four decades have resulted in a total of just 11 specimens. Nevertheless, they represent two new species and a new record for Lizard Island. Sphaerodoropsis aurantica n. sp. is characterised by nine longitudinal rows of sessile and spherical dorsal macrotubercles, arranged in a single transverse row per segment; parapodia with around 10 spherical papillae; and compound chaetae with thin shafts and long blades. Sphaerodoropsis plurituberculata n. sp. is characterised by more than 12 more or less clearly arranged longitudinal rows of sessile spherical dorsal tubercles (variable in size), in four transverse rows per segment; parapodia lacking papillae; and semi-compound chaetae with distally enlarged shaft and short blades. Ephesiella australiensis is reported for the first time in Lizard Island. Laboratory observations of live specimens of Sphaerodoropsis plurituberculata n. sp., revealed the use of spermatophores by males. These were found attached externally to the body surface of both sexes, indicating pseudo-copulation.

  11. Glyceriformia Fauchald, 1977 (Annelida: "Polychaeta") from Lizard Island, Great Barrier Reef, Australia.

    Science.gov (United States)

    Böggemann, Markus

    2015-09-18

    Eight species of Glyceridae (Glycera brevicirris, Glycera cf. lapidum, Glycera onomichiensis, Glycera sagittariae, Glycera tesselata, Glycera tridactyla, Glycerella magellanica, Hemipodia cf. simplex) and six species of Goniadidae (Goniada antipoda, Goniada cf. brunnea, Goniada echinulata, Goniada emerita, Goniada grahami, Goniada paucidens) have been collected during several expeditions to the vicinity of Lizard Island (Australia, Queensland). An identification key to the Glyceriformia that inhabit the region is presented. Detailed and illustrated morphological descriptions are given for all investigated species.

  12. New and previously known species of Oenonidae (Polychaeta: Annelida) from Lizard Island, Great Barrier Reef, Australia.

    Science.gov (United States)

    Zanol, Joana; Ruta, Christine

    2015-09-18

    The family Oenonidae consists of Eunicida species with prionognath jaws. Its Australian fauna had been reported to comprise six species belonging to Arabella, Drilonereis, and Oenone. This study provides descriptions for four new species, redescriptions for three species (two previously recorded and a new record, Drilonereis cf. logani) and diagnoses for the genera recorded from Australia. Currently, eleven species of oenonids, distributed in three genera, are known for the Australian coast. On Lizard Island, this family shows low abundance (19 specimens collected) and high richness (seven species). Our results suggest that despite the increasing accumulation of information, the biodiversity of the family is still poorly estimated.

  13. Spatial patterns in benthic communities and the dynamics of a mosaic ecosystem on the Great Barrier Reef, Australia

    Science.gov (United States)

    Ninio, R.; Meekan, M.

    2002-04-01

    The benthic communities of the Great Barrier Reef (GBR) have been characterized as a mosaic with patches at scales of tens to hundreds of kilometres formed by clusters of reefs with comparable environmental settings and histories of disturbance. We use data sets of changes in cover of abundant benthic organisms to examine the relationship between community composition and the dynamics of this mosaic. Our data were compiled from seven annual video surveys of permanent transects on the north-east flanks of up to 52 reefs at different shelf positions throughout most of the GBR. Classification analysis of these data sets identified three distinct groups of reefs, the first dominated by poritid hard corals and alcyoniid soft corals, the second by hard corals of the genus Acropora, and the third by xeniid soft corals. These groups underwent different amounts of change in cover during the period of our study. As acroporan corals are fast growing but susceptible to mortality due to predators and wave action, the group of reefs dominated by this genus displayed rapid rates of growth and loss of cover. In contrast, cover in the remaining groups changed very slowly or remained stable. Some evidence suggests that competition for space may limit growth of acroporan corals and thus rates of change in the group dominated by xeniid soft corals. These contrasting patterns imply that susceptibility to, and recovery from, disturbances such as cyclones, predators, and bleaching events will differ among these groups of reefs.

  14. Gnathia trimaculata n. sp. (Crustacea: Isopoda: Gnathiidae), an ectoparasite found parasitising requiem sharks from off Lizard Island, Great Barrier Reef, Australia.

    Science.gov (United States)

    Coetzee, Maryke L; Smit, Nico J; Grutter, Alexandra S; Davies, Angela J

    2009-02-01

    Gnathia trimaculata n. sp. is described from one black tip reef shark Carcharinus melanopterus Quoy & Gaimard and four grey reef sharks C. amblyrhynchos Bleeker collected off Lizard Island, Great Barrier Reef, Australia. Third-stage juveniles (praniza 3) were maintained in fresh seawater until they moulted into adults. Male adults emerged seven days post-removal (d.p.r) of pranizae from host fishes, whereas the female pranizae completed their moult into adult females 24 d.p.r. Distinctive features include the relatively large size of all stages and the unique mediofrontal process of the male, which is divided into two lobes forming a key-hole shape between them. The female frontal border is characterised by paired simple, pappose setae on the sides of the mid-dorsal area, as well as four long, pappose setae on the mid-dorsal region. The pranizae have eight teeth on each mandible. Live pranizae have stripes and three pairs of distinctive black spots within yellow circles on the sides of the pereonites and this pigmentation pattern persists in the adults. This represents the second description of a gnathiid parasitising elasmobranchs off Australia.

  15. Air-sea energy exchanges measured by eddy covariance during a localised coral bleaching event, Heron Reef, Great Barrier Reef, Australia

    Science.gov (United States)

    MacKellar, Mellissa C.; McGowan, Hamish A.

    2010-12-01

    Despite the widely claimed association between climate change and coral bleaching, a paucity of data exists relating to exchanges of heat, moisture and momentum between the atmosphere and the reef-water surface. We present in situ measurements of reef-water-air energy exchanges made using the eddy covariance method during a summer coral bleaching event at Heron Reef, Australia. Under settled, cloud-free conditions and light winds, daily net radiation exceeded 800 W m-2, with up to 95% of the net radiation during the morning partitioned into heating the water column, substrate and benthic cover including corals. Heating was exacerbated by a mid-afternoon low tide when shallow reef flat water reached 34°C and near-bottom temperatures 33°C, exceeding the thermal tolerance of corals, causing bleaching. Results suggest that local to synoptic scale meteorology, particularly clear skies, solar heating, light winds and the timing of low tide were the primary controls on coral bleaching.

  16. Holocene sea level instability in the southern Great Barrier Reef, Australia: high-precision U-Th dating of fossil microatolls

    Science.gov (United States)

    Leonard, Nicole D.; Zhao, J.-x.; Welsh, K. J.; Feng, Y.-x.; Smithers, S. G.; Pandolfi, J. M.; Clark, T. R.

    2016-06-01

    Three emergent subfossil reef flats from the inshore Keppel Islands, Great Barrier Reef (GBR), Australia, were used to reconstruct relative sea level (RSL). Forty-two high-precision uranium-thorium (U-Th) dates obtained from coral microatolls and coral colonies (2σ age errors from ±8 to 37 yr) in conjunction with elevation surveys provide evidence in support of a nonlinear RSL regression throughout the Holocene. RSL was as least 0.75 m above present from ~6500 to 5500 yr before present (yr BP; where "present" is 1950). Following this highstand, two sites indicated a coeval lowering of RSL of at least 0.4 m from 5500 to 5300 yr BP which was maintained for ~200 yr. After the lowstand, RSL returned to higher levels before a 2000-yr hiatus in reef flat corals after 4600 yr BP at all three sites. A second possible RSL lowering event of ~0.3 m from ~2800 to 1600 yr BP was detected before RSL stabilised ~0.2 m above present levels by 900 yr BP. While the mechanism of the RSL instability is still uncertain, the alignment with previously reported RSL oscillations, rapid global climate changes and mid-Holocene reef "turn-off" on the GBR are discussed.

  17. Regional-scale variation in the distribution and abundance of farming damselfishes on Australia's Great Barrier Reef

    KAUST Repository

    Emslie, Michael J.

    2012-03-15

    Territorial damselfishes that manipulate ("farm") the algae in their territories can have a marked effect on benthic community structure and may influence coral recovery following disturbances. Despite the numerical dominance of farming species on many reefs, the importance of their grazing activities is often overlooked, with most studies only examining their roles over restricted spatial and temporal scales. We used the results of field surveys covering 9.5° of latitude of the Great Barrier Reef to describe the distribution, abundance and temporal dynamics of farmer communities. Redundancy analysis revealed unique subregional assemblages of farming species that were shaped by the combined effects of shelf position and, to a lesser extent, by latitude. These spatial patterns were largely stable through time, except when major disturbances altered the benthic community. Such disturbances affected the functional guilds of farmers in different ways. Since different guilds of farmers modify benthic community structure and affect survival of juvenile corals in different ways, these results have important implications for coral recovery following disturbances. © 2012 Springer-Verlag.

  18. The Oweniidae (Annelida; Polychaeta) from Lizard Island (Great Barrier Reef, Australia) with the description of two new species of Owenia Delle Chiaje, 1844.

    Science.gov (United States)

    Parapar, Julio; Moreira, Juan

    2015-09-18

    Study of the Oweniidae specimens (Annelida; Polychaeta) from Lizard Island (Great Barrier Reef, Australia) stored at the Australian Museum, Sydney and newly collected in August 2013 revealed the presence of three species, namely Galathowenia quelis Capa et al., 2012 and two new species belonging to the genus Owenia Delle Chiaje, 1844. Owenia dichotoma n. sp. is characterised by a very short branchial crown of about 1/3 of thoracic length which bears short, dichotomously-branched tentacles provided with the major division close to the base of the crown. Owenia picta n. sp. is characterised by a long branchial crown of about 4/5 of thoracic length provided with no major divisions, ventral pigmentation on thorax and the presence of deep ventro-lateral groove on the first thoracic chaetiger. A key of Owenia species hitherto described or reported in South East Asia and Australasia regions is provided based on characters of the branchial crown.

  19. A taxonomic guide to the fanworms (Sabellidae, Annelida) of Lizard Island, Great Barrier Reef, Australia, including new species and new records.

    Science.gov (United States)

    Capa, María; Murray, Anna

    2015-09-18

    This comprehensive taxonomic work is the result of the study of fan worms (Sabellidae, Annelida) collected over the last 40 years from around the Lizard Island Archipelago, Great Barrier Reef, Australia. Some species described herein are commonly found in Lizard Island waters but had not previously been formally reported in the literature. Most species appear to be not particularly abundant, and few specimens have been collected despite the sampling effort in the area over this time period. After this study, the overall sabellid diversity of the archipelago has been greatly increased (by more than 650%). Before this revision, only four sabellid species had been recorded for Lizard Island, and in this paper we report 31 species, 13 of which belong to nominal species, six are formally described as new species (Euchone danieloi n. sp., Euchone glennoi n. sp., Jasmineira gustavoi n. sp., Megalomma jubata n. sp., Myxicola nana n. sp., and Paradialychone ambigua n. sp.), and the identity of 12 species is still unknown (those referred as cf. or sp.). Two species are newly recorded in Australia and two in Queensland. The invasive species Branchiomma bairdi is reported for the first time at Lizard Island. The genus Paradialychone is reported for Australia for the first time. Standardised descriptions, general photographs of live and/or preserved specimens and distribution data are provided for all species. New species descriptions are accompanied by detailed illustrations and exhaustive morphological information. A dichotomous key for sabellid identification is also included.

  20. 10Be constrains the sediment sources and sediment yields to the Great Barrier Reef from the tropical Barron River catchment, Queensland, Australia

    Science.gov (United States)

    Nichols, K. K.; Bierman, P. R.; Rood, D. H.

    2014-12-01

    Estimates of long-term, background sediment generation rates place current and future sediment fluxes to the Great Barrier Reef in context. Without reliable estimates of sediment generation rates and without identification of the sources of sediment delivered to the reef prior to European settlement (c. 1850), determining the necessity and effectiveness of contemporary landscape management efforts is difficult. Using the ~2100-km2 Barron River catchment in Queensland, Australia, as a test case, we use in situ-produced 10Be to derive sediment generation rate estimates and use in situ and meteoric 10Be to identify the source of that sediment, which enters the Coral Sea near Cairns. Previous model-based calculations suggested that background sediment yields were up to an order of magnitude lower than contemporary sediment yields. In contrast, in situ 10Be data indicate that background (43 t km-2 y-1) and contemporary sediment yields (~45 t km-2 y-1) for the Barron River are similar. These data suggest that the reef became established in a sediment flux similar to what it receives today. Since western agricultural practices increased erosion rates, large amounts of sediment mobilized from hillslopes during the last century are probably stored in Queensland catchments and will eventually be transported to the coast, most likely in flows triggered by rare but powerful tropical cyclones that were more common before European settlement and may increase in strength as climate change warms the south Pacific Ocean. In situ and meteoric 10Be concentrations of Coral Sea beach sand near Cairns are similar to those in rivers on the Atherton Tablelands, suggesting that most sediment is derived from the extensive, low-gradient uplands rather than the steep, more rapidly eroding but beach proximal escarpment.

  1. Comparing bleaching and mortality responses of hard corals between southern Kenya and the Great Barrier Reef, Australia.

    Science.gov (United States)

    McClanahan, T R; Baird, A H; Marshall, P A; Toscano, M A

    2004-02-01

    We compared the bleaching and mortality response (BMI) of 19 common scleractinian corals to an anomalous warm-water event in 1998 to determine the degree of variation between depths, sites, and regions. Mombasa corals experienced a greater temperature anomaly than those on the Great Barrier Reef (GBR) sites and this was reflected in the greater BMI response of most taxa. Comparing coral taxa in different sites at the same depth produced high correlation coefficients in the bleaching response in Kenya at 2 m (r=0.86) and GBR at 6 m depth sites (r=0.80) but less in the GBR for shallow 2 m sites (r=0.49). The pattern of taxa susceptibility was remarkably consistent between the regions. Coral taxa explained 52% of the variation in the response of colonies to bleaching between these two regions (Kenya BMI=0.90 GBR BMI+26; F(1,19) - 18.3; p bleaching is phylogenetically constrained, emphasizing the importance of features of the host's physiology or morphology in determining the response to thermal stress.

  2. Sense of place as a determinant of people's attitudes towards the environment: implications for natural resources management and planning in the Great Barrier Reef, Australia.

    Science.gov (United States)

    Larson, Silva; De Freitas, Debora M; Hicks, Christina C

    2013-03-15

    Integrating people's values and perceptions into planning is essential for the successful management of natural resources. However, successful implementation of natural resources management decisions on the ground is a complex task, which requires a comprehensive understanding of a system's social and ecological linkages. This paper investigates the relationship between sense of place and people's attitudes towards their natural environment. Sense of place contributes towards shaping peoples' beliefs, values and commitments. Here, we set out to explore how these theoretical contributions can be operationalized for natural resources management planning in the Great Barrier Reef region of Australia. We hypothesise that the region's diverse range of natural resources, conservation values and management pressures might be reflected in people's attachment to place. To tests this proposition, variables capturing socio-demographics, personal wellbeing and a potential for sense of place were collected via mail-out survey of 372 residents of the region, and tested for relationships using multivariate regression and redundancy orientation analyses. Results indicate that place of residence within the region, involvement in community activities, country of birth and the length of time respondents lived in the region are important determinants of the values assigned to factors related to the natural environment. This type of information is readily available from National Census and thus could be incorporated into the planning of community engagement strategies early in the natural resources management planning process. A better understanding of the characteristics that allow sense of place meanings to develop can facilitate a better understanding of people's perceptions towards environmental and biodiversity issues. We suggest that the insights gained from this study can benefit environmental decision making and planning in the Great Barrier Reef region; and that sense of place

  3. Effect of colony size and surrounding substrate on corals experiencing a mild bleaching event on Heron Island reef flat (southern Great Barrier Reef, Australia)

    Science.gov (United States)

    Ortiz, J. C.; Gomez-Cabrera, M. Del C.; Hoegh-Guldberg, O.

    2009-12-01

    In January-May 2006, Heron Island in the Great Barrier Reef experienced a mild bleaching event. The effect of colony size, morphology and surrounding substrate on the extent of bleaching was explored. In contrast with previous studies, colony size did not influence bleaching sensitivity, suggesting that there may be a threshold of light and temperature stress beyond which size plays a role. Also contrasting with previous studies, massive corals were more affected by bleaching than branching corals. Massive corals surrounded by sand were more affected than the ones surrounded by rubble or dead coral. It is hypothesized that light reflectance from sand increases stress levels experienced by the colonies. This effect is maximized in massive corals as opposed to branching corals that form dense thickets on Heron Island. These results emphasize the importance of the ecological dynamics of coral communities experiencing low, moderate and high levels of bleaching for the understanding of how coral communities may change under the stress of climate change.

  4. Using MODIS data for understanding changes in seagrass meadow health: a case study in the Great Barrier Reef (Australia).

    Science.gov (United States)

    Petus, Caroline; Collier, Catherine; Devlin, Michelle; Rasheed, Michael; McKenna, Skye

    2014-07-01

    Stretching more than 2000 km along the Queensland coast, the Great Barrier Reef Marine Park (GBR) shelters over 43,000 square km of seagrass meadows. Despite the status of marine protected area and World Heritage listing of the GBR, local seagrass meadows are under stress from reduced water quality levels; with reduction in the amount of light available for seagrass photosynthesis defined as the primary cause of seagrass loss throughout the GBR. Methods have been developed to map GBR plume water types by using MODIS quasi-true colour (hereafter true colour) images reclassified in function of their dominant colour. These data can be used as an interpretative tool for understanding changes in seagrass meadow health (as defined in this study by the seagrass area and abundance) at different spatial and temporal scales. We tested this method in Cleveland Bay, in the northern GBR, where substantial loss in seagrass area and biomass was detected by annual monitoring from 2007 to 2011. A strong correlation was found between bay-wide seagrass meadow area and biomass and exposure to turbid Primary (sediment-dominated) water type. There was also a strong correlation between the changes of biomass and area of individual meadows and exposure of seagrass ecosystems to Primary water type over the 5-year period. Seagrass meadows were also grouped according to the dominant species within each meadow, irrespective of location within Cleveland Bay. These consolidated community types did not correlate well with the exposure to Primary water type, and this is likely to be due to local environmental conditions with the individual meadows that comprise these groupings. This study proved that remote sensing data provide the synoptic window and repetitivity required to investigate changes in water quality conditions over time. Remote sensing data provide an opportunity to investigate the risk of marine-coastal ecosystems to light limitation due to increased water turbidity when in situ

  5. Using MODIS data for mapping of water types within river plumes in the Great Barrier Reef, Australia: towards the production of river plume risk maps for reef and seagrass ecosystems.

    Science.gov (United States)

    Petus, Caroline; da Silva, Eduardo Teixeira; Devlin, Michelle; Wenger, Amelia S; Alvarez-Romero, Jorge G

    2014-05-01

    River plumes are the major transport mechanism for nutrients, sediments and other land-based pollutants into the Great Barrier Reef (GBR, Australia) and are a major threat to coastal and marine ecosystems such as coral reefs and seagrass beds. Understanding the spatial extent, frequency of occurrence, loads and ecological impacts of land-based pollutants discharged through river plumes is essential to drive catchment management actions. In this study, a framework to produce river plume risk maps for seagrass and coral ecosystems, using supervised classification of MODIS Level 2 (L2) satellite products, is presented. Based on relevant L2 thresholds, river plumes are classified into Primary, Secondary, and Tertiary water types, which represent distinct water quality (WQ) parameters concentrations and combinations. Annual water type maps are produced over three wet seasons (2010-2013) as a case of study. These maps provide a synoptic basis to assess the likelihood and magnitude of the risk of reduced coastal WQ associated with the river discharge (river plume risk) and in combination with sound knowledge of the regional ecosystems can serve as the basis to assess potential ecological impacts for coastal and marine GBR ecosystems. The methods described herein provide relevant and easily reproducible large-scale information for river plume risk assessment and management.

  6. Pseudobacciger cheneyae n. sp. (Digenea: Gymnophalloidea) from Weber's chromis (Chromis weberi Fowler & Bean) (Perciformes: Pomacentridae) at Lizard Island, Great Barrier Reef, Australia.

    Science.gov (United States)

    Sun, Derek; Bray, Rodney A; Yong, Russell Q-Y; Cutmore, Scott C; Cribb, Thomas H

    2014-06-01

    A new species of digenean, Pseudobacciger cheneyae n. sp., is described from the intestines of Weber's chromis (Chromis weberi Fowler & Bean) from off Lizard Island, Great Barrier Reef, Australia. This species differs from the three described species of Pseudobacciger Nahhas & Cable, 1964 [P. cablei Madhavi, 1975, P. harengulae Yamaguti, 1938 and P. manteri Nahhas & Cable, 1964] in combinations of the size of the suckers and the length of the caeca. The host of the present species is a perciform (Family Pomacentridae) which contrasts with previous records of the genus which are almost exclusively from clupeiform fishes. The genus Pseudobacciger is presently recognised within the family Faustulidae (Poche, 1926) but phylogenetic analyses of 28S and ITS2 rDNA show that the new species bears no relationship to species of four other faustulid genera (Antorchis Linton, 1911, Bacciger Nicoll, 1924, Paradiscogaster Yamaguti, 1934 and Trigonocryptus Martin, 1958) but that instead it is nested within the Gymnophalloidea (Odhner, 1905) as sister to the Tandanicolidae (Johnston, 1927). This result suggests that the Faustulidae is polyphyletic.

  7. Great Barrier Reef Marine Park and Development of Marine Protected Areas in Australia%大堡礁海洋公园与澳大利亚海洋保护区建设

    Institute of Scientific and Technical Information of China (English)

    梅宏

    2012-01-01

    In order to protect the unique ecosystem of the Great Barrier Reef, Australia has developed several bills for it and launched the "Great Barrier Reef Coastal Wetlands Protection Project". There are several highlights in the management of Great Barrier Reef Marine Park, such as division of the protected area into different function zones, workable scheme of collecting environmental management fee, and unique boat management measures. In June 2012, Australian Commonwealth government announced the proposal to construct the world's largest marine protected area. New opportunities have been placed in front of the Great Barrier Reef Marine Park managers.%为保护大堡礁独特的生态系统,澳大利亚制定多部法案,启动“大堡礁滨海湿地保护项目”.健全的多功能分区保护制度、可操作性较强的环境管理费征收制度和独具特色的船舶管理措施,已成为大堡礁海洋公园管理中的亮点.2012年6月,澳大利亚联邦政府宣布计划建成全球最大的海洋保护区,这是进一步加强大堡礁海洋公园管理的机遇.

  8. New records of Pectinariidae (Polychaeta) from Lizard Island, Great Barrier Reef, Australia and the description of two new species.

    Science.gov (United States)

    Wong, Eunice; Hutchings, Pat

    2015-09-18

    Five species of Pectinariidae have previously been reported from Australia. This study documents the first records of this family from the Lizard Island region: Pectinaria antipoda is recorded, in addition to its already currently wide Australian distribution; two new species, Amphictene lizardensis n. sp. and Pectinaria carnosus n. sp. were also discovered and described. A key to all Australian species of Pectinariidae is provided.

  9. Asexual reproduction does not produce clonal populations of the brooding coral Pocillopora damicornis on the Great Barrier Reef, Australia

    Science.gov (United States)

    Sherman, C. D. H.; Ayre, D. J.; Miller, K. J.

    2006-03-01

    We have investigated the relationship between genotypic diversity, the mode of production of brooded larvae and disturbance in a range of reef habitats, in order to resolve the disparity between the reproductive mode and population structure reported for the brooding coral Pocillopora damicornis. Within 14 sites across six habitats, the ratio of the observed ( G o) to the expected ( G e) genotypic diversity ranged from 69 to 100% of that expected for random mating. At three other sites in two habitats the G o /G e ranged from 35 to 53%. Two of these sites were recently bleached, suggesting that asexual recruitment may be favoured after disturbance. Nevertheless, our data suggest that brooded larvae, from each of five habitats surveyed, were asexually produced. While clonal recruitment may be important in disturbed habitats, the lack of clonality detected, both in this and earlier surveys of 40 other sites, implies that a disturbance is normally insufficient to explain this species’ continued investment in clonal reproduction.

  10. Transport of Australian Continental Dust to Australia's Great Barrier Reef Region: First Results From Sampling, Remote Sensing, Synoptic and Trajectory Analyses

    Science.gov (United States)

    Tapper, N.; O'Loingsigh, T.; de Deckker, P.; Cohen, D.

    2009-04-01

    As part of a large multi-disciplinary project funded by the Australian Research Council and in collaboration with the Australian Nuclear Science and Technology Organisation, we established in mid-2008 three PM 2.5 samplers in eastern Australia to determine possible transport of continental dust from the major dust source region of the Lake Eyre Basin (LEB). These samplers were located at Fowlers Gap, New South Wales [NSW] (31.09S, 141.70E), Mount Stromlo, NSW (35.30S, 149.00E) and Heron Island, Queensland (23.44S, 151.83E). The latter location is of particular significance because of its proximity to the World Heritage Great Barrier Reef (GBR) and to the tropical rainforest of coastal North Queensland. In previous studies, dust and associated organic material of African origin has been associated with rainforest fertilisation in Amazonia and coral bleaching in the Carribean. In this presentation three case studies of continental dust transport to Heron Island that occurred in the first four months of sampling are examined. In each case transport of soil material from the LEB region and/or western NSW is confirmed by the nature of material sampled, by remote sensing of the dust, by forward and backward air parcel trajectory analysis and by synoptic analysis. In each case the dust arrived over Heron Island 3-7 days after passing over the southern samplers, generally having followed an anti-clockwise curved path to approach Heron Island from the southeast. The potential significance of this finding for the GBR is briefly discussed.

  11. Quantifying water flow within aquatic ecosystems using load cell sensors: a profile of currents experienced by coral reef organisms around Lizard Island, Great Barrier Reef, Australia.

    Directory of Open Access Journals (Sweden)

    Jacob L Johansen

    Full Text Available Current velocity in aquatic environments has major implications for the diversity, abundance and ecology of aquatic organisms, but quantifying these currents has proven difficult. This study utilises a simple and inexpensive instrument (500 cms⁻¹ and wave frequency to >100 Hz over several weeks. Sensor data are registered and processed at 16 MHz and 10 bit resolution, with a measuring precision of 0.06±0.04%, and accuracy of 0.51±0.65% (mean ±S.D.. Each instrument is also pressure rated to 120 m and shear stresses ≤20 kNm⁻² allowing deployment in harsh environments. The instrument was deployed across 27 coral reef sites covering the crest (3 m, mid-slope (6 m and deep-slope (9 m depth of habitats directly exposed, oblique or sheltered from prevailing winds. Measurements demonstrate that currents over the reef slope and crest varies immensely depending on depth and exposure: currents differ up to 9-fold within habitats only separated by 3 m depth and 15-fold between exposed, oblique and sheltered habitats. Comparisons to ambient weather conditions reveal that currents around Lizard Island are largely wind driven. Zero to 22.5 knot winds correspond directly to currents of 0 to >82 cms⁻¹, while tidal currents rarely exceed 5.5 cms⁻¹. Rather, current velocity increases exponentially as a function of wave height (0 to 1.6 m and frequency (0.54 to 0.20 Hz, emphasizing the enormous effect of wind and waves on organisms in these shallow coral reef habitats.

  12. Characterization of Gambierdiscus lapillus sp. nov. (Gonyaulacales, Dinophyceae): a new toxic dinoflagellate from the Great Barrier Reef (Australia).

    Science.gov (United States)

    Kretzschmar, Anna Liza; Verma, Arjun; Harwood, Tim; Hoppenrath, Mona; Murray, Shauna

    2016-11-25

    Gambierdiscus is a genus of benthic dinoflagellates found worldwide. Some species produce neurotoxins (maitotoxins and ciguatoxins) that bioaccumulate and cause ciguatera fish poisoning (CFP), a potentially fatal food-borne illness that is common worldwide in tropical regions. The investigation of toxigenic species of Gambierdiscus in CFP endemic regions in Australia is necessary as a first step to determine which species of Gambierdiscus are related to CFP cases occurring in this region. In this study, we characterized five strains of Gambierdiscus collected from Heron Island, Australia, a region in which ciguatera is endemic. Clonal cultures were assessed using (i) light microscopy; (ii) scanning electron microscopy; (iii) DNA sequencing based on the nuclear encoded ribosomal 18S and D8-D10 28S regions; (iv) toxicity via mouse bioassay; and (v) toxin profile as determined by Liquid Chromatography-Mass Spectrometry. Both the morphological and phylogenetic data indicated that these strains represent a new species of Gambierdiscus, G. lapillus sp. nov. (plate formula Po, 3', 0a, 7″, 6c, 7-8s, 5‴, 0p, 2″″ and distinctive by size and hatchet-shaped 2' plate). Culture extracts were found to be toxic using the mouse bioassay. Using chemical analysis, it was determined that they did not contain maitotoxin (MTX1) or known algal-derived ciguatoxin analogs (CTX3B, 3C, CTX4A, 4B), but that they contained putative MTX3, and likely other unknown compounds.

  13. A new species of Numbakullidae Guţu & Heard, 2002 (Tanaidacea, Peracarida, Crustacea from the Great Barrier Reef, Australia

    Directory of Open Access Journals (Sweden)

    Anna Stępień

    2013-10-01

    Full Text Available A new species of Numbakulla Guţu & Heard, 2002 (Tanaidacea is described from Heron Island (southern Great Barrier Reef, Queensland collected during the Census of Coral Reefs Ecosystem (CReefs program. The new species is the third member of the family and can be recognized by the combination of characters as: length/width ratio of the body, which is 6:7, pereonite 4 longer than the rest, the presence of eyes, a blunt rostrum, antenna article 2 elongated, cheliped carpus with row of inner setae, pereopod 6 carpus with spines, pleopod endopod with denticles.

  14. Spionidae (Annelida: 'Polychaeta': Canalipalpata) from Lizard Island, Great Barrier Reef, Australia: the genera Malacoceros, Scolelepis, Spio, Microspio, and Spiophanes.

    Science.gov (United States)

    Meißner, Karin; Götting, Miriam

    2015-09-18

    Seven species belonging to the spionid genera Malacoceros, Scolelepis, Spio, Microspio, and Spiophanes were found during the polychaete workshop on Lizard Island in August 2013. One species is new to science and named Scolelepis inversa n. sp., another Scolelepis species is probably also a new species but was represented in our samples by only a single specimen and not formally described. All other species have been reported previously from Australia. Species diagnoses of all species found during the workshop and of Scolelepis balihaiensis Hartmann-Schröder, 1979, Microspio microcera (Dorsey, 1977) and M. minuta (Hartmann-Schröder, 1962) have been critically reviewed and amended based on the study of type material. The potential synonymy of Microspio minuta (Hartmann-Schröder, 1962) and M. microcera (Dorsey, 1977) is discussed. The new combination Spio jirkovi (Sikorski, 1992) proposed by Sikorski (2013) is returned to Malacoceros. We added DNA barcodes for five species collected in the Lizard Island area to public databases which will be useful in future phylogenetic and phylogeographic studies. For Microspio we provide the first sequence data for this genus.

  15. A new genus of Stenetriidae Hansen, 1905 (Asellota: Isopoda: Crustacea) from the Great Barrier Reef, Australia and the southwestern Pacific.

    Science.gov (United States)

    Bruce, Niel L; Cumming, R L

    2015-04-02

    Onychatrium gen. nov. is described, with five included species: Onychatrium forceps sp. nov., the type species and Onychatrium torosus sp. nov., both from the Great Barrier Reef; Onychatrium entale (Nordenstam, 1946) comb. nov., from Tapateuen (= Tabiteue Island), Gilbert Islands; Onychatrium thomasi (Bolstad & Kensley, 1999) comb. nov., from Madang, Papua New Guinea; and Onychatrium echiurum (Nobili, 1906) comb. nov., and species inquirenda from the Tumaotu Islands, Eastern French Polynesia. The primary distinguishing characters for Onychatrium gen. nov. are a trapezoid pseudosrostrum, the male pereopod 1 with elongate dactylus (4.7-7.3 as long as proximal width), propodus with strongly produced and acute lobe, carpus with a distally acute, flat, ventrally directed process (except O. torosus sp. nov., which has a short and truncate process) and the merus with a distally directed inferodistal lobe. The genus is known only from the southern Pacific, from the Tuamotus (eastern French Polynesia) to the Great Barrier Reef and northern Papua New Guinea.

  16. Two new desma-less species of Theonella Gray, 1868 (Demospongiae: Astrophorida: Theonellidae), from the Great Barrier Reef, Australia,and a re-evaluation of one species assigned previously to Dercitus Gray, 1867.

    Science.gov (United States)

    Hall, Kathryn A; Ekins, Merrick G; Hooper, John N A

    2014-06-11

    Extensive surveys of the biodiversity on the seafloor of the inter-reef regions of the Great Barrier Reef, Australia, have resulted in the collection of large numbers of sponges, many of which are likely new to science. Identification of these sponges, however, was made difficult by the absence in some specimens of key diagnostic characters, such as megascleres. We used an integrated approach to the taxonomy of these sponges, incorporating morphological examination by SEM, analysis of DNA sequence data (using the COI barcoding fragment of mtDNA) and preliminary studies of the chemistry of the sponges, to describe the new species, which were found to contain no native spicules other than acanthose microrhabds. Here, we propose two new species of Theonella Gray, 1868: Theonella deliqua n. sp. (found in association with a single unidentified species of siliquariid mollusc) and Theonella maricae n. sp. from the Great Barrier Reef. Further, we propose the new combination of Theonella xantha (Sutcliffe, Hooper and Pitcher 2010) n. comb. for another microrhabd-only-bearing species. On the basis of our gene trees, we recognise Theonella (and Theonellidae Lendenfeld, 1903) within Astrophorida Sollas, 1887. We discuss the potential for chemotaxonomic and DNA-based insights into the origins and radiation of species of Theonella and explore the evolutionary significance of the reduced morphology of the three additional species recognised here.

  17. Herbicides: a new threat to the Great Barrier Reef.

    Science.gov (United States)

    Lewis, Stephen E; Brodie, Jon E; Bainbridge, Zoë T; Rohde, Ken W; Davis, Aaron M; Masters, Bronwyn L; Maughan, Mirjam; Devlin, Michelle J; Mueller, Jochen F; Schaffelke, Britta

    2009-01-01

    The runoff of pesticides (insecticides, herbicides and fungicides) from agricultural lands is a key concern for the health of the iconic Great Barrier Reef, Australia. Relatively low levels of herbicide residues can reduce the productivity of marine plants and corals. However, the risk of these residues to Great Barrier Reef ecosystems has been poorly quantified due to a lack of large-scale datasets. Here we present results of a study tracing pesticide residues from rivers and creeks in three catchment regions to the adjacent marine environment. Several pesticides (mainly herbicides) were detected in both freshwater and coastal marine waters and were attributed to specific land uses in the catchment. Elevated herbicide concentrations were particularly associated with sugar cane cultivation in the adjacent catchment. We demonstrate that herbicides reach the Great Barrier Reef lagoon and may disturb sensitive marine ecosystems already affected by other pressures such as climate change.

  18. Phylogeography of western Pacific Leucetta 'chagosensis' (Porifera: Calcarea) from ribosomal DNA sequences: implications for population history and conservation of the Great Barrier Reef World Heritage Area (Australia).

    Science.gov (United States)

    Wörheide, Gert; Hooper, John N A; Degnan, Bernard M

    2002-09-01

    Leucetta 'chagosensis' is a widespread calcareous sponge, occurring in shaded habitats of Indo-Pacific coral reefs. In this study we explore relationships among 19 ribosomal DNA sequence types (the ITS1-5.8S-ITS2 region plus flanking gene sequences) found among 54 individuals from 28 locations throughout the western Pacific, with focus on the Great Barrier Reef (GBR). Maximum parsimony analysis revealed phylogeographical structuring into four major clades (although not highly supported by bootstrap analysis) corresponding to the northern/central GBR with Guam and Taiwan, the southern GBR and subtropical regions south to Brisbane, Vanuatu and Indonesia. Subsequent nested clade analysis (NCA) confirmed this structure with a probability of > 95%. After NCA of geographical distances, a pattern of range expansion from the internal Indonesian clade was inferred at the total cladogram level, as the Indonesian clade was found to be the internal and therefore oldest clade. Two distinct clades were found on the GBR, which narrowly overlap geographically in a line approximately from the Whitsunday Islands to the northern Swain Reefs. At various clade levels, NCA inferred that the northern GBR clade was influenced by past fragmentation and contiguous range expansion events, presumably during/after sea level low stands in the Pleistocene, after which the northern GBR might have been recolonized from the Queensland Plateau in the Coral Sea. The southern GBR clade is most closely related to subtropical L. 'chagosensis', and we infer that the southern GBR probably was recolonized from there after sea level low stands, based on our NCA results and supported by oceanographic data. Our results have important implications for conservation and management of the GBR, as they highlight the importance of marginal transition zones in the generation and maintenance of species rich zones, such as the Great Barrier Reef World Heritage Area.

  19. Benthic foraminifera baseline assemblages from a coastal nearshore reef complex on the central Great Barrier Reef

    Science.gov (United States)

    Johnson, Jamie; Perry, Chris; Smithers, Scott; Morgan, Kyle

    2016-04-01

    Declining water quality due to river catchment modification since European settlement (c. 1850 A.D.) represents a major threat to the health of coral reefs on Australia's Great Barrier Reef (GBR), particularly for those located in the coastal waters of the GBR's inner-shelf. These nearshore reefs are widely perceived to be most susceptible to declining water quality owing to their close proximity to river point sources. Despite this, nearshore reefs have been relatively poorly studied with the impacts and magnitudes of environmental degradation still remaining unclear. This is largely due to ongoing debates concerning the significance of increased sediment yields against naturally high background sedimentary regimes. Benthic foraminifera are increasingly used as tools for monitoring environmental and ecological change on coral reefs. On the GBR, the majority of studies have focussed on the spatial distributions of contemporary benthic foraminiferal assemblages. While baseline assemblages from other environments (e.g. inshore reefs and mangroves) have been described, very few records exist for nearshore reefs. Here, we present preliminary results from the first palaeoecological study of foraminiferal assemblages of nearshore reefs on the central GBR. Cores were recovered from the nearshore reef complex at Paluma Shoals using percussion techniques. Recovery was 100%, capturing the entire Holocene reef sequence of the selected reef structures. Radiocarbon dating and subsequent age-depth modelling techniques were used to identify reef sequences pre-dating European settlement. Benthic foraminifera assemblages were reconstructed from the identified sequences to establish pre-European ecological baselines with the aim of providing a record of foraminiferal distribution during vertical reef accretion and against which contemporary ecological change may be assessed.

  20. Low genetic structuring among Pericharax heteroraphis (Porifera: Calcarea) populations from the Great Barrier Reef (Australia), revealed by analysis of nrDNA and nuclear intron sequences

    Science.gov (United States)

    Bentlage, B.; Wörheide, G.

    2007-12-01

    A new nuclear marker system for sponges, the second intron of the nuclear ATP synthetase beta subunit gene (ATPSbeta-iII), was analysed together with nuclear ribosomal DNA (nrDNA) internal transcribed spacer (ITS) sequences aiming to uncover phylogeographic patterns of the coral reef sponge Pericharax heteroraphis in the south-west Pacific, focussing on the Great Barrier Reef (GBR). Variation among ITS sequences was low (Single-Stranded Conformation Polymorphism (SSCP) analysis proved to be an effective tool for phasing ATPSbeta-iII alleles of 292 bp length. Although sample sizes were limited for most populations and these results await corroboration by an extended sampling regime, a past population subdivision with subsequent range expansion was indicated by a ‘dumb-bell’ shaped statistical parsimony network of GBR ATPSbeta-iII alleles. Although no clear phylogeographic break was discovered on the GBR, the northern GBR was genetically differentiated from the central/southern GBR and Queensland Plateau, based on significant pairwise F st values (0.137-0.275 and p ≤ 0.05) of pooled regional populations. The ATPSbeta-iII used in this study outperformed the frequently employed nrDNA ITS and might also turn out to be useful for phylogeographic studies of other coral reef taxa.

  1. First frozen repository for the Great Barrier Reef coral created.

    Science.gov (United States)

    Hagedorn, Mary; van Oppen, Madeleine J H; Carter, Virginia; Henley, Mike; Abrego, David; Puill-Stephan, Eneour; Negri, Andrew; Heyward, Andrew; MacFarlane, Doug; Spindler, Rebecca

    2012-10-01

    To build new tools for the continued protection and propagation of coral from the Great Barrier Reef (GBR), an international group of coral and cryopreservation scientists known as the Reef Recovery Initiative joined forces during the November 2011 mass-spawning event. The outcome was the creation of the first frozen bank for Australian coral from two important GBR reef-building species, Acropora tenuis and Acropora millepora. Approximately 190 frozen samples each with billions of cells were placed into long-term storage. Sperm cells were successfully cryopreserved, and after thawing, samples were used to fertilize eggs, resulting in functioning larvae. Additionally, developing larvae were dissociated, and these pluripotent cells were cryopreserved and viable after thawing. Now, we are in a unique position to move our work from the laboratory to the reefs to develop collaborative, practical conservation management tools to help secure Australia's coral biodiversity.

  2. Land-use effects on fluxes of suspended sediment, nitrogen and phosphorus from a river catchment of the Great Barrier Reef, Australia

    Science.gov (United States)

    Hunter, Heather M.; Walton, Richard S.

    2008-07-01

    SummaryA 6-year study was conducted in the Johnstone River system in the wet tropics of north-eastern Australia, to address concerns that the Great Barrier Reef is at risk from elevated levels of suspended sediment (SS) and nutrients discharged from its river catchments. Aims were to quantify: (i) fluxes of SS, phosphorus (P) and nitrogen (N) exported annually from the catchment and (ii) the influence of rural land uses on these fluxes. Around 55% of the 1602 km2 catchment was native rainforest, with the reminder developed mainly for livestock and crop production. Water quality and stream flow were monitored at 16 sites, with the emphasis on sampling major runoff events. Monitoring data were used to calibrate a water quality model for the catchment (HSPF), which was run with 39 years of historical precipitation and evaporation data. Modelled specific fluxes from the catchment of 1.2 ± 1.1 t SS ha-1 y-1, 2.2 ± 1.8 kg P ha-1 y-1 and 11.4 ± 7.3 kg N ha-1y-1 were highly variable between and within years. Fluxes of SS and P were strongly dominated by major events, with 91% of SS and 84% of P exported during the highest 10% of daily flows. On average, sediment P comprised 81% of the total P flux. The N flux was less strongly dominated by major events and sediment N comprised 46% of total N exports. Specific fluxes of SS, N and P from areas receiving precipitation of 3545 mm y-1 were around 3-4 times those from areas receiving 1673 mm y-1. For a given mean annual precipitation, specific fluxes of SS and P from beef pastures, dairy pastures and unsewered residential areas were similar to those from rainforest, while fluxes from areas of sugar cane and bananas were 3-4 times higher. Specific fluxes of N from areas with an annual precipitation of 3545 mm ranged from 8.9 ± 6.5 kg N ha-1 y-1 (rainforest) to 72 ± 50 kg N ha-1 y-1 (unsewered residential). Aggregated across the entire catchment, disproportionately large fluxes of SS, total P and total N were derived from

  3. Exploring the hidden shallows: extensive reef development and resilience within the turbid nearshore Great Barrier Reef

    Science.gov (United States)

    Morgan, Kyle; Perry, Chris; Smithers, Scott; Johnson, Jamie; Daniell, James

    2016-04-01

    Mean coral cover on Australia's Great Barrier Reef (GBR) has reportedly declined by over 15% during the last 30 years. Climate change events and outbreaks of coral disease have been major drivers of degradation, often exacerbating the stresses caused by localised human activities (e.g. elevated sediment and nutrient inputs). Here, however, in the first assessment of nearshore reef occurrence and ecology across meaningful spatial scales (15.5 sq km), we show that areas of the GBR shelf have exhibited strong intra-regional variability in coral resilience to declining water quality. Specifically, within the highly-turbid "mesophotic" nearshore (water reefs may have similar potential as refugia from large-scale disturbance as their deep-water (>30 m) "mesophotic" equivalents, and also provide a basis from which to model future trajectories of reef growth within nearshore areas.

  4. The large-scale influence of the Great Barrier Reef matrix on wave attenuation

    Science.gov (United States)

    Gallop, Shari L.; Young, Ian R.; Ranasinghe, Roshanka; Durrant, Tom H.; Haigh, Ivan D.

    2014-12-01

    Offshore reef systems consist of individual reefs, with spaces in between, which together constitute the reef matrix. This is the first comprehensive, large-scale study, of the influence of an offshore reef system on wave climate and wave transmission. The focus was on the Great Barrier Reef (GBR), Australia, utilizing a 16-yr record of wave height from seven satellite altimeters. Within the GBR matrix, the wave climate is not strongly dependent on reef matrix submergence. This suggests that after initial wave breaking at the seaward edge of the reef matrix, wave energy that penetrates the matrix has little depth modulation. There is no clear evidence to suggest that as reef matrix porosity (ratio of spaces between individual reefs to reef area) decreases, wave attenuation increases. This is because individual reefs cast a wave shadow much larger than the reef itself; thus, a matrix of isolated reefs is remarkably effective at attenuating wave energy. This weak dependence of transmitted wave energy on depth of reef submergence, and reef matrix porosity, is also evident in the lee of the GBR matrix. Here, wave conditions appear to be dependent largely on local wind speed, rather than wave conditions either seaward, or within the reef matrix. This is because the GBR matrix is a very effective wave absorber, irrespective of water depth and reef matrix porosity.

  5. Dynamics of seasonal outbreaks of black band disease in an assemblage of Montipora species at Pelorus Island (Great Barrier Reef, Australia).

    Science.gov (United States)

    Sato, Yui; Bourne, David G; Willis, Bette L

    2009-08-01

    Recurring summer outbreaks of black band disease (BBD) on an inshore reef in the central Great Barrier Reef (GBR) constitute the first recorded BBD epizootic in the region. In a 2.7 year study of 485 colonies of Montipora species, BBD affected up to 10 per cent of colonies in the assemblage. Mean maximum abundance of BBD reached 16+/-6 colonies per 100 m(2) (n=3 quadrats, each 100 m(2)) in summer, and decreased to 0-1 colony per 100 m(2) in winter. On average, BBD lesions caused 40 per cent tissue loss and 5 per cent of infections led to whole colony mortality. BBD reappearance on previously infected colonies and continuous tissue loss after the BBD signs had disappeared suggest that the disease impacts are of longer duration than indicated by the presence of characteristic signs. Rates of new infections and linear progression of lesions were both positively correlated with seasonal fluctuations in sea water temperatures and light, suggesting that seasonal increases in these environmental parameters promote virulence of the disease. Overall, the impacts of BBD are greater than previously reported on the GBR and likely to escalate with ocean warming.

  6. Predictable pollution: an assessment of weather balloons and associated impacts on the marine environment--an example for the Great Barrier Reef, Australia.

    Science.gov (United States)

    O'Shea, Owen R; Hamann, Mark; Smith, Walter; Taylor, Heidi

    2014-02-15

    Efforts to curb pollution in the marine environment are covered by national and international legislation, yet weather balloons are released into the environment with no salvage agenda. Here, we assess impacts associated with weather balloons in the Great Barrier Reef World Heritage Area (GBRWHA). We use modeling to assess the probability of ocean endpoints for released weather balloons and predict pathways post-release. In addition, we use 21 months of data from beach cleanup events to validate our results and assess the abundance and frequency of weather balloon fragments in the GBRWHA. We found between 65% and 70% of balloons land in the ocean and ocean currents largely determine final endpoints. Beach cleanup data revealed 2460 weather balloon fragments were recovered from 24 sites within the GBRWHA. This is the first attempt to quantify this problem and these data will add support to a much-needed mitigation strategy for weather balloon waste.

  7. Inferring coastal processes from regional-scale mapping of {sup 222}Radon and salinity: examples from the Great Barrier Reef, Australia

    Energy Technology Data Exchange (ETDEWEB)

    Stieglitz, Thomas C., E-mail: thomas.stieglitz@jcu.edu.a [AIMS-JCU, Townsville (Australia); Australian Institute of Marine Science, PMB NO 3, Townsville QLD 4810 (Australia); School of Engineering and Physical Sciences, James Cook University, Townsville QLD 4811 (Australia); Cook, Peter G., E-mail: peter.g.cook@csiro.a [CSIRO Land and Water, Private Bag 2, Glen Osmond SA 5064 (Australia); Burnett, William C., E-mail: wburnett@mailer.fsu.ed [Department of Oceanography, Florida State University, Tallahassee, FL 32306 (United States)

    2010-07-15

    The radon isotope {sup 222}Rn and salinity in coastal surface water were mapped on regional scales, to improve the understanding of coastal processes and their spatial variability. Radon was measured with a surface-towed, continuously recording multi-detector setup on a moving vessel. Numerous processes and locations of land-ocean interaction along the Central Great Barrier Reef coastline were identified and interpreted based on the data collected. These included riverine fluxes, terrestrially-derived fresh submarine groundwater discharge (SGD) and the tidal pumping of seawater through mangrove forests. Based on variations in the relationship of the tracers radon and salinity, some aspects of regional freshwater inputs to the coastal zone and to estuaries could be assessed. Concurrent mapping of radon and salinity allowed an efficient qualitative assessment of land-ocean interaction on various spatial and temporal scales, indicating that such surveys on coastal scales can be a useful tool to obtain an overview of SGD locations and processes.

  8. Discovery of the corallivorous polyclad flatworm, Amakusaplana acroporae, on the Great Barrier Reef, Australia--the first report from the wild.

    Directory of Open Access Journals (Sweden)

    Kate A Rawlinson

    Full Text Available The role of corallivory is becoming increasingly recognised as an important factor in coral health at a time when coral reefs around the world face a number of other stressors. The polyclad flatworm, Amakusaplana acroporae, is a voracious predator of Indo-Pacific acroporid corals in captivity, and its inadvertent introduction into aquaria has lead to the death of entire coral colonies. While this flatworm has been a pest to the coral aquaculture community for over a decade, it has only been found in aquaria and has never been described from the wild. Understanding its biology and ecology in its natural environment is crucial for identifying viable biological controls for more successful rearing of Acropora colonies in aquaria, and for our understanding of what biotic interactions are important to coral growth and fitness on reefs. Using morphological, histological and molecular techniques we determine that a polyclad found on Acropora valida from Lizard Island, Australia is A. acroporae. The presence of extracellular Symbiodinium in the gut and parenchyma and spirocysts in the gut indicates that it is a corallivore in the wild. The examination of a size-range of individuals shows maturation of the sexual apparatus and increases in the number of eyes with increased body length. Conservative estimates of abundance show that A. acroporae occurred on 7 of the 10 coral colonies collected, with an average of 2.6±0.65 (mean ±SE animals per colony. This represents the first report of A. acroporae in the wild, and sets the stage for future studies of A. acroporae ecology and life history in its natural habitat.

  9. Postglacial Fringing-Reef to Barrier-Reef conversion on Tahiti links Darwin's reef types

    Science.gov (United States)

    Blanchon, Paul; Granados-Corea, Marian; Abbey, Elizabeth; Braga, Juan C.; Braithwaite, Colin; Kennedy, David M.; Spencer, Tom; Webster, Jody M.; Woodroffe, Colin D.

    2014-01-01

    In 1842 Charles Darwin claimed that vertical growth on a subsiding foundation caused fringing reefs to transform into barrier reefs then atolls. Yet historically no transition between reef types has been discovered and they are widely considered to develop independently from antecedent foundations during glacio-eustatic sea-level rise. Here we reconstruct reef development from cores recovered by IODP Expedition 310 to Tahiti, and show that a fringing reef retreated upslope during postglacial sea-level rise and transformed into a barrier reef when it encountered a Pleistocene reef-flat platform. The reef became stranded on the platform edge, creating a lagoon that isolated it from coastal sediment and facilitated a switch to a faster-growing coral assemblage dominated by acroporids. The switch increased the reef's accretion rate, allowing it to keep pace with rising sea level, and transform into a barrier reef. This retreat mechanism not only links Darwin's reef types, but explains the re-occupation of reefs during Pleistocene glacio-eustacy. PMID:24845540

  10. Understanding Resilience in a Vulnerable Industry: the Case of Reef Tourism in Australia

    Directory of Open Access Journals (Sweden)

    Duan Biggs

    2011-03-01

    Full Text Available Understanding the resilience of vulnerable sectors of social-ecological systems is critical in an era of escalating global change. The coral reef tourism sector is highly vulnerable not only to ecological effects of climate change and other anthropogenic disturbances on reefs, but also to shocks such as economic recession and energy price escalation. Commercial tourism enterprises are key players in reef tourism in Australia and elsewhere. However, the factors that confer resilience to reef-based tourism enterprises, or the reef tourism sector more broadly, in the face of large disturbances have not been investigated to date. This paper empirically examines the perceived resilience of reef tourism enterprises on Australia's Great Barrier Reef to large disturbances or shocks. Binary logistic regression analysis of two measures of enterprise resilience demonstrates the importance of human capital in strengthening enterprise resilience. Lifestyle identity, measured as the extent to which owners and senior managers are active in reef tourism as a lifestyle choice, is positively related to enterprise resilience. Finally, reef tourism enterprises indicate that financial and marketing support are the most important actions that government can take to support enterprises in the face of a large shock.

  11. A new family Lepidocharontidae with description of Lepidocharon gen. n., from the Great Barrier Reef, Australia, and redefinition of the Microparasellidae (Isopoda, Asellota).

    Science.gov (United States)

    Galassi, Diana M P; Bruce, Niel L; Fiasca, Barbara; Dole-Olivier, Marie-José

    2016-01-01

    Lepidocharontidae Galassi & Bruce, fam. n. is erected, containing Lepidocharon Galassi & Bruce, gen. n. and two genera transferred from the family Microparasellidae Karaman, 1934: Microcharon Karaman, 1934 and Janinella Albuquerque, Boulanouar & Coineau, 2014. The genus Angeliera Chappuis & Delamare Deboutteville, 1952 is placed as genus incertae sedis in this family. The Lepidocharontidae is characterised by having rectangular or trapezoidal somites in dorsal view, a single free pleonite, a tendency to reduction of the coxal plates, and the unique uropodal morphology of a large and long uropodal protopod on which the slender uropodal exopod articulates separately and anteriorly to the endopod. Lepidocharon Galassi & Bruce, gen. n. has a 6-segmented antennula, a well-developed antennal scale (rudimentary exopod), long and slender pereiopods 1-7 directed outwards, coxal plates rudimentary, incorporated to the lateral side of the sternites, not discernible in dorsal view, the single pleonite narrower than pereionite 7, scale-like elements bordering the proximal part of male pleopod 1 on posterior side, and stylet-guiding grooves of male pleopod 1 which run parallel to the outer lateral margins of the same pleopod. Lepidocharon priapus Galassi & Bruce, sp. n., type species for the genus, and Lepidocharon lizardensis Galassi & Bruce, sp. n. are described from Lizard Island, northern Great Barrier Reef. The most similar genus is Microcharon, both genera sharing the same general organization of the male pleopods 1 and 2, topology and architecture of the stylet-guiding groove of male pleopod 1, morphology of female operculum, presence of 2 robust claws of different lengths on pereiopodal dactylus 1-7, not sexually dimorphic. Lepidocharon gen. n. differs from Microcharon in the shape of the pereionites, very reduced coxal plates, the presence of imbricate scale-like elements bordering the proximal postero-lateral margins of the male pleopod 1, and the topology of the

  12. Annual recapture and survival rates of two non-breeding adult populations of Roseate Terns Stema dougallii captured on the Great Barrier Reef, Australia, and estimates of their population sizes

    Science.gov (United States)

    O'Neill, P.; Minton, C.D.T.; Nisbet, I.C.T.; Hines, J.E.

    2008-01-01

    Capture-recapture data from two disparate breeding populations of Roseate Terns (Sterna dougallii) captured together as non-breeding individuals from 2002 to 2007 in the southern Great Barrier Reef. Australia were analyzed for both survival rate and recapture rate. The average annual survival rate for the birds from the Asian population (S. d. bangsi) (0.901) is higher than that of the other population of unknown breeding origin (0.819). There was large variability in survival in both populations among years, but the average survival rate of 0.85 is similar to estimates for the same species in North America. The Cormack-Jolly-Seber models used in program MARK to estimate survival rates also produced estimated of recapture probabilities and population sizes. These estimates of population size were 29,000 for S. D. bangsi and 8,300 for the study area and much larger than the documented numbers in the likely breeding areas, suggesting that many breeding sites are currently unknown.

  13. Biocalcification processes in three coralline sponges from the Lizard Island Section (Great Barrier Reef, Australia): The Stromatoporoid Astrosclera, the Chaetetid Spirastrella (Acanthochaetetes) and the Sphinctozoid Vaceletia (Demospongiae)

    OpenAIRE

    Wörheide, Gert; Reitner, Joachim; Gautret, Pascale

    1996-01-01

    The main biocalcification events in the phylogenetically distinct taxa Astrosc/era, S. (Acanthochaetetes) and Vace/ etia are described. Each taxon constructs its secondary calcareous skeleton in its own highly specialized way and provides therefore insight in the biocalcification processes of ancient reef constructors like stromatoporoids, chaetetids, and sphinctozoans.

  14. Benthic community composition on submerged reefs in the central Great Barrier Reef

    Science.gov (United States)

    Roberts, T. E.; Moloney, J. M.; Sweatman, H. P. A.; Bridge, T. C. L.

    2015-06-01

    Community dynamics on coral reefs are often examined only in relatively shallow waters, which are most vulnerable to many disturbances. The Great Barrier Reef World Heritage Area (GBRWHA) includes extensive submerged reefs that do not approach sea level and are within depths that support many coral reef taxa that also occur in shallow water. However, the composition of benthic communities on submerged reefs in the GBRWHA is virtually unknown. We examined spatial patterns in benthic community composition on 13 submerged reefs in the central Great Barrier Reef (GBR) at depths of 10-30 m. We show that benthic communities on submerged reefs include similar species groups to those on neighbouring emergent reefs. The spatial distribution of species groups was well explained by depth and cross-shelf gradients that are well-known determinants of community composition on emergent reefs. Many equivalent species groups occurred at greater depths on submerged reefs, likely due to variability in the hydrodynamic environment among reef morphologies. Hard coral cover and species richness were lowest at the shallowest depth (6 m) on emergent reefs and were consistently higher on submerged reefs for any given depth. These results suggest that disturbances are less frequent on submerged reefs, but evidence that a severe tropical cyclone in 2011 caused significant damage to shallow regions of more exposed submerged reefs demonstrates that they are not immune. Our results confirm that submerged reefs in the central GBR support extensive and diverse coral assemblages that deserve greater attention in ecosystem assessments and management decisions.

  15. Coral bleaching: one disturbance too many for near-shore reefs of the Great Barrier Reef

    Science.gov (United States)

    Thompson, A. A.; Dolman, A. M.

    2010-09-01

    The dynamic nature of coral communities can make it difficult to judge whether a reef system is resilient to the current disturbance regime. To address this question of resilience for near-shore coral communities of the Great Barrier Reef (Australia) a data set consisting of 350 annual observations of benthic community change was compiled from existing monitoring data. These data spanned the period 1985-2007 and were derived from coral reefs within 20 km of the coast. During years without major disturbance events, cover increase of the Acroporidae was much faster than it was for other coral families; a median of 11% per annum compared to medians of less than 4% for other coral families. Conversely, Acroporidae were more severely affected by cyclones and bleaching events than most other families. A simulation model parameterised with these observations indicated that while recovery rates of hard corals were sufficient to compensate for impacts associated with cyclones and crown-of-thorns starfish, the advent of mass bleaching has lead to a significant change in the composition of the community and a rapid decline in hard coral cover. Furthermore, if bleaching events continue to occur with the same frequency and severity as in the recent past, the model predicts that the cover of Acroporidae will continue to decline. Although significant cover of live coral remains on near-shore reefs, and recovery is observed during inter-disturbance periods, it appears that this system will not be resilient to the recent disturbance regime over the long term. Conservation strategies for coral reefs should focus on both mitigating local factors that act synergistically to increase the susceptibility of Acroporidae to climate change while promoting initiatives that maximise the recovery potential from inevitable disturbances.

  16. Framework of barrier reefs threatened by ocean acidification.

    Science.gov (United States)

    Comeau, Steeve; Lantz, Coulson A; Edmunds, Peter J; Carpenter, Robert C

    2016-03-01

    To date, studies of ocean acidification (OA) on coral reefs have focused on organisms rather than communities, and the few community effects that have been addressed have focused on shallow back reef habitats. The effects of OA on outer barrier reefs, which are the most striking of coral reef habitats and are functionally and physically different from back reefs, are unknown. Using 5-m long outdoor flumes to create treatment conditions, we constructed coral reef communities comprised of calcified algae, corals, and reef pavement that were assembled to match the community structure at 17 m depth on the outer barrier reef of Moorea, French Polynesia. Communities were maintained under ambient and 1200 μatm pCO2 for 7 weeks, and net calcification rates were measured at different flow speeds. Community net calcification was significantly affected by OA, especially at night when net calcification was depressed ~78% compared to ambient pCO2 . Flow speed (2-14 cm s(-1) ) enhanced net calcification only at night under elevated pCO2 . Reef pavement also was affected by OA, with dissolution ~86% higher under elevated pCO2 compared to ambient pCO2 . These results suggest that net accretion of outer barrier reef communities will decline under OA conditions predicted within the next 100 years, largely because of increased dissolution of reef pavement. Such extensive dissolution poses a threat to the carbonate foundation of barrier reef communities.

  17. Dynamical seasonal prediction of summer sea surface temperatures in the Great Barrier Reef

    Science.gov (United States)

    Spillman, C. M.; Alves, O.

    2009-03-01

    Coral bleaching is a serious problem threatening the world coral reef systems, triggered by high sea surface temperatures (SST) which are becoming more prevalent as a result of global warming. Seasonal forecasts from coupled ocean-atmosphere models can be used to predict anomalous SST months in advance. In this study, we assess the ability of the Australian Bureau of Meteorology seasonal forecast model (POAMA) to forecast SST anomalies in the Great Barrier Reef, Australia, with particular focus on the major 1998 and 2002 bleaching events. Advance warning of potential bleaching events allows for the implementation of management strategies to minimise reef damage. This study represents the first attempt to apply a dynamical seasonal model to the problem of coral bleaching and predict SST over a reef system for up to 6 months lead-time, a potentially invaluable tool for reef managers.

  18. Coral reefs on the edge? Carbon chemistry on inshore reefs of the great barrier reef.

    Directory of Open Access Journals (Sweden)

    Sven Uthicke

    Full Text Available While increasing atmospheric carbon dioxide (CO2 concentration alters global water chemistry (Ocean Acidification; OA, the degree of changes vary on local and regional spatial scales. Inshore fringing coral reefs of the Great Barrier Reef (GBR are subjected to a variety of local pressures, and some sites may already be marginal habitats for corals. The spatial and temporal variation in directly measured parameters: Total Alkalinity (TA and dissolved inorganic carbon (DIC concentration, and derived parameters: partial pressure of CO2 (pCO2; pH and aragonite saturation state (Ωar were measured at 14 inshore reefs over a two year period in the GBR region. Total Alkalinity varied between 2069 and 2364 µmol kg-1 and DIC concentrations ranged from 1846 to 2099 µmol kg-1. This resulted in pCO2 concentrations from 340 to 554 µatm, with higher values during the wet seasons and pCO2 on inshore reefs distinctly above atmospheric values. However, due to temperature effects, Ωar was not further reduced in the wet season. Aragonite saturation on inshore reefs was consistently lower and pCO2 higher than on GBR reefs further offshore. Thermodynamic effects contribute to this, and anthropogenic runoff may also contribute by altering productivity (P, respiration (R and P/R ratios. Compared to surveys 18 and 30 years ago, pCO2 on GBR mid- and outer-shelf reefs has risen at the same rate as atmospheric values (∼1.7 µatm yr-1 over 30 years. By contrast, values on inshore reefs have increased at 2.5 to 3 times higher rates. Thus, pCO2 levels on inshore reefs have disproportionately increased compared to atmospheric levels. Our study suggests that inshore GBR reefs are more vulnerable to OA and have less buffering capacity compared to offshore reefs. This may be caused by anthropogenically induced trophic changes in the water column and benthos of inshore reefs subjected to land runoff.

  19. Coral reefs on the edge? Carbon chemistry on inshore reefs of the great barrier reef.

    Science.gov (United States)

    Uthicke, Sven; Furnas, Miles; Lønborg, Christian

    2014-01-01

    While increasing atmospheric carbon dioxide (CO2) concentration alters global water chemistry (Ocean Acidification; OA), the degree of changes vary on local and regional spatial scales. Inshore fringing coral reefs of the Great Barrier Reef (GBR) are subjected to a variety of local pressures, and some sites may already be marginal habitats for corals. The spatial and temporal variation in directly measured parameters: Total Alkalinity (TA) and dissolved inorganic carbon (DIC) concentration, and derived parameters: partial pressure of CO2 (pCO2); pH and aragonite saturation state (Ωar) were measured at 14 inshore reefs over a two year period in the GBR region. Total Alkalinity varied between 2069 and 2364 µmol kg-1 and DIC concentrations ranged from 1846 to 2099 µmol kg-1. This resulted in pCO2 concentrations from 340 to 554 µatm, with higher values during the wet seasons and pCO2 on inshore reefs distinctly above atmospheric values. However, due to temperature effects, Ωar was not further reduced in the wet season. Aragonite saturation on inshore reefs was consistently lower and pCO2 higher than on GBR reefs further offshore. Thermodynamic effects contribute to this, and anthropogenic runoff may also contribute by altering productivity (P), respiration (R) and P/R ratios. Compared to surveys 18 and 30 years ago, pCO2 on GBR mid- and outer-shelf reefs has risen at the same rate as atmospheric values (∼1.7 µatm yr-1) over 30 years. By contrast, values on inshore reefs have increased at 2.5 to 3 times higher rates. Thus, pCO2 levels on inshore reefs have disproportionately increased compared to atmospheric levels. Our study suggests that inshore GBR reefs are more vulnerable to OA and have less buffering capacity compared to offshore reefs. This may be caused by anthropogenically induced trophic changes in the water column and benthos of inshore reefs subjected to land runoff.

  20. Coral community change on a turbid-zone reef complex: developing baseline records for the central Great Barrier Reef's nearshore coral reefs

    Science.gov (United States)

    Johnson, Jamie; Perry, Chris; Smithers, Scott; Morgan, Kyle; Johnson, Kenneth

    2016-04-01

    Understanding past coral community development and reef growth is crucial for placing contemporary ecological and environmental change within appropriate reef-building timescales. Coral reefs located within coastal inner-shelf zones are widely perceived to be most susceptible to declining water quality due to their proximity to modified river catchments. On the inner-shelf of Australia's Great Barrier Reef (GBR) the impacts and magnitude of declining water quality since European settlement (c. 1850 A.D.) still remain unclear. This relates to ongoing debates concerning the significance of increased sediment yields against the naturally high background sedimentary regimes and the paucity of long-term (>decadal) ecological datasets. To provide baseline records for interpreting coral community change within the turbid inner-shelf waters of the GBR, 21 cores were recovered from five nearshore reefs spanning an evolutionary spectrum of reef development. Discrete intervals pre- and post-dating European settlement, but deposited at equivalent water depths, were identified by radiocarbon dating, enabling the discrimination of extrinsic and intrinsic driven shifts within the coral palaeo-record. We report no discernible evidence of anthropogenically-driven disturbance on the coral community records at these sites. Instead, significant transitions in coral community assemblages relating to water depth and vertical reef accretion were observed. We suggest that these records may be used to contextualise observed contemporary ecological change within similar environments on the GBR.

