WorldWideScience

Sample records for barrier layer

  1. On the porosity of barrier layers

    Directory of Open Access Journals (Sweden)

    J. Mignot

    2009-09-01

    Full Text Available Barrier layers are defined as the layer between the pycnocline and the thermocline when the latter are different as a result of salinity stratification. We present a revisited 2-degree resolution global climatology of monthly mean oceanic Barrier Layer (BL thickness first proposed by de Boyer Montégut et al. (2007. In addition to using an extended data set, we present a modified computation method that addresses the observed porosity of BLs. We name porosity the fact that barrier layers distribution can, in some areas, be very uneven regarding the space and time scales that are considered. This implies an intermittent alteration of air-sea exchanges by the BL. Therefore, it may have important consequences for the climatic impact of BLs. Differences between the two computation methods are small for robust BLs that are formed by large-scale processes. However, the former approach can significantly underestimate the thickness of short and/or localized barrier layers. This is especially the case for barrier layers formed by mesoscale mechanisms (under the intertropical convergence zone for example and along western boundary currents and equatorward of the sea surface salinity subtropical maxima. Complete characterisation of regional BL dynamics therefore requires a description of the robustness of BL distribution to assess the overall impact of BLs on the process of heat exchange between the ocean interior and the atmosphere.

  2. Cathode-Electrolyte Interfaces with CGO Barrier Layers in SOFC

    DEFF Research Database (Denmark)

    Knibbe, Ruth; Hjelm, Johan; Menon, Mohan;

    2010-01-01

    10) barrier layer, the other had a barrier layer deposited by pulsed laser deposition (PLD) CGO10. Scanning electron microscopy, transmission electron microscopy (TEM), and electron backscattered diffraction (EBSD) investigations conclude that the major source of the cell performance difference is...... attributed to CGO–YSZ interdiffusion in the sprayed-cosintered barrier layer. From TEM and EBSD work, a dense CGO10 PLD layer is found to be deposited epitaxially on the 8YSZ electrolyte substrate—permitting a small amount of SrZrO3 formation and minimizing CGO–YSZ interdiffusion....

  3. Influence of layer type and order on barrier properties of multilayer PECVD barrier coatings

    Science.gov (United States)

    Bahroun, K.; Behm, H.; Mitschker, F.; Awakowicz, P.; Dahlmann, R.; Hopmann, Ch

    2014-01-01

    Due to their macromolecular structure, plastics are limited in their scope of application whenever high barrier functionality against oxygen and water vapour permeation is required. One solution is the deposition of thin silicon oxide coatings in plasma-enhanced chemical vapour deposition (PECVD) processes. A way to improve performance of barrier coatings is the use of multilayer structures built from dyad layers, which combine an inorganic barrier layer and an organic intermediate layer. In order to investigate the influence of type and number of dyads on the barrier performance of coated 23 µm PET films, different dyad setups are chosen. The setups include SiOCH interlayers and SiOx-barrier layers deposited using the precursor hexamethyldisiloxane (HMDSO). A single reactor setup driven in pulsed microwave plasma (MW) mode as well as capacitively coupled plasma (CCP) mode is chosen. In this paper the effects of a variation in intermediate layer recipe and stacking order using dyad setups on the oxygen barrier properties of multilayer coatings are discussed with regard to the chemical structure, morphology and activation energy of the permeation process. Changes in surface nano-morphology of intermediate layers have a strong impact on the barrier properties of subsequent glass-like coatings. Even a complete failure of the barrier is observed. Therefore, when depositing multilayer barrier coatings, stacking order has to be considered.

  4. Influence of layer type and order on barrier properties of multilayer PECVD barrier coatings

    International Nuclear Information System (INIS)

    Due to their macromolecular structure, plastics are limited in their scope of application whenever high barrier functionality against oxygen and water vapour permeation is required. One solution is the deposition of thin silicon oxide coatings in plasma-enhanced chemical vapour deposition (PECVD) processes. A way to improve performance of barrier coatings is the use of multilayer structures built from dyad layers, which combine an inorganic barrier layer and an organic intermediate layer. In order to investigate the influence of type and number of dyads on the barrier performance of coated 23 µm PET films, different dyad setups are chosen. The setups include SiOCH interlayers and SiOx-barrier layers deposited using the precursor hexamethyldisiloxane (HMDSO). A single reactor setup driven in pulsed microwave plasma (MW) mode as well as capacitively coupled plasma (CCP) mode is chosen. In this paper the effects of a variation in intermediate layer recipe and stacking order using dyad setups on the oxygen barrier properties of multilayer coatings are discussed with regard to the chemical structure, morphology and activation energy of the permeation process. Changes in surface nano-morphology of intermediate layers have a strong impact on the barrier properties of subsequent glass-like coatings. Even a complete failure of the barrier is observed. Therefore, when depositing multilayer barrier coatings, stacking order has to be considered. (paper)

  5. Impact of Ocean Barrier Layers on Tropical Cyclone Intensification

    Science.gov (United States)

    Balaguru, K.; Chang, P.; Saravanan, R.; Leung, L.

    2012-12-01

    Improving a tropical cyclone's forecast and mitigating its destructive potential requires knowledge of various environmental factors that influence the cyclone's path and intensity. Herein, using a combination of observations and model simulations, we systematically demonstrate that tropical cyclone intensification is significantly affected by salinity-induced barrier layers, which are "quasi-permanent" features in the upper tropical oceans. When tropical cyclones pass over regions with barrier layers, the increased stratification and stability within the layer reduce storm-induced vertical mixing and sea surface temperature cooling. This causes an increase in enthalpy flux from the ocean to the atmosphere and, consequently, an intensification of tropical cyclones. On average, the tropical cyclone intensification rate is nearly 50% higher over regions with barrier layers, compared to regions without. Our finding, which underscores the importance of observing not only the upper-ocean thermal structure but also the salinity structure in deep tropical barrier layer regions, may be a key to more skillful predictions of tropical cyclone intensities through improved ocean state estimates and simulations of barrier layer processes. As the hydrological cycle responds to global warming, any associated changes in the barrier layer distribution must be considered in projecting future tropical cyclone activity.;

  6. Remote forcing annihilates barrier layer in southeastern Arabian Sea

    Digital Repository Service at National Institute of Oceanography (India)

    Shenoi, S.S.C.; Shankar, D.; Shetye, S.R.

    -1 GEOPHYSICAL RESEARCH LETTERS, VOL. ???, XXXX, DOI:10.1029/, Remote forcing annihilates barrier layer in southeastern Arabian Sea S. S. C. Shenoi, D. Shankar, and S. R. Shetye National Institute of Oceanography, Goa, India. Time-series measurements... thick barrier layer (BL) exists during March{April ow- ing to a surface layer of low-salinity waters advected earlier during December{January from the Bay of Bengal. The BL is almost annihilated by 7 April owing to upwelling. The relic BL that survives...

  7. Nanostructured zirconia layers as thermal barrier coatings

    Directory of Open Access Journals (Sweden)

    Radu Robert PITICESCU

    2011-09-01

    Full Text Available The coatings obtained by thermal spray are used both as antioxidant and connection materials (e.g. MCrAlY type alloys as well as thermal barrier coatings (e.g. partially stabilized zirconia oxide with yttria oxide. This paper studies the characteristics of the coatings obtained with nanostructured powders by thermal spraying and air plasma jet metallization. Testing of coatings is done against the most disturbing factor, thermal shock. Structural changes occurring after thermal shock tests are highlighted by investigations of optical and electronic microscopy. The results obtained after quick thermal shock show a good morphological and surface behavior of the developed coatings.

  8. Fundamental Investigations Regarding Barrier Properties of Grafted PVOH Layers

    Directory of Open Access Journals (Sweden)

    Markus Schmid

    2012-01-01

    Full Text Available The current work focuses on fundamental investigations regarding the barrier properties of grafted PVOH layers produced by the Transfer Method. The layers (or papers used for the different experiments were produced and grafted during the course of this work. Papers with different types of PVOH (different Mowiol types were produced by coating. Experiments using different parameters (temperature, reaction duration, and concentration were performed using the Transfer Method. Contact angle measurements and Cobb60 measurements were carried out on the grafted and untreated PVOH layers. Furthermore, the water vapour transmission rate of the PVOH layers was determined. The results of this work showed that the method of chromatogeny or chromatogenic chemistry improves the water vapour barrier properties of grafted PVOH layers enormously.

  9. Room Temperature Magnetic Barrier Layers in Magnetic Tunnel Junctions

    Energy Technology Data Exchange (ETDEWEB)

    Nelson-Cheeseman, B. B.; Wong, F. J.; Chopdekar, R. V.; Arenholz, E.; Suzuki, Y.

    2010-03-09

    We investigate the spin transport and interfacial magnetism of magnetic tunnel junctions with highly spin polarized LSMO and Fe3O4 electrodes and a ferrimagnetic NiFe2O4 (NFO) barrier layer. The spin dependent transport can be understood in terms of magnon-assisted spin dependent tunneling where the magnons are excited in the barrier layer itself. The NFO/Fe3O4 interface displays strong magnetic coupling, while the LSMO/NFO interface exhibits clear decoupling as determined by a combination of X-ray absorption spectroscopy and X-ray magnetic circular dichroism. This decoupling allows for distinct parallel and antiparallel electrode states in this all-magnetic trilayer. The spin transport of these devices, dominated by the NFO barrier layer magnetism, leads to a symmetric bias dependence of the junction magnetoresistance at all temperatures.

  10. Atomic Layer Deposition Films as Diffusion Barriers for Silver Artifacts

    Science.gov (United States)

    Marquardt, Amy; Breitung, Eric; Drayman-Weisser, Terry; Gates, Glenn; Rubloff, Gary W.; Phaneuf, Ray J.

    2012-02-01

    Atomic layer deposition (ALD) was investigated as a means to create transparent oxide diffusion barrier coatings to reduce the rate of tarnishing for silver objects in museum collections. Accelerated aging by heating various thicknesses (5 to 100nm) of ALD alumina (Al2O3) thin films on sterling and fine silver was used to determine the effectiveness of alumina as a barrier to silver oxidation. The effect of aging temperature on the thickness of the tarnish layer (Ag2S) created at the interface of the ALD coating and the bulk silver substrate was determined by reflectance spectroscopy and X-Ray Photoelectric Spectroscopy (XPS). Reflectance spectroscopy was an effective rapid screening tool to determine tarnishing rates and the coating's visual impact. X-Ray Photoelectric Spectroscopy (XPS), and Time of Flight Secondary Ion Mass Spectroscopy (ToF-SIMS) analysis showed a phase transformation in the Ag2S tarnish layer at 177 C and saturation in the thickness of the silver sulfide layer, indicating possible self-passivation of the tarnish layer.

  11. Atomic layer deposited aluminum oxide barrier coatings for packaging materials

    Energy Technology Data Exchange (ETDEWEB)

    Hirvikorpi, Terhi, E-mail: terhi.hirvikorpi@vtt.f [Oy Keskuslaboratorio - Centrallaboratorium Ab (KCL), P.O. Box 70, FI-02151 Espoo (Finland); Vaehae-Nissi, Mika, E-mail: mika.vaha-nissi@vtt.f [Oy Keskuslaboratorio - Centrallaboratorium Ab (KCL), P.O. Box 70, FI-02151 Espoo (Finland); Mustonen, Tuomas, E-mail: tuomas.mustonen@vtt.f [Oy Keskuslaboratorio - Centrallaboratorium Ab (KCL), P.O. Box 70, FI-02151 Espoo (Finland); Iiskola, Eero, E-mail: eero.iiskola@kcl.f [Oy Keskuslaboratorio - Centrallaboratorium Ab (KCL), P.O. Box 70, FI-02151 Espoo (Finland); Karppinen, Maarit, E-mail: maarit.karppinen@tkk.f [Laboratory of Inorganic Chemistry, Department of Chemistry, Helsinki University of Technology, P.O. Box 6100, FI-02015 TKK (Finland)

    2010-03-01

    Thin aluminum oxide coatings have been deposited at a low temperature of 80 {sup o}C on various uncoated papers, polymer-coated papers and boards and plain polymer films using the atomic layer deposition (ALD) technique. The work demonstrates that such ALD-grown Al{sub 2}O{sub 3} coatings efficiently enhance the gas-diffusion barrier performance of the studied porous and non-porous materials towards oxygen, water vapor and aromas.

  12. Multilayer barrier films comprising nitrogen spacers between free-standing barrier layers

    Science.gov (United States)

    Granstrom, Jimmy Erik

    The air sensitivity of organic electronic devices has delayed the broad commercialization of the printed "plastics" electronics technology. The vacuum deposition methods used to fabricate multi-layers which fulfill the encapsulation requirements for plastic electronic devices are complex and expensive. Fully printed "plastic" electronics requires the development of encapsulation architectures which comprise solution deposited barriers and/or low-cost free-standing barrier films based on polymers, e.g. poly ethylene terephthalate (PET). One way to reach this goal is the insertion of contaminant-free (e.g. pure N2) gas-phase spacers between free-standing barrier films in a multilayer structure. The spacers themselves do not exhibit any barrier properties (diffusion of gas permeants in a gas phase is orders of magnitude faster than in a solid), but they delay the attainment of steady state. The spacer also reduces the chemical potential gradient across downstream barrier layers during the transient regime, reducing permeation rate to the device. Furthermore, if sorption is not fully equilibrated and introduces a kinetic barrier to transport, the additional sorption and desorption steps needed for permeant to reach the device may also slow the steady-state permeation rate. Encapsulation architectures utilizing both single-matrix (without nitrogen spacers) and multiple-matrix structures (with nitrogen spacers) were fabricated in this study, including Russian Doll structures utilizing pairs of free-standing barrier films and epoxy seals separated by nitrogen spacers. This structure enables the use of low-cost epoxy to attach two or more free-standing barrier films to a substrate with improved barrier performance. The performance of various Russian Doll encapsulations was evaluated with the calcium thin film optical transmission test, showing improved performance of the Russian doll configuration relative to a non-nested barrier/spacer architecture, and demonstrating that

  13. Barrier and compensation layers in the East China Sea

    Institute of Scientific and Technical Information of China (English)

    CHEN Xianyao; QIAO Fangli; WANG Qin; WANG Xiuhong; YUAN Yeli

    2008-01-01

    Climatology of the isothermal layer depth (ILD) and the mixed layer depth (MLD) has been produced from in-situ temperature-salinity observations in the East China Sea (ECS) since 1925. The methods applied on the global are used to compute the ILD and the MLD in the ECS with a temperature criterion △T=0.8℃ for the ILD, and a density criterion with a threshold △σθ corre-sponding to fixed △T=0.8℃ for the MLD, respectively. With the derived climatology ILD and MLD, the monthly variations of the barrier layer (BL) and the compensation layer (CL) in the ECS are analyzed. The BL mainly exists in the shallow water re-gion of the ECS during April-June with thickness larger than 15 m. From December to next March, the area along the shelf break from northeast of Taiwan Island to the northeast ECS is characterized by the CL. Two kinds of main temperature - salinity struc-tures of the CL in this area are given.

  14. Role of barrier layer on dielectric function of graphene double layer system at finite temperature

    Science.gov (United States)

    Patel, Digish K.; Ambavale, Sagar K.; Prajapati, Ketan; Sharma, A. C.

    2016-05-01

    We have theoretically investigated the static dielectric function of graphene double layer system (GDLS) at finite temperatures within the random phase approximation. GDLS has been suspended on a substrate and barrier layer of three different materials; h-BN, Al2O3 and HfO2 has been introduced between two graphene sheets of GDLS. We have reported dependence of the overall dielectric function of GDLS on interlayer distance and the effect of the dielectric environment at finite temperatures. Results show close relation between changing environment and behavior of dielectric constant of GDLS.

  15. Low-Temperature Plasma-Assisted Atomic Layer Deposition of Silicon Nitride Moisture Permeation Barrier Layers.

    Science.gov (United States)

    Andringa, Anne-Marije; Perrotta, Alberto; de Peuter, Koen; Knoops, Harm C M; Kessels, Wilhelmus M M; Creatore, Mariadriana

    2015-10-14

    Encapsulation of organic (opto-)electronic devices, such as organic light-emitting diodes (OLEDs), photovoltaic cells, and field-effect transistors, is required to minimize device degradation induced by moisture and oxygen ingress. SiNx moisture permeation barriers have been fabricated using a very recently developed low-temperature plasma-assisted atomic layer deposition (ALD) approach, consisting of half-reactions of the substrate with the precursor SiH2(NH(t)Bu)2 and with N2-fed plasma. The deposited films have been characterized in terms of their refractive index and chemical composition by spectroscopic ellipsometry (SE), X-ray photoelectron spectroscopy (XPS), and Fourier-transform infrared spectroscopy (FTIR). The SiNx thin-film refractive index ranges from 1.80 to 1.90 for films deposited at 80 °C up to 200 °C, respectively, and the C, O, and H impurity levels decrease when the deposition temperature increases. The relative open porosity content of the layers has been studied by means of multisolvent ellipsometric porosimetry (EP), adopting three solvents with different kinetic diameters: water (∼0.3 nm), ethanol (∼0.4 nm), and toluene (∼0.6 nm). Irrespective of the deposition temperature, and hence the impurity content in the SiNx films, no uptake of any adsorptive has been observed, pointing to the absence of open pores larger than 0.3 nm in diameter. Instead, multilayer development has been observed, leading to type II isotherms that, according to the IUPAC classification, are characteristic of nonporous layers. The calcium test has been performed in a climate chamber at 20 °C and 50% relative humidity to determine the intrinsic water vapor transmission rate (WVTR) of SiNx barriers deposited at 120 °C. Intrinsic WVTR values in the range of 10(-6) g/m2/day indicate excellent barrier properties for ALD SiNx layers as thin as 10 nm, competing with that of state-of-the-art plasma-enhanced chemical vapor-deposited SiNx layers of a few hundred

  16. The barrier layer in the southern region of the South China Sea

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    By analysing the CTD data in the southernregion of the South China Sea gathered during six cruises between 1989 and 1999, a barrier layer with seasonal variation just like what exists in the equatorial oceans is found in this region. It is the first discovery in such a marginal sea yet.It is strong in autunm and a little weak in summer and winter. The thicker the barrier layer, the higher the average temperature of the upper mixed layer. The region with the thicker barrier layer overlaps the region with the higher average temperature of the upper mixed layer, and accords with the thicker region of the warm pool in the South China Sea got from the Levitus data. The barrier layer in the southern region of the South China Sea has significant influence on the heat storage of the upper ocean there.``

  17. Observations of barrier layer formation in the Bay of Bengal during summer monsoon

    Digital Repository Service at National Institute of Oceanography (India)

    Vinayachandran, P.N.; Murty, V.S.N.; RameshBabu, V.

    of a new halocline and hence a barrier layer within the upper 30 m of the water column. The ensuing ocean-atmosphere interaction was restricted to the new thinner mixed layer. The cooling that was restricted to the mixed layer led to an inversion...

  18. Inter-Layer Energy Transfer through Wetting-Layer States in Bi-layer InGaAs/GaAs Quantum-Dot Structures with Thick Barriers

    DEFF Research Database (Denmark)

    Xu, Zhang-Cheng; Zhang, Ya-Ting; Hvam, Jørn Märcher;

    2009-01-01

    The inter-layer energy transfer in a bi-layer InGaAs/GaAs quantum dot structure with a thick GaAs barrier is studied using temperature-dependent photoluminescence. The abnormal enhancement of the photoluminescence of the QDs in the layer with a larger amount of coverage at 110K is observed, which...

  19. Estimation of the barrier layer thickness in the Indian Ocean using Aquarius Salinity.

    Digital Repository Service at National Institute of Oceanography (India)

    Felton, C.S.; Subrahmanyam, B.; Murty, V.S.N; Shriver, J.F.

    Monthly barrier layer thickness (BLT) estimates are derived from satellite measurements using a multilinear regression model (MRM) within the Indian Ocean. Sea surface salinity (SSS) from the recently launched Soil Moisture and Ocean Salinity (SMOS...

  20. Glomerular endothelial surface layer acts as a barrier against albumin filtration

    NARCIS (Netherlands)

    Dane, M.J.; Berg, B.M. van den; Avramut, M.C.; Faas, F.G.; Vlag, J. van der; Rops, A.L.; Ravelli, R.B.; Koster, B.J.; Zonneveld, A.J. van; Vink, H.; Rabelink, T.J.

    2013-01-01

    Glomerular endothelium is highly fenestrated, and its contribution to glomerular barrier function is the subject of debate. In recent years, a polysaccharide-rich endothelial surface layer (ESL) has been postulated to act as a filtration barrier for large molecules, such as albumin. To test this hyp

  1. Wavevector filtering through single-layer and bilayer graphene with magnetic barrier structures

    Science.gov (United States)

    Masir, M. Ramezani; Vasilopoulos, P.; Peeters, F. M.

    2008-12-01

    We show that the angular range of the transmission through magnetic barrier structures can be efficiently controlled in single-layer and bilayer graphenes and this renders the structure's efficient wavevector filters. As the number of magnetic barriers increases, this range shrinks, the gaps in the transmission versus energy become wider, and the conductance oscillates with the Fermi energy.

  2. Investigation of Top/Bottom electrode and Diffusion Barrier Layer for PZT Thick Film MEMS Sensors

    DEFF Research Database (Denmark)

    Hindrichsen, Christian Carstensen; Pedersen, Thomas; Thomsen, Erik Vilain

    2008-01-01

    Top and bottom electrodes for screen printed piezoelectric lead zirconate titanate, Pb(ZrxTi1 - x)O3 (PZT) thick film are investigated with respect to future MEMS devices. Down to 100 nm thick E-beam evaporated Al and Pt films are patterned as top electrodes on the PZT using a lift-off process wi...... with a line width down to 3 μ m. A 700 nm thick ZrO2 layer as insolating diffusion barrier layer is found to be insufficient as barrier layer for PZT on a silicon substrate sintered at 850°C. EDX shows diffusion of Si into the PZT layer....

  3. Functional barrier in two-layer recycled PP films for food packaging applications

    Science.gov (United States)

    Scarfato, P.; Di Maio, L.; Milana, M. R.; Feliciani, R.; Denaro, M.; Incarnato, L.

    2014-05-01

    A preliminary study on bi-layer virgin/contaminated polypropylene co-extruded films was performed in order to evaluate the possibility to realize an effective functional barrier in PP-based multi-layer systems. In particular, the specific migration in 10% v/v aqueous ethanol of two surrogate contaminants (phenyl-cyclohexane and benzophenone) contained in the contaminated layer across the PP functional barrier was measured at different times and the results were compared with those obtained from a contaminated mono-layer polypropylene film. Moreover, the thermal and mechanical performances of the produced films were investigated.

  4. Effect of W addition on the electroless deposited NiP(W) barrier layer

    International Nuclear Information System (INIS)

    Electroless deposition of NiP, NiWP thin film on p-type Si as the barrier layer to prevent the diffusion of Cu into Si was investigated. The thermal stability of the Si/Ni(W)P/Cu layers were evaluated by measuring the changes of resistance of the samples after annealed at various temperatures. XRD was applied to detect the formation of Cu3Si and evaluate the barrier performance of the layers. The results of XRD of the stacked Si/NiP/Cu, Si/NiWP-1/Cu, Si/NiWP–2/Cu films reveal that Cu atom could diffuse through NiP barrier layer at 450 °C, Cu could hardly diffuse through NiWP layer at 550 °C. This means that with W added in the layer, the barrier performance is improved. Although the resistance of Si/NiWP-1 and Si/NiWP-2 are higher than that of Si/NiP, the resistance of stacked layers of Si/NiWP-1/Cu and Si/NiWP–2/Cu are close to that of Si/NiP/Cu. This means that using NiWP as barrier layer is acceptable.

  5. Enhancement of efficiency in blue organic light-emitting devices with nanoscale barrier and trapping layers embedded in an emitting layer and a hole transport layer

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Dea Uk [Division of Electronics and Computer Engineering, Hanyang University, Seoul 133-791 (Korea, Republic of); Choo, Dong Chul [Research Institute of Information Display, Department of Information Display Engineering, Hanyang University, Seoul 133-791 (Korea, Republic of); Kim, Tae Whan, E-mail: twk@hanyang.ac.k [Division of Electronics and Computer Engineering, Hanyang University, Seoul 133-791 (Korea, Republic of); Research Institute of Information Display, Department of Information Display Engineering, Hanyang University, Seoul 133-791 (Korea, Republic of); Seo, Ji Hyun; Park, Jung Hyun; Kim, Young Kwan [Department of Information Display Engineering and COMID, Hong-ik University, Seoul 121-791 (Korea, Republic of)

    2009-07-01

    The electrical and the optical properties of the organic light-emitting diodes (OLEDs) utilizing a tetraphenylnaphthacene (rubrene) trapping layer and an 1,3,5-tris(N-phenylbenzimidazol-2-yl)benzene (TPBI) barrier layer with a nanoscale thickness were investigated. While the operating voltage of the OLED with a rubrene trapping layer in the HTL significantly increased because of a decrease in the hole mobility of the HTL, that of the OLED with a rubrene trapping layer in the EML slightly decreased resulting from an increase of the trapped electrons and holes in a rubrene trapping layer. The electroluminescence peak corresponding to the emission zone in the EML of OLEDs with a rubrene trapping layer and a TPBI barrier layer shifts to the EML center due to the existence of trapping layer in the EML.

  6. Inter-Layer Energy Transfer through Wetting-Layer States in Bi-layer InGaAs/GaAs Quantum-Dot Structures with Thick Barriers

    Institute of Scientific and Technical Information of China (English)

    XU Zhang-Cheng; ZHANG Ya-Ting; J(φ)rn M. Hvam; Yoshiji Horikoshi

    2009-01-01

    The inter-layer energy transfer in a bi-layer InGaAs/GaAs quantum dot structure with a thick GaAs barrier is studied using temperature-dependent photoluminescence. The abnormal enhancement of the photoluminescence of the QDs in the layer with a larger amount of coverage at 110K is observed, which can be explained by considering the resonant F(o)rster energy transfer between the wetting layer states at elevated temperatures.

  7. Recombination barrier layers in solid-state quantum dot-sensitized solar cells

    KAUST Repository

    Roelofs, Katherine E.

    2012-06-01

    By replacing the dye in the dye-sensitized solar cell design with semiconductor quantum dots as the light-absorbing material, solid-state quantum dot-sensitized solar cells (ss-QDSSCs) were fabricated. Cadmium sulfide quantum dots (QDs) were grown in situ by successive ion layer adsorption and reaction (SILAR). Aluminum oxide recombination barrier layers were deposited by atomic layer deposition (ALD) at the TiO2/hole-conductor interface. For low numbers of ALD cycles, the Al2O3 barrier layer increased open circuit voltage, causing an increase in device efficiency. For thicker Al2O3 barrier layers, photocurrent decreased substantially, leading to a decrease in device efficiency. © 2012 IEEE.

  8. Schottky barriers based on metal nanoparticles deposited on InP epitaxial layers

    International Nuclear Information System (INIS)

    Fabrication of high-quality Schottky barriers on InP epitaxial layers prepared by liquid-phase epitaxy from rare-earth treated melts is reported. The Schottky structures are based on metal nanoparticles and a graphite layer deposited from colloidal solutions onto epitaxial layers with varying carrier concentration. The structures have notably high values of the barrier height and of the rectification ratio giving evidence of a small degree of the Fermi-level pinning. Electrical characteristics of these diodes are shown to be extremely sensitive to the exposure of gas mixtures with small hydrogen content. (paper)

  9. Schottky barriers based on metal nanoparticles deposited on InP epitaxial layers

    Science.gov (United States)

    Grym, Jan; Yatskiv, Roman

    2013-04-01

    Fabrication of high-quality Schottky barriers on InP epitaxial layers prepared by liquid-phase epitaxy from rare-earth treated melts is reported. The Schottky structures are based on metal nanoparticles and a graphite layer deposited from colloidal solutions onto epitaxial layers with varying carrier concentration. The structures have notably high values of the barrier height and of the rectification ratio giving evidence of a small degree of the Fermi-level pinning. Electrical characteristics of these diodes are shown to be extremely sensitive to the exposure of gas mixtures with small hydrogen content.

  10. Porous thin film barrier layers from 2,3-dicarboxylic acid cellulose nanofibrils for membrane structures.

    Science.gov (United States)

    Visanko, Miikka; Liimatainen, Henrikki; Sirviö, Juho Antti; Haapala, Antti; Sliz, Rafal; Niinimäki, Jouko; Hormi, Osmo

    2014-02-15

    To fabricate a strong hydrophilic barrier layer for ultrafiltration (UF) membranes, 2,3-dicarboxylic acid cellulose nanofibrils with high anionic surface charge density (1.2 mekv/g at pH 7) and a width of 22 ± 4 nm were used. A simple vacuum filtration method combined with a solvent exchange procedure resulted in a porous layer with a thickness of ∼ 0.85 μm. The fabricated membranes reached high rejection efficiencies (74-80%) when aqueous dextrans up to 35-45 kDa were filtrated to evaluate the molecular weight cut-offs (MWCO). A linear correlation between the barrier layer thickness and the flux rate was observed in all tested cases. Further optimization of the barrier layer thickness can lead to an even more effective structure. PMID:24507322

  11. A high performance ceria based interdiffusion barrier layer prepared by spin-coating

    DEFF Research Database (Denmark)

    Plonczak, Pawel; Joost, Mario; Hjelm, Johan;

    2011-01-01

    . The decomposition of the polymer precursor used in the spin-coating process was studied. The depositions were performed on anode supported half cells. By controlling the sintering temperature between each spin-coating process, dense and crack-free CGO films with a thickness of approximately 1 μm were obtained......A multiple spin-coating deposition procedure of Ce0.9Gd0.1O1.95 (CGO) for application in solid oxide fuel cells (SOFCs) was developed. The thin and dense CGO layer can be employed as a barrier layer between yttria stabilised zirconia (YSZ) electrolyte and a (La, Sr)(Co, Fe)O3 based cathode....... The successive steps of dense layer production was investigated by scanning electron microscopy. X-ray diffraction was employed to monitor the crystal structure of the CGO layer sintered at different temperatures. The described spin coated barrier layer was evaluated using an anode supported cell...

  12. Thick growing multilayer nanobrick wall thin films: super gas barrier with very few layers.

    Science.gov (United States)

    Guin, Tyler; Krecker, Michelle; Hagen, David Austin; Grunlan, Jaime C

    2014-06-24

    Recent work with multilayer nanocoatings composed of polyelectrolytes and clay has demonstrated the ability to prepare super gas barrier layers from water that rival inorganic CVD-based films (e.g., SiOx). In an effort to reduce the number of layers required to achieve a very low oxygen transmission rate (OTR (layer-by-layer (LbL) assembly. Buffering the chitosan solution and its rinse with 50 mM Trizma base increased the thickness of these films by an order of magnitude. The OTR of a 1.6-μm-thick, six-bilayer film was 0.009 cc/m(2)·day·atm, making this the best gas barrier reported for such a small number of layers. This simple modification to the LbL process could likely be applied more universally to produce films with the desired properties much more quickly.

  13. Barrier layers against oxygen transmission on the basis of electron beam cured methacrylated gelatin

    Science.gov (United States)

    Scherzer, Tom

    1997-08-01

    The development of barrier layers against oxygen transmission on the basis of radiation-curable methacrylated gelatin will be reported. The electron beam cured gelatin coatings show an extremely low oxygen permeability and a high resistance against boiling water. Moreover, the methacrylated gelatins possess good adhesion characteristics. Therefore, they are suited as barrier adhesives in laminates for food packaging applications. If substrate foils from biodegradable polymers are used, the development of completely biodegradable packaging materials seems to be possible.

  14. Atomic layer deposition on polymer based flexible packaging materials: Growth characteristics and diffusion barrier properties

    Energy Technology Data Exchange (ETDEWEB)

    Kaeaeriaeinen, Tommi O., E-mail: tommi.kaariainen@lut.f [ASTRaL, Lappeenranta University of Technology, Prikaatinkatu 3 E, 50100 Mikkeli (Finland); Maydannik, Philipp, E-mail: philipp.maydannik@lut.f [ASTRaL, Lappeenranta University of Technology, Prikaatinkatu 3 E, 50100 Mikkeli (Finland); Cameron, David C., E-mail: david.cameron@lut.f [ASTRaL, Lappeenranta University of Technology, Prikaatinkatu 3 E, 50100 Mikkeli (Finland); Lahtinen, Kimmo, E-mail: kimmo.lahtinen@tut.f [Tampere University of Technology, Paper Converting and Packaging Technology, P.O. Box 541, 33101 Tampere (Finland); Johansson, Petri, E-mail: petri.johansson@tut.f [Tampere University of Technology, Paper Converting and Packaging Technology, P.O. Box 541, 33101 Tampere (Finland); Kuusipalo, Jurkka, E-mail: jurkka.kuusipalo@tut.f [Tampere University of Technology, Paper Converting and Packaging Technology, P.O. Box 541, 33101 Tampere (Finland)

    2011-03-01

    One of the most promising areas for the industrial application of atomic layer deposition (ALD) is for gas barrier layers on polymers. In this work, a packaging material system with improved diffusion barrier properties has been developed and studied by applying ALD on flexible polymer based packaging materials. Nanometer scale metal oxide films have been applied to polymer-coated papers and their diffusion barrier properties have been studied by means of water vapor and oxygen transmission rates. The materials for the study were constructed in two stages: the paper was firstly extrusion coated with polymer film, which was then followed by the ALD deposition of oxide layer. The polymers used as extrusion coatings were polypropylene, low and high density polyethylene, polylactide and polyethylene terephthalate. Water vapor transmission rates (WVTRs) were measured according to method SCAN-P 22:68 and oxygen transmission rates (O{sub 2}TRs) according to a standard ASTM D 3985. According to the results a 10 nm oxide layer already decreased the oxygen transmission by a factor of 10 compared to uncoated material. WVTR with 40 nm ALD layer was better than the level currently required for most common dry flexible packaging applications. When the oxide layer thickness was increased to 100 nm and above, the measured WVTRs were limited by the measurement set up. Using an ALD layer allowed the polymer thickness on flexible packaging materials to be reduced. Once the ALD layer was 40 nm thick, WVTRs and O{sub 2}TRs were no longer dependent on polymer layer thickness. Thus, nanometer scale ALD oxide layers have shown their feasibility as high quality diffusion barriers on flexible packaging materials.

  15. INVESTIGATION ON THE IMPACT OF CORE AND BARRIER LAYER COMPOSITION ON THE DRUG RELEASE FROM A TRIPLE LAYER TABLET

    Directory of Open Access Journals (Sweden)

    Kanwarpreet Singh Bakshi*, K. Vivek, Rajan K. Verma, Murali Krishna B., Sreekanth Narravula, Romi Barat Singh and Ajay K. Singla

    2012-07-01

    Full Text Available In this study, Monolayer matrix (MLM tablet and triple layer matrix (TLM tablet formulation of metoprolol succinate were fabricated by using Hydroxypropyl-methylcellulose and Polymethacrylates (Eudragit as the matrix forming agent in both the tablet core layer and barrier layers. The prepared tablets were analyzed for their drug content and in-vitro drug release studies. In-vitro evaluation and comparison of the MLM dosage form and TLM dosage form was done. The role of impermeable barrier layer in controlling the drug release from the core was studied. The in-vitro dissolution studies were carried out and showed a significant difference statistically (P value > 0.05 by ANOVA tool. Mean dissolution time (MDT increased, while dissolution efficiency (DE % decreased, indicating that the release of metoprolol succinate is slower from triple layer matrix tablets. The thermal analysis studies (DSC performed on the initial TLM formulation and three month old accelerated stability sample of the same showed no variation in the thermograph, indicating TLM as stable formulation. The finding of the study indicated that the MLM tablets may prolonged the drug release, but a non linear drug release profile was observed with an initial burst release. In TLM tablets, layering with Hydroxypropyl-methylcellulose and Polymethacrylates (Eudragit as impermeable barrier on the matrix core, resulted in linear/zero order drug release kinetics. The initial burst release was not observed in TLM tablets.TLM tablets showed significant and marked controlled release of a freely water soluble drug as compared to MLM tablets.

  16. As-Al recoil implantation through Si 3N 4 barrier layer

    Science.gov (United States)

    Godignon, P.; Morvan, E.; Montserrat, J.; Jordà, X.; Flores, D.; Rebollo, J.

    1999-01-01

    Al recoil implantation have been shown to be a possible alternative to direct Al ion implantation to avoid usual problems linked with Al sources. Poor efficiency of the recoil + annealing process is observed if no barrier or an oxyde screen layers are used. This problem can be solved using a Si 3N 4 screen layer. Then, P-N and N +/P/N structures can be obtained with deep low doped P-well with reduced thermal budget.

  17. As-Al recoil implantation through Si3N4 barrier layer

    International Nuclear Information System (INIS)

    Al recoil implantation have been shown to be a possible alternative to direct Al ion implantation to avoid usual problems linked with Al sources. Poor efficiency of the recoil + annealing process is observed if no barrier or an oxyde screen layers are used. This problem can be solved using a Si3N4 screen layer. Then, P-N and N+/P/N structures can be obtained with deep low doped P-well with reduced thermal budget

  18. Observed seasonal variability of barrier layer in the Bay of Bengal

    Digital Repository Service at National Institute of Oceanography (India)

    Pankajakshan, T.; Muraleedharan, P.M.; Rao, R.R.; Somayajulu, Y.K.; Reddy, G.V.; Revichandran, C.

    Physical & Oceanographic Laboratory, Kochi - 682 021, India 3Regional Centre, National Institute of Oceanography, Kochi ? 682 014, India e-mail: pankaj@nio.org ABSTRACT The observed formation of Barrier Layer (BL) and the seasonal variability...-surface layer exhibits large haline stratification in the northern bay [Shetye et al. 1996; Maheswaran, 2004]. The large R and excess precipitation (P) over evaporation (E) [Harenduprakash and Mitra, 1988; Prasad 1997] during summer monsoon result...

  19. Nanosecond spin relaxation times in single layer graphene spin valves with hexagonal boron nitride tunnel barriers

    Science.gov (United States)

    Singh, Simranjeet; Katoch, Jyoti; Xu, Jinsong; Tan, Cheng; Zhu, Tiancong; Amamou, Walid; Hone, James; Kawakami, Roland

    2016-09-01

    We present an experimental study of spin transport in single layer graphene using atomic sheets of hexagonal boron nitride (h-BN) as a tunnel barrier for spin injection. While h-BN is expected to be favorable for spin injection, previous experimental studies have been unable to achieve spin relaxation times in the nanosecond regime, suggesting potential problems originating from the contacts. Here, we investigate spin relaxation in graphene spin valves with h-BN barriers and observe room temperature spin lifetimes in excess of a nanosecond, which provides experimental confirmation that h-BN is indeed a good barrier material for spin injection into graphene. By carrying out measurements with different thicknesses of h-BN, we show that few layer h-BN is a better choice than monolayer for achieving high non-local spin signals and longer spin relaxation times in graphene.

  20. Modelling of migration from multi-layers and functional barriers: Estimation of parameters

    NARCIS (Netherlands)

    Dole, P.; Voulzatis, Y.; Vitrac, O.; Reynier, A.; Hankemeier, T.; Aucejo, S.; Feigenbaum, A.

    2006-01-01

    Functional barriers form parts of multi-layer packaging materials, which are deemed to protect the food from migration of a broad range of contaminants, e.g. those associated with reused packaging. Often, neither the presence nor the identity of the contaminants is known, so that safety assessment o

  1. High performance metal-supported solid oxide fuel cells with Gd-doped ceria barrier layers

    DEFF Research Database (Denmark)

    Klemensø, Trine; Nielsen, Jimmi; Blennow Tullmar, Peter;

    2011-01-01

    , and an electrochemical performance beyond the state-of-the-art anode-supported SOFC is demonstrated possible, by introducing a CGO barrier layer in combination with Sr-doped lanthanum cobalt oxide (LSC) cathode. Area specific resistances (ASR) down to 0.27 Ω cm2, corresponding to a maximum power density of 1.14 W cm−2...

  2. Seasonal variability of the observed barrier layer in the Arabian Sea

    Digital Repository Service at National Institute of Oceanography (India)

    Pankajakshan, T.; Thoppil, P.; Rao, R.R.; Muraleedharan, P.M.; Somayajulu, Y.K.; Gopalakrishna, V.V.; Murthugudde, R.; Reddy, G.V.; Revichandran, C.

    The formation mechanisms of the barrier layer (BL) and its seasonal variability in the Arabian Sea (AS) are studied using a comprehensive dataset of temperature and salinity profiles from Argo and other archives for the AS. Relatively thick BL of 20...

  3. Modeling the barrier-layer formation in the South-Eastern Arabian Sea

    Digital Repository Service at National Institute of Oceanography (India)

    Durand, F.; Shankar, D.; DeBoyer Montegut, C.; Shenoi, S.S.C.; Blanke, B.; Madec, G.

    The effect of salinity on the formation of the barrier layer (BL) in the South-Eastern Arabian Sea (SEAS) is investigated using an ocean general circulation model. In accordance with previous studies, the runoff distribution and the India-Sri Lanka...

  4. Artificial pinning centers using the barrier layer of ordered nanoporous alumina templates

    DEFF Research Database (Denmark)

    Hallet, X.; Mátéfi-Tempfli, Stefan; Mátéfi-Tempfli, M.;

    2009-01-01

    The barrier layer of self-ordered anodized aluminium oxide, which is grown from an aluminium foil, has been revealed by a selective chemical etching of the remaining aluminium. The surface obtained in this way consists of a triangular lattice of bumps with 100nm spacing, and heights of approximat...

  5. Transparent conductive gas-permeation barriers on plastics by atomic layer deposition.

    Science.gov (United States)

    Chou, Chun-Ting; Yu, Pei-Wei; Tseng, Ming-Hung; Hsu, Che-Chen; Shyue, Jing-Jong; Wang, Ching-Chiun; Tsai, Feng-Yu

    2013-03-25

    A mixed-deposition atomic layer deposition process produces Hf:ZnO films with uniform dopant distribution and high electrical conductivity (resistivity = 4.5 × 10(-4) W cm), optical transparency (>85% from 400-1800 nm), and moisture-barrier property (water vapor transmission rate = 6.3 × 10(-6) g m(-2) day(-1)). PMID:23386315

  6. Probing Cu Diffusion Barrier Layers on Porous Low-Dielectric-Constant Films by Posireonium Annihilation Lifetime Spectroscopy

    Institute of Scientific and Technical Information of China (English)

    HU Yi-Fan; SUN Jia-Ning; Gidley D.W.

    2005-01-01

    @@ Two kinds of Cu diffusion barrier layers, sealedfilms and capped fi1ms, on nanoporous low-dielectric-constant filmsare investigated by positronium annihilation lifetime spectroscopy (PALS). We have found that the minimumthickness of Ta to form an effective diffusion barrier is affected by the pore size. The films with large poresrequire thick barrier layers to form effective diffusion barriers. In addition, a possible ultra-thin diffusion barrier,i.e. a plasma-induced densification layer, has also been investigated. The PALS data confirm that a porouslow-dielectric-constant thin film can be shrunk by exposure to plasma. This shrinkage is confined to a surfacelayer of collapsed pores and forms a dense layer. The dense layer tends to behave as Ps (positronium) diffusionbarriers. Indeed, the controlled thin "skin" layer could prevent Cu diffusion into the underlying dielectrics.

  7. The effect of argon plasma treatment on the permeation barrier properties of silicon nitride layers

    OpenAIRE

    Majee, Subimal; Cerqueira, M. F.; Tondelier, D.; Geffroy, B.; Bonnassieux, Y.; Alpuim, P.; Bourée, J. E.

    2013-01-01

    In this work we produce and study silicon nitride (SiNx) thin films deposited by Hot Wire Chemical Vapor Depo- sition (HW-CVD) to be used as encapsulation barriers for flexible organic photovoltaic cells fabricated on poly- ethylene terephthalate (PET) substrates in order to increase their shelf lifetime. We report on the results of SiNx double-layers and on the equivalent double-layer stack where an Ar-plasma surface treatment was performed on the first SiNx layer. The Ar-plasma treatment ma...

  8. Development of Barrier Layers for the Protection of Candidate Alloys in the VHTR

    Energy Technology Data Exchange (ETDEWEB)

    Levi, Carlos G. [Battelle Energy Alliance, LLC, Idaho Falls, ID (United States); Jones, J. Wayne [Battelle Energy Alliance, LLC, Idaho Falls, ID (United States); Pollock, Tresa M. [Battelle Energy Alliance, LLC, Idaho Falls, ID (United States); Was, Gary S. [Battelle Energy Alliance, LLC, Idaho Falls, ID (United States)

    2015-01-22

    The objective of this project was to develop concepts for barrier layers that enable leading candi- date Ni alloys to meet the longer term operating temperature and durability requirements of the VHTR. The concepts were based on alpha alumina as a primary surface barrier, underlay by one or more chemically distinct alloy layers that would promote and sustain the formation of the pro- tective scale. The surface layers must possess stable microstructures that provide resistance to oxidation, de-carburization and/or carburization, as well as durability against relevant forms of thermo-mechanical cycling. The system must also have a self-healing ability to allow endurance for long exposure times at temperatures up to 1000°C.

  9. Effect of layered silicate on the barrier properties of cured butyl rubber

    Energy Technology Data Exchange (ETDEWEB)

    Krzeminska, S [Central Institute for Labour Protection - National Research Institute, Department of Personal Equipment, Wierzbowa 48, 90-133 Lodz (Poland); Rzymski, W M [Technical University of Lodz, Institute of Polymer and Dye Technology, Stefanowskiego 12/16, 90-924 Lodz (Poland)], E-mail: sykrz@ciop.lodz.pl

    2009-01-01

    The aim of the study was to investigate the effect of layered silicate nanofiller (bentonite: Nanofil 15, Poro Additive) on the barrier properties of non-polar butyl rubber (the IIR, BK 1675 N brand) conventionally cured with sulphur in respect of selected organic solvents. The barrier properties were assessed on the basis of determination of standarized breakthrough time for cured IIR exposed to the selected solvents with different thermodynamic affinities to IIR, i.e. polar butyl acetate and non-polar cyclohexane. In the case of the non-polar solvent - cyclohexane - no effect of the content of the layered silicate (5 - 20 phr) on improvement of barrier properties of the tested IIR vulcanizates was observed. In contrast, a favorable effect of the silicate nanofiller was observed in the case of the polar solvent - butyl acetate, for which the breakthrough time tested for filler-containing vulcanizate (10 - 20 phr) reached 160 -200 min, whereas the breakthrough time obtained for unfilled vulcanizate was 129 min only. The testing of barrier properties of IIR vulcanizates containing various fillers (layered silicate Nanofil 15 and active silica Ultrasil VN3) added in the amount of 20 phr, indicate the favorable effect of layered silicate only in tests with the polar solvent used (an increase in breaktrhough time from 129 to 164 min). Contrary, the presence of conventional silica leads to decrease of breakthrough time (to 118 min). In the case of the non-polar solvent, no effect of the filler type on barrier properties of the tested vulcanizates was observed.

  10. Determination of the Schottky barrier height of ferromagnetic contacts to few-layer phosphorene

    Energy Technology Data Exchange (ETDEWEB)

    Anugrah, Yoska; Robbins, Matthew C.; Koester, Steven J. [Department of Electrical and Computer Engineering, University of Minnesota-Twin Cities, Minneapolis, Minnesota 55455 (United States); Crowell, Paul A. [School of Physics and Astronomy, University of Minnesota-Twin Cities, Minneapolis, Minnesota 55455 (United States)

    2015-03-09

    Phosphorene, the 2D analogue of black phosphorus, is a promising material for studying spin transport due to its low spin-orbit coupling and its ½ nuclear spin, which could allow the study of hyperfine effects. In this work, the properties of permalloy (Py) and cobalt (Co) contacts to few-layer phosphorene are presented. The Schottky barrier height was extracted and determined as a function of gate bias. Flat-band barrier heights, relative to the valence band edge, of 110 meV and 200 meV were determined for Py and Co, respectively. These results are important for future studies of spin transport in phosphorene.

  11. Ceramic barrier layers for flexible thin film solar cells on metallic substrates: a laboratory scale study for process optimization and barrier layer properties.

    Science.gov (United States)

    Delgado-Sanchez, Jose-Maria; Guilera, Nuria; Francesch, Laia; Alba, Maria D; Lopez, Laura; Sanchez, Emilio

    2014-11-12

    Flexible thin film solar cells are an alternative to both utility-scale and building integrated photovoltaic installations. The fabrication of these devices over electrically conducting low-cost foils requires the deposition of dielectric barrier layers to flatten the substrate surface, provide electrical isolation between the substrate and the device, and avoid the diffusion of metal impurities during the relatively high temperatures required to deposit the rest of the solar cell device layers. The typical roughness of low-cost stainless-steel foils is in the hundred-nanometer range, which is comparable or larger than the thin film layers comprising the device and this may result in electrical shunts that decrease solar cell performance. This manuscript assesses the properties of different single-layer and bilayer structures containing ceramics inks formulations based on Al2O3, AlN, or Si3N4 nanoparticles and deposited over stainless-steel foils using a rotogravure printing process. The best control of the substrate roughness was achieved for bilayers of Al2O3 or AlN with mixed particle size, which reduced the roughness and prevented the diffusion of metals impurities but AlN bilayers exhibited as well the best electrical insulation properties.

  12. As-Al recoil implantation through Si{sub 3}N{sub 4} barrier layer

    Energy Technology Data Exchange (ETDEWEB)

    Godignon, P. E-mail: philippe@cnm.es; Morvan, E.; Montserrat, J.; Jorda, X.; Flores, D.; Rebollo, J

    1999-01-01

    Al recoil implantation have been shown to be a possible alternative to direct Al ion implantation to avoid usual problems linked with Al sources. Poor efficiency of the recoil + annealing process is observed if no barrier or an oxyde screen layers are used. This problem can be solved using a Si{sub 3}N{sub 4} screen layer. Then, P-N and N{sup +}/P/N structures can be obtained with deep low doped P-well with reduced thermal budget.

  13. The effect of asymmetric barrier layers in the waveguide region on power characteristics of QW lasers

    DEFF Research Database (Denmark)

    Zubov, F. I.; Zhukov, A. E.; Shernyakov, Yu M.;

    2015-01-01

    Current-voltage and light-current characteristics of quantum-well lasers have been studied at high drive currents. The introduction of asymmetric barrier layers adjacent to the active region caused a significant suppression of the nonlinearity in the light-current characteristic and an increase in...... the external differential efficiency. As a result, the maximum wallplug efficiency increased by 9%, while the output optical power increased by 29%....

  14. Structural properties of ultraviolet cured polysilazane gas barrier layers on polymer substrates

    Energy Technology Data Exchange (ETDEWEB)

    Morlier, Arnaud, E-mail: morlier@isfh.de [LEPMI/LMOPS, UMR CNRS-UJF-UDS-INPG 5279, Bat. IUT, avenue du Lac d' Annecy, 73376 Le Bourget du Lac (France); National Institute for Solar Energy (INES), 50 avenue du Lac Léman, 73377 Le Bourget du lac (France); Cros, Stéphane; Garandet, Jean-Paul [National Institute for Solar Energy (INES), 50 avenue du Lac Léman, 73377 Le Bourget du lac (France); CEA/DRT/LITEN/DTS, 50 avenue du Lac Léman, 73377 Le Bourget du Lac (France); Alberola, Nicole [LEPMI/LMOPS, UMR CNRS-UJF-UDS-INPG 5279, Bat. IUT, avenue du Lac d' Annecy, 73376 Le Bourget du Lac (France); National Institute for Solar Energy (INES), 50 avenue du Lac Léman, 73377 Le Bourget du lac (France)

    2014-01-01

    Perhydropolysilazane (PHPS) conversion to silica through high energy ultraviolet irradiation has been studied. Precursor conversion speed and structural properties of the UV cured PHPS have been investigated and showed that this conversion method is fast but that complete conversion into silica is not achieved in an oxygen depleted atmosphere for layer thicknesses higher than 30 nm, resulting in a composite structure with concentration gradients. We further show that Fourier transform infrared spectroscopy data allow investigating the local structure and composition over the depth of the obtained layers. Gas permeability of the thin UV cured PHPS layers deposited on polymers has been studied. We used a high sensitivity permeation measurement technique to determine water vapor and oxygen permeabilities of the barrier layers and show the correlation between helium, oxygen and water permeability of these materials. Oxygen and water vapor transmission rates of respectively 0.06 cm{sup 3}/m{sup 2}/day/bar and 0.2 g/m{sup 2}/day have been obtained with layers deposited on a polymer substrate. - Highlights: • Perhydropolysilazane has been converted into dense layers by vacuum UV irradiation. • Cured perhydropolysilazane layers have an inhomogeneous structure. • The cured material consists in 3 spontaneously formed layers. • Oxygen and water transmission rates of 0.06 cm{sup 3}/m{sup 2}/day/bar and 0.02 g/m{sup 2}/day are reached.

  15. Diurnal evolution of the barrier layer and its local feedback in the central Taiwan Strait

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Diurnal evolution of the barrier layer (BL) and its local feedback features in the central Taiwan Strait (119.2oE,24.3oN) during summertime monsoon are investigated using in situ moored observations conducted by the "Yan-Ping 2" research vessel in late June 2005.During the initiation phase,for the non-solar radiation tends to be trapped in the upper mixed layer,whereas the solar radiation can penetrate deeply through the mixed layer approaching the thermocline,most heat is accumulated inside the BL inducing an inverse-thermal layer.Along with heat convergence inside the BL,thermal exchange increases between the BL and the overlaying mixed layer and finally,a prominently warming mixed layer is formed.Moreover,the BL is associated with a buoyancy frequency minimum with mild stability.Further analysis reveals that the BL’s local feedbacks can be divided into two aspects,on one hand,the BL can generate dramatic changes in the local sensible and latent heat fluxes;on the other hand,the sub-halocline and the thermocline serve as two interfaces during the downward transmission of the wind stirring turbulent kinetic energy (TKE) and as a result,most TKE is retarded by the shallow halocline and being trapped above the upper mixed layer,while the residual pierced through the base of the mixed layer is likewise blocked by the thermocline.

  16. Lactobacillus reuteri maintains a functional mucosal barrier during DSS treatment despite mucus layer dysfunction.

    Directory of Open Access Journals (Sweden)

    Johan Dicksved

    Full Text Available Treatment with the probiotic bacterium Lactobacillus reuteri has been shown to prevent dextran sodium sulfate (DSS-induced colitis in rats. This is partly due to reduced P-selectin-dependent leukocyte- and platelet-endothelial cell interactions, however, the mechanism behind this protective effect is still unknown. In the present study a combination of culture dependent and molecular based T-RFLP profiling was used to investigate the influence of L. reuteri on the colonic mucosal barrier of DSS treated rats. It was first demonstrated that the two colonic mucus layers of control animals had different bacterial community composition and that fewer bacteria resided in the firmly adherent layer. During DSS induced colitis, the number of bacteria in the inner firmly adherent mucus layer increased and bacterial composition of the two layers no longer differed. In addition, induction of colitis dramatically altered the microbial composition in both firmly and loosely adherent mucus layers. Despite protecting against colitis, treatment with L. reuteri did not improve the integrity of the mucus layer or prevent distortion of the mucus microbiota caused by DSS. However, L. reuteri decreased the bacterial translocation from the intestine to mesenteric lymph nodes during DSS treatment, which might be an important part of the mechanisms by which L. reuteri ameliorates DSS induced colitis.

  17. Effect of barrier layers on the properties of indium tin oxide thin films on soda lime glass substrates

    International Nuclear Information System (INIS)

    In this paper, the electrical, structural and optical properties of indium tin oxide (ITO) films deposited on soda lime glass (SLG) haven been investigated, along with high strain point glass (HSPG) substrate, through radio frequency magnetron sputtering using a ceramic target (In2O3:SnO2, 90:10 wt.%). The ITO films deposited on the SLG show a high electrical resistivity and structural defects compared with those deposited on HSPG due to the Na ions from the SLG diffusing to the ITO film by annealing. However, these properties can be improved by intercalating a barrier layer of SiO2 or Al2O3 between the ITO film and the SLG substrate. SIMS analysis has confirmed that the barrier layer inhibits the Na ion's diffusion from the SLG. In particular, the ITO films deposited on the Al2O3 barrier layer, show better properties than those deposited on the SiO2 barrier layer.

  18. Investigation of Top/bottom Electrode and Diffusion Barrier Layer for PZT thick film MEMS Sensors

    DEFF Research Database (Denmark)

    Pedersen, Thomas; Hindrichsen, Christian Carstensen; Lou-Møller, R.;

    2007-01-01

    In this work screen printed piezoelectric Ferroperm PZ26 lead zirconate titanate (PZT) thick film is used for two MEMS devices. A test structure is used to investigate several aspects regarding bottom and top electrodes. 450 nm ZrO2 thin film is found to be an insufficient diffusion barrier layer...... for thick film PZT sintered at 850degC. E-beam evaporated Al and Pt is patterned on PZT with a lift-off process with a line width down to 3 mum. The roughness of the PZT is found to have a strong influence on the conductance of the top electrode....

  19. Fabrication of metallic single electron transistors featuring plasma enhanced atomic layer deposition of tunnel barriers

    Science.gov (United States)

    Karbasian, Golnaz

    The continuing increase of the device density in integrated circuits (ICs) gives rise to the high level of power that is dissipated per unit area and consequently a high temperature in the circuits. Since temperature affects the performance and reliability of the circuits, minimization of the energy consumption in logic devices is now the center of attention. According to the International Technology Roadmaps for Semiconductors (ITRS), single electron transistors (SETs) hold the promise of achieving the lowest power of any known logic device, as low as 1x10-18 J per switching event. Moreover, SETs are the most sensitive electrometers to date, and are capable of detecting a fraction of an electron charge. Despite their low power consumption and high sensitivity for charge detection, room temperature operation of these devices is quite challenging mainly due to lithographical constraints in fabricating structures with the required dimensions of less than 10 nm. Silicon based SETs have been reported to operate at room temperature. However, they all suffer from significant variation in batch-to-batch performance, low fabrication yield, and temperature-dependent tunnel barrier height. In this project, we explored the fabrication of SETs featuring metal-insulator-metal (MIM) tunnel junctions. While Si-based SETs suffer from undesirable effect of dopants that result in irregularities in the device behavior, in metal-based SETs the device components (tunnel barrier, island, and the leads) are well-defined. Therefore, metal SETs are potentially more predictable in behavior, making them easier to incorporate into circuits, and easier to check against theoretical models. Here, the proposed fabrication method takes advantage of unique properties of chemical mechanical polishing (CMP) and plasma enhanced atomic layer deposition (PEALD). Chemical mechanical polishing provides a path for tuning the dimensions of the tunnel junctions, surpassing the limits imposed by electron beam

  20. A three-terminal ultraviolet photodetector constructed on a barrier-modulated triple-layer architecture.

    Science.gov (United States)

    Ye, Daqian; Mei, Zengxia; Liang, Huili; Liu, Lishu; Zhang, Yonghui; Li, Junqiang; Liu, Yaoping; Gu, Changzhi; Du, Xiaolong

    2016-05-16

    We report a novel three-terminal device fabricated on MgZnO/ZnO/MgZnO triple-layer architecture. Because of the combined barrier modulation effect by both gate and drain biases, the device shows an unconventional I-V characteristics compared to a common field effect transistor. The photoresponse behavior of this unique device was also investigated and applied in constructing a new type ultraviolet (UV) photodetector, which may be potentially used as an active element in a UV imaging array. More significantly, the proper gate bias-control offers a new pathway to overcome the common persistent photoconductivity (PPC) effect problem. Additionally, the MgZnO:F as a channel layer was chosen to optimize the photoresponse properties, and the spectrum indicated a gate bias-dependent wavelength-selectable feature for different response peaks, which suggests the possibility to build a unique dual-band UV photodetector with this new architecture.

  1. Gas permeation barriers deposited by atmospheric pressure plasma enhanced atomic layer deposition

    International Nuclear Information System (INIS)

    This paper reports on aluminum oxide (Al2O3) thin film gas permeation barriers fabricated by atmospheric pressure atomic layer deposition (APPALD) using trimethylaluminum and an Ar/O2 plasma at moderate temperatures of 80 °C in a flow reactor. The authors demonstrate the ALD growth characteristics of Al2O3 films on silicon and indium tin oxide coated polyethylene terephthalate. The properties of the APPALD-grown layers (refractive index, density, etc.) are compared to that deposited by conventional thermal ALD at low pressures. The films films deposited at atmospheric pressure show water vapor transmission rates as low as 5 × 10−5 gm−2d−1

  2. Gas permeation barriers deposited by atmospheric pressure plasma enhanced atomic layer deposition

    Energy Technology Data Exchange (ETDEWEB)

    Hoffmann, Lukas, E-mail: lhoffmann@uni-wuppertal.de; Theirich, Detlef; Hasselmann, Tim; Räupke, André; Schlamm, Daniel; Riedl, Thomas, E-mail: t.riedl@uni-wuppertal.de [Institute of Electronic Devices, University of Wuppertal, Rainer-Gruenter-Str. 21, 42119 Wuppertal (Germany)

    2016-01-15

    This paper reports on aluminum oxide (Al{sub 2}O{sub 3}) thin film gas permeation barriers fabricated by atmospheric pressure atomic layer deposition (APPALD) using trimethylaluminum and an Ar/O{sub 2} plasma at moderate temperatures of 80 °C in a flow reactor. The authors demonstrate the ALD growth characteristics of Al{sub 2}O{sub 3} films on silicon and indium tin oxide coated polyethylene terephthalate. The properties of the APPALD-grown layers (refractive index, density, etc.) are compared to that deposited by conventional thermal ALD at low pressures. The films films deposited at atmospheric pressure show water vapor transmission rates as low as 5 × 10{sup −5} gm{sup −2}d{sup −1}.

  3. Single-Layer Graphene as a Barrier Layer for Intense UV Laser-Induced Damages for Silver Nanowire Network.

    Science.gov (United States)

    Das, Suprem R; Nian, Qiong; Saei, Mojib; Jin, Shengyu; Back, Doosan; Kumar, Prashant; Janes, David B; Alam, Muhammad A; Cheng, Gary J

    2015-11-24

    Single-layer graphene (SLG) has been proposed as the thinnest protective/barrier layer for wide applications involving resistance to oxidation, corrosion, atomic/molecular diffusion, electromagnetic interference, and bacterial contamination. Functional metallic nanostructures have lower thermal stability than their bulk forms and are therefore susceptible to high energy photons. Here, we demonstrate that SLG can shield metallic nanostructures from intense laser radiation that would otherwise ablate them. By irradiation via a UV laser beam with nanosecond pulse width and a range of laser intensities (in millions of watt per cm(2)) onto a silver nanowire network, and conformally wrapping SLG on top of the nanowire network, we demonstrate that graphene "extracts and spreads" most of the thermal energy away from nanowire, thereby keeping it damage-free. Without graphene wrapping, the radiation would fragment the wires into smaller pieces and even decompose them into droplets. A systematic molecular dynamics simulation confirms the mechanism of SLG shielding. Consequently, particular damage-free and ablation-free laser-based nanomanufacturing of hybrid nanostructures might be sparked off by application of SLG on functional surfaces and nanofeatures. PMID:26447828

  4. Positron annihilation lifetime spectroscopy (PALS) application in metal barrier layer integrity for porous low- k materials

    CERN Document Server

    Simon, Lin; Gidley, D W; Wetzel, J T; Monnig, K A; Ryan, E T; Simon, Jang; Douglas, Yu; Liang, M S; En, W G; Jones, E C; Sturm, J C; Chan, M J; Tiwari, S C; Hirose, M

    2002-01-01

    Positron Annihilation Lifetime Spectroscopy (PALS) is a useful tool to pre-screen metal barrier integrity for Si-based porous low-k dielectrics. Pore size of low-k, thickness of metal barrier Ta, positronium (Ps) leakage from PALS, trench sidewall morphology, electrical test from one level metal (1LM) pattern wafer and Cu diffusion analysis were all correlated. Macro-porous low-k (pore size >=200 AA) and large scale meso-porous low-k (>50~200 AA) encounter both Ps leakage and Cu diffusion into low-k dielectric in the 0.25 mu mL/0.3 mu mS structures when using SEMATECH in-house PVD Ta 250 AA as barrier layer. For small scale meso-porous (>20~50 AA) and micro- porous (<=20 AA) low-k, no Ps leakage and no Cu diffusion into low-k were observed even with PVD Ta 50 AA, which is proved also owing to sidewall densification to seal all sidewall pores due to plasma etch and ash. For future technology, smaller pore size of porous Si-based low-k (=<50 AA) will be preferential for dense low-k like trench sidewall to...

  5. Glomerular endothelial surface layer acts as a barrier against albumin filtration.

    Science.gov (United States)

    Dane, Martijn J C; van den Berg, Bernard M; Avramut, M Cristina; Faas, Frank G A; van der Vlag, Johan; Rops, Angelique L W M M; Ravelli, Raimond B G; Koster, Bram J; van Zonneveld, Anton Jan; Vink, Hans; Rabelink, Ton J

    2013-05-01

    Glomerular endothelium is highly fenestrated, and its contribution to glomerular barrier function is the subject of debate. In recent years, a polysaccharide-rich endothelial surface layer (ESL) has been postulated to act as a filtration barrier for large molecules, such as albumin. To test this hypothesis, we disturbed the ESL in C57Bl/6 mice using long-term hyaluronidase infusion for 4 weeks and monitored albumin passage using immunolabeling and correlative light-electron microscopy that allows for complete and integral assessment of glomerular albumin passage. ESL ultrastructure was visualized by transmission electron microscopy using cupromeronic blue and by localization of ESL binding lectins using confocal microscopy. We demonstrate that glomerular fenestrae are filled with dense negatively charged polysaccharide structures that are largely removed in the presence of circulating hyaluronidase, leaving the polysaccharide surfaces of other glomerular cells intact. Both retention of native ferritin [corrected] in the glomerular basement membrane and systemic blood pressure were unaltered. Enzyme treatment, however, induced albumin passage across the endothelium in 90% of glomeruli, whereas this could not be observed in controls. Yet, there was no net albuminuria due to binding and uptake of filtered albumin by the podocytes and parietal epithelium. ESL structure and function completely recovered within 4 weeks on cessation of hyaluronidase infusion. Thus, the polyanionic ESL component, hyaluronan, is a key component of the glomerular endothelial protein permeability barrier.

  6. Thermal stability of atomic layer deposited Ru layer on Si and TaN/Si for barrier application of Cu interconnection.

    Science.gov (United States)

    Shin, Dong Chan; Kim, Moo Ryul; Lee, Jong Ho; Choi, Bum Ho; Lee, Hong Kee

    2012-07-01

    The thermal stability of thin Ru single layer and Ru/TaN bilayers grown on bare Si by plasma enhanced atomic layer deposition (PEALD) have been studied with Cu/Ru, Cu/Ru/TaN structures as a function of annealing temperature. To investigate the characteristics as a copper diffusion barrier, a 50 nm thick Cu film was sputtered on Ru and Ru/TaN layers and each samples subjected to thermal annealing under N2 ambient with varied temperature 300, 400, and 500 degrees C, respectively. It was found that the single 5 nm thick ALD Ru layer acted as an effective Cu diffusion barrier up to 400 degrees C. On the other hand ALD Ru (5 nm)/TaN (3.2 nm) showed the improved diffusion barrier characteristics even though the annealing temperature increased up to 500 degrees C. Based on the experimental results, the failure mechanism of diffusion barrier would be related to the crystallization of amorphous Ru thin film as temperature raised which implies the crystallized Ru grain boundary served as the diffusion path of Cu atoms. The combination of ALD Ru incorporated with TaN layer would be a promising barrier structure in Cu metallization.

  7. The addition of aluminium to ruthenium liner layers for use as copper diffusion barriers

    Energy Technology Data Exchange (ETDEWEB)

    McCoy, A.P., E-mail: anthony.mccoy2@mail.dcu.ie; Bogan, J.; Walsh, L.; Byrne, C.; Casey, P.; Hughes, G.

