WorldWideScience

Sample records for barrier drug targeting

  1. Smuggling Drugs into the Brain: An Overview of Ligands Targeting Transcytosis for Drug Delivery across the Blood-Brain Barrier

    NARCIS (Netherlands)

    Zuhorn, Inge; Georgieva, Julia V.; Hoekstra, Dick

    2015-01-01

    The blood-brain barrier acts as a physical barrier that prevents free entry of blood-derived substances, including those intended for therapeutic applications. The development of molecular Trojan horses is a promising drug targeting technology that allows for non-invasive delivery of therapeutics in

  2. Targeted drug delivery across the blood–brain barrier using ultrasound technique

    OpenAIRE

    Deng, Cheri X.

    2010-01-01

    Effective delivery of therapeutic agents into the brain can greatly improve the treatments of neurological and neurodegenerative diseases. Application of focused ultrasound facilitated by microbubbles has shown the potential to deliver drugs across the blood–brain barrier into targeted sites within the brain noninvasively. This review provides a summary of the technological background and principle, highlights of recent significant developments and research progress, as well as a critical com...

  3. Smuggling Drugs into the Brain: An Overview of Ligands Targeting Transcytosis for Drug Delivery across the Blood–Brain Barrier

    Directory of Open Access Journals (Sweden)

    Julia V. Georgieva

    2014-11-01

    Full Text Available The blood–brain barrier acts as a physical barrier that prevents free entry of blood-derived substances, including those intended for therapeutic applications. The development of molecular Trojan horses is a promising drug targeting technology that allows for non-invasive delivery of therapeutics into the brain. This concept relies on the application of natural or genetically engineered proteins or small peptides, capable of specifically ferrying a drug-payload that is either directly coupled or encapsulated in an appropriate nanocarrier, across the blood–brain barrier via receptor-mediated transcytosis. Specifically, in this process the nanocarrier–drug system (“Trojan horse complex” is transported transcellularly across the brain endothelium, from the blood to the brain interface, essentially trailed by a native receptor. Naturally, only certain properties would favor a receptor to serve as a transporter for nanocarriers, coated with appropriate ligands. Here we briefly discuss brain microvascular endothelial receptors that have been explored until now, highlighting molecular features that govern the efficiency of nanocarrier-mediated drug delivery into the brain.

  4. Targeted liposomes for drug delivery across the blood-brain barrier

    NARCIS (Netherlands)

    van Rooy, I.

    2011-01-01

    Our brain is protected by the blood-brain barrier (BBB). This barrier is formed by specialized endothelial cells of the brain vasculature and prevents toxic substances from entering the brain. The downside of this barrier is that many drugs that have been developed to cure brain diseases cannot cros

  5. Ultrasound-mediated blood-brain barrier disruption for targeted drug delivery in the central nervous system

    Science.gov (United States)

    McDannold, Nathan; Zhang, Yongzhi; Power, Chanikarn; Arvanitis, Costas D.; Vykhodtseva, Natalia; Livingstone, Margaret

    2015-05-01

    The physiology of the vasculature in the central nervous system (CNS), which includes the blood-brain barrier (BBB) and other factors, complicates the delivery of most drugs to the brain. Different methods have been used to bypass the BBB, but they have limitations such as being invasive, non-targeted or requiring the formulation of new drugs. Focused ultrasound (FUS), when combined with circulating microbubbles, is a noninvasive method to locally and transiently disrupt the BBB at discrete targets. The method presents new opportunities for the use of drugs and for the study of the brain.

  6. Ultrasound-mediated blood-brain barrier disruption for targeted drug delivery in the central nervous system

    OpenAIRE

    Aryal, Muna; Arvanitis, Costas D.; Alexander, Phillip M.; McDannold, Nathan

    2014-01-01

    The physiology of the vasculature in the central nervous system (CNS), which includes the blood-brain barrier (BBB) and other factors, complicates the delivery of most drugs to the brain. Different methods have been used to bypass the BBB, but they have limitations such as being invasive, non-targeted or requiring the formulation of new drugs. Focused ultrasound (FUS), when combined with circulating microbubbles, is a noninvasive method to locally and transiently disrupt the BBB at discrete t...

  7. A novel blood-brain barrier co-culture system for drug targeting of Alzheimer's disease: establishment by using acitretin as a model drug.

    Science.gov (United States)

    Freese, Christian; Reinhardt, Sven; Hefner, Gudrun; Unger, Ronald E; Kirkpatrick, C James; Endres, Kristina

    2014-01-01

    In the pathogenesis of Alzheimer's disease (AD) the homeostasis of amyloid precursor protein (APP) processing in the brain is impaired. The expression of the competing proteases ADAM10 (a disintegrin and metalloproteinase 10) and BACE-1 (beta site APP cleaving enzyme 1) is shifted in favor of the A-beta generating enzyme BACE-1. Acitretin--a synthetic retinoid-e.g., has been shown to increase ADAM10 gene expression, resulting in a decreased level of A-beta peptides within the brain of AD model mice and thus is of possible value for AD therapy. A striking challenge in evaluating novel therapeutically applicable drugs is the analysis of their potential to overcome the blood-brain barrier (BBB) for central nervous system targeting. In this study, we established a novel cell-based bio-assay model to test ADAM10-inducing drugs for their ability to cross the BBB. We therefore used primary porcine brain endothelial cells (PBECs) and human neuroblastoma cells (SH-SY5Y) transfected with an ADAM10-promoter luciferase reporter vector in an indirect co-culture system. Acitretin served as a model substance that crosses the BBB and induces ADAM10 expression. We ensured that ADAM10-dependent constitutive APP metabolism in the neuronal cells was unaffected under co-cultivation conditions. Barrier properties established by PBECs were augmented by co-cultivation with SH-SY5Y cells and they remained stable during the treatment with acitretin as demonstrated by electrical resistance measurement and permeability-coefficient determination. As a consequence of transcellular acitretin transport measured by HPLC, the activity of the ADAM10-promoter reporter gene was significantly increased in co-cultured neuronal cells as compared to vehicle-treated controls. In the present study, we provide a new bio-assay system relevant for the study of drug targeting of AD. This bio-assay can easily be adapted to analyze other Alzheimer- or CNS disease-relevant targets in neuronal cells, as their

  8. Transient disruption of vascular barriers using focused ultrasound and microbubbles for targeted drug delivery in the brain

    Science.gov (United States)

    Aryal, Muna

    The physiology of the vasculature in the central nervous system (CNS) which includes the blood-brain-barrier (BBB) and other factors, prevents the transport of most anticancer agents to the brain and restricts delivery to infiltrating brain tumors. The heterogeneous vascular permeability in tumor vessels (blood-tumor barrier; BTB), along with several other factors, creates additional hurdles for drug treatment of brain tumors. Different methods have been used to bypass the BBB/BTB, but they have their own limitations such as being invasive, non-targeted or requiring the formulation of new drugs. Magnetic Resonance Imaging guided Focused Ultrasound (MRIgFUS), when combined with circulating microbubbles, is an emerging noninvasive method to temporarily permeabilize the BBB and BTB. The purpose of this thesis was to use this alternative approach to deliver chemotherapeutic agents through the BBB/BTB for brain tumor treatment in a rodent model to overcome the hinderances encountered in prior approaches tested for drug delivery in the CNS. The results presented in thesis demonstrate that MRIgFUS can be used to achieve consistent and reproducible BBB/BTB disruption in rats. It enabled us to achieve clinically-relevant concentrations of doxorubicin (~ 4.8+/-0.5 microg/g) delivered to the brain with the sonication parameters (0.69 MHz; 0.55 MPa; 10 ms bursts; 1 Hz PRF; 60 s duration), microbubble concentration (Definity, 10 microl/kg), and liposomoal doxorubicin (Lipo-DOX) dose (5.67 mg/kg) used. The resulting doxorubicin concentration was reduced by 32% when the agent was injected 10 minute after the last sonication. Three weekly sessions of FUS and Lipo-DOX appeared to be safe in the rat brain, despite some minor tissue damage. Importantly, the severe neurotoxicity seen in earlier works using other approaches does not appear to occur with delivery via FUS-BBB disruption. The resuls from three weekly treatments of FUS and Lipo-DOX in a rat glioma model are highly

  9. Barriers to drug delivery in solid tumors.

    Science.gov (United States)

    Sriraman, Shravan Kumar; Aryasomayajula, Bhawani; Torchilin, Vladimir P

    2014-01-01

    Over the last decade, significant progress has been made in the field of drug delivery. The advent of engineered nanoparticles has allowed us to circumvent the initial limitations to drug delivery such as pharmacokinetics and solubility. However, in spite of significant advances to tumor targeting, an effective treatment strategy for malignant tumors still remains elusive. Tumors possess distinct physiological features which allow them to resist traditional treatment approaches. This combined with the complexity of the biological system presents significant hurdles to the site-specific delivery of therapeutic drugs. One of the key features of engineered nanoparticles is that these can be tailored to execute specific functions. With this review, we hope to provide the reader with a clear understanding and knowledge of biological barriers and the methods to exploit these characteristics to design multifunctional nanocarriers, effect useful dosing regimens and subsequently improve therapeutic outcomes in the clinic. PMID:25068098

  10. PHYSIOLOGY AND PATHOPHYSIOLOGY OF THE BLOOD BRAIN BARRIER: P-glycoprotein and occludin trafficking as therapeutic targets to optimize CNS drug delivery

    OpenAIRE

    McCaffrey, Gwen; Davis, Thomas P.

    2012-01-01

    The blood-brain barrier (BBB) is a physical and metabolic barrier that separates the CNS from the peripheral circulation. CNS drug delivery across the BBB is challenging, primarily due to the physical restriction of paracellular diffusion between the endothelial cells that comprise the microvessels of the BBB and the activity of efflux transporters that quickly expel back into the capillary lumen a wide variety of xenobiotics. Therapeutic manipulation of protein trafficking is emerging as a n...

  11. Mucus as a Barrier to Drug Delivery

    DEFF Research Database (Denmark)

    Bøgh, Marie; Nielsen, Hanne Mørck

    2015-01-01

    Viscoelastic mucus lines all mucosal surfaces of the body and forms a potential barrier to mucosal drug delivery. Mucus is mainly composed of water and mucins; high-molecular weight glycoproteins forming an entangled network. Consequently, mucus forms a steric barrier and due to its negative char...... in the development of future oral drug delivery systems. This article is protected by copyright. All rights reserved.......Viscoelastic mucus lines all mucosal surfaces of the body and forms a potential barrier to mucosal drug delivery. Mucus is mainly composed of water and mucins; high-molecular weight glycoproteins forming an entangled network. Consequently, mucus forms a steric barrier and due to its negative charge...... barrier to drug delivery. Current knowledge of mucus characteristics and barrier properties, as achieved by state-of-the-art methodologies, is the topic of this MiniReview emphasizing the gastrointestinal mucus and an overall focus on oral drug delivery. Cell culture-based in vitro models are well...

  12. LIVER SPECIFIC DRUG TARGETING STRATEGIES: A REVIEW

    OpenAIRE

    Ramesh S. Gorad*, Satish K. Mandlik and Kishore N. Gujar

    2013-01-01

    Drug delivery to liver is one of the most challenging research areas in pharmaceutical sciences. The some physiological barrier such as opsonization, mechanical entrapment by pulmonary vascular bed, uptake by RES represents an insurmountable obstacle for a large number of proteins and drugs, including antibiotics, antineoplastic agents and antiviral agents to target liver disorders. Therefore, various strategies have been proposed to improve the delivery of different drugs to liver and hepato...

  13. Magnetic targeted drug delivery

    Directory of Open Access Journals (Sweden)

    Timothy Wiedmann

    2009-10-01

    Full Text Available Lung cancer is the most common cause of death from cancer in both men and women. Treatment by intravenous or oral administration of chemotherapy agents results in serious and often treatment-limiting side effects. Delivery of drugs directly to the lung by inhalation of an aerosol holds the promise of achieving a higher concentration in the lung with lower blood levels. To further enhance the selective lung deposition, it may be possible to target deposition by using external magnetic fields to direct the delivery of drug coupled to magnetic particles. Moreover, alternating magnetic fields can be used to induce particle heating, which in turn controls the drug release rate with the appropriate thermal sensitive material.With this goal, superparamagetic nanoparticles (SPNP were prepared and characterized, and enhanced magnetic deposition was demonstrated in vitro and in vivo. SPNPs were also incorporated into a lipid-based/SPNP aerosol formulation, and drug release was shown to be controlled by thermal activation. Because of the inherent imaging potential of SPNPs, this use of nanotechnology offers the possibility of coupling the diagnosis of lung cancer to drug release, which perhaps will ultimately provide the “magic bullet” that Paul Ehrlich originally sought.

  14. Drug targeting to the brain.

    Science.gov (United States)

    Pardridge, William M

    2007-09-01

    The goal of brain drug targeting technology is the delivery of therapeutics across the blood-brain barrier (BBB), including the human BBB. This is accomplished by re-engineering pharmaceuticals to cross the BBB via specific endogenous transporters localized within the brain capillary endothelium. Certain endogenous peptides, such as insulin or transferrin, undergo receptor-mediated transport (RMT) across the BBB in vivo. In addition, peptidomimetic monoclonal antibodies (MAb) may also cross the BBB via RMT on the endogenous transporters. The MAb may be used as a molecular Trojan horse to ferry across the BBB large molecule pharmaceuticals, including recombinant proteins, antibodies, RNA interference drugs, or non-viral gene medicines. Fusion proteins of the molecular Trojan horse and either neurotrophins or single chain Fv antibodies have been genetically engineered. The fusion proteins retain bi-functional properties, and both bind the BBB receptor, to trigger transport into brain, and bind the cognate receptor inside brain to induce the pharmacologic effect. Trojan horse liposome technology enables the brain targeting of non-viral plasmid DNA. Molecular Trojan horses may be formulated with fusion protein technology, avidin-biotin technology, or Trojan horse liposomes to target to brain virtually any large molecule pharmaceutical. PMID:17554607

  15. Targeted Delivery of Protein Drugs by Nanocarriers

    Directory of Open Access Journals (Sweden)

    Antonella Battisti

    2010-03-01

    Full Text Available Recent advances in biotechnology demonstrate that peptides and proteins are the basis of a new generation of drugs. However, the transportation of protein drugs in the body is limited by their high molecular weight, which prevents the crossing of tissue barriers, and by their short lifetime due to immuno response and enzymatic degradation. Moreover, the ability to selectively deliver drugs to target organs, tissues or cells is a major challenge in the treatment of several human diseases, including cancer. Indeed, targeted delivery can be much more efficient than systemic application, while improving bioavailability and limiting undesirable side effects. This review describes how the use of targeted nanocarriers such as nanoparticles and liposomes can improve the pharmacokinetic properties of protein drugs, thus increasing their safety and maximizing the therapeutic effect.

  16. Double-targeted polymersomes and liposomes for multiple barrier crossing.

    Science.gov (United States)

    Sánchez-Purrà, M; Ramos, V; Petrenko, V A; Torchilin, V P; Borrós, S

    2016-09-25

    In order to treat metastasis in the brain, drug delivery systems must overcome multiple physical barriers between the point of administration and the target, such as the Blood-brain barrier, that hinder their free access across them. Multiple targeting approaches arise as a promising alternative to this barrier and target certain tissues inside the brain at a time. Herein, two surface modification methods are presented to obtain dual-targeted vesicle-like carriers functionalized with an MCF-7-specific phage protein and a BBB-specific peptide, providing the system the ability to cross a BBB model, target breast cancer cells and deliver its payload. The aim of this study was to compare new designed polymersomes with liposomes, a well-established delivery vehicle, in terms of drug loading, targeting, release and tumor cell killing. The bilayer structure of both systems allowed the conjugation with different ligands both by insertion and covalent binding. Different behaviour was observed in release, uptake and tumor cell killing corresponding to differences in membrane permeability of both vehicles and type of targeting and ligands' combination. Preliminary results showed that both formulations were able to cross the BBB monolayer without harming it, showing cytotoxic activity in the abluminal compartment. PMID:27498281

  17. LIVER SPECIFIC DRUG TARGETING STRATEGIES: A REVIEW

    Directory of Open Access Journals (Sweden)

    Ramesh S. Gorad*, Satish K. Mandlik and Kishore N. Gujar

    2013-11-01

    Full Text Available Drug delivery to liver is one of the most challenging research areas in pharmaceutical sciences. The some physiological barrier such as opsonization, mechanical entrapment by pulmonary vascular bed, uptake by RES represents an insurmountable obstacle for a large number of proteins and drugs, including antibiotics, antineoplastic agents and antiviral agents to target liver disorders. Therefore, various strategies have been proposed to improve the delivery of different drugs to liver and hepatocytes which includes passive accumulation of nanoparticle therapeutics and active targeting by surface modifications of nanoparticles with specific ligands such as carbohydrates, peptides, proteins and antibodies. The present review enlightens about different pathologies of liver and targeting strategies employed in relation to liver anatomy and disease etiologies.

  18. NATURAL BARRIERS TARGETED THRUST FY 2004 PROJECTS

    Energy Technology Data Exchange (ETDEWEB)

    NA

    2005-07-27

    This booklet contains project descriptions of work performed by the Department of Energy (DOE), Office of Civilian Radioactive Waste Management (OCRWM), Office of Science and Technology and International's (OST&I) Natural Barriers Targeted Thrust during Fiscal Year (FY) 2004. The Natural Barriers Targeted Thrust is part of OST&I's Science and Technology Program which supports the OCRWM mission to manage and dispose of high-level radioactive waste and spent nuclear fuel in a manner that protects health, safety, and the environment; enhances national and energy security; and merits public confidence. In general, the projects described will continue beyond FY 2004 assuming that the technical work remains relevant to the proposed Yucca Mountain Repository and sufficient funding is made available to the Science and Technology Program.

  19. Liposomes and nanotechnology in drug development: focus on ocular targets.

    Science.gov (United States)

    Honda, Miki; Asai, Tomohiro; Oku, Naoto; Araki, Yoshihiko; Tanaka, Minoru; Ebihara, Nobuyuki

    2013-01-01

    Poor drug delivery to lesions in patients' eyes is a major obstacle to the treatment of ocular diseases. The accessibility of these areas to drugs is highly restricted by the presence of barriers, including the corneal barrier, aqueous barrier, and the inner and outer blood-retinal barriers. In particular, the posterior segment is difficult to reach for drugs because of its structural peculiarities. This review discusses various barriers to drug delivery and provides comprehensive information for designing nanoparticle-mediated drug delivery systems for the treatment of ocular diseases. Nanoparticles can be designed to improve penetration, controlled release, and drug targeting. As highlighted in this review, the therapeutic efficacy of drugs in ocular diseases has been reported to be enhanced by the use of nanoparticles such as liposomes, micro/nanospheres, microemulsions, and dendrimers. Our recent data show that intravitreal injection of targeted liposomes encapsulating an angiogenesis inhibitor caused significantly greater suppression of choroidal neovascularization than did the injection of free drug. Recent progress in ocular drug delivery systems research has provided new insights into drug development, and the use of nanoparticles for drug delivery is thus a promising approach for advanced therapy of ocular diseases. PMID:23439842

  20. Barrier qualities of the mouse eye to topically applied drugs.

    Science.gov (United States)

    Wang, Zhao; Do, Chi Wai; Avila, Marcel Y; Stone, Richard A; Jacobson, Kenneth A; Civan, Mortimer M

    2007-07-01

    The mouse eye displays unusually rapid intraocular pressure (IOP) responses to topically applied drugs as measured by the invasive servo-null micropipette system (SNMS). To learn if the time course reflected rapid drug transfer across the thin mouse cornea and sclera, we monitored a different parameter, pupillary size, following topical application of droplets containing 40 microM (0.073 microg) carbachol. No miosis developed from this low carbachol concentration unless the cornea was impaled with an exploring micropipette as used in the SNMS. We also compared the mouse IOP response to several purinergic drugs, measured by the invasive SNMS and non-invasive pneumotonometry. Responses to the previously studied non-selective adenosine-receptor (AR) agonist adenosine, the A(3)-selective agonist Cl-IB-MECA and the A(3)-selective antagonist MRS 1191 were all enhanced to varying degrees, in time and magnitude, by corneal impalement. We conclude that the thin ocular coats of the mouse eye actually present a substantial barrier to drug penetration. Corneal impalement with even fine-tipped micropipettes can significantly enhance entry of topically-applied drugs into the mouse aqueous humor, reflecting either direct diffusion around the tip or a more complex impalement-triggered change in ocular barrier properties. Comparison of invasive and non-invasive measurement methods can document drug efficacy at intraocular target sites even if topical drug penetration is too slow to manifest convincing physiologic effects in intact eyes. PMID:17490649

  1. Evaluation and validation of drug targets

    Institute of Scientific and Technical Information of China (English)

    Guan-huaDU

    2004-01-01

    Drug target is one of the key factors for discovering and developing new drugs. To find and validate drug targets is a crucial technique required in drug discovery by the strategy of high throughput screening. Based on the knowledge of molecular biology, human genomics and proteomics, it has been predicted that 5000 to 10000 drug targets exist in human. So, it is important orocedure to evaluate and validate the drug targets.

  2. Nanoscale drug delivery systems and the blood–brain barrier

    Directory of Open Access Journals (Sweden)

    Alyautdin R

    2014-02-01

    comprehensively discusses the functional morphology of the BBB and the challenges that must be overcome by drug-delivery systems and elaborates on the potential targets, mechanisms, and formulations to improve drug delivery to the CNS.Keywords: apoE, blood–brain barrier, CNS, drug targeting, liposomes, nanoparticles

  3. Liposomes and nanotechnology in drug development: focus on ocular targets

    Directory of Open Access Journals (Sweden)

    Honda M

    2013-02-01

    Full Text Available Miki Honda,1 Tomohiro Asai,2 Naoto Oku,2 Yoshihiko Araki,3 Minoru Tanaka,1 Nobuyuki Ebihara11Department of Ophthalmology, Juntendo University Urayasu Hospital, Chiba, Japan; 2Department of Medical Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan; 3Institute for Environmental and Gender-Specific Medicine, Juntendo University Graduate School of Medicine, Chiba, JapanAbstract: Poor drug delivery to lesions in patients' eyes is a major obstacle to the treatment of ocular diseases. The accessibility of these areas to drugs is highly restricted by the presence of barriers, including the corneal barrier, aqueous barrier, and the inner and outer blood–retinal barriers. In particular, the posterior segment is difficult to reach for drugs because of its structural peculiarities. This review discusses various barriers to drug delivery and provides comprehensive information for designing nanoparticle-mediated drug delivery systems for the treatment of ocular diseases. Nanoparticles can be designed to improve penetration, controlled release, and drug targeting. As highlighted in this review, the therapeutic efficacy of drugs in ocular diseases has been reported to be enhanced by the use of nanoparticles such as liposomes, micro/nanospheres, microemulsions, and dendrimers. Our recent data show that intravitreal injection of targeted liposomes encapsulating an angiogenesis inhibitor caused significantly greater suppression of choroidal neovascularization than did the injection of free drug. Recent progress in ocular drug delivery systems research has provided new insights into drug development, and the use of nanoparticles for drug delivery is thus a promising approach for advanced therapy of ocular diseases.Keywords: intravitreal injection, drug delivery system, age-related macular degeneration, APRPG-modified PEGylated liposome, DDS

  4. Drug delivery to the hair follicle : role of follicular tight junctions as a biological barrier and the potential for targeting clobetasol nanocarriers

    OpenAIRE

    Mathes, Christiane

    2015-01-01

    The porcine ear skin model has become a well-accepted in vitro model for follicular uptake studies of nanoparticle-based drug delivery systems. The present study further confirms the suitability and transferability of this model to human tissue regarding chemical composition of various hair follicle (HF) components, as well as expression and localization of follicular tight junction (TJ) proteins claudin-1, -3, -4, occludin, and ZO-1, by means of confocal Raman microscopy, qPCR, and immunosta...