  1. Influence of hydrodynamic energy on Holocene reef flat accretion, Great Barrier Reef

    Science.gov (United States)

    Dechnik, Belinda; Webster, Jody M.; Nothdurft, Luke; Webb, Gregory E.; Zhao, Jian-xin; Duce, Stephanie; Braga, Juan C.; Harris, Daniel L.; Vila-Concejo, Ana; Puotinen, Marji

    2016-01-01

    The response of platform reefs to sea-level stabilization over the past 6 ka is well established for the Great Barrier Reef (GBR), with reefs typically accreting laterally from windward to leeward. However, these observations are based on few cores spread across reef zones and may not accurately reflect a reef's true accretional response to the Holocene stillstand. We present a new record of reef accretion based on 49 U/Th ages from Heron and One Tree reefs in conjunction with re-analyzed data from 14 reefs across the GBR. We demonstrate that hydrodynamic energy is the main driver of accretional direction; exposed reefs accreted primarily lagoon-ward while protected reefs accreted seawards, contrary to the traditional growth model in the GBR. Lateral accretion rates varied from 86.3 m/ka-42.4 m/ka on the exposed One Tree windward reef and 68.35 m/ka-15.7 m/ka on the protected leeward Heron reef, suggesting that wind/wave energy is not a dominant control on lateral accretion rates. This represents the most comprehensive statement of lateral accretion direction and rates from the mid-outer platform reefs of the GBR, confirming great variability in reef flat growth both within and between reef margins over the last 6 ka, and highlighting the need for closely-spaced transects.

  2. Symbiodinium (Dinophyceae) diversity in reef-invertebrates along an offshore to inshore reef gradient near Lizard Island, Great Barrier Reef.

    Science.gov (United States)

    Tonk, Linda; Sampayo, Eugenia M; LaJeunesse, Todd C; Schrameyer, Verena; Hoegh-Guldberg, Ove

    2014-06-01

    Despite extensive work on the genetic diversity of reef invertebrate-dinoflagellate symbioses on the Great Barrier Reef (GBR; Australia), large information gaps exist from northern and inshore regions. Therefore, a broad survey was done comparing the community of inshore, mid-shelf and outer reefs at the latitude of Lizard Island. Symbiodinium (Freudenthal) diversity was characterized using denaturing gradient gel electrophoresis fingerprinting and sequencing of the ITS2 region of the ribosomal DNA. Thirty-nine distinct Symbiodinium types were identified from four subgeneric clades (B, C, D, and G). Several Symbiodinium types originally characterized from the Indian Ocean were discovered as well as eight novel types (C1kk, C1LL, C3nn, C26b, C161a, C162, C165, C166). Multivariate analyses on the Symbiodinium species diversity data showed a strong link with host identity, consistent with previous findings. Of the four environmental variables tested, mean austral winter sea surface temperature (SST) influenced Symbiodinium distribution across shelves most significantly. A similar result was found when the analysis was performed on Symbiodinium diversity data of genera with an open symbiont transmission mode separately with chl a and PAR explaining additional variation. This study underscores the importance of SST and water quality related variables as factors driving Symbiodinium distribution on cross-shelf scales. Furthermore, this study expands our knowledge on Symbiodinium species diversity, ecological partitioning (including host-specificity) and geographic ranges across the GBR. The accelerating rate of environmental change experienced by coral reef ecosystems emphasizes the need to comprehend the full complexity of cnidarian symbioses, including the biotic and abiotic factors that shape their current distributions.

  3. Congruent patterns of connectivity can inform management for broadcast spawning corals on the Great Barrier Reef.

    Science.gov (United States)

    Lukoschek, Vimoksalehi; Riginos, Cynthia; van Oppen, Madeleine J H

    2016-07-01

    Connectivity underpins the persistence and recovery of marine ecosystems. The Great Barrier Reef (GBR) is the world's largest coral reef ecosystem and managed by an extensive network of no-take zones; however, information about connectivity was not available to optimize the network's configuration. We use multivariate analyses, Bayesian clustering algorithms and assignment tests of the largest population genetic data set for any organism on the GBR to date (Acropora tenuis, >2500 colonies; >50 reefs, genotyped for ten microsatellite loci) to demonstrate highly congruent patterns of connectivity between this common broadcast spawning reef-building coral and its congener Acropora millepora (~950 colonies; 20 reefs, genotyped for 12 microsatellite loci). For both species, there is a genetic divide at around 19°S latitude, most probably reflecting allopatric differentiation during the Pleistocene. GBR reefs north of 19°S are essentially panmictic whereas southern reefs are genetically distinct with higher levels of genetic diversity and population structure, most notably genetic subdivision between inshore and offshore reefs south of 19°S. These broadly congruent patterns of higher genetic diversities found on southern GBR reefs most likely represent the accumulation of alleles via the southward flowing East Australia Current. In addition, signatures of genetic admixture between the Coral Sea and outer-shelf reefs in the northern, central and southern GBR provide evidence of recent gene flow. Our connectivity results are consistent with predictions from recently published larval dispersal models for broadcast spawning corals on the GBR, thereby providing robust connectivity information about the dominant reef-building genus Acropora for coral reef managers.

  4. Remote sensing of sea surface temperatures during 2002 Barrier Reef coral bleaching

    Science.gov (United States)

    Liu, Gang; Strong, Alan E.; Skirving, William

    Early in 2002, satellites of the U.S. National Oceanic and Atmospheric Administration (NOAA) detected anomalously high sea surface temperatures (SST) developing in the western Coral Sea, midway along Australia's Great Barrier Reef (GBR). This was the beginning of what was to become the most significant GBR coral bleaching event on record [Wilkinson, 2002]. During this time, NOAA's National Environmental Satellite, Data, and Information Service (NESDIS) provided satellite data as part of ongoing collaborative work on coral reef health with the Australian Institute of Marine Science (AIMS) and the Great Barrier Reef Marine Park Authority (GBRMPA). These data proved invaluable to AIMS and GBRMPA as they monitored and assessed the development and evolution of SSTs throughout the austral summer, enabling them to keep stakeholders, government, and the general public informed and up to date.

  5. Securing the future of the Great Barrier Reef

    Science.gov (United States)

    Hughes, Terry P.; Day, Jon C.; Brodie, Jon

    2015-06-01

    The decline of the Great Barrier Reef can be reversed by improvements to governance and management: current policies that promote fossil fuels and economic development of the Reef region need to be reformed to prioritize long-term protection from climate change and other stressors.

  6. Modelling Infragravity Waves and Currents across a Fringing Reef: Ningaloo Reef, Western Australia

    Science.gov (United States)

    van Dongeren, A. R.; Duong Minh, T.; Lowe, R.; Roelvink, J.; Ranasinghe, R.; Symonds, G.

    2010-12-01

    The majority of the world’s coastlines contain submerged reef structures of various types, i.e. tropical coral reefs, relic temperate limestone platforms, and other submerged rock formations. Relatively little research has been conducted to study nearshore hydrodynamic processes that occur in reef environments. A good understanding of these processes is important because waves and wave-induced currents drive sediment transport, nutrient dynamics, and dispersal of larval coral and fish. Through the development of improved hydrodynamic models, the impact of environmental changes and human impacts on reefs may be accurately assessed. However, predictive models have historically been developed and tested using sandy coast environments. There are some important differences with reefs: wave breaking over the reef results in onshore flows with a higher bed friction coefficient, as well as set-up. Recent field studies (e.g., Lowe et al. JPO, 2009a) have shown the transformation of swell energy on reefs, and numerical model studies (Symonds and Black, JCR 2001, Ranasinghe et al., Coastal Eng. 2006, Lowe et al. J. Geoph. Res. 2009b) have shown that the spatial pattern of mean wave heights and mean currents can be qualitatively reproduced. However, the bulk of the measured variability is often in the infragravity frequency band (Pequignet et al. Geoph. Res. Lett., 2009 and Lowe et al., in prep.). The recently developed open-source model XBeach (Roelvink et al, Coastal Eng. 2009) is specifically designed to model these wave motions and associated sediment transport and has been successfully applied to sandy coasts (McCall et al., Coastal Eng. 2010). The objective of this paper is to apply XBeach to simulate infragravity forcing at Ningaloo Reef, a large fringing coral reef located along the northwest coastline of Western Australia. A field experiment at Ningaloo Reef (Western Australia) conducted in June 2009 by Lowe et al (in prep.) specifically aimed at measuring

  7. Diversity of trypanorhynch metacestodes in teleost fishes from coral reefs off eastern Australia and New Caledonia

    Directory of Open Access Journals (Sweden)

    Beveridge Ian

    2014-01-01

    Full Text Available Trypanorhynch metacestodes were examined from teleosts from coral reefs in eastern Australia and from New Caledonia. From over 12,000 fishes examined, 33 named species of trypanorhynchs were recovered as well as three species of tentacularioids which are described but not named. Host-parasite and parasite-host lists are provided, including more than 100 new host records. Lacistorhynchoid and tentacularioid taxa predominated with fewer otobothrioid and gymnorhynchoids. Five species, Callitetrarhynchus gracilis, Floriceps minacanthus, Pseudotobothrium dipsacum, Pseudolacistorhynchus heroniensis and Ps. shipleyi, were particularly common and exhibited low host specificity. Limited data suggested a higher diversity of larval trypanorhynchs in larger piscivorous fish families. Several fish families surveyed extensively (Blenniidae, Chaetodontidae, Gobiidae, Kyphosidae and Scaridae yielded no trypanorhynch larvae. The overall similarity between the fauna of the Great Barrier Reef and New Caledonia was 45%. Where available, information on the adult stages in elasmobranchs has been included.

  8. Large-scale, multidirectional larval connectivity among coral reef fish populations in the Great Barrier Reef Marine Park

    KAUST Repository

    Williamson, David H.

    2016-11-15

    Larval dispersal is the key process by which populations of most marine fishes and invertebrates are connected and replenished. Advances in larval tagging and genetics have enhanced our capacity to track larval dispersal, assess scales of population connectivity, and quantify larval exchange among no-take marine reserves and fished areas. Recent studies have found that reserves can be a significant source of recruits for populations up to 40 km away, but the scale and direction of larval connectivity across larger seascapes remain unknown. Here, we apply genetic parentage analysis to investigate larval dispersal patterns for two exploited coral reef groupers (Plectropomus maculatus and Plectropomus leopardus) within and among three clusters of reefs separated by 60–220 km within the Great Barrier Reef Marine Park, Australia. A total of 69 juvenile P. maculatus and 17 juvenile P. leopardus (representing 6% and 9% of the total juveniles sampled, respectively) were genetically assigned to parent individuals on reefs within the study area. We identified both short-distance larval dispersal within regions (200 m to 50 km) and long-distance, multidirectional dispersal of up to ~250 km among regions. Dispersal strength declined significantly with distance, with best-fit dispersal kernels estimating median dispersal distances of ~110 km for P. maculatus and ~190 km for P. leopardus. Larval exchange among reefs demonstrates that established reserves form a highly connected network and contribute larvae for the replenishment of fished reefs at multiple spatial scales. Our findings highlight the potential for long-distance dispersal in an important group of reef fishes, and provide further evidence that effectively protected reserves can yield recruitment and sustainability benefits for exploited fish populations.

  9. Factors affecting adoption of improved management practices in the pastoral industry in Great Barrier Reef catchments.

    Science.gov (United States)

    Rolfe, John; Gregg, Daniel

    2015-07-01

    Substantial efforts are being made by industry and government in Australia to reduce adverse impacts of pastoral operations on water quality draining to the Great Barrier Reef. A key target is to achieve rapid adoption of better management practices by landholders, but current theoretical frameworks provide limited guidance about priorities for improving adoption. In this study information from direct surveys with landholders in the two largest catchments draining into the Great Barrier Reef has been collected and analysed. Study outcomes have important implications for policy settings, because they confirm that substantial variations in adoption drivers exist across landholders, enterprises and practices. The results confirm that the three broad barriers to adoption of information gaps, financial incentives and risk perceptions are relevant. This implies that different policy mechanisms, including extension and incentive programs, remain important, although financial incentives were only identified as important to meet capital and transformational costs rather than recurrent costs.

  10. Ocean acidification: Linking science to management solutions using the Great Barrier Reef as a case study.

    Science.gov (United States)

    Albright, Rebecca; Anthony, Kenneth R N; Baird, Mark; Beeden, Roger; Byrne, Maria; Collier, Catherine; Dove, Sophie; Fabricius, Katharina; Hoegh-Guldberg, Ove; Kelly, Ryan P; Lough, Janice; Mongin, Mathieu; Munday, Philip L; Pears, Rachel J; Russell, Bayden D; Tilbrook, Bronte; Abal, Eva

    2016-11-01

    Coral reefs are one of the most vulnerable ecosystems to ocean acidification. While our understanding of the potential impacts of ocean acidification on coral reef ecosystems is growing, gaps remain that limit our ability to translate scientific knowledge into management action. To guide solution-based research, we review the current knowledge of ocean acidification impacts on coral reefs alongside management needs and priorities. We use the world's largest continuous reef system, Australia's Great Barrier Reef (GBR), as a case study. We integrate scientific knowledge gained from a variety of approaches (e.g., laboratory studies, field observations, and ecosystem modelling) and scales (e.g., cell, organism, ecosystem) that underpin a systems-level understanding of how ocean acidification is likely to impact the GBR and associated goods and services. We then discuss local and regional management options that may be effective to help mitigate the effects of ocean acidification on the GBR, with likely application to other coral reef systems. We develop a research framework for linking solution-based ocean acidification research to practical management options. The framework assists in identifying effective and cost-efficient options for supporting ecosystem resilience. The framework enables on-the-ground OA management to be the focus, while not losing sight of CO2 mitigation as the ultimate solution.

  11. Holocene reef evolution in a macrotidal setting: Buccaneer Archipelago, Kimberley Bioregion, Northwest Australia

    Science.gov (United States)

    Solihuddin, Tubagus; O'Leary, Michael J.; Blakeway, David; Parnum, Iain; Kordi, Moataz; Collins, Lindsay B.

    2016-09-01

    This study uses information derived from cores to describe the Holocene accretion history of coral reefs in the macrotidal (up to 11 m tidal range) Buccaneer Archipelago of the southern Kimberley coast, Western Australia. The internal architecture of all cored reefs is broadly similar, constituting well-preserved detrital coral fragments, predominantly branching Acropora, in a poorly sorted sandy mud matrix. However, once the reefs reach sea level, they diverge into two types: low intertidal reefs that maintain their detrital character and develop relatively narrow, horizontal or gently sloping reef flats at approximately mean low water spring, and high intertidal reefs that develop broad coralline algal-dominated reef flats at elevations between mean low water neap and mean high water neap. The high intertidal reefs develop where strong, ebb-dominated, tidal asymmetry retains seawater over the low tide and allows continued accretion. Both reef types are ultimately constrained by sea level but differ in elevation by 3-4 m.

  12. Community calcification in Lizard Island, Great Barrier Reef: A 33 year perspective

    Science.gov (United States)

    Silverman, J.; Schneider, K.; Kline, D. I.; Rivlin, T.; Rivlin, A.; Hamylton, S.; Lazar, B.; Erez, J.; Caldeira, K.

    2014-11-01

    Measurements of community calcification (Gnet) were made during September 2008 and October 2009 on a reef flat in Lizard Island, Great Barrier Reef, Australia, 33 years after the first measurements were made there by the LIMER expedition in 1975. In 2008 and 2009 we measured Gnet = 61 ± 12 and 54 ± 13 mmol CaCO3 m-2·day-1, respectively. These rates are 27-49% lower than those measured during the same season in 1975-76. These rates agree well with those estimated from the measured temperature and degree of aragonite saturation using a reef calcification rate equation developed from observations in a Red Sea coral reef. Community structure surveys across the Lizard Island reef flat during our study using the same methods employed in 1978 showed that live coral coverage had not changed significantly (∼8%). However, it should be noted that the uncertainty in the live coral coverage estimates in this study and in 1978 were fairly large and inherent to this methodology. Using the reef calcification rate equation while assuming that seawater above the reef was at equilibrium with atmospheric PCO2 and given that live coral cover had not changed Gnet should have declined by 30 ± 8% since the LIMER study as indeed observed. We note, however, that the error in estimated Gnet decrease relative to the 1970's could be much larger due to the uncertainties in the coral coverage measurements. Nonetheless, the similarity between the predicted and the measured decrease in Gnet suggests that ocean acidification may be the primary cause for the lower CaCO3 precipitation rate on the Lizard Island reef flat.

  13. A model of the effects of land-based, human activities on the health of coral reefs in the Great Barrier Reef and in Fouha Bay, Guam, Micronesia

    Science.gov (United States)

    Wolanski, Eric; Richmond, Robert H.; McCook, Laurence

    2004-05-01

    A model is proposed to explain coral and algal abundance on coastal coral reefs as a function of spike-like natural disturbances from tropical cyclones and turbid river floods, followed by long recovery periods where the rate of reef recovery depends on ambient water and substratum quality. The model includes competition for space between corals and algae, coral recruitment and reef connectivity. The model is applied to a 400-km stretch of Australia's Great Barrier Reef and to the 200-m-long reef tract at Fouha Bay, in Guam, Micronesia. For these two sites and at these two scales, the model appears successful at reproducing the observed distribution of algae and coral. For both sites, it is suggested that the reefs have been degraded by human activities on land and that they will recover provided remedial measures are implemented on land to restore the water and substrate conditions. We suggest ways to improve the model and to use the model to guide future ecological research and management efforts on coastal coral reefs.

  14. The influence of sea level and cyclones on Holocene reef flat development: Middle Island, central Great Barrier Reef

    Science.gov (United States)

    Ryan, E. J.; Smithers, S. G.; Lewis, S. E.; Clark, T. R.; Zhao, J. X.

    2016-09-01

    The geomorphology and chronostratigraphy of the reef flat (including microatoll ages and elevations) were investigated to better understand the long-term development of the reef at Middle Island, inshore central Great Barrier Reef. Eleven cores across the fringing reef captured reef initiation, framework accretion and matrix sediments, allowing a comprehensive appreciation of reef development. Precise uranium-thorium ages obtained from coral skeletons revealed that the reef initiated ~7873 ± 17 years before present (yBP), and most of the reef was emplaced in the following 1000 yr. Average rates of vertical reef accretion ranged between 3.5 and 7.6 mm yr-1. Reef framework was dominated by branching corals ( Acropora and Montipora). An age hiatus of ~5000 yr between 6439 ± 19 and 1617 ± 10 yBP was observed in the core data and attributed to stripping of the reef structure by intense cyclones during the mid- to late-Holocene. Large shingle ridges deposited onshore and basset edges preserved on the reef flat document the influence of cyclones at Middle Island and represent potential sinks for much of the stripped material. Stripping of the upper reef structure around the outer margin of the reef flat by cyclones created accommodation space for a thin (energy waves presumably generated by cyclones have significantly influenced both Holocene reef growth and contemporary reef flat geomorphology.

  15. Population growth rates of reef sharks with and without fishing on the great barrier reef: robust estimation with multiple models.

    Directory of Open Access Journals (Sweden)

    Mizue Hisano

    Full Text Available Overfishing of sharks is a global concern, with increasing numbers of species threatened by overfishing. For many sharks, both catch rates and underwater visual surveys have been criticized as indices of abundance. In this context, estimation of population trends using individual demographic rates provides an important alternative means of assessing population status. However, such estimates involve uncertainties that must be appropriately characterized to credibly and effectively inform conservation efforts and management. Incorporating uncertainties into population assessment is especially important when key demographic rates are obtained via indirect methods, as is often the case for mortality rates of marine organisms subject to fishing. Here, focusing on two reef shark species on the Great Barrier Reef, Australia, we estimated natural and total mortality rates using several indirect methods, and determined the population growth rates resulting from each. We used bootstrapping to quantify the uncertainty associated with each estimate, and to evaluate the extent of agreement between estimates. Multiple models produced highly concordant natural and total mortality rates, and associated population growth rates, once the uncertainties associated with the individual estimates were taken into account. Consensus estimates of natural and total population growth across multiple models support the hypothesis that these species are declining rapidly due to fishing, in contrast to conclusions previously drawn from catch rate trends. Moreover, quantitative projections of abundance differences on fished versus unfished reefs, based on the population growth rate estimates, are comparable to those found in previous studies using underwater visual surveys. These findings appear to justify management actions to substantially reduce the fishing mortality of reef sharks. They also highlight the potential utility of rigorously characterizing uncertainty, and

  16. Recruitment Variability of Coral Reef Sessile Communities of the Far North Great Barrier Reef.

    Science.gov (United States)

    Luter, Heidi M; Duckworth, Alan R; Wolff, Carsten W; Evans-Illidge, Elizabeth; Whalan, Steve

    2016-01-01

    One of the key components in assessing marine sessile organism demography is determining recruitment patterns to benthic habitats. An analysis of serially deployed recruitment tiles across depth (6 and 12 m), seasons (summer and winter) and space (meters to kilometres) was used to quantify recruitment assemblage structure (abundance and percent cover) of corals, sponges, ascidians, algae and other sessile organisms from the northern sector of the Great Barrier Reef (GBR). Polychaetes were most abundant on recruitment titles, reaching almost 50% of total recruitment, yet covered reefs.

  17. A Paddock to reef monitoring and modelling framework for the Great Barrier Reef: Paddock and catchment component.

    Science.gov (United States)

    Carroll, Chris; Waters, David; Vardy, Suzanne; Silburn, David M; Attard, Steve; Thorburn, Peter J; Davis, Aaron M; Halpin, Neil; Schmidt, Michael; Wilson, Bruce; Clark, Andrew

    2012-01-01

    Targets for improvements in water quality entering the Great Barrier Reef (GBR) have been set through the Reef Water Quality Protection Plan (Reef Plan). To measure and report on progress towards the targets set a program has been established that combines monitoring and modelling at paddock through to catchment and reef scales; the Paddock to Reef Integrated Monitoring, Modelling and Reporting Program (Paddock to Reef Program). This program aims to provide evidence of links between land management activities, water quality and reef health. Five lines of evidence are used: the effectiveness of management practices to improve water quality; the prevalence of management practice adoption and change in catchment indicators; long-term monitoring of catchment water quality; paddock & catchment modelling to provide a relative assessment of progress towards meeting targets; and finally marine monitoring of GBR water quality and reef ecosystem health. This paper outlines the first four lines of evidence.

  18. Diurnal warming in shallow coastal seas: Observations from the Caribbean and Great Barrier Reef regions

    Science.gov (United States)

    Zhu, X.; Minnett, P. J.; Berkelmans, R.; Hendee, J.; Manfrino, C.

    2014-07-01

    A good understanding of diurnal warming in the upper ocean is important for the validation of satellite-derived sea surface temperature (SST) against in-situ buoy data and for merging satellite SSTs taken at different times of the same day. For shallow coastal regions, better understanding of diurnal heating could also help improve monitoring and prediction of ecosystem health, such as coral reef bleaching. Compared to its open ocean counterpart which has been studied extensively and modeled with good success, coastal diurnal warming has complicating localized characteristics, including coastline geometry, bathymetry, water types, tidal and wave mixing. Our goal is to characterize coastal diurnal warming using two extensive in-situ temperature and weather datasets from the Caribbean and Great Barrier Reef (GBR), Australia. Results showed clear daily warming patterns in most stations from both datasets. For the three Caribbean stations where solar radiation is the main cause of daily warming, the mean diurnal warming amplitudes were about 0.4 K at depths of 4-7 m and 0.6-0.7 K at shallower depths of 1-2 m; the largest warming value was 2.1 K. For coral top temperatures of the GBR, 20% of days had warming amplitudes >1 K, with the largest >4 K. The bottom warming at shallower sites has higher daily maximum temperatures and lower daily minimum temperatures than deeper sites nearby. The averaged daily warming amplitudes were shown to be closely related to daily average wind speed and maximum insolation, as found in the open ocean. Diurnal heating also depends on local features including water depth, location on different sections of the reef (reef flat vs. reef slope), the relative distance from the barrier reef chain (coast vs. lagoon stations vs. inner barrier reef sites vs. outer rim sites); and the proximity to the tidal inlets. In addition, the influence of tides on daily temperature changes and its relative importance compared to solar radiation was quantified by

  19. The rare mantis shrimp Areosquilla indica (Hansen, 1976) (Crustacea, Stomatopoda) from the Great Barrier Reef: first Australian records of the genus and species.

    Science.gov (United States)

    Ahyong, Shane T; Wassenberg, Theodore J

    2015-08-18

    The rare mantis shrimp genus Areosquilla is recorded from Australia for the first time based on nine specimens of A. indica (Hansen, 1926) collected from the Great Barrier Reef. Morphological variation beyond that observed in previous accounts is reported. The present record and other recent discoveries bring the Australian stomatopod fauna to 152 species and 68 genera.

  20. Reef core insights into mid-Holocene water temperatures of the southern Great Barrier Reef

    Science.gov (United States)

    Sadler, James; Webb, Gregory E.; Leonard, Nicole D.; Nothdurft, Luke D.; Clark, Tara R.

    2016-10-01

    The tropical and subtropical oceans of the Southern Hemisphere are poorly represented in present-day climate models, necessitating an increased number of paleoclimate records from this key region to both understand the Earth's climate system and help constrain model simulations. Here we present a site-specific calibration of live collected massive Porites Sr/Ca records against concomitant in situ instrumental water temperature data from the fore-reef slope of Heron Reef, southern Great Barrier Reef (GBR). The resultant calibration, and a previously published Acropora calibration from the same site, was applied to subfossil coral material to investigate Holocene water temperatures at Heron Reef. U-Th-dated samples of massive Porites suggest cooler water temperatures with reduced seasonal amplitude at 5.2 ka (2.76-1.31°C cooler than present) and 7 ka (1.26°C cooler than present) at Heron Reef. These results contrast the previous suggestion of a mid-Holocene Thermal Maximum in the central GBR around 5.35 ka and 4.48 ka, yet may be explained by differences in temperature of the shallow ponded reef flat (central GBR) and the deeper reef slope waters (this study) and potential large reservoir correction errors associated with early radiocarbon dates. Combining coral-based water temperature anomaly reconstructions from the tropical and subtropical western Pacific indicates a coherent temperature response across the meridional gradient from Indonesia and Papua New Guinea down to the southern GBR. This similarity in reconstructed temperature anomalies suggests a high probability of an earlier expression of a mid-Holocene Thermal Maximum on the GBR between 6.8 and 6.0 ka.

  1. The exposure of the Great Barrier Reef to ocean acidification

    KAUST Repository

    Mongin, Mathieu

    2016-02-23

    The Great Barrier Reef (GBR) is founded on reef-building corals. Corals build their exoskeleton with aragonite, but ocean acidification is lowering the aragonite saturation state of seawater (Ωa). The downscaling of ocean acidification projections from global to GBR scales requires the set of regional drivers controlling Ωa to be resolved. Here we use a regional coupled circulation–biogeochemical model and observations to estimate the Ωa experienced by the 3,581 reefs of the GBR, and to apportion the contributions of the hydrological cycle, regional hydrodynamics and metabolism on Ωa variability. We find more detail, and a greater range (1.43), than previously compiled coarse maps of Ωa of the region (0.4), or in observations (1.0). Most of the variability in Ωa is due to processes upstream of the reef in question. As a result, future decline in Ωa is likely to be steeper on the GBR than currently projected by the IPCC assessment report.

  2. The exposure of the Great Barrier Reef to ocean acidification

    Science.gov (United States)

    Mongin, Mathieu; Baird, Mark E.; Tilbrook, Bronte; Matear, Richard J.; Lenton, Andrew; Herzfeld, Mike; Wild-Allen, Karen; Skerratt, Jenny; Margvelashvili, Nugzar; Robson, Barbara J.; Duarte, Carlos M.; Gustafsson, Malin S. M.; Ralph, Peter J.; Steven, Andrew D. L.

    2016-01-01

    The Great Barrier Reef (GBR) is founded on reef-building corals. Corals build their exoskeleton with aragonite, but ocean acidification is lowering the aragonite saturation state of seawater (Ωa). The downscaling of ocean acidification projections from global to GBR scales requires the set of regional drivers controlling Ωa to be resolved. Here we use a regional coupled circulation–biogeochemical model and observations to estimate the Ωa experienced by the 3,581 reefs of the GBR, and to apportion the contributions of the hydrological cycle, regional hydrodynamics and metabolism on Ωa variability. We find more detail, and a greater range (1.43), than previously compiled coarse maps of Ωa of the region (0.4), or in observations (1.0). Most of the variability in Ωa is due to processes upstream of the reef in question. As a result, future decline in Ωa is likely to be steeper on the GBR than currently projected by the IPCC assessment report. PMID:26907171

  3. The exposure of the Great Barrier Reef to ocean acidification.

    Science.gov (United States)

    Mongin, Mathieu; Baird, Mark E; Tilbrook, Bronte; Matear, Richard J; Lenton, Andrew; Herzfeld, Mike; Wild-Allen, Karen; Skerratt, Jenny; Margvelashvili, Nugzar; Robson, Barbara J; Duarte, Carlos M; Gustafsson, Malin S M; Ralph, Peter J; Steven, Andrew D L

    2016-02-23

    The Great Barrier Reef (GBR) is founded on reef-building corals. Corals build their exoskeleton with aragonite, but ocean acidification is lowering the aragonite saturation state of seawater (Ωa). The downscaling of ocean acidification projections from global to GBR scales requires the set of regional drivers controlling Ωa to be resolved. Here we use a regional coupled circulation-biogeochemical model and observations to estimate the Ωa experienced by the 3,581 reefs of the GBR, and to apportion the contributions of the hydrological cycle, regional hydrodynamics and metabolism on Ωa variability. We find more detail, and a greater range (1.43), than previously compiled coarse maps of Ωa of the region (0.4), or in observations (1.0). Most of the variability in Ωa is due to processes upstream of the reef in question. As a result, future decline in Ωa is likely to be steeper on the GBR than currently projected by the IPCC assessment report.

  4. Summer hot snaps and winter conditions: modelling white syndrome outbreaks on Great Barrier Reef corals.

    Directory of Open Access Journals (Sweden)

    Scott F Heron

    Full Text Available Coral reefs are under increasing pressure in a changing climate, one such threat being more frequent and destructive outbreaks of coral diseases. Thermal stress from rising temperatures has been implicated as a causal factor in disease outbreaks observed on the Great Barrier Reef, Australia, and elsewhere in the world. Here, we examine seasonal effects of satellite-derived temperature on the abundance of coral diseases known as white syndromes on the Great Barrier Reef, considering both warm stress during summer and deviations from mean temperatures during the preceding winter. We found a high correlation (r(2 = 0.953 between summer warm thermal anomalies (Hot Snap and disease abundance during outbreak events. Inclusion of thermal conditions during the preceding winter revealed that a significant reduction in disease outbreaks occurred following especially cold winters (Cold Snap, potentially related to a reduction in pathogen loading. Furthermore, mild winters (i.e., neither excessively cool nor warm frequently preceded disease outbreaks. In contrast, disease outbreaks did not typically occur following warm winters, potentially because of increased disease resistance of the coral host. Understanding the balance between the effects of warm and cold winters on disease outbreak will be important in a warming climate. Combining the influence of winter and summer thermal effects resulted in an algorithm that yields both a Seasonal Outlook of disease risk at the conclusion of winter and near real-time monitoring of Outbreak Risk during summer. This satellite-derived system can provide coral reef managers with an assessment of risk three-to-six months in advance of the summer season that can then be refined using near-real-time summer observations. This system can enhance the capacity of managers to prepare for and respond to possible disease outbreaks and focus research efforts to increase understanding of environmental impacts on coral disease in

  5. Towards protecting the Great Barrier Reef from land-based pollution.

    Science.gov (United States)

    Kroon, Frederieke J; Thorburn, Peter; Schaffelke, Britta; Whitten, Stuart

    2016-06-01

    The Great Barrier Reef (GBR) is an iconic coral reef system extending over 2000 km along the north-east coast of Australia. Global recognition of its Outstanding Universal Value resulted in the listing of the 348 000 km(2) GBR World Heritage Area (WHA) by UNESCO in 1981. Despite various levels of national and international protection, the condition of GBR ecosystems has deteriorated over the past decades, with land-based pollution from the adjacent catchments being a major and ongoing cause for this decline. To reduce land-based pollution, the Australian and Queensland Governments have implemented a range of policy initiatives since 2003. Here, we evaluate the effectiveness of existing initiatives to reduce discharge of land-based pollutants into the waters of the GBR. We conclude that recent efforts in the GBR catchments to reduce land-based pollution are unlikely to be sufficient to protect the GBR ecosystems from declining water quality within the aspired time frames. To support management decisions for desired ecological outcomes for the GBR WHA, we identify potential improvements to current policies and incentives, as well as potential changes to current agricultural land use, based on overseas experiences and Australia's unique potential. The experience in the GBR may provide useful guidance for the management of other marine ecosystems, as reducing land-based pollution by better managing agricultural sources is a challenge for coastal communities around the world.

  6. Towards environmental management of water turbidity within open coastal waters of the Great Barrier Reef.

    Science.gov (United States)

    Macdonald, Rachael K; Ridd, Peter V; Whinney, James C; Larcombe, Piers; Neil, David T

    2013-09-15

    Water turbidity and suspended sediment concentration (SSC) are commonly used as part of marine monitoring and water quality plans. Current management plans utilise threshold SSC values derived from mean-annual turbidity concentrations. Little published work documents typical ranges of turbidity for reefs within open coastal waters. Here, time-series turbidity measurements from 61 sites in the Great Barrier Reef (GBR) and Moreton Bay, Australia, are presented as turbidity exceedance curves and derivatives. This contributes to the understanding of turbidity and SSC in the context of environmental management in open-coastal reef environments. Exceedance results indicate strong spatial and temporal variability in water turbidity across inter/intraregional scales. The highest turbidity across 61 sites, at 50% exceedance (T50) is 15.3 NTU and at 90% exceedance (T90) 4.1 NTU. Mean/median turbidity comparisons show strong differences between the two, consistent with a strongly skewed turbidity regime. Results may contribute towards promoting refinement of water quality management protocols.

  7. Impact Of Coral Structures On Wave Directional Spreading Across A Shallow Reef Flat - Lizard Island, Northern Great Barrier Reef

    Science.gov (United States)

    Leon, J. X.; Baldock, T.; Callaghan, D. P.; Hoegh-guldberg, O.; Mumby, P.; Phinn, S. R.; Roelfsema, C. M.; Saunders, M. I.

    2013-12-01

    Coral reef hydrodynamics operate at several and overlapping spatial-temporal scales. Waves have the most important forcing function on shallow (labour and time-consuming task. In this study we measured the impact of coral structures on wave directional spreading. Field data was collected during October 2012 across a reef flat on Lizard Island, northern Great Barrier Reef. Wave surface levels were measured using an array of self-logging pressure sensors. A rapid in situ close-range photogrammetric method was used to create a high-resolution (0.5 cm) image mosaic and digital elevation model. Individual coral heads were extracted from these datasets using geo-morphometric and object-based image analysis techniques. Wave propagation was modelled using a modified version of the SWAN model which includes the measured coral structures in 2m by 1m cells across the reef. The approach followed a cylinder drag approach, neglecting skin friction and inertial components. Testing against field data included bed skin friction. Our results show, for the first time, how the variability of the reef benthos structures affects wave dissipation across a shallow reef flat. This has important implications globally for coral reefs, due to the large extent of their area occupied by reef flats, particularly, as global-scale degradation in coral reef health is causing a lowering of reef carbonate production that might lead to a decrease in reef structure and roughness.

  8. A bioindicator system for water quality on inshore coral reefs of the Great Barrier Reef.

    Science.gov (United States)

    Fabricius, Katharina E; Cooper, Timothy F; Humphrey, Craig; Uthicke, Sven; De'ath, Glenn; Davidson, Johnston; LeGrand, Hélène; Thompson, Angus; Schaffelke, Britta

    2012-01-01

    Responses of bioindicator candidates for water quality were quantified in two studies on inshore coral reefs of the Great Barrier Reef (GBR). In Study 1, 33 of the 38 investigated candidate indicators (including coral physiology, benthos composition, coral recruitment, macrobioeroder densities and FORAM index) showed significant relationships with a composite index of 13 water quality variables. These relationships were confirmed in Study 2 along four other water quality gradients (turbidity and chlorophyll). Changes in water quality led to multi-faceted shifts from phototrophic to heterotrophic benthic communities, and from diverse coral dominated communities to low-diversity communities dominated by macroalgae. Turbidity was the best predictor of biota; hence turbidity measurements remain essential to directly monitor water quality on the GBR, potentially complemented by our final calibrated 12 bioindicators. In combination, this bioindicator system may be used to assess changes in water quality, especially where direct water quality data are unavailable.

  9. Guiding principles for the improved governance of port and shipping impacts in the Great Barrier Reef.

    Science.gov (United States)

    Grech, A; Bos, M; Brodie, J; Coles, R; Dale, A; Gilbert, R; Hamann, M; Marsh, H; Neil, K; Pressey, R L; Rasheed, M A; Sheaves, M; Smith, A

    2013-10-15

    The Great Barrier Reef (GBR) region of Queensland, Australia, encompasses a complex and diverse array of tropical marine ecosystems of global significance. The region is also a World Heritage Area and largely within one of the world's best managed marine protected areas. However, a recent World Heritage Committee report drew attention to serious governance problems associated with the management of ports and shipping. We review the impacts of ports and shipping on biodiversity in the GBR, and propose a series of guiding principles to improve the current governance arrangements. Implementing these principles will increase the capacity of decision makers to minimize the impacts of ports and shipping on biodiversity, and will provide certainty and clarity to port operators and developers. A 'business as usual' approach could lead to the GBR's inclusion on the List of World Heritage in Danger in 2014.

  10. Estimating the role of three mesopredatory fishes in coral reef food webs at Ningaloo Reef, Western Australia

    Science.gov (United States)

    Thillainath, Emma C.; McIlwain, Jennifer L.; Wilson, Shaun K.; Depczynski, Martial

    2016-03-01

    Within the complex food webs that occur on coral reefs, mesopredatory fish consume small-bodied prey and transfer accumulated biomass to other trophic levels. We estimated biomass, growth and mortality rates of three common mesopredators from Ningaloo Reef in Western Australia to calculate their annual turnover rates and potential contribution to local trophic dynamics. Biomass estimates of the serranid Epinephelus rivulatus (4.46 ± 0.76 g m-2) were an order of magnitude greater than two smaller-bodied mesopredatory fishes, Pseudochromis fuscus (0.10 ± 0.03 g m-2) and Parapercis clathrata (0.23 ± 0.31 g m-2). Growth parameters generated from a von Bertalanffy growth function fitted to size-at-age data, however, indicated that mortality rates for the three mesopredators were similar and that 32-55 % of fish survived each year. Consequently, interspecific differences in annual turnover rates among E. rivulatus (1.9 g m-2 yr-1), Pa. clathrata (0.10 g m-2 yr-1) and Ps. fuscus (0.07 g m-2 yr-1) were an artefact of differences in local biomass estimates. The rapid turnover estimates for E. rivulatus suggest this species is an important conduit of energy within the isolated patch reef habitat where it is typically found, while Ps. fuscus and Pa. clathrata channel smaller amounts of energy from specific habitats in the Ningaloo lagoon. Apparent differences in habitat, diet and turnover rates of the three species examined provide an insight into the different roles these species play in coral reef food webs and suggest that life-history traits allow for variability in the local and spatial contribution of these species at Ningaloo Reef. Moreover, calculating turnover rates of a broader suite of fish species from a range of trophic groups will help better define the role of fishes in coral reef trophic dynamics.

  11. A diverse assemblage of reef corals thriving in a dynamic intertidal reef setting (Bonaparte Archipelago, Kimberley, Australia.

    Directory of Open Access Journals (Sweden)

    Zoe T Richards

    Full Text Available The susceptibility of reef-building corals to climatic anomalies is well documented and a cause of great concern for the future of coral reefs. Reef corals are normally considered to tolerate only a narrow range of climatic conditions with only a small number of species considered heat-tolerant. Occasionally however, corals can be seen thriving in unusually harsh reef settings and these are cause for some optimism about the future of coral reefs. Here we document for the first time a diverse assemblage of 225 species of hard corals occurring in the intertidal zone of the Bonaparte Archipelago, north western Australia. We compare the environmental conditions at our study site (tidal regime, SST and level of turbidity with those experienced at four other more typical tropical reef locations with similar levels of diversity. Physical extremes in the Bonaparte Archipelago include tidal oscillations of up to 8 m, long subaerial exposure times (>3.5 hrs, prolonged exposure to high SST and fluctuating turbidity levels. We conclude the timing of low tide in the coolest parts of the day ameliorates the severity of subaerial exposure, and the combination of strong currents and a naturally high sediment regime helps to offset light and heat stress. The low level of anthropogenic impact and proximity to the Indo-west Pacific centre of diversity are likely to further promote resistance and resilience in this community. This assemblage provides an indication of what corals may have existed in other nearshore locations in the past prior to widespread coastal development, eutrophication, coral predator and disease outbreaks and coral bleaching events. Our results call for a re-evaluation of what conditions are optimal for coral survival, and the Bonaparte intertidal community presents an ideal model system for exploring how species resilience is conferred in the absence of confounding factors such as pollution.

  12. Ecosystem health of the Great Barrier Reef: Time for effective management action based on evidence

    Science.gov (United States)

    Brodie, Jon; Pearson, Richard G.

    2016-12-01

    The Great Barrier Reef (GBR) is a World Heritage site off the north-eastern coast of Australia. The GBR is worth A 15-20 billion/year to the Australian economy and provides approximately 64,000 full time jobs. Many of the species and ecosystems of the GBR are in poor condition and continue to decline. The principal causes of the decline are catchment pollutant runoff associated with agricultural and urban land uses, climate change impacts and the effects of fishing. Many important ecosystems of the GBR region are not included inside the boundaries of the World Heritage Area. The current management regime for catchment pollutant runoff and climate change is clearly inadequate to prevent further decline. We propose a refocus of management on a "Greater GBR" (containing not only the major ecosystems and species of the GBR, but also its catchment) and on a set of management actions to halt the decline of the GBR. Proposed actions include: (1) Strengthen management in the areas of the Greater GBR where ecosystems are in good condition, with Torres Strait, northern Cape York and Hervey Bay being the systems with highest current integrity; (2) Investigate methods of cross-boundary management to achieve simultaneous cost-effective terrestrial, freshwater and marine ecosystem protection in the Greater GBR; (3) Develop a detailed, comprehensive, costed water quality management plan for the Greater GBR; (4) Use the Great Barrier Reef Marine Park Act and the Environment Protection and Biodiversity Conservation Act to regulate catchment activities that lead to damage to the Greater GBR, in conjunction with the relevant Queensland legislation; (5) Fund catchment and coastal management to the required level to solve pollution issues for the Greater GBR by 2025, before climate change impacts on Greater GBR ecosystems become overwhelming; (6) Continue enforcement of the zoning plan; (7) Australia to show commitment to protecting the Greater GBR through greenhouse gas emissions

  13. New records of Cotylea (Polycladida, Platyhelminthes) from Lizard Island, Great Barrier Reef, Australia, with remarks on the distribution of the Pseudoceros Lang, 1884 and Pseudobiceros Faubel, 1984 species of the Indo-Pacific Marine Region.

    Science.gov (United States)

    Marquina, Daniel; Aguado, M Teresa; Noreña, Carolina

    2015-09-18

    In the present work eleven polyclad species of Lizard Island are studied. Seven of them are new records for this locality of the Australian coral reef and one is new to science, Lurymare clavocapitata n. sp. (Family Prosthiostomidae). The remaining recorded species belong to the genera Pseudoceros (P. bimarginatus, P. jebborum, P. stimpsoni, P. zebra, P. paralaticlavus and P. prudhoei) and Pseudobiceros (Pb. hancockanus, Pb. hymanae, Pb. flowersi and Pb. uniarborensis). Regardless of the different distribution patterns, all pseudocerotid species show brilliant colours, but similar internal morphology. Furthermore, differences in the form and size of the stylet are characteristic, because it is a sclerotic structure that is not affected during fixation. In Pseudoceros, the distance between the sucker and the female pore also differs among species. These features do not vary enough to be considered as diagnostic, but they provide information that can help to disentangle similarly coloured species complexes. A key of the genera Pseudoceros and Pseudobiceros of the Indo-Pacific region is provided, in order to facilitate the identification of species from this area.

  14. Famennian mud-mounds in the proximal fore-reef slope, Canning Basin, Western Australia

    Science.gov (United States)

    Webb, Gregory E.

    2001-12-01

    Famennian (Late Devonian) carbonate buildups and, in particular, mud-mounds, are poorly known, in general, and few have been documented in detail. Relatively small Famennian mud-mounds occur in proximal fore-reef slope settings in the Canning Basin, Western Australia. The Famennian platform margin facies passes from typical shoaling carbonate facies in the back reef, through massive, calcimicrobial, cement-rich reef-margin facies, to relatively steeply dipping (20-30°), well-bedded fore-reef slope facies containing shelf-derived, winnowed grainy sediments and extremely coarse reef-block debris. Isolated or coalescing mounds occur in the proximal slope, immediately adjacent to and, in some cases, possibly grading into the margin facies. Mounds are elongate perpendicular to the margin and some had synoptic relief greater than 2 m. Mounds are lithologically variable and consist of varying proportions of micrite, multiple generations of marine cement, abundant Rothpletzella, Renalcis, poorly preserved sparry microbial crusts and sporadically distributed laminar stromatoporoids. Surrounding grainy slope facies abut and slope off of mound flanks. Mound facies are very similar to nearby reef-margin facies, with the exceptions that stromatoporoids have not been observed in margin facies and solenoporoid algae, which occur in the margin, have not been observed in the mounds. Stromatolites are conspicuously absent from both facies. Mound facies appear to be more closely related to Frasnian and Famennian calcimicrobe cement-dominated reef-margin facies than to Famennian deep-water stromatolite-sponge-mound facies, such as those that occur elsewhere in the Canning Basin. The observed Canning Famennian reef and mound frameworks were constructed by communities that appear to be very similar to earlier Frasnian communities, despite the Frasnian-Famennian extinction event, and provide good examples of microbial reef framework construction in a high energy setting.

  15. Impacts and recovery from severe tropical cyclone Yasi on the Great Barrier Reef.

    Science.gov (United States)

    Beeden, Roger; Maynard, Jeffrey; Puotinen, Marjetta; Marshall, Paul; Dryden, Jen; Goldberg, Jeremy; Williams, Gareth

    2015-01-01

    Full recovery of coral reefs from tropical cyclone (TC) damage can take decades, making cyclones a major driver of habitat condition where they occur regularly. Since 1985, 44 TCs generated gale force winds (≥17 metres/second) within the Great Barrier Reef Marine Park (GBRMP). Of the hurricane strength TCs (≥H1-Saffir Simpson scale; ≥ category 3 Australian scale), TC Yasi (February, 2011) was the largest. In the weeks after TC Yasi crossed the GBRMP, participating researchers, managers and rangers assessed the extent and severity of reef damage via 841 Reef Health and Impact Surveys at 70 reefs. Records were scaled into five damage levels representing increasingly widespread colony-level damage (1, 2, 3) and reef structural damage (4, 5). Average damage severity was significantly affected by direction (north vs south of the cyclone track), reef shelf position (mid-shelf vs outer-shelf) and habitat type. More outer-shelf reefs suffered structural damage than mid-shelf reefs within 150 km of the track. Structural damage spanned a greater latitudinal range for mid-shelf reefs than outer-shelf reefs (400 vs 300 km). Structural damage was patchily distributed at all distances, but more so as distance from the track increased. Damage extended much further from the track than during other recent intense cyclones that had smaller circulation sizes. Just over 15% (3,834 km2) of the total reef area of the GBRMP is estimated to have sustained some level of coral damage, with ~4% (949 km2) sustaining a degree of structural damage. TC Yasi likely caused the greatest loss of coral cover on the GBR in a 24-hour period since 1985. Severely impacted reefs have started to recover; coral cover increased an average of 4% between 2011 and 2013 at re-surveyed reefs. The in situ assessment of impacts described here is the largest in scale ever conducted on the Great Barrier Reef following a reef health disturbance.

  16. A method for risk analysis across governance systems: a Great Barrier Reef case study

    Science.gov (United States)

    Dale, Allan; Vella, Karen; Pressey, Robert L.; Brodie, Jon; Yorkston, Hugh; Potts, Ruth

    2013-03-01

    Healthy governance systems are key to delivering sound environmental management outcomes from global to local scales. There are, however, surprisingly few risk assessment methods that can pinpoint those domains and sub-domains within governance systems that are most likely to influence good environmental outcomes at any particular scale, or those if absent or dysfunctional, most likely to prevent effective environmental management. This paper proposes a new risk assessment method for analysing governance systems. This method is then tested through its preliminary application to a significant real-world context: governance as it relates to the health of Australia’s Great Barrier Reef (GBR). The GBR exists at a supra-regional scale along most of the north eastern coast of Australia. Brodie et al (2012 Mar. Pollut. Bull. 65 81-100) have recently reviewed the state and trend of the health of the GBR, finding that overall trends remain of significant concern. At the same time, official international concern over the governance of the reef has recently been signalled globally by the International Union for the Conservation of Nature (IUCN). These environmental and political contexts make the GBR an ideal candidate for use in testing and reviewing the application of improved tools for governance risk assessment.

  17. Stochastic dynamics of a warmer Great Barrier Reef.

    Science.gov (United States)

    Cooper, Jennifer K; Spencer, Matthew; Bruno, John F

    2015-07-01

    Pressure on natural communities from human activities continues to increase. Even unique ecosystems like the Great Barrier Reef (GBR), that until recently were considered near-pristine and well-protected, are showing signs of rapid degradation. We collated recent (1996-2006) spatiotemporal relationships between benthic community composition on the GBR and environmental variables (ocean temperature and local threats resulting from human activity). We built multivariate models of the effects of these variables on short-term dynamics, and developed an analytical approach to study their long-term consequences. We used this approach to study the effects of ocean warming under different levels of local threat. Observed short-term changes in benthic community structure (e.g., declining coral cover) were associated with ocean temperature (warming) and local threats. Our model projected that, in the long-term, coral cover of less than 10% was not implausible. With increasing temperature and/or local threats, corals were initially replaced by sponges, gorgonians, and other taxa, with an eventual moderately high probability of domination (> 50%) by macroalgae when temperature increase was greatest (e.g., 3.5 degrees C of warming). Our approach to modeling community dynamics, based on multivariate statistical models, enabled us to project how environmental change (and thus local and international policy decisions) will influence the future state of coral reefs. The same approach could be applied to other systems for which time series of ecological and environmental variables are available.

  18. Patterns in the distribution of coral communities across the central Great Barrier Reef

    Science.gov (United States)

    Done, T. J.

    1982-10-01

    Despite the pre-eminence of the Great Barrier Reef, there has been little systematic description of its biotic communities, and in particular, of the corals themselves. Only recently have the problems of coral taxonomy been sufficiently resolved to allow a beginning to be made in rectifying this deficiency. The present study describes seventeen assemblages of corals which occupy the major habitat types found in and near the central Great Barrier Reef. The habitats studied range from the wave swept reef flats of Coral Sea atolls to the slopes of small reefs occupying sheltered, muddy conditions near the coast. These, and the array of reefs between, have characteristic suites of coral communities which provide the basis for a classification of reefs into non- Acropora reefs and various Acropora reefs. It is speculated that the faunistic differences are maintained because reefs are primarily self-seeded and because the majority of larvae from external sources are of species which are already present. The greatest diversity of both species and community types was found on reefs near the middle of the continental shelf, while the oceanic atolls and nearshore silt-affected reefs are almost equally depauperate.

  19. Prey Density Threshold and Tidal Influence on Reef Manta Ray Foraging at an Aggregation Site on the Great Barrier Reef.

    Science.gov (United States)

    Armstrong, Asia O; Armstrong, Amelia J; Jaine, Fabrice R A; Couturier, Lydie I E; Fiora, Kym; Uribe-Palomino, Julian; Weeks, Scarla J; Townsend, Kathy A; Bennett, Mike B; Richardson, Anthony J

    2016-01-01

    Large tropical and sub-tropical marine animals must meet their energetic requirements in a largely oligotrophic environment. Many planktivorous elasmobranchs, whose thermal ecologies prevent foraging in nutrient-rich polar waters, aggregate seasonally at predictable locations throughout tropical oceans where they are observed feeding. Here we investigate the foraging and oceanographic environment around Lady Elliot Island, a known aggregation site for reef manta rays Manta alfredi in the southern Great Barrier Reef. The foraging behaviour of reef manta rays was analysed in relation to zooplankton populations and local oceanography, and compared to long-term sighting records of reef manta rays from the dive operator on the island. Reef manta rays fed at Lady Elliot Island when zooplankton biomass and abundance were significantly higher than other times. The critical prey density threshold that triggered feeding was 11.2 mg m-3 while zooplankton size had no significant effect on feeding. The community composition and size structure of the zooplankton was similar when reef manta rays were feeding or not, with only the density of zooplankton changing. Higher zooplankton biomass was observed prior to low tide, and long-term (~5 years) sighting data confirmed that more reef manta rays are also observed feeding during this tidal phase than other times. This is the first study to examine prey availability at an aggregation site for reef manta rays and it indicates that they feed in locations and at times of higher zooplankton biomass.

  20. Prey Density Threshold and Tidal Influence on Reef Manta Ray Foraging at an Aggregation Site on the Great Barrier Reef.

    Directory of Open Access Journals (Sweden)

    Asia O Armstrong

    Full Text Available Large tropical and sub-tropical marine animals must meet their energetic requirements in a largely oligotrophic environment. Many planktivorous elasmobranchs, whose thermal ecologies prevent foraging in nutrient-rich polar waters, aggregate seasonally at predictable locations throughout tropical oceans where they are observed feeding. Here we investigate the foraging and oceanographic environment around Lady Elliot Island, a known aggregation site for reef manta rays Manta alfredi in the southern Great Barrier Reef. The foraging behaviour of reef manta rays was analysed in relation to zooplankton populations and local oceanography, and compared to long-term sighting records of reef manta rays from the dive operator on the island. Reef manta rays fed at Lady Elliot Island when zooplankton biomass and abundance were significantly higher than other times. The critical prey density threshold that triggered feeding was 11.2 mg m-3 while zooplankton size had no significant effect on feeding. The community composition and size structure of the zooplankton was similar when reef manta rays were feeding or not, with only the density of zooplankton changing. Higher zooplankton biomass was observed prior to low tide, and long-term (~5 years sighting data confirmed that more reef manta rays are also observed feeding during this tidal phase than other times. This is the first study to examine prey availability at an aggregation site for reef manta rays and it indicates that they feed in locations and at times of higher zooplankton biomass.

  1. Reproductive biology of three sponge species of the genus Xestospongia (Porifera: Demospongiae: Petrosida) from the Great Barrier Reef

    Science.gov (United States)

    Fromont, J.; Bergquist, P. R.

    1994-05-01

    The reproductive development of three species of the Petrosida, Xestospongia bergquistia, X. exigua, and X. testudinaria, was monitored for four years on a fringing reef at Orpheus Island, Great Barrier Reef, Australia. All three species were oviparous and female reproductive activity began prior to males becoming active. X. bergquistia and X. testudinaria were gonochoric and broadcast eggs in spawning events that were synchronous within species. Egg development occurred over more than five months in X. bergquistia and X. testudinaria and two months in X. exigua. Spawning was during periods of warm temperature and occurred in October or November for X. bergquistia and X. testudinaria, and January or February for X. exigua. Lunar phase was implicated in timing of spawning of X. testudinaria. Diel timing of spawning in X. testudinaria and X. bergquistia was consistently a morning event.

  2. Habitat associations of juvenile fish at Ningaloo Reef, Western Australia: the importance of coral and algae.

    Directory of Open Access Journals (Sweden)

    Shaun K Wilson

    Full Text Available Habitat specificity plays a pivotal role in forming community patterns in coral reef fishes, yet considerable uncertainty remains as to the extent of this selectivity, particularly among newly settled recruits. Here we quantified habitat specificity of juvenile coral reef fish at three ecological levels; algal meadows vs. coral reefs, live vs. dead coral and among different coral morphologies. In total, 6979 individuals from 11 families and 56 species were censused along Ningaloo Reef, Western Australia. Juvenile fishes exhibited divergence in habitat use and specialization among species and at all study scales. Despite the close proximity of coral reef and algal meadows (10's of metres 25 species were unique to coral reef habitats, and seven to algal meadows. Of the seven unique to algal meadows, several species are known to occupy coral reef habitat as adults, suggesting possible ontogenetic shifts in habitat use. Selectivity between live and dead coral was found to be species-specific. In particular, juvenile scarids were found predominantly on the skeletons of dead coral whereas many damsel and butterfly fishes were closely associated with live coral habitat. Among the coral dependent species, coral morphology played a key role in juvenile distribution. Corymbose corals supported a disproportionate number of coral species and individuals relative to their availability, whereas less complex shapes (i.e. massive & encrusting were rarely used by juvenile fish. Habitat specialisation by juvenile species of ecological and fisheries importance, for a variety of habitat types, argues strongly for the careful conservation and management of multiple habitat types within marine parks, and indicates that the current emphasis on planning conservation using representative habitat areas is warranted. Furthermore, the close association of many juvenile fish with corals susceptible to climate change related disturbances suggests that identifying and

  3. Effects of Great Barrier Reef degradation on recreational reef-trip demand: a contingent behaviour approach

    NARCIS (Netherlands)

    Kragt, M.E.; Roebeling, P.C.; Ruijs, A.J.W.

    2009-01-01

    There is a growing concern that increased nutrient and sediment runoff from river catchments are a potential source of coral reef degradation. Degradation of reefs may affect the number of tourists visiting the reef and, consequently, the economic sectors that rely on healthy reefs for their income

  4. The Status of Industrial Ecology in Australia: Barriers and Enablers

    Directory of Open Access Journals (Sweden)

    Glen D. Corder

    2014-03-01

    Full Text Available Drawing on current international industrial ecology thinking and experiences with Australian initiatives, this article critically overviews the current status of industrial ecology in Australia and examines the barriers and potential strategies to realise greater uptake and application of the concept. The analysis is conducted across three categories: heavy industrial areas (including Kwinana and Gladstone, mixed industrial parks (Wagga Wagga and Port Melbourne, and waste exchange networks, and identifies the past and future significance of seven different types of barriers—regulation, information, community, economic, technical, cooperation and trust, commitment to sustainable development—for each of the three categories. The outcomes from this analysis highlight that regulation, information, and economic barriers for heavy industrial area and mixed industrial parks, and economic and technical barriers for waste exchange networks are the current and future focus for industrial ecology applications in Australia. These findings appear to be consistent with recently published frameworks and learnings. The authors propose key questions that could enhance greater adoption of industrial ecology applications in Australia and acknowledge that international research and experiences, while partly providing answers to these questions, need to be adapted and refined for the Australian context.

  5. Recruitment Variability of Coral Reef Sessile Communities of the Far North Great Barrier Reef.

    Directory of Open Access Journals (Sweden)

    Heidi M Luter

    Full Text Available One of the key components in assessing marine sessile organism demography is determining recruitment patterns to benthic habitats. An analysis of serially deployed recruitment tiles across depth (6 and 12 m, seasons (summer and winter and space (meters to kilometres was used to quantify recruitment assemblage structure (abundance and percent cover of corals, sponges, ascidians, algae and other sessile organisms from the northern sector of the Great Barrier Reef (GBR. Polychaetes were most abundant on recruitment titles, reaching almost 50% of total recruitment, yet covered <5% of each tile. In contrast, mean abundances of sponges, ascidians, algae, and bryozoans combined was generally less than 20% of total recruitment, with percentage cover ranging between 15-30% per tile. Coral recruitment was very low, with <1 recruit per tile identified. A hierarchal analysis of variation over a range of spatial and temporal scales showed significant spatio-temporal variation in recruitment patterns, but the highest variability occurred at the lowest spatial scale examined (1 m-among tiles. Temporal variability in recruitment of both numbers of taxa and percentage cover was also evident across both summer and winter. Recruitment across depth varied for some taxonomic groups like algae, sponges and ascidians, with greatest differences in summer. This study presents some of the first data on benthic recruitment within the northern GBR and provides a greater understanding of population ecology for coral reefs.

  6. The potential benefits of herbicide regulation: a cautionary note for the Great Barrier Reef catchment area.

    Science.gov (United States)

    Davis, A M; Lewis, S E; Brodie, J E; Benson, Ash

    2014-08-15

    Industry transitions away from traditional photosystem II inhibiting (PSII) herbicides towards an 'alternative' herbicide suite are now widely advocated as a key component of improved environmental outcomes for Australia's Great Barrier Reef and improved environmental stewardship on the part of the Queensland sugar industry. A systematic desktop risk analysis found that based on current farming practices, traditional PSII herbicides can pose significant environmental risks. Several of the 'alternatives' that can directly fill a specific pre-emergent ('soil residual') weed control function similar to regulated PSII herbicides also, however, presented a similar environmental risk profile, regardless of farming systems and bio-climatic zones being considered. Several alternatives with a pre-emergent residual function as well as alternative post-emergent (contact or 'knockdown') herbicides were, predicted to pose lower environmental risks than the regulated PSII herbicides to most trophic levels, although environmental risks could still be present. While several herbicides may well be viable alternatives in terms of weed control, they can still present equal or possibly higher risks to the environment. Imposing additional regulations (or even de-registrations) on particular herbicides could result in marginal, and possibly perverse environmental impacts in the long term, if usage shifts to alternative herbicides with similar risk profiles. Regardless of any regulatory efforts, improved environmental sustainability outcomes in pesticide practices within the Great Barrier Reef catchment area will hinge primarily on the continuing adoption of integrated, strategic pest management systems and technologies applied to both traditional and 'alternative' herbicides. One of the emerging policy challenges is ensuring the requisite technical and extension support for cane growers to ensure effective adoption of rapidly evolving farming system technologies, in a very dynamic and

  7. Rapid survey protocol that provides dynamic information on reef condition to managers of the Great Barrier Reef.

    Science.gov (United States)

    Beeden, R J; Turner, M A; Dryden, J; Merida, F; Goudkamp, K; Malone, C; Marshall, P A; Birtles, A; Maynard, J A

    2014-12-01

    Managing to support coral reef resilience as the climate changes requires strategic and responsive actions that reduce anthropogenic stress. Managers can only target and tailor these actions if they regularly receive information on system condition and impact severity. In large coral reef areas like the Great Barrier Reef Marine Park (GBRMP), acquiring condition and impact data with good spatial and temporal coverage requires using a large network of observers. Here, we describe the result of ~10 years of evolving and refining participatory monitoring programs used in the GBR that have rangers, tourism operators and members of the public as observers. Participants complete Reef Health and Impact Surveys (RHIS) using a protocol that meets coral reef managers' needs for up-to-date information on the following: benthic community composition, reef condition and impacts including coral diseases, damage, predation and the presence of rubbish. Training programs ensure that the information gathered is sufficiently precise to inform management decisions. Participants regularly report because the demands of the survey methodology have been matched to their time availability. Undertaking the RHIS protocol we describe involves three ~20 min surveys at each site. Participants enter data into an online data management system that can create reports for managers and participants within minutes of data being submitted. Since 2009, 211 participants have completed a total of more than 10,415 surveys at more than 625 different reefs. The two-way exchange of information between managers and participants increases the capacity to manage reefs adaptively, meets education and outreach objectives and can increase stewardship. The general approach used and the survey methodology are both sufficiently adaptable to be used in all reef regions.

  8. Platform margins, reef facies, and microbial carbonates; a comparison of Devonian reef complexes in the Canning Basin, Western Australia, and the Guilin region, South China

    Science.gov (United States)

    Shen, Jian-Wei; Webb, Gregory E.; Jell, John S.

    2008-05-01

    Devonian reef complexes were well developed in Western Australia and South China, but no detailed direct comparison has been made between reef building in the two regions. The regions differ in several respects, including tectonic, stratigraphic and palaeoceanographic-palaeogeographic settings, and the reef building styles reflect minor differences in reef builders and reef facies. Similarities and differences between the two reef complexes provide insights into the characteristics of platform margins, reef facies and microbial carbonates of both regions. Here we present a comparison of platform margin types from different stratigraphic positions in the Late Devonian reef complex of the Canning Basin, Western Australia and Middle and Late Devonian margin to marginal slope successions in Guilin, South China. Comparisons are integrated into a review of the reefal stratigraphy of both regions. Reef facies, reef complex architecture, temporal reef builder associations, 2nd order stratigraphy and platform cyclicity in the two regions were generally similar where the successions overlap temporally. However, carbonate deposition began earlier in South China. Carbonate complexes were also more widespread in South China and represent a thicker succession overall. Platforms in the Canning Basin grew directly on Precambrian crystalline basement or early Palaeozoic sedimentary rocks, but in South China, carbonate complexes developed conformably on older Devonian siliciclastic strata. Pre-Frasnian reef facies in South China had more abundant skeletal frameworks than in Canning Basin reefs of equivalent age, and Famennian shoaling margins containing various microbial reefs may have been more common and probably more diverse in South China. However, Late Devonian platform margin types have been documented more completely in the Canning Basin. Deep intra-platform troughs (deep depressions containing non-carbonate pelagic sediments — Nandan-type successions) that developed along

  9. Distribution, abundance and diversity of crustose coralline algae on the Great Barrier Reef

    Science.gov (United States)

    Dean, Angela J.; Steneck, Robert S.; Tager, Danika; Pandolfi, John M.