    2014-07-01

    The chemical interaction of Al on a SiO₂ dielectric layer and the addition of Al into Ru thin films on SiO₂ for use as copper diffusion barrier layers are assessed in situ using X-ray photoelectron spectroscopy. Thin (~1–2 nm) Al films were deposited on a SiO₂ substrate and in a separate experiment on a 3 nm Ru liner layer on SiO₂, and both Al/SiO₂ and Al/Ru/SiO₂ structures were subsequently thermally annealed. Results indicate the reduction of SiO₂ and the subsequent formation of Al₂O₃ with the release of Si from the dielectric. The Al/Ru/SiO₂ structure showed evidence for the diffusion of Al through the Ru layer and the subsequent interaction of the Al with the underlying SiO₂ dielectric to form Al₂O₃. In this case, the reduction of SiO₂ leads to the release of Si from the dielectric and the subsequent chemical interaction of Ru with Si.

  8. Influence of Ni Catalyst Layer and TiN Diffusion Barrier on Carbon Nanotube Growth Rate

    Directory of Open Access Journals (Sweden)

    Mérel Philippe

    2010-01-01

    Full Text Available Abstract Dense, vertically aligned multiwall carbon nanotubes were synthesized on TiN electrode layers for infrared sensing applications. Microwave plasma-enhanced chemical vapor deposition and Ni catalyst were used for the nanotubes synthesis. The resultant nanotubes were characterized by SEM, AFM, and TEM. Since the length of the nanotubes influences sensor characteristics, we study in details the effects of changing Ni and TiN thickness on the physical properties of the nanotubes. In this paper, we report the observation of a threshold Ni thickness of about 4 nm, when the average CNT growth rate switches from an increasing to a decreasing function of increasing Ni thickness, for a process temperature of 700°C. This behavior is likely related to a transition in the growth mode from a predominantly “base growth” to that of a “tip growth.” For Ni layer greater than 9 nm the growth rate, as well as the CNT diameter, variations become insignificant. We have also observed that a TiN barrier layer appears to favor the growth of thinner CNTs compared to a SiO2 layer.

  9. Atomic and electronic structure of ultrathin fluoride barrier layers at the oxide/Si interface

    Energy Technology Data Exchange (ETDEWEB)

    Pasquali, L; Montecchi, M; Nannarone, S [Department of Materials and Environmental Engineering, University of Modena and Reggio Emilia, Via Vignolese 905, I-41125 Modena (Italy); Boscherini, F [Department of Physics, University of Bologna, Viale Berti Pichat 6/2, I-40127 Bologna (Italy)

    2011-09-07

    A SrF{sub 2} ultrathin barrier layer on Si(001) is used to form a sharp interface and block reactivity and intermixing between the semiconductor and a Yb{sub 2}O{sub 3} overlayer. Yb{sub 2}O{sub 3}/Si(001) and Yb{sub 2}O{sub 3}/SrF{sub 2}/Si(001) interfaces grown in ultra high vacuum by molecular beam epitaxy are studied by photoemission and x-ray absorption fine structure. Without the fluoride interlayer, Yb{sub 2}O{sub 3}/Si(001) presents an interface reacted region formed by SiO{sub x} and/or silicate compounds, which is about 9 A thick and increases up to 14-15 A after annealing at 500-700 {sup 0}C. A uniform single layer of SrF{sub 2} molecules blocks intermixing and reduces the oxidized Si region to 2.4 A after deposition and to 3.5 A after annealing at 500 {sup 0}C. In both cases we estimate a conduction band offset and a valence band offset of {approx} 1.7 eV and 2.4 eV between the oxide and Si, respectively. X-ray absorption fine structure measurements at the Yb L{sub III} edge suggest that the Yb oxide films exhibit a significant degree of static disorder with and without the fluoride barrier. Sr K edge measurements indicate that the ultrathin fluoride films are reacted, with the formation of bonds between Si and Sr; the Sr-Sr and Sr-F interatomic distances in the ultrathin fluoride barrier film are relaxed to the bulk value.

  10. Efficiency enhancement of solid-state PbS quantum dot-sensitized solar cells with Al2O3 barrier layer

    KAUST Repository

    Brennan, Thomas P.

    2013-01-01

    Atomic layer deposition (ALD) was used to grow both PbS quantum dots and Al2O3 barrier layers in a solid-state quantum dot-sensitized solar cell (QDSSC). Barrier layers grown prior to quantum dots resulted in a near-doubling of device efficiency (0.30% to 0.57%) whereas barrier layers grown after quantum dots did not improve efficiency, indicating the importance of quantum dots in recombination processes. © 2013 The Royal Society of Chemistry.

  11. Effect of interaction between periodic δ-doping in both well and barrier layers on modulation of superlattice band structure

    Science.gov (United States)

    Xu, Huaizhe; Yan, Qiqi; Wang, Tianmin

    2007-08-01

    The modulation of superlattice band structure via periodic δ-doping in both well and barrier layers have been theoretically investigated, and the importance of interaction between the δ-function potentials in the well layers and those in the barrier layers on SL band structure have been revealed. It is pointed out that the energy dispersion relation Eq. (3) given in [G. Ihm, S.K. Noh, J.I. Lee, J.-S. Hwang, T.W. Kim, Phys. Rev. B 44 (1991) 6266] is an incomplete one, as the interaction between periodic δ-doping in both well and barrier layers had been overlooked. Finally, we have shown numerically that the electron states of a GaAs/Ga0.7Al0.3As superlattice can be altered more efficiently by intelligent tuning the two δ-doping's positions and heights.

  12. Effect of a multi-layer infection control barrier on the micro-hardness of a composite resin

    Directory of Open Access Journals (Sweden)

    In-Nam Hwang

    2012-10-01

    Full Text Available OBJECTIVE: The aim of this study was to evaluate the effect of multiple layers of an infection control barrier on the micro-hardness of a composite resin. MATERIAL AND METHODS: One, two, four, and eight layers of an infection control barrier were used to cover the light guides of a high-power light emitting diode (LeD light curing unit (LCU and a low-power halogen LCU. The composite specimens were photopolymerized with the LCUs and the barriers, and the micro-hardness of the upper and lower surfaces was measured (n=10. The hardness ratio was calculated by dividing the bottom surface hardness of the experimental groups by the irradiated surface hardness of the control groups. The data was analyzed by two-way ANOVA and Tukey's HSD test. RESULTS: The micro-hardness of the composite specimens photopolymerized with the LED LCU decreased significantly in the four- and eight-layer groups of the upper surface and in the two-, four-, and eight-layer groups of the lower surface. The hardness ratio of the composite specimens was <80% in the eight-layer group. The micro-hardness of the composite specimens photopolymerized with the halogen LCU decreased significantly in the eight-layer group of the upper surface and in the two-, four-, and eight-layer groups of the lower surface. However, the hardness ratios of all the composite specimens photopolymerized with barriers were <80%. CONCLUSIONS: The two-layer infection control barrier could be used on high-power LCUs without decreasing the surface hardness of the composite resin. However, when using an infection control barrier on the low-power LCUs, attention should be paid so as not to sacrifice the polymerization efficiency.

  13. Diffusion barrier properties of atomic-layer-deposited iridium thin films on Cu/Ir/Si structures

    International Nuclear Information System (INIS)

    We investigated the diffusion barrier properties of an atomic-layer-deposited 12-nm-thick iridium (Ir) thin film as functions of the thermal treatment temperature. Up to a temperature of 500 .deg. C, the Ir thin film maintained its initial configuration, preventing the penetration of the Cu layer into Si through the Ir layer. The thermal stability of the Ir layer up to 500 .deg. C was confirmed by using high resolution transmission electron microscopy, Auger electron microscopy, and X-ray diffraction. In contrast, when the Ir layer was thermally annealed at 600 .deg. C, copper silicide was formed, and interdiffusion of Cu and Ir was observed.

  14. Effect of Al 2 O 3 Recombination Barrier Layers Deposited by Atomic Layer Deposition in Solid-State CdS Quantum Dot-Sensitized Solar Cells

    KAUST Repository

    Roelofs, Katherine E.

    2013-03-21

    Despite the promise of quantum dots (QDs) as a light-absorbing material to replace the dye in dye-sensitized solar cells, quantum dot-sensitized solar cell (QDSSC) efficiencies remain low, due in part to high rates of recombination. In this article, we demonstrate that ultrathin recombination barrier layers of Al2O3 deposited by atomic layer deposition can improve the performance of cadmium sulfide (CdS) quantum dot-sensitized solar cells with spiro-OMeTAD as the solid-state hole transport material. We explored depositing the Al2O3 barrier layers either before or after the QDs, resulting in TiO2/Al2O3/QD and TiO 2/QD/Al2O3 configurations. The effects of barrier layer configuration and thickness were tracked through current-voltage measurements of device performance and transient photovoltage measurements of electron lifetimes. The Al2O3 layers were found to suppress dark current and increase electron lifetimes with increasing Al 2O3 thickness in both configurations. For thin barrier layers, gains in open-circuit voltage and concomitant increases in efficiency were observed, although at greater thicknesses, losses in photocurrent caused net decreases in efficiency. A close comparison of the electron lifetimes in TiO2 in the TiO2/Al2O3/QD and TiO2/QD/Al2O3 configurations suggests that electron transfer from TiO2 to spiro-OMeTAD is a major source of recombination in ss-QDSSCs, though recombination of TiO2 electrons with oxidized QDs can also limit electron lifetimes, particularly if the regeneration of oxidized QDs is hindered by a too-thick coating of the barrier layer. © 2013 American Chemical Society.

  15. Barrier layer in the northeastern South China Sea and its formation mechanism

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Robust evidence for the barrier layer (BL) in the northeastern South China Sea (SCS) (16°-25°N, 112°-124°E) is presented. The occurrence rate of the BL peaks in the autumn (45.7%) and then the summer (31.1%) and the spring (23.3%), sequently. It is estimated that the annual occurrence rate of the BL reaches about 40.0% in the central northeastern SCS (18°-22°N, 112°-120°E) and the Luzon Strait. Stratification-formed (Rain-formed) mechanism is the major factor responsible for the occurrence of the BL in the northeastern SCS in the spring (the summer and autumn), respectively. The rainfall observation from TRMM provides reliable evidence for the latter.

  16. Investigation of Thickness Dependence of Metal Layer in Al/Mo/4H-SiC Schottky Barrier Diodes.

    Science.gov (United States)

    Lee, Seula; Lee, Jinseon; Kang, Tai-Young; Kyoung, Sinsu; Jung, Eun Sik; Kim, Kyung Hwan

    2015-11-01

    In this paper, we present the preparation and characterization of Schottky barrier diodes based on silicon carbide with various Schottky metal layer thickness values. In this structure, molybdenum and aluminum were employed as the Schottky barrier metal and top electrode, respectively. Schottky metal layers were deposited with thicknesses ranging from 1000 to 3000 Å, and top electrodes were deposited with thickness as much as 3000 Å. The deposition of both metal layers was performed using the facing target sputtering (FTS) method, and the fabricated samples were annealed with the tubular furnace at 300 degrees C under argon ambient for 10 min. The Schottky barrier height, series resistance, and ideality factor was calculated from the forward I-V characteristic curve using the methods proposed by Cheung and Cheung, and by Norde. For as-deposited Schottky diodes, we observed an increase of the threshold voltage (V(T)) as the thickness of the Schottky metal layer increased. After the annealing, the Schottky barrier heights (SBHs) of the diodes, including Schottky metal layers of over 2000 Å, increased. In the case of the Schottky metal layer deposited to 1000 Å, the barrier heights decreased due to the annealing process. This may have been caused by the interfacial penetration phenomenon through the Schottky metal layer. For variations of V(T), the SBH changed with a similar tendency. The ideality factor and series resistance showed no significant changes before or after annealing. This indicates that this annealing condition is appropriate for Mo SiC structures. Our results confirm that it is possible to control V(T) by adjusting the thickness of the Schottky metal layer.

  17. In-situ inspection of cracking in atomic-layer-deposited barrier films on surface and in buried structures

    International Nuclear Information System (INIS)

    Thin inorganic barrier films deposited on plastics are essential to provide protection from moisture- and oxygen-aided degradation while maintaining a flexible substrate. Mechanical bending of the barrier films, causes stress-induced cracks that may lead to significant reduction or loss of barrier protection. In-situ characterization of film cracking on the nanoscale, transparent, and conformal atomic-layer-deposited (ALD) thin films is challenging especially when these films are in a buried layer structure. We developed a technique that can inspect in real-time the cracking of the stressed barrier films using laser scanning confocal microscopy. The in-situ inspection avoids the inaccurate measurement of the crack onset strain associated with the crack 'close-up' phenomenon. SU8 cover-coat is applied to form a buried ALD layer structure and in-situ inspection demonstrates the cracking of the ALD film in real-time underneath the cover-coat. This technique is nondestructive, versatile, and allows rapid and large-area inspection of different types of barrier films.

  18. Remodeling of Tight Junctions and Enhancement of Barrier Integrity of the CACO-2 Intestinal Epithelial Cell Layer by Micronutrients.

    Science.gov (United States)

    Valenzano, Mary Carmen; DiGuilio, Katherine; Mercado, Joanna; Teter, Mimi; To, Julie; Ferraro, Brendan; Mixson, Brittany; Manley, Isabel; Baker, Valerissa; Moore, Beverley A; Wertheimer, Joshua; Mullin, James M

    2015-01-01

    The micronutrients zinc, quercetin, butyrate, indole and berberine were evaluated for their ability to induce remodeling of epithelial tight junctions (TJs) and enhance barrier integrity in the CACO-2 gastrointestinal epithelial cell culture model. All five of these chemically very diverse micronutrients increased transepithelial electrical resistance (Rt) significantly, but only berberine also improved barrier integrity to the non-electrolyte D-mannitol. Increases of Rt as much as 200% of untreated controls were observed. Each of the five micronutrients also induced unique, signature-like changes in TJ protein composition, suggesting multiple pathways (and TJ arrangements) by which TJ barrier function can be enhanced. Decreases in abundance by as much as 90% were observed for claudin-2, and increases of over 300% could be seen for claudins -5 and -7. The exact effects of the micronutrients on barrier integrity and TJ protein composition were found to be highly dependent on the degree of differentiation of the cell layer at the time it was exposed to the micronutrient. The substratum to which the epithelial layer adheres was also found to regulate the response of the cell layer to the micronutrient. The implications of these findings for therapeutically decreasing morbidity in Inflammatory Bowel Disease are discussed.

  19. High reflectance Cr/V multilayer with B(4)C barrier layer for water window wavelength region.

    Science.gov (United States)

    Huang, Qiushi; Fei, Jiani; Liu, Yang; Li, Pin; Wen, Mingwu; Xie, Chun; Jonnard, Philippe; Giglia, Angelo; Zhang, Zhong; Wang, Kun; Wang, Zhanshan

    2016-02-15

    To develop the high reflectance mirror for the short wavelength range of the water window region (λ=2.42-2.73  nm), Cr/V multilayers with B4C barrier layers are studied. The grazing incidence x-ray reflectometry results show that the multilayer interface widths are significantly reduced down to 0.21-0.31 nm, after the introduction of 0.1 nm B4C barrier layers at both interfaces. The [B4C/Cr/B4C/V] multilayer with a large number of bilayers of N=300 maintains the same small interface widths while the surface roughness is only 0.2 nm. According to the transmission electron microscope measurements, the layer structure improvement with barrier layers can be attributed to the suppression of the crystallization of vanadium inside the structure. Using the interface engineered multilayer, a maximum soft x-ray reflectance of 24.3% is achieved at λ=2.441  nm, under the grazing incidence of 42°. PMID:26872167

  20. Efficient, air-stable colloidal quantum dot solar cells encapsulated using atomic layer deposition of a nanolaminate barrier

    KAUST Repository

    Ip, Alexander H.

    2013-12-23

    Atomic layer deposition was used to encapsulate colloidal quantum dot solar cells. A nanolaminate layer consisting of alternating alumina and zirconia films provided a robust gas permeation barrier which prevented device performance degradation over a period of multiple weeks. Unencapsulated cells stored in ambient and nitrogen environments demonstrated significant performance losses over the same period. The encapsulated cell also exhibited stable performance under constant simulated solar illumination without filtration of harsh ultraviolet photons. This monolithically integrated thin film encapsulation method is promising for roll-to-roll processed high efficiency nanocrystal solar cells. © 2013 AIP Publishing LLC.

  1. Barrier layer and grain boundary effects in Nd/Zr doped BaTiO3 ceramics

    International Nuclear Information System (INIS)

    Gradient structures with barrier layer characteristics and core-shell morphology have been developed in BaTiO3 ceramics with Nd2O3 and ZrO2 as co-dopants. Features include reduced Curie temperatures and anisotropic stress gradients, resulting from an oxidized surface layer and reduced interior, developed during air sintering. Co-doping was typically carried out through solution milling of the BaTiO3 powders with nitrate precursors of the dopant oxides, spray drying and sintering of the pressed pellets in air ambient at 1300-1320 deg. C/60-90 min with furnace cooling. Structural characterization, as well as dielectric and d.c. resistance measurements of the pellets, as-sintered and after removing equal amounts of material from both surfaces, revealed the existence of an oxidized surface layer and barrier layer microstructures consisting of graded regions of oxidized insulating surfaces over partially oxidized or conducting grain interiors. In this complex structure, the ZrO2 segregates to the grain boundary region, forming a core-shell structure, with Nd2O3 partitioning between the BaTiO3 and ZrO2 phases. The overall system was modeled in terms of an equivalent circuit and the analysis indicates that the dielectric constant and the loss behavior are strongly impacted by both the surface and grain boundary barrier characteristics, with the surface barrier effects having the more dominant effect on the dielectric properties of the doped compositions. Indications are that fine-tuning of the system to optimize the grain boundary effect could lead to extraordinary dielectric constant effects which could potentially be utilized in high energy storage devices.

  2. Research Update: Reactively sputtered nanometer-thin ZrN film as a diffusion barrier between Al and boron layers for radiation detector applications

    Energy Technology Data Exchange (ETDEWEB)

    Golshani, Negin, E-mail: negingolshani@gmail.com; Mohammadi, V.; Schellevis, H.; Beenakker, C. I. M.; Ishihara, R. [ECTM, DIMES, Faculty of Electrical Engineering (EWI), Delft University of Technology (TU Delft), Feldmannweg 17, P.O. Box 5053, 2628 CT Delft (Netherlands)

    2014-10-01

    In this paper, optimization of the process flow for PureB detectors is investigated. Diffusion barrier layers between a boron layer and the aluminum interconnect can be used to enhance the performance and visual appearance of radiation detectors. Few nanometers-thin Zirconium Nitride (ZrN) layer deposited by reactive sputtering in a mixture of Ar/N{sub 2}, is identified as a reliable diffusion barrier with better fabrication process compatibility than others. The barrier properties of this layer have been tested for different boron layers deposited at low and high temperatures with extensive optical microscopy analyses, electron beam induced current, SEM, and electrical measurements. This study demonstrated that spiking behavior of pure Al on Si can be prevented by the thin ZrN layer thus improving the performance of the radiation detectors fabricated using boron layer.

  3. Physical and numerical modeling of an inclined three-layer (silt/gravelly sand/clay) capillary barrier cover system under extreme rainfall.

    Science.gov (United States)

    Ng, Charles W W; Liu, Jian; Chen, Rui; Xu, Jie

    2015-04-01

    As an extension of the two-layer capillary barrier, a three-layer capillary barrier landfill cover system is proposed for minimizing rainfall infiltration in humid climates. This system consists of a compacted clay layer lying beneath a conventional cover with capillary barrier effects (CCBE), which is in turn composed of a silt layer sitting on top of a gravelly sand layer. To explore the effectiveness of the new system in minimizing rainfall infiltration, a flume model (3.0 m × 1.0 m × 1.1 m) was designed and set up in this study. This physical model was heavily instrumented to monitor pore water pressure, volumetric water content, surface runoff, infiltration and lateral drainage of each layer, and percolation of the cover system. The cover system was subjected to extreme rainfall followed by evaporation. The experiment was also back-analyzed using a piece of finite element software called CODE_BRIGHT to simulate transient water flows in the test. Based on the results obtained from various instruments, it was found that breakthrough of the two upper layers occurred for a 4-h rainfall event having a 100-year return period. Due to the presence of the newly introduced clay layer, the percolation of the three-layer capillary barrier cover system was insignificant because the clay layer enabled lateral diversion in the gravelly sand layer above. In other words, the gravelly sand layer changed from being a capillary barrier in a convention CCBE cover to being a lateral diversion passage after the breakthrough of the two upper layers. Experimental and back-analysis results confirm that no infiltrated water seeped through the proposed three-layer barrier system. The proposed system thus represents a promising alternative landfill cover system for use in humid climates. PMID:25582391

  4. On the optimization of asymmetric barrier layers in InAlGaAs/AlGaAs laser heterostructures on GaAs substrates

    DEFF Research Database (Denmark)

    Zhukov, A. E.; Asryan, L. V.; Semenova, Elizaveta;

    2015-01-01

    Band offsets at the heterointerface are calculated for various combinations of InAlGaAs/AlGaAs heteropairs that can be synthesized on GaAs substrates in the layer-by-layer pseudomorphic growth mode. Patterns which make it possible to obtain an asymmetric barrier layer providing the almost...

  5. Analysis of Al diffusion processes in TiN barrier layers for the application in silicon solar cell metallization

    Science.gov (United States)

    Kumm, J.; Samadi, H.; Chacko, R. V.; Hartmann, P.; Wolf, A.

    2016-07-01

    An evaporated Al layer is known as an excellent rear metallization for highly efficient solar cells, but suffers from incompatibility with a common solder process. To enable solar cell-interconnection and module integration, in this work the Al layer is complemented with a solder stack of TiN/Ti/Ag or TiN/NiV/Ag, in which the TiN layer acts as an Al diffusion barrier. X-ray photoelectron spectroscopy measurements prove that diffusion of Al through the stack and the formation of an Al2O3 layer on the stack's surface are responsible for a loss of solderability after a strong post-metallization anneal, which is often mandatory to improve contact resistance and passivation quality. An optimization of the reactive TiN sputter process results in a densification of the TiN layer, which improves its barrier quality against Al diffusion. However, measurements with X-ray diffraction and scanning electron microscopy show that small grains with vertical grain boundaries persist, which still offer fast diffusion paths. Therefore, the concept of stuffing is introduced. By incorporating oxygen into the grain boundaries of the sputtered TiN layer, Al diffusion is strongly reduced as confirmed by secondary ion mass spectroscopy profiles. A quantitative analysis reveals a one order of magnitude lower Al diffusion coefficient for stuffed TiN layers. This metallization system maintains its solderability even after strong post-metallization annealing at 425 °C for 15 min. This paper thus presents an industrially feasible, conventionally solderable, and long-term stable metallization scheme for highly efficient silicon solar cells.

  6. Double-Layer Gadolinium Zirconate/Yttria-Stabilized Zirconia Thermal Barrier Coatings Deposited by the Solution Precursor Plasma Spray Process

    Science.gov (United States)

    Jiang, Chen; Jordan, Eric H.; Harris, Alan B.; Gell, Maurice; Roth, Jeffrey

    2015-08-01

    Advanced thermal barrier coatings (TBCs) with lower thermal conductivity, increased resistance to calcium-magnesium-aluminosilicate (CMAS), and improved high-temperature capability, compared to traditional yttria-stabilized zirconia (YSZ) TBCs, are essential to higher efficiency in next generation gas turbine engines. Double-layer rare-earth zirconate/YSZ TBCs are a promising solution. From a processing perspective, solution precursor plasma spray (SPPS) process with its unique and beneficial microstructural features can be an effective approach to obtaining the double-layer microstructure. Previously durable low-thermal-conductivity YSZ TBCs with optimized layered porosity, called the inter-pass boundaries (IPBs) were produced using the SPPS process. In this study, an SPPS gadolinium zirconate (GZO) protective surface layer was successfully added. These SPPS double-layer TBCs not only retained good cyclic durability and low thermal conductivity, but also demonstrated favorable phase stability and increased surface temperature capabilities. The CMAS resistance was evaluated with both accumulative and single applications of simulated CMAS in isothermal furnaces. The double-layer YSZ/GZO exhibited dramatic improvement in the single application, but not in the continuous one. In addition, to explore their potential application in integrated gasification combined cycle environments, double-layer TBCs were tested under high-temperature humidity and encouraging performance was recorded.

  7. Ultrafast optical studies of diffusion barriers between ferromagnetic Ga(Mn)As layers and non-magnetic quantum wells

    Science.gov (United States)

    Schulz, R.; Korn, T.; Stich, D.; Wurstbauer, U.; Schuh, D.; Wegscheider, W.; Schüller, C.

    2008-04-01

    In recent years, ferromagnetic Ga(Mn)As has emerged as a highly interesting material for semiconductor spintronics. One possible application is to use Ga(Mn)As as an injector layer to inject spin-polarized carriers into a non-magnetic semiconductor heterostructure. As Ga(Mn)As layers are typically grown at much lower substrate temperatures than high-mobility GaAs heterostructures, a combination of both requires that the ferromagnetic layer is grown last. We have prepared samples by molecular beam epitaxy which consist of two quantum wells (QWs) of different widths grown at high substrate temperature. The upper QW is separated by a thin barrier (few nm) from a ferromagnetic Ga(Mn)As layer grown at low substrate temperature, while the lower QW is widely separated (more than 100 nm) from the Ga(Mn)As. We observe that the photoluminescence of the upper QW is red-shifted and partially quenched as compared to a control sample without a Ga(Mn)As layer, and time-resolved Faraday rotation measurements reveal that the spin lifetime in the upper QW is up to 50 times longer than the one in the lower QW. We attribute these observations to Mn back-diffusion into the upper QW during sample growth. Both, the PL and the Faraday rotation technique, are highly sensitive to small quantities (below 0.05%) of Mn and allow us to study the effectiveness of different types (e.g., a short-period superlattice) and thicknesses of barrier layers in suppressing Mn diffusion.

  8. TlGaInNAs/GaAs double quantum well structures: Effect of barrier layers and substrate orientation

    Science.gov (United States)

    Krishnamurthy, D.; Matsumoto, T.; Fujiwara, A.; Hasegawa, S.; Asahi, H.

    2007-04-01

    The quinary TlGaInNAs-based double quantum well (DQW) structures were grown on GaAs substrates by electron cyclotron resonance (ECR)-MBE and the samples were probed by secondary ion mass spectroscopy (SIMS). Light emitting diodes (LEDs) were fabricated using these DQW wafers and their electroluminescence (EL) behaviors were studied at different temperatures. The effects of different barrier layers and substrate orientations on the amount of Tl incorporation and on the temperature dependency of the EL peak wavelengths of the LEDs were studied. Higher incorporation of Tl into the quantum well (QW) region and the ensuing change in the temperature dependency of the peak wavelengths owing to the TlGaAs barrier layer are reported. GaAs substrates having (3 1 1)B orientation were found to allow more Tl incorporation as compared to (1 0 0) and (3 1 1)A oriented substrates. The LEDs fabricated out of the TlGaInNAs/TlGaAs/(3 1 1)B GaAs DQW structures showed the least temperature dependency of the EL peak wavelengths exemplifying the usefulness of Tl in the QW as well as barrier region.

  9. Modelling water vapour permeability through atomic layer deposition coated photovoltaic barrier defects

    Energy Technology Data Exchange (ETDEWEB)

    Elrawemi, Mohamed, E-mail: Mohamed.elrawemi@hud.ac.uk [EPSRC Centre for Innovative Manufacturing in Advanced Metrology, School of Computing and Engineering, University of Huddersfield, Huddersfield (United Kingdom); Blunt, Liam; Fleming, Leigh [EPSRC Centre for Innovative Manufacturing in Advanced Metrology, School of Computing and Engineering, University of Huddersfield, Huddersfield (United Kingdom); Bird, David, E-mail: David.Bird@uk-cpi.com [Centre for Process Innovation Limited, Sedgefield, County Durham (United Kingdom); Robbins, David [Centre for Process Innovation Limited, Sedgefield, County Durham (United Kingdom); Sweeney, Francis [EPSRC Centre for Innovative Manufacturing in Advanced Metrology, School of Computing and Engineering, University of Huddersfield, Huddersfield (United Kingdom)

    2014-11-03

    Transparent barrier films such as Al{sub 2}O{sub 3} used for prevention of oxygen and/or water vapour permeation are the subject of increasing research interest when used for the encapsulation of flexible photovoltaic modules. However, the existence of micro-scale defects in the barrier surface topography has been shown to have the potential to facilitate water vapour ingress, thereby reducing cell efficiency and causing internal electrical shorts. Previous work has shown that small defects (≤ 3 μm lateral dimension) were less significant in determining water vapour ingress. In contrast, larger defects (≥ 3 μm lateral dimension) seem to be more detrimental to the barrier functionality. Experimental results based on surface topography segmentation analysis and a model presented in this paper will be used to test the hypothesis that the major contributing defects to water vapour transmission rate are small numbers of large defects. The model highlighted in this study has the potential to be used for gaining a better understanding of photovoltaic module efficiency and performance. - Highlights: • A model of water vapour permeation through barrier defects is presented. • The effect of the defects on the water vapour permeability is investigated. • Defect density correlates with water vapour permeability. • Large defects may dominate the permeation properties of the barrier film.

  10. Effects of the strain relaxation of an AlGaN barrier layer induced by various cap layers on the transport properties in AlGaN/GaN heterostructures

    Institute of Scientific and Technical Information of China (English)

    Liu Zi-Yang; Zhang Jin-Cheng; Duan Huan-Tao; Xue Jun-Shuai; Lin Zhi-Yu; Ma Jun-Cai; Xue Xiao-Yong; Hao Yue

    2011-01-01

    The strain relaxation of an AlGaN barrier layer may be influenced by a thin cap layer above,and affects the transport properties of AlGaN/GaN heterostructures. Compared with the slight strain relaxation found in AlGaN barrier layer without cap layer,it is found that a thin cap layer can induce considerable changes of strain state in the AIGaN barrier layer. The degree of relaxation of the AlGaN layer significantly influences the transport properties of the two-dimensional electron gas (2DEG) in AlGaN/GaN heterostructures. It is observed that electron mobility decreases with the increasing degree of relaxation of the AlGaN barrier,which is believed to be the main cause of the deterioration of crystalline quality and morphology on the AlGaN/GaN interface. On the other hand,both GaN and AIN cap layers lead to a decrease in 2DEG density. The reduction of 2DEG caused by the GaN cap layer may be attributed to the additional negative polarization charges formed at the interface between GaN and AIGaN,while the reduction of the piezoelectric effect in the AlGaN layer results in the decrease of 2DEG density in the case of AIN cap layer.

  11. Silica-sol-based spin-coating barrier layer against phosphorous diffusion for crystalline silicon solar cells.

    Science.gov (United States)

    Uzum, Abdullah; Fukatsu, Ken; Kanda, Hiroyuki; Kimura, Yutaka; Tanimoto, Kenji; Yoshinaga, Seiya; Jiang, Yunjian; Ishikawa, Yasuaki; Uraoka, Yukiharu; Ito, Seigo

    2014-01-01

    The phosphorus barrier layers at the doping procedure of silicon wafers were fabricated using a spin-coating method with a mixture of silica-sol and tetramethylammonium hydroxide, which can be formed at the rear surface prior to the front phosphorus spin-on-demand (SOD) diffusion and directly annealed simultaneously with the front phosphorus layer. The optimization of coating thickness was obtained by changing the applied spin-coating speed; from 2,000 to 8,000 rpm. The CZ-Si p-type silicon solar cells were fabricated with/without using the rear silica-sol layer after taking the sheet resistance measurements, SIMS analysis, and SEM measurements of the silica-sol material evaluations into consideration. For the fabrication of solar cells, a spin-coating phosphorus source was used to form the n(+) emitter and was then diffused at 930°C for 35 min. The out-gas diffusion of phosphorus could be completely prevented by spin-coated silica-sol film placed on the rear side of the wafers coated prior to the diffusion process. A roughly 2% improvement in the conversion efficiency was observed when silica-sol was utilized during the phosphorus diffusion step. These results can suggest that the silica-sol material can be an attractive candidate for low-cost and easily applicable spin-coating barrier for any masking purpose involving phosphorus diffusion.

  12. Fabrication of stable electrode/diffusion barrier layers for thermoelectric filled skutterudite devices

    Energy Technology Data Exchange (ETDEWEB)

    Jie, Qing; Ren, Zhifeng; Chen, Gang

    2015-12-08

    Disclosed are methods for the manufacture of n-type and p-type filled skutterudite thermoelectric legs of an electrical contact. A first material of CoSi.sub.2 and a dopant are ball-milled to form a first powder which is thermo-mechanically processed with a second powder of n-type skutterudite to form a n-type skutterudite layer disposed between a first layer and a third layer of the doped-CoSi.sub.2. In addition, a plurality of components such as iron, and nickel, and at least one of cobalt or chromium are ball-milled form a first powder that is thermo-mechanically processed with a p-type skutterudite layer to form a p-type skutterudite layer "second layer" disposed between a first and a third layer of the first powder. The specific contact resistance between the first layer and the skutterudite layer for both the n-type and the p-type skutterudites subsequent to hot-pressing is less than about 10.0 .mu..OMEGA.cm.sup.2.

  13. Barrier properties of plastic films coated with an Al{sub 2}O{sub 3} layer by roll-to-toll atomic layer deposition

    Energy Technology Data Exchange (ETDEWEB)

    Hirvikorpi, Terhi, E-mail: Terhi.Hirvikorpi@picosun.com [Picosun Oy, Tietotie 3, FI-02150 Espoo (Finland); Laine, Risto, E-mail: Risto.Laine@picosun.com [Picosun Oy, Tietotie 3, FI-02150 Espoo (Finland); Vähä-Nissi, Mika, E-mail: Mika.Vaha-Nissi@vtt.fi [VTT Technical Research Centre of Finland, Biologinkuja 7, Espoo, P.O. Box 1000, FI-02044 VTT (Finland); Kilpi, Väinö, E-mail: Vaino.Kilpi@picosun.com [Picosun Oy, Tietotie 3, FI-02150 Espoo (Finland); Salo, Erkki, E-mail: Erkki.Salo@vtt.fi [VTT Technical Research Centre of Finland, Biologinkuja 7, Espoo, P.O. Box 1000, FI-02044 VTT (Finland); Li, Wei-Min, E-mail: Wei-Min.Li@picosun.com [Picosun Oy, Tietotie 3, FI-02150 Espoo (Finland); Lindfors, Sven, E-mail: Sven.Lindfors@picosun.com [Picosun Oy, Tietotie 3, FI-02150 Espoo (Finland); Vartiainen, Jari, E-mail: Jari.Vartiainen@vtt.fi [VTT Technical Research Centre of Finland, Biologinkuja 7, Espoo, P.O. Box 1000, FI-02044 VTT (Finland); Kenttä, Eija, E-mail: Eija.Kentta@vtt.fi [VTT Technical Research Centre of Finland, Biologinkuja 7, Espoo, P.O. Box 1000, FI-02044 VTT (Finland); Nikkola, Juha, E-mail: Juha.Nikkola@vtt.fi [VTT Technical Research Centre of Finland, P.O. Box 1300, FI-33101 Tampere (Finland); Harlin, Ali, E-mail: Ali.Harlin@vtt.fi [VTT Technical Research Centre of Finland, Biologinkuja 7, Espoo, P.O. Box 1000, FI-02044 VTT (Finland); Kostamo, Juhana, E-mail: Juhana.Kostamo@picosun.com [Picosun Oy, Tietotie 3, FI-02150 Espoo (Finland)

    2014-01-01

    Thin (30–40 nm) and highly uniform Al{sub 2}O{sub 3} coatings have been deposited at relatively low temperature of 100 °C onto various polymeric materials employing the atomic layer deposition (ALD) technique, both batch and roll-to-roll (R2R) mode. The applications for ALD have long been limited those feasible for batch processing. The work demonstrates that R2R ALD can deposit thin films with properties that are comparable to the film properties fabricated by in batch. This accelerates considerably the commercialization of many products, such as flexible, printed electronics, organic light-emitting diode lighting, third generation thin film photovoltaic devices, high energy density thin film batteries, smart textiles, organic sensors, organic/recyclable packaging materials, and flexible displays, to name a few. - Highlights: • Thin and uniform Al{sub 2}O{sub 3} coatings have been deposited onto polymers materials. • Batch and roll-to-roll (R2R) atomic layer deposition (ALD) have been employed. • Deposition with either process improved the barrier properties. • Sensitivity of coated films to defects affects barrier obtained with R2R ALD.

  14. Schottky barrier contrasts in single and bi-layer graphene contacts for MoS2 field-effect transistors

    Science.gov (United States)

    Du, Hyewon; Kim, Taekwang; Shin, Somyeong; Kim, Dahye; Kim, Hakseong; Sung, Ji Ho; Lee, Myoung Jae; Seo, David H.; Lee, Sang Wook; Jo, Moon-Ho; Seo, Sunae

    2015-12-01

    We have investigated single- and bi-layer graphene as source-drain electrodes for n-type MoS2 transistors. Ti-MoS2-graphene heterojunction transistors using both single-layer MoS2 (1M) and 4-layer MoS2 (4M) were fabricated in order to compare graphene electrodes with commonly used Ti electrodes. MoS2-graphene Schottky barrier provided electron injection efficiency up to 130 times higher in the subthreshold regime when compared with MoS2-Ti, which resulted in VDS polarity dependence of device parameters such as threshold voltage (VTH) and subthreshold swing (SS). Comparing single-layer graphene (SG) with bi-layer graphene (BG) in 4M devices, SG electrodes exhibited enhanced device performance with higher on/off ratio and increased field-effect mobility (μFE) due to more sensitive Fermi level shift by gate voltage. Meanwhile, in the strongly accumulated regime, we observed opposing behavior depending on MoS2 thickness for both SG and BG contacts. Differential conductance (σd) of 1M increases with VDS irrespective of VDS polarity, while σd of 4M ceases monotonic growth at positive VDS values transitioning to ohmic-like contact formation. Nevertheless, the low absolute value of σd saturation of the 4M-graphene junction demonstrates that graphene electrode could be unfavorable for high current carrying transistors.

  15. Schottky barrier contrasts in single and bi-layer graphene contacts for MoS2 field-effect transistors

    International Nuclear Information System (INIS)

    We have investigated single- and bi-layer graphene as source-drain electrodes for n-type MoS2 transistors. Ti-MoS2-graphene heterojunction transistors using both single-layer MoS2 (1M) and 4-layer MoS2 (4M) were fabricated in order to compare graphene electrodes with commonly used Ti electrodes. MoS2-graphene Schottky barrier provided electron injection efficiency up to 130 times higher in the subthreshold regime when compared with MoS2-Ti, which resulted in VDS polarity dependence of device parameters such as threshold voltage (VTH) and subthreshold swing (SS). Comparing single-layer graphene (SG) with bi-layer graphene (BG) in 4M devices, SG electrodes exhibited enhanced device performance with higher on/off ratio and increased field-effect mobility (μFE) due to more sensitive Fermi level shift by gate voltage. Meanwhile, in the strongly accumulated regime, we observed opposing behavior depending on MoS2 thickness for both SG and BG contacts. Differential conductance (σd) of 1M increases with VDS irrespective of VDS polarity, while σd of 4M ceases monotonic growth at positive VDS values transitioning to ohmic-like contact formation. Nevertheless, the low absolute value of σd saturation of the 4M-graphene junction demonstrates that graphene electrode could be unfavorable for high current carrying transistors

  16. Low-temperature gas-barrier films by atomic layer deposition for encapsulating organic light-emitting diodes

    Science.gov (United States)

    Tseng, Ming-Hung; Yu, Hui-Huan; Chou, Kun-Yi; Jou, Jwo-Huei; Lin, Kung-Liang; Wang, Chin-Chiun; Tsai, Feng-Yu

    2016-07-01

    Dependences of gas-barrier performance on the deposition temperature of atomic-layer-deposited (ALD) Al2O3, HfO2, and ZnO films were studied to establish low-temperature ALD processes for encapsulating organic light-emitting diodes (OLEDs). By identifying and controlling the key factors, i.e. using H2O2 as an oxidant, laminating Al2O3 with HfO2 or ZnO layers into AHO or AZO nanolaminates, and extending purge steps, OLED-acceptable gas-barrier performance (water vapor transmission rates ∼ 10‑6 g m‑2 d‑1) was achieved for the first time at a low deposition temperature of 50 °C in a thermal ALD mode. The compatibility of the low-temperature ALD process with OLEDs was confirmed by applying the process to encapsulate different types of OLED devices, which were degradation-free upon encapsulation and showed adequate lifetime during accelerated aging tests (pixel shrinkage <5% after 240 h at 60 °C/90% RH).

  17. CdTe nBn photodetectors with ZnTe barrier layer grown on InSb substrates

    Science.gov (United States)

    He, Zhao-Yu; Campbell, Calli M.; Lassise, Maxwell B.; Lin, Zhi-Yuan; Becker, Jacob J.; Zhao, Yuan; Boccard, Mathieu; Holman, Zachary; Zhang, Yong-Hang

    2016-09-01

    We have demonstrated an 820 nm cutoff CdTe nBn photodetector with ZnTe barrier layer grown on an InSb substrate. At room temperature, under a bias of -0.1 V, the photodetector shows Johnson and shot noise limited specific detectivity (D*) of 3 × 1013 cm Hz1/2/W at a wavelength of 800 nm and 2 × 1012 cm Hz1/2/W at 200 nm. The D* is optimized by using a top contact design of ITO/undoped-CdTe. This device not only possesses nBn advantageous characteristics, such as generation-recombination dark current suppression and voltage-bias-addressed two-color photodetection, but also offers features including responsivity enhancements by deep-depletion and by using a heterostructure ZnTe barrier layer. In addition, this device provides a platform to study nBn device physics at room temperature, which will help us to understand more sophisticated properties of infrared nBn photodetectors that may possess a large band-to-band tunneling current at a high voltage bias, because this current is greatly suppressed in the large-bandgap CdTe nBn photodetector.

  18. In Situ XPS Chemical Analysis of MnSiO3 Copper Diffusion Barrier Layer Formation and Simultaneous Fabrication of Metal Oxide Semiconductor Electrical Test MOS Structures.

    Science.gov (United States)

    Byrne, Conor; Brennan, Barry; McCoy, Anthony P; Bogan, Justin; Brady, Anita; Hughes, Greg

    2016-02-01

    Copper/SiO2/Si metal-oxide-semiconductor (MOS) devices both with and without a MnSiO3 barrier layer at the Cu/SiO2 interface have been fabricated in an ultrahigh vacuum X-ray photoelectron spectroscopy (XPS) system, which allows interface chemical characterization of the barrier formation process to be directly correlated with electrical testing of barrier layer effectiveness. Capacitance voltage (CV) analysis, before and after tube furnace anneals of the fabricated MOS structures showed that the presence of the MnSiO3 barrier layer significantly improved electric stability of the device structures. Evidence of improved adhesion of the deposited copper layer to the MnSiO3 surface compared to the clean SiO2 surface was apparent both from tape tests and while probing the samples during electrical testing. Secondary ion mass spectroscopy (SIMS) depth profiling measurements of the MOS test structures reveal distinct differences of copper diffusion into the SiO2 dielectric layers following the thermal anneal depending on the presence of the MnSiO3 barrier layer. PMID:26732185

  19. Plasma-Assisted ALD of an Al2O3 Permeation Barrier Layer on Plastic

    Science.gov (United States)

    Lei, Wenwen; Li, Xingcun; Chen, Qiang; Wang, Zhengduo

    2012-02-01

    Atomic layer deposition (ALD) technique is used in the preparation of organic/inorganic layers, which requires uniform surfaces with their thickness down to several nanometers. For film with such thickness, the growth mode defined as the arrangement of clusters on the surface during the growth is of significance. In this work, Al2O3 thin film was deposited on various interfacial species of pre-treated polyethylene terephthalate (PET, 12 μm) by plasma assisted atomic layer deposition (PA-ALD), where trimethyl aluminium was used as the Al precursor and O2 as the oxygen source. The interfacial species, -NH3, -OH, and -COOH as well as SiCHO (derived from monomer of HMDSO plasma), were grafted previously by plasma and chemical treatments. The growth mode of PA-ALD Al2O3 was then investigated in detail by combining results from in-situ diagnosis of spectroscopic ellipsometry (SE) and ex-situ characterization of as-deposited layers from the morphologies scanned by atomic force microscopy (AFM). In addition, the oxygen transmission rates (OTR) of the original and treated plastic films were measured. The possible reasons for the dependence of the OTR values on the surface species were explored.

  20. Plasma-Assisted ALD of an Al2O3 Permeation Barrier Layer on Plastic

    International Nuclear Information System (INIS)

    Atomic layer deposition (ALD) technique is used in the preparation of organic/inorganic layers, which requires uniform surfaces with their thickness down to several nanometers. For film with such thickness, the growth mode defined as the arrangement of clusters on the surface during the growth is of significance. In this work, Al2O3 thin film was deposited on various interfacial species of pre-treated polyethylene terephthalate (PET, 12 μm) by plasma assisted atomic layer deposition (PA-ALD), where trimethyl aluminium was used as the Al precursor and O2 as the oxygen source. The interfacial species, -NH3, -OH, and -COOH as well as SiCHO (derived from monomer of HMDSO plasma), were grafted previously by plasma and chemical treatments. The growth mode of PA-ALD Al2O3 was then investigated in detail by combining results from in-situ diagnosis of spectroscopic ellipsometry (SE) and ex-situ characterization of as-deposited layers from the morphologies scanned by atomic force microscopy (AFM). In addition, the oxygen transmission rates (OTR) of the original and treated plastic films were measured. The possible reasons for the dependence of the OTR values on the surface species were explored.

  1. Growth and properties of LPCVD W-Si-N barrier layers

    NARCIS (Netherlands)

    Bystrova, S.; Holleman, J.; Woerlee, P.H.

    2001-01-01

    In this work the low-temperature low pressure chemical vapour deposition (LPCVD) of W�Si�N compounds in the WF6�NF3�SiH4�Ar system is presented. Layers were deposited on oxidised Si-wafers at 385 and 250

  2. Plasma-Assisted ALD of an Al2O3 Permeation Barrier Layer on Plastic

    Institute of Scientific and Technical Information of China (English)

    雷雯雯; 李兴存; 陈强; 王正铎

    2012-01-01

    Atomic layer deposition (ALD) technique is used in the preparation of organic/inorganic layers, which requires uniform surfaces with their thickness down to several nanometers. For film with such thickness, the growth mode defined as the arrangement of clusters on the surface during the growth is of significance. In this work, Al2O3 thin film was deposited on various interfacial species of pre-treated polyethylene terephthalate (PET, 12 μm) by plasma assisted atomic layer deposition (PA-ALD), where trimethyl aluminium was used as the Al precursor and O2 as the oxygen source. The interracial species, -NH3, -OH, and -COOH as well as SiCHO (derived from monomer of HMDSO plasma), were grafted previously by plasma and chemical treatments. The growth mode of PA-ALD Al2O3 was then investigated in detail by combining results from in-situ diagnosis of spectroscopic ellipsometry (SE) and ex-situ characterization of as-deposited layers from the morphologies scanned by atomic force microscopy (AFM). In addition, the oxygen transmission rates (OTR) of the original and treated plastic films were measured. The possible reasons for the dependence of the OTR values on the surface species were explored.

  3. The Role of Barrier Layer in Southeastern Arabian Sea During the Development of Positive Indian Ocean Dipole Events

    Institute of Scientific and Technical Information of China (English)

    GUO Feiyan; LIU Qinyu; ZHENG Xiao-Tong; SUN Shan

    2013-01-01

    Using data from Argo and simple ocean data assimilation (SODA),the role of the barrier layer (BL) in the southeastern Arabian Sea (SEAS:60°E-75°E,0°-10°N) is investigated during the development of positive Indian Ocean Dipole (IOD) events from 1960 to 2008.It is found that warmer sea surface temperature (SST) in the northern Indian Ocean appears in June in the SEAS.This warm SST accompanying anomalous southeastern wind persists for six months and a thicker BL and a corresponding thinner mixed layer in the SEAS contribute to the SST warming during the IOD formation period.The excessive precipitation during this period helps to form a thicker BL and a thinner mixed layer,resulting in a higher SST in the SEAS.Warm SST in the SEAS and cold SST to the southeast of the SEAS intensify the southeasterly anomaly in the tropical Indian Ocean,which transports more moisture to the SEAS,and then induces more precipitation there.The ocean-atmosphere interaction process among wind,precipitation,BL and SST is very important for the anomalous warming in the SEAS during the development of positive IOD events.

  4. Thermoelastic characteristics of thermal barrier coatings with layer thickness and edge conditions through mathematical analysis.

    Science.gov (United States)

    Go, Jaegwi; Myoung, Sang-Won; Lee, Je-Hyun; Jung, Yeon-Gil; Kim, Seokchan; Paik, Ungyu

    2014-10-01

    The thermoelastic behaviors of such as temperature distribution, displacements, and stresses in thermal barrier coatings (TBCs) are seriously influenced by top coat thickness and edge conditions, which were investigated based on the thermal and mechanical properties of plasma-sprayed TBCs. A couple of governing partial differential equations were derived based on the thermoelastic theory. Since the governing equations are too involved to solve analytically, a finite volume method was developed to obtain approximations. The thermoelastic characteristics of TBCs with the various thicknesses and microstructures were estimated through mathematical approaches with different edge conditions. The results demonstrated that the top coat thickness and the edge condition in theoretical analysis are crucial factors to be considered in controlling the thermoelastic characteristics of plasma-sprayed TBCs.

  5. Effect of MgZnO barrier layer on the UV emission of n-ZnO/p-Si heterojunction diodes

    International Nuclear Information System (INIS)

    ZnO-based heterojunction light emitting diodes (LEDs) with MgZnO barrier layer had been fabricated on the p-Si substrate by metal-organic chemical vapor deposition (MOCVD) technology. The current-voltage (I-V) characteristics exhibited a typical p-n diode behavior. Both ultraviolet (UV) and visible emissions could be detected in the electroluminescence (EL) measurement. The result was compared with the EL spectrum of n-ZnO/p-Si heterojunction LED without MgZnO barrier layer. An improved light extraction efficiency by about 31% was realized owing to the current-blocking effect of MgZnO layer. The result indicated that MgZnO barrier layer can prevent the electrons as expected and realize electron-hole recombination in ZnO layer effectively. - Highlights: → MgZnO is firstly used as the current-blocking layer in ZnO/Si structures. → Inserting MgZnO layer could improve the quality of the upper ZnO layer. → Under forward bias, prominent UV emission around 388 nm is observed. → We obtain a higher output power than n-ZnO/p-Si structure by almost 31%.

  6. Lifetimes of organic photovoltaics: photochemistry, atmosphere effects and barrier layers in ITO-MEHPPV:PCBM-aluminium devices

    DEFF Research Database (Denmark)

    Krebs, Frederik C; Carlé, Jon Eggert; Cruys-Bagger, N.;

    2005-01-01

    Large area polymer photovoltaic cells based on poly[(2-methoxy-5-ethylhexyloxy)-1, 4-phenylenevinylene] (MEH-PPV) and [6,6]-phenyl-C-61-butyric acid methyl ester (PCBM) were prepared. The lifetimes of the photovoltaic cells were studied in terms of the atmosphere, handling, electrode treatment......-life was found to depend on the presence of oxygen. We also discuss our findings of the short lifetimes for organic photovoltaics under AM1.5 illumination in the context of future applications. (c) 2004 Elsevier B.V. All rights reserved....... and depended on the presence of oxygen. By employing different barrier layers, we found the first half-life to be linked to the aluminium polymer interface and ascribe it to a photochemical reaction between the organic material and the reactive aluminium at the interface. The second and longer half...

  7. On the optimization of asymmetric barrier layers in InAlGaAs/AlGaAs laser heterostructures on GaAs substrates

    International Nuclear Information System (INIS)

    Band offsets at the heterointerface are calculated for various combinations of InAlGaAs/AlGaAs heteropairs that can be synthesized on GaAs substrates in the layer-by-layer pseudomorphic growth mode. Patterns which make it possible to obtain an asymmetric barrier layer providing the almost obstruction-free transport of holes and the highest possible barrier height for electrons are found. The optimal compositions of both compounds (In0.232Al0.594Ga0.174As/Al0.355Ga0.645As) at which the flux of electrons across the barrier is at a minimum are determined with consideration for the critical thickness of the indium-containing quaternary solid solution

  8. Nanometer-thick amorphous-SnO2 layer as an oxygen barrier coated on a transparent AZO electrode

    Science.gov (United States)

    Lee, Hee Sang; Woo, Seong Ihl

    2016-07-01

    It is necessary for transparent conducting electrodes used in dye-sensitized or perovskite solar cells to have high thermal stability which is required when TiO2 is coated on the electrode. AZO films with their low-cost and good TCO properties are unfortunately unstable above 300 °C in air because of adsorbed oxygen. In this paper, the thermal stability of AZO films is enhanced by depositing an oxygen barrier on AZO films to block the oxygen. As the barrier material, SnO2 is used due to its high heat stability, electrical conductivity, and transmittance. Moreover, when the SnO2 is grown as amorphous phase, the protective effect become greater than the crystalline phase. The thermal stability of the amorphous-SnO2/AZO films varies depending on the thickness of the amorphous SnO2 layer. Because of the outstanding oxygen blocking properties of amorphous SnO2, its optimal thickness is very thin and it results in only a slight decrease in transmittance. The sheet resistance of the amorphous-SnO2/AZO film is 5.4 Ω sq-1 after heat treatment at 500 °C for 30 min in air and the average transmittance in the visible region is 83.4%. The results show that the amorphous-SnO2/AZO films have thermal stability with excellent electrical and optical properties. [Figure not available: see fulltext.

  9. Schottky barrier detectors on 4H-SiC n-type epitaxial layer for alpha particles

    Energy Technology Data Exchange (ETDEWEB)

    Chaudhuri, S.K.; Krishna, R.M.; Zavalla, K.J. [Department of Electrical Engineering, University of South Carolina, Columbia, SC 29208 (United States); Mandal, K.C., E-mail: mandalk@cec.sc.edu [Department of Electrical Engineering, University of South Carolina, Columbia, SC 29208 (United States)

    2013-02-11

    Schottky barrier detectors have been fabricated on 50 μm n-type 4H-SiC epitaxial layers grown on 360 μm SiC substrates by depositing ∼10 nm nickel contact. Current–voltage (I–V) and capacitance–voltage (C–V) measurements were carried out to investigate the Schottky barrier properties. The detectors were evaluated for alpha particle detection using a {sup 241}Am alpha source. An energy resolution of ∼2.7% was obtained with a reverse bias of 100 V for 5.48 MeV alpha particles. The measured charge collection efficiency (CCE) was seen to vary as a function of bias voltage following a minority carrier diffusion model. Using this model, a diffusion length of∼3.5 μm for holes was numerically calculated from the CCE vs. bias voltage plot. Rise-time measurements of digitally recorded charge pulses for the 5.48 MeV alpha particles showed a presence of two sets of events having different rise-times at a higher bias of 200 V. A biparametric correlation scheme was successfully implemented for the first time to visualize the correlated pulse-height distribution of the events with different rise-times. Using the rise-time measurements and the biparametric plots, the observed variation of energy resolution with applied bias was explained.

  10. Enhancing rectification of a nano-swimmer system by multi-layered asymmetric barriers.

    Science.gov (United States)

    Chen, Yen-Fu; Xiao, Song; Chen, Hsuan-Yi; Sheng, Yu-Jane; Tsao, Heng-Kwong

    2015-10-21

    The rectification of nano-swimmers in two chambers separated by a strip of funnel gates is explored by dissipative particle dynamics simulations. According to the trajectories of active colloids across the funnel zone, two rectification mechanisms are identified: geometry-assisted diffusion and trap-hindered diffusion. In general, geometry-assisted diffusion dominates at a small active force (Fa) and run time (τ) while trap-hindered diffusion governs at a large Fa and τ. The rectification ratio is affected by the funnel shape and various geometries are considered: open/closed triangular, circular and rectangular funnels. The rectification ratio of open funnels is always greater than that of closed funnels. Moreover, the open circular funnel has the best performance while the triangular one has the worst. Rectification can be enhanced as the number of funnel layers is increased. It is found that the rectification ratio of self-propelled colloids can be dramatically augmented by triple-layered funnels to be as high as 30. Our simulation study offers an efficient approach for rectification enhancement.

  11. Enhancing rectification of a nano-swimmer system by multi-layered asymmetric barriers

    Science.gov (United States)

    Chen, Yen-Fu; Xiao, Song; Chen, Hsuan-Yi; Sheng, Yu-Jane; Tsao, Heng-Kwong

    2015-10-01

    The rectification of nano-swimmers in two chambers separated by a strip of funnel gates is explored by dissipative particle dynamics simulations. According to the trajectories of active colloids across the funnel zone, two rectification mechanisms are identified: geometry-assisted diffusion and trap-hindered diffusion. In general, geometry-assisted diffusion dominates at a small active force (Fa) and run time (τ) while trap-hindered diffusion governs at a large Fa and τ. The rectification ratio is affected by the funnel shape and various geometries are considered: open/closed triangular, circular and rectangular funnels. The rectification ratio of open funnels is always greater than that of closed funnels. Moreover, the open circular funnel has the best performance while the triangular one has the worst. Rectification can be enhanced as the number of funnel layers is increased. It is found that the rectification ratio of self-propelled colloids can be dramatically augmented by triple-layered funnels to be as high as 30. Our simulation study offers an efficient approach for rectification enhancement.

  12. Enhancing rectification of a nano-swimmer system by multi-layered asymmetric barriers.

    Science.gov (United States)

    Chen, Yen-Fu; Xiao, Song; Chen, Hsuan-Yi; Sheng, Yu-Jane; Tsao, Heng-Kwong

    2015-10-21

    The rectification of nano-swimmers in two chambers separated by a strip of funnel gates is explored by dissipative particle dynamics simulations. According to the trajectories of active colloids across the funnel zone, two rectification mechanisms are identified: geometry-assisted diffusion and trap-hindered diffusion. In general, geometry-assisted diffusion dominates at a small active force (Fa) and run time (τ) while trap-hindered diffusion governs at a large Fa and τ. The rectification ratio is affected by the funnel shape and various geometries are considered: open/closed triangular, circular and rectangular funnels. The rectification ratio of open funnels is always greater than that of closed funnels. Moreover, the open circular funnel has the best performance while the triangular one has the worst. Rectification can be enhanced as the number of funnel layers is increased. It is found that the rectification ratio of self-propelled colloids can be dramatically augmented by triple-layered funnels to be as high as 30. Our simulation study offers an efficient approach for rectification enhancement. PMID:26394906

  13. The mucus layer is critical in protecting against ischemia-reperfusion-mediated gut injury and in the restitution of gut barrier function.

    Science.gov (United States)

    Qin, Xiaofa; Sheth, Sharvil U; Sharpe, Susan M; Dong, Wei; Lu, Qi; Xu, Dazhong; Deitch, Edwin A

    2011-03-01

    It is well documented that the gut injury plays a critical role in the development of systemic inflammation and distant organ injury in conditions associated with splanchnic ischemia. Consequently, understanding the mechanisms leading to gut injury is important. In this context, recent work suggests a protective role for the intestinal mucus layer and an injury-inducing role for luminal pancreatic proteases. Thus, we explored the role of the mucus layer in gut barrier function by observing how the removal of the mucus layer affects ischemia-reperfusion-mediated gut injury in rats as well as the potential role of luminal pancreatic proteases in the pathogenesis of gut injury. Ischemia was induced by the ligation of blood vessels to segments of the ileum for 45 min, followed by up to 3 h of reperfusion. The ileal segments were divided into five groups. These included a nonischemic control, ischemic segments exposed to saline, the mucolytic N-acetylcysteine (NAC), pancreatic proteases, or NAC + pancreatic proteases. Changes in gut barrier function were assessed by the permeation of fluorescein isothiocyanate dextran (molecular weight, 4,000 d) in ileal everted sacs. Gut injury was measured morphologically and by the luminal content of protein, DNA, and hemoglobin. The mucus layer was assessed functionally by measuring its hydrophobicity and morphologically. Gut barrier function was promptly and effectively reestablished during reperfusion, which was accompanied by the restoration of the mucus layer. In contrast, treatment of the gut with the mucolytic NAC for 10 min during ischemia resulted in a failure of mucus restitution and further increases in gut permeability and injury. The presence of digestive proteases by themselves did not exacerbate gut injury, but in combination with NAC, they caused an even greater increase in gut injury and permeability. These results suggest that the mucus layer not only serves as a barrier between the luminal contents and gut surface

  14. The mucus layer is critical in protecting against ischemia-reperfusion-mediated gut injury and in the restitution of gut barrier function.

    Science.gov (United States)

    Qin, Xiaofa; Sheth, Sharvil U; Sharpe, Susan M; Dong, Wei; Lu, Qi; Xu, Dazhong; Deitch, Edwin A

    2011-03-01

    It is well documented that the gut injury plays a critical role in the development of systemic inflammation and distant organ injury in conditions associated with splanchnic ischemia. Consequently, understanding the mechanisms leading to gut injury is important. In this context, recent work suggests a protective role for the intestinal mucus layer and an injury-inducing role for luminal pancreatic proteases. Thus, we explored the role of the mucus layer in gut barrier function by observing how the removal of the mucus layer affects ischemia-reperfusion-mediated gut injury in rats as well as the potential role of luminal pancreatic proteases in the pathogenesis of gut injury. Ischemia was induced by the ligation of blood vessels to segments of the ileum for 45 min, followed by up to 3 h of reperfusion. The ileal segments were divided into five groups. These included a nonischemic control, ischemic segments exposed to saline, the mucolytic N-acetylcysteine (NAC), pancreatic proteases, or NAC + pancreatic proteases. Changes in gut barrier function were assessed by the permeation of fluorescein isothiocyanate dextran (molecular weight, 4,000 d) in ileal everted sacs. Gut injury was measured morphologically and by the luminal content of protein, DNA, and hemoglobin. The mucus layer was assessed functionally by measuring its hydrophobicity and morphologically. Gut barrier function was promptly and effectively reestablished during reperfusion, which was accompanied by the restoration of the mucus layer. In contrast, treatment of the gut with the mucolytic NAC for 10 min during ischemia resulted in a failure of mucus restitution and further increases in gut permeability and injury. The presence of digestive proteases by themselves did not exacerbate gut injury, but in combination with NAC, they caused an even greater increase in gut injury and permeability. These results suggest that the mucus layer not only serves as a barrier between the luminal contents and gut surface

  15. Performance Improvement of GaN Based Schottky Barrier Ultraviolet Photodetector by Adding a Thin AlGaN Window Layer

    Institute of Scientific and Technical Information of China (English)

    ZHOU Mei; ZHAO De-Gang

    2007-01-01

    We propose a new structure of GaN based Schottky barrier ultraviolet photodetector, in which a thin n-type AlGaN window layer is added on the conventional n--GaN/n+-GaN device structure. The performance of the Schottky barrier ultraviolet photodetector is found to be improved by the new structure. The simulation result shows that the new structure can reduce the negative effect of surface states on the performance of Schottky barrier GaN photodetectors, improving the quantum efficiency and decreasing the dark current. The investigations suggest that the new photodetector can exhibit a better responsivity by choosing a suitably high carrier concentration and thin thickness for the AlGaN window layer.

  16. Integration of molecular-layer-deposited aluminum alkoxide interlayers into inorganic nanolaminate barriers for encapsulation of organic electronics with improved stress resistance

    Energy Technology Data Exchange (ETDEWEB)

    Hossbach, Christoph, E-mail: christoph.hossbach@tu-dresden.de; Fischer, Dustin; Albert, Matthias; Bartha, Johann W. [Institute of Semiconductor and Microsystems Technology, Technische Universität Dresden, 01187 Dresden (Germany); Nehm, Frederik, E-mail: frederik.nehm@iapp.de; Klumbies, Hannes; Müller-Meskamp, Lars; Leo, Karl [Institut für Angewandte Photophysik, Technische Universität Dresden, 01062 Dresden (Germany); Singh, Aarti; Richter, Claudia; Schroeder, Uwe; Mikolajick, Thomas [Nanoelectronics Materials Laboratory NaMLab gGmbH, Nöthnitzer Str. 64, 01187 Dresden (Germany)

    2015-01-15

    Diffusion barrier stacks for the encapsulation of organic electronics made from inorganic nanolaminates of Al{sub 2}O{sub 3} and TiO{sub 2} with aluminum alkoxide interlayers have been deposited by atomic layer deposition (ALD) and molecular layer deposition (MLD). As a part of the MLD process development, the deposition of aluminum alkoxide with low a density of about 1.7 g/cm{sup 3} was verified. The ALD/MLD diffusion barrier stack is meant to be deposited either on a polymer film, creating a flexible barrier substrate, or on top of a device on glass, creating a thin-film encapsulation. In order to measure the water vapor transmission rate (WVTR) through the barrier, the device is replaced by a calcium layer acting as a water sensor in an electrical calcium test. For the barrier stack applied as thin-film encapsulation on glass substrates, high resolution scanning electron microscopy investigations indicate that the inorganic nanolaminates without MLD interlayers are brittle as they crack easily upon the stress induced by the corroding calcium below. The introduction of up to three MLD interlayers of 12 nm each into the 48 nm barrier film laminate successfully mitigates stress issues and prevents the barrier from cracking. Using the three MLD interlayer configurations on glass, WVTRs of as low as 10{sup −5} g/m{sup 2}/d are measured at 38 °C and 32% relative humidity. On polymer barrier substrates, the calcium is evaporated onto the barrier stack and encapsulated with a cavity glass. In this configuration, the corroding calcium has space for expansion and gas release without affecting the underlying barrier film. In consequence, a WVTR of about 3 × 10{sup −3} g/m{sup 2}/d is measured for all samples independently of the number of MLD interlayers. In conclusion, a stabilization and preservation of the ALD barrier film against mechanical stress is achieved by the introduction of MLD interlayers into the inorganic nanolaminate.

  17. Multilayer moisture barrier

    Energy Technology Data Exchange (ETDEWEB)

    Pankow, Joel W; Jorgensen, Gary J; Terwilliger, Kent M; Glick, Stephen H; Isomaki, Nora; Harkonen, Kari; Turkulainen, Tommy

    2015-04-21

    A moisture barrier, device or product having a moisture barrier or a method of fabricating a moisture barrier having at least a polymer layer, and interfacial layer, and a barrier layer. The polymer layer may be fabricated from any suitable polymer including, but not limited to, fluoropolymers such as polyethylene terephthalate (PET) or polyethylene naphthalate (PEN), or ethylene-tetrafluoroethylene (ETFE). The interfacial layer may be formed by atomic layer deposition (ALD). In embodiments featuring an ALD interfacial layer, the deposited interfacial substance may be, but is not limited to, Al.sub.2O.sub.3, AlSiO.sub.x, TiO.sub.2, and an Al.sub.2O.sub.3/TiO.sub.2 laminate. The barrier layer associated with the interfacial layer may be deposited by plasma enhanced chemical vapor deposition (PECVD). The barrier layer may be a SiO.sub.xN.sub.y film.

  18. Enhanced water vapor barrier properties for biopolymer films by polyelectrolyte multilayer and atomic layer deposited Al{sub 2}O{sub 3} double-coating

    Energy Technology Data Exchange (ETDEWEB)

    Hirvikorpi, Terhi [VTT Technical Research Centre of Finland, Biologinkuja 7, Espoo, P.O. Box 1000, FI-02044 VTT (Finland); Vaehae-Nissi, Mika, E-mail: mika.vaha-nissi@vtt.fi [VTT Technical Research Centre of Finland, Biologinkuja 7, Espoo, P.O. Box 1000, FI-02044 VTT (Finland); Harlin, Ali [VTT Technical Research Centre of Finland, Biologinkuja 7, Espoo, P.O. Box 1000, FI-02044 VTT (Finland); Salomaeki, Mikko [University of Turku, Department of Chemistry, Laboratory of Materials Chemistry and Chemical Analysis, Vatselankatu 2, FI-20014 (Finland); Areva, Sami [Tampere University of Technology, Department of Biomedical Engineering, Biokatu 6, P.O. Box 692, FI-33101 Tampere (Finland); Korhonen, Juuso T. [Aalto University School of Science, Department of Applied Physics, P.O. Box 15100 FI-00076 AALTO, Espoo (Finland); Karppinen, Maarit [Aalto University School of Chemical Technology, Laboratory of Inorganic Chemistry, P.O. Box 16100, FI-00076 AALTO, Espoo (Finland)

    2011-09-01

    Commercial polylactide (PLA) films are coated with a thin (20 nm) non-toxic polyelectrolyte multilayer (PEM) film made from sodium alginate and chitosan and additionally with a 25-nm thick atomic layer deposited (ALD) Al{sub 2}O{sub 3} layer. The double-coating of PEM + Al{sub 2}O{sub 3} is found to significantly enhance the water vapor barrier properties of the PLA film. The improvement is essentially larger compared with the case the PLA film being just coated with an ALD-grown Al{sub 2}O{sub 3} layer. The enhanced water vapor barrier characteristics of the PEM + Al{sub 2}O{sub 3} double-coated PLA films are attributed to the increased hydrophobicity of the surface of these films.