  5. NEW DRUG TARGETING TREATMENT - GLIVEC

    Institute of Scientific and Technical Information of China (English)

    SUN Xue-mei(孙雪梅); BRADY Ben

    2003-01-01

    This review evaluates the role of Glivec in the treatment of chronic myelogenous leukemia and other malignant tumors. Preclinical and clinical evidence showed that Glivec demonstrated a potent and specific inhibition on BCR-ABL positive leukemias and other malignant tumors in which overexpression of c-kit and PDGFR-β played a major role in their pathogenesis. Glivec has induced complete hematologic responses in up to 98% of patients evaluated in clinical trials. It's a very successful drug that supported the idea of targeted therapy through inhibition of tyrosine kinases. Although it's still in the early stages of clinical development and the resistance to Glivec remains to be a problem needed further study, a great deal has been learned from these research and observation. And with the increasing data, molecular targeting therapy will play much more important role in the treatment of malignant tumors. With the better understanding of the pathogenesis of malignant tumors, well-designed drugs targeting the specific molecular abnormalities with higher efficacy and lower side effect will benefit numerous patients with malignant tumors.

  6. Nanoscale drug delivery systems and the blood-brain barrier.

    Science.gov (United States)

    Alyautdin, Renad; Khalin, Igor; Nafeeza, Mohd Ismail; Haron, Muhammad Huzaimi; Kuznetsov, Dmitry

    2014-01-01

    The protective properties of the blood-brain barrier (BBB) are conferred by the intricate architecture of its endothelium coupled with multiple specific transport systems expressed on the surface of endothelial cells (ECs) in the brain's vasculature. When the stringent control of the BBB is disrupted, such as following EC damage, substances that are safe for peripheral tissues but toxic to neurons have easier access to the central nervous system (CNS). As a consequence, CNS disorders, including degenerative diseases, can occur independently of an individual's age. Although the BBB is crucial in regulating the biochemical environment that is essential for maintaining neuronal integrity, it limits drug delivery to the CNS. This makes it difficult to deliver beneficial drugs across the BBB while preventing the passage of potential neurotoxins. Available options include transport of drugs across the ECs through traversing occludins and claudins in the tight junctions or by attaching drugs to one of the existing transport systems. Either way, access must specifically allow only the passage of a particular drug. In general, the BBB allows small molecules to enter the CNS; however, most drugs with the potential to treat neurological disorders other than infections have large structures. Several mechanisms, such as modifications of the built-in pumping-out system of drugs and utilization of nanocarriers and liposomes, are among the drug-delivery systems that have been tested; however, each has its limitations and constraints. This review comprehensively discusses the functional morphology of the BBB and the challenges that must be overcome by drug-delivery systems and elaborates on the potential targets, mechanisms, and formulations to improve drug delivery to the CNS.

  7. Drug targeting through pilosebaceous route.

    Science.gov (United States)

    Chourasia, Rashmi; Jain, Sanjay K

    2009-10-01

    Local skin targeting is of interest for the pharmaceutical and the cosmetic industry. A topically applied substance has basically three possibilities to penetrate into the skin: transcellular, intercellular, and follicular. The transfollicular path has been largely ignored because hair follicles constitute only 0.1% of the total skin. The hair follicle is a skin appendage with a complex structure containing many cell types that produce highly specialised proteins. The hair follicle is in a continuous cycle: anagen is the hair growth phase, catagen the involution phase and telogen is the resting phase. Nonetheless, the hair follicle has great potential for skin treatment, owing to its deep extension into the dermis and thus provides much deeper penetration and absorption of compounds beneath the skin than seen with the transdermal route. In the case of skin diseases and of cosmetic products, delivery to sweat glands or to the pilosebaceous unit is essential for the effectiveness of the drug. Increased accumulation in the pilosebaceous unit could treat alopecia, acne and skin cancer more efficiently and improve the effect of cosmetic substances and nutrients. Therefore, we review herein various drug delivery systems, including liposomes, niosomes, microspheres, nanoparticles, nanoemulsions, lipid nanocarriers, gene therapy and discuss the results of recent researches. We also review the drugs which have been investigated for pilosebaceous delivery.

  8. Drug targeting through pilosebaceous route.

    Science.gov (United States)

    Chourasia, Rashmi; Jain, Sanjay K

    2009-10-01

    Local skin targeting is of interest for the pharmaceutical and the cosmetic industry. A topically applied substance has basically three possibilities to penetrate into the skin: transcellular, intercellular, and follicular. The transfollicular path has been largely ignored because hair follicles constitute only 0.1% of the total skin. The hair follicle is a skin appendage with a complex structure containing many cell types that produce highly specialised proteins. The hair follicle is in a continuous cycle: anagen is the hair growth phase, catagen the involution phase and telogen is the resting phase. Nonetheless, the hair follicle has great potential for skin treatment, owing to its deep extension into the dermis and thus provides much deeper penetration and absorption of compounds beneath the skin than seen with the transdermal route. In the case of skin diseases and of cosmetic products, delivery to sweat glands or to the pilosebaceous unit is essential for the effectiveness of the drug. Increased accumulation in the pilosebaceous unit could treat alopecia, acne and skin cancer more efficiently and improve the effect of cosmetic substances and nutrients. Therefore, we review herein various drug delivery systems, including liposomes, niosomes, microspheres, nanoparticles, nanoemulsions, lipid nanocarriers, gene therapy and discuss the results of recent researches. We also review the drugs which have been investigated for pilosebaceous delivery. PMID:19663765

  9. Antiepileptic drugs: newer targets and new drugs

    OpenAIRE

    Vihang S. Chawan; Abhishek M. Phatak; Kalpesh V. Gawand; Sagar V. Badwane; Sagar S. Panchal

    2016-01-01

    Epilepsy is a common neurological disorder affecting 0.5-1% of the population in India. Majority of patients respond to currently available antiepileptic drugs (AEDs), but a small percentage of patients have shown poor and inadequate response to AEDs in addition to various side effects and drug interactions while on therapy. Thus there is a need to develop more effective AEDs in drug resistant epilepsy which have a better safety profile with minimal adverse effects. The United States food and...

  10. Aquaporins as potential drug targets

    Institute of Scientific and Technical Information of China (English)

    Fang WANG; Xue-chao FENG; Yong-ming LI; Hong YANG; Tong-hui MA

    2006-01-01

    The aquaporins (AQP) are a family of integral membrane proteins that selectively transport water and,in some cases,small neutral solutes such as glycerol and urea.Thirteen mammalian AQP have been molecularly identified and localized to various epithelial,endothelial and other tissues.Phenotype studies of transgenic mouse models of AQP knockout,mutation,and in some cases humans with AQP mutations have demonstrated essential roles for AQP in mammalian physiology and pathophysiology,including urinary concentrating function,exocrine glandular fluid secretion,brain edema formation,regulation of intracranial and intraocular pressure,skin hydration,fat metabolism,tumor angiogenesis and cell migration.These studies suggest that AQP may be potential drug targets for not only new diuretic reagents for various forms of pathological water retention,but also targets for novel therapy of brain edema,inflammatory disease,glaucoma,obesity,and cancer.However,potent AQP modulators for in vivo application remain to be discovered.

  11. Antiepileptic drugs: newer targets and new drugs

    Directory of Open Access Journals (Sweden)

    Vihang S. Chawan

    2016-06-01

    Full Text Available Epilepsy is a common neurological disorder affecting 0.5-1% of the population in India. Majority of patients respond to currently available antiepileptic drugs (AEDs, but a small percentage of patients have shown poor and inadequate response to AEDs in addition to various side effects and drug interactions while on therapy. Thus there is a need to develop more effective AEDs in drug resistant epilepsy which have a better safety profile with minimal adverse effects. The United States food and drug administration (USFDA has approved eslicarbazepine acetate, ezogabine, perampanel and brivaracetam which have shown a promising future as better AEDs and drugs like ganaxolone, intranasal diazepam, ICA- 105665, valnoctamide, VX-765, naluzotan are in the pipeline. [Int J Basic Clin Pharmacol 2016; 5(3.000: 587-592

  12. Limited Efficiency of Drug Delivery to Specific Intracellular Organelles Using Subcellularly "Targeted" Drug Delivery Systems.

    Science.gov (United States)

    Maity, Amit Ranjan; Stepensky, David

    2016-01-01

    Many drugs have been designed to act on intracellular targets and to affect intracellular processes inside target cells. For the desired effects to be exerted, these drugs should permeate target cells and reach specific intracellular organelles. This subcellular drug targeting approach has been proposed for enhancement of accumulation of these drugs in target organelles and improved efficiency. This approach is based on drug encapsulation in drug delivery systems (DDSs) and/or their decoration with specific targeting moieties that are intended to enhance the drug/DDS accumulation in the intracellular organelle of interest. During recent years, there has been a constant increase in interest in DDSs targeted to specific intracellular organelles, and many different approaches have been proposed for attaining efficient drug delivery to specific organelles of interest. However, it appears that in many studies insufficient efforts have been devoted to quantitative analysis of the major formulation parameters of the DDSs disposition (efficiency of DDS endocytosis and endosomal escape, intracellular trafficking, and efficiency of DDS delivery to the target organelle) and of the resulting pharmacological effects. Thus, in many cases, claims regarding efficient delivery of drug/DDS to a specific organelle and efficient subcellular targeting appear to be exaggerated. On the basis of the available experimental data, it appears that drugs/DDS decoration with specific targeting residues can affect their intracellular fate and result in preferential drug accumulation within an organelle of interest. However, it is not clear whether these approaches will be efficient in in vivo settings and be translated into preclinical and clinical applications. Studies that quantitatively assess the mechanisms, barriers, and efficiencies of subcellular drug delivery and of the associated toxic effects are required to determine the therapeutic potential of subcellular DDS targeting.

  13. Liposomes and nanotechnology in drug development: focus on neurological targets

    Directory of Open Access Journals (Sweden)

    Ramos-Cabrer P

    2013-03-01

    Full Text Available Pedro Ramos-Cabrer, Francisco Campos Clinical Neurosciences Research Laboratory, Department of Neurology, Hospital Clínico Universitario de Santiago, University of Santiago de Compostela, Health Research Institute of Santiago, Santiago de Compostela, Spain Abstract: Neurological diseases represent a medical, social, and economic problem of paramount importance in developed countries. Although their etiology is generally known, developing therapeutic interventions for the central nervous system is challenging due to the impermeability of the blood–brain barrier. Thus, the fight against neurological diseases usually struggles "at the gates" of the brain. Flooding the bloodstream with drugs, where only a minor fraction reaches its target therapeutic site, is an inefficient, expensive, and dangerous procedure, because of the risk of side effects at nontargeted sites. Currently, advances in the field of nanotechnology have enabled development of a generation of multifunctional molecular platforms that are capable of transporting drugs across the blood–brain barrier, targeting specific cell types or functional states within the brain, releasing drugs in a controlled manner, and enabling visualization of processes in vivo using conventional imaging systems. The marriage between drug delivery and molecular imaging disciplines has resulted in a relatively new discipline, known as theranostics, which represents the basis of the concept of personalized medicine. In this study, we review the concepts of the blood–brain barrier and the strategies used to traverse/bypass it, the role of nanotechnology in theranostics, the wide range of nanoparticles (with emphasis on liposomes that can be used as stealth drug carriers, imaging probes and targeting devices for the treatment of neurological diseases, and the targets and targeting strategies envisaged in the treatment of different types of brain pathology. Keywords: nanotechnology, theranostics, blood

  14. Barrier or carrier? Pulmonary surfactant and drug delivery.

    Science.gov (United States)

    Hidalgo, Alberto; Cruz, Antonio; Pérez-Gil, Jesús

    2015-09-01

    To consider the lung as a target for drug delivery and to optimise strategies directed at the pulmonary route, it is essential to consider the role of pulmonary surfactant, a thin lipid-protein film lining the respiratory surface of mammalian lungs. Membrane-based surfactant multilayers are essential for reducing the surface tension at the respiratory air-liquid interface to minimise the work of breathing. Different components of surfactant are also responsible for facilitating the removal of potentially pathological entities such as microorganisms, allergens or environmental pollutants and particles. Upon inhalation, drugs or nanoparticles first contact the surfactant layer, and these interactions critically affect their lifetime and fate in the airways. This review summarises the current knowledge on the possible role and effects of the pulmonary surfactant system in drug delivery strategies. It also summarises the evidence that suggests that pulmonary surfactant is far from being an insuperable barrier and could be used as an efficient shuttle for delivering hydrophobic and hydrophilic compounds deep into the lung and the organism.

  15. PS-109 Barriers and facilitators to implementing drug changes caused by drug tenders and shortages

    DEFF Research Database (Denmark)

    Rishøj, Rikke Mie; Christrup, Lona Louring; Clemmensen, Marianne H

    2015-01-01

    Background Drug tenders and shortages result in drug changes. International studies found that drug changes can adversely affect patient safety and the working procedures of healthcare professionals.1,2 The challenges of drug changes in Danish public hospitals have not previously been studied....... Purpose To identify barriers and facilitators for implementing drug changes due to drug tenders and shortages in Danish public hospitals. Material and methods Six focus group interviews were conducted at three hospitals in different regions of the country. At each hospital two focus group interviews were...... for drug identification during drug shortages were proposed. Conclusion This study identified different barriers and facilitators for implementing drug changes. The barriers and facilitators included specific features related to drugs, health care technology as well as to financial and organisational...

  16. Nanogel Carrier Design for Targeted Drug Delivery

    OpenAIRE

    Eckmann, D.M.; Composto, R. J.; Tsourkas, A; Muzykantov, V. R.

    2014-01-01

    Polymer-based nanogel formulations offer features attractive for drug delivery, including ease of synthesis, controllable swelling and viscoelasticity as well as drug loading and release characteristics, passive and active targeting, and the ability to formulate nanogel carriers that can respond to biological stimuli. These unique features and low toxicity make the nanogels a favorable option for vascular drug targeting. In this review, we address key chemical and biological aspects of nanoge...

  17. Targeted Drug Delivery in Pancreatic Cancer

    Science.gov (United States)

    Yu, Xianjun; Zhang, Yuqing; Chen, Changyi; Yao, Qizhi; Li, Min

    2009-01-01

    Effective drug delivery in pancreatic cancer treatment remains a major challenge. Because of the high resistance to chemo and radiation therapy, the overall survival rate for pancreatic cancer is extremely low. Recent advances in drug delivery systems hold great promise for improving cancer therapy. Using liposomes, nanoparticles, and carbon nanotubes to deliver cancer drugs and other therapeutic agents such as siRNA, suicide gene, oncolytic virus, small molecule inhibitor and antibody has been a success in recent pre-clinical trials. However, how to improve the specificity and stability of the delivered drug using ligand or antibody directed delivery represent a major problem. Therefore, developing novel, specific, tumor-targeted drug delivery systems is urgently needed for this terrible disease. This review summarizes the current progress on targeted drug delivery in pancreatic cancer, and provides important information on potential therapeutic targets for pancreatic cancer treatment. PMID:19853645

  18. Splicing regulators: targets and drugs

    OpenAIRE

    Yeo, Gene Wei-Ming

    2005-01-01

    Silencing of splicing regulators by RNA interference, combined with splicing-specific microarrays, has revealed a complex network of distinct alternative splicing events in Drosophila, while a high-throughput screen of more than 6,000 compounds has identified drugs that interfere specifically and directly with one class of splicing regulators in human cells.

  19. Drug targeting using solid lipid nanoparticles.

    Science.gov (United States)

    Rostami, Elham; Kashanian, Soheila; Azandaryani, Abbas H; Faramarzi, Hossain; Dolatabadi, Jafar Ezzati Nazhad; Omidfar, Kobra

    2014-07-01

    The present review aims to show the features of solid lipid nanoparticles (SLNs) which are at the forefront of the rapidly developing field of nanotechnology with several potential applications in drug delivery and research. Because of some unique features of SLNs such as their unique size dependent properties it offers possibility to develop new therapeutics. A common denominator of all these SLN-based platforms is to deliver drugs into specific tissues or cells in a pathological setting with minimal adverse effects on bystander cells. SLNs are capable to incorporate drugs into nanocarriers which lead to a new prototype in drug delivery which maybe used for drug targeting. Hence solid lipid nanoparticles hold great promise for reaching the goal of controlled and site specific drug delivery and hence attracted wide attention of researchers. This review presents a broad treatment of targeted solid lipid nanoparticles discussing their types such as antibody SLN, magnetic SLN, pH sensitive SLN and cationic SLN. PMID:24717692

  20. Wzy-dependent bacterial capsules as potential drug targets.

    Science.gov (United States)

    Ericsson, Daniel J; Standish, Alistair; Kobe, Bostjan; Morona, Renato

    2012-10-01

    The bacterial capsule is a recognized virulence factor in pathogenic bacteria. It likely works as an antiphagocytic barrier by minimizing complement deposition on the bacterial surface. With the continual rise of bacterial pathogens resistant to multiple antibiotics, there is an increasing need for novel drugs. In the Wzy-dependent pathway, the biosynthesis of capsular polysaccharide (CPS) is regulated by a phosphoregulatory system, whose main components consist of bacterial-tyrosine kinases (BY-kinases) and their cognate phosphatases. The ability to regulate capsule biosynthesis has been shown to be vital for pathogenicity, because different stages of infection require a shift in capsule thickness, making the phosphoregulatory proteins suitable as drug targets. Here, we review the role of regulatory proteins focusing on Streptococcus pneumoniae, Staphylococcus aureus, and Escherichia coli and discuss their suitability as targets in structure-based drug design.

  1. USE OF LIPOSOMES AND NANOPARTICLES FOR BRAIN DRUG TARGETING

    Directory of Open Access Journals (Sweden)

    Goutam Pal

    2012-08-01

    Full Text Available The Blood Brain Barrier (BBB poses a obstacle for a drugs, including antineoplastic agent, antibiotics, neuropeptides, CNS active agents, to be delivered to the brain for therapeutic reasons. The use of formulation dependent strategy such as the use of heterogenous pharmaceutical systems for its effective targeting to the brain is being explored recently. Liposomes and Nanoparticles are good possibilities to achieve the goal. Chemically modified liposomes and nanoparticles are tried in recent times to act as brain targeting aids, and this article tries to explain the possibilities and problems behind such an endeavor.KEY WORDS:

  2. Aptamers for Targeted Drug Delivery

    Directory of Open Access Journals (Sweden)

    Partha Ray

    2010-05-01

    Full Text Available Aptamers are a class of therapeutic oligonucleotides that form specific three-dimensional structures that are dictated by their sequences. They are typically generated by an iterative screening process of complex nucleic acid libraries employing a process termed Systemic Evolution of Ligands by Exponential Enrichment (SELEX. SELEX has traditionally been performed using purified proteins, and cell surface receptors may be challenging to purify in their properly folded and modified conformations. Therefore, relatively few aptamers have been generated that bind cell surface receptors. However, improvements in recombinant fusion protein technology have increased the availability of receptor extracellular domains as purified protein targets, and the development of cell-based selection techniques has allowed selection against surface proteins in their native configuration on the cell surface. With cell-based selection, a specific protein target is not always chosen, but selection is performed against a target cell type with the goal of letting the aptamer choose the target. Several studies have demonstrated that aptamers that bind cell surface receptors may have functions other than just blocking receptor-ligand interactions. All cell surface proteins cycle intracellularly to some extent, and many surface receptors are actively internalized in response to ligand binding. Therefore, aptamers that bind cell surface receptors have been exploited for the delivery of a variety of cargoes into cells. This review focuses on recent progress and current challenges in the field of aptamer-mediated delivery.

  3. Targeted therapies for malignant gliomas: novel agents, same barrier

    OpenAIRE

    Lin, F.

    2013-01-01

    Malignant gliomas are common and devastating brain malignancies. Despite this extensive treatment the mean overall survival is still only 14.6 months and more effective treatments are urgently needed. Targeted therapy holds the promise for the new generation of chemotherapy due to the selectively target inhibition of deregulated signaling pathways in cancer cell but not normal cells. However, recent researches suggested that the blood-brain barrier (BBB) restricting the brain delivery of most...

  4. Mathematical modelling of magnetically targeted drug delivery

    Energy Technology Data Exchange (ETDEWEB)

    Grief, Andrew D. [Theoretical Mechanics, School of Mathematical Sciences, University of Nottingham, University Park, Nottingham NG7 2RD (United Kingdom)]. E-mail: andrew.grief@nottingham.ac.uk; Richardson, Giles [Theoretical Mechanics, School of Mathematical Sciences, University of Nottingham, University Park, Nottingham NG7 2RD (United Kingdom)]. E-mail: giles.richardson@nottingham.ac.uk

    2005-05-15

    A mathematical model for targeted drug delivery using magnetic particles is developed. This includes a diffusive flux of particles arising from interactions between erythrocytes in the microcirculation. The model is used to track particles in a vessel network. Magnetic field design is discussed and we show that it is impossible to specifically target internal regions using an externally applied field.