    2015-06-01

    The Great Barrier Reef (GBR) is the world's largest coral reef ecosystem. Crustose coralline algae (CCA) are important contributors to reef calcium carbonate and can facilitate coral recruitment. Despite the importance of CCA, little is known about species-level distribution, abundance, and diversity, and how these vary across the continental shelf and key habitat zones within the GBR. We quantified CCA species distributions using line transects ( n = 127) at 17 sites in the northern and central regions of the GBR, distributed among inner-, mid-, and outer-shelf regions. At each site, we identified CCA along replicate transects in three habitat zones: reef flat, reef crest, and reef slope. Taxonomically, CCA species are challenging to identify (especially in the field), and there is considerable disagreement in approach. We used published, anatomically based taxonomic schemes for consistent identification. We identified 30 CCA species among 12 genera; the most abundant species were Porolithon onkodes, Paragoniolithon conicum (sensu Adey), Neogoniolithon fosliei, and Hydrolithon reinboldii. Significant cross-shelf differences were observed in CCA community structure and CCA abundance, with inner-shelf reefs exhibiting lower CCA abundance than outer-shelf reefs. Shelf position, habitat zone, latitude, depth, and the interaction of shelf position and habitat were all significantly associated with variation in composition of CCA communities. Collectively, shelf position, habitat, and their interaction contributed to 22.6 % of the variation in coralline communities. Compared to mid- and outer-shelf sites, inner-shelf sites exhibited lower relative abundances of N. fosliei and Lithophyllum species. Reef crest habitats exhibited greater abundance of N. fosliei than reef flat and reef slope habitats. Reef slope habitats exhibited lower abundance of P. onkodes, but greater abundance of Neogoniolithon clavycymosum than reef crest and reef slope habitats. These findings

  10. Syllidae (Annelida: Phyllodocida) from Lizard Island, Great Barrier Reef, Australia.

    Science.gov (United States)

    Aguado, M Teresa; Murray, Anna; Hutchings, Pat

    2015-09-18

    Thirty species of the family Syllidae (Annelida, Phyllodocida) from Lizard Island have been identified. Three subfamilies (Eusyllinae, Exogoninae and Syllinae) are represented, as well as the currently unassigned genera Amblyosyllis and Westheidesyllis. The genus Trypanobia (Imajima & Hartman 1964), formerly considered a subgenus of Trypanosyllis, is elevated to genus rank. Seventeen species are new reports for Queensland and two are new species. Odontosyllis robustus n. sp. is characterized by a robust body and distinct colour pattern in live specimens consisting of lateral reddish-brown pigmentation on several segments, and bidentate, short and distally broad falcigers. Trypanobia cryptica n. sp. is found in association with sponges and characterized by a distinctive bright red colouration in live specimens, and one kind of simple chaeta with a short basal spur.

  11. Coral colonisation of an artificial reef in a turbid nearshore environment, Dampier Harbour, western Australia.

    Science.gov (United States)

    Blakeway, David; Byers, Michael; Stoddart, James; Rossendell, Jason

    2013-01-01

    A 0.6 hectare artificial reef of local rock and recycled concrete sleepers was constructed in December 2006 at Parker Point in the industrial port of Dampier, western Australia, with the aim of providing an environmental offset for a nearshore coral community lost to land reclamation. Corals successfully colonised the artificial reef, despite the relatively harsh environmental conditions at the site (annual water temperature range 18-32°C, intermittent high turbidity, frequent cyclones, frequent nearby ship movements). Coral settlement to the artificial reef was examined by terracotta tile deployments, and later stages of coral community development were examined by in-situ visual surveys within fixed 25 x 25 cm quadrats on the rock and concrete substrates. Mean coral density on the tiles varied from 113 ± 17 SE to 909 ± 85 SE per m(2) over five deployments, whereas mean coral density in the quadrats was only 6.0 ± 1.0 SE per m(2) at eight months post construction, increasing to 24.0 ± 2.1 SE per m(2) at 62 months post construction. Coral taxa colonising the artificial reef were a subset of those on the surrounding natural reef, but occurred in different proportions--Pseudosiderastrea tayami, Mycedium elephantotus and Leptastrea purpurea being disproportionately abundant on the artificial reef. Coral cover increased rapidly in the later stages of the study, reaching 2.3 ± 0.7 SE % at 62 months post construction. This study indicates that simple materials of opportunity can provide a suitable substrate for coral recruitment in Dampier Harbour, and that natural colonisation at the study site remains sufficient to initiate a coral community on artificial substrate despite ongoing natural and anthropogenic perturbations.

  12. Coral colonisation of an artificial reef in a turbid nearshore environment, Dampier Harbour, western Australia.

    Directory of Open Access Journals (Sweden)

    David Blakeway

    Full Text Available A 0.6 hectare artificial reef of local rock and recycled concrete sleepers was constructed in December 2006 at Parker Point in the industrial port of Dampier, western Australia, with the aim of providing an environmental offset for a nearshore coral community lost to land reclamation. Corals successfully colonised the artificial reef, despite the relatively harsh environmental conditions at the site (annual water temperature range 18-32°C, intermittent high turbidity, frequent cyclones, frequent nearby ship movements. Coral settlement to the artificial reef was examined by terracotta tile deployments, and later stages of coral community development were examined by in-situ visual surveys within fixed 25 x 25 cm quadrats on the rock and concrete substrates. Mean coral density on the tiles varied from 113 ± 17 SE to 909 ± 85 SE per m(2 over five deployments, whereas mean coral density in the quadrats was only 6.0 ± 1.0 SE per m(2 at eight months post construction, increasing to 24.0 ± 2.1 SE per m(2 at 62 months post construction. Coral taxa colonising the artificial reef were a subset of those on the surrounding natural reef, but occurred in different proportions--Pseudosiderastrea tayami, Mycedium elephantotus and Leptastrea purpurea being disproportionately abundant on the artificial reef. Coral cover increased rapidly in the later stages of the study, reaching 2.3 ± 0.7 SE % at 62 months post construction. This study indicates that simple materials of opportunity can provide a suitable substrate for coral recruitment in Dampier Harbour, and that natural colonisation at the study site remains sufficient to initiate a coral community on artificial substrate despite ongoing natural and anthropogenic perturbations.

  13. Patterns in the distribution of sponge populations across the central Great Barrier Reef

    Science.gov (United States)

    Wilkinson, Clive R.; Cheshire, Anthony C.

    1989-12-01

    Coral reef sponge populations were surveyed at two spatial scales: different depths and different reef locations across the continental shelf of the central Great Barrier Reef. The surveys were conducted on the forereef slopes of 12 reefs from land-influenced, inner-shelf reefs to those in the oligotrophic waters of the Coral Sea. Few sponges occur in shallow waters and the largest populations are found between 10 and 30 m depth. Sponges are apparently excluded from shallow waters because of excessive turbulence and possibly by high levels of damaging light. Sponge biomass is highest on the innershelf reefs and decreases away from the coast, whereas abundance is generally higher on middle-shelf reefs. There are considerable overlaps in the species composition on middle-, outer-shelf and Coral Sea reefs, but those on inner-shelf reefs are significantly different. The nature and size of sponge populations reflect environmental conditions across the continental shelf. The larger inner-shelf populations probably reflect higher levels of organic and inorganic nutrients and reduced amounts of physical turbulence, whereas sponges on reefs further from shore may be able to resist greater turbulence but appear more sensitive to the effects of fine sediments. These latter populations are smaller, reflecting the reduced availability of organic matter, however, many of these sponges rely on cyanobacterial symbionts to augment nutrition in these clearer, more oligotrophic waters.

  14. Evolving polycentric governance of the Great Barrier Reef.

    Science.gov (United States)

    Morrison, Tiffany H

    2017-03-27

    A growing field of sustainability science examines how environments are transformed through polycentric governance. However, many studies are only snapshot analyses of the initial design or the emergent structure of polycentric regimes. There is less systematic analysis of the longitudinal robustness of polycentric regimes. The problem of robustness is approached by focusing not only on the structure of a regime but also on its context and effectiveness. These dimensions are examined through a longitudinal analysis of the Great Barrier Reef (GBR) governance regime, drawing on in-depth interviews and demographic, economic, and employment data, as well as organizational records and participant observation. Between 1975 and 2011, the GBR regime evolved into a robust polycentric structure as evident in an established set of multiactor, multilevel arrangements addressing marine, terrestrial, and global threats. However, from 2005 onward, multiscale drivers precipitated at least 10 types of regime change, ranging from contextual change that encouraged regime drift to deliberate changes that threatened regime conversion. More recently, regime realignment also has occurred in response to steering by international organizations and shocks such as the 2016 mass coral-bleaching event. The results show that structural density and stability in a governance regime can coexist with major changes in that regime's context and effectiveness. Clear analysis of the vulnerability of polycentric governance to both diminishing effectiveness and the masking effects of increasing complexity provides sustainability science and governance actors with a stronger basis to understand and respond to regime change.

  15. The role of deep reefs in shallow reef recovery: an assessment of vertical connectivity in a brooding coral from west and east Australia.

    Science.gov (United States)

    van Oppen, Madeleine J H; Bongaerts, Pim; Underwood, Jim N; Peplow, Lesa M; Cooper, Timothy F

    2011-04-01

    Approximately one quarter of zooxanthellate coral species have a depth distribution from shallow waters (coral bleaching. This has led to the hypothesis that deep populations may serve as refuges and a source of recruits for shallow reef habitats. The extent of vertical connectivity of reef coral species, however, is largely unquantified. Using 10 coral host microsatellite loci and sequences of the host mtDNA putative control region, as well as ribosomal DNA (rDNA) ITS2 sequences of the coral's algal endosymbionts (Symbiodinium), we examine population structure, connectivity and symbiont specificity in the brooding coral Seriatopora hystrix across a depth profile in both northwest (Scott Reef) and northeast Australia (Yonge Reef). Strong genetic structuring over depth was observed in both regions based on the microsatellite loci; however, Yonge Reef exhibited an additional partitioning of mtDNA lineages (associated with specific symbiont ITS2 types), whereas Scott Reef was dominated by a single mtDNA lineage (with no apparent host-symbiont specificity). Evidence for recruitment of larvae of deep water origin into shallow habitats was found at Scott Reef, suggesting that recovery of shallow water habitats may be aided by migration from deep water refuges. Conversely, no migration from the genetically divergent deep slope populations into the shallow habitats was evident at Yonge Reef, making recovery of shallow habitats from deeper waters at this location highly unlikely.

  16. Quaternary onset and evolution of Kimberley coral reefs (Northwest Australia) revealed by high-resolution seismic imaging

    Science.gov (United States)

    Bufarale, Giada; Collins, Lindsay B.; O'Leary, Michael J.; Stevens, Alexandra; Kordi, Moataz; Solihuddin, Tubagus

    2016-07-01

    The inner shelf Kimberley Bioregion of Northwest Australia is characterised by a macrotidal setting where prolific coral reefs growth as developed around a complex drowned landscape and is considered a biodiversity "hotspot". High-resolution shallow seismic studies were conducted across various reef settings in the Kimberley (Buccaneer Archipelago, north of Dampier Peninsula, latitude: between 16°40‧S and 16°00‧S) to evaluate stratigraphic evolution, interaction with different substrates, morphological patterns and distribution. Reef sites were chosen to assess most of the reef types present, particularly high intertidal planar reefs and fringing reefs. Reef internal acoustic reflectors were identified according to their shape, stratigraphic position and characteristics. Two main seismic horizons were identified marking the boundaries between Holocene reef (Marine Isotope Stage 1, MIS 1, last 12 ky), commonly 10-20 m thick, and MIS 5 (Last Interglacial, LIG, ~120 ky, up to 12 m thick) and Proterozoic rock foundation over which Quaternary reef growth occurred. Within the Holocene Reef unit, at least three minor internal reflectors, generally discontinuous, subparallel to the reef flat were recognised and interpreted as either growth hiatuses or a change of the coral framework or sediment matrix. The LIG reefs represent a new northernmost occurrence along the Western Australian coast. The research presented here achieved the first regional geophysical study of the Kimberley reefs. Subbottom profiles demonstrated that the surveyed reefs are characterised by a multi-stage reef buildup, indicating that coral growth occurred in the Kimberley during previous sea level highstands. The data show also that antecedent substrate and regional subsidence have contributed, too, in determining the amount of accommodation available for reef growth and controlling the morphology of the successive reef building stages. Moreover, the study showed that in spite of macrotidal

  17. Marine Biodiversity in Temperate Western Australia: Multi-Taxon Surveys of Minden and Roe Reefs

    Directory of Open Access Journals (Sweden)

    Zoe Richards

    2016-03-01

    Full Text Available A growing body of evidence indicates that temperate marine ecosystems are being tropicalised due to the poleward extension of tropical species. Such climate mediated changes in species distribution patterns have the potential to profoundly alter temperate communities, as this advance can serve to push temperate taxa, many of which are southern Australian endemics, southward. These changes can lead to cascading effects for the biodiversity and function of coastal ecosystems, including contraction of ranges/habitats of sensitive cool water species. Hence there is growing concern for the future of Australia’s temperate marine biodiversity. Here we examine the diversity and abundance of marine flora and fauna at two reefs near Perth’s metropolitan area—Minden Reef and Roe Reef. We report the presence of 427 species of marine flora and fauna from eight taxon groups occurring in the Perth metropolitan area; at least three species of which appear to be new to science. Our data also extends the known range of 15 species, and in numerous instances, thousands of kilometres south from the Kimberley or Pilbara and verifies that tropicalisation of reef communities in the Perth metropolitan area is occurring. We report the presence of 24 species endemic to south-west Australia that may be at risk of range contractions with continued ocean warming. The results of these surveys add to our knowledge of local nearshore marine environments in the Perth metropolitan area and support the growing body of evidence that indicates a diverse and regionally significant marine fauna occurs in temperate Western Australia. Regular, repeated survey work across seasons is important in order to thoroughly document the status of marine biodiversity in this significant transition zone.

  18. Assessing the value of Earth Observation for managing coral reefs: an example from the Great Barrier Reef.

    Science.gov (United States)

    Bouma, Jetske A; Kuik, Onno; Dekker, Arnold G

    2011-10-01

    The Integrated Global Observing Strategy (IGOS, 2003) argues that further investments in Earth Observation information are required to improve coral reef protection worldwide. The IGOS Strategy does not specify what levels of investments are needed nor does it quantify the benefits associated with better-protected reefs. Evaluating costs and benefits is important for determining optimal investment levels and for convincing policy-makers that investments are required indeed. Few studies have quantitatively assessed the economic benefits of Earth Observation information or evaluated the economic value of information for environmental management. This paper uses an expert elicitation approach based on Bayesian Decision Theory to estimate the possible contribution of global Earth Observation to the management of the Great Barrier Reef. The Great Barrier Reef including its lagoon is a World Heritage Area affected by anthropogenic changes in land-use as well as climate change resulting in increased flows of sediments, nutrients and carbon to the GBR lagoon. Since European settlement, nutrient and sediment loads having increased 5-10 times and the change in water quality is causing damages to the reef. Earth Observation information from ocean and coastal color satellite sensors can provide spatially and temporally dense information on sediment flows. We hypothesize that Earth Observation improves decision-making by enabling better-targeted run-off reduction measures and we assess the benefits (cost savings) of this improved targeting by optimizing run-off reductions under different states of the world. The analysis suggests that the benefits of Earth Observation can indeed be substantial, depending on the perceived accuracy of the information and on the prior beliefs of decision-makers. The results indicate that increasing informational accuracy is the most effective way for developers of Earth Observation information to increase the added value of Earth Observation for

  19. The importance of large benthic foraminifera to reef island sediment budget and dynamics at Raine Island, northern Great Barrier Reef

    Science.gov (United States)

    Dawson, John L.; Smithers, Scott G.; Hua, Quan

    2014-10-01

    Low-lying reef islands are among the most vulnerable environments on earth to anthropogenic-induced climate change and sea-level rise over the next century because they are low, composed of unconsolidated sediment that is able to be mobilised by waves and currents, and depend on sediments supplied by reef organisms that are particularly sensitive to environmental changes (e.g. ocean temperatures and chemistry). Therefore, the spatial and temporal links between active carbonate production and island formation and dynamics are fundamental to predicting future island resilience, yet remain poorly quantified. In this paper we present results of a detailed geomorphological and sedimentological study of a reef and sand cay on the northern Great Barrier Reef. We provide an empirical investigation of the temporal linkages between sediment production and reef island development using a large collection of single grain AMS 14C dates. Large benthic foraminifera (LBF) are the single most important contributor to contemporary island sand mass (47%; ranging from 36% to 63%) at Raine Island, reflecting rapid rates of sediment production and delivery. Standing stock data reveal extremely high production rates on the reef (1.8 kg m- 2 yr- 1), while AMS 14C dates of single LBF tests indicate rapid rates of sediment transferral across the reef. We also demonstrate that age is statistically related to preservation and taphonomic grade (severely abraded tests > moderately abraded tests > pristine tests). We construct a contemporary reef and island sediment budget model for Raine Island that shows that LBF (Baculogypsina, Marginopora and Amphistegina) contribute 55% of the sediment produced on the reef annually, of which a large proportion (54%) contribute to the net annual accretion of the island. The tight temporal coupling between LBF growth and island sediment supply combined with the sensitivity of LBF to bleaching and ocean acidification suggests that islands dominated by LBF are

  20. Intensification of the meridional temperature gradient in the Great Barrier Reef following the Last Glacial Maximum.

    Science.gov (United States)

    Felis, Thomas; McGregor, Helen V; Linsley, Braddock K; Tudhope, Alexander W; Gagan, Michael K; Suzuki, Atsushi; Inoue, Mayuri; Thomas, Alexander L; Esat, Tezer M; Thompson, William G; Tiwari, Manish; Potts, Donald C; Mudelsee, Manfred; Yokoyama, Yusuke; Webster, Jody M

    2014-06-17

    Tropical south-western Pacific temperatures are of vital importance to the Great Barrier Reef (GBR), but the role of sea surface temperatures (SSTs) in the growth of the GBR since the Last Glacial Maximum remains largely unknown. Here we present records of Sr/Ca and δ(18)O for Last Glacial Maximum and deglacial corals that show a considerably steeper meridional SST gradient than the present day in the central GBR. We find a 1-2 °C larger temperature decrease between 17° and 20°S about 20,000 to 13,000 years ago. The result is best explained by the northward expansion of cooler subtropical waters due to a weakening of the South Pacific gyre and East Australian Current. Our findings indicate that the GBR experienced substantial meridional temperature change during the last deglaciation, and serve to explain anomalous deglacial drying of northeastern Australia. Overall, the GBR developed through significant SST change and may be more resilient than previously thought.

  1. Impact of sea-level rise and coral mortality on the wave dynamics and wave forces on barrier reefs.

    Science.gov (United States)

    Baldock, T E; Golshani, A; Callaghan, D P; Saunders, M I; Mumby, P J

    2014-06-15

    A one-dimensional wave model was used to investigate the reef top wave dynamics across a large suite of idealized reef-lagoon profiles, representing barrier coral reef systems under different sea-level rise (SLR) scenarios. The modeling shows that the impacts of SLR vary spatially and are strongly influenced by the bathymetry of the reef and coral type. A complex response occurs for the wave orbital velocity and forces on corals, such that the changes in the wave dynamics vary reef by reef. Different wave loading regimes on massive and branching corals also leads to contrasting impacts from SLR. For many reef bathymetries, wave orbital velocities increase with SLR and cyclonic wave forces are reduced for certain coral species. These changes may be beneficial to coral health and colony resilience and imply that predicting SLR impacts on coral reefs requires careful consideration of the reef bathymetry and the mix of coral species.

  2. Differences in demographic traits of four butterflyfish species between two reefs of the Great Barrier Reef separated by 1,200 km

    KAUST Repository

    Berumen, Michael L.

    2011-11-16

    Many species demonstrate variation in life history attributes in response to gradients in environmental conditions. For fishes, major drivers of life history variation are changes in temperature and food availability. This study examined large-scale variation in the demography of four species of butterflyfishes (Chaetodon citrinellus, Chaetodon lunulatus, Chaetodon melannotus, and Chaetodon trifascialis) between two locations on Australia\\'s Great Barrier Reef (Lizard Island and One Tree Island, separated by approximately 1,200 km). Variation in age-based demographic parameters was assessed using the re-parameterised von Bertalanffy growth function. All species displayed measurable differences in body size between locations, with individuals achieving a larger adult size at the higher latitude site (One Tree Island) for three of the four species examined. Resources and abundances of the study species were also measured, revealing some significant differences between locations. For example, for C. trifascialis, there was no difference in its preferred resource or in abundance between locations, yet it achieved a larger body size at the higher latitude location, suggesting a response to temperature. For some species, resources and abundances did vary between locations, limiting the ability to distinguish between a demographic response to temperature as opposed to a response to food or competition. Future studies of life histories and demographics at large spatial scales will need to consider the potentially confounding roles of temperature, resource usage and availability, and abundance/competition to disentangle the effects of these environmental variables. © 2011 Springer-Verlag.

  3. The mapping of the Posidonia oceanica (L.) Delile barrier reef meadow in the southeastern Gulf of Tunis (Tunisia)

    Science.gov (United States)

    Hachani, Mohamed Amine; Ziadi, Boutheina; Langar, Habib; Sami, Djallouli Aslem; Turki, Souad; Aleya, Lotfi

    2016-09-01

    Barrier reefs are among the most important ecomorphosis for Posidonia oceanica meadows and have long been subjected to anthropic pressures. The authors mapped the entire Sidi Rais (northeastern Tunisia) Posidonia oceanica barrier reef by means of remote sensing based on processing a satellite image acquired via Google Earth © software, coupled with field observations obtained by snorkeling. The map thus produced represents the P. oceanica barrier reef in its current state, covering a total area of 156.77 ha, the reef being divided into three distinct sections separated by reverse flows with each section subject to varied anthropic factors and disturbances.

  4. Paleomagnetic Study of the Devonian Reef Complexes of the Canning Basin, Western Australia

    Science.gov (United States)

    Yan, M.; Tohver, E.; Cawood, P. A.; Kirschvink, J.; Peek, S.; Playton, T.; Hocking, R.; Haines, P.; Montgomery, P.

    2008-12-01

    The reef systems in the Canning Basin, Western Australia perhaps are the best exposed and least deformed examples of ancient reef systems known in the world. The recently commenced multi-disciplinary research project in the Devonian reef complex of the Canning Basin is a broad investigation of the depositional history of a carbonate platform using paleomagnetic, stable isotope geochemistry (inorganic and organic), sedimentology, and biostratigraphy. By focusing on the world-class exposures in the Canning Basin, this project seeks to provide a global stratigraphic reference frame for key intervals in life history such as the Frasnian-Fammenian mass extinction event, as well as providing a useful analogue for resource models of other carbonate reef systems elsewhere in the world. This reference frame will consist of a high resolution magnetostratigraphic profile to supplement the presently-sparse Global Polarity Timescale (GPTS) for the Devonian, as well as a chemostratigraphic profile (chiefly carbon isotopes) to identify possible shifts in the global carbon budget associated with biotic crises and/or climate change. Additional goals include identification of the conditions leading up to, and possible causes of the mass extinction event, and testing for a possible mid-Paleozoic episode of True Polar Wander. We report here on a paleomagnetic study of two magnetostratigraphic sections in the Canning Basin to address the goals mentioned above. Paleomagnetic samples have been drilled on the Late Frasnian limestones in the north of the Windjana Gorge National Park, with a total number of 400 core samples. So far preliminary paleomagnetic analysis on pilot samples reveals two characteristic remanent components. One component has a blocking temperatures less than 400 degree Celsius, probably a component of secondary overprint; another component has a blocking temperature around 580 and around 680 degree Celsius, indicating the presence of magnetite and hematite

  5. A rapid genetic assay for the identification of the most common Pocillopora damicornis genetic lineages on the Great Barrier Reef.

    Directory of Open Access Journals (Sweden)

    Gergely Torda

    Full Text Available Pocillopora damicornis (Linnaeus, 1758; Scleractinia, Pocilloporidae has recently been found to comprise at least five distinct genetic lineages in Eastern Australia, some of which likely represent cryptic species. Due to similar and plastic gross morphology of these lineages, field identification is often difficult. Here we present a quick, cost effective genetic assay as well as three novel microsatellite markers that distinguish the two most common lineages found on the Great Barrier Reef. The assay is based on PCR amplification of two regions within the mitochondrial putative control region, which show consistent and easily identifiable fragment size differences for the two genetic lineages after Alu1 restriction enzyme digestion of the amplicons.

  6. Flood impacts in Keppel Bay, southern great barrier reef in the aftermath of cyclonic rainfall.

    Science.gov (United States)

    Jones, Alison M; Berkelmans, Ray

    2014-01-01

    In December 2010, the highest recorded Queensland rainfall associated with Tropical Cyclone 'Tasha' caused flooding of the Fitzroy River in Queensland, Australia. A massive flood plume inundated coral reefs lying 12 km offshore of the Central Queensland coast near Yeppoon and caused 40-100% mortality to coral fringing many of the islands of Keppel Bay down to a depth of ∼8 m. The severity of coral mortality was influenced by the level of exposure to low salinity seawater as a result of the reef's distance from the flood plume and to a lesser extent, water depth and whether or not the reef faced the plume source. There was no evidence in this study of mortality resulting from pollutants derived from the nearby Fitzroy Catchment, at least in the short term, suggesting that during a major flood, the impact of low salinity on corals outweighs that of pollutants. Recovery of the reefs in Keppel Bay from the 2010/2011 Fitzroy River flood is likely to take 10-15 years based on historical recovery periods from a similar event in 1991; potentially impacting visitor numbers for tourism and recreational usage. In the meantime, activities like snorkeling, diving and coral viewing will be focused on the few shallow reefs that survived the flood, placing even further pressure on their recovery. Reef regeneration, restoration and rehabilitation are measures that may be needed to support tourism in the short term. However, predictions of a warming climate, lower rainfall and higher intensity summer rain events in the Central and Coastal regions of Australia over the next decade, combined with the current anthropogenic influences on water quality, are likely to slow regeneration with consequent impact on long-term reef resilience.

  7. Flood impacts in Keppel Bay, southern great barrier reef in the aftermath of cyclonic rainfall.

    Directory of Open Access Journals (Sweden)

    Alison M Jones

    Full Text Available In December 2010, the highest recorded Queensland rainfall associated with Tropical Cyclone 'Tasha' caused flooding of the Fitzroy River in Queensland, Australia. A massive flood plume inundated coral reefs lying 12 km offshore of the Central Queensland coast near Yeppoon and caused 40-100% mortality to coral fringing many of the islands of Keppel Bay down to a depth of ∼8 m. The severity of coral mortality was influenced by the level of exposure to low salinity seawater as a result of the reef's distance from the flood plume and to a lesser extent, water depth and whether or not the reef faced the plume source. There was no evidence in this study of mortality resulting from pollutants derived from the nearby Fitzroy Catchment, at least in the short term, suggesting that during a major flood, the impact of low salinity on corals outweighs that of pollutants. Recovery of the reefs in Keppel Bay from the 2010/2011 Fitzroy River flood is likely to take 10-15 years based on historical recovery periods from a similar event in 1991; potentially impacting visitor numbers for tourism and recreational usage. In the meantime, activities like snorkeling, diving and coral viewing will be focused on the few shallow reefs that survived the flood, placing even further pressure on their recovery. Reef regeneration, restoration and rehabilitation are measures that may be needed to support tourism in the short term. However, predictions of a warming climate, lower rainfall and higher intensity summer rain events in the Central and Coastal regions of Australia over the next decade, combined with the current anthropogenic influences on water quality, are likely to slow regeneration with consequent impact on long-term reef resilience.

  8. Dynamics of seawater carbonate chemistry, production, and calcification of a coral reef flat, Central Great Barrier Reef

    Directory of Open Access Journals (Sweden)

    R. Albright

    2013-05-01

    Full Text Available Ocean acidification is projected to shift coral reefs from a state of net accretion to one of net dissolution this century. Presently, our ability to predict global-scale changes to coral reef calcification is limited by insufficient data relating seawater carbonate chemistry parameters to in situ rates of reef calcification. Here, we investigate natural trends in carbonate chemistry of the Davies Reef flat in the central Great Barrier Reef on diel and seasonal timescales and relate these trends to benthic carbon fluxes by quantifying net ecosystem calcification (nec and net community production (ncp. Results show that seawater carbonate chemistry of the Davies Reef flat is highly variable over both diel and seasonal timescales. pH (total scale ranged from 7.92 to 8.17, pCO2 ranged from 272 to 542 μatm, and aragonite saturation state (Ωarag ranged from 2.9 to 4.1. Diel cycles in carbonate chemistry were primarily driven by ncp, and warming explained 35% and 47% of the seasonal shifts in pCO2 and pH, respectively. Daytime ncp averaged 36 ± 19 mmol C m−2 h−1 in summer and 33 ± 13 mmol C m−2 h−1 in winter; nighttime ncp averaged −22 ± 20 and −7 ± 6 mmol C m−2 h−1 in summer and winter, respectively. Daytime nec averaged 11 ± 4 mmol CaCO3 m−2 h−1 in summer and 8 ± 3 mmol CaCO3 m−2 h−1 in winter, whereas nighttime nec averaged 2 ± 4 mmol and −1 ± 3 mmol CaCO3 m−2 h−1 in summer and winter, respectively. Net ecosystem calcification was positively correlated with Ωarag for both seasons. Linear correlations of nec and Ωarag indicate that the Davies Reef flat may transition from a state of net calcification to net dissolution at Ωarag values of 3.4 in summer and 3.2 in winter. Diel trends in Ωarag indicate that the reef flat is currently below this calcification threshold 29.6% of the time in summer and 14.1% of the time in winter.

  9. Coral skeletons provide historical evidence of phosphorus runoff on the great barrier reef.

    Directory of Open Access Journals (Sweden)

    Jennie Mallela

    Full Text Available Recently, the inshore reefs of the Great Barrier Reef have declined rapidly because of deteriorating water quality. Increased catchment runoff is one potential culprit. The impacts of land-use on coral growth and reef health however are largely circumstantial due to limited long-term data on water quality and reef health. Here we use a 60 year coral core record to show that phosphorus contained in the skeletons (P/Ca of long-lived, near-shore Porites corals on the Great Barrier Reef correlates with annual records of fertiliser application and particulate phosphorus loads in the adjacent catchment. Skeletal P/Ca also correlates with Ba/Ca, a proxy for fluvial sediment loading, again linking near-shore phosphorus records with river runoff. Coral core records suggest that phosphorus levels increased 8 fold between 1949 and 2008 with the greatest levels coinciding with periods of high fertiliser-phosphorus use. Periods of high P/Ca correspond with intense agricultural activity and increased fertiliser application in the river catchment following agricultural expansion and replanting after cyclone damage. Our results demonstrate how coral P/Ca records can be used to assess terrestrial nutrient loading of vulnerable near-shore reefs.

  10. The 27-year decline of coral cover on the Great Barrier Reef and its causes.

    Science.gov (United States)

    De'ath, Glenn; Fabricius, Katharina E; Sweatman, Hugh; Puotinen, Marji

    2012-10-30

    The world's coral reefs are being degraded, and the need to reduce local pressures to offset the effects of increasing global pressures is now widely recognized. This study investigates the spatial and temporal dynamics of coral cover, identifies the main drivers of coral mortality, and quantifies the rates of potential recovery of the Great Barrier Reef. Based on the world's most extensive time series data on reef condition (2,258 surveys of 214 reefs over 1985-2012), we show a major decline in coral cover from 28.0% to 13.8% (0.53% y(-1)), a loss of 50.7% of initial coral cover. Tropical cyclones, coral predation by crown-of-thorns starfish (COTS), and coral bleaching accounted for 48%, 42%, and 10% of the respective estimated losses, amounting to 3.38% y(-1) mortality rate. Importantly, the relatively pristine northern region showed no overall decline. The estimated rate of increase in coral cover in the absence of cyclones, COTS, and bleaching was 2.85% y(-1), demonstrating substantial capacity for recovery of reefs. In the absence of COTS, coral cover would increase at 0.89% y(-1), despite ongoing losses due to cyclones and bleaching. Thus, reducing COTS populations, by improving water quality and developing alternative control measures, could prevent further coral decline and improve the outlook for the Great Barrier Reef. Such strategies can, however, only be successful if climatic conditions are stabilized, as losses due to bleaching and cyclones will otherwise increase.

  11. Disease outbreaks, bleaching and a cyclone drive changes in coral assemblages on an inshore reef of the Great Barrier Reef

    Science.gov (United States)

    Haapkylä, J.; Melbourne-Thomas, J.; Flavell, M.; Willis, B. L.

    2013-09-01

    Coral disease is a major threat to the resilience of coral reefs; thus, understanding linkages between disease outbreaks and disturbances predicted to increase with climate change is becoming increasingly important. Coral disease surveys conducted twice yearly between 2008 and 2011 at a turbid inshore reef in the central Great Barrier Reef spanned two disturbance events, a coral bleaching event in 2009 and a severe cyclone (cyclone `Yasi') in 2011. Surveys of coral cover, community structure and disease prevalence throughout this 4-yr study provide a unique opportunity to explore cumulative impacts of disturbance events and disease for inshore coral assemblages. The principal coral disease at the study site was atramentous necrosis (AtN), and it primarily affected the key inshore, reef-building coral Montipora aequituberculata. Other diseases detected were growth anomalies, white syndrome and brown band syndrome. Diseases affected eight coral genera, although Montipora was, by far, the genus mostly affected. The prevalence of AtN followed a clear seasonal pattern, with disease outbreaks occurring only in wet seasons. Mean prevalence of AtN on Montipora spp. (63.8 % ± 3.03) was three- to tenfold greater in the wet season of 2009, which coincided with the 2009 bleaching event, than in other years. Persistent wet season outbreaks of AtN combined with the impacts of bleaching and cyclone events resulted in a 50-80 % proportional decline in total coral cover. The greatest losses of branching and tabular acroporids occurred following the low-salinity-induced bleaching event of 2009, and the greatest losses of laminar montiporids occurred following AtN outbreaks in 2009 and in 2011 following cyclone Yasi. The shift to a less diverse coral assemblage and the concomitant loss of structural complexity are likely to have long-term consequences for associated vertebrate and invertebrate communities on Magnetic Island reefs.

  12. The evolution of the Great Barrier Reef during the Last Interglacial Period

    Science.gov (United States)

    Dechnik, Belinda; Webster, Jody M.; Webb, Gregory E.; Nothdurft, Luke; Dutton, Andrea; Braga, Juan-Carlos; Zhao, Jian-xin; Duce, Stephanie; Sadler, James

    2017-02-01

    Reef response to Last Interglacial (LIG) sea level and palaeoenvironmental change has been well documented at a limited number of far-field sites remote from former ice sheets. However, the age and development of LIG reefs in the Great Barrier Reef (GBR) remain poorly understood due to their location beneath modern living reefs. Here we report thirty-nine new mass spectrometry U-Th ages from seven LIG platform reefs across the northern, central and southern GBR. Two distinct geochemical populations of corals were observed, displaying activity ratios consistent with either closed or open system evolution. Our closed-system ages ( 129-126 ka) provide the first reliable LIG ages for the entire GBR. Combined with our open-system model ages, we are able to constrain the interval of significant LIG reef growth in the southern GBR to between 129-121 ka. Using age-elevation data in conjunction with newly defined coralgal assemblages and sedimentary facies analysis we have defined three distinct phases of LIG reef development in response to major sea level and oceanographic changes. These phases include: Phase 1 (> 129 ka), a shallow-water coralgal colonisation phase following initial flooding of the older, likely Marine Isotope Stage 7 (MIS7) antecedent platform; Phase 2 ( 129 ka), a near drowning event in response to rapid sea level rise and greater nutrient-rich upwelling and; Phase 3 ( 128-121 ka), establishment of significant reef framework through catch-up reef growth, initially characterised by deeper, more turbid coralgal assemblages (Phase 3a) that transition to shallow-water assemblages following sea level stabilisation (Phase 3b). Coralgal assemblage analysis indicates that the palaeoenvironments during initial reef growth phases (1 and 2) of the LIG were significantly different than the initial reef growth phases in the Holocene. However, the similar composition of ultimate shallow-water coralgal assemblages and slow reef accretion rates following stabilisation

  13. Dynamics of seawater carbonate chemistry, production, and calcification of a coral reef flat, central Great Barrier Reef

    Directory of Open Access Journals (Sweden)

    R. Albright

    2013-10-01

    Full Text Available Ocean acidification is projected to shift coral reefs from a state of net accretion to one of net dissolution this century. Presently, our ability to predict global-scale changes to coral reef calcification is limited by insufficient data relating seawater carbonate chemistry parameters to in situ rates of reef calcification. Here, we investigate diel and seasonal trends in carbonate chemistry of the Davies Reef flat in the central Great Barrier Reef and relate these trends to benthic carbon fluxes by quantifying net ecosystem calcification (nec and net community production (ncp. Results show that seawater carbonate chemistry of the Davies Reef flat is highly variable over both diel and seasonal cycles. pH (total scale ranged from 7.92 to 8.17, pCO2 ranged from 272 to 542 μatm, and aragonite saturation state (Ωarag ranged from 2.9 to 4.1. Diel cycles in carbonate chemistry were primarily driven by ncp, and warming explained 35% and 47% of the seasonal shifts in pCO2 and pH, respectively. Daytime ncp averaged 37 ± 19 mmol C m−2 h−1 in summer and 33 ± 13 mmol C m−2 h−1 in winter; nighttime ncp averaged −30 ± 25 and −7 ± 6 mmol C m−2 h−1 in summer and winter, respectively. Daytime nec averaged 11 ± 4 mmol CaCO3 m−2 h−1 in summer and 8 ± 3 mmol CaCO3 m−2 h−1 in winter, whereas nighttime nec averaged 2 ± 4 mmol and −1 ± 3 mmol CaCO3 m−2 h−1 in summer and winter, respectively. Net ecosystem calcification was highly sensitive to changes in Ωarag for both seasons, indicating that relatively small shifts in Ωarag may drive measurable shifts in calcification rates, and hence carbon budgets, of coral reefs throughout the year.

  14. Mid-Holocene sea surface conditions and riverine influence on the inshore Great Barrier Reef

    NARCIS (Netherlands)

    Roche, R.C.; Perry, C.T.; Smithers, S.G.; Leng, M.J.; Grove, C.A.; Sloane, H.J.; Unsworth, C.E.

    2014-01-01

    We present measurements of Sr/Ca, d18O, and spectral luminescence ratios (G/B) from a mid-Holocene Porites sp. microatoll recovered from the nearshore Great Barrier Reef (GBR). These records were used as proxies to reconstruct sea surface temperature (SST), the d18O of surrounding seawater (d18Osw),

  15. Jerbarnia stocki, a new species from the Barrier Reef (Crustacea, Amphipoda)

    NARCIS (Netherlands)

    Thomas, James Darwin; Barnard, J.L.

    1990-01-01

    A new species of Jerbarnia is described in 2 meters of depth from Lizard Island on the Great Barrier Reef. It is the first species from depths shallower than 13 m. The species differs from all but J. aquilopacifica (Japan) in the lack of major teeth on pleonites 1-3 and from the latter species in th

  16. A critical review of environmental management of the 'not so Great' Barrier Reef

    Science.gov (United States)

    Brodie, Jon; Waterhouse, Jane

    2012-06-01

    Recent estimates put average coral cover across the Great Barrier Reef (GBR) at about 20-30%. This is estimated to be a large reduction since the 1960s. The Great Barrier Reef Marine Park Act was enacted in 1975 and the Great Barrier Reef Marine Park Authority (GBRMPA) set up shortly afterwards. So the question is: why has coral cover continued to decline when the GBR is being managed with a management regime often recognised as 'the best managed coral reef system in the world', based on a strong science-for-management ethic. The stressors which are known to be most responsible for the loss of coral cover (and general 'reef health') are terrestrial pollution including the link to outbreaks of crown of thorns starfish, fishing impacts and climate change. These have been established through a long and intensive research effort over the last 30 years. However the management response of the GBRMPA after 1975, while based on a strong science-for-management program, did not concentrate on these issues but instead on managing access through zoning with restrictions on fishing in very limited areas and tourism management. Significant action on fishing, including trawling, did not occur until the Trawl Management Plan of 2000 and the rezoning of the GBR Marine Park in 2004. Effective action on terrestrial pollution did not occur until the Australian Government Reef Rescue initiative which commenced in 2008. Effective action on climate change has yet to begin either nationally or globally. Thus it is not surprising that coral cover on the GBR has reduced to values similar to those seen in other coral reef areas in the world such as Indonesia and the Philippines. Science has always required long periods to acquire sufficient evidence to drive management action and hence there is a considerable time lag between the establishment of scientific evidence and the introduction of effective management. It can still be credibly claimed that the GBR is the best managed coral reef

  17. Temporal clustering of tropical cyclones on the Great Barrier Reef and its ecological importance

    Science.gov (United States)

    Wolff, Nicholas H.; Wong, Aaron; Vitolo, Renato; Stolberg, Kristin; Anthony, Kenneth R. N.; Mumby, Peter J.

    2016-06-01

    Tropical cyclones have been a major cause of reef coral decline during recent decades, including on the Great Barrier Reef (GBR). While cyclones are a natural element of the disturbance regime of coral reefs, the role of temporal clustering has previously been overlooked. Here, we examine the consequences of different types of cyclone temporal distributions (clustered, stochastic or regular) on reef ecosystems. We subdivided the GBR into 14 adjoining regions, each spanning roughly 300 km, and quantified both the rate and clustering of cyclones using dispersion statistics. To interpret the consequences of such cyclone variability for coral reef health, we used a model of observed coral population dynamics. Results showed that clustering occurs on the margins of the cyclone belt, being strongest in the southern reefs and the far northern GBR, which also has the lowest cyclone rate. In the central GBR, where rates were greatest, cyclones had a relatively regular temporal pattern. Modelled dynamics of the dominant coral genus, Acropora, suggest that the long-term average cover might be more than 13 % greater (in absolute cover units) under a clustered cyclone regime compared to stochastic or regular regimes. Thus, not only does cyclone clustering vary significantly along the GBR but such clustering is predicted to have a marked, and management-relevant, impact on the status of coral populations. Additionally, we use our regional clustering and rate results to sample from a library of over 7000 synthetic cyclone tracks for the GBR. This allowed us to provide robust reef-scale maps of annual cyclone frequency and cyclone impacts on Acropora. We conclude that assessments of coral reef vulnerability need to account for both spatial and temporal cyclone distributions.

  18. Ecological traits influencing range expansion across large oceanic dispersal barriers: insights from tropical Atlantic reef fishes.

    Science.gov (United States)

    Luiz, Osmar J; Madin, Joshua S; Robertson, D Ross; Rocha, Luiz A; Wirtz, Peter; Floeter, Sergio R

    2012-03-01

    How do biogeographically different provinces arise in response to oceanic barriers to dispersal? Here, we analyse how traits related to the pelagic dispersal and adult biology of 985 tropical reef fish species correlate with their establishing populations on both sides of two Atlantic marine barriers: the Mid-Atlantic Barrier (MAB) and the Amazon-Orinoco Plume (AOP). Generalized linear mixed-effects models indicate that predictors for successful barrier crossing are the ability to raft with flotsam for the deep-water MAB, non-reef habitat usage for the freshwater and sediment-rich AOP, and large adult-size and large latitudinal-range for both barriers. Variation in larval-development mode, often thought to be broadly related to larval-dispersal potential, is not a significant predictor in either case. Many more species of greater taxonomic diversity cross the AOP than the MAB. Rafters readily cross both barriers but represent a much smaller proportion of AOP crossers than MAB crossers. Successful establishment after crossing both barriers may be facilitated by broad environmental tolerance associated with large body size and wide latitudinal-range. These results highlight the need to look beyond larval-dispersal potential and assess adult-biology traits when assessing determinants of successful movements across marine barriers.

  19. Diel coral reef acidification driven by porewater advection in permeable sands, Heron Island, Great Barrier Reef

    DEFF Research Database (Denmark)

    Santos, Isaac R.; Glud, Ronnie N.; Maher, Damien

    2011-01-01

    Little is known about how biogeochemical processes in permeable sediments affect the pH of coastal waters. We demonstrate that seawater recirculation in permeable sands can play a major role in proton (H+) cycling in a coral reef lagoon. The diel pH range (up to 0.75 units) in the Heron Island...... lagoon was the broadest ever reported for reef waters, and the night‐time pH (7.69) was comparable to worst‐case scenario predictions for seawater pH in 2100. The net contribution of coarse carbonate sands to the whole system H+ fluxes was only 9% during the day, but approached 100% at night when small...... scale (i.e., flow and topography‐induced pressure gradients) and large scale (i.e., tidal pumping as traced by radon) seawater recirculation processes were synergistic. Reef lagoon sands were a net sink for H+, and the sink strength was a function of porewater flushing rate. Our observations suggest...

  20. Differences in demographic traits of four butterflyfish species between two reefs of the Great Barrier Reef separated by 1,200 km

    Science.gov (United States)

    Berumen, M. L.; Trip, E. D. L.; Pratchett, M. S.; Choat, J. H.

    2012-03-01

    Many species demonstrate variation in life history attributes in response to gradients in environmental conditions. For fishes, major drivers of life history variation are changes in temperature and food availability. This study examined large-scale variation in the demography of four species of butterflyfishes ( Chaetodon citrinellus, Chaetodon lunulatus, Chaetodon melannotus, and Chaetodon trifascialis) between two locations on Australia's Great Barrier Reef (Lizard Island and One Tree Island, separated by approximately 1,200 km). Variation in age-based demographic parameters was assessed using the re-parameterised von Bertalanffy growth function. All species displayed measurable differences in body size between locations, with individuals achieving a larger adult size at the higher latitude site (One Tree Island) for three of the four species examined. Resources and abundances of the study species were also measured, revealing some significant differences between locations. For example, for C. trifascialis, there was no difference in its preferred resource or in abundance between locations, yet it achieved a larger body size at the higher latitude location, suggesting a response to temperature. For some species, resources and abundances did vary between locations, limiting the ability to distinguish between a demographic response to temperature as opposed to a response to food or competition. Future studies of life histories and demographics at large spatial scales will need to consider the potentially confounding roles of temperature, resource usage and availability, and abundance/competition to disentangle the effects of these environmental variables.

  1. Freshwater impacts in the central Great Barrier Reef: 1648-2011

    Science.gov (United States)

    Lough, J. M.; Lewis, S. E.; Cantin, N. E.

    2015-09-01

    The Australian summer monsoon is highly variable from year to year resulting in high variability in the magnitude and extent of freshwater river flood plumes affecting the Great Barrier Reef (GBR). These flood plumes transport terrestrial materials and contaminants to the reef and can have significant impacts on both water quality and ecosystem health. The occurrence and intensity of these freshwater flood plumes are reliably recorded as annual luminescent lines in inshore massive corals and occasional luminescent lines in mid-shelf corals. We use measured luminescence in a long Porites core and four recently collected short cores from Havannah Island (a nearshore reef in the central GBR) to reconstruct Burdekin River flow, 1648-2011, and five recent short cores from Britomart Reef (a mid-shelf reef, 65 km northeast of Havannah Island) to assess the frequency of flood plume events extending beyond the inshore to mid-shelf reefs. The reconstruction highlights that the frequency of high flow events has increased in the GBR from 1 in every 20 yr prior to European settlement (1748-1847) to 1 in every 6 yr reoccurrence (1948-2011). Three of the most extreme events in the past 364 yr have occurred since 1974, including 2011. The reconstruction also shows a shift to higher flows, increased variability from the latter half of the nineteenth century, and likely more frequent freshwater impacts on mid-shelf reefs. This change coincided with European settlement of northern Queensland and substantial changes in land use, which resulted in increased sediment loads exported to the GBR. The consequences of increased sediment loads to the GBR were, therefore, likely exacerbated by this climate shift. This change in Burdekin River flow characteristics appears to be associated with a shift towards greater El Niño-Southern Oscillation variability and rapid warming in the southwest Pacific, evident in independent palaeoclimatic records.

  2. New species of Alcyonacea (Octocorallia) from the Great Barrier Reef, South-East Asia, and the Red Sea

    NARCIS (Netherlands)

    Verseveldt, J.

    1982-01-01

    In this paper four new alcyonaceans are described. They are Alcyonium monticulum from the Great Barrier Reef, Cladiella steinen from Thailand, Lemnalia benayahui from the Red Sea, and Siphonogorgia lobata from Taiwan.

  3. Symbiont acquisition strategy drives host-symbiont associations in the southern Great Barrier Reef

    Science.gov (United States)

    Stat, M.; Loh, W. K. W.; Hoegh-Guldberg, O.; Carter, D. A.

    2008-12-01

    Coral larvae acquire populations of the symbiotic dinoflagellate Symbiodinium from the external environment (horizontal acquisition) or inherit their symbionts from the parent colony (maternal or vertical acquisition). The effect of the symbiont acquisition strategy on Symbiodinium-host associations has not been fully resolved. Previous studies have provided mixed results, probably due to factors such as low sample replication of Symbiodinium from a single coral host, biogeographic differences in Symbiodinium diversity, and the presence of some apparently host-specific symbiont lineages in coral with either symbiont acquisition strategies. This study set out to assess the effect of the symbiont acquisition strategy by sampling Symbiodinium from 10 coral species (five with a horizontal and five with a vertical symbiont acquisition strategy) across two adjacent reefs in the southern Great Barrier Reef. Symbiodinium diversity was assessed using single-stranded conformational polymorphism of partial nuclear large subunit rDNA and denaturing gradient gel electrophoresis of the internal transcribed spacer 2 region. The Symbiodinium population in hosts with a vertical symbiont acquisition strategy partitioned according to coral species, while hosts with a horizontal symbiont acquisition strategy shared a common symbiont type across the two reef environments. Comparative analysis of existing data from the southern Great Barrier Reef found that the majority of corals with a vertical symbiont acquisition strategy associated with distinct species- or genus-specific Symbiodinium lineages, but some could also associate with symbiont types that were more commonly found in hosts with a horizontal symbiont acquisition strategy.

  4. The role of sponges in the Mesoamerican Barrier-Reef Ecosystem, Belize.

    Science.gov (United States)

    Rützler, Klaus

    2012-01-01

    Over the past four decades, sponge research has advanced by leaps and bounds through endeavours such as the Caribbean Coral Reef Ecosystems (CCRE) programme at the U.S. National Museum of Natural History in Washington, D.C. Since its founding in the early 1970s, the programme has been dedicated to a detailed multidisciplinary study of a section of the Mesoamerican Barrier Reef, the Atlantic's largest reef complex, and has generated data far beyond the capability of lone investigators and brief expeditions. This reef complex extends 250 km southward from Yucatan, Mexico, into the Gulf of Honduras, most of it lying 20-40 km off the coast of Belize. A relatively unspoiled ecosystem, it features a great variety of habitats in close proximity, ranging from mangrove islands, seagrass meadows, and patch reefs in its lagoon to the barrier reef along the margin of the continental shelf. Among its varied macrobenthos, sponges stand out for their ubiquity, range of colours, rich species and biomass, and ecological importance; they populate rocky substrates, some sandy bottoms, and the subtidal stilt roots and peat banks of mangroves. Working from a field station established in 1972 on Carrie Bow Cay, a sand islet atop the reef off southern Belize, experts in numerous disciplines from both the Museum and academic institutions throughout the world have explored the area's biodiversity in the broadest sense and community development over time. At last count, 113 researchers (88 working on site) have focused on the biological and geological role of Porifera in Carrie Bow's reef communities, with the results reported in 125 scientific papers to date. The majority of these sponge studies have centred on systematics and faunistics, including quantitative distribution among the various habitats. Taxonomic approaches have ranged from basic morphology to fine structure, DNA barcoding, and ecological manipulations and culminated in a mini-workshop involving several experts on Caribbean

  5. Spatial and temporal genetic structure of Symbiodinium populations within a common reef-building coral on the Great Barrier Reef.

    Science.gov (United States)

    Howells, Emily J; Willis, Bette L; Bay, Line K; van Oppen, Madeleine J H

    2013-07-01

    The dinoflagellate photosymbiont Symbiodinium plays a fundamental role in defining the physiological tolerances of coral holobionts, but little is known about the dynamics of these endosymbiotic populations on coral reefs. Sparse data indicate that Symbiodinium populations show limited spatial connectivity; however, no studies have investigated temporal dynamics for in hospite Symbiodinium populations following significant mortality and recruitment events in coral populations. We investigated the combined influences of spatial isolation and disturbance on the population dynamics of the generalist Symbiodinium type C2 (ITS1 rDNA) hosted by the scleractinian coral Acropora millepora in the central Great Barrier Reef. Using eight microsatellite markers, we genotyped Symbiodinium in a total of 401 coral colonies, which were sampled from seven sites across a 12-year period including during flood plume-induced coral bleaching. Genetic differentiation of Symbiodinium was greatest within sites, explaining 70-86% of the total genetic variation. An additional 9-27% of variation was explained by significant differentiation of populations among sites separated by 0.4-13 km, which is consistent with low levels of dispersal via water movement and historical disturbance regimes. Sampling year accounted for 6-7% of total genetic variation and was related to significant coral mortality following severe bleaching in 1998 and a cyclone in 2006. Only 3% of the total genetic variation was related to coral bleaching status, reflecting generally small (8%) reductions in allelic diversity within bleached corals. This reduction probably reflected a loss of genotypes in hospite during bleaching, although no site-wide changes in genetic diversity were observed. Combined, our results indicate the importance of disturbance regimes acting together with limited oceanographic transport to determine the genetic composition of Symbiodinium types within reefs.

  6. Metazoan microbial framework fabrics in a Mississippian (Carboniferous) coral sponge microbial reef, Monto, Queensland, Australia

    Science.gov (United States)

    Shen, Jian-Wei; Webb, Gregory E.

    2005-07-01

    Microbial fabrics (stromatolites, thrombolites and calcimicrobes) occur in many Paleozoic carbonate buildups and commonly dominated reefs after mass extinction events (e.g., Middle Cambrian, Famennian [Late Devonian] and early Mississippian). By Viséan (middle Mississippian) time, eastern Australian reefs were mostly small, microbialite-dominated structures, but they contained diverse reef-building metazoans (e.g., rugose and tabulate corals, bryozoans) that came to dominate limited reef facies in some cases. Reefs in the Cannindah Limestone at Old Cannindah Homestead, Monto region, Queensland are exceptional in being the largest such reefs and in having the most complex and differentiated reef facies. They occurred on an oolitic-crinoidal bank characterized by long-term continuous carbonate deposition in a shallow, high-energy setting. Cannindah reef framework contained lithistid sponges and diverse corals, but was dominated by microbialite. The microbialites contain diverse thrombolites, microdigitate stromatolites, and calcimicrobes. Abundant syndepositional cavities in the microbial framework supported a diverse cryptic fauna including numerous calcimicrobes (e.g., Renalcis, Palaeomicrocodium, Girvanella, Ortonella, Aphralysia, and problematica), crinoids, and ostracodes. Cavities indicate that the framework was suprastratal both where microbialite-dominated and where skeletal organisms played a role in framework construction. Although these reefs grew following Late Devonian extinction events that affected skeletal reef builders, the dominance of microbialites is difficult to attribute to the absence of appropriate skeletal reef builders. The reefs occurred ˜20 million years after the Devonian-Mississippian transition, and diverse, potentially reef-building corals and algae occur throughout the reefs, but never rose to dominate framework construction. High siliciclastic flux, turbidity, abnormal salinity, low oxygen levels, low light penetration, and

  7. Surviving coral bleaching events: porites growth anomalies on the Great Barrier Reef.

    Directory of Open Access Journals (Sweden)

    Neal E Cantin

    Full Text Available Mass coral bleaching affected large parts of the Great Barrier Reef (GBR in 1998 and 2002. In this study, we assessed if signatures of these major thermal stress events were recorded in the growth characteristics of massive Porites colonies. In 2005 a suite of short (<50 cm cores were collected from apparently healthy, surviving Porites colonies, from reefs in the central GBR (18-19°S that have documented observations of widespread bleaching. Sites included inshore (Nelly Bay, Pandora Reef, annually affected by freshwater flood events, midshelf (Rib Reef, only occasionally affected by freshwater floods and offshore (Myrmidon Reef locations primarily exposed to open ocean conditions. Annual growth characteristics (extension, density and calcification were measured in 144 cores from 79 coral colonies and analysed over the common 24-year period, 1980-2003. Visual examination of the annual density bands revealed growth hiatuses associated with the bleaching years in the form of abrupt decreases in annual linear extension rates, high density stress bands and partial mortality. The 1998 mass-bleaching event reduced Porites calcification by 13 and 18% on the two inshore locations for 4 years, followed by recovery to baseline calcification rates in 2002. Evidence of partial mortality was apparent in 10% of the offshore colonies in 2002; however no significant effects of the bleaching events were evident in the calcification rates at the mid shelf and offshore sites. These results highlight the spatial variation of mass bleaching events and that all reef locations within the GBR were not equally stressed by the 1998 and 2002 mass bleaching events, as some models tend to suggest, which enabled recovery of calcification on the GBR within 4 years. The dynamics in annual calcification rates and recovery displayed here should be used to improve model outputs that project how coral calcification will respond to ongoing warming of the tropical oceans.

  8. Stanley Reef Extension, Density, and Calcification Data for 1912 to 1985

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Extension, Density, and Calcification data from 35 Porites coral cores covering the entire length of the Great Barrier Reef, Australia. Data set contains 35...

  9. Agincourt Reef Extension, Density, and Calcification Data for 1779 to 1988

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Extension, Density, and Calcification data from 35 Porites coral cores covering the entire length of the Great Barrier Reef, Australia. Data set contains 35...

  10. Sanctuary Reef Extension, Density, and Calcification Data for 1501 to 1984

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Extension, Density, and Calcification data from 35 Porites coral cores covering the entire length of the Great Barrier Reef, Australia. Data set contains 35...

  11. Yankee Reef Extension, Density, and Calcification Data for 1888 to 1984

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Extension, Density, and Calcification data from 35 Porites coral cores covering the entire length of the Great Barrier Reef, Australia. Data set contains 35...

  12. Pandora Reef Extension, Density, and Calcification Data for 1875 to 1982

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Extension, Density, and Calcification data from 35 Porites coral cores covering the entire length of the Great Barrier Reef, Australia. Data set contains 35...

  13. Abraham Reef Extension, Density, and Calcification Data for 1479 to 1985

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Extension, Density, and Calcification data from 35 Porites coral cores covering the entire length of the Great Barrier Reef, Australia. Data set contains 35...

  14. Lodestone Reef Extension, Density, and Calcification Data for 1615 to 1983

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Extension, Density, and Calcification data from 35 Porites coral cores covering the entire length of the Great Barrier Reef, Australia. Data set contains 35...

  15. Rib Reef Extension, Density, and Calcification Data for 1853 to 1983

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Extension, Density, and Calcification data from 35 Porites coral cores covering the entire length of the Great Barrier Reef, Australia. Data set contains 35...

  16. Wheeler Reef Extension, Density, and Calcification Data for 1744 to 1984

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Extension, Density, and Calcification data from 35 Porites coral cores covering the entire length of the Great Barrier Reef, Australia. Data set contains 35...

  17. Flinders Reef Extension, Density, and Calcification Data for 1718 to 1991

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Extension, Density, and Calcification data from 35 Porites coral cores covering the entire length of the Great Barrier Reef, Australia. Data set contains 35...

  18. Britomart Reef Extension, Density, and Calcification Data for 1574 to 1986

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Extension, Density, and Calcification data from 35 Porites coral cores covering the entire length of the Great Barrier Reef, Australia. Data set contains 35...

  19. Otter Reef Extension, Density, and Calcification Data for 1792 to 1987

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Extension, Density, and Calcification data from 35 Porites coral cores covering the entire length of the Great Barrier Reef, Australia. Data set contains 35...

  20. Phytoplankton, bacterioplankton and virioplankton structure and function across the southern Great Barrier Reef shelf

    Science.gov (United States)

    Alongi, Daniel M.; Patten, Nicole L.; McKinnon, David; Köstner, Nicole; Bourne, David G.; Brinkman, Richard

    2015-02-01

    Bacterioplankton and phytoplankton dynamics, pelagic respiration, virioplankton abundance, and the diversity of pelagic diazotrophs and other bacteria were examined in relation to water-column nutrients and vertical mixing across the southern Great Barrier Reef (GBR) shelf where sharp inshore to offshore gradients in water chemistry and hydrology prevail. A principal component analysis (PCA) revealed station groups clustered geographically, suggesting across-shelf differences in plankton function and structure driven by changes in mixing intensity, sediment resuspension, and the relative contributions of terrestrial, reef and oceanic nutrients. At most stations and sampling periods, microbial abundance and activities peaked both inshore and at channels between outer shelf reefs of the Pompey Reef complex. PCA also revealed that virioplankton numbers and biomass correlated with bacterioplankton numbers and production, and that bacterial growth and respiration correlated with net primary production, suggesting close virus-bacteria-phytoplankton interactions; all plankton groups correlated with particulate C, N, and P. Strong vertical mixing facilitates tight coupling of pelagic and benthic shelf processes as, on average, 37% and 56% of N and P demands of phytoplankton are derived from benthic nutrient regeneration and resuspension. These across-shelf planktonic trends mirror those of the benthic microbial community.

  1. Diversity of sponges (Porifera) from cryptic habitats on the Belize barrier reef near Carrie Bow Cay.

    Science.gov (United States)

    Rützler, Klaus; Piantoni, Carla; Van Soest, Rob W M; Díaz, M Cristina

    2014-05-29

    The Caribbean barrier reef near Carrie Bow Cay, Belize, has been a focus of Smithsonian Institution (Washington) reef and mangrove investigations since the early 1970s. Systematics and biology of sponges (Porifera) were addressed by several researchers but none of the studies dealt with cryptic habitats, such as the shaded undersides of coral rubble, reef crevices, and caves, although a high species diversity was recognized and samples were taken for future reference and study. This paper is the result of processing samples taken between 1972 and 2012. In all, 122 species were identified, 14 of them new (including one new genus). The new species are Tetralophophora (new genus) mesoamericana, Geodia cribrata, Placospongia caribica, Prosuberites carriebowensis, Timea diplasterina, Timea oxyasterina, Rhaphidhistia belizensis, Wigginsia curlewensis, Phorbas aurantiacus, Myrmekioderma laminatum, Niphates arenata, Siphonodictyon occultum, Xestospongia purpurea, and Aplysina sciophila. We determined that about 75 of the 122 cryptic sponge species studied (61%) are exclusive members of the sciophilic community, 47 (39 %) occur in both, light-exposed and shaded or dark habitats. Since we estimate the previously known sponge population of Carrie Bow reefs and mangroves at about 200 species, the cryptic fauna makes up 38 % of total diversity.

  2. Chimerism in wild adult populations of the broadcast spawning coral Acropora millepora on the Great Barrier Reef.

    Directory of Open Access Journals (Sweden)

    Eneour Puill-Stephan

    Full Text Available BACKGROUND: Chimeras are organisms containing tissues or cells of two or more genetically distinct individuals, and are known to exist in at least nine phyla of protists, plants, and animals. Although widespread and common in marine invertebrates, the extent of chimerism in wild populations of reef corals is unknown. METHODOLOGY/PRINCIPAL FINDINGS: The extent of chimerism was explored within two populations of a common coral, Acropora millepora, on the Great Barrier Reef, Australia, by using up to 12 polymorphic DNA microsatellite loci. At least 2% and 5% of Magnetic Island and Pelorus Island populations of A. millepora, respectively, were found to be chimeras (3% overall, based on conservative estimates. A slightly less conservative estimate indicated that 5% of colonies in each population were chimeras. These values are likely to be vast underestimates of the true extent of chimerism, as our sampling protocol was restricted to a maximum of eight branches per colony, while most colonies consist of hundreds of branches. Genotypes within chimeric corals showed high relatedness, indicating that genetic similarity is a prerequisite for long-term acceptance of non-self genotypes within coral colonies. CONCLUSIONS/SIGNIFICANCE: While some brooding corals have been shown to form genetic chimeras in their early life history stages under experimental conditions, this study provides the first genetic evidence of the occurrence of coral chimeras in the wild and of chimerism in a broadcast spawning species. We hypothesize that chimerism is more widespread in corals than previously thought, and suggest that this has important implications for their resilience, potentially enhancing their capacity to compete for space and respond to stressors such as pathogen infection.

  3. Wind Power in Australia: Overcoming Technological and Institutional Barriers

    Science.gov (United States)

    Healey, Gerard; Bunting, Andrea

    2008-01-01

    Until recently, Australia had little installed wind capacity, although there had been many investigations into its potential during the preceding decades. Formerly, state-owned monopoly utilities showed only token interest in wind power and could dictate the terms of energy debates. This situation changed in the late 1990s: Installed wind capacity…

  4. The role the Great Barrier Reef plays in resident wellbeing and implications for its management.

    Science.gov (United States)

    Larson, Silva; Stoeckl, Natalie; Farr, Marina; Esparon, Michelle

    2015-04-01

    Improvements in human wellbeing are dependent on improving ecosystems. Such considerations are particularly pertinent for regions of high ecological, but also social and cultural importance that are facing rapid change. One such region is the Great Barrier Reef (GBR). Although the GBR has world heritage status for its 'outstanding universal value', little is known about resident perceptions of its values. We surveyed 1545 residents, finding that absence of visible rubbish; healthy reef fish, coral cover, and mangroves; and iconic marine species, are considered to be more important to quality of life than the jobs and incomes associated with industry (most respondents were dissatisfied with the benefits they received from industry). Highly educated females placed more importance on environmental non-use values than other respondents; less educated males and those employed in mining found non-market use-values relatively more important. Environmental non-use values emerged as the most important management priority for all.

  5. Climate change disables coral bleaching protection on the Great Barrier Reef.

    Science.gov (United States)

    Ainsworth, Tracy D; Heron, Scott F; Ortiz, Juan Carlos; Mumby, Peter J; Grech, Alana; Ogawa, Daisie; Eakin, C Mark; Leggat, William

    2016-04-15

    Coral bleaching events threaten the sustainability of the Great Barrier Reef (GBR). Here we show that bleaching events of the past three decades have been mitigated by induced thermal tolerance of reef-building corals, and this protective mechanism is likely to be lost under near-future climate change scenarios. We show that 75% of past thermal stress events have been characterized by a temperature trajectory that subjects corals to a protective, sub-bleaching stress, before reaching temperatures that cause bleaching. Such conditions confer thermal tolerance, decreasing coral cell mortality and symbiont loss during bleaching by over 50%. We find that near-future increases in local temperature of as little as 0.5°C result in this protective mechanism being lost, which may increase the rate of degradation of the GBR.

  6. PAHs in the Great Barrier Reef Lagoon reach potentially toxic levels from coal port activities

    Science.gov (United States)

    Burns, Kathryn A.

    2014-05-01

    In view of the controversy over expanding the coastal coal ports bordering the Great Barrier Reef (GBR) Lagoon and the World Heritage Area, I re-evaluated the data published in Burns and Brinkman (2011). I used the US EPA procedures for the determination of Equilibrium Partitioning Sediment Benchmarks (ESBs) for the protection of benthic organisms (Hansen et al., 2003), and the new proposed ANZECC/ARMCANZ (2013) sediment quality guidelines (Simpson et al., 2013) and determined that the coastal sediments offshore from the Hay Point coal terminal and suspended sediments caught in sediment traps inshore and at the offshore coral reefs contained levels of PAHs that approach the estimates for toxicity to benthic and water column organisms. This result is discussed in relation to risks posed to the GBR ecosystem by the port practices and the imminent expansion of the Abbott Point, Hay Point and other coal terminals.

  7. Surviving coral bleaching events: porites growth anomalies on the Great Barrier Reef.

    Science.gov (United States)

    Cantin, Neal E; Lough, Janice M

    2014-01-01

    Mass coral bleaching affected large parts of the Great Barrier Reef (GBR) in 1998 and 2002. In this study, we assessed if signatures of these major thermal stress events were recorded in the growth characteristics of massive Porites colonies. In 2005 a suite of short (bleaching. Sites included inshore (Nelly Bay, Pandora Reef), annually affected by freshwater flood events, midshelf (Rib Reef), only occasionally affected by freshwater floods and offshore (Myrmidon Reef) locations primarily exposed to open ocean conditions. Annual growth characteristics (extension, density and calcification) were measured in 144 cores from 79 coral colonies and analysed over the common 24-year period, 1980-2003. Visual examination of the annual density bands revealed growth hiatuses associated with the bleaching years in the form of abrupt decreases in annual linear extension rates, high density stress bands and partial mortality. The 1998 mass-bleaching event reduced Porites calcification by 13 and 18% on the two inshore locations for 4 years, followed by recovery to baseline calcification rates in 2002. Evidence of partial mortality was apparent in 10% of the offshore colonies in 2002; however no significant effects of the bleaching events were evident in the calcification rates at the mid shelf and offshore sites. These results highlight the spatial variation of mass bleaching events and that all reef locations within the GBR were not equally stressed by the 1998 and 2002 mass bleaching events, as some models tend to suggest, which enabled recovery of calcification on the GBR within 4 years. The dynamics in annual calcification rates and recovery displayed here should be used to improve model outputs that project how coral calcification will respond to ongoing warming of the tropical oceans.