  19. Enhanced water vapor barrier properties for biopolymer films by polyelectrolyte multilayer and atomic layer deposited Al 2 O 3 double-coating

    Science.gov (United States)

    Hirvikorpi, Terhi; Vähä-Nissi, Mika; Harlin, Ali; Salomäki, Mikko; Areva, Sami; Korhonen, Juuso T.; Karppinen, Maarit

    2011-09-01

    Commercial polylactide (PLA) films are coated with a thin (20 nm) non-toxic polyelectrolyte multilayer (PEM) film made from sodium alginate and chitosan and additionally with a 25-nm thick atomic layer deposited (ALD) Al 2O 3 layer. The double-coating of PEM + Al 2O 3 is found to significantly enhance the water vapor barrier properties of the PLA film. The improvement is essentially larger compared with the case the PLA film being just coated with an ALD-grown Al 2O 3 layer. The enhanced water vapor barrier characteristics of the PEM + Al 2O 3 double-coated PLA films are attributed to the increased hydrophobicity of the surface of these films.

  20. Hot Corrosion Behavior of Double-ceramic-layer LaTi2Al9O19/YSZ Thermal Barrier Coatings

    Institute of Scientific and Technical Information of China (English)

    XIE Xiaoyun; GUO Hongbo; GONG Shengkai; XU Huibin

    2012-01-01

    LaTi2Al9O19 (LTA) exhibits promising potential as a new kind of thermal barrier coating (TBC) material,due to its excellent high-temperature capability and low thermal conductivity.In this paper,LTA/yttria stabilized zirconia (YSZ) TBCs are produccd by atmospheric plasma spraying.Hot corrosion behavior and the related failure mechanism of the coating are investigated.Decomposition of LTA does not occur even after 1 458 hot corrosion cycles at 1 373 K,revealing good chemical stability in molten salt of Na2SO4 and NaCl.However,the molten salt infiltrates to the bond coat,causing dissolving of the thermally grown oxide (TGO) in the molten salt and hot corrosion of the bond coat.As a result,cracking of the TBC occurs within the oxide layer.In conclusion,the ceranic materials LTA and YSZ reveal good chemical stability in molten salts of Na2SO4 and NaCl,and the bond coat plays a significant role in providing protection for the component against hot corrosion in the LTA/YSZ TBCs.LTA exhibits very promising potential as a novel TBC material.

  1. Seasonal variations in the barrier layer in the South China Sea: characteristics, mechanisms and impact of warming

    Science.gov (United States)

    Zeng, Lili; Wang, Dongxiao

    2016-06-01

    A new observational dataset, the South China Sea Physical Oceanographic Dataset 2014, is examined to investigate the seasonal characteristics, formation mechanisms, and warming effects of the barrier layer (BL) in the South China Sea (SCS). Statistical analysis reveals that the BL is thicker and occurs more frequently during summer and early autumn, while in winter it often coexists with temperature inversions. The formation mechanisms are discussed from the perspective of the controlling regime and the net turbulent energy required for BL evolution. In the initial stage (March-May), the BL is absent due to weak mixing, scarce rainfall and surface warming. In the formation and maintenance stage (June-September), the BL grows in summer and persists into the transition season. The BLs can be classified into three regimes: the flux regime (in the Luzon Strait), the combined regime (in the eastern basin) and the wind regime (southeast of Vietnam). In the attenuation stage (October-February), associated with the winter monsoon, the BL mainly occurs in the combined regime (along the path of western boundary current) and the flux regime (in the southeast corner). The characteristics and generation mechanisms of the temperature inversions near the south Chinese coast, east of Vietnam, and in the Gulf of Thailand are also discussed. Our analysis further demonstrates that the BL has a significant warming effect on upper ocean temperature and heat content in the SCS.

  2. Corrosion barriers for silver-based telescope mirrors: comparative study of plasma-enhanced atomic layer deposition and reactive evaporation of aluminum oxide

    Science.gov (United States)

    Fryauf, David M.; Phillips, Andrew C.; Kobayashi, Nobuhiko P.

    2015-10-01

    Astronomical telescopes continue to demand high-endurance high-reflectivity silver (Ag) mirrors that can withstand years of exposure in Earth-based observatory environments. We present promising results of improved Ag mirror robustness using plasma-enhanced atomic layer deposition (PEALD) of aluminum oxide (AlOx) as a top barrier layer. Transparent AlOx is suitable for many optical applications; therefore, it has been the initial material of choice for this study. Two coating recipes developed with electron beam ion-assisted deposition (e-beam IAD) of materials including yttrium fluoride, titanium nitride, oxides of yttrium, tantalum, and silicon are used to provide variations in basic Ag mirror structures to compare the endurance of reactive e-beam IAD barriers with PEALD barriers. Samples undergo high temperature/high humidity environmental testing in a controlled environment of 80% humidity at 80°C for 10 days. Environmental testing shows visible results suggesting that the PEALD AlOx barrier offers robust protection against chemical corrosion and moisture permeation. Ag mirror structures were further characterized by reflectivity/absorption before and after deposition of AlOx barriers.

  3. The importance of dye chemistry and TiCl4 surface treatment in the behavior of Al2O3 recombination barrier layers deposited by atomic layer deposition in solid-state dye-sensitized solar cells

    KAUST Repository

    Brennan, Thomas P.

    2012-01-01

    Atomic layer deposition (ALD) was used to fabricate Al 2O 3 recombination barriers in solid-state dye-sensitized solar cells (ss-DSSCs) employing an organic hole transport material (HTM) for the first time. Al 2O 3 recombination barriers of varying thickness were incorporated into efficient ss-DSSCs utilizing the Z907 dye adsorbed onto a 2 μm-thick nanoporous TiO 2 active layer and the HTM spiro-OMeTAD. The impact of Al 2O 3 barriers was also studied in devices employing different dyes, with increased active layer thicknesses, and with substrates that did not undergo the TiCl 4 surface treatment. In all instances, electron lifetimes (as determined by transient photovoltage measurements) increased and dark current was suppressed after Al 2O 3 deposition. However, only when the TiCl 4 treatment was eliminated did device efficiency increase; in all other instances efficiency decreased due to a drop in short-circuit current. These results are attributed in the former case to the similar effects of Al 2O 3 ALD and the TiCl 4 surface treatment whereas the insulating properties of Al 2O 3 hinder charge injection and lead to current loss in TiCl 4-treated devices. The impact of Al 2O 3 barrier layers was unaffected by doubling the active layer thickness or using an alternative ruthenium dye, but a metal-free donor-π-acceptor dye exhibited a much smaller decrease in current due to its higher excited state energy. We develop a model employing prior research on Al 2O 3 growth and dye kinetics that successfully predicts the reduction in device current as a function of ALD cycles and is extendable to different dye-barrier systems. © This journal is the Owner Societies 2012.

  4. [ACTIVITY OF ANTIMICROBIAL NANOSTRUCTURED BARRIER LAYERS BASED ON POLYETHYLENETEREPHTHALATE IN RELATION TO CLINICAL STRAINES OF MICROORGANISMS FOR SICK PERSONS OF GASTROENTEROLOGICAL PROFILE].

    Science.gov (United States)

    Elinson, V M; Rusanova, E V; Vasilenko, I A; Lyamin, A N; Kostyuchenko, L N

    2015-01-01

    Homeostasis transgressions of enteral medium including disbiotic ones are often accompanying deseases of digestive tract. Espessially it touches upon sick persons connected with probe nourishing. One of the way for solving this problem is normalization of digestion microflore by means of wares with nanotechnological modifications of walls (probes, stomic tubes) which provide them antimicrobial properties and assist to normalization of digestive microbiotis and enteral homeostasis completely. The aim to study is research of antimicrobial activity of of nanostructured barrier layers based on polyethyleneterephthalate (PET) in relation to clinical straines of microorganisms. For barrier layer creation the approach on the base of methods of ion-plasma technology was used including ion-plasma treatment (nanostructuring) of the surface by ions noble and chemically active gases and following formation nanodimensional carbon films on the surface/ For the study of antimicrobial activity in relation to clinical straines of microorganisms we used the technique which allowed to establish the influence of parting degree of microorganisms suspension and time for samples exposing and microorganisms adsorbed on the surface. In experiment clinical straines obtained from different materials were used: Staphylococcus Hly+ and Calbicans--from pharyngeal mucosa, E. coli--from feces, K.pneumoniae--from urine. Sharing out and species identification of microorganisms were fulfilled according with legasy documents. In results of the study itwas obtained not only the presence of staticticaly confirmed antimicrobial activity of PET samples with nanostructured barrier layers in relation to different stimulators of nosocomical infections but also the influence of different factors connected with formation of nanostructured layers and consequently based with them physicochemical characteristics such as, in particular, surface energy, surface relief parameters, surface charg and others, as well

  5. [ACTIVITY OF ANTIMICROBIAL NANOSTRUCTURED BARRIER LAYERS BASED ON POLYETHYLENETEREPHTHALATE IN RELATION TO CLINICAL STRAINES OF MICROORGANISMS FOR SICK PERSONS OF GASTROENTEROLOGICAL PROFILE].

    Science.gov (United States)

    Elinson, V M; Rusanova, E V; Vasilenko, I A; Lyamin, A N; Kostyuchenko, L N

    2015-01-01

    Homeostasis transgressions of enteral medium including disbiotic ones are often accompanying deseases of digestive tract. Espessially it touches upon sick persons connected with probe nourishing. One of the way for solving this problem is normalization of digestion microflore by means of wares with nanotechnological modifications of walls (probes, stomic tubes) which provide them antimicrobial properties and assist to normalization of digestive microbiotis and enteral homeostasis completely. The aim to study is research of antimicrobial activity of of nanostructured barrier layers based on polyethyleneterephthalate (PET) in relation to clinical straines of microorganisms. For barrier layer creation the approach on the base of methods of ion-plasma technology was used including ion-plasma treatment (nanostructuring) of the surface by ions noble and chemically active gases and following formation nanodimensional carbon films on the surface/ For the study of antimicrobial activity in relation to clinical straines of microorganisms we used the technique which allowed to establish the influence of parting degree of microorganisms suspension and time for samples exposing and microorganisms adsorbed on the surface. In experiment clinical straines obtained from different materials were used: Staphylococcus Hly+ and Calbicans--from pharyngeal mucosa, E. coli--from feces, K.pneumoniae--from urine. Sharing out and species identification of microorganisms were fulfilled according with legasy documents. In results of the study itwas obtained not only the presence of staticticaly confirmed antimicrobial activity of PET samples with nanostructured barrier layers in relation to different stimulators of nosocomical infections but also the influence of different factors connected with formation of nanostructured layers and consequently based with them physicochemical characteristics such as, in particular, surface energy, surface relief parameters, surface charg and others, as well

  6. The consequences of air flow on the distribution of aqueous species during dielectric barrier discharge treatment of thin water layers

    Science.gov (United States)

    Tian, Wei; Lietz, Amanda M.; Kushner, Mark J.

    2016-10-01

    The desired outcomes of wet tissue treatment by dielectric barrier discharges (DBDs) strongly depend on the integrated fluences of reactive species incident onto the tissue, which are determined by power, frequency and treatment time. The reactivity produced by such plasmas is often expected to be proportional to treatment time due to the accumulation of radicals in the liquid over the tissue. However, one of the typically uncontrolled parameters in DBD treatment of liquids and tissue is gas flow, which could affect the delivery of plasma produced radicals to the tissue. Gas flow can redistribute long-lived, plasma produced gas phase species prior to solvating in the liquid, while not greatly affecting the solvation of short-lived species. Gas flow can therefore potentially be a control mechanism for tailoring the fluences of reactive species to the tissue. In this paper, we report on a computational investigation of the consequences of gas flow on treatment of liquid layers covering tissue by atmospheric DBDs by up to 100 pulses. We found that gas flow (through residence time of the gas) can control the production of gas phase species requiring many collisions to form, such as reactive nitrogen species (RNS). The resulting solvation of the RNS in turn controls the production of aqueous species such as \\text{NO}\\text{3aq}- and \\text{ONOO}\\text{aq}- (aq denotes an aqueous species). With the exception of O3 and O3aq, reactive oxygen species (ROS) are less sensitive to gas flow, and so OHaq and H2O2aq, are determined primarily by discharge properties.

  7. Tunnel spin injection into graphene using Al{sub 2}O{sub 3} barrier grown by atomic layer deposition on functionalized graphene surface

    Energy Technology Data Exchange (ETDEWEB)

    Yamaguchi, Takehiro, E-mail: yamatake@iis.u-tokyo.ac.jp [Institute of Industrial Science, University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505 (Japan); Masubuchi, Satoru [Institute of Industrial Science, University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505 (Japan); Institute for Nano Quantum Information Electronics, University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505 (Japan); Iguchi, Kazuyuki [Institute of Industrial Science, University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505 (Japan); Moriya, Rai, E-mail: moriyar@iis.u-tokyo.ac.jp [Institute of Industrial Science, University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505 (Japan); Machida, Tomoki [Institute of Industrial Science, University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505 (Japan); Institute for Nano Quantum Information Electronics, University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505 (Japan); PRESTO, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi 332-0012 (Japan)

    2012-03-15

    We demonstrate electrical tunnel spin injection from a ferromagnet to graphene through a high-quality Al{sub 2}O{sub 3} grown by atomic layer deposition (ALD). The graphene surface is functionalized with a self-assembled monolayer of 3,4,9,10-perylene tetracarboxylic acid (PTCA) to promote adhesion and growth of Al{sub 2}O{sub 3} with a smooth surface. Using this composite tunnel barrier of ALD-Al{sub 2}O{sub 3} and PTCA, a spin injection signal of {approx}30 {Omega} has been observed from non-local magnetoresistance measurements at 45 K, revealing potentially high performance of ALD-Al{sub 2}O{sub 3}/PTCA tunnel barrier for spin injection into graphene. - Highlights: Black-Right-Pointing-Pointer Graphene spin-valve devices using Ni{sub 81}Fe{sub 19}/Al{sub 2}O{sub 3} electrodes are fabricated. Black-Right-Pointing-Pointer Atomic layer deposition (ALD) is used to fabricate Al{sub 2}O{sub 3} tunnel barrier. Black-Right-Pointing-Pointer Graphene surface is terminated with a 3,4,9,10-perylene tetracarboxylic acid (PTCA). Black-Right-Pointing-Pointer Non-local magneto-resistance (MR) as large as 30 {Omega} is demonstrated. Black-Right-Pointing-Pointer Tunnel spin injection into the graphene is achieved with ALD-grown tunnel barrier.

  8. Influence of Schottky drain contacts on the strained AlGaN barrier layer of AlGaN/AlN/GaN heterostructure field-effect transistors

    Institute of Scientific and Technical Information of China (English)

    Cao Zhi-Fang; Lin Zhao-Jun; Li Yuan-Jie; Luan Chong-Biao; Wang Zhan-Guo

    2013-01-01

    Rectangular Schottky drain A1GaN/AlN/GaN heterostructure field-effect transistors (HFETs) with different gate contact areas and conventional A1GaN/A1N/GaN HFETs as control were both fabricated with same size.It was found there is a significant difference between Schottky drain A1GaN/A1N/GaN HFETs and the control group both in drain series resistance and in two-dimensional electron gas (2DEG) electron mobility in the gate--drain channel.We attribute this to the different influence of Ohmic drain contacts and Schottky drain contacts on the strained A1GaN barrier layer.For conventional AlGaN/AlN/GaN HFETs,annealing drain Ohmic contacts gives rise to a strain variation in the A1GaN barrier layer between the gate contacts and the drain contacts,and results in strong polarization Coulomb field scattering in this region.In Schottky drain A1GaN/A1N/GaN HFETs,the strain in the A1GaN barrier layer is distributed more regularly.

  9. Analysis of Ta-based Barrier Layer of Cu-interconnect by Second Ion Mass Spectrometry%Cu互连工艺中Ta基扩散阻挡层的二次离子质谱剖析

    Institute of Scientific and Technical Information of China (English)

    曹永明; 方培源; 姜蕾

    2004-01-01

    With the development of deep submicron integrated circuits (IC), copper metallization has been a replacement for conventional aluminum metallization in high density IC manufacture. But Cu is quite mobile in Si and has poor adhesion to Si or SiO2, which could degrade the performance of copper interconnect. Therefore, a diffusion barrier layer between copper interconnect and Si device is necessary. In this paper, Ta-based barrier layers are deposited on Si substrate with deposition technology of magnetron sputtering. The depth profile of copper interconnect and Ta-diffusion barrier layer are investigated by second ion mass spectrometry(SIMS).

  10. Process and performance of hot dip zinc coatings containing ZnO and Ni-P under layers as barrier protection

    International Nuclear Information System (INIS)

    A new coating system of under layer for hot dip zinc coating was explored as an effective coating for steel especially for application in relatively high aggressive environments. The influence of different barrier layers formed prior to hot dip galvanization was investigated to optimize high performance protective galvanic coatings. The deposition of ZnO and Ni-P inner layers and characteristics of hotdip zinc coatings were explored in this study. The coating morphology was characterized by scanning electron microscope (SEM) analysis. The hot dip zinc coatings containing under layer showed substantial improvement in their properties such as good adhesion, and high hardness. In addition, a decrease in the thickness of the coating layer and an enhancement of the corrosion resistance were found. Open circuit potential (OCP) of different galvanized layers in different corrosive media viz. 5% NaCl and 0.5 M H2SO4 solutions at 25 ± 1 deg. C was measured as a function of time. A nobler OCP was exhibited for samples treated with ZnO and Ni than sample of pure Zn; this indicates a dissolution process followed by passivation due to the surface oxide formation. The high negative OCP can be attributed to the better alloying reaction between Zn and Fe and to the sacrificial nature of the top pure zinc layer.

  11. Controlling phase transition for single-layer MTe2 (M = Mo and W): modulation of the potential barrier under strain.

    Science.gov (United States)

    Huang, H H; Fan, Xiaofeng; Singh, David J; Chen, Hong; Jiang, Q; Zheng, W T

    2016-02-01

    Using first-principles DFT calculations, the pathway and the energy barrier of phase transition between 2H and 1T' have been investigated for MoTe2 and WTe2 monolayers. The Phase transition is controlled by the simultaneous movement of metal atoms and Te atoms in their plane without the intermediate phase 1T. The energy barrier (less than 0.9 eV per formula cell) is not so high that the phase transition is dynamically possible. The relative stability of both 2H and 1T' phases and the energy barrier for phase transition can be modulated by the biaxial and uniaxial strain. The dynamic energy barrier is decreased by applying the strain. The phase transition between 2H and 1T' controlled by the strain can be used to modulate the electronic properties of MoTe2 and WTe2. PMID:26778806

  12. Combined effect of capillary barrier and layered slope on water, solute and nanoparticle transfer in an unsaturated soil at lysimeter scale.

    Science.gov (United States)

    Prédélus, Dieuseul; Coutinho, Artur Paiva; Lassabatere, Laurent; Bien, Le Binh; Winiarski, Thierry; Angulo-Jaramillo, Rafael

    2015-10-01

    It is well recognized that colloidal nanoparticles are highly mobile in soils and can facilitate the transport of contaminants through the vadose zone. This work presents the combined effect of the capillary barrier and soil layer slope on the transport of water, bromide and nanoparticles through an unsaturated soil. Experiments were performed in a lysimeter (1×1×1.6m(3)) called LUGH (Lysimeter for Urban Groundwater Hydrology). The LUGH has 15 outputs that identify the temporal and spatial evolution of water flow, solute flux and nanoparticles in relation to the soil surface conditions and the 3D system configuration. Two different soil structures were set up in the lysimeter. The first structure comprises a layer of sand (0-0.2cm, in diameter) 35cm thick placed horizontally above a layer of bimodal mixture also 35cm thick to create a capillary barrier at the interface between the sand and bimodal material. The bimodal material is composed of a mixture 50% by weight of sand and gravel (0.4-1.1cm, in diameter). The second structure, using the same amount of sand and bimodal mixture as the first structure represents an interface with a 25% slope. A 3D numerical model based on Richards equation for flow and the convection dispersion equations coupled with a mechanical module for nanoparticle trapping was developed. The results showed that under the effect of the capillary barrier, water accumulated at the interface of the two materials. The sloped structure deflects flow in contrast to the structure with zero slope. Approximately 80% of nanoparticles are retained in the lysimeter, with a greater retention at the interface of two materials. Finally, the model makes a good reproduction of physical mechanisms observed and appears to be a useful tool for identifying key processes leading to a better understanding of the effect of capillary barrier on nanoparticle transfer in an unsaturated heterogeneous soil. PMID:26184062

  13. A tantalum diffusion barrier layer for improving the output performance of AlGaInP-based light-emitting diodes

    Science.gov (United States)

    Kim, Dae-Hyun; Park, Jae-Seong; Kang, Daesung; Seong, Tae-Yeon

    2016-03-01

    We have investigated the effect of a Ta diffusion barrier layer on the electrical characteristics of AuBe/Au contacts on a p-GaP window layer for AlGaInP-based light-emitting diodes (LEDs). It was shown that after annealing at 500 °C, the AuBe/Ta/Au contacts exhibited nearly 2 orders of magnitude lower specific contact resistance (2.8 × 10-6 Ω·cm2) than the AuBe/Au contacts (1.0 × 10-4 Ω·cm2). The LEDs with and without the Ta diffusion barrier layer showed an external quantum efficiency of 14.03 and 13.5% at 50 mA, respectively. After annealing at 500 °C, the AuBe/Ta/Au contacts showed a higher reflectance (92.8% at 617 nm) than that of the AuBe/Au contacts (87.7%). X-ray photoemission spectroscopy (XPS) results showed that the Ga 2p core level for the annealed AuBe/Au samples shifted to higher binding energies, while this level shifted towards lower binding energies for the AuBe/Ta/Au samples. Depth profiles using Auger electron spectroscopy (AES) showed that annealing of the AuBe/Au samples caused the outdiffusion of both Be and P atoms into the metal contact, while for the AuBe/Ta/Au samples, the outdiffusion of Be atoms was blocked by the Ta barrier layer and more Be atoms were indiffused into GaP. The annealing-induced electrical degradation and ohmic contact formation are described and discussed based on the XPS and electrical results.

  14. Growth and characterization of InGaN back barrier HEMTs structure with a compositionally step-graded AlGaN layer

    Institute of Scientific and Technical Information of China (English)

    Tang Jian; Wang Xiaoliang; Xiao Hongling

    2014-01-01

    A novel InGaN back barrier high electron mobility transistors structure with a compositionally stepgraded AlGaN barrier layer was grown by metal organic chemical vapor deposition on sapphire substrate.The structural and electrical properties of two samples were investigated and compared:the first sample is the stepgraded structure and the second one is the high Al structure as a comparison.By calculating full width at half maximum of XRD measurements,the densities of screw-type threading dislocations are 8.34 × 108 cm-2 and 11.44 × 108 cm-2 for step-graded structure and high Al structure,respectively,which are consistent with the results of atomic force microscopy.By Hall measurements,the measured two-dimensional electron gas mobility was 1820 cm2/(V·s) for step-graded structure,and 1300 cm2/(V·s) for high Al structure,respectively.The stepgraded structure improves the crystal quality of AlGaN layer due to the released lattice strain.The device was fabricated and leakage current is only 28μA when the drain voltage is 10 V; it was found that the InGaN back barrier could effectively reduce the buffer leakage current.

  15. Impact of InGaN back barrier layer on performance of AIInN/AlN/GaN MOS-HEMTs

    Science.gov (United States)

    Swain, Sanjit Kumar; Adak, Sarosij; Pati, Sudhansu Kumar; Sarkar, Chandan Kumar

    2016-09-01

    In the present work, we have discussed the effect of InGaN back barrier on device performances of 100 nm gate length AlInN/AlN/GaN metal oxide semiconductor high electron mobility transistor (MOS-HEMT) device and a wide comparison is made with respect to without considering the back barrier layer. The InGaN layer is introduced in the intension to raise the conduction band of GaN buffer with respect to GaN channel so that there is an improvement in the carrier confinement and at the same time witnessed excellent high frequency performance. The simulations are carried out using 2D Sentaurus TCAD simulator using Hydrodynamic mobility model by taking interface traps into consideration. Due to high value of two-dimensional electron gas (2DEG) density and mobility in AlInN/AlN/GaN MOS-HEMT device, higher drain current density is achieved. Simulation are carried out for different device parameters such as transfer characteristic (Id-Vg), transconductance factor (gm), drain induced barrier lowering (DIBL), Subthreshold slope (SS), conduction band energy, transconductance generation factor (gm/Id) and electric field. We have also examined the RF performance such as, total gate capacitance (Cgg), current gain cutoff frequency (fT) and power gain cutoff frequency (fmax) of the proposed devices. Use of InGaN back barrier tends to increase threshold voltage towards more positive value, reduced DIBL, and improves SS and significant growth in (gm/Id) by 5.5%. It also helps to achieve better frequency response like substantial increase in fT up to 91 GHz with current gain 60 dB as compare to 67 GHz with 56 dB for the device without considering back barrier and increase in fmax up to 112 GHz with respect 94 GHz. These results evident that use of InGaN back barrier in such devices can be better solution for future analog and RF applications.

  16. A comparative study of low dielectric constant barrier layer, etch stop and hardmask films of hydrogenated amorphous Si-(C, O, N)

    International Nuclear Information System (INIS)

    New barrier layer, etch stop and hardmask films, including hydrogenated amorphous a-SiCx:H (SiC), a-SiCxOy:H (SiCO), and a-SiCxNy:H (SiCN) films with a dielectric constant (k) approximately 4.3, are produced using the plasma-enhanced chemical vapor deposition technique. The chemical and structural nature, and mechanical properties of these films are characterized using X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy, and nano-indentation. The leakage current density and breakdown electric field are investigated by a mercury probe on a metal-insulator-semiconductor structure. The properties of the studied films indicate that they are potential candidates as barrier layer, etch stop and hardmask films for the advanced interconnect technology. The SiC film shows a high leakage current density (1.3x10-7 A/cm2 at 1.0 MV/cm) and low breakdown field (1.2 MV/cm at 1.0x10-6 A/cm2). Considering the mechanical and electrical properties requirements of the interconnect process, SiCN might be a good choice, but the N content may result in via poison problem. The low leakage current (1.2x10-9 A/cm2 at 1.0 MV/cm), high breakdown field (3.1 MV/cm at 1.0x10-6 A/cm2), and relative high hardness (5.7 GPa) of the SiCO film indicates a good candidate as a barrier layer, etch stop, or hardmask

  17. 4.0-nm-thick amorphous Nb–Ni film as a conducting diffusion barrier layer for integrating ferroelectric capacitor on Si

    Energy Technology Data Exchange (ETDEWEB)

    Dai, X.H. [Hebei Key Lab of Optic-electronic Information and Materials, College of Physics Science & Technology, Hebei University, Hebei 071002 (China); College of Electronic and Information Engineering, Hebei University of Technology, Tianjin 300401 (China); Guo, J.X.; Zhang, L.; Jia, D.M.; Qi, C.G.; Zhou, Y.; Li, X.H.; Shi, J.B.; Fu, Y.J.; Wang, Y.L.; Lou, J.Z. [Hebei Key Lab of Optic-electronic Information and Materials, College of Physics Science & Technology, Hebei University, Hebei 071002 (China); Ma, L.X. [Department of Physics, Blinn College, Bryan, TX 77805 (United States); Zhao, H.D. [College of Electronic and Information Engineering, Hebei University of Technology, Tianjin 300401 (China); Liu, B.T., E-mail: btliu@hbu.cn [Hebei Key Lab of Optic-electronic Information and Materials, College of Physics Science & Technology, Hebei University, Hebei 071002 (China)

    2015-10-05

    Highlights: • 4-nm-thick amorphous Nb–Ni film is first used as the conducting barrier layer. • No obvious interdiffusion/reaction can be found from the LSCO/PZT/LSCO/Nb–Ni/Si. • The LSCO/PZT/LSCO capacitor, measured at 5 V, possesses very good properties. • Ultrathin amorphous Nb–Ni film is ideal to fabricate silicon-based FRAM. - Abstract: We have successfully integrated La{sub 0.5}Sr{sub 0.5}CoO{sub 3}/PbZr{sub 0.4}Ti{sub 0.6}O{sub 3}/La{sub 0.5}Sr{sub 0.5}CoO{sub 3} (LSCO/PZT/LSCO) capacitors on silicon substrate using a ∼4.0-nm-thick amorphous Nb–Ni film as the conducting diffusion barrier layer. Transmission electron microscopy technique confirms that the Nb–Ni film is still amorphous after fabrication of the capacitors, and the interfaces related to Nb–Ni are clean and sharp without any findable interdiffusion/reaction. The LSCO/PZT/LSCO capacitor, measured at 5 V, possesses very good properties, such as large remanent polarization of ∼22.1 μC/cm{sup 2}, small coercive voltage of ∼1.27 V, good fatigue-resistance, and small pulse width dependence, implying that ultrathin amorphous Nb–Ni film is ideal as the conducting diffusion barrier layer to fabricate high-density silicon-based ferroelectric random access memories.

  18. Thermal properties of thin Al{sub 2}O{sub 3} films and their barrier layer effect on thermo-optic properties of TiO{sub 2} films grown by atomic layer deposition

    Energy Technology Data Exchange (ETDEWEB)

    Saleem, Muhammad Rizwan, E-mail: rizwan.saleem@uef.fi [University of Eastern Finland, Institute of Photonics, P.O. Box 111, FI-80101 Joensuu (Finland); National University of Sciences and Technology (NUST), School of Chemical and Materials Engineering (SCME), Sector H-12, Islamabad (Pakistan); Ali, Rizwan; Honkanen, Seppo; Turunen, Jari [University of Eastern Finland, Institute of Photonics, P.O. Box 111, FI-80101 Joensuu (Finland)

    2013-09-02

    We investigate the evaporation of water molecules from the surface of high index, amorphous thin TiO{sub 2} films of various thicknesses t{sub t}, grown by atomic layer deposition (ALD). The desorption of water molecules is impeded by depositing thin ALD-Al{sub 2}O{sub 3} barrier layers of various thicknesses on the TiO{sub 2} thin films. Growing ALD-Al{sub 2}O{sub 3} diffusion barrier layers with different thicknesses t{sub a} allows us to evaluate the water vapor evaporation rate in terms of the change in the thermo–optic coefficient (TOC) of TiO{sub 2} films over a wide spectral range 380 ≤ λ ≤ 1800 nm. An average reduction of 33% in TOC is found at a barrier layer thickness of ∼ 36 nm. Furthermore, the temperature dependent index (dn/dT) and density (dρ/dT) of the ALD-Al{sub 2}O{sub 3} films of various thicknesses t{sub a} are also presented. The Cauchy model is applied to all the ellipsometric measurement data to retrieve the optical constants, and subsequent modeling by the Lorentz–Lorenz relation provides the material density of Al{sub 2}O{sub 3} films. The room temperature values of the thermal coefficients for an ALD-Al{sub 2}O{sub 3} film of thickness t{sub a} ≈ 60 nm at wavelength λ = 640 nm are found to be dn/dT = 4.66 × 10{sup −5}°C{sup −1} and dρ/dT = 4.66 × 10{sup −4}g cm{sup −3}C{sup −1}. - Highlights: • Thermal properties of Al{sub 2}O{sub 3} and TiO{sub 2} films grown by atomic layer deposition • Diffusion barrier effects of Al{sub 2}O{sub 3} films are studied for dn/dT of TiO{sub 2} films. • Thicker Al{sub 2}O{sub 3} films on TiO{sub 2} yield less negative values of dn/dT of TiO{sub 2} films.

  19. Experimental Investigation of “Why an AC Dielectric Barrier Discharge Plasma Actuator is Preferred to DC Corona Wind Actuator in Boundary Layer Flow Control?”

    OpenAIRE

    Gholam reza Tathiri; Esmaeil Esmaeilzadeh; seyyed mahdi mirsajedi; hossein mahdavy moghaddam

    2014-01-01

    In this paper, characteristics of the flow induced in the boundary layer by an AC-Dielectric Barrier Discharge (DBD) plasma actuator are compared against those of a DC-corona wind actuator. This is achieved by visualization of the induced flow using smoke injection and measuring the horizontal induced velocity. Our measurements show that the maximum induced velocity of an AC-DBD actuator is about one order of magnitude larger than that of a DC-corona actuator. For an AC-DBD actuator, the indu...

  20. Improved Voltage and Fill Factor by Using Zinc Oxide Thin Film as a Barrier Layer in Dye-Sensitized Solar Cells

    Institute of Scientific and Technical Information of China (English)

    WANG Peng; WANG Li-Duo; LI Bin; QIU Yong

    2005-01-01

    @@ A series of dye-sensitized solar cells based on ZnO-modified TiO2 nano-porous films have been prepared. The current-voltage characteristics of the cells show that the ZnO-modification can improve the open-circuit voltage and the fill factor but can decrease the short-circuit current. Dark current and transient photovoltage measurements are used to study the back reaction. It is indicated that the recombination process is suppressed by blocking the hole transporting from the nano-porous TiO2 since the surface of the semiconductor is almost fully covered with ZnO as a barrier layer.

  1. Properties of plasma-enhanced atomic layer deposited TiC{sub x} films as a diffusion barrier for Cu metallization

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Sang-Kyung; Kim, Hangil; Kim, Junbeam [School of Materials Science and Engineering, Yeungnam University, Gyeongsangbuk-do 712-749 (Korea, Republic of); Cheon, Taehoon [School of Materials Science and Engineering, Yeungnam University, Gyeongsangbuk-do 712-749 (Korea, Republic of); Center for Core Research Facilities, DaeguGyeongbuk Institute of Science & Technology, Daegu,South Korea (Korea, Republic of); Seo, Jong Hyun [Deptartment of Materials Engineering, Korea Aerospace University, 200-1 Hwajeon-dong, GoyangCity, Gyeonggi-do 412-791,South Korea (Korea, Republic of); Kim, Soo-Hyun, E-mail: soohyun@ynu.ac.kr [School of Materials Science and Engineering, Yeungnam University, Gyeongsangbuk-do 712-749 (Korea, Republic of)

    2015-09-01

    TiC{sub x} films were grown on thermally grown SiO{sub 2} substrate by atomic layer deposition (ALD) using tetrakis–neopentyl–titanium [Ti(CH{sub 2}C(CH{sub 3}){sub 3}){sub 4,} TiNp{sub 4}, Np = neopentyl, CH{sub 2}C(CH{sub 3}){sub 3}] and direct plasma of H{sub 2} as a reactant at the substrate temperature ranging from 200 to 400 °C. A narrow ALD temperature window from 275 to 300 °C was shown and a growth rate of 0.054 nm/cycle at the ALD temperature window was obtained. The ALD-TiC{sub x} films formed nanocrystalline structure with rock-salt phase that was confirmed by X-ray diffractometry and transmission electronic microscopy (TEM) analysis. Its resistivity was dependent on the microstructure features characterized by grain size and crystallinity as well as its density, which could be controlled by varying the deposition temperature. Resistivity of ~ 600 μΩ cm was obtained at the deposition temperature 300 °C where is in the ALD temperature window, by optimizing deposition condition. In this study, a performance of very thin ALD-TiC{sub x} (6 nm) as a diffusion barrier for Cu interconnects was evaluated. The results showed that the structure of Cu (80 nm)/ALD-TiC{sub x} (6 nm)/Si was stable after annealing at 600 °C for 30 min. Cross-sectional view TEM analysis combined with energy-dispersive spectroscopy revealed that ALD-TiC{sub x} diffusion barrier failed by the diffusion of Cu through the thin barrier layer into Si at 650 °C without interfacial reactions between the layers. - Highlights: • Atomic layer deposition (ALD) of TiC{sub x} using a metallorganic precursor. • The growth rate of 0.054 nm/cycle. • ALD temperature window between 275 and 300 °C. • Evaluation as a diffusion barrier against Cu.

  2. Densification of Ce0.9Gd0.1O1.95 barrier layer by in-situ solid state reaction

    DEFF Research Database (Denmark)

    Ni, De Wei; Esposito, Vincenzo

    2014-01-01

    A novel methodology, called in-situ solid state reaction (SSR), is developed and achieved for the densification of gadolinia doped ceria (CGO) barrier layer (BL) within the solid oxide fuel cell (SOFC) technology. The method is based on the combined use of impregnation technique and a designed two...... out with small amount of either cobalt or copper nitrate solutions as sintering aids. Final sintering of the CGO-BL at temperature T2 (1250e1275 _C, T2 > T1) is used to promote an SSR between the sintering aid and CGO-BL to obtain densification and grain growth. The approach proposed in this work...

  3. Improved characteristics of ultraviolet AlGaN multiple-quantum-well laser diodes with step-graded quantum barriers close to waveguide layers

    Science.gov (United States)

    Cai, Xuefen; Li, Shuping; Kang, Junyong

    2016-09-01

    Ultraviolet AlGaN multiple-quantum-well laser diodes (LDs) with step-graded quantum barriers (QBs) instead of conventional first and last QBs close to waveguide layers are proposed. The characteristics of this type of laser diodes are numerically investigated by using the software PICS3D and it is found that the performances of these LDs are greatly improved. The results indicates that the structure with step-graded QBs exhibits higher output light power, slope efficiency and emission intensity, as well as lower series resistance and threshold current density under the identical condition, compared with conventional LD structure.

  4. Nucleation and initial growth of atomic layer deposited titanium oxide determined by spectroscopic ellipsometry and the effect of pretreatment by surface barrier discharge

    Energy Technology Data Exchange (ETDEWEB)

    Cameron, David C., E-mail: dccameron@mail.muni.cz [R& D Centre for Low-Cost Plasma and Nanotechnology Surface Modification, Masaryk University, Kotlářská 267/2, 611 37 Brno (Czech Republic); Krumpolec, Richard, E-mail: richard.krumpolec@fmph.uniba.sk [Department of Experimental Physics, Faculty of Mathematics, Physics and Informatics, Comenius University, Mlynská dolina, 842 4 Bratislava (Slovakia); Ivanova, Tatiana V., E-mail: tatiana.ivanova@lut.fi [ASTRaL team, Laboratory of Green Chemistry, Lappeenranta University of Technology, Sammonkatu 12, 50130 Mikkeli (Finland); Homola, Tomáš, E-mail: tomas.homola@mail.muni.cz [R& D Centre for Low-Cost Plasma and Nanotechnology Surface Modification, Masaryk University, Kotlářská 267/2, 611 37 Brno (Czech Republic); Černák, Mirko, E-mail: cernak@physics.muni.cz [R& D Centre for Low-Cost Plasma and Nanotechnology Surface Modification, Masaryk University, Kotlářská 267/2, 611 37 Brno (Czech Republic)

    2015-08-01

    Highlights: • Spectroscopic ellipsometry shows initial nucleation and growth process in atomic layer deposited titanium dioxide. • Quantum confinement effects were used to measure evolution of crystallite size. • Crystallite surface density can be extracted from ellipsometric surface roughness data and crystallite size. • Pretreatment of silicon substrates by diffuse coplanar surface barrier discharge has only minor effects on titanium dioxide film nucleation and growth. - Abstract: This paper reports on the use of spectroscopic ellipsometry to characterise the initial nucleation stage of the atomic layer deposition of the anatase phase of titanium dioxide on silicon substrates. Careful control and analysis of the ellipsometric measurements enables the determination of the evolution of crystallite diameter and surface density in the nucleation stage before a continuous film is formed. This growth behaviour is in line with atomic force microscopy measurements of the crystallite size. The crystallite diameter is a linear function of the number of ALD cycles with a slope of approximately 1.7 Å cycle{sup −1} which is equivalent to a layer growth rate of 0.85 Å cycle{sup −1} consistent with a ripening process which increases the crystallite size while reducing their density. The crystallite density decreases from ∼3 × 10{sup 17} m{sup −3} in the initial nucleation stages to ∼3 × 10{sup 15} m{sup −3} before the film becomes continuous. The effect of exposing the substrate to a diffuse coplanar surface barrier discharge in an air atmosphere before deposition was measured and only small differences were found: the plasma treated samples were slightly rougher in the initial stages and required a greater number of cycles to form a continuous film (∼80) compared to the untreated films (∼50). A thicker layer of native oxide was found after plasma treatment.

  5. Influence of PEDOT:PSS on the effectiveness of barrier layers prepared by atomic layer deposition in organic light emitting diodes

    International Nuclear Information System (INIS)

    Organic light emitting diodes (OLEDs) are well suited for energy saving lighting applications, especially when thinking about highly flexible and large area devices. In order to avoid the degradation of the organic components by water and oxygen, OLEDs need to be encapsulated, e.g., by a thin sheet of glass. As the device is then no longer flexible, alternative coatings are required. Atomic layer deposition (ALD) is a very promising approach in this respect. The authors studied OLEDs that were encapsulated by 100 nm Al2O3 deposited by ALD. The authors show that this coating effectively protects the active surface area of the OLEDs from humidity. However, secondary degradation processes still occur at sharp edges of the OLED stack where the extremely thin encapsulation layer does not provide perfect coverage. Particularly, the swelling of poly(3,4-ethylenedioxythiophene) mixed with poly(styrenesulfonate), which is a popular choice for the planarization of the bottom electrode and at the same time acts as a hole injection layer, affects the effectiveness of the encapsulation layer

  6. Influence of PEDOT:PSS on the effectiveness of barrier layers prepared by atomic layer deposition in organic light emitting diodes

    Energy Technology Data Exchange (ETDEWEB)

    Wegler, Barbara, E-mail: barbara.wegler@siemens.com [Siemens AG, Corporate Technology, Guenther-Scharowsky-Strasse 1, 91058 Erlangen, Germany and Center for Medical Physics and Engineering, University of Erlangen-Nuremberg, Henkestrasse 91, 91052 Erlangen (Germany); Schmidt, Oliver [Siemens AG, Corporate Technology, Guenther-Scharowsky-Strasse 1, 91058 Erlangen (Germany); Hensel, Bernhard [Center for Medical Physics and Engineering, University of Erlangen-Nuremberg, Henkestrasse 91, 91052 Erlangen (Germany)

    2015-01-15

    Organic light emitting diodes (OLEDs) are well suited for energy saving lighting applications, especially when thinking about highly flexible and large area devices. In order to avoid the degradation of the organic components by water and oxygen, OLEDs need to be encapsulated, e.g., by a thin sheet of glass. As the device is then no longer flexible, alternative coatings are required. Atomic layer deposition (ALD) is a very promising approach in this respect. The authors studied OLEDs that were encapsulated by 100 nm Al{sub 2}O{sub 3} deposited by ALD. The authors show that this coating effectively protects the active surface area of the OLEDs from humidity. However, secondary degradation processes still occur at sharp edges of the OLED stack where the extremely thin encapsulation layer does not provide perfect coverage. Particularly, the swelling of poly(3,4-ethylenedioxythiophene) mixed with poly(styrenesulfonate), which is a popular choice for the planarization of the bottom electrode and at the same time acts as a hole injection layer, affects the effectiveness of the encapsulation layer.

  7. Growth and Characterization of AlGaN/AlN/GaN HEMT Structures with a Compositionally Step-Graded AlGaN Barrier Layer

    Institute of Scientific and Technical Information of China (English)

    MA ZHI-Yong; WANG Xiao-Liang; HU Guo-Xin; RAN Jun-Xue; XIAO Hong-Ling; LUO Wei-Jun; TANG Jian; LI Jian-Ping; LI Jin-Min

    2007-01-01

    A new AlGaN/AlN/GaN high electron mobility transistor (HEMT) structure using a Compositionally step-graded AlGaN barrier layer is grown on sapphire by metalorganic chemical vapour deposition (MOCVD). The structure demonstrates significant enhancement of two-dimensional electron gas (2DEG) mobility and smooth surface morphology compared with the conventional HEMT structure with high Al composition AlGaN barrier. The high 2DEG mobility of 1806 cm2 /Vs at room temperature and low rms surface roughness of 0.220 nm for a scan area of 5/umx5/um are attributed to the improvement of interfacial and crystal quality by employing the step-graded barrier to accommodate the large lattice mismatch stress. The 2DEG sheet density is independent of the measurement temperature, showing the excellent 2DEG confinement of the step-graded structure. A low average sheet resistance of 314.5 ft/square, with a good resistance uniformity of 0.68%, is also obtained across the 50mm epilayer wafer. HEMT devices are successfully fabricated using this material structure, which exhibits a maximum extrinsic transconductance of 218 mS/ mm and a maximum drain current density of 800m A/mm.

  8. Effects of conducting oxide barrier layers on the stability of Crofer® 22 APU/Ca3Co4O9 interfaces

    DEFF Research Database (Denmark)

    Holgate, Tim C.; Han, Li; Wu, NingYu;

    2014-01-01

    available high-chrome iron alloy (i.e., Crofer® 22 APU) serving as the interconnect metal was spray coated with LaNi0.6Fe0.4O3 (LNFO) or (Mn,Co)3O4 spinel and then interfaced with a p-type thermoelectric material—calcium cobaltate (Ca3Co4O9)—using spark plasma sintering. The interfaces have been...... characterized in terms of their thermal and electronic transport properties and chemical stability. With long-term exposure of the interfaced samples to 800 °C in air, the cobalt–manganese spinel acted as a diffusion barrier between the Ca3Co4O9 and the Crofer® 22 APU alloy resulting in improved interfacial...... stability compared to that of samples containing LNFO as a barrier layer, and especially those without any barrier. The initial area specific interfacial resistance of the Ca3Co4O9/(Mn,Co)3O4/Crofer® 22 APU interface at 800 °C was found to be ∼1 mΩ·cm2....

  9. Antibacterial and barrier properties of oriented polymer films with ZnO thin films applied with atomic layer deposition at low temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Vähä-Nissi, Mika, E-mail: mika.vaha-nissi@vtt.fi [VTT Technical Research Centre of Finland, P.O. Box 1000, FI-02044, VTT (Finland); Pitkänen, Marja; Salo, Erkki; Kenttä, Eija [VTT Technical Research Centre of Finland, P.O. Box 1000, FI-02044, VTT (Finland); Tanskanen, Anne, E-mail: Anne.Tanskanen@aalto.fi [Aalto University, School of Chemical Technology, Department of Chemistry, Laboratory of Inorganic Chemistry, P.O. Box 16100, FI-00076 Aalto (Finland); Sajavaara, Timo, E-mail: timo.sajavaara@jyu.fi [University of Jyväskylä, Department of Physics, P.O. Box 35, FI-40014 Jyväskylä (Finland); Putkonen, Matti; Sievänen, Jenni; Sneck, Asko; Rättö, Marjaana [VTT Technical Research Centre of Finland, P.O. Box 1000, FI-02044, VTT (Finland); Karppinen, Maarit, E-mail: Maarit.Karppinen@aalto.fi [Aalto University, School of Chemical Technology, Department of Chemistry, Laboratory of Inorganic Chemistry, P.O. Box 16100, FI-00076 Aalto (Finland); Harlin, Ali [VTT Technical Research Centre of Finland, P.O. Box 1000, FI-02044, VTT (Finland)

    2014-07-01

    Concerns on food safety, and need for high quality and extended shelf-life of packaged foods have promoted the development of antibacterial barrier packaging materials. Few articles have been available dealing with the barrier or antimicrobial properties of zinc oxide thin films deposited at low temperature with atomic layer deposition (ALD) onto commercial polymer films typically used for packaging purposes. The purpose of this paper was to study the properties of ZnO thin films compared to those of aluminum oxide. It was also possible to deposit ZnO thin films onto oriented polylactic acid and polypropylene films at relatively low temperatures using ozone instead of water as an oxidizing precursor for diethylzinc. Replacing water with ozone changed both the structure and the chemical composition of films deposited on silicon wafers. ZnO films deposited with ozone contained large grains covered and separated probably by a more amorphous and uniform layer. These thin films were also assumed to contain zinc salts of carboxylic acids. The barrier properties of a 25 nm ZnO thin film deposited with ozone at 100 °C were quite close to those obtained earlier with ALD Al{sub 2}O{sub 3} of similar apparent thickness on similar polymer films. ZnO thin films deposited at low temperature indicated migration of antibacterial agent, while direct contact between ZnO and Al{sub 2}O{sub 3} thin films and bacteria promoted antibacterial activity. - Highlights: • Thin films were grown from diethylzinc also with ozone instead of water at 70 and 100 °C. • ZnO films deposited with diethylzinc and ozone had different structures and chemistries. • Best barrier properties obtained with zinc oxide films close to those obtained with Al{sub 2}O{sub 3} • Ozone as oxygen source provided better barrier properties at 100 °C than water. • Both aluminum and zinc oxide thin films showed antimicrobial activity against E. coli.

  10. Adhesive flexible barrier film, method of forming same, and organic electronic device including same

    Science.gov (United States)

    Blizzard, John Donald; Weidner, William Kenneth

    2013-02-05

    An adhesive flexible barrier film comprises a substrate and a barrier layer disposed on the substrate. The barrier layer is formed from a barrier composition comprising an organosilicon compound. The adhesive flexible barrier film also comprises an adhesive layer disposed on the barrier layer and formed from an adhesive composition. A method of forming the adhesive flexible barrier film comprises the steps of disposing the barrier composition on the substrate to form the barrier layer, disposing the adhesive composition on the barrier layer to form the adhesive layer, and curing the barrier layer and the adhesive layer. The adhesive flexible barrier film may be utilized in organic electronic devices.

  11. Impact of strain relaxation of AlGaN barrier layer on the performance of high Al-content AlGaN/GaN HEMT

    Institute of Scientific and Technical Information of China (English)

    YANG; Yan; HAO; Yue; ZHANG; Jincheng; WANG; Chong; FENG; Qian

    2006-01-01

    The effects of strain relaxation of AlGaN barrier layer on the conduction band profile, electron concentration and two-dimensional gas (2DEG) sheet charge density in a high Al-content AlGaN/GaN high electron mobility transistor (HEMT) are calculated by self-consistently solving Poisson's and Schr(o)dinger's equations. The effect of strain relaxation on dc I-V characteristics of AlxGa1-xN/GaN HEMT is obtained by developing a nonlinear charge-control model that describes the accurate relation of 2DEG sheet charge density and gate voltage. The model predicts a highest 2DEG sheet charge density of 2.42×1013 cm-2 and maximum saturation current of 2482.8 mA/mm at a gate bias of 2 V for 0.7 μm Al0.50Ga0.50N/GaN HEMT with strain relaxation r =0 and 1.49×1013 cm-2 and 1149.7 mA/mm with strain relaxation r =1. The comparison between simulations and physical measurements shows a good agreement. Results show that the effect of strain relaxation must be considered when analyzing the characteristics of high Al-content AlGaN/GaN HEMT theoretically, and the performance of the devices is improved by decreasing the strain relaxation of AlGaN barrier layer.

  12. TiO 2 Conduction Band Modulation with In 2 O 3 Recombination Barrier Layers in Solid-State Dye-Sensitized Solar Cells

    KAUST Repository

    Brennan, Thomas P.

    2013-11-21

    Atomic layer deposition (ALD) was used to grow subnanometer indium oxide recombination barriers in a solid-state dye-sensitized solar cell (DSSC) based on the spiro-OMeTAD hole-transport material (HTM) and the WN1 donor-π-acceptor organic dye. While optimal device performance was achieved after 3-10 ALD cycles, 15 ALD cycles (∼2 Å of In2O 3) was observed to be optimal for increasing open-circuit voltage (VOC) with an average improvement of over 100 mV, including one device with an extremely high VOC of 1.00 V. An unexpected phenomenon was observed after 15 ALD cycles: the increasing VOC trend reversed, and after 30 ALD cycles VOC dropped by over 100 mV relative to control devices without any In2O3. To explore possible causes of the nonmonotonic behavior resulting from In2O3 barrier layers, we conducted several device measurements, including transient photovoltage experiments and capacitance measurements, as well as density functional theory (DFT) studies. Our results suggest that the VOC gains observed in the first 20 ALD cycles are due to both a surface dipole that pulls up the TiO2 conduction band and recombination suppression. After 30 ALD cycles, however, both effects are reversed: the surface dipole of the In2O3 layer reverses direction, lowering the TiO 2 conduction band, and mid-bandgap states introduced by In 2O3 accelerate recombination, leading to a reduced V OC. © 2013 American Chemical Society.

  13. Low-Frequency Noise Properties of GaN Schottky Barriers Deposited on Intermediate Temperature Buffer Layers

    Institute of Scientific and Technical Information of China (English)

    B.; H.; Leung; W.; K.; Fong; C.; Surya; L.; W.; Lu; W.; K.; Ge

    2003-01-01

    Flicker noise and deep level transient spectroscopy were used to characterize defect properties of GaN films with different buffer structures. Results indicate improved properties with the use of intermediate temperature buffer layers due to the relaxation of residue strain in the films.

  14. Schottky barrier contrasts in single and bi-layer graphene contacts for MoS{sub 2} field-effect transistors

    Energy Technology Data Exchange (ETDEWEB)

    Du, Hyewon; Kim, Taekwang; Shin, Somyeong; Kim, Dahye; Seo, Sunae, E-mail: sunaeseo@sejong.ac.kr [Department of Physics, Sejong University, Seoul 143-747 (Korea, Republic of); Kim, Hakseong; Lee, Sang Wook [Divison of Quantum Phases and Devices, Department of Physics, Konkuk University, Seoul 143-701 (Korea, Republic of); Sung, Ji Ho; Jo, Moon-Ho [Center for Artificial Low-Dimensional Electronic Systems, Institute for Basic Science (IBS), 77 Cheongam-Ro, Pohang 790-784 (Korea, Republic of); Division of Advanced Materials Science, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Pohang 790-784 (Korea, Republic of); Lee, Myoung Jae [Center for Artificial Low-Dimensional Electronic Systems, Institute for Basic Science (IBS), 77 Cheongam-Ro, Pohang 790-784 (Korea, Republic of); Seo, David H. [Samsung Electronics Company, Limited, System LSI Division, TD Team, Gyunggi 446-711 (Korea, Republic of)

    2015-12-07

    We have investigated single- and bi-layer graphene as source-drain electrodes for n-type MoS{sub 2} transistors. Ti-MoS{sub 2}-graphene heterojunction transistors using both single-layer MoS{sub 2} (1M) and 4-layer MoS{sub 2} (4M) were fabricated in order to compare graphene electrodes with commonly used Ti electrodes. MoS{sub 2}-graphene Schottky barrier provided electron injection efficiency up to 130 times higher in the subthreshold regime when compared with MoS{sub 2}-Ti, which resulted in V{sub DS} polarity dependence of device parameters such as threshold voltage (V{sub TH}) and subthreshold swing (SS). Comparing single-layer graphene (SG) with bi-layer graphene (BG) in 4M devices, SG electrodes exhibited enhanced device performance with higher on/off ratio and increased field-effect mobility (μ{sub FE}) due to more sensitive Fermi level shift by gate voltage. Meanwhile, in the strongly accumulated regime, we observed opposing behavior depending on MoS{sub 2} thickness for both SG and BG contacts. Differential conductance (σ{sub d}) of 1M increases with V{sub DS} irrespective of V{sub DS} polarity, while σ{sub d} of 4M ceases monotonic growth at positive V{sub DS} values transitioning to ohmic-like contact formation. Nevertheless, the low absolute value of σ{sub d} saturation of the 4M-graphene junction demonstrates that graphene electrode could be unfavorable for high current carrying transistors.

  15. Remediation of nitrate-nitrogen contaminated groundwater using a pilot-scale two-layer heterotrophic-autotrophic denitrification permeable reactive barrier with spongy iron/pine bark.

    Science.gov (United States)

    Huang, Guoxin; Huang, Yuanying; Hu, Hongyan; Liu, Fei; Zhang, Ying; Deng, Renwei

    2015-07-01

    A novel two-layer heterotrophic-autotrophic denitrification (HAD) permeable reactive barrier (PRB) was proposed for remediating nitrate-nitrogen contaminated groundwater in an oxygen rich environment, which has a packing structure of an upstream pine bark layer and a downstream spongy iron and river sand mixture layer. The HAD PRB involves biological deoxygenation, heterotrophic denitrification, hydrogenotrophic denitrification, and anaerobic Fe corrosion. Column and batch experiments were performed to: (1) investigate the NO3(-)-N removal and inorganic geochemistry; (2) explore the nitrogen transformation and removal mechanisms; (3) identify the hydrogenotrophic denitrification capacity; and (4) evaluate the HAD performance by comparison with other approaches. The results showed that the HAD PRB could maintain constant high NO3(-)-N removal efficiency (>91%) before 38 pore volumes (PVs) of operation (corresponding to 504d), form little or even negative NO2(-)-N during the 45 PVs, and produce low NH4(+)-N after 10 PVs. Aerobic heterotrophic bacteria played a dominant role in oxygen depletion via aerobic respiration, providing more CO2 for hydrogenotrophic denitrification. The HAD PRB significantly relied on heterotrophic denitrification. Hydrogenotrophic denitrification removed 10-20% of the initial NO3(-)-N. Effluent total organic carbon decreased from 403.44mgL(-1) at PV 1 to 9.34mgL(-1) at PV 45. Packing structure had a noticeable effect on its denitrification. PMID:25747301

  16. The Outermost Stratum Corneum Layer is an Effective Barrier Against Dermal Uptake of Topically Applied Micronized Titanium Dioxide.

    Science.gov (United States)

    Pflücker, F; Hohenberg, H; Hölzle, E; Will, T; Pfeiffer, S; Wepf, R; Diembeck, W; Wenck, H; Gers-Barlag, H

    1999-12-01

    In order to help clarify the controversially discussed dermal uptake properties of micronized titanium dioxide (TiO _ 2), we conducted extensive in vitro dermal absorption studies with 'Franz-type' diffusion cells on excised porcine skin. After biopsies and chemical fixation, the overall localization of TiO _ 2 in the skin was analyzed by means of transmission electron microscopy (TEM). The lateral and vertical distribution of TiO _ 2 within the stratum corneum (SC) was investigated by tape stripping and subsequent scanning electron microscopy (SEM) in combination with energy dispersive X-ray analysis (EDXA). TiO _ 2 was found exclusively on the outermost SC layer. The surface deposit, as displayed by TEM, featured clearly distinguishable agglomerates as well as single particles with a characteristic cubic shape and a primary particle size of about 20-50 nm. Concurrently, SEM/EDXA micrographs first showed an even distribution of TiO _ 2 on the skin surface. After 10-fold stripping, however, TiO _ 2 was found to be localized only in the furrows and not on the partially removed ridges of the skin surface. SEM/EDXA micrographs of the adhesive tape strips revealed a characteristic pattern of stripped material and free regions. This pattern was an imprint of the skin's topography. Hence, tape stripping initially removed TiO _ 2 and SC layers only from the ridges and not from the deeper furrows. Continued stripping increasingly yielded material from the deeper contours of the SC surface. TiO _ 2 was found only in traces in the upper part of the follicle without any evidence of uptake into the follicular epithelium. This indicates that there is not any relevant penetration via the follicular route. We conclude that due to the microtopography of the skin, the strip number normally does not reflect the SC layer number. Accordingly, tape stripping results should always be interpreted with care, especially in the case of topically applied particles, as even higher numbers of

  17. Angle-resolved soft X-ray magnetic circular dichroism in a monatomic Fe layer facing an MgO(0 0 1) tunnel barrier

    Energy Technology Data Exchange (ETDEWEB)

    Mamiya, K. [Photon Factory, Institute of Materials Structure Science (IMSS), High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba, Ibaraki 305-0801 (Japan); Koide, T. [Photon Factory, Institute of Materials Structure Science (IMSS), High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba, Ibaraki 305-0801 (Japan)]. E-mail: tsuneharu.koide@kek.jp; Ishida, Y. [Department of Complexity Science and Engineering, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561 (Japan); Osafune, Y. [Department of Complexity Science and Engineering, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561 (Japan); Fujimori, A. [Department of Complexity Science and Engineering, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561 (Japan); Suzuki, Y. [Graduate School of Engineering Science, Osaka University, 1-3 Toyonaka, Osaka 560-8531 (Japan); NanoElectronics Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8568 (Japan); Katayama, T. [NanoElectronics Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8568 (Japan); Yuasa, S. [NanoElectronics Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8568 (Japan)

    2006-11-15

    The electronic and magnetic states of a monatomic Fe(0 0 1) layer directly facing an MgO(0 0 1) tunnel barrier were studied by angle-resolved X-ray magnetic circular dichroism (XMCD) at the Fe L {sub 2,3} edges in the longitudinal (L) and transverse (T) arrangements. A strong XMCD reveals no oxidation of the 1-ML Fe, showing its crucial role in giant tunnel magnetoresistance effects in Fe/MgO/Fe magnetic tunnel junctions. Sum-rule analyses of the angle-resolved XMCD give values of a spin moment, in-plane and out-of-plane orbital and magnetic dipole moments. Argument is given on their physical implication.

  18. Study on transconductance non-linearity of AlGaN/GaN HEMTs considering acceptor-like traps in barrier layer under the gate

    Science.gov (United States)

    Du, Jiangfeng; Chen, Nanting; Jiang, Zhiguang; Bai, Zhiyuan; Liu, Yong; Liu, Yang; Yu, Qi

    2016-01-01

    DC and pulsed transfer characteristics of AlGaN/GaN high electron mobility transistors (HEMTs) have been systematically investigated. A significant difference of transconductance linearity between DC and gate-pulsed measurements is clearly observed. The acceptor-like traps in the barrier layer under the gate is the main cause of non-linear behavior of AlGaN/GaN HEMTs transconductance. A physical model has been constructed to explain the phenomenon. In the modeling, an acceptor-like trap concentration of 1.2 × 1019 cm-3 with an energy level of 0.5 eV below the conduction band minimum shows the best fit to measurement results.

  19. Experimental Investigation of “Why an AC Dielectric Barrier Discharge Plasma Actuator is Preferred to DC Corona Wind Actuator in Boundary Layer Flow Control?”

    Directory of Open Access Journals (Sweden)

    Gholam reza Tathiri

    2014-01-01

    Full Text Available In this paper, characteristics of the flow induced in the boundary layer by an AC-Dielectric Barrier Discharge (DBD plasma actuator are compared against those of a DC-corona wind actuator. This is achieved by visualization of the induced flow using smoke injection and measuring the horizontal induced velocity. Our measurements show that the maximum induced velocity of an AC-DBD actuator is about one order of magnitude larger than that of a DC-corona actuator. For an AC-DBD actuator, the induced velocity is maximized on the plate surface while for a DC-corona actuator the induced velocity peaks at about 20mm above the surface. Using flow visualization, we demonstrate that the induced velocity of an AC-DBD actuator is parallel to the surface, while the induced velocity of a DC-corona actuator has components perpendicular to surface.

  20. Resistance switching memory characteristics of CaF2/Si/CaF2 resonant-tunneling quantum-well heterostructures sandwiched by nanocrystalline Si secondary barrier layers

    Science.gov (United States)

    Kuwata, Yuya; Suda, Keita; Watanabe, Masahiro

    2016-07-01

    A novel resistance switching memory using CaF2/Si/CaF2 resonant-tunneling quantum well heterostructures sandwiched by nanocrystalline Si (nc-Si) as secondary barrier layers has been proposed and the room temperature current–voltage characteristics of the basic resistance switching memory operation have been demonstrated. A resistance switching voltage of 1.0 V, a peak current density of approximately 42 kA/cm2, and an ON/OFF ratio of 2.8 were observed. In particular, more than 28000 write-read-erase cyclic memory operations have been demonstrated by applying pulsed input voltage sequences, which suggests better endurance than the device using a CaF2/CdF2/CaF2 heterostructure.

  1. Large-scale fabrication of linear low density polyethylene/layered double hydroxides composite films with enhanced heat retention, thermal, mechanical, optical and water vapor barrier properties

    Science.gov (United States)

    Xie, Jiazhuo; Zhang, Kun; Zhao, Qinghua; Wang, Qingguo; Xu, Jing

    2016-11-01

    Novel LDH intercalated with organic aliphatic long-chain anion was large-scale synthesized innovatively by high-energy ball milling in one pot. The linear low density polyethylene (LLDPE)/layered double hydroxides (LDH) composite films with enhanced heat retention, thermal, mechanical, optical and water vapor barrier properties were fabricated by melt blending and blowing process. FT IR, XRD, SEM results show that LDH particles were dispersed uniformly in the LLDPE composite films. Particularly, LLDPE composite film with 1% LDH exhibited the optimal performance among all the composite films with a 60.36% enhancement in the water vapor barrier property and a 45.73 °C increase in the temperature of maximum mass loss rate compared with pure LLDPE film. Furthermore, the improved infrared absorbance (1180-914 cm-1) of LLDPE/LDH films revealed the significant enhancement of heat retention. Therefore, this study prompts the application of LLDPE/LDH films as agricultural films with superior heat retention.

  2. Improving hole injection and carrier distribution in InGaN light-emitting diodes by removing the electron blocking layer and including a unique last quantum barrier

    International Nuclear Information System (INIS)

    The effects of removing the AlGaN electron blocking layer (EBL), and using a last quantum barrier (LQB) with a unique design in conventional blue InGaN light-emitting diodes (LEDs), were investigated through simulations. Compared with the conventional LED design that contained a GaN LQB and an AlGaN EBL, the LED that contained an AlGaN LQB with a graded-composition and no EBL exhibited enhanced optical performance and less efficiency droop. This effect was caused by an enhanced electron confinement and hole injection efficiency. Furthermore, when the AlGaN LQB was replaced with a triangular graded-composition, the performance improved further and the efficiency droop was lowered. The simulation results indicated that the enhanced hole injection efficiency and uniform distribution of carriers observed in the quantum wells were caused by the smoothing and thinning of the potential barrier for the holes. This allowed a greater number of holes to tunnel into the quantum wells from the p-type regions in the proposed LED structure

  3. Modification of metal–InGaAs Schottky barrier behaviour by atomic layer deposition of ultra-thin Al{sub 2}O{sub 3} interlayers

    Energy Technology Data Exchange (ETDEWEB)

    Chauhan, Lalit [School of Physical Sciences, Dublin City University, Dublin 9 (Ireland); Gupta, Suman; Jaiswal, Piyush; Bhat, Navakanta; Shivashankar, S.A. [Centre for Nano Science and Engineering (CeNSE), Indian Institute of Science, Bangalore 560012 (India); Hughes, G. [School of Physical Sciences, Dublin City University, Dublin 9 (Ireland)

    2015-08-31

    The effect of inserting ultra-thin atomic layer deposited Al{sub 2}O{sub 3} dielectric layers (1 nm and 2 nm thick) on the Schottky barrier behaviour for high (Pt) and low (Al) work function metals on n- and p-doped InGaAs substrates has been investigated. Rectifying behaviour was observed for the p-type substrates (both native oxide and sulphur passivated) for both the Al/p-InGaAs and Al/Al{sub 2}O{sub 3}/p-InGaAs contacts. The Pt contacts directly deposited on p-InGaAs displayed evidence of limited rectification which increased with Al{sub 2}O{sub 3} interlayer thickness. Ohmic contacts were formed for both metals on n-InGaAs in the absence of an Al{sub 2}O{sub 3} interlayer, regardless of surface passivation. However, limited rectifying behaviour was observed for both metals on the 2 nm Al{sub 2}O{sub 3}/n-InGaAs samples for the sulphur passivated InGaAs surface, indicating the importance of both surface passivation and the presence of an ultra-thin dielectric interlayer on the current–voltage characteristics displayed by these devices. - Highlights: • Investigation of the modification of metal–InGaAs Schottky barrier (SB) behaviour • Improving metal–InGaAs interface by sulphur passivation and ultrathin interlayer • Examine the effect of low work function and high work function metals on SB • Different SB behaviours observed on both n-type InGaAs and p-type InGaAs • Metal/n-InGaAs interface is more strongly pinned than the metal/p-InGaAs interface.