  5. Novel targeted bladder drug-delivery systems: a review

    Directory of Open Access Journals (Sweden)

    Zacchè MM

    2015-11-01

    Full Text Available Martino Maria Zacchè, Sushma Srikrishna, Linda Cardozo Department of Urogynaecology, King's College Hospital, London, UK Abstract: The objective of pharmaceutics is the development of drugs with increased efficacy and reduced side effects. Prolonged exposure of the diseased tissue to the drug is of crucial importance. Drug-delivery systems (DDSs have been introduced to control rate, time, and place of release. Drugs can easily reach the bladder through a catheter, while systemically administered agents may undergo extensive metabolism. Continuous urine filling and subsequent washout hinder intravesical drug delivery (IDD. Moreover, the low permeability of the urothelium, also described as the bladder permeability barrier, poses a major challenge in the development of the IDD. DDSs increase bioavailability of drugs, therefore improving therapeutic effect and patient compliance. This review focuses on novel DDSs to treat bladder conditions such as overactive bladder, interstitial cystitis, bladder cancer, and recurrent urinary tract infections. The rationale and strategies for both systemic and local delivery methods are discussed, with emphasis on new formulations of well-known drugs (oxybutynin, nanocarriers, polymeric hydrogels, intravesical devices, encapsulated DDSs, and gene therapy. We give an overview of current and future prospects of DDSs for bladder disorders, including nanotechnology and gene therapy. Keywords: drug targeting, drug-delivery system, bladder disorders

  6. Nanobiotechnology-based drug delivery in brain targeting.

    Science.gov (United States)

    Dinda, Subas C; Pattnaik, Gurudutta

    2013-01-01

    Blood brain barrier (BBB) found to act as rate limiting factor in drug delivery to brain in combating the central nervous system (CNS) disorders. Such limiting physiological factors include the reticuloendothelial system and protein opsonization, which present across BBB, play major role in reducing the passage of drug. Several approaches employed to improve the drug delivery across the BBB. Nanoparticles (NP) are the solid colloidal particle ranges from 1 to 1000 nm in size utilized as career for drug delivery. At present NPs are found to play a significant advantage over the other methods of available drug delivery systems to deliver the drug across the BBB. Nanoparticles may be because of its size and functionalization characteristics able to penetrate and facilitate the drug delivery through the barrier. There are number of mechanisms and strategies found to be involved in this process, which are based on the type of nanomaterials used and its combination with therapeutic agents, such materials include liposomes, polymeric nanoparticles and non-viral vectors of nano-sizes for CNS gene therapy, etc. Nanotechnology is expected to reduce the need for invasive procedures for delivery of therapeutics to the CNS. Some devices such as implanted catheters and reservoirs however will still be needed to overcome the problems in effective drug delivery to the CNS. Nanomaterials are found to improve the safety and efficacy level of drug delivery devices in brain targeting. Nanoegineered devices are found to be delivering the drugs at cellular levels through nono-fluidic channels. Different drug delivery systems such as liposomes, microspheres, nanoparticles, nonogels and nonobiocapsules have been used to improve the bioavailability of the drug in the brain, but microchips and biodegradable polymeric nanoparticulate careers are found to be more effective therapeutically in treating brain tumor. The physiological approaches also utilized to improve the transcytosis capacity

  7. Fluid mechanics aspects of magnetic drug targeting.

    Science.gov (United States)

    Odenbach, Stefan

    2015-10-01

    Experiments and numerical simulations using a flow phantom for magnetic drug targeting have been undertaken. The flow phantom is a half y-branched tube configuration where the main tube represents an artery from which a tumour-supplying artery, which is simulated by the side branch of the flow phantom, branches off. In the experiments a quantification of the amount of magnetic particles targeted towards the branch by a magnetic field applied via a permanent magnet is achieved by impedance measurement using sensor coils. Measuring the targeting efficiency, i.e. the relative amount of particles targeted to the side branch, for different field configurations one obtains targeting maps which combine the targeting efficiency with the magnetic force densities in characteristic points in the flow phantom. It could be shown that targeting efficiency depends strongly on the magnetic field configuration. A corresponding numerical model has been set up, which allows the simulation of targeting efficiency for variable field configuration. With this simulation good agreement of targeting efficiency with experimental data has been found. Thus, the basis has been laid for future calculations of optimal field configurations in clinical applications of magnetic drug targeting. Moreover, the numerical model allows the variation of additional parameters of the drug targeting process and thus an estimation of the influence, e.g. of the fluid properties on the targeting efficiency. Corresponding calculations have shown that the non-Newtonian behaviour of the fluid will significantly influence the targeting process, an aspect which has to be taken into account, especially recalling the fact that the viscosity of magnetic suspensions depends strongly on the magnetic field strength and the mechanical load. PMID:26415215

  8. P-glycoprotein targeted nanoscale drug carriers

    KAUST Repository

    Li, Wengang

    2013-02-01

    Multi-drug resistance (MDR) is a trend whereby tumor cells exposed to one cytotoxic agent develop cross-resistance to a range of structurally and functionally unrelated compounds. P -glycoprotein (P -gp) efflux pump is one of the mostly studied drug carrying processes that shuttle the drugs out of tumor cells. Thus, P -gp inhibitors have attracted a lot of attention as they can stop cancer drugs from being pumped out of target cells with the consumption of ATP. Using quantitive structure activity relationship (QSAR), we have successfully synthesized a series of novel P -gp inhibitors. The obtained dihydropyrroloquinoxalines series were fully characterized and then tested against bacterial and tumor assays with over-expressed P -gps. All compounds were bioactive especially compound 1c that had enhanced antibacterial activity. Furthermore, these compounds were utilized as targeting vectors to direct drug delivery vehicles such as silica nanoparticles (SNPs) to cancerous Hela cells with over expressed P -gps. Cell uptake studies showed a successful accumulation of these decorated SNPs in tumor cells compared to undecorated SNPs. The results obtained show that dihydropyrroloquinoxalines constitute a promising drug candidate for targeting cancers with MDR. Copyright © 2013 American Scientific Publishers All rights reserved.

  9. Targeting molecular networks for drug research

    Directory of Open Access Journals (Sweden)

    José Pedro Pinto

    2014-06-01

    Full Text Available The study of molecular networks has recently moved into the limelight of biomedical research. While it has certainly provided us with plenty of new insights into cellular mechanisms, the challenge now is how to modify or even restructure these networks. This is especially true for human diseases, which can be regarded as manifestations of distorted states of molecular networks. Of the possible interventions for altering networks, the use of drugs is presently the most feasible. In this mini-review, we present and discuss some exemplary approaches of how analysis of molecular interaction networks can contribute to pharmacology (e.g., by identifying new drug targets or prediction of drug side effects, as well as listing pointers to relevant resources and software to guide future research. We also outline recent progress in the use of drugs for in vitro reprogramming of cells, which constitutes an example par excellence for altering molecular interaction networks with drugs.

  10. Mystery unraveled about antifungal drug targets

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    @@ A long-standing mystery about the functional roles of the N-terminal region of protein N-myristoyltransferase, an ideal target for antifungal drugs, was recently decoded, thanks to the threeyear joint efforts of researchers from the CAS Key Laboratory of Molecular Biology and their US colleagues at the DuPont Stine Haskell Research Center.

  11. Drug-induced regulation of target expression

    DEFF Research Database (Denmark)

    Iskar, Murat; Campillos, Monica; Kuhn, Michael;

    2010-01-01

    further newly identified drug-induced differential regulation of Lanosterol 14-alpha demethylase, Endoplasmin, DNA topoisomerase 2-alpha and Calmodulin 1. The feedback regulation in these and other targets is likely to be relevant for the success or failure of the molecular intervention....

  12. Combinatorial approaches for the identification of brain drug delivery targets.

    Science.gov (United States)

    Stutz, Charles C; Zhang, Xiaobin; Shusta, Eric V

    2014-01-01

    The blood-brain barrier (BBB) represents a large obstacle for the treatment of central nervous system diseases. Targeting endogenous nutrient transporters that transcytose the BBB is one promising approach to selectively and noninvasively deliver a drug payload to the brain. The main limitations of the currently employed transcytosing receptors are their ubiquitous expression in the peripheral vasculature and the inherent low levels of transcytosis mediated by such systems. In this review, approaches designed to increase the repertoire of transcytosing receptors which can be targeted for the purpose of drug delivery are discussed. In particular, combinatorial protein libraries can be screened on BBB cells in vitro or in vivo to isolate targeting peptides or antibodies that can trigger transcytosis. Once these targeting reagents are discovered, the cognate BBB transcytosis system can be identified using techniques such as expression cloning or immunoprecipitation coupled with mass spectrometry. Continued technological advances in BBB genomics and proteomics, membrane protein manipulation, and in vitro BBB technology promise to further advance the capability to identify and optimize peptides and antibodies capable of mediating drug transport across the BBB.

  13. Extracellular proteases as targets for drug development.

    Science.gov (United States)

    Cudic, Mare; Fields, Gregg B

    2009-08-01

    Proteases constitute one of the primary targets in drug discovery. In the present review, we focus on extracellular proteases (ECPs) because of their differential expression in many pathophysiological processes, including cancer, cardiovascular conditions, and inflammatory, pulmonary, and periodontal diseases. Many new ECP inhibitors are currently under clinical investigation and a significant increase in new therapies based on protease inhibition can be expected in the coming years. In addition to directly blocking the activity of a targeted protease, one can take advantage of differential expression in disease states to selectively deliver therapeutic or imaging agents. Recent studies in targeted drug development for the metalloproteases (matrix metalloproteinases, adamalysins, pappalysins, neprilysin, angiotensin-converting enzyme, metallocarboxypeptidases, and glutamate carboxypeptidase II), serine proteases (elastase, coagulation factors, tissue/urokinase plasminogen activator system, kallikreins, tryptase, dipeptidyl peptidase IV) and cysteine proteases (cathepsin B) are discussed herein. PMID:19689354

  14. Targeted proteins for diabetes drug design

    Science.gov (United States)

    Doan Trang Nguyen, Ngoc; Thi Le, Ly

    2012-03-01

    Type 2 diabetes mellitus is a common metabolism disorder characterized by high glucose in the bloodstream, especially in the case of insulin resistance and relative insulin deficiency. Nowadays, it is very common in middle-aged people and involves such dangerous symptoms as increasing risk of stroke, obesity and heart failure. In Vietnam, besides the common treatment of insulin injection, some herbal medication is used but no unified optimum remedy for the disease yet exists and there is no production of antidiabetic drugs in the domestic market yet. In the development of nanomedicine at the present time, drug design is considered as an innovative tool for researchers to study the mechanisms of diseases at the molecular level. The aim of this article is to review some common protein targets involved in type 2 diabetes, offering a new idea for designing new drug candidates to produce antidiabetic drugs against type 2 diabetes for Vietnamese people.

  15. Polymeric nanoparticles assembled with microfluidics for drug delivery across the blood-brain barrier

    Science.gov (United States)

    Tavares, M. R.; de Menezes, L. R.; do Nascimento, D. F.; Souza, D. H. S.; Reynaud, F.; Marques, M. F. V.; Tavares, M. I. B.

    2016-07-01

    The blood-brain barrier (BBB) is a challenge in the treatment of some diseases, since it prevents many drugs from reaching therapeutic concentrations in the brain. In this context, there is a growing interest in nanoparticles for drug delivery, since they are able to cross this barrier and target the brain. The use of polymeric materials in the development of these nanoparticles has been extensively studied. It has already been demonstrated that these nanosystems have the ability to cross the BBB, which allows effective drug release into the brain. Biodegradable polymers provide a great advantage in the development of nanosystems, but modifications of the nanoparticles' surface is essential. The traditional batch methods lack precise control over the processes of nucleation and growth, resulting in poor control over final properties of the nanoparticles. Therefore, microfluidics could be used to achieve a better production environment for the fabrication of nano- structured drug delivery systems. This study provides a brief review of: the BBB, the polymeric nanoparticles with the ability to overcome the barrier, the properties of the most used polymeric matrices, and the nanostructured drug delivery systems assembled with microfluidics.

  16. Strategies to improve intracellular drug delivery by targeted liposomes

    NARCIS (Netherlands)

    Fretz, M.M.

    2007-01-01

    Biotechnological advances increased the number of novel macromolecular drugs and new drug targets. The latter are mostly found intracellular. Unfortunately, most of the new macromolecular drugs rely on drug delivery tools for their intracellular delivery because their unfavourable physicochemical pr

  17. Tumor targeting using liposomal antineoplastic drugs

    Directory of Open Access Journals (Sweden)

    Jörg Huwyler

    2008-03-01

    Full Text Available Jörg Huwyler1, Jürgen Drewe2, Stephan Krähenbühl21University of Applied Sciences Northwestern Switzerland, Institute of Pharma Technology, Muttenz, Switzerland; 2Department of Research and Division of Clinical Pharmacology, University Hospital Basel, Basel, SwitzerlandAbstract: During the last years, liposomes (microparticulate phospholipid vesicles have beenused with growing success as pharmaceutical carriers for antineoplastic drugs. Fields of application include lipid-based formulations to enhance the solubility of poorly soluble antitumordrugs, the use of pegylated liposomes for passive targeting of solid tumors as well as vector-conjugated liposomal carriers for active targeting of tumor tissue. Such formulation and drug targeting strategies enhance the effectiveness of anticancer chemotherapy and reduce at the same time the risk of toxic side-effects. The present article reviews the principles of different liposomal technologies and discusses current trends in this field of research.Keywords: tumor targeting, antineoplastic drugs, liposomes, pegylation, steric stabilization, immunoliposomes

  18. Mining metabolic networks for optimal drug targets.

    Science.gov (United States)

    Sridhar, Padmavati; Song, Bin; Kahveci, Tamer; Ranka, Sanjay

    2008-01-01

    Recent advances in bioinformatics promote drug-design methods that aim to reduce side-effects. Efficient computational methods are required to identify the optimal enzyme-combination (i.e., drug targets) whose inhibition, will achieve the required effect of eliminating a given target set of compounds, while incurring minimal side-effects. We formulate the optimal enzyme-combination identification problem as an optimization problem on metabolic networks. We define a graph based computational damage model that encapsulates the impact of enzymes onto compounds in metabolic networks. We develop a branch-and-bound algorithm, named OPMET, to explore the search space dynamically. We also develop two filtering strategies to prune the search space while still guaranteeing an optimal solution. They compute an upper bound to the number of target compounds eliminated and a lower bound to the side-effect respectively. Our experiments on the human metabolic network demonstrate that the proposed algorithm can accurately identify the target enzymes for known successful drugs in the literature. Our experiments also show that OPMET can reduce the total search time by several orders of magnitude as compared to the exhaustive search. PMID:18229694

  19. Chemical signatures and new drug targets for gametocytocidal drug development

    Science.gov (United States)

    Sun, Wei; Tanaka, Takeshi Q.; Magle, Crystal T.; Huang, Wenwei; Southall, Noel; Huang, Ruili; Dehdashti, Seameen J.; McKew, John C.; Williamson, Kim C.; Zheng, Wei

    2014-01-01

    Control of parasite transmission is critical for the eradication of malaria. However, most antimalarial drugs are not active against P. falciparum gametocytes, responsible for the spread of malaria. Consequently, patients can remain infectious for weeks after the clearance of asexual parasites and clinical symptoms. Here we report the identification of 27 potent gametocytocidal compounds (IC50 oocyst formation in a mouse model of transmission. These results provide critical new leads and potential targets to expand the repertoire of malaria transmission-blocking reagents.

  20. Targeting of antileishmanial drugs produced by nanotechnologies

    OpenAIRE

    Pujals Naranjo, Georgina

    2007-01-01

    The aim of this work is to develop an effective new MGA delivery system by means of nanotechnology for the treatment of leishmaniosis which could be administered by parenteral or oral route in a future. Moreover, for ensuring the effectiveness of the formulations developed, their in vitro activities will be assessed against L. infantum. The intention is to prepare a target drug delivery system by means of different technological strategies like micro-nanoparticles by spray drying. These formu...

  1. Extracellular proteases as targets for drug development

    OpenAIRE

    Cudic, Mare; Fields, Gregg B.

    2009-01-01

    Proteases constitute one of the primary targets in drug discovery. In the present review, we focus on extracellular proteases (ECPs) because of their differential expression in many pathophysiological processes, including cancer, cardiovascular conditions, and inflammatory, pulmonary, and periodontal diseases. Many new ECP inhibitors are currently under clinical investigation and a significant increase in new therapies based on protease inhibition can be expected in the coming years. In addit...

  2. Prediction of potential drug targets based on simple sequence properties

    Directory of Open Access Journals (Sweden)

    Lai Luhua

    2007-09-01

    Full Text Available Abstract Background During the past decades, research and development in drug discovery have attracted much attention and efforts. However, only 324 drug targets are known for clinical drugs up to now. Identifying potential drug targets is the first step in the process of modern drug discovery for developing novel therapeutic agents. Therefore, the identification and validation of new and effective drug targets are of great value for drug discovery in both academia and pharmaceutical industry. If a protein can be predicted in advance for its potential application as a drug target, the drug discovery process targeting this protein will be greatly speeded up. In the current study, based on the properties of known drug targets, we have developed a sequence-based drug target prediction method for fast identification of novel drug targets. Results Based on simple physicochemical properties extracted from protein sequences of known drug targets, several support vector machine models have been constructed in this study. The best model can distinguish currently known drug targets from non drug targets at an accuracy of 84%. Using this model, potential protein drug targets of human origin from Swiss-Prot were predicted, some of which have already attracted much attention as potential drug targets in pharmaceutical research. Conclusion We have developed a drug target prediction method based solely on protein sequence information without the knowledge of family/domain annotation, or the protein 3D structure. This method can be applied in novel drug target identification and validation, as well as genome scale drug target predictions.

  3. VNP: Interactive Visual Network Pharmacology of Diseases, Targets, and Drugs

    OpenAIRE

    Hu, Q-N; Deng, Z.; Tu, W; X. Yang; Meng, Z-B; Deng, Z-X; Liu, J

    2014-01-01

    In drug discovery, promiscuous targets, multifactorial diseases, and “dirty” drugs construct complex network relationships. Network pharmacology description and analysis not only give a systems-level understanding of drug action and disease complexity but can also help to improve the efficiency of target selection and drug design. Visual network pharmacology (VNP) is developed to visualize network pharmacology of targets, diseases, and drugs with a graph network by using disease, target or dr...

  4. Barriers to the Preclinical Development of Therapeutics that Target Aging Mechanisms

    Science.gov (United States)

    Burd, Christin E.; Gill, Matthew S.; Niedernhofer, Laura J.; Robbins, Paul D.; Austad, Steven N.; Barzilai, Nir

    2016-01-01

    Through the progress of basic science research, fundamental mechanisms that contribute to age-related decline are being described with increasing depth and detail. Although these efforts have identified new drug targets and compounds that extend life span in model organisms, clinical trials of therapeutics that target aging processes remain scarce. Progress in aging research is hindered by barriers associated with the translation of basic science discoveries into the clinic. This report summarizes discussions held at a 2014 Geroscience Network retreat focused on identifying hurdles that currently impede the preclinical development of drugs targeting fundamental aging processes. From these discussions, it was evident that aging researchers have varied perceptions of the ideal preclinical pipeline. To forge a clear and cohesive path forward, several areas of controversy must first be resolved and new tools developed. Here, we focus on five key issues in preclinical drug development (drug discovery, lead compound development, translational preclinical biomarkers, funding, and integration between researchers and clinicians), expanding upon discussions held at the Geroscience Retreat and suggesting areas for further research. By bringing these findings to the attention of the aging research community, we hope to lay the foundation for a concerted preclinical drug development pipeline. PMID:27535964

  5. Drug Delivery Systems, CNS Protection, and the Blood Brain Barrier

    OpenAIRE

    Ravi Kant Upadhyay

    2014-01-01

    Present review highlights various drug delivery systems used for delivery of pharmaceutical agents mainly antibiotics, antineoplastic agents, neuropeptides, and other therapeutic substances through the endothelial capillaries (BBB) for CNS therapeutics. In addition, the use of ultrasound in delivery of therapeutic agents/biomolecules such as proline rich peptides, prodrugs, radiopharmaceuticals, proteins, immunoglobulins, and chimeric peptides to the target sites in deep tissue locations insi...

  6. Bioinspired Nanonetworks for Targeted Cancer Drug Delivery.

    Science.gov (United States)

    Raz, Nasibeh Rady; Akbarzadeh-T, Mohammad-R; Tafaghodi, Mohsen

    2015-12-01

    A biomimicry approach to nanonetworks is proposed here for targeted cancer drug delivery (TDD). The swarm of bioinspired nanomachines utilizes the blood distribution network and chemotaxis to carry drug through the vascular system to the cancer site, recognized by a high concentration of vascular endothelial growth factor (VEGF). Our approach is multi-scale and includes processes that occur both within cells and with their neighbors. The proposed bionanonetwork takes advantage of several organic processes, some of which already occur within the human body, such as a plate-like structure similar to those of red blood cells for more environmental contact; a berry fruit architecture for its internal multi-foams architecture; the penetrable structure of cancer cells, tissue, as well as the porous structure of the capillaries for drug penetration; state of glycocalyx for ligand-receptor adhesion; as well as changes in pH state of blood and O 2 release for nanomachine communication. For a more appropriate evaluation, we compare our work with a conventional chemotherapy approach using a mathematical model of cancer under actual experimental parameter settings. Simulation results show the merits of the proposed method in targeted cancer therapy by improving the densities of the relevant cancer cell types and VEGF concentration, while following more organic and natural processes. PMID:26529771

  7. Drug-therapy networks and the predictions of novel drug targets

    OpenAIRE

    Spiro, Zoltan; Kovacs, Istvan A.; Csermely, Peter

    2008-01-01

    Recently, a number of drug-therapy, disease, drug, and drug-target networks have been introduced. Here we suggest novel methods for network-based prediction of novel drug targets and for improvement of drug efficiency by analysing the effects of drugs on the robustness of cellular networks.

  8. Cooperative assembly in targeted drug delivery

    Science.gov (United States)

    Auguste, Debra

    2012-02-01

    Described as cell analogues, liposomes are self-assembled lipid bilayer spheres that encapsulate aqueous volumes. Liposomes offer several drug delivery advantages due to their structural versatility related to size, composition, bilayer fluidity, and ability to encapsulate a large variety of compounds non-covalently. However, liposomes lack the structural information embedded within cell membranes. Partitioning of unsaturated and saturated lipids into liquid crystalline (Lα) and gel phase (Lβ) domains, respectively, affects local molecular diffusion and elasticity. Liposome microdomains may be used to pattern molecules, such as antibodies, on the liposome surface to create concentrated, segregated binding regions. We have synthesized, characterized, and evaluated a series of homogeneous and heterogeneous liposomal vehicles that target inflamed endothelium. These drug delivery vehicles are designed to complement the heterogeneous presentation of lipids and receptors on endothelial cells (ECs). EC surfaces are dynamic; they segregate receptors within saturated lipid microdomains on the cell surface to regulate binding and signaling events. We have demonstrated that cooperative binding of two antibodies enhances targeting by multiple fold. Further, we have shown that organization of these antibodies on the surface can further enhance cell uptake. The data suggest that EC targeting may be enhanced by designing liposomes that mirror the segregated structure of lipid and receptor molecules involved in neutrophil-EC adhesion. This strategy is employed in an atherosclerotic mouse model in vivo.