  8. Sea spray aerosol in the Great Barrier Reef and the presence of nonvolatile organics

    Science.gov (United States)

    Mallet, Marc; Cravigan, Luke; Miljevic, Branka; Vaattovaara, Petri; Deschaseaux, Elisabeth; Swan, Hilton; Jones, Graham; Ristovski, Zoran

    2016-06-01

    Sea spray aerosol (SSA) particles produced from the ocean surface in regions of biological activity can vary greatly in size, number and composition, and in their influence on cloud formation. Algal species such as phytoplankton can alter the SSA composition. Numerous studies have investigated nascent SSA properties, but all of these have focused on aerosol particles produced by seawater from noncoral related phytoplankton and in coastal regions. Bubble chamber experiments were performed with seawater samples taken from the reef flat around Heron Island in the Great Barrier Reef during winter 2011. Here we show that the SSA from these samples was composed of an internal mixture of varying fractions of sea salt, semivolatile organics, as well as nonvolatile (below 550°C) organics. A relatively constant volume fraction of semivolatile organics of 10%-13% was observed, while nonvolatile organic volume fractions varied from 29% to 49% for 60 nm SSA. SSA organic fractions were estimated to reduce the activation ratios of SSA to cloud condensation nuclei by up to 14% when compared with artificial sea salt. Additionally, a sea-salt calibration was applied so that a compact time-of-flight aerosol mass spectrometer could be used to quantify the contribution of sea salt to submicron SSA, which yielded organic volume fractions of 3%-6%. Overall, these results indicate a high fraction of organics associated with wintertime Aitken mode SSA generated from Great Barrier Reef seawater. Further work is required to fully distinguish any differences coral reefs have on SSA composition when compared to open oceans.

  9. Coral-macroalgal phase shifts or reef resilience: links with diversity and functional roles of herbivorous fishes on the Great Barrier Reef

    Science.gov (United States)

    Cheal, A. J.; MacNeil, M. Aaron; Cripps, E.; Emslie, M. J.; Jonker, M.; Schaffelke, B.; Sweatman, H.

    2010-12-01

    Changes from coral to macroalgal dominance following disturbances to corals symbolize the global degradation of coral reefs. The development of effective conservation measures depends on understanding the causes of such phase shifts. The prevailing view that coral-macroalgal phase shifts commonly occur due to insufficient grazing by fishes is based on correlation with overfishing and inferences from models and small-scale experiments rather than on long-term quantitative field studies of fish communities at affected and resilient sites. Consequently, the specific characteristics of herbivorous fish communities that most promote reef resilience under natural conditions are not known, though this information is critical for identifying vulnerable ecosystems. In this study, 11 years of field surveys recorded the development of the most persistent coral-macroalgal phase shift (>7 years) yet observed on Australia’s Great Barrier Reef (GBR). This shift followed extensive coral mortality caused by thermal stress (coral bleaching) and damaging storms. Comparisons with two similar reefs that suffered similar disturbances but recovered relatively rapidly demonstrated that the phase shift occurred despite high abundances of one herbivore functional group (scraping/excavating parrotfishes: Labridae). However, the shift was strongly associated with low fish herbivore diversity and low abundances of algal browsers (predominantly Siganidae) and grazers/detritivores (Acanthuridae), suggesting that one or more of these factors underpin reef resilience and so deserve particular protection. Herbivorous fishes are not harvested on the GBR, and the phase shift was not enhanced by unusually high nutrient levels. This shows that unexploited populations of herbivorous fishes cannot ensure reef resilience even under benign conditions and suggests that reefs could lose resilience under relatively low fishing pressure. Predictions of more severe and widespread coral mortality due to global

  10. SPATIAL HETEROGENEITY OF PHOTOSYNTHETIC ACTIVITY WITHIN DISEASED CORALS FROM THE GREAT BARRIER REEF

    DEFF Research Database (Denmark)

    Roff, George; Ulstrup, Karin Elizabeth; Fine, Maoz

    2008-01-01

    Morphological diagnosis and descriptions of seven disease-like syndromes affecting scleractinian corals were characterized from the southern Great Barrier Reef (GBR). Chl a fluorescence of PSII was measured using an Imaging-PAM (pulse amplitude modulated) fluorometer, enabling visualization...... with white patch syndrome appeared to impact primarily on the symbiotic dinoflagellates, as evidenced by declines in minimum fluorescence (F0) and maximum quantum yield (Fv/Fm), with no indication of degeneration in the host tissues. Our results suggest that for the majority of coral syndromes from the GBR......, pathogenesis occurs in the host tissue, while the impact on the zooxanthellae populations residing in affected corals is minimal....

  11. Gendered Barriers to Educational Opportunities: Resettlement of Sudanese Refugees in Australia

    Science.gov (United States)

    Hatoss, Aniko; Huijser, Henk

    2010-01-01

    This paper argues that whilst equitable educational pathways are integrated into educational policy discourses in Australia, there are significant gendered barriers to educational participation among members of the Sudanese refugee groups. The specific conditions of forced migration reinforce disadvantage and further limit opportunities. Cultural…

  12. Spatial and temporal patterns of nature-based tourism interactions with whale sharks (Rhincodon typus) at Ningaloo Reef, Western Australia

    Science.gov (United States)

    Anderson, Douglas J.; Kobryn, Halina T.; Norman, Brad M.; Bejder, Lars; Tyne, Julian A.; Loneragan, Neil R.

    2014-07-01

    As with other nature-based tourism ventures, whale shark tourism is expanding rapidly worldwide, which highlights the need to understand more about the nature of these activities. Records of interactions between tour operators and whale sharks at Ningaloo Reef, Western Australia (22.5°S, 113.5°E) were obtained from the Western Australian Department of Parks and Wildlife from 2006 to 2010 and evaluated to determine the scale of the tourism operations and the spatial and temporal distribution of interactions. The number of whale shark tours at Ningaloo increased by approx. 70% (520-886 tours per year) and the number of interactions with whale sharks by 370% between 2006 (694) and 2010 (3254). The locations of whale shark interactions recorded in logbooks (2006-2009) and electronic monitoring systems (2009 and 2010) were used to plot the smoothed densities of tour operator interactions with whale sharks. Generalised linear models were used to investigate how the presence/absence and number of whale shark interactions at North and South Ningaloo were influenced by the distance to the reef crest, the distance to passages and their interaction terms for the aggregated five-year data set. Over the five years, distance to the reef crest was the best predictor of the presence/absence of whale shark interactions at both North (interactions concentrated within 3 km of the reef crest) and South Ningaloo (interactions within 6 km of the reef crest) followed by distance to passages. The reef passages are very significant areas for tourism interactions with whale sharks at Ningaloo. The distribution of interactions at North and South Ningaloo varied from year to year, particularly in the strong La Niña year of 2010, when average sea surface temperatures remained above 24 °C and whale sharks were observed much later in the year than previously (late August). This study demonstrates the value of the data collected by the tour operators at Ningaloo Reef and managed by a

  13. Disturbance and the dynamics of coral cover on the Great Barrier Reef (1995-2009.

    Directory of Open Access Journals (Sweden)

    Kate Osborne

    Full Text Available Coral reef ecosystems worldwide are under pressure from chronic and acute stressors that threaten their continued existence. Most obvious among changes to reefs is loss of hard coral cover, but a precise multi-scale estimate of coral cover dynamics for the Great Barrier Reef (GBR is currently lacking. Monitoring data collected annually from fixed sites at 47 reefs across 1300 km of the GBR indicate that overall regional coral cover was stable (averaging 29% and ranging from 23% to 33% cover across years with no net decline between 1995 and 2009. Subregional trends (10-100 km in hard coral were diverse with some being very dynamic and others changing little. Coral cover increased in six subregions and decreased in seven subregions. Persistent decline of corals occurred in one subregion for hard coral and Acroporidae and in four subregions in non-Acroporidae families. Change in Acroporidae accounted for 68% of change in hard coral. Crown-of-thorns starfish (Acanthaster planci outbreaks and storm damage were responsible for more coral loss during this period than either bleaching or disease despite two mass bleaching events and an increase in the incidence of coral disease. While the limited data for the GBR prior to the 1980's suggests that coral cover was higher than in our survey, we found no evidence of consistent, system-wide decline in coral cover since 1995. Instead, fluctuations in coral cover at subregional scales (10-100 km, driven mostly by changes in fast-growing Acroporidae, occurred as a result of localized disturbance events and subsequent recovery.

  14. Disturbance and the dynamics of coral cover on the Great Barrier Reef (1995-2009).

    Science.gov (United States)

    Osborne, Kate; Dolman, Andrew M; Burgess, Scott C; Johns, Kerryn A

    2011-03-10

    Coral reef ecosystems worldwide are under pressure from chronic and acute stressors that threaten their continued existence. Most obvious among changes to reefs is loss of hard coral cover, but a precise multi-scale estimate of coral cover dynamics for the Great Barrier Reef (GBR) is currently lacking. Monitoring data collected annually from fixed sites at 47 reefs across 1300 km of the GBR indicate that overall regional coral cover was stable (averaging 29% and ranging from 23% to 33% cover across years) with no net decline between 1995 and 2009. Subregional trends (10-100 km) in hard coral were diverse with some being very dynamic and others changing little. Coral cover increased in six subregions and decreased in seven subregions. Persistent decline of corals occurred in one subregion for hard coral and Acroporidae and in four subregions in non-Acroporidae families. Change in Acroporidae accounted for 68% of change in hard coral. Crown-of-thorns starfish (Acanthaster planci) outbreaks and storm damage were responsible for more coral loss during this period than either bleaching or disease despite two mass bleaching events and an increase in the incidence of coral disease. While the limited data for the GBR prior to the 1980's suggests that coral cover was higher than in our survey, we found no evidence of consistent, system-wide decline in coral cover since 1995. Instead, fluctuations in coral cover at subregional scales (10-100 km), driven mostly by changes in fast-growing Acroporidae, occurred as a result of localized disturbance events and subsequent recovery.

  15. Reef sharks exhibit site-fidelity and higher relative abundance in marine reserves on the Mesoamerican Barrier Reef.

    Science.gov (United States)

    Bond, Mark E; Babcock, Elizabeth A; Pikitch, Ellen K; Abercrombie, Debra L; Lamb, Norlan F; Chapman, Demian D

    2012-01-01

    Carcharhinid sharks can make up a large fraction of the top predators inhabiting tropical marine ecosystems and have declined in many regions due to intense fishing pressure. There is some support for the hypothesis that carcharhinid species that complete their life-cycle within coral reef ecosystems, hereafter referred to as "reef sharks", are more abundant inside no-take marine reserves due to a reduction in fishing pressure (i.e., they benefit from marine reserves). Key predictions of this hypothesis are that (a) individual reef sharks exhibit high site-fidelity to these protected areas and (b) their relative abundance will generally be higher in these areas compared to fished reefs. To test this hypothesis for the first time in Caribbean coral reef ecosystems we combined acoustic monitoring and baited remote underwater video (BRUV) surveys to measure reef shark site-fidelity and relative abundance, respectively. We focused on the Caribbean reef shark (Carcharhinus perezi), the most common reef shark in the Western Atlantic, at Glover's Reef Marine Reserve (GRMR), Belize. Acoustically tagged sharks (N = 34) were detected throughout the year at this location and exhibited strong site-fidelity. Shark presence or absence on 200 BRUVs deployed at GRMR and three other sites (another reserve site and two fished reefs) showed that the factor "marine reserve" had a significant positive effect on reef shark presence. We rejected environmental factors or site-environment interactions as predominant drivers of this pattern. These results are consistent with the hypothesis that marine reserves can benefit reef shark populations and we suggest new hypotheses to determine the underlying mechanism(s) involved: reduced fishing mortality or enhanced prey availability.

  16. Reef sharks exhibit site-fidelity and higher relative abundance in marine reserves on the Mesoamerican Barrier Reef.

    Directory of Open Access Journals (Sweden)

    Mark E Bond

    Full Text Available Carcharhinid sharks can make up a large fraction of the top predators inhabiting tropical marine ecosystems and have declined in many regions due to intense fishing pressure. There is some support for the hypothesis that carcharhinid species that complete their life-cycle within coral reef ecosystems, hereafter referred to as "reef sharks", are more abundant inside no-take marine reserves due to a reduction in fishing pressure (i.e., they benefit from marine reserves. Key predictions of this hypothesis are that (a individual reef sharks exhibit high site-fidelity to these protected areas and (b their relative abundance will generally be higher in these areas compared to fished reefs. To test this hypothesis for the first time in Caribbean coral reef ecosystems we combined acoustic monitoring and baited remote underwater video (BRUV surveys to measure reef shark site-fidelity and relative abundance, respectively. We focused on the Caribbean reef shark (Carcharhinus perezi, the most common reef shark in the Western Atlantic, at Glover's Reef Marine Reserve (GRMR, Belize. Acoustically tagged sharks (N = 34 were detected throughout the year at this location and exhibited strong site-fidelity. Shark presence or absence on 200 BRUVs deployed at GRMR and three other sites (another reserve site and two fished reefs showed that the factor "marine reserve" had a significant positive effect on reef shark presence. We rejected environmental factors or site-environment interactions as predominant drivers of this pattern. These results are consistent with the hypothesis that marine reserves can benefit reef shark populations and we suggest new hypotheses to determine the underlying mechanism(s involved: reduced fishing mortality or enhanced prey availability.

  17. Barriers to migrant entry to occupations in Australia.

    Science.gov (United States)

    Iredale, R

    1989-03-01

    In 1986, 21.3% of the population of Australia had been born overseas; currently, foreign born workers comprise 25% of the labor force. The level of skilled immigration has continued to increase throughout the 1980s. In the past, most English-speaking migrants gained recognition of their overseas qualifications, but about half of those from non-English speaking countries have never been able to return to their pre-migration occupations. Beginning with the medical field, occupational regulating gradually grew with state autonomy being a marked feature. Australia has 1 of the most highly regulated labor markets in the world, with hundreds of bodies to determine entry criteria. The Council of Overseas Professional Qualifications, established in 1969, guides selection and tests professionals both overseas and already resident in Australia. The Tradesmen's Rights Regulation Act recognizes acceptable tradesmen. Aside from these 2 bodies, the majority of qualifications are assessed at the state or local level. Problems skilled immigrants have encountered in attempting to gain recognition of their overseas qualifications include 1) preference for locally trained workers or discrimination against non-British/non-Australian qualifications; 2) lack of adequate information about assessment procedures; 3) inadequate use of interpreting and translating services; 4) language difficulties in tests; and 5) frequent assessment only on formal qualifications, with skills and experience not being evaluated. The 2 basic models for assessing occupational suitability are the valuation of qualifications approach and the valuation of skills approach. To illustrate the operation of various models of assessment, the author discusses these occupations: medicine, nursing, engineering, computing, and electrical trades. The major factors that are essential for an overall strategy of change include 1) less occupational regulation in the labor market; 2) national registration and licensing systems

  18. Sand and nest temperatures and an estimate of hatchling sex ratio from the Heron Island green turtle ( Chelonia mydas) rookery, Southern Great Barrier Reef

    Science.gov (United States)

    Booth, David T.; Freeman, Candida

    2006-11-01

    Sand and nest temperatures were monitored during the 2002-2003 nesting season of the green turtle, Chelonia mydas, at Heron Island, Great Barrier Reef, Australia. Sand temperatures increased from ˜ 24°C early in the season to 27-29°C in the middle, before decreasing again. Beach orientation affected sand temperature at nest depth throughout the season; the north facing beach remained 0.7°C warmer than the east, which was 0.9°C warmer than the south, but monitored nest temperatures were similar across all beaches. Sand temperature at 100 cm depth was cooler than at 40 cm early in the season, but this reversed at the end. Nest temperatures increased 2-4°C above sand temperatures during the later half of incubation due to metabolic heating. Hatchling sex ratio inferred from nest temperature profiles indicated a strong female bias.

  19. Crowding Norms in Marine Settings: A Case Study of Snorkeling on the Great Barrier Reef.

    Science.gov (United States)

    Inglis; Johnson; Ponte

    1999-10-01

    / Research on crowding in natural environments has traditionally been concerned with encounters in terrestrial settings. Increased visitation to tropical marine environments, however, has meant that evaluations of aesthetic quality are increasingly becoming issues for managers of marine parks. In this study, we used image-capture techniques to develop a series of above- and below-water images depicting different numbers of people snorkeling in acoral reef setting. The presence of safety facilities in the above-water settings was manipulated to examine the influence of human-made structures on perception of crowding. Four respondent groups-a scuba-diving club, local residents, tourists, and US university students-representing different levels of experience in marine recreation on the Great Barrier Reef, were asked to rate the acceptability of each image. Ratings were significantly influenced by the number of people in the images, the prior experience and gender of the respondents, and the presence of safety infrastructure. Experienced scuba divers preferred scenes without people or infrastructure, while novices regarded the presence of both as more acceptable. The results suggest that evaluations of social density and crowding may vary between below-water scenes and the more familiar above-water setting. A lack of concordance between how respondents rated the images and their nominated preferences for the number of other people in the settings highlights a need for more research on how perceptions of resource conditions should be measured in marine environments.KEY WORDS: Recreation; Great Barrier Reef Marine Park; Image capture technology; Crowding norms; Snorkelinghttp://link.springer-ny.com/link/service/journals/00267/bibs/24n3p369.html

  20. Expectations and Outcomes of Reserve Network Performance following Re-zoning of the Great Barrier Reef Marine Park.

    Science.gov (United States)

    Emslie, Michael J; Logan, Murray; Williamson, David H; Ayling, Anthony M; MacNeil, M Aaron; Ceccarelli, Daniela; Cheal, Alistair J; Evans, Richard D; Johns, Kerryn A; Jonker, Michelle J; Miller, Ian R; Osborne, Kate; Russ, Garry R; Sweatman, Hugh P A

    2015-04-20

    Networks of no-take marine reserves (NTMRs) are widely advocated for preserving exploited fish stocks and for conserving biodiversity. We used underwater visual surveys of coral reef fish and benthic communities to quantify the short- to medium-term (5 to 30 years) ecological effects of the establishment of NTMRs within the Great Barrier Reef Marine Park (GBRMP). The density, mean length, and biomass of principal fishery species, coral trout (Plectropomus spp., Variola spp.), were consistently greater in NTMRs than on fished reefs over both the short and medium term. However, there were no clear or consistent differences in the structure of fish or benthic assemblages, non-target fish density, fish species richness, or coral cover between NTMR and fished reefs. There was no indication that the displacement and concentration of fishing effort reduced coral trout populations on fished reefs. A severe tropical cyclone impacted many survey reefs during the study, causing similar declines in coral cover and fish density on both NTMR and fished reefs. However, coral trout biomass declined only on fished reefs after the cyclone. The GBRMP is performing as expected in terms of the protection of fished stocks and biodiversity for a developed country in which fishing is not excessive and targets a narrow range of species. NTMRs cannot protect coral reefs directly from acute regional-scale disturbance but, after a strong tropical cyclone, impacted NTMR reefs supported higher biomass of key fishery-targeted species and so should provide valuable sources of larvae to enhance population recovery and long-term persistence.

  1. Ongoing effects of no-take marine reserves on commercially exploited coral trout populations on the Great Barrier Reef.

    Science.gov (United States)

    Miller, Ian; Cheal, Alistair J; Emslie, Michael J; Logan, Murray; Sweatman, Hugh

    2012-08-01

    Networks of no-take marine reserves (NTMRs) are widely used for managing marine resources. Because they restrict fishing, managers need to monitor reserves to reassure stakeholders that they are achieving the intended results. In 2004, the Great Barrier Reef (GBR) Marine Park was rezoned and the area of NTMRs was greatly increased. Using manta tow we assessed the effectiveness of the new NTMRs in conserving coral trout (Plectropomus and Variola spp.), the principle targets of the GBR reef line fishery. Over a six year period, we sampled regional groups of matched pairs of similar reefs, ones closed to fishing under the rezoning and ones that remained open. Coral trout populations were significantly higher in NTMRs. While coral trout populations declined on reefs open to fishing, stocks were maintained in NTMRs, highlighting the ongoing benefits of marine reserves.

  2. New constraints on the origin of the Australian Great Barrier Reef: Results from an international project of deep coring

    Science.gov (United States)

    ConsortiumGreat Barrier Reef Drilling, International

    2001-06-01

    Two new boreholes provide the first direct evidence of the age of the Australian Great Barrier Reef. An inner shelf sequence (total depth, 86 m; basal age = 210 ± 40 ka) comprises a dominantly siliciclastic unit (thickness ˜52 86 m), overlain by four carbonate units (total thickness 0 34 m). A shelf-edge and slope sequence (total depth 210 m) reveals three major sections: (1) a lower section of resedimented flows deposited on a lower slope, (2) a mid-section including intervals of corals, rhodoliths, and calcarenites with low- angle graded laminae, and (3) an upper section of four shelf- margin coral-reef units separated by karst surfaces bearing paleosols. Sr isotope and magnetostratigraphic data indicate that the central Great Barrier Reef is relatively young (post Brühnes-Matuyama boundary time), and our best estimate for the onset of reef growth on the outer barrier system is ca. 600 ± 280 ka. This date suggests that reef initiation may have been related to the onset of full eccentricity-dominated glacio-eustatic sea-level oscillation as inferred from large-amplitude “saw-tooth” 100 k.y. δ18O cycles (after marine isotope stage 17), rather than to some regional environmental parameter. A major question raised by our study is whether reef margins globally display a similar growth history. The possibility of a global reef initiation event has important implications for basin to shelf partitioning of CaCO3, atmospheric carbon dioxide levels, and global temperature change during Quaternary time.

  3. Geochemical Records of Bleaching Events and the Associated Stressors From the Great Barrier Reef

    Science.gov (United States)

    Roark, E. B.; McCulloch, M.; Ingram, B. L.; Marshall, J. F.

    2003-12-01

    The health of coral reefs world-wide is increasingly threatened by a wide array of stressors. On the Great Barrier Reef (GBR) these stressors include increased sediment flux associated with land use changes, increased sea surface temperatures (SST) and salinity changes due to large floods, the latter two of which are factors in an increased number of bleaching events. The ability to document long-term change in these stressors along with changes in the number of bleaching events would help discern what are natural and anthropogenic changes in this ecosystem. Here we present results of an initial calibration effort aimed at identifying bleaching events and the associated stressors using stable isotopic and trace element analysis in coral cores. Three ˜15-year time series of geochemical measurements (δ 13C, δ 18O, and Sr/Ca) on Porites coral cores obtained from Pandora Reef and the Keppel Islands on the GBR have been developed at near weekly resolution. Since the δ 13C of the coral skeletal carbonate is known to be affected by both environmental factors (e.g. insolation and temperature) and physiological factors (e.g. photosynthesis, calcification, and the statues of the symbiotic relationship between corals and zooxanthellae) it is the most promising proxy for reconstructing past bleaching events. The first record (PAN-98) comes from a coral head that had undergone bleaching and died shortly after the large-scale bleaching events on Pandora Reef in 1998. A second core (PAN-02) was collected from a living coral within 10m of PAN-98 in 2002. Sr/Ca ratios in both cores tracked even the smallest details of an in situ SST record. The increase in SST that occurred three to four weeks prior to bleaching was faithfully recorded by a similar decrease in the Sr/Ca ratio in PAN-98, indicating that calcification continued despite the high SST of 30-31° C. The δ 13C values decreased by about 5‰ , one week after the SST increase, and remained at this value for about 4

  4. Risk analysis of the governance system affecting outcomes in the Great Barrier Reef.

    Science.gov (United States)

    Dale, Allan P; Vella, Karen; Pressey, Robert L; Brodie, Jon; Gooch, Margaret; Potts, Ruth; Eberhard, Rachel

    2016-12-01

    The state and trend of the Great Barrier Reef's (GBR's) ecological health remains problematic, influencing United Nations Educational, Scientific and Cultural Organization (UNESCO) statements regarding GBR governance. While UNESCO's concerns triggered separate strategic assessments by the Australian and Queensland governments, there has been no independent and integrated review of the key risks within the overall system of governance influencing GBR outcomes. As a case study of international significance, this paper applies Governance Systems Analysis (GSA), a novel analytical framework that identifies the governance themes, domains and subdomains most likely to influence environmental and socio-economic outcomes in complex natural systems. This GBR-focussed application of GSA identifies governance subdomains that present high, medium, or low risk of failure to produce positive outcomes for the Reef. This enabled us to determine that three "whole of system" governance problems could undermine GBR outcomes. First, we stress the integrative importance of the Long Term Sustainability Plan (LTSP) Subdomain. Sponsored by the Australian and Queensland governments, this subdomain concerns the primary institutional arrangements for coordinated GBR planning and delivery, but due to its recent emergence, it faces several internal governance challenges. Second, we find a major risk of implementation failure in the achievement of GBR water quality actions due to a lack of system-wide focus on building strong and stable delivery systems at catchment scale. Finally, we conclude that the LTSP Subdomain currently has too limited a mandate/capacity to influence several high-risk subdomains that have not been, but must be more strongly aligned with Reef management (e.g. the Greenhouse Gas Emission Management Subdomain). Our analysis enables exploration of governance system reforms needed to address environmental trends in the GBR and reflects on the potential application of GSA in

  5. Large-scale expansion of no-take closures within the Great Barrier Reef has not enhanced fishery production.

    Science.gov (United States)

    Fletcher, W J; Kearney, R E; Wise, B S; Nash, W J

    2015-07-01

    A rare opportunity to test hypotheses about potential fishery benefits of large-scale closures was initiated in July 2004 when an additional 28.4% of the 348 000 km2 Great Barrier Reef (GBR) region of Queensland, Australia was closed to all fishing. Advice to the Australian and Queensland governments that supported this initiative predicted these additional closures would generate minimal (10%) initial reductions in both catch and landed value within the GBR area, with recovery of catches becoming apparent after three years. To test these predictions, commercial fisheries data from the GBR area and from the two adjacent (non-GBR) areas of Queensland were compared for the periods immediately before and after the closures were implemented. The observed means for total annual catch and value within the GBR declined from preclosure (2000-2003) levels of 12780 Mg and Australian $160 million, to initial post-closure (2005-2008) levels of 8143 Mg and $102 million; decreases of 35% and 36% respectively. Because the reference areas in the non-GBR had minimal changes in catch and value, the beyond-BACI (before, after, control, impact) analyses estimated initial net reductions within the GBR of 35% for both total catch and value. There was no evidence of recovery in total catch levels or any comparative improvement in catch rates within the GBR nine years after implementation. These results are not consistent with the advice to governments that the closures would have minimal initial impacts and rapidly generate benefits to fisheries in the GBR through increased juvenile recruitment and adult spillovers. Instead, the absence of evidence of recovery in catches to date currently supports an alternative hypothesis that where there is already effective fisheries management, the closing of areas to all fishing will generate reductions in overall catches similar to the percentage of the fished area that is closed.

  6. Prevalence of virus-like particles within a staghorn scleractinian coral ( Acropora muricata) from the Great Barrier Reef

    Science.gov (United States)

    Patten, N. L.; Harrison, P. L.; Mitchell, J. G.

    2008-09-01

    Transmission electron microscopy (TEM) was used to determine whether Acropora muricata coral colonies from the Great Barrier Reef (GBR), Australia, harboured virus-like particles (VLPs). VLPs were present in all coral colonies sampled at Heron Island (southern GBR) and in tagged coral colonies sampled in at least two of the three sampling periods at Lizard Island (northern GBR). VLPs were observed within gastrodermal and epidermal tissues, and on rarer occasions, within the mesoglea. These VLPs had similar morphologies to known prokaryotic and eukaryotic viruses in other systems. Icosahedral VLPs were observed most frequently, however, filamentous VLPs (FVLPs) and phage were also noted. There were no clear differences in VLP size, morphology or location within the tissues with respect to sample date, coral health status or site. The most common VLP morphotype exhibited icosahedral symmetry, 120-150 nm in diameter, with an electron-dense core and an electronlucent membrane. Larger VLPs of similar morphology were also common. VLPs occurred as single entities, in groups, or in dense clusters, either as free particles within coral tissues, or within membrane-bound vacuoles. VLPs were commonly observed within the perinuclear region, with mitochondria, golgi apparatus and crescent-shaped particles frequently observed within close proximity. The host(s) of these observed VLPs was not clear; however, the different sizes and morphologies of VLPs observed within A. muricata tissues suggest that viruses are infecting either the coral animal, zooxanthellae, intracellular bacteria and/or other coral-associated microbiota, or that the one host is susceptible to infection from more than one type of virus. These results add to the limited but emerging body of evidence that viruses represent another potentially important component of the coral holobiont.

  7. Outbreak of coral-eating Crown-of-Thorns creates continuous cloud of larvae over 320 km of the Great Barrier Reef.

    Science.gov (United States)

    Uthicke, S; Doyle, J; Duggan, S; Yasuda, N; McKinnon, A D

    2015-11-23

    Coral reefs are in decline worldwide due to a combination of local and global causes. Over 40% of the recent coral loss on Australia's Great Barrier Reef (GBR) has been attributed to outbreaks of the coral-eating Crown-of-Thorns Seastar (CoTS). Testing of the hypotheses explaining these outbreaks is hampered by an inability to investigate the spatio-temporal distribution of larvae because they resemble other planktotrophic echinoderm larvae. We developed a genetic marker and tested it on 48 plankton samples collected during the 2014 spawning season in the northern GBR, and verified the method by PCR amplification of single larva. Surprisingly, most samples collected contained CoTS larvae. Larvae were detected 100 km south of current outbreaks of adult seastars, highlighting the potential for rapid expansion of the outbreak. A minimum estimate suggested that larvae numbers in the outbreak area (>10(10)) are about 4 orders of magnitude higher than adults (~10(6)) in the same area, implying that attempts to halt outbreaks by removing adults may be futile.

  8. Joint estimation of crown of thorns (Acanthaster planci) densities on the Great Barrier Reef.

    Science.gov (United States)

    MacNeil, M Aaron; Mellin, Camille; Pratchett, Morgan S; Hoey, Jessica; Anthony, Kenneth R N; Cheal, Alistair J; Miller, Ian; Sweatman, Hugh; Cowan, Zara L; Taylor, Sascha; Moon, Steven; Fonnesbeck, Chris J

    2016-01-01

    Crown-of-thorns starfish (CoTS; Acanthaster spp.) are an outbreaking pest among many Indo-Pacific coral reefs that cause substantial ecological and economic damage. Despite ongoing CoTS research, there remain critical gaps in observing CoTS populations and accurately estimating their numbers, greatly limiting understanding of the causes and sources of CoTS outbreaks. Here we address two of these gaps by (1) estimating the detectability of adult CoTS on typical underwater visual count (UVC) surveys using covariates and (2) inter-calibrating multiple data sources to estimate CoTS densities within the Cairns sector of the Great Barrier Reef (GBR). We find that, on average, CoTS detectability is high at 0.82 [0.77, 0.87] (median highest posterior density (HPD) and [95% uncertainty intervals]), with CoTS disc width having the greatest influence on detection. Integrating this information with coincident surveys from alternative sampling programs, we estimate CoTS densities in the Cairns sector of the GBR averaged 44 [41, 48] adults per hectare in 2014.

  9. Understanding Biophysical Interactions In The Great Barrier Reef Catchments: Better Landscape Management For Water Quality Outcomes

    Science.gov (United States)

    Bui, E. N.; Wilkinson, S. N.; Bartley, R.

    2014-12-01

    Sediment input to the Great Barrier Reef (GBR) lagoon has had deleterious impacts on seagrass and coral ecosystems. The response of the Australian government has been to develop policies to: (i) reverse the impact of threats from sediments and nutrients, and improve water quality and aquatic health of the GBR lagoon; and (ii) to facilitate the uptake of sustainable farming and land management practices that deliver improved ecosystem services, by at least 30 per cent of farmers. The Reef2050 Long term sustainability plan aims to identify priority locations for on-ground investment of remediation options that will result in a reduction of constituent loads to the GBR. Recent sediment tracing studies indicate that subsoil from erosion features such as gullies and channel banks are the dominant contributors of sediment in the GBR catchments. Better control of gully and streambank erosion and restoration of riparian habitats are therefore necessary. Here we review the evidence for bank erosion in the GBR catchments and how scientific evidence on feedback relationships between climate- geochemistry-vegetation-landforms can be used to develop better guidelines for streambank and gully re-vegetation.

  10. DMSP in Corals and Benthic Algae from the Great Barrier Reef

    Science.gov (United States)

    Broadbent, A. D.; Jones, G. B.; Jones, R. J.

    2002-10-01

    In this study the first measurements of DMSP in six species of corals and ten species of benthic algae collected from four coral reefs in the Great Barrier Reef are reported, together with DMSP measurements made on cultured zooxanthellae. Concentrations ranged from 21 to 3831 (mean=743) fmol DMSP zooxanthellae -1 in corals, 0·16 to 2·96 nmol DMSP cm -2 (mean=90) for benthic macroalgae, and 48-285 fmol DMSP zooxanthellae -1 (mean=153) for cultured zooxanthellae. The highest concentrations of DMSP in corals occurred in Acropora formosa (mean=371 fmol DMSP zooxanthellae -1) and Acropora palifera (mean=3341 fmol DMSP zooxanthellae -1) with concentrations in A. palifera the highest DMSP concentrations reported in corals examined to date. As well as inter-specific differences in DMSP, intra-specific variation was also observed. Adjacent colonies of A. formosa that are known to have different thermal bleaching thresholds and morphologically distinct zooxanthellae, were also observed to have different DMSP concentrations, with the zooxanthellae in the colony that bleached containing DMSP at an average concentration of 436 fmol zooxanthellae -1, whilst the non-bleaching colony contained DMSP at an average concentration of 171 fmol zooxanthellae -1. The results of the present study have been used to calculate the area normalized DMSP concentrations in benthic algae (mean=0·015 mmol m -2) and corals (mean=2·22 mmol m -2) from the GBR. This data indicates that benthic algae and corals are a significant reservoir of DMSP in GBR waters.

  11. Relationships between temperature, bleaching and white syndrome on the Great Barrier Reef

    Science.gov (United States)

    Ban, S. S.; Graham, N. A. J.; Connolly, S. R.

    2013-03-01

    Coral bleaching and disease have often been hypothesized to be mutually reinforcing or co-occurring, but much of the research supporting this has only drawn an implicit connection through common environmental predictors. In this study, we examine whether an explicit relationship between white syndrome and bleaching exists using assemblage-level monitoring data from up to 112 sites on reef slopes spread throughout the Great Barrier Reef over 11 years of monitoring. None of the temperature metrics commonly used to predict mass bleaching performed strongly when applied to these data. Furthermore, the inclusion of bleaching as a predictor did not improve model skill over baseline models for predicting white syndrome. Similarly, the inclusion of white syndrome as a predictor did not improve models of bleaching. Evidence for spatial co-occurrence of bleaching and white syndrome at the assemblage level in this data set was also very weak. These results suggest the hypothesized relationship between bleaching and disease events may be weaker than previously thought, and more likely to be driven by common responses to environmental stressors, rather than directly facilitating one another.

  12. Joint estimation of crown of thorns (Acanthaster planci densities on the Great Barrier Reef

    Directory of Open Access Journals (Sweden)

    M. Aaron MacNeil

    2016-08-01

    Full Text Available Crown-of-thorns starfish (CoTS; Acanthaster spp. are an outbreaking pest among many Indo-Pacific coral reefs that cause substantial ecological and economic damage. Despite ongoing CoTS research, there remain critical gaps in observing CoTS populations and accurately estimating their numbers, greatly limiting understanding of the causes and sources of CoTS outbreaks. Here we address two of these gaps by (1 estimating the detectability of adult CoTS on typical underwater visual count (UVC surveys using covariates and (2 inter-calibrating multiple data sources to estimate CoTS densities within the Cairns sector of the Great Barrier Reef (GBR. We find that, on average, CoTS detectability is high at 0.82 [0.77, 0.87] (median highest posterior density (HPD and [95% uncertainty intervals], with CoTS disc width having the greatest influence on detection. Integrating this information with coincident surveys from alternative sampling programs, we estimate CoTS densities in the Cairns sector of the GBR averaged 44 [41, 48] adults per hectare in 2014.

  13. Relationships between butterflyfish (Chaetodontidae) feeding rates and coral consumption on the Great Barrier Reef

    Science.gov (United States)

    Gregson, M. A.; Pratchett, M. S.; Berumen, M. L.; Goodman, B. A.

    2008-09-01

    This study explored differences in the feeding rate among 20 species of coral reef butterflyfishes (Chaetodontidae) from Lizard Island, Great Barrier Reef. Feeding rate, measured as bites per minute (b.p.m.), varied between 2.98 ± 0.65 and 12.29 ± 0.27 (mean ± SE) according to species and was positively related to the proportional consumption of coral ( r 2 = 0.40, n = 20, P < 0.01), independent of phylogeny (standardised independent contrasts r 2 = 0.29, n = 19, P < 0.05). All species fed actively throughout the day, with obligate corallivores having a higher feeding rate at all times than either facultative corallivores or non-corallivores. The feeding rate of the obligate corallivores was also highest during the middle of the day. For eight of the species for which data was available, there was a positive correlation between bite rate and competitive dominance ( r = 0.71, P < 0.05). Chaetodon ephippium was the only species for which the feeding rate of pairs was higher than for solitary individuals.

  14. Barriers to Managing Fertility: Findings From the Understanding Fertility Management in Contemporary Australia Facebook Discussion Group

    Science.gov (United States)

    Rowe, Heather

    2016-01-01

    Background As part of research investigating the complexities of managing fertility in Australia, public opinions about how Australians manage their fertility were sought from women and men. Objective To identify public opinion about sexual and reproductive health in Australia. Methods To ensure access to a diverse group of people throughout Australia, an online group was advertised and convened on Facebook from October through December 2013. In a closed-group moderated discussion, participants responded to questions about how people in Australia attempt to manage three aspects of fertility: avoiding pregnancy, achieving pregnancy, and difficulties conceiving. Nonidentifiable demographic information was sought; no personal accounts of fertility management were requested. The discussion transcript was analyzed thematically. Results There were 61 female and 2 male Facebook users aged 18 to 50 years living in Australia participating in the study. Four main themes about fertility management were identified: access, geographical location, knowledge, and cost. Participants reported that young people and people from rural areas face barriers accessing contraception and fertility services. Limited knowledge about sex and reproduction and the cost of fertility services and contraception were also said to impede effective fertility management. Conclusions Reasons for inequalities in effective fertility management that are amenable to change were identified. Facebook is an effective method for gaining insights into public opinion about sexual and reproductive health. PMID:26878865

  15. Diet and cross-shelf distribution of rabbitfishes (f. Siganidae) on the northern Great Barrier Reef: implications for ecosystem function

    Science.gov (United States)

    Hoey, A. S.; Brandl, S. J.; Bellwood, D. R.

    2013-12-01

    Herbivorous fishes are a critical functional group on coral reefs, and there is a clear need to understand the role and relative importance of individual species in reef processes. While numerous studies have quantified the roles of parrotfishes and surgeonfishes on coral reefs, the rabbitfishes (f. Siganidae) have been largely overlooked. Consequently, they are typically viewed as a uniform group of grazing or browsing fishes. Here, we quantify the diet and distribution of rabbitfish assemblages on six reefs spanning the continental shelf in the northern Great Barrier Reef. Our results revealed marked variation in the diet and distribution of rabbitfish species. Analysis of stomach contents identified four distinct groups: browsers of leathery brown macroalgae ( Siganus canaliculatus, S. javus), croppers of red and green macroalgae ( S. argenteus, S. corallinus, S. doliatus, S. spinus) and mixed feeders of diverse algal material, cyanobacteria, detritus and sediment ( S. lineatus, S. punctatissimus, S. punctatus, S. vulpinus). Surprisingly, the diet of the fourth group ( S. puellus) contained very little algal material (22.5 %) and was instead dominated by sponges (69.1 %). Together with this variation in diet, the distribution of rabbitfishes displayed clear cross-shelf variation. Biomass was greatest on inner-shelf reefs (112.7 ± 18.2 kg.ha-1), decreasing markedly on mid- (37.8 ± 4.6 kg.ha-1) and outer-shelf reefs (9.7 ± 2.2 kg.ha-1). This pattern was largely driven by the browsing S. canaliculatus that accounted for 50 % of the biomass on inner-shelf reefs, but was absent in mid- and outer-shelf reefs. Mixed feeders, although primarily restricted to the reef slope and back reef habitats, also decreased in abundance and biomass from inshore to offshore, while algal cropping taxa were the dominant group on mid-shelf reefs. These results clearly demonstrate the extent to which diet and distribution vary within the Siganidae and emphasise the importance of

  16. Adaptive management of the Great Barrier Reef and the Grand Canyon world heritage areas.

    Science.gov (United States)

    Hughes, Terence P; Gunderson, Lance H; Folke, Carl; Baird, Andrew H; Bellwood, David; Berkes, Fikret; Crona, Beatrice; Helfgott, Ariella; Leslie, Heather; Norberg, Jon; Nyström, Magnus; Olsson, Per; Osterblom, Henrik; Scheffer, Marten; Schuttenberg, Heidi; Steneck, Robert S; Tengö, Maria; Troell, Max; Walker, Brian; Wilson, James; Worm, Boris

    2007-11-01

    Conventional perceptions of the interactions between people and their environment are rapidly transforming. Old paradigms that view humans as separate from nature, natural resources as inexhaustible or endlessly substitutable, and the world as stable, predictable, and in balance are no longer tenable. New conceptual frameworks are rapidly emerging based on an adaptive approach that focuses on learning and flexible management in a dynamic social-ecological landscape. Using two iconic World Heritage Areas as case studies (the Great Barrier Reef and the Grand Canyon) we outline how an improved integration of the scientific and social aspects of natural resource management can guide the evolution of multiscale systems of governance that confront and cope with uncertainty, risk, and change in an increasingly human-dominated world.

  17. High genetic differentiation and cross-shelf patterns of genetic diversity among Great Barrier Reef populations of Symbiodinium

    Science.gov (United States)

    Howells, E. J.; van Oppen, M. J. H.; Willis, B. L.

    2009-03-01

    The resilience of Symbiodinium harboured by corals is dependent on the genetic diversity and extent of connectivity among reef populations. This study presents genetic analyses of Great Barrier Reef (GBR) populations of clade C Symbiodinium hosted by the alcyonacean coral, Sinularia flexibilis. Allelic variation at four newly developed microsatellite loci demonstrated that Symbiodinium populations are genetically differentiated at all spatial scales from 16 to 1,360 km (pairwise ΦST = 0.01-0.47, mean = 0.22); the only exception being two neighbouring populations in the Cairns region separated by 17 km. This indicates that gene flow is restricted for Symbiodinium C hosted by S. flexibilis on the GBR. Patterns of population structure reflect longshore circulation patterns and limited cross-shelf mixing, suggesting that passive transport by currents is the primary mechanism of dispersal in Symbiodinium types that are acquired horizontally. There was no correlation between the genetic structure of Symbiodinium populations and their host S. flexibilis, most likely because different factors affect the dispersal and recruitment of each partner in the symbiosis. The genetic diversity of these Symbiodinium reef populations is on average 1.5 times lower on inshore reefs than on offshore reefs. Lower inshore diversity may reflect the impact of recent bleaching events on Sinularia assemblages, which have been more widespread and severe on inshore reefs, but may also have been shaped by historical sea level fluctuations or recent migration patterns.

  18. Combining multiple measurement and isotope techniques to help target erosion hot-spots in the Great Barrier Reef catchments

    Science.gov (United States)

    Bartley, Rebecca; Croke, Jacky; Bainbridge, Zoe; Wilkinson, Scott; Hancock, Gary; Austin, Jen; Kuhnert, Petra

    2016-04-01

    There is considerable evidence that the amount of sediment reaching the Great Barrier Reef (GBR), Australia, has increased since agricultural development commenced in the 1870's. This is having deleterious effects on freshwater and marine ecosystems. However, understanding the primary source and processes driving the increased sediment delivery has been challenging due to the large size and hydrogeomorphic diversity of adjacent catchments. This paper presents the results from several projects that employed a diverse range of measurement techniques all aimed at understanding the spatial and temporal changes in sediment yield from the 130,000 km2 Burdekin catchment, Australia. Cosmogenic nuclides (10Be) were combined with contemporary sediment flux monitoring to help identify high risk sub-catchments that have anthropogenically accelerated erosion. Within the sub-catchments, fallout radionuclides (137Cs, 7Pb and 7Be) were uses to determine the dominant erosion process (surface vs sub-surface erosion). Long term monitoring of improved grazing land management (using nested flumes and gauges), were used to evaluate the effectiveness of land management changes on sediment yields at paddock and catchment scales over 10 years. The results suggest that the Bowen and Upper Burdekin sub-catchments are the dominant anthropogenic source of sediment to the GBR having an accelerated erosion factor of 7.47 (± 3.71) and 3.64 (± 0.5), respectively. Within these sub-catchments, most of the fine sediment is coming from vertical channel walls (50%) or horizontal sub-surface soils (~42%). Remediating these catchments and reducing sediment delivery is likely to take greater than 10 years, and will require a range of approaches including pasture and rangeland management, as well as targeted erosion control in highly gullied landscapes. Together, these data sets help elucidate the often complex sediment delivery processes to the GBR. This helps policy and management determine where to

  19. Advances in monitoring the human dimension of natural resource systems: an example from the Great Barrier Reef

    Science.gov (United States)

    Marshall, N. A.; Bohensky, E.; Curnock, M.; Goldberg, J.; Gooch, M.; Nicotra, B.; Pert, P.; Scherl, L. M.; Stone-Jovicich, S.; Tobin, R. C.

    2016-11-01

    The aim of this paper is to demonstrate the feasibility and potential utility of decision-centric social-economic monitoring using data collected from Great Barrier Reef (Reef) region. The social and economic long term monitoring program (SELTMP) for the Reef is a novel attempt to monitor the social and economic dimensions of social-ecological change in a globally and nationally important region. It represents the current status and condition of the major user groups of the Reef with the potential to simultaneously consider trends, interconnections, conflicts, dependencies and vulnerabilities. Our approach was to combine a well-established conceptual framework with a strong governance structure and partnership arrangement that enabled the co-production of knowledge. The framework is a modification of the Millennium Ecosystem Assessment and it was used to guide indicator choice. Indicators were categorised as; (i) resource use and dependency, (ii) ecosystem benefits and well-being, and (iii) drivers of change. Data were collected through secondary datasets where existing and new datasets were created where not, using standard survey techniques. Here we present an overview of baseline results of new survey data from commercial-fishers (n = 210), marine-based tourism operators (n = 119), tourists (n = 2877), local residents (n = 3181), and other Australians (n = 2002). The indicators chosen describe both social and economic components of the Reef system and represent an unprecedented insight into the ways in which people currently use and depend on the Reef, the benefits that they derive, and how they perceive, value and relate to the Reef and each other. However, the success of a program such as the SELTMP can only occur with well-translated cutting-edge data and knowledge that are collaboratively produced, adaptive, and directly feeds into current management processes. We discuss how data from the SELTMP have already been incorporated into Reef management decision

  20. Reef Fish Community Biomass and Trophic Structure Changes across Shallow to Upper-Mesophotic Reefs in the Mesoamerican Barrier Reef, Caribbean.

    Directory of Open Access Journals (Sweden)

    Dominic A Andradi-Brown

    Full Text Available Mesophotic coral ecosystems (MCEs; reefs 30-150m depth are of increased research interest because of their potential role as depth refuges from many shallow reef threats. Yet few studies have identified patterns in fish species composition and trophic group structure between MCEs and their shallow counterparts. Here we explore reef fish species and biomass distributions across shallow to upper-MCE Caribbean reef gradients (5-40m around Utila, Honduras, using a diver-operated stereo-video system. Broadly, we found reef fish species richness, abundance and biomass declining with depth. At the trophic group level we identified declines in herbivores (both total and relative community biomass with depth, mostly driven by declines in parrotfish (Scaridae. Piscivores increased as a proportion of the community with increased depth while, in contrast to previous studies, we found no change in relative planktivorous reef fish biomass across the depth gradient. In addition, we also found evidence of ontogenetic migrations in the blue tang (Acanthurus coeruleus, striped parrotfish (Scarus iserti, blue chromis (Chromis cyanea, creole wrasse (Clepticus parrae, bluehead wrasse (Thalassoma bifasciatum and yellowtail snapper (Ocyurus chrysurus, with a higher proportion of larger individuals at mesophotic and near-mesophotic depths than on shallow reefs. Our results highlight the importance of using biomass measures when considering fish community changes across depth gradients, with biomass generating different results to simple abundance counts.

  1. Anthropogenic contaminants in Indo-Pacific humpback and Australian snubfin dolphins from the central and southern Great Barrier Reef.

    Science.gov (United States)

    Cagnazzi, Daniele; Fossi, Maria Cristina; Parra, Guido J; Harrison, Peter L; Maltese, Silvia; Coppola, Daniele; Soccodato, Alice; Bent, Michael; Marsili, Letizia

    2013-11-01

    We present the first evidence of accumulation of organochlorine compounds (DDTs, PCBs, HCB) and polycyclic aromatic hydrocarbons (PAHs) in Indo-Pacific humpback and Australian snubfin dolphins from the central and southern Great Barrier Reef. These dolphins are considered by the Great Barrier Marine Park Authority to be high priority species for management. Analyses of biopsy samples, collected from free ranging individuals, showed PAHs levels comparable to those reported from highly industrialized countries. DDTs and HCB were found at low levels, while in some individuals, PCBs were above thresholds over which immunosuppression and reproductive anomalies occur. These results highlight the need for ongoing monitoring of these and other contaminants, and their potential adverse effects on dolphins and other marine fauna. This is particularly important given the current strategic assessment of the Great Barrier Reef World Heritage Area being undertaken by the Australian Government and the Queensland Government.

  2. Lower Mesophotic Coral Communities (60-125 m Depth) of the Northern Great Barrier Reef and Coral Sea

    Science.gov (United States)

    Englebert, Norbert; Bongaerts, Pim; Muir, Paul R.; Hay, Kyra B.; Pichon, Michel; Hoegh-Guldberg, Ove

    2017-01-01

    Mesophotic coral ecosystems in the Indo-Pacific remain relatively unexplored, particularly at lower mesophotic depths (≥60 m), despite their potentially large spatial extent. Here, we used a remotely operated vehicle to conduct a qualitative assessment of the zooxanthellate coral community at lower mesophotic depths (60–125 m) at 10 different locations in the Great Barrier Reef Marine Park and the Coral Sea Commonwealth Marine Reserve. Lower mesophotic coral communities were present at all 10 locations, with zooxanthellate scleractinian corals extending down to ~100 metres on walls and ~125 m on steep slopes. Lower mesophotic coral communities were most diverse in the 60–80 m zone, while at depths of ≥100 m the coral community consisted almost exclusively of the genus Leptoseris. Collections of coral specimens (n = 213) between 60 and 125 m depth confirmed the presence of at least 29 different species belonging to 18 genera, including several potential new species and geographic/depth range extensions. Overall, this study highlights that lower mesophotic coral ecosystems are likely to be ubiquitous features on the outer reefs of the Great Barrier Reef and atolls of the Coral Sea, and harbour a generic and species richness of corals that is much higher than thus far reported. Further research efforts are urgently required to better understand and manage these ecosystems as part of the Great Barrier Reef Marine Park and Coral Sea Commonwealth Marine Reserve. PMID:28146574

  3. Impact of sea-level rise on cross-shore sediment transport on fetch-limited barrier reef island beaches under modal and cyclonic conditions.

    Science.gov (United States)

    Baldock, T E; Golshani, A; Atkinson, A; Shimamoto, T; Wu, S; Callaghan, D P; Mumby, P J

    2015-08-15

    A one-dimensional wave model is combined with an analytical sediment transport model to investigate the likely influence of sea-level rise on net cross-shore sediment transport on fetch-limited barrier reef and lagoon island beaches. The modelling considers if changes in the nearshore wave height and wave period in the lagoon induced by different water levels over the reef flat are likely to lead to net offshore or onshore movement of sediment. The results indicate that the effects of SLR on net sediment movement are highly variable and controlled by the bathymetry of the reef and lagoon. A significant range of reef-lagoon bathymetry, and notably shallow and narrow reefs, appears to lead hydrodynamic conditions and beaches that are likely to be stable or even accrete under SLR. Loss of reef structural complexity, particularly on the reef flat, increases the chance of sediment transport away from beaches and offshore.

  4. Remote video bioassays reveal the potential feeding impact of the rabbitfish Siganus canaliculatus (f: Siganidae) on an inner-shelf reef of the Great Barrier Reef

    Science.gov (United States)

    Fox, R. J.; Bellwood, D. R.

    2008-09-01

    Herbivores are widely acknowledged as key elements maintaining the health and resilience of terrestrial and aquatic ecosystems. Understanding and quantifying the impact of herbivores in ecosystems are fundamental to our ability to manage these systems. The traditional method of quantifying the impact of herbivorous fishes on coral reefs has been to use transplanted pieces of seagrass or algae as “bioassays”. However, these experiments leave a key question unanswered, namely: Which species are responsible for the impact being quantified? This study revisits the use of bioassays and tested the assumption that the visual abundance of species reflects their role in the removal of assay material. Using remote video cameras to film removal of assay material on an inner-shelf reef of the Great Barrier Reef, the species responsible for assay-based herbivory were identified. The video footage revealed that Siganus canaliculatus, a species not previously recorded at the study site, was primarily responsible for removal of macroalgal biomass. The average percentage decrease in thallus length of whole plants of Sargassum at the reef crest was 54 ± 8.9% (mean ± SE), and 50.4 ± 9.8% for individually presented Sargassum strands (for a 4.5-h deployment). Of the 14,656 bites taken from Sargassum plants and strands across all reef zones, nearly half (6,784 bites or 46%) were taken by S. canaliculatus, with the majority of the remainder attributable to Siganus doliatus. However, multiple regression analysis demonstrated that only the bites of S. canaliculatus were removing macroalgal biomass. The results indicate that, even with detailed observations, the species of herbivore that may be responsible for maintaining benthic community structure can go unnoticed. Some of our fundamental ideas of the relative importance of individual species in ecosystem processes may be in need of re-evaluation.

  5. Adaptive management of the Great Barrier Reef: a globally significant demonstration of the benefits of networks of marine reserves.

    Science.gov (United States)

    McCook, Laurence J; Ayling, Tony; Cappo, Mike; Choat, J Howard; Evans, Richard D; De Freitas, Debora M; Heupel, Michelle; Hughes, Terry P; Jones, Geoffrey P; Mapstone, Bruce; Marsh, Helene; Mills, Morena; Molloy, Fergus J; Pitcher, C Roland; Pressey, Robert L; Russ, Garry R; Sutton, Stephen; Sweatman, Hugh; Tobin, Renae; Wachenfeld, David R; Williamson, David H

    2010-10-26

    The Great Barrier Reef (GBR) provides a globally significant demonstration of the effectiveness of large-scale networks of marine reserves in contributing to integrated, adaptive management. Comprehensive review of available evidence shows major, rapid benefits of no-take areas for targeted fish and sharks, in both reef and nonreef habitats, with potential benefits for fisheries as well as biodiversity conservation. Large, mobile species like sharks benefit less than smaller, site-attached fish. Critically, reserves also appear to benefit overall ecosystem health and resilience: outbreaks of coral-eating, crown-of-thorns starfish appear less frequent on no-take reefs, which consequently have higher abundance of coral, the very foundation of reef ecosystems. Effective marine reserves require regular review of compliance: fish abundances in no-entry zones suggest that even no-take zones may be significantly depleted due to poaching. Spatial analyses comparing zoning with seabed biodiversity or dugong distributions illustrate significant benefits from application of best-practice conservation principles in data-poor situations. Increases in the marine reserve network in 2004 affected fishers, but preliminary economic analysis suggests considerable net benefits, in terms of protecting environmental and tourism values. Relative to the revenue generated by reef tourism, current expenditure on protection is minor. Recent implementation of an Outlook Report provides regular, formal review of environmental condition and management and links to policy responses, key aspects of adaptive management. Given the major threat posed by climate change, the expanded network of marine reserves provides a critical and cost-effective contribution to enhancing the resilience of the Great Barrier Reef.

  6. Pathways and Hydrography in the Mesoamerican Barrier Reef System Part 1: Circulation

    Science.gov (United States)

    Carrillo, L.; Johns, E. M.; Smith, R. H.; Lamkin, J. T.; Largier, J. L.

    2015-10-01

    Acoustic Doppler Current Profiler (ADCP) measurements and surface drifters released from two oceanographic cruises conducted during March 2006 and January/February 2007 are used to investigate the circulation off the Mesoamerican Barrier Reef System (MBRS). We show that the MBRS circulation can be divided into two distinct regimes, a northern region dominated by the strong, northward-flowing Yucatan Current, and a southern region with weaker southward coastal currents and the presence of the Honduras Gyre. The latitude of impingement of the Cayman Current onto the coastline varies with time, and creates a third region, which acts as a boundary between the northern and southern circulation regimes. This circulation pattern yields two zones in terms of dispersal, with planktonic propagules in the northern region being rapidly exported to the north, whereas plankton in the southern and impingement regions may be retained locally or regionally. The latitude of the impingement region shifts interannually and intra-annually up to 3° in latitude. Sub-mesoscale features are observed in association with topography, e.g., flow bifurcation around Cozumel Island, flow wake north of Chinchorro Bank and separation of flow from the coast just north of Bahia de la Ascencion. This third feature is evident as cyclonic recirculation in coastal waters, which we call the Ascencion-Cozumel Coastal Eddy. An understanding of the implications of these different circulation regimes on water mass distributions, population connectivity, and the fate of land-based pollutants in the MBRS is critically important to better inform science-based resource management and conservation plans for the MBRS coral reefs.

  7. Diuron tolerance and potential degradation by pelagic microbiomes in the Great Barrier Reef lagoon.

    Science.gov (United States)

    Angly, Florent E; Pantos, Olga; Morgan, Thomas C; Rich, Virginia; Tonin, Hemerson; Bourne, David G; Mercurio, Philip; Negri, Andrew P; Tyson, Gene W

    2016-01-01

    Diuron is a herbicide commonly used in agricultural areas where excess application causes it to leach into rivers, reach sensitive marine environments like the Great Barrier Reef (GBR) lagoon and pose risks to marine life. To investigate the impact of diuron on whole prokaryotic communities that underpin the marine food web and are integral to coral reef health, GBR lagoon water was incubated with diuron at environmentally-relevant concentration (8 µg/L), and sequenced at specific time points over the following year. 16S rRNA gene amplicon profiling revealed no significant short- or long-term effect of diuron on microbiome structure. The relative abundance of prokaryotic phototrophs was not significantly altered by diuron, which suggests that they were largely tolerant at this concentration. Assembly of a metagenome derived from waters sampled at a similar location in the GBR lagoon did not reveal the presence of mutations in the cyanobacterial photosystem that could explain diuron tolerance. However, resident phages displayed several variants of this gene and could potentially play a role in tolerance acquisition. Slow biodegradation of diuron was reported in the incubation flasks, but no correlation with the relative abundance of heterotrophs was evident. Analysis of metagenomic reads supports the hypothesis that previously uncharacterized hydrolases carried by low-abundance species may mediate herbicide degradation in the GBR lagoon. Overall, this study offers evidence that pelagic phototrophs of the GBR lagoon may be more tolerant of diuron than other tropical organisms, and that heterotrophs in the microbial seed bank may have the potential to degrade diuron and alleviate local anthropogenic stresses to inshore GBR ecosystems.

  8. Diuron tolerance and potential degradation by pelagic microbiomes in the Great Barrier Reef lagoon

    Directory of Open Access Journals (Sweden)

    Florent E. Angly

    2016-03-01

    Full Text Available Diuron is a herbicide commonly used in agricultural areas where excess application causes it to leach into rivers, reach sensitive marine environments like the Great Barrier Reef (GBR lagoon and pose risks to marine life. To investigate the impact of diuron on whole prokaryotic communities that underpin the marine food web and are integral to coral reef health, GBR lagoon water was incubated with diuron at environmentally-relevant concentration (8 µg/L, and sequenced at specific time points over the following year. 16S rRNA gene amplicon profiling revealed no significant short- or long-term effect of diuron on microbiome structure. The relative abundance of prokaryotic phototrophs was not significantly altered by diuron, which suggests that they were largely tolerant at this concentration. Assembly of a metagenome derived from waters sampled at a similar location in the GBR lagoon did not reveal the presence of mutations in the cyanobacterial photosystem that could explain diuron tolerance. However, resident phages displayed several variants of this gene and could potentially play a role in tolerance acquisition. Slow biodegradation of diuron was reported in the incubation flasks, but no correlation with the relative abundance of heterotrophs was evident. Analysis of metagenomic reads supports the hypothesis that previously uncharacterized hydrolases carried by low-abundance species may mediate herbicide degradation in the GBR lagoon. Overall, this study offers evidence that pelagic phototrophs of the GBR lagoon may be more tolerant of diuron than other tropical organisms, and that heterotrophs in the microbial seed bank may have the potential to degrade diuron and alleviate local anthropogenic stresses to inshore GBR ecosystems.

  9. Predicting outbreaks of a climate-driven coral disease in the Great Barrier Reef

    Science.gov (United States)

    Maynard, J. A.; Anthony, K. R. N.; Harvell, C. D.; Burgman, M. A.; Beeden, R.; Sweatman, H.; Heron, S. F.; Lamb, J. B.; Willis, B. L.

    2011-06-01

    Links between anomalously high sea temperatures and outbreaks of coral diseases known as White Syndromes (WS) represent a threat to Indo-Pacific reefs that is expected to escalate in a changing climate. Further advances in understanding disease aetiologies, determining the relative importance of potential risk factors for outbreaks and in trialing management actions are hampered by not knowing where or when outbreaks will occur. Here, we develop a tool to target research and monitoring of WS outbreaks in the Great Barrier Reef (GBR). The tool is based on an empirical regression model and takes the form of user-friendly interactive ~1.5-km resolution maps. The maps denote locations where long-term monitoring suggests that coral cover exceeds 26% and summer temperature stress (measured by a temperature metric termed the mean positive summer anomaly) is equal to or exceeds that experienced at sites in 2002 where the only severe WS outbreaks documented on the GBR to date were observed. No WS outbreaks were subsequently documented at 45 routinely surveyed sites from 2003 to 2008, and model hindcasts for this period indicate that outbreak likelihood was never high. In 2009, the model indicated that outbreak likelihood was high at north-central GBR sites. The results of the regression model and targeted surveys in 2009 revealed that the threshold host density for an outbreak decreases as thermal stress increases, suggesting that bleaching could be a more important precursor to WS outbreaks than previously anticipated, given that bleaching was severe at outbreak sites in 2002 but not at any of the surveyed sites in 2009. The iterative approach used here has led to an improved understanding of disease causation, will facilitate management responses and can be applied to other coral diseases and/or other regions.

  10. Evidence of large-scale chronic eutrophication in the Great Barrier Reef: quantification of chlorophyll a thresholds for sustaining coral reef communities.

    Science.gov (United States)

    Bell, Peter R F; Elmetri, Ibrahim; Lapointe, Brian E

    2014-04-01

    Long-term monitoring data show that hard coral cover on the Great Barrier Reef (GBR) has reduced by >70 % over the past century. Although authorities and many marine scientists were in denial for many years, it is now widely accepted that this reduction is largely attributable to the chronic state of eutrophication that exists throughout most of the GBR. Some reefs in the far northern GBR where the annual mean chlorophyll a (Chl a) is in the lower range of the proposed Eutrophication Threshold Concentration for Chl a (~0.2-0.3 mg m⁻³) show little or no evidence of degradation over the past century. However, the available evidence suggests that coral diseases and the crown-of-thorns starfish will proliferate in such waters and hence the mandated eutrophication Trigger values for Chl a (~0.4-0.45 mg m⁻³) will need to be decreased to ~0.2 mg m⁻³ for sustaining coral reef communities.

  11. Coral reproduction on the world’s southernmost reef at Lord Howe Island, Australia

    DEFF Research Database (Denmark)

    Baird, Andrew H.; Cumbo, Vivian R.; Gudge, Sallyann

    2015-01-01

    Despite a recent expansion in the geographic extent of coral reproductive research, there remain many regions in the Indo-Pacific where knowledge is limited. For example, Lord Howe Island is the southernmost reef system in the world (31° S); however, very little is known of the reproductive biology...... of the coral fauna. Here, aspects of the reproductive biology and the timing of reproduction for 40 of the approximately 65 species that occur on Lord Howe Island are documented. In December 2010, field assessments of the stage of gamete maturity in Acropora spp. colonies suggested that 5 species spawned...

  12. CaCO3 dissolution by holothurians (sea cucumber): a case study from One Tree Reef, Great Barrier Reef

    Science.gov (United States)

    Schneider, K.; Silverman, J.; Kravitz, B.; Woolsey, E.; Eriksson, H.; Schneider-Mor, A.; Barbosa, S.; Rivlin, T.; Byrne, M.; Caldeira, K.

    2012-12-01

    Holothurians (sea cucumbers) are among the largest and most important deposit feeder in coral reefs. They play a role in nutrient and CaCO3 cycling within the reef structure. As a result of their digestive process they secrete alkalinity due to CaCO3 dissolution and organic matter degradation forming CO2 and ammonium. In a survey at station DK13 on One Three Reef we found that the population density of holothurians was > 1 individual m-2. The dominant sea cucumber species Holothuria leucospilota was collected from DK13. The increase in alkalinity due to CaCO3 dissolution in aquaria incubations was measured to be 47±7 μmol kg-1 in average per individual. Combining this dissolution rate with the sea cucumbers concentrations at DK13 suggest that they may account for a dissolution rate of 34.9±17.8 mmol m-2 day-1, which is equivalent to about half of night time community dissolution measured in DK13. This indicates that in reefs where the sea cucumber population is healthy and protected from fishing they can be locally important in the CaCO3 cycle. Preliminary result suggests that the CaCO3 dissolution rates are not affected by the chemistry of the sea water they are incubated in. Measurements of the empty digestive track volume of two sea cucumbers H. atra and Stichopus herrmanni were 36 ± 4 ml and 151 ± 14 ml, respectively. Based on these measurements it is estimated that these species process 19 ± 2kg and 80 ± 7kg CaCO3 sand yr-1 per individual, respectively. The annual dissolution rates of H. atra and S. herrmanni are 6.5±1.9g and 9.6±1.4g, respectively, suggest that 0.05±0.02% and 0.1±0.02% of the CaCO3 processed through their gut annually is dissolved. During the incubations the CaCO3 dissolution was 0.07±0.01%, 0.04±0.01% and 0.21±0.05% of the fecal casts for H. atra, H. leucospilota and S. herrmanni, respectively. Our result that the primary parameter determining the CaCO3 dissolution by sea cucumber is the amount of carbonate send in their gut

  13. pH homeostasis during coral calcification in a free ocean CO2 enrichment (FOCE) experiment, Heron Island reef flat, Great Barrier Reef.