  4. Modification of metal–InGaAs Schottky barrier behaviour by atomic layer deposition of ultra-thin Al2O3 interlayers

    International Nuclear Information System (INIS)

    The effect of inserting ultra-thin atomic layer deposited Al2O3 dielectric layers (1 nm and 2 nm thick) on the Schottky barrier behaviour for high (Pt) and low (Al) work function metals on n- and p-doped InGaAs substrates has been investigated. Rectifying behaviour was observed for the p-type substrates (both native oxide and sulphur passivated) for both the Al/p-InGaAs and Al/Al2O3/p-InGaAs contacts. The Pt contacts directly deposited on p-InGaAs displayed evidence of limited rectification which increased with Al2O3 interlayer thickness. Ohmic contacts were formed for both metals on n-InGaAs in the absence of an Al2O3 interlayer, regardless of surface passivation. However, limited rectifying behaviour was observed for both metals on the 2 nm Al2O3/n-InGaAs samples for the sulphur passivated InGaAs surface, indicating the importance of both surface passivation and the presence of an ultra-thin dielectric interlayer on the current–voltage characteristics displayed by these devices. - Highlights: • Investigation of the modification of metal–InGaAs Schottky barrier (SB) behaviour • Improving metal–InGaAs interface by sulphur passivation and ultrathin interlayer • Examine the effect of low work function and high work function metals on SB • Different SB behaviours observed on both n-type InGaAs and p-type InGaAs • Metal/n-InGaAs interface is more strongly pinned than the metal/p-InGaAs interface

  5. High-barrier Schottky contact on n-type 4H-SiC epitaxial layer and studies of defect levels by deep level transient spectroscopy (DLTS)

    Science.gov (United States)

    Nguyen, Khai V.; Pak, Rahmi O.; Oner, Cihan; Mannan, Mohammad A.; Mandal, Krishna C.

    2015-08-01

    High barrier Schottky contact has been fabricated on 50 μm n-type 4H-SiC epitaxial layers grown on 350 μm thick substrate 8° off-cut towards the [11̅20] direction. The 4H-SiC epitaxial wafer was diced into 10 x 10 mm2 samples. The metal-semiconductor junctions were fabricated by photolithography and dc sputtering with ruthenium (Ru). The junction properties were characterized through current-voltage (I-V) and capacitance-voltage (C-V) measurements. Detectors were characterized by alpha spectroscopy measurements in terms of energy resolution and charge collection efficiency using a 0.1 μCi 241Am radiation source. It was found that detectors fabricated from high work function rare transition metal Ru demonstrated very low leakage current and significant improvement of detector performance. Defect characterization of the epitaxial layers was conducted by deep level transient spectroscopy (DLTS) to thoroughly investigate the defect levels in the active region. The presence of a new defect level induced by this rare transition metal-semiconductor interface has been identified and characterized.

  6. Comparative Study of SiO2, Al2O3, and BeO Ultrathin Interfacial Barrier Layers in Si Metal-Oxide-Semiconductor Devices

    Directory of Open Access Journals (Sweden)

    J. H. Yum

    2012-01-01

    Full Text Available In a previous study, we have demonstrated that beryllium oxide (BeO film grown by atomic layer deposition (ALD on Si and III-V MOS devices has excellent electrical and physical characteristics. In this paper, we compare the electrical characteristics of inserting an ultrathin interfacial barrier layer such as SiO2, Al2O3, or BeO between the HfO2 gate dielectric and Si substrate in metal oxide semiconductor capacitors (MOSCAPs and n-channel inversion type metal oxide semiconductor field effect transistors (MOSFETs. Si MOSCAPs and MOSFETs with a BeO/HfO2 gate stack exhibited high performance and reliability characteristics, including a 34% improvement in drive current, slightly better reduction in subthreshold swing, 42% increase in effective electron mobility at an electric field of 1 MV/cm, slightly low equivalent oxide thickness, less stress-induced flat-band voltage shift, less stress induced leakage current, and less interface charge.

  7. Al2O3/Au/Al2O3 layered films as tritium permeation barrier%Al2O3/Au/Al2O3层状阻氚薄膜

    Institute of Scientific and Technical Information of China (English)

    汤波楷; 何业东; 曹江利; 唐涛; 饶咏初

    2012-01-01

    Single Al2O3 films, single Au films and Al2O3/Au/Al2O3 layered films were prepared on 316L stainless steel substrate by megnetron sputtering. Then vapour phase permeation experiment of deuterium through 316L substrate and its film materials were carried out at 500℃ with a partial pressure of deuterium 0. 06 MPa. The results indicate that morphology of the three films is good and no phenomenon of cracking and spalling is found after deuterium permeation. Deuterium permeation reduction factors (PRF) of these films are over one order of magnitude relative to clean 316L. The performance of barrying deuterium increases progressively in the order of single Al2O3 films, single Au films and Al2O3/Au/Al2O3 ayered films. Al2O3/Au/Al2O3 layered films exhibit excellent performance of barrying deuterium because the mechanical properties of the layered films are improved visibly by the ductile interlayer Au and the interdiffusion between Au and 316L substratc is hindered by Al2O3 layer, so Au can give full play to barry deuterium. The study shows that layered films like precious metal integrated with ceramics is a new way in the domain of tritium permeation barrier development.%采用磁控溅射法在316L不锈钢基体上分别沉积单层Al2O3,膜、单层Au膜以及Al2O3/Au/Al2O3层状薄膜。采用气相渗透法在500℃,氘分压为0.06MPa条件下测试了薄膜的阻氘性能。结果表明,3种薄膜氘渗透后,薄膜的形貌良好,无开裂、无剥落的现象,氘渗透率减低因子均比316L不锈钢基材增大一个数量级以上,阻氘效能按单层Al2O3,膜、单层Au膜以及Al2O3/Au/Al2O3层状薄膜依次递升。Al2O3/Au/Al2O3层状薄膜的优异阻氘效能可归因于,延性的Au夹层使层状薄膜的力学性能得到显著提高;Al2O3层能阻止Au与基体间互扩散,使Au能充分发挥阻氘效能。本研究表明,由贵金属与陶瓷阻氚材料构成的层状薄膜是发展阻氚涂层的新途径。

  8. Persistent photoconductivity in AlGaN/GaN heterojunction channels caused by the ionization of deep levels in the AlGaN barrier layer

    Energy Technology Data Exchange (ETDEWEB)

    Murayama, H.; Akiyama, Y.; Niwa, R.; Sakashita, H.; Sakaki, H. [Toyota Technological Institute, 2-12-1 Hisakata, Tempaku-ku, Nagoya 468-8511 (Japan); Kachi, T. [Toyota Central R and D Labs., Inc., 41-1 Yokomichi, Nagakute, Aichi 480-1192 (Japan); Sugimoto, M. [Toyota Motor Corporation, 543 Kirigahora, Nishihirose-cho, Toyota, Aichi 470-0309 (Japan)

    2013-12-04

    Time-dependent responses of drain current (I{sub d}) in an AlGaN/GaN HEMT under UV (3.3 eV) and red (2.0 eV) light illumination have been studied at 300 K and 250 K. UV illumination enhances I{sub d} by about 10 %, indicating that the density of two-dimensional electrons is raised by about 10{sup 12} cm{sup −2}. When UV light is turned off at 300 K, a part of increased I{sub d} decays quickly but the other part of increment is persistent, showing a slow decay. At 250 K, the majority of increment remains persistent. It is found that such a persistent increase of I{sub d} at 250 K can be partially erased by the illumination of red light. These photo-responses are explained by a simple band-bending model in which deep levels in the AlGaN barrier get positively charged by the UV light, resulting in a parabolic band bending in the AlGaN layer, while some potion of those deep levels are neutralized by the red light.

  9. Cu diffusion in single-crystal and polycrystalline TiN barrier layers: A high-resolution experimental study supported by first-principles calculations

    Energy Technology Data Exchange (ETDEWEB)

    Mühlbacher, Marlene, E-mail: marlene.muehlbacher@unileoben.ac.at [Department of Physical Metallurgy and Materials Testing, Montanuniversität Leoben, Franz-Josef-Strasse 18, A-8700 Leoben (Austria); Thin Film Physics Division, Department of Physics, Chemistry and Biology (IFM), Linköping University, S-581 83 Linköping (Sweden); Bochkarev, Anton S. [Materials Center Leoben Forschung GmbH, Roseggerstrasse 12, A-8700 Leoben (Austria); Institute of Physics, University of Graz, NAWI Graz, Universitätsplatz 5, A-8010 Graz (Austria); Mendez-Martin, Francisca; Schalk, Nina; Mitterer, Christian [Department of Physical Metallurgy and Materials Testing, Montanuniversität Leoben, Franz-Josef-Strasse 18, A-8700 Leoben (Austria); Sartory, Bernhard; Chitu, Livia; Popov, Maxim N.; Spitaler, Jürgen [Materials Center Leoben Forschung GmbH, Roseggerstrasse 12, A-8700 Leoben (Austria); Puschnig, Peter [Institute of Physics, University of Graz, NAWI Graz, Universitätsplatz 5, A-8010 Graz (Austria); Ding, Hong [Environmental Energy Technologies Division, Lawrence Berkeley National Laboratory, Cyclotron Road 1, Berkeley, California 94720 (United States); Lu, Jun; Hultman, Lars [Thin Film Physics Division, Department of Physics, Chemistry and Biology (IFM), Linköping University, S-581 83 Linköping (Sweden)

    2015-08-28

    Dense single-crystal and polycrystalline TiN/Cu stacks were prepared by unbalanced DC magnetron sputter deposition at a substrate temperature of 700 °C and a pulsed bias potential of −100 V. The microstructural variation was achieved by using two different substrate materials, MgO(001) and thermally oxidized Si(001), respectively. Subsequently, the stacks were subjected to isothermal annealing treatments at 900 °C for 1 h in high vacuum to induce the diffusion of Cu into the TiN. The performance of the TiN diffusion barrier layers was evaluated by cross-sectional transmission electron microscopy in combination with energy-dispersive X-ray spectrometry mapping and atom probe tomography. No Cu penetration was evident in the single-crystal stack up to annealing temperatures of 900 °C, due to the low density of line and planar defects in single-crystal TiN. However, at higher annealing temperatures when diffusion becomes more prominent, density-functional theory calculations predict a stoichiometry-dependent atomic diffusion mechanism of Cu in bulk TiN, with Cu diffusing on the N sublattice for the experimental N/Ti ratio. In comparison, localized diffusion of Cu along grain boundaries in the columnar polycrystalline TiN barriers was detected after the annealing treatment. The maximum observed diffusion length was approximately 30 nm, yielding a grain boundary diffusion coefficient of the order of 10{sup −16} cm{sup 2} s{sup −1} at 900 °C. This is 10 to 100 times less than for comparable underdense polycrystalline TiN coatings deposited without external substrate heating or bias potential. The combined numerical and experimental approach presented in this paper enables the contrasting juxtaposition of diffusion phenomena and mechanisms in two TiN coatings, which differ from each other only in the presence of grain boundaries.

  10. Influence of the Thickness of the Barrier Layer in Nanoheterostructures and the Gate-Drain Capacitance on the Microwave and Noise Parameters of Field-Effect AlGaN/GaN HEMT

    Science.gov (United States)

    Mikhaylovich, S. V.; Fedorov, Yu. V.

    2016-07-01

    We perform a computational and analytical study of how the thickness of the barrier layer in nanoheterostructures and the gate-drain capacitance C gd influence the microwave parameters (limiting frequency of current amplification and maximum generation frequency) and noise parameters (noise factor) of a field-effect AlGaN/GaN high electron mobility transistor. The results of complex measurements of the parameters of such transistors based on nanoheterostructures with a barrier layer thickness of 3.5-15.7 nm, which were performed within the framework of four technological routes in the range 0.1-67 GHz, are presented. It is shown that in order to reduce the noise ratio and improve the microwave parameters, it is necessary to optimize both the parameters of nanoheterostructures and the manufacturing techniques. In particular, the thickness of the barrier layer should be reduced, and the gate length should be chosen such as to maximize the product of the squared maximum current amplification frequency in the interior of the transistor and the output impedance between the drain and the source. Additionally, attention should be given to the shape of the gate to reduce the capacitance C gd. Under certain conditions of manufacture of nitride field-effect HEMT, one can achieve a lower noise factor compared with the transistors based on arsenide nanoheterostructures.

  11. Catalytic thermal barrier coatings

    Science.gov (United States)

    Kulkarni, Anand A.; Campbell, Christian X.; Subramanian, Ramesh

    2009-06-02

    A catalyst element (30) for high temperature applications such as a gas turbine engine. The catalyst element includes a metal substrate such as a tube (32) having a layer of ceramic thermal barrier coating material (34) disposed on the substrate for thermally insulating the metal substrate from a high temperature fuel/air mixture. The ceramic thermal barrier coating material is formed of a crystal structure populated with base elements but with selected sites of the crystal structure being populated by substitute ions selected to allow the ceramic thermal barrier coating material to catalytically react the fuel-air mixture at a higher rate than would the base compound without the ionic substitutions. Precious metal crystallites may be disposed within the crystal structure to allow the ceramic thermal barrier coating material to catalytically react the fuel-air mixture at a lower light-off temperature than would the ceramic thermal barrier coating material without the precious metal crystallites.

  12. Barrier-oxide layer engineering of TiO{sub 2} nanotube arrays to get single- and multi-stage Y-branched nanotubes: Effect of voltage ramping and electrolyte conductivity

    Energy Technology Data Exchange (ETDEWEB)

    Anitha, V.C. [School of Mechanical Engineering, Yeungnam University, Gyeongsan 712-749 (Korea, Republic of); Banerjee, Arghya Narayan, E-mail: arghya@ynu.ac.kr [School of Mechanical Engineering, Yeungnam University, Gyeongsan 712-749 (Korea, Republic of); Joo, Sang Woo, E-mail: swjoo@yu.ac.kr [School of Mechanical Engineering, Yeungnam University, Gyeongsan 712-749 (Korea, Republic of); Min, Bong Ki [Center for Research Facilities, Yeungnam University, Gyeongsan 712-749 (Korea, Republic of)

    2015-05-15

    Highlights: • Single and multi-stage Y-branched TiO{sub 2} nanotube arrays fabricated successfully. • Effect of voltage ramping down process on the branching of nanotube revealed. • Unequal interfacial movement across barrier layer of nanotubes manifests branching. • By controlling thinning of barrier oxide layer different morphologies of TNAs fabricated. • Y-branched, stacked double layer, mixture of broken/branched and multi-branched TNAs formed. - Abstract: Single and multi-stage Y-branched TiO{sub 2} nanotube arrays (TNAs) have been fabricated by a voltage ramping down process using potentiostatic two-step anodization in 0.5 wt% hydrofluoric acid (HF)/glycerol (1:2 volume ratio) electrolyte. Initially, the voltage is kept at 40 V for 3 h and then it is ramped down to different voltages (e.g. 30 V, 34 V, 36 V, 38 V and 39 V) at a ramping rate of either −1.0 V s{sup −1} or −0.5 V s{sup −1} in one time and two-time aged electrolytes. The growth mechanism of Y-branching of TNAs is modeled and explained in terms of unequal interfacial movements of the two interfaces across the barrier oxide layer (BOL) under non-steady-state growth regime. The ‘pinched off’ area of the BOL at the nanotube propagation front can be controlled effectively with the relative ramping voltage levels and electrolyte's conductivity to obtain Y-branched TNAs.

  13. Barriers to radiant barriers

    Energy Technology Data Exchange (ETDEWEB)

    Henke, C.

    Radiant barriers are an energy saving device which decrease the heat lost through radiant heat transfer. The primary reason to install it is to save on air conditioning costs, as it prevents the loss of heat through the attic. They have been the subject of much controversy, as the claims made by many manufacturers were extreme (up to 100% heat shielding), with the consumer paying high prices for ineffective devices. The authors outline criteria for the consumer to consider when buying radiant warmers and then give installation tips for both new constructions and retrofits.

  14. Encapsulation of Cu(InGa)Se{sub 2} solar cell with Al{sub 2}O{sub 3} thin-film moisture barrier grown by atomic layer deposition

    Energy Technology Data Exchange (ETDEWEB)

    Carcia, P.F.; McLean, R.S. [DuPont Research and Development, Experimental Station, Wilmington, DE 19880-0400 (United States); Hegedus, Steven [Institute of Energy Conversion, University of Delaware, Newark, DE 19716-3820 (United States)

    2010-12-15

    We compared the moisture sensitivity of a Cu(InGa)Se{sub 2} (CIGS) photovoltaic cell protected by 55 nm thick Al{sub 2}O{sub 3}, grown by atomic layer deposition (ALD), with equivalent CIGS cells protected with a glass or a polyester lid. Aging studies for more than 1000 h at 85 C/85% relative humidity with simulated solar illumination showed that the ALD Al{sub 2}O{sub 3} thin-film barrier provided superior moisture protection for the CIGS cell, i.e. no reduction in open circuit voltage or fill factor occurred, compared to cells protected with a glass or plastic lid. We concluded that a moisture barrier grown by ALD could have broad applicability as a strategy for extending the lifetime of flexible CIGS cells. (author)

  15. Thermally stable AuBe-based ohmic contacts to p-type GaP for AlGaInP-based light-emitting diode by using a tungsten barrier layer

    Science.gov (United States)

    Kim, Dae-Hyun; Kang, Daesung; Park, Jae-Seong; Seong, Tae-Yeon

    2016-01-01

    We investigated how a tungsten diffusion barrier layer affected the electrical properties of AuBe/Au contacts to a p-GaP window layer (na = 5 × 1019 cm-3) for an AlGaInP-based light emitting diode. All of the as-deposited samples were ohmic. After annealing at 500 °C, the AuBe/Au contacts were electrically degraded with a specific contact resistivity of 1.0 × 10-4 Ωcm2. However, the electrical properties of the W-based contacts were improved, having a contact resistivity of 5.0 × 10-6 Ωcm2. The X-ray photoemission spectroscopy (XPS) results showed that the Ga 2 p core level for the annealed AuBe/Au contacts shifted to the high binding-energy side. On the other hand, that for the AuBe/W/Au contacts shifted toward the lower binding-energy side. For the AuBe/Au contacts, both Be and P atoms were shown to be outdiffused into the metal contact after annealing. However, for the AuBe/W/Au contacts, the outdiffusion of Be atoms was prevented by the W barrier layer, and the Be atoms were indiffused into GaP. Based on the X-ray photoemission spectroscopy (XPS), Auger electron spectroscopy (AES), and electrical results, the annealing-induced electrical degradation and improvement are described and discussed.

  16. Analyses of 2-DEG characteristics in GaN HEMT with AlN/GaN super-lattice as barrier layer grown by MOCVD.

    Science.gov (United States)

    Xu, Peiqiang; Jiang, Yang; Chen, Yao; Ma, Ziguang; Wang, Xiaoli; Deng, Zhen; Li, Yan; Jia, Haiqiang; Wang, Wenxin; Chen, Hong

    2012-02-20

    GaN-based high-electron mobility transistors (HEMTs) with AlN/GaN super-lattices (SLs) (4 to 10 periods) as barriers were prepared on (0001) sapphire substrates. An innovative method of calculating the concentration of two-dimensional electron gas (2-DEG) was brought up when AlN/GaN SLs were used as barriers. With this method, the energy band structure of AlN/GaN SLs was analyzed, and it was found that the concentration of 2-DEG is related to the thickness of AlN barrier and the thickness of the period; however, it is independent of the total thickness of the AlN/GaN SLs. In addition, we consider that the sheet carrier concentration in every SL period is equivalent and the 2-DEG concentration measured by Hall effect is the average value in one SL period. The calculation result fitted well with the experimental data. So, we proposed that our method can be conveniently applied to calculate the 2-DEG concentration of HEMT with the AlN/GaN SL barrier.

  17. In-situ fabrication of MoSi2/SiC–Mo2C gradient anti-oxidation coating on Mo substrate and the crucial effect of Mo2C barrier layer at high temperature

    International Nuclear Information System (INIS)

    MoSi2/SiC–Mo2C gradient coating on molybdenum was in situ prepared with pack cementation process by two steps: (1) carburizing with graphite powder to obtain a Mo2C layer on Mo substrate, and (2) siliconizing with Si powder to get a composite MoSi2/SiC layer on the upper part of Mo2C layer. The microstructure and elemental distribution in the coating were investigated with scanning electron microscopy (SEM), backscattered electron (BSE), energy dispersive spectroscopy (EDS), electron probe microanalysis (EPMA) and X-ray diffraction (XRD). Cyclic oxidation tests (at 500 °C, 1200 °C, 1400 °C and 1600 °C) demonstrated excellent oxidation resistance for the gradient composite coating and the mass loss was only 0.23% in 60 min at 1600 °C. XRD, EPMA, thermal dynamic and phase diagram analyses indicated that the Mo2C barrier layer played the key role in slowing down the diffusion of C and Si toward inner Mo substrate at high temperature and principally this contributed to the excellent anti-oxidation for Mo besides the outer MoSi2/SiC composite layer.

  18. In-situ fabrication of MoSi2/SiC-Mo2C gradient anti-oxidation coating on Mo substrate and the crucial effect of Mo2C barrier layer at high temperature

    Science.gov (United States)

    Liu, Jun; Gong, Qianming; Shao, Yang; Zhuang, Daming; Liang, Ji

    2014-07-01

    MoSi2/SiC-Mo2C gradient coating on molybdenum was in situ prepared with pack cementation process by two steps: (1) carburizing with graphite powder to obtain a Mo2C layer on Mo substrate, and (2) siliconizing with Si powder to get a composite MoSi2/SiC layer on the upper part of Mo2C layer. The microstructure and elemental distribution in the coating were investigated with scanning electron microscopy (SEM), back scattered electron (BSE), energy dispersive spectroscopy (EDS), electron probe microanalysis (EPMA) and X-ray diffraction (XRD). Cyclic oxidation tests (at 500 °C, 1200 °C, 1400 °C and 1600 °C) demonstrated excellent oxidation resistance for the gradient composite coating and the mass loss was only 0.23% in 60 min at 1600 °C. XRD, EPMA, thermal dynamic and phase diagram analyses indicated that the Mo2C barrier layer played the key role in slowing down the diffusion of C and Si toward inner Mo substrate at high temperature and principally this contributed to the excellent anti-oxidation for Mo besides the outer MoSi2/SiC composite layer.

  19. Barrier layer formation and PTCR effect in (1-x) Pb(Fe1/2Nb1/2)O3]-xPbTiO3 (x = 0.13) ceramics

    OpenAIRE

    Singh, Satendra Pal; Singh, Akhilesh Kumar; Pandey, Dhananjai

    2004-01-01

    (1-x)Pb(Fe1/2Nb1/2)O3-PbTiO3(PFN-xPT)Ceramics with x = 0.13 sintered at 1473K show diffuse phase transition and very high dielectric constant at lower frequencies.The high value of dielectric constant at lower frequencies is shown to be due to the barrier layer formation.The resistivity of the PFN-xPT ceramics, obtained by complex impedance analysis, initially decreases with temperature and then shows an upward trend beyond the ferroelectric Curie point reminiscent of BaTiO3 based thermistors...

  20. Estimation of moisture barrier ability of thin SiNx single layer on polymer substrates prepared by Cat-CVD method

    International Nuclear Information System (INIS)

    The SiNx films with the thickness of 50 nm were prepared by Cat-CVD method on the cyclic olefin copolymer (COC) and the polyethylene terephthalate (PET) substrates, and their moisture barrier abilities were evaluated. MOCON measurement method and Ca degradation test showed the moisture permeation results of 0.02 g/(m2 day) for PET substrate and 0.006 g/(m2 day) for COC substrate after SiNx deposition. Applying the simple model of gas barrier property, it was estimated that the Cat-CVD method achieves the high coverage ratio of over 99% for SiNx film on these substrates, and the moisture permeation rate of single SiNx film with the thickness of 50 nm was estimated to be 0.0045 g/(m2 day)

  1. Highly (110)- and (111)-oriented BiFeO3 films on BaPbO3 electrode with Ru or Pt /Ru barrier layers

    Science.gov (United States)

    Lee, Chia-Ching; Wu, Jenn-Ming; Hsiung, Chang-Po

    2007-04-01

    Highly (110)- and (111)-oriented BiFeO3 (BFO) films were fabricated with BaPbO3 (BPO )/Ru and BPO /Pt/Ru as electrode/barrier on Si substrates by rf-magnetron sputtering. The BPO /Ru and BPO /Pt/Ru stacks both induce oriented BFO films and act as diffusion barriers. The (110)- and (111)-oriented BFO films possess excellent ferroelectric properties with only minor leakage. The values of remnant polarization are almost the same, about 42μC/cm2, for (110)- and (111)-oriented BFO films. However, polarization measured under varying pulse widths demonstrates that the switching polarization in (111)-oriented BFO films is higher than in (110)-oriented films. Additionally, (111)-oriented BFO films exhibit better retention properties than (110)-oriented films.

  2. Performance improvement of GaN-based near-UV LEDs with InGaN/AlGaN superlattices strain relief layer and AlGaN barrier

    Science.gov (United States)

    Jia, Chuanyu; Yu, Tongjun; Feng, Xiaohui; Wang, Kun; Zhang, Guoyi

    2016-09-01

    The carrier confinement effect and piezoelectric field-induced quantum-confined stark effect of different GaN-based near-UV LED samples from 395 nm to 410 nm emission peak wavelength were investigated theoretically and experimentally. It is found that near-UV LEDs with InGaN/AlGaN multiple quantum wells (MQWs) active region have higher output power than those with InGaN/GaN MQWs for better carrier confinement effect. However, as emission peak wavelength is longer than 406 nm, the output power of the near-UV LEDs with AlGaN barrier is lower than that of the LEDs with GaN barrier due to more serious spatial separation of electrons and holes induced by the increase of piezoelectric field. The N-doped InGaN/AlGaN superlattices (SLs) were adopted as a strain relief layer (SRL) between n-GaN and MQWs in order to suppress the polarization field. It is demonstrated the output power of near-UV LEDs is increased obviously by using SLs SRL and AlGaN barrier for the discussed emission wavelength range. Besides, the forward voltage of near-UV LEDs with InGaN/AlGaN SLs SRL is lower than that of near-UV LEDs without SRL.

  3. Barrier mechanisms in the Drosophila blood-brain barrier

    Directory of Open Access Journals (Sweden)

    Samantha Jane Hindle

    2014-12-01

    Full Text Available The invertebrate blood-brain barrier field is growing at a rapid pace and, in recent years, studies have shown a physiologic and molecular complexity that has begun to rival its vertebrate counterpart. Novel mechanisms of paracellular barrier maintenance through GPCR signaling were the first demonstrations of the complex adaptive mechanisms of barrier physiology. Building upon this work, the integrity of the invertebrate blood-brain barrier has recently been shown to require coordinated function of all layers of the compound barrier structure, analogous to signaling between the layers of the vertebrate neurovascular unit. These findings strengthen the notion that many blood-brain barrier mechanisms are conserved between vertebrates and invertebrates, and suggest that novel findings in invertebrate model organisms will have a significant impact on the understanding of vertebrate BBB functions. In this vein, important roles in coordinating localized and systemic signaling to dictate organism development and growth are beginning to show how the blood-brain barrier can govern whole animal physiologies. This includes novel functions of blood-brain barrier gap junctions in orchestrating synchronized neuroblast proliferation, and of blood-brain barrier secreted antagonists of insulin receptor signaling. These advancements and others are pushing the field forward in exciting new directions. In this review, we provide a synopsis of invertebrate blood-brain barrier anatomy and physiology, with a focus on insights from the past 5 years, and highlight important areas for future study.

  4. 表面异形遮弹层的诱偏机理与试验%Yaw-inducing Mechanism and Experimental Investigation of Shielding Layer With Irregular Barrier on Surface

    Institute of Scientific and Technical Information of China (English)

    陈万祥; 郭志昆; 吴昊; 严少华

    2011-01-01

    To study the yaw-inducing mechanism of shielding layer with irregular barrier on surface,the mechanical model of projectile impacting on yaw-inducing layer was established according to Hertz contact theory.The impact attitude and velocity of projectile,the material properties and geometrical size of irregular barrier were synthetically taken into account.The dynamic differential equations while projectile impacting on irregular barrier were presented based on rigid kinematics theory.The yawing angle of projectile increases with the increase of impact velocity,and the calculation results are close to experimental results in definite impact velocity.The result shows that the attack angle and angular velocity are obviously generated due to the great unsymmetrical contact forces caused by irregular barrier.The unsymmetrical contact forces increase with the increase of impact velocity,and the penetration capacity of the projectile is reduced greatly.%为揭示表面异形遮弹层的诱偏机理,采用Hertz接触理论建立了弹体与偏航层中异形体撞击的力学模型,综合考虑了弹体入射姿态、命中速度以及异形体材料特性、几何参数等因素的影响,并根据刚体运动学理论进一步导出弹体与异形体撞击过程中的运动微分方程.弹体偏转角随命中速度增大而增大;在一定速度范围内,计算结果与试验数据较为接近.结果表明,弹体在撞击异形体的过程中受到巨大的非对称力作用,且其作用随命中速度增大而增大,致使产生较大的攻角和角速度,削弱了弹体侵彻威力.

  5. Dependence of efficiency of thin-film CdS/CdTe solar cell on parameters of absorber layer and barrier structure

    International Nuclear Information System (INIS)

    Dependences of the open-circuit voltage, short-circuit current, fill factor, and efficiency of a CdS/CdTe solar cell on the resistivity and thickness of the p-CdTe absorber layer, the noncompensated acceptor concentration Na-Nd, and carrier lifetime τ in CdTe, are investigated, and optimization of these parameters in order to improve the solar cell efficiency is performed. It has been shown that the observed low efficiency of CdS/CdTe solar cells is caused by the too short electron lifetime in the range of 10-10-10-9 s and too thin (3-5 μm) CdTe layer currently used for fabrication of CdTe/CdS solar cells. To achieve an efficiency of 28-30%, the resistivity and thickness of the CdTe absorber layer, the noncompensated acceptor concentration, and carrier lifetime should be ∼ 0.1 Ω.cm, ≥ 20-30 μm, ≥ 1016 cm-3, and ≥ 10-6 s, respectively

  6. 磷酸和酒石酸在GSI阻挡层CMP抛光液中的应用%Phosphoric Acid and Tartaric Acid Applied in GSI Barrier Layer CMP Slurry

    Institute of Scientific and Technical Information of China (English)

    张晓强; 刘玉岭; 王辰伟; 杨立兵

    2012-01-01

    在阻挡层的化学机械平坦化(CMP)过程中,Cu与阻挡层去除速率的一致性是保证平坦化的关键问题之一.低k介质材料的引入要求阻挡层在低压力下用弱碱性抛光液进行CMP,这给抛光液对不同材料的选择性提出了新的挑战.研究了低压2 psi,(1 psi =6.89 kPa) CMP条件下,磷酸和酒石酸作为阻挡层抛光液pH调节剂对Cu和Ta的络合作用.实验结果表明,酒石酸对Cu和Ta有一定的络合作用,能够提高它们的去除速率;磷酸能提高Ta的去除速率,而对Cu的去除有抑制作用.最终在加入磷酸浓度为2×10-2 mol/L,酒石酸浓度为1×10-2 mol/L,H2O2体积分数为0.3%,pH =8.5时,Cu/ Ta/SiO2介质的去除速率选择比达到了1∶1∶1,去除速率约为58 nm/min;同时,磷酸和酒石酸的加入能够有效改善Cu的表面状态.%In the process of chemical mechanical planarization (CMP) of the barrier layer, guarantying the uniformity of removal rates of Cu and barrier layer is one of the key problems concerning planarization. The introduction of low-k dielectric materials required barrier layer CMP with weakly alkaline slurry at low down pressure and this raised a new challenge for slurry on the different materials selectivity. The complication of phosphoric acid and tartaric acid were studied which were as barrier layer slurry pH adjusting agents on copper and tantalum at low down pressure 2 psi ( 1 psi = 6. 89 kPa) , CMP. The results of the experiment show that tartaric acid has certain complication on Cu and Ta, the phosphoric acid can accelerate the removal rate of Ta, but the phosphoric has inhibitory action to the removal of Cu. Eventually when adding phosphoric acid of 2×10 mol/L, tartaric acid of 1 × 10 mol / L, H2O2 0. 3% , pH = 8. 5, the removal rate selection ratio of Cu/Ta/SiO2 reaches 1:1:1 and the removal rate is about 58 nm/min. At the same time, the addition of phosphoric acid and tartaric acid can improve the surface state of Cu.

  7. Determination of the Potential Barrier at the Metal/Oxide Interface in a Specular Spin Valve Structure with Nano-oxide Layers Using Electron Holography

    Institute of Scientific and Technical Information of China (English)

    王岩国; 沈峰; 张泽; 蔡建旺; 赖武彦

    2002-01-01

    The local potential distribution in a specular spin valve structure with nano-oxide layers has been mapped byusing off-axis electron holography in a field emission gun transmission electron microscope. A potential jumpof 3-4 V across the metal/oxide interface was detected for the first time. The presence of the potential barrierconfirms the formation of the metal/insulator/metal structure, which contributes to the increasing mean free pathof spin-polarized electrons via the specular reflection of spin-polarized electrons at the metal/oxide interface. Itleads to nearly double enhancement of the magnetoresistance ratio from 8% to 15%.

  8. Barrier infrared detector

    Science.gov (United States)

    Ting, David Z. (Inventor); Khoshakhlagh, Arezou (Inventor); Soibel, Alexander (Inventor); Hill, Cory J. (Inventor); Gunapala, Sarath D. (Inventor)

    2012-01-01

    A superlattice-based infrared absorber and the matching electron-blocking and hole-blocking unipolar barriers, absorbers and barriers with graded band gaps, high-performance infrared detectors, and methods of manufacturing such devices are provided herein. The infrared absorber material is made from a superlattice (periodic structure) where each period consists of two or more layers of InAs, InSb, InSbAs, or InGaAs. The layer widths and alloy compositions are chosen to yield the desired energy band gap, absorption strength, and strain balance for the particular application. Furthermore, the periodicity of the superlattice can be "chirped" (varied) to create a material with a graded or varying energy band gap. The superlattice based barrier infrared detectors described and demonstrated herein have spectral ranges covering the entire 3-5 micron atmospheric transmission window, excellent dark current characteristics operating at least 150K, high yield, and have the potential for high-operability, high-uniformity focal plane arrays.

  9. Complementary Barrier Infrared Detector (CBIRD) Contact Methods

    Science.gov (United States)

    Ting, David Z.; Hill, Cory J.; Gunapala, Sarath D.

    2013-01-01

    The performance of the CBIRD detector is enhanced by using new device contacting methods that have been developed. The detector structure features a narrow gap adsorber sandwiched between a pair of complementary, unipolar barriers that are, in turn, surrounded by contact layers. In this innovation, the contact adjacent to the hole barrier is doped n-type, while the contact adjacent to the electron barrier is doped p-type. The contact layers can have wider bandgaps than the adsorber layer, so long as good electrical contacts are made to them. If good electrical contacts are made to either (or both) of the barriers, then one could contact the barrier(s) directly, obviating the need for additional contact layers. Both the left and right contacts can be doped either n-type or ptype. Having an n-type contact layer next to the electron barrier creates a second p-n junction (the first being the one between the hole barrier and the adsorber) over which applied bias could drop. This reduces the voltage drop over the adsorber, thereby reducing dark current generation in the adsorber region.

  10. Free-Energy Barriers and Reaction Mechanisms for the Electrochemical Reduction of CO on the Cu(100) Surface, Including Multiple Layers of Explicit Solvent at pH 0.

    Science.gov (United States)

    Cheng, Tao; Xiao, Hai; Goddard, William A

    2015-12-01

    The great interest in the photochemical reduction from CO2 to fuels and chemicals has focused attention on Cu because of its unique ability to catalyze formation of carbon-containing fuels and chemicals. A particular goal is to learn how to modify the Cu catalysts to enhance the production selectivity while reducing the energy requirements (overpotential). To enable such developments, we report here the free-energy reaction barriers and mechanistic pathways on the Cu(100) surface, which produces only CH4 (not C2H4 or CH3OH) in acid (pH 0). We predict a threshold potential for CH4 formation of -0.52 V, which compares well to experiments at low pH, -0.45 to -0.50 V. These quantum molecular dynamics simulations included ∼5 layers of explicit water at the water/electrode interface using enhanced sampling methodology to obtain the free energies. We find that that chemisorbed hydroxyl-methylene (CH-OH) is the key intermediate determining the selectivity for methane over methanol. PMID:26562750

  11. Hanford Protective Barriers Program asphalt barrier studies -- FY 1988

    International Nuclear Information System (INIS)

    The Hanford Protective Barrier (HPB) Program is evaluating alternative barriers to provide a means of meeting stringent water infiltration requirements. One type of alternative barrier being considered is an asphalt-based layer, 1.3 to 15 cm thick, which has been shown to be very effective as a barrier for radon gas and, hence, should be equally effective as a barrier for the larger molecules of water. Fiscal Year 1988 studies focused on the selection and formulation of the most promising asphalt materials for further testing in small-tube lysimeters. Results of laboratory-scale formulation and hydraulic conductivity tests led to the selection of a rubberized asphalt material and an admixture of 24 wt% asphalt emulsion and concrete sand as the two barriers for lysimeter testing. Eight lysimeters, four each containing the two asphalt treatments, were installed in the Small Tube Lysimeter Facility on the Hanford Site. The lysimeter tests allow the performance of these barrier formulations to be evaluated under more natural environmental conditions

  12. Resilient thermal barrier for high temperatures

    Science.gov (United States)

    Frye, J. A.

    1977-01-01

    Abrasion-resistant thermal barrier, consisting of two layers of woven fabric or braided sleeving with bulk insulation sandwiched between, shows excellent resilience even after compression at temperatures above 980C.

  13. In vitro porcine blood-brain barrier model for permeability studies: pCEL-X software pKa(FLUX) method for aqueous boundary layer correction and detailed data analysis.

    Science.gov (United States)

    Yusof, Siti R; Avdeef, Alex; Abbott, N Joan

    2014-12-18

    In vitro blood-brain barrier (BBB) models from primary brain endothelial cells can closely resemble the in vivo BBB, offering valuable models to assay BBB functions and to screen potential central nervous system drugs. We have recently developed an in vitro BBB model using primary porcine brain endothelial cells. The model shows expression of tight junction proteins and high transendothelial electrical resistance, evidence for a restrictive paracellular pathway. Validation studies using small drug-like compounds demonstrated functional uptake and efflux transporters, showing the suitability of the model to assay drug permeability. However, one limitation of in vitro model permeability measurement is the presence of the aqueous boundary layer (ABL) resulting from inefficient stirring during the permeability assay. The ABL can be a rate-limiting step in permeation, particularly for lipophilic compounds, causing underestimation of the permeability. If the ABL effect is ignored, the permeability measured in vitro will not reflect the permeability in vivo. To address the issue, we explored the combination of in vitro permeability measurement using our porcine model with the pKa(FLUX) method in pCEL-X software to correct for the ABL effect and allow a detailed analysis of in vitro (transendothelial) permeability data, Papp. Published Papp using porcine models generated by our group and other groups are also analyzed. From the Papp, intrinsic transcellular permeability (P0) is derived by simultaneous refinement using a weighted nonlinear regression, taking into account permeability through the ABL, paracellular permeability and filter restrictions on permeation. The in vitro P0 derived for 22 compounds (35 measurements) showed good correlation with P0 derived from in situ brain perfusion data (r(2)=0.61). The analysis also gave evidence for carrier-mediated uptake of naloxone, propranolol and vinblastine. The combination of the in vitro porcine model and the software

  14. Fast spatial atomic layer deposition of Al{sub 2}O{sub 3} at low temperature (<100 °C) as a gas permeation barrier for flexible organic light-emitting diode displays

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Hagyoung; Shin, Seokyoon; Jeon, Hyeongtag, E-mail: hjeon@hanyang.ac.kr [Department of Materials Science and Engineering, Hanyang University, Seoul 133-791 (Korea, Republic of); Choi, Yeongtae; Kim, Junghun; Kim, Sanghun; Chung, Seog Chul; Oh, Kiyoung [LIG INVENIA Co., Ltd., Seongnam, Gyeonggi 462-807 (Korea, Republic of)

    2016-01-15

    The authors developed a high throughput (70 Å/min) and scalable space-divided atomic layer deposition (ALD) system for thin film encapsulation (TFE) of flexible organic light-emitting diode (OLED) displays at low temperatures (<100 °C). In this paper, the authors report the excellent moisture barrier properties of Al{sub 2}O{sub 3} films deposited on 2G glass substrates of an industrially relevant size (370 × 470 mm{sup 2}) using the newly developed ALD system. This new ALD system reduced the ALD cycle time to less than 1 s. A growth rate of 0.9 Å/cycle was achieved using trimethylaluminum as an Al source and O{sub 3} as an O reactant. The morphological features and step coverage of the Al{sub 2}O{sub 3} films were investigated using field emission scanning electron microscopy. The chemical composition was analyzed using Auger electron spectroscopy. These deposited Al{sub 2}O{sub 3} films demonstrated a good optical transmittance higher than 95% in the visible region based on the ultraviolet visible spectrometer measurements. Water vapor transmission rate lower than the detection limit of the MOCON test (less than 3.0 × 10{sup −3} g/m{sup 2} day) were obtained for the flexible substrates. Based on these results, Al{sub 2}O{sub 3} deposited using our new high-throughput and scalable spatial ALD is considered a good candidate for preparation of TFE films of flexible OLEDs.

  15. Tantalum oxide barrier in magnetic tunnel junctions

    Institute of Scientific and Technical Information of China (English)

    Guanghua Yu; Tingting Ren; Wei Ji; Jiao Teng; Fengwu Zhu

    2004-01-01

    Tantalum as an insulating barrier can take the place of Al in magnetic tunnel junctions (MTJs). Ta barriers in MTJs were fabricated by natural oxidation. X-ray photoelectron spectroscopy (XPS) was used to characterize the oxidation states of Ta barrier.The experimental results show that the chemical state of tantalum is pure Ta5+ and the thickness of the oxide is 1.3 nm. The unoxidized Ta in the barrier may chemically reacted with NiFe layer which is usually used in MTJs to form an intermetallic compound,NiTa2. A magnetic "dead layer" could be produced in the NiFe/Ta interface. The "dead layer" is likely to influence the spinning electron transport and the magnetoresistance effect.

  16. Structure formation in a DC-driven "barrier" discharge:

    NARCIS (Netherlands)

    Ebert, U.; Rafatov, I.; Sijacic, D.; Schmidt, J.; Simek, M.; Pekarek, S.; Prukner, V.

    2007-01-01

    A DC-driven "barrier" discharge is a gas discharge layer and a high-Ohmic semiconductor layer sandwiched between planar electrodes to which a DC voltage is applied. The system resembles a dielectric barrier discharge, but is even simpler, as the external boundary conditions allow for a completely ho

  17. Numerical simulations of capillary barrier field tests

    Energy Technology Data Exchange (ETDEWEB)

    Morris, C.E. [Univ. of Wollongong (Australia); Stormont, J.C. [Univ. of New Mexico, Albuquerque, NM (United States)

    1997-12-31

    Numerical simulations of two capillary barrier systems tested in the field were conducted to determine if an unsaturated flow model could accurately represent the observed results. The field data was collected from two 7-m long, 1.2-m thick capillary barriers built on a 10% grade that were being tested to investigate their ability to laterally divert water downslope. One system had a homogeneous fine layer, while the fine soil of the second barrier was layered to increase its ability to laterally divert infiltrating moisture. The barriers were subjected first to constant infiltration while minimizing evaporative losses and then were exposed to ambient conditions. The continuous infiltration period of the field tests for the two barrier systems was modelled to determine the ability of an existing code to accurately represent capillary barrier behavior embodied in these two designs. Differences between the field test and the model data were found, but in general the simulations appeared to adequately reproduce the response of the test systems. Accounting for moisture retention hysteresis in the layered system will potentially lead to more accurate modelling results and is likely to be important when developing reasonable predictions of capillary barrier behavior.

  18. Numerical simulations of capillary barrier field tests

    International Nuclear Information System (INIS)

    Numerical simulations of two capillary barrier systems tested in the field were conducted to determine if an unsaturated flow model could accurately represent the observed results. The field data was collected from two 7-m long, 1.2-m thick capillary barriers built on a 10% grade that were being tested to investigate their ability to laterally divert water downslope. One system had a homogeneous fine layer, while the fine soil of the second barrier was layered to increase its ability to laterally divert infiltrating moisture. The barriers were subjected first to constant infiltration while minimizing evaporative losses and then were exposed to ambient conditions. The continuous infiltration period of the field tests for the two barrier systems was modelled to determine the ability of an existing code to accurately represent capillary barrier behavior embodied in these two designs. Differences between the field test and the model data were found, but in general the simulations appeared to adequately reproduce the response of the test systems. Accounting for moisture retention hysteresis in the layered system will potentially lead to more accurate modelling results and is likely to be important when developing reasonable predictions of capillary barrier behavior

  19. Gadolinia-doped ceria barrier layer produced by sputtering and annealing for anode-supported solid oxide fuel cells%通过溅射与退火制备的用于固体氧化物燃料电池的氧化钆掺杂氧化铈电解质隔层

    Institute of Scientific and Technical Information of China (English)

    武卫明; 刘中波; 赵哲; 张小敏; 区定容; 涂宝峰; 崔大安; 程谟杰

    2014-01-01

    采用溅射或溅射与退火相结合的方法制备了一系列氧化钆掺杂的氧化铈(GDC)隔层,并考察了其对固体氧化燃料电池性能的影响。结果表明,200°C下溅射获得了立方结构氧化钆掺杂的氧化铈均匀薄膜,在900-1100°C范围内的退火处理使得GDC薄膜致密,从而有效阻止了氧化钇掺杂的氧化锆电解质与阴极材料之间的反应,大幅度提高了电池的电化学性能。%We prepared gadolinia-doped ceria (GDC) barrier layers by sputtering and annealing at various temperatures. We then investigated the effects of the GDC barrier layers on the performance of anode-supported solid oxide fuel cells. Sputtering at 200 °C readily produced a uniform, thin layer of cubic GDC. Sputtering and annealing at 900-1100 °C formed uniform, thin, dense films, which effec-tively prevented the reaction between the yttria-stabilized zirconia electrolyte and the Ba0.5Sr0.5Co0.8Fe0.2O3-δcathode. The single cells assembled with the thin, dense GDC barrier layers sputtered at 200 °C and annealed at 900-1000 °C exhibited excellent electrochemical performance.

  20. Filamentary and diffuse barrier discharges

    International Nuclear Information System (INIS)

    Barrier discharges, sometimes also referred to as dielectric-barrier discharges or silent discharges, are characterized by the presence of at least one insulating layer in contact with the discharge between two planar or cylindrical electrodes connected to an ac power supply. The main advantage of this type of electrical discharge is, that non-equilibrium plasma conditions in atmospheric-pressure gases can be established in an economic and reliable way. This has led to a number of important applications including industrial ozone generation, surface modification of polymers, plasma chemical vapor deposition, excitation of CO2 lasers, excimer lamps and, most recently, large-area flat plasma display panels. Depending on the application, the width of the discharge gap can range from less than 0.1 mm to about 100 mm and the applied frequency from below line frequency to several gigahertz. Typical materials used for the insulating layer (dielectric barrier) are glass, quartz, ceramics but also thin enamel or polymer layers

  1. Multilayer coatings for flexible high-barrier materials

    Science.gov (United States)

    Vaško, Karol; Noller, Klaus; Mikula, Milan; Amberg-Schwab, Sabine; Weber, Ulrike

    2009-06-01

    A multilayer, flexible, and transparent high-barrier system based on flexible plastic foils, polyethyleneterephthalate (PET) and ethylene-tetrafluoroethylene-copolymer (ETFE), combined with vacuum-deposited, inorganic SiOx layers and hybrid ORMOCER® varnish layers were prepared in different orders on a semiproduction level. Barrier properties of prepared systems, as water vapour transmission (WVTR) and oxygen transmission (OTR), were measured and studied in connection with surface energy, surface topography, and water vapour adsorption properties. Correlations among layers sequence, barrier properties, and other parameters are presented, including some basic principles of permeation of substances through multilayer barrier systems. A combination of several inorganic and hybrid varnish layers is necessary to achieve the technological demands from a barrier standpoint. It is easier to suppress the oxygen transport than the water transport, due to the additional active penetration of water through hydrogen bonds and silanol creations at oxide interfaces, capillary condensation, and swelling with high internal pressure, leading to new defects.

  2. Interlayer exchange coupling across a ferroelectric barrier

    Energy Technology Data Exchange (ETDEWEB)

    Zhuravlev, M Ye; Tsymbal, E Y [Department of Physics and Astronomy, Nebraska Center for Materials and Nanoscience, University of Nebraska, Lincoln, NE 68588 (United States); Vedyayev, A V, E-mail: myezhur@gmail.co, E-mail: tsymbal@unl.ed [Department of Physics, M V Lomonosov Moscow State University, Moscow 119899 (Russian Federation)

    2010-09-08

    A new magnetoelectric effect is predicted originating from the interlayer exchange coupling between two ferromagnetic layers separated by an ultrathin ferroelectric barrier. It is demonstrated that ferroelectric polarization switching driven by an external electric field leads to a sizable change in the interlayer exchange coupling. The effect occurs in asymmetric ferromagnet/ferroelectric/ferromagnet junctions due to a change in the electrostatic potential profile across the junction affecting the interlayer coupling. The predicted phenomenon indicates the possibility of switching the magnetic configuration by reversing the polarization of the ferroelectric barrier layer. (fast track communication)

  3. Interlayer exchange coupling across a ferroelectric barrier.

    Science.gov (United States)

    Zhuravlev, M Ye; Vedyayev, A V; Tsymbal, E Y

    2010-09-01

    A new magnetoelectric effect is predicted originating from the interlayer exchange coupling between two ferromagnetic layers separated by an ultrathin ferroelectric barrier. It is demonstrated that ferroelectric polarization switching driven by an external electric field leads to a sizable change in the interlayer exchange coupling. The effect occurs in asymmetric ferromagnet/ferroelectric/ferromagnet junctions due to a change in the electrostatic potential profile across the junction affecting the interlayer coupling. The predicted phenomenon indicates the possibility of switching the magnetic configuration by reversing the polarization of the ferroelectric barrier layer. PMID:21403276

  4. Smart parking barrier

    KAUST Repository

    Alharbi, Abdulrazaq M.

    2016-05-06

    Various methods and systems are provided for smart parking barriers. In one example, among others, a smart parking barrier system includes a movable parking barrier located at one end of a parking space, a barrier drive configured to control positioning of the movable parking barrier, and a parking controller configured to initiate movement of the parking barrier, via the barrier drive. The movable parking barrier can be positioned between a first position that restricts access to the parking space and a second position that allows access to the parking space. The parking controller can initiate movement of the movable parking barrier in response to a positive identification of an individual allowed to use the parking space. The parking controller can identify the individual through, e.g., a RFID tag, a mobile device (e.g., a remote control, smartphone, tablet, etc.), an access card, biometric information, or other appropriate identifier.

  5. Physical based Schottky barrier diode modeling for THz applications

    DEFF Research Database (Denmark)

    Yan, Lei; Krozer, Viktor; Michaelsen, Rasmus Schandorph;

    2013-01-01

    In this work, a physical Schottky barrier diode model is presented. The model is based on physical parameters such as anode area, Ohmic contact area, doping profile from epitaxial (EPI) and substrate (SUB) layers, layer thicknesses, barrier height, specific contact resistance, and device...... temperature. The effects of barrier height lowering, nonlinear resistance from the EPI layer, and hot electron noise are all included for accurate characterization of the Schottky diode. To verify the diode model, measured I-V and C-V characteristics are compared with the simulation results. Due to the lack...

  6. Fabrication of novel electrolyte-layer free fuel cell with semi-ionic conductor (Ba0.5Sr0.5Co0.8Fe0.2O3-δ- Sm0.2Ce0.8O1.9) and Schottky barrier

    Science.gov (United States)

    Afzal, Muhammad; Saleemi, Mohsin; Wang, Baoyuan; Xia, Chen; Zhang, Wei; He, Yunjuan; Jayasuriya, Jeevan; Zhu, Bin

    2016-10-01

    Perovskite Ba0.5Sr0.5Co0.8Fe0.2O3-δ (BSCF) is synthesized via a chemical co-precipitation technique for a low temperature solid oxide fuel cell (LTSOFC) (300-600 °C) and electrolyte-layer free fuel cell (EFFC) in a comprehensive study. The EFFC with a homogeneous mixture of samarium doped ceria (SDC): BSCF (60%:40% by weight) which is rather similar to the cathode (SDC: BSCF in 50%:50% by weight) used for a three layer SOFC demonstrates peak power densities up to 655 mW/cm2, while a three layer (anode/electrolyte/cathode) SOFC has reached only 425 mW/cm2 at 550 °C. Chemical phase, crystal structure and morphology of the as-prepared sample are characterized by X-ray diffraction and field emission scanning electron microscopy coupled with energy dispersive spectroscopy. The electrochemical performances of 3-layer SOFC and EFFC are studied by electrochemical impedance spectroscopy (EIS). As-prepared BSCF has exhibited a maximum conductivity above 300 S/cm at 550 °C. High performance of the EFFC device corresponds to a balanced combination between ionic and electronic (holes) conduction characteristic. The Schottky barrier prevents the EFFC from the electronic short circuiting problem which also enhances power output. The results provide a new way to produce highly effective cathode materials for LTSOFC and semiconductor designs for EFFC functions using a semiconducting-ionic material.

  7. Properties of native ultrathin aluminium oxide tunnel barriers

    CERN Document Server

    Gloos, K; Pekola, J P

    2003-01-01

    We have investigated planar metal-insulator-metal tunnel junctions with aluminium oxide as the dielectricum. These oxide barriers were grown on an aluminium electrode in pure oxygen at room temperature till saturation. By applying the Simmons model we derived discrete widths of the tunnelling barrier, separated by DELTA s approx 0.38 nm. This corresponds to the addition of single layers of oxygen atoms. The minimum thickness of s sub 0 approx 0.54 nm is then due to a double layer of oxygen. We found a strong and systematic dependence of the barrier height on the barrier thickness. Breakdown fields up to 5 GV m sup - sup 1 were reached. They decreased strongly with increasing barrier thickness. Electrical breakdown could be described by a metal-insulator like transition of the dielectric barrier due to the large density of tunnelling electrons.

  8. Outer brain barriers in rat and human development

    DEFF Research Database (Denmark)

    Brøchner, Christian B; Holst, Camilla Bjørnbak; Møllgård, Kjeld

    2015-01-01

    diffusion restriction between brain and subarachnoid CSF through an initial radial glial end feet layer covered with a pial surface layer. To further characterize these interfaces we examined embryonic rat brains from E10 to P0 and forebrains from human embryos and fetuses (6-21st weeks post...... of the arachnoid blood-CSF barrier. Collagen 1 delineated the subarachnoid space and stained pial surface layer. BLBP defined radial glial end feet layer and SSEA-4 and YKL-40 were present in both leptomeningeal cells and end feet layer, which transformed into glial limitans. IL-13Rα2 and EAAT1 were present...... in the end feet layer illustrating transporter/receptor presence in the outer CSF-brain barrier. MAP2 immunostaining in adult brain outlined the lower border of glia limitans; remnants of end feet were YKL-40 positive in some areas. We propose that outer brain barriers are composed of at least 3 interfaces...

  9. Safety-barrier diagrams

    DEFF Research Database (Denmark)

    Duijm, Nijs Jan

    2007-01-01

    are discussed. A simple method for quantification of safety-barrier diagrams is proposed, including situations where safety barriers depend on shared common elements. It is concluded that safety-barrier diagrams provide a useful framework for an electronic data structure that integrates information from risk......Safety-barrier diagrams and the related so-called "bow-tie" diagrams have become popular methods in risk analysis. This paper describes the syntax and principles for constructing consistent and valid safety-barrier diagrams. The relation with other methods such as fault trees and Bayesian networks...... analysis with operational safety management....

  10. Extremal surface barriers

    Energy Technology Data Exchange (ETDEWEB)

    Engelhardt, Netta; Wall, Aron C. [Department of Physics, University of California,Santa Barbara, CA 93106 (United States)

    2014-03-13

    We present a generic condition for Lorentzian manifolds to have a barrier that limits the reach of boundary-anchored extremal surfaces of arbitrary dimension. We show that any surface with nonpositive extrinsic curvature is a barrier, in the sense that extremal surfaces cannot be continuously deformed past it. Furthermore, the outermost barrier surface has nonnegative extrinsic curvature. Under certain conditions, we show that the existence of trapped surfaces implies a barrier, and conversely. In the context of AdS/CFT, these barriers imply that it is impossible to reconstruct the entire bulk using extremal surfaces. We comment on the implications for the firewall controversy.

  11. Safety- barrier diagrams

    DEFF Research Database (Denmark)

    Duijm, Nijs Jan

    2008-01-01

    Safety-barrier diagrams and the related so-called 'bow-tie' diagrams have become popular methods in risk analysis. This paper describes the syntax and principles for constructing consistent and valid safety-barrier diagrams. The relation of safety-barrier diagrams to other methods such as fault...... trees and Bayesian networks is discussed. A simple method for quantification of safety-barrier diagrams is proposed. It is concluded that safety-barrier diagrams provide a useful framework for an electronic data structure that integrates information from risk analysis with operational safety management....

  12. Preparation and characterization of bilayer Ta-Si-N/Ti diffusion barrier layer%Ta-Si-N/Ti双层结构扩散阻挡层的制备与表征

    Institute of Scientific and Technical Information of China (English)

    邓鹏远; 瞿金凤

    2013-01-01

    Ta-Si-N (10nm)/Ti(20nm) bilayer diffusion barrier was grown between n-type (100) silicon wafer and Cu film by RF reactive magnetron sputtering. The Cu/Ta-Si-N/Ti/Si samples were subsequently annealed at different temperatures ranging from 600 to 800℃in N2 gas for 1 h. In order to investigate the thermal stability of the barrier structure after annealing, X-ray diffraction, scanning electron microscopy and 4-point probe technique were performed, respectively. The results reveal that Ta-Si-N film deposited on Ti film is amorphous. In addition, the diffusion of Ti atoms into Si substrate results in TiSi2 which decreases the contact resistance between barrier Si and Ta-Si-N(10nm)/Ti(20nm) bilayer can serve as effective diffusion barriers up to 750℃.%  采用射频磁控溅射的方法在Si(100)衬底和Cu膜间制备了Ta-Si-N(10nm)/Ti(20nm)双层结构的扩散阻挡层。Cu/Ta-Si-N/Ti/Si样品在高纯氮气的保护下从600至800℃退火1小时。通过四探针电阻测试仪(FPP)、SEM、XRD研究了Cu/Ta-Si-N/Ti/Si系统在退火过程中的热稳定性。研究结果表明:沉积到Ti膜上的Ta-Si-N膜为非晶态结构;Cu/Ta-Si-N/Ti/Si样品700℃以上退火后Ti原子扩散到Si中形成的TiSi2能有效地降低Ta-Si-N与Si之间的接触电阻;Ta-Si-N/Ti阻挡层750℃退火后仍能有效地阻止Cu的扩散。

  13. Hanford Permanent Isolation Barrier Program: Asphalt technology test plan

    Energy Technology Data Exchange (ETDEWEB)

    Freeman, H.D.; Romine, R.A.

    1994-05-01

    The Hanford Permanent Isolation Barriers use engineered layers of natural materials to create an integrated structure with backup protective features. The objective of current designs is to develop a maintenance-free permanent barrier that isolates wastes for a minimum of 1000 years by limiting water drainage to near-zero amounts. Asphalt is being used as an impermeable water diversion layer to provide a redundant layer within the overall barrier design. Data on asphalt barrier properties in a buried environment are not available for the required 100-year time frame. The purpose of this test plan is to outline the activities planned to obtain data with which to estimate performance of the asphalt layers.

  14. Hanford Permanent Isolation Barrier Program: Asphalt technology test plan

    International Nuclear Information System (INIS)

    The Hanford Permanent Isolation Barriers use engineered layers of natural materials to create an integrated structure with backup protective features. The objective of current designs is to develop a maintenance-free permanent barrier that isolates wastes for a minimum of 1000 years by limiting water drainage to near-zero amounts. Asphalt is being used as an impermeable water diversion layer to provide a redundant layer within the overall barrier design. Data on asphalt barrier properties in a buried environment are not available for the required 100-year time frame. The purpose of this test plan is to outline the activities planned to obtain data with which to estimate performance of the asphalt layers

  15. Skin barrier in atopic dermatitis: beyond filaggrin*

    Science.gov (United States)

    Zaniboni, Mariana Colombini; Samorano, Luciana Paula; Orfali, Raquel Leão; Aoki, Valéria

    2016-01-01

    Atopic dermatitis is a chronic inflammatory skin disease with a complex pathogenesis, where changes in skin barrier and imbalance of the immune system are relevant factors. The skin forms a mechanic and immune barrier, regulating water loss from the internal to the external environment, and protecting the individual from external aggressions, such as microorganisms, ultraviolet radiation and physical trauma. Main components of the skin barrier are located in the outer layers of the epidermis (such as filaggrin), the proteins that form the tight junction (TJ) and components of the innate immune system. Recent data involving skin barrier reveal new information regarding its structure and its role in the mechanic-immunological defense; atopic dermatitis (AD) is an example of a disease related to dysfunctions associated with this complex. PMID:27579743

  16. Surface barrier research at the Hanford Site

    Energy Technology Data Exchange (ETDEWEB)

    Gee, G.W.; Ward, A.L.; Fayer, M.J. [Pacific Northwest National Lab., Richland, WA (United States)

    1997-12-31

    At the DOE Hanford Site, a field-scale prototype surface barrier was constructed in 1994 over an existing waste site as a part of a CERCLA treatability test. The above-grade barrier consists of a fine-soil layer overlying coarse layers of sands, gravels, basalt rock (riprap), and a low permeability asphalt layer. Two sideslope configurations, clean-fill gravel on a 10:1 slope and basalt riprap on a 2:1 slope, were built and are being tested. Design considerations included: constructability; drainage and water balance monitoring, wind and water erosion control and monitoring; surface revegetation and biotic intrusion; subsidence and sideslope stability, and durability of the asphalt layer. The barrier is currently in the final year of a three-year test designed to answer specific questions related to stability and long-term performance. One half of the barrier is irrigated such that the total water applied, including precipitation, is 480 mm/yr (three times the long-term annual average). Each year for the past two years, an extreme precipitation event (71 mm in 8 hr) representing a 1,000-yr return storm was applied in late March, when soil water storage was at a maximum. While the protective sideslopes have drained significant amounts of water, the soil cover (2-m of silt-loam soil overlying coarse sand and rock) has never drained. During the past year there was no measurable surface runoff or wind erosion. This is attributed to extensive revegetation of the surface. In addition, the barrier elevation has shown a small increase of 2 to 3 cm that is attributed to a combination of root proliferation and freeze/thaw activity. Testing will continue through September 1997. Performance data from the prototype barrier will be used by DOE in site-closure decisions at Hanford.

  17. High Operating Temperature Barrier Infrared Detector with Tailorable Cutoff Wavelength

    Science.gov (United States)

    Ting, David Z. (Inventor); Hill, Cory J. (Inventor); Seibel, Alexander (Inventor); Bandara, Sumith Y. (Inventor); Gunapala, Sarath D. (Inventor)

    2015-01-01

    A barrier infrared detector with absorber materials having selectable cutoff wavelengths and its method of manufacture is described. A GaInAsSb absorber layer may be grown on a GaSb substrate layer formed by mixing GaSb and InAsSb by an absorber mixing ratio. A GaAlAsSb barrier layer may then be grown on the barrier layer formed by mixing GaSb and AlSbAs by a barrier mixing ratio. The absorber mixing ratio may be selected to adjust a band gap of the absorber layer and thereby determine a cutoff wavelength for the barrier infrared detector. The absorber mixing ratio may vary along an absorber layer growth direction. Various contact layer architectures may be used. In addition, a top contact layer may be isolated into an array of elements electrically isolated as individual functional detectors that may be used in a detector array, imaging array, or focal plane array.

  18. 基于不同基体条件的Sm2Zr2O7/YSZ双层热障涂层界面残余热应力的数值仿真%Numerical Simulation of Residual Thermal Stresses at the Interface of Sm2Zr2O7/YSZ Double-layer Thermal Barrier Coatings Based on Different Matrix Conditions

    Institute of Scientific and Technical Information of China (English)

    李振军; 吴惠云

    2012-01-01

    采用有限元分析软件ANSYS对2Cr13基体等离子喷涂SmZr2O7/YSZ双层热障涂层界面残余热应力分布进行了仿真.结果表明:在涂层Sm2Zr2O7/YSZ及YSZ/NiCoCrAlY界面存在较大的残余热应力,且应力梯度基本不变,表明应力梯度与基体厚度、半径无关.%The distribution of residual thermal stresses at the interface of plasma sprayed Sm2Zr2O7/YSZ double-layer thermal barrier coatings on 2Cr13 substrates were simulated by using ANSYS software. Results show that higher residual thermal stresses exist in the Sm2Zr2O7/YSZ layer interface and the YSZ/ NiCoCrAlY layer interface, and the stress gradient is basically unchanged. It is also indicated that the stress gradient is independent of Matrix thickness and radius.

  19. A double barrier memristive device

    Science.gov (United States)

    Hansen, M.; Ziegler, M.; Kolberg, L.; Soni, R.; Dirkmann, S.; Mussenbrock, T.; Kohlstedt, H.

    2015-09-01

    We present a quantum mechanical memristive Nb/Al/Al2O3/NbxOy/Au device which consists of an ultra-thin memristive layer (NbxOy) sandwiched between an Al2O3 tunnel barrier and a Schottky-like contact. A highly uniform current distribution for the LRS (low resistance state) and HRS (high resistance state) for areas ranging between 70 μm2 and 2300 μm2 were obtained, which indicates a non-filamentary based resistive switching mechanism. In a detailed experimental and theoretical analysis we show evidence that resistive switching originates from oxygen diffusion and modifications of the local electronic interface states within the NbxOy layer, which influences the interface properties of the Au (Schottky) contact and of the Al2O3 tunneling barrier, respectively. The presented device might offer several benefits like an intrinsic current compliance, improved retention and no need for an electric forming procedure, which is especially attractive for possible applications in highly dense random access memories or neuromorphic mixed signal circuits.

  20. Permanent isolation surface barrier development plan

    International Nuclear Information System (INIS)

    The exhumation and treatment of wastes may not always be the preferred alternative in the remediation of a waste site. In-place disposal alternatives, under certain circumstances, may be the most desirable alternatives to use in the protection of human health and the environment. The implementation of an in-place disposal alternative will likely require some type of protective covering that will provide long-term isolation of the wastes from the accessible environment. Even if the wastes are exhumed and treated, a long-term barrier may still be needed to adequately dispose of the treated wastes or any remaining waste residuals. Currently, no open-quotes provenclose quotes long-term barrier is available. The Hanford Site Permanent Isolation Surface Barrier Development Program (BDP) was organized to develop the technology needed to provide a long-term surface barrier capability for the Hanford Site. The permanent isolation barrier technology also could be used at other sites. Permanent isolation barriers use engineered layers of natural materials to create an integrated structure with redundant protective features. Drawings of conceptual permanent isolation surface barriers are shown. The natural construction materials (e.g., fine soil, sand, gravel, riprap, asphalt) have been selected to optimize barrier performance and longevity. The objective of current designs is to use natural materials to develop a maintenance-free permanent isolation surface barrier that isolates wastes for a minimum of 1,000 years by limiting water drainage to near-zero amounts; reducing the likelihood of plant, animal, and human intrusion; controlling the exhalation of noxious gases; and minimizing erosion-related problems

  1. Permanent isolation surface barrier development plan

    Energy Technology Data Exchange (ETDEWEB)

    Wing, N.R.