  9. Drug Delivery Systems, CNS Protection, and the Blood Brain Barrier

    Directory of Open Access Journals (Sweden)

    Ravi Kant Upadhyay

    2014-01-01

    Full Text Available Present review highlights various drug delivery systems used for delivery of pharmaceutical agents mainly antibiotics, antineoplastic agents, neuropeptides, and other therapeutic substances through the endothelial capillaries (BBB for CNS therapeutics. In addition, the use of ultrasound in delivery of therapeutic agents/biomolecules such as proline rich peptides, prodrugs, radiopharmaceuticals, proteins, immunoglobulins, and chimeric peptides to the target sites in deep tissue locations inside tumor sites of brain has been explained. In addition, therapeutic applications of various types of nanoparticles such as chitosan based nanomers, dendrimers, carbon nanotubes, niosomes, beta cyclodextrin carriers, cholesterol mediated cationic solid lipid nanoparticles, colloidal drug carriers, liposomes, and micelles have been discussed with their recent advancements. Emphasis has been given on the need of physiological and therapeutic optimization of existing drug delivery methods and their carriers to deliver therapeutic amount of drug into the brain for treatment of various neurological diseases and disorders. Further, strong recommendations are being made to develop nanosized drug carriers/vehicles and noninvasive therapeutic alternatives of conventional methods for better therapeutics of CNS related diseases. Hence, there is an urgent need to design nontoxic biocompatible drugs and develop noninvasive delivery methods to check posttreatment clinical fatalities in neuropatients which occur due to existing highly toxic invasive drugs and treatment methods.

  10. Emerging migraine treatments and drug targets

    DEFF Research Database (Denmark)

    Olesen, Jes; Ashina, Messoud

    2011-01-01

    Migraine has a 1-year prevalence of 10% and high socioeconomic costs. Despite recent drug developments, there is a huge unmet need for better pharmacotherapy. In this review we discuss promising anti-migraine strategies such as calcitonin gene-related peptide (CGRP) receptor antagonists and 5......-hydroxytrypamine (5-HT)(1F) receptor agonists, which are in late-stage development. Nitric oxide antagonists are also in development. New forms of administration of sumatriptan might improve efficacy and reduce side effects. Botulinum toxin A has recently been approved for the prophylaxis of chronic migraine....... Tonabersat, a cortical spreading depression inhibitor, has shown efficacy in the prophylaxis of migraine with aura. Several new drug targets such as nitric oxide synthase, the 5-HT(1D) receptor, the prostanoid receptors EP(2) and EP(4), and the pituitary adenylate cyclase receptor PAC1 await development. The...

  11. New drugs and treatment targets in psoriasis.

    Science.gov (United States)

    Kofoed, Kristian; Skov, Lone; Zachariae, Claus

    2015-02-01

    In recent years, the increased understanding of the pathophysiology of psoriasis has resulted in several new treatments. The success of ustekinumab proved the importance of the IL-23/T helper cell 17 axis in psoriatic diseases. Several new biologics targeting this axis will reach the clinic in the next years. Biologics are costly, require injections, and some patients experience tacaphylaxis, thus, the development of orally available, small-molecule inhibitors is desirable. Among small-molecules under investigation are A3 adenosine receptor agonists, Janus kinase inhibitors, and phosphodiesterase inhibitors. We review published clinical trials, and conference abstracts presented during the last years, concerned with new drugs under development for the treatment of psoriasis. In conclusion, our psoriasis armamentarium will be filled with several new effective therapeutic options the coming years. We need to be aware of the limitations of drug safety data when selecting new novel treatments. Monitoring and clinical registries are still important tools.

  12. New Drugs and Treatment Targets in Psoriasis

    DEFF Research Database (Denmark)

    Kofoed, Kristian; Skov, Lone; Zachariae, Claus

    2015-01-01

    In recent years, the increased understanding of the pathophysiology of psoriasis has resulted in several new treatments. The success of ustekinumab proved the importance of the IL-23/T helper cell 17 axis in psoriatic diseases. Several new biologics targeting this axis will reach the clinic......, and phosphodiesterase inhibitors. We review published clinical trials, and conference abstracts presented during the last years, concerned with new drugs under development for the treatment of psoriasis. In conclusion, our psoriasis armamentarium will be filled with several new effective therapeutic options the coming...... years. We need to be aware of the limitations of drug safety data when selecting new novel treatments. Monitoring and clinical registries are still important tools....

  13. Emerging migraine treatments and drug targets

    DEFF Research Database (Denmark)

    Olesen, Jes; Ashina, Messoud

    2011-01-01

    Migraine has a 1-year prevalence of 10% and high socioeconomic costs. Despite recent drug developments, there is a huge unmet need for better pharmacotherapy. In this review we discuss promising anti-migraine strategies such as calcitonin gene-related peptide (CGRP) receptor antagonists and 5......-hydroxytrypamine (5-HT)(1F) receptor agonists, which are in late-stage development. Nitric oxide antagonists are also in development. New forms of administration of sumatriptan might improve efficacy and reduce side effects. Botulinum toxin A has recently been approved for the prophylaxis of chronic migraine....... Tonabersat, a cortical spreading depression inhibitor, has shown efficacy in the prophylaxis of migraine with aura. Several new drug targets such as nitric oxide synthase, the 5-HT(1D) receptor, the prostanoid receptors EP(2) and EP(4), and the pituitary adenylate cyclase receptor PAC1 await development...

  14. Meningococcal disease and future drug targets

    DEFF Research Database (Denmark)

    Colding, Hanne; Hartzen, S H; Penkowa, Milena;

    2011-01-01

    recent data and current knowledge on molecular mechanisms of meningococcal disease and explains how host immune responses ultimately may aggravate neuropathology and the clinical prognosis. Within this context, particular importance is paid to the endotoxic components that provide potential drug targets......Neisseria meningitidis (N. meningitidis) causes sepsis, epidemic meningitis, and sometimes also meningoencephalitis. Despite early antibiotic treatment, mortality and morbidity remain significant. We present recent studies on meningococcal disease with focus on the pathophysiology caused......-host interactions are key determinants of the clinical course and risk of fatal outcome. Accordingly, successful treatment of severe meningococcal disease requires not only antibiotics but also adjuvants targeting the released endotoxins and the host immune/inflammatory responses. This review highlights the most...

  15. Focused ultrasound-mediated drug delivery through the blood-brain barrier.

    Science.gov (United States)

    Burgess, Alison; Shah, Kairavi; Hough, Olivia; Hynynen, Kullervo

    2015-05-01

    Despite recent advances in blood-brain barrier (BBB) research, it remains a significant hurdle for the pharmaceutical treatment of brain diseases. Focused ultrasound (FUS) is one method to transiently increase permeability of the BBB to promote drug delivery to specific brain regions. An introduction to the BBB and a brief overview of the methods, which can be used to circumvent the BBB to promote drug delivery, is provided. In particular, we discuss the advantages and limitations of FUS technology and the efficacy of FUS-mediated drug delivery in models of disease. MRI for targeting and evaluating FUS treatments, combined with administration of microbubbles, allows for transient, reproducible BBB opening. The integration of a real-time acoustic feedback controller has improved treatment safety. Successful clinical translation of FUS has the potential to transform the treatment of brain disease worldwide without requiring the development of new pharmaceutical agents.

  16. Examining the Uptake of Central Nervous System Drugs and Candidates across the Blood-Brain Barrier.

    Science.gov (United States)

    Summerfield, Scott G; Zhang, Yanyan; Liu, Houfu

    2016-08-01

    Assessing the equilibration of the unbound drug concentrations across the blood-brain barrier (Kp,uu) has progressively replaced the partition coefficient based on the ratio of the total concentration in brain tissue to blood (Kp). Here, in vivo brain distribution studies were performed on a set of central nervous system (CNS)-targeted compounds in both rats and P-glycoprotein (P-gp) genetic knockout mice. Several CNS drugs are characterized by Kp,uu values greater than unity, inferring facilitated uptake across the rodent blood-brain barrier (BBB). Examples are shown in which Kp,uu also increases above unity on knockout of P-gp, highlighting the composite nature of this parameter with respect to facilitated BBB uptake, efflux, and passive diffusion. Several molecules with high Kp,uu values share common structural elements, whereas uptake across the BBB appears more prevalent in the CNS-targeted drug set than the chemical templates being generated within the current lead optimization paradigm. Challenges for identifying high Kp,uu compounds are discussed in the context of acute versus steady-state data and cross-species differences. Evidently, there is a need for better predictive models of human brain Kp,uu. PMID:27194478

  17. The hydrogenosome as a drug target.

    Science.gov (United States)

    Benchimol, Marlene

    2008-01-01

    Hydrogenosomes are spherical or slightly elongated organelles found in non-mitochondrial organisms. In Trichomonas hydrogenosomes measure between 200 to 500 nm, but under drug treatment they can reach 2 microm. Like mitochondria hydrogenosomes: (1) are surrounded by two closely apposed membranes and present a granular matrix: (2) divide in three different ways: segmentation, partition and the heart form; (3) they may divide at any phase of the cell cycle; (4) produce ATP; (5) participate in the metabolism of pyruvate formed during glycolysis; (6) are the site of molecular hydrogen formation; (7) present a relationship with the endoplasmic reticulum; (8) incorporate calcium; (9) import proteins post-translationally; (10) present cardiolipin. However, there are differences, such as: (1) absence of genetic material, at least in trichomonas; (2) lack a respiratory chain and cytochromes; (3) absence of the F(0)-F(1) ATPase; (4) absence of the tricarboxylic acid cycle; (5) lack of oxidative phosphorylation; (6) presence of peripheral vesicles. Hydrogenosomes are considered an excellent drug target since their metabolic pathway is distinct from those found in mitochondria and thus medicines directed to these organelles will probably not affect the host-cell. The main drug used against trichomonads is metronidazole, although other drugs such as beta-Lapachone, colchicine, Taxol, nocodazole, griseofulvin, cytochalasins, hydroxyurea, among others, have been used in trichomonad studies, showing: (1) flagella internalization forming pseudocyst; (2) dysfunctional hydrogenosomes; (3) hydrogenosomes with abnormal sizes and shapes and with an electron dense deposit called nucleoid; (4) intense autophagy in which hydrogenosomes are removed and further digested in lysosomes. PMID:18473836

  18. Neurological disorders and therapeutics targeted to surmount the blood–brain barrier

    Directory of Open Access Journals (Sweden)

    Kanwar JR

    2012-07-01

    Full Text Available Jagat R Kanwar, Bhasker Sriramoju, Rupinder K KanwarNanomedicine Laboratory of Immunology and Molecular Biomedical Research, Centre for Biotechnology and Interdisciplinary Biosciences, Institute for Frontier Materials (IFM, Deakin University, Waurn Ponds, Victoria, AustraliaAbstract: We are now in an aging population, so neurological disorders, particularly the neurodegenerative diseases, are becoming more prevalent in society. As per the epidemiological studies, Europe alone suffers 35% of the burden, indicating an alarming rate of disease progression. Further, treatment for these disorders is a challenging area due to the presence of the tightly regulated blood–brain barrier and its unique ability to protect the brain from xenobiotics. Conventional therapeutics, although effective, remain critically below levels of optimum therapeutic efficacy. Hence, methods to overcome the blood–brain barrier are currently a focus of research. Nanotechnological applications are gaining paramount importance in addressing this question, and yielding some promising results. This review addresses the pathophysiology of the more common neurological disorders and novel drug candidates, along with targeted nanoparticle applications for brain delivery.Keywords: blood–brain barrier, neurological diseases, brain delivery, targeted nanoparticles

  19. Multi-Target Drugs: The Trend of Drug Research and Development

    OpenAIRE

    Jin-Jian Lu; Wei Pan; Yuan-Jia Hu; Yi-Tao Wang

    2012-01-01

    Summarizing the status of drugs in the market and examining the trend of drug research and development is important in drug discovery. In this study, we compared the drug targets and the market sales of the new molecular entities approved by the U.S. Food and Drug Administration from January 2000 to December 2009. Two networks, namely, the target-target and drug-drug networks, have been set up using the network analysis tools. The multi-target drugs have much more potential, as shown by the n...

  20. Phage display:development of nanocarriers for targeted drug delivery to the brain

    Institute of Scientific and Technical Information of China (English)

    Babak Bakhshinejad; Marzieh Karimi; Mohammad Khalaj-Kondori

    2015-01-01

    The blood brain barrier represents a formidable obstacle for the transport of most systemati-cally administered neurodiagnostics and neurotherapeutics to the brain. Phage display is a high throughput screening strategy that can be used for the construction of nanomaterial peptide libraries. These libraries can be screened for ifnding brain targeting peptide ligands. Surface func-tionalization of a variety of nanocarriers with these brain homing peptides is a sophisticated way to develop nanobiotechnology-based drug delivery platforms that are able to cross the blood brain barrier. These efifcient drug delivery systems raise our hopes for the diagnosis and treatment of various brain disorders in the future.

  1. The drug target genes show higher evolutionary conservation than non-target genes.

    Science.gov (United States)

    Lv, Wenhua; Xu, Yongdeng; Guo, Yiying; Yu, Ziqi; Feng, Guanglong; Liu, Panpan; Luan, Meiwei; Zhu, Hongjie; Liu, Guiyou; Zhang, Mingming; Lv, Hongchao; Duan, Lian; Shang, Zhenwei; Li, Jin; Jiang, Yongshuai; Zhang, Ruijie

    2016-01-26

    Although evidence indicates that drug target genes share some common evolutionary features, there have been few studies analyzing evolutionary features of drug targets from an overall level. Therefore, we conducted an analysis which aimed to investigate the evolutionary characteristics of drug target genes. We compared the evolutionary conservation between human drug target genes and non-target genes by combining both the evolutionary features and network topological properties in human protein-protein interaction network. The evolution rate, conservation score and the percentage of orthologous genes of 21 species were included in our study. Meanwhile, four topological features including the average shortest path length, betweenness centrality, clustering coefficient and degree were considered for comparison analysis. Then we got four results as following: compared with non-drug target genes, 1) drug target genes had lower evolutionary rates; 2) drug target genes had higher conservation scores; 3) drug target genes had higher percentages of orthologous genes and 4) drug target genes had a tighter network structure including higher degrees, betweenness centrality, clustering coefficients and lower average shortest path lengths. These results demonstrate that drug target genes are more evolutionarily conserved than non-drug target genes. We hope that our study will provide valuable information for other researchers who are interested in evolutionary conservation of drug targets.

  2. Breaking barriers in the genomics and pharmacogenetics of drug addiction

    Science.gov (United States)

    Ho, MK; Goldman, D; Heinz, A; Kaprio, J; Kreek, MJ; Li, MD; Munafò, MR; Tyndale, RF

    2013-01-01

    Drug addictions remain a substantial health issue, with limited treatment options currently available. Despite considerable advances in the understanding of our genetic architecture, the genetic underpinning of complex disorders remains elusive. Numerous candidate genes have been implicated in the etiology and response to treatment for different addictions based on our current understanding of the neurobiology. Genome-wide association studies have also provided novel targets. However, replication of these studies is often lacking which complicates interpretation; this will improve as issues such as phenotypic characterization, the apparent “missing heritability”, the identification of functional variants, and possible gene-environment interactions are addressed. In addition, there is growing evidence that genetic information can be useful for refining the choice of addiction treatment. As genetic testing becomes more common in the practice of medicine, a variety of ethical and practical challenges, some of which are unique to drug addiction, will also need to be considered. PMID:20981002

  3. Identifying mechanism-of-action targets for drugs and probes.

    Science.gov (United States)

    Gregori-Puigjané, Elisabet; Setola, Vincent; Hert, Jérôme; Crews, Brenda A; Irwin, John J; Lounkine, Eugen; Marnett, Lawrence; Roth, Bryan L; Shoichet, Brian K

    2012-07-10

    Notwithstanding their key roles in therapy and as biological probes, 7% of approved drugs are purported to have no known primary target, and up to 18% lack a well-defined mechanism of action. Using a chemoinformatics approach, we sought to "de-orphanize" drugs that lack primary targets. Surprisingly, targets could be easily predicted for many: Whereas these targets were not known to us nor to the common databases, most could be confirmed by literature search, leaving only 13 Food and Drug Administration-approved drugs with unknown targets; the number of drugs without molecular targets likely is far fewer than reported. The number of worldwide drugs without reasonable molecular targets similarly dropped, from 352 (25%) to 44 (4%). Nevertheless, there remained at least seven drugs for which reasonable mechanism-of-action targets were unknown but could be predicted, including the antitussives clemastine, cloperastine, and nepinalone; the antiemetic benzquinamide; the muscle relaxant cyclobenzaprine; the analgesic nefopam; and the immunomodulator lobenzarit. For each, predicted targets were confirmed experimentally, with affinities within their physiological concentration ranges. Turning this question on its head, we next asked which drugs were specific enough to act as chemical probes. Over 100 drugs met the standard criteria for probes, and 40 did so by more stringent criteria. A chemical information approach to drug-target association can guide therapeutic development and reveal applications to probe biology, a focus of much current interest. PMID:22711801

  4. Drug target identification using side-effect similarity

    DEFF Research Database (Denmark)

    Campillos, Monica; Kuhn, Michael; Gavin, Anne-Claude;

    2008-01-01

    Targets for drugs have so far been predicted on the basis of molecular or cellular features, for example, by exploiting similarity in chemical structure or in activity across cell lines. We used phenotypic side-effect similarities to infer whether two drugs share a target. Applied to 746 marketed...... drugs, a network of 1018 side effect-driven drug-drug relations became apparent, 261 of which are formed by chemically dissimilar drugs from different therapeutic indications. We experimentally tested 20 of these unexpected drug-drug relations and validated 13 implied drug-target relations by in vitro...... binding assays, of which 11 reveal inhibition constants equal to less than 10 micromolar. Nine of these were tested and confirmed in cell assays, documenting the feasibility of using phenotypic information to infer molecular interactions and hinting at new uses of marketed drugs....

  5. Prediction of Drug-Target Interactions for Drug Repositioning Only Based on Genomic Expression Similarity

    OpenAIRE

    Kejian Wang; Jiazhi Sun; Shufeng Zhou; Chunling Wan; Shengying Qin; Can Li; Lin He; Lun Yang

    2013-01-01

    Small drug molecules usually bind to multiple protein targets or even unintended off-targets. Such drug promiscuity has often led to unwanted or unexplained drug reactions, resulting in side effects or drug repositioning opportunities. So it is always an important issue in pharmacology to identify potential drug-target interactions (DTI). However, DTI discovery by experiment remains a challenging task, due to high expense of time and resources. Many computational methods are therefore develop...

  6. Identifying drug-target proteins based on network features

    Institute of Scientific and Technical Information of China (English)

    ZHU MingZhu; GAO Lei; LI Xia; LIU ZhiCheng

    2009-01-01

    Proteins rarely function in isolation Inside and outside cells, but operate as part of a highly Intercon-nected cellular network called the interaction network. Therefore, the analysis of the properties of drug-target proteins in the biological network is especially helpful for understanding the mechanism of drug action In terms of informatice. At present, no detailed characterization and description of the topological features of drug-target proteins have been available in the human protein-protein interac-tion network. In this work, by mapping the drug-targets in DrugBank onto the interaction network of human proteins, five topological indices of drug-targets were analyzed and compared with those of the whole protein interactome set and the non-drug-target set. The experimental results showed that drug-target proteins have higher connectivity and quicker communication with each other in the PPI network. Based on these features, all proteins In the interaction network were ranked. The results showed that, of the top 100 proteins, 48 are covered by DrugBank; of the remaining 52 proteins, 9 are drug-target proteins covered by the TTD, Matador and other databases, while others have been dem-onstrated to be drug-target proteins in the literature.

  7. Identifying drug-target proteins based on network features

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Proteins rarely function in isolation inside and outside cells, but operate as part of a highly intercon- nected cellular network called the interaction network. Therefore, the analysis of the properties of drug-target proteins in the biological network is especially helpful for understanding the mechanism of drug action in terms of informatics. At present, no detailed characterization and description of the topological features of drug-target proteins have been available in the human protein-protein interac- tion network. In this work, by mapping the drug-targets in DrugBank onto the interaction network of human proteins, five topological indices of drug-targets were analyzed and compared with those of the whole protein interactome set and the non-drug-target set. The experimental results showed that drug-target proteins have higher connectivity and quicker communication with each other in the PPI network. Based on these features, all proteins in the interaction network were ranked. The results showed that, of the top 100 proteins, 48 are covered by DrugBank; of the remaining 52 proteins, 9 are drug-target proteins covered by the TTD, Matador and other databases, while others have been dem- onstrated to be drug-target proteins in the literature.

  8. MAGNETIC MICROSPHERES AS A TARGETED DRUG DELIVERY SYSTEM : A REVIEW

    Directory of Open Access Journals (Sweden)

    TARUN PATEL

    2012-06-01

    Full Text Available The in-vivo targeting of tumors with magnetic microspheres is currently realized through the applicationof external non-uniform magnetic fields generated by rare-earth permanent magnets or electromagnets.This technique can be applied to magnetically targeted cancer therapy, magnetic embolization therapywith magnetic particles that contain anticancer agent, such as chemotherapeutic drugs or therapeuticradioisotopes. Drug targeting is one way of local or regional antitumor treatment. Magneticallycontrolled drug targeting is one of the various possible ways of drug targeting. This technology is basedon binding establish anticancer drug with ferrofluids that concentrate the drug in the area of interest(tumor site by means of magnetic fields. There has been keen interest in the development of amagnetically target drug delivery system. These drug delivery systems aims to deliver the drug at a ratedirected by the needs of the body during the period of treatment, and target the activity entity to the siteof action. This paper gives an overview of current application of magnetic microspheres (ferrofluid inconjunction with magnetic fields as they relate to the latest advances in medical application and inparticular to anticancer therapy and also discuss about mechanism of magnetic targeted delivery, drugrelease rate in-vitro, benefits and drawbacks of magnetic targeting.