    Science.gov (United States)

    Georgiou, Lucy; Falter, James; Trotter, Julie; Kline, David I; Holcomb, Michael; Dove, Sophie G; Hoegh-Guldberg, Ove; McCulloch, Malcolm

    2015-10-27

    Geochemical analyses (δ(11)B and Sr/Ca) are reported for the coral Porites cylindrica grown within a free ocean carbon enrichment (FOCE) experiment, conducted on the Heron Island reef flat (Great Barrier Reef) for a 6-mo period from June to early December 2010. The FOCE experiment was designed to simulate the effects of CO2-driven acidification predicted to occur by the end of this century (scenario RCP4.5) while simultaneously maintaining the exposure of corals to natural variations in their environment under in situ conditions. Analyses of skeletal growth (measured from extension rates and skeletal density) showed no systematic differences between low-pH FOCE treatments (ΔpH = ∼-0.05 to -0.25 units below ambient) and present day controls (ΔpH = 0) for calcification rates or the pH of the calcifying fluid (pHcf); the latter was derived from boron isotopic compositions (δ(11)B) of the coral skeleton. Furthermore, individual nubbins exhibited near constant δ(11)B compositions along their primary apical growth axes (±0.02 pHcf units) regardless of the season or treatment. Thus, under the highly dynamic conditions of the Heron Island reef flat, P. cylindrica up-regulated the pH of its calcifying fluid (pHcf ∼8.4-8.6), with each nubbin having near-constant pHcf values independent of the large natural seasonal fluctuations of the reef flat waters (pH ∼7.7 to ∼8.3) or the superimposed FOCE treatments. This newly discovered phenomenon of pH homeostasis during calcification indicates that coral living in highly dynamic environments exert strong physiological controls on the carbonate chemistry of their calcifying fluid, implying a high degree of resilience to ocean acidification within the investigated ranges.

  14. Genetic structure of juvenile cohorts of bicolor damselfish ( Stegastes partitus) along the Mesoamerican barrier reef: chaos through time

    Science.gov (United States)

    Hepburn, R. I.; Sale, P. F.; Dixon, B.; Heath, Daniel D.

    2009-03-01

    Dispersal in marine systems is a critical component of the ecology, evolution, and conservation of such systems; however, estimating dispersal is logistically difficult, especially in coral reef fish. Juvenile bicolor damselfish ( Stegastes partitus) were sampled at 13 sites along the Mesoamerican Barrier Reef System (MBRS), the barrier reefs on the east coast of Central America extending from the Yucatan, Mexico to Honduras, to evaluate genetic structure among recently settled cohorts. Using genotype data at eight microsatellite loci genetic structure was estimated at large and small spatial scales using exact tests for allele frequency differences and hierarchical analysis of molecular variance (AMOVA). Isolation-by-distance models of divergence were assessed at both spatial scales. Results showed genetic homogeneity of recently settled S. partitus at large geographic scales with subtle, but significant, genetic structure at smaller geographic scales. Genetic temporal stability was tested for using archived juvenile S. partitus collected earlier in the same year (nine sites), and in the previous year (six sites). The temporal analyses indicated that allele frequency differences among sites were not generally conserved over time, nor were pairwise genetic distances correlated through time, indicative of temporal instability. These results indicate that S. partitus larvae undergo high levels of dispersal along the MBRS, and that the structure detected at smaller spatial scales is likely driven by stochastic effects on dispersal coupled with microgeographic effects. Temporal variation in juvenile cohort genetic signature may be a fundamental characteristic of connectivity patterns in coral reef fishes, with various species and populations differing only in the magnitude of that instability. Such a scenario provides a basis for the reconciliation of conflicting views regarding levels of genetic structuring in S. partitus and possibly other coral reef fish species.

  15. Satellite-Derived Photic Depth on the Great Barrier Reef: Spatio-Temporal Patterns of Water Clarity

    Directory of Open Access Journals (Sweden)

    Scarla Weeks

    2012-11-01

    Full Text Available Detecting changes to the transparency of the water column is critical for understanding the responses of marine organisms, such as corals, to light availability. Long-term patterns in water transparency determine geographical and depth distributions, while acute reductions cause short-term stress, potentially mortality and may increase the organisms’ vulnerability to other environmental stressors. Here, we investigated the optimal, operational algorithm for light attenuation through the water column across the scale of the Great Barrier Reef (GBR, Australia. We implemented and tested a quasi-analytical algorithm to determine the photic depth in GBR waters and matched regional Secchi depth (ZSD data to MODIS-Aqua (2002–2010 and SeaWiFS (1997–2010 satellite data. The results of the in situ ZSD/satellite data matchup showed a simple bias offset between the in situ and satellite retrievals. Using a Type II linear regression of log-transformed satellite and in situ data, we estimated ZSD and implemented the validated ZSD algorithm to generate a decadal satellite time series (2002–2012 for the GBR. Water clarity varied significantly in space and time. Seasonal effects were distinct, with lower values during the austral summer, most likely due to river runoff and increased vertical mixing, and a decline in water clarity between 2008–2012, reflecting a prevailing La Niña weather pattern. The decline in water clarity was most pronounced in the inshore area, where a significant decrease in mean inner shelf ZSD of 2.1 m (from 8.3 m to 6.2 m occurred over the decade. Empirical Orthogonal Function Analysis determined the dominance of Mode 1 (51.3%, with the greatest variation in water clarity along the mid-shelf, reflecting the strong influence of oceanic intrusions on the spatio-temporal patterns of water clarity. The newly developed photic depth product has many potential applications for the GBR from water quality monitoring to analyses of

  16. The effects of river run-off on water clarity across the central Great Barrier Reef.

    Science.gov (United States)

    Fabricius, K E; Logan, M; Weeks, S; Brodie, J

    2014-07-15

    Changes in water clarity across the shallow continental shelf of the central Great Barrier Reef were investigated from ten years of daily river load, oceanographic and MODIS-Aqua data. Mean photic depth (i.e., the depth of 10% of surface irradiance) was related to river loads after statistical removal of wave and tidal effects. Across the ∼25,000 km(2) area, photic depth was strongly related to river freshwater and phosphorus loads (R(2)=0.65 and 0.51, respectively). In the six wetter years, photic depth was reduced by 19.8% and below water quality guidelines for 156 days, compared to 9 days in the drier years. After onset of the seasonal river floods, photic depth was reduced for on average 6-8 months, gradually returning to clearer baseline values. Relationships were strongest inshore and midshelf (∼12-80 km from the coast), and weaker near the chronically turbid coast. The data show that reductions in river loads would measurably improve shelf water clarity, with significant ecosystem health benefits.

  17. Dispersal of adult black marlin (Istiompax indica from a Great Barrier Reef spawning aggregation.

    Directory of Open Access Journals (Sweden)

    Michael L Domeier

    Full Text Available The black marlin (Istiompax indica is one of the largest bony fishes in the world with females capable of reaching a mass of over 700 kg. This highly migratory predator occurs in the tropical regions of the Pacific and Indian Oceans, and is the target of regional recreational and commercial fisheries. Through the sampling of ichthyoplankton and ovaries we provide evidence that the relatively high seasonal abundance of black marlin off the Great Barrier Reef is, in fact, a spawning aggregation. Furthermore, through the tracking of individual black marlin via satellite popup tags, we document the dispersal of adult black marlin away from the spawning aggregation, thereby identifying the catchment area for this spawning stock. Although tag shedding is an issue when studying billfish, we tentatively identify the catchment area for this stock of black marlin to extend throughout the Coral Sea, including the waters of Papua New Guinea, the Solomon Islands, Micronesia, New Caledonia, Kiribati, Vanuatu, Fiji, Tuvalu and Nauru.

  18. Pathways and hydrography in the Mesoamerican Barrier Reef System Part 2: Water masses and thermohaline structure

    Science.gov (United States)

    Carrillo, L.; Johns, E. M.; Smith, R. H.; Lamkin, J. T.; Largier, J. L.

    2016-06-01

    Hydrographic data from two oceanographic cruises conducted during March 2006 and January/February 2007 are used to investigate the thermohaline structure related to the observed circulation along the Mesoamerican Barrier Reef System (MBRS). From our observations we identify three water masses in the MBRS: the Caribbean Surface Water (CSW), North Atlantic Subtropical Underwater (SUW), and Tropical Atlantic Central Water (TACW). Little vertical structure in temperature is observed in the upper 100 m of the water column, but important differences are observed in the salinity distribution both horizontally and with depth. Freshwater inputs to the system from the mainland can be traced in the surface layer, with two possible sources: one from surface rivers located along the southern portion of the MBRS, and the other originating from an underground river system located along the northern portion of the MBRS. The thermohaline structure in the MBRS reflects the dynamics of the observed circulation. Uplifted isopycnals along most of the central and northern coastline of the MBRS reflect the effects of the strong geostrophic circulation flowing northward, i.e. the Yucatan Current. To the south along the MBRS, much weaker velocities are observed, with the Honduras Gyre dominating the flow in this region as presented during January/February 2007. These two regions are separated by onshore and divergent alongshore flow associated with the impingement of the Cayman Current on the shore and the MBRS.

  19. Understanding Recreational Fishers' Compliance with No-take Zones in the Great Barrier Reef Marine Park

    Directory of Open Access Journals (Sweden)

    Adrian Arias

    2013-12-01

    Full Text Available Understanding fishers' compliance is essential for the successful management of marine protected areas. We used the random response technique (RRT to assess recreational fishers' compliance with no-take zones in the Great Barrier Reef Marine Park (GBRMP. The RRT allowed the asking of a sensitive question, i.e., "Did you, knowingly, fish within in a Green Zone during the last 12 months?" while protecting respondents' confidentiality. Application of the RRT through a survey of recreational fishers indicated that the majority of recreational fishers, 90%, comply with no-take zones. Likewise, most fishers, 92%, reported not personally knowing anyone who had intentionally fished in a no-take zone, indicating that fishers' perceive high levels of compliance among their peers. Fishers were motivated to comply with no-take zones primarily by their beliefs about penalties for noncompliance, followed by beliefs about the fishery benefits of no-take zones. Results suggest that compliance-related communication efforts by the managing authority have partially succeeded in maintaining appropriate compliance levels and that future efforts should accentuate normative compliance drivers that will encourage voluntary compliance. We conclude that compliance monitoring should be integrated into the adaptive management of the GBRMP and other protected areas; in this case social surveys using the RRT are effective tools.

  20. Structural and Psycho-Social Limits to Climate Change Adaptation in the Great Barrier Reef Region.

    Directory of Open Access Journals (Sweden)

    Louisa S Evans

    Full Text Available Adaptation, as a strategy to respond to climate change, has limits: there are conditions under which adaptation strategies fail to alleviate impacts from climate change. Research has primarily focused on identifying absolute bio-physical limits. This paper contributes empirical insight to an emerging literature on the social limits to adaptation. Such limits arise from the ways in which societies perceive, experience and respond to climate change. Using qualitative data from multi-stakeholder workshops and key-informant interviews with representatives of the fisheries and tourism sectors of the Great Barrier Reef region, we identify psycho-social and structural limits associated with key adaptation strategies, and examine how these are perceived as more or less absolute across levels of organisation. We find that actors experience social limits to adaptation when: i the effort of pursuing a strategy exceeds the benefits of desired adaptation outcomes; ii the particular strategy does not address the actual source of vulnerability, and; iii the benefits derived from adaptation are undermined by external factors. We also find that social limits are not necessarily more absolute at higher levels of organisation: respondents perceived considerable opportunities to address some psycho-social limits at the national-international interface, while they considered some social limits at the local and regional levels to be effectively absolute.

  1. Structural and Psycho-Social Limits to Climate Change Adaptation in the Great Barrier Reef Region.

    Science.gov (United States)

    Evans, Louisa S; Hicks, Christina C; Adger, W Neil; Barnett, Jon; Perry, Allison L; Fidelman, Pedro; Tobin, Renae

    2016-01-01

    Adaptation, as a strategy to respond to climate change, has limits: there are conditions under which adaptation strategies fail to alleviate impacts from climate change. Research has primarily focused on identifying absolute bio-physical limits. This paper contributes empirical insight to an emerging literature on the social limits to adaptation. Such limits arise from the ways in which societies perceive, experience and respond to climate change. Using qualitative data from multi-stakeholder workshops and key-informant interviews with representatives of the fisheries and tourism sectors of the Great Barrier Reef region, we identify psycho-social and structural limits associated with key adaptation strategies, and examine how these are perceived as more or less absolute across levels of organisation. We find that actors experience social limits to adaptation when: i) the effort of pursuing a strategy exceeds the benefits of desired adaptation outcomes; ii) the particular strategy does not address the actual source of vulnerability, and; iii) the benefits derived from adaptation are undermined by external factors. We also find that social limits are not necessarily more absolute at higher levels of organisation: respondents perceived considerable opportunities to address some psycho-social limits at the national-international interface, while they considered some social limits at the local and regional levels to be effectively absolute.

  2. Metagenomic analysis of the coral holobiont during a natural bleaching event on the Great Barrier Reef.

    Science.gov (United States)

    Littman, Raechel; Willis, Bette L; Bourne, David G

    2011-12-01

    Understanding the effects of elevated seawater temperatures on each member of the coral holobiont (the complex comprised of coral polyps and associated symbiotic microorganisms, including Bacteria, viruses, Fungi, Archaea and endolithic algae) is becoming increasingly important as evidence accumulates that microbial members contribute to overall coral health, particularly during thermal stress. Here we use a metagenomic approach to identify metabolic and taxonomic shifts in microbial communities associated with the hard coral Acropora millepora throughout a natural thermal bleaching event at Magnetic Island (Great Barrier Reef). A direct comparison of metagenomic data sets from healthy versus bleached corals indicated major shifts in microbial associates during heat stress, including Bacteria, Archaea, viruses, Fungi and micro-algae. Overall, metabolism of the microbial community shifted from autotrophy to heterotrophy, including increases in genes associated with the metabolism of fatty acids, proteins, simple carbohydrates, phosphorus and sulfur. In addition, the proportion of virulence genes was higher in the bleached library, indicating an increase in microorganisms capable of pathogenesis following bleaching. These results demonstrate that thermal stress results in shifts in coral-associated microbial communities that may lead to deteriorating coral health.

  3. Controls on syndepositional fracture patterns, Devonian reef complexes, Canning Basin, Western Australia

    Science.gov (United States)

    Frost, Edmund L., III; Kerans, Charles

    2010-09-01

    Syndepositional fractures are an important feature of high-relief carbonate systems and exert a profound control on many facets of platform evolution and reservoir development. Based on data collected from the Canning Basin's Devonian reef complexes this study characterizes syndepositional fracture patterns as a function of variations in: lithofacies, depositional position, stratigraphic architecture, and mechanical stratigraphy. Fracture parameters, such as extension and fracture intensity, are documented to vary strongly as a function of lithofacies. The highest syndepositional extension values occurring in the microbial facies of the Famennian platform margin, with extension values three times higher than observed in equivalent Frasnian strata. Position along the depositional profile exerts a strong control on fracture patterns, with an approximate two-fold increase in syndepositional extension and fracture intensity typically observed from the platform interior to the platform margin. Syndepositional fracture intensity is shown to vary systematically with changes in platform-margin trajectory, with high fracture intensities observed in strongly progradational platforms and decreased fracture development in aggradational and retrogradational platforms. Evidence for the temporal evolution of the mechanical stratigraphy of the Devonian reef complexes is presented, with early-lithified strata effectively behaving as a single, large-scale (50-150 m) mechanical unit during syndepositional fracture development, while secondary fractures become increasingly affected by bed-scale (0.25-5 m) mechanical heterogeneity introduced by progressive diagenesis. The results presented here potentially provide a tool for predicting fracture characteristics (e.g., intensity, orientation, location, and vertical extent) from limited subsurface data and provide a method for characterizing syndepositional deformation in other systems.

  4. Nautilus pompilius life history and demographics at the Osprey Reef Seamount, Coral Sea, Australia.

    Directory of Open Access Journals (Sweden)

    Andrew J Dunstan

    Full Text Available Nautiloids are the subject of speculation as to their threatened status arising from the impacts of targeted fishing for the ornamental shell market. Life history knowledge is essential to understand the susceptibility of this group to overfishing and to the instigation of management frameworks. This study provides a comprehensive insight into the life of Nautilus in the wild. At Osprey Reef from 1998-2008, trapping for Nautilus was conducted on 354 occasions, with 2460 individuals of one species, Nautilus pompilius, captured and 247 individuals recaptured. Baited remote underwater video systems (BRUVS were deployed on 15 occasions and six remotely operated vehicle (ROV dives from 100-800 m were conducted to record Nautilus presence and behavior. Maturity, sex and size data were recorded, while measurements of recaptured individuals allowed estimation of growth rates to maturity, and longevity beyond maturity. We found sexual dimorphism in size at maturity (males: 131.9±SD = 2.6 mm; females: 118.9±7.5 mm shell diameter in a population dominated by mature individuals (58%. Mean growth rates of 15 immature recaptured animals were 0.061±0.023 mm day(-1 resulting in an estimate of around 15.5 years to maturation. Recaptures of mature animals after five years provide evidence of a lifespan exceeding 20 years. Juvenile Nautilus pompilius feeding behavior was recorded for the first time within the same depth range (200-610 m as adults. Our results provide strong evidence of a K-selected life history for Nautilus from a detailed study of a 'closed' wild population. In conjunction with population size and density estimates established for the Osprey Reef Nautilus, this work allows calculations for sustainable catch and provides mechanisms to extrapolate these findings to other extant nautiloid populations (Nautilus and Allonautilus spp. throughout the Indo-Pacific.

  5. Phylogeographic divergence in the widespread delicate skink (Lampropholis delicata corresponds to dry habitat barriers in eastern Australia

    Directory of Open Access Journals (Sweden)

    Hoskin Conrad J

    2011-07-01

    Full Text Available Abstract Background The mesic habitats of eastern Australia harbour a highly diverse fauna. We examined the impact of climatic oscillations and recognised biogeographic barriers on the evolutionary history of the delicate skink (Lampropholis delicata, a species that occurs in moist habitats throughout eastern Australia. The delicate skink is a common and widespread species whose distribution spans 26° of latitude and nine major biogeographic barriers in eastern Australia. Sequence data were obtained from four mitochondrial genes (ND2, ND4, 12SrRNA, 16SrRNA for 238 individuals from 120 populations across the entire native distribution of the species. The evolutionary history and diversification of the delicate skink was investigated using a range of phylogenetic (Maximum Likelihood, Bayesian and phylogeographic analyses (genetic diversity, ΦST, AMOVA, Tajima's D, Fu's F statistic. Results Nine geographically structured, genetically divergent clades were identified within the delicate skink. The main clades diverged during the late Miocene-Pliocene, coinciding with the decline and fragmentation of rainforest and other wet forest habitats in eastern Australia. Most of the phylogeographic breaks within the delicate skink were concordant with dry habitat or high elevation barriers, including several recognised biogeographic barriers in eastern Australia (Burdekin Gap, St Lawrence Gap, McPherson Range, Hunter Valley, southern New South Wales. Genetically divergent populations were also located in high elevation topographic isolates inland from the main range of L. delicata (Kroombit Tops, Blackdown Tablelands, Coolah Tops. The species colonised South Australia from southern New South Wales via an inland route, possibly along the Murray River system. There is evidence for recent expansion of the species range across eastern Victoria and into Tasmania, via the Bassian Isthmus, during the late Pleistocene. Conclusions The delicate skink is a single

  6. Multi-Year Impacts of Ecotourism on Whale Shark (Rhincodon typus Visitation at Ningaloo Reef, Western Australia.

    Directory of Open Access Journals (Sweden)

    R L Sanzogni

    Full Text Available In-water viewing of sharks by tourists has become a popular and lucrative industry. There is some concern that interactions with tourists with ecotourism operations might harm sharks through disruption of behaviours. Here, we analysed five years of whale shark (Rhincodon typus encounter data by an ecotourism industry at Ningaloo Reef, Western Australia, to assess the impact of ecotourism interactions on shark visitation, within the context of the biological and physical oceanography of the region. Our data base consisted of 2823 encounter records for 951 individual whale sharks collected by ecotourism operators between 2007 and 2011. We found that total encounters per whale shark and encounters per boat trip increased through time. On average, whale sharks re-encountered in subsequent years were encountered earlier, stayed longer and tended to be encountered more often within a season than sharks that were only encountered in a single year. Sequential comparisons between years did not show any patterns consistent with disturbance and the rate of departure of whale sharks from the aggregation was negatively correlated to the number of operator trips. Overall, our analysis of this multi-year data base found no evidence that interactions with tourists affected the likelihood of whale shark re-encounters and that instead, physical and biological environmental factors had a far greater influence on whale shark visitation rates. Our approach provides a template for assessing the effects of ecotourism interactions and environmental factors on the visitation patterns of marine megafauna over multiple years.

  7. Multi-Year Impacts of Ecotourism on Whale Shark (Rhincodon typus) Visitation at Ningaloo Reef, Western Australia.

    Science.gov (United States)

    Sanzogni, R L; Meekan, M G; Meeuwig, J J

    2015-01-01

    In-water viewing of sharks by tourists has become a popular and lucrative industry. There is some concern that interactions with tourists with ecotourism operations might harm sharks through disruption of behaviours. Here, we analysed five years of whale shark (Rhincodon typus) encounter data by an ecotourism industry at Ningaloo Reef, Western Australia, to assess the impact of ecotourism interactions on shark visitation, within the context of the biological and physical oceanography of the region. Our data base consisted of 2823 encounter records for 951 individual whale sharks collected by ecotourism operators between 2007 and 2011. We found that total encounters per whale shark and encounters per boat trip increased through time. On average, whale sharks re-encountered in subsequent years were encountered earlier, stayed longer and tended to be encountered more often within a season than sharks that were only encountered in a single year. Sequential comparisons between years did not show any patterns consistent with disturbance and the rate of departure of whale sharks from the aggregation was negatively correlated to the number of operator trips. Overall, our analysis of this multi-year data base found no evidence that interactions with tourists affected the likelihood of whale shark re-encounters and that instead, physical and biological environmental factors had a far greater influence on whale shark visitation rates. Our approach provides a template for assessing the effects of ecotourism interactions and environmental factors on the visitation patterns of marine megafauna over multiple years.

  8. Assessing community values for reducing agricultural emissions to improve water quality and protect coral health in the Great Barrier Reef

    Science.gov (United States)

    Rolfe, John; Windle, Jill

    2011-12-01

    Policymakers wanting to increase protection of the Great Barrier Reef from pollutants generated by agriculture need to identify when measures to improve water quality generate benefits to society that outweigh the costs involved. The research reported in this paper makes a contribution in several ways. First, it uses the improved science understanding about the links between management changes and reef health to bring together the analysis of costs and benefits of marginal changes, helping to demonstrate the appropriate way of addressing policy questions relating to reef protection. Second, it uses the scientific relationships to frame a choice experiment to value the benefits of improved reef health, with the results of mixed logit (random parameter) models linking improvements explicitly to changes in "water quality units." Third, the research demonstrates how protection values are consistent across a broader population, with some limited evidence of distance effects. Fourth, the information on marginal costs and benefits that are reported provide policymakers with information to help improve management decisions. The results indicate that while there is potential for water quality improvements to generate net benefits, high cost water quality improvements are generally uneconomic. A major policy implication is that cost thresholds for key pollutants should be set to avoid more expensive water quality proposals being selected.

  9. Palaeoecological evidence of a historical collapse of corals at Pelorus Island, inshore Great Barrier Reef, following European settlement.

    Science.gov (United States)

    Roff, George; Clark, Tara R; Reymond, Claire E; Zhao, Jian-xin; Feng, Yuexing; McCook, Laurence J; Done, Terence J; Pandolfi, John M

    2013-01-01

    The inshore reefs of the Great Barrier Reef (GBR) have undergone significant declines in water quality following European settlement (approx. 1870 AD). However, direct evidence of impacts on coral assemblages is limited by a lack of historical baselines prior to the onset of modern monitoring programmes in the early 1980s. Through palaeoecological reconstructions, we report a previously undocumented historical collapse of Acropora assemblages at Pelorus Island (central GBR). High-precision U-series dating of dead Acropora fragments indicates that this collapse occurred between 1920 and 1955, with few dates obtained after 1980. Prior to this event, our results indicate remarkable long-term stability in coral community structure over centennial scales. We suggest that chronic increases in sediment flux and nutrient loading following European settlement acted as the ultimate cause for the lack of recovery of Acropora assemblages following a series of acute disturbance events (SST anomalies, cyclones and flood events). Evidence for major degradation in reef condition owing to human impacts prior to modern ecological surveys indicates that current monitoring of inshore reefs on the GBR may be predicated on a significantly shifted baseline.

  10. Ecologically based targets for bioavailable (reactive) nitrogen discharge from the drainage basins of the Wet Tropics region, Great Barrier Reef.

    Science.gov (United States)

    Wooldridge, Scott A; Brodie, Jon E; Kroon, Frederieke J; Turner, Ryan D R

    2015-08-15

    A modelling framework is developed for the Wet Tropics region of the Great Barrier Reef that links a quantitative river discharge parameter (viz. dissolved inorganic nitrogen concentration, DIN) with an eutrophication indicator within the marine environment (viz. chlorophyll-a concentration, chl-a). The model predicts catchment-specific levels of reduction (%) in end-of-river DIN concentrations (as a proxy for total potentially reactive nitrogen, PRN) needed to ensure compliance with chl-a 'trigger' guidelines for the ecologically distinct, but PRN-related issues of crown-of-thorns starfish (COTS) outbreaks, reef biodiversity loss, and thermal bleaching sensitivity. The results indicate that even for river basins dominated by agricultural land uses, quite modest reductions in end-of-river PRN concentrations (∼20-40%) may assist in mitigating the risk of primary COTS outbreaks from the mid-shelf reefs of the Wet Tropics. However, more significant reductions (∼60-80%) are required to halt and reverse declines in reef biodiversity, and loss of thermal bleaching resistance.

  11. RESEARCH: Influence of Social, Biophysical, and Managerial Conditions on Tourism Experiences Within the Great Barrier Reef World Heritage Area.

    Science.gov (United States)

    Shafer; Inglis

    2000-07-01

    / Managing protected areas involves balancing the enjoyment of visitors with the protection of a variety of cultural and biophysical resources. Tourism pressures in the Great Barrier Reef World Heritage Area (GBRWHA) are creating concerns about how to strike this balance in a marine environment. Terrestrial-based research has led to conceptual planning and management frameworks that address issues of human use and resource protection. The limits of acceptable change (LAC) framework was used as a conceptual basis for a study of snorkeling at reef sites in the GBRWHA. The intent was to determine if different settings existed among tourism operators traveling to the reef and, if so, to identify specific conditions relating to those settings. Snorkelers (N = 1475) traveling with tourism operations of different sizes who traveled to different sites completed surveys. Results indicated that snorkelers who traveled with larger operations (more people and infrastructure) differed from those traveling with smaller operations (few people and little on-site infrastructure) on benefits received and in the way that specific conditions influenced their enjoyment. Benefits related to nature, escape, and family helped to define reef experiences. Conditions related to coral, fish, and operator staff had a positive influence on the enjoyment of most visitors but, number of people on the trip and site infrastructure may have the greatest potential as setting indicators. Data support the potential usefulness of visitor input in applying the LAC concept to a marine environment where tourism and recreational uses are rapidly changing.

  12. Seasonal organic matter dynamics in the Great Barrier Reef lagoon: Contribution of carbohydrates and proteins

    Science.gov (United States)

    Lønborg, Christian; Doyle, Jason; Furnas, Miles; Menendez, Patricia; Benthuysen, Jessica A.; Carreira, Cátia

    2017-04-01

    Organic matter (OM) plays a fundamental role in sustaining the high productivity of coral reef ecosystems. Carbohydrates and proteins constitute two of the major chemical classes identified in the OM pool and are used as indicators of bioavailability due to their fast turn-over. We conducted three cruises across the southern shelf of the Great Barrier Reef (GBR) during the early dry, late dry and wet seasons in 2009-2010 to 1) assess the relative bioavailability of particulate (POM) and dissolved (DOM) organic matter, 2) track the temporal and spatial variability in the carbohydrate and protein contribution to the OM pool, and 3) assess factors influencing protein and carbohydrate fractions of the OM pool. Generally, higher concentrations of particulate carbohydrates were found during the wet season, while similar concentrations of particulate protein were found during the three seasons. Both the dissolved carbohydrates and proteins had highest levels during the early dry season and lowest during the wet season, suggesting seasonal variations in the chemical composition of the DOM pool. Spatially, carbohydrates showed higher concentrations at the inshore stations, while no clear spatial pattern was found for the protein concentrations. On average carbohydrates and proteins accounted for a similar fraction (13±5 and 12±6% respectively) of POM, while carbohydrates accounted for a smaller fraction of the DOM than the proteins (6±3 and 13±10%). This suggests that the POM bioavailability was similar between seasons, while the DOM bioavailability varied seasonally with highest levels during the early dry season. This demonstrates that carbohydrates and proteins in the GBR have temporal and spatial variations. Our statistical analysis showed that 1) both carbohydrates and proteins were related with the POM and DOM C:N:P stoichiometry, demonstrating that both bulk estimates (stoichiometry) and specific compounds (CHO and Prot) provide useful measures of OM

  13. The importance of coral larval recruitment for the recovery of reefs impacted by cyclone Yasi in the central Great Barrier Reef.

    Directory of Open Access Journals (Sweden)

    Vimoksalehi Lukoschek

    Full Text Available Cyclone Yasi, one of the most severe tropical storms on record, crossed the central Great Barrier Reef (GBR in February 2011, bringing wind speeds of up to 285 km hr⁻¹ and wave heights of at least 10 m, and causing massive destruction to exposed reefs in the Palm Island Group. Following the cyclone, mean (± S.E. hard coral cover ranged from just 2.1 (0.2 % to 5.3 (0.4 % on exposed reefs and no reproductively mature colonies of any species of Acropora remained. Although no fragments of Acropora were found at impacted exposed sites following the cyclone, small juvenile colonies of Acropora (<10 cm diameter were present, suggesting that their small size and compact morphologies enabled them to survive the cyclone. By contrast, sheltered reefs appeared to be unaffected by the cyclone. Mean (± S.E. hard coral cover ranged from 18.2 (2.4 % to 30.0 (1.0 % and a large proportion of colonies of Acropora were reproductively mature. Macroalgae accounted for 8 to 16% of benthic cover at exposed sites impacted by cyclone Yasi but were absent at sheltered sites. Mean (± S.E. recruitment of acroporids to settlement tiles declined from 25.3 (4.8 recruits tile⁻¹ in the pre-cyclone spawning event (2010 to 15.4 (2.2 recruits tile⁻¹ in the first post-cyclone spawning event (2011. Yet, post-cyclone recruitment did not differ between exposed (15.2±2.1 S.E. and sheltered sites (15.6±2.2 S.E., despite the loss of reproductive colonies at the exposed sites, indicating larval input from external sources. Spatial variation in impacts, the survival of small colonies, and larval replenishment to impacted reefs suggest that populations of Acropora have the potential to recover from this severe disturbance, provided that the Palm Islands are not impacted by acute disturbances or suffer additional chronic stressors in the near future.

  14. A population genetic assessment of coral recovery on highly disturbed reefs of the Keppel Island archipelago in the southern Great Barrier Reef.

    Science.gov (United States)

    van Oppen, Madeleine J H; Lukoschek, Vimoksalehi; Berkelmans, Ray; Peplow, Lesa M; Jones, Alison M

    2015-01-01

    Coral reefs surrounding the islands lying close to the coast are unique to the Great Barrier Reef (GBR) in that they are frequently exposed to disturbance events including floods caused by cyclonic rainfall, strong winds and occasional periods of prolonged above-average temperatures during summer. In one such group of islands in the southern GBR, the Keppel Island archipelago, climate-driven disturbances frequently result in major coral mortality. Whilst these island reefs have clearly survived such dramatic disturbances in the past, the consequences of extreme mortality events may include the loss of genetic diversity, and hence adaptive potential, and a reduction in fitness due to inbreeding, especially if new recruitment from external sources is limited. Here we examined the level of isolation of the Keppel Island group as well as patterns of gene flow within the Keppel Islands using 10 microsatellite markers in nine populations of the coral, Acropora millepora. Bayesian cluster analysis and assignment tests indicated gene flow is restricted, but not absent, between the outer and inner Keppel Island groups, and that extensive gene flow exists within each of these island groups. Comparison of the Keppel Island data with results from a previous GBR-wide study that included a single Keppel Island population, confirmed that A. millepora in the Keppel Islands is genetically distinct from populations elsewhere on the GBR, with exception of the nearby inshore High Peak Reef just north of the Keppel Islands. We compared patterns of genetic diversity in the Keppel Island populations with those from other GBR populations and found them to be slightly, but significantly lower, consistent with the archipelago being geographically isolated, but there was no evidence for recent bottlenecks or deviation from mutation-drift equilibrium. A high incidence of private alleles in the Keppel Islands, particularly in the outer islands, supports their relative isolation and contributes

  15. A population genetic assessment of coral recovery on highly disturbed reefs of the Keppel Island archipelago in the southern Great Barrier Reef

    Directory of Open Access Journals (Sweden)

    Madeleine J.H. van Oppen

    2015-07-01

    Full Text Available Coral reefs surrounding the islands lying close to the coast are unique to the Great Barrier Reef (GBR in that they are frequently exposed to disturbance events including floods caused by cyclonic rainfall, strong winds and occasional periods of prolonged above-average temperatures during summer. In one such group of islands in the southern GBR, the Keppel Island archipelago, climate-driven disturbances frequently result in major coral mortality. Whilst these island reefs have clearly survived such dramatic disturbances in the past, the consequences of extreme mortality events may include the loss of genetic diversity, and hence adaptive potential, and a reduction in fitness due to inbreeding, especially if new recruitment from external sources is limited. Here we examined the level of isolation of the Keppel Island group as well as patterns of gene flow within the Keppel Islands using 10 microsatellite markers in nine populations of the coral, Acropora millepora. Bayesian cluster analysis and assignment tests indicated gene flow is restricted, but not absent, between the outer and inner Keppel Island groups, and that extensive gene flow exists within each of these island groups. Comparison of the Keppel Island data with results from a previous GBR-wide study that included a single Keppel Island population, confirmed that A. millepora in the Keppel Islands is genetically distinct from populations elsewhere on the GBR, with exception of the nearby inshore High Peak Reef just north of the Keppel Islands. We compared patterns of genetic diversity in the Keppel Island populations with those from other GBR populations and found them to be slightly, but significantly lower, consistent with the archipelago being geographically isolated, but there was no evidence for recent bottlenecks or deviation from mutation-drift equilibrium. A high incidence of private alleles in the Keppel Islands, particularly in the outer islands, supports their relative

  16. Stability of coral-endosymbiont associations during and after a thermal stress event in the southern Great Barrier Reef

    Science.gov (United States)

    Stat, M.; Loh, W. K. W.; Lajeunesse, T. C.; Hoegh-Guldberg, O.; Carter, D. A.

    2009-09-01

    Shifts in the community of symbiotic dinoflagellates to those that are better suited to the prevailing environmental condition may provide reef-building corals with a rapid mechanism by which to adapt to changes in the environment. In this study, the dominant Symbiodinium in 10 coral species in the southern Great Barrier Reef was monitored over a 1-year period in 2002 that coincided with a thermal stress event. Molecular genetic profiling of Symbiodinium communities using single strand conformational polymorphism of the large subunit rDNA and denaturing gradient gel electrophoresis of the internal transcribed spacer 2 region did not detect any changes in the communities during and after this thermal-stress event. Coral colonies of seven species bleached but recovered with their original symbionts. This study suggests that the shuffling or switching of symbionts in response to thermal stress may be restricted to certain coral species and is probably not a universal feature of the coral-symbiont relationship.

  17. Do clouds save the great barrier reef? satellite imagery elucidates the cloud-SST relationship at the local scale.

    Directory of Open Access Journals (Sweden)

    Susannah M Leahy

    Full Text Available Evidence of global climate change and rising sea surface temperatures (SSTs is now well documented in the scientific literature. With corals already living close to their thermal maxima, increases in SSTs are of great concern for the survival of coral reefs. Cloud feedback processes may have the potential to constrain SSTs, serving to enforce an "ocean thermostat" and promoting the survival of coral reefs. In this study, it was hypothesized that cloud cover can affect summer SSTs in the tropics. Detailed direct and lagged relationships between cloud cover and SST across the central Great Barrier Reef (GBR shelf were investigated using data from satellite imagery and in situ temperature and light loggers during two relatively hot summers (2005 and 2006 and two relatively cool summers (2007 and 2008. Across all study summers and shelf positions, SSTs exhibited distinct drops during periods of high cloud cover, and conversely, SST increases during periods of low cloud cover, with a three-day temporal lag between a change in cloud cover and a subsequent change in SST. Cloud cover alone was responsible for up to 32.1% of the variation in SSTs three days later. The relationship was strongest in both El Niño (2005 and La Niña (2008 study summers and at the inner-shelf position in those summers. SST effects on subsequent cloud cover were weaker and more variable among study summers, with rising SSTs explaining up to 21.6% of the increase in cloud cover three days later. This work quantifies the often observed cloud cooling effect on coral reefs. It highlights the importance of incorporating local-scale processes into bleaching forecasting models, and encourages the use of remote sensing imagery to value-add to coral bleaching field studies and to more accurately predict risks to coral reefs.

  18. Do clouds save the great barrier reef? satellite imagery elucidates the cloud-SST relationship at the local scale.

    Science.gov (United States)

    Leahy, Susannah M; Kingsford, Michael J; Steinberg, Craig R

    2013-01-01

    Evidence of global climate change and rising sea surface temperatures (SSTs) is now well documented in the scientific literature. With corals already living close to their thermal maxima, increases in SSTs are of great concern for the survival of coral reefs. Cloud feedback processes may have the potential to constrain SSTs, serving to enforce an "ocean thermostat" and promoting the survival of coral reefs. In this study, it was hypothesized that cloud cover can affect summer SSTs in the tropics. Detailed direct and lagged relationships between cloud cover and SST across the central Great Barrier Reef (GBR) shelf were investigated using data from satellite imagery and in situ temperature and light loggers during two relatively hot summers (2005 and 2006) and two relatively cool summers (2007 and 2008). Across all study summers and shelf positions, SSTs exhibited distinct drops during periods of high cloud cover, and conversely, SST increases during periods of low cloud cover, with a three-day temporal lag between a change in cloud cover and a subsequent change in SST. Cloud cover alone was responsible for up to 32.1% of the variation in SSTs three days later. The relationship was strongest in both El Niño (2005) and La Niña (2008) study summers and at the inner-shelf position in those summers. SST effects on subsequent cloud cover were weaker and more variable among study summers, with rising SSTs explaining up to 21.6% of the increase in cloud cover three days later. This work quantifies the often observed cloud cooling effect on coral reefs. It highlights the importance of incorporating local-scale processes into bleaching forecasting models, and encourages the use of remote sensing imagery to value-add to coral bleaching field studies and to more accurately predict risks to coral reefs.

  19. Using an isolated population boom to explore barriers to recovery in the keystone Caribbean coral reef herbivore Diadema antillarum

    Science.gov (United States)

    Bodmer, Max D. V.; Rogers, Alex D.; Speight, Martin R.; Lubbock, Natalie; Exton, Dan A.

    2015-12-01

    Recovery of the keystone herbivore Diadema antillarum after the 1983-1984 mass mortality event poses one of the greatest challenges to Caribbean coral reef conservation, yet our understanding of the problem remains severely limited. Whilst some recovery has been observed, this has been restricted to the shallows (≤5 m). We report a newly discovered, isolated population recovery on Banco Capiro, Honduras, representing the largest recorded post-mortality densities beyond the shallowest environments (0.74-2.27 individuals m-2 at depths ≥10 m) alongside an unusually high mean percentage scleractinian coral cover of 49-62 %, likely no coincidence. On the nearby island of Utila, we report D. antillarum densities of 0.003-0.012 individuals m-2 and scleractinian coral cover of 12 % at depths ≥10 m, "typical" for a contemporary Caribbean coral reef. The three order of magnitude disparity in population density between sites separated by <60 km presents a unique opportunity to investigate barriers preventing their region-wide recovery by simultaneously addressing a range of previously proposed hypotheses. Despite concerns over the impacts of asynchronous spawning in low-density populations, we find that recruitment is occurring on Utila. This suggests that, whilst Allee effects are likely to be a contributing factor, the major barriers suppressing recovery are instead impacting juvenile survival into adulthood. Similarly, variations in heterospecific echinoids, interspecific competitors, and nutrient availability fail to account for population differences. Instead, we highlight a lack of structural complexity on contemporary Caribbean reefs as the most likely explanation for the limited recovery through a lack of provision of juvenile predation refugia, representing a further consequence of the recent ubiquitous phase shifts throughout the region. Using these findings, we propose future management strategies to stimulate recovery and, consequently, reef health

  20. Modelling the fate of marine debris along a complex shoreline: Lessons from the Great Barrier Reef

    Science.gov (United States)

    Critchell, K.; Grech, A.; Schlaefer, J.; Andutta, F. P.; Lambrechts, J.; Wolanski, E.; Hamann, M.

    2015-12-01

    The accumulation of floating anthropogenic debris in marine and coastal areas has environmental, economic, aesthetic, and human health impacts. Until now, modelling the transport of such debris has largely been restricted to the large-scales of open seas. We used oceanographic modelling to identify potential sites of debris accumulation along a rugged coastline with headlands, islands, rocky coasts and beaches. Our study site was the Great Barrier Reef World Heritage Area that has an emerging problem with debris accumulation. We found that the classical techniques of modelling the transport of floating debris models are only moderately successful due to a number of unknowns or assumptions, such as the value of the wind drift coefficient, the variability of the oceanic forcing and of the wind, the resuspension of some floating debris by waves, and the poorly known relative contribution of floating debris from urban rivers and commercial and recreational shipping. Nevertheless the model was successful in reproducing a number of observations such as the existence of hot spots of accumulation. The orientation of beaches to the prevailing wind direction affected the accumulation rate of debris. The wind drift coefficient and the exact timing of the release of the debris at sea affected little the movement of debris originating from rivers but it affected measurably that of debris originating from ships. It was thus possible to produce local hotspot maps for floating debris, especially those originating from rivers. Such modelling can be used to inform local management decisions, and it also identifies likely priority research areas to more reliably predict the trajectory and landing points of floating debris.

  1. Social Resilience and Commercial Fishers' Responses to Management Changes in the Great Barrier Reef Marine Park

    Directory of Open Access Journals (Sweden)

    Stephen G. Sutton

    2012-09-01

    Full Text Available Understanding how social resilience influences resource users' responses to policy change is important for ensuring the sustainability of social-ecological systems and resource-dependent communities. We use the conceptualization and operationalization of social resilience proposed by Marshall and Marshall (2007 to investigate how resilience level influenced commercial fishers' perceptions about and adaptation to the 2004 rezoning of the Great Barrier Reef Marine Park. We conducted face-to-face interviews with 114 commercial and charter fishers to measure their social resilience level and their responses and adaptation strategies to the 2004 zoning plan. Fishers with higher resilience were more likely to believe that the zoning plan was necessary, more likely to be supportive of the plan, and more likely to have adapted their fishing business and fishing activity to the plan than were fishers with lower social resilience. High-resilience fishers were also less likely to perceive negative impacts of the plan on their fishing business, less likely to have negative attitudes toward the consultation process used to develop and implement the plan, and less likely to have applied for financial compensation under the structural adjustment program. Results confirm the utility of the social resilience construct for identifying fishers who are likely to be vulnerable to changes, and those who are struggling to cope with change events. We conclude that managing for social resilience in the GBR would aid in the design and implementation of policies that minimize the impacts on resource users and lead to more inclusive and sustainable management, but that further research is necessary to better understand social resilience, how it can be fostered and sustained, and how it can be effectively incorporated into management.

  2. Sabellariidae from Lizard Island, Great Barrier Reef, including a new species of Lygdamis and notes on external morphology of the median organ.

    Science.gov (United States)

    Capa, María; Faroni-Perez, Larisse; Hutchings, Pat

    2015-09-18

    We document herein the occurrence of three species of Sabellariidae at Lizard Island, Great Barrier Reef, including a new Lygdamis species. Sabellaria lungalla, described from Northern Territory, is reported for Queensland for the first time. The genus Gesaia, represented by a planktonic larva collected in shallow waters of the Archipelago, is a new record for Australia. Lygdamis nasutus n. sp. is characterised by one of the most conspicuous median organ described in the family (cylindrical, distally pigmented and is provided with a flattened, teardrop corona), its paleae morphology (with straight paleae, outer ones with asymmetrical pointed tips and subtle thecal sculpture and inner paleae with blunt tips and smooth surface), three lateral lobes on chaetiger 2, abdominal chaetigers with two type of neurochaetae, and notopodial uncini with 1-4 longitudinal rows of teeth. Comparison of the external morphology of the medial organ and median ridge of several species has been undertaken. Even though its function remains uncertain, the median organ morphology seems species specific and may provide relevant information about the evolutionary history and adaptations of sabellariids.

  3. Integrating Multiple Measurement Techniques to Understand how the Delivery of Sediments to the Great Barrier Reef has Changed Over Space and Time

    Science.gov (United States)

    Bartley, R.; Bainbridge, Z. T.; Lewis, S.; Wilkinson, S. N.; Croke, J.; Bastin, G.; Brodie, J. E.

    2014-12-01

    Based on the ratio of various trace-elements from coral cores, there is considerable evidence that the amount of sediment reaching the Great Barrier Reef (GBR), Australia, has increased since agricultural development commenced in the 1870's. However, understanding the primary source and processes driving the increase in sediment delivery has been challenging due to the variable geology and episodic hydrology of adjacent catchments. This paper presents the results from several projects that use a range of measurement techniques all aimed at understanding the spatial and temporal changes in sediment yield from the Burdekin watershed, Australia. Cosmogenic nuclide analysis (10Be) was combined with contemporary sediment flux monitoring to help identify the high risk sub-watersheds. Particle size analysis of the sediment loads from the sub-watersheds has determined the primary source areas for the fine (clay) sediment fractions. Within the sub-watersheds, fallout radionuclides (137Cs, 7Pb and 7Be) showed that most of the fine sediment is coming from vertical channel walls (50%) or horizontal sub-surface soils (~42%). Changes to in-stream sedimentation rates, derived from OSL dating, suggest that sediment delivery to channels lags behind reductions to vegetative ground cover. Historical archives of remotely sensed ground cover data were then linked to animal stocking rates in the area. Together, these data sets help elucidate the often complex sediment delivery processes and provide a stronger link between grazing land management and sediment flux to the GBR. This study highlights the benefit of using a range of techniques and data sets to identify the major sediment sources in these highly variable systems. The implications for land management restoration, policy and investment are discussed.

  4. Australia.

    Science.gov (United States)

    1989-03-01

    The smallest continent and one of the largest countries, Australia is a country of diverse geographical conditions and differing cultures of people unified by one predominant language and political system. Mountains, desert and rivers are some of the varying landscape features of Australia, although the climate and condition for most of the country is tropical. Original Australians, a hunting-gathering people called Aborigines, came to Australia over 38,000 years ago. Today the Aborigines compose about 1% of the population and live in traditional tribal areas as well as cities. The 1st European settlement came in 1788 from Great Britain. After World War II, the population doubled. Although the population is primarily composed of British and Irish immigrants, immigrants from other European countries such as Italy and Greece as well as refugees from Indochina, Vietnam, Cambodia and Laos are a significant factor to the growing Australian population. Australian and Aboriginal culture has took hold and took notice in the areas of opera, art, literature and film. The Australian Commonwealth is based on a constitution similar to that of the United States government. The National Parliament is bicameral with both the Senate and the House of Representatives having a select number of elected officials from each state and territory. The Australian economy is predominantly reliant on the sale of mineral and agricultural exports. History, economic changes, defense, international relations and notes to the traveler are also discussed in this overview of Australia.

  5. A species pair of Bivesicula Yamaguti, 1934 (Trematoda: Bivesiculidae) in unrelated Great Barrier Reef fishes: implications for the basis of speciation in coral reef fish trematodes.

    Science.gov (United States)

    Trieu, Nancy; Cutmore, Scott C; Miller, Terrence L; Cribb, Thomas H

    2015-07-01

    Combined morphological and molecular analysis shows that a species of Bivesicula Yamaguti, 1934 from four species of Apogonidae Günther [Nectamia fusca (Quoy & Gaimard), Ostorhinchus angustatus (Smith & Radcliffe), O. cookii (Macleay) and Taeniamia fucata (Cantor)] on the Great Barrier Reef is morphologically similar to, but clearly distinct from B. unexpecta Cribb, Bray & Barker, 1994 which infects a sympatric pomacentrid, Acanthochromis polyacanthus (Bleeker). Bivesicula neglecta n. sp. is proposed for the form from apogonids. Novel ITS2 rDNA sequences generated for the two species differ at just one consistent base position, implying that the two species are closely related. The combination of their close relationship, high but distinct specificity and co-occurrence suggests that speciation was driven by a recent host switching event enabled by similar dietary ecomorphology.

  6. Telothelepodidae, Thelepodidae and Trichobranchidae (Annelida, Terebelliformia) from Lizard Island, Great Barrier Reef, Australia.

    Science.gov (United States)

    Hutchings, Pat; de Matos Nogueira, João Miguel; Carrerette, Orlemir

    2015-09-18

    In a survey of the polychaetes of the Lizard Island region, six species of polychaetes belonging to the families Telothelepodidae Nogueira, Fitzhugh & Hutchings, 2013, Thelepodidae Hessle, 1917 and Trichobranchidae Malmgren, 1866 were found, from material collected during the Lizard Island Polychaete Taxonomic Workshop, and material collected by previous projects undertaken by the Australian Museum. This material includes one new species of Rhinothelepus Hutchings, 1974 (Telothelepodidae); one new species of each of the genera, Euthelepus McIntosh, 1885, Streblosoma Sars, 1872, and Thelepus Leuckart, 1849 (Thelepodidae); and one new species of Terebellides Sars, 1835 and another of Trichobranchus Malmgren, 1866 (Trichobranchidae). Keys for identification of these species are provided, together with full descriptions for all species, as well as comparisons with the morphologically most similar congeners.

  7. Orbiniidae (Annelida: Errantia) from Lizard Island, Great Barrier Reef, Australia with notes on orbiniid phylogeny.

    Science.gov (United States)

    Zhadan, Anna; Stupnikova, Alexandra; Neretina, Tatiana

    2015-09-18

    The fauna of Orbiniidae (Annelida: Errantia) from the Lizard Island has been studied. Five species were found and each was redescribed and illustrated using light microscopy and SEM. Scoloplos acutissimus Hartmann-Schröder, 1991 and Scoloplos dayi Hartmann-Schröder, 1980 collected for the first time since their original descriptions and confirmed through re-examination of their type materials. Molecular analyses were carried out using nuclear 18S rDNA and mitochondrial 16S rDNA and CO1 gene sequences with evolutionary distances and the Neighbor-Joining Method. The molecular analyses did not support the monophyly of the genera Scoloplos, Leitoscoloplos, Leodamas, and Naineris, and its results are incongruent with morphological data.

  8. Sequence architecture during the Holocene transgression: an example from the Great Barrier Reef shelf, Australia

    Science.gov (United States)

    Larcombe, Piers; Carter, Robert M.

    1998-04-01

    The application of sequence stratigraphic analysis to post-glacial sediments requires the correct identification of sequence boundaries, flooding surfaces and systems tracts. The nature of coastal sediments deposited during sea-level cycles is complex and misinterpretation is easy, particularly in ancient sequences for which eustasy is inferred rather than demonstrated. A large core, seismic and radiocarbon database from Cleveland Bay, in tropical Queensland, allows detailed analysis of the systems tracts and parasequences developed during the late Holocene. Despite the large database, a unique sequence stratigraphic interpretation is not possible, because oscillations in the sea-level curve apparently occurred at a frequency higher than the resolving power of radiocarbon dating. Our best estimate is that the final stages of the Holocene sea-level rise comprise four parasequences, each deposited during episodic slowdowns in sea-level rise and/or a pulse of rapid sediment supply. Sea-level pauses probably occurred at 12-10 m below modern levels at 8.5 ka BP, followed by a fall to ca. -17 m at 8.1 ka BP, a very rapid transgression to ca. -10 m at 7.9 ka BP, a further transgression to ca. -5 m at 6.8 ka BP, and a final rise to the Holocene highstand at 1.65 m at 5.5 ka BP. The stratigraphic record of these sea-level rises is complex, occurs within the `modern' shore-connected sedimentary wedge, and comprises parasequences associated with shorelines at -11 m (P 11), -17 m (P 17), -10 m (P 10), -5 m (P 5) and +1.65 m (P +1.7). Each parasequence comprises, in ascending order, onlapping estuarine-shoreline sediment (including mangrove mud and beach sand), and progradational shallow-bay muddy sand. Across the bay, units up to and including the lower parts of the shallow-bay mud correspond to the transgressive systems tract (TST) of the last 18 ka glacial/interglacial cycle (the particular parasequence represented being dependent upon location, especially depth). Bay mud above this level corresponds to the post -5.5 ka BP highstand systems tract (HST), which comprises sand cheniers on the coastal plain and bioturbated muddy sand in the shallow bay. The junction between the TST and the HST lies within the bay mud, and corresponds approximately to the local flooding surface for the P +1.7 parasequence deposited at the +1.65 m shoreline. Offshore, terrigenous TST strata do not occur over most of the middle and outer shelf, which instead is veneered with a thin 'mid-cycle shellbed'. The lower part of this shellbed is time-equivalent to the later part of the TST and the upper part is time-equivalent to the HST. Offshore, the maximum flooding horizon (MFH) and peak eustatic sea-level horizon (PESH) of the Late Pleistocene-Holocene sea-level cycle lie at some level within the mid-cycle shellbed. Nearshore, the MFH and PESH lie within the shore-connected sediment wedge at levels near the TST/HST boundary. However, at no locality do either the MFH and PESH necessarily correspond to a physical boundary within the stratigraphy.

  9. Intensification of the meridional temperature gradient in the Great Barrier Reef following the Last Glacial Maximum - Results from IODP Expedition 325

    Science.gov (United States)

    Felis, Thomas; McGregor, Helen V.; Linsley, Braddock K.; Tudhope, Alexander W.; Gagan, Michael K.; Suzuki, Atsushi; Inoue, Mayuri; Thomas, Alexander L.; Esat, Tezer M.; Thompson, William G.; Tiwari, Manish; Potts, Donald C.; Mudelsee, Manfred; Yokoyama, Yusuke; Webster, Jody M.

    2015-04-01

    Tropical south-western Pacific temperatures are of vital importance to the Great Barrier Reef (GBR), but the role of sea surface temperatures (SSTs) in the growth of the GBR since the Last Glacial Maximum remains largely unknown. Here we present records of Sr/Ca and δ18O for Last Glacial Maximum and deglacial corals that were drilled by Integrated Ocean Drilling Program (IODP) Expedition 325 along the shelf edge seaward of the modern GBR. The Sr/Ca and δ18O records of the precisely U-Th dated fossil shallow-water corals show a considerably steeper meridional SST gradient than the present day in the central GBR. We find a 1-2 ° C larger temperature decrease between 17° S and 20° S about 20,000 to 13,000 years ago. The result is best explained by the northward expansion of cooler subtropical waters due to a weakening of the South Pacific gyre and East Australian Current. Our findings indicate that the GBR experienced substantial and regionally differing temperature change during the last deglaciation, much larger temperature changes than previously recognized. Furthermore, our findings suggest a northward contraction of the Western Pacific Warm Pool during the LGM and last deglaciation, and serve to explain anomalous drying of northeastern Australia at that time. Overall, the GBR developed through significant SST change and, considering temperature alone, may be more resilient than previously thought. Webster, J. M., Yokoyama, Y. & Cotteril, C. & the Expedition 325 Scientists. Proceedings of the Integrated Ocean Drilling Program Vol. 325 (Integrated Ocean Drilling Program Management International Inc., 2011). Felis, T., McGregor, H. V., Linsley, B. K., Tudhope, A. W., Gagan, M. K., Suzuki, A., Inoue, M., Thomas, A. L., Esat, T. M., Thompson, W. G., Tiwari, M., Potts, D. C., Mudelsee, M., Yokoyama, Y., Webster, J. M. Intensification of the meridional temperature gradient in the Great Barrier Reef following the Last Glacial Maximum. Nature Communications 5, 4102

  10. The Gulf Coast Vulnerability Assessment: Mangrove, Tidal Emergent Marsh, Barrier Islands, and Oyster Reef

    Science.gov (United States)

    Watson, Amanda; Reece, Joshua S.; Tirpak, Blair; Edwards, Cynthia Kallio; Geselbracht, Laura; Woodrey, Mark; LaPeyre, Megan K.; Dalyander, Patricia (Soupy)

    2015-01-01

    Climate, sea level rise, and urbanization are undergoing unprecedented levels of combined change and are expected to have large effects on natural resources—particularly along the Gulf of Mexico coastline (Gulf Coast). Management decisions to address these effects (i.e., adaptation) require an understanding of the relative vulnerability of various resources to these stressors. To meet this need, the four Landscape Conservation Cooperatives along the Gulf partnered with the Gulf of Mexico Alliance to conduct this Gulf Coast Vulnerability Assessment (GCVA). Vulnerability in this context incorporates the aspects of exposure and sensitivity to threats, coupled with the adaptive capacity to mitigate those threats. Potential impact and adaptive capacity reflect natural history features of target species and ecosystems. The GCVA used an expert opinion approach to qualitatively assess the vulnerability of four ecosystems: mangrove, oyster reef, tidal emergent marsh, and barrier islands, and a suite of wildlife species that depend on them. More than 50 individuals participated in the completion of the GCVA, facilitated via Ecosystem and Species Expert Teams. Of the species assessed, Kemp’s ridley sea turtle was identified as the most vulnerable species across the Gulf Coast. Experts identified the main threats as loss of nesting habitat to sea level rise, erosion, and urbanization. Kemp’s ridley also had an overall low adaptive capacity score due to their low genetic diversity, and higher nest site fidelity as compared to other assessed species. Tidal emergent marsh was the most vulnerable ecosystem, due in part to sea level rise and erosion. In general, avian species were more vulnerable than fish because of nesting habitat loss to sea level rise, erosion, and potential increases in storm surge. Assessors commonly indicated a lack of information regarding impacts due to projected changes in the disturbance regime, biotic interactions, and synergistic effects in both

  11. Exploration of the perceptions, barriers and drivers of pharmacogenomics practice among hospital pharmacists in Adelaide, South Australia.

    Science.gov (United States)

    Dias, M M; Ward, H M; Sorich, M J; McKinnon, R A

    2014-06-01

    There is little literature regarding the barriers to the uptake of pharmacogenomics (PG) in pharmacy practice, especially with respect to Australia. To date, pharmacists have seldom been engaged in discussions of these issues. This study aimed to obtain an in-depth understanding of these barriers by interviewing pharmacists in Adelaide, South Australia. Ethics approved semistructured interviews were carried out with 21 public hospital pharmacists. Analysis of the data identified themes including: confidence to engage in PG, clinician acceptance of a pharmacist PG role, and the importance of timely and relevant PG education. Interviewees thought that pharmacists could have a greater participation in PG in the future, but they questioned whether this would be possible at the moment given, among other factors, existing time and work constraints.

  12. Coral Luminescence Identifies the Pacific Decadal Oscillation as a Primary Driver of River Runoff Variability Impacting the Southern Great Barrier Reef

    NARCIS (Netherlands)

    Rodriguez-Ramirez, A.; Grove, C.A.; Zinke, J.; Pandolfi, J.M.; Zhao, J.-X.

    2014-01-01

    The Pacific Decadal Oscillation (PDO) is a large-scale climatic phenomenon modulating ocean-atmosphere variability on decadal time scales. While precipitation and river flow variability in the Great Barrier Reef (GBR) catchments are sensitive to PDO phases, the extent to which the PDO influences cor

  13. Corrigendum to "PAHs in the Great Barrier Reef Lagoon reach potentially toxic levels from coal port activities" [Estuar. Coast. Shelf Sci. 144, 39-45

    Science.gov (United States)

    Burns, Kathryn A.

    2014-08-01

    Erratum with respect to the paper: Burns, K A, 2014 PAHs in the Great Barrier Reef Lagoon reach potentially toxic levels from coal port activities. Estuarine Coastal and Shelf Science 144, 39-45. DOI 10.1016/j.ecss.2014.04.001.

  14. Marine microbial communities of the Great Barrier Reef lagoon are influenced by riverine floodwaters and seasonal weather events.

    Science.gov (United States)

    Angly, Florent E; Heath, Candice; Morgan, Thomas C; Tonin, Hemerson; Rich, Virginia; Schaffelke, Britta; Bourne, David G; Tyson, Gene W

    2016-01-01

    The role of microorganisms in maintaining coral reef health is increasingly recognized. Riverine floodwater containing herbicides and excess nutrients from fertilizers compromises water quality in the inshore Great Barrier Reef (GBR), with unknown consequences for planktonic marine microbial communities and thus coral reefs. In this baseline study, inshore GBR microbial communities were monitored along a 124 km long transect between 2011 and 2013 using 16S rRNA gene amplicon sequencing. Members of the bacterial orders Rickettsiales (e.g., Pelagibacteraceae) and Synechococcales (e.g., Prochlorococcus), and of the archaeal class Marine Group II were prevalent in all samples, exhibiting a clear seasonal dynamics. Microbial communities near the Tully river mouth included a mixture of taxa from offshore marine sites and from the river system. The environmental parameters collected could be summarized into four groups, represented by salinity, rainfall, temperature and water quality, that drove the composition of microbial communities. During the wet season, lower salinity and a lower water quality index resulting from higher river discharge corresponded to increases in riverine taxa at sites near the river mouth. Particularly large, transient changes in microbial community structure were seen during the extreme wet season 2010-11, and may be partially attributed to the effects of wind and waves, which resuspend sediments and homogenize the water column in shallow near-shore regions. This work shows that anthropogenic floodwaters and other environmental parameters work in conjunction to drive the spatial distribution of microorganisms in the GBR lagoon, as well as their seasonal and daily dynamics.

  15. Phylogenetic diversity and community structure of the symbionts associated with the coralline sponge Astrosclera willeyana of the Great Barrier Reef.

    Science.gov (United States)

    Karlińska-Batres, Klementyna; Wörheide, Gert

    2013-04-01

    The coralline sponge Astrosclera willeyana, considered to be a living representative of the reef-building stromatoporoids of the Mesozoic and the Paleozoic periods, occurs widely throughout the Indo-Pacific oceans. We aimed to examine, for the first time, the phylogenetic diversity of the microbial symbionts associated with A. willeyana using molecular methods and to investigate the spatial variability in the sponge-derived microbial communities of A. willeyana from diverse sites along the Great Barrier Reef (GBR). Both denaturing gradient gel electrophoresis (DGGE) analyses of 12 Astrosclera specimens and sequencing of a 16S rRNA gene clone library, constructed using a specimen of A. willeyana from the Yonge Reef (380 clones), revealed the presence of a complex microbial community with high diversity. An assessment of the 16S rRNA gene sequences to the particular phylogenetic groups showed domination of the Chloroflexi (42 %), followed by the Gammaproteobacteria (14 %), Actinobacteria (11 %), Acidobacteria (8 %), and the Deferribacteres (7 %). Of the microbes that were identified, a further 15 % belonged to the Deltaproteobacteria, Alphaproteobacteria, and Nitrospirae genera. The minor phylogenetic groups Gemmatimonadetes, Spirochaetes, Cyanobacteria, Poribacteria, and the Archaea composed 3 % of the community. Over 94 % of the sequences obtained from A. willeyana grouped together with other sponge- or coral-derived sequences, and of these, 72 % formed, with nearest relatives, 46 sponge-specific or sponge-coral clusters, highlighting the uniqueness of the microbial consortia in sponges. The DGGE results showed clear divisions according to the geographical origin of the samples, indicating closer relationships between the microbial communities with respect to their geographic origin (northern vs. southern GBR).

  16. Exposure of clownfish larvae to suspended sediment levels found on the Great Barrier Reef: Impacts on gill structure and microbiome.

    Science.gov (United States)

    Hess, Sybille; Wenger, Amelia S; Ainsworth, Tracy D; Rummer, Jodie L

    2015-06-22

    Worldwide, increasing coastal development has played a major role in shaping coral reef species assemblages, but the mechanisms underpinning distribution patterns remain poorly understood. Recent research demonstrated delayed development in larval fishes exposed to suspended sediment, highlighting the need to further understand the interaction between suspended sediment as a stressor and energetically costly activities such as growth and development that are essential to support biological fitness. We examined the gill morphology and the gill microbiome in clownfish larvae (Amphiprion percula) exposed to suspended sediment concentrations (using Australian bentonite) commonly found on the inshore Great Barrier Reef. The gills of larvae exposed to 45 mg L(-1) of suspended sediment had excessive mucous discharge and growth of protective cell layers, resulting in a 56% thicker gill epithelium compared to fish from the control group. Further, we found a shift from 'healthy' to pathogenic bacterial communities on the gills, which could increase the disease susceptibility of larvae. The impact of suspended sediments on larval gills may represent an underlying mechanism behind the distribution patterns of fish assemblages. Our findings underscore the necessity for future coastal development to consider adverse effects of suspended sediments on fish recruitment, and consequently fish populations and ecosystem health.

  17. Origins and Implications of a Primary Crown-of-Thorns Starfish Outbreak in the Southern Great Barrier Reef

    Directory of Open Access Journals (Sweden)

    Ian Miller

    2015-01-01

    Full Text Available The crown-of-thorns starfish (COTS is a major predator of hard corals. Repeated COTS outbreaks in the Cairns and Central sections of the Great Barrier Reef (GBR have been responsible for greater declines in coral cover than any other type of disturbance, including cyclones, disease, and coral bleaching. Knowledge of the precise timing and location of primary outbreaks could reveal the initial drivers of outbreaks and so could indicate possible management measures. In the central GBR, COTS outbreaks appear to follow major flooding events, but despite many years of observations, no primary outbreak has ever been unequivocally identified in the central and northern GBR. Here we locate a primary outbreak of COTS on the southern GBR which is not correlated with flooding. Instead it appears to have been the result of a combination of life history traits of COTS and prevailing oceanographic conditions. The hydrodynamic setting implies that the outbreak could disperse larvae to other reefs in the region.