    1994-01-01

    The exhumation and treatment of wastes may not always be the preferred alternative in the remediation of a waste site. In-place disposal alternatives, under certain circumstances, may be the most desirable alternatives to use in the protection of human health and the environment. The implementation of an in-place disposal alternative will likely require some type of protective covering that will provide long-term isolation of the wastes from the accessible environment. Even if the wastes are exhumed and treated, a long-term barrier may still be needed to adequately dispose of the treated wastes or any remaining waste residuals. Currently, no {open_quotes}proven{close_quotes} long-term barrier is available. The Hanford Site Permanent Isolation Surface Barrier Development Program (BDP) was organized to develop the technology needed to provide a long-term surface barrier capability for the Hanford Site. The permanent isolation barrier technology also could be used at other sites. Permanent isolation barriers use engineered layers of natural materials to create an integrated structure with redundant protective features. Drawings of conceptual permanent isolation surface barriers are shown. The natural construction materials (e.g., fine soil, sand, gravel, riprap, asphalt) have been selected to optimize barrier performance and longevity. The objective of current designs is to use natural materials to develop a maintenance-free permanent isolation surface barrier that isolates wastes for a minimum of 1,000 years by limiting water drainage to near-zero amounts; reducing the likelihood of plant, animal, and human intrusion; controlling the exhalation of noxious gases; and minimizing erosion-related problems.

  2. Surface stability test plan for protective barriers

    International Nuclear Information System (INIS)

    Natural-material protective barriers for long-term isolation of buried waste have been identified as integral components of a plan to isolate a number of Hanford defense waste sites. Standards currently being developed for internal and external barrier performance will mandate a barrier surface layer that is resistant to the eolian erosion processes of wind erosion (deflation) and windborne particle deposition (formation of sand dunes). Thus, experiments are needed to measure rates of eolian erosion processes impacting those surfaces under different surface and climatological conditions. Data from these studies will provide information for use in the evaluation of selected surface layers as a means of providing stable cover over waste sites throughout the design life span of protective barriers. The multi-year test plan described in this plan is directed at understanding processes of wind erosion and windborne particle deposition, providing measurements of erosion rates for models, and suggesting construction materials and methods for reducing the effect of long-term eolian erosion on the barrier. Specifically, this plan describes possible methods to measure rates of eolian erosion, including field and laboratory procedure. Advantages and disadvantages of laboratory (wind tunnel) tests are discussed, and continued wind tunnel tests are recommended for wind erosion studies. A comparison between field and wind tunnel erosive forces is discussed. Plans for testing surfaces are described. Guidance is also presented for studying the processes controlling sand dune and blowout formation. 24 refs., 7 figs., 3 tabs

  3. Planar varactor frequency multiplier devices with blocking barrier

    Science.gov (United States)

    Lieneweg, Udo (Inventor); Frerking, Margaret A. (Inventor); Maserjian, Joseph (Inventor)

    1994-01-01

    The invention relates to planar varactor frequency multiplier devices with a heterojunction blocking barrier for near millimeter wave radiation of moderate power from a fundamental input wave. The space charge limitation of the submillimeter frequency multiplier devices of the BIN(sup +) type is overcome by a diode structure comprising an n(sup +) doped layer of semiconductor material functioning as a low resistance back contact, a layer of semiconductor material with n-type doping functioning as a drift region grown on the back contact layer, a delta doping sheet forming a positive charge at the interface of the drift region layer with a barrier layer, and a surface metal contact. The layers thus formed on an n(sup +) doped layer may be divided into two isolated back-to-back BNN(sup +) diodes by separately depositing two surface metal contacts. By repeating the sequence of the drift region layer and the barrier layer with the delta doping sheet at the interfaces between the drift and barrier layers, a plurality of stacked diodes is formed. The novelty of the invention resides in providing n-type semiconductor material for the drift region in a GaAs/AlGaAs structure, and in stacking a plurality of such BNN(sup +) diodes stacked for greater output power with and connected back-to-back with the n(sup +) GaAs layer as an internal back contact and separate metal contact over an AlGaAs barrier layer on top of each stack.

  4. Mechanism of Striation in Dielectric Barrier Discharge

    Institute of Scientific and Technical Information of China (English)

    FENG Shuo; HE Feng; OUYANG Ji-Ting

    2007-01-01

    @@ The mechanism of striations in dielectric barrier discharge in pure neon is studied by a two-dimensional particlein-cell/Monte Carlo collision (PIC-MCC) model. It is shown that the striations appear in the plasma background,and non-uniform electrical field resulting from ionization and the negative wall charge appear on the dielectric layer above the anode. The sustainment of striations is a non-local kinetic effect of electrons in a stratified field controlled by non-elastic impact with neutral gases. The striations in the transient dielectric barrier discharge are similar to those in dc positive column discharge.

  5. Biointrusion test plan for the Permanent Isolation Surface Barrier Prototype

    International Nuclear Information System (INIS)

    This document provides a testing and monitoring plan for the biological component of the prototype barrier slated for construction at the Hanford Site. The prototype barrier is an aboveground structure engineered to demonstrate the basic features of an earthen cover system. It is designed to permanently isolate waste from the biosphere. The features of the barrier include multiple layers of soil and rock materials and a low-permeability asphalt sublayer. The surface of the barrier consists of silt loam soil, covered with plants. The barrier sides are reinforced with rock or coarse earthen-fill to protect against wind and water erosion. The sublayers inhibit plant and animal intrusion and percolation of water. A series of tests will be conducted on the prototype barrier over the next several years to evaluate barrier performance under extreme climatic conditions. Plants and animals will play a significant role in the hydrologic and water and wind erosion characteristics of the prototype barrier. Studies on the biological component of the prototype barrier will include work on the initial revegetation of the surface, continued monitoring of the developing plant community, rooting depth and dispersion in the context of biointrusion potential, the role of plants in the hydrology of the surface and toe regions of the barrier, the role of plants in stabilizing the surface against water and wind erosion, and the role of burrowing animals in the hydrology and water and wind erosion of the barrier

  6. Current-voltage relation for thin tunnel barriers: Parabolic barrier model

    DEFF Research Database (Denmark)

    Hansen, Kim; Brandbyge, Mads

    2004-01-01

    We derive a simple analytic result for the current-voltage curve for tunneling of electrons through a thin uniform insulating layer modeled by a parabolic barrier. Our model, which goes beyond the Wentzel–Kramers–Brillouin approximation, is applicable also in the limit of highly transparant...

  7. Complementary barrier infrared detector (CBIRD)

    Science.gov (United States)

    Ting, David Z. (Inventor); Bandara, Sumith V. (Inventor); Hill, Cory J. (Inventor); Gunapala, Sarath D. (Inventor)

    2013-01-01

    An infrared detector having a hole barrier region adjacent to one side of an absorber region, an electron barrier region adjacent to the other side of the absorber region, and a semiconductor adjacent to the electron barrier.

  8. Converse Barrier Certificate Theorem

    DEFF Research Database (Denmark)

    Wisniewski, Rafael; Sloth, Christoffer

    2013-01-01

    This paper presents a converse barrier certificate theorem for a generic dynamical system.We show that a barrier certificate exists for any safe dynamical system defined on a compact manifold. Other authors have developed a related result, by assuming that the dynamical system has no singular...... points in the considered subset of the state space. In this paper, we redefine the standard notion of safety to comply with generic dynamical systems with multiple singularities. Afterwards, we prove the converse barrier certificate theorem and illustrate the differences between ours and previous work by...

  9. Recycler barrier RF buckets

    CERN Document Server

    Bhat, C M

    2012-01-01

    The Recycler Ring at Fermilab uses a barrier rf system for all of its rf manipulations. In this paper, I will give an overview of historical perspective on barrier rf systems, the longitudinal beam dynamics issues, aspects of rf linearization to produce long flat bunches and methods used for emittance measurements of the beam in the RR barrier rf buckets. Current rf manipulation schemes used for antiproton beam stacking and longitudinal momentum mining of the RR beam for the Tevatron collider operation are explained along with their importance in spectacular success of the Tevatron luminosity performance.

  10. Recycler barrier RF buckets

    Energy Technology Data Exchange (ETDEWEB)

    Bhat, C.M.; /Fermilab

    2011-03-01

    The Recycler Ring at Fermilab uses a barrier rf systems for all of its rf manipulations. In this paper, I will give an overview of historical perspective on barrier rf system, the longitudinal beam dynamics issues, aspects of rf linearization to produce long flat bunches and methods used for emittance measurements of the beam in the RR barrier rf buckets. Current rf manipulation schemes used for antiproton beam stacking and longitudinal momentum mining of the RR beam for the Tevatron collider operation are explained along with their importance in spectacular success of the Tevatron luminosity performance.

  11. Homoepitaxial graphene tunnel barriers for spin transport

    Science.gov (United States)

    Friedman, Adam L.; van't Erve, Olaf M. J.; Robinson, Jeremy T.; Whitener, Keith E.; Jonker, Berend T.

    2016-05-01

    Tunnel barriers are key elements for both charge-and spin-based electronics, offering devices with reduced power consumption and new paradigms for information processing. Such devices require mating dissimilar materials, raising issues of heteroepitaxy, interface stability, and electronic states that severely complicate fabrication and compromise performance. Graphene is the perfect tunnel barrier. It is an insulator out-of-plane, possesses a defect-free, linear habit, and is impervious to interdiffusion. Nonetheless, true tunneling between two stacked graphene layers is not possible in environmental conditions usable for electronics applications. However, two stacked graphene layers can be decoupled using chemical functionalization. Here, we demonstrate that hydrogenation or fluorination of graphene can be used to create a tunnel barrier. We demonstrate successful tunneling by measuring non-linear IV curves and a weakly temperature dependent zero-bias resistance. We demonstrate lateral transport of spin currents in non-local spin-valve structures, and determine spin lifetimes with the non-local Hanle effect. We compare the results for hydrogenated and fluorinated tunnel and we discuss the possibility that ferromagnetic moments in the hydrogenated graphene tunnel barrier affect the spin transport of our devices.

  12. [Vascular endothelial Barrier Function].

    Science.gov (United States)

    Ivanov, A N; Puchinyan, D M; Norkin, I A

    2015-01-01

    Endothelium is an important regulator of selective permeability of the vascular wall for different molecules and cells. This review summarizes current data on endothelial barrier function. Endothelial glycocalyx structure, its function and role in the molecular transport and leukocytes migration across the endothelial barrier are discussed. The mechanisms of transcellular transport of macromolecules and cell migration through endothelial cells are reviewed. Special section of this article addresses the structure and function of tight and adherens endothelial junction, as well as their importance for the regulation of paracellular transport across the endothelial barrier. Particular attention is paid to the signaling mechanism of endothelial barrier function regulation and the factors that influence on the vascular permeability.

  13. Barriers to Effective Listening.

    Science.gov (United States)

    Hulbert, Jack E.

    1989-01-01

    Discusses the following barriers which interfere with listening efficiency: content, speaker, medium, distractions, mindset, language, listening speed, and feedback. Suggests ways to combat these obstacles to accurate comprehension. (MM)

  14. Overcoming Intercultural Communication Barriers.

    Science.gov (United States)

    Hulbert, Jack E.

    1994-01-01

    Describes an activity that helps students overcome the multicultural barriers that might be encountered in dealing with people from various cultures in a global economy. Outlines instructions, reporting procedures, principles to emphasize, and time required for the exercise. (HB)

  15. Information barriers and authentication

    International Nuclear Information System (INIS)

    Acceptance of nuclear materials into a monitoring regime is complicated if the materials are in classified shapes or have classified composition. An attribute measurement system with an information barrier can be emplo,yed to generate an unclassified display from classified measurements. This information barrier must meet two criteria: (1) classified information cannot be released to the monitoring party, and (2) the monitoring party must be convinced that the unclassified output accurately represents the classified input. Criterion 1 is critical to the host country to protect the classified information. Criterion 2 is critical to the monitoring party and is often termed the 'authentication problem.' Thus, the necessity for authentication of a measurement system with an information barrier stems directly from the description of a useful information barrier. Authentication issues must be continually addressed during the entire development lifecycle of the measurement system as opposed to being applied only after the system is built.

  16. Apparatus and method of manufacture for an imager equipped with a cross-talk barrier

    Science.gov (United States)

    Pain, Bedabrata (Inventor)

    2012-01-01

    An imager apparatus and associated starting material are provided. In one embodiment, an imager is provided including a silicon layer of a first conductivity type acting as a junction anode. Such silicon layer is adapted to convert light to photoelectrons. Also included is a semiconductor well of a second conductivity type formed in the silicon layer for acting as a junction cathode. Still yet, a barrier is formed adjacent to the semiconductor well. In another embodiment, a starting material is provided including a first silicon layer and an oxide layer disposed adjacent to the first silicon layer. Also included is a second silicon layer disposed adjacent to the oxide layer opposite the first silicon layer. Such second silicon layer is further equipped with an associated passivation layer and/or barrier.

  17. InGaP Heterojunction Barrier Solar Cells

    Science.gov (United States)

    Welser, Roger E. (Inventor)

    2014-01-01

    A new solar cell structure called a heterojunction barrier solar cell is described. As with previously reported quantum-well and quantum-dot solar cell structures, a layer of narrow band-gap material, such as GaAs or indium-rich InGaP, is inserted into the depletion region of a wide band-gap PN junction. Rather than being thin, however, the layer of narrow band-gap material is about 400-430 nm wide and forms a single, ultrawide well in the depletion region. Thin (e.g., 20-50 nm), wide band-gap InGaP barrier layers in the depletion region reduce the diode dark current. Engineering the electric field and barrier profile of the absorber layer, barrier layer, and p-type layer of the PN junction maximizes photogenerated carrier escape. This new twist on nanostructured solar cell design allows the separate optimization of current and voltage to maximize conversion efficiency.

  18. Method of installing subsurface barrier

    Science.gov (United States)

    Nickelson, Reva A.; Richardson, John G.; Kostelnik, Kevin M.; Sloan, Paul A.

    2007-10-09

    Systems, components, and methods relating to subterranean containment barriers. Laterally adjacent tubular casings having male interlock structures and multiple female interlock structures defining recesses for receiving a male interlock structure are used to create subterranean barriers for containing and treating buried waste and its effluents. The multiple female interlock structures enable the barriers to be varied around subsurface objects and to form barrier sidewalls. The barrier may be used for treating and monitoring a zone of interest.

  19. Horizontal Acoustic Barriers for Protection from Seismic Waves

    Directory of Open Access Journals (Sweden)

    Sergey V. Kuznetsov

    2011-01-01

    Full Text Available The basic idea of a seismic barrier is to protect an area occupied by a building or a group of buildings from seismic waves. Depending on nature of seismic waves that are most probable in a specific region, different kinds of seismic barriers can be suggested. Herein, we consider a kind of a seismic barrier that represents a relatively thin surface layer that prevents surface seismic waves from propagating. The ideas for these barriers are based on one Chadwick's result concerning nonpropagation condition for Rayleigh waves in a clamped half-space, and Love's theorem that describes condition of nonexistence for Love waves. The numerical simulations reveal that to be effective the length of the horizontal barriers should be comparable to the typical wavelength.

  20. Skin barrier in rosacea.

    Science.gov (United States)

    Addor, Flavia Alvim Sant'Anna

    2016-01-01

    Recent studies about the cutaneous barrier demonstrated consistent evidence that the stratum corneum is a metabolically active structure and also has adaptive functions, may play a regulatory role in the inflammatory response with activation of keratinocytes, angiogenesis and fibroplasia, whose intensity depends primarily on the intensity the stimulus. There are few studies investigating the abnormalities of the skin barrier in rosacea, but the existing data already show that there are changes resulting from inflammation, which can generate a vicious circle caused a prolongation of flare-ups and worsening of symptoms. This article aims to gather the most relevant literature data about the characteristics and effects of the state of the skin barrier in rosacea. PMID:26982780

  1. Environmental barrier coating

    Science.gov (United States)

    Pujari, Vimal K.; Vartabedian, Ara; Collins, William T.; Woolley, David; Bateman, Charles

    2012-12-18

    The present invention relates generally to a multi-layered article suitable for service in severe environments. The article may be formed of a substrate, such as silicon carbide and/or silicon nitride. The substrate may have a first layer of a mixture of a rare earth silicate and Cordierite. The substrate may also have a second layer of a rare earth silicate or a mixture of a rare earth silicate and cordierite.

  2. Improvement of thermally grown oxide layer in thermal barrier coating systems with nano alumina as third layer%纳米氧化铝作为第三层对热障涂层中热生长氧化物层的改善

    Institute of Scientific and Technical Information of China (English)

    Mohammadreza DAROONPARVAR; Muhamad Azizi Mat YAJID; Noordin Mohd YUSOF; Saeed FARAHANY; Mohammad Sakhawat HUSSAIN; Hamid Reza BAKHSHESHI-RAD; Z.VALEFI; Ahmad ABDOLAHI

    2013-01-01

    在热障涂层的顶层与连接层界面之间会生成热生长氧化物层.当涂层热暴露在空气中时,这种热生长氧化物的生长会导致陶瓷层与连接层的剥落.研究了4种大气等离子喷涂热障涂层在空气中的耐高温氧化性能.将这4种涂层放在1000℃的电炉中在空气下分别保温24、48和120 h.组织观察表明,在纳米NiCrAlY/YSZ/纳米Al2O3涂层中,热生长氧化物层的生长速率远比其它3种涂层中的低.EDS和XRD分析表明,在热生长氧化物(Al2O3)涂层上,生成了Ni(Cr,Al)2O4混合氧化物(尖晶石型)和NiO,在纳米NiCrAlY/YSZ/纳米Al2O3涂层中,这种生长在Al2O3层上的有害混合氧化物层的厚度比在其它涂层中的低很多.%A thermally grown oxide (TGO) layer is formed at the interface of bond coat/top coat.The TGO growth during thermal exposure in air plays an important role in the spallation of the ceramic layer from the bond coat.High temperature oxidation resistance of four types of atmospheric plasma sprayed TBCs was investigated.These coatings were oxidized at 1000 ℃ for 24,48 and 120 h in a normal electric furnace under air atmosphere.Microstructural characterization showed that the growth of the TGO layer in nano NiCrAlY/YSZ/nano Al2O3 coating is much lower than in other coatings.Moreover,EDS and XRD analyses revealed the formation of Ni(Cr,Al)2O4 mixed oxides (as spinel) and NiO onto the Al2O3 (TGO) layer.The formation of detrimental mixed oxides (spinels) on the Al2O3 (TGO) layer of nano NiCrAlY/YSZ/nano Al2O3 coating is much lower compared to that of other coatings after 120 h of high temperature oxidation at 1000 ℃.

  3. Barriers in Quantum Gravity

    OpenAIRE

    Ambjorn, Jan

    1994-01-01

    I discuss recent progress in our understanding of two barriers in quantum gravity: $c > 1$ in the case of 2d quantum gravity and $D > 2$ in the case of Euclidean Einstein-Hilbert gravity formulated in space-time dimensions $D >2$.

  4. Breaking Down Barriers.

    Science.gov (United States)

    Watkins, Beverly T.

    1994-01-01

    Faculty at 11 higher education institutions in California, New Mexico, Texas, and northern Mexico have been experimenting with computer conferencing on the BESTNET (Bilingual English-Spanish Telecommunications Network). The growing system is credited with creating an international student-faculty community that crosses cultural barriers for…

  5. Apparatus and method of manufacture for depositing a composite anti-reflection layer on a silicon surface

    Science.gov (United States)

    Pain, Bedabrata (Inventor)

    2012-01-01

    An apparatus and associated method are provided. A first silicon layer having at least one of an associated passivation layer and barrier is included. Also included is a composite anti-reflection layer including a stack of layers each with a different thickness and refractive index. Such composite anti-reflection layer is disposed adjacent to the first silicon layer.

  6. On the performance of capillary barriers as landfill cover

    Science.gov (United States)

    Kämpf, M.; Montenegro, H.

    Landfills and waste heaps require an engineered surface cover upon closure. The capping system can vary from a simple soil cover to multiple layers of earth and geosynthetic materials. Conventional design features a compacted soil layer, which suffers from drying out and cracking, as well as root and animal intrusion. Capillary barriers consisting of inclined fine-over-coarse soil layers are investigated as an alternative cover system. Under unsaturated conditions, the textural contrast delays vertical drainage by capillary forces. The moisture that builds up above the contact will flow downdip along the interface of the layers. Theoretical studies of capillary barriers have identified the hydraulic properties of the layers, the inclination angle, the length of the field and the infiltration rate as the fundamental characteristics of the system. However, it is unclear how these findings can lead to design criteria for capillary barriers. To assess the uncertainty involved in such approaches, experiments have been carried out in a 8 m long flume and on large scale test sites (40 m x 15 m). In addition, the ability of a numerical model to represent the relevant flow processes in capillary barriers has been examined.

  7. On the performance of capillary barriers as landfill cover

    Directory of Open Access Journals (Sweden)

    M. Kämpf

    1997-01-01

    Full Text Available Landfills and waste heaps require an engineered surface cover upon closure. The capping system can vary from a simple soil cover to multiple layers of earth and geosynthetic materials. Conventional design features a compacted soil layer, which suffers from drying out and cracking, as well as root and animal intrusion. Capillary barriers consisting of inclined fine-over-coarse soil layers are investigated as an alternative cover system. Under unsaturated conditions, the textural contrast delays vertical drainage by capillary forces. The moisture that builds up above the contact will flow downdip along the interface of the layers. Theoretical studies of capillary barriers have identified the hydraulic properties of the layers, the inclination angle, the length of the field and the infiltration rate as the fundamental characteristics of the system. However, it is unclear how these findings can lead to design criteria for capillary barriers. To assess the uncertainty involved in such approaches, experiments have been carried out in a 8 m long flume and on large scale test sites (40 m x 15 m. In addition, the ability of a numerical model to represent the relevant flow processes in capillary barriers has been examined.

  8. Barriers to SCM implementing

    Directory of Open Access Journals (Sweden)

    M.E. Rosli

    2008-12-01

    Full Text Available Purpose: This paper explores the barriers faced by Malaysian manufacturing companies in successfullyimplementing the Supply Chain Management (SCM. The study has highlighted some pertinent factorsperforming the barriers that are most frequently reported by the studied companies. Sixteen companies, fromservice and manufacturing companies were studied over a period of two years to assess their SCM practicesthrough survey and interview processes.Design/methodology/approach: This part discusses the research design and methodological issues upon whichthe research is based. The explanation includes two types of research methods, short survey and follow-upinterviews that were identified as being suitable to achieve the aims of this study, which is to identify the currentproblem of SCM practices within the Malaysian SMEs. Research design is a framework or plan for researchused as a guide in collecting and analysing data.Findings: The results showed that the barriers are depending on the types or group of companies business; suchas either it is an SME or a big company. The barriers inhibiting the practice of SCM can be summarized inthe following factors: partnership with suppliers, limited expertise, management commitment, understanding ofSCM, supported technologies and customer satisfaction. The findings are also compared with the results of asimilar study on SCM in other country.Practical implications: Some suggestions are also offered, which is believed to be a good strategy to the companiesto manage the SCM that will lead to sustainable competitive advantage and hence improve their market share.Originality/value: There are interesting barriers between the companies in Malaysia and other country in therespect of SCM implementation. These findings can be used by both Malaysian and other companies to worktogether or review the SCM strategies that will lead to sustainable competitive advantage and hence improvetheir business performance.

  9. Geophysical characterization of subsurface barriers

    Energy Technology Data Exchange (ETDEWEB)

    Borns, D.J.

    1995-08-01

    An option for controlling contaminant migration from plumes and buried waste sites is to construct a subsurface barrier of a low-permeability material. The successful application of subsurface barriers requires processes to verify the emplacement and effectiveness of barrier and to monitor the performance of a barrier after emplacement. Non destructive and remote sensing techniques, such as geophysical methods, are possible technologies to address these needs. The changes in mechanical, hydrologic and chemical properties associated with the emplacement of an engineered barrier will affect geophysical properties such a seismic velocity, electrical conductivity, and dielectric constant. Also, the barrier, once emplaced and interacting with the in situ geologic system, may affect the paths along which electrical current flows in the subsurface. These changes in properties and processes facilitate the detection and monitoring of the barrier. The approaches to characterizing and monitoring engineered barriers can be divided between (1) methods that directly image the barrier using the contrasts in physical properties between the barrier and the host soil or rock and (2) methods that reflect flow processes around or through the barrier. For example, seismic methods that delineate the changes in density and stiffness associated with the barrier represents a direct imaging method. Electrical self potential methods and flow probes based on heat flow methods represent techniques that can delineate the flow path or flow processes around and through a barrier.

  10. Geophysical characterization of subsurface barriers

    International Nuclear Information System (INIS)

    An option for controlling contaminant migration from plumes and buried waste sites is to construct a subsurface barrier of a low-permeability material. The successful application of subsurface barriers requires processes to verify the emplacement and effectiveness of barrier and to monitor the performance of a barrier after emplacement. Non destructive and remote sensing techniques, such as geophysical methods, are possible technologies to address these needs. The changes in mechanical, hydrologic and chemical properties associated with the emplacement of an engineered barrier will affect geophysical properties such a seismic velocity, electrical conductivity, and dielectric constant. Also, the barrier, once emplaced and interacting with the in situ geologic system, may affect the paths along which electrical current flows in the subsurface. These changes in properties and processes facilitate the detection and monitoring of the barrier. The approaches to characterizing and monitoring engineered barriers can be divided between (1) methods that directly image the barrier using the contrasts in physical properties between the barrier and the host soil or rock and (2) methods that reflect flow processes around or through the barrier. For example, seismic methods that delineate the changes in density and stiffness associated with the barrier represents a direct imaging method. Electrical self potential methods and flow probes based on heat flow methods represent techniques that can delineate the flow path or flow processes around and through a barrier

  11. Channel cracks in atomic-layer and molecular-layer deposited multilayer thin film coatings

    International Nuclear Information System (INIS)

    Metal oxide thin film coatings produced by atomic layer deposition have been shown to be an effective permeation barrier. The primary failure mode of such coatings under tensile loads is the propagation of channel cracks that penetrate vertically into the coating films. Recently, multi-layer structures that combine the metal oxide material with relatively soft polymeric layers produced by molecular layer deposition have been proposed to create composite thin films with desired properties, including potentially enhanced resistance to fracture. In this paper, we study the effects of layer geometry and material properties on the critical strain for channel crack propagation in the multi-layer composite films. Using finite element simulations and a thin-film fracture mechanics formalism, we show that if the fracture energy of the polymeric layer is lower than that of the metal oxide layer, the channel crack tends to penetrate through the entire composite film, and dividing the metal oxide and polymeric materials into thinner layers leads to a smaller critical strain. However, if the fracture energy of the polymeric material is high so that cracks only run through the metal oxide layers, more layers can result in a larger critical strain. For intermediate fracture energy of the polymer material, we developed a design map that identifies the optimal structure for given fracture energies and thicknesses of the metal oxide and polymeric layers. These results can facilitate the design of mechanically robust permeation barriers, an important component for the development of flexible electronics.

  12. Minutes of Fish Barrier Workshop

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Minutes of Fish Barrier Workshop held 27 May 2009 at DOC Waikato Area Office. Lists attendees and highlights topics to be covered in Fish Barrier Workshop.

  13. Shot noise in magnetic double-barrier tunnel junctions

    OpenAIRE

    Szczepański, T; Dugaev, V. K.; Barnaå, J.; Cascales, J. P.; Aliev, F. G.

    2013-01-01

    We calculate shot noise and the corresponding Fano factors in magnetic double-barrier tunnel junctions. Two situations are analyzed: (i) the central metallic layer is nonmagnetic while the external ones are ferromagnetic, and (ii) all of the metallic layers are ferromagnetic. In the latter case, the number of various magnetic configurations of the junctions is larger, which improves the functionality of such devices. The corresponding shot noise and Fano factor are shown to depend on the magn...

  14. Sonic Crystal Noise Barriers

    OpenAIRE

    Chong, Yung

    2012-01-01

    An alternative road traffic noise barrier using an array of periodically arranged vertical cylinders known as a Sonic Crystal (SC) is investigated. As a result of multiple (Bragg) scattering, SCs exhibit a selective sound attenuation in frequency bands called band gaps or stop bands related to the spacing and size of the cylinders. Theoretical studies using Plane Wave Expansion (PWE), Multiple Scattering Theory (MST) and Finite Element Method (FEM) have enabled study of the performance of SC ...

  15. PHARMACOVIGILANCE: BARRIERS AND CHALLENGES

    OpenAIRE

    Varma, S. K.; RAPELLIWAR A; S. Sutradhar; THAWARE P; Misra, A. K.

    2013-01-01

    Pharmacovigilance is a new discipline which deals with adverse drug or any drug related problems. Pharmacovigilance programme was not bed of roses but its path is laid with challenges and barriers. It is facing obstacles from deficiency from professional health personal to web-based sale of drugs, counterfeit drug to self-medication, etc. It is an integral part of the health sector and identification and reporting of adverse drug effects will have a positive impact on the public health. Impro...

  16. Thermal barrier coating materials

    Directory of Open Access Journals (Sweden)

    David R. Clarke

    2005-06-01

    Full Text Available Improved thermal barrier coatings (TBCs will enable future gas turbines to operate at higher gas temperatures. Considerable effort is being invested, therefore, in identifying new materials with even better performance than the current industry standard, yttria-stabilized zirconia (YSZ. We review recent progress and suggest that an integrated strategy of experiment, intuitive arguments based on crystallography, and simulation may lead most rapidly to the development of new TBC materials.

  17. Stretchable gas barrier achieved with partially hydrogen-bonded multilayer nanocoating.

    Science.gov (United States)

    Holder, Kevin M; Spears, Benjamin R; Huff, Molly E; Priolo, Morgan A; Harth, Eva; Grunlan, Jaime C

    2014-05-01

    Super gas barrier nanocoatings are recently demonstrated by combining polyelectrolytes and clay nanoplatelets with layer-by-layer deposition. These nanobrick wall thin films match or exceed the gas barrier of SiOx and metallized films, but they are relatively stiff and lose barrier with significant stretching (≥ 10% strain). In an effort to impart stretchability, hydrogen-bonding polyglycidol (PGD) layers are added to an electrostatically bonded thin film assembly of polyethylenimine (PEI) and montmorillonite (MMT) clay. The oxygen transmission rate of a 125-nm thick PEI-MMT film increases more than 40x after being stretched 10%, while PGD-PEI-MMT trilayers of the same thickness maintain its gas barrier. This stretchable trilayer system has an OTR three times lower than the PEI-MMT bilayer system after stretching. This report marks the first stretchable high gas barrier thin film, which is potentially useful for applications that require pressurized elastomers. PMID:24700525

  18. Protective barrier program: Test plan for plant community dynamics

    International Nuclear Information System (INIS)

    The Westinghouse Hanford Company (Westinghouse Hanford) and Pacific Northwest Laboratory (PNL) are jointly developing protective barriers for the long term isolation of low-level radioactive defense waste for the US Department of Energy (DOE) at the Arid Sites. Protective barriers have been identified as an integral part of the overall final disposal strategy for low-level defense waste at the Arid Sites (DOE 1987). At present, the conceptual design of the Arid Site protective barrier is a multilayer structure that will minimize waster infiltration into and through the underlying waste, and will prevent intrusion into the waste by plant roots, animals, and humans. This multilayer system consists of a fine soil layer overlying a coarse sand and/or gravel geo-filter overlying a layer of large cobbles or basalt riprap. Plants contribute several crucial functions to the overall performance of the protective barrier.Through transpiration, plants are capable of removing considerably more moisture from a given volume of soil than the physical process of evaporation alone. This becomes especially important after periods of excessive precipitation when the possibility of saturation of the textural break and leeching to the buried waste is increased. Plants also function in significantly reducing the amount of wind and water erosion that would be expected to occur on the barrier surface. In addition to these physical functions, plants also influence other biotic effects on barrier performance

  19. Dielectric barrier discharge processing of aerospace materials

    Science.gov (United States)

    Scott, S. J.; Figgures, C. C.; Dixon, D. G.

    2004-08-01

    We report the use of atmospheric pressure, air based, dielectric barrier discharges (DBD) to treat materials commonly used in the aerospace industries. The material samples were processed using a test-bed of a conventional DBD configuration in which the sample formed one of the electrodes and was placed in close proximity to a ceramic electrode. The discharges generated a powerful, cold oxidizing environment which was able to remove organic contaminants, etch primer and paint layers, oxidize aluminium and roughen carbon fibre composites by the selective removal of resin.

  20. Evolution of the interhaemal barrier in the placenta of rodents

    DEFF Research Database (Denmark)

    Mess, A M; Carter, A M

    2009-01-01

    of the interhaemal barrier in rodents where at least seven variants have been described. To supplement existing data we first examined the placenta of the common gundi, Ctenodactylus gundi. It was shown to be haemochorial with a single layer of syncytiotrophoblast in the interhaemal membrane but with nests...... of cytotrophoblast elsewhere. Next we used character mapping on the recent tree to determine the pattern of evolution of the placenta with respect to principal type (e.g. haemochorial) and the trophoblast found within the interhaemal barrier. This indicated that the common ancestor of living rodents had...... a haemochorial placenta and that there were two independent transformations to the endotheliochorial type. Moreover, the interhaemal barrier was found to have had a single layer of syncytial trophoblast in the common ancestor of rodents, a condition that was retained in the clade comprising Hystricomorpha...

  1. Current–voltage characteristics of triple-barrier Josephson junctions

    Energy Technology Data Exchange (ETDEWEB)

    De Luca, R., E-mail: rdeluca@unisa.it; Giordano, A.

    2015-06-15

    Highlights: • I–V characteristics of triple-barrier Josephson junctions (TBJJs) are studied. • The I–V characteristics are identical to those of an ordinary single-barrier Josephson junction. • In the presence of r. f. radiation integer and fractional Shapiro steps appear. - Abstract: Current–voltage characteristics of triple-barrier Josephson junctions are analytically and numerically studied. In the presence of a constant current bias and for homogeneous Josephson coupling of all layers, these systems behave exactly as ordinary Josephson junctions, despite their non-canonical current-phase relation. Deviation from this behaviour is found for inhomogeneous Josephson coupling between different layers in the device. Appearance of integer and fractional Shapiro steps are predicted in the presence of r. f. frequency radiation. In particular, the amplitudes of these steps are calculated in the homogeneous case as clear footprints of the non-canonical current-phase relation in these systems.

  2. Behavior of ZnO-coated alumina dielectric barrier discharge in atmospheric pressure air

    CERN Document Server

    Li, Meng; Tao, Xiaoping

    2011-01-01

    A complete investigation of the discharge behavior of dielectric barrier discharge device using ZnO-coated dielectric layer in atmospheric pressure is made. Highly conductive ZnO film was deposited on the dielectric surface. Discharge characteristic of the dielectric barrier discharge are examined in different aspects. Experimental result shows that discharge uniformity is improved definitely in the case of ZnO-coated dielectric barrier discharge. And relevant theoretical models and explanation are presented to describing its discharge physics.

  3. Barrier and Mechanical Properties of Starch-Clay Nanocomposite Films

    Science.gov (United States)

    The poor barrier and mechanical properties of biopolymer-based food packaging can potentially be enhanced by the use of layered silicates (nanoclay) to produce nanocomposites. In this study, starch-clay nano-composites were synthesized by a melt extrusion method. Natural (MMT) and organically modifi...

  4. HEURISTIC OPTIMIZATION AND ALGORITHM TUNING APPLIED TO SORPTIVE BARRIER DESIGN

    Science.gov (United States)

    While heuristic optimization is applied in environmental applications, ad-hoc algorithm configuration is typical. We use a multi-layer sorptive barrier design problem as a benchmark for an algorithm-tuning procedure, as applied to three heuristics (genetic algorithms, simulated ...

  5. Educational Opportunity: El Salvador's Barriers to Achieving Equality Persist.

    Science.gov (United States)

    Rosekrans, Kristin

    This paper analyzes barriers to educational equality in El Salvador, using a multi-layered framework of educational opportunity. To improve educational opportunity and give the most marginalized sectors of society the possibility of changing their life circumstances requires policies that go beyond mere access to formal schooling. The model…

  6. Surface Leakage Mechanisms in III-V Infrared Barrier Detectors

    Science.gov (United States)

    Sidor, D. E.; Savich, G. R.; Wicks, G. W.

    2016-09-01

    Infrared detector epitaxial structures employing unipolar barriers exhibit greatly reduced dark currents compared to simple pn-based structures. When correctly positioned within the structure, unipolar barriers are highly effective at blocking bulk dark current mechanisms. Unipolar barriers are also effective at suppressing surface leakage current in infrared detector structures employing absorbing layers that possess the same conductivity type in their bulk and at their surface. When an absorbing layer possesses opposite conductivity types in its bulk and at its surface, unipolar barriers are not solutions to surface leakage. This work reviews empirically determined surface band alignments of III-V semiconductor compounds and modeled surface band alignments of both gallium-free and gallium-containing type-II strained layer superlattice material systems. Surface band alignments are used to predict surface conductivity types in several detector structures, and the relationship between surface and bulk conductivity types in the absorbing layers of these structures is used as the basis for explaining observed surface leakage characteristics.

  7. Epithelial IL-18 Equilibrium Controls Barrier Function in Colitis

    NARCIS (Netherlands)

    Nowarski, Roni; Jackson, Ruaidhrí; Gagliani, Nicola; de Zoete, Marcel R; Palm, Noah W; Bailis, Will; Low, Jun Siong; Harman, Christian C D; Graham, Morven; Elinav, Eran; Flavell, Richard A

    2015-01-01

    The intestinal mucosal barrier controlling the resident microbiome is dependent on a protective mucus layer generated by goblet cells, impairment of which is a hallmark of the inflammatory bowel disease, ulcerative colitis. Here, we show that IL-18 is critical in driving the pathologic breakdown of

  8. Layered materials

    Science.gov (United States)

    Johnson, David; Clarke, Simon; Wiley, John; Koumoto, Kunihito

    2014-06-01

    Layered compounds, materials with a large anisotropy to their bonding, electrical and/or magnetic properties, have been important in the development of solid state chemistry, physics and engineering applications. Layered materials were the initial test bed where chemists developed intercalation chemistry that evolved into the field of topochemical reactions where researchers are able to perform sequential steps to arrive at kinetically stable products that cannot be directly prepared by other approaches. Physicists have used layered compounds to discover and understand novel phenomena made more apparent through reduced dimensionality. The discovery of charge and spin density waves and more recently the remarkable discovery in condensed matter physics of the two-dimensional topological insulating state were discovered in two-dimensional materials. The understanding developed in two-dimensional materials enabled subsequent extension of these and other phenomena into three-dimensional materials. Layered compounds have also been used in many technologies as engineers and scientists used their unique properties to solve challenging technical problems (low temperature ion conduction for batteries, easy shear planes for lubrication in vacuum, edge decorated catalyst sites for catalytic removal of sulfur from oil, etc). The articles that are published in this issue provide an excellent overview of the spectrum of activities that are being pursued, as well as an introduction to some of the most established achievements in the field. Clusters of papers discussing thermoelectric properties, electronic structure and transport properties, growth of single two-dimensional layers, intercalation and more extensive topochemical reactions and the interleaving of two structures to form new materials highlight the breadth of current research in this area. These papers will hopefully serve as a useful guideline for the interested reader to different important aspects in this field and

  9. Improvement of power characteristics in 850 nm quantum well laser with asymmetric barriers

    DEFF Research Database (Denmark)

    Zubov, F.I.; Maximov, M.V.; Shernyakov, YuM.;

    2015-01-01

    Power and spectral characteristics of lasers with asymmetric barrier layers (ABLs) and a wide waveguide are studied. The use of ABLs reduces the saturation of light-current characteristic, associated with the parasitic recombination in the waveguide....

  10. Electron Holography of Barrier Structures in Co/ZrAlOx/Co Magnetic Tunnel Junctions

    Institute of Scientific and Technical Information of China (English)

    ZHANG Zhe; ZHU Tao; SHEN Feng; SHENG Wen-Ting; WANG Wei-Gang; XIAO John Q; ZHANG Ze

    2005-01-01

    @@ We investigate the potential profiles and elemental distribution of barriers in Co/ZrAlOx/Co magnetic tunnel junctions (MTJs) using electron holography (EH) and scanning transmission electron microscopy. The MTJ barriers are introduced by oxidizing a bilayer consisting with a uniform 0.45-nm Al layer and a wedge-shaped Zr layer (0-2 nm). From the scanning transmission electron microscopy, AlOx and ZrOx layers are mixed together,indicating that compact AlOx layer cannot be formed in such a bilayer structure of barriers. The EH results reveal that there are no sharp interfaces between the barrier and magnetic electrodes, which may be responsible for a smaller tunnelling magnetoresistance compared with the MTJs of Co/AlOx/Co.

  11. Effects of Fe on properties of Zr barriers

    Energy Technology Data Exchange (ETDEWEB)

    Lutz, D.R.; Wisner, S.B.; Farkas, D.M.; Adamson, R.B. [GE Nuclear Energy, San Jose (United States)

    1999-07-01

    Zircaloy-2 barrier fuel having an inner surface layer of 'pure' zirconium (barrier) has been successful in eliminating fuel failures by the pellet cladding interaction (PCI) mechanism during power maneuvers in boiling water reactors (BWRs). Barrier purity and the softness of Zr relative to Zircaloy were originally the barrier characteristics of most interest, as PCI resistance depended upon them. To insure effective performance, impurity levels of the Zr were controlled such that the two major impurities, iron and oxygen, were generally kept to less than 500 ppm each. Recently there has been more interest in improving the inner surface corrosion resistance of barrier cladding in case of water or steam ingress due to a primary leak in the cladding. Increasing the Fe concentration in Zr is known to improve corrosion resistance of the barrier but at the possible risk of increasing PCI susceptibility. Therefore a series of laboratory studies were conducted to determine the range of Fe concentration which would optimize barrier performance. Zr barrier Fe concentrations in the range 90 - 3000 ppm were investigated. Corrosion testing in steam revealed a general increase in corrosion resistance with increasing Fe content, with the rate of change being most rapid in the 90 - 1000 ppm range. PCI resistance as determined by the GE Expanding Mandrel Test was found to be excellent in the range 400 - 1000 ppm Fe, but at 3000 ppm Fe the barrier was less resistant to iodine stress corrosion cracking and to PCI-type tubing failure. Further understanding of the results was obtained through detailed characterization of the size, distribution and composition of Fe-Zr second phases in the barrier. (authors)

  12. Barriers for recess physical activity

    DEFF Research Database (Denmark)

    Pawlowski, Charlotte Skau; Tjørnhøj-Thomsen, Tine; Schipperijn, Jasper;

    2014-01-01

    differences in children's perceptions of barriers to recess physical activity. Based on the socio-ecological model four types of environmental barriers were distinguished: natural, social, physical and organizational environment. METHODS: Data were collected through 17 focus groups (at 17 different schools......BACKGROUND: Many children, in particular girls, do not reach the recommended amount of daily physical activity. School recess provides an opportunity for both boys and girls to be physically active, but barriers to recess physical activity are not well understood. This study explores gender...... and girls identified the same barriers, there were both inter- and intra-gender differences in the perception of these barriers. Weather was a barrier for all children, apart from the most active boys. Conflicts were perceived as a barrier particularly by those boys who played ballgames. Girls said...

  13. Effect of Size of Barrier on Reflection of Love Waves

    Directory of Open Access Journals (Sweden)

    Jagdish Singh

    2010-12-01

    Full Text Available The problem of reflection of Love waves at a rigid barrier is studied in this paper by taking the barriers of different sizes. The barrier is present in the homogeneous, isotropic and slightly dissipative surface layer. The reflected waves are obtained by Wiener – Hopf technique and Fourier transformations. Numerical computation has been done and conclusion has been drawn from the graphs of amplitudes versus wave number of the reflected Love waves. The amplitude of the reflected waves decreases rapidly with the increase in wave number and then it decreases at slower rate and ultimately becomes saturated which shows that love waves take a long time to dissipate and go on moving around earth surface for a long time. The comparison of graphs also shows that the barriers of large sizes result in reflected Love waves with larger amplitudes.

  14. Heat convection and transport barriers in low-magnetic-shear Rijnhuizen Tokamak Project plasmas

    NARCIS (Netherlands)

    Mantica, P.; Gorini, G.; Hogeweij, G. M. D.; Cardozo, N. J. L.; Schilham, A.M.R.

    2000-01-01

    Layers of reduced electron heat transport ("transport barriers") have been observed in the Rijnhuizen Tokamak Project when the plasma is dominantly heated by electron cyclotron heating (ECH). Experiments into the properties of the transport barriers are reported. Modulation of the ECH powe

  15. [Barrier methods of contraception].

    Science.gov (United States)

    Goldsmith, A; Edelman, D A

    1982-01-01

    Vaginal methods of contraception were the earliest types used and some references to them date back to antiquity. Most of the vaginal contraceptive agents identified by the ancient Greeks, Indians, Japanese, and Chinese have been found in modern laboratory tests to have spermicidal properties, but it is doubtful that the methods were fully reliable or were used by many people. During the 19th century the condom, vaginal spermicides, and diaphragm became available. The development of nonoxynol-9 and other nonirritating but effective spermicidal agents improved vaginal contraceptives greatly by the 1950s, but starting in the 1960s newer methods began to replace the vaginal methods. Interest in barrier methods has been reawakened somewhat by concern about the health effects of hormonal methods. At present all barrier methods leave something to be desired. Failure rates of 3-30% for barrier methods in general have been estimated, but the higher rates are believed due to incorrect or inconsistent use. Theoretical failure rates of condoms and diaphragms have been estimated at 3/100 women-years, but in actual use failure rates may reach 15 for condoms and 13 for diaphragms used with spermicides. Use-effectiveness rates are greatly influenced by motivation. For a variety of reasons, the acceptability of barrier methods is low, especially in developing countries. New developments in spermicidal agents include sperm inhibitors, which impede the fertilizing capacity of sperm rather than attempting a spermicidal effect; a number of such agents have been studied and have proven more effective in animal tests than conventional spermicides. Neosampoon, a new spermicidal foam, has attracted an increasing number of users, especially in developing countries. A new condom, made of thin polymers and containing a standard dose of nonoxynol-9, has been designed to dissolve in the vaginal fluid. Further studies are needed of its acceptability, efficacy, and side effects before it becomes

  16. Technical barrier challenges

    Institute of Scientific and Technical Information of China (English)

    李思佳

    2014-01-01

    according to a famouse report,the foreign Technical Barriers to Trade(TBT)have some effects on the exports of the People’s Republic of China.Major findings are as follows:(1)TBT makes it more difficult for China to export;(2)TBT increases the costs of Chinese export commodities;(3)TBT causes friction and confilicts in the international trade;(4)SOME developed countries have moved their phase-outs to China and other developing countries,which have become victims of TBT.

  17. Technical barrier challenges

    Institute of Scientific and Technical Information of China (English)

    李思佳

    2014-01-01

    according to a famouse report,the foreign Technical Barriers to Trade(TBT) have some effects on the exports of the People's Republic of China.Major findings are as follows:(1)TBT makes it more difficult for China to export;(2)TBT increases the costs of Chinese export commodities;(3)TBT causes friction and confilicts in the international trade;(4)SOME developed countries have moved their phase-outs to China and other developing countries,which have become victims of TBT.

  18. Tearing Down Disciplinary Barriers

    Science.gov (United States)

    Roederer, Juan G.

    1988-05-01

    Profesor Hannes Alfvén's life-long battle against scientific narrow-mindedness and parochial approaches to the solution of scientific problems is well known and deeply appreciated by this author. In this article the new interdisciplinary trends in science are critically examined and the psychological impacts of crumbling disciplinary barriers on the participating scientists are analyzed. Several examples of interdisciplinary research programs are discussed and some thoughts on the structural reform of scientific organizations, agencies, and universities needed to face these trends are given.

  19. TBCs for better engine efficiency. [thermal barrier coatings

    Science.gov (United States)

    Brindley, William J.; Miller, Robert A.

    1989-01-01

    State-of-the-art thermal barrier coatings (TBCs) developed for aircraft engines can achieve both hot-section component operating temperature reductions and superior oxidation resistance. Such TBCs typically consist of two layers: a metallic, often NiCrAlY 'bond' inner layer in contact with the superalloy structural component, and an outer, insulating ceramic layer. A ceramic frequently used in this role due to its high durability is plasma-sprayed ZrO2, partially stabilized with 6-8 wt pct Y2O3. TBCs can also be useful in nonaircraft gas turbines, which frequently use highly contaminated fuels.

  20. Barriers to entry : abolishing the barriers to understanding

    OpenAIRE

    Keppler, Jan Horst

    2009-01-01

    BARRIERS TO ENTRY: ABOLISHING THE BARRIERS TO UNDERSTANDING by Jan-Horst Keppler Professor of economics Université Paris – Dauphine, LEDa, and Université Paris I Panthéon-Sorbonne, PHARE Port.: (+33 6) 77 81 37 46; Email: . Abstract The concept of a barrier to entry has been discussed least since Bain (1956) with important contributions by Spence (1977), Dixit (1980) or Milgrom and Roberts (1982). The more recent discussion is synth...

  1. Filaggrin and the great epidermal barrier grief.

    Science.gov (United States)

    McGrath, John A

    2008-05-01

    One of the principal functions of human skin is to form an effective mechanical barrier against the external environment. This involves the maturation and death of epidermal keratinocytes as well as the assembly of a complex network of differentially and spatially expressed proteins, glycoproteins and lipids into the keratinocyte cell membrane and surrounding extracellular space. In 2006, the key role of the granular cell layer protein filaggrin (filament-aggregating protein) in maintaining the skin barrier was determined with the identification of loss-of-function mutations in the profilaggrin gene (FLG). These mutations have been shown to be the cause of ichthyosis vulgaris and a major risk factor for the development of atopic dermatitis, asthma associated with atopic dermatitis as well as systemic allergies. Mutations in the FLG gene are extremely common, occurring in approximately 9% of individuals from European populations. The remarkable discovery of these widespread mutations is expected to have a major impact on the classification and management of many patients with ichthyosis and atopic disease. It is also hoped that the genetic discovery of FLG mutations will lead to the future development of more specific, non-immunosuppressive treatments capable of restoring effective skin barrier function and alleviating or preventing disease in susceptible individuals.

  2. Barrier Coatings for Refractory Metals and Superalloys

    Energy Technology Data Exchange (ETDEWEB)

    SM Sabol; BT Randall; JD Edington; CJ Larkin; BJ Close

    2006-02-23

    In the closed working fluid loop of the proposed Prometheus space nuclear power plant (SNPP), there is the potential for reaction of core and plant structural materials with gas phase impurities and gas phase transport of interstitial elements between superalloy and refractory metal alloy components during service. Primary concerns are surface oxidation, interstitial embrittlement of refractory metals and decarburization of superalloys. In parallel with kinetic investigations, this letter evaluates the ability of potential coatings to prevent or impede communication between reactor and plant components. Key coating requirements are identified and current technology coating materials are reviewed relative to these requirements. Candidate coatings are identified for future evaluation based on current knowledge of design parameters and anticipated environment. Coatings were identified for superalloys and refractory metals to provide diffusion barriers to interstitial transport and act as reactive barriers to potential oxidation. Due to their high stability at low oxygen potential, alumina formers are most promising for oxidation protection given the anticipated coolant gas chemistry. A sublayer of iridium is recommended to provide inherent diffusion resistance to interstitials. Based on specific base metal selection, a thin film substrate--coating interdiffusion barrier layer may be necessary to meet mission life.

  3. Barrier Coatings for Refractory Metals and Superalloys

    International Nuclear Information System (INIS)

    In the closed working fluid loop of the proposed Prometheus space nuclear power plant (SNPP), there is the potential for reaction of core and plant structural materials with gas phase impurities and gas phase transport of interstitial elements between superalloy and refractory metal alloy components during service. Primary concerns are surface oxidation, interstitial embrittlement of refractory metals and decarburization of superalloys. In parallel with kinetic investigations, this letter evaluates the ability of potential coatings to prevent or impede communication between reactor and plant components. Key coating requirements are identified and current technology coating materials are reviewed relative to these requirements. Candidate coatings are identified for future evaluation based on current knowledge of design parameters and anticipated environment. Coatings were identified for superalloys and refractory metals to provide diffusion barriers to interstitial transport and act as reactive barriers to potential oxidation. Due to their high stability at low oxygen potential, alumina formers are most promising for oxidation protection given the anticipated coolant gas chemistry. A sublayer of iridium is recommended to provide inherent diffusion resistance to interstitials. Based on specific base metal selection, a thin film substrate--coating interdiffusion barrier layer may be necessary to meet mission life

  4. Multilayer Article Characterized by Low Coefficient of Thermal Expansion Outer Layer

    Science.gov (United States)

    Lee, Kang N. (Inventor)

    2004-01-01

    A multilayer article comprises a substrate comprising a ceramic or a silicon-containing metal alloy. The ceramic is a Si-containing ceramic or an oxide ceramic with or without silicon. An outer layer overlies the substrate and at least one intermediate layer is located between the outer layer and thc substrate. An optional bond layer is disposed between thc 1 least one intermediate layer and thc substrate. The at least one intermediate layer may comprise an optional chemical barrier layer adjacent the outer layer, a mullite-containing layer and an optional chemical barrier layer adjacent to the bond layer or substrate. The outer layer comprises a compound having a low coefficient of thermal expansion selected from one of the following systems: rare earth (RE) silicates; at least one of hafnia and hafnia-containing composite oxides; zirconia-containing composite oxides and combinations thereof.

  5. Synthetic Eelgrass Oil Barrier

    Science.gov (United States)

    Curtis, T. G.

    2013-05-01

    Although surviving in situ micro-organisms eventually consume spilled oil, extensive inundation of shore biota by oil requires cleanup to enable ecological recovery within normal time scales. Although effective in calm seas and quiet waters, oil is advected over and under conventional curtain oil booms by wave actions and currents when seas are running. Most sorbent booms are not reusable, and are usually disposed of in landfills, creating excessive waste. A new concept is proposed for a floating oil barrier, to be positioned off vulnerable coasts, to interdict, contain, and sequester spilled oil, which can then be recovered and the barrier reused. While conventional oil boom designs rely principally on the immiscibility of oil in water and its relative buoyancy, the new concept barrier avoids the pitfalls of the former by taking advantage of the synergistic benefits of numerous fluid and material properties, including: density, buoyancy, elasticity, polarity, and surface area to volume ratio. Modeled after Zostera marina, commonly called eelgrass, the new barrier, referred to as synthetic eelgrass (SE), behaves analogously. Eelgrass has very long narrow, ribbon-like, leaves which support periphyton, a complex matrix of algae and heterotrophic microbes, which position themselves there to extract nutrients from the seawater flowing past them. In an analogous fashion, oil on, or in, seawater, which comes in contact with SE, is adsorbed on the surface and sequestered there. Secured to the bottom, in shoal waters, SE rises to the surface, and, if the tide is low enough, floats on the sea surface down wind, or down current to snare floating oil. The leaves of SE, called filaments, consist of intrinsically buoyant strips of ethylene methyl acrylate, aka EMA. EMA, made of long chain, saturated, hydrocarbon molecules with nearly homogeneous electron charge distributions, is a non-polar material which is oleophilic and hydrophobic. Oil must be in close proximity to the

  6. Hydrogen absorption/desorption behavior through oxide layer of fuel claddings under accidental conditions

    International Nuclear Information System (INIS)

    The depth profiles of hydrogen were measured at outer surface of fuel claddings corroded in high temperature steams at 1073 – 1473 K to examine the barrierness of surface oxide layer against the hydrogen absorption/desorption. The results indicated that the oxide layer would be no longer the barrier against the hydrogen under some conditions although it remained as the barrier against the oxidation. (author)

  7. Development of dual-band barrier detectors

    Science.gov (United States)

    Plis, Elena; Myers, Stephen A.; Ramirez, David A.; Krishna, Sanjay

    2016-05-01

    We report on the development of dual-band InAs/GaSb type-II strained layer superlattices (T2SL) detectors with barrier designs at SK Infrared. Over the past five years, we demonstrated mid-wave/long-wave (MW/LWIR, cut-off wavelengths are 5 μm and 10.0 μm), and LW/LWIR (cut-off wavelengths are 9 μm and 11.0 μm) detectors with nBn and pBp designs. Recent results include a high performance bias-selectable long/long-wavelength infrared photodetector based on T2SL with a pBp barrier architecture. The two channels 50% cut-off wavelengths were ~ 9.2 μm and ~ 12 μm at 77 K. The "blue" and "red" LWIR absorbers demonstrated saturated QE values of 34 % and 28 %, respectively, measured in a backside illuminated configuration with a ~ 35 μm thick layer of residual GaSb substrate. Bulk-limited dark current levels were ~ 2.6 x 10-7 A/cm2 at + 100 mV and ~ 8.3 x 10-4 A/cm2 at - 200 mV for the "blue" and "red" channels, respectively.

  8. Barrier and long term creep properties of polymer nanocomposites

    Science.gov (United States)

    Ranade, Ajit

    The barrier properties and long term strength retention of polymers are of significant importance in a number of applications. Enhanced lifetime food packaging, substrates for OLED based flexible displays and long duration scientific balloons are among them. Higher material requirements in these applications drive the need for an accurate measurement system. Therefore, a new system was engineered with enhanced sensitivity and accuracy. Permeability of polymers is affected by permeant solubility and diffusion. One effort to decrease diffusion rates is via increasing the transport path length. We explore this through dispersion of layered silicates into polymers. Layered silicates with effective aspect ratio of 1000:1 have shown promise in improving the barrier and mechanical properties of polymers. The surface of these inorganic silicates was modified with surfactants to improve the interaction with organic polymers. The micro and nanoscale dispersion of the layered silicates was probed using optical and transmission microscopy as well as x-ray diffraction. Thermal transitions were analyzed using differential scanning calorimetry. Mechanical and permeability measurements were correlated to the dispersion and increased density. The essential structure-property relationships were established by comparing semicrystalline and amorphous polymers. Semicrystalline polymers selected were nylon-6 and polyethylene terephthalate. The amorphous polymer was polyethylene terphthalate-glycol. Densification due to the layered silicate in both semicrystalline and amorphous polymers was associated with significant impact on barrier and long term creep behavior. The inferences were confirmed by investigating a semi-crystalline polymer---polyethylene---above and below the glass transition. The results show that the layered silicate influences the amorphous segments in polymers and barrier properties are affected by synergistic influences of densification and uniform dispersion of the

  9. Ultra high barrier materials for encapsulation of flexible organic electronics

    Science.gov (United States)

    Logothetidis, S.; Laskarakis, A.; Georgiou, D.; Amberg-Schwab, S.; Weber, U.; Noller, K.; Schmidt, M.; Küçükpinar-Niarchos, E.; Lohwasser, W.

    2010-09-01

    The encapsulation of the active layers (organic semiconductors, electrodes, transparent conductive oxides, etc.) of organic electronic devices developed onto flexible polymeric substrates is one of the most challenging issues in the rapidly emerging area of organic electronics. The importance for the protection of the active layers arises from the fact that these are very sensitive when they are subjected to the atmosphere, since the permeation of the atmosphere's water vapour (H2O) and oxygen (O2) gases induces corrosion effects, film delamination and finally, failure of the organic electronic device. In addition, the encapsulation layers contribute to the long-term stability of the whole device enabling its use in outdoor environments (e.g. in the case of flexible photovoltaic cells-OPVs). A promising approach for the encapsulation of flexible organic electronics includes the development of multilayers that consist of hybrid polymer materials and inorganic layers onto flexible polymeric substrates, such as poly(ethylene terephthalate) (PET). This approach leads to a significant improvement of the barrier performance of the whole structure, due to the synergetic effect of the confinement of the permeation to the defect zones of the inorganic layer, and the formation of chemical bonds between the hybrid polymer and the inorganic layer. The knowledge of their optical properties and their correlation with their barrier performance are of major importance since it will contribute towards the optimization of their functionality. In this work, we provide an overview on the results concerning the use of hybrid polymers as ultra high barrier materials and moreover we discuss on the effect of inclusion of SiO2 nano-particles on their optical properties and barrier performance.

  10. Collective Phenomena In Volume And Surface Barrier Discharges

    Science.gov (United States)

    Kogelschatz, U.

    2010-07-01

    Barrier discharges are increasingly used as a cost-effective means to produce non-equilibrium plasmas at atmospheric pressure. This way, copious amounts of electrons, ions, free radicals and excited species can be generated without appreciable gas heating. In most applications the barrier is made of dielectric material. In laboratory experiments also the use of resistive, ferroelectric and semiconducting materials has been investigated, also porous ceramic layers and dielectric barriers with controlled surface conductivity. Major applications utilizing mainly dielectric barriers include ozone generation, surface cleaning and modification, polymer and textile treatment, sterilization, pollution control, CO2 lasers, excimer lamps, plasma display panels (flat TV screens). More recent research efforts are also devoted to biomedical applications and to plasma actuators for flow control. Sinu- soidal feeding voltages at various frequencies as well as pulsed excitation schemes are used. Volume as well as surface barrier discharges can exist in the form of filamentary, regularly patterned or laterally homogeneous discharges. Reviews of the subject and the older literature on barrier discharges were published by Kogelschatz (2002, 2003), by Wagner et al. (2003) and by Fridman et al. (2005). A detailed discussion of various properties of barrier discharges can also be found in the recent book "Non-Equilibrium Air Plasmas at Atmospheric Pressure" by Becker et al. (2005). The physical effects leading to collective phenomena in volume and surface barrier discharges will be discussed in detail. Special attention will be given to self-organization of current filaments. Main similarities and differences of the two types of barrier discharges will be elaborated.

  11. Underground explosion barriers - a review

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, B.; O`Beirne, T. [ACIRL Ltd., Booval, Qld. (Australia)

    1997-12-31

    The paper focuses on explosibility conditions in underground coal mines, the behaviour of explosions from initiating gas ignition to violent dust explosions and the effectiveness and limits of operation of current designs of passive explosion barriers in suppressing the flame front. The paper also discusses performance evaluations made in full scale explosion galleries and the use of alternatives to passive barriers, including the installation of active barriers under some circumstances.

  12. The gut barrier: new acquisitions and therapeutic approaches.

    Science.gov (United States)

    Scaldaferri, Franco; Pizzoferrato, Marco; Gerardi, Viviana; Lopetuso, Loris; Gasbarrini, Antonio

    2012-10-01

    The intestinal barrier serves 2 critical functions for the survival of the individual: first, it allows nutrient absorption and second, it defends the body from dangerous macromolecule penetration. It is a complex multilayer system, consisting of an external "anatomic" barrier and an inner "functional" immunological barrier. The interaction of these 2 barriers enables equilibrated permeability to be maintained. Many factors can alter this balance: gut microflora modifications, mucus layer alterations, and epithelial damage can increase intestinal permeability, allowing the translocation of luminal content to the inner layer of intestinal wall. Several techniques are now available that enable us to study gut permeability: "in vitro" models (Caco-2 and HT29-MTX cells) and "in vivo" not invasive tests (sugar tests and radioisotope scanning tests) are used to estimate permeability and to suggest molecular pathophysiological mechanisms of intestinal permeability in health and diseases. Many medicinal products used in the treatment of gastrointestinal diseases have also found to play an active role in modulate intestinal permeability: corticosteroids, 5-aminosalicylic acid, anti-tumor necrosis factor, probiotics, and mucosal protectors, like gelatin tannate. This review will particularly address the role of the gut barrier in maintaining intestinal permeability (microbiota, mucus, and epithelial cells), the techniques used for estimating intestinal permeability and the therapeutic approaches able to modify it. PMID:22955350

  13. There are many barriers to species' migrations

    Directory of Open Access Journals (Sweden)

    Kenneth J Feeley

    2014-06-01

    Full Text Available Temperature-change trajectories are being used to identify the geographic barriers and thermal ‘cul-de-sacs’ that will limit the ability of many species to track climate change by migrating. We argue that there are many other potential barriers to species’ migrations. These include stable ecotones, discordant shifts in climatic variables, human land use, and species’ limited dispersal abilities. To illustrate our argument, for each 0.5° latitude/longitude grid cell of the Earth’s land surface, we mapped and tallied the number of cells for which future (2060–2080 climate represents an analog of the focal cell’s current climate. We compared results when only considering temperature with those for which both temperature and total annual precipitation were considered in concert. We also compared results when accounting for only geographic barriers (no cross-continental migration with those involving both geographic and potential ecological barriers (no cross-biome migration. As expected, the number of future climate analogs available to each pixel decreased markedly with each added layer of complexity (e.g. the proportion of the Earth’s land surface without any available future climate analogs increased from 3% to more than 36% with the inclusion of precipitation and ecological boundaries. While including additional variables can increase model complexity and uncertainty, we must strive to incorporate the factors that we know will limit species’ ranges and migrations if we hope to predict the effects of climate change at a high-enough degree of accuracy to guide management decisions.

  14. Microstructures and properties of double-ceramic-layer thermal barrier coatings of La{sub 2}(Zr{sub 0.7}Ce{sub 0.3}){sub 2}O{sub 7}/8YSZ made by atmospheric plasma spraying

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Shuhai; Xiang, Jianying; Huang, Jihua, E-mail: jhhuang@ustb.edu.cn; Zhao, Xingke

    2015-06-15

    Highlights: • The DCL LZ7C3/8YSZ coating system was prepared by the APS. • The LZ and LC in as-sprayed LZ7C3 have almost overlapping diffracted angles. • The LZ and LC in as-sprayed LZ7C3 have approximately equal diffracted intensity. • The DCL LZ7C3/8YSZ coating exhibited good thermal shock resistance. • The DCL LZ7C3/8YSZ coating has excellent thermal insulated ability. - Abstract: A double-ceramic-layer (DCL) thermal barrier coatings (TBC) of La{sub 2}(Zr{sub 0.7}Ce{sub 0.3}){sub 2}O{sub 7}/8YSZ (LZ7C3/8YSZ) was prepared by atmospheric plasma spraying (APS). The phase structure, composition, thermal conductivity, surface and cross-sectional morphologies, adhesion strength and thermal shock behavior of the LZ7C3/8YSZ coating were investigated. The X-ray diffraction pattern showed that the phase structures of top coat LZ7C3 was different from the powder for spraying, which consists of pyrochlore LZ and fluorite LC structures. Main peaks between LZ and LC in as-sprayed LZ7C3 have almost overlapping diffracted angles and approximately equal diffracted intensity. Thermal shock lifetime and adhesion strength of the DCL LZ7C3/8YSZ coating are enhanced significantly as compared to single LZ7C3 coating, and are very close to that of single 8YSZ coating. The mechanisms of performance improvement are considered to be effictive reduction of stress concentration between substrate and LZ7C3 coating by 8YSZ buffer effect, and the gentle thermal gradient initiated at the time of quenching in water. The DCL LZ7C3/8YSZ coating has lower thermal conductivity than 8YSZ, which was only 25% of 8YSZ bulk material and 65% of 8YSZ coating by APS.

  15. Exposure, Uptake, and Barriers

    Science.gov (United States)

    Baeza-Squiban, Armelle; Lanone, Sophie

    The nanotechnologies market is booming, e.g., in the food industry (powder additives, etc.) and in medical applications (drug delivery, prosthetics, diagnostic imaging, etc.), but also in other industrial sectors, such as sports, construction, cosmetics, and so on. In this context, with an exponential increase in the number of current and future applications, it is particularly important to evaluate the problem of unintentional (i.e., non-medical) exposure to manufactured nanoparticles (so excluding nanoparticles found naturally in the environment). In this chapter, we begin by discussing the various parameters that must be taken into account in any serious assessment of exposure to man-made nanoparticles. We then list the potential routes by which nanoparticles might enter into the organism, and outline the mechanisms whereby they could get past the different biological barriers. Finally, we describe the biodistribution of nanoparticles in the organism and the way they are eliminated.