  9. Killing cancer cells by targeted drug-carrying phage nanomedicines

    Directory of Open Access Journals (Sweden)

    Yacoby Iftach

    2008-04-01

    Full Text Available Abstract Background Systemic administration of chemotherapeutic agents, in addition to its anti-tumor benefits, results in indiscriminate drug distribution and severe toxicity. This shortcoming may be overcome by targeted drug-carrying platforms that ferry the drug to the tumor site while limiting exposure to non-target tissues and organs. Results We present a new form of targeted anti-cancer therapy in the form of targeted drug-carrying phage nanoparticles. Our approach is based on genetically-modified and chemically manipulated filamentous bacteriophages. The genetic manipulation endows the phages with the ability to display a host-specificity-conferring ligand. The phages are loaded with a large payload of a cytotoxic drug by chemical conjugation. In the presented examples we used anti ErbB2 and anti ERGR antibodies as targeting moieties, the drug hygromycin conjugated to the phages by a covalent amide bond, or the drug doxorubicin conjugated to genetically-engineered cathepsin-B sites on the phage coat. We show that targeting of phage nanomedicines via specific antibodies to receptors on cancer cell membranes results in endocytosis, intracellular degradation, and drug release, resulting in growth inhibition of the target cells in vitro with a potentiation factor of >1000 over the corresponding free drugs. Conclusion The results of the proof-of concept study presented here reveal important features regarding the potential of filamentous phages to serve as drug-delivery platform, on the affect of drug solubility or hydrophobicity on the target specificity of the platform and on the effect of drug release mechanism on the potency of the platform. These results define targeted drug-carrying filamentous phage nanoparticles as a unique type of antibody-drug conjugates.

  10. Targeted and reversible blood-retinal barrier disruption via focused ultrasound and microbubbles.

    Directory of Open Access Journals (Sweden)

    Juyoung Park

    Full Text Available The blood-retinal barrier (BRB prevents most systemically-administered drugs from reaching the retina. This study investigated whether burst ultrasound applied with a circulating microbubble agent can disrupt the BRB, providing a noninvasive method for the targeted delivery of systemically administered drugs to the retina. To demonstrate the efficacy and reversibility of such a procedure, five overlapping targets around the optic nerve head were sonicated through the cornea and lens in 20 healthy male Sprague-Dawley rats using a 690 kHz focused ultrasound transducer. For BRB disruption, 10 ms bursts were applied at 1 Hz for 60 s with different peak rarefactional pressure amplitudes (0.81, 0.88 and 1.1 MPa. Each sonication was combined with an IV injection of a microbubble ultrasound contrast agent (Definity. To evaluate BRB disruption, an MRI contrast agent (Magnevist was injected IV immediately after the last sonication, and serial T1-weighted MR images were acquired up to 30 minutes. MRI contrast enhancement into the vitreous humor near targeted area was observed for all tested pressure amplitudes, with more signal enhancement evident at the highest pressure amplitude. At 0.81 MPa, BRB disruption was not detected 3 h post sonication, after an additional MRI contrast injection. A day after sonication, the eyes were processed for histology of the retina. At the two lower exposure levels (0.81 and 0.88 MPa, most of the sonicated regions were indistinguishable from the control eyes, although a few tiny clusters of extravasated erythrocytes (petechaie were observed. More severe retinal damage was observed at 1.1 MPa. These results demonstrate that focused ultrasound and microbubbles can offer a noninvasive and targeted means to transiently disrupt the BRB for ocular drug delivery.

  11. Anti-malarial Drug Design by Targeting Apicoplasts: New Perspectives

    Directory of Open Access Journals (Sweden)

    Avinaba Mukherjee

    2016-03-01

    Full Text Available Objectives: Malaria has been a major global health problem in recent times with increasing mortality. Current treatment methods include parasiticidal drugs and vaccinations. However, resistance among malarial parasites to the existing drugs has emerged as a significant area of concern in anti-malarial drug design. Researchers are now desperately looking for new targets to develop anti-malarials drug which is more target specific. Malarial parasites harbor a plastid-like organelle known as the ‘apicoplast’, which is thought to provide an exciting new outlook for the development of drugs to be used against the parasite. This review elaborates on the current state of development of novel compounds targeted againstemerging malaria parasites. Methods: The apicoplast, originates by an endosymbiotic process, contains a range of metabolic pathways and housekeeping processes that differ from the host body and thereby presents ideal strategies for anti-malarial drug therapy. Drugs are designed by targeting the unique mechanism of the apicoplasts genetic machinery. Several anabolic and catabolic processes, like fatty acid, isopenetyl diphosphate and heme synthess in this organelle, have also been targeted by drugs. Results: Apicoplasts offer exciting opportunities for the development of malarial treatment specific drugs have been found to act by disrupting this organelle’s function, which wouldimpede the survival of the parasite. Conclusion: Recent advanced drugs, their modes of action, and their advantages in the treatment of malaria by using apicoplasts as a target are discussed in this review which thought to be very useful in desigining anti-malarial drugs. Targetting the genetic machinery of apicoplast shows a great advantange regarding anti-malarial drug design. Critical knowledge of these new drugs would give a healthier understanding for deciphering the mechanism of action of anti-malarial drugs when targeting apicoplasts to overcome drug

  12. Assessing drug target association using semantic linked data.

    Directory of Open Access Journals (Sweden)

    Bin Chen

    Full Text Available The rapidly increasing amount of public data in chemistry and biology provides new opportunities for large-scale data mining for drug discovery. Systematic integration of these heterogeneous sets and provision of algorithms to data mine the integrated sets would permit investigation of complex mechanisms of action of drugs. In this work we integrated and annotated data from public datasets relating to drugs, chemical compounds, protein targets, diseases, side effects and pathways, building a semantic linked network consisting of over 290,000 nodes and 720,000 edges. We developed a statistical model to assess the association of drug target pairs based on their relation with other linked objects. Validation experiments demonstrate the model can correctly identify known direct drug target pairs with high precision. Indirect drug target pairs (for example drugs which change gene expression level are also identified but not as strongly as direct pairs. We further calculated the association scores for 157 drugs from 10 disease areas against 1683 human targets, and measured their similarity using a [Formula: see text] score matrix. The similarity network indicates that drugs from the same disease area tend to cluster together in ways that are not captured by structural similarity, with several potential new drug pairings being identified. This work thus provides a novel, validated alternative to existing drug target prediction algorithms. The web service is freely available at: http://chem2bio2rdf.org/slap.

  13. Assessing drug target association using semantic linked data.

    Science.gov (United States)

    Chen, Bin; Ding, Ying; Wild, David J

    2012-01-01

    The rapidly increasing amount of public data in chemistry and biology provides new opportunities for large-scale data mining for drug discovery. Systematic integration of these heterogeneous sets and provision of algorithms to data mine the integrated sets would permit investigation of complex mechanisms of action of drugs. In this work we integrated and annotated data from public datasets relating to drugs, chemical compounds, protein targets, diseases, side effects and pathways, building a semantic linked network consisting of over 290,000 nodes and 720,000 edges. We developed a statistical model to assess the association of drug target pairs based on their relation with other linked objects. Validation experiments demonstrate the model can correctly identify known direct drug target pairs with high precision. Indirect drug target pairs (for example drugs which change gene expression level) are also identified but not as strongly as direct pairs. We further calculated the association scores for 157 drugs from 10 disease areas against 1683 human targets, and measured their similarity using a [Formula: see text] score matrix. The similarity network indicates that drugs from the same disease area tend to cluster together in ways that are not captured by structural similarity, with several potential new drug pairings being identified. This work thus provides a novel, validated alternative to existing drug target prediction algorithms. The web service is freely available at: http://chem2bio2rdf.org/slap.

  14. Repurposing Drugs to Target the Diabetes Epidemic.

    Science.gov (United States)

    Turner, Nigel; Zeng, Xiao-Yi; Osborne, Brenna; Rogers, Suzanne; Ye, Ji-Ming

    2016-05-01

    Despite major investment by pharmaceutical companies in conventional drug discovery pipelines, development of new drugs has failed to keep up with the increasing incidence of many diseases, including type 2 diabetes (T2D). Drug repurposing, where existing drugs are applied to a new indication, is gaining momentum as a successful approach to overcome the bottlenecks commonly encountered with conventional approaches. Repurposing takes advantage of available information on the molecular pharmacology of clinical agents to drastically shorten drug development timelines. This review discusses recent advances in the discovery of new antidiabetic agents using repurposing strategies. PMID:26900045

  15. Introduction for the special issue on recent advances in drug delivery across tissue barriers.

    Science.gov (United States)

    Mrsny, Randall J; Brayden, David J

    2016-01-01

    This special issue of Tissue Barriers contains a series of reviews with the common theme of how biological barriers established at epithelial tissues limit the uptake of macromolecular therapeutics. By improving our functional understanding of these barriers, the majority of the authors have highlighted potential strategies that might be applied to the non-invasive delivery of biopharmaceuticals that would otherwise require an injection format for administration. Half of the articles focus on the potential of particular technologies to assist oral delivery of peptides, proteins and other macromolecules. These include use of prodrug chemistry to improve molecule stability and permeability, and the related potential for oral delivery of poorly permeable agents by cell-penetrating peptides and dendrimers. Safety aspects of intestinal permeation enhancers are discussed, along with the more recent foray into drug-device combinations as represented by intestinal microneedles and externally-applied ultrasound. Other articles highlight the crossover between food research and oral delivery based on nanoparticle technology, while the final one provides a fascinating interpretation of the physiological problems associated with subcutaneous insulin delivery and how inefficient it is at targeting the liver. PMID:27358759

  16. Identification of Multiple Cryptococcal Fungicidal Drug Targets by Combined Gene Dosing and Drug Affinity Responsive Target Stability Screening

    Directory of Open Access Journals (Sweden)

    Yoon-Dong Park

    2016-08-01

    Full Text Available Cryptococcus neoformans is a pathogenic fungus that is responsible for up to half a million cases of meningitis globally, especially in immunocompromised individuals. Common fungistatic drugs, such as fluconazole, are less toxic for patients but have low efficacy for initial therapy of the disease. Effective therapy against the disease is provided by the fungicidal drug amphotericin B; however, due to its high toxicity and the difficulty in administering its intravenous formulation, it is imperative to find new therapies targeting the fungus. The antiparasitic drug bithionol has been recently identified as having potent fungicidal activity. In this study, we used a combined gene dosing and drug affinity responsive target stability (GD-DARTS screen as well as protein modeling to identify a common drug binding site of bithionol within multiple NAD-dependent dehydrogenase drug targets. This combination genetic and proteomic method thus provides a powerful method for identifying novel fungicidal drug targets for further development.

  17. Identification of Multiple Cryptococcal Fungicidal Drug Targets by Combined Gene Dosing and Drug Affinity Responsive Target Stability Screening

    Science.gov (United States)

    Park, Yoon-Dong; Sun, Wei; Salas, Antonio; Antia, Avan; Carvajal, Cindy; Wang, Amy; Xu, Xin; Meng, Zhaojin; Zhou, Ming; Tawa, Gregory J.; Dehdashti, Jean; Zheng, Wei; Henderson, Christina M.; Zelazny, Adrian M.

    2016-01-01

    ABSTRACT Cryptococcus neoformans is a pathogenic fungus that is responsible for up to half a million cases of meningitis globally, especially in immunocompromised individuals. Common fungistatic drugs, such as fluconazole, are less toxic for patients but have low efficacy for initial therapy of the disease. Effective therapy against the disease is provided by the fungicidal drug amphotericin B; however, due to its high toxicity and the difficulty in administering its intravenous formulation, it is imperative to find new therapies targeting the fungus. The antiparasitic drug bithionol has been recently identified as having potent fungicidal activity. In this study, we used a combined gene dosing and drug affinity responsive target stability (GD-DARTS) screen as well as protein modeling to identify a common drug binding site of bithionol within multiple NAD-dependent dehydrogenase drug targets. This combination genetic and proteomic method thus provides a powerful method for identifying novel fungicidal drug targets for further development. PMID:27486194

  18. Hydrodynamic modeling of ferrofluid flow in magnetic targeting drug delivery

    Institute of Scientific and Technical Information of China (English)

    LIU Han-dan; XU Wei; WANG Shi-gang; KE Zun-ji

    2008-01-01

    Among the proposed techniques for delivering drugs to specific locations within human body, magnetic drug targeting prevails due to its non-invasive character and its high targeting efficiency. Magnetic targeting drug delivery is a method of carrying drug-loaded magnetic nanoparticles to a target tissue target under the applied magnetic field. This method increases the drug concentration in the target while reducing the adverse side-effects. Although there have been some theoretical analyses for magnetic drug targeting, very few researchers have addressed the hydrodynamic models of magnetic fluids in the blood vessel. A mathematical model is presented to describe the hydrodynamics of ferrofluids as drug carriers flowing in a blood vessel under the applied magnetic field. In this model, magnetic force and asymmetrical force are added, and an angular momentum equation of magnetic nanoparticles in the applied magnetic field is modeled. Engineering approximations are achieved by retaining the physically most significant items in the model due to the mathematical complexity of the motion equations. Numerical simulations are performed to obtain better insight into the theoretical model with computational fluid dynamics. Simulation results demonstrate the important parameters leading to adequate drug delivery to the target site depending on the magnetic field intensity, which coincident with those of animal experiments. Results of the analysis provide important information and suggest strategies for improving delivery in clinical application.

  19. Large-scale prediction of drug-target relationships

    DEFF Research Database (Denmark)

    Kuhn, Michael; Campillos, Mónica; González, Paula;

    2008-01-01

    also provides a more global view on drug-target relations. Here we review recent attempts to apply large-scale computational analyses to predict novel interactions of drugs and targets from molecular and cellular features. In this context, we quantify the family-dependent probability of two proteins to...

  20. NIOSOMES IN TARGETED DRUG DELIVERY : A REVIEW

    Directory of Open Access Journals (Sweden)

    PRAGNA GADHIYA

    2012-05-01

    Full Text Available Over the past several years, treatment of infectious diseases and immunization has undergone aparadigm shift. Stemming from the nanobiotechnology research, not only a large number of diseasespecificbiologicals have been developed, but also enormous efforts have been made to effectivelydeliver these biologicals. Non-ionic surfactant vesicles (or niosomes are now widely studied asalternates to liposomes. Different novel approaches used for delivering these drugs include liposomes,Microspheres, nanotechnology, micro emulsions, antibody-loaded drug delivery, magneticMicrocapsules, implantable pumps and niosomes. Niosomes and liposomes are equiactive In drugdelivery potential and both increase drug efficacy as compared with that of free Drug. Niosomes arepreferred over liposomes because the former exhibit high chemical Stability and economy. Niosomes areself assembled vesicles composed primarily of synthetic surfactants and cholesterol. They are analogousin structure to the more widely studied liposomes formed from biologically derived phospholipids.Niosomes represent an emerging class of novel vesicular systems. Niosome formation requires thepresence of a particular class of amphiphile and aqueous solvent. In recent years a comprehensiveresearch carried over niosome as a drug carrier. Various drugs are enlisted and tried in niosomesurfactant vesicles. Niosome appears to be a Well preferred drug delivery system over liposome asniosome being stable and economic. Also niosomes have great drug delivery potential for targeteddelivery of anti-cancer, Anti-infective agents. Drug delivery potential of niosome can enhance by usingnovel Concepts like proniosomes, discomes and aspasome. Niosomes also serve better aid in diagnosticimaging and as a vaccine adjuvant.

  1. Approaches for breaking the barriers of drug permeation through transdermal drug delivery.

    Science.gov (United States)

    Alexander, Amit; Dwivedi, Shubhangi; Ajazuddin; Giri, Tapan K; Saraf, Swarnlata; Saraf, Shailendra; Tripathi, Dulal Krishna

    2012-11-28

    Transdermal drug delivery system (TDDS) utilizes the skin as executable route for drug administration but the foremost barrier against drug permeability is the stratum corneum and therefore, it limits therapeutic bioavailability of the bioactive. This review focuses on the recent advancements in the TDDS which include iontophoresis, sonophoresis, electroporation, microneedles, magnetophoresis, photomechanical waves and electron beam irradiation. These advancements are exhaustively discussed with techniques involved with their beneficial claims for different categories of bioactive. However, a lot of research has been carried out in TDDS, still the system has many pros and cons such as inconsistent drug release, prevention of burst release formulation and problems related to toxicity. In addition to that, to exploit the TDDS more efficiently scientists have worked on some combinational approaches for manufacturing TDDS viz., chemical-iontophoresis, chemical-electroporation, chemical-ultrasound, iontophoresis-ultrasound, electroporation-iontophoresis electroporation-ultrasound and pressure waves-chemicals and reported the synergistic effect of the same for safe, effective and practical use of TDDS. The present article covers all the above-mentioned aspects in detail and hence the article will assuredly serve as an enlightening tool for the visionaries working in the concerned area. PMID:23064010

  2. IGF-1 receptor targeted nanoparticles for image-guided therapy of stroma-rich and drug resistant human cancer

    Science.gov (United States)

    Zhou, Hongyu; Qian, Weiping; Uckun, Fatih M.; Zhou, Zhiyang; Wang, Liya; Wang, Andrew; Mao, Hui; Yang, Lily

    2016-05-01

    Low drug delivery efficiency and drug resistance from highly heterogeneous cancer cells and tumor microenvironment represent major challenges in clinical oncology. Growth factor receptor, IGF-1R, is overexpressed in both human tumor cells and tumor associated stromal cells. The level of IGF-1R expression is further up-regulated in drug resistant tumor cells. We have developed IGF-1R targeted magnetic iron oxide nanoparticles (IONPs) carrying multiple anticancer drugs into human tumors. This IGF-1R targeted theranostic nanoparticle delivery system has an iron core for non-invasive MR imaging, amphiphilic polymer coating to ensure the biocompatibility as well as for drug loading and conjugation of recombinant human IGF-1 as targeting molecules. Chemotherapy drugs, Doxorubicin (Dox), was encapsulated into the polymer coating and/or conjugated to the IONP surface by coupling with the carboxyl groups. The ability of IGF1R targeted theranostic nanoparticles to penetrate tumor stromal barrier and enhance tumor cell killing has been demonstrated in human pancreatic cancer patient tissue derived xenograft (PDX) models. Repeated systemic administrations of those IGF-1R targeted theranostic IONP carrying Dox led to breaking the tumor stromal barrier and improved therapeutic effect. Near infrared (NIR) optical and MR imaging enabled noninvasive monitoring of nanoparticle-drug delivery and therapeutic responses. Our results demonstrated that IGF-1R targeted nanoparticles carrying multiple drugs are promising combination therapy approaches for image-guided therapy of stroma-rich and drug resistant human cancer, such as pancreatic cancer.

  3. Identifying mechanism-of-action targets for drugs and probes

    OpenAIRE

    Gregori-Puigjané, Elisabet; Setola, Vincent; Hert, Jérôme; Crews, Brenda A.; Irwin, John J.; Lounkine, Eugen; Marnett, Lawrence; Roth, Bryan L.; Brian K Shoichet

    2012-01-01

    Notwithstanding their key roles in therapy and as biological probes, 7% of approved drugs are purported to have no known primary target, and up to 18% lack a well-defined mechanism of action. Using a chemoinformatics approach, we sought to “de-orphanize” drugs that lack primary targets. Surprisingly, targets could be easily predicted for many: Whereas these targets were not known to us nor to the common databases, most could be confirmed by literature search, leaving only 13 Food and Drug Adm...

  4. Targeted electrohydrodynamic printing for micro-reservoir drug delivery systems

    International Nuclear Information System (INIS)

    Microfluidic drug delivery systems consisting of a drug reservoir and microfluidic channels have shown the possibility of simple and robust modulation of drug release rate. However, the difficulty of loading a small quantity of drug into drug reservoirs at a micro-scale limited further development of such systems. Electrohydrodynamic (EHD) printing was employed to fill micro-reservoirs with controlled amount of drugs in the range of a few hundreds of picograms to tens of micrograms with spatial resolution of as small as 20 µm. Unlike most EHD systems, this system was configured in combination with an inverted microscope that allows in situ targeting of drug loading at micrometer scale accuracy. Methylene blue and rhodamine B were used as model drugs in distilled water, isopropanol and a polymer solution of a biodegradable polymer and dimethyl sulfoxide (DMSO). Also tetracycline-HCl/DI water was used as actual drug ink. The optimal parameters of EHD printing to load an extremely small quantity of drug into microscale drug reservoirs were investigated by changing pumping rates, the strength of an electric field and drug concentration. This targeted EHD technique was used to load drugs into the microreservoirs of PDMS microfluidic drug delivery devices and their drug release performance was demonstrated in vitro. (paper)

  5. Computational and Pharmacological Target of Neurovascular Unit for Drug Design and Delivery

    Directory of Open Access Journals (Sweden)

    Md. Mirazul Islam

    2015-01-01

    Full Text Available The blood-brain barrier (BBB is a dynamic and highly selective permeable interface between central nervous system (CNS and periphery that regulates the brain homeostasis. Increasing evidences of neurological disorders and restricted drug delivery process in brain make BBB as special target for further study. At present, neurovascular unit (NVU is a great interest and highlighted topic of pharmaceutical companies for CNS drug design and delivery approaches. Some recent advancement of pharmacology and computational biology makes it convenient to develop drugs within limited time and affordable cost. In this review, we briefly introduce current understanding of the NVU, including molecular and cellular composition, physiology, and regulatory function. We also discuss the recent technology and interaction of pharmacogenomics and bioinformatics for drug design and step towards personalized medicine. Additionally, we develop gene network due to understand NVU associated transporter proteins interactions that might be effective for understanding aetiology of neurological disorders and new target base protective therapies development and delivery.

  6. Drugs acting on central nervous system (CNS) targets as leads for non-CNS targets

    OpenAIRE

    Kharkar, Prashant S.

    2014-01-01

    Innovative drug discovery approaches are currently needed to rejuvenate the shrinking product pipelines of the pharmaceutical companies across the globe. Here a theme is presented – the use of central nervous system (CNS) drugs as leads for non-CNS targets. The approach is related to the use of existing drugs for new indications. Suitable chemical modifications of the CNS drugs abolish their CNS penetration. These novel analogs may then be screened for activity against non-CNS targets. Carefu...

  7. Targeted liposomal drug delivery to monocytes and macrophages.

    OpenAIRE

    Ciara Kelly; Caroline Jefferies; Sally-Ann Cryan

    2011-01-01

    As the role of monocytes and macrophages in a range of diseases is better understood, strategies to target these cell types are of growing importance both scientifically and therapeutically. As particulate carriers, liposomes naturally target cells of the mononuclear phagocytic system (MPS), particularly macrophages. Loading drugs into liposomes can therefore offer an efficient means of drug targeting to MPS cells. Physicochemical properties including size, charge and lipid composition can ha...

  8. Near barrier scattering of 8He from heavy targets

    OpenAIRE

    Marquínez Durán, Gloria

    2016-01-01

    The objective of this thesis is the study of the elastic scattering of 8He from 208Pb at energies around the Coulomb barrier. This work is an extension of the investigations performed by the collaboration, in which the Grupo de Estructura de la Materia of the University of Huelva takes part, on 6He reactions at near-barrier energies. The direct comparison of the experimental data from the 6He+208Pb and 8He+208Pb experiments will allow for studying the subtle differences in the dynamics of hal...