  18. Cross-shelf exchanges between the Coral Sea and the Great Barrier Reef lagoon determined from a regional-scale numerical model

    Science.gov (United States)

    Schiller, Andreas; Herzfeld, Mike; Brinkman, Richard; Rizwi, Farhan; Andrewartha, John

    2015-10-01

    Analyses of the variability in a 3.5-year run of a hydrodynamic model developed for simulating the circulation of the Great Barrier Reef (GBR) are presented. Sea-surface temperature, salinity, currents and cross-shelf transports between the GBR lagoon and the deep ocean offshore are investigated and compare well to available observations. Water mass intrusions and flushing events are critical factors in determining the health of coral reef and continental shelf ecosystems. Results from tracer release experiments provide a synoptic view of the variability of residence times within the GBR and identify critical regions of shelf-ocean exchange. One such region of significant tracer contribution to the shelf is identified in the vicinity of the Pompey Reefs in an area characterised by increased frequency of upslope transported water. Another location of enhanced flux on to the shelf exists in the region bracketing Palm Passage, where the reef matrix is very open, and provides little obstacle to cross-shelf exchange. The Palm Passage location is the origin of a northwards plume of elevated concentration. The model circulation provides a robust and useful picture of the Great Barrier Reef, rendering the model suitable for providing input to biogeochemical and sediment models to simulate, at a broad scale, the ecosystem health, water quality, transport and fate of water and waterborne material, moving through catchments and into the GBR lagoon.

  19. Clustered parrotfish feeding scars trigger partial coral mortality of massive Porites colonies on the inshore Great Barrier Reef

    Science.gov (United States)

    Welsh, J. Q.; Bonaldo, R. M.; Bellwood, D. R.

    2015-03-01

    Coral predation by parrotfishes can cause damage to coral colonies, but research into the dynamics of their feeding scars on Indo-Pacific corals is limited. We monitored feeding scars of the parrotfish Chlorurus microrhinos on massive Porites colonies at Orpheus Island (inshore Great Barrier Reef) over 4 months. Of the 30 marks monitored, 11 were single feeding scars, which all healed completely. The remaining 19 feeding marks consisted of clusters of scars. Eight began to recover, while 11 increased in size by 1,576 ± 252 % (mean ± SE). A logistic regression predicted that a single feeding scar on a Porites colony had a 97 % probability of healing; however, where more than three feeding scars were present, this dropped below 50 %. As excavating parrotfishes in the Indo-Pacific often take multiple focused bites, they may have a significant impact on the growth and mortality of massive Porites colonies at Orpheus Island.

  20. Historical photographs revisited: A case study for dating and characterizing recent loss of coral cover on the inshore Great Barrier Reef

    Science.gov (United States)

    Clark, Tara R.; Leonard, Nicole D.; Zhao, Jian-Xin; Brodie, Jon; McCook, Laurence J.; Wachenfeld, David R.; Duc Nguyen, Ai; Markham, Hannah L.; Pandolfi, John M.

    2016-01-01

    Long-term data with high-precision chronology are essential to elucidate past ecological changes on coral reefs beyond the period of modern-day monitoring programs. In 2012 we revisited two inshore reefs within the central Great Barrier Reef, where a series of historical photographs document a loss of hard coral cover between c.1890–1994 AD. Here we use an integrated approach that includes high-precision U-Th dating specifically tailored for determining the age of extremely young corals to provide a robust, objective characterisation of ecological transition. The timing of mortality for most of the dead in situ corals sampled from the historical photograph locations was found to coincide with major flood events in 1990–1991 at Bramston Reef and 1970 and 2008 at Stone Island. Evidence of some recovery was found at Bramston Reef with living coral genera similar to what was described in c.1890 present in 2012. In contrast, very little sign of coral re-establishment was found at Stone Island suggesting delayed recovery. These results provide a valuable reference point for managers to continue monitoring the recovery (or lack thereof) of coral communities at these reefs.

  1. Historical photographs revisited: A case study for dating and characterizing recent loss of coral cover on the inshore Great Barrier Reef.

    Science.gov (United States)

    Clark, Tara R; Leonard, Nicole D; Zhao, Jian-Xin; Brodie, Jon; McCook, Laurence J; Wachenfeld, David R; Duc Nguyen, Ai; Markham, Hannah L; Pandolfi, John M

    2016-01-27

    Long-term data with high-precision chronology are essential to elucidate past ecological changes on coral reefs beyond the period of modern-day monitoring programs. In 2012 we revisited two inshore reefs within the central Great Barrier Reef, where a series of historical photographs document a loss of hard coral cover between c.1890-1994 AD. Here we use an integrated approach that includes high-precision U-Th dating specifically tailored for determining the age of extremely young corals to provide a robust, objective characterisation of ecological transition. The timing of mortality for most of the dead in situ corals sampled from the historical photograph locations was found to coincide with major flood events in 1990-1991 at Bramston Reef and 1970 and 2008 at Stone Island. Evidence of some recovery was found at Bramston Reef with living coral genera similar to what was described in c.1890 present in 2012. In contrast, very little sign of coral re-establishment was found at Stone Island suggesting delayed recovery. These results provide a valuable reference point for managers to continue monitoring the recovery (or lack thereof) of coral communities at these reefs.

  2. On the variability of the flow along the Meso-American Barrier Reef system: a numerical model study of the influence of the Caribbean current and eddies

    Science.gov (United States)

    Ezer, Tal; Thattai, Deeptha V.; Kjerfve, Björn; Heyman, William D.

    2005-12-01

    A high resolution (3-8 km grid), 3D numerical ocean model of the West Caribbean Sea (WCS) is used to investigate the variability and the forcing of flows near the Meso-American Barrier Reef System (MBRS) which runs along the coasts of Mexico, Belize, Guatemala and Honduras. Mesoscale variations in velocity and temperature along the reef were found in seasonal model simulations and in observations; these variations are associated with meandering of the Caribbean current (CC) and the propagation of Caribbean eddies. Diagnostic calculations and a simple assimilation technique are combined to infer the dynamically adjusted flow associated with particular eddies. The results demonstrate that when a cyclonic eddy (negative sea surface height anomaly (SSHA)) is found near the MBRS the CC shifts offshore, the cyclonic circulation in the Gulf of Honduras (GOH) intensifies, and a strong southward flow results along the reef. However, when an anticyclonic eddy (positive SSHA) is found near the reef, the CC moves onshore and the flow is predominantly westward across the reef. The model results help to explain how drifters are able to propagate in a direction opposite to the mean circulation when eddies cause a reversal of the coastal circulation. The effect of including the Meso-American Lagoon west of the Belize Reef in the model topography was also investigated, to show the importance of having accurate coastal topography in determining the variations of transports across the MBRS. The variations found in transports across the MBRS (on seasonal and mesoscale time scales) may have important consequences for biological activities along the reef such as spawning aggregations; better understanding the nature of these variations will help ongoing efforts in coral reef conservation and maintaining the health of the ecosystem in the region.

  3. Lithostratigraphic analysis of a new stromatolite-thrombolite reef from across the rise of atmospheric oxygen in the Paleoproterozoic Turee Creek Group, Western Australia.

    Science.gov (United States)

    Barlow, E; Van Kranendonk, M J; Yamaguchi, K E; Ikehara, M; Lepland, A

    2016-07-01

    This study describes a previously undocumented dolomitic stromatolite-thrombolite reef complex deposited within the upper part (Kazput Formation) of the c. 2.4-2.3 Ga Turee Creek Group, Western Australia, across the rise of atmospheric oxygen. Confused by some as representing a faulted slice of the younger c. 1.8 Ga Duck Creek Dolomite, this study describes the setting and lithostratigraphy of the 350-m-thick complex and shows how it differs from its near neighbour. The Kazput reef complex is preserved along 15 km of continuous exposure on the east limb of a faulted, north-west-plunging syncline and consists of 5 recognisable facies associations (A-E), which form two part regressions and one transgression. The oldest facies association (A) is characterised by thinly bedded dololutite-dolarenite, with local domical stromatolites. Association B consists of interbedded columnar and stratiform stromatolites deposited under relatively shallow-water conditions. Association C comprises tightly packed columnar and club-shaped stromatolites deposited under continuously deepening conditions. Clotted (thrombolite-like) microbialite, in units up to 40 m thick, dominates Association D, whereas Association E contains bedded dololutite and dolarenite, and some thinly bedded ironstone, shale and black chert units. Carbon and oxygen isotope stratigraphy reveals a narrow range in both δ(13) Ccarb values, from -0.22 to 0.97‰ (VPDB: average = 0.68‰), and δ(18) O values, from -14.8 to -10.3‰ (VPDB), within the range of elevated fluid temperatures, likely reflecting some isotopic exchange. The Kazput Formation stromatolite-thrombolite reef complex contains features of younger Paleoproterozoic carbonate reefs, yet is 300-500 Ma older than previously described Proterozoic examples worldwide. Significantly, the microbial fabrics are clearly distinct from Archean stromatolitic marine carbonate reefs by way of containing the first appearance of clotted microbialite and large

  4. Diffusive boundary layers and photosynthesis of the epilithic algal community of coral reefs

    DEFF Research Database (Denmark)

    Larkum, Anthony W.D.; Koch, Eva-Maria W.; Kühl, Michael

    2003-01-01

    The effects of mass transfer resistance due to the presence of a diffusive boundary layer on the photosynthesis of the epilithic algal community (EAC) of a coral reef were studied. Photosynthesis and respiration of the EAC of dead coral surfaces were investigated for samples from two locations......: the Gulf of Aqaba, Eilat (Israel), and One Tree Reef on the Great Barrier Reef (Australia). Microsensors were used to measure O2 and pH at the EAC surface and above. Oxygen profiles in the light and dark indicated a diffusive boundary layer (DBL) thickness of 180–590 µm under moderate flow (~0.08 m s-1...

  5. Strategies of dissolved inorganic carbon use in macroalgae across a gradient of terrestrial influence: implications for the Great Barrier Reef in the context of ocean acidification

    Science.gov (United States)

    Diaz-Pulido, Guillermo; Cornwall, Christopher; Gartrell, Patrick; Hurd, Catriona; Tran, Dien V.

    2016-12-01

    Macroalgae are generally used as indicators of coral reef status; thus, understanding the drivers and mechanisms leading to increased macroalgal abundance are of critical importance. Ocean acidification (OA) due to elevated carbon dioxide (CO2) concentrations has been suggested to stimulate macroalgal growth and abundance on reefs. However, little is known about the physiological mechanisms by which reef macroalgae use CO2 from the bulk seawater for photosynthesis [i.e., (1) direct uptake of bicarbonate (HCO3 -) and/or CO2 by means of carbon concentrating mechanisms (CCM) and (2) the diffusive uptake of CO2], which species could benefit from increased CO2 or which habitats may be more susceptible to acidification-induced algal proliferations. Here, we provide the first quantitative examination of CO2-use strategies in coral reef macroalgae and provide information on how the proportion of species and the proportional abundance of species utilising each of the carbon acquisition strategies varies across a gradient of terrestrial influence (from inshore to offshore reefs) in the Great Barrier Reef (GBR). Four macroalgal groups were identified based on their carbon uptake strategies: (1) CCM-only (HCO3 - only users); (2) CCM-HCO3 -/CO2 (active uptake HCO3 - and/or CO2 use); (3) Non-CCM species (those relying on diffusive CO2 uptake); and (4) Calcifiers. δ13C values of macroalgae, confirmed by pH drift assays, show that diffusive CO2 use is more prevalent in deeper waters, possibly due to low light availability that limits activity of CCMs. Inshore shallow reefs had a higher proportion of CCM-only species, while reefs further away from terrestrial influence and exposed to better water quality had a higher number of non-CCM species than inshore and mid-shelf reefs. As non-CCM macroalgae are more responsive to increased seawater CO2 and OA, reef slopes of the outer reefs are probably the habitats most vulnerable to the impacts of OA. Our results suggest a potentially

  6. The cumulative impacts of repeated heavy rainfall, flooding and altered water quality on the high-latitude coral reefs of Hervey Bay, Queensland, Australia.

    Science.gov (United States)

    Butler, I R; Sommer, B; Zann, M; Zhao, J-X; Pandolfi, J M

    2015-07-15

    Terrestrial runoff and flooding have resulted in major impacts on coral communities worldwide, but we lack detailed understanding of flood plume conditions and their ecological effects. Over the course of repeated flooding between 2010 and 2013, we measured coral cover and water quality on the high-latitude coral reefs of Hervey Bay, Queensland, Australia. In 2013, salinity, total suspended solids, total nitrogen and total phosphorus were altered for up to six months post-flooding. Submarine groundwater caused hypo-saline conditions for a further four months. Despite the greater magnitude of flooding in 2013, declines in coral abundance (∼28%) from these floods were lower than the 2011 flood (∼40%), which occurred immediately after a decade of severe drought. There was an overall cumulative decrease of coral by ∼56% from 2010 to 2013. Our study highlights the need for local scale monitoring and research to facilitate informed management and conservation of catchments and marine environments.

  7. The combined effect of transient wind-driven upwelling and eddies on vertical nutrient fluxes and phytoplankton dynamics along Ningaloo Reef, Western Australia

    Science.gov (United States)

    Zhang, Zhenlin; Lowe, Ryan; Ivey, Greg; Xu, Jiangtao; Falter, James

    2016-07-01

    We investigate the influence of wind stresses, stratification, and coastal mesoscale eddies on upwelling intensity, vertical nutrient fluxes, and phytoplankton biomass on the continental shelf off Ningaloo Reef in northwestern Australia during an austral spring-summer period. A three-dimensional (3-D) hydrodynamic model, ROMS (Regional Ocean Modeling System), was coupled with a four-component nitrogen-based biogeochemical NPZD model (Nitrogen Phytoplankton Zooplankton Detritus) to resolve the shelf circulation as well as the coupled nutrient and phytoplankton dynamics within a broad shelf region surrounding Ningaloo Reef. The simulated currents, temperatures, and chlorophyll a concentrations generally agreed well with both the remotely sensed satellite images and observational data collected during a field experiment from September to November 2010. Scenario tests for an individual wind-driven upwelling event under a variety of hypothetical physical forcing conditions showed that shelf currents and biogeochemical variables were largely a function of wind stress and stratification. However, the functional relationships derived from this single wind event could not be extrapolated to other periods of the upwelling season, due to the additional influence of 3-D mesoscale processes on the shelf. The presence, intensification, and propagation of a coastal anticyclonic eddy during the study period strongly influenced the spatial and temporal variations in nutrient profiles, which in turn caused fluctuations in vertical nutrient fluxes that were largely independent of wind stress. These results emphasize that it is necessary to fully capture the 3-D details of the mesoscale and submesoscale coastal dynamics to properly predict upwelling-induced coastal phytoplankton dynamics in eddy-intensive shelf regions such as Ningaloo Reef.

  8. Ecology and Pathology of Novel Plaque-Like Growth Anomalies Affecting a Reef-Building Coral on the Great Barrier Reef

    Directory of Open Access Journals (Sweden)

    Lisa Ann Kelly

    2016-08-01

    Full Text Available Here we identify ecological and structural characteristics of a novel plaque-like growth anomaly (GA at outbreak levels in a population of the staghorn coral, Acropora muricata, on the Great Barrier Reef. The smooth appearance of the plaques results from thickening of skeletal structures comprising the coenosteum, leading to infilling of spaces between corallites, and was associated with hyperplasia and hypertrophy of calicodermal cells. This resulted in a 2-fold reduction in corallite height, a 1.6-fold increase in corallite width, and a 2.3-fold increase in the thickness of the calicodermal layer compared to healthy corallites. Plaque-like GAs affected ~67% of corals surveyed, and on average, encased 50% of the surface area of diseased branches. Progression rates along branches averaged 0.22mm day-1 over a 2.5-month period. GAs spread throughout colonies but their presence did not affect the linear extension rates of branches. Reproductive products were absent in 55% of GA tissues, and when present, mean oocyte and spermary numbers were reduced by 50%. However, when present, mean sizes of oocytes and spermaries did not differ between healthy and GA tissues. Symbiodinium densities were also reduced by 50% in polyps within GA tissues, which were characterized by an absence of polyp structure and chaotic arrangement of gastrovascular canals, compromising host nutrition. A 3-fold increase in stores of the immune-related precursor, prophenoloxidase, within GA tissues compared to healthy tissue suggests a primed immune response. Concomitantly, only 35% of prophenoloxidase was converted to the active enzyme phenoloxidase compared to 81% in healthy tissues, consistent with inhibition of immune-related enzymatic reactions by an unknown causative agent. The increasing frequency of emerging disease hotspots highlights the importance of understanding sublethal effects of diseases that have important implications for the fitness and long-term resilience of

  9. Expanded practice roles for community mental health nurses in Australia: confidence, critical factors for preparedness, and perceived barriers.

    Science.gov (United States)

    Elsom, Stephen; Happell, Brenda; Manias, Elizabeth

    2008-07-01

    As the momentum for nurse practitioner roles rapidly increases in Australia, little scholarly attention has been directed towards barriers to role expansion, the confidence necessary to undertake expanded practice roles (other than prescription of medication), or the educational preparation required for expanded roles. This paper reports on community mental health nurses' views regarding confidence to undertake expanded roles, their opinions regarding the necessary preparation for such roles, and barriers to role expansion. An questionnaire was administered to 296 community mental health nurses employed in metropolitan and rural settings in Victoria, Australia. In regards to various domains of expanded practice, nurses were least confident about prescribing but more than half (54%) reported that they would either "definitely" or "probably" feel confident. Over 90% reported "probably" or "definitely" feeling confident to make recommendations for involuntary treatment. Eighty-four percent and 79% reported similar levels of confidence in relation to ordering diagnostic tests and referring patients to medical specialists, respectively. Most (95%) agreed that extra educational preparation was necessary in relation to undertaking expanded practice roles successfully. Factors considered most strongly as barriers to expanded nursing practice included the medical profession, followed by fear of litigation, and government departments and policies.

  10. The role of marine reserves in the replenishment of a locally impacted population of anemonefish on the Great Barrier Reef.

    Science.gov (United States)

    Bonin, Mary C; Harrison, Hugo B; Williamson, David H; Frisch, Ashley J; Saenz-Agudelo, Pablo; Berumen, Michael L; Jones, Geoffrey P

    2016-01-01

    The development of parentage analysis to track the dispersal of juvenile offspring has given us unprecedented insight into the population dynamics of coral reef fishes. These tools now have the potential to inform fisheries management and species conservation, particularly for small fragmented populations under threat from exploitation and disturbance. In this study, we resolve patterns of larval dispersal for a population of the anemonefish Amphiprion melanopus in the Keppel Islands (southern Great Barrier Reef). Habitat loss and fishing appear to have impacted this population and a network of no-take marine reserves currently protects 75% of the potential breeders. Using parentage analysis, we estimate that 21% of recruitment in the island group was generated locally and that breeding adults living in reserves were responsible for 79% (31 of 39) of these of locally produced juveniles. Overall, the network of reserves was fully connected via larval dispersal; however, one reserve was identified as a critical source of larvae for the island group. The population in the Keppel Islands also appears to be well-connected to other source populations at least 60 km away, given that 79% (145 of 184) of the juveniles sampled remained unassigned in the parentage analysis. We estimated the effective size of the A. melanopus metapopulation to be 745 (582-993 95% CI) and recommend continued monitoring of its genetic status. Maintaining connectivity with populations beyond the Keppel Islands and recovery of local recruitment habitat, potentially through active restoration of host anemone populations, will be important for its long-term persistence.

  11. Sea surface temperature as a tracer to estimate cross-shelf turbulent diffusivity and flushing time in the Great Barrier Reef lagoon

    Science.gov (United States)

    Mao, Yadan; Ridd, Peter V.

    2015-06-01

    Accurate parameterization of spatially variable diffusivity in complex shelf regions such as the Great Barrier Reef (GBR) lagoon is an unresolved issue for hydrodynamic models. This leads to large uncertainties to the flushing time derived from them and to the evaluation of ecosystem resilience to terrestrially derived pollution. In fact, numerical hydrodynamic models and analytical cross-shore diffusion models have predicted very different flushing times for the GBR lagoon. Nevertheless, scarcity of in situ measurements used previously in the latter method prevents derivation of detailed diffusivity profiles. Here detailed cross-shore profiles of diffusivity were calculated explicitly in a closed form for the first time from the steady state transects of sea surface temperature for different sections of the GBR lagoon. We find that diffusivity remains relatively constant within the inner lagoon (reef-devoid regions, but increases dramatically where the reef matrixes start and fluctuates with reef size and density. The cross-shelf profile of steady state salinity calculated using the derived diffusivity values agrees well with field measurements. The calculated diffusivity values are also consistent with values derived from satellite-tracked drifters. Flushing time by offshore diffusion is of the order of 1 month, suggesting the important role of turbulent diffusion in flushing the lagoon, especially in reef-distributed regions. The results imply that previous very large residence times predicted by numerical hydrodynamic models may result from underestimation of diffusivity. Our findings can guide parameterization of diffusivity in hydrodynamic modeling.

  12. Reproductive ecology of four scleratinian species at Lizard Island, Great Barrier Reef

    Science.gov (United States)

    Harriott, V. J.

    1983-08-01

    Reproductive ecology of four scleractinian species, Lobophyllia corymbosa, Favia favus, Porties lutea and Porites australiensis was studied for two years on a patch reef near Lizard Island. Two major reproductive patterns were found: L. corymbosa and F. favus were simultaneous hermaphrodites and released gametes over several days in summer; and P. lutea, and P. australiensis were dioecious and released gametes over several weeks to several months respectively, in summer. Three of the four species spawned predominantly in the lunar period between the full and last quarter moon. In all four species, ovaries began developing several months earlier than testes. Number of ova per colony varied greatly amongst the species and was inversely related to mature egg size. The results presented here contrast with earlier assumptions of almost uniform viviparity of corals and supports the generalization that a brief annual spawning period with larvae developing externally may prove to be the dominant form of sexual reproduction in hermatypic corals.

  13. Monorchiid trematodes of the painted sweetlips, Diagramma labiosum (Perciformes: Haemulidae), from the southern Great Barrier Reef, including a new genus and three new species.

    Science.gov (United States)

    Searle, Emily L; Cutmore, Scott C; Cribb, Thomas H

    2014-07-01

    Five monorchiid species are reported from Diagramma labiosum Macleay (Perciformes: Haemulidae) collected from Heron Island on the southern Great Barrier Reef (GBR): two described species, Helicometroides longicollis Yamaguti, 1934 and Diplomonorchis kureh Machida, 2005 and three new species, including one new genus, Asymmetrostoma heronensis n. g., n. sp., Lasiotocus arrhichostoma n. sp. and Proctotrema addisoni n. sp. Helicometroides longicollis and D. kureh were previously reported from the closely related species Diagramma pictum (Thunberg) from Japan. Two further monorchiid species known from D. pictum, Genolopa plectorhynchi (Yamaguti, 1934) and Paraproctotrema fusiforme Yamaguti, 1934, appear to be absent from the southern Great Barrier Reef. Previous reports of two other monorchiids from D. labiosum from the GBR, Paramonorcheides pseudocaranxi Dove & Cribb, 1998 and Helicometroides vitellosus (Durio & Manter, 1968), are shown to have been made in error. The high richness of monorchiids and other trematode families in D. labiosum is consistent with that seen in other haemulids elsewhere.

  14. Reassessing the trophic role of reef sharks as apex predators on coral reefs

    Science.gov (United States)

    Frisch, Ashley J.; Ireland, Matthew; Rizzari, Justin R.; Lönnstedt, Oona M.; Magnenat, Katalin A.; Mirbach, Christopher E.; Hobbs, Jean-Paul A.

    2016-06-01

    Apex predators often have strong top-down effects on ecosystem components and are therefore a priority for conservation and management. Due to their large size and conspicuous predatory behaviour, reef sharks are typically assumed to be apex predators, but their functional role is yet to be confirmed. In this study, we used stomach contents and stable isotopes to estimate diet, trophic position and carbon sources for three common species of reef shark ( Triaenodon obesus, Carcharhinus melanopterus and C. amblyrhynchos) from the Great Barrier Reef (Australia) and evaluated their assumed functional role as apex predators by qualitative and quantitative comparisons with other sharks and large predatory fishes. We found that reef sharks do not occupy the apex of coral reef food chains, but instead have functional roles similar to those of large predatory fishes such as snappers, emperors and groupers, which are typically regarded as high-level mesopredators. We hypothesise that a degree of functional redundancy exists within this guild of predators, potentially explaining why shark-induced trophic cascades are rare or subtle in coral reef ecosystems. We also found that reef sharks participate in multiple food webs (pelagic and benthic) and are sustained by multiple sources of primary production. We conclude that large conspicuous predators, be they elasmobranchs or any other taxon, should not axiomatically be regarded as apex predators without thorough analysis of their diet. In the case of reef sharks, our dietary analyses suggest they should be reassigned to an alternative trophic group such as high-level mesopredators. This change will facilitate improved understanding of how reef communities function and how removal of predators (e.g., via fishing) might affect ecosystem properties.

  15. Impact of Global Warming on Coral Reefs

    Directory of Open Access Journals (Sweden)

    Sirilak CHUMKIEW

    2011-06-01

    Full Text Available In this paper, we review coral reef responses to climate variability and discuss the possible mechanisms by which climate impacts the coral reef ecosystem. Effects of oceanographic variables such as sea temperature, turbulence, salinity, and nutrients on the coral reef are discussed in terms of their influence on coral growth, reproduction, mortality, acclimation and adaptation. Organisms tend to be limited to specific thermal ranges with experimental findings showing that sufficient oxygen supply by ventilation and circulation only occurs within these ranges. Indirect effects of climate change on the food web are also discussed. Further integrative studies are required to improve our knowledge of the processes linking coral reef responses to future climate change scenarios.Graphical abstract► Incidence of coral reef bleaching on a worldwide scale: location of bleaching reports during 1979 - 2010. Maps are from ReefBase, www.reefbase.org: 1, Arabian Gulf (United Arab Emirates, Qatar, Iran; 2, Red Sea; 3, east Africa; 4, southern Africa (Mozambique, South Africa; 5, Madagascar; 6, Mauritius, Reunion; 7, Seychelles; 8, Chagos; 9, Maldives; 10, Sri Lanka/southern India; 11, Andaman Sea (Andamans, Thailand, Malaysia; 12, South China Sea (Vietnam, Paracel Islands; 13, Philippines; 14, Indonesia; 15, western Australia; 16, Great Barrier Reef; 17, Ryukyu Islands; 18, Mariana Islands; 19, Palau; 20, Papua New Guinea, Vanuatu; 21, Fiji; 22, Samoa; 23, French Polynesia (including Moorea; 24, Hawaiian Islands; 25, Easter Island; 26, Galapagos Islands; 27, equatorial eastern Pacific (Costa Rica, Cocos Island, Panama´, Colombia, Ecuador; 28, subtropical eastern Pacific (Mexico; 29, Mesoamerican reef system (Mexico, Belize, Honduras, Nicaragua; 30, Greater Antilles (Cuba, Haiti, Dominican Republic, Puerto Rico, Virgin Islands; 31, Bahamas, Florida; 32, Bermuda; 33, Lesser Antilles; 34, Curaçao, Aruba, Bonaire, Los Roques; 35, Brazil.

  16. Long-term records of coral calcification across the central Great Barrier Reef: assessing the impacts of river runoff and climate change

    Science.gov (United States)

    D'Olivo, J. P.; McCulloch, M. T.; Judd, K.

    2013-12-01

    Calcification rates are reported for 41 long-lived Porites corals from 7 reefs, in an inshore to offshore transect across the central Great Barrier Reef (GBR). Over multi-decadal timescales, corals in the mid-shelf (1947-2008) and outer reef (1952-2004) regions of the GBR exhibit a significant increase in calcification of 10.9 ± 1.1 % (1.4 ± 0.2 % per decade; ±1 SE) and 11.1 ± 3.9 % (2.1 ± 0.8 % per decade), respectively, while inner-shelf (1930-2008), reefs show a decline of 4.6 ± 1.3 % (0.6 ± 0.2 % per decade). This long-term decline in calcification for the inner GBR is attributed to the persistent ongoing effects of high sediment/nutrients loads from wet season river discharges, compounded by the effects of thermal stress, especially during the 1998 bleaching event. For the recent period (1990-2008), our data show recovery from the 1998 bleaching event, with no significant trend in the rates of calcification (1.1 ± 2.0 %) for the inner reefs, while corals from the mid-shelf central GBR show a decline of 3.3 ± 0.9 %. These results are in marked contrast to the extreme reef-wide declines of 14.2 % reported by De'ath et al. (2009) for the period of 1990-2005. The De'ath et al. (2009) results are, however, found to be compromised by the inclusion of incomplete final years, duplicated records, together with a bias toward inshore reefs strongly affected by the 1998 bleaching. Our new findings nevertheless continue to raise concerns, with the inner-shelf reefs continuing to show long-term declines in calcification consistent with increased disturbance from land-based effects. In contrast, the more `pristine' mid- and outer-shelf reefs appear to be undergoing a transition from increasing to decreasing rates of calcification, possibly reflecting the effects of CO2-driven climate change. Our study highlights the importance of properly undertaken, regular assessments of coral calcification that are representative of the distinctive cross-shelf environments and

  17. Coral colonisation of a shallow reef flat in response to rising sea level: quantification from 35 years of remote sensing data at Heron Island, Australia

    Science.gov (United States)

    Scopélitis, J.; Andréfouët, S.; Phinn, S.; Done, T.; Chabanet, P.

    2011-12-01

    Observations made on Heron Island reef flat during the 1970s-1990s highlighted the importance of rapid change in hydrodynamics and accommodation space for coral development. Between the 1940s and the 1990s, the minimum reef-flat top water level varied by some tens of centimetres, successively down then up, in rapid response to local engineering works. Coral growth followed sea-level variations and was quantified here for several coral communities using horizontal two-dimensional above water remotely sensed observations. This required seven high spatial resolution aerial photographs and Quickbird satellite images spanning 35 years: 1972, 1979, 1990, 1992, 2002, 2006 and 2007. The coral growth dynamics followed four regimes corresponding to artificially induced changes in sea levels: 1972-1979 (lowest growth rate): no detectable coral development, due to high tidal currents and minimum mean low-tide water level; 1979-1991 (higher growth rate): horizontal coral development promoted by calmer hydrodynamic conditions; 1991-2001(lower growth rate): vertical coral development, induced by increased local sea level by ~12 cm due to construction of new bund walls; 2001-2007 (highest growth rate): horizontal coral development after that vertical growth had become limited by sea level. This unique time-series displays a succession of ecological stage comprising a `catch-up' dynamic in response to a rapid local sea-level rise in spite of the occurrences of the most severe bleaching events on record (1998, 2002) and the decreasing calcification rates reported in massive corals in the northern part of the Great Barrier Reef.

  18. Effects of High Dissolved Inorganic and Organic Carbon Availability on the Physiology of the Hard Coral Acropora millepora from the Great Barrier Reef.

    Directory of Open Access Journals (Sweden)

    Friedrich W Meyer

    Full Text Available Coral reefs are facing major global and local threats due to climate change-induced increases in dissolved inorganic carbon (DIC and because of land-derived increases in organic and inorganic nutrients. Recent research revealed that high availability of labile dissolved organic carbon (DOC negatively affects scleractinian corals. Studies on the interplay of these factors, however, are lacking, but urgently needed to understand coral reef functioning under present and near future conditions. This experimental study investigated the individual and combined effects of ambient and high DIC (pCO2 403 μatm/ pHTotal 8.2 and 996 μatm/pHTotal 7.8 and DOC (added as Glucose 0 and 294 μmol L-1, background DOC concentration of 83 μmol L-1 availability on the physiology (net and gross photosynthesis, respiration, dark and light calcification, and growth of the scleractinian coral Acropora millepora (Ehrenberg, 1834 from the Great Barrier Reef over a 16 day interval. High DIC availability did not affect photosynthesis, respiration and light calcification, but significantly reduced dark calcification and growth by 50 and 23%, respectively. High DOC availability reduced net and gross photosynthesis by 51% and 39%, respectively, but did not affect respiration. DOC addition did not influence calcification, but significantly increased growth by 42%. Combination of high DIC and high DOC availability did not affect photosynthesis, light calcification, respiration or growth, but significantly decreased dark calcification when compared to both controls and DIC treatments. On the ecosystem level, high DIC concentrations may lead to reduced accretion and growth of reefs dominated by Acropora that under elevated DOC concentrations will likely exhibit reduced primary production rates, ultimately leading to loss of hard substrate and reef erosion. It is therefore important to consider the potential impacts of elevated DOC and DIC simultaneously to assess real world

  19. Effects of High Dissolved Inorganic and Organic Carbon Availability on the Physiology of the Hard Coral Acropora millepora from the Great Barrier Reef.

    Science.gov (United States)

    Meyer, Friedrich W; Vogel, Nikolas; Diele, Karen; Kunzmann, Andreas; Uthicke, Sven; Wild, Christian

    2016-01-01

    Coral reefs are facing major global and local threats due to climate change-induced increases in dissolved inorganic carbon (DIC) and because of land-derived increases in organic and inorganic nutrients. Recent research revealed that high availability of labile dissolved organic carbon (DOC) negatively affects scleractinian corals. Studies on the interplay of these factors, however, are lacking, but urgently needed to understand coral reef functioning under present and near future conditions. This experimental study investigated the individual and combined effects of ambient and high DIC (pCO2 403 μatm/ pHTotal 8.2 and 996 μatm/pHTotal 7.8) and DOC (added as Glucose 0 and 294 μmol L-1, background DOC concentration of 83 μmol L-1) availability on the physiology (net and gross photosynthesis, respiration, dark and light calcification, and growth) of the scleractinian coral Acropora millepora (Ehrenberg, 1834) from the Great Barrier Reef over a 16 day interval. High DIC availability did not affect photosynthesis, respiration and light calcification, but significantly reduced dark calcification and growth by 50 and 23%, respectively. High DOC availability reduced net and gross photosynthesis by 51% and 39%, respectively, but did not affect respiration. DOC addition did not influence calcification, but significantly increased growth by 42%. Combination of high DIC and high DOC availability did not affect photosynthesis, light calcification, respiration or growth, but significantly decreased dark calcification when compared to both controls and DIC treatments. On the ecosystem level, high DIC concentrations may lead to reduced accretion and growth of reefs dominated by Acropora that under elevated DOC concentrations will likely exhibit reduced primary production rates, ultimately leading to loss of hard substrate and reef erosion. It is therefore important to consider the potential impacts of elevated DOC and DIC simultaneously to assess real world scenarios, as

  20. The Great Barrier Reef World Heritage Area seagrasses: Managing this iconic Australian ecosystem resource for the future

    Science.gov (United States)

    Coles, Robert G.; Rasheed, Michael A.; McKenzie, Len J.; Grech, Alana; York, Paul H.; Sheaves, Marcus; McKenna, Skye; Bryant, Catherine

    2015-02-01

    The Great Barrier Reef World Heritage Area (GBRWHA) includes one of the world's largest areas of seagrass (35,000 km2) encompassing approximately 20% of the world's species. Mapping and monitoring programs sponsored by the Australian and Queensland Governments and Queensland Port Authorities have tracked a worrying decrease in abundance and area since 2007. This decline has almost certainly been the result of a series of severe tropical storms and associated floods exacerbating existing human induced stressors. A complex variety of marine and terrestrial management actions and plans have been implemented to protect seagrass and other habitats in the GBRWHA. For seagrasses, these actions are inadequate. They provide an impression of effective protection of seagrasses; reduce the sense of urgency needed to trigger action; and waste the valuable and limited supply of "conservation capital". There is a management focus on ports, driven by public concerns about high profile development projects, which exaggerates the importance of these relatively concentrated impacts in comparison to the total range of threats and stressors. For effective management of seagrass at the scale of the GBRWHA, more emphasis needs to be placed on the connectivity between seagrass meadow health, watersheds, and all terrestrial urban and agricultural development associated with human populations. The cumulative impacts to seagrass from coastal and marine processes in the GBRWHA are not evenly distributed, with a mosaic of high and low vulnerability areas. This provides an opportunity to make choices for future coastal development plans that minimise stress on seagrass meadows.

  1. Altered transcription levels of endocrine associated genes in two fisheries species collected from the Great Barrier Reef catchment and lagoon.

    Science.gov (United States)

    Kroon, Frederieke J; Hook, Sharon E; Jones, Dean; Metcalfe, Suzanne; Henderson, Brent; Smith, Rachael; Warne, Michael St J; Turner, Ryan D; McKeown, Adam; Westcott, David A

    2015-03-01

    The Great Barrier Reef (GBR) is chronically exposed to agricultural run-off containing pesticides, many of which are known endocrine disrupting chemicals (EDCs). Here, we measure mRNA transcript abundance of two EDC biomarkers in wild populations of barramundi (Lates calcarifer) and coral trout (Plectropomus leopardus and Plectropomus maculatus). Transcription levels of liver vitellogenin (vtg) differed significantly in both species amongst sites with different exposures to agricultural run-off; brain aromatase (cyp19a1b) revealed some differences for barramundi only. Exposure to run-off from sugarcane that contains pesticides is a likely pathway given (i) significant associations between barramundi vtg transcription levels, catchment sugarcane land use, and river pesticide concentrations, and (ii) consistency between patterns of coral trout vtg transcription levels and pesticide distribution in the GBR lagoon. Given the potential consequences of such exposure for reproductive fitness and population dynamics, these results are cause for concern for the sustainability of fisheries resources downstream from agricultural land uses.

  2. Cyanotoxins are not implicated in the etiology of coral black band disease outbreaks on Pelorus Island, Great Barrier Reef.

    Science.gov (United States)

    Glas, Martin S; Motti, Cherie A; Negri, Andrew P; Sato, Yui; Froscio, Suzanne; Humpage, Andrew R; Krock, Bernd; Cembella, Allan; Bourne, David G

    2010-07-01

    Cyanobacterial toxins (i.e. microcystins) produced within the microbial mat of coral black band disease (BBD) have been implicated in disease pathogenicity. This study investigated the presence of toxins within BBD lesions and other cyanobacterial patch (CP) lesions, which, in some instances ( approximately 19%), facilitated the onset of BBD, from an outbreak site at Pelorus Island on the inshore, central Great Barrier Reef (GBR). Cyanobacterial species that dominated the biomass of CP and BBD lesions were cultivated and identified, based on morphology and 16S rRNA gene sequences, as Blennothrix- and Oscillatoria-affiliated species, respectively, and identical to cyanobacterial sequences retrieved from previous molecular studies from this site. The presence of the cyanotoxins microcystin, cylindrospermopsin, saxitoxin, nodularin and anatoxin and their respective gene operons in field samples of CP and BBD lesions and their respective culture isolations was tested using genetic (PCR-based screenings), chemical (HPLC-UV, FTICR-MS and LC/MS(n)) and biochemical (PP2A) methods. Cyanotoxins and cyanotoxin synthetase genes were not detected in any of the samples. Cyanobacterial species dominant within CP and BBD lesions were phylogenetically distinct from species previously shown to produce cyanotoxins and isolated from BBD lesions. The results from this study demonstrate that cyanobacterial toxins appear to play no role in the pathogenicity of CP and BBD at this site on the GBR.

  3. Microsatellites Reveal Genetic Homogeneity among Outbreak Populations of Crown-of-Thorns Starfish (Acanthaster cf. solaris) on Australia’s Great Barrier Reef

    KAUST Repository

    Harrison, Hugo

    2017-03-10

    Specific patterns in the initiation and spread of reef-wide outbreaks of crown-of-thorns starfish are important, both to understand potential causes (or triggers) of outbreaks and to develop more effective and highly targeted management and containment responses. Using analyses of genetic diversity and structure (based on 17 microsatellite loci), this study attempted to resolve the specific origin for recent outbreaks of crown-of-thorns on Australia’s Great Barrier Reef (GBR). We assessed the genetic structure amongst 2705 starfish collected from 13 coral reefs in four regions that spanned ~1000 km of the GBR. Our results indicate that populations sampled across the full length of the GBR are genetically homogeneous (G’ST = −0.001; p = 0.948) with no apparent genetic structure between regions. Approximate Bayesian computational analyses suggest that all sampled populations had a common origin and that current outbreaking populations of crown-of-thorns starfish (CoTS) in the Swains are not independent of outbreak populations in the northern GBR. Despite hierarchical sampling and large numbers of CoTS genotyped from individual reefs and regions, limited genetic structure meant we were unable to determine a putative source population for the current outbreak of CoTS on the GBR. The very high genetic homogeneity of sampled populations and limited evidence of inbreeding indicate rapid expansion in population size from multiple, undifferentiated latent populations.

  4. The role of sexual and asexual reproduction in structuring high latitude populations of the reef coral Pocillopora damicornis.

    Science.gov (United States)

    Miller, K J; Ayre, D J

    2004-06-01

    The genotypic composition of populations of the asexually viviparous coral Pocillopora damicornis varies in a manner that challenges classical models of the roles of sexual and asexual reproduction. On the geographically isolated Hawaiian reefs and high latitude reefs in Western Australia, P. damicornis populations are highly clonal although it has been argued that sexual reproduction via broadcast spawning generates widely dispersed colonists. In contrast, on eastern Australia's tropical Great Barrier Reef populations show little evidence of clonality. Here, we compare the genotypic diversity of adult and juvenile colonies of P. damicornis at seven sites on eastern Australia's high latitude Lord Howe Island reefs to determine if levels of clonality vary with habitat heterogeneity and age of colonies (as predicted by theory) or alternatively if clonality is again always high as for other isolated reef systems. We found 55-100% of the genotypic diversity expected for random mating at all seven sites and little evidence of asexual recruitment irrespective of habitat heterogeneity (sheltered versus wave exposed) or colony age. We found reduced levels of genetic diversity compared with tropical reefs (2.75 versus 4 alleles/locus), which supports earlier findings that Lord Howe Island is an isolated reef system. Furthermore, heterozygote deficits coupled with significant genetic subdivision among sites (FST=0.102+/-0.03) is typical of populations that have limited larval connections and are inbred. We conclude that the genetic structure of P. damicornis at Lord Howe Island reflects populations that are maintained through localised recruitment of sexually produced larvae.

  5. Lichen Monitoring Delineates Biodiversity on a Great Barrier Reef Coral Cay

    Directory of Open Access Journals (Sweden)

    Paul C. Rogers

    2015-05-01

    Full Text Available Coral islands around the world are threatened by changing climates. Rising seas, drought, and increased tropical storms are already impacting island ecosystems. We aim to better understand lichen community ecology of coral island forests. We used an epiphytic lichen community survey to gauge Pisonia (Pisonia grandis R.BR., which dominates forest conditions on Heron Island, Australia. Nine survey plots were sampled for lichen species presence and abundance, all tree diameters and species, GPS location, distance to forest-beach edge, and dominant forest type. Results found only six unique lichens and two lichen associates. A Multi-Response Permutation Procedures (MRPP test found statistically distinct lichen communities among forest types. The greatest group differences were between interior Pisonia and perimeter forest types. Ordinations were performed to further understand causes for distinctions in lichen communities. Significant explanatory gradients were distance to forest edge, tree density (shading, and Pisonia basal area. Each of these variables was negatively correlated with lichen diversity and abundance, suggesting that interior, successionally advanced, Pisonia forests support fewer lichens. Island edge and presumably younger forests—often those with greater tree diversity and sunlight penetration—supported the highest lichen diversity. Heron Island’s Pisonia-dominated forests support low lichen diversity which mirrors overall biodiversity patterns. Lichen biomonitoring may provide a valuable indicator for assessing island ecosystems for conservation purposes regionally.

  6. Barriers to Seeking Help for Skin Cancer Detection in Rural Australia

    Science.gov (United States)

    Fennell, Kate M.; Martin, Kimberley; Wilson, Carlene J.; Trenerry, Camilla; Sharplin, Greg; Dollman, James

    2017-01-01

    This study explores rural South Australians’ barriers to help-seeking for skin cancer detection. A total of 201 randomly selected rural adults (18–94 years, 66% female) were presented with a skin-cancer-related scenario via telephone and were asked the extent to which various barriers would impede their help-seeking, based on an amended version of the Barriers to Help-Seeking Scale. Older (≥63 years) and less educated participants endorsed barriers more strongly than their younger, more educated counterparts in the following domains; “Concrete barriers and distrust of caregivers”, “Emotional control”, “Minimising problem and Normalisation”, “Need for control and self-reliance” (every domain other than “Privacy”). Socioeconomic disadvantage, gender, and farmer status did not predict stronger overall barriers, but some gender and occupation-related differences were detected at the item level. Farmers were also more likely to endorse the “Minimising problem and normalization” domain than their non-farmer working rural counterparts. Widely endorsed barriers included the tendency to minimise the problem, a desire to remain in control/not be influenced by others, reluctance to show emotion or complain, and having concerns about privacy or waiting times. PMID:28208803

  7. Residency and spatial use by reef sharks of an isolated seamount and its implications for conservation.

    Directory of Open Access Journals (Sweden)

    Adam Barnett

    Full Text Available Although marine protected areas (MPAs are a common conservation strategy, these areas are often designed with little prior knowledge of the spatial behaviour of the species they are designed to protect. Currently, the Coral Sea area and its seamounts (north-east Australia are under review to determine if MPAs are warranted. The protection of sharks at these seamounts should be an integral component of conservation plans. Therefore, knowledge on the spatial ecology of sharks at the Coral Sea seamounts is essential for the appropriate implementation of management and conservation plans. Acoustic telemetry was used to determine residency, site fidelity and spatial use of three shark species at Osprey Reef: whitetip reef sharks Triaenodon obesus, grey reef sharks Carcharhinus amblyrhynchos and silvertip sharks Carcharhinus albimarginatus. Most individuals showed year round residency at Osprey Reef, although five of the 49 individuals tagged moved to the neighbouring Shark Reef (~14 km away and one grey reef shark completed a round trip of ~250 km to the Great Barrier Reef. Additionally, individuals of white tip and grey reef sharks showed strong site fidelity to the areas they were tagged, and there was low spatial overlap between groups of sharks tagged at different locations. Spatial use at Osprey Reef by adult sharks is generally restricted to the north-west corner. The high residency and limited spatial use of Osprey Reef suggests that reef sharks would be highly vulnerable to targeted fishing pressure and that MPAs incorporating no-take of sharks would be effective in protecting reef shark populations at Osprey and Shark Reef.

  8. Residency and spatial use by reef sharks of an isolated seamount and its implications for conservation.

    Science.gov (United States)

    Barnett, Adam; Abrantes, Kátya G; Seymour, Jamie; Fitzpatrick, Richard

    2012-01-01

    Although marine protected areas (MPAs) are a common conservation strategy, these areas are often designed with little prior knowledge of the spatial behaviour of the species they are designed to protect. Currently, the Coral Sea area and its seamounts (north-east Australia) are under review to determine if MPAs are warranted. The protection of sharks at these seamounts should be an integral component of conservation plans. Therefore, knowledge on the spatial ecology of sharks at the Coral Sea seamounts is essential for the appropriate implementation of management and conservation plans. Acoustic telemetry was used to determine residency, site fidelity and spatial use of three shark species at Osprey Reef: whitetip reef sharks Triaenodon obesus, grey reef sharks Carcharhinus amblyrhynchos and silvertip sharks Carcharhinus albimarginatus. Most individuals showed year round residency at Osprey Reef, although five of the 49 individuals tagged moved to the neighbouring Shark Reef (~14 km away) and one grey reef shark completed a round trip of ~250 km to the Great Barrier Reef. Additionally, individuals of white tip and grey reef sharks showed strong site fidelity to the areas they were tagged, and there was low spatial overlap between groups of sharks tagged at different locations. Spatial use at Osprey Reef by adult sharks is generally restricted to the north-west corner. The high residency and limited spatial use of Osprey Reef suggests that reef sharks would be highly vulnerable to targeted fishing pressure and that MPAs incorporating no-take of sharks would be effective in protecting reef shark populations at Osprey and Shark Reef.

  9. Migrant Sexual Health Help-Seeking and Experiences of Stigmatization and Discrimination in Perth, Western Australia: Exploring Barriers and Enablers.

    Science.gov (United States)

    Agu, Josephine; Lobo, Roanna; Crawford, Gemma; Chigwada, Bethwyn

    2016-05-11

    Increasing HIV notifications amongst migrant and mobile populations to Australia is a significant public health issue. Generalizations about migrant health needs and delayed or deterred help-seeking behaviors can result from disregarding the variation between and within cultures including factors, such as drivers for migration and country of birth. This study explored barriers and enablers to accessing sexual health services, including experiences of stigma and discrimination, within a purposive sample of sub-Saharan African, Southeast Asian, and East Asian migrants. A qualitative design was employed using key informant interviews and focus group discussions. A total of 45 people with ages ranging from 18 to 50 years, participated in focus group discussions. Common barriers and enablers to help seeking behaviors were sociocultural and religious influence, financial constraints, and knowledge dissemination to reduce stigma. Additionally, common experiences of stigma and discrimination were related to employment and the social and self-isolation of people living with HIV. Overcoming barriers to accessing sexual health services, imparting sexual health knowledge, recognizing variations within cultures, and a reduction in stigma and discrimination will simultaneously accelerate help-seeking and result in better sexual health outcomes in migrant populations.

  10. The globalisation of the nursing workforce: barriers confronting overseas qualified nurses in Australia.

    Science.gov (United States)

    Hawthorne, L

    2001-12-01

    Recent decades have coincided with the rapid globalisation of the nursing profession. Within Australia there has been rising dependence on overseas qualified nurses (OQNs) to compensate for chronic nurse shortages related to the continued exodus of Australian nurses overseas and to emerging opportunities in other professions. Between 1983/4 and 1994/5, 30 544 OQNs entered Australia on either a permanent or temporary basis, counter-balancing the departure overseas of 23 613 locally trained and 6519 migrant nurses (producing a net gain of just 412 nurses in all). The period 1995/6--1999/2000 saw an additional 11 757 permanent or long-term OQN arrivals, with nursing currently ranked third target profession in Australia's skill migration program, in the context of continuing attrition among local nurses. This pattern of reliance on OQNs is a phenomenon simultaneously occurring in the UK, the US, Canada and the Middle East --- the globalisation of nursing reflecting not merely Western demand but the growing agency and participation of women in skilled migration, their desire for improved quality of life, enhanced professional opportunity and remuneration, family reunion and adventure.

  11. A complex of species related to Paradiscogaster glebulae (Digenea: Faustulidae) in chaetodontid fishes (Teleostei: Perciformes) of the Great Barrier Reef.

    Science.gov (United States)

    Diaz, Pablo E; Bray, Rodney A; Cutmore, Scott C; Ward, Selina; Cribb, Thomas H

    2015-10-01

    A total of 1523 individuals of 34 species of chaetodontids from the Great Barrier Reef were examined for faustulid trematodes. Specimens resembling Paradiscogaster glebulae Bray, Cribb & Barker, 1994 were found in nine chaetodontid species at three localities. These specimens are shown, on the basis of combined morphological and molecular analyses, to comprise a complex of morphologically similar and partly cryptic species. The complex may comprise as many as six distinct species of which three are resolved here. The true P. glebulae is identified in Chaetodon ornatissimus Cuvier, 1831, Chaetodon aureofasciatus Macleay, 1878, Chaetodon plebeius Cuvier, 1831, Chaetodon rainfordi McCulloch, 1923 and Chaetodon speculum Cuvier, 1831. Two new species are described, Paradiscogaster munozae n. sp. from Heniochus varius (Cuvier, 1829), Heniochus chrysostomus Cuvier, 1831 and Chaetodon citrinellus Cuvier, 1831 and Paradiscogaster melendezi n. sp. from Chaetodon kleinii Bloch, 1790. In terms of morphology the three species differ most clearly in the development of the appendages on the ventral sucker. The three species differ at 3-6consistent bp of ITS2 rDNA. The host-specificity of the three species differs strikingly. P. melendezi n. sp. infects just one fish species, P. glebulae infects species of only one clade of Chaetodon, and P. munozae n. sp. infects quite unrelated species. The basis of this unusual pattern of host-specificity requires further exploration. Two of the species recognised here, P. glebulae and P. munozae n. sp., showed apparent intra-individual variation in the ITS2 rDNA sequences as demonstrated by clear, replicated double peaks in the electropherograms.

  12. Tolerance of endolithic algae to elevated temperature and light in the coral Montipora monasteriata from the southern Great Barrier Reef.

    Science.gov (United States)

    Fine, Maoz; Meroz-Fine, Efrat; Hoegh-Guldberg, Ove

    2005-01-01

    Photosynthetic endolithic algae and cyanobacteria live within the skeletons of many scleractinians. Under normal conditions, less than 5% of the photosynthetically active radiation (PAR) reaches the green endolithic algae because of the absorbance of light by the endosymbiotic dinoflagellates and the carbonate skeleton. When corals bleach (loose dinoflagellate symbionts), however, the tissue of the corals become highly transparent and photosynthetic microendoliths may be exposed to high levels of both thermal and solar stress. This study explores the consequence of these combined stresses on the phototrophic endoliths inhabiting the skeleton of Montipora monasteriata, growing at Heron Island, on the southern Great Barrier Reef. Endoliths that were exposed to sun after tissue removal were by far more susceptible to thermal photoinhibition and photo-damage than endoliths under coral tissue that contained high concentrations of brown dinoflagellate symbionts. While temperature or light alone did not result in decreased photosynthetic efficiency of the endoliths, combined thermal and solar stress caused a major decrease and delayed recovery. Endoliths protected under intact tissue recovered rapidly and photoacclimated soon after exposure to elevated sea temperatures. Endoliths under naturally occurring bleached tissue of M. monasteriata colonies (bleaching event in March 2004 at Heron Island) acclimated to increased irradiance as the brown symbionts disappeared. We suggest that two major factors determine the outcome of thermal bleaching to the endolith community. The first is the microhabitat and light levels under which a coral grows, and the second is the susceptibility of the coral-dinoflagellates symbiosis to thermal stress. More resistant corals may take longer to bleach allowing endoliths time to acclimate to a new light environment. This in turn may have implications for coral survival.

  13. Changes in water clarity in response to river discharges on the Great Barrier Reef continental shelf: 2002-2013

    Science.gov (United States)

    Fabricius, K. E.; Logan, M.; Weeks, S. J.; Lewis, S. E.; Brodie, J.

    2016-05-01

    Water clarity is a key factor for the health of marine ecosystems. The Australian Great Barrier Reef (GBR) is located on a continental shelf, with >35 major seasonal rivers discharging into this 344,000 km2 tropical to subtropical ecosystem. This work investigates how river discharges affect water clarity in different zones along and across the GBR. For each day over 11 years (2002-2013) we calculated 'photic depth' as a proxy measure of water clarity (calibrated to be equivalent to Secchi depth), for each 1 km2 pixel from MODIS-Aqua remote sensing data. Long-term and seasonal changes in photic depth were related to the daily discharge volumes of the nearest rivers, after statistically removing the effects of waves and tides on photic depth. The relationships between photic depths and rivers differed across and along the GBR. They typically declined from the coastal to offshore zones, and were strongest in proximity to rivers in agriculturally modified catchments. In most southern inner zones, photic depth declined consistently throughout the 11-year observation period; such long-term trend was not observed offshore nor in the northern regions. Averaged across the GBR, photic depths declined to 47% of local maximum values soon after the onset of river floods, and recovery to 95% of maximum values took on average 6 months (range: 150-260 days). The river effects were strongest at latitude 14.5°-19.0°S, where river loads are high and the continental shelf is narrow. Here, even offshore zones showed a >40% seasonal decline in photic depth, and 17-24% reductions in annual mean photic depth in years with large river nutrients and sediment loads. Our methodology is based on freely available data and tools and may be applied to other shelf systems, providing valuable insights in support of ecosystem management.

  14. Marine protected areas increase resilience among coral reef communities.

    Science.gov (United States)

    Mellin, Camille; Aaron MacNeil, M; Cheal, Alistair J; Emslie, Michael J; Julian Caley, M

    2016-06-01

    With marine biodiversity declining globally at accelerating rates, maximising the effectiveness of conservation has become a key goal for local, national and international regulators. Marine protected areas (MPAs) have been widely advocated for conserving and managing marine biodiversity yet, despite extensive research, their benefits for conserving non-target species and wider ecosystem functions remain unclear. Here, we demonstrate that MPAs can increase the resilience of coral reef communities to natural disturbances, including coral bleaching, coral diseases, Acanthaster planci outbreaks and storms. Using a 20-year time series from Australia's Great Barrier Reef, we show that within MPAs, (1) reef community composition was 21-38% more stable; (2) the magnitude of disturbance impacts was 30% lower and (3) subsequent recovery was 20% faster that in adjacent unprotected habitats. Our results demonstrate that MPAs can increase the resilience of marine communities to natural disturbance possibly through herbivory, trophic cascades and portfolio effects.

  15. Perceived need for mental health care and barriers to care in the Netherlands and Australia.

    NARCIS (Netherlands)

    Prins, M.; Meadows, G.; Bobevski, I.; Graham, A.; Verhaak, P.; Meer, K. van der; Penninx, B.; Bensing, J.

    2011-01-01

    PURPOSE: This study of Australian and Dutch people with anxiety or depressive disorder aims to examine people's perceived needs and barriers to care, and to identify possible similarities and differences. METHODS: Data from the Australian National Survey of Mental Health and Well-Being and the Nethe

  16. Perceived need for mental health care and barriers to care in the Netherlands and Australia

    NARCIS (Netherlands)

    Prins, Marijn; Meadows, Graham; Bobevski, Irene; Graham, Annette; Verhaak, Peter; van der Meer, Klaas; Penninx, Brenda; Bensing, Jozien

    2011-01-01

    This study of Australian and Dutch people with anxiety or depressive disorder aims to examine people's perceived needs and barriers to care, and to identify possible similarities and differences. Data from the Australian National Survey of Mental Health and Well-Being and the Netherlands Study of De

  17. Hydrodynamic response of a fringing coral reef to a rise in mean sea level

    Science.gov (United States)

    Taebi, Soheila; Pattiaratchi, Charitha

    2014-07-01

    Ningaloo Reef, located along the northwest coast of Australia, is one of the longest fringing coral reefs in the world extending ~300 km. Similar to other fringing reefs, it consists of a barrier reef ~1-6 km offshore with occasional gaps, backed by a shallow lagoon. Wave breaking on the reef generates radiation stress gradients that produces wave setup across the reef and lagoon and mean currents across the reef. A section of Ningaloo Reef at Sandy Bay was chosen as the focus of an intense 6-week field experiment and numerical simulation using the wave model SWAN coupled to the three-dimensional circulation model ROMS. The physics of nearshore processes such as wave breaking, wave setup and mean flow across the reef was investigated in detail by examining the various momentum balances established in the system. The magnitude of the terms and the distance of their peaks from reef edge in the momentum balance were sensitive to the changes in mean sea level, e.g. the wave forces decreased as the mean water depth increased (and hence, wave breaking dissipation was reduced). This led to an increase in the wave power at the shoreline, a slight shift of the surf zone to the lee side of the reef and changes in the intensity of the circulation. The predicted hydrodynamic fields were input into a Lagrangian particle tracking model to estimate the transport time scale of the reef-lagoon system. Flushing time of the lagoon with the open ocean was computed using two definitions in renewal of semi-enclosed water basins and revealed the sensitivity of such a transport time scale to methods. An increase in the lagoon exchange rate at smaller mean sea-level rise and the decrease at higher mean sea-level rise was predicted through flushing time computed using both methods.

  18. Contrasting patterns of reef utilization and recruitment of coral trout ( Plectropomus leopardus) and snapper ( Lutjanus carponotatus) at One Tree Island, southern Great Barrier Reef

    Science.gov (United States)

    Kingsford, M. J.

    2009-03-01

    Patterns of abundance, age structure and recruitment of coral trout ( Plectropomus leopardus) and snapper ( Lutjanus carponotatus) were described in different environments, which varied in benthic cover, in a 12-yr study at One Tree Island. It was hypothesized that both taxa would show strong preferences to different environments and benthic cover and that patterns would be consistent through time. Plectropomus leopardus were abundant on the reef slope and seaward edge of the lagoon, where live coral cover was high, and recruitment was generally low, in all environments. The population was sustained by a trickle of recruits, and total abundance varied little after 10 to 25 yr of protection in a no-take area, suggesting P. leopardus had reached an environment-related carrying capacity. Protogynous P. leopardus recruited to shallow environments at sites with 20% or more hard live coral and age data indicated the abundance of fish on the reef slope was from redistribution. Most recruits of gonochoristic L. carponotatus (<150 mm Standard length, SL) were found in the lagoonal environments, and adults were rare on the reef slope. Abundance of recruit L. carponotatus and P. leopardus did not correlate with percent cover of live and soft coral within environments. Recruits of L. carponotatus were usually rare in all lagoonal environments, but in 2003, many recruits (80 to 120 mm SL) were found in lagoonal environments with low and high hard live coral cover. A substantial proportion of the population (age max 18 yr) was from strong recruitment events. In 2003 and 2004, total abundance of L. carponotatus was supported by 1 year class 51.7 and 41% respectively. The utilization of environments and types of substrata varied among taxa and in some cases among life-history stages. There was also temporal variation in the importance of some environments (e.g. Lagoon Centre).

  19. Water Quality and River Plume Monitoring in the Great Barrier Reef: An Overview of Methods Based on Ocean Colour Satellite Data

    Directory of Open Access Journals (Sweden)

    Michelle J. Devlin

    2015-09-01

    Full Text Available A strong driver of water quality change in the Great Barrier Reef (GBR is the pulsed or intermittent nature of terrestrial inputs into the GBR lagoon, including delivery of increased loads of sediments, nutrients, and toxicants via flood river plumes (hereafter river plumes during the wet season. Cumulative pressures from extreme weather with a high frequency of large scale flooding in recent years has been linked to the large scale reported decline in the health of inshore seagrass systems and coral reefs in the central areas of the GBR, with concerns for the recovery potential of these impacted ecosystems. Management authorities currently rely on remotely-sensed (RS and in situ data for water quality monitoring to guide their assessment of water quality conditions in the GBR. The use of remotely-sensed satellite products provides a quantitative and accessible tool for scientists and managers. These products, coupled with in situ data, and more recently modelled data, are valuable for quantifying the influence of river plumes on seagrass and coral reef habitat in the GBR. This article reviews recent remote sensing techniques developed to monitor river plumes and water quality in the GBR. We also discuss emerging research that integrates hydrodynamic models with remote sensing and in situ data, enabling us to explore impacts of different catchment management strategies on GBR water quality.

  20. Motivations and Barriers to Treatment Uptake and Adherence Among People Living with HIV in Australia: A Mixed-Methods Systematic Review.

    Science.gov (United States)

    Mey, Amary; Plummer, David; Dukie, Shailendra; Rogers, Gary D; O'Sullivan, Maree; Domberelli, Amber

    2017-02-01

    In Australia, approximately 30% of people diagnosed with HIV are not accessing treatment and 8% of those receiving treatment fail to achieve viral suppression. Barriers limiting effective care warrant further examination. This mixed-methods systematic review accessed health and social sector research databases between November and December 2015 to identify studies that explored the perspective of people living with HIV in Australia. Articles were included for analysis if they described the experiences, knowledge, attitudes and beliefs, in relation to treatment uptake and adherence, published between January 2000 and December 2015. Quality appraisal utilised the Mixed Methods Appraisal Tool Version 2011. Seventy-two studies that met the inclusion criteria were reviewed. The interplay of lack of knowledge, fear, stigma, physical, emotional and social issues were found to negatively impact treatment uptake and adherence. Strategies targeting both the individual and the wider community are needed to address these barriers.

  1. Evolution of foredune barriers at Admiral Bay, Western Australia - Implications for Holocene relative sea levels and extreme wave events

    Science.gov (United States)

    Engel, Max; May, Simon Matthias; Scheffers, Anja; Squire, Peter; Pint, Anna; Kelletat, Dieter; Brückner, Helmut

    2014-05-01

    Only few geomorphological studies on the Canning Coast of Western Australia exist to date, most probably reflecting its remoteness and low population density. However, WA's annual gross state product (GSP) growth of ~5 % during the past decade and the highest GSP per capita nationwide resulting from a mining boom increase public attention as well as the demand for precise information on landscape inventory and evolution. In this paper, new data from a sequence of vegetated foredune barriers, gradually being eroded by a migrating estuary inside the macrotidal Admiral Bay (also known as McKelson Creek, Whistle Creek or Panganunganyjal), 110 km southwest of Broome, are presented. Based on sediment cores, DGPS-based elevation transects, and stratigraphical analyses on outcrops of the relict foredunes, we aim at (i) reconstructing lateral coastal changes during the Holocene, (ii) drawing inferences on relative sea-level (RSL) change, and (iii) identifying and dating imprints of extreme-wave events. Sedimentary analyses comprise documentation of bedding structures, foraminiferal content and macrofaunal remains (including shell taphonomy), grain size, and organic matter. Chronological contexts are established using 26 14C-AMS datings. Marine flooding of the pre-Holocene base landward of the 2.5 km-wide foredunes can be pinpointed to 7400-7200 cal BP. A mangrove ecosystem established and was quickly replaced by intertidal coarse sands after only 200-400 years. The high-energy intertidal environment prevailed until c. 4000 cal BP before turning into the present supralittoral mudflat environment. At that time, coastal regression led to beach progradation and isochronic formation of foredune barriers. Drivers of progradation were a stable RSL or gradual RSL fall after the mid-Holocene highstand and a positive sand budget provided by high sublittoral productivity of calcareous shells in combination with erosion at the adjacent sandstone capes and longshore drift. The foredunes

  2. Office-Based Physical Activity and Nutrition Intervention: Barriers, Enablers, and Preferred Strategies for Workplace Obesity Prevention, Perth, Western Australia, 2012

    OpenAIRE

    Blackford, Krysten; Jancey, Jonine; Howat, Peter; Ledger, Melissa; Andy H. Lee

    2013-01-01

    Introduction Workplace health promotion programs to prevent overweight and obesity in office-based employees should be evidence-based and comprehensive and should consider behavioral, social, organizational, and environmental factors. The objective of this study was to identify barriers to and enablers of physical activity and nutrition as well as intervention strategies for health promotion in office-based workplaces in the Perth, Western Australia, metropolitan area in 2012. Methods We cond...

  3. Nitrogen isotopic composition of organic matter from a 168 year-old coral skeleton: Implications for coastal nutrient cycling in the Great Barrier Reef Lagoon

    Science.gov (United States)

    Erler, Dirk V.; Wang, Xingchen T.; Sigman, Daniel M.; Scheffers, Sander R.; Martínez-García, Alfredo; Haug, Gerald H.

    2016-01-01

    Ongoing human activities are known to affect nitrogen cycling on coral reefs, but the full history of anthropogenic impact is unclear due to a lack of continuous records. We have used the nitrogen isotopic composition of skeleton-bound organic matter (CS-δ15N) in a coastal Porites coral from Magnetic Island in the Great Barrier Reef as a proxy for N cycle changes over a 168 yr period (1820-1987 AD). The Magnetic Island inshore reef environment is considered to be relatively degraded by terrestrial runoff; given prior CS-δ15N studies from other regions, there was an expectation of both secular change and oscillations in CS-δ15N since European settlement of the mainland in the mid 1800s. Surprisingly, CS-δ15N varied by less than 1.5‰ despite significant land use change on the adjacent mainland over the 168-yr measurement period. After 1930, CS-δ15N may have responded to changes in local river runoff, but the effect was weak. We propose that natural buffering against riverine nitrogen load in this region between 1820 and 1987 is responsible for the observed stability in CS-δ15N. In addition to coral derived skeletal δ15N, we also report, for the first time, δ15N measurements of non-coral derived organic N occluded within the coral skeleton, which appear to record significant changes in the nature of terrestrial N inputs. In the context of previous CS-δ15N records, most of which yield CS-δ15N changes of at least 5‰, the Magnetic Island coral suggests that the inherent down-core variability of the CS-δ15N proxy is less than 2‰ for Porites.