  16. Countermeasures and barriers

    Energy Technology Data Exchange (ETDEWEB)

    Petersen, Johannes [Oersted - DTU, Automation, Kgs. Lyngby (Denmark)

    2005-10-01

    In 1973 Haddon proposed ten strategies for reducing and avoiding damages based on a model of potential harmful energy transfer (Haddon, 1973). The strategies apply to a large variety of unwanted phenomena. Haddon's pioneering work on countermeasures has had a major influence on later thinking about safety. Considering its impact it is remarkable that the literature offers almost no discussions related to the theoretical foundations of Haddon's countermeasure strategies. The present report addresses a number of theoretical issues related to Haddon's countermeasure strategies, which are: 1) A reformulation and formalization of Haddon's countermeasure strategies. 2) An identification and description of some of the problems associated with the term 'barrier'. 3) Suggestions for a more precise terminology based on the causal structure of countermeasures. 4) Extending the scope of countermeasures to include sign-based countermeasures. (au)

  17. PHARMACOVIGILANCE: BARRIERS AND CHALLENGES

    Directory of Open Access Journals (Sweden)

    VARMA S. K

    2013-01-01

    Full Text Available Pharmacovigilance is a new discipline which deals with adverse drug or any drug related problems. Pharmacovigilance programme was not bed of roses but its path is laid with challenges and barriers. It is facing obstacles from deficiency from professional health personal to web-based sale of drugs, counterfeit drug to self-medication, etc. It is an integral part of the health sector and identification and reporting of adverse drug effects will have a positive impact on the public health. Improvement in knowledge in pharmacovigilance and communication from the top level to the grass-root level in the health sector will help in proper implementation of the programme. Patient should be educated to report any adverse effects after taking drug and stop relaying on acquiring information related to drugs in web. Proper detection, reporting and analysis would help to implement the programme for the betterment of society.

  18. Countermeasures and barriers

    International Nuclear Information System (INIS)

    In 1973 Haddon proposed ten strategies for reducing and avoiding damages based on a model of potential harmful energy transfer (Haddon, 1973). The strategies apply to a large variety of unwanted phenomena. Haddon's pioneering work on countermeasures has had a major influence on later thinking about safety. Considering its impact it is remarkable that the literature offers almost no discussions related to the theoretical foundations of Haddon's countermeasure strategies. The present report addresses a number of theoretical issues related to Haddon's countermeasure strategies, which are: 1) A reformulation and formalization of Haddon's countermeasure strategies. 2) An identification and description of some of the problems associated with the term 'barrier'. 3) Suggestions for a more precise terminology based on the causal structure of countermeasures. 4) Extending the scope of countermeasures to include sign-based countermeasures. (au)

  19. Racial Trade Barriers?

    DEFF Research Database (Denmark)

    Bjerre, Jacob Halvas

    Aryanization is associated with Nazi Germany's policies to exclude Jews in the Germany from the economy in the pre-war years, but I will show it was a global policy from 1937. The utopian goal of international Aryanization was the total removal of Jews who traded with Germany anywhere in the world....... This paper analyzes the racial policies pursued in the foreign trade and argues that we need to recognize Aryanization as a world-wide policy in order to fully understand its character and possible consequences. I focus on the pre-war period and analyze the case of Denmark from three different perspectives......: perpetrators, victims and bystanders. The analysis will show that race, economy and foreign trade were combined in an attempt to raise racial trade barriers. This forced the question of German racial policies on the Danish government, Danish-Jewish businesses, and German companies involved in foreign trade...

  20. Optical properties of hybrid polymers as barrier materials

    Science.gov (United States)

    Georgiou, D.; Laskarakis, A.; Logothetidis, S.; Amberg-Scwhab, S.; Weber, U.; Schmidt, M.; Noller, K.

    2009-06-01

    The development of high barrier films for the encapsulation of organic electronics devices onto flexible polymeric substrates is attracting a considerable scientific interest, since it is important to protect the organic semiconductor layers of these devices from corrosion due to atmospheric gas molecule permeation. The barrier layers for encapsulation consist of a sequence of inorganic and hybrid polymer thin films that are deposited onto flexible polymeric substrates, such as polyethylene terephthalate (PET). In addition to their barrier response, these multilayer systems should also exhibit high transparency and good adhesion between the hybrid polymer and inorganic layers. The knowledge of their optical properties and the correlation of the optical response with their structure and the final barrier response are of major importance since it will contribute towards the optimization of their functionality. In this work, the optical properties of hybrid polymers deposited onto silicon oxide inorganic thin films that were grown onto flexible polymeric substrates, have been investigated by the use of spectroscopic ellipsometry in a wide spectral region from the infrared to the visible-ultra violet. As it has been found, the increase of the solid content in the hybrid polymers is associated with a reduction in the refractive index values. This behavior can be correlated to a lower density of the hybrid polymer, and furthermore to a poor barrier response, due to the less cohesive inorganic-organic bonding network. Finally, from the investigation of the optical response of the hybrid polymers in the IR spectral region has revealed information on their bonding structure that has been discussed together with their barrier response.

  1. Optical properties of hybrid polymers as barrier materials

    International Nuclear Information System (INIS)

    The development of high barrier films for the encapsulation of organic electronics devices onto flexible polymeric substrates is attracting a considerable scientific interest, since it is important to protect the organic semiconductor layers of these devices from corrosion due to atmospheric gas molecule permeation. The barrier layers for encapsulation consist of a sequence of inorganic and hybrid polymer thin films that are deposited onto flexible polymeric substrates, such as polyethylene terephthalate (PET). In addition to their barrier response, these multilayer systems should also exhibit high transparency and good adhesion between the hybrid polymer and inorganic layers. The knowledge of their optical properties and the correlation of the optical response with their structure and the final barrier response are of major importance since it will contribute towards the optimization of their functionality. In this work, the optical properties of hybrid polymers deposited onto silicon oxide inorganic thin films that were grown onto flexible polymeric substrates, have been investigated by the use of spectroscopic ellipsometry in a wide spectral region from the infrared to the visible-ultra violet. As it has been found, the increase of the solid content in the hybrid polymers is associated with a reduction in the refractive index values. This behavior can be correlated to a lower density of the hybrid polymer, and furthermore to a poor barrier response, due to the less cohesive inorganic-organic bonding network. Finally, from the investigation of the optical response of the hybrid polymers in the IR spectral region has revealed information on their bonding structure that has been discussed together with their barrier response.

  2. Long term performance of the Waterloo denitrification barrier

    International Nuclear Information System (INIS)

    Beginning in 1991 a series of laboratory tests and small scale field trials were initiated to test the performance of an innovative permeable reactive barrier for treatment of nitrate from septic systems. The barrier promotes denitrification by providing an energy source in the form of solid organic carbon mixed into the porous media material. Advantages of the system for nitrate treatment are that the reaction is passive and in situ and it is possible to incorporate sufficient carbon mass in conveniently sized barriers to potentially provide treatment for long periods (decades) without the necessity for maintenance. However, longevity can only be demonstrated by careful long term monitoring of field installations. This paper documents four years of operating history at three small scale field trials; two where the denitrification barrier is installed as a horizontal layer positioned in the unsaturated zone below conventional septic system infiltration beds and one where the barrier is installed as a vertical wall intercepting a septic system plume at a downgradient location. The barriers have successfully attenuated 50-100% of NO-3-N levels of up to 170 mg/L and treatment has remained consistent over the four year period in each case, thus considerable longevity is indicated. Other field trials have demonstrated this technology to be equally effective in treating nitrogen contamination from other sources such as landfill leachate and farm field runoff

  3. Hanford Permanent Isolation Barrier Program: Asphalt technology development

    International Nuclear Information System (INIS)

    An important component of the Hanford Permanent Isolation Barrier is the use of a two-layer composite asphalt system, which provides backup water diversion capabilities if the primary capillary barrier fails to meet infiltration goals. Because of asphalt's potential to perform to specification over the 1000-year design life criterion, a composite asphalt barrier (HMAC/fluid-applied polymer-modified asphalt) is being considered as an alternative to the bentonite clay/high density poly(ethylene) barriers for the low-permeability component of the Hanford Permanent Isolation Barrier. The feasibility of using asphalt as a long-term barrier is currently being studied. Information that must be known is the ability of asphalt to retain desirable physical properties over a period of 1000 years. This paper presents the approach for performing accelerated aging tests and evaluating the performance of samples under accelerated conditions. The results of these tests will be compared with asphalt artifact analogs and the results of modeling the degradation of the selected asphalt composite to make life-cycle predictions

  4. Hanford Permanent Isolation Barrier Program: Asphalt technology development

    Energy Technology Data Exchange (ETDEWEB)

    Freeman, H.D.; Romine, R.A.

    1994-11-01

    An important component of the Hanford Permanent Isolation Barrier is the use of a two-layer composite asphalt system, which provides backup water diversion capabilities if the primary capillary barrier fails to meet infiltration goals. Because of asphalt`s potential to perform to specification over the 1000-year design life criterion, a composite asphalt barrier (HMAC/fluid-applied polymer-modified asphalt) is being considered as an alternative to the bentonite clay/high density poly(ethylene) barriers for the low-permeability component of the Hanford Permanent Isolation Barrier. The feasibility of using asphalt as a long-term barrier is currently being studied. Information that must be known is the ability of asphalt to retain desirable physical properties over a period of 1000 years. This paper presents the approach for performing accelerated aging tests and evaluating the performance of samples under accelerated conditions. The results of these tests will be compared with asphalt artifact analogs and the results of modeling the degradation of the selected asphalt composite to make life-cycle predictions.

  5. Long term performance of the Waterloo denitrification barrier

    Energy Technology Data Exchange (ETDEWEB)

    Robertson, W.D.; Cherry, J.A. [Univ. of Waterloo, Ontario (Canada)

    1997-12-31

    Beginning in 1991 a series of laboratory tests and small scale field trials were initiated to test the performance of an innovative permeable reactive barrier for treatment of nitrate from septic systems. The barrier promotes denitrification by providing an energy source in the form of solid organic carbon mixed into the porous media material. Advantages of the system for nitrate treatment are that the reaction is passive and in situ and it is possible to incorporate sufficient carbon mass in conveniently sized barriers to potentially provide treatment for long periods (decades) without the necessity for maintenance. However, longevity can only be demonstrated by careful long term monitoring of field installations. This paper documents four years of operating history at three small scale field trials; two where the denitrification barrier is installed as a horizontal layer positioned in the unsaturated zone below conventional septic system infiltration beds and one where the barrier is installed as a vertical wall intercepting a septic system plume at a downgradient location. The barriers have successfully attenuated 50-100% of NO{sup -}{sub 3}-N levels of up to 170 mg/L and treatment has remained consistent over the four year period in each case, thus considerable longevity is indicated. Other field trials have demonstrated this technology to be equally effective in treating nitrogen contamination from other sources such as landfill leachate and farm field runoff.

  6. Barriers to Women in Science

    Science.gov (United States)

    Butler, Rosemary

    2013-01-01

    The Presiding Officer of the National Assembly for Wales, Rosemary Butler AM, has put the issue of barriers to women in public life at the top of the political agenda in Wales. She has held sessions with women across Wales to find out what those barriers are and how they can be tackled. On International Women's Day in February, she invited…

  7. Epistemological barriers to radical behaviorism

    Science.gov (United States)

    O'Donohue, William T.; Callaghan, Glenn M.; Ruckstuhl, L. E.

    1998-01-01

    The historian and philosopher of science Gaston Bachelard proposed the concept of epistemological barriers to describe the intellectual challenges encountered by scientists in their work. In order to embrace novel ways of approaching a problem in science, scientists must overcome barriers or obstacles posed by their prior views. For example, Einsteinian physics presents scientists with claims that space is curved and that time and space are on the same continuum. We utilize Bachelard's concept of epistemological barriers to describe the differences between the intellectual journeys students pursuing advanced studies face when attempting to accept cognitive psychology or radical behaviorism. We contend that the folk psychological beliefs that students typically hold when entering these studies pose less challenge to cognitive psychology than to radical behaviorism. We also suggest that these barriers may also partly be involved in the problematic exegesis that has plagued radical behaviorism. In close, we offer some suggestions for dealing with these epistemological barriers. PMID:22478314

  8. Novel hybrid polymeric materials for barrier coatings

    Science.gov (United States)

    Pavlacky, Erin Christine

    Polymer-clay nanocomposites, described as the inclusion of nanometer-sized layered silicates into polymeric materials, have been widely researched due to significant enhancements in material properties with the incorporation of small levels of filler (1--5 wt.%) compared to conventional micro- and macro-composites (20--30 wt.%). One of the most promising applications for polymer-clay nanocomposites is in the field of barrier coatings. The development of UV-curable polymer-clay nanocomposite barrier coatings was explored by employing a novel in situ preparation technique. Unsaturated polyesters were synthesized in the presence of organomodified clays by in situ intercalative polymerization to create highly dispersed clays in a precursor resin. The resulting clay-containing polyesters were crosslinked via UV-irradiation using donor-acceptor chemistry to create polymer-clay nanocomposites which exhibited significantly enhanced barrier properties compared to alternative clay dispersion techniques. The impact of the quaternary alkylammonium organic modifiers, used to increase compatibility between the inorganic clay and organic polymer, was studied to explore influence of the organic modifier structure on the nanocomposite material properties. By incorporating just the organic modifiers, no layered silicates, into the polyester resins, reductions in film mechanical and thermal properties were observed, a strong indicator of film plasticization. An alternative in situ preparation method was explored to further increase the dispersion of organomodified clay within the precursor polyester resins. In stark contrast to traditional in situ polymerization methods, a novel "reverse" in situ preparation method was developed, where unmodified montmorillonite clay was added during polyesterification to a reaction mixture containing the alkylammonium organic modifier. The resulting nanocomposite films exhibited reduced water vapor permeability and increased mechanical properties

  9. External barriers to help-seeking encountered by Canadian gay and lesbian victims of intimate partner abuse: an application of the barriers model.

    Science.gov (United States)

    St Pierre, Melissa; Senn, Charlene Y

    2010-01-01

    While understanding of intimate partner abuse (IPA) in gay and lesbian relationships has increased within the past decade, there remain several gaps in the help-seeking research. In particular, research examining the external barriers to help-seeking encountered by gay and lesbian victims of IPA has been largely atheoretical. To address this gap, an application of The Barriers Model was undertaken. This mixed-methods study surveyed 280 gay, lesbian, and/or queer participants living in Canada. Findings revealed that victims encountered external barriers in the environment (i.e., Layer 1 of the model), such as lack of availability of gay and lesbian specific services. Results also suggested that barriers due to family/socialization/role expectations (i.e., Layer 2 of the model), such as concealment of sexual orientation, had an impact on help-seeking.

  10. Can painted glass felt or glass fibre cloth be used as vapour barrier?

    DEFF Research Database (Denmark)

    El-Khattam, Amira; Andersen, Mie Them; Hansen, Kurt Kielsgaard;

    2014-01-01

    with a ventilated attic where the ceiling may be air tight but has no vapour barrier; post-insulation of the attic may cause the need for a vapour barrier. Placing a vapour barrier above the ceiling can be tiresome and it is difficult to ensure tightness. A simpler way is to paint a vapour barrier directly...... cloth has very little impact. The measured water vapour resistance for specimens with acrylic paint was the highest, these were measured to be up to approximately 3·109 Pa·m 2 ·s/kg which is considerably less than 50·109 Pa·m2·s/kg as recommended for a vapour barrier. Therefore, two layers of ordinary...... acrylic paint on glass felt or glass fibre cloth cannot be used instead of a vapour barrier....

  11. MgB2 wires with Ti and NbTi barrier made by IMD process

    Science.gov (United States)

    Kováč, P.; Hušek, I.; Kulich, M.; Melišek, T.; Kováč, J.; Kopera, L.

    2016-10-01

    MgB2 wires with Ti and NbTi barriers have been made by internal magnesium diffusion (IMD) into boron process. Critical currents, strain tolerances and AC loss of wires with Ti and NbTi barriers have been compared. It was shown that worse uniformity of NbTi barrier affects the creation of regular MgB2 layer and consequently influences (reduces) also the current densities. Positive effects of NbTi barrier are in improved strain tolerance and reduced coupling losses. The maximum AC loss of not twisted wire with Ti barrier is measured at frequency 9 Hz, but it is shifted up to 60 Hz for NbTi due to considerably increased barrier resistance at 20 K.

  12. Mobilitet, Barrierer & Muligheder

    DEFF Research Database (Denmark)

    Petersen, Mimi Judidoleslami

    2011-01-01

    som en vej ud af irakiske Kurdistan, men ikke tilbage til Danmark. Drengene fra familier med bedre økonomiske ressourcer giver udtryk for, ønske om at rejse til andre lande. På grund af begrænsede sproglige kompetencer oplever hovedparten af de unge (både i Danmark og i irakiske Kurdistan) barrierer i...... forhold til at indgå i et kurdisk fællesskab. I forhold til de repatrierede unge er det netop manglende sproglig kompetence, der har skabt mange problemer for dem i bl.a. skolesammenhænge. Familier med bedre økonomiske ressourcer har forsøgt at råde bod på dette gennem ansættelse af privat sproglærere...... af hjem og belonging som viser sig i form af en transnational orientering. Og i denne transnationale orientering får Danmark en central placering. Det samme kan man med en vis forsigtighed sige om køn dvs. at pigerne retter sig mere mod Danmark. Men det at Danmark i pigernes transnationale...

  13. Development of engineered barrier

    Energy Technology Data Exchange (ETDEWEB)

    Chun, Kwan Sik; Cho, Won Jin; Lee, Jae Owan; Kim, Seung Soo; Kang, Mu Ja

    1999-03-01

    Engineered barrier development was carried out into the three research fields : waste form, disposal container, and buffer. The waste form field dealt with long-term leaching tests with borosilicate waste glasses surrounded by compacted bentonite. The leach rate decreased with increasing time, and was higher for the waste specimen rich in U and Na. In the container field, preliminary concepts of disposal containers were recommended by conducting structural analysis, thermal analysis, and shielding analysis, and major properties of stainless steel, copper, and titanium as a container material were surveyed. The sensitization degrees of SUS 316 and316L were lower than those of SUS 304 and 304L, respectively. The crevice corrosion of sensitized stainless steel was sensitive to the content of salt. Researches into the buffer included establishment of its performance criteria followed by investigating major properties of buffer using potential material in Korea. Experiments were made for measuring hydraulic conductivities, swelling properties, mechanical properties, thermal conductivities, pore-water chemistry properties, and adsorption properties was also investigated. (author)

  14. Development of engineered barrier

    International Nuclear Information System (INIS)

    Engineered barrier development was carried out into the three research fields : waste form, disposal container, and buffer. The waste form field dealt with long-term leaching tests with borosilicate waste glasses surrounded by compacted bentonite. The leach rate decreased with increasing time, and was higher for the waste specimen rich in U and Na. In the container field, preliminary concepts of disposal containers were recommended by conducting structural analysis, thermal analysis, and shielding analysis, and major properties of stainless steel, copper, and titanium as a container material were surveyed. The sensitization degrees of SUS 316 and 316L were lower than those of SUS 304 and 304L, respectively. The crevice corrosion of sensitized stainless steel was sensitive to the content of salt. Researches into the buffer included establishment of its performance criteria followed by investigating major properties of buffer using potential material in Korea. Experiments were made for measuring hydraulic conductivities, swelling properties, mechanical properties, thermal conductivities, pore-water chemistry properties, and adsorption properties was also investigated. (author)

  15. The complex influences of back-barrier deposition, substrate slope and underlying stratigraphy in barrier island response to sea-level rise: Insights from the Virginia Barrier Islands, Mid-Atlantic Bight, U.S.A.

    Science.gov (United States)

    Brenner, Owen T.; Moore, Laura J.; Murray, A. Brad

    2015-10-01

    To understand the relative importance of back barrier environment, substrate slope and underlying stratigraphy in determining barrier island response to RSLR (relative sea-level rise), we use a morphological-behavior model (GEOMBEST) to conduct a series of sensitivity experiments, based on late-Holocene hindcast simulations of an island in the U.S. mid-Atlantic Bight (Metompkin Island, VA) having both salt marsh and lagoonal back-barrier environments, and we draw comparisons between these results and future simulations (2000-2100 AD) of island response to RSLR. Sensitivity analyses indicate that, as a whole, the island is highly sensitive to factors that reduce overall sand availability (i.e., high sand-loss rates and substrates containing little sand). Results also indicate that for all predicted future RSLR scenarios tested, islands having high substrate sand proportions (if allowed to migrate freely) will likely remain subaerial for centuries because of sufficient substrate sand supply and elevation to assist in keeping islands above sea level. Simulation results also lead to basic insights regarding the interactions among substrate slope, back-barrier deposition and island migration rates. In contrast to previous studies, which suggest that changes in substrate slope directly affect the island migration trajectory, we find that-in the presence of back-barrier deposition-the connection between substrate slope and island behavior is modulated (i.e., variability in migration rates is dampened) by changes in back-barrier width. These interactions-which tend to produce changes in shoreface sand content-lead to a negative feedback when the back-barrier deposit contains less sand than the underlying layer, resulting in a stable back-barrier width. Alternatively, a positive feedback arises when the back-barrier deposit contains more sand than the underlying layer, resulting in either back-barrier disappearance or perpetual widening.

  16. POCl3 diffusion with in-situ SiO2 barrier for selective emitter multicrystalline solar grade silicon solar cells

    OpenAIRE

    Urrejola, Elias; Kristian, Peter; Soiland, Anne-Karin; Enebakk, Erik

    2009-01-01

    We present an innovative process for the formation of a selective emitter by using an advanced phosphorous glass as a barrier layer against subsequent diffusion. The advanced barrier glass was achieved by the formation of a standard phosphorous glass treated with additional thermal oxidation immediately after deposition in the same process tube. The resistant layer is used as a barrier for the second diffusion after selective opening of the finger contact areas by screen printing of a SiO2 et...

  17. Microstructures and Mechanical Properties of Ceramic/Metal Gradient Thermal Barrier Coatings

    Institute of Scientific and Technical Information of China (English)

    XIAO Jin-sheng; JIANG Bing; LIU Jie; HUANG Shi-yong

    2003-01-01

    The ceramic/metal gradient thermal barrier coatings (CMGTBCs) which combined the conceptions of thermal barrier coatings ( TBG ) and functional gradient materials ( FGMs ) are investigated. The structure model studied in this paper is a general model which includes four different layers: pure ceramic layer , ceramic/metal gradient layer, pure metal layer, and substrate layer. The microstructures of gradient layer have different ceramics and metal volume fraction profile along with the direction of thickness. The profile function used to describe the gradient microstructures can be expressed in power-law or polynomial expression. The mechanical properties of CMGTBCs are obtained by means of microscopic mechanics. As special cases, the interactive solutions are given by Mori- Tanaka method, and the non- interactive solutions by dilute solution. The Young's modulus calculated by these methods are compared with those by other methods , e g, the rule of mixtures.

  18. Vehicle barrier with access delay

    Science.gov (United States)

    Swahlan, David J; Wilke, Jason

    2013-09-03

    An access delay vehicle barrier for stopping unauthorized entry into secure areas by a vehicle ramming attack includes access delay features for preventing and/or delaying an adversary from defeating or compromising the barrier. A horizontally deployed barrier member can include an exterior steel casing, an interior steel reinforcing member and access delay members disposed within the casing and between the casing and the interior reinforcing member. Access delay members can include wooden structural lumber, concrete and/or polymeric members that in combination with the exterior casing and interior reinforcing member act cooperatively to impair an adversarial attach by thermal, mechanical and/or explosive tools.

  19. Hanford Site Protective Barrier Development Program: Fiscal year 1990 highlights

    International Nuclear Information System (INIS)

    The Hanford Site Protective Barrier Development Program was jointly developed by Pacific Northwest Laboratory (PNL) and Westinghouse Hanford Company (WHC) to design and test an earthen cover system(s) that can be used to inhibit water infiltration; plant, animal, and human intrusion; and wind and water erosion. The joint PNL/WHC program was initiated in FY 1986. To date, research findings support the initial concepts of barrier designs for the Hanford Site. A fine-soil surface is planned to partition surface water into runoff and temporary storage. Transpiration by vegetation that grows in the fine-soil layer will return stored water to the atmosphere as will surface evaporation. A capillary break created by the interface of the fine-soil layer and coarser textured materials below will further limit the downward migration of surface water, making it available over a longer period of time for cycling to the atmosphere. Should water pass the interface, it will drain laterally through a coarse textured sand/gravel layer. Tested barrier designs appear to work adequately to prevent drainage under current and postulated wetter-climate (added precipitation) conditions. Wind and water erosion tasks are developing data to predict the extent of erosion on barrier surfaces. Data collected during the last year confirm the effectiveness of small burrowing animals in removing surface water. Water infiltrating through burrows of larger mammals was subsequently lost by natural processes. Natural analog and climate change studies are under way to provide credibility for modeling the performance of barrier designs over a long period of time and under shifts in climate. 10 refs., 30 figs

  20. Informatization barriers of logistics process management in production company

    OpenAIRE

    Joanna WALASEK

    2015-01-01

    This article is an attempt to characterize informatization barriers of logistics processes management in a production company which provides automotive parts. Threats of successful implementation of Enterprise Resource Planning Systems include: community barriers; organizational barriers; communication barriers; formal barriers; legal barriers; not prepared implementation team barrier; substantive barrier. Proper identification of barriers and solving them are the right way to implement Enter...

  1. Quantitative assessment of safety barrier performance in the prevention of domino scenarios triggered by fire

    International Nuclear Information System (INIS)

    The evolution of domino scenarios triggered by fire critically depends on the presence and the performance of safety barriers that may have the potential to prevent escalation, delaying or avoiding the heat-up of secondary targets. The aim of the present study is the quantitative assessment of safety barrier performance in preventing the escalation of fired domino scenarios. A LOPA (layer of protection analysis) based methodology, aimed at the definition and quantification of safety barrier performance in the prevention of escalation was developed. Data on the more common types of safety barriers were obtained in order to characterize the effectiveness and probability of failure on demand of relevant safety barriers. The methodology was exemplified with a case study. The results obtained define a procedure for the estimation of safety barrier performance in the prevention of fire escalation in domino scenarios. - Highlights: • We developed a methodology for the quantitative assessment of safety barriers. • We focused on safety barriers aimed at preventing domino effect triggered by fire. • We obtained data on effectiveness and availability of the safety barriers. • The methodology was exemplified with a case study of industrial interest. • The results showed the role of safety barriers in preventing fired domino escalation

  2. Graphene-graphene oxide-graphene hybrid nanopapers with superior mechanical, gas barrier and electrical properties

    OpenAIRE

    Xilian Ouyang; Wenyi Huang; Eusebio Cabrera; Jose Castro; James Lee, L.

    2015-01-01

    Hybrid nanopaper-like thin films with a graphene oxide (GO) layer sandwiched by two functionalized graphene (GP-SO3H) layers were successfully prepared from oxidized graphene and benzene sulfonic modified graphene. The hybrid graphene-graphene oxide-graphene (GP-GO-GP) nanopapers showed combination of high mechanic strength and good electrical conductivity, leading to desirable electromagnetic interference shielding performance, from the GP-SO3H layers, and superior gas diffusion barrier prov...

  3. Improvement of barrier properties of rotomolded PE containers with nanoclay

    Energy Technology Data Exchange (ETDEWEB)

    Jamshidi, Shadi; Sundararaj, Uttandaraman, E-mail: u.sundararaj@ucalgary.ca [Department of Chemical and Petroleum Engineering, University of Calgary, Calgary, Alberta, T2N 1N4 (Canada)

    2015-05-22

    Polyethylene (PE) is widely used to make bulk containers in rotational molding process. The challenge in this study is to improve permeation resistance of PE to hydrocarbon solvents and gases. Adding organomodified clay improves the thermal, barrier and mechanical properties of PE. In fact, clay layers create a tortuous path against the permeant, yielding better barrier properties. Due to the non-polar hydrophobic nature of PE and polar hydrophilic structure of clay minerals, the compatibilizer plays a crucial role to enhance the dispersion level of clay in the matrix. In this study High Density Polyethylene (HDPE) and Linear Low Density Polyethylene (LLDPE) layered silicate nanocomposite were melt-compounded with two concentrations of organomodified clay (2 and 4 wt. %). The interaction between nanoclay, compatibilizer and rotomolding grade of PE were examined by using X-ray diffraction, transmission electron microscopy (TEM) and rheology test. Rheology was used to determine the performance of our material at low shear processing condition.

  4. Super stretchy polymer multilayer thin films with tunable gas barrier

    Science.gov (United States)

    Xiang, Fangming; Ward, Sarah; Givens, Tara; Grunlan, Jaime

    2015-03-01

    Super stretchy multilayer thin film assemblies with tunable gas barrier were fabricated using layer-by-layer (LbL) assembly. Unlike ionically-bonded gas barrier coatings that exhibit mud-cracking after 10% strain, hydrogen-bonded polyethylene oxide (PEO) and polyacrylic acid (PAA) multilayer thin films show no cracking after 100% strain due to low modulus. It is believed that the exceptional elasticity of this thin film originates from the intrinsic elasticity of PEO and the moderate hydrogen bond strength between PEO and PAA. The oxygen transmission rate (OTR) of a 1.58 mm thick natural rubber sheet can be reduced 10 times with a 367-nm-thick PAA/PEO nanocoating. This gas barrier improvement is largely retained after 100% strain. The modulus and oxygen permeability of PAA/PEO assembly can be tailored through altering the assembling pH. By setting the assembling pH to 2.75, a 50% reduction in permeability can be achieved, while maintaining the elasticity of the assembly. These findings mark the first super stretchy gas barrier thin film, which is useful for elastomeric substrates designed to hold air pressure.

  5. [Blood-nerve barrier: structure and function].

    Science.gov (United States)

    Kanda, Takashi

    2011-06-01

    The blood-nerve barrier (BNB) is a dynamic interface between the endoneurial microenvironment and surrounding extracellular space or blood contents, and is localized the innermost layer of multilayered ensheathing perineurium and endoneurial microvessels. Since the BNB is a key structure controlling the internal milieu of the peripheral nerve parenchyma, adequate understanding of the BNB is crucial for developing treatment strategies for human peripheral nervous system disorders, including Guillain-Barré syndrome, chronic inflammatory demyelinating polyneuropathy, and diabetic and various metabolic/toxic neuropathies. However, fewer studies have been conducted on the BNB, if we compare against the number of studies on the blood-brain barrier. This is because of the lack of adequate human cell lines originating from the BNB. In our laboratory, human immortal cell lines from the BNB, namely, the endothelial cell line and pericyte cell line, have recently been established and vigorous investigations of their biological and physiological properties are now underway. Pericytes constituting the BNB were found to possess robust ability of controlling BNB integrity via secretion of various cytokines and growth factors including bFGF, VEGF, GDNF, BDNF, and angiopoietin-1. Unknown soluble factors secreted by pericytes also contribute to the upregulation of claudin-5 in endothelial cells in the BNB and thus, strengthen the barrier function of the BNB. In diabetic neuropathy, pericytes were shown to regulate the vascular basement membrane, while AGEs were shown to induce basement membrane hypertrophy and disrupt the BNB by increasing the autocrine secretion of VEGF and TGF-beta from pericytes. In this review article, we discuss the macroscopic and microscopic anatomy of the human BNB as well as the molecular mechanisms of mononuclear cell infiltration across the BNB. PMID:21613659

  6. Thermal barrier coating life prediction model development

    Science.gov (United States)

    Strangman, T. E.; Neumann, J. F.; Liu, A.

    1986-01-01

    Thermal barrier coatings (TBCs) for turbine airfoils in high-performance engines represent an advanced materials technology with both performance and durability benefits. The foremost TBC benefit is the reduction of heat transferred into air-cooled components, which yields performance and durability benefits. This program focuses on predicting the lives of two types of strain-tolerant and oxidation-resistant TBC systems that are produced by commercial coating suppliers to the gas turbine industry. The plasma-sprayed TBC system, composed of a low-pressure plasma-spray (LPPS) or an argon shrouded plasma-spray (ASPS) applied oxidation resistant NiCrAlY (or CoNiCrAlY) bond coating and an air-plasma-sprayed yttria (8 percent) partially stabilized zirconia insulative layer, is applied by Chromalloy, Klock, and Union Carbide. The second type of TBC is applied by the electron beam-physical vapor deposition (EB-PVD) process by Temescal.

  7. EMBEDDED OPTICAL SENSORS FOR THERMAL BARRIER COATINGS

    Energy Technology Data Exchange (ETDEWEB)

    David R. Clarke

    2004-12-16

    In this first year of the program we have focused on the selection of rare-earth dopants for luminescent sensing in thermal barrier coating materials, the effect of dopant concentration on several of the luminescence characteristics and initial fabrication of one type of embedded sensor, the ''red-line'' sensor. We have initially focused on erbium as the lanthanide dopant for luminescence doping of yttria-stabilized zirconia and europium as the lanthanide for luminescence doping of gadolinium zirconate. The latter exhibits a temperature-dependent luminescence lifetime up to at least 1100 C. A buried layer, ''red-line'' sensor in an electron-beam deposited yttria-stabilized zirconia coating with erbium has been demonstrated and exhibits a temperature-dependent luminescence lifetime up to at least 400 C.

  8. Laser Remelting of Plasma Sprayed Thermal Barrier Coatings

    Institute of Scientific and Technical Information of China (English)

    Gang ZHANG; Yong LIANG; Yingna WU; Zhongchao FENG; Bingchun ZHANG; Fangjun LIU

    2001-01-01

    A CO2 continuous wave laser with defocused beam was used for remelting the surface of plasma sprayed ZrO2-8 wt pct Y2O3 (8YSZ)/Ni22Cr10AlY thermal barrier coatings (TBCs) on GH536 superalloy substrate. Two main laser processing parameters, power and travel speed, were adopted to produce a completely remelted layer, and their effects on remelted appearance,remelting depth, density and diameter of depression, space of segment crack and remelted microstructure were evaluated. With energy of 4.0 to 8.0 J.mm-2, an appropriate laser processing for applicable remelted layer was suggested.

  9. Intestinal barrier homeostasis in inflammatory bowel disease.

    Science.gov (United States)

    Goll, Rasmus; van Beelen Granlund, Atle

    2015-01-01

    The single-cell thick intestinal epithelial cell (IEC) lining with its protective layer of mucus is the primary barrier protecting the organism from the harsh environment of the intestinal lumen. Today it is clear that the balancing act necessary to maintain intestinal homeostasis is dependent on the coordinated action of all cell types of the IEC, and that there are no passive bystanders to gut immunity solely acting as absorptive or regenerative cells: Mucin and antimicrobial peptides on the epithelial surface are continually being replenished by goblet and Paneth's cells. Luminal antigens are being sensed by pattern recognition receptors on the enterocytes. The enteroendocrine cells sense the environment and coordinate the intestinal function by releasing neuropeptides acting both on IEC and inflammatory cells. All this while cells are continuously and rapidly being regenerated from a limited number of stem cells close to the intestinal crypt base. This review seeks to describe the cell types and structures of the intestinal epithelial barrier supporting intestinal homeostasis, and how disturbance in these systems might relate to inflammatory bowel disease.

  10. Impaired water barrier function in acne vulgaris.

    Science.gov (United States)

    Yamamoto, A; Takenouchi, K; Ito, M

    1995-01-01

    In acne vulgaris, abnormal follicular keratinization is important for comedo formation, yet the precise mechanisms of comedogenesis are not known. The present study examined the interrelationship between sebum secretion rate (SSR), lipid content and water barrier function (WBF) of the stratum corneum (SC) in 36 acne patients and 29 control subjects. All major SC lipid classes were separated and quantified by thin-layer chromatography/photodensitometry. WBF was evaluated by measuring transepidermal water loss (TEWL), and the hygroscopic properties and waterholding capacity of the SC. The SSR over a period of 3 h was significantly higher in patients with moderate acne than in control subjects, but no significant difference was noticed between patients with mild acne and control subjects. Significant differences between patients with both moderate and mild acne and control subjects were noted in the amount of sphingolipids (ceramides and free sphingosine), but not for any other lipid classes. Furthermore in acne patients, lower amounts of sphingolipids were observed corresponding with a diminished WBF. These results suggest that an impaired WBF caused by decreased amounts of ceramides may be responsible for comedo formation, since barrier dysfunction is accompanied by hyperkeratosis of the follicular epithelium.

  11. Coastal Structures and Barriers 2012

    Data.gov (United States)

    California Department of Resources — This dataset is a compilation of the UCSC Sand Retention Structures, MC Barriers, and USACE Coastal Structures. UCSC Sand Retention Structures originate from a...

  12. Dielectric barrier Discharge Plasma Actuator Characterization and Application

    OpenAIRE

    Correale, G.

    2016-01-01

    An experimental investigation about nanosecond Dielectric Barrier Discharge (ns-DBD) plasma actuator is presented in this thesis. This work aimed to answer fundamental questions on the actuation mechanism of this device. In order to do so, parametric studies in a quiescent air as well as laminar bounded of free shear layers were performed. Amplitude and location of the input with respect to the receptivity region as well as frequency of flow actuation were investigated. This work required the...

  13. Engineered Barrier Testing at the INEEL Engineered Barriers Test Facility: FY-1997 and FY-1998

    International Nuclear Information System (INIS)

    Engineered barriers of two designs are being tested at the Engineered Barriers Test Facility (EBTF) at the Idaho National Engineering and Environmental Laboratory. This report describes the test facility, barrier designs, and instruments used to monitor the test plots. Wetting tests conducted on the test plots in FY-97 are described and data collected from monitoring the test plots before, during and after the wetting tests are used to evaluate the performance of the covers during FY-97 and FY-98. Replicates of two engineered barrier designs were constructed in the EBTF cells. The first design comprises a thick, vegetated soil cover. The second design incorporates a capillary/biobarrier within the vegtated soil cover. The capillary barrier uses the textural break between an upper, fine textured soil and a lower, coarser-textured gravel layer to inhibit drainage under unsaturated conditions while increasing soil moisture storage in the root zone. Evaporation and transpiration by plants (although the test plots have not yet been vegetated) are used to recycle water stored in the soil back to the atmosphere. A geotextile fabric is used to maintain separation of the soil and gravel layers. A thick layer of cobbles beneath the gravel layer serves as a biobarrier to prevent intrusion of plant roots and burrowing animals into underlying waste (there is no waste in the test plots). Each test plot was instrumented with time domain reflectometry probes and neutron probe access tubes to measure moisture contents, tensiometers, heat dissipation sensors, and thermocouple psychrometers to measure matric potentials, thermocouples to measure soil temperature, and ion-exchange resin beads to monitor tracer movement. Each drainage sump is equipped with a tipping bucket instrument and pressure transducer to measure drainage. Precipitation is measured using a heated rain gauge located at the EBTF. Instrument calibration equation coefficients are presented, and data reduction

  14. Engineered Barrier Testing at the INEEL Engineered Barriers Test Facility: FY-1997 and FY-1999

    Energy Technology Data Exchange (ETDEWEB)

    Keck, K. N.; Porro, I.

    1998-09-01

    Engineered barriers of two designs are being tested at the Engineered Barriers Test Facility (EBTF) at the Idaho National Engineering and Environmental Laboratory. This report describes the test facility, barrier designs, and instruments used to monitor the test plots. Wetting tests conducted on the test plots in FY-97 are described and data collected from monitoring the test plots before, during and after the wetting tests are used to evaluate the performance of the covers during FY-97 and FY-98. Replicates of two engineered barrier designs were constructed in the EBTF cells. The first design comprises a thick, vegetated soil cover. The second design incorporates a capillary/biobarrier within the vegtated soil cover. The capillary barrier uses the textural break between an upper, fine textured soil and a lower, coarser-textured gravel layer to inhibit drainage under unsaturated conditions while increasing soil moisture storage in the root zone. Evaporation and transpiration by plants (although the test plots have not yet been vegetated) are used to recycle water stored in the soil back to the atmosphere. A geotextile fabric is used to maintain separation of the soil and gravel layers. A thick layer of cobbles beneath the gravel layer serves as a biobarrier to prevent intrusion of plant roots and burrowing animals into underlying waste (there is no waste in the test plots). Each test plot was instrumented with time domain reflectometry probes and neutron probe access tubes to measure moisture contents, tensiometers, heat dissipation sensors, and thermocouple psychrometers to measure matric potentials, thermocouples to measure soil temperature, and ion-exchange resin beads to monitor tracer movement. Each drainage sump is equipped with a tipping bucket instrument and pressure transducer to measure drainage. Precipitation is measured using a heated rain gauge located at the EBTF. Instrument calibration equation coefficients are presented, and data reduction

  15. Schottky barrier MOSFET structure with silicide source/drain on buried metal

    Institute of Scientific and Technical Information of China (English)

    Li Ding-Yu; Sun Lei; Zhang Sheng-Dong; Wang Yi; Liu Xiao-Yan; Han Ru-Qi

    2007-01-01

    In this paper, we propose a novel Schottky barrier MOSFET structure, in which the silicide source/drain is designed on the buried metal (SSDOM). The source/drain region consists of two layers of silicide materials. Two Schottky barriers are formed between the silicide layers and the silicon channel. In the device design, the top barrier is lower and the bottom is higher. The lower top contact barrier is to provide higher on-state current, and the higher bottom contact barrier to reduce the off-state current. To achieve this, ErSi is proposed for the top silicide and CoSi2 for the bottom in the n-channel case. The 50 nm n-channel SSDOM is thus simulated to analyse the performance of the SSDOM device. In the simulations, the top contact barrier is 0.2e V (for ErSi) and the bottom barrier is 0.6 eV (for CoSi2).Compared with the corresponding conventional Schottky barrier MOSFET structures (CSB), the high on-state current of the SSDOM is maintained, and the off-state current is efficiently reduced. Thus, the high drive ability (1.2 mA/μm at Vds = 1 V, Vgs = 2 V) and the high Ion/Imin ratio (106) are both achieved by applying the SSDOM structure.

  16. Barriers in diabetes self management

    OpenAIRE

    Rising, Carl Johan; Lauwersen, Asbjørn Flyger; Stoustrup, Sune Wiingaard

    2013-01-01

    This project seeks to expand on the question: What barriers may occur in diabetes patients' self-care, and how can doctors and patients communicate across professionalism? This project deals with the barrier that may arise between the transfer of highly professional knowledge and patient. The project seeks to create an understanding on how diabetes patients, which is the target audience, understands and experience their illness, and thereby mapping key elements for further focus, to better th...

  17. Global interrupt and barrier networks

    Science.gov (United States)

    Blumrich, Matthias A.; Chen, Dong; Coteus, Paul W.; Gara, Alan G.; Giampapa, Mark E; Heidelberger, Philip; Kopcsay, Gerard V.; Steinmacher-Burow, Burkhard D.; Takken, Todd E.

    2008-10-28

    A system and method for generating global asynchronous signals in a computing structure. Particularly, a global interrupt and barrier network is implemented that implements logic for generating global interrupt and barrier signals for controlling global asynchronous operations performed by processing elements at selected processing nodes of a computing structure in accordance with a processing algorithm; and includes the physical interconnecting of the processing nodes for communicating the global interrupt and barrier signals to the elements via low-latency paths. The global asynchronous signals respectively initiate interrupt and barrier operations at the processing nodes at times selected for optimizing performance of the processing algorithms. In one embodiment, the global interrupt and barrier network is implemented in a scalable, massively parallel supercomputing device structure comprising a plurality of processing nodes interconnected by multiple independent networks, with each node including one or more processing elements for performing computation or communication activity as required when performing parallel algorithm operations. One multiple independent network includes a global tree network for enabling high-speed global tree communications among global tree network nodes or sub-trees thereof. The global interrupt and barrier network may operate in parallel with the global tree network for providing global asynchronous sideband signals.

  18. Economic alternatives for containment barriers

    Energy Technology Data Exchange (ETDEWEB)

    Nicholson, P.J.; Jasperse, B.H.; Fisher, M.J. [Geo-Con, Inc., Monroeville, PA (United States)

    1997-12-31

    Fixation, barriers, and containment of existing landfills and other disposal areas are often performed by insitu auger type soil mixing and jet grouting. Cement or other chemical reagents are mixed with soil to form both vertical and horizontal barriers. Immobilization of contaminants can be economically achieved by mixing soil and the contaminants with reagents that solidify or stabilize the contaminated area. Developed in Japan, and relatively new to the United States, the first large scale application was for a vertical barrier at the Jackson Lake Dam project in 1986. This technology has grown in both the civil and environmental field since. The paper describes current United States practice for Deep Soil Mixing (over 12 meters in depth), and Shallow Soil Mixing for vertical barriers and stabilization/solidification, and Jet Grouting for horizontal and vertical barriers. Creating very low permeability barriers at depth with minimal surface return often makes these techniques economical when compared to slurry trenches. The paper will discuss equipment, materials, soil and strength parameters, and quality control.

  19. Roll-to-roll vacuum deposition of barrier coatings

    CERN Document Server

    Bishop, Charles A

    2015-01-01

    It is intended that the book will be a practical guide to provide any reader with the basic information to help them understand what is necessary in order to produce a good barrier coated web or to improve the quality of any existing barrier product. After providing an introduction, where the terminology is outlined and some of the science is given (keeping the mathematics to a minimum), including barrier testing methods, the vacuum deposition process will be described. In theory a thin layer of metal or glass-like material should be enough to convert any polymer film into a perfect barrier material. The reality is that all barrier coatings have their performance limited by the defects in the coating. This book looks at the whole process from the source materials through to the post deposition handling of the coated material. This holistic view of the vacuum coating process provides a description of the common sources of defects and includes the possible methods of limiting the defects. This enables readers...

  20. Role of the intestinal barrier in inflammatory bowel disease

    Institute of Scientific and Technical Information of China (English)

    Mike G Laukoetter; Porfirio Nava; Asma Nusrat

    2008-01-01

    A critical function of the intestinal mucosa is to form a barrier that separates luminal contents from the interstitium. The single layer of intestinal epithelial cells (IECs) serves as a dynamic interface between the host and its environment. Cell polarity and structural properties of the epithelium is complex and is important in the development of epithelial barrier function. Epithelial cells associate with each other via a series of intercellular junctions. The apical most intercellular junctional complex referred to as the Apical Junction Complex (AJC) is important in not only cell-cell recognition, but also in the regulation of paracellular movement of fluid and solutes. Defects in the intestinal epithelial barrier function have been observed in a number of intestinal disorders such as inflammatory bowel disease (IBD). It is now becoming evident that an aberrant epithelial barrier function plays a central role in the pathophysiology of IBD. Thus, a better understanding of the intestinal epithelial barrier structure and function in healthy and disease states such as IBD will foster new ideas for the development of therapies for such chronic disorders.

  1. Spray Layer-by-Layer Assembled Clay Composite Thin Films as Selective Layers in Reverse Osmosis Membranes.

    Science.gov (United States)

    Kovacs, Jason R; Liu, Chaoyang; Hammond, Paula T

    2015-06-24

    Spray layer-by-layer assembled thin films containing laponite (LAP) clay exhibit effective salt barrier and water permeability properties when applied as selective layers in reverse osmosis (RO) membranes. Negatively charged LAP platelets were layered with poly(diallyldimethylammonium) (PDAC), poly(allylamine) (PAH), and poly(acrylic acid) (PAA) in bilayer and tetralayer film architectures to generate uniform films on the order of 100 nm thick that bridge a porous poly(ether sulfone) support to form novel RO membranes. Nanostructures were formed of clay layers intercalated in a polymeric matrix that introduced size-exclusion transport mechanisms into the selective layer. Thermal cross-linking of the polymeric matrix was used to increase the mechanical stability of the films and improve salt rejection by constraining swelling during operation. Maximum salt rejection of 89% was observed for the tetralayer film architecture, with an order of magnitude increase in water permeability compared to commercially available TFC-HR membranes. These clay composite thin films could serve as a high-flux alternative to current polymeric RO membranes for wastewater and brackish water treatment as well as potentially for forward osmosis applications. In general, we illustrate that by investigating the composite systems accessed using alternating layer-by-layer assembly in conjunction with complementary covalent cross-linking, it is possible to design thin film membranes with tunable transport properties for water purification applications.

  2. Ehrlich-Schwoebel Effect for Organic Molecules: Direct Calculation of the Step Edge Barrier using Empirical Potentials

    OpenAIRE

    Fendrich, Markus; Krug, Joachim

    2007-01-01

    The step edge barrier of a prototypical organic semiconductor molecule, 3,4,9,10-perylene-tetracaboxylic-dianhydride (PTCDA) has been analysed by means of calculations based on emperical potentials. The minimum energy path (MEP) has been calculated for a single molecule on a substrate of three molecular layers between equivalent minimum energy positions within two neighboring unit cells. To determine the step edge barrier, we have calculated the MEP over a step to a fourth layer of molecules....

  3. Synthesizing High-Quality Graphene Membranes for Engineering Diffusion Barriers

    Science.gov (United States)

    Singha Roy, Susmit

    We demonstrate significant advances in the fundamental understanding and engineering of scalable graphene diffusion barriers. Experimental studies have established that defect-free non-scalable graphene is an excellent barrier material, however its scalable counterparts are still well behind in terms of performance. The latter's ability to perform as a barrier membrane is compromised primarily by the presence of three major problems - high density of defects, self-degradation in ambient environment and induced electrochemical oxidation of the underlying material. First, we develop an in-depth understanding of how diffusion occurs through monolayer graphene grown via chemical vapor deposition. It is shown that the atomic membrane is impenetrable in the pristine regions, however it is easily penetrated by oxygen and water at grain boundaries and intrinsic pinholes. Second, we study in detail the self-deterioration of graphene in ambient and quantify the evolution, kinetics, and energetics of the degradation process both in the pristine and intrinsically defective regions of graphene. It is also found that the degradation process is accelerated in the presence of water vapor. Third, we find that the overall defect density of a graphene membrane is primarily determined by the density of its intrinsic pinholes and grain boundaries. We demonstrate that the density on intrinsic pinholes can be significantly reduced by reducing the surface roughness of the growth substrate which is achieved by regulating the pre-growth annealing time and temperature. The density of the grain boundaries can be altered by varying the internucleation distance during the growth of the membrane. Fourth, when graphene is used as a corrosion barrier for metals, we establish that the electrochemical corrosion of the metal can be drastically reduced by adding an ultra-thin electrically insulating layer between the graphene and the metal. In addition, the barrier performance is enhanced greatly by

  4. Asymmetric voltage behavior of the tunnel magnetoresistance in double barrier magnetic tunnel junctions

    KAUST Repository

    Useinov, Arthur

    2012-06-01

    In this paper, we study the value of the tunnel magnetoresistance (TMR) as a function of the applied voltage in double barrier magnetic tunnel junctions (DMTJs) with the left and right ferromagnetic (FM) layers being pinned and numerically estimate the possible difference of the TMR curves for negative and positive voltages in the homojunctions (equal barriers and electrodes). DMTJs are modeled as two single barrier junctions connected in series with consecutive tunneling (CST). We investigated the asymmetric voltage behavior of the TMR for the CST in the range of a general theoretical model. Significant asymmetries of the experimental curves, which arise due to different annealing regimes, are mostly explained by different heights of the tunnel barriers and asymmetries of spin polarizations in magnetic layers. © (2012) Trans Tech Publications.

  5. Diabetes and diet: Managing dietary barriers.

    NARCIS (Netherlands)

    Friele, R.D.

    1989-01-01

    This thesis reports on the barriers diabetic patients experience with their diet, and the ways they cope with these barriers. A dietary barrier is a hinderance to a person's well-being, induced by being advised a diet. First inventories were made of possible dietary barriers and ways of coping with

  6. Resistance of 4H-SiC Schottky barriers at high forward-current densities

    International Nuclear Information System (INIS)

    The resistance of Schottky barriers based on 4H-SiC is experimentally determined at high forward-current densities. The measured resistance is found to be significantly higher than the resistance predicted by classical mechanisms of electron transport in Schottky contacts. An assumption concerning the crucial contribution of the tunnel-transparent intermediate oxide layer between the metal and semiconductor to the barrier resistance is proposed and partially justified

  7. Cytokines and the Skin Barrier

    Directory of Open Access Journals (Sweden)

    Jens Malte Baron

    2013-03-01

    Full Text Available The skin is the largest organ of the human body and builds a barrier to protect us from the harmful environment and also from unregulated loss of water. Keratinocytes form the skin barrier by undergoing a highly complex differentiation process that involves changing their morphology and structural integrity, a process referred to as cornification. Alterations in the epidermal cornification process affect the formation of the skin barrier. Typically, this results in a disturbed barrier, which allows the entry of substances into the skin that are immunologically reactive. This contributes to and promotes inflammatory processes in the skin but also affects other organs. In many common skin diseases, including atopic dermatitis and psoriasis, a defect in the formation of the skin barrier is observed. In these diseases the cytokine composition within the skin is different compared to normal human skin. This is the result of resident skin cells that produce cytokines, but also because additional immune cells are recruited. Many of the cytokines found in defective skin are able to influence various processes of differentiation and cornification. Here we summarize the current knowledge on cytokines and their functions in healthy skin and their contributions to inflammatory skin diseases.

  8. Penetration through the Skin Barrier.

    Science.gov (United States)

    Nielsen, Jesper Bo; Benfeldt, Eva; Holmgaard, Rikke

    2016-01-01

    The skin is a strong and flexible organ with barrier properties essential for maintaining homeostasis and thereby human life. Characterizing this barrier is the ability to prevent some chemicals from crossing the barrier while allowing others, including medicinal products, to pass at varying rates. During recent decades, the latter has received increased attention as a route for intentionally delivering drugs to patients. This has stimulated research in methods for sampling, measuring and predicting percutaneous penetration. Previous chapters have described how different endogenous, genetic and exogenous factors may affect barrier characteristics. The present chapter introduces the theory for barrier penetration (Fick's law), and describes and discusses different methods for measuring the kinetics of percutaneous penetration of chemicals, including in vitro methods (static and flow-through diffusion cells) as well as in vivo methods (microdialysis and microperfusion). Then follows a discussion with examples of how different characteristics of the skin (age, site and integrity) and of the penetrants (size, solubility, ionization, logPow and vehicles) affect the kinetics of percutaneous penetration. Finally, a short discussion of the advantages and challenges of each method is provided, which will hopefully allow the reader to improve decision making and treatment planning, as well as the evaluation of experimental studies of percutaneous penetration of chemicals. PMID:26844902

  9. Cylindrical air flow reversal barrier

    Energy Technology Data Exchange (ETDEWEB)

    Woznica, C.; Rodziewicz, M.

    1988-06-01

    Describes an innovative design introduced in the ZMP mine in Zory for quick reversal of ventilation air flow. Geologic mining conditions at the 705 m deep horizon, where the barrier was built, are described. According to the design used until now, a reversal system consisted of safety barriers, ventilation air locks, a ventilation bridge and stopping needed in case of a fire when air flow direction must be reversed. Nine air locks and an expensive concrete ventilation bridge were needed and the air locks had to be operated at 8 points of the region to effect reversal. The new design consists of a 2-storey cylindrical barrier which also fulfills the function of a ventilation bridge. It can be manually or remotely operated by a mechanical or pneumatic system. Tests showed that the new barrier permits immediate air flow reversal while retaining 60% of the original air, which is important in the case of fire and methane hazards. It permits improved seam panelling and splitting of pillars and brings an economy of about 40 million zlotys in construction cost. Design and operation of the barrier is illustrated and ventilation air circulation is explained. 7 figs.

  10. InP-quantum dots in Al0.20Ga0.80InP with different barrier configurations

    Science.gov (United States)

    Schulz, Wolfgang-Michael; Roßbach, Robert; Reischle, Matthias; Beirne, Gareth J.; Jetter, Michael; Michler, Peter

    2009-04-01

    Systematic ensemble photoluminescence studies have been performed on type-I InP-quantum dots in Al0.20Ga0.80InP barriers, emitting at approximately 1.85 eV at 5 K. The influence of different barrier configurations as well as the incorporation of additional tunnel barriers on the optical properties has been investigated. The confinement energy between the dot barrier and the surrounding barrier layers, which is the sum of the band discontinuities for the valence and the conduction bands, was chosen to be approximately 190 meV by using Al0.50Ga0.50InP. In combination with 2 nm thick AlInP tunnel barriers, the internal quantum efficiency of these barrier configurations can be increased by up to a factor of 20 at elevated temperatures with respect to quantum dots without such layers.

  11. Hanford Permanent Isolation Barrier Program: Asphalt technology data and status report - FY 1994

    Energy Technology Data Exchange (ETDEWEB)

    Freeman, H.D.; Romine, R.A.; Zacher, A.H.

    1994-09-01

    The asphalt layer within the Hanford Permanent Isolation Barrier (HPIB) is an important component of the overall design. This layer provides a RCRA equivalent backup to the overlying earthen layers in the unlikely event that these layers are not able to reduce the infiltration rate to less than 0.05 cm/yr. There is only limited amount of information on using asphalt for a moisture infiltration barrier over the long times required by the HPIB. Therefore, a number of activities are under way, as part of the Barrier Development Program, to obtain data on the performance of asphalt as a moisture barrier in a buried environment over a 1000-year period. These activities include (1) determining RCRA equivalency, (2) measurement of physical properties, (3) measurement of aging characteristics, and (4) relationship to ancient asphalt analogs. During FY 1994 progress was made on all of these activities. Studies were conducted both in the laboratory and on the prototype barrier constructed over the 216-B-57 crib in the 200 East Area on the Hanford Site. This report presents results obtained from the asphalt technology tasks during FY 1994. Also included are updates to planned activities for asphalt analogs and monitoring the asphalt test pad near the prototype barrier. Measurements of hydraulic conductivity on the HMAC portion of the prototype barrier show that the asphalt layers easily meet the RCRA standard of 1 {times} 10{sup -7} cm/s. In-place measurements using a new field falling head technique show an average of 3.66 {times} 10{sup -8} cm/s, while cores taken from the north end of the prototype and measured in a laboratory setup averaged 1.29 {times} 10{sup -9} cm/s. Measurements made on the fluid applied asphalt membrane (polymer-modified asphalt) show an extremely low permeability of less than 1 {times} 10{sup -11} cm/s.

  12. Hanford Permanent Isolation Barrier Program: Asphalt technology data and status report - FY 1994

    International Nuclear Information System (INIS)

    The asphalt layer within the Hanford Permanent Isolation Barrier (HPIB) is an important component of the overall design. This layer provides a RCRA equivalent backup to the overlying earthen layers in the unlikely event that these layers are not able to reduce the infiltration rate to less than 0.05 cm/yr. There is only limited amount of information on using asphalt for a moisture infiltration barrier over the long times required by the HPIB. Therefore, a number of activities are under way, as part of the Barrier Development Program, to obtain data on the performance of asphalt as a moisture barrier in a buried environment over a 1000-year period. These activities include (1) determining RCRA equivalency, (2) measurement of physical properties, (3) measurement of aging characteristics, and (4) relationship to ancient asphalt analogs. During FY 1994 progress was made on all of these activities. Studies were conducted both in the laboratory and on the prototype barrier constructed over the 216-B-57 crib in the 200 East Area on the Hanford Site. This report presents results obtained from the asphalt technology tasks during FY 1994. Also included are updates to planned activities for asphalt analogs and monitoring the asphalt test pad near the prototype barrier. Measurements of hydraulic conductivity on the HMAC portion of the prototype barrier show that the asphalt layers easily meet the RCRA standard of 1 x 10-7 cm/s. In-place measurements using a new field falling head technique show an average of 3.66 x 10-8 cm/s, while cores taken from the north end of the prototype and measured in a laboratory setup averaged 1.29 x 10-9 cm/s. Measurements made on the fluid applied asphalt membrane (polymer-modified asphalt) show an extremely low permeability of less than 1 x 10-11 cm/s

  13. Gas Barrier and Separation Behavior of Graphene Oxide Nanobrick Wall Thin Films

    Science.gov (United States)

    Grunlan, Jaime

    2015-03-01

    In many cases, electronics packaging requires electrical conductivity and barrier to oxygen, even under humid conditions. These two properties have simultaneously been realized through the use of surfactant-free aqueous layer-by-layer (LbL) processing, in the form of a polymer composite nanocoating. By layering graphene oxide (GO) with polyethyleneimine (PEI), a ``nano brick wall'' structure has been created, imparting gas barrier properties to the film. Reducing the graphene oxide with a thermal treatment further produces high oxygen barrier in humid conditions and imparts high electrical conductivity (σ ~ 1750 S/m). These thin films (300), making them interesting for gas purification membranes. The flexible nature of the aforementioned thin films, along with their excellent combination of transport properties, make them ideal candidates for use in a broad range of electronics and other packaging applications.

  14. Testing and monitoring plan for the permanent isolation surface barrier prototype

    Energy Technology Data Exchange (ETDEWEB)

    Gee, G.W.; Cadwell, L.L.; Freeman, H.D.; Ligotke, M.W.; Link, S.O.; Romine, R.A.; Walters, W.H. Jr.

    1993-06-01

    This document is a testing and monitoring plan for a prototype barrier to be constructed at the Hanford Site in 1993. The prototype barrier is an aboveground structure engineered to demonstrate the basic features of an earthen cover system, designed to permanently isolate waste from the biosphere. These features include multiple layers of soil and rock materials and a low-permeability asphalt sublayer. The surface of the barrier consists of silt loam soil, vegetated with plants. The barrier sides are reinforced with rock or coarse earthen-fill to protect against wind and water erosion. The sublayers inhibit plant and animal intrusion and percolation of water. A series of tests will be conducted on the prototype over the next several years to evaluate barrier performance under extreme climatic conditions.

  15. Structure information from fusion barriers

    Indian Academy of Sciences (India)

    S V S Sastry; S Santra

    2000-06-01

    It is shown that the analysis of fusion barrier distributions is not always an unambiguous test or a ‘fingerprint’ of the structure information of the colliding nuclei. Examples are presented with same fusion barrier distributions for nuclei having different structures. The fusion excitation functions for 16O+208Pb, using the coupled reaction channel (CRC) method and correct structure information, have been analysed. The barrier distributions derived from these excitation functions including many of the significant channels are featureless, although these channels have considerable effects on the fusion excitation function. However, a simultaneous analysis of the fusion, elastic and quasi-elastic channels would fix the structure and the reaction unambiguously

  16. Translating barriers into potential improvements

    DEFF Research Database (Denmark)

    Altintzoglou, Themistoklis; Hansen, Karina Birch; Valsdottir, Thora;

    2010-01-01

    and Iceland. The results were then linked to the Stage-Gate model for consumer-based new product development (NPD). Findings: The participants thought of seafood as either healthy or convenient, although there The participants thought of seafood as either healthy or convenient, although there were concerns....... An increase in seafood availability coupled with lower prices would encourage these consumers to add seafood to their diet. Research limitations/implications: Purchase-point-marketing and habitual behaviour were Purchase-point-marketing and habitual behaviour were found to implicitly skew planned behaviour......Purpose: The aim of this study is to explore potential barriers to seafood consumption by The aim of this study is to explore potential barriers to seafood consumption by young adults and the parents of young children. Knowledge of these barriers will be used to assist the development of new...

  17. PROMOTION, SWITCHING BARRIERS, AND LOYALTY

    Directory of Open Access Journals (Sweden)

    Gu-Shin Tung

    2011-06-01

    Full Text Available This paper investigates the causal relationships among promotion effects, switching barriers, and loyalty in the department stores. The relationship between switching barriers and loyalty reveals partially the same results as the switching barriers theory of Jones et al. (2000. The reasons arise from “too often” and “too similar” sales promotion programs of competitive department stores in Taiwan, leading the promotion effects to not contribute to the attractiveness of competitors. The promotion effects have a positive and significant influence on loyalty, which is consistent with the prior literature. Promotion effects are also the most important weight to loyalty in our tested model but it reveals a seeming loyalty, because the loyalty depends on the reward of promotion. The negative relationship between promotion effects and attractiveness of alternative supports the promotion effects, which can lower the attractiveness of competitors, but these similar promotion plans are not attributed to interpersonal relationships.

  18. Permeation barrier properties of thin oxide films on flexible polymer substrates

    International Nuclear Information System (INIS)

    Solar cells and organic electronic devices require an encapsulation to ensure sufficient lifetime. Key parameters of the encapsulation are permeation barrier, UV stability, temperature stability, optical transmission spectra and mechanical stability. The requirements depend very much on the specific application. Many work groups suggest multilayer stacks to meet the permeation requirements. In this paper the permeation barrier properties of the different constituents of such a multilayer stack are characterized. Different layer materials are compared regarding their water vapour and oxygen permeability as well as the influence of process parameters is examined. Finally temperature dependent permeation measurements are used to characterize the permeation mechanisms in the different constituents of the multilayer barrier

  19. Improved oxidation resistance of thermal barrier coatings

    Energy Technology Data Exchange (ETDEWEB)

    Schmitt-Thomas, K.G.; Hertter, M. [Technische Univ. Muenchen (Germany). Lehrstuhl fuer Werkstoffe im Maschinenbau

    1999-11-01

    In order to improve the engine output and the efficiency of gas turbines, optimized thermal barrier coatings (TBCs) are required to protect the metallic components at high temperatures. In common TBC-systems, consisting of a Ni-base alloy substrate/MCrAlY-bond coat/ZrO{sub 2}7 wt.% Y{sub 2}O{sub 3} top coat, an oxide layer grows at the interface bond coat/ceramic under high temperature service, which limits the life of these coatings. In this paper the oxidation resistance of a new triplex TBC-system, consisting of a CoNiCrAlY-bond coat/Pt-modified aluminide coating/ZrO{sub 2}7 wt.% Y{sub 2}O{sub 3}top coat is compared with that of a common TBC-system. The as-coated Pt-aluminide coating consists of an outer region of PtAl{sub 2}+(CoNiPt)Al followed by a single phase layer of (CoNiPt)Al. The results of the oxidation tests at 1000, 1050 and 1100 C in air show excellent oxidation resistance of the triplex TBC-system with the thickest investigated Pt-aluminide coating. In particular, a 28 {mu}m thick Pt-aluminide coating allows the thickness of the oxide layers to be reduced up to 70% compared to the common TBC after 500 h at all examined temperatures. After heat treatment the coating systems were investigated by SEM, EDX and X-ray analysis. Annealing tests with Al{sub 2}O{sub 3} powder indicate which mechanism is probably responsible for the improved oxidation resistance of platinum additions. Platinum is evidently capable of decomposing aluminum oxide at temperatures above 900 C. (orig.)

  20. The Solution to Green Barrier

    Institute of Scientific and Technical Information of China (English)

    Cui Yan

    2009-01-01

    @@ The recovery process of world economy is rough and full of twists and turns.Especially the trade protectionism,having reemerged under the mask of"green barrier",is making a great impact on the slowly recovering world economy and trade.Then,what are the characteristics of trade barriers in the post-crisis era?Where is the outlet of Chinese manufacturing industry?With these questions,ourreporter interviewed Professor Zhou Shijian,Standing Director to China Association of International Trade and Senior Researcher to SINO-US Relationship Research Centre of Tsinghua University.

  1. Influence of a BGaN back-barrier on DC and dynamic performances of an AlGaN/GaN HEMT: simulation study

    Science.gov (United States)

    Guenineche, Lotfi; Hamdoune, Abdelkader

    2016-05-01

    In this paper, we study the effect of a BGaN back-barrier on the DC and RF performances of an AlGaN/GaN high electron mobility transistor. Using TCAD Silvaco, we examine some variations of thickness and boron concentration in the BGaN back-barrier layer. First, we fix the thickness of the back-barrier layer at 5 nm and we vary the concentration of the boron in BGaN from 1% to 4%. Second, we fix the concentration of the boron in BGaN to only 2% and we vary the thickness of the back-barrier layer from 20 nm to 110 nm. The BGaN back-barrier layer creates an electrostatic barrier under the channel layer and improves the performances of the device by improving the electron confinement in the two-dimensional electron gas. The DC and AC characteristics are improved, respectively, by a greater concentration of boron and by a thicker BGaN layer. For 4% boron concentration and 5 nm thick back-barrier layer, we obtain a maximum drain current of 1.1 A, a maximum transconductance of 480 mS mm-1, a cut-off frequency of 119 GHz, and a maximum oscillation frequency of 311 GHz.

  2. The role of buffer layer between TCO and p-layer in improving series resistance and carrier recombination of a-Si:H solar cells

    International Nuclear Information System (INIS)

    The properties of the window layer and transparent conducting oxide (TCO)/p interface in silicon based thin-film solar cells are important factors in determining the cell efficiency. As the potential barrier got larger at the interface, the transmission of photo-generated holes were impeded and the recombination of photo-generated electrons diffusing back toward the TCO interface were enhanced leading to a deterioration of the fill factor. In this paper different p-layers were studied. It was found that using p-type hydrogenated amorphous silicon oxide (a-SiOx:H) layer as the window layer along with a 5 nm buffer layer which reduced the barrier at the fluorine doped tin oxide (SnO2:F) TCO/p-layer interface, improved the cell efficiency. a-SiOx:H was used as the buffer layer. With the buffer layer between TCO and p-type a-SiOx:H, the potential barrier dropped from 0.506 eV to 0.472 eV. This lowered barrier results in increased short circuit current density (Jsc) and fill factor (FF). With the buffer layer, Jsc increased from 11.9 mA/cm2 to 13.35 mA/cm2 and FF increased from 73.22% to 74.91%.