  9. Polymeric micelles for solubilization and targeting of hydrophobic drugs

    OpenAIRE

    Miller, Tobias

    2013-01-01

    This thesis focussed on the encapsulation of hydrophobic drugs into polymeric micelles and was intended to show the strengths and limitations of these self-assembling systems in terms of solubilization and drug targeting. Characterization of hydrophobic drug solubilization prior to intravenous injection was one of the key goals of this thesis. For this purpose a novel drug loading procedure was developed based on mechanistic considerations during the loading processes (Chapter 2). The cosolve...

  10. Magnetic polymer nanospheres for anticancer drug targeting

    Energy Technology Data Exchange (ETDEWEB)

    JurIkova, A; Csach, K; Koneracka, M; Zavisova, V; Tomasovicova, N; Lancz, G; Kopcansky, P; Timko, M; Miskuf, J [Institute of Experimental Physics, Slovak Academy of Sciences, 040 01 Kosice (Slovakia); Muckova, M, E-mail: akasard@saske.s [Hameln rds a.s., 900 01 Modra (Slovakia)

    2010-01-01

    Poly(D,L-lactide-co-glycolide) polymer (PLGA) nanospheres loaded with biocom-patible magnetic fluid as a magnetic carrier and anticancer drug Taxol were prepared by the modified nanoprecipitation method with size of 200-250 nm in diameter. The PLGA polymer was utilized as a capsulation material due to its biodegradability and biocompatibility. Taxol as an important anticancer drug was chosen for its significant role against a wide range of tumours. Thermal properties of the drug-polymer system were characterized using thermal analysis methods. It was determined the solubility of Taxol in PLGA nanospheres. Magnetic properties investigated using SQUID magnetometry showed superparamagnetism of the prepared magnetic polymer nanospheres.

  11. Drug Repurposing: Far Beyond New Targets for Old Drugs

    DEFF Research Database (Denmark)

    Oprea, Tudor; Mestres, J.

    2012-01-01

    Repurposing drugs requires finding novel therapeutic indications compared to the ones for which they were already approved. This is an increasingly utilized strategy for finding novel medicines, one that capitalizes on previous investments while derisking clinical activities. This approach...

  12. Targeted drug induces responses in aggressive lymphomas

    Science.gov (United States)

    Preliminary results from clinical trials in a subtype of lymphoma show that for a number of patients whose disease was not cured by other treatments, the drug ibrutinib can provide significant anti-cancer responses with modest side effects.

  13. Nanoemulsion-based intranasal drug delivery system of saquinavir mesylate for brain targeting.

    Science.gov (United States)

    Mahajan, Hitendra S; Mahajan, Milind S; Nerkar, Pankaj P; Agrawal, Anshuman

    2014-03-01

    The central nervous system (CNS) is an immunological privileged sanctuary site-providing reservoir for HIV-1 virus. Current anti-HIV drugs, although effective in reducing plasma viral levels, cannot eradicate the virus completely from the body. The low permeability of anti-HIV drugs across the blood-brain barrier (BBB) leads to insufficient delivery. Therefore, developing a novel approaches enhancing the CNS delivery of anti-HIV drugs are required for the treatment of neuro-AIDS. The aim of this study was to develop intranasal nanoemulsion (NE) for enhanced bioavailability and CNS targeting of saquinavir mesylate (SQVM). SQVM is a protease inhibitor which is a poorly soluble drug widely used as antiretroviral drug, with oral bioavailability is about 4%. The spontaneous emulsification method was used to prepare drug-loaded o/w nanoemulsion, which was characterized by droplet size, zeta potential, pH, drug content. Moreover, ex-vivo permeation studies were performed using sheep nasal mucosa. The optimized NE showed a significant increase in drug permeation rate compared to the plain drug suspension (PDS). Cilia toxicity study on sheep nasal mucosa showed no significant adverse effect of SQVM-loaded NE. Results of in vivo biodistribution studies show higher drug concentration in brain after intranasal administration of NE than intravenous delivered PDS. The higher percentage of drug targeting efficiency (% DTE) and nose-to-brain drug direct transport percentage (% DTP) for optimized NE indicated effective CNS targeting of SQVM via intranasal route. Gamma scintigraphy imaging of the rat brain conclusively demonstrated transport of drug in the CNS at larger extent after intranasal administration as NE.

  14. Nanoparticle-mediated brain drug delivery: Overcoming blood-brain barrier to treat neurodegenerative diseases.

    Science.gov (United States)

    Saraiva, Cláudia; Praça, Catarina; Ferreira, Raquel; Santos, Tiago; Ferreira, Lino; Bernardino, Liliana

    2016-08-10

    The blood-brain barrier (BBB) is a vital boundary between neural tissue and circulating blood. The BBB's unique and protective features control brain homeostasis as well as ion and molecule movement. Failure in maintaining any of these components results in the breakdown of this specialized multicellular structure and consequently promotes neuroinflammation and neurodegeneration. In several high incidence pathologies such as stroke, Alzheimer's (AD) and Parkinson's disease (PD) the BBB is impaired. However, even a damaged and more permeable BBB can pose serious challenges to drug delivery into the brain. The use of nanoparticle (NP) formulations able to encapsulate molecules with therapeutic value, while targeting specific transport processes in the brain vasculature, may enhance drug transport through the BBB in neurodegenerative/ischemic disorders and target relevant regions in the brain for regenerative processes. In this review, we will discuss BBB composition and characteristics and how these features are altered in pathology, namely in stroke, AD and PD. Additionally, factors influencing an efficient intravenous delivery of polymeric and inorganic NPs into the brain as well as NP-related delivery systems with the most promising functional outcomes will also be discussed. PMID:27208862

  15. Transcription factors as targets of anticancer drugs.

    Science.gov (United States)

    Gniazdowski, M; Czyz, M

    1999-01-01

    Several general and gene- and cell-selective transcription factors are required for specific transcription to occur. Many of them exert their functions through specific contacts either in the promoter region or at distant sequences regulating the initiation. These contacts may be altered by anticancer drugs which form non-covalent complexes with DNA. Covalent modifications of DNA by alkylating agents may prevent transcription factors from recognizing their specific sequences or may constitute multiple "unnatural" binding sites in DNA which attract the factors thus decreasing their availability in the cell. The anticancer drug-transcription factor interplay which is based on specific interactions with DNA may contribute to pharmacological properties of the former and provide a basis for the search for new drugs. PMID:10547027

  16. A review on target drug delivery:magnetic microspheres

    Institute of Scientific and Technical Information of China (English)

    Amit Chandna; Deepa Batra; Satinder Kakar; Ramandeep Singh

    2013-01-01

    Novel drug delivery system aims to deliver the drug at a rate directed by the needs of the body during the period of treatment, and target the active entity to the site of action.A number of novel drug delivery systems have emerged encompassing various routes of administration, to achieve controlled and targeted drug delivery, magnetic micro carriers being one of them. Magnetic microsphere is newer approach in pharmaceutical field.Magnetic microspheres as an alternative to traditional radiation methods which use highly penetrating radiation that is absorbed throughout the body.Its use is limited by toxicity and side effects.The aim of the specific targeting is to enhance the efficiency of drug delivery & at the same time to reduce the toxicity & side effects.This kind of delivery system is very much important which localises the drug to the disease site.In this larger amount of freely circulating drug can be replaced by smaller amount of magnetically targeted drug.Magnetic carriers receive magnetic responses to a magnetic field from incorporated materials that are used for magnetic microspheres are chitosan, dextran etc. magnetic microspheres can be prepared from a variety of carrier material. One of the most utilized is serum albumin from human or other appropriate species.Drug release from albumin microspheres can be sustained or controlled by various stabilization procedures generally involving heat or chemical cross-linking of the protein carrier matrix.

  17. TargetNet: a web service for predicting potential drug-target interaction profiling via multi-target SAR models.

    Science.gov (United States)

    Yao, Zhi-Jiang; Dong, Jie; Che, Yu-Jing; Zhu, Min-Feng; Wen, Ming; Wang, Ning-Ning; Wang, Shan; Lu, Ai-Ping; Cao, Dong-Sheng

    2016-05-01

    Drug-target interactions (DTIs) are central to current drug discovery processes and public health fields. Analyzing the DTI profiling of the drugs helps to infer drug indications, adverse drug reactions, drug-drug interactions, and drug mode of actions. Therefore, it is of high importance to reliably and fast predict DTI profiling of the drugs on a genome-scale level. Here, we develop the TargetNet server, which can make real-time DTI predictions based only on molecular structures, following the spirit of multi-target SAR methodology. Naïve Bayes models together with various molecular fingerprints were employed to construct prediction models. Ensemble learning from these fingerprints was also provided to improve the prediction ability. When the user submits a molecule, the server will predict the activity of the user's molecule across 623 human proteins by the established high quality SAR model, thus generating a DTI profiling that can be used as a feature vector of chemicals for wide applications. The 623 SAR models related to 623 human proteins were strictly evaluated and validated by several model validation strategies, resulting in the AUC scores of 75-100 %. We applied the generated DTI profiling to successfully predict potential targets, toxicity classification, drug-drug interactions, and drug mode of action, which sufficiently demonstrated the wide application value of the potential DTI profiling. The TargetNet webserver is designed based on the Django framework in Python, and is freely accessible at http://targetnet.scbdd.com . PMID:27167132

  18. Leveraging Big Data to Transform Target Selection and Drug Discovery

    Science.gov (United States)

    Chen, B; Butte, AJ

    2016-01-01

    The advances of genomics, sequencing, and high throughput technologies have led to the creation of large volumes of diverse datasets for drug discovery. Analyzing these datasets to better understand disease and discover new drugs is becoming more common. Recent open data initiatives in basic and clinical research have dramatically increased the types of data available to the public. The past few years have witnessed successful use of big data in many sectors across the whole drug discovery pipeline. In this review, we will highlight the state of the art in leveraging big data to identify new targets, drug indications, and drug response biomarkers in this era of precision medicine. PMID:26659699

  19. Leveraging big data to transform target selection and drug discovery

    Science.gov (United States)

    Butte, AJ

    2016-01-01

    The advances of genomics, sequencing, and high throughput technologies have led to the creation of large volumes of diverse datasets for drug discovery. Analyzing these datasets to better understand disease and discover new drugs is becoming more common. Recent open data initiatives in basic and clinical research have dramatically increased the types of data available to the public. The past few years have witnessed successful use of big data in many sectors across the whole drug discovery pipeline. In this review, we will highlight the state of the art in leveraging big data to identify new targets, drug indications, and drug response biomarkers in this era of precision medicine. PMID:26659699

  20. Mitochondrial drug targets in neurodegenerative diseases.

    Science.gov (United States)

    Lee, Jiyoun

    2016-02-01

    Growing evidence suggests that mitochondrial dysfunction is the main culprit in neurodegenerative diseases. Given the fact that mitochondria participate in diverse cellular processes, including energetics, metabolism, and death, the consequences of mitochondrial dysfunction in neuronal cells are inevitable. In fact, new strategies targeting mitochondrial dysfunction are emerging as potential alternatives to current treatment options for neurodegenerative diseases. In this review, we focus on mitochondrial proteins that are directly associated with mitochondrial dysfunction. We also examine recently identified small molecule modulators of these mitochondrial targets and assess their potential in research and therapeutic applications.

  1. Decorating Nanoparticle Surface for Targeted Drug Delivery: Opportunities and Challenges

    OpenAIRE

    Zhiqiang Shen; Mu-Ping Nieh; Ying Li

    2016-01-01

    The size, shape, stiffness (composition) and surface properties of nanoparticles (NPs) have been recognized as key design parameters for NP-mediated drug delivery platforms. Among them, the surface functionalization of NPs is of great significance for targeted drug delivery. For instance, targeting moieties are covalently coated on the surface of NPs to improve their selectively and affinity to cancer cells. However, due to a broad range of possible choices of surface decorating molecules, it...

  2. Tumor targeting using liposomal antineoplastic drugs

    OpenAIRE

    Jörg Huwyler; Jürgen Drewe; Stephan Krähenbühl

    2008-01-01

    Jörg Huwyler1, Jürgen Drewe2, Stephan Krähenbühl21University of Applied Sciences Northwestern Switzerland, Institute of Pharma Technology, Muttenz, Switzerland; 2Department of Research and Division of Clinical Pharmacology, University Hospital Basel, Basel, SwitzerlandAbstract: During the last years, liposomes (microparticulate phospholipid vesicles) have beenused with growing success as pharmaceutical carriers for antineoplastic drugs. Fields of applicatio...

  3. Sequencing targeting insurgents and drugs in Colombia

    OpenAIRE

    Farrell, Michelle L.

    2007-01-01

    Colombia President Pastrana President Uribe Drug Trade Coca Counter-narcotics FARC FARC-EP Revolutionary Armed Forces of Colombia Government of Colombia Insurgency Terrorism Plan Colombia Plan Patriota Demilitarized Zone Democratic Defense and Security Policy DSP Peru's success in first defeating the Shining Path guerrilla movement in the early 1990s and then reducing coca cultivation in the mid-1990s demonstrates the effectiveness of a s...

  4. REVIEW ON ADVANCES IN COLON TARGETED DRUG DELIVERY SYSTEM

    Directory of Open Access Journals (Sweden)

    Sunena Sethi, SL Harikumar* and Nirmala

    2012-09-01

    Full Text Available The colon is the terminal part of the GIT which has gained in recent years as a potential site for delivery of various novel therapeutic drugs, i.e. peptides. However, colon is rich in microflora which can be used to target the drug release in the colon. Colon is a site where both local and systemic drug delivery can take place. Local delivery allows the topical treatment of inflammatory bowel disease. If drug can be targeted directly into the colon, treatment can become more effective and side effects can be minimized. These systemic side effects can be minimized by primary approaches for CDDS (Colon specific drug delivery namely prodrugs, pH and time dependent systems and microbially triggered system which gained limited success and have limitations as compared with recently new CDDS namely pressure controlled colon delivery capsules (PCDCS, CODESTM (Novel colon targeted delivery system osmotic controlled drug delivery system, Pulsincap system, time clock system, chronotropic system. This review is to understand the pharmaceutical approaches to colon targeted drug delivery systems for better therapeutic action without compromising on drug degradation (or its low bioavailability.

  5. Design of Nanoparticle-Based Carriers for Targeted Drug Delivery

    OpenAIRE

    Xiaojiao Yu; Ian Trase; Muqing Ren; Kayla Duval; Xing Guo; Zi Chen

    2016-01-01

    Nanoparticles have shown promise as both drug delivery vehicles and direct antitumor systems, but they must be properly designed in order to maximize efficacy. Computational modeling is often used both to design new nanoparticles and to better understand existing ones. Modeled processes include the release of drugs at the tumor site and the physical interaction between the nanoparticle and cancer cells. In this paper, we provide an overview of three different targeted drug delivery methods (p...

  6. Prediction of drug-target interactions for drug repositioning only based on genomic expression similarity.

    Directory of Open Access Journals (Sweden)

    Kejian Wang

    Full Text Available Small drug molecules usually bind to multiple protein targets or even unintended off-targets. Such drug promiscuity has often led to unwanted or unexplained drug reactions, resulting in side effects or drug repositioning opportunities. So it is always an important issue in pharmacology to identify potential drug-target interactions (DTI. However, DTI discovery by experiment remains a challenging task, due to high expense of time and resources. Many computational methods are therefore developed to predict DTI with high throughput biological and clinical data. Here, we initiatively demonstrate that the on-target and off-target effects could be characterized by drug-induced in vitro genomic expression changes, e.g. the data in Connectivity Map (CMap. Thus, unknown ligands of a certain target can be found from the compounds showing high gene-expression similarity to the known ligands. Then to clarify the detailed practice of CMap based DTI prediction, we objectively evaluate how well each target is characterized by CMap. The results suggest that (1 some targets are better characterized than others, so the prediction models specific to these well characterized targets would be more accurate and reliable; (2 in some cases, a family of ligands for the same target tend to interact with common off-targets, which may help increase the efficiency of DTI discovery and explain the mechanisms of complicated drug actions. In the present study, CMap expression similarity is proposed as a novel indicator of drug-target interactions. The detailed strategies of improving data quality by decreasing the batch effect and building prediction models are also effectively established. We believe the success in CMap can be further translated into other public and commercial data of genomic expression, thus increasing research productivity towards valid drug repositioning and minimal side effects.

  7. Synthetic LDL as targeted drug delivery vehicle

    Science.gov (United States)

    Forte, Trudy M.; Nikanjam, Mina

    2012-08-28

    The present invention provides a synthetic LDL nanoparticle comprising a lipid moiety and a synthetic chimeric peptide so as to be capable of binding the LDL receptor. The synthetic LDL nanoparticle of the present invention is capable of incorporating and targeting therapeutics to cells expressing the LDL receptor for diseases associated with the expression of the LDL receptor such as central nervous system diseases. The invention further provides methods of using such synthetic LDL nanoparticles.

  8. Targeting autophagic pathways for cancer drug discovery

    Institute of Scientific and Technical Information of China (English)

    Bo Liu; Jin-Ku Bao; Jin-Ming Yang; Yan Cheng

    2013-01-01

    Autophagy,an evolutionarily conserved lysosomal degradation process,has drawn an increasing amount of attention in recent years for its role in a variety of human diseases,such as cancer.Notably,autophagy plays an important role in regulating several survival and death signaling pathways that determine cell fate in cancer.To date,substantial evidence has demonstrated that some key autophagic mediators,such as autophagy-related genes (ATGs),PI3K,mTOR,p53,and Beclin-1,may play crucial roles in modulating autophagic activity in cancer initiation and progression.Because autophagy-modulating agents such as rapamycin and chloroquine have already been used clinically to treat cancer,it is conceivable that targeting autophagic pathways may provide a new opportunity for discovery and development of more novel cancer therapeutics.With a deeper understanding of the regulatory mechanisms governing autophagy,we will have a better opportunity to facilitate the exploitation of autophagy as a target for therapeutic intervention in cancer.This review discusses the current status of targeting autophagic pathways as a potential cancer therapy.

  9. Preclinical validation of Aurora kinases-targeting drugs in osteosarcoma

    OpenAIRE

    Tavanti, E; Sero, V; Vella, S; M. Fanelli; Michelacci, F; Landuzzi, L; Magagnoli, G; Versteeg, R; Picci, P; Hattinger, C M; M. Serra

    2013-01-01

    Background: Aurora kinases are key regulators of cell cycle and represent new promising therapeutic targets in several human tumours. Methods: Biological relevance of Aurora kinase-A and -B was assessed on osteosarcoma clinical samples and by silencing these genes with specific siRNA in three human osteosarcoma cell lines. In vitro efficacy of two Aurora kinases-targeting drugs (VX-680 and ZM447439) was evaluated on a panel of four drug-sensitive and six drug-resistant human osteosarcoma cell...

  10. Targeted drug delivery to the brain using magnetic nanoparticles.

    Science.gov (United States)

    Thomsen, Louiza Bohn; Thomsen, Maj Schneider; Moos, Torben

    2015-01-01

    Brain capillary endothelial cells denote the blood-brain barrier (BBB), and conjugation of nanoparticles with antibodies that target molecules expressed by these endothelial cells may facilitate their uptake and transport into the brain. Magnetic nanoparticles can be encapsulated in liposomes and carry large molecules with therapeutic potential, for example, siRNA, cDNA and polypeptides. An additional approach to enhance the transport of magnetic nanoparticles across the BBB is the application of extracranially applied magnetic force. Stepwise targeting of magnetic nanoparticles to brain capillary endothelial cells followed by transport through the BBB using magnetic force may prove a novel mechanism for targeted therapy of macromolecules to the brain.

  11. Glial cells as drug targets: What does it take?

    Science.gov (United States)

    Möller, Thomas; Boddeke, Hendrikus W G M

    2016-10-01

    The last two decades have brought a significant increase in our understanding of glial biology and glial contribution to CNS disease. Yet, despite the fact that glial cells make up the majority of CNS cells, no drug specifically targeting glial cells is on the market. Given the long development times of CNS drugs, on average over 12 years, this is not completely surprising. However, there is increasing interest from academia and industry to exploit glial targets to develop drugs for the benefit of patients with currently limited or no therapeutic options. CNS drug development has a high attrition rate and has encountered many challenges. It seems unlikely that developing drugs against glial targets would be any less demanding. However, the knowledge generated in traditional CNS drug discovery teaches valuable lessons, which could enable the glial community to accelerate the cycle time from basic discovery to drug development. In this review we will discuss steps necessary to bring a "glial target idea" to a clinical development program. GLIA 2016;64:1742-1754. PMID:27121701

  12. Targeted therapies for malignant gliomas: novel agents, same barrier

    NARCIS (Netherlands)

    Lin, F.

    2013-01-01

    Malignant gliomas are common and devastating brain malignancies. Despite this extensive treatment the mean overall survival is still only 14.6 months and more effective treatments are urgently needed. Targeted therapy holds the promise for the new generation of chemotherapy due to the selectively ta

  13. How do antimalarial drugs reach their intracellular targets?

    Directory of Open Access Journals (Sweden)

    Katherine eBasore

    2015-05-01

    Full Text Available Drugs represent the primary treatment available for human malaria, as caused by Plasmodium spp. Currently approved drugs and antimalarial drug leads generally work against parasite enzymes or activities within infected erythrocytes. To reach their specific targets, these chemicals must cross at least three membranes beginning with the host cell membrane. Uptake at each membrane may involve partitioning and diffusion through the lipid bilayer or facilitated transport through channels or carriers. Here, we review the features of available antimalarials and examine whether transporters may be required for their uptake. Our computational analysis suggests that most antimalarials have high intrinsic membrane permeability, obviating the need for uptake via transporters; a subset of compounds appear to require facilitated uptake. We also review parasite and host transporters that may contribute to drug uptake. Broad permeability channels at the erythrocyte and parasitophorous vacuolar membranes of infected cells relax permeability constraints on antimalarial drug design; however, this uptake mechanism is prone to acquired resistance as the parasite may alter channel activity to reduce drug uptake. A better understanding of how antimalarial drugs reach their intracellular targets is critical to prioritizing drug leads for antimalarial development and may reveal new targets for therapeutic intervention.