  4. The physiological response of two green calcifying algae from the Great Barrier Reef towards high dissolved inorganic and organic carbon (DIC and DOC) availability.

    Science.gov (United States)

    Meyer, Friedrich Wilhelm; Vogel, Nikolas; Teichberg, Mirta; Uthicke, Sven; Wild, Christian

    2015-01-01

    Increasing dissolved inorganic carbon (DIC) concentrations associated with ocean acidification can affect marine calcifiers, but local factors, such as high dissolved organic carbon (DOC) concentrations through sewage and algal blooms, may interact with this global factor. For calcifying green algae of the genus Halimeda, a key tropical carbonate producer that often occurs in coral reefs, no studies on these interactions have been reported. These data are however urgently needed to understand future carbonate production. Thus, we investigated the independent and combined effects of DIC (pCO2 402 μatm/ pHtot 8.0 and 996 μatm/ pHtot 7.7) and DOC (added as glucose in 0 and 294 μmol L-1) on growth, calcification and photosynthesis of H. macroloba and H. opuntia from the Great Barrier Reef in an incubation experiment over 16 days. High DIC concentrations significantly reduced dark calcification of H. opuntia by 130 % and led to net dissolution, but did not affect H. macroloba. High DOC concentrations significantly reduced daily oxygen production of H. opuntia and H. macroloba by 78 % and 43 %, respectively, and significantly reduced dark calcification of H. opuntia by 70%. Combined high DIC and DOC did not show any interactive effects for both algae, but revealed additive effects for H. opuntia where the combination of both factors reduced dark calcification by 162 % compared to controls. Such species-specific differences in treatment responses indicate H. opuntia is more susceptible to a combination of high DIC and DOC than H. macroloba. From an ecological perspective, results further suggest a reduction of primary production for Halimeda-dominated benthic reef communities under high DOC concentrations and additional decreases of carbonate accretion under elevated DIC concentrations, where H. opuntia dominates the benthic community. This may reduce biogenic carbonate sedimentation rates and hence the buffering capacity against further ocean acidification.

  5. The physiological response of two green calcifying algae from the Great Barrier Reef towards high dissolved inorganic and organic carbon (DIC and DOC availability.

    Directory of Open Access Journals (Sweden)

    Friedrich Wilhelm Meyer

    Full Text Available Increasing dissolved inorganic carbon (DIC concentrations associated with ocean acidification can affect marine calcifiers, but local factors, such as high dissolved organic carbon (DOC concentrations through sewage and algal blooms, may interact with this global factor. For calcifying green algae of the genus Halimeda, a key tropical carbonate producer that often occurs in coral reefs, no studies on these interactions have been reported. These data are however urgently needed to understand future carbonate production. Thus, we investigated the independent and combined effects of DIC (pCO2 402 μatm/ pHtot 8.0 and 996 μatm/ pHtot 7.7 and DOC (added as glucose in 0 and 294 μmol L-1 on growth, calcification and photosynthesis of H. macroloba and H. opuntia from the Great Barrier Reef in an incubation experiment over 16 days. High DIC concentrations significantly reduced dark calcification of H. opuntia by 130 % and led to net dissolution, but did not affect H. macroloba. High DOC concentrations significantly reduced daily oxygen production of H. opuntia and H. macroloba by 78 % and 43 %, respectively, and significantly reduced dark calcification of H. opuntia by 70%. Combined high DIC and DOC did not show any interactive effects for both algae, but revealed additive effects for H. opuntia where the combination of both factors reduced dark calcification by 162 % compared to controls. Such species-specific differences in treatment responses indicate H. opuntia is more susceptible to a combination of high DIC and DOC than H. macroloba. From an ecological perspective, results further suggest a reduction of primary production for Halimeda-dominated benthic reef communities under high DOC concentrations and additional decreases of carbonate accretion under elevated DIC concentrations, where H. opuntia dominates the benthic community. This may reduce biogenic carbonate sedimentation rates and hence the buffering capacity against further ocean

  6. Direct measurements of air-sea CO2 exchange over a coral reef

    Science.gov (United States)

    McGowan, Hamish A.; MacKellar, Mellissa C.; Gray, Michael A.

    2016-05-01

    Quantification of CO2 exchange with the atmosphere over coral reefs has relied on microscale measurements of pCO2 gradients across the air-sea interfacial boundary; shipboard measurements of air-sea CO2 exchange over adjacent ocean inferred to represent over reef processes or ecosystem productivity modeling. Here we present by way of case study the first direct measurements of air-sea CO2 exchange over a coral reef made using the eddy covariance method. Research was conducted during the summer monsoon over a lagoonal platform reef in the southern Great Barrier Reef, Australia. Results show the reef flat to be a net source of CO2 to the atmosphere of similar magnitude as coastal lakes, while adjacent shallow and deep lagoons were net sinks as was the surrounding ocean. This heterogeneity in CO2 exchange with the atmosphere confirms need for spatially representative direct measurements of CO2 over coral reefs to accurately quantify their role in atmospheric carbon budgets.

  7. Ocean acidification accelerates reef bioerosion.

    Directory of Open Access Journals (Sweden)

    Max Wisshak

    Full Text Available In the recent discussion how biotic systems may react to ocean acidification caused by the rapid rise in carbon dioxide partial pressure (pCO(2 in the marine realm, substantial research is devoted to calcifiers such as stony corals. The antagonistic process - biologically induced carbonate dissolution via bioerosion - has largely been neglected. Unlike skeletal growth, we expect bioerosion by chemical means to be facilitated in a high-CO(2 world. This study focuses on one of the most detrimental bioeroders, the sponge Cliona orientalis, which attacks and kills live corals on Australia's Great Barrier Reef. Experimental exposure to lowered and elevated levels of pCO(2 confirms a significant enforcement of the sponges' bioerosion capacity with increasing pCO(2 under more acidic conditions. Considering the substantial contribution of sponges to carbonate bioerosion, this finding implies that tropical reef ecosystems are facing the combined effects of weakened coral calcification and accelerated bioerosion, resulting in critical pressure on the dynamic balance between biogenic carbonate build-up and degradation.

  8. Ecology of the ciguatera causing dinoflagellates from the Northern Great Barrier Reef: changes in community distribution and coastal eutrophication.

    Science.gov (United States)

    Skinner, Mark P; Lewis, Richard J; Morton, Steve

    2013-12-15

    Ciguatera fish poisoning (CFP) is known to be caused by the ciguatoxins from the dinoflagellate genus Gambierdiscus, however, there is the potential for other toxins such as okadaic acid and dinophysistoxins from the genus Prorocentrum, and palytoxin from the genus Ostreopsis, to contaminate seafood. These genera may also be indicators of ecosystem health and potentially impact on coral reef ecosystems and the role they may play in the succession of coral to macroalgae dominated reefs has not been researched. Sixteen GBR field sites spanning inshore, mid-lagoon and outer lagoon (offshore) regions were studied. Samples were collected from September 2006 to December 2007 and abundance of benthic dinoflagellates on different host macroalgae and concentration of nutrients present in the water column were determined. The maximum abundance of Prorocentrum, Ostreopsis and Gambierdiscus found was 112, 793 and 50 cells per gram wet weight of host macroalgae, respectively. The average level of Dissolved Inorganic Nitrogen (DIN) in the water column across all sites (0.03 mg/L) was found to be more than double the threshold critical value (0.013 mg/L) for healthy coral reefs. Compared to a previous study 1984, there is evidence of a major shift in the distribution and abundance of these dinoflagellates. Inshore reefs have either of Prorocentrum (as at Green Island) or Ostreopsis (as at Magnetic Island) dominating the macroalgal surface niche which was once dominated by Gambierdiscus, whilst at offshore regions Gambierdiscus is still dominant. This succession may be linked to the ongoing eutrophication of the GBR lagoon and have consequences for the sources of toxins for ongoing cases of ciguatera.

  9. Reef-fidelity and migration of tiger sharks, Galeocerdo cuvier, across the coral sea

    KAUST Repository

    Werry, Jonathan M.

    2014-01-08

    Knowledge of the habitat use and migration patterns of large sharks is important for assessing the effectiveness of large predator Marine Protected Areas (MPAs), vulnerability to fisheries and environmental influences, and management of shark-human interactions. Here we compare movement, reef-fidelity, and ocean migration for tiger sharks, Galeocerdo cuvier, across the Coral Sea, with an emphasis on New Caledonia. Thirty-three tiger sharks (1.54 to 3.9 m total length) were tagged with passive acoustic transmitters and their localised movements monitored on receiver arrays in New Caledonia, the Chesterfield and Lord Howe Islands in the Coral Sea, and the east coast of Queensland, Australia. Satellite tags were also used to determine habitat use and movements among habitats across the Coral Sea. Sub-adults and one male adult tiger shark displayed year-round residency in the Chesterfields with two females tagged in the Chesterfields and detected on the Great Barrier Reef, Australia, after 591 and 842 days respectively. In coastal barrier reefs, tiger sharks were transient at acoustic arrays and each individual demonstrated a unique pattern of occurrence. From 2009 to 2013, fourteen sharks with satellite and acoustic tags undertook wide-ranging movements up to 1114 km across the Coral Sea with eight detected back on acoustic arrays up to 405 days after being tagged. Tiger sharks dove 1136 m and utilised three-dimensional activity spaces averaged at 2360 km3. The Chesterfield Islands appear to be important habitat for sub-adults and adult male tiger sharks. Management strategies need to consider the wide-ranging movements of large (sub-adult and adult) male and female tiger sharks at the individual level, whereas fidelity to specific coastal reefs may be consistent across groups of individuals. Coastal barrier reef MPAs, however, only afford brief protection for large tiger sharks, therefore determining the importance of other oceanic Coral Sea reefs should be a

  10. Reef-fidelity and migration of tiger sharks, Galeocerdo cuvier, across the Coral Sea.

    Directory of Open Access Journals (Sweden)

    Jonathan M Werry

    Full Text Available Knowledge of the habitat use and migration patterns of large sharks is important for assessing the effectiveness of large predator Marine Protected Areas (MPAs, vulnerability to fisheries and environmental influences, and management of shark-human interactions. Here we compare movement, reef-fidelity, and ocean migration for tiger sharks, Galeocerdo cuvier, across the Coral Sea, with an emphasis on New Caledonia. Thirty-three tiger sharks (1.54 to 3.9 m total length were tagged with passive acoustic transmitters and their localised movements monitored on receiver arrays in New Caledonia, the Chesterfield and Lord Howe Islands in the Coral Sea, and the east coast of Queensland, Australia. Satellite tags were also used to determine habitat use and movements among habitats across the Coral Sea. Sub-adults and one male adult tiger shark displayed year-round residency in the Chesterfields with two females tagged in the Chesterfields and detected on the Great Barrier Reef, Australia, after 591 and 842 days respectively. In coastal barrier reefs, tiger sharks were transient at acoustic arrays and each individual demonstrated a unique pattern of occurrence. From 2009 to 2013, fourteen sharks with satellite and acoustic tags undertook wide-ranging movements up to 1114 km across the Coral Sea with eight detected back on acoustic arrays up to 405 days after being tagged. Tiger sharks dove 1136 m and utilised three-dimensional activity spaces averaged at 2360 km³. The Chesterfield Islands appear to be important habitat for sub-adults and adult male tiger sharks. Management strategies need to consider the wide-ranging movements of large (sub-adult and adult male and female tiger sharks at the individual level, whereas fidelity to specific coastal reefs may be consistent across groups of individuals. Coastal barrier reef MPAs, however, only afford brief protection for large tiger sharks, therefore determining the importance of other oceanic Coral Sea reefs

  11. Reef-fidelity and migration of tiger sharks, Galeocerdo cuvier, across the Coral Sea.

    Science.gov (United States)

    Werry, Jonathan M; Planes, Serge; Berumen, Michael L; Lee, Kate A; Braun, Camrin D; Clua, Eric

    2014-01-01

    Knowledge of the habitat use and migration patterns of large sharks is important for assessing the effectiveness of large predator Marine Protected Areas (MPAs), vulnerability to fisheries and environmental influences, and management of shark-human interactions. Here we compare movement, reef-fidelity, and ocean migration for tiger sharks, Galeocerdo cuvier, across the Coral Sea, with an emphasis on New Caledonia. Thirty-three tiger sharks (1.54 to 3.9 m total length) were tagged with passive acoustic transmitters and their localised movements monitored on receiver arrays in New Caledonia, the Chesterfield and Lord Howe Islands in the Coral Sea, and the east coast of Queensland, Australia. Satellite tags were also used to determine habitat use and movements among habitats across the Coral Sea. Sub-adults and one male adult tiger shark displayed year-round residency in the Chesterfields with two females tagged in the Chesterfields and detected on the Great Barrier Reef, Australia, after 591 and 842 days respectively. In coastal barrier reefs, tiger sharks were transient at acoustic arrays and each individual demonstrated a unique pattern of occurrence. From 2009 to 2013, fourteen sharks with satellite and acoustic tags undertook wide-ranging movements up to 1114 km across the Coral Sea with eight detected back on acoustic arrays up to 405 days after being tagged. Tiger sharks dove 1136 m and utilised three-dimensional activity spaces averaged at 2360 km³. The Chesterfield Islands appear to be important habitat for sub-adults and adult male tiger sharks. Management strategies need to consider the wide-ranging movements of large (sub-adult and adult) male and female tiger sharks at the individual level, whereas fidelity to specific coastal reefs may be consistent across groups of individuals. Coastal barrier reef MPAs, however, only afford brief protection for large tiger sharks, therefore determining the importance of other oceanic Coral Sea reefs should be a

  12. Principles to guide sustainable implementation of extended-scope-of-practice physiotherapy workforce redesign initiatives in Australia: stakeholder perspectives, barriers, supports, and incentives

    Directory of Open Access Journals (Sweden)

    Morris J

    2014-06-01

    Full Text Available Joanne Morris,1 Karen Grimmer,2 Lisa Gilmore,1 Chandima Perera,3 Gordon Waddington,4 Greg Kyle,4 Bryan Ashman,5 Karen Murphy61The Physiotherapy Department, The Canberra Hospital, ACT Health, Canberra, ACT, Australia; 2International Centre for Allied Health Evidence, University of South Australia, Adelaide, SA, Australia; 3Department of Rheumatology, The Canberra Hospital, Canberra, ACT, Australia; 4The Faculty of Health, University of Canberra, Canberra, ACT, Australia; 5Department of Surgical Services, The Canberra Hospital, Canberra, ACT, Australia; 6Office of Allied Health Advisor, ACT Health, Canberra, ACT, AustraliaAbstract: Sustainable implementation of new workforce redesign initiatives requires strategies that minimize barriers and optimize supports. Such strategies could be provided by a set of guiding principles. A broad understanding of the concerns of all the key stakeholder groups is required before effective strategies and initiatives are developed. Many new workforce redesign initiatives are not underpinned by prior planning, and this threatens their uptake and sustainability. This study reports on a cross-sectional qualitative study that sought the perspectives of representatives of key stakeholders in a new workforce redesign initiative (extended-scope-of-practice physiotherapy in one Australian tertiary hospital. The key stakeholder groups were those that had been involved in some way in the development, management, training, funding, and/or delivery of the initiative. Data were collected using semistructured questions, answered individually by interview or in writing. Responses were themed collaboratively, using descriptive analysis. Key identified themes comprised: the importance of service marketing; proactively addressing barriers; using readily understood nomenclature; demonstrating service quality and safety, monitoring adverse events, measuring health and cost outcomes; legislative issues; registration; promoting viable

  13. Differing impact of a major biogeographic barrier on genetic structure in two large kangaroos from the monsoon tropics of Northern Australia.

    Science.gov (United States)

    Eldridge, Mark D B; Potter, Sally; Johnson, Christopher N; Ritchie, Euan G

    2014-03-01

    Tropical savannas cover 20-30% of the world's land surface and exhibit high levels of regional endemism, but the evolutionary histories of their biota remain poorly studied. The most extensive and unmodified tropical savannas occur in Northern Australia, and recent studies suggest this region supports high levels of previously undetected genetic diversity. To examine the importance of barriers to gene flow and the environmental history of Northern Australia in influencing patterns of diversity, we investigated the phylogeography of two closely related, large, vagile macropodid marsupials, the antilopine wallaroo (Macropus antilopinus; n = 78), and the common wallaroo (Macropus robustus; n = 21). Both species are widespread across the tropical savannas of Australia except across the Carpentarian Barrier (CB) where there is a break in the distribution of M. antilopinus. We determined sequence variation in the hypervariable Domain I of the mitochondrial DNA control region and genotyped individuals at 12 polymorphic microsatellite loci to assess the historical and contemporary influence of the CB on these species. Surprisingly, we detected only limited differentiation between the disjunct Northern Territory and QueenslandM. antilopinus populations. In contrast, the continuously distributedM. robustus was highly divergent across the CB. Although unexpected, these contrasting responses appear related to minor differences in species biology. Our results suggest that vicariance may not explain well the phylogeographic patterns in Australia's dynamic monsoonal environments. This is because Quaternary environmental changes in this region have been complex, and diverse individual species' biologies have resulted in less predictable and idiosyncratic responses.

  14. 'There's only one enabler; come up, help us': staff perspectives of barriers and enablers to continuous quality improvement in Aboriginal primary health-care settings in South Australia.

    Science.gov (United States)

    Newham, Jo; Schierhout, Gill; Bailie, Ross; Ward, Paul R

    2016-01-01

    This paper presents the findings from a qualitative study, which sought to investigate the barriers and enablers to implementation of a continuous quality improvement (CQI) program by health-care professionals in Aboriginal primary health-care services in South Australia. Eighteen semi-structured interviews across 11 participating services were conducted alongside CQI implementation activities. Multiple barriers exist, from staff perspectives, which can be categorised according to different levels of the primary health-care system. At the macro level, barriers related to resource constraints (workforce issues) and access to project support (CQI coordinator). At the meso level, barriers related to senior level management and leadership for quality improvement and the level of organisational readiness. At the micro level, knowledge and attitudes of staff (such as resistance to change; lack of awareness of CQI) and lack of team tenure were cited as the main barriers to implementation. Staff identified that successful and sustained implementation of CQI requires both organisational systems and individual behaviour change. Improvements through continuing regional level collaborations and using a systems approach to develop an integrated regional level CQI framework, which includes building organisational and clinic team CQI capacity at the health centre level, are recommended. Ideally, this should be supported at the broader national level with dedicated funding.

  15. The role of marine reserves in the replenishment of a locally-impacted population of anemonefish on the Great Barrier Reef

    KAUST Repository

    Bonin, Mary C.

    2015-11-21

    The development of parentage analysis to track the dispersal of juvenile offspring has given us unprecedented insight into the population dynamics of coral reef fishes. These tools now have the potential to inform fisheries management and species conservation, particularly for small fragmented populations under threat from exploitation and disturbance. In this study we resolve patterns of larval dispersal for a population of the anemonefish Amphiprion melanopus in the Keppel Islands (southern Great Barrier Reef). Habitat loss and fishing appear to have impacted this population and a network of no-take marine reserves currently protects 75% of the potential breeders. Using parentage analysis, we estimate that 21% of recruitment in the island group was generated locally, and that breeding adults living in reserves were responsible for 79% (31 out of 39) of these of locally-produced juveniles. Overall, the network of reserves was fully connected via larval dispersal; however one reserve was identified as a critical source of larvae for the island group. The population in the Keppel Islands also appears to be well-connected to other source populations at least 60 km away, given that 79% (145 out of 184) of the juveniles sampled remained unassigned in the parentage analysis. We estimated the effective size of the A. melanopus metapopulation to be 745 (582-993 95% CI) and recommend continued monitoring of its genetic status. Maintaining connectivity with populations beyond the Keppel Islands and recovery of local recruitment habitat, potentially through active restoration of host anemone populations, will be important for its long-term persistence.

  16. A Modern Sr/Ca-δ18O-Sea Surface Temperature Calibration for Isopora Corals in the Great Barrier Reef

    Science.gov (United States)

    Brenner, L. D.; Linsley, B. K.; Potts, D. C.

    2014-12-01

    Most coral-based paleoceanographic studies have used massive colonies of Porites or Faviidae, due to their long, continuously accreted skeletal records and sub-annual resolution, but other sub-massive corals provide an untapped resource. The genus Isopora is a dominant reef builder in some high-energy environments in the tropical western Pacific, and was a major component of cores recovered on IODP Leg 325 off the Great Barrier Reef (GBR). Despite its abundance, Isopora remains largely unexplored and hence underutilized in paleoceanographic studies. We present a modern Sr/Ca-δ18O-Sea Surface Temperature (SST) calibration of modern Isopora corals (n=3) collected from inner and outer reef locations ranging from 1-13m depth by Heron Island in the southern GBR in 2012. Pairing the Isopora Sr/Ca record with monthly SST yielded an average relationship of SST=-11.48×(Sr/Ca)+131.1 (r2 = 0.42-0.78). The Sr/Ca sensitivity of -0.087 mmol/mol/°C is similar to the sensitivity for Porites that was corrected for tissue layer smoothing effects determined by Gagan et al. (2012). The similarity between our Sr/Ca-SST sensitivity and the corrected sensitivity for Porites suggests tissue layer effects are minimal in Isopora. The mean annual SST amplitude recorded by the corals from 2008-2011 (full annual cycles) was 5.3°C and the average δ18O annual cycle of 1.1‰ approximates that expected if salinity had little effect on coral δ18O, assuming a previously established conversion of -0.23‰ (δ18O)/°C for biogenic aragonite. The average annual salinity amplitude of 0.3 in gridded data from around Heron Island supports our conclusion that δ18O variability is forced almost completely by SST. This modern Sr/Ca-SST calibration will expand the paleoceanographic utility of Isopora and, by assisting interpretation of Sr/Ca data from fossil corals collected during IODP 325, will better constrain the timing and magnitude of sea level changes and surface conditions since the Last

  17. The status of coral reef ecology research in the Red Sea

    Science.gov (United States)

    Berumen, M. L.; Hoey, A. S.; Bass, W. H.; Bouwmeester, J.; Catania, D.; Cochran, J. E. M.; Khalil, M. T.; Miyake, S.; Mughal, M. R.; Spaet, J. L. Y.; Saenz-Agudelo, P.

    2013-09-01

    The Red Sea has long been recognized as a region of high biodiversity and endemism. Despite this diversity and early history of scientific work, our understanding of the ecology of coral reefs in the Red Sea has lagged behind that of other large coral reef systems. We carried out a quantitative assessment of ISI-listed research published from the Red Sea in eight specific topics (apex predators, connectivity, coral bleaching, coral reproductive biology, herbivory, marine protected areas, non-coral invertebrates and reef-associated bacteria) and compared the amount of research conducted in the Red Sea to that from Australia's Great Barrier Reef (GBR) and the Caribbean. On average, for these eight topics, the Red Sea had 1/6th the amount of research compared to the GBR and about 1/8th the amount of the Caribbean. Further, more than 50 % of the published research from the Red Sea originated from the Gulf of Aqaba, a small area (biodiverse coral reef regions, the Red Sea may yet have a significant role to play in our understanding of coral reef ecology at a global scale.

  18. The status of coral reef ecology research in the Red Sea

    KAUST Repository

    Berumen, Michael L.

    2013-06-21

    The Red Sea has long been recognized as a region of high biodiversity and endemism. Despite this diversity and early history of scientific work, our understanding of the ecology of coral reefs in the Red Sea has lagged behind that of other large coral reef systems. We carried out a quantitative assessment of ISI-listed research published from the Red Sea in eight specific topics (apex predators, connectivity, coral bleaching, coral reproductive biology, herbivory, marine protected areas, non-coral invertebrates and reef-associated bacteria) and compared the amount of research conducted in the Red Sea to that from Australia\\'s Great Barrier Reef (GBR) and the Caribbean. On average, for these eight topics, the Red Sea had 1/6th the amount of research compared to the GBR and about 1/8th the amount of the Caribbean. Further, more than 50 % of the published research from the Red Sea originated from the Gulf of Aqaba, a small area (<2 % of the area of the Red Sea) in the far northern Red Sea. We summarize the general state of knowledge in these eight topics and highlight the areas of future research priorities for the Red Sea region. Notably, data that could inform science-based management approaches are badly lacking in most Red Sea countries. The Red Sea, as a geologically "young" sea located in one of the warmest regions of the world, has the potential to provide insight into pressing topics such as speciation processes as well as the capacity of reef systems and organisms to adapt to global climate change. As one of the world\\'s most biodiverse coral reef regions, the Red Sea may yet have a significant role to play in our understanding of coral reef ecology at a global scale. © 2013 Springer-Verlag Berlin Heidelberg.

  19. "I'm Telling You ... The Language Barrier Is the Most, the Biggest Challenge": Barriers to Education among Karen Refugee Women in Australia

    Science.gov (United States)

    Watkins, Paula G.; Razee, Husna; Richters, Juliet

    2012-01-01

    This article examines factors influencing English language education, participation and achievement among Karen refugee women in Australia. Data were drawn from ethnographic observations and interviews with 67 participants between 2009 and 2011, collected as part of a larger qualitative study exploring the well-being of Karen refugee women in…

  20. 10Be-derived denudation rates from the Burdekin catchment: The largest contributor of sediment to the Great Barrier Reef

    Science.gov (United States)

    Croke, Jacky; Bartley, Rebecca; Chappell, John; Austin, Jenet M.; Fifield, Keith; Tims, Stephen G.; Thompson, Chris J.; Furuichi, Takahisa

    2015-07-01

    Terrestrial cosmogenic nuclides (TCNs) such as Beryllium-10 (10Be) are now routinely used to reconstruct erosional rates over tens of thousands of years at increasingly large basin scales (> 100,000 km2). In Australia, however, the approach and its assumptions have not been systematically tested within a single, large drainage basin. This study measures 10Be concentrations in river sediments from the Burdekin catchment, one of Australia's largest coastal catchments, to determine long-term (> 10,000 years), time-integrated rates of sediment generation and denudation. A nested-sampling design was used to test for effects of increasing catchment scale on nuclide concentrations with upstream catchment areas ranging from 4 to 130,000 km2. Beryllium-10 concentrations in sediment samples collected from the upstream headwater tributaries and mid-stream locations range from 1.8 to 2.89 × 105 atoms g- 1 and data confirm that nuclide concentrations are well and rapidly mixed downstream. Sediment from the same tributaries consistently yielded 10Be concentrations in the range of their upstream samples. Overall, no decrease in 10Be concentrations can be observed at the range of catchment scales measured here. The mean denudation rate for all river sediment samples throughout the Fanning subcatchment (1100 km2) is 18.47 m Ma- 1, which compares with the estimate at the end of the Burdekin catchment (130,000 km2) of 16.22 m Ma- 1. Nuclide concentrations in the lower gradient western and southern catchments show a higher degree of variability, and several complications emerged as a result of the contrasting geomorphic processes and settings. This study confirms the ability of TCNs to determine long-term denudation rates in Australia and highlights some important considerations in the model assumptions that may affect the accuracy of limited sampling in large, low-gradient catchments with long storage times.

  1. Protocol for ACCESS: a qualitative study exploring barriers and facilitators to accessing the emergency contraceptive pill from community pharmacies in Australia

    Science.gov (United States)

    Hussainy, Safeera Yasmeen; Ghosh, Ayesha; Taft, Angela; Mazza, Danielle; Black, Kirsten Isla; Clifford, Rhonda; Mc Namara, Kevin Peter; Ryan, Kath; Jackson, John Keith

    2015-01-01

    Introduction The rate of unplanned pregnancy in Australia remains high, which has contributed to Australia having one of the highest abortion rates of developed countries with an estimated 1 in 5 women having an abortion. The emergency contraceptive pill (ECP) offers a safe way of preventing unintended pregnancy after unprotected sex has occurred. While the ECP has been available over-the-counter in Australian pharmacies for over a decade, its use has not significantly increased. This paper presents a protocol for a qualitative study that aims to identify the barriers and facilitators to accessing the ECP from community pharmacies in Australia. Methods and analysis Data will be collected through one-on-one interviews that are semistructured and in-depth. Partnerships have been established with 2 pharmacy groups and 2 women's health organisations to aid with the recruitment of women and pharmacists for data collection purposes. Interview questions explore domains from the Theoretical Domains Framework in order to assess the factors aiding and/or hindering access to ECP from community pharmacies. Data collected will be analysed using deductive content analysis. The expected benefits of this study are that it will help develop evidence-based workforce interventions to strengthen the capacity and performance of community pharmacists as key ECP providers. Ethics and dissemination The findings will be disseminated to the research team and study partners, who will brainstorm ideas for interventions that would address barriers and facilitators to access identified from the interviews. Dissemination will also occur through presentations and peer-reviewed publications and the study participants will receive an executive summary of the findings. The study has been evaluated and approved by the Monash Human Research Ethics Committee. PMID:26656987

  2. Latitudinal species diversity gradient of mushroom corals off eastern Australia: a baseline from the 1970s

    Science.gov (United States)

    Hoeksema, Bert W.

    2015-11-01

    Based on a study of mushroom coral species of eastern Australia, a decrease in species richness can be discerned from north to south. Eastern Australia, including the Great Barrier Reef (GBR), is one of only few coral reef areas suitable for studies on large-scale latitudinal biodiversity patterns. Such patterns may help to recognize biogeographic boundaries and factors regulating biodiversity. Owing to the eastern Australian long coastline, such studies are a logistic challenge unless reliable distribution data are already available, as in museum collections. A large coral collection predominantly sampled from this area in the 1970s is present in the Museum of Tropical Queensland (MTQ). The scleractinian family Fungiidae (mushroom corals), representing about 10% of Indo-Pacific reef coral species, was selected as proxy. It was represented by 1289 specimens belonging to 34 species with latitudinal ranges between 09°09‧S and 31°28‧S. The fauna of the northernmost reefs in the Gulf of Papua and the Torres Strait, and north of the Great Barrier Reef Marine Park (GBRMP), was represented by a maximum of 30 fungiids. From here a southward decline in species number was observed, down to Lord Howe Island with only one species. Together with previous records, the mushroom coral fauna of eastern Australia consists of 37 species, which is more diverse than hitherto known and similar to numbers found in the Coral Triangle. Future field surveys in the GBR should specifically target rarely known species, which are mainly small and found at depths >25 m. In the light of global climate change, they may also show whether previously recorded species are still present and whether their latitudinal ranges have shifted, using the 1970s records as a baseline.

  3. High rates of hybridisation reveal fragile reproductive barriers between endangered Australian sea snakes

    DEFF Research Database (Denmark)

    Sanders, Kate L; Redsted Rasmussen, Arne; Guinea, Michael L.

    2014-01-01

    The viviparous sea snakes include 62 ecologically diverse species, many of which are of very recent evolutionary origin and have overlapping distributions. Peak sea snake diversity and endemism is recorded from the isolated emergent reefs of the Timor Sea in Northwest Australia. However, nine...... designations, but revealed high frequencies of hybrids on all four reefs and individuals of pure A. fuscus ancestry only at Scott and (historically) Ashmore. Most unexpectedly, 95% of snakes sampled at Hibernia were hybrids that resembled A. laevis in phenotype, revealing a collapse of reproductive barriers...

  4. Morphology, Ultrastructure and Life Cycle of Vitrella brassicaformis n. sp., n. gen., a Novel Chromerid from the Great Barrier Reef

    KAUST Repository

    Oborník, Miroslav

    2012-03-01

    Chromerida are photoautotrophic alveolates so far only isolated from corals in Australia. It has been shown that these secondary plastid-containing algae are closely related to apicomplexan parasites and share various morphological and molecular characters with both Apicomplexa and Dinophyta. So far, the only known representative of the phylum was Chromera velia. Here we provide a formal description of another chromerid, Vitrella brassicaformis gen. et sp. nov., complemented with a detailed study on its ultrastructure, allowing insight into its life cycle. The novel alga differs significantly from the related chromerid C. velia in life cycle, morphology as well as the plastid genome. Analysis of photosynthetic pigments on the other hand demonstrate that both chromerids lack chlorophyll c, the hallmark of phototrophic chromalveolates. Based on the relatively high divergence between C. velia and V. brassicaformis, we propose their classification into distinct families Chromeraceae and Vitrellaceae. Moreover, we predict a hidden and unexplored diversity of the chromerid algae. © 2011 Elsevier GmbH.

  5. Cardicola beveridgei n. sp. (Digenea: Aporocotylidae) from the mangrove jack, Lutjanus argentimaculatus (Perciformes: Lutjanidae), and C. bullardi n. sp. from the Australian spotted mackerel, Scomberomorus munroi (Perciformes: Scombridae), from the northern Great Barrier Reef.

    Science.gov (United States)

    Nolan, Matthew J; Miller, Terrence L; Cutmore, Scott C; Cantacessi, Cinzia; Cribb, Thomas H

    2014-10-01

    Cardicola Short, 1953 is a genus of the Aporocotylidae Odhner, 1912 (Digenea), with 25 currently recognised species described from 32 species of Perciformes and Mugiliformes fishes around the world, including eight species from the Great Barrier Reef. Here, we describe two new species from this region, namely Cardicola beveridgei n. sp. from the ventricle and atrium of the mangrove jack, Lutjanus argentimaculatus (Forsskål) (Perciformes: Lutjanidae), and Cardicola bullardi n. sp. from the ventricle of the Australian spotted mackerel, Scomberomorus munroi Collette & Russo (Perciformes: Scombridae), from off Lizard Island, Queensland, Australia. These two new species are most easily distinguished from the 25 current members of Cardicola in having the combination of i) a spinous oral sucker, ii) an anteriorly intercaecal ovary, iii) a uterus that extends anteriorly from the oötype, iv) the number of spines per ventrolateral transverse row, and in v) body size and the length/width ratio, vi) the oesophagus and caecal length(s) relative to body total length, vii) the length of the posterior caeca relative to the anterior pair, viii) the testis length/width ratio and its total size relative to that of the body, ix) the postovarian field as a percentage of body length, and x) egg size. In addition, C. beveridgei n. sp. is further differentiated by possessing a female genital pore that opens anterodextral to the male pore while C. bullardi n. sp. differs further in possessing a testis that is almost entirely intercaecal and does not extend anteriorly to the level of the intestinal bifurcation. Employing genetic analysis of ITS2 rDNA sequence data, representing these species and a further 13 recognised and three putative species of Cardicola, we were able to unequivocally confirm these specimens as distinct (9-22% different over 420 nucleotide positions). Distance analysis of ITS2 showed that i) species of Cardicola from the Siganidae formed a monophyletic clade, to the

  6. Complementarity of no-take marine reserves and individual transferable catch quotas for managing the line fishery of the great barrier reef.

    Science.gov (United States)

    Little, L R; Grafton, R Q; Kompas, T; Smith, A D M; Punt, A E; Mapstone, B D

    2011-04-01

    Changes in the management of the fin fish fishery of the Great Barrier Reef motivated us to investigate the combined effects on economic returns and fish biomass of no-take areas and regulated total allowable catch allocated in the form of individual transferable quotas (such quotas apportion the total allowable catch as fishing rights and permits the buying and selling of these rights among fishers). We built a spatially explicit biological and economic model of the fishery to analyze the trade-offs between maintaining given levels of fish biomass and the net financial returns from fishing under different management regimes. Results of the scenarios we modeled suggested that a decrease in total allowable catch at high levels of harvest either increased net returns or lowered them only slightly, but increased biomass by up to 10% for a wide range of reserve sizes and an increase in the reserve area from none to 16% did not greatly change net returns at any catch level. Thus, catch shares and no-take reserves can be complementary and when these methods are used jointly they promote lower total allowable catches when harvest is relatively high and encourage larger no-take areas when they are small.

  7. Regional-scale nitrogen and phosphorus budgets for the northern (14°S) and central (17°S) Great Barrier Reef shelf ecosystem

    Science.gov (United States)

    Furnas, M.; Alongi, D.; McKinnon, D.; Trott, L.; Skuza, M.

    2011-12-01

    Seasonally averaged N and P box model budgets were constructed for two regional-scale sections of the Great Barrier Reef (GBR) shelf, one in the near-pristine far-northern GBR (13.5-14.5°S) and the other in the central GBR (17-18°S) adjacent to more intensively farmed wet tropics watersheds. We were unable to simultaneously balance shelf-scale N and P budgets within seasonal or annual time frames, indicating that magnitudes of a number of key input and, especially, loss processes are still poorly constrained. In most cases, current estimates of system-level N and P sources (rainfall, runoff, upwelling, N-fixation) are less than estimated loss processes (denitrification, cross-shelfbreak mixing and burial). Nutrient dynamics in both shelf sections are dominated by the tightly coupled uptake and mineralization of soluble N and P in the water column and the sedimentation-resuspension of particulate detritus. On an area-averaged basis, internal cycling fluxes are an order of magnitude greater than input-output fluxes. Denitrification in shelf sediments is a significant sink for N while lateral mixing is both a source and sink for P.

  8. Dynamics of a deep-water seagrass population on the Great Barrier Reef: annual occurrence and response to a major dredging program.

    Science.gov (United States)

    York, Paul H; Carter, Alex B; Chartrand, Kathryn; Sankey, Tonia; Wells, Linda; Rasheed, Michael A

    2015-08-17

    Global seagrass research efforts have focused on shallow coastal and estuarine seagrass populations where alarming declines have been recorded. Comparatively little is known about the dynamics of deep-water seagrasses despite evidence that they form extensive meadows in some parts of the world. Deep-water seagrasses are subject to similar anthropogenic threats as shallow meadows, particularly along the Great Barrier Reef lagoon where they occur close to major population centres. We examine the dynamics of a deep-water seagrass population in the GBR over an 8 year period during which time a major capital dredging project occurred. Seasonal and inter-annual changes in seagrasses were assessed as well as the impact of dredging. The seagrass population was found to occur annually, generally present between July and December each year. Extensive and persistent turbid plumes from a large dredging program over an 8 month period resulted in a failure of the seagrasses to establish in 2006, however recruitment occurred the following year and the regular annual cycle was re-established. Results show that despite considerable inter annual variability, deep-water seagrasses had a regular annual pattern of occurrence, low resistance to reduced water quality but a capacity for rapid recolonisation on the cessation of impacts.

  9. Species Richness and Community Structure on a High Latitude Reef: Implications for Conservation and Management

    Directory of Open Access Journals (Sweden)

    Wayne Houston

    2011-07-01

    Full Text Available In spite of the wealth of research on the Great Barrier Reef, few detailed biodiversity assessments of its inshore coral communities have been conducted. Effective conservation and management of marine ecosystems begins with fine-scale biophysical assessments focused on diversity and the architectural species that build the structural framework of the reef. In this study, we investigate key coral diversity and environmental attributes of an inshore reef system surrounding the Keppel Bay Islands near Rockhampton in Central Queensland, Australia, and assess their implications for conservation and management. The Keppels has much higher coral diversity than previously found. The average species richness for the 19 study sites was ~40 with representatives from 68% of the ~244 species previously described for the southern Great Barrier Reef. Using scleractinian coral species richness, taxonomic distinctiveness and coral cover as the main criteria, we found that five out of 19 sites had particularly high conservation value. A further site was also considered to be of relatively high value. Corals at this site were taxonomically distinct from the others (representatives of two families were found here but not at other sites and a wide range of functionally diverse taxa were present. This site was associated with more stressful conditions such as high temperatures and turbidity. Highly diverse coral communities or biodiversity ‘hotspots’ and taxonomically distinct reefs may act as insurance policies for climatic disturbance, much like Noah’s Arks for reefs. While improving water quality and limiting anthropogenic impacts are clearly important management initiatives to improve the long-term outlook for inshore reefs, identifying, mapping and protecting these coastal ‘refugia’ may be the key for ensuring their regeneration against catastrophic climatic disturbance in the meantime.

  10. Testing new approaches to carbonate system simulation at the reef scale: the ReefSam model first results, application to a question in reef morphology and future challenges.

    Science.gov (United States)

    Barrett, Samuel; Webster, Jody

    2016-04-01

    morphology and development are compared with observational data. Despite being a test-bed and work in progress, ReefSAM was able to simulate the Holocene development of One Tree Reef in the Southern Great Barrier Reef (Australia) and was able to improve upon previous modelling attempts in terms of both quantitative measures and qualitative outputs, such as the presence of previously un-simulated reef features. Given the success of the model in simulating the Holocene development of OTR, we used it to quantitatively explore the effect of basement substrate depth and morphology on reef maturity/lagoonal filling (as discussed by Purdy and Gischer 2005). Initial results show a number of non-linear relationships between basement substrate depth, lagoonal filling and volume of sand produced on the reef rims and deposited in the lagoon. Lastly, further testing of the model has revealed new challenges which are likely to manifest in any attempt at reef-scale simulation. Subtly different sets of energy direction and magnitude input parameters (different in each time step but with identical probability distributions across the entire model run) resulted in a wide range of quantitative model outputs. Time step length is a likely contributing factor and the results of further testing to address this challenge will be presented.

  11. A morphometric assessment and classification of coral reef spur and groove morphology

    Science.gov (United States)

    Duce, S.; Vila-Concejo, A.; Hamylton, S. M.; Webster, J. M.; Bruce, E.; Beaman, R. J.

    2016-07-01

    Spurs and grooves (SaGs) are a common and important feature of coral reef fore slopes worldwide. However, they are difficult to access and hence their morphodynamics and formation are poorly understood. We use remote sensing, with extensive ground truthing, to measure SaG morphometrics and environmental factors at 11,430 grooves across 17 reefs in the southern Great Barrier Reef, Australia. We revealed strong positive correlations between groove length, orientation and wave exposure with longer, more closely-spaced grooves oriented easterly reflecting the dominant swell regime. Wave exposure was found to be the most important factor controlling SaG distribution and morphology. Gradient of the upper reef slope was also an important limiting factor, with SaGs less likely to develop in steeply sloping (> 5°) areas. We used a subset of the morphometric data (11 reefs) to statistically define four classes of SaG. This classification scheme was tested on the remaining six reefs. SaGs in the four classes differ in morphology, groove substrate and coral cover. These differences provide insights into SaG formation mechanisms with implications to reef platform growth and evolution. We hypothesize SaG formation is dominated by coral growth processes at two classes and erosion processes at one class. A fourth class may represent relic features formed earlier in the Holocene transgression. The classes are comparable with SaGs elsewhere, suggesting the classification could be applied globally with the addition of new classes if necessary. While further research is required, we show remotely sensed SaG morphometrics can provide useful insights into reef platform evolution.

  12. A modern Sr/Ca-δ18O-sea surface temperature calibration for Isopora corals on the Great Barrier Reef

    Science.gov (United States)

    Brenner, Logan D.; Linsley, Braddock K.; Potts, Donald C.

    2017-02-01

    Isopora (Acroporidae) is a genus of often encrusting, branching to submassive corals that are common in many shallow habitats on modern and fossil Indo-West Pacific reefs. Although abundant, Isopora is largely absent from paleoceanographic literature. The scarcity of large Porites and the abundance of Isopora retrieved from the Great Barrier Reef (GBR) on Integrated Ocean Drilling Program Expedition 325 focused paleoceanographic attention on Isopora. Here we provide the first independent high-resolution calibration of both Sr/Ca and δ18O for temperature analyses based on Isopora and demonstrate its consistency with Porites records. We developed modern skeletal Sr/Ca- and δ18O-sea surface temperature (SST) calibrations based on five modern Isopora colonies from Heron Island in the southern GBR. Pairing the coral Sr/Ca record with monthly SST data yielded Sr/Ca-SST sensitivities from -0.061 ± 0.004 (centered) to -0.083 ± 0.007 (raw) mmol/mol °C-1 based on reduced major axis regressions. These sensitivities are in the middle of the range of published Porites values and overlap most published values for Isopora, -0.075 ± 0.011 to -0.065 ± 0.011 mmol/mol °C-1. The δ18O-SST sensitivities range from -0.184 ± 0.014 (centered) to -0.185 ± 0.014 (raw) ‰ °C-1, assuming that all seasonal variation in δ18O was due to SST. These δ18O-SST sensitivities are smaller than the widely accepted value of -0.23‰ °C-1 for biogenic aragonite but are at the upper end of high-resolution Porites-defined sensitivities that are consistently less than the aforementioned established value. Our results validate the use of Isopora as an alternative source of paleoceanographic records in habitats where large massive Porites are scarce or absent.

  13. New tool to manage coral reefs

    Science.gov (United States)

    Showstack, Randy

    The National Oceanic and Atmospheric Administration is making available a new tool for coral reef managers to monitor the cumulative thermal stress of several coral reefs around the world, including the Great Barrier Reef, and reefs by the Galapagos Islands, the agency announced on 25 February.The agency's "Degree Heating Weeks" product uses satellite-derived information to allow continuous monitoring of the extent and acuteness of thermal stress, which are key predictors of coral bleaching, and which contribute to coral reef degradation.

  14. Wave transformation across coral reefs under changing sea levels

    Science.gov (United States)

    Harris, Daniel; Power, Hannah; Vila-Conejo, Ana; Webster, Jody

    2015-04-01

    The transformation of swell waves from deep water across reef flats is the primary process regulating energy regimes in coral reef systems. Coral reefs are effective barriers removing up to 99% of wave energy during breaking and propagation across reef flats. Consequently back-reef environments are often considered low energy with only limited sediment transport and geomorphic change during modal conditions. Coral reefs, and specifically reef flats, therefore provide important protection to tropical coastlines from coastal erosion and recession. However, changes in sea level could lead to significant changes in the dissipation of swell wave energy in coral reef systems with wave heights dependent on the depth over the reef flat. This suggests that a rise in sea level would also lead to significantly higher energy conditions exacerbating the transgressive effects of sea level rise on tropical beaches and reef islands. This study examines the potential implications of different sea level scenarios on the transformation of waves across the windward reef flats of One Tree Reef, southern Great Barrier Reef. Waves were measured on the reef flats and back-reef sand apron of One Tree Reef. A one-dimensional wave model was calibrated and used to investigate wave processes on the reef flats under different mean sea level (MSL) scenarios (present MSL, +1 m MSL, and +2 m MSL). These scenarios represent both potential future sea level states and also the paleo sea level of the late Holocene in the southern Great Barrier Reef. Wave heights were shown to increase under sea level rise, with greater wave induced orbital velocities affecting the bed under higher sea levels. In general waves were more likely to entrain and transport sediment both on the reef flat and in the back reef environment under higher sea levels which has implications for not only forecasted climate change scenarios but also for interpreting geological changes during the late Holocene when sea levels were 1

  15. Fifty million years of herbivory on coral reefs: fossils, fish and functional innovations

    Science.gov (United States)

    Bellwood, D. R.; Goatley, C. H. R.; Brandl, S. J.; Bellwood, O.

    2014-01-01

    The evolution of ecological processes on coral reefs was examined based on Eocene fossil fishes from Monte Bolca, Italy and extant species from the Great Barrier Reef, Australia. Using ecologically relevant morphological metrics, we investigated the evolution of herbivory in surgeonfishes (Acanthuridae) and rabbitfishes (Siganidae). Eocene and Recent surgeonfishes showed remarkable similarities, with grazers, browsers and even specialized, long-snouted forms having Eocene analogues. These long-snouted Eocene species were probably pair-forming, crevice-feeding forms like their Recent counterparts. Although Eocene surgeonfishes likely played a critical role as herbivores during the origins of modern coral reefs, they lacked the novel morphologies seen in modern Acanthurus and Siganus (including eyes positioned high above their low-set mouths). Today, these forms dominate coral reefs in both abundance and species richness and are associated with feeding on shallow, exposed algal turfs. The radiation of these new forms, and their expansion into new habitats in the Oligocene–Miocene, reflects the second phase in the development of fish herbivory on coral reefs that is closely associated with the exploitation of highly productive short algal turfs. PMID:24573852

  16. Relating sediment impacts on coral reefs to watershed sources, processes and management: a review.

    Science.gov (United States)

    Bartley, Rebecca; Bainbridge, Zoe T; Lewis, Stephen E; Kroon, Frederieke J; Wilkinson, Scott N; Brodie, Jon E; Silburn, D Mark

    2014-01-15

    Modification of terrestrial sediment fluxes can result in increased sedimentation and turbidity in receiving waters, with detrimental impacts on coral reef ecosystems. Preventing anthropogenic sediment reaching coral reefs requires a better understanding of the specific characteristics, sources and processes generating the anthropogenic sediment, so that effective watershed management strategies can be implemented. Here, we review and synthesise research on measured runoff, sediment erosion and sediment delivery from watersheds to near-shore marine areas, with a strong focus on the Burdekin watershed in the Great Barrier Reef region, Australia. We first investigate the characteristics of sediment that pose the greatest risk to coral reef ecosystems. Next we track this sediment back from the marine system into the watershed to determine the storage zones, source areas and processes responsible for sediment generation and run-off. The review determined that only a small proportion of the sediment that has been eroded from the watershed makes it to the mid and outer reefs. The sediment transported >1 km offshore is generally the clay to fine silt (erosion is the dominant process responsible for the fine sediment exported from these watersheds in recent times, although further work on the particle size of this material is required. Maintaining average minimum ground cover >75% will likely be required to reduce runoff and prevent sub-soil erosion; however, it is not known whether ground cover management alone will reduce sediment supply to ecologically acceptable levels.

  17. Assembly rules of reef corals are flexible along a steep climatic gradient.

    Science.gov (United States)

    Hughes, Terry P; Baird, Andrew H; Dinsdale, Elizabeth A; Moltschaniwskyj, Natalie A; Pratchett, Morgan S; Tanner, Jason E; Willis, Bette L

    2012-04-24

    Coral reefs, one of the world's most complex and vulnerable ecosystems, face an uncertain future in coming decades as they continue to respond to anthropogenic climate change, overfishing, pollution, and other human impacts [1, 2]. Traditionally, marine macroecology is based on presence/absence data from taxonomic checklists or geographic ranges, providing a qualitative overview of spatial shifts in species richness that treats rare and common species equally [3, 4]. As a consequence, regional and long-term shifts in relative abundances of individual taxa are poorly understood. Here we apply a more rigorous quantitative approach to examine large-scale spatial variation in the species composition and abundance of corals on midshelf reefs along the length of Australia's Great Barrier Reef, a biogeographic region where species richness is high and relatively homogeneous [5]. We demonstrate that important functional components of coral assemblages "sample" space differently at 132 sites separated by up to 1740 km, leading to complex latitudinal shifts in patterns of absolute and relative abundance. The flexibility in community composition that we document along latitudinal environmental gradients indicates that climate change is likely to result in a reassortment of coral reef taxa rather than wholesale loss of entire reef ecosystems.

  18. Quaternary Tipping Points in Tropical Northern Australia

    Science.gov (United States)

    Moss, Patrick; Dunbar, Gavin; Croke, Jacky; Katunar, Rosie

    2016-04-01

    Tropical northern Queensland, particularly the volcanic Atherton Tableland, contains some of the most detailed and longest terrestrial palaeoenvironmental archives in Australia and when combined with adjacent marine sediment records provides key insight into potential environmental 'tipping points' for the entire Quaternary period and beyond. This presentation will provide an overview of some of the key tipping points (i.e. significant landscape transformation) that have occurred within the tropical northern Australian region over the Quaternary, as well as discussing potential causes and subsequent impacts of these transformation episodes. These events include the development of the Great Barrier Reef, transition from obliquity to eccentricity dominated glacial-interglacial cycles, the Mid-Brunhes event, the Oxygen Isotope Stage 6 episode, the arrival of people into the region, Last Glacial-Interglacial Transition and European settlement.

  19. High-intensity cardiac infections of Phthinomita heinigerae n. sp. (Digenea: Aporocotylidae) in the orangelined cardinalfish, Taeniamia fucata (Cantor), off Heron Island on the Great Barrier Reef.

    Science.gov (United States)

    Nolan, Matthew J; Cantacessi, Cinzia; Cutmore, Scott C; Cribb, Thomas H; Miller, Terrence L

    2016-10-01

    We report a new species of aporocotylid trematode (Platyhelminthes: Digenea) from the heart of the orangelined cardinalfish, Taeniamia fucata (Cantor), from off Heron Island on the southern Great Barrier Reef. We used an integrated approach, analysing host distribution, morphology, and genetic data from the internal transcribed spacer 2 of the ribosomal DNA, to circumscribe Phthinomita heinigerae n. sp. This is the first species of Phthinomita Nolan & Cribb, 2006 reported from the Apogonidae; existing species and known 'types' are recorded from species of the Labridae, Mullidae, and Siganidae. The new species is distinguished from its 11 congeners in having a body 2977-3539 long and 16.5-22.4 times longer than wide, an anterior testis 6.2-8.2 times longer than wide and 8.3-13.0 times longer than the posterior testis, a posterior testis whose width is 35-56% of the body width, and an ovary positioned 11-13% of the body length from the posterior end, and is entirely anterior to the posterior margin of the anterior testis. In addition, 2-34 base differences (0.4-7.0% sequence divergence over 485 base positions) were detected among the ITS2 sequence representing P. heinigerae n. sp. and the 14 representing other Phthinomita species/molecular types. Prevalence and intensity of infection with P. heinigerae n. sp. was relatively high within the heart tissue of T. fucata, with 19 of 20 fish examined from off Heron Island infected (95%) with 7-25 adult worms (arithmetic mean 16.6). Infections by these parasites accounted for an occupation of 7-30% of the total estimated heart volume.

  20. An analysis of potential barriers and enablers to regulating the television marketing of unhealthy foods to children at the state government level in Australia

    Directory of Open Access Journals (Sweden)

    Chung Alexandra

    2012-12-01

    Full Text Available Abstract Background In Australia there have been many calls for government action to halt the effects of unhealthy food marketing on children's health, yet implementation has not occurred. The attitudes of those involved in the policy-making process towards regulatory intervention governing unhealthy food marketing are not well understood. The objective of this research was to understand the perceptions of senior representatives from Australian state and territory governments, statutory authorities and non-government organisations regarding the feasibility of state-level government regulation of television marketing of unhealthy food to children in Australia. Method Data from in-depth semi-structured interviews with senior representatives from state and territory government departments, statutory authorities and non-government organisations (n=22 were analysed to determine participants' views about regulation of television marketing of unhealthy food to children at the state government level. Data were analysed using content and thematic analyses. Results Regulation of television marketing of unhealthy food to children was supported as a strategy for obesity prevention. Barriers to implementing regulation at the state level were: the perception that regulation of television advertising is a Commonwealth, not state/territory, responsibility; the power of the food industry and; the need for clear evidence that demonstrates the effectiveness of regulation. Evidence of community support for regulation was also cited as an important factor in determining feasibility. Conclusions The regulation of unhealthy food marketing to children is perceived to be a feasible strategy for obesity prevention however barriers to implementation at the state level exist. Those involved in state-level policy making generally indicated a preference for Commonwealth-led regulation. This research suggests that implementation of regulation of the television marketing of

  1. Geomorphology and late Holocene accretion history of Adele Reef: a northwest Australian mid-shelf platform reef

    Science.gov (United States)

    Solihuddin, Tubagus; Bufarale, Giada; Blakeway, David; O'Leary, Michael J.

    2016-12-01

    The mid-shelf reefs of the Kimberley Bioregion are one of Australia's more remote tropical reef provinces and such have received little attention from reef researchers. This study describes the geomorphology and late Holocene accretion history of Adele Reef, a mid-shelf platform reef, through remote sensing of contemporary reef habitats, shallow seismic profiling, shallow percussion coring and radiocarbon dating. Seismic profiling indicates that the Holocene reef sequence is 25 to 35 m thick and overlies at least three earlier stages of reef build-up, interpreted as deposited during marine isotope stages 5, 7 and 9 respectively. The cored shallow subsurface facies of Adele Reef are predominantly detrital, comprising small coral colonies and fragments in a sandy matrix. Reef cores indicate a `catch-up' growth pattern, with the reef flat being approximately 5-10 m deep when sea level stabilised at its present elevation 6,500 years BP. The reef flat is rimmed by a broad low-relief reef crest only 10-20 cm high, characterised by anastomosing ridges of rhodoliths and coralliths. The depth of the Holocene/last interglacial contact (25-30 m) suggests a subsidence rate of 0.2 mm/year for Adele Reef since the last interglacial. This value, incorporated with subsidence rates from Cockatoo Island (inshore) and Scott Reefs (offshore), provides the first quantitative estimate of hinge subsidence for the Kimberley coast and adjacent shelf, with progressively greater subsidence across the shelf.

  2. Geomorphology and late Holocene accretion history of Adele Reef: a northwest Australian mid-shelf platform reef

    Science.gov (United States)

    Solihuddin, Tubagus; Bufarale, Giada; Blakeway, David; O'Leary, Michael J.

    2016-08-01

    The mid-shelf reefs of the Kimberley Bioregion are one of Australia's more remote tropical reef provinces and such have received little attention from reef researchers. This study describes the geomorphology and late Holocene accretion history of Adele Reef, a mid-shelf platform reef, through remote sensing of contemporary reef habitats, shallow seismic profiling, shallow percussion coring and radiocarbon dating. Seismic profiling indicates that the Holocene reef sequence is 25 to 35 m thick and overlies at least three earlier stages of reef build-up, interpreted as deposited during marine isotope stages 5, 7 and 9 respectively. The cored shallow subsurface facies of Adele Reef are predominantly detrital, comprising small coral colonies and fragments in a sandy matrix. Reef cores indicate a `catch-up' growth pattern, with the reef flat being approximately 5-10 m deep when sea level stabilised at its present elevation 6,500 years BP. The reef flat is rimmed by a broad low-relief reef crest only 10-20 cm high, characterised by anastomosing ridges of rhodoliths and coralliths. The depth of the Holocene/last interglacial contact (25-30 m) suggests a subsidence rate of 0.2 mm/year for Adele Reef since the last interglacial. This value, incorporated with subsidence rates from Cockatoo Island (inshore) and Scott Reefs (offshore), provides the first quantitative estimate of hinge subsidence for the Kimberley coast and adjacent shelf, with progressively greater subsidence across the shelf.

  3. Community and connectivity: summary of a community based monitoring program set up to assess the movement of nutrients and sediments into the Great Barrier Reef during high flow events.

    Science.gov (United States)

    Devlin, M; Waterhouse, J; Brodie, J

    2001-01-01

    The Great Barrier Reef (GBR) system encompasses the largest system of corals and related life forms anywhere in the world. The health of this extensive system, particularly the inshore area, is dependent on the relationship between the GBR and adjacent coastal catchments. The major impact of agricultural practices on the GBR is the degradation of water quality in receiving (rivers) waters, caused by increased inputs of nutrients, suspended sediments and other pollutants. For the past three years, the Great Barrier Reef Marine Park Authority (GBRMPA) has been involved with the co-ordination of a river-monitoring program, specifically targeting the sampling of rivers during flood events. Representative sites were set up along two North Queensland rivers, the Russell-Mulgrave and Barron Rivers. This monitoring program is run in conjunction with the Queensland Department of Natural Resources' Waterwatch program. The program involves intensive sampling of first flush, extreme flow and post flood conditions over the two rivers. Extreme flow conditions are sampled over a limited time span (48 hours) with trained volunteers at 4-hour intervals. Concentrations measured in the flood events are dependent on land use characteristic, and extent of flow. Concentrations of dissolved and particulate nutrients are higher if the extreme flow event is part of the first flush cycle. Concentrations of DIN and DIP measured before, during and after a major flood event suggest that there is a large storage of inorganic material within the Barron and Russell-Mulgrave agricultural subcatchments that move over a period of days, and perhaps weeks. This program created a forum in which GBRMPA liased with the Barron and Russell-Mulgrave community about the connectivity existing between the river and the Great Barrier Reef lagoon.

  4. The threat to coral reefs from more intense cyclones under climate change.

    Science.gov (United States)

    Cheal, Alistair J; MacNeil, M Aaron; Emslie, Michael J; Sweatman, Hugh

    2017-04-01

    Ocean warming under climate change threatens coral reefs directly, through fatal heat stress to corals and indirectly, by boosting the energy of cyclones that cause coral destruction and loss of associated organisms. Although cyclone frequency is unlikely to rise, cyclone intensity is predicted to increase globally, causing more frequent occurrences of the most destructive cyclones with potentially severe consequences for coral reef ecosystems. While increasing heat stress is considered a pervasive risk to coral reefs, quantitative estimates of threats from cyclone intensification are lacking due to limited data on cyclone impacts to inform projections. Here, using extensive data from Australia's Great Barrier Reef (GBR), we show that increases in cyclone intensity predicted for this century are sufficient to greatly accelerate coral reef degradation. Coral losses on the outer GBR were small, localized and offset by gains on undisturbed reefs for more than a decade, despite numerous cyclones and periods of record heat stress, until three unusually intense cyclones over 5 years drove coral cover to record lows over >1500 km. Ecological damage was particularly severe in the central-southern region where 68% of coral cover was destroyed over >1000 km, forcing record declines in the species richness and abundance of associated fish communities, with many local extirpations. Four years later, recovery of average coral cover was relatively slow and there were further declines in fish species richness and abundance. Slow recovery of community diversity appears likely from such a degraded starting point. Highly unusual characteristics of two of the cyclones, aside from high intensity, inflated the extent of severe ecological damage that would more typically have occurred over 100s of km. Modelling published predictions of future cyclone activity, the likelihood of more intense cyclones within time frames of coral recovery by mid-century poses a global threat to coral

  5. U-Th age distribution of coral fragments from multiple rubble ridges within the Frankland Islands, Great Barrier Reef: Implications for past storminess history

    Science.gov (United States)

    Liu, Entao; Zhao, Jian-xin; Feng, Yue-xing; Leonard, Nicole D.; Clark, Tara R.; Roff, George

    2016-07-01

    Prograded coral rubble ridges have been widely used as archives for reconstructing long-term storm or storminess history. Chronologies of ridge systems in previous studies are often based on a limited number of low-resolution radiocarbon or optically-stimulated luminescence (OSL) ages per ridge (usually only one age per ridge), which carry intrinsic age uncertainties and make interpretation of storm histories problematic. To test the fidelity of storm ridges as palaeo-storm archives, we used high-precision U-Th dating to examine whether different samples from a single ridge are temporally constrained. We surveyed three transects of ridge systems from two continental islands (Normanby Island and High Island) within the Frankland Islands, Great Barrier Reef (GBR), and obtained 96 U-Th dates from coral rubble samples collected from within and between different ridges. Our results revealed significant differences in age ranges between the two islands. The steeper and more defined rubble ridges present on Normanby Island revealed that the majority of U-Th ages (over 60%) from a single ridge clustered within a narrow age range (∼100 years). By contrast, the lower and less defined ridges on High Island, which were more likely formed during both storm and non-storm high-energy events, revealed significant scatter in age distribution (>>200 years) with no notable clustering. The narrower age ranges obtained from the steeper and more defined rubble ridges suggest that previous approaches of using either limited samples from a single ridge or low-precision dating methods to establish chronologies are generally valid at centennial to millennial timescales, although caution must be taken to use such approaches for storm history reconstruction on shorter timescales (e.g. decadal). The correlation between U-Th mortality ages of coral rubble and historical stormy periods highlights the possibility of using coral rubble age distribution from rubble ridges to reconstruct the long

  6. The effect of sub-lethal increases in temperature on the growth and population trajectories of three scleractinian corals on the southern Great Barrier Reef.

    Science.gov (United States)

    Edmunds, Peter J

    2005-12-01

    To date, coral death has been the most conspicuous outcome of warming tropical seas, but as temperatures stabilize at higher values, the consequences for the corals remaining will be mediated by their demographic responses to the sub-lethal effects of temperature. To gain insight into the nature of these responses, here I develop a model to test the effect of increased temperature on populations of three pocilloporid corals at One Tree Island, near the southern extreme of the Great Barrier Reef (GBR). Using Seriatopora hystrix, S. caliendrum and Pocillopora damicornis as study species, the effects of temperature on growth were determined empirically, and the dynamics of their populations determined under natural temperatures over a 6-month period between 1999 and 2000 [defined as the study year (SY)]. The two data sets were combined in a demographic test of the possibility that the thermal regime projected for the southern GBR in the next 55-83 years--warmer by 3 degrees C than the study year (the SY+3 regime), which is equivalent to 1.4 degrees C warmer than the recent warm year of 1998--would alter coral population trajectories through the effects on coral growth alone; the analyses first were completed by species, then by family after pooling among species. Laboratory experiments showed that growth rates (i.e., calcification) varied significantly among species and temperatures, and displayed curvilinear thermal responses with growth maxima at approximately 27.1 degrees C. Based on these temperature-growth responses, the SY+3 regime is projected to: (1) increase annualized growth rates of all taxa by 24-39%, and defer the timing of peak growth from the summer to the autumn and spring, (2) alter the intrinsic rate of population growth (lambda) for S. hystrix (lambda decreases 26%) and S. caliendrum (lambda increases 5%), but not for P. damicornis, and (3) have a minor effect on lambda (a 0.3% increase) for the Pocilloporidae, largely because lambda varies more

  7. Born to roam? Surveying cat owners in Tasmania, Australia, to identify the drivers and barriers to cat containment.

    Science.gov (United States)

    McLeod, Lynette J; Hine, Donald W; Bengsen, Andrew J

    2015-12-01

    Free-roaming domestic cats, Felis catus, are a major public nuisance in neighbourhoods across the world, and have been linked to biodiversity loss and a host of community health problems. Owners who let their cats roam, also place their cats at risk of serious injury. One management strategy that is gaining considerable support involves encouraging cat owners to contain their pets within their property. Contemporary behaviour change models highlight the importance of identifying drivers and barriers that encourage and discourage target behaviours such as cat containment. Results from a random dial phone survey of 356 cat owners in northern Tasmania identified four distinct cat containment profiles: owners who contained their cat all the time, owners who only contained their cat at night, owners who sporadically contained their cat with no set routine, and owners who made no attempt to contain their pet. Our results indicated that cat-owners' decisions to contain or not contain their cats were guided by a range of factors including owners' beliefs about their ability to implement an effective containment strategy and their views about the physical and psychological needs of their cats. The results are discussed in terms of improving the behavioural effectiveness of cat containment interventions by selecting appropriate behavioural change tools for the identified drivers and barriers, and developing targeted engagement strategies and messaging.

  8. Madreporaria from the Togian Reefs (Gulf of Tomini, North-Celebes)

    NARCIS (Netherlands)

    Umbgrove, J.H.F.

    1940-01-01

    INTRODUCTION The coral reefs of the Togian islands grow up as steep barrier reefs and atolls. Moreover small fringing reefs occur along the islands. The geological structure of the islands, as well as the history and morphology of the reefs are treated in a separate paper 1). I will here mention onl

  9. 1300 km long late Pleistocene-Holocene shelf edge barrier reef system along the western continental shelf of India: Occurrence and significance

    Digital Repository Service at National Institute of Oceanography (India)

    Vora, K.H.; Wagle, B.G.; Veerayya, M.; Almeida, F.; Karisiddaiah, S.M.

    developed shelf edge reefs occur on almost all the tracks [ 131 between Ratnagiri and Mormugao, implying some continuity along this 200 km K.H. Vera et al./Marine Geology 134 (1996) I4S-162 Table 1 Salient features of the shelf edge reefs observed... to a subsidence of several meters. This is well possible since the Konkan Coast is believed to be subsiding (Bruckner, 1989). The initial topography might 158 K.H. Vera et aLlMarine Geology 134 (1996) 145-162 Table 3 River discharge along the west...