  3. Systems study on engineered barriers: barrier performance analysis

    International Nuclear Information System (INIS)

    A performance assessment model for multiple barrier packages containing unreprocessed spent fuel has been modified and applied to several package designs. The objective of the study was to develop information to be used in programmatic decision making concerning engineered barrier package design and development. The assessment model, BARIER, was developed in previous tasks of the System Study on Engineered Barriers (SSEB). The new version discussed in this report contains a refined and expanded corrosion rate data base which includes pitting, crack growth, and graphitization as well as bulk corrosion. Corrosion rates for oxic and anoxic conditions at each of the two temperature ranges are supplied. Other improvements include a rigorous treatment of radionuclide release after package failure which includes resistance of damaged barriers and backfill, refined temperature calculations that account for convection and radiation, a subroutine to calculate nuclear gamma radiation field at each barrier surface, refined stress calculations with reduced conservatism and various coding improvements to improve running time and core usage. This report also contains discussion of alternative scenarios to the assumed flooded repository as well as the impact of water exclusion backfills. The model was used to assess post repository closure performance for several designs which were all variation of basic designs from the Spent Unreprocessed Fuel (SURF) program. Many designs were found to delay the onset of leaching by at least a few hundreds of years in all geologic media. Long delay times for radionuclide release were found for packages with a few inches of sorption backfill. Release of uranium, plutonium, and americium was assessed

  4. Systems study on engineered barriers: barrier performance analysis

    Energy Technology Data Exchange (ETDEWEB)

    Stula, R.T.; Albert, T.E.; Kirstein, B.E.; Lester, D.H.

    1980-09-01

    A performance assessment model for multiple barrier packages containing unreprocessed spent fuel has been modified and applied to several package designs. The objective of the study was to develop information to be used in programmatic decision making concerning engineered barrier package design and development. The assessment model, BARIER, was developed in previous tasks of the System Study on Engineered Barriers (SSEB). The new version discussed in this report contains a refined and expanded corrosion rate data base which includes pitting, crack growth, and graphitization as well as bulk corrosion. Corrosion rates for oxic and anoxic conditions at each of the two temperature ranges are supplied. Other improvements include a rigorous treatment of radionuclide release after package failure which includes resistance of damaged barriers and backfill, refined temperature calculations that account for convection and radiation, a subroutine to calculate nuclear gamma radiation field at each barrier surface, refined stress calculations with reduced conservatism and various coding improvements to improve running time and core usage. This report also contains discussion of alternative scenarios to the assumed flooded repository as well as the impact of water exclusion backfills. The model was used to assess post repository closure performance for several designs which were all variation of basic designs from the Spent Unreprocessed Fuel (SURF) program. Many designs were found to delay the onset of leaching by at least a few hundreds of years in all geologic media. Long delay times for radionuclide release were found for packages with a few inches of sorption backfill. Release of uranium, plutonium, and americium was assessed.

  5. Reducing Water Vapor Permeability of Poly(lactic acid Film and Bottle through Layer-by-Layer Deposition of Green-Processed Cellulose Nanocrystals and Chitosan

    Directory of Open Access Journals (Sweden)

    Katalin Halász

    2015-01-01

    Full Text Available Layer-by-layer electrostatic self-assembly technique was applied to improve the barrier properties of poly(lactic acid (PLA films and bottles. The LbL process was carried out by the alternate adsorption of chitosan (CH (polycation and cellulose nanocrystals (CNC produced via ultrasonic treatment. Four bilayers (on each side of chitosan and cellulose nanocrystals caused 29 and 26% improvement in barrier properties in case of films and bottles, respectively. According to the results the LbL process with CH and CNC offered a transparent “green” barrier coating on PLA substrates.

  6. Properties of Whey-Protein-Coated Films and Laminates as Novel Recyclable Food Packaging Materials with Excellent Barrier Properties

    Directory of Open Access Journals (Sweden)

    Markus Schmid

    2012-01-01

    Full Text Available In case of food packaging applications, high oxygen and water vapour barriers are the prerequisite conditions for preserving the quality of the products throughout their whole lifecycle. Currently available polymers and/or biopolymer films are mostly used in combination with barrier materials derived from oil based plastics or aluminium to enhance their low barrier properties. In order to replace these non-renewable materials, current research efforts are focused on the development of sustainable coatings, while maintaining the functional properties of the resulting packaging materials. This article provides an introduction to food packaging requirements, highlights prior art on the use of whey-based coatings for their barriers properties, and describes the key properties of an innovative packaging multilayer material that includes a whey-based layer. The developed whey protein formulations had excellent barrier properties almost comparable to the ethylene vinyl alcohol copolymers (EVOH barrier layer conventionally used in food packaging composites, with an oxygen barrier (OTR of <2 [cm³(STP/(m²d bar] when normalized to a thickness of 100 μm. Further requirements of the barrier layer are good adhesion to the substrate and sufficient flexibility to withstand mechanical load while preventing delamination and/or brittle fracture. Whey-protein-based coatings have successfully met these functional and mechanical requirements.

  7. Double layer dynamics in a collisionless magnetoplasma

    International Nuclear Information System (INIS)

    An experimental investigation of the dynamics of double layers is presented. The experiments are performed in a Q-machine plasma and the double layers are generated by applying a positive step potential to a cold collector plate terminating the plasma column. The double layer is created at the grounded plasma source just after the pulse is applied and it propagates towards the collector with a speed around the ion acoustic speed. When the collector is biased positively, large oscillations are observed in the plasma current. These oscillations are found to be related to a recurring formation and propagation of a double layer. The period of the oscillations is determined by the propagation length of the double layer. The current is limited during the propagation of the double layer by a growing negative potential barrier formed on the low potential tail. Similar phenomena appear when a potential difference is applied between two plasmas in a Q-machine with two sources. In this case a stationary double layer forms in the plasma column, but the low potential tail is subject to 'back and forth' oscillations leading to large amplitude current oscillations. (Auth.)

  8. Mechanical Properties and Durability of Advanced Environmental Barrier Coatings in Calcium-Magnesium-Alumino-Silicate Environments

    Science.gov (United States)

    Miladinovich, Daniel S.; Zhu, Dongming

    2011-01-01

    Environmental barrier coatings are being developed and tested for use with SiC/SiC ceramic matrix composite (CMC) gas turbine engine components. Several oxide and silicate based compositons are being studied for use as top-coat and intermediate layers in a three or more layer environmental barrier coating system. Specifically, the room temperature Vickers-indentation-fracture-toughness testing and high-temperature stability reaction studies with Calcium Magnesium Alumino-Silicate (CMAS or "sand") are being conducted using advanced testing techniques such as high pressure burner rig tests as well as high heat flux laser tests.

  9. Super gas barrier of transparent polymer-clay multilayer ultrathin films.

    Science.gov (United States)

    Priolo, Morgan A; Gamboa, Daniel; Holder, Kevin M; Grunlan, Jaime C

    2010-12-01

    Flexible and transparent polymeric "superbarrier" packaging materials have become increasingly important in recent years. Layer-by-layer assembly offers a facile technique for the fabrication of layered, polymer-clay superbarrier thin films. At only 51 nm thick, these nanocomposite thin films, comprised of 12 polymer and 4 clay layers, exhibit an oxygen permeability orders of magnitude lower than EVOH and SiOx. Coupling high flexibility, transparency, and barrier protection, these films are good candidates for a variety packaging applications. PMID:21047123

  10. Three-dimensional patterns in dielectric barrier discharge with "H" shaped gas gap

    Science.gov (United States)

    Gao, Xing; Dong, Lifang; Wang, Hao; Zhang, Hao; Liu, Ying; Liu, Weibo; Fan, Weili; Pan, Yuyang

    2016-08-01

    Three-dimensional (3D) patterns are obtained for the first time in dielectric barrier discharge by a special designed device with "H" shaped gas gap which consists of a single gas layer gap and two double gas layer gaps. Three dimensional spatiotemporal characteristics of discharge are investigated by photomultiplier and intensified charge-coupled device camera. Results show that the discharge first generates in the single gas layer gap and the coupled filaments in the double gas layer gap present the simultaneity characteristics. The formation of 3D patterns is determined by the distribution of the effective field of the applied field and the wall charge field.

  11. Architectural Barriers Removal: Resource Guide.

    Science.gov (United States)

    Office of Human Development (DHEW), Washington, DC. Office for Handicapped Individuals.

    The guide presents information on resources for eliminating architectural barriers for handicapped persons. Entries are grouped according to information resources, funding sources, and publications available from the federal government. Seven organizations are described in terms of agency goals, publications, and materials. Federal programs…

  12. The blood-brain barrier.

    Science.gov (United States)

    Obermeier, Birgit; Verma, Ajay; Ransohoff, Richard M

    2016-01-01

    In autoimmune neurologic disorders, the blood-brain barrier (BBB) plays a central role in immunopathogenesis, since this vascular interface is an entry path for cells and effector molecules of the peripheral immune system to reach the target organ, the central nervous system (CNS). The BBB's unique anatomic structure and the tightly regulated interplay of its cellular and acellular components allow for maintenance of brain homeostasis, regulation of influx and efflux, and protection from harm; these ensure an optimal environment for the neuronal network to function properly. In both health and disease, the BBB acts as mediator between the periphery and the CNS. For example, immune cell trafficking through the cerebral vasculature is essential to clear microbes or cell debris from neural tissues, while poorly regulated cellular transmigration can underlie or worsen CNS pathology. In this chapter, we focus on the specialized multicellular structure and function of the BBB/neurovascular unit and discuss how BBB breakdown can precede or be a consequence of neuroinflammation. We introduce the blood-cerebrospinal fluid barrier and include a brief aside about evolutionary aspects of barrier formation and refinements. Lastly, since restoration of barrier function is considered key to ameliorate neurologic disease, we speculate about new therapeutic avenues to repair a damaged BBB. PMID:27112670

  13. Injectable barriers for waste isolation

    International Nuclear Information System (INIS)

    In this paper the authors report laboratory work and numerical simulation done in support of development and demonstration of injectable barriers formed from either of two fluids: colloidal silica or polysiloxane. Two principal problems addressed here are control of gel time and control of plume emplacement in the vadose zone. Gel time must be controlled so that the viscosity of the barrier fluid remains low long enough to inject the barrier, but increases soon enough to gel the barrier in place. During injection, the viscosity must be low enough to avoid high injection pressures which could uplift or fracture the formation. To test the grout gel time in the soil, the injection pressure was monitored as grouts were injected into sandpacks. When grout is injected into the vadose zone, it slumps under the influence of gravity, and redistributes due to capillary forces as it gels. The authors have developed a new module for the reservoir simulator TOUGH2 to model grout injection into the vadose zone, taking into account the increase of liquid viscosity as a function of gel concentration and time. They have also developed a model to calculate soil properties after complete solidification of the grout. The numerical model has been used to design and analyze laboratory experiments and field pilot tests. The authors present the results of computer simulations of grout injection, redistribution, and solidification

  14. Injectable barriers for waste isolation

    Energy Technology Data Exchange (ETDEWEB)

    Persoff, P.; Finsterle, S.; Moridis, G.J.; Apps, J.; Pruess, K. [Lawrence Berkeley National Lab., CA (United States). Earth Sciences Div.; Muller, S.J. [Univ. of California, Berkeley, CA (United States). Dept. of Chemical Engineering

    1995-03-01

    In this paper the authors report laboratory work and numerical simulation done in support of development and demonstration of injectable barriers formed from either of two fluids: colloidal silica or polysiloxane. Two principal problems addressed here are control of gel time and control of plume emplacement in the vadose zone. Gel time must be controlled so that the viscosity of the barrier fluid remains low long enough to inject the barrier, but increases soon enough to gel the barrier in place. During injection, the viscosity must be low enough to avoid high injection pressures which could uplift or fracture the formation. To test the grout gel time in the soil, the injection pressure was monitored as grouts were injected into sandpacks. When grout is injected into the vadose zone, it slumps under the influence of gravity, and redistributes due to capillary forces as it gels. The authors have developed a new module for the reservoir simulator TOUGH2 to model grout injection into the vadose zone, taking into account the increase of liquid viscosity as a function of gel concentration and time. They have also developed a model to calculate soil properties after complete solidification of the grout. The numerical model has been used to design and analyze laboratory experiments and field pilot tests. The authors present the results of computer simulations of grout injection, redistribution, and solidification.

  15. Overcoming Barriers: Women in Superintendency

    Science.gov (United States)

    Miller, Claire M.

    2009-01-01

    Women currently represent the largest number of teachers in the United States but remain underrepresented in the superintendent position. This suggests that the superintendency has been influenced by patriarchy. If women are to break through the barriers that prevent them from attaining a superintendency, we will need to understand the social…

  16. Communities Address Barriers to Connectivity.

    Science.gov (United States)

    Byers, Anne

    1996-01-01

    Rural areas lag behind urban areas in access to information technologies. Public institutions play a critical role in extending the benefits of information technologies to those who would not otherwise have access. The most successful rural telecommunications plans address barriers to use, such as unawareness of the benefits, technophobia, the…

  17. Modifications of thermal barrier coatings (TBCs)

    Energy Technology Data Exchange (ETDEWEB)

    Schmitt-Thomas, K.G.; Haindl, H.; Fu, D. [Technische Univ. Muenchen (Germany). Lehrstuhl fuer Werkstoffe im Maschinenbau

    1997-10-01

    To develop highly efficient gas turbines, thermal barrier coating systems with a high reliability and a long lifetime under severe operating conditions are required. The failure of TBC-systems is caused by thermal cycling conditions, oxidation attack, and insufficient adhesion at the interface of the ceramic coating and the bond coat. Coating failure occurs mostly near the interface top coat-bond coat. Two modifications of a conventional duplex TBC-system consisting of a Ni-base alloy substrate/MCrAlY-bond coat/ZrO{sub 2} 7 wt.% Y{sub 2}O{sub 3}-top coat, which is used as the reference system, are presented as follows. (i) By contouring the MCrAlY-bond coat with a laser, the stress distribution at the ZrO{sub 2}-bond coat interface can be modified by forming folds within the laminate structure of the ceramic top coat and increasing the bonding area. TBC-systems containing a contoured bond coat show better thermal cycling behaviour. FEM-simulation of thermally induced stress shows an alternating stress distribution which is caused by the contoured bond coat interface. (ii) High-velocity oxygen fuel (HVOF)-sprayed MCrAlY layers are a new possibility to create homogeneous bond coats. Thermal barrier coatings with LPPS- (low pressure plasma sprayed) or HVOF-CoNiCrAlY bond coats are compared by investigating their porosity, roughness, and oxidation behaviour. The porosity is proportional to the roughness of the HVOF bond coats. The oxide content was examined by TEM and EDX analysis. HVOF-CoNiCrAlY bond coats show oxidation behaviour similar to coatings produced by LPPS. (orig.) 10 refs.

  18. Magnetic coherent tunnel junctions with periodic grating barrier

    Science.gov (United States)

    Fang, Henan; Xiao, Mingwen; Rui, Wenbin; Du, Jun; Tao, Zhikuo

    2016-04-01

    A new spintronic theory has been developed for the magnetic tunnel junction (MTJ) with single-crystal barrier. The barrier will be treated as a diffraction grating with intralayer periodicity, the diffracted waves of tunneling electrons thus contain strong coherence, both in charge and especially in spin. The theory can answer the two basic problems present in MgO-based MTJs: (1) Why does the tunneling magnetoresistance (TMR) oscillate with the barrier thickness? (2) Why is the TMR still far away from infinity when the two electrodes are both half-metallic? Other principal features of TMR can also be explained and reproduced by the present work. It also provides possible ways to modulate the oscillation of TMR, and to enhance TMR so that it can tend to infinity. Within the theory, the barrier, as a periodic diffraction grating, can get rid of the confinement in width, it can vary from nanoscale to microscale. Based on those results, a future-generation MTJ is proposed where the three pieces can be fabricated separately and then assembled together, it is especially appropriate for the layered materials, e.g., MoS2 and graphite, and most feasible for industries.

  19. Synthesis of tantalum nitride diffusion barriers for Cu metal by plasma immersion ion implantation

    CERN Document Server

    Kumar, M; Kumar, D; George, P J; Paul, A K

    2002-01-01

    A Tantalum nitride diffusion barrier layer for copper metal was synthesized by Plasma Immersion Ion Implantation technique (PIII). Effect of nitrogen dose in Ta layer was investigated in improving its diffusion barrier properties. Silicon wafers coated with Ta were implanted with nitrogen at two different doses viz. 10$^{15}$ions/cm$^2$ and 10$^{17}$ions/cm$^2$ corresponding to low and high dose regime. High dose of implanted nitrogen ions in the film render it to become Ta(N), Thereafter a copper (Cu) layer was deposited on the samples to produce Cu/Ta(N)/Si structure. To evaluate the barrier properties of Ta(N) these samples were annealed up to 700$^\\circ$C for 30 minutes. Sheet resistance, X-Ray Diffraction (XRD) and Scanning Electron Microscope (SEM) measurements were carried out to investigate the effect of annealing. Low dose implanted Ta layer does not show any change in its diffusion barrier properties, while high dose implanted layer stops the diffusion of Cu metal through it at annealing temperature...

  20. The Role of Capillary Barrier in Reducing Moisture Content on Waste Packages

    International Nuclear Information System (INIS)

    Assessment of the performance of engineered capillary barriers at the potential Yucca Mountain nuclear waste repository site, in which 1.67-m-diameter waste packages are to be emplaced in 5-m-diameter tunnels according to current design, brings up aspects not commonly considered in more typical applications of capillary barriers (e.g., near-surface landfills). Engineered capillary barriers typically consist of two layers of granular materials with a sloping interface, in which the contrast in capillarity between the layers keeps infiltrating water in the upper layer. One issue is the effect of thermohydrologic processes that would occur at elevated repository temperatures (and temperature gradients). For example, backfill materials may be altered from that of the as-placed material by the hydrothermal regime imposed by the emplacement of waste in the repository, changing hydrologic properties in a way that degrades the performance of the barrier. A reduction of permeability in the upper layer might diminish the capacity of the upper layer to divert incoming seepage or to cause a ''vapor lid'' whereby buoyant vapor flow would be trapped, then condense and drain onto waste packages. Other concerns are the result of highly spatially and temporally variable seepage distribution and the very limited spatial scale available for flow attenuation and diversion

  1. Thin film electronic devices with conductive and transparent gas and moisture permeation barriers

    Energy Technology Data Exchange (ETDEWEB)

    Simpson, Lin Jay

    2015-07-28

    Thin film electronic devices (or stacks integrated with a substrate) that include a permeation barrier formed of a thin layer of metal that provides a light transmitting and electrically conductive layer, wherein the electrical conductive layer is formed on a surface of the substrate or device layer such as a transparent conducting material layer with pin holes or defects caused by manufacturing and the thin layer of metal is deposited on the conductive layer and formed from a self-healing metal that forms self-terminating oxides. A permeation plug or block is formed in or adjacent to the thin film of metal at or proximate to the pin holes to block further permeation of contaminants through the pin holes.

  2. Global and local planarization of surface roughness by chemical vapor deposition of organosilicon polymer for barrier applications

    Energy Technology Data Exchange (ETDEWEB)

    Coclite, Anna Maria; Gleason, Karen K. [Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States)

    2012-04-01

    Particulates and asperities on the surface of plastic substrates limit the performance of the current protective barrier coatings for flexible electronics. By applying a smoothing layer to the substrate, prior to barrier deposition, permeation is reduced. While application of smoothing layers from the liquid-phase application and curing of acrylate monomers is well known, reports of planarization achieved by vapor deposition are quite limited. In the current work, the chemical vapor deposition (CVD) of a flexible smoothing layer, requiring no curing, is implemented in the same reactor chamber and from the same organosilicon monomer used for depositing the multilayer barrier stack. The process similarity between the smoothing and barrier layer deposition steps has the potential to lower the overall cost of the process and to improve interfacial properties, such as adhesion between the smoothing layer and the barrier stack. The current methods adapts and combines features of two well established methods for CVD of organic layers, plasma enhancement (PECVD) and the specific use of an initiator species (iCVD). The novel, initiated plasma enhanced chemical vapor deposition (iPECVD) method achieves a far greater degree of planarization of flexible organic layer than either of its predecessors. Polystyrene microspheres serve as model defects and allow the degree of planarization to be quantitatively measured. Both cross-sectional scanning electron micrographs and atomic force micrographs demonstrate that when the iPECVD organic layer is 1.8 {mu}m thick, the degree of global planarization is 99%. A model demonstrates that the planarization is achieved as a result of the coating viscosity and the surface tension. Finally, the water vapor barrier performance of a 20-nm-thick SiO{sub x} layer is two orders of magnitude improved when it is deposited on a planarized substrate.

  3. Barriers to Physical Activity Among Gay Men.

    Science.gov (United States)

    Cary, Miranda A; Brittain, Danielle R; Dinger, Mary K; Ford, Melissa L; Cain, Meagan; Sharp, Teresa A

    2016-09-01

    Gay men may not be physically active at recommended levels to achieve health benefits. Thus, a need exists to identify general (i.e., common across populations) and population-specific barriers that hinder or stop gay men from participating in physical activity (PA). Salient barriers may be identified through the extent each barrier limits PA (i.e., barrier limitation) and the level of one's confidence to overcome barriers and engage in PA (i.e., self-regulatory efficacy). The purposes of this study were to (1) provide a description of general and population-specific barriers to PA among sufficiently and insufficiently active gay men, (2) identify barrier limitation and self-regulatory efficacy for the reported barriers, and (3) examine the associations between meeting the current PA recommendation, barrier limitation, and self-regulatory efficacy. Participants were 108 self-identified gay males aged 21 to 64 years who completed a web-based survey. A total of 35 general barriers and no population-specific barriers were identified by the sufficiently and insufficiently active groups. The sufficiently active group reported higher self-regulatory efficacy and lower barrier limitation for nearly all reported barriers. A binary logistic regression used to examine the associations between PA, barrier limitation, and self-regulatory efficacy was statistically significant, χ(2)(2, N = 108) = 19.26, p < .0001, R(2) = .16. Only barrier limitation significantly contributed to the model. Future research should continue to examine barriers to PA among gay men to determine whether an intervention needs to be designed specifically for gay men or whether a one-size-fits-all intervention would be effective in helping all men overcome common barriers to engaging in PA. PMID:25643585

  4. Numerical investigation on active isolation of ground shock by soft porous layers

    Science.gov (United States)

    Wang, J. G.; Sun, W.; Anand, S.

    2009-04-01

    The mitigation and reduction of blast-induced ground shock in near field is an interesting topic worth considering for the protection of buried structures. Soft porous materials are usually used to form an isolation layer around the buried structures. However, the interaction of soft porous layer and surrounding geomedia as well as buried structures is not well understood. In this paper, the effects of soft porous layer barriers on the reduction of buried blast-induced ground shock are numerically studied. Based on the prototype dimensions of a centrifuge test, a numerical model is set up with two steel boxes symmetrically buried at two sides of the charge. One box is directly located in soil mass without protection (unprotected) and the other is located behind a soft porous layer barrier (protected). The soft porous layer barriers studied here include an open trench, an inundated water trench, three in-filled geofoam walls with different densities, and a concrete wall. The numerical responses of the two boxes are evaluated when subjected to the protection of different soft porous layer barriers. These numerical simulations show that both open trench and geofoam barriers can effectively reduce blast-induced stress waves. However, inundated water trench and concrete wall have almost no effect on the reduction of ground shock. Therefore, a geofoam barrier is more practicable in soil mass.

  5. A pH-sensitive multifunctional gene carrier assembled via layer-by-layer technique for efficient gene delivery

    OpenAIRE

    Li P.; Liu DH; Miao L; Liu CX; Sun XL; Liu YJ; Zhang N.

    2012-01-01

    Peng Li, Donghua Liu, Lei Miao, Chunxi Liu, Xiaoli Sun, Yongjun Liu, Na ZhangSchool of Pharmaceutical Science, Shandong University, Jinan, Shandong, People’s Republic of ChinaBackground: The success of gene therapy asks for the development of multifunctional vectors that could overcome various gene delivery barriers, such as the cell membrane, endosomal membrane, and nuclear membrane. Layer-by-layer technique is an efficient method with easy operation which can be used for the assem...

  6. Manufacturing and testing of fuel cans with barrier coating for LWR type reactors in USA and Japan

    International Nuclear Information System (INIS)

    Papers on manufacturing methods for fuel cans of zircalloy with barrier coating of zirconium prepared by pressing an internal tube into external one as well as by pressing of two-layer tubes with further rolling are reviewed. Heat treatment based on creation of the assigned gradient of temperature over tube wall cross section in order to change the structure of a thin layer of the outside surfce when conserving the initial structure of the rest cross section is developed to increase corrosion resistance. Eddy current and ultrasound methods for control of quality and thickness of the barrier layer of zirconium are used

  7. Influence of creep and cyclic oxidation in thermal barrier coatings

    Energy Technology Data Exchange (ETDEWEB)

    Seiler, Philipp; Baeker, Martin; Roesler, Joachim [Technische Univ. Braunschweig (Germany). Inst. fuer Werkstoffe

    2012-01-15

    The lifetime of thermal barrier coating systems is limited by cracks close to the interfaces, causing delamination. To study the failure mechanisms, a simplified model system is analysed which consists of a bond-coat bulk material, a thermally grown oxide, and an yttria-stabilised zirconia topcoat. The stresses in the model system are calculated using a finite element model which covers the simulation of full thermal cycles, creep in all layers, and the anisotropic oxidation during dwelling. Creep in the oxide and the thermal barrier coating is varied with the use of different creep parameter sets. The influence of creep in the bondcoat is analysed by using two different bond-coat materials: fast creeping Fecralloy and slow creeping oxide dispersion strengthened MA956. It is shown that creep in the bondcoat influences the lifetime of the coatings. Furthermore, a fast creeping thermally grown oxide benefits the lifetime of the coating system. (orig.)

  8. Patient advocacy: barriers and facilitators

    Directory of Open Access Journals (Sweden)

    Nikravesh Mansoure

    2006-03-01

    Full Text Available Abstract Background During the two recent decades, advocacy has been a topic of much debate in the nursing profession. Although advocacy has embraced a crucial role for nurses, its extent is often limited in practice. While a variety of studies have been generated all over the world, barriers and facilitators in the patient advocacy have not been completely identified. This article presents the findings of a study exploring the barriers and facilitators influencing the role of advocacy among Iranian nurses. Method This study was conducted by grounded theory method. Participants were 24 Iranian registered nurses working in a large university hospital in Tehran, Iran. Semi-structured interviews were used for data collection. All interviews were transcribed verbatim and simultaneously Constant comparative analysis was used according to the Strauss and Corbin method. Results Through data analysis, several main themes emerged to describe the factors that hindered or facilitated patient advocacy. Nurses in this study identified powerlessness, lack of support, law, code of ethics and motivation, limited communication, physicians leading, risk of advocacy, royalty to peers, and insufficient time to interact with patients and families as barriers to advocacy. As for factors that facilitated nurses to act as a patient advocate, it was found that the nature of nurse-patient relationship, recognizing patients' needs, nurses' responsibility, physician as a colleague, and nurses' knowledge and skills could be influential in adopting the advocacy role. Conclusion Participants believed that in this context taking an advocacy role is difficult for nurses due to the barriers mentioned. Therefore, they make decisions and act as a patient's advocate in any situation concerning patient needs and status of barriers and facilitators. In most cases, they can not act at an optimal level; instead they accept only what they can do, which we called 'limited advocacy' in

  9. Ultrasonic wave transducer for high temperature barrier

    International Nuclear Information System (INIS)

    This transducer is made by a metallic body pivoting on a support fixed to the barrier and an internal vitroceramic waveguide in contact on the barrier and on the other end on a piezoelectric ceramic element

  10. Prototype Hanford Surface Barrier: Design basis document

    International Nuclear Information System (INIS)

    The Hanford Site Surface Barrier Development Program (BDP) was organized in 1985 to develop the technology needed to provide a long-term surface barrier capability for the Hanford Site and other arid sites. This document provides the basis of the prototype barrier. Engineers and scientists have momentarily frozen evolving barrier designs and incorporated the latest findings from BDP tasks. The design and construction of the prototype barrier has required that all of the various components of the barrier be brought together into an integrated system. This integration is particularly important because some of the components of the protective barreir have been developed independently of other barreir components. This document serves as the baseline by which future modifications or other barrier designs can be compared. Also, this document contains the minutes of meeting convened during the definitive design process in which critical decisions affecting the prototype barrier's design were made and the construction drawings

  11. Overcoming Barriers to Shared Decision Making

    Science.gov (United States)

    ... team to break it down. Barriers to shared decision making and solutions to overcome them include: Barrier: Fear, anger, stress or other emotions Solution: Strong emotions can interfere with your ability ...

  12. A study of the barrier properties of polyethylene coated with a nanocellulose/magnetite composite film

    OpenAIRE

    Đorđević Nenad 1; Marinković Aleksandar D.; Nikolić Jasmina B.; Drmanić Saša Ž.; Rančić Milica; Brković Danijela V.; Uskoković Petar S.

    2016-01-01

    The morphological, thermal and barrier properties of low-density polyethylene/polycaprolactone-modified nanocellulose hybrid materials were investigated in this paper. Nanonocelulose/magnetite (NC-Fe3O4) nanocomposite and maleic acid functionalized NC/magnetite (NCMA-Fe3O4) nanocomposite were prepared and used as filler at various concentrations (5, 10 and 15 wt. %) in polycaprolactone (PCL) layer. PE was coated with PCL/NC/magnetite layer. The addition of ...

  13. Schottky Barrier with Liquid Metal

    Science.gov (United States)

    Modi, B. P.; Patel, K. D.

    2011-12-01

    Schottky barrier with liquid metal may provide an attractive and new opportunity to look into various aspect of the evolution of Schottky interfaces in a relatively beneficial manner [1]. Here gallium-silicon diode has been fabricated and investigated especially around the melting point of gallium. Analysis of data no barrier height exhibits an anomalous change in the sense that there is a sharp deterioration in the rectifying nature near this temperature. It is believed to be related changes the phase transition driven physical process e.g. breaking of bonds both between gallium atoms and between gallium atoms and silicon interface; change from long range to short range order in gallium. Strain relaxations at the interface etc.

  14. Penetration through the Skin Barrier

    DEFF Research Database (Denmark)

    Nielsen, Jesper Bo; Benfeldt, Eva; Holmgaard, Rikke

    2016-01-01

    . During recent decades, the latter has received increased attention as a route for intentionally delivering drugs to patients. This has stimulated research in methods for sampling, measuring and predicting percutaneous penetration. Previous chapters have described how different endogenous, genetic...... and exogenous factors may affect barrier characteristics. The present chapter introduces the theory for barrier penetration (Fick's law), and describes and discusses different methods for measuring the kinetics of percutaneous penetration of chemicals, including in vitro methods (static and flow......-through diffusion cells) as well as in vivo methods (microdialysis and microperfusion). Then follows a discussion with examples of how different characteristics of the skin (age, site and integrity) and of the penetrants (size, solubility, ionization, logPow and vehicles) affect the kinetics of percutaneous...

  15. Security barriers with automated reconnaissance

    Science.gov (United States)

    McLaughlin, James O; Baird, Adam D; Tullis, Barclay J; Nolte, Roger Allen

    2015-04-07

    An intrusion delaying barrier includes primary and secondary physical structures and can be instrumented with multiple sensors incorporated into an electronic monitoring and alarm system. Such an instrumented intrusion delaying barrier may be used as a perimeter intrusion defense and assessment system (PIDAS). Problems with not providing effective delay to breaches by intentional intruders and/or terrorists who would otherwise evade detection are solved by attaching the secondary structures to the primary structure, and attaching at least some of the sensors to the secondary structures. By having multiple sensors of various types physically interconnected serves to enable sensors on different parts of the overall structure to respond to common disturbances and thereby provide effective corroboration that a disturbance is not merely a nuisance or false alarm. Use of a machine learning network such as a neural network exploits such corroboration.

  16. Perceptions regarding strategic and structural entry barriers

    NARCIS (Netherlands)

    Lutz, Clemens H. M.; Kemp, Ron G. M.; Dijkstra, S. Gerhard

    2010-01-01

    This article uses factor analysis to identify the underlying dimensions of strategic and structural entry barriers. We find that, in the perception of firms, both types of barriers are important and that the effectiveness of strategic barriers depends on attributes of the market structure. Based on

  17. Article Including Environmental Barrier Coating System

    Science.gov (United States)

    Lee, Kang N. (Inventor)

    2015-01-01

    An enhanced environmental barrier coating for a silicon containing substrate. The enhanced barrier coating may include a bond coat doped with at least one of an alkali metal oxide and an alkali earth metal oxide. The enhanced barrier coating may include a composite mullite bond coat including BSAS and another distinct second phase oxide applied over said surface.

  18. Barriers to Mammography among Inadequately Screened Women

    Science.gov (United States)

    Stoll, Carolyn R. T.; Roberts, Summer; Cheng, Meng-Ru; Crayton, Eloise V.; Jackson, Sherrill; Politi, Mary C.

    2015-01-01

    Mammography use has increased over the past 20 years, yet more than 30% of women remain inadequately screened. Structural barriers can deter individuals from screening, however, cognitive, emotional, and communication barriers may also prevent mammography use. This study sought to identify the impact of number and type of barriers on mammography…

  19. Storm Surge Barrier: Overview and Design Considerations

    NARCIS (Netherlands)

    Mooyaart, L.F.; Jonkman, S.N.; De Vries, P.A.L.; Van der Toorn, A.; Van Ledden, M.

    2014-01-01

    In this study an overview of existing and planned storm surge barriers in the world is provided. A systematic analysis relates functional requirements (e.g. navigation and tidal exchange) to the main barrier characteristics (e.g. gate type, dimensions). Furthermore, as the costs of barriers are an i

  20. Market barriers to welfare product innovations

    NARCIS (Netherlands)

    Binnekamp, M.H.A.; Ingenbleek, P.T.M.

    2006-01-01

    New products that are based on higher animal welfare standards encounter several barriers on the road to market acceptance. The authors focus on the Dutch poultry sector and distinguish between retailer and consumer barriers. Retailer barriers include the powerful position of retailers, the price co

  1. Removing Barriers to Interdisciplinary Research

    CERN Document Server

    Jacobs, Naomi

    2010-01-01

    A significant amount of high-impact contemporary scientific research occurs where biology, computer science, engineering and chemistry converge. Although programmes have been put in place to support such work, the complex dynamics of interdisciplinarity are still poorly understood. In this paper we interrogate the nature of interdisciplinary research and how we might measure its "success", identify potential barriers to its implementation, and suggest possible mechanisms for removing these impediments.

  2. Overcome barriers to career success

    Energy Technology Data Exchange (ETDEWEB)

    Raudsepp, E.

    1983-04-01

    A test is given to determine if an engineer suffers from one of the three barriers to technical success: fear of success, fear of failure, or perfectionism. As in most such tests, the middle way is best. Successful engineers know that perfection cannot be attained, that they don't have time to worry about failure or success, and that by aiming and perservering in doing things well, success can be achieved.

  3. Sintering and Interface Strain Tolerance of Plasma-Sprayed Thermal and Environmental Barrier Coatings

    Science.gov (United States)

    Zhu, Dongming; Leissler, George W.; Miller, Robert A.

    2003-01-01

    Ceramic thermal and environmental barrier coatings will be more aggressively designed to protect gas turbine engine hot section SiC/SiC Ceramic Matrix Composite (CMC) components in order to meet future engine higher fuel efficiency and lower emission goals. A coating system consisting of a zirconia-based oxide topcoat (thermal barrier) and a mullite/BSAS silicate inner coat (environmental barrier) is often considered a model system for the CMC applications. However, the coating sintering, and thermal expansion mismatch between the zirconia oxide layer and the silicate environmental barrier/CMC substrate will be of major concern at high temperature and under thermal cycling conditions. In this study, the sintering behavior of plasma-sprayed freestanding zirconia-yttria-based thermal barrier coatings and mullite (and/or barium-strontium-aluminosilicate, i.e., BSAS) environmental barrier coatings was determined using a dilatometer in the temperature range of 1200-1500 C. The effects of test temperature on the coating sintering kinetics were systematically investigated. The plasma-sprayed zirconia-8wt.%yttria and mullite (BSAS) two-layer composite coating systems were also prepared to quantitatively evaluate the interface strain tolerance of the coating system under thermal cycling conditions based on the dilatomentry. The cyclic response of the coating strain tolerance behavior and interface degradation as a function of cycle number will also be discussed.

  4. Confinement enhancement in InGaN quantum dots by AlGaN barriers

    Energy Technology Data Exchange (ETDEWEB)

    Laurus, Carsten; Aschenbrenner, Timo; Figge, Stephan; Schowalter, Marco; Rosenauer, Andreas; Hommel, Detlef [Institute of Solid State Physics, University of Bremen, Otto-Hahn-Allee, 28359 Bremen (Germany)

    2013-07-01

    InGaN quantum dots (QDs) are of great interest to realize single photon emitters for quantumcryptography. Single photon emission (SPE) up to 50 K was achieved utilizing spinodal phase decomposition for QD formation [S.Kremling, APL 100, 061115 (2012)]. One approach reaching SPE at 300 K is the implementation of a barrier which improves the confinement of charge carriers and thus the temperature stability. Using InGaN as active layer, AlGaN is a promising barrier material because of its higher bandgap. Several sample series were grown by MOVPE with respect to diverse growth parameters e.g. growth temperature of the AlGaN barrier, barrier thickness and aluminum concentration of the barrier. For structural analysis by SEM samples without a GaN capping layer were used, whereby μ-PL investigations were made with capped samples. Based on SEM data the surface structures of the uncapped samples are divided in two phases with different indium concentration. The indium-rich phase consists mostly of islands and the indium-low is a meander-like structure which are QDs. On the basis of TEM data the quality of the AlGaN barrier in dependence of the aluminum concentration will be evaluated. Furthermore the capping of InGaN QDs with GaN or AlGaN and its problems will be discussed.

  5. Super Oxygen and Improved Water Vapor Barrier of Polypropylene Film with Polyelectrolyte Multilayer Nanocoatings.

    Science.gov (United States)

    Song, Yixuan; Tzeng, Ping; Grunlan, Jaime C

    2016-06-01

    Biaxially oriented polypropylene (BOPP) is widely used in packaging. Although its orientation increases mechanical strength and clarity, BOPP suffers from a high oxygen transmission rate (OTR). Multilayer thin films are deposited from water using layer-by-layer (LbL) assembly. Polyethylenimine (PEI) is combined with either poly(acrylic acid) (PAA) or vermiculite (VMT) clay to impart high oxygen barrier. A 30-bilayer PEI/VMT nanocoating (226 nm thick) improves the OTR of 17.8 μm thick BOPP by more than 30X, rivaling most inorganic coatings. PEI/PAA multilayers achieve comparable barrier with only 12 bilayers due to greater thickness, but these films exhibit increased oxygen permeability at high humidity. The PEI/VMT coatings actually exhibit improved oxygen barrier at high humidity (and also improve moisture barrier by more than 40%). This high barrier BOPP meets the criteria for sensitive food and some electronics packaging applications. Additionally, this water-based coating technology is cost effective and provides an opportunity to produce high barrier polypropylene film on an industrial scale. PMID:27125888

  6. Super Oxygen and Improved Water Vapor Barrier of Polypropylene Film with Polyelectrolyte Multilayer Nanocoatings.

    Science.gov (United States)

    Song, Yixuan; Tzeng, Ping; Grunlan, Jaime C

    2016-06-01

    Biaxially oriented polypropylene (BOPP) is widely used in packaging. Although its orientation increases mechanical strength and clarity, BOPP suffers from a high oxygen transmission rate (OTR). Multilayer thin films are deposited from water using layer-by-layer (LbL) assembly. Polyethylenimine (PEI) is combined with either poly(acrylic acid) (PAA) or vermiculite (VMT) clay to impart high oxygen barrier. A 30-bilayer PEI/VMT nanocoating (226 nm thick) improves the OTR of 17.8 μm thick BOPP by more than 30X, rivaling most inorganic coatings. PEI/PAA multilayers achieve comparable barrier with only 12 bilayers due to greater thickness, but these films exhibit increased oxygen permeability at high humidity. The PEI/VMT coatings actually exhibit improved oxygen barrier at high humidity (and also improve moisture barrier by more than 40%). This high barrier BOPP meets the criteria for sensitive food and some electronics packaging applications. Additionally, this water-based coating technology is cost effective and provides an opportunity to produce high barrier polypropylene film on an industrial scale.

  7. Polymeric hydrogen diffusion barrier, high-pressure storage tank so equipped, method of fabricating a storage tank and method of preventing hydrogen diffusion

    Science.gov (United States)

    Lessing, Paul A.

    2008-07-22

    An electrochemically active hydrogen diffusion barrier which comprises an anode layer, a cathode layer, and an intermediate electrolyte layer, which is conductive to protons and substantially impermeable to hydrogen. A catalytic metal present in or adjacent to the anode layer catalyzes an electrochemical reaction that converts any hydrogen that diffuses through the electrolyte layer to protons and electrons. The protons and electrons are transported to the cathode layer and reacted to form hydrogen. The hydrogen diffusion barrier is applied to a polymeric substrate used in a storage tank to store hydrogen under high pressure. A storage tank equipped with the electrochemically active hydrogen diffusion barrier, a method of fabricating the storage tank, and a method of preventing hydrogen from diffusing out of a storage tank are also disclosed.

  8. Thermal stability of amorphous tungsten/tungsten nitride synthesis using HFCVD as a diffusion barrier for copper

    Science.gov (United States)

    Asgary, Somayeh; Hantehzadeh, Mohammad Reza; Ghoranneviss, Mahmood; Boochani, Arash

    2016-05-01

    The amorphous W/WN bi-layer with excellent thermal stability was successfully prepared by hot-filament chemical vapor deposition method on SiO2/Si substrate. It was found that the W/WN bi-layer is technological importance because of its low resistivity and good diffusion barrier properties between Cu and Si up to 700 °C for 30 min. The thermal stability was evaluated by X-ray diffractometer (XRD) and scanning electron microscope. The XRD results show that the Cu3Si phase was formed by Cu diffusion through W/WN barrier for the 800 °C annealed sample. The formation of the Cu-Si compounds denotes the failure of the W/WN diffusion barrier with rapid increase in sheet resistance of the film. The microstructure of the interface between W/WN and Cu reflects the stability and breakdown of the barriers. The failure of this amorphous barrier occurs with heat treatment when the deposited amorphous barrier material crystallizes. The major part of Cu diffusion in polycrystalline structure with disordered grain boundaries is controlled by grain boundaries. AFM results indicated a rapid increase in surface roughness at the diffusion barrier failure temperature. It was found that the grain size plays an important factor to control the thermally stability of the W/WN bi-layer.

  9. Thermal stability of amorphous tungsten/tungsten nitride synthesis using HFCVD as a diffusion barrier for copper

    Energy Technology Data Exchange (ETDEWEB)

    Asgary, Somayeh; Hantehzadeh, Mohammad Reza; Ghoranneviss, Mahmood [Islamic Azad University, Plasma Physics Research Center, Science and Research Branch, Tehran (Iran, Islamic Republic of); Boochani, Arash [Islamic Azad University, Department of Physics, Kermanshah Branch, Kermanshah (Iran, Islamic Republic of)

    2016-05-15

    The amorphous W/WN bi-layer with excellent thermal stability was successfully prepared by hot-filament chemical vapor deposition method on SiO{sub 2}/Si substrate. It was found that the W/WN bi-layer is technological importance because of its low resistivity and good diffusion barrier properties between Cu and Si up to 700 C for 30 min. The thermal stability was evaluated by X-ray diffractometer (XRD) and scanning electron microscope. The XRD results show that the Cu{sub 3}Si phase was formed by Cu diffusion through W/WN barrier for the 800 C annealed sample. The formation of the Cu-Si compounds denotes the failure of the W/WN diffusion barrier with rapid increase in sheet resistance of the film. The microstructure of the interface between W/WN and Cu reflects the stability and breakdown of the barriers. The failure of this amorphous barrier occurs with heat treatment when the deposited amorphous barrier material crystallizes. The major part of Cu diffusion in polycrystalline structure with disordered grain boundaries is controlled by grain boundaries. AFM results indicated a rapid increase in surface roughness at the diffusion barrier failure temperature. It was found that the grain size plays an important factor to control the thermally stability of the W/WN bi-layer. (orig.)

  10. Summary report on close-coupled subsurface barrier technology: Initial field trials to full-scale demonstration

    International Nuclear Information System (INIS)

    The primary objective of this project was to develop and demonstrate the installation and measure the performance of a close-coupled barrier for the containment of subsurface waste or contaminant migration. A close-coupled barrier is produced by first installing a conventional, low-cost, cement-grout containment barrier followed by a thin lining of a polymer grout. The resultant barrier is a cement-polymer composite that has economic benefits derived from the cement and performance benefits from the durable and resistant polymer layer. The technology has matured from a regulatory investigation of the issues concerning the use of polymers to laboratory compatibility and performance measurements of various polymer systems to a pilot-scale, single column injection at Sandia to full-scale demonstration. The feasibility of the close-coupled barrier concept was proven in a full-scale cold demonstration at Hanford, Washington and then moved to the final stage with a full-scale demonstration at an actual remediation site at Brookhaven National Laboratory (BNL). At the Hanford demonstration the composite barrier was emplaced around and beneath a 20,000 liter tank. The secondary cement layer was constructed using conventional jet grouting techniques. Drilling was completed at a 45 degree angle to the ground, forming a cone-shaped barrier. The primary barrier was placed by panel jet-grouting with a dual-wall drill stem using a two part polymer grout. The polymer chosen was a high molecular weight acrylic. At the BNL demonstration a V-trough barrier was installed using a conventional cement grout for the secondary layer and an acrylic-gel polymer for the primary layer. Construction techniques were identical to the Hanford installation. This report summarizes the technology development from pilot- to full-scale demonstrations and presents some of the performance and quality achievements attained

  11. Summary report on close-coupled subsurface barrier technology: Initial field trials to full-scale demonstration

    Energy Technology Data Exchange (ETDEWEB)

    Heiser, J.H. [Brookhaven National Lab., Upton, NY (United States). Environmental and Waste Technology Center; Dwyer, B. [Sandia National Lab., Albuquerque, NM (United States)

    1997-09-01

    The primary objective of this project was to develop and demonstrate the installation and measure the performance of a close-coupled barrier for the containment of subsurface waste or contaminant migration. A close-coupled barrier is produced by first installing a conventional, low-cost, cement-grout containment barrier followed by a thin lining of a polymer grout. The resultant barrier is a cement-polymer composite that has economic benefits derived from the cement and performance benefits from the durable and resistant polymer layer. The technology has matured from a regulatory investigation of the issues concerning the use of polymers to laboratory compatibility and performance measurements of various polymer systems to a pilot-scale, single column injection at Sandia to full-scale demonstration. The feasibility of the close-coupled barrier concept was proven in a full-scale cold demonstration at Hanford, Washington and then moved to the final stage with a full-scale demonstration at an actual remediation site at Brookhaven National Laboratory (BNL). At the Hanford demonstration the composite barrier was emplaced around and beneath a 20,000 liter tank. The secondary cement layer was constructed using conventional jet grouting techniques. Drilling was completed at a 45{degree} angle to the ground, forming a cone-shaped barrier. The primary barrier was placed by panel jet-grouting with a dual-wall drill stem using a two part polymer grout. The polymer chosen was a high molecular weight acrylic. At the BNL demonstration a V-trough barrier was installed using a conventional cement grout for the secondary layer and an acrylic-gel polymer for the primary layer. Construction techniques were identical to the Hanford installation. This report summarizes the technology development from pilot- to full-scale demonstrations and presents some of the performance and quality achievements attained.

  12. Prospective barrier coatings for superconducting cables

    Science.gov (United States)

    Ipatov, Y.; Dolgosheev, P.; Sytnikov, V.

    1997-07-01

    Known and prospective types of chromium coatings, used in the production of superconducting `cable-in-conduit' conductors designed for the ITER and other projects, are considered. The influence of the technological conditions during the galvanic plating of hard, grey, black and combined chromium coatings in various electrolytes and the annealing conditions in air and in vacuum on the contact electrical resistance of copper and superconducting wire at room temperature and 4.2 K as well as on other physical properties, e.g. resistance to abrasion, elasticity and thickness of the coatings, is investigated. Black oxide - chromium coatings and combined chromium coatings, containing oxides of chromium and a number of other metals, ensure the possibility of a significant increase of contact resistance as well as its regulation in a broad range of values in comparison with hard chromium. The results of the present work and also an independent investigation of the cable containing the strand, manufactured in JSC `VNIIKP', allow us to propose the oxide - chromium coating as a barrier layer for multistrand superconducting cables.

  13. Surface-barrier p-CdTe-based photodiodes

    Science.gov (United States)

    Kosyachenko, L. A.; Sklyarchuk, V. M.; Sklyarchuk, Ye F.; Ulyanitsky, K. S.

    1999-04-01

    Diodes fabricated by electron-beam evaporation of Al on p-CdTe substrates followed by removal of the metal layer have been investigated. It is shown that the diode electrical characteristics are determined by generation-recombination processes in the surface barrier, whereas the photoelectric properties are governed by the drift and diffusion current components, which are strongly influenced by surface recombination of carriers. The measured data are used to calculate the photoelectric quantum yield and the x-ray detection efficiency.

  14. Stacking fault induced tunnel barrier in platelet graphite nanofiber

    Energy Technology Data Exchange (ETDEWEB)

    Lan, Yann-Wen, E-mail: chiidong@phys.sinica.edu.tw, E-mail: ywlan@phys.sinica.edu.tw; Chang, Yuan-Chih; Chang, Chia-Seng; Chen, Chii-Dong, E-mail: chiidong@phys.sinica.edu.tw, E-mail: ywlan@phys.sinica.edu.tw [Institute of Physics, Academia Sinica, Taipei 115, Taiwan (China); Chang, Wen-Hao [Institute of Physics, Academia Sinica, Taipei 115, Taiwan (China); Graduate Institute of Opto-Mechatronics, National Chung Cheng University, Chia-Yi 62102, Taiwan (China); Li, Yuan-Yao [Graduate Institute of Opto-Mechatronics, National Chung Cheng University, Chia-Yi 62102, Taiwan (China)

    2014-09-08

    A correlation study using image inspection and electrical characterization of platelet graphite nanofiber devices is conducted. Close transmission electron microscopy and diffraction pattern inspection reveal layers with inflection angles appearing in otherwise perfectly stacked graphene platelets, separating nanofibers into two domains. Electrical measurement gives a stability diagram consisting of alternating small-large Coulomb blockade diamonds, suggesting that there are two charging islands coupled together through a tunnel junction. Based on these two findings, we propose that a stacking fault can behave as a tunnel barrier for conducting electrons and is responsible for the observed double-island single electron transistor characteristics.

  15. Cryogenic Barrier Demonstration Project. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, L.A.; Yarmak, E.; Long, E.L.

    2000-03-01

    A long-term frozen soil barrier was implemented at the HRE (Homogeneous Reactor Experiment) Pond facility at the Oak Ridge National Laboratory in 1997. This was performed to verify the technical feasibility and costs of deploying a frozen barrier at a radiologically contaminated site. Work began in September 1996 and progressed through to December 1999. The frozen barrier has been operational since November 1997. Verification of the barrier integrity was performed independently by the EPA's SITE Program. This project showed frozen barriers offer a proven technology to retain below grade hazardous substances at relatively low costs with minimal effect on the environment.

  16. Fabrication of a laser patterned flexible organic light-emitting diode on an optimized multilayered barrier

    NARCIS (Netherlands)

    Naithani, S.; Mandamparambil, R.; Fledderus, H.; Schaubroeck, D.; Steenberge, G. van

    2014-01-01

    The fast-growing market of organic electronics stimulates the development of versatile technologies for structuring thin-film materials. Ultraviolet lasers have proven their full potential for patterning organic thin films, but only a few studies report on interaction with thin-film barrier layers.

  17. Experimental study on dielectric barrier discharge actuators operating in pulse mode

    NARCIS (Netherlands)

    Kotsonis, M.; Veldhuis, L.

    2010-01-01

    An experimental investigation is performed on the operation of dielectric barrier discharge plasma actuators used as manipulators of secondary and unsteady flow structures such as boundary layer instabilities or shedding vortices. The actuators are tested mainly in pulse mode. High sample rate hot-w

  18. Magnetron sputtered gadolinia-doped ceria diffusion barriers for metal-supported solid oxide fuel cells

    DEFF Research Database (Denmark)

    Sønderby, Steffen; Klemensø, Trine; Christensen, Bjarke H.;

    2014-01-01

    Gadolinia-doped ceria (GDC) thin films are deposited by reactive magnetron sputtering in an industrial-scale setup and implemented as barrier layers between the cathode and electrolyte in metal-based solid oxide fuel cells consisting of a metal support, an electrolyte of ZrO2 co-doped with Sc2O3...

  19. Loadings in thermal barrier coatings of jet engine turbine blades an experimental research and numerical modeling

    CERN Document Server

    Sadowski, Tomasz

    2016-01-01

    This book discusses complex loadings of turbine blades and protective layer Thermal Barrier Coating (TBC), under real working airplane jet conditions. They obey both multi-axial mechanical loading and sudden temperature variation during starting and landing of the airplanes. In particular, two types of blades are analyzed: stationary and rotating, which are widely applied in turbine engines produced by airplane factories.

  20. Oxygen- and water-induced degradation of an inverted polymer solar cell: the barrier effect

    DEFF Research Database (Denmark)

    Vesterager Madsen, Morten; Norrman, Kion; Krebs, Frederik C

    2011-01-01

    , the barrier effect is reported in both a dry oxygen atmosphere and an oxygen-free humid atmosphere. The devices under study are comprised of a bulk heterojunction formed by poly(3-hexylthiophene) and [6,6]-phenyl-C61-butyric acid methyl ester sandwiched between a layer of zinc oxide (electron transporting...

  1. Atmospheric plasma assisted PLA/microfibrillated cellulose (MFC) multilayer biocomposite for sustainable barrier application

    DEFF Research Database (Denmark)

    Meriçer, Çağlar; Minelli, Matteo; Angelis, Maria G De;

    2016-01-01

    Fully bio-based and biodegradable materials, such as polylactic acid (PLA) and microfibrillated cellulose (MFC), are considered in order to produce a completely renewable packaging solution for oxygen barrier applications, even at medium-high relative humidity (R.H.). Thin layers of MFC were coated...

  2. Avoiding barriers in control of mowing robot

    Institute of Scientific and Technical Information of China (English)

    QIU Bai-jing; QIAN Guo-hong; XIANG Zhong-ping; LI Zuo-peng

    2006-01-01

    Due to complicated barriers,it is difficult to track the path of the mowing robot and to avoid barriers.In order to solve the problem,a method based on distance-measuring sensors and fuzzy control inputs was proposed.Its track was composed of beelines and was easy to tail.The fuzzy control inputs were based on the front barrier distance and the difference between the left and right barrier distance measured by ultrasonic sensors;the output was the direction angle.The infrared sensors around the robot improved its safety in avoiding barriers.The result of the method was feasible,agile,and stable.The distance between the robot and the barriers could be changed by altering the inputs and outputs of fuzzy control and the length of the beelines.The disposed sensors can fulfill the need of the robot in avoiding barriers.

  3. Tuning the Schottky barrier height of the Pd-MoS2 contact by different strains.

    Science.gov (United States)

    Liu, Biao; Wu, Li-Juan; Zhao, Yu-Qing; Wang, Ling-Zhi; Cai, Meng-Qiu

    2015-10-28

    The structures and electronic properties of the Pd-MoS2 contact are investigated using density functional calculations under different strains. The height of Schottky barrier for the Pd-MoS2 contact can be tuned by different strains. Our results show that the contact nature is of n-type Schottky barrier and the barrier height can be decreased to zero under increased tensile strain (6%). However, under increased compressive strain, the MoS2 layers become indirect bandgap semiconductors, which is a disadvantage for the electron transition in the Pd-MoS2 interface. By analyzing the near band gaps and charge distribution of MoS2 orbitals, we find that the Schottky barrier height is determined by the Mo dz(2) orbitals in the Pd-MoS2 contact. Our calculation results may prove to be instrumental in future design and fabrication of MoS2-based field effect transistors. PMID:26412203

  4. High quality plasma enhanced chemical vapour deposited silicon oxide gas barrier coatings on polyester films

    International Nuclear Information System (INIS)

    Silicon oxide barrier coatings fabricated by a plasma enhanced chemical vapour deposition roll-to-roll process on polyester film have demonstrated impressive properties as a barrier to water vapour permeation. This study highlights the influence of the substrate on these coatings as we find that heat stabilised poly(ethylene terephthalate) (PET), with or without an additional acrylate primer layer, and poly(ethylene naphthalate) (PEN) produce superior composites than untreated PET film in terms of gas barrier. The barrier layers on PET and filled PET substrates, for which the barrier performance is within the detectable range of our measurement, have an activation energy to water permeation that increases with the thickness of the silica. For the thickest silica this is an increase of 26 kJ mol-1 over that from the uncoated substrate. We attribute this to the creation of highly tortuous, size-hindered pathways and the decoupling of defects as the coating is deposited in multiple passes. Using a more sensitive detection technique we measure a water vapour transmission rate value as low as 2 x 10-4 g m-2 day-1 for 1 μm thick coatings on PEN. Such a good barrier is observed for these thick coatings due to the high degree of carbon detected in the films that makes them less brittle than pure SiO2 layers. Substrate surface roughness is found to influence the morphology of the SiOx films but does not seem to adversely affect the barrier performance of the composites

  5. Visualization experiment to investigate capillary barrier performance in the context of a Yucca Mountain emplacement drift.

    Science.gov (United States)

    Tidwell, Vincent C; Glass, Robert J; Chocas, Connie; Barker, Glenn; Orear, Lee

    2003-01-01

    The use of capillary barriers as engineered backfill systems to divert water away from radioactive waste potentially stored in a Yucca Mountain emplacement drift is investigated. We designed and conducted a flow visualization experiment to investigate capillary barrier performance in this context. A two-dimensional, thin slab, test system replicated the physical emplacement drift to one-quarter scale (1.4-m diameter) and included the simulated drift wall, waste canister, pedestal, capillary barrier backfill, and host-rock fracture system. Water was supplied at the top of the simulated drift and allowed to discharge by way of wicks located along the left wall of the cell (simulated fractures) or by a gravity drain at the bottom of the right side (simulated impermeable rock with floor drain). Photographs captured the migration of water and a blue dye tracer within the system, analytical balances measured the mass balance of water, while tensiometers measured the capillary pressure at numerous locations. Of particular concern to this test was the drainage of the capillary barrier, which terminates against the drift wall. We found that while the simulated fractures (left side) and drain (right side) each influenced the performance of the capillary barrier at early time, they had little differential affect at later times. Also of concern was the small disparity in capillary properties between the fine and coarse layer (limited by the need of a fine-grained material that would not filter into the coarse layer under dry conditions). While the capillary barrier was able to divert the majority of flow toward the edges of the system and away from the simulated waste canister, the barrier did not preclude flow in the coarse layer, which was noted to be visually wet next to the waste canister on day 92 and was continuing to take on water at termination on day 112.

  6. The Human Skin Barrier Is Organized as Stacked Bilayers of Fully Extended Ceramides with Cholesterol Molecules Associated with the Ceramide Sphingoid Moiety

    DEFF Research Database (Denmark)

    Iwai, Ichiro; Han, Hongmei; Hollander, Lianne den;

    2012-01-01

    The skin barrier is fundamental to terrestrial life and its evolution; it upholds homeostasis and protects against the environment. Skin barrier capacity is controlled by lipids that fill the extracellular space of the skin's surface layer-the stratum corneum. Here we report on the determination...

  7. Passive Barriers to Inadvertent Human Intrusion for Use at the Nevada Test Site

    International Nuclear Information System (INIS)

    In July1996, BN transmitted Passive Barriers to Inadvertent Human Intrusion for Use at the Nevada Test Site to the United States Department of Energy, under Contract DE-AC08-91NV10833. The 1996 paper had a limited distribution and was not reviewed for public release. In 2007, National Security Technologies LLC (NSTec) made minor revisions to conform to current editorial standards of the NNSA/NSO and to meet current security requirements for public release. The primary purpose of this study was to identify types of engineered passive barriers that could deter future intrusion into buried low-level radioactive waste, particularly intrusion by drilling water wells. The study considered drilling technology, many natural and man-made materials, and both underground and above-ground barriers. Based on cost and effectiveness, the report recommended underground barriers consisting of a layer of rubble or tires. An aboveground barrier mound might also prove effective, but would cost more, and may become an attractive nuisance (e.g., might, after their purpose has been forgotten, encourage exploration for the sake of satisfying curiosity). Advances in drilling technology could render any engineered barriers ineffective if there is motivation to penetrate the barriers

  8. Inter-layer FEC decoded multi-layer video streaming

    OpenAIRE

    Huo, Yongkai; Zuo, Xin; Robert G. Maunder; Hanzo, L

    2012-01-01

    Layered video coding creates multiple layers of unequal importance, where the enhancement layers will be affected when the base layer is corrupted. In this treatise, a novel inter-layer FEC scheme is investigated, where the information of the base layer1 is incorporated into the systematic bits of the enhancement layers with the aid of an exclusive-OR operation. When the base layer can be recovered independently, the soft information of the enhancement layers can be deduced by flipping the si...

  9. Double barrier system for an in situ conversion process

    Science.gov (United States)

    McKinzie, Billy John [Houston, TX; Vinegar, Harold J [Bellaire, TX; Cowan, Kenneth Michael [Sugar land, TX; Deeg, Wolfgang Friedrich Johann [Houston, TX; Wong, Sau-Wai [Rijswijk, NL

    2009-05-05

    A barrier system for a subsurface treatment area is described. The barrier system includes a first barrier formed around at least a portion of the subsurface treatment area. The first barrier is configured to inhibit fluid from exiting or entering the subsurface treatment area. A second barrier is formed around at least a portion of the first barrier. A separation space exists between the first barrier and the second barrier.

  10. Oxide film on metal substrate reduced to form metal-oxide-metal layer structure

    Science.gov (United States)

    Youngdahl, C. A.

    1967-01-01

    Electrically conductive layer of zirconium on a zirconium-oxide film residing on a zirconium substrate is formed by reducing the oxide in a sodium-calcium solution. The reduced metal remains on the oxide surface as an adherent layer and seems to form a barrier that inhibits further reaction.

  11. Overcoming cultural barriers to change.

    Science.gov (United States)

    Hill, S; McNulty, D

    1998-01-01

    This article is a case study which focuses on organisational and cultural change associated with the incorporation of a college which provided pre- and post-registration nursing and midwifery education into a much larger institution within the university sector. Among the issues addressed is whether transformational change, such as that represented by incorporation or merger, can be used by managers to successfully refashion the culture of the organisation, making more effective than traditional or discipline-based management structures. It examines the barriers to change and the various considerations that arose in determining the fit of managerial styles and assesses the outcomes of the process of change. PMID:10346302

  12. Tunneling without barriers with gravity

    OpenAIRE

    Kanno, Sugumi; Sasaki, Misao; Soda, Jiro

    2012-01-01

    We consider the vacuum decay of the flat Minkowski space to an anti-de Sitter space. We find a one-parameter family of potentials that allow exact, analytical instanton solutions describing tunneling without barriers in the presence of gravity. In the absence of gravity such instantons were found and discussed by Lee and Weinberg more than a quarter of a century ago. The bounce action is also analytically computed. We discuss possible implications of these new instantons to cosmology in the c...

  13. Dual layer hollow fiber sorbents: Concept, fabrication and characterization

    KAUST Repository

    Bhandari, Dhaval

    2013-02-01

    Hollow fiber sorbents are pseudo-monolithic separations materials created with fiber spinning technology using a polymer \\'binder\\', impregnated with high loadings of sorbent \\'fillers\\' [1]. To increase purified gas recovery during the sorption step and to ensure consistent sorption capacity over repeated cycles, a dense, thin polymer barrier layer on the fiber sorbents is needed to allow only thermal interactions between the sorbate loaded layer and the thermal regeneration fluid. This paper considers materials and methods to create delamination-free dual layer fiber sorbents, with a porous core and a barrier sheath layer formed using a simultaneous co-extrusion process. Low permeability polymers were screened for sheath layer creation, with the core layer comprising cellulose acetate polymer as binder and zeolite NaY as sorbent fillers. Appropriate core and sheath layer dope compositions were determined by the cloud-point method and rheology measurements. The morphology of the as-spun fibers was characterized in detail by SEM, EDX and gas permeation analysis. A simplified qualitative model is described to explain the observed fiber morphology. The effects of core, sheath spin dope and bore fluid compositions, spinning process parameters such as air-gap height, spin dope and coagulation bath temperatures, and elongation draw ratio are examined in detail. © 2012 Elsevier B.V. All rights reserved.

  14. Evaluation of drug delivery profiles in geometric three-layered tablets with various mechanical properties, in vitro-in vivo drug release, and Raman imaging.

    Science.gov (United States)

    Choi, Du Hyung; Kim, Ki Hyun; Park, Jun Sang; Jeong, Seong Hoon; Park, Kinam

    2013-12-28

    Even though various multi-layered tablets have been developed for sustained release formulations, evaluations of mechanical properties during dissolution with drug release and imaging in the tablets have been limited. A novel geometric system consisting of an inner immediate release layer and two extended release barrier layers with swellable hydrophilic polymers was suggested as a once-a-day formulation. To evaluate drug release mechanisms with geometric properties, various mechanical characteristics during swelling were investigated to comprehend the relationship among in vitro drug release, human pharmacokinetics, and geometric characteristics. Imaging of drug movement was also studied in real-time using Raman spectroscopy. Drug delivery in the tablets might be divided into three processes through the geometric properties. When exposed to aqueous environments, the drug in the mid-layer was released until wrapped by the swollen barrier layers. Then, the drug in the mid-layer was mainly delivered to the barrier layers and a small amount of the drug was delivered to the contact region of the swollen barrier layers. Finally, the delivered drug to the barrier layers was consistently released out in response to the characteristics of the polymer of the barrier layers. Using Raman spectroscopy, these processes were confirmed in real-time analysis. Moreover, in vitro drug release profiles and human pharmacokinetics showed consistent results suggesting that drug release might be dependent on the various geometric properties and be modified consistently during the formulation development. PMID:24035977

  15. The electrical characteristics of the dielectric barrier discharges

    Science.gov (United States)

    Yehia, Ashraf

    2016-06-01

    The electrical characteristics of the dielectric barrier discharges have been studied in this paper under different operating conditions. The dielectric barrier discharges were formed inside two reactors composed of electrodes in the shape of two parallel plates. The dielectric layers inside these reactors were pasted on the surface of one electrode only in the first reactor and on the surfaces of the two electrodes in the second reactor. The reactor under study has been fed by atmospheric air that flowed inside it with a constant rate at the normal temperature and pressure, in parallel with applying a sinusoidal ac voltage between the electrodes of the reactor. The amount of the electric charge that flows from the reactors to the external circuit has been studied experimentally versus the ac peak voltage applied to them. An analytical model has been obtained for calculating the electrical characteristics of the dielectric barrier discharges that were formed inside the reactors during a complete cycle of the ac voltage. The results that were calculated by using this model have agreed well with the experimental results under the different operating conditions.