  14. A Computational Drug Repositioning Approach for Targeting Oncogenic Transcription Factors.

    Science.gov (United States)

    Gayvert, Kaitlyn M; Dardenne, Etienne; Cheung, Cynthia; Boland, Mary Regina; Lorberbaum, Tal; Wanjala, Jackline; Chen, Yu; Rubin, Mark A; Tatonetti, Nicholas P; Rickman, David S; Elemento, Olivier

    2016-06-14

    Mutations in transcription factor (TF) genes are frequently observed in tumors, often leading to aberrant transcriptional activity. Unfortunately, TFs are often considered undruggable due to the absence of targetable enzymatic activity. To address this problem, we developed CRAFTT, a computational drug-repositioning approach for targeting TF activity. CRAFTT combines ChIP-seq with drug-induced expression profiling to identify small molecules that can specifically perturb TF activity. Application to ENCODE ChIP-seq datasets revealed known drug-TF interactions, and a global drug-protein network analysis supported these predictions. Application of CRAFTT to ERG, a pro-invasive, frequently overexpressed oncogenic TF, predicted that dexamethasone would inhibit ERG activity. Dexamethasone significantly decreased cell invasion and migration in an ERG-dependent manner. Furthermore, analysis of electronic medical record data indicates a protective role for dexamethasone against prostate cancer. Altogether, our method provides a broadly applicable strategy for identifying drugs that specifically modulate TF activity. PMID:27264179

  15. Di/tri-peptide transporters as drug delivery targets

    DEFF Research Database (Denmark)

    Nielsen, C U; Brodin, Birger

    2003-01-01

    Two human di/tri-peptide transporters, hPepT1 and hPepT2 have been identified and functionally characterized. In the small intestine hPepT1 is exclusively expressed, whereas both PepT1 and PepT2 are expressed in the proximal tubule. The transport via di/tri-peptide transporters is proton-dependen....../tri-peptide transporters from vesicular storages 3) changes in gene transcription/mRNA stability. The aim of the present review is to discuss physiological, patho-physiological and drug-induced regulation of di/tri-peptide transporter mediated transport.......-dependent, and the transporters thus belong to the Proton-dependent Oligopeptide Transporter (POT)-family. The transporters are not drug targets per se, however due to their uniquely broad substrate specificity; they have proved to be relevant drug targets at the level of drug transport. Drug molecules such as oral active beta...

  16. Targeting efflux pumps to overcome antifungal drug resistance.

    Science.gov (United States)

    Holmes, Ann R; Cardno, Tony S; Strouse, J Jacob; Ivnitski-Steele, Irena; Keniya, Mikhail V; Lackovic, Kurt; Monk, Brian C; Sklar, Larry A; Cannon, Richard D

    2016-08-01

    Resistance to antifungal drugs is an increasingly significant clinical problem. The most common antifungal resistance encountered is efflux pump-mediated resistance of Candida species to azole drugs. One approach to overcome this resistance is to inhibit the pumps and chemosensitize resistant strains to azole drugs. Drug discovery targeting fungal efflux pumps could thus result in the development of azole-enhancing combination therapy. Heterologous expression of fungal efflux pumps in Saccharomyces cerevisiae provides a versatile system for screening for pump inhibitors. Fungal efflux pumps transport a range of xenobiotics including fluorescent compounds. This enables the use of fluorescence-based detection, as well as growth inhibition assays, in screens to discover compounds targeting efflux-mediated antifungal drug resistance. A variety of medium- and high-throughput screens have been used to identify a number of chemical entities that inhibit fungal efflux pumps. PMID:27463566

  17. Novel colon targeted drug delivery system using natural polymers

    Directory of Open Access Journals (Sweden)

    Ravi V

    2008-01-01

    Full Text Available A novel colon targeted tablet formulation was developed using pectin as carrier and diltiazem HCl and indomethacin as model drugs. The tablets were coated with inulin followed by shellac and were evaluated for average weight, hardness and coat thickness. In vitro release studies for prepared tablets were carried out for 2 h in pH 1.2 HCl buffer, 3 h in pH 7.4 phosphate buffer and 6 h in simulated colonic fluid. The drug release from the coated systems was monitored using UV/Vis spectroscopy. In vitro studies revealed that the tablets coated with inulin and shellac have limited the drug release in stomach and small intestinal environment and released maximum amount of drug in the colonic environment. The study revealed that polysaccharides as carriers and inulin and shellac as a coating material can be used effectively for colon targeting of both water soluble and insoluble drugs.

  18. Cytotoxicity of liver targeted drug-loaded aiginate nanoparticles

    Institute of Scientific and Technical Information of China (English)

    ZHANG ChuangNian; WANG Wei; WANG ChunHong; TIAN Qin; HUANG Wei; YUAN Zhi; CHEN XueSi

    2009-01-01

    In this study,novel liver targeted doxorubicin (DOX) loaded alginate (ALG) nanoparticles were prepared by CaCl2 crosslinking method.Glycyrrhetinic acid (GA,a liver targeted molecule) modified alginate (GA-ALG) was synthesized in a heterogeneous system,and the structure of GA-ALG and the substitution degree of GA were analyzed by 1H NMR,FT-IR and elemental analysis.The drug release profile under the simulated physiological condition and cytotoxicity experiments of drug-loaded GA-ALG nanoparticles were carried out in vitro.Transmission electron micrographs (TEM) and dynamic light scattering (DLS) analysis showed that drug-loaded GA-ALG nanoparticles have spherical shape structure with the mean hydrodynamic diameter around 214±11 nm.The drug release was shown to last 20 days,and the MTT assay suggested that drug-loaded GA-ALG nanoparticles had a distinct killing effect on 7703 hepatocellular carcinoma cells.

  19. Cytotoxicity of liver targeted drug-loaded alginate nanoparticles

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    In this study, novel liver targeted doxorubicin (DOX) loaded alginate (ALG) nanoparticles were prepared by CaCl2 crosslinking method. Glycyrrhetinic acid (GA, a liver targeted molecule) modified alginate (GA-ALG) was synthesized in a heterogeneous system, and the structure of GA-ALG and the substitu-tion degree of GA were analyzed by 1H NMR, FT-IR and elemental analysis. The drug release profile under the simulated physiological condition and cytotoxicity experiments of drug-loaded GA-ALG nanoparticles were carried out in vitro. Transmission electron micrographs (TEM) and dynamic light scattering (DLS) analysis showed that drug-loaded GA-ALG nanoparticles have spherical shape structure with the mean hydrodynamic diameter around 214 ± 11 nm. The drug release was shown to last 20 days, and the MTT assay suggested that drug-loaded GA-ALG nanoparticles had a distinct kill-ing effect on 7703 hepatocellular carcinoma cells.

  20. Nanostructured materials for selective recognition and targeted drug delivery

    International Nuclear Information System (INIS)

    Selective recognition requires the introduction of a molecular memory into a polymer matrix in order to make it capable of rebinding an analyte with a very high specificity. In addition, targeted drug delivery requires drug-loaded vesicles which preferentially localize to the sites of injury and avoid uptake into uninvolved tissues. The rapid evolution of nanotechnology is aiming to fulfill the goal of selective recognition and optimal drug delivery through the development of molecularly imprinted polymeric (MIP) nanoparticles, tailor-made for a diverse range of analytes (e.g., pharmaceuticals, pesticides, amino acids, etc.) and of nanostructured targeted drug carriers (e.g., liposomes and micelles) with increased circulation lifetimes. In the present study, PLGA microparticles containing multilamellar vesicles (MLVs), and MIP nanoparticles were synthesized to be employed as drug carriers and synthetic receptors respectively

  1. NASAL ROUTE: A NOVELISTIC APPROACH FOR TARGETED DRUG DELIVERY TO CNS

    Directory of Open Access Journals (Sweden)

    Choudhary Rakhi

    2013-03-01

    Full Text Available Drug delivery through nasal route has attracted the interest of scientific community as it has been potentially explored as an alternative route for the administration of vaccines and biomolecules such as proteins, peptides and non-peptide drugs that are susceptible to enzymatic or acidic degradation and first-pass hepatic metabolism. The nasal mucosa is one of the most permeable and highly vascularised sites for drug administration ensuring rapid absorption and onset of therapeutic action. Intranasal administration is a non-invasive route for drug delivery, which is widely used for the local treatment of rhinitis or nasal polyposis. Since drugs can be absorbed into the systemic circulation through the nasal mucosa, this route may also be used in a range of acute or chronic conditions requiring considerable systemic exposure. In addition it minimizes the lag time associated with oral drug delivery and offers non-invasiveness, self medication, patient comfort and patient compliance which are hurdled in intravenous drug therapy. The objective of this review is to provide an anatomical, histological and physiological overview of nose, absorption enhancers, barriers related to nasal drug delivery, physicochemical, biological and formulation related factors affecting nasal drug delivery system and its advantages. It also highlights research approaches on brain targeting through nasal cavity.

  2. An ex Vivo Model for Evaluating Blood-Brain Barrier Permeability, Efflux, and Drug Metabolism.

    Science.gov (United States)

    Hellman, Karin; Aadal Nielsen, Peter; Ek, Fredrik; Olsson, Roger

    2016-05-18

    The metabolism of drugs in the brain is difficult to study in most species because of enzymatic instability in vitro and interference from peripheral metabolism in vivo. A locust ex vivo model that combines brain barrier penetration, efflux, metabolism, and analysis of the unbound fraction in intact brains was evaluated using known drugs. Clozapine was analyzed, and its major metabolites, clozapine N-oxide (CNO) and N-desmethylclozapine (NDMC), were identified and quantified. The back-transformation of CNO into clozapine observed in humans was also observed in locusts. In addition, risperidone, citalopram, fluoxetine, and haloperidol were studied, and one preselected metabolite for each drug was analyzed, identified, and quantified. Metabolite identification studies of clozapine and midazolam showed that the locust brain was highly metabolically active, and 18 and 14 metabolites, respectively, were identified. The unbound drug fraction of clozapine, NDMC, carbamazepine, and risperidone was analyzed. In addition, coadministration of drugs with verapamil or fluvoxamine was performed to evaluate drug-drug interactions in all setups. All findings correlated well with the data in the literature for mammals except for the stated fact that CNO is a highly blood-brain barrier permeant compound. Overall, the experiments indicated that invertebrates might be useful for screening of blood-brain barrier permeation, efflux, metabolism, and analysis of the unbound fraction of drugs in the brain in early drug discovery. PMID:26930271

  3. Barrier Qualities of the Mouse Eye to Topically Applied Drugs

    OpenAIRE

    Wang, Zhao; Do, Chi Wai; Avila, Marcel Y.; Stone, Richard A.; Jacobson, Kenneth A.; Civan, Mortimer M.

    2007-01-01

    The mouse eye displays unusually rapid intraocular pressure (IOP) responses to topically applied drugs as measured by the invasive servo-null micropipette system (SNMS). To learn if the time course reflected rapid drug transfer across the thin mouse cornea and sclera, we monitored a different parameter, pupillary size, following topical application of droplets containing 40 μM (0.073μg) carbachol. No miosis developed from this low carbachol concentration unless the cornea was impaled with an ...

  4. Drug Elucidation: Invertebrate Genetics Sheds New Light on the Molecular Targets of CNS Drugs

    Directory of Open Access Journals (Sweden)

    Donard S. Dwyer

    2014-07-01

    Full Text Available Many important drugs approved to treat common human diseases were discovered by serendipity, without a firm understanding of their modes of action. As a result, the side effects and interactions of these medications are often unpredictable, and there is limited guidance for improving the design of next-generation drugs. Here, we review the innovative use of simple model organisms, especially Caenorhabditis elegans, to gain fresh insights into the complex biological effects of approved CNS medications. Whereas drug discovery involves the identification of new drug targets and lead compounds/biologics, and drug development spans preclinical testing to FDA approval, drug elucidation refers to the process of understanding the mechanisms of action of marketed drugs by studying their novel effects in model organisms. Drug elucidation studies have revealed new pathways affected by antipsychotic drugs, e.g., the insulin signaling pathway, a trace amine receptor and a nicotinic acetylcholine receptor. Similarly, novel targets of antidepressant drugs and lithium have been identified in C. elegans, including lipid-binding/transport proteins and the SGK-1 signaling pathway, respectively. Elucidation of the mode of action of anesthetic agents has shown that anesthesia can involve mitochondrial targets, leak currents and gap junctions. The general approach reviewed in this article has advanced our knowledge about important drugs for CNS disorders and can guide future drug discovery efforts.

  5. Drug treatment and novel drug target against Cryptosporidium

    Directory of Open Access Journals (Sweden)

    Gargala G.

    2008-09-01

    Full Text Available Cryptosporidiosis emergence triggered the screening of many compounds for potential anti-cryptosporidial activity in which the majority were ineffective. The outbreak of cryptosporidiosis which occurred in Milwaukee in 1993 was not only the first significant emergence of Cryptosporidium spp. as a major human pathogen but also a huge waterborne outbreak thickening thousands of people from a major city in North America. Since then, outbreaks of cryptosporidiosis are regularly occurring throughout the world. New drugs against this parasite became consequently urgently needed. Among the most commonly used treatments against cryptosporidiosis are paromomycin, and azithromycin, which are partially effective. Nitazoxanide (NTZ’s effectiveness was demonstrated in vitro, and in vivo using several animal models and finally in clinical trials. It significantly shortened the duration of diarrhea and decreased mortality in adults and in malnourished children. NTZ is not effective without an appropriate immune response. In AIDS patients, combination therapy restoring immunity along with antimicrobial treatment of Cryptosporidium infection is necessary. Recent investigations focused on the potential of molecular-based immunotherapy against this parasite. Others tested the effects of probiotic bacteria, but were unable to demonstrate eradication of C. parvum. New synthetic isoflavone derivatives demonstrated excellent activity against C. parvum in vitro and in a gerbil model of infection. Newly synthesized nitroor non nitro- thiazolide compounds, derived from NTZ, have been recently shown to be at least as effective as NTZ against C. parvum in vitro development and are promising new therapeutic agents.

  6. Emerging targeted drug therapies in skeletal dysplasias.

    Science.gov (United States)

    Yap, Patrick; Savarirayan, Ravi

    2016-10-01

    Quantum advances have occurred in the field of human genetics in the six decades since Watson and Crick expressed their "wish to suggest a structure for the salt of deoxyribose nucleic acid." These culminated with the human genome project, which has opened up myriad possibilities, including that of individualized genetic medicine, the ability to deliver medical advice, management, and therapy tailored to an individual's genetic blueprint. Advances in genetic diagnostic capabilities have been rapid, to the point where the genome can be sequenced for several thousand dollars. Crucially, it has facilitated the identification of targets for "precision" treatments to combat genetic diseases at their source. This manuscript will review the innovative, pathogenesis-based therapies that are revolutionizing management of skeletal dysplasias, giving patients and families new options and outcomes. © 2016 Wiley Periodicals, Inc. PMID:27155200

  7. Targeting accuracy and closing timeline of the microbubble-enhanced focused ultrasound blood-brain barrier opening in non-human primates

    Science.gov (United States)

    Marquet, Fabrice; Tung, Yao-Sheng; Teichert, Tobias; Wu, Shih-Ying; Wang, Shutao; Downs, Matthew; Ferrera, Vincent P.; Konofagou, Elisa E.

    2012-11-01

    The delivery of drugs to specific neural targets faces two fundamental problems: Most drugs do not cross the blood-brain barrier and those that do spread to all parts of the brain. To date there exists only one non-invasive methodology with the potential to solve these problems: selective blood-brain barrier disruption using micro-bubble enhanced focused ultrasound. We have recently developed a single-element 500 kHz spherical transducer ultrasound setup for use in the non-human primate. Using this system for selective blood-brain barrier disruption is technically no more challenging than positioning a TMS coil, and does not rely on MRI-guided targeting or expensive phased array ultrasound systems. So far, however, the targeting accuracy that can be achieved with this system has not been quantified systematically. Here we tested the accuracy of the system by targeting the caudate nucleus of the basal ganglia in two macaque monkeys. Our results show that average in-plane error of the system is on the order of 2 mm and targeting error in depth, i.e., along the ultrasound path, is even smaller and averaged 1.2 mm. In summary, targeting accuracy of our system is good enough to enable the selective delivery of drugs to specific sub-structures of the basal ganglia.

  8. The calculated genetic barrier for antiretroviral drug resistance substitutions is largely similar for different HIV-1 subtypes

    NARCIS (Netherlands)

    Vijver, D.A. van de; Wensing, A.M.J.; Angarano, G.; Asjo, B.; Balotta, C.; Camacho, R.; Chaix, M.; Costagliola, D.; De Luca, A.; Derdelinckx, I.; Grossman, Z.; Hamouda, O.; Hatzakis, A.; Hemmer, R.; Hoepelman, A.I.M.; Horban, A.; Korn, K.; Kücherer, C.; Leitner, T.; Loveday, C.; MacRae, E.; Maljkovic, I.; Mendoza, C. de; Meyer, L.; Nielsen, C.; Op de Coul, E.L.M.; Omaasen, V.; Paraskevis, D.; Perrin, L.; Puchhammer-Stöckl, E.; Salminen, M.; Schmit, J.; Scheider, F.; Schuurman, R.; Soriano, V.; Stanczak, G.; Stanojevic, M.; Vandamme, A.; Laethem, K. van; Violin, M.; Wilde, K.; Yerly, S.; Zazzi, M.; Boucher, C.A.B.

    2006-01-01

    The genetic barrier, defined as the number of mutations required to overcome drug-selective pressure, is an important factor for the development of HIV drug resistance. Because of high variability between subtypes, particular HIV-1 subtypes could have different genetic barriers for drug resistance s

  9. The sodium channel as a target for local anesthetic drugs

    Directory of Open Access Journals (Sweden)

    Harry A Fozzard

    2011-11-01

    Full Text Available Na channels are the source of excitatory currents for the nervous system and muscle. They are the target for a class of drugs called local anesthetics (LA, which have been used for local and regional anesthesia and for excitatory dysfunction problems such as epilepsy and cardiac arrhythmia. LA drugs are prototypes for new analgesic drugs. The LA drug binding site has been localized to the inner pore of the channel, where drugs interact mainly with a phenylalanine in domain IV S6. Drug affinity is both voltage- and use-dependent. Voltage-dependency is the result of changes in the conformation of the inner pore during channel activation and opening, allowing high energy interaction of drugs with the phenylalanine. LA drugs also reduce the gating current of Na channels, which represents the movement of charged residues in the voltage sensors. Specifically, drug binding to phenylalanine locks the domain III S4 in its outward (activated position, and slows recovery of the domain IV S4. Although strongly affecting gating, LA drugs almost certainly also block by steric occlusion of the pore. Molecular definition of the binding and blocking interactions may help in new drug development.

  10. Genomes2Drugs: identifies target proteins and lead drugs from proteome data.

    LENUS (Irish Health Repository)

    Toomey, David

    2009-01-01

    BACKGROUND: Genome sequencing and bioinformatics have provided the full hypothetical proteome of many pathogenic organisms. Advances in microarray and mass spectrometry have also yielded large output datasets of possible target proteins\\/genes. However, the challenge remains to identify new targets for drug discovery from this wealth of information. Further analysis includes bioinformatics and\\/or molecular biology tools to validate the findings. This is time consuming and expensive, and could fail to yield novel drugs if protein purification and crystallography is impossible. To pre-empt this, a researcher may want to rapidly filter the output datasets for proteins that show good homology to proteins that have already been structurally characterised or proteins that are already targets for known drugs. Critically, those researchers developing novel antibiotics need to select out the proteins that show close homology to any human proteins, as future inhibitors are likely to cross-react with the host protein, causing off-target toxicity effects later in clinical trials. METHODOLOGY\\/PRINCIPAL FINDINGS: To solve many of these issues, we have developed a free online resource called Genomes2Drugs which ranks sequences to identify proteins that are (i) homologous to previously crystallized proteins or (ii) targets of known drugs, but are (iii) not homologous to human proteins. When tested using the Plasmodium falciparum malarial genome the program correctly enriched the ranked list of proteins with known drug target proteins. CONCLUSIONS\\/SIGNIFICANCE: Genomes2Drugs rapidly identifies proteins that are likely to succeed in drug discovery pipelines. This free online resource helps in the identification of potential drug targets. Importantly, the program further highlights proteins that are likely to be inhibited by FDA-approved drugs. These drugs can then be rapidly moved into Phase IV clinical studies under \\'change-of-application\\' patents.

  11. Membrane Transporters: Structure, Function and Targets for Drug Design

    Science.gov (United States)

    Ravna, Aina W.; Sager, Georg; Dahl, Svein G.; Sylte, Ingebrigt

    Current therapeutic drugs act on four main types of molecular targets: enzymes, receptors, ion channels and transporters, among which a major part (60-70%) are membrane proteins. This review discusses the molecular structures and potential impact of membrane transporter proteins on new drug discovery. The three-dimensional (3D) molecular structure of a protein contains information about the active site and possible ligand binding, and about evolutionary relationships within the protein family. Transporters have a recognition site for a particular substrate, which may be used as a target for drugs inhibiting the transporter or acting as a false substrate. Three groups of transporters have particular interest as drug targets: the major facilitator superfamily, which includes almost 4000 different proteins transporting sugars, polyols, drugs, neurotransmitters, metabolites, amino acids, peptides, organic and inorganic anions and many other substrates; the ATP-binding cassette superfamily, which plays an important role in multidrug resistance in cancer chemotherapy; and the neurotransmitter:sodium symporter family, which includes the molecular targets for some of the most widely used psychotropic drugs. Recent technical advances have increased the number of known 3D structures of membrane transporters, and demonstrated that they form a divergent group of proteins with large conformational flexibility which facilitates transport of the substrate.

  12. Process Modeling of Ferrofluids Flowfor Magnetic Targeting Drug Delivery

    Institute of Scientific and Technical Information of China (English)

    LIU Handan; WANG Shigang; XU Wei

    2009-01-01

    Among the proposed techniques for delivering drugs to specific sites within the human body, magnetic targeting drug delivery surpasses due to its non-invasive character and its high targeting efficiency. Although there have been some analyses theoretically for magnetic drug targeting, very few researchers have addressed the hydrodynamic models of magnetic fluids in the blood vessel of human body. This paper presents a mathematical model to describe the hydrodynamics of ferrofluids as drug carriers flowing in a blood vessel under the applied magnetic field. A 3D flow field of magnetic particles in a blood vessel model is numerically simulated in order to further understand clinical application of magnetic targeting drug delivery. Simulation results show that magnetic nanoparticles can be enriched in a target region depending on the applied magnetic field intensity. Magnetic resonance imaging conftrms the enrichment of ferrofluids in a desired body tissue of Sprague-Dawley rats. The simulation results coincide with those animal experiments. Results of the analysis provide the important information and can suggest strategies for improving delivery in favor of the clinical application.