  10. Nocturnal relocation of adult and juvenile coral reef fishes in response to reef noise

    Science.gov (United States)

    Simpson, S. D.; Jeffs, A.; Montgomery, J. C.; McCauley, R. D.; Meekan, M. G.

    2008-03-01

    Juvenile and adult reef fishes often undergo migration, ontogenic habitat shifts, and nocturnal foraging movements. The orientation cues used for these behaviours are largely unknown. In this study, the use of sound as an orientation cue guiding the nocturnal movements of adult and juvenile reef fishes at Lizard Island, Great Barrier Reef was examined. The first experiment compared the movements of fishes to small patch reefs where reef noise was broadcast, with those to silent reefs. No significant responses were found in the 79 adults that were collected, but the 166 juveniles collected showed an increased diversity each morning on the reefs with broadcast noise, and significantly greater numbers of juveniles from three taxa (Apogonidae, Gobiidae and Pinguipedidae) were collected from reefs with broadcast noise. The second experiment compared the movement of adult and juvenile fishes to reefs broadcasting high (>570 Hz), or low (Gobiidae and Blenniidae) preferred these reefs. A similar trend was observed in the 372 juveniles collected, with higher diversity at the reefs with low frequency noises. This preference was seen in the juvenile apogonids; however, juvenile gobiids were attracted to both high and low sound treatments equally, and juvenile stage Acanthuridae preferred the high frequency noises. This evidence that juvenile and adult reef fishes orientate with respect to the soundscape raises important issues for management, conservation and the protection of sound cues used in natural behaviour.

  11. Episodes of reef growth at Lord Howe Island, the southernmost reef in the southwest Pacific

    Science.gov (United States)

    Woodroffe, C. D.; Dickson, M. E.; Brooke, B. P.; Kennedy, D. M.

    2005-12-01

    Lord Howe Island lies at the present latitudinal limit to reef growth in the Pacific and preserves evidence of episodes of reef development over the Late Quaternary. A modern fringing reef flanks the western shore of Lord Howe Island, enclosing a Holocene lagoon, and Late Quaternary eolianites veneer the island. Coral-bearing beach and shallow-water calcarenites record a sea level around 2-3 m above present during the Last Interglacial. No reefs or subaerial carbonate deposits occur on, or around, Balls Pyramid, 25 km to the south. The results of chronostratigraphic studies of the modern Lord Howe Island reef and lagoon indicate prolific coral production during the mid-Holocene, but less extensive coral cover during the late Holocene. Whereas the prolific mid-Holocene reefs might appear to reflect warmer sea-surface temperatures, the pattern of dates and reef growth history are similar to those throughout the Great Barrier Reef and across much of the Indo-Pacific and are more likely correlated with availability of suitable substrate. Little direct evidence of a Last Interglacial reef is now preserved, and the only evidence for older periods of reef establishment comes from clasts of coral in a well-cemented limestone unit below a coral that has been dated to the Last Interglacial age in a core at the jetty. However, a massive reef structure occurs near the centre of the wide shelf around Lord Howe Island, veneered with Holocene coralline algae. Its base is 40-50 m deep and it rises to water depths of less than 30 m. This fossil reef is several times more extensive than either Holocene or Last Interglacial reefs appear to have been. Holocene give-up reef growth is inferred during the postglacial transgression, but an alternative interpretation is that this is a much older landform, indicating reefs that were much more extensive than modern reefs at this marginal site.

  12. Assessing the Effectiveness of Local Management of Coral Reefs Using Expert Opinion and Spatial Bayesian Modeling.

    Directory of Open Access Journals (Sweden)

    Stephen S Ban

    Full Text Available Multiple stressors are an increasing concern in the management and conservation of ecosystems, and have been identified as a key gap in research. Coral reefs are one example of an ecosystem where management of local stressors may be a way of mitigating or delaying the effects of climate change. Predicting how multiple stressors interact, particularly in a spatially explicit fashion, is a difficult challenge. Here we use a combination of an expert-elicited Bayesian network (BN and spatial environmental data to examine how hypothetical scenarios of climate change and local management would result in different outcomes for coral reefs on the Great Barrier Reef (GBR, Australia. Parameterizing our BN using the mean responses from our experts resulted in predictions of limited efficacy of local management in combating the effects of climate change. However, there was considerable variability in expert responses and uncertainty was high. Many reefs within the central GBR appear to be at risk of further decline based on the pessimistic opinions of our expert pool. Further parameterization of the model as more data and knowledge become available could improve predictive power. Our approach serves as a starting point for subsequent work that can fine-tune parameters and explore uncertainties in predictions of responses to management.

  13. Diversity among macroalgae-consuming fishes on coral reefs: a transcontinental comparison.

    Directory of Open Access Journals (Sweden)

    Adriana Vergés

    Full Text Available Despite high diversity and abundance of nominally herbivorous fishes on coral reefs, recent studies indicate that only a small subset of taxa are capable of removing dominant macroalgae once these become established. This limited functional redundancy highlights the potential vulnerability of coral reefs to disturbance and stresses the need to assess the functional role of individual species of herbivores. However, our knowledge of species-specific patterns in macroalgal consumption is limited geographically, and there is a need to determine the extent to which patterns observed in specific reefs can be generalised at larger spatial scales. In this study, video cameras were used to quantify rates of macroalgae consumption by fishes in two coral reefs located at a similar latitude in opposite sides of Australia: the Keppel Islands in the Great Barrier Reef (eastern coast and Ningaloo Reef (western coast. The community of nominally herbivorous fish was also characterised in both systems to determine whether potential differences in the species observed feeding on macroalgae were related to spatial dissimilarities in herbivore community composition. The total number of species observed biting on the dominant brown alga Sargassum myriocystum differed dramatically among the two systems, with 23 species feeding in Ningaloo, compared with just 8 in the Keppel Islands. Strong differences were also found in the species composition and total biomass of nominally herbivorous fish, which was an order of magnitude higher in Ningaloo. However, despite such marked differences in the diversity, biomass, and community composition of resident herbivorous fishes, Sargassum consumption was dominated by only four species in both systems, with Naso unicornis and Kyphosus vaigiensis consistently emerging as dominant feeders of macroalgae.

  14. Management under uncertainty: guide-lines for incorporating connectivity into the protection of coral reefs

    Science.gov (United States)

    McCook, L. J.; Almany, G. R.; Berumen, M. L.; Day, J. C.; Green, A. L.; Jones, G. P.; Leis, J. M.; Planes, S.; Russ, G. R.; Sale, P. F.; Thorrold, S. R.

    2009-06-01

    The global decline in coral reefs demands urgent management strategies to protect resilience. Protecting ecological connectivity, within and among reefs, and between reefs and other ecosystems is critical to resilience. However, connectivity science is not yet able to clearly identify the specific measures for effective protection of connectivity. This article aims to provide a set of principles or practical guidelines that can be applied currently to protect connectivity. These ‘rules of thumb’ are based on current knowledge and expert opinion, and on the philosophy that, given the urgency, it is better to act with incomplete knowledge than to wait for detailed understanding that may come too late. The principles, many of which are not unique to connectivity, include: (1) allow margins of error in extent and nature of protection, as insurance against unforeseen or incompletely understood threats or critical processes; (2) spread risks among areas; (3) aim for networks of protected areas which are: (a) comprehensive and spread—protect all biotypes, habitats and processes, etc., to capture as many possible connections, known and unknown; (b) adequate—maximise extent of protection for each habitat type, and for the entire region; (c) representative—maximise likelihood of protecting the full range of processes and spatial requirements; (d) replicated—multiple examples of biotypes or processes enhances risk spreading; (4) protect entire biological units where possible (e.g. whole reefs), including buffers around core areas. Otherwise, choose bigger rather than smaller areas; (5) provide for connectivity at a wide range of dispersal distances (within and between patches), emphasising distances <20-30 km; and (6) use a portfolio of approaches, including but not limited to MPAs. Three case studies illustrating the application of these principles to coral reef management in the Bohol Sea (Philippines), the Great Barrier Reef (Australia) and Kimbe Bay (Papua New

  15. Artificial Reefs

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — An artificial reef is a human-made underwater structure, typically built to promote marine life in areas with a generally featureless bottom, control erosion, block...

  16. Will Coral Islands maintain their growth over the next century? A deterministic model of sediment availability at Lady Elliot Island, Great Barrier Reef.

    Science.gov (United States)

    Hamylton, Sarah

    2014-01-01

    A geomorphic assessment of reef system calcification is conducted for past (3200 Ka to present), present and future (2010-2100) time periods. Reef platform sediment production is estimated at 569 m3 yr-1 using rate laws that express gross community carbonate production as a function of seawater aragonite saturation, community composition and rugosity and incorporating estimates of carbonate removal from the reef system. Key carbonate producers including hard coral, crustose coralline algae and Halimeda are mapped accurately (mean R2 = 0.81). Community net production estimates correspond closely to independent census-based estimates made in-situ (R2 = 0.86). Reef-scale outputs are compared with historic rates of production generated from (i) radiocarbon evidence of island deposition initiation around 3200 years ago, and (ii) island volume calculated from a high resolution island digital elevation model. Contemporary carbonate production rates appear to be remarkably similar to historical values of 573 m3 yr-1. Anticipated future seawater chemistry parameters associated with an RCP8.5 emissions scenario are employed to model rates of net community calcification for the period 2000-2100 on the basis of an inorganic aragonite precipitation law, under the assumption of constant benthic community character. Simulations indicate that carbonate production will decrease linearly to a level of 118 m3 yr-1 by 2100 and that by 2150 aragonite saturation levels may no longer support the positive budgetary status necessary to sustain island accretion. Novel aspects of this assessment include the development of rate law parameters to realistically represent the variable composition of coral reef benthic carbonate producers, incorporation of three dimensional rugosity of the entire reef platform and the coupling of model outputs with both historical radiocarbon dating evidence and forward hydrochemical projections to conduct an assessment of island evolution through time

  17. Benthic buffers and boosters of ocean acidification on coral reefs

    Directory of Open Access Journals (Sweden)

    K. R. N. Anthony

    2013-07-01

    Full Text Available Ocean acidification is a threat to marine ecosystems globally. In shallow-water systems, however, ocean acidification can be masked by benthic carbon fluxes, depending on community composition, seawater residence time, and the magnitude and balance of net community production (NCP and calcification (NCC. Here, we examine how six benthic groups from a coral reef environment on Heron Reef (Great Barrier Reef, Australia contribute to changes in the seawater aragonite saturation state (Ωa. Results of flume studies using intact reef habitats (1.2 m by 0.4 m, showed a hierarchy of responses across groups, depending on CO2 level, time of day and water flow. At low CO2 (350–450 μatm, macroalgae (Chnoospora implexa, turfs and sand elevated Ωa of the flume water by around 0.10 to 1.20 h−1 – normalised to contributions from 1 m2 of benthos to a 1 m deep water column. The rate of Ωa increase in these groups was doubled under acidification (560–700 μatm and high flow (35 compared to 8 cm s−1. In contrast, branching corals (Acropora aspera increased Ωa by 0.25 h−1 at ambient CO2 (350–450 μatm during the day, but reduced Ωa under acidification and high flow. Nighttime changes in Ωa by corals were highly negative (0.6–0.8 h−1 and exacerbated by acidification. Calcifying macroalgae (Halimeda spp. raised Ωa by day (by around 0.13 h−1, but lowered Ωa by a similar or higher amount at night. Analyses of carbon flux contributions from benthic communities with four different compositions to the reef water carbon chemistry across Heron Reef flat and lagoon indicated that the net lowering of Ωa by coral-dominated areas can to some extent be countered by long water-residence times in neighbouring areas dominated by turfs, macroalgae and carbonate sand.

  18. Impacts of Artificial Reefs and Diving Tourism

    Directory of Open Access Journals (Sweden)

    Sandra Jakšić

    2013-10-01

    Full Text Available Coral reefs are currently endangered throughout the world. One of the main activities responsible for this is scuba-diving. Scuba-diving on coral reefs was not problematic in the begging, but due to popularization of the new sport, more and more tourists desired to participate in the activity. Mass tourism, direct contact of the tourists with the coral reefs and unprofessional behavior underwater has a negative effect on the coral reefs. The conflict between nature preservation and economy benefits related to scuba-diving tourism resulted in the creation of artificial reefs, used both to promote marine life and as tourists attractions, thereby taking the pressure off the natural coral reefs. Ships, vehicles and other large structures can be found on the coastal sea floor in North America, Australia, Japan and Europe. The concept of artificial reefs as a scuba-diving attraction was developed in Florida. The main goal was to promote aquaculture, with the popularization of scuba-diving attractions being a secondary effect. The aim of this paper is to determine the effects of artificial reefs on scuba-diving tourism, while taking into account the questionnaire carried out among 18 divers

  19. A history of mass spectrometry in Australia

    Energy Technology Data Exchange (ETDEWEB)

    Downard, K.M.; de Laeter, J.R. [University of Sydney, Sydney, NSW (Australia)

    2005-09-01

    An interest in mass spectrometry in Australia can be traced back to the 1920s with an early correspondence with Francis Aston who first visited these shores a decade earlier. The region has a rich tradition in both the development of the field and its application, from early measurements of ionization and appearance potentials by Jim Morrison at the Council for Scientific and Industrial Research (CSIR) around 1950 to the design and construction of instrumentation including the first use of a triple quadrupole mass spectrometer for tandem mass spectrometry, the first suite of programs to simulate ion optics (SIMION), the development of early TOF/TOF instruments and orthogonal acceleration and the local design and construction of several generations of a sensitive high-resolution ion microprobe (SHRIMP) instrument. Mass spectrometry has been exploited in the study and characterization of the constituents of this nation's unique flora and fauna from Australian apples, honey, tea plant and eucalyptus oil, snake, spider, fish and frog venoms, coal, oil, sediments and shale, environmental studies of groundwater to geochronological dating of limestone and granite, other terrestrial and meteoritic rocks and coral from the Great Barrier Reef. This article traces the history of mass spectrometry in its many guises and applications in the island continent of Australia. It focuses on contributions of scientists who played a major role in the early establishment of mass spectrometry in Australia. In general, those who are presently active in the field, and whose histories are incomplete, have been mentioned at best only briefly despite their important contributions to the field.

  20. Coral zonation and diagenesis of an emergent Pleistocene patch reef, Belize, Central America

    Energy Technology Data Exchange (ETDEWEB)

    Lighty, R.G.; Russell, K.L.

    1985-01-01

    Transect mapping and petrologic studies reveal a new depositional model and limited diagenesis of a well-exposed Pleistocene reef outcrop at Ambergris Cay, northern Belize. This emergent shelf-edge reef forms a rocky wave-washed headland at the northern terminus of the present-day 250 km long flourishing Belize Barrier Reef. Previously, the Belize reef outcrop was thought to extend southward in the subsurface beneath the modern barrier reef as a Pleistocene equivalent. The authors study indicate that this outcrop is a large, coral patch reef and not part of a barrier reef trend. Sixteen transects 12.5 m apart described in continuous cm increments from fore reef to back reef identified: extensive deposits of broken Acropora cervicornis; small thickets of A. palmata with small, oriented branches; and muddy skeletal sediments with few corals or reef rubble. Thin section and SEM studies show three phases of early submarine cementation: syntaxial and rosette aragonite; Mg-calcite rim cement and peloids; and colloidal Mg-calcite geopetal fill. Subaerial exposure in semi-arid northern Belize caused only minor skeletal dissolution, some precipitation of vadose whisker calcite, and no meteoric phreatic diagenesis. Facies geometry, coral assemblages, lack of rubble deposits, coralline algal encrustations and Millepora framework, and recognition of common but discrete submarine cements, all indicate that this Pleistocene reef was an isolated, coral-fringed sediment buildup similar to may large patch reefs existing today in moderate-energy shelf environments behind the modern barrier reef in central and southern Belize.

  1. Habitat dynamics, marine reserve status, and the decline and recovery of coral reef fish communities.

    Science.gov (United States)

    Williamson, David H; Ceccarelli, Daniela M; Evans, Richard D; Jones, Geoffrey P; Russ, Garry R

    2014-02-01

    Severe climatic disturbance events often have major impacts on coral reef communities, generating cycles of decline and recovery, and in some extreme cases, community-level phase shifts from coral-to algal-dominated states. Benthic habitat changes directly affect reef fish communities, with low coral cover usually associated with low fish diversity and abundance. No-take marine reserves (NTRs) are widely advocated for conserving biodiversity and enhancing the sustainability of exploited fish populations. Numerous studies have documented positive ecological and socio-economic benefits of NTRs; however, the ability of NTRs to ameliorate the effects of acute disturbances on coral reefs has seldom been investigated. Here, we test these factors by tracking the dynamics of benthic and fish communities, including the important fishery species, coral trout (Plectropomus spp.), over 8 years in both NTRs and fished areas in the Keppel Island group, Great Barrier Reef, Australia. Two major disturbances impacted the reefs during the monitoring period, a coral bleaching event in 2006 and a freshwater flood plume in 2011. Both disturbances generated significant declines in coral cover and habitat complexity, with subsequent declines in fish abundance and diversity, and pronounced shifts in fish assemblage structure. Coral trout density also declined in response to the loss of live coral, however, the approximately 2:1 density ratio between NTRs and fished zones was maintained over time. The only post-disturbance refuges for coral trout spawning stocks were within the NTRs that escaped the worst effects of the disturbances. Although NTRs had little discernible effect on the temporal dynamics of benthic or fish communities, it was evident that the post-disturbance refuges for coral trout spawning stocks within some NTRs may be critically important to regional-scale population persistence and recovery.

  2. Reef grief

    Science.gov (United States)

    2011-10-01

    As the first of the world's ecosystems faces extermination at our hands, coral reef ecologist Peter Sale -- Assistant Director of the Institute of Water, Environment and Health at the United Nations University in Ontario, Canada, and author of Our Dying Planet (published this autumn) -- talks to Nature Climate Change.

  3. Refuge-seeking impairments mirror metabolic recovery following fisheries-related stressors in the Spanish flag snapper (Lutjanus carponotatus) on the Great Barrier Reef.

    Science.gov (United States)

    Cooke, Steven J; Messmer, Vanessa; Tobin, Andrew J; Pratchett, Morgan S; Clark, Timothy D

    2014-01-01

    Fisheries and marine park management strategies for large predatory reef fish can mean that a large proportion of captured fish are released. Despite being released, these fish may experience high mortality while they traverse the water column to locate suitable refuge to avoid predators, all the while recovering from the stress of capture. The predatory reef fish Spanish flag snapper (Lutjanus carponotatus) is frequently released because of a minimum-size or bag limit or by fishers targeting more desirable species. Using L. carponotatus as a model, we tested whether simulated fishing stress (exercise and air exposure) resulted in impairments in reflexes (e.g., response to stimuli) and the ability to identify and use refuge in a laboratory arena and whether any impairments were associated with blood physiology or metabolic recovery. Control fish were consistently responsive to reflex tests and rapidly located and entered refugia in the arena within seconds. Conversely, treatment fish (exhausted and air exposed) were unresponsive to stimuli, took longer to search for refugia, and were more apprehensive to enter the refuge once it was located. Consequently, treatment fish took more than 70 times longer than control fish to enter the coral refuge (26.12 vs. 0.36 min, respectively). The finding that fish exposed to stress were hesitant to use refugia suggests that there was likely cognitive, visual, and/or physiological impairment. Blood lactate, glucose, and hematocrit measures were perturbed at 15 and 30 min after the stressor, relative to controls. However, measurements of oxygen consumption rate revealed that about 50% of metabolic recovery occurred within 30 min after the stressor, coinciding with apparent cognitive/visual/physiological recovery. Recovering the treatment fish in aerated, flow-through chambers for 30 min before introduction to the behavioral arena restored reflexes, and "recovered" fish behaved more similarly to controls. Therefore, we suggest that

  4. Benthic buffers and boosters of ocean acidification on coral reefs

    Directory of Open Access Journals (Sweden)

    K. R. N. Anthony

    2013-02-01

    Full Text Available Ocean acidification is a threat to marine ecosystems globally. In shallow-water systems, however, ocean acidification can be masked by benthic carbon fluxes, depending on community composition, seawater residence time, and the magnitude and balance of net community production (pn and calcification (gn. Here, we examine how six benthic groups from a coral reef environment on Heron Reef (Great Barrier Reef, Australia contribute to changes in seawater aragonite saturation state (Ωa. Results of flume studies showed a hierarchy of responses across groups, depending on CO2 level, time of day and water flow. At low CO2 (350–450 μatm, macroalgae (Chnoospora implexa, turfs and sand elevated Ωa of the flume water by around 0.10 to 1.20 h−1 – normalised to contributions from 1 m2 of benthos to a 1 m deep water column. The rate of Ωa increase in these groups was doubled under acidification (560–700 μatm and high flow (35 compared to 8 cm s−1. In contrast, branching corals (Acropora aspera increased Ωa by 0.25 h−1 at ambient CO2 (350–450 μatm during the day, but reduced Ωa under acidification and high flow. Nighttime changes in Ωa by corals were highly negative (0.6–0.8 h−1 and exacerbated by acidification. Calcifying macroalgae (Halimeda spp. raised Ωa by day (by around 0.13 h−1, but lowered Ωa by a similar or higher amount at night. Analyses of carbon flux contributions from four different benthic compositions to the reef water carbon chemistry across Heron Reef flat and lagoon indicated that the net lowering of Ωa by coral-dominated areas can to some extent be countered by long water residence times in neighbouring areas dominated by turfs, macroalgae and potentially sand.

  5. Hydrodynamic Regimes Affect Coral Reef Resilience to Ocean Acidification

    Science.gov (United States)

    Teneva, L. T.; Dunbar, R. B.; Koseff, J. R.; Fleischfresser, J. D.; Koweek, D.

    2013-05-01

    Caribbean reefs hold tremendous value as sources of food, income, coastal protection, in addition to their cultural significance. Recently, studies showed that Caribbean reef growth has been surpassed in places by excessive rates of erosion due to climate change. The rates of coral reef response to ocean pH changes and warming and the implications for ecosystem resilience remain largely unknown. One way to investigate the potential structural resilience of reefs to climate change is to measure the physical oceanographic conditions in the area. Determining the hydrodynamic regimes and residence time of water in a particular reef environment is crucial to understanding the rates of future warming and acidification a reef site would experience. Our work on Pacific Islands' hydrodynamics - Central Equatorial Pacific, Great Barrier Reef, and Western Pacific -- would be of interest to Caribbean physical oceanographers and coral reef scientists. We use a combination of Acoustic Doppler Current Profilers, Acoustic Doppler Velocimeters, temperature and salinity sensors, and pressure sensors to characterize reef hydrodynamic regimes. Our work indicates that shallower, more protected reef habitats are characterized by longer residence times, their biological signals are strongly tidally modulated, essentially subjecting such habitats to higher rates of warming and acidification in the future. Reef crest environments and fore reef habitats, on the other hand, are well-mixed with open-ocean water. The hydrodynamic regimes there condition such reef sites to more attenuated temperature and pH ranges, conditions more typical of the open ocean. Our work suggests that investigating the geomorphology and resulting localized hydrodynamics in a reef area can provide insights into the relative rates at which a reef could resist or succumb to impacts of ocean acidification. Such information for different reef islands, in the Pacific or Caribbean basins, could provide helpful insights

  6. 'Excuse me, do any of you ladies speak English?' Perspectives of refugee women living in South Australia: barriers to accessing primary health care and achieving the Quality Use of Medicines.

    Science.gov (United States)

    Clark, Alice; Gilbert, Andrew; Rao, Deepa; Kerr, Lorraine

    2014-01-01

    Reforms to the Australian health system aim to ensure that services are accessible, clinically and culturally appropriate, timely and affordable. During the reform consultation process there were urgent calls from stakeholders to specifically consider the health needs of the thousands of refugees who settle here each year, but little is known about what is needed from the refugee perspective. Access to health services is a basic requirement of achieving the quality use of medicines, as outlined in Australia's National Medicines Policy. This study aimed to identify the barriers to accessing primary health care services and explore medicine-related issues as experienced by refugee women in South Australia. Thirty-six women participated in focus groups with accredited and community interpreters and participants were from Sudan, Burundi, Congo, Burma, Afghanistan and Bhutan who spoke English (as a second language), Chin, Matu, Dari and Nepali. The main barrier to accessing primary health care and understanding GPs and pharmacists was not being able to speak or comprehend English. Interpreter services were used inconsistently or not at all. To implement the health reforms and achieve the quality use of medicines, refugees, support organisations, GPs, pharmacists and their staff require education, training and support.

  7. Crossing the ultimate ecological barrier : Evidence for an 11000-km-long nonstop flight from Alaska to New Zealand and eastern Australia by Bar-tailed Godwits

    NARCIS (Netherlands)

    Gill, RE; Piersma, T; Hufford, G; Servranckx, R; Riegen, A

    2005-01-01

    Populations of the Bar-tailed Godwit (Limosa lapponica; Scolopacidae) embark on some of the longest migrations known among birds. The baueri race breeds in western Alaska and spends the nonbreeding season a hemisphere away in New Zealand and eastern Australia; the menzbieri race breeds in Siberia an

  8. Coral Reef Remote Sensing: Helping Managers Protect Reefs in a Changing Climate

    Science.gov (United States)

    Eakin, C.; Liu, G.; Li, J.; Muller-Karger, F. E.; Heron, S. F.; Gledhill, D. K.; Christensen, T.; Rauenzahn, J.; Morgan, J.; Parker, B. A.; Skirving, W. J.; Nim, C.; Burgess, T.; Strong, A. E.

    2010-12-01

    Climate change and ocean acidification are already having severe impacts on coral reef ecosystems. Warming oceans have caused corals to bleach, or expel their symbiotic algae (zooxanthellae) with alarming frequency and severity and have contributed to a rise in coral infectious diseases. Ocean acidification is reducing the availability of carbonate ions needed by corals and many other marine organisms to build structural components like skeletons and shells and may already be slowing the coral growth. These two impacts are already killing corals and slowing reef growth, reducing biodiversity and the structure needed to provide crucial ecosystem services. NOAA’s Coral Reef Watch (CRW) uses a combination of satellite data, in situ observations, and models to provide coral reef managers, scientists, and others with information needed to monitor threats to coral reefs. The advance notice provided by remote sensing and models allows resource managers to protect corals, coral reefs, and the services they provide, although managers often encounter barriers to implementation of adaptation strategies. This talk will focus on application of NOAA’s satellite and model-based tools that monitor the risk of mass coral bleaching on a global scale, ocean acidification in the Caribbean, and coral disease outbreaks in selected regions, as well as CRW work to train managers in their use, and barriers to taking action to adapt to climate change. As both anthropogenic CO2 and temperatures will continue to rise, local actions to protect reefs are becoming even more important.

  9. The Role of Observation Systems in Coral Reef Monitoring and Management

    Science.gov (United States)

    Bainbridge, S.; Steinberg, C.; Rigby, P.

    2009-05-01

    The Great Barrier Reef (GBR) located along north eastern Australia consists of some 3,500 individual reefs along 2,500km of coast. At over 315,000 square kilometres in area it represents a large dynamic system, is complex at all scales, sparsely monitored and relatively poorly understood. Managing such a complex system, including the impact of threats such as Climate Change and terrestrial run-off, requires a detailed understanding of the forces that drive the system and the resulting observed biological responses such as productivity, coral bleaching and coral disease. The Great Barrier Reef Ocean Observing System (GBROOS), a geographic node of the Australian Integrated Marine Observing System (IMOS), has deployed a range of observing infrastructure at a number of sites along the GBR. The project looks to measure and monitor the impact of oceanic water from the Coral Sea on the continental shelf reef systems an in particular the role of upwelling and intrusions. In the southern region there is a concentration of observing infrastructure around Heron and One Tree Islands including deep water moorings, ocean surface radar, satellite remote sensing (SST and Ocean Colour), on- reef meteorological stations and wireless sensor networks. This area therefore provides an opportunity to gain an understanding of how the oceanic waters impact and force shallower reef systems and in particular how the thermal environment within the reef lagoons is influenced by oceanic and other processes. The data from all of these systems will be integrated to form a picture of the thermal events occurring in this region during the 2008-09 summer period. Initial analysis of the real-time sensor network data shows the lagoons of Heron and One Tree Islands heating slowly over a number of weeks followed often by sharp cooling periods where the lagoon temperature can drop five degrees Celsius in a day or two. The presentation will look to link the within lagoon data with the deep water data

  10. Niche specialization of reef-building corals in the mesophotic zone

    DEFF Research Database (Denmark)

    Cooper, Timothy F.; Ulstrup, Karin Elizabeth; Dandan, Sana S.

    2011-01-01

    The photobiology of two reef corals and the distribution of associated symbiont types were investigated over a depth gradient of 0–60 m at Scott Reef, Western Australia. Pachyseris speciosa hosted mainly the same Symbiodinium C type similar to C3 irrespective of sampling depth. By contrast...

  11. Recovery of an isolated coral reef system following severe disturbance.

    Science.gov (United States)

    Gilmour, James P; Smith, Luke D; Heyward, Andrew J; Baird, Andrew H; Pratchett, Morgan S

    2013-04-05

    Coral reef recovery from major disturbance is hypothesized to depend on the arrival of propagules from nearby undisturbed reefs. Therefore, reefs isolated by distance or current patterns are thought to be highly vulnerable to catastrophic disturbance. We found that on an isolated reef system in north Western Australia, coral cover increased from 9% to 44% within 12 years of a coral bleaching event, despite a 94% reduction in larval supply for 6 years after the bleaching. The initial increase in coral cover was the result of high rates of growth and survival of remnant colonies, followed by a rapid increase in juvenile recruitment as colonies matured. We show that isolated reefs can recover from major disturbance, and that the benefits of their isolation from chronic anthropogenic pressures can outweigh the costs of limited connectivity.

  12. Reef fishes in biodiversity hotspots are at greatest risk from loss of coral species.

    Directory of Open Access Journals (Sweden)

    Sally J Holbrook

    Full Text Available Coral reef ecosystems are under a variety of threats from global change and anthropogenic disturbances that are reducing the number and type of coral species on reefs. Coral reefs support upwards of one third of all marine species of fish, so the loss of coral habitat may have substantial consequences to local fish diversity. We posit that the effects of habitat degradation will be most severe in coral regions with highest biodiversity of fishes due to greater specialization by fishes for particular coral habitats. Our novel approach to this important but untested hypothesis was to conduct the same field experiment at three geographic locations across the Indo-Pacific biodiversity gradient (Papua New Guinea; Great Barrier Reef, Australia; French Polynesia. Specifically, we experimentally explored whether the response of local fish communities to identical changes in diversity of habitat-providing corals was independent of the size of the regional species pool of fishes. We found that the proportional reduction (sensitivity in fish biodiversity to loss of coral diversity was greater for regions with larger background species pools, reflecting variation in the degree of habitat specialization of fishes across the Indo-Pacific diversity gradient. This result implies that habitat-associated fish in diversity hotspots are at greater risk of local extinction to a given loss of habitat diversity compared to regions with lower species richness. This mechanism, related to the positive relationship between habitat specialization and regional biodiversity, and the elevated extinction risk this poses for biodiversity hotspots, may apply to species in other types of ecosystems.

  13. Reef fishes in biodiversity hotspots are at greatest risk from loss of coral species.

    Science.gov (United States)

    Holbrook, Sally J; Schmitt, Russell J; Messmer, Vanessa; Brooks, Andrew J; Srinivasan, Maya; Munday, Philip L; Jones, Geoffrey P

    2015-01-01

    Coral reef ecosystems are under a variety of threats from global change and anthropogenic disturbances that are reducing the number and type of coral species on reefs. Coral reefs support upwards of one third of all marine species of fish, so the loss of coral habitat may have substantial consequences to local fish diversity. We posit that the effects of habitat degradation will be most severe in coral regions with highest biodiversity of fishes due to greater specialization by fishes for particular coral habitats. Our novel approach to this important but untested hypothesis was to conduct the same field experiment at three geographic locations across the Indo-Pacific biodiversity gradient (Papua New Guinea; Great Barrier Reef, Australia; French Polynesia). Specifically, we experimentally explored whether the response of local fish communities to identical changes in diversity of habitat-providing corals was independent of the size of the regional species pool of fishes. We found that the proportional reduction (sensitivity) in fish biodiversity to loss of coral diversity was greater for regions with larger background species pools, reflecting variation in the degree of habitat specialization of fishes across the Indo-Pacific diversity gradient. This result implies that habitat-associated fish in diversity hotspots are at greater risk of local extinction to a given loss of habitat diversity compared to regions with lower species richness. This mechanism, related to the positive relationship between habitat specialization and regional biodiversity, and the elevated extinction risk this poses for biodiversity hotspots, may apply to species in other types of ecosystems.

  14. Diazotrophic bacterioplankton in a coral reef lagoon: phylogeny, diel nitrogenase expression and response to phosphate enrichment.

    Science.gov (United States)

    Hewson, Ian; Moisander, Pia H; Morrison, Amanda E; Zehr, Jonathan P

    2007-05-01

    We investigated diazotrophic bacterioplankton assemblage composition in the Heron Reef lagoon (Great Barrier Reef, Australia) using culture-independent techniques targeting the nifH fragment of the nitrogenase gene. Seawater was collected at 3 h intervals over a period of 72 h (i.e. over diel as well as tidal cycles). An incubation experiment was also conducted to assess the impact of phosphate (PO(4)3*) availability on nifH expression patterns. DNA-based nifH libraries contained primarily sequences that were most similar to nifH from sediment, microbial mat and surface-associated microorganisms, with a few sequences that clustered with typical open ocean phylotypes. In contrast to genomic DNA sequences, libraries prepared from gene transcripts (mRNA amplified by reverse transcription-polymerase chain reaction) were entirely cyanobacterial and contained phylotypes similar to those observed in open ocean plankton. The abundance of Trichodesmium and two uncultured cyanobacterial phylotypes from previous studies (group A and group B) were studied by quantitative-polymerase chain reaction in the lagoon samples. These were detected as transcripts, but were not detected in genomic DNA. The gene transcript abundance of these phylotypes demonstrated variability over several diel cycles. The PO(4)3* enrichment experiment had a clearer pattern of gene expression over diel cycles than the lagoon sampling, however PO(4)3* additions did not result in enhanced transcript abundance relative to control incubations. The results suggest that a number of diazotrophs in bacterioplankton of the reef lagoon may originate from sediment, coral or beachrock surfaces, sloughing into plankton with the flooding tide. The presence of typical open ocean phylotype transcripts in lagoon bacterioplankton may indicate that they are an important component of the N cycle of the coral reef.

  15. Variability in reef connectivity in the Coral Triangle

    Science.gov (United States)

    Thompson, D. M.; Kleypas, J. A.; Castruccio, F. S.; Watson, J. R.; Curchitser, E. N.

    2015-12-01

    The Coral Triangle (CT) is not only the global center of marine biodiversity, it also supports the livelihoods of millions of people. Unfortunately, it is also considered the most threatened of all reef regions, with rising temperature and coral bleaching already taking a toll. Reproductive connectivity between reefs plays a critical role in the reef's capacity to recover after such disturbances. Thus, oceanographic modeling efforts to understand patterns of reef connectivity are essential to the effective design of a network of Marine Protected Areas (MPAs) to conserve marine ecosystems in the Coral Triangle. Here, we combine a Regional Ocean Modeling System developed for the Coral Triangle (CT-ROMS) with a Lagrangian particle tracking tool (TRACMASS) to investigate the probability of coral larval transport between reefs. A 47-year hindcast simulation (1960-2006) was used to investigate the variability in larval transport of a broadcasting coral following mass spawning events in April and September. Potential connectivity between reefs was highly variable and stochastic from year to year, emphasizing the importance of decadal or longer simulations in identifying connectivity patterns, key source and sink regions, and thus marine management targets for MPAs. The influence of temperature on realized connectivity (future work) may add further uncertainty to year-to-year patterns of connectivity between reefs. Nonetheless, the potential connectivity results we present here suggest that although reefs in this region are primarily self-seeded, rare long-distance dispersal may promote recovery and genetic exchange between reefs in the region. The spatial pattern of "subpopulations" based solely on the physical drivers of connectivity between reefs closely match regional patterns of biodiversity, suggesting that physical barriers to larval dispersal may be a key driver of reef biodiversity. Finally, 21st Century simulations driven by the Community Earth System Model (CESM

  16. Barriers and facilitators to participation in workplace health promotion (WHP) activities: results from a cross-sectional survey of public-sector employees in Tasmania, Australia.

    Science.gov (United States)

    Kilpatrick, Michelle; Blizzard, Leigh; Sanderson, Kristy; Teale, Brook; Jose, Kim; Venn, Alison

    2017-01-19

    Issue addressed: Workplaces are promising settings for health promotion, yet employee participation in workplace health promotion (WHP) activities is often low or variable. This study explored facilitating factors and barriers associated with participation in WHP activities that formed part of a comprehensive WHP initiative run within the Tasmanian State Service (TSS) between 2009 and 2013.Methods: TSS employee (n=3228) completed surveys in 2013. Data included sociodemographic characteristics, employee-perceived availability of WHP activities, employee-reported participation in WHP activities, and facilitators and barriers to participation. Ordinal log-link regression was used in cross-sectional analyses.Results: Significant associations were found for all facilitating factors and participation. Respondents who felt their organisation placed a high priority on WHP, who believed that management supported participation or that the activities could improve their health were more likely to participate. Time- and health-related barriers were associated with participation in fewer activities. All associations were independent of age, sex, work schedule and employee-perceived availability of programs. Part-time and shift-work patterns, and location of activities were additionally identified barriers.Conclusion: Facilitating factors relating to implementation, peer and environmental support, were associated with participation in more types of activities, time- and health-related barriers were associated with less participation.So what?: Large and diverse organisations should ensure WHP efforts have manager support and adopt flexible approaches to maximise employee engagement.

  17. 大堡礁和托雷斯海峡航路新变化%Latest Changes in Great Barrier Reef and Torres Strait Navigation

    Institute of Scientific and Technical Information of China (English)

    许永强

    2007-01-01

    大堡礁(Great Barrier Reef)位于澳大利亚东北部昆士兰州海岸外,从北部的Cape York(1041S 14232E),向东南延伸到Lady Elliot Island(2407S 15243E),绵延约两千多公里,是世界上最大的珊瑚礁群。托雷斯海峡(TorresStrait)位于约克角半岛和巴布亚新几内亚之间.连接珊瑚海和阿拉弗拉海。由于地理条件的特殊性,

  18. Rising sea levels will reduce extreme temperature variations in tide-dominated reef habitats

    Science.gov (United States)

    Lowe, Ryan Joseph; Pivan, Xavier; Falter, James; Symonds, Graham; Gruber, Renee

    2016-01-01

    Temperatures within shallow reefs often differ substantially from those in the surrounding ocean; therefore, predicting future patterns of thermal stresses and bleaching at the scale of reefs depends on accurately predicting reef heat budgets. We present a new framework for quantifying how tidal and solar heating cycles interact with reef morphology to control diurnal temperature extremes within shallow, tidally forced reefs. Using data from northwestern Australia, we construct a heat budget model to investigate how frequency differences between the dominant lunar semidiurnal tide and diurnal solar cycle drive ~15-day modulations in diurnal temperature extremes. The model is extended to show how reefs with tidal amplitudes comparable to their depth, relative to mean sea level, tend to experience the largest temperature extremes globally. As a consequence, we reveal how even a modest sea level rise can substantially reduce temperature extremes within tide-dominated reefs, thereby partially offsetting the local effects of future ocean warming. PMID:27540589

  19. Paired geochemical tracing and load monitoring analysis for identifying sediment sources in a large catchment draining into the Great Barrier Reef Lagoon

    Science.gov (United States)

    Furuichi, Takahisa; Olley, Jon; Wilkinson, Scott; Lewis, Stephen; Bainbridge, Zoe; Burton, Joanne

    2016-08-01

    While sediment tracing has been typically applied to identify sediment sources that are difficult to measure by gauging (monitoring), it can also be useful in estimating relative sediment yields from gauged river catchments. The major and trace element composition of river sediments from eleven locations in the 130000 km2 Burdekin River catchment, northeastern Australia was analysed to examine relative contributions from upstream source areas in the 2011/12 water year. Sediment tracing results are compared against estimates derived from sediment load monitoring at three locations. Comparisons show that there is good agreement between tracing results and monitoring data at one of the tributary confluences. At the second site, notable contrasts were found between the load estimates from the monitoring and tracing data. At this site a large impoundment occurs between the upstream sampling/gauging sites for source sediments and the downstream sampling/gauging sites for target sediments. The contrast is likely caused by temporal variations in particle size distributions of suspended sediment from each river and differential trapping efficiencies in the impoundment for sediment derived from the different tributaries. In the absence of the detailed particle size data and trapping efficiency estimates, sediment tracing provides the unique opportunity to elucidate source contributions of the finer fractions of suspended sediment. At a third site, where there were recognised measurement gaps in the monitoring data during large discharge events, the relative load estimates from the tracing data provided a means of constraining the recognized uncertainty of monitored load estimates. We conclude that sediment tracing can be used as a valuable adjunct to monitoring data particularly in remote, large and data-sparse catchments. Both tracing results and monitoring data show that the Upper Burdekin River and Bowen-Bogie Rivers were the dominant source of the < 10 μm sediments

  20. Reef odor: a wake up call for navigation in reef fish larvae.

    Directory of Open Access Journals (Sweden)

    Claire B Paris

    Full Text Available The behavior of reef fish larvae, equipped with a complex toolbox of sensory apparatus, has become a central issue in understanding their transport in the ocean. In this study pelagic reef fish larvae were monitored using an unmanned open-ocean tracking device, the drifting in-situ chamber (DISC, deployed sequentially in oceanic waters and in reef-born odor plumes propagating offshore with the ebb flow. A total of 83 larvae of two taxonomic groups of the families Pomacentridae and Apogonidae were observed in the two water masses around One Tree Island, southern Great Barrier Reef. The study provides the first in-situ evidence that pelagic reef fish larvae discriminate reef odor and respond by changing their swimming speed and direction. It concludes that reef fish larvae smell the presence of coral reefs from several kilometers offshore and this odor is a primary component of their navigational system and activates other directional sensory cues. The two families expressed differences in their response that could be adapted to maintain a position close to the reef. In particular, damselfish larvae embedded in the odor plume detected the location of the reef crest and swam westward and parallel to shore on both sides of the island. This study underlines the critical importance of in situ Lagrangian observations to provide unique information on larval fish behavioral decisions. From an ecological perspective the central role of olfactory signals in marine population connectivity raises concerns about the effects of pollution and acidification of oceans, which can alter chemical cues and olfactory responses.

  1. Coral reefs - Specialized ecosystems

    Digital Repository Service at National Institute of Oceanography (India)

    Wafar, M.V.M.

    This paper discusses briefly some aspects that characterize and differentiate coral reef ecosystems from other tropical marine ecosystems. A brief account on the resources that are extractable from coral reefs, their susceptibility to natural...

  2. NMFS Reef Survey Forms

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Reef Environmental Survey Project (REEF) mission to educate and enlist divers in the conservation of marine habitats is accomplished primarily through its Fish...

  3. ReefSAM - Reef Sedimentary Accretion Model: A new 3D coral reef evolution model/simulator

    Science.gov (United States)

    Barrett, Samuel; Webster, Jody

    2013-04-01

    Coral reefs show characteristic morphological patterns (e.g. coral dominated margins with detrital carbonate dominated lagoons/back-reef) and temporal development (e.g. Hopley et al. 2007). While the processes which lead to predictable patterns on a range of scales have been discussed qualitatively, a full quantitative understanding of the range of processes and parameters involved requires modelling. Previous attempts to model complex Holocene reef systems (i.e. One Tree Reef, GBR - Barrett and Webster 2012) using a carbonate stratigraphic forward model (Carbonate3D - Warrlich et al. 2002) identified a number of important but unsimulated processes and potential model improvements. ReefSAM has been written from scratch in Matlab using these findings and experiences from using Carbonate3D. It simulates coralgal accretion and carbonate sand production and transport. Specific improvements include: 1. a more complex hydrodynamic model based on wave refraction and incorporating vertical (depth) and lateral (substrate dependent) variations in transport energy and erosion. 2. a complex reef growth model incorporating depth, wave energy/turbidity and substrate composition. 3. Paleo-water depth, paleo-wave energy and bio-zone (combination of paleo-water depth and wave energy) model outputs allowing coralgal habitat changes through time and space to be simulated and compared to observational data. The model is compared to the well studied One Tree Reef - tests similar to those undertaken in Barrett and Webster 2012 with Carbonate3D are presented. Model development coincides with plans for further intensive drilling at One Tree Reef (mid 2013) providing an opportunity to test the model predictively. The model is still in active development. References: Barrett, S.J., Webster, J.M.,2012. Holocene evolution of the Great Barrier Reef: Insights from 3D numerical modelling. Sedimentary Geology 265-266, 56-71. Warrlich, G.M.D., Waltham, D.A., Bosence D.W.J., 2002. Quantifying the

  4. Seascape-scale trophic links for fish on inshore coral reefs

    Science.gov (United States)

    Davis, Jean P.; Pitt, Kylie A.; Fry, Brian; Olds, Andrew D.; Connolly, Rod M.

    2014-12-01

    It is increasingly accepted that coastal habitats such as inshore coral reefs do not function in isolation but rather as part of a larger habitat network. In the Caribbean, trophic subsidies from habitats adjacent to coral reefs support the diet of reef fishes, but it is not known whether similar trophic links occur on reefs in the Indo-Pacific. Here, we test whether reef fishes in inshore coral, mangrove, and seagrass habitats are supported by trophic links. We used carbon stable isotopes and mathematical mixing models to determine the minimum proportion of resources from mangrove or seagrass habitats in the diet of five fish species from coral reefs at varying distances (0-2,200 m) from these habitats in Moreton Bay, Queensland, eastern Australia. Of the fish species that are more abundant on reefs near to mangroves, Lutjanus russelli and Acanthopagrus australis showed no minimum use of diet sources from mangrove habitat. Siganus fuscescens utilized a minimum of 25-44 % mangrove sources and this contribution increased with the proximity of reefs to mangroves ( R 2 = 0.91). Seagrass or reef flat sources contributed a minimum of 14-78 % to the diet of Diagramma labiosum, a species found in higher abundance on reefs near seagrass beds, but variation in diet among reefs was unrelated to seascape structure. Seagrass or reef flat sources also contributed a minimum of 8-55 % to a fish species found only on reefs ( Pseudolabrus guentheri), indicating that detrital subsidies from these habitats may subsidize fish diet on reefs. These results suggest that carbon sources from multiple habitats contribute to the functioning of inshore coral reef ecosystems and that trophic connectivity between reefs and mangroves may enhance production of a functionally important herbivore.

  5. Journey to the Reef

    Science.gov (United States)

    Bryson, Linda

    2010-01-01

    Despite their experiences with a cartoon sponge, most elementary students know little about the diverse inhabitants of coral reefs. Therefore, with vivid photography and video, diverse coral reef inhabitants were brought to life for the author's fifth-grade students. Students shared their knowledge in language arts and even explored coral reefs in…

  6. Maintenance of fish diversity on disturbed coral reefs

    Science.gov (United States)

    Wilson, S. K.; Dolman, A. M.; Cheal, A. J.; Emslie, M. J.; Pratchett, M. S.; Sweatman, H. P. A.

    2009-03-01

    Habitat perturbations play a major role in shaping community structure; however, the elements of disturbance-related habitat change that affect diversity are not always apparent. This study examined the effects of habitat disturbances on species richness of coral reef fish assemblages using annual surveys of habitat and 210 fish species from 10 reefs on the Great Barrier Reef (GBR). Over a period of 11 years, major disturbances, including localised outbreaks of crown-of-thorns sea star ( Acanthaster planci), severe storms or coral bleaching, resulted in coral decline of 46-96% in all the 10 reefs. Despite declines in coral cover, structural complexity of the reef framework was retained on five and species richness of coral reef fishes maintained on nine of the disturbed reefs. Extensive loss of coral resulted in localised declines of highly specialised coral-dependent species, but this loss of diversity was more than compensated for by increases in the number of species that feed on the epilithic algal matrix (EAM). A unimodal relationship between areal coral cover and species richness indicated species richness was greatest at approximately 20% coral cover declining by 3-4 species (6-8% of average richness) at higher and lower coral cover. Results revealed that declines in coral cover on reefs may have limited short-term impact on the diversity of coral reef fishes, though there may be fundamental changes in the community structure of fishes.

  7. Do tabular corals constitute keystone structures for fishes on coral reefs?

    Science.gov (United States)

    Kerry, J. T.; Bellwood, D. R.

    2015-03-01

    This study examined the changes in community composition of reef fishes by experimentally manipulating the availability of shelter provided by tabular structures on a mid-shelf reef on the Great Barrier Reef. At locations where access to tabular corals ( Acropora hyacinthus and Acropora cytherea) was excluded, a rapid and sustained reduction in the abundance of large reef fishes occurred. At locations where tabular structure was added, the abundance and diversity of large reef fishes increased and the abundance of small reef fishes tended to decrease, although over a longer time frame. Based on their response to changes in the availability of tabular structures, nine families of large reef fishes were separated into three categories; designated as obligate, facultative or non-structure users. This relationship may relate to the particular ecological demands of each family, including avoidance of predation and ultraviolet radiation, access to feeding areas and reef navigation. This study highlights the importance of tabular corals for large reef fishes in shallow reef environments and provides a possible mechanism for local changes in the abundance of reef fishes following loss of structural complexity on coral reefs. Keystone structures have a distinct structure and disproportionate effect on their ecosystem relative to their abundance, as such the result of this study suggests tabular corals may constitute keystone structures on shallow coral reefs.

  8. Distribution of fish in seagrass, mangroves and coral reefs: life-stage dependent habitat use in Honduras

    OpenAIRE

    2012-01-01

    Many coral reef fish exhibit habitat partitioning throughout their lifetimes. Such patterns are evident in the Caribbean where research has been predominantly conducted in the Eastern region. This work addressed the paucity of data regarding Honduran reef fish distribution in three habitat types (seagrass, mangroves, and coral reefs), by surveying fish on the islands of Utila and Cayos Cochinos off the coast of Honduras (part of the Mesoamerican barrier reef). During July 2nd - Aug 27th 2007 ...

  9. The Miocene Nullarbor Limestone, southern Australia; deposition on a vast subtropical epeiric platform

    Science.gov (United States)

    O'Connell, Laura G.; James, Noel P.; Bone, Yvonne

    2012-05-01

    The early to middle Miocene Nullarbor Limestone forms the vast, karsted Nullarbor Plain in southern Australia, and may be the most extensive Miocene carbonate deposit described to date. These carbonates were deposited at southern paleolatitudes of ~ 40°S and are interpreted to be subtropical to warm-temperate in character because of the presence of certain genera of tropical coralline algae (rhodoliths and articulated types), large benthic foraminifera, tropical molluscs, zooxanthellate corals, and micrite envelopes. Facies are dominated by skeletal grainstones and floatstones that accumulated in three interpreted paleoenvironments: (1) seagrass banks (upper photic zone), (2) rhodolith pavements (lower photic zone), and (3) open seafloors (lower photic to subphotic zone). A decrease of tropical components from west to east across the platform implies that warm oceanic currents (possibly related to a proto-Leeuwin Current), as well as a period of warm climate (Miocene Climatic Optimum), resulted in subtropical deposition at southern latitudes. The Southern Ocean extended inboard ~ 450 km from the shelf edge during Nullarbor Limestone deposition, but interpreted paleodepths did not extend much below the base of the photic zone. A small slope angle (~ 0.02°) over a wide shelf (~ 300,000 km2) implies deposition on an epeiric platform or epeiric ramp. A Miocene barrier reef was likely coeval with Nullarbor Limestone deposition. Therefore, the inboard portion of the Nullarbor Limestone can be considered part of an extensive back-reef lagoon system on a rimmed epeiric platform, perhaps attaining a size similar to the modern Great Barrier Reef system.

  10. Principles to guide sustainable implementation of extended-scope-of-practice physiotherapy workforce redesign initiatives in Australia: stakeholder perspectives, barriers, supports, and incentives.

    Science.gov (United States)

    Morris, Joanne; Grimmer, Karen; Gilmore, Lisa; Perera, Chandima; Waddington, Gordon; Kyle, Greg; Ashman, Bryan; Murphy, Karen

    2014-01-01

    Sustainable implementation of new workforce redesign initiatives requires strategies that minimize barriers and optimize supports. Such strategies could be provided by a set of guiding principles. A broad understanding of the concerns of all the key stakeholder groups is required before effective strategies and initiatives are developed. Many new workforce redesign initiatives are not underpinned by prior planning, and this threatens their uptake and sustainability. This study reports on a cross-sectional qualitative study that sought the perspectives of representatives of key stakeholders in a new workforce redesign initiative (extended-scope-of-practice physiotherapy) in one Australian tertiary hospital. The key stakeholder groups were those that had been involved in some way in the development, management, training, funding, and/or delivery of the initiative. Data were collected using semistructured questions, answered individually by interview or in writing. Responses were themed collaboratively, using descriptive analysis. Key identified themes comprised: the importance of service marketing; proactively addressing barriers; using readily understood nomenclature; demonstrating service quality and safety, monitoring adverse events, measuring health and cost outcomes; legislative issues; registration; promoting viable career pathways; developing, accrediting, and delivering a curriculum supporting physiotherapists to work outside of the usual scope; and progression from "a good idea" to established service. Health care facilities planning to implement new workforce initiatives that extend scope of usual practice should consider these issues before instigating workforce/model of care changes.

  11. When giants turn up: sighting trends, environmental influences and habitat use of the manta ray Manta alfredi at a coral reef.

    Directory of Open Access Journals (Sweden)

    Fabrice R A Jaine

    Full Text Available Manta rays Manta alfredi are present all year round at Lady Elliot Island (LEI in the southern Great Barrier Reef, Australia, with peaks in abundance during autumn and winter. Drivers influencing these fluctuations in abundance of M. alfredi at the site remain uncertain. Based on daily count, behavioural, weather and oceanographic data collected over a three-year period, this study examined the link between the relative number of sightings of manta rays at LEI, the biophysical environment, and the habitat use of individuals around the LEI reef using generalised additive models. The response variable in each of the three generalised additive models was number of sightings (per trip at sea of cruising, cleaning or foraging M. alfredi. We used a set of eleven temporal, meteorological, biological, oceanographic and lunar predictor variables. Results for cruising, cleaning and foraging M. alfredi explained 27.5%, 32.8% and 36.3% of the deviance observed in the respective models and highlighted five predictors (year, day of year, wind speed, chlorophyll-a concentration and fraction of moon illuminated as common influences to the three models. There were more manta rays at LEI in autumn and winter, slower wind speeds, higher productivity, and around the new and full moon. The winter peak in sightings of foraging M. alfredi was found to precede peaks in cleaning and cruising activity around the LEI reef, which suggests that enhanced food availability may be a principal driver for this seasonal aggregation. A spatial analysis of behavioural observations highlighted several sites around the LEI reef as 'multi-purpose' areas where cleaning and foraging activities commonly occur, while the southern end of the reef is primarily a foraging area. The use of extensive citizen science datasets, such as those collected by dive operators in this study, is encouraged as they can provide valuable insights into a species' ecology.

  12. Unsettling Australia

    DEFF Research Database (Denmark)

    Jensen, Lars

    This book is a critical intervention into debates on Australia's cultural history. The book demonstrates the interconnectedness of themes commonly seen as separate discursive formations, and shows the fruitfulness of bringing a combined cultural studies and postcolonial approach to bear on a number...

  13. Counter-gradient variation in respiratory performance of coral reef fishes at elevated temperatures.

    Directory of Open Access Journals (Sweden)

    Naomi M Gardiner

    Full Text Available The response of species to global warming depends on how different populations are affected by increasing temperature throughout the species' geographic range. Local adaptation to thermal gradients could cause populations in different parts of the range to respond differently. In aquatic systems, keeping pace with increased oxygen demand is the key parameter affecting species' response to higher temperatures. Therefore, respiratory performance is expected to vary between populations at different latitudes because they experience different thermal environments. We tested for geographical variation in respiratory performance of tropical marine fishes by comparing thermal effects on resting and maximum rates of oxygen uptake for six species of coral reef fish at two locations on the Great Barrier Reef (GBR, Australia. The two locations, Heron Island and Lizard Island, are separated by approximately 1200 km along a latitudinal gradient. We found strong counter-gradient variation in aerobic scope between locations in four species from two families (Pomacentridae and Apogonidae. High-latitude populations (Heron Island, southern GBR performed significantly better than low-latitude populations (Lizard Island, northern GBR at temperatures up to 5°C above average summer surface-water temperature. The other two species showed no difference in aerobic scope between locations. Latitudinal variation in aerobic scope was primarily driven by up to 80% higher maximum rates of oxygen uptake in the higher latitude populations. Our findings suggest that compensatory mechanisms in high-latitude populations enhance their performance at extreme temperatures, and consequently, that high-latitude populations of reef fishes will be less impacted by ocean warming than will low-latitude populations.

  14. Sediments and herbivory as sensitive indicators of coral reef degradation

    Directory of Open Access Journals (Sweden)

    Christopher H. R. Goatley

    2016-03-01

    Full Text Available Around the world, the decreasing health of coral reef ecosystems has highlighted the need to better understand the processes of reef degradation. The development of more sensitive tools, which complement traditional methods of monitoring coral reefs, may reveal earlier signs of degradation and provide an opportunity for pre-emptive responses. We identify new, sensitive metrics of ecosystem processes and benthic composition that allow us to quantify subtle, yet destabilizing, changes in the ecosystem state of an inshore coral reef on the Great Barrier Reef. Following severe climatic disturbances over the period 2011-2012, the herbivorous reef fish community of the reef did not change in terms of biomass or functional groups present. However, fish-based ecosystem processes showed marked changes, with grazing by herbivorous fishes declining by over 90%. On the benthos, algal turf lengths in the epilithic algal matrix increased more than 50% while benthic sediment loads increased 37-fold. The profound changes in processes, despite no visible change in ecosystem state, i.e., no shift to macroalgal dominance, suggest that although the reef has not undergone a visible regime-shift, the ecosystem is highly unstable, and may sit on an ecological knife-edge. Sensitive, process-based metrics of ecosystem state, such as grazing or browsing rates thus appear to be effective in detecting subtle signs of degradation and may be critical in identifying ecosystems at risk for the future.

  15. Two new hemiurine species (Digenea: Hemiuridae) from Spratelloides robustus Ogilby (Clupeiformes: Clupeidae) off south-western Australia and records of Parahemiurus merus (Linton, 1910) from Australian and New Caledonian waters.

    Science.gov (United States)

    Bray, Rodney A; Cribb, Thomas H

    2005-03-01

    Two new species of hemiurine hemiurid are described from Spratelloides robustus off Woodman Point in southern Western Australia. Hemiurus lignator n. sp. differs from its congeners by a combination of similar-sized suckers, long sinus-sac, tandem testes, relatively elongate shape and unthickened seminal vesicle wall. Parahemiurus xylokopos n. sp. differs from its congeners in a combination of its squat form, its distinctly lobed vitellarium and the proximity of the gonads to the ventral sucker. P. merus (Linton, 1910) is reported from Acanthopagrus australis, Pomatomus saltatrix and Trachinotus coppingeri off northern New South Wales, Caranx sexfasciatus, Scorpis lineolata, Siganus nebulosus, Thunnus tonggol and T. coppingeri off southern Queensland, Cephalopholis boenak and Euthynnus affinis off Heron Island, southern Great Barrier Reef, P. saltatrix off southern Western Australia and Priacanthus hamrur off New Caledonia.

  16. Octocoral Species Assembly and Coexistence in Caribbean Coral Reefs.

    Directory of Open Access Journals (Sweden)

    Johanna Velásquez

    Full Text Available What are the determinant factors of community assemblies in the most diverse ecosystem in the ocean? Coral reefs can be divided in continental (i.e., reefs that develop on the continental shelf, including siliciclastic reefs and oceanic (i.e., far off the continental shelf, usually on volcanic substratum; whether or not these habitat differences impose community-wide ecological divergence or species exclusion/coexistence with evolutionary consequences, is unknown.Studying Caribbean octocorals as model system, we determined the phylogenetic community structure in a coral reef community, making emphasis on species coexistence evidenced on trait evolution and environmental feedbacks. Forty-nine species represented in five families constituted the species pool from which a phylogenetic tree was reconstructed using mtDNA. We included data from 11 localities in the Western Caribbean (Colombia including most reef types. To test diversity-environment and phenotype-environment relationships, phylogenetic community structure and trait evolution we carried out comparative analyses implementing ecological and evolutionary approaches.Phylogenetic inferences suggest clustering of oceanic reefs (e.g., atolls contrasting with phylogenetic overdispersion of continental reefs (e.g., reefs banks. Additionally, atolls and barrier reefs had the highest species diversity (Shannon index whereas phylogenetic diversity was higher in reef banks. The discriminant component analysis supported this differentiation between oceanic and continental reefs, where continental octocoral species tend to have greater calyx apertures, thicker branches, prominent calyces and azooxanthellate species. This analysis also indicated a clear separation between the slope and the remaining habitats, caused by the presence or absence of Symbiodinium. K statistic analysis showed that this trait is conserved as well as the branch shape.There was strong octocoral community structure with opposite

  17. Comparative population assessments of Nautilus sp. in the Philippines, Australia, Fiji, and American Samoa using baited remote underwater video systems.

    Directory of Open Access Journals (Sweden)

    Gregory J Barord

    Full Text Available The extant species of Nautilus and Allonautilus (Cephalopoda inhabit fore-reef slope environments across a large geographic area of the tropical western Pacific and eastern Indian Oceans. While many aspects of their biology and behavior are now well-documented, uncertainties concerning their current populations and ecological role in the deeper, fore-reef slope environments remain. Given the historical to current day presence of nautilus fisheries at various locales across the Pacific and Indian Oceans, a comparative assessment of the current state of nautilus populations is critical to determine whether conservation measures are warranted. We used baited remote underwater video systems (BRUVS to make quantitative photographic records as a means of estimating population abundance of Nautilus sp. at sites in the Philippine Islands, American Samoa, Fiji, and along an approximately 125 km transect on the fore reef slope of the Great Barrier Reef from east of Cairns to east of Lizard Island, Australia. Each site was selected based on its geography, historical abundance, and the presence (Philippines or absence (other sites of Nautilus fisheries The results from these observations indicate that there are significantly fewer nautiluses observable with this method in the Philippine Islands site. While there may be multiple possibilities for this difference, the most parsimonious is that the Philippine Islands population has been reduced due to fishing. When compared to historical trap records from the same site the data suggest there have been far more nautiluses at this site in the past. The BRUVS proved to be a valuable tool to measure Nautilus abundance in the deep sea (300-400 m while reducing our overall footprint on the environment.

  18. Reef Education Evaluation: Environmental Knowledge and Reef Experience

    Science.gov (United States)

    Stepath, Carl M.

    2005-01-01

    Background: The Reef education evaluation: environmental knowledge and reef experience report concerns PhD research about marine education, and the investigation of learning with high school students and the effect of coral reef monitoring marine experiential education interventions. The effectiveness of classroom learning and reef trips were…

  19. Simulating reef response to sea-level rise at Lizard Island: A geospatial approach

    Science.gov (United States)

    Hamylton, S. M.; Leon, J. X.; Saunders, M. I.; Woodroffe, C. D.

    2014-10-01

    Sea-level rise will result in changes in water depth over coral reefs, which will influence reef platform growth as a result of carbonate production and accretion. This study simulates the pattern of reef response on the reefs around Lizard Island in the northern Great Barrier Reef. Two sea-level rise scenarios are considered to capture the range of likely projections: 0.5 m and 1.2 m above 1990 levels by 2100. Reef topography has been established through extensive bathymetric profiling, together with available data, including LiDAR, single beam bathymetry, multibeam swath bathymetry, LADS and digitised chart data. The reef benthic cover around Lizard Island has been classified using a high resolution WorldView-2 satellite image, which is calibrated and validated against a ground referencing dataset of 364 underwater video records of the reef benthic character. Accretion rates are parameterised using published hydrochemical measurements taken in-situ and rules are applied using Boolean logic to incorporate geomorphological transitions associated with different depth ranges, such as recolonisation of the reef flat when it becomes inundated as sea level rises. Simulations indicate a variable platform response to the different sea-level rise scenarios. For the 0.5 m rise, the shallower reef flats are gradually colonised by corals, enabling this active geomorphological zone to keep up with the lower rate of rise while the other sand dominated areas get progressively deeper. In the 1.2 m scenario, a similar pattern is evident for the first 30 years of rise, beyond which the whole reef platform begins to slowly drown. To provide insight on reef response to sea-level rise in other areas, simulation results of four different reef settings are discussed and compared at the southeast reef flat (barrier reef), Coconut Beach (fringing reef), Watson's Bay (leeward bay with coral patches) and Mangrove Beach (sheltered lagoonal embayment). The reef sites appear to accrete upwards

  20. The effect of nutrient enrichment on the growth, nucleic acid concentrations, and elemental stoichiometry of coral reef macroalgae.

    Science.gov (United States)

    Reef, Ruth; Pandolfi, John M; Lovelock, Catherine E

    2012-08-01

    The growth rate hypothesis (GRH) links growth rates with organism elemental stoichiometry. Support for the GRH was found for many animal species, but less so for plants. This is the first study to test the GRH in macroalgae. Tropical coral reef macroalgae from three lineages, Caulerpa serrulata (Chlorophyta), Laurencia intricata (Rhodophyta), and Sargassum polyphyllum (Phaeophyceae) were grown enriched with nitrogen or phosphorous and under control conditions at Heron Island on the Great Barrier Reef, Australia. Growth rate, photosynthesis, nucleic acid composition, and elemental stoichiometry were measured. Nutrient enrichment had positive effects on photosynthetic rates and on investment in RNA. However, growth rate was not correlated with either photosynthetic rates or RNA content; thus, we did not find support for the GRH in tropical macroalgae. Macroalgae, especially L. intricata, accumulated P to very high levels (>0.6% of dry weight). The growth rate response to tissue P concentrations was unimodal. Above 0.21%, P accumulation had negative effects on growth. Nitrogen was not stored, but evidence of futile cycling was observed. The capacity to store large amounts of P is probably an adaptation to the low and patchy nutrient environment of the tropical oceans.

  1. Spawning of coral reef invertebrates and a second spawning season for scleractinian corals in the central Red Sea

    KAUST Repository

    Bouwmeester, Jessica

    2016-06-22

    Recent coral spawning observations in the central Red Sea show that most scleractinian species release their gametes in the spring, with a majority of species spawning in April. There is, however, a lack of reproductive data for several other coral species, as well as a general lack of data for other invertebrates. Here, we document the detailed timing of spawning for 13 scleractinian coral species, one sea anemone, and six echinoderms from an inshore reef off the coast of Thuwal, Saudi Arabia, in the spring between April and June 2014. Furthermore, inferred from the presence of mature gametes, we report the month of spawning for three additional coral species in the sp