  16. TRITIUM BARRIER MATERIALS AND SEPARATION SYSTEMS FOR THE NGNP

    Energy Technology Data Exchange (ETDEWEB)

    Sherman, S; Thad Adams, T

    2008-07-17

    Contamination of downstream hydrogen production plants or other users of high-temperature heat is a concern of the Next Generation Nuclear Plant (NGNP) Project. Due to the high operating temperatures of the NGNP (850-900 C outlet temperature), tritium produced in the nuclear reactor can permeate through heat exchangers to reach the hydrogen production plant, where it can become incorporated into process chemicals or the hydrogen product. The concentration limit for tritium in the hydrogen product has not been established, but it is expected that any future limit on tritium concentration will be no higher than the air and water effluent limits established by the NRC and the EPA. A literature survey of tritium permeation barriers, capture systems, and mitigation measures is presented and technologies are identified that may reduce the movement of tritium to the downstream plant. Among tritium permeation barriers, oxide layers produced in-situ may provide the most suitable barriers, though it may be possible to use aluminized surfaces also. For tritium capture systems, the use of getters is recommended, and high-temperature hydride forming materials such as Ti, Zr, and Y are suggested. Tritium may also be converted to HTO in order to capture it on molecular sieves or getter materials. Counter-flow of hydrogen may reduce the flux of tritium through heat exchangers. Recommendations for research and development work are provided.

  17. Saving the Barrier by Prevention.

    Science.gov (United States)

    Weisshaar, Elke

    2016-01-01

    One third of all occupation-related diseases are diseases of the skin, and in most of these cases the skin barrier is involved. Professions such as metalworkers, hairdressers, and health care and construction workers are mainly affected. Among them, contact dermatitis is the leading skin disease. It usually presents as hand eczema caused by or leading to impaired barrier function. All this significantly impacts the function of the hands, reduces the ability to work and especially impairs the patient's quality of life. Diagnostics and therapy are of great importance; in addition, prevention programs are meanwhile an important mainstay of the overall therapeutic concept. They comprise measures of secondary (outpatient) and tertiary (inpatient) prevention. Secondary prevention measures include occupation-tailored teaching and prevention programs, and the dermatologist's examination and report. In severe cases or if therapy is not successful in the long term, or if the diagnosis is not clear, measures of tertiary prevention may come into action. They are offered as an inpatient treatment and prevention program. The aims are prevention of the job loss, but especially to reach a long-term healing up and getting back to normal occupational and leisure life in the sense of attaining full quality of life. During the last years, research in Germany has shown that the different measures of prevention in occupational dermatology are very effective. This integrated concept of an in-/outpatient disease management reveals remarkable pertinent efficacy for patients with severe occupational dermatoses in at-risk professions. PMID:26844907

  18. Barriers to medical error reporting

    Directory of Open Access Journals (Sweden)

    Jalal Poorolajal

    2015-01-01

    Full Text Available Background: This study was conducted to explore the prevalence of medical error underreporting and associated barriers. Methods: This cross-sectional study was performed from September to December 2012. Five hospitals, affiliated with Hamadan University of Medical Sciences, in Hamedan,Iran were investigated. A self-administered questionnaire was used for data collection. Participants consisted of physicians, nurses, midwives, residents, interns, and staffs of radiology and laboratory departments. Results: Overall, 50.26% of subjects had committed but not reported medical errors. The main reasons mentioned for underreporting were lack of effective medical error reporting system (60.0%, lack of proper reporting form (51.8%, lack of peer supporting a person who has committed an error (56.0%, and lack of personal attention to the importance of medical errors (62.9%. The rate of committing medical errors was higher in men (71.4%, age of 50-40 years (67.6%, less-experienced personnel (58.7%, educational level of MSc (87.5%, and staff of radiology department (88.9%. Conclusions: This study outlined the main barriers to reporting medical errors and associated factors that may be helpful for healthcare organizations in improving medical error reporting as an essential component for patient safety enhancement.

  19. Identifying barriers to billing compliance.

    Science.gov (United States)

    Lorence, Daniel P; Ibrahim, Ibrahim Awad

    2003-01-01

    Programs designed toward the control of health care fraud are leading to increasingly aggressive enforcement and prosecutorial efforts by federal regulators, related to over-reimbursement for service providers. Greater penalties for fraudulent practices have been touted as an effective deterrent to practices that encourage, or fail to prevent, incorrect claims for reimbursement. In such a context, this study sought to examine the extent of compliance management barriers through a national survey of all accredited US health information managers, examining likely barriers to payment of health care claims. Using data from a series of surveys on the stated compliance actions of more than 16,000 health care managers, we find that the publication and dissemination of compliance enforcement regulations had a significant effect on the reduction of fraud. Results further suggest that significant non-adoption of proper billing compliance measures continues to occur, despite the existence of counter-fraud prosecution risk designed to enforce proper compliance. Finally, we identify benchmarks of compliance management and show how they vary across demographic, practice setting, and market characteristics. We find significant variation in influence across practice settings and managed care markets. While greater publicity related to proper billing procedures generally leads to greater compliance awareness, this trend may have created pockets of "institutional non-compliance," which result in an increase in the prevalence of non-compliant management actions. As a more general proposition, we find that it is not sufficient to consider compliance actions independent of institutional or industry-wide influences. PMID:12967244

  20. Influences of Injection Barrier and Mobility on Recombination Rate and Zone in OLEDs

    Institute of Scientific and Technical Information of China (English)

    ZHU Ru-hui; LI Hong-jian; YAN Ling-ling; HU Jin; PAN Yan-zhi

    2006-01-01

    The luminous efficiency of organic light-emitting devices depends on the recombination probability of electrons injected at the cathode and holes at the anode. A theoretical model to calculate the distribution of current densities and the recombination rate in organic single layer devices is presented taking into account the charge injection process at each electrode, charge transport and recombination in organic layer. The calculated results indicate that efficient single-layer devices are possible by adjusting the barrier heights at two electrodes and the carrier mobilities. Lowering the barrier heights can improve the electroluminescent(EL) efficiency pronouncedly in many cases, and efficient devices are still possible using an ohmic contact to inject the low mobility carrier, and a contact limited contact to inject the high mobility carrier. All in all, high EL efficiency needs to consider sufficient recombination, enough injected carriers and well transport.

  1. Note: Inhibiting bottleneck corrosion in electrical calcium tests for ultra-barrier measurements

    Science.gov (United States)

    Nehm, F.; Müller-Meskamp, L.; Klumbies, H.; Leo, K.

    2015-12-01

    A major failure mechanism is identified in electrical calcium corrosion tests for quality assessment of high-end application moisture barriers. Accelerated calcium corrosion is found at the calcium/electrode junction, leading to an electrical bottleneck. This causes test failure not related to overall calcium loss. The likely cause is a difference in electrochemical potential between the aluminum electrodes and the calcium sensor, resulting in a corrosion element. As a solution, a thin, full-area copper layer is introduced below the calcium, shifting the corrosion element to the calcium/copper junction and inhibiting bottleneck degradation. Using the copper layer improves the level of sensitivity for the water vapor transmission rate (WVTR) by over one order of magnitude. Thin-film encapsulated samples with 20 nm of atomic layer deposited alumina barriers this way exhibit WVTRs of 6 × 10-5 g(H2O)/m2/d at 38 °C, 90% relative humidity.

  2. Mucosal barrier, bacteria and inflammatory bowel disease: possibilities for therapy.

    Science.gov (United States)

    Merga, Yvette; Campbell, Barry J; Rhodes, Jonathan M

    2014-01-01

    The mucosal barrier has three major components, the mucus layer, the epithelial glycocalyx and the surface epithelium itself, whose integrity largely depends on tight junction function. In health, there is relatively little direct interaction between the luminal microbiota and the epithelium - the continuous mucus layer in the colon keeps the surface epithelium out of contact with bacteria and the ileo-caecal valve ensures that the distal small intestine is relatively microbe free. Most interaction takes place at the Peyer's patches in the distal ileum and their smaller colonic equivalents, the lymphoid follicles. Peyer's patches are overlain by a 'dome' epithelium, 5% of whose cells are specialised M (microfold) epithelial cells, which act as the major portal of entry for bacteria. There are no goblet cells in the dome epithelium and M cells have a very sparse glycocalyx allowing easy microbial interaction. It is intriguing that the typical age range for the onset of Crohn's disease (CD) is similar to the age at which the number of Peyer's patches is greatest. Peyer's patches are commonly the sites of the initial lesions in CD and the 'anti-pancreatic' antibody associated with CD has been shown to have as its epitope the glycoprotein 2 that is the receptor for type-1 bacterial fimbrial protein (fimH) on M cells. There are many reasons to believe that the mucosal barrier is critically important in the pathogenesis of inflammatory bowel disease (IBD). These include (i) associations between both CD and ulcerative colitis (UC) with genes that are relevant to the mucosal barrier; (ii) increased intestinal permeability in unaffected relatives of CD patients; (iii) increased immune reactivity against bacterial antigens, and (iv) animal models in which altered mucosal barrier, e.g. denudation of the mucus layer associated with oral dextran sulphate in rodents, induces colitis. Whilst some IBD patients may have genetic factors leading to weakening of the mucosal barrier

  3. Permeation barrier performance of Hot Wire-CVD grown silicon-nitride films treated by argon plasma

    OpenAIRE

    Majee, S.; Cerqueira, M. F.; Tondelier, D.; Vanel, J. C.; Geffroy, B.; Bonnassieux, Y.; Alpuim, P.; Bourée, J. E.

    2015-01-01

    In this work SiNx thin films have been deposited by Hot-Wire Chemical Vapor Deposition (HW-CVD) technique to be used as encapsulation barriers for flexible organic electronic devices fabricated on polyethylene terephthalate (PET) substrates. First results of SiNx multilayers stacked and stacks of SiNx single-layers (50 nm each) separated by an Ar-plasma surface treatment are reported. The encapsulation barrier properties of these different multilayers are assessed using the electrical calcium...

  4. Relativistic Double Barrier Problem with Three Sub-Barrier Transmission Resonance Regions

    CERN Document Server

    Alhaidari, A D; Jellal, A

    2010-01-01

    We obtain exact scattering solutions of the Dirac equation in 1+1 dimensions for a double square barrier vector potential. The potential floor between the two barriers is higher than 2mc^2 whereas the top of the barriers is at least 2mc^2 above the floor. The relativistic version of the conventional double barrier transmission resonance is obtained for energies within + or - mc^2 from the height of the barriers. However, we also find two more (sub-barrier) transmission resonance regions below the conventional one. Both are located within the two Klein energy zones and characterized by resonances that are broader than the conventional ones.

  5. Thermal barrier coating life-prediction model development

    Science.gov (United States)

    Strangman, T. E.; Neumann, J.; Liu, A.

    1986-01-01

    The program focuses on predicting the lives of two types of strain-tolerant and oxidation-resistant thermal barrier coating (TBC) systems that are produced by commercial coating suppliers to the gas turbine industry. The plasma-sprayed TBC system, composed of a low-pressure plasma-spray (LPPS) or an argon shrouded plasma-spray (ASPS) applied oxidation resistant NiCrAlY or (CoNiCrAlY) bond coating and an air-plasma-sprayed yttria partially stabilized zirconia insulative layer, is applied by both Chromalloy, Klock, and Union Carbide. The second type of TBS is applied by the electron beam-physical vapor deposition (EB-PVD) process by Temescal. The second year of the program was focused on specimen procurement, TMC system characterization, nondestructive evaluation methods, life prediction model development, and TFE731 engine testing of thermal barrier coated blades. Materials testing is approaching completion. Thermomechanical characterization of the TBC systems, with toughness, and spalling strain tests, was completed. Thermochemical testing is approximately two-thirds complete. Preliminary materials life models for the bond coating oxidation and zirconia sintering failure modes were developed. Integration of these life models with airfoil component analysis methods is in progress. Testing of high pressure turbine blades coated with the program TBS systems is in progress in a TFE731 turbofan engine. Eddy current technology feasibility was established with respect to nondestructively measuring zirconia layer thickness of a TBC system.

  6. Evaluating the long-term hydrology of an evapotranspiration-capillary barrier with a 1000 year design life

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Z. F.

    2016-06-25

    A surface barrier (or cover) is a commonly used technology for subsurface remediation. A key function of the barrier is to reduce or eliminate the movement of meteoric precipitation into the underlying waste zone, where it could mobilize and transport contaminants. Surface barriers are expected to perform for centuries to millennia, yet there are very few examples of performance for periods longer than a decade. The Prototype Hanford Barrier was constructed in 1994 over an existing waste site to demonstrate its long-term performance for a design period of 1000 years. This barrier is a field-scale evapotranspiration-capillary (ETC) barrier. In this design, the storage layer consists of 2-m-thick silt loam. The 19-year monitoring results show that the store-and-release mechanism for the ETC barrier worked efficiently as the storage layer was recharged in the winter season (November to March) and the stored water was released to the atmosphere in the summer season (April to October) via soil evaporation and plant transpiration. The capillary break functioned normally in improving the storage capacity and minimizing drainage. The maximum drainage observed through the ET barrier at any of the monitoring stations was only 0.178 mm yr-1 (under an enhanced precipitation condition), which is less than the design criterion. A very small amount (2.0 mm yr-1 on average) of runoff was observed during the 19-year monitoring period. The observed storage capacity of the storage layer was considerably (39%) larger than the estimated value based on the method of equilibrium of water pressure. After a controlled fire in 2008, the newly grown vegetation (primarily shallow-rooted grasses) could still release the stored water and summer precipitation to the atmosphere via transpiration. The findings are useful for predicting water storage and ET under different precipitation conditions and for the design of future barriers.

  7. Mucus as a Barrier to Drug Delivery

    DEFF Research Database (Denmark)

    Bøgh, Marie; Nielsen, Hanne Mørck

    2015-01-01

    Viscoelastic mucus lines all mucosal surfaces of the body and forms a potential barrier to mucosal drug delivery. Mucus is mainly composed of water and mucins; high-molecular weight glycoproteins forming an entangled network. Consequently, mucus forms a steric barrier and due to its negative char...... in the development of future oral drug delivery systems. This article is protected by copyright. All rights reserved.......Viscoelastic mucus lines all mucosal surfaces of the body and forms a potential barrier to mucosal drug delivery. Mucus is mainly composed of water and mucins; high-molecular weight glycoproteins forming an entangled network. Consequently, mucus forms a steric barrier and due to its negative charge...... barrier to drug delivery. Current knowledge of mucus characteristics and barrier properties, as achieved by state-of-the-art methodologies, is the topic of this MiniReview emphasizing the gastrointestinal mucus and an overall focus on oral drug delivery. Cell culture-based in vitro models are well...

  8. Barrier experiment: Shock initiation under complex loading

    Energy Technology Data Exchange (ETDEWEB)

    Menikoff, Ralph [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-01-12

    The barrier experiments are a variant of the gap test; a detonation wave in a donor HE impacts a barrier and drives a shock wave into an acceptor HE. The question we ask is: What is the trade-off between the barrier material and threshold barrier thickness to prevent the acceptor from detonating. This can be viewed from the perspective of shock initiation of the acceptor subject to a complex pressure drive condition. Here we consider key factors which affect whether or not the acceptor undergoes a shock-to-detonation transition. These include the following: shock impedance matches for the donor detonation wave into the barrier and then the barrier shock into the acceptor, the pressure gradient behind the donor detonation wave, and the curvature of detonation front in the donor. Numerical simulations are used to illustrate how these factors affect the reaction in the acceptor.

  9. Storm impacts on small barrier islands

    DEFF Research Database (Denmark)

    Kroon, Aart; Fruergaard, Mikkel

    water levels. These storms induce collision, overwash or inundation of the barrier crest and generate wash-over fans and barrier breaching. In this presentation, we focus on the present-day morphologic evolution of these barrier islands, couple these to extreme events, and we will predict the potential...... of the local extreme events. The characterization of the extreme events was based on the joint probability of the extreme water levels and storm waves for the specific sites. The predicted climate change for the Danish waters will lead to higher water levels and an increase of the overwashes on the barrier...... of overwash and inundation events increased and the barriers showed more overwash and inundation regimes. This will probably increase the onshore migration rates of the barriers....

  10. Boosting Water Oxidation Layer-by-Layer

    OpenAIRE

    Hidalgo Acosta, Jonnathan Cesar; Scanlon, Micheal; Mendez, Manuel A.; Amstutz, Véronique; Vrubel, Heron; Opallo, Marcin; Girault, Hubert

    2016-01-01

    Electrocatalysis of water oxidation was achieved using fluorinated tin oxide (FTO) electrodes modified with layer-by-layer deposited films consisting of bilayers of negatively charged citrate-stabilized IrO2 NPs and positively charged poly(diallyldimethylammonium chloride) (PDDA) polymer. The IrO2 NP surface coverage can be fine-tuned by controlling the number of bilayers. The IrO2 NP films were amorphous, with the NPs therein being well-dispersed and retaining their as-synthesized shape and ...

  11. Building biomedical materials layer-by-layer

    Directory of Open Access Journals (Sweden)

    Paula T. Hammond

    2012-05-01

    Full Text Available In this materials perspective, the promise of water based layer-by-layer (LbL assembly as a means of generating drug-releasing surfaces for biomedical applications, from small molecule therapeutics to biologic drugs and nucleic acids, is examined. Specific advantages of the use of LbL assembly versus traditional polymeric blend encapsulation are discussed. Examples are provided to present potential new directions. Translational opportunities are discussed to examine the impact and potential for true biomedical translation using rapid assembly methods, and applications are discussed with high need and medical return.

  12. Sunk Costs and Antitrust Barriers to Entry

    OpenAIRE

    SCHMALENSEE, Richard

    2004-01-01

    US antitrust policy takes as its objective consumer welfare, not total economic welfare. With that objective, Joe Bain's definition of entry barriers is more useful than George Stigler's or definitions based on economic welfare. It follows that economies of scale that involve sunk costs may create antitrust barriers to entry. A simple model shows that sunk costs without scale economies may discourage entry without creating an antitrust entry barrier.

  13. Identification of Key Barriers in Workforce Development

    Energy Technology Data Exchange (ETDEWEB)

    None

    2008-03-31

    This report documents the identification of key barriers in the development of an adequate national security workforce as part of the National Security Preparedness Project, being performed under a Department of Energy/National Nuclear Security Administration grant. Many barriers exist that prevent the development of an adequate number of propertly trained national security personnel. Some barriers can be eliminated in a short-term manner, whereas others will involve a long-term strategy that takes into account public policy.

  14. Blood cells and endothelial barrier function

    OpenAIRE

    Rodrigues, Stephen F.; Granger, D Neil

    2015-01-01

    The barrier properties of endothelial cells are critical for the maintenance of water and protein balance between the intravascular and extravascular compartments. An impairment of endothelial barrier function has been implicated in the genesis and/or progression of a variety of pathological conditions, including pulmonary edema, ischemic stroke, neurodegenerative disorders, angioedema, sepsis and cancer. The altered barrier function in these conditions is often linked to the release of solub...

  15. Transport Properties for Triangular Barriers in Graphene

    OpenAIRE

    Mouhafid, Abderrahim El; Jellal, Ahmed

    2013-01-01

    We theoretically study the electronic transport properties of Dirac fermions through one and double triangular barriers in graphene. Using the transfer matrix method, we determine the transmission, conductance and Fano factor. They are obtained to be various parameters dependent such as well width, barrier height and barrier width. Therefore, different discussions are given and comparison with the previous significant works is done. In particular, it is shown that at Dirac point the Dirac fer...

  16. Multi-layers castings

    Directory of Open Access Journals (Sweden)

    J. Szajnar

    2010-01-01

    Full Text Available In paper is presented the possibility of making of multi-layers cast steel castings in result of connection of casting and welding coating technologies. First layer was composite surface layer on the basis of Fe-Cr-C alloy, which was put directly in founding process of cast carbon steel 200–450 with use of preparation of mould cavity method. Second layer were padding welds, which were put with use of TIG – Tungsten Inert Gas surfacing by welding technology with filler on Ni matrix, Ni and Co matrix with wolfram carbides WC and on the basis on Fe-Cr-C alloy, which has the same chemical composition with alloy, which was used for making of composite surface layer. Usability for industrial applications of surface layers of castings were estimated by criterion of hardness and abrasive wear resistance of type metal-mineral.

  17. Fabrication of Triple-Layer Matrix Tablets of Venlafaxine Hydrochloride Using Xanthan Gum

    OpenAIRE

    Gohel, Mukesh C.; Bariya, Shital H.

    2009-01-01

    The objective of present investigation was to develop venlafaxine hydrochloride-layered tablets for obtaining sustained drug release. The tablets containing venlafaxine hydrochloride 150 mg were prepared by wet granulation technique using xanthan gum in the middle layer and barrier layers. The granules and tablets were characterized. The in vitro drug dissolution study was conducted in distilled water. The tablets containing two lower strengths were also developed using the same percentage co...

  18. A study of the barrier properties of polyethylene coated with a nanocellulose/magnetite composite film

    Directory of Open Access Journals (Sweden)

    Đorđević Nenad

    2016-01-01

    Full Text Available The morphological, thermal and barrier properties of low-density polyethylene/polycaprolactone-modified nanocellulose hybrid materials were investigated in this paper. Nanonocelulose/magnetite (NC-Fe3O4 nanocomposite and maleic acid functionalized NC/magnetite (NCMA-Fe3O4 nanocomposite were prepared and used as filler at various concentrations (5, 10 and 15 wt. % in polycaprolactone (PCL layer. PE was coated with PCL/NC/magnetite layer. The addition of the filler did not unfavorably affect the inherent properties of the polymer, especially its barrier properties. Oxygen permeation measurements show that the oxygen barrier properties of magnetite enriched PCL film were improved due to chemical activity of added material. The highest level of barrier capacity was observed for PE samples coated with PCL based composite with NCMA-Fe3O4 micro/-nanofiller, which implies the significant contribution of nanocellulose surface modification with maleic anhydride residue to improved barrier properties. [Projekat Ministarstva nauke Republike Srbije, br. III45019 i br. OI172013

  19. Layering in Provenance Systems

    OpenAIRE

    Seltzer, Margo I.; Muniswamy-Reddy, Kiran-Kumar; Braun, Uri Jacob; Holland, David A.; MACKO Peter; Maclean, Diana; Margo, Daniel Wyatt; Smogor, Robin

    2009-01-01

    Digital provenance describes the ancestry or history of a digital object. Most existing provenance systems, however, operate at only one level of abstraction: the sys- tem call layer, a workflow specification, or the high-level constructs of a particular application. The provenance collectable in each of these layers is different, and all of it can be important. Single-layer systems fail to account for the different levels of abstraction at which users need to reason about their data and proc...

  20. Mapping of the freshwater lens in a coastal aquifer on the Keta Barrier (Ghana) by transient electromagnetic soundings

    DEFF Research Database (Denmark)

    Nielsen, Lars; Jørgensen, Niels Oluf; Gelting, Peter

    2007-01-01

    We present a model of the freshwater lens and saltwater intrusion in a 1000 m wide and 2500 m long portion of the Keta Barrier, Ghana, based on 96 transient electromagnetic (TEM) measurements. Saltwater intrusions from the Gulf of Guinea to the south of the barrier and from the Keta Lagoon to the...... interpret the existence of a mixing zone with brackish water between the freshwater lens and the layers with saline pore water. This mixing zone varies in thickness from 0-5 m close to the coastlines to  10-20 m in the central part of the barrier....

  1. Transparent, Ultrahigh-Gas-Barrier Films with a Brick-Mortar-Sand Structure.

    Science.gov (United States)

    Dou, Yibo; Pan, Ting; Xu, Simin; Yan, Hong; Han, Jingbin; Wei, Min; Evans, David G; Duan, Xue

    2015-08-10

    Transparent and flexible gas-barrier materials have shown broad applications in electronics, food, and pharmaceutical preservation. Herein, we report ultrahigh-gas-barrier films with a brick-mortar-sand structure fabricated by layer-by-layer (LBL) assembly of XAl-layered double hydroxide (LDH, X=Mg, Ni, Zn, Co) nanoplatelets and polyacrylic acid (PAA) followed by CO2 infilling, denoted as (XAl-LDH/PAA)n-CO2. The near-perfectly parallel orientation of the LDH "brick" creates a long diffusion length to hinder the transmission of gas molecules in the PAA "mortar". Most significantly, both the experimental studies and theoretical simulations reveal that the chemically adsorbed CO2 acts like "sand" to fill the free volume at the organic-inorganic interface, which further depresses the diffusion of permeating gas. The strategy presented here provides a new insight into the perception of barrier mechanism, and the (XAl-LDH/PAA)n-CO2 film is among the best gas barrier films ever reported.

  2. Adhesion Issues with Polymer/Oxide Barrier Coatings on Organic Displays

    Energy Technology Data Exchange (ETDEWEB)

    Matson, Dean W.; Martin, Peter M.; Graff, Gordon L.; Gross, Mark E.; Burrows, Paul E.; Bennett, Wendy D.; Hall, Michael G.; Mast, Eric S.; Bonham, Charles C.; Zumhoff, Mac R.; Rutherford, Nicole M.; Moro, Lorenza; Rosenblum, Martin; Praino, Robert F.; Visser, Robert J.

    2005-01-01

    Multilayer polymer/oxide coatings are being developed to protect sensitive organic display devices, such as OLEDs, from oxygen and water vapor permeation. The coatings have permeation levels ~ 10-6 g/m2/d for water vapor and ~10-6 cc/m2/d for oxygen, and are deposited by vacuum polymer technology. The coatings consist of either a base Al2O3 or acrylate polymer adhesion layer followed by alternating Al2O3/polymer layers. The polymer is used to decouple the 30 nm-thick Al2O3 barrier layers. Adhesion of the barrier coating to the substrate and display device is critical for the operating lifetime of the device. The substrate material could be any transparent flexible plastic. The coating technology can also be used to encapsulate organic-based electronic devices to protect them from atmospheric degradation. Plasma pretreatment is also needed for good adhesion to the substrate, but if it is too aggressive, it will damage the organic display device. We report on the effects of plasma treatment on the adhesion of barrier coatings to plastic substrates and the performance of OLED devices after plasma treatment and barrier coating deposition. We find that initial OLED performance is not significantly affected by the deposition process and plasma treatment, as demonstrated by luminosity and I-V curves.

  3. Optimizing The Organic/Inorganic Barrier Structure For Flexible Plastic Substrate Encapsulation

    Directory of Open Access Journals (Sweden)

    Yi-Chiuan Lin

    2012-07-01

    Full Text Available A multilayered barrier structure stacked with organosilicon and silicon oxide (SiOx films consecutively prepared using plasma-enhanced chemical vapor deposition (PECVD was developed to encapsulate flexible plastic substrate. The evolution on the residual internal stress, structural quality of the organosilicon/SiOx multilayered structure as well as its adhesion to the substrate were found to correlate closely with the thickness of the inset organosilicon layer. Due to the significant discrepancy in the thermal expansion coefficient between the substrate and SiOx film, the thickness of the organosilicon layer deposited onto the substrate and SiOx film thus was crucial to optimize the barrier property of the organosilicon/SiOx structure. The organosilicon/SiOx barrier structure possessed a lowest residual compressive stress and quality adhesion to the substrate was achieved from engineering the organosilicon layer thickness in the multilayered structure. The relaxation of the residual internal stress in the barrier structure led to a dense SiOx film as a consequence of the enhancement in the Si-O-Si networks and thereby resulted in the reduction of the water vapor permeation. Accordingly, a water vapor transmission rate (WVTR below 1 × 10-2 g/m2 /day being potential for the application on the flexible optoelectronic device packaging was achievable from the 3-pairs organosilicon/SiOx multilayered structure deposited onto the polyethylene terephthalate (PET substrate.

  4. Cellular responses to disruption of the permeability barrier in a three-dimensional organotypic epidermal model

    International Nuclear Information System (INIS)

    Repeated injury to the stratum corneum of mammalian skin (caused by friction, soaps, or organic solvents) elicits hyperkeratosis and epidermal thickening. Functionally, these changes serve to restore the cutaneous barrier and protect the organism. To better understand the molecular and cellular basis of this response, we have engineered an in vitro model of acetone-induced injury using organotypic epidermal cultures. Rat epidermal keratinocytes (REKs), grown on a collagen raft in the absence of any feeder fibroblasts, developed all the hallmarks of a true epidermis including a well-formed cornified layer. To induce barrier injury, REK cultures were treated with intermittent 30-s exposures to acetone then were fixed and paraffin-sectioned. After two exposures, increased proliferation (Ki67 and BrdU staining) was observed in basal and suprabasal layers. After three exposures, proliferation became confined to localized buds in the basal layer and increased terminal differentiation was observed (compact hyperkeratosis of the stratum corneum, elevated levels of K10 and filaggrin, and heightened transglutaminase activity). Thus, barrier disruption causes epidermal hyperplasia and/or enhances differentiation, depending upon the extent and duration of injury. Given that no fibroblasts are present in the model, the ability to mount a hyperplastic response to barrier injury is an inherent property of keratinocytes

  5. Skin Barrier Function and Allergens

    DEFF Research Database (Denmark)

    Engebretsen, Kristiane Aasen; Thyssen, Jacob Pontoppidan

    2016-01-01

    (CS) and allergy following increased penetration of potential allergens. However, the relationship between common dermatoses such as psoriasis, atopic dermatitis (AD) and irritant contact dermatitis (ICD) and the development of contact allergy (CA) is complex, and depends on immunologic responses...... and skin barrier status. Psoriasis has traditionally been regarded a Th1-dominated disease, but the discovery of Th17 cells and IL-17 provides new and interesting information regarding the pathogenesis of the disease. Research suggests an inverse relationship between psoriasis and CA, possibly due......) and Th2 (AD) have been proposed as an explanation. Finally, there is convincing evidence that exposure to irritants increases the risk of CS, and patients with ICD are, therefore, at great risk of developing CA. Skin irritation leads to the release of IL-1 and TNF-α, which affects the function of antigen...

  6. Photochemical approach to high-barrier films for the encapsulation of flexible laminary electronic devices

    Energy Technology Data Exchange (ETDEWEB)

    Prager, L., E-mail: lutz.prager@iom-leipzig.de [Leibniz-Institut für Oberflächenmodifizierung e.V., Permoserstr. 15, 04318 Leipzig (Germany); Helmstedt, U. [Leibniz-Institut für Oberflächenmodifizierung e.V., Permoserstr. 15, 04318 Leipzig (Germany); Herrnberger, H. [Solarion AG, Pereser Höhe 1, Breitscheidstraße 45, 04442 Zwenkau (Germany); Kahle, O. [Fraunhofer-Einrichtung für Polymermaterialien und Composite PYCO, Kantstraße 55, 14513 Teltow (Germany); Kita, F. [AZ Electronic Materials Germany GmbH, Rheingaustraße 190-196, 65203 Wiesbaden (Germany); Münch, M. [Solarion AG, Pereser Höhe 1, Breitscheidstraße 45, 04442 Zwenkau (Germany); Pender, A.; Prager, A.; Gerlach, J.W. [Leibniz-Institut für Oberflächenmodifizierung e.V., Permoserstr. 15, 04318 Leipzig (Germany); Stasiak, M. [Fraunhofer-Einrichtung für Polymermaterialien und Composite PYCO, Kantstraße 55, 14513 Teltow (Germany)

    2014-11-03

    Based on results of preceding research and development, thin gas barriers were made by wet application of perhydropolysilazane solution onto polymer films and its subsequent photo-initiated conversion to dense silica layers applying vacuum ultraviolet irradiation. Compared to the state of the art, these layers were sufficiently improved and characterized by spectroscopic methods, by scanning electron microscopy and by gas permeation measurements. Water vapor transmission rates (WVTR) below 10{sup −2} g m{sup −2} d{sup −1} were achieved. In this way, single barrier films were developed and produced on a pilot plant from roll to roll, 250 mm wide, at speeds up to 10 m min{sup −1}. Two films were laminated using adhesives curable with ultraviolet (UV) light and evaluated by peel tests, gas permeation measurement and climate testing. It could be shown that the described high-barrier laminates which exhibit WVTR ≈ 5 × 10{sup −4} g m{sup −2} d{sup −1}, determined by the calcium mirror method, are suitable for encapsulation of flexible thin-film photovoltaic modules. Durability of the encapsulated modules could be verified in several climate tests including damp-heat, thermo-cycle (heating, freezing, wetting) and UV exposures which are equivalent to more than 20 years of endurance at outdoor conditions in temperate climate. In the frame of further research and technical development it seems to be possible to design a cost efficient industrial scale process for the production of encapsulation films for photovoltaic applications. - Highlights: • Dense silica barrier layers were developed by a photochemical approach. • Polymer based barrier films were laminated yielding flexible high-barrier films. • Using these laminates photovoltaic test modules were encapsulated and tested. • A durability of more than 20 years at outdoor conditions could be proved.

  7. On the pH dependence of electrochemical proton transfer barriers

    DEFF Research Database (Denmark)

    Rossmeisl, Jan; Chan, Karen; Skulason, Egill;

    2016-01-01

    The pH dependence of rate of the hydrogen evolution/oxidation reaction HER/HOR is investigated. Based on thermodynamic considerations, a possible explanation to the low exchange current for hydrogen reactions in alkaline is put forward. We propose this effect to be a consequence of the change...... environment in the double layer region. The entropic barrier can be rate determining only when the surface catalysis is fast. Therefore the effect of pH is most pronounced on good catalysts and for fast reactions. This entropic barrier is also in a good agreement with the unusually low prefactor measured...

  8. Glycoprotein mucin molecular brush on cancer cell surface acting as mechanical barrier against drug delivery

    Science.gov (United States)

    Wang, Xin; Shah, Aalok A.; Campbell, Robert B.; Wan, Kai-tak

    2010-12-01

    Uptake of cytotoxic drugs by typical tumor cells is limited by the dense dendritic network of oligosaccharide mucin chains that forms a mechanical barrier. Atomic force microscopy is used to directly measure the force needed to pierce the mucin layer to reach the cell surface. Measurements are analyzed by de Gennes' steric reptation theory. Multidrug resistant ovarian tumor cells shows significantly larger penetration load compared to the wide type. A pool of pancreatic, lung, colorectal, and breast cells are also characterized. The chemotherapeutic agent, benzyl-α-GalNac, for inhibiting glycosylation is shown to be effective in reducing the mechanical barrier.

  9. Particle-in-cell modeling of gas-confined barrier discharge

    Science.gov (United States)

    Levko, Dmitry; Raja, Laxminarayan L.

    2016-04-01

    Gas-confined barrier discharge is studied using the one-dimensional Particle-in-Cell Monte Carlo Collisions model for the conditions reported by Guerra-Garcia and Martinez-Sanchez [Appl. Phys. Lett. 106, 041601 (2015)]. Depending on the applied voltage, two modes of discharge are observed. In the first mode, the discharge develops in the entire interelectrode gap. In the second mode, the discharge is ignited and develops only in the gas layer having smaller breakdown voltage. The one-dimensional model shows that for the conditions considered, there is no streamer stage of breakdown as is typical for a traditional dielectric barrier discharge.

  10. Barrier Formation on a YBa2Cu3Oy Thin Film Using CF4 Plasma Fluorination

    Institute of Scientific and Technical Information of China (English)

    阿巴斯; 康琳; 许伟伟; 杨森祖; 吴培亨

    2002-01-01

    We investigate the surface structure and composition ofa YBa2Cu3Oy (YBCO) thin film modified by CF4 plasma fluorination. In addition to the absorption of hydrocarbons, chemical reactions of the YBCO surface take place during CF4 plasma treatment. Various x-ray photoelectron spectroscopic data are reported and discussed. The existence of a thin barrier is confirmed, which homogeneously covers the edge of the base YBCO film in our interface engineering Josephson junction. Measurements of Auger electron spectroscopic data and the resistance versus temperature indicate that the barrier is a controllable-insulating layer.

  11. RF screening by thin resistive layers

    CERN Document Server

    Caspers, Friedhelm; González, C; Jensen, E; Keil, Eberhard; Morvillo, M; Ruggiero, F; Schröder, G; Zotter, Bruno W; Dyachkov, M

    1999-01-01

    We discuss the results of recent impedance measurements for an LHC dump kicker prototype, performed at CERN using the coaxial wire method. The kicker design includes a vacuum barrier consisting of a ceramic chamber internally coated with a thin metallic layer having good electric contact with the external beam pipe. For the bench test the coated ceramic tube was replaced by a kapton foil with a 0.2 \\mu\\m copper layer having the same DC resistance of 0.7 Ømega\\m. The measurements show that this resistive coating provides a very effective RF screening down to frequencies below 1 MHz, where the skin depth is two orders of magnitude larger than the layer thickness and one could expect full penetration of the electromagnetic fields. We also present simulation results and analytic considerations in agreement with the measurements, showing that the return currents almost entirely flow through the copper layer down to frequencies where the reactive impedance of the kicker elements located behind it becomes comparabl...

  12. The role of the magnetic barrier in the Solar wind-magnetosphere interaction

    Science.gov (United States)

    Erkaev, N. V.; Farrugia, C. J.; Biernat, H. K.

    2003-10-01

    The magnetized solar wind carries a large amount of energy but only a small fraction of it enters the magnetosphere and powers its dynamics. Numerous observations show that the interplanetary magnetic field (IMF) is a key parameter regulating the solar wind-magnetosphere interaction. The main factor determining the amount of energy extracted from the solar wind flow by the magnetosphere is the plasma flow structure in the region adjacent to the sunward side of the magnetopause. While compared to the energy of the solar wind flow the IMF magnetic energy is relatively weak, it is considerably enhanced in a thin layer next to the dayside magnetopause variously called the plasma depletion layer or magnetic barrier. Important features of this barrier/layer are (i) a pile-up of the magnetic field with (ii) a concurrent decrease of density, (iii) enhancement of proton temperature anisotropy, (iv) asymmetry of plasma flow caused by magnetic field tension, and (v) characteristic wave emissions (ion cyclotron waves). Importantly, the magnetic barrier can be considered as an energy source for magnetic reconnection. While the steady-state magnetic barrier has been extensively examined, non-steady processes therein have only been addressed by a few authors. We discuss here two non-steady aspects related to variations of the magnetic barrier caused by (i) a north-to-south rotation of the IMF, and (ii) by pulses of magnetic field reconnection at the magnetopause. When the IMF rotates smoothly from north-to-south, a transition layer is shown to appear in the magnetosheath which evolves into a thin layer bounded by sharp gradients in the magnetic field and plasma quantities. For a given reconnection rate and calculated parameters of the magnetic barrier, we estimate the duration and length scale of a reconnection pulse as a function of the solar wind parameters. Considering a sudden decrease of the magnetic field near the magnetopause caused by the reconnection pulse, we study the

  13. Feasibility study of tungsten as a diffusion barrier between nickel-chromium-aluminum and Gamma/Gamma prime - Delta eutectic alloys

    Science.gov (United States)

    Young, S. G.; Zellars, G. R.

    1978-01-01

    Coating systems proposed for potential use on eutectic alloy components in high-temperature gas turbine engines were studied with emphasis on deterioration of such systems by diffusion. A 1-mil thick W sheet was placed between eutectic alloys and a NiCrAl layer. Layered test specimens were aged at 1100 C for as long as long as 500 hours. Without the W barrier, the delta phase of the eutectic deteriorated by diffusion of Nb into the NiCrAl. Insertion of the W barrier stopped the diffusion of Nb from delta. Chromium diffusion from the NiCrAl into the gamma/gamma prime phase of the eutectic was greatly reduced by the barrier. However, the barrier thickness decreased with time; and W diffused into both the NiCrAl and the eutectic. When the delta platelets were alined parallel to the NiCrAl layer, rather than perpendicular, diffusion into the eutectic was reduced.

  14. Enhancement-mode AlGaN/GaN high electronic mobility transistors with thin barrier

    Institute of Scientific and Technical Information of China (English)

    Ma Xiao-Hua; Yu Hui-You; Quan Si; Yang Li-Yuan; Pan Cai-Yuan; Yang Ling; Wang Hao; Zhang Jin-Cheng; Hao Yue

    2011-01-01

    An enhancement-mode (E-mode) AlGaN/GaN high electron mobility transistor (HEMTs) was fabricated with 15-nm AlGaN barrier layer. E-mode operation was achieved by using fluorine plasma treatment and post-gate rapid thermal annealing. The thin barrier depletion-HEMTs with a threshold voltage typically around -1.7 V, which is higher than that of the 22-nm barrier depletion-mode HEMTs (-3.5 V). Therefore, the thin barrier is emerging as an excellent candidate to realize the enhancement-mode operation. With 0.6-μm gate length, the devices treated by fluorine plasma for 150-W RF power at 150 s exhibited a threshold voltage of 1.3 V. The maximum drain current and maximum transconductance are 300 mA/mm, and 177 mS/mm, respectively. Compared with the 22-nm barrier E-mode devices, VT of the thin barrier HEMTs is much more stable under the gate step-stress.

  15. Effect of Barrier Materials on Discharge Properties in Air at Low Pressure

    Institute of Scientific and Technical Information of China (English)

    LI Ming; LI Cheng-rong; ZHAN Hua-mao; XU Jin-bao; ZHANG Xian-jun

    2007-01-01

    Dielectric barrier discharge (DBD) is widely investigated in order to obtain uniform low-temperature plasma.Many studies have proved that some barrier materials,especially electrets,can improve the uniformity of discharge.It is regarded as an available way to get atmospheric pressure glow discharge (APGD).In this paper,discharge forms with 4 different barrier materials (alumina, quartz, PTFE and PET) are investigated, and the transition of discharge form depending on the air pressure are recorded to estimate the influence of barrier materials on discharge. By using electrets as barrier materials, homogeneous discharges can be obtained in a more wide pressure range. Under the same experimental conditions, discharges with electrets are more uniform or have larger uniform areas due to the storage and desorption of charges on the surface of electrets. The electrons deposited in the surface layer can be released on next half cycle when the polarity of the applied voltage changes, and provide a number of seed electrons, which makes the discharge more homogeneous. The capacitance and the permittivity of barrier materials have no effect on the discharge form directly.

  16. Development of a cement-polymer close-coupled subsurface barrier technology

    International Nuclear Information System (INIS)

    The primary objective of this project was to further develop close-coupled barrier technology for the containment of subsurface waste or contaminant migration. A close-coupled barrier is produced by first installing a conventional cement grout curtain followed by a thin inner lining of a polymer grout. The resultant barrier is a cement polymer composite that has economic benefits derived from the cement and performance benefits from the durable and chemically resistant polymer layer. The technology has matured from a regulatory investigation of issues concerning barriers and barrier materials to a pilot-scale, multiple individual column injections at Sandia National Labs (SNL) to full scale demonstration. The feasibility of this barrier concept was successfully proven in a full scale ''cold site'' demonstration at Hanford, WA. Consequently, a full scale deployment of the technology was conducted at an actual environmental restoration site at Brookhaven National Lab (BNL), Long Island, NY. This paper discusses the installation and performance of a technology deployment implemented at OU-1 an Environmental Restoration Site located at BNL

  17. 200-BP-1 Prototype Hanford Barrier -- 15 Years of Performance Monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Ward, Anderson L.; Draper, Kathryn E.; Link, Steven O.; Clayton, Ray E.

    2011-09-30

    Monitoring is an essential component of engineered barrier system design and operation. A composite capacitive cover, including a capillary break and an evapotranspiration (ET) barrier at the Hanford Site, is generating data that can be used to help resolve these issues. The prototype Hanford barrier was constructed over the 216-B-57 Crib in 1994 to evaluate surface-barrier constructability, construction costs, and physical and hydrologic performance at the field scale. The barrier has been routinely monitored between November 1994 and September 1998 as part of a Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA) treatability test of barrier performance for the 200 BP 1 Operable Unit. Since FY 1998, monitoring has focused on a more limited set of key water balance, stability, and biotic parameters. In FY 2009, data collection was focused on: (1) water-balance monitoring, consisting of precipitation, runoff, soil moisture storage, and drainage measurements with evapotranspiration calculated by difference; (2) stability monitoring, consisting of asphalt-layer-settlement, basalt-side-slope-stability, and surface-elevation measurements; (3) vegetation dynamics; and (4) animal use. September 2009 marked 15 years since the start of monitoring and the collection of performance data. This report describes the results of monitoring activities during the period October 1, 2008, through September 30, 2009, and summarizes the 15 years of performance data collected from September 1994 through September 2009.

  18. Improved electron transport layer

    DEFF Research Database (Denmark)

    2012-01-01

    The present invention provides: a method of preparing a coating ink for forming a zinc oxide electron transport layer, comprising mixing zinc acetate and a wetting agent in water or methanol; a coating ink comprising zinc acetate and a wetting agent in aqueous solution or methanolic solution; a...... method of preparing a zinc oxide electron transporting layer, which method comprises: i) coating a substrate with the coating ink of the present invention to form a film; ii) drying the film; and iii) heating the dry film to convert the zinc acetate substantially to ZnO; a method of preparing an organic...... photovoltaic device or an organic LED having a zinc oxide electron transport layer, the method comprising, in this order: a) providing a substrate bearing a first electrode layer; b) forming an electron transport layer according to the following method: i) coating a coating ink comprising an ink according to...

  19. Density Increase of Upper Quantum Dots in Dual InGaN Quantum-Dot Layers

    Institute of Scientific and Technical Information of China (English)

    吕文彬; 汪莱; 王嘉星; 郝智彪; 罗毅

    2011-01-01

    Single and dual layers oflnGaN quantum dots (QDs) are grown by metal organic chemical vapor deposition. In the former, the density, average height and diameter of QDs are 1.3 x 109 cm"2, 0.93 nm and 65.1 nm, respectively. The latter is grown under the same conditions and possesses a 20 nm low-temperature grown GaN barrier between two layers. The density, average height and diameter of QDs in the upper layer are 2.6 x 1010 cm~2, 4.6urn and 81.3nm, respectively. Two reasons are proposed to explain the QD density increase in the upper layer. First, the strain accumulation in the upper layer is higher, leading to a stronger three-dimensional growth. Second, the GaN barrier beneath the upper layer is so rough it induces growth QDs.%Single and dual layers of InGaN quantum dots(QDs)are grown by metal organic chemical vapor deposition.In the former,the density,average height and diameter of QDs are 1.3 × 109 cm-2,0.93 nm and 65.1 nm,respectively.The latter is grown under the same conditions and possesses a 20 nm low-temperature grown GaN barrier between two layers.The density,average height and diameter of QDs in the upper layer are 2.6 × 1010 cm-2,4.6nm and 81.3nm,respectively.Two reasons are proposed to explain the QD density increase in the upper layer.First,the strain accumulation in the upper layeris higher,leading to a stronger three-dimensional growth.Second,the GaN barrier beneath the upper layer is so rough it induces growth QDs.

  20. Gastrointestinal mucosal barrier function and diseases.

    Science.gov (United States)

    Oshima, Tadayuki; Miwa, Hiroto

    2016-08-01

    The gastrointestinal mucosal barrier plays an essential role in the separation of the inside of the body from the outside environment. Tight junctions (TJs) are the most important component for construction of a constitutive barrier of epithelial cells, and they regulate the permeability of the barrier by tightly sealing the cell-cell junctions. TJ proteins are represented by claudins, occludin, junctional adhesion molecules, and scaffold protein zonula occludens. Among these TJ proteins, claudins are the major components of TJs and are responsible for the barrier and the polarity of the epithelial cells. Gastrointestinal diseases including reflux esophagitis, inflammatory bowel disease, functional gastrointestinal disorders, and cancers may be regulated by these molecules, and disruption of their functions leads to chronic inflammatory conditions and chronic or progressive disease. Therefore, regulation of the barrier function of epithelial cells by regulating the expression and localization of TJ proteins is a potential new target for the treatment of these diseases. Treatment strategies for these diseases might thus be largely altered if symptom generation and/or immune dysfunction could be regulated through improvement of mucosal barrier function. Since TJ proteins may also modify tumor infiltration and metastasis, other important goals include finding a good TJ biomarker of cancer progression and patient prognosis, and developing TJ protein-targeted therapies that can modify patient prognosis. This review summarizes current understanding of gastrointestinal barrier function, TJ protein expression, and the mechanisms underlying epithelial barrier dysregulation in gastrointestinal diseases. PMID:27048502

  1. Assessment of blood-retinal barrier integrity.

    Science.gov (United States)

    Vinores, S A

    1995-01-01

    The blood-retinal barrier consists of two components which are comprised of the retinal vascular endothelium and the retinal pigment epithelium, respectively. Its functional integrity can be recognized by tight junctions between these cells with a paucity of endocytic vesicles within them and the presence of the molecules that regulate the ionic and metabolic gradients that constitute the barrier. The barrier is compromised in several disease processes and by a variety of agents, but in most cases the location and mechanism for barrier failure is not understood. Perfusion with a variety of radiolabeled tracer molecules, vitreous fluorophotometry, or magnetic resonance imaging can be used to quantitate blood-retinal barrier leakage. Fluorescein angiography or magnetic resonance imaging can localize sites of leakage in vivo with limited resolution. Evans blue dye can be used to visualize blood-retinal barrier failure in gross pathological specimens and immuno-histochemical labeling of serum proteins such as albumin or fibrinogen can be used to localize sites of blood-retinal barrier breakdown by light microscopy. Tracers such as horseradish peroxidase, microperoxidase, or lanthanum, or the immunocytochemical demonstration of albumin can be used to reveal blood-retinal barrier breakdown at the ultrastructural level and provide insights into the mechanisms involved. This review discusses the advantages and limitations of each of these methods to aid in selection of the appropriate techniques to derive the desired information.

  2. Barriers to adherence in cystic fibrosis

    DEFF Research Database (Denmark)

    Bregnballe, Vibeke; Schiøtz, Peter Oluf

    2012-01-01

    Danish patients with cystic fibrosis aged 14 to 25 years and their parents. Conclusions: The present study showed that the majority of adolescents with CF and their parents experienced barriers to treatment adherence. Patients and parents agreed that the three most common barriers encountered lack...

  3. A STUDY OF BARRIERS IN BRIDGING COMMUNICATION

    OpenAIRE

    Niteen V. Dandekar

    2014-01-01

    The main objective of this paper is to make a thought provoking discussion on the role barriers in bridging communication. It focuses on the concept of communication, process and the role of language related barriers in bridging communication. It studies the significance of communication in modern human life.

  4. K-Basin isolation barrier seal

    International Nuclear Information System (INIS)

    This report documents various aspects of the design, analysis, procurement, and fabrication of the hydraulic seal on the isolation barriers to be installed in the 100-K Area spent nuclear fuel basin. The isolation barrier is used to keep water in the basin in the event of an earthquake

  5. Alternative approach to study fusion barrier distribution

    International Nuclear Information System (INIS)

    Fusion reactions induced by heavy-ions (HIs) at around barrier energies, play an important role in nuclear physics since they enable to study the nuclei away from the valley of stability. On the other hand, heavy-ion collisions, at below and near barrier energies, provide an ideal opportunity to study quantum tunneling phenomena in systems with many degrees of freedom. In a simple model, a potential barrier for the relative motion between the interacting nuclei is created by the strong interplay of the repulsive Coulomb and the attractive nuclear force. It has, now, been well recognized that heavy-ion collisions at energies around the Coulomb barrier are strongly affected by the internal structure of interacting nuclei. The couplings of the relative motion to the intrinsic degrees of freedom (such as collective inelastic excitations of the colliding nuclei and/or transfer processes) replaced a single potential barrier to a number of distributed barriers, leading to the enhancement in heavy ion fusion cross sections at energies near and below the Coulomb barrier than those expected from single one-dimensional barrier

  6. Metallographic preparation of the conventional and new TBC layers

    Directory of Open Access Journals (Sweden)

    G. Moskal

    2009-09-01

    Full Text Available Purpose: Verification of up-to-now used metallographic preparation of the TBC coating thermal barriers and adaptation of them to layers of new types, based on new ceramic compounds, sprayed on conventional high temperature creep resisting alloys by the APS method, is a purpose of this paper. New types of used ceramic powders are so called pyrochlores of a general formula RE2Zr2O7.Design/methodology/approach: A scope of investigations comprised realization of a process of preparation of metallographic micro-sections, beginning from a cutting moment, through mounting, grinding and polishing. A standard method of preparation of micro-sections, typical for conventional layers was used and microstructural observation, from a point of view of presence of artefacts of mechanical origin was carried out.Findings: The carried out analysis allowed to compare methods of preparation of micro-sections and principles of preparation, used to assess the conventional TBC layers and relation them to barrier layers of new types. The carried out investigations showed that up-to-now used methods and procedures for the TBC layers, got by usage of conventional powders, are sufficient for layers of new types.Research limitations/implications: The carried out investigations suggest a necessity to verify the got results in a case of the TBC layers, sprayed by use of powders of pyrochlore structure of another type.Practical implications: The got results show a possibility to use up-to-now metallographic procedures for the TBC layers of new types.Originality/value: Information, concerning basic principles of microstructural assessment of layers of new types, sprayed by the APS method on high temperature creep resisting alloys, is an original value.

  7. Alleviation of fermi-level pinning effect at metal/germanium interface by the insertion of graphene layers

    Energy Technology Data Exchange (ETDEWEB)

    Baek, Seung-heon Chris; Seo, Yu-Jin; Oh, Joong Gun; Albert Park, Min Gyu; Bong, Jae Hoon; Yoon, Seong Jun; Lee, Seok-Hee, E-mail: seokheelee@ee.kaist.ac.kr [Department of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 305-701 (Korea, Republic of); Seo, Minsu; Park, Seung-young [Division of Materials Science, Korea Basic Science Institute (KBSI), 169-148 Daehak-ro, Yuseong-gu, Daejeon 305-333 (Korea, Republic of); Park, Byong-Guk [Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 305-701 (Korea, Republic of)

    2014-08-18

    In this paper, we report the alleviation of the Fermi-level pinning on metal/n-germanium (Ge) contact by the insertion of multiple layers of single-layer graphene (SLG) at the metal/n-Ge interface. A decrease in the Schottky barrier height with an increase in the number of inserted SLG layers was observed, which supports the contention that Fermi-level pinning at metal/n-Ge contact originates from the metal-induced gap states at the metal/n-Ge interface. The modulation of Schottky barrier height by varying the number of inserted SLG layers (m) can bring about the use of Ge as the next-generation complementary metal-oxide-semiconductor material. Furthermore, the inserted SLG layers can be used as the tunnel barrier for spin injection into Ge substrate for spin-based transistors.

  8. Boosting water oxidation layer-by-layer.

    Science.gov (United States)

    Hidalgo-Acosta, Jonnathan C; Scanlon, Micheál D; Méndez, Manuel A; Amstutz, Véronique; Vrubel, Heron; Opallo, Marcin; Girault, Hubert H

    2016-04-01

    Electrocatalysis of water oxidation was achieved using fluorinated tin oxide (FTO) electrodes modified with layer-by-layer deposited films consisting of bilayers of negatively charged citrate-stabilized IrO2 NPs and positively charged poly(diallyldimethylammonium chloride) (PDDA) polymer. The IrO2 NP surface coverage can be fine-tuned by controlling the number of bilayers. The IrO2 NP films were amorphous, with the NPs therein being well-dispersed and retaining their as-synthesized shape and sizes. UV/vis spectroscopic and spectro-electrochemical studies confirmed that the total surface coverage and electrochemically addressable surface coverage of IrO2 NPs increased linearly with the number of bilayers up to 10 bilayers. The voltammetry of the modified electrode was that of hydrous iridium oxide films (HIROFs) with an observed super-Nernstian pH response of the Ir(iii)/Ir(iv) and Ir(iv)-Ir(iv)/Ir(iv)-Ir(v) redox transitions and Nernstian shift of the oxygen evolution onset potential. The overpotential of the oxygen evolution reaction (OER) was essentially pH independent, varying only from 0.22 V to 0.28 V (at a current density of 0.1 mA cm(-2)), moving from acidic to alkaline conditions. Bulk electrolysis experiments revealed that the IrO2/PDDA films were stable and adherent under acidic and neutral conditions but degraded in alkaline solutions. Oxygen was evolved with Faradaic efficiencies approaching 100% under acidic (pH 1) and neutral (pH 7) conditions, and 88% in alkaline solutions (pH 13). This layer-by-layer approach forms the basis of future large-scale OER electrode development using ink-jet printing technology. PMID:26977761

  9. Synergy Between Plasma-Assisted ALD and Roll-to-Roll Atmospheric Pressure PE-CVD Processing of Moisture Barrier Films on Polymers

    NARCIS (Netherlands)

    Starostin, S. A.; Keuning, W.; Schalken, J.; Creatore, M.; Kessels, W. M. M.; Bouwstra, J. B.; van de Sanden, M. C. M.; de Vries, H. W.

    2016-01-01

    The synergy between fast (1600 nm · min−1), roll-to-roll plasma-enhanced chemical vapor deposited (PE-CVD) SiO2 layers and plasma-assisted atomic layer deposited (PA-ALD) ultra-thin Al2O3 films has been investigated in terms of moisture permeation barrier properties. The effective and intrinsic wate

  10. The optimization of FA/O barrier slurry with respect to removal rate selectivity on patterned Cu wafers

    Science.gov (United States)

    Yi, Hu; Yan, Li; Yuling, Liu; Yangang, He

    2016-02-01

    Because the polishing of different materials is required in barrier chemical mechanical planarization (CMP) processes, the development of a kind of barrier slurry with improved removal rate selectivity for Cu/barrier/TEOS would reduce erosion and dishing defects on patterned Cu wafers. In this study, we developed a new benzotriazole-free barrier slurry named FA/O barrier slurry, containing 20 mL/L of the chelating agent FA/O, 5 mL/L surfactant, and a 1:5 concentration of abrasive particles. By controlling the polishing slurry ingredients, the removal rate of different materials could be controlled. For process integration considerations, the effect of the FA/O barrier slurry on the dielectric layer of the patterned Cu wafer was investigated. After CMP processing by the FA/O barrier slurry, the characteristics of the dielectric material were tested. The results showed that the dielectric characteristics met demands for industrial production. The current leakage was of pA scale. The resistance and capacitance were 2.4 kω and 2.3 pF, respectively. The dishing and erosion defects were both below 30 nm in size. CMP-processed wafers using this barrier slurry could meet industrial production demands. Project supported by the Special Project Items No. 2 in National Long-Term Technology Development Plan (No. 2009ZX02308), the Natural Science Foundation of Hebei Province (No. F2012202094), and the Doctoral Program Foundation of Xinjiang Normal University Plan (No. XJNUBS1226).

  11. Green Barrier Promotes SustainableDevelopment of Our Foreign Trade

    OpenAIRE

    Yongning Wang

    2009-01-01

    Green barrier is a kind of new non-tariff barrier in the current international trade. This paper based on the meaning of green barrier, analyzed green barrier can promote Sustainable Development of our foreign trade, and proposed counter strategies to green barrier.

  12. 49 CFR 587.18 - Dimensions of fixed rigid barrier.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 7 2010-10-01 2010-10-01 false Dimensions of fixed rigid barrier. 587.18 Section... TRAFFIC SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) DEFORMABLE BARRIERS Offset Deformable Barrier § 587.18 Dimensions of fixed rigid barrier. (a) The fixed rigid barrier has a mass of...

  13. Numerical model of tandem organic light-emitting diodes based on a transition metal oxide interconnector layer

    International Nuclear Information System (INIS)

    By utilizing a two-step process to express the charge generation and separation mechanism of the transition metal oxides (TMOs) interconnector layer, a numerical model was proposed for tandem organic light emitting diodes (OLEDs) with a TMOs thin film as the interconnector layer. This model is valid not only for an n-type TMOs interconnector layer, but also for a p-type TMOs interconnector layer. Based on this model, the influences of different carrier injection barriers at the interface of the electrode/organic layer on the charge generation ability of interconnector layers were studied. In addition, the distribution characteristics of carrier concentration, electric field intensity and potential in the device under different carrier injection barriers were studied. The results show that when keeping one carrier injection barrier as a constant while increasing another carrier injection barrier, carriers injected into the device were gradually decreased, the carrier generation ability of the interconnector layer was gradually reduced, the electric field intensity at the interface of the organic/electrode was gradually enhanced, and the electric field distribution became nearly linear: the voltage drops in two light units gradually became the same. Meanwhile, the carrier injection ability decreased as another carrier injection barrier increased. The simulation results agree with the experimental data. The obtained results can provide us with a deep understanding of the work mechanism of TMOs-based tandem OLEDs. (semiconductor devices)

  14. The Equatorial Ekman Layer

    CERN Document Server

    Marcotte, Florence; Soward, Andrew

    2016-01-01

    The steady incompressible viscous flow in the wide gap between spheres rotating about a common axis at slightly different rates (small Ekman number E) has a long and celebrated history. The problem is relevant to the dynamics of geophysical and planetary core flows, for which, in the case of electrically conducting fluids, the possible operation of a dynamo is of considerable interest. A comprehensive asymptotic study, in the limit E<<1, was undertaken by Stewartson (J. Fluid Mech. 1966, vol. 26, pp. 131-144). The mainstream flow, exterior to the E^{1/2} Ekman layers on the inner/outer boundaries and the shear layer on the inner sphere tangent cylinder C, is geostrophic. Stewartson identified a complicated nested layer structure on C, which comprises relatively thick quasi-geostrophic E^{2/7} (inside C) and E^{1/4} (outside C) layers. They embed a thinner E^{1/3} ageostrophic shear layer (on C), which merges with the inner sphere Ekman layer to form the E^{2/5} Equatorial Ekman layer of axial length E^{...

  15. Localization of the Transpiration Barrier in the Epi- and Intracuticular Waxes of Eight Plant Species: Water Transport Resistances Are Associated with Fatty Acyl Rather Than Alicyclic Components.

    Science.gov (United States)

    Jetter, Reinhard; Riederer, Markus

    2016-02-01

    Plant cuticular waxes play a crucial role in limiting nonstomatal water loss. The goal of this study was to localize the transpiration barrier within the layered structure of cuticles of eight selected plant species and to put its physiological function into context with the chemical composition of the intracuticular and epicuticular wax layers. Four plant species (Tetrastigma voinierianum, Oreopanax guatemalensis, Monstera deliciosa, and Schefflera elegantissima) contained only very-long-chain fatty acid (VLCFA) derivatives such as alcohols, alkyl esters, aldehydes, and alkanes in their waxes. Even though the epicuticular and intracuticular waxes of these species had very similar compositions, only the intracuticular wax was important for the transpiration barrier. In contrast, four other species (Citrus aurantium, Euonymus japonica, Clusia flava, and Garcinia spicata) had waxes containing VLCFA derivatives, together with high percentages of alicyclic compounds (triterpenoids, steroids, or tocopherols) largely restricted to the intracuticular wax layer. In these species, both the epicuticular and intracuticular waxes contributed equally to the cuticular transpiration barrier. We conclude that the cuticular transpiration barrier is primarily formed by the intracuticular wax but that the epicuticular wax layer may also contribute to it, depending on species-specific cuticle composition. The barrier is associated mainly with VLCFA derivatives and less (if at all) with alicyclic wax constituents. The sealing properties of the epicuticular and intracuticular layers were not correlated with other characteristics, such as the absolute wax amounts and thicknesses of these layers. PMID:26644508

  16. Layer-by-layer assembly of thin organic films on PTFE activated by cold atmospheric plasma

    Directory of Open Access Journals (Sweden)

    Tóth András

    2014-12-01

    Full Text Available An air diffuse coplanar surface barrier discharge is used to activate the surface of polytetrafluoroethylene (PTFE samples, which are subsequently coated with polyvinylpyrrolidone (PVP and tannic acid (TAN single, bi- and multilayers, respectively, using the dip-coating method. The surfaces are characterized by X-ray Photoelectron Spectroscopy (XPS, Attenuated Total Reflection – Fourier Transform Infrared Spectroscopy (ATR-FTIR and Atomic Force Microscopy (AFM. The XPS measurements show that with plasma treatment the F/C atomic ratio in the PTFE surface decreases, due to the diminution of the concentration of CF2 moieties, and also oxygen incorporation through formation of new C–O, C=O and O=C–O bonds can be observed. In the case of coated samples, the new bonds indicated by XPS show the bonding between the organic layer and the surface, and thus the stability of layers, while the gradual decrease of the concentration of F atoms with the number of deposited layers proves the creation of PVP/TAN bi- and multi-layers. According to the ATR-FTIR spectra, in the case of PVP/TAN multilayer hydrogen bonding develops between the PVP and TAN, which assures the stability of the multilayer. The AFM lateral friction measurements show that the macromolecular layers homogeneously coat the plasma treated PTFE surface.

  17. Properties of AlyGa1-yN/AlxGa1-xN/AlN/GaN Double-Barrier High Electron Mobility Transistor Structure

    Institute of Scientific and Technical Information of China (English)

    GUO Lun-Chun; WANG Xiao-Liang; XIAO Hong-Ling; RAN Jun-Xue; Wang Cui-Mei; MA Zhi-Yong; LUO Wei-Jun; WANG Zhan-Guo

    2009-01-01

    Electrical properties of AlyGa1-yN/AlxGa1-xN/AIN/GaN structure are investigated by solving coupled Schrodinger and Poisson equation self-consistently. Our calculations show that the two-dimensional electron gas (2DEG) den-sity will decrease with the thickness of the second barrier (AlyGa1-yN) once the AIN content of the second barrier is smaller than a critical value yc, and will increase with the thickness of the second barrier (AlyGa1-yN) when the critical AIN content of the second barrier yc is exceeded. Our calculations also show that the critical AlN content of the second barrier yc will increase with the AlN content and the thickness of the first barrier layer (AlxGa1-xN).

  18. Improved efficiency droop characteristics in an InGaN/GaN light-emitting diode with a novel designed last barrier structure

    Institute of Scientific and Technical Information of China (English)

    Wang Tian-Hu; Xu Jin-Liang

    2012-01-01

    In this study,the characteristics of nitride-based light-emitting diodes with different last barrier structures are analysed numerically.The energy band diagrams,electrostatic field near the last quantum barrier,carrier concentration in the quantum well,internal quantum efficiency,and light output power are systematically investigated.The simulation results show that the efficiency droop is inarkedly improved and the output power is greatly enhanced when the conventional GaN last barrier is replaced by an AIGaN barrier with Al composition graded linearly from 0 to 15% in the growth direction.These improvements are attributed to enhanced efficiencies of electron confinement and hole injection caused by the lower polarization effect at the last-barrier/electron blocking layer interface when the graded Al composition last barrier is used.

  19. Robust Low Voltage Program-Erasable Cobalt-Nanocrystal Memory Capacitors with Multistacked Al2O3/HfO2/Al2O3 Tunnel Barrier

    Institute of Scientific and Technical Information of China (English)

    LIAO Zhong-Wei; GOU Hong-Yan; HUANG Yue; SUN Qing-Qing; DING Shi-Jin; ZHANG Wei; ZHANG Shi-Li

    2009-01-01

    An atomic-layer-deposited Al2O3/HfO2/Al2O3 (A/H/A) tunnel barrier is investigated for Co nanocrystal memory capacitors. Compared to a single Al2O3 tunnel barrier, the A/H/A barrier can significantly increase the hysteresis window, i.e., an increase by 9 V for ±12 V sweep range. This is attributed to a marked decrease in the energy barriers of charge injections for the A/H/A tunnel barrier. Further, the Co-nanocrystal memory capacitor with the A/H/A tunnel barrier exhibits a memory window as large as 4.1 V for 100 /us program/erase at a low voltage of ±7 V, which is due to fast charge injection rates, i.e., about 2.4 × 1016 cm-2s-1 for electrons and 1.9×1016 cm-2s-1 for holes.

  20. The immunological barriers to xenotransplantation.

    Science.gov (United States)

    Vadori, M; Cozzi, E

    2015-10-01

    The availability of cells, tissues and organs from a non-human species such as the pig could, at least in theory, meet the demand of organs necessary for clinical transplantation. At this stage, the important goal of getting over the first year of survival has been reported for both cellular and solid organ xenotransplantation in relevant preclinical primate models. In addition, xenotransplantation is already in the clinic as shown by the broad use of animal-derived medical devices, such as bioprosthetic heart valves and biological materials used for surgical tissue repair. At this stage, however, prior to starting a wide-scale clinical application of xenotransplantation of viable cells and organs, the important obstacle represented by the humoral immune response will need to be overcome. Likewise, the barriers posed by the activation of the innate immune system and coagulative pathway will have to be controlled. As far as xenogeneic nonviable xenografts, increasing evidence suggests that considerable immune reactions, mediated by both innate and adaptive immunity, take place and influence the long-term outcome of xenogeneic materials in patients, possibly precluding the use of bioprosthetic heart valves in young individuals. In this context, the present article provides an overview of current knowledge on the immune processes following xenotransplantation and on the possible therapeutic interventions to overcome the immunological drawbacks involved in xenotransplantation.