  13. Large-scale prediction of drug-target interactions using protein sequences and drug topological structures

    Energy Technology Data Exchange (ETDEWEB)

    Cao Dongsheng [Research Center of Modernization of Traditional Chinese Medicines, Central South University, Changsha 410083 (China); Liu Shao [Xiangya Hospital, Central South University, Changsha 410008 (China); Xu Qingsong [School of Mathematical Sciences and Computing Technology, Central South University, Changsha 410083 (China); Lu Hongmei; Huang Jianhua [Research Center of Modernization of Traditional Chinese Medicines, Central South University, Changsha 410083 (China); Hu Qiannan [Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Wuhan University), Ministry of Education, and Wuhan University School of Pharmaceutical Sciences, Wuhan 430071 (China); Liang Yizeng, E-mail: yizeng_liang@263.net [Research Center of Modernization of Traditional Chinese Medicines, Central South University, Changsha 410083 (China)

    2012-11-08

    Highlights: Black-Right-Pointing-Pointer Drug-target interactions are predicted using an extended SAR methodology. Black-Right-Pointing-Pointer A drug-target interaction is regarded as an event triggered by many factors. Black-Right-Pointing-Pointer Molecular fingerprint and CTD descriptors are used to represent drugs and proteins. Black-Right-Pointing-Pointer Our approach shows compatibility between the new scheme and current SAR methodology. - Abstract: The identification of interactions between drugs and target proteins plays a key role in the process of genomic drug discovery. It is both consuming and costly to determine drug-target interactions by experiments alone. Therefore, there is an urgent need to develop new in silico prediction approaches capable of identifying these potential drug-target interactions in a timely manner. In this article, we aim at extending current structure-activity relationship (SAR) methodology to fulfill such requirements. In some sense, a drug-target interaction can be regarded as an event or property triggered by many influence factors from drugs and target proteins. Thus, each interaction pair can be represented theoretically by using these factors which are based on the structural and physicochemical properties simultaneously from drugs and proteins. To realize this, drug molecules are encoded with MACCS substructure fingerings representing existence of certain functional groups or fragments; and proteins are encoded with some biochemical and physicochemical properties. Four classes of drug-target interaction networks in humans involving enzymes, ion channels, G-protein-coupled receptors (GPCRs) and nuclear receptors, are independently used for establishing predictive models with support vector machines (SVMs). The SVM models gave prediction accuracy of 90.31%, 88.91%, 84.68% and 83.74% for four datasets, respectively. In conclusion, the results demonstrate the ability of our proposed method to predict the drug-target

  14. Magnetic Nanoparticles as Intraocular Drug Delivery System to Target Retinal Pigmented Epithelium (RPE)

    Science.gov (United States)

    Giannaccini, Martina; Giannini, Marianna; Calatayud, M. Pilar; Goya, Gerardo F.; Cuschieri, Alfred; Dente, Luciana; Raffa, Vittoria

    2014-01-01

    One of the most challenging efforts in drug delivery is the targeting of the eye. The eye structure and barriers render this organ poorly permeable to drugs. Quite recently the entrance of nanoscience in ocular drug delivery has improved the penetration and half-life of drugs, especially in the anterior eye chamber, while targeting the posterior chamber is still an open issue. The retina and the retinal pigment epithelium/choroid tissues, located in the posterior eye chamber, are responsible for the majority of blindness both in childhood and adulthood. In the present study, we used magnetic nanoparticles (MNPs) as a nanotool for ocular drug delivery that is capable of specific localization in the retinal pigmented epithelium (RPE) layer. We demonstrate that, following intraocular injection in Xenopus embryos, MNPs localize specifically in RPE where they are retained for several days. The specificity of the localization did not depend on particle size and surface properties of the MNPs used in this work. Moreover, through similar experiments in zebrafish, we demonstrated that the targeting of RPE by the nanoparticles is not specific for the Xenopus species. PMID:24451140

  15. Magnetic Nanoparticles as Intraocular Drug Delivery System to Target Retinal Pigmented Epithelium (RPE

    Directory of Open Access Journals (Sweden)

    Martina Giannaccini

    2014-01-01

    Full Text Available One of the most challenging efforts in drug delivery is the targeting of the eye. The eye structure and barriers render this organ poorly permeable to drugs. Quite recently the entrance of nanoscience in ocular drug delivery has improved the penetration and half-life of drugs, especially in the anterior eye chamber, while targeting the posterior chamber is still an open issue. The retina and the retinal pigment epithelium/choroid tissues, located in the posterior eye chamber, are responsible for the majority of blindness both in childhood and adulthood. In the present study, we used magnetic nanoparticles (MNPs as a nanotool for ocular drug delivery that is capable of specific localization in the retinal pigmented epithelium (RPE layer. We demonstrate that, following intraocular injection in Xenopus embryos, MNPs localize specifically in RPE where they are retained for several days. The specificity of the localization did not depend on particle size and surface properties of the MNPs used in this work. Moreover, through similar experiments in zebrafish, we demonstrated that the targeting of RPE by the nanoparticles is not specific for the Xenopus species.

  16. Computational design of nanoparticle drug delivery systems for selective targeting.

    Science.gov (United States)

    Duncan, Gregg A; Bevan, Michael A

    2015-10-01

    Ligand-functionalized nanoparticles capable of selectively binding to diseased versus healthy cell populations are attractive for improved efficacy of nanoparticle-based drug and gene therapies. However, nanoparticles functionalized with high affinity targeting ligands may lead to undesired off-target binding to healthy cells. In this work, Monte Carlo simulations were used to quantitatively determine net surface interactions, binding valency, and selectivity between targeted nanoparticles and cell surfaces. Dissociation constant, KD, and target membrane protein density, ρR, are explored over a range representative of healthy and cancerous cell surfaces. Our findings show highly selective binding to diseased cell surfaces can be achieved with multiple, weaker affinity targeting ligands that can be further optimized by varying the targeting ligand density, ρL. Using the approach developed in this work, nanomedicines can be optimally designed for exclusively targeting diseased cells and tissues.

  17. Cell-penetrating peptides for drug delivery across membrane barriers

    DEFF Research Database (Denmark)

    Foged, Camilla; Nielsen, Hanne Moerck

    2008-01-01

    , proteins and colloidal carriers such as liposomes and polymeric nanoparticles. Their ability to cross biological membranes in a non-disruptive way without apparent toxicity is highly desired for increasing drug bioavailability. This review provides an overview of the application of cell...

  18. Targeted drug delivery by ultrasound-triggered margination of microbubbles

    CERN Document Server

    Guckenberger, Achim

    2016-01-01

    The ideal agent for targeted drug delivery should stay away from the biochemically active walls of the blood vessels during circulation. However, upon reaching its target it should attain a near-wall position. Though seemingly contradictory, we show that coated microbubbles (ultrasound contrast agents) possess precisely these two properties. Using numerical simulations we find that application of a localized ultrasound pulse at the target organ triggers their rapid migration from the vessel center toward the endothelial wall. This ultrasound-triggered margination is due to hydrodynamic interactions between the red blood cells and the oscillating bubbles. Importantly, we find that the effect is very robust, existing even if the duration in the stiff state is five times lower than the opposing time in the soft state. Our results might also explain why recent in-vivo studies found strongly enhanced drug uptake by co-administration of microbubbles with classical drug delivery agents.

  19. Targeted Liposomal Drug Delivery to Monocytes and Macrophages

    Directory of Open Access Journals (Sweden)

    Ciara Kelly

    2011-01-01

    Full Text Available As the role of monocytes and macrophages in a range of diseases is better understood, strategies to target these cell types are of growing importance both scientifically and therapeutically. As particulate carriers, liposomes naturally target cells of the mononuclear phagocytic system (MPS, particularly macrophages. Loading drugs into liposomes can therefore offer an efficient means of drug targeting to MPS cells. Physicochemical properties including size, charge and lipid composition can have a very significant effect on the efficiency with which liposomes target MPS cells. MPS cells express a range of receptors including scavenger receptors, integrins, mannose receptors and Fc-receptors that can be targeted by the addition of ligands to liposome surfaces. These ligands include peptides, antibodies and lectins and have the advantages of increasing target specificity and avoiding the need for cationic lipids to trigger intracellular delivery. The goal for targeting monocytes/macrophages using liposomes includes not only drug delivery but also potentially a role in cell ablation and cell activation for the treatment of conditions including cancer, atherosclerosis, HIV, and chronic inflammation.

  20. Targeting protein kinases in the malaria parasite: update of an antimalarial drug target.

    Science.gov (United States)

    Zhang, Veronica M; Chavchich, Marina; Waters, Norman C

    2012-01-01

    Millions of deaths each year are attributed to malaria worldwide. Transmitted through the bite of an Anopheles mosquito, infection and subsequent death from the Plasmodium species, most notably P. falciparum, can readily spread through a susceptible population. A malaria vaccine does not exist and resistance to virtually every antimalarial drug predicts that mortality and morbidity associated with this disease will increase. With only a few antimalarial drugs currently in the pipeline, new therapeutic options and novel chemotypes are desperately needed. Hit-to-Lead diversity may successfully provide novel inhibitory scaffolds when essential enzymes are targeted, for example, the plasmodial protein kinases. Throughout the entire life cycle of the malaria parasite, protein kinases are essential for growth and development. Ongoing efforts continue to characterize these kinases, while simultaneously pursuing them as antimalarial drug targets. A collection of structural data, inhibitory profiles and target validation has set the foundation and support for targeting the malarial kinome. Pursuing protein kinases as cancer drug targets has generated a wealth of information on the inhibitory strategies that can be useful for antimalarial drug discovery. In this review, progress on selected protein kinases is described. As the search for novel antimalarials continues, an understanding of the phosphor-regulatory pathways will not only validate protein kinase targets, but also will identify novel chemotypes to thwart malaria drug resistance. PMID:22242850

  1. Multifunctional Nanoparticles for Drug Delivery Applications Imaging, Targeting, and Delivery

    CERN Document Server

    Prud'homme, Robert

    2012-01-01

    This book clearly demonstrates the progression of nanoparticle therapeutics from basic research to applications. Unlike other books covering nanoparticles used in medical applications, Multifunctional Nanoparticles for Drug Delivery Applications presents the medical challenges that can be reduced or even overcome by recent advances in nanoscale drug delivery. Each chapter highlights recent progress in the design and engineering of select multifunctional nanoparticles with topics covering targeting, imaging, delivery, diagnostics, and therapy.

  2. Nanomechanics of Drug-target Interactions and Antibacterial Resistance Detection

    OpenAIRE

    Ndieyira, J. W.; Watari, M.; McKendry, R. A.

    2013-01-01

    The cantilever sensor, which acts as a transducer of reactions between model bacterial cell wall matrix immobilized on its surface and antibiotic drugs in solution, has shown considerable potential in biochemical sensing applications with unprecedented sensitivity and specificity(1-5). The drug-target interactions generate surface stress, causing the cantilever to bend, and the signal can be analyzed optically when it is illuminated by a laser. The change in surface stress measured with nano-...

  3. Identifying problematic drugs based on the characteristics of their targets

    Directory of Open Access Journals (Sweden)

    Tiago Jose eDa Silva Lopes

    2015-09-01

    Full Text Available Identifying promising compounds during the early stages of drug development is a major challenge for both academia and the pharmaceutical industry. The difficulties are even more pronounced when we consider multi-target pharmacology, where the compounds often target more than one protein, or multiple compounds are used together. Here, we address this problem by using machine learning and network analysis to process sequence and interaction data from human proteins to identify promising compounds. We used this strategy to identify properties that make certain proteins more likely to cause harmful effects when targeted; such proteins usually have domains commonly found throughout the human proteome. Additionally, since currently marketed drugs hit multiple targets simultaneously, we combined the information from individual proteins to devise a score that quantifies the likelihood of a compound being harmful to humans. This approach enabled us to distinguish between approved and problematic drugs with an accuracy of 60%¬–70%. Moreover, our approach can be applied as soon as candidate drugs are available, as demonstrated with predictions for more than 5000 experimental drugs. These resources are available at http://sourceforge.net/projects/psin/.

  4. New approaches to targeted drug delivery to tumour cells

    International Nuclear Information System (INIS)

    Basic approaches to the design of targeted drugs for the treatment of human malignant tumours have been considered. The stages of the development of these approaches have been described in detail and theoretically substantiated, and basic experimental results have been reported. Considerable attention is paid to the general characteristic of nanopharmacological drugs and to the description of mechanisms of cellular interactions with nanodrugs. The potentialities and limitations of application of nanodrugs for cancer therapy and treatment of other diseases have been considered. The use of nanodrugs conjugated with vector molecules seems to be the most promising trend of targeted therapy of malignant tumours. The bibliography includes 122 references

  5. New approaches to targeted drug delivery to tumour cells

    Science.gov (United States)

    Severin, E. S.

    2015-01-01

    Basic approaches to the design of targeted drugs for the treatment of human malignant tumours have been considered. The stages of the development of these approaches have been described in detail and theoretically substantiated, and basic experimental results have been reported. Considerable attention is paid to the general characteristic of nanopharmacological drugs and to the description of mechanisms of cellular interactions with nanodrugs. The potentialities and limitations of application of nanodrugs for cancer therapy and treatment of other diseases have been considered. The use of nanodrugs conjugated with vector molecules seems to be the most promising trend of targeted therapy of malignant tumours. The bibliography includes 122 references.

  6. Overcoming cellular and tissue barriers to improve liposomal drug delivery

    Science.gov (United States)

    Kohli, Aditya G.

    Forty years of liposome research have demonstrated that the anti-tumor efficacy of liposomal therapies is, in part, driven by three parameters: 1) liposome formulation and lipid biophysics, 2) accumulation and distribution in the tumor, and 3) release of the payload at the site of interest. This thesis outlines three studies that improve on each of these delivery steps. In the first study, we engineer a novel class of zwitterlipids with an inverted headgroup architecture that have remarkable biophysical properties and may be useful for drug delivery applications. After intravenous administration, liposomes accumulate in the tumor by the enhanced permeability and retention effect. However, the tumor stroma often limits liposome efficacy by preventing distribution into the tumor. In the second study, we demonstrate that depletion of hyaluronan in the tumor stroma improves the distribution and efficacy of DoxilRTM in murine 4T1 tumors. Once a liposome has distributed to the therapeutic site, it must release its payload over the correct timescale. Few facile methods exist to quantify the release of liposome therapeutics in vivo. In the third study, we outline and validate a simple, robust, and quantitative method for tracking the rate and extent of release of liposome contents in vivo. This tool should facilitate a better understanding of the pharmacodynamics of liposome-encapsulated drugs in animals. This work highlights aspects of liposome behavior that have prevented successful clinical translation and proposes alternative approaches to improve liposome drug delivery.

  7. A smart multifunctional drug delivery nanoplatform for targeting cancer cells

    Science.gov (United States)

    Hoop, M.; Mushtaq, F.; Hurter, C.; Chen, X.-Z.; Nelson, B. J.; Pané, S.

    2016-06-01

    Wirelessly guided magnetic nanomachines are promising vectors for targeted drug delivery, which have the potential to minimize the interaction between anticancer agents and healthy tissues. In this work, we propose a smart multifunctional drug delivery nanomachine for targeted drug delivery that incorporates a stimuli-responsive building block. The nanomachine consists of a magnetic nickel (Ni) nanotube that contains a pH-responsive chitosan hydrogel in its inner cavity. The chitosan inside the nanotube serves as a matrix that can selectively release drugs in acidic environments, such as the extracellular space of most tumors. Approximately a 2.5 times higher drug release from Ni nanotubes at pH = 6 is achieved compared to that at pH = 7.4. The outside of the Ni tube is coated with gold. A fluorescein isothiocyanate (FITC) labeled thiol-ssDNA, a biological marker, was conjugated on its surface by thiol-gold click chemistry, which enables traceability. The Ni nanotube allows the propulsion of the device by means of external magnetic fields. As the proposed nanoarchitecture integrates different functional building blocks, our drug delivery nanoplatform can be employed for carrying molecular drug conjugates and for performing targeted combinatorial therapies, which can provide an alternative and supplementary solution to current drug delivery technologies.Wirelessly guided magnetic nanomachines are promising vectors for targeted drug delivery, which have the potential to minimize the interaction between anticancer agents and healthy tissues. In this work, we propose a smart multifunctional drug delivery nanomachine for targeted drug delivery that incorporates a stimuli-responsive building block. The nanomachine consists of a magnetic nickel (Ni) nanotube that contains a pH-responsive chitosan hydrogel in its inner cavity. The chitosan inside the nanotube serves as a matrix that can selectively release drugs in acidic environments, such as the extracellular space of

  8. Current strategies for targeted delivery of bio-active drug molecules in the treatment of brain tumor.

    Science.gov (United States)

    Garg, Tarun; Bhandari, Saurav; Rath, Goutam; Goyal, Amit K

    2015-12-01

    Brain tumor is one of the most challenging diseases to treat. The major obstacle in the specific drug delivery to brain is blood-brain barrier (BBB). Mostly available anti-cancer drugs are large hydrophobic molecules which have limited permeability via BBB. Therefore, it is clear that the protective barriers confining the passage of the foreign particles into the brain are the main impediment for the brain drug delivery. Hence, the major challenge in drug development and delivery for the neurological diseases is to design non-invasive nanocarrier systems that can assist controlled and targeted drug delivery to the specific regions of the brain. In this review article, our major focus to treat brain tumor by study numerous strategies includes intracerebral implants, BBB disruption, intraventricular infusion, convection-enhanced delivery, intra-arterial drug delivery, intrathecal drug delivery, injection, catheters, pumps, microdialysis, RNA interference, antisense therapy, gene therapy, monoclonal/cationic antibodies conjugate, endogenous transporters, lipophilic analogues, prodrugs, efflux transporters, direct conjugation of antitumor drugs, direct targeting of liposomes, nanoparticles, solid-lipid nanoparticles, polymeric micelles, dendrimers and albumin-based drug carriers.

  9. Polymeric nanoparticles for drug delivery and targeting: A comprehensive review

    Directory of Open Access Journals (Sweden)

    Natarajan Jawahar

    2012-01-01

    Full Text Available In the recent years, many modern technologies have been established in the pharmaceutical research and development area. The field of nanotechnology has been revolutionary as substantial and technical, and scientific growth, in basic sciences plus manipulation by physical or chemical process of individual atoms and molecules have widened its horizon. Polymeric nanoparticles with a size in the nanometer range protect drugs against in vitro and in vivo degradation; it releases the drug in a controlled manner and also offers the possibility of drug targeting. The use of polymeric drug nanoparticles is a universal approach to increase the therapeutic performance of poorly soluble drugs in any route of administration. The present review discusses the physico-chemical properties of polymeric nanoparticles, production methods, routes of administration and potential therapeutic applications.

  10. Targeting Antibacterial Agents by Using Drug-Carrying Filamentous Bacteriophages

    OpenAIRE

    Yacoby, Iftach; Shamis, Marina; Bar, Hagit; Shabat, Doron; Benhar, Itai

    2006-01-01

    Bacteriophages have been used for more than a century for (unconventional) therapy of bacterial infections, for half a century as tools in genetic research, for 2 decades as tools for discovery of specific target-binding proteins, and for nearly a decade as tools for vaccination or as gene delivery vehicles. Here we present a novel application of filamentous bacteriophages (phages) as targeted drug carriers for the eradication of (pathogenic) bacteria. The phages are genetically modified to d...

  11. Prediction of drug-target interactions and drug repositioning via network-based inference.

    Directory of Open Access Journals (Sweden)

    Feixiong Cheng

    Full Text Available Drug-target interaction (DTI is the basis of drug discovery and design. It is time consuming and costly to determine DTI experimentally. Hence, it is necessary to develop computational methods for the prediction of potential DTI. Based on complex network theory, three supervised inference methods were developed here to predict DTI and used for drug repositioning, namely drug-based similarity inference (DBSI, target-based similarity inference (TBSI and network-based inference (NBI. Among them, NBI performed best on four benchmark data sets. Then a drug-target network was created with NBI based on 12,483 FDA-approved and experimental drug-target binary links, and some new DTIs were further predicted. In vitro assays confirmed that five old drugs, namely montelukast, diclofenac, simvastatin, ketoconazole, and itraconazole, showed polypharmacological features on estrogen receptors or dipeptidyl peptidase-IV with half maximal inhibitory or effective concentration ranged from 0.2 to 10 µM. Moreover, simvastatin and ketoconazole showed potent antiproliferative activities on human MDA-MB-231 breast cancer cell line in MTT assays. The results indicated that these methods could be powerful tools in prediction of DTIs and drug repositioning.

  12. [Development of drug delivery systems for targeting to macrophages].

    Science.gov (United States)

    Chono, Sumio

    2007-09-01

    Drug delivery systems (DDS) using liposomes as drug carriers for targeting to macrophages have been developed for the treatment of diseases that macrophages are related to their progress. Initially, DDS for the treatment of atherosclerosis are described. The influence of particle size on the drug delivery to atherosclerotic lesions that macrophages are richly present and antiatherosclerotic effects following intravenous administration of liposomes containing dexamethasone (DXM-liposomes) was investigated in atherogenic mice. Both the drug delivery efficacy of DXM-liposomes (particle size, 200 nm) to atherosclerotic lesions and their antiatherosclerotic effects were greater than those of 70 and 500 nm. These results indicate that there is an optimal particle size for drug delivery to atherosclerotic lesions. DDS for the treatment of respiratory infections are then described. The influence of particle size and surface mannosylation on the drug delivery to alveolar macrophages (AMs) and antibacterial effects following pulmonary administration of liposomes containing ciprofloxacin (CPFX-liposomes) was investigated in rats. The drug delivery efficacy of CPFX-liposomes to AMs was particle size-dependent over the range 100-1000 nm and then became constant at over 1000 nm. These results indicate that the most effective size is 1000 nm. Both the drug delivery efficacy of mannosylated CPFX-liposomes (particle size, 1000 nm) to AMs and their antibacterial effects were significantly greater than those of unmodified CPFX-liposomes. These results indicate that the surface mannosylation is useful method for drug delivery to AMs. This review provides useful information to help in the development of novel pharmaceutical formulations aimed at drug targeting to macrophages.

  13. The Effects of Psychostimulant Drugs on Blood Brain Barrier Function and Neuroinflammation

    OpenAIRE

    Kousik, Sharanya M.; T. Celeste eNapier; Carvey, Paul M.

    2012-01-01

    The blood brain barrier (BBB) is a highly dynamic interface between the central nervous system (CNS) and periphery. The BBB is comprised of a number of components and is part of the larger neuro(glio)vascular unit. Current literature suggests that psychostimulant drugs of abuse alter the function of the BBB which likely contributes to the neurotoxicities associated with these drugs. In both preclinical and clinical studies, psychostimulants including methamphetamine, MDMA, cocaine, and nicoti...

  14. Injectable nanomaterials for drug delivery: carriers, targeting moieties, and therapeutics.

    Science.gov (United States)

    Webster, David M; Sundaram, Padma; Byrne, Mark E

    2013-05-01

    Therapeutics such as nucleic acids, proteins/peptides, vaccines, anti-cancer, and other drugs have disadvantages of low bio-availability, rapid clearance, and high toxicity. Thus, there is a significant need for the development of efficient delivery methods and carriers. Injectable nanocarriers have received much attention due to their vast range of structures and ability to contain multiple functional groups, both within the bulk material and on the surface of the particles. Nanocarriers may be tailored to control drug release and/or increase selective cell targeting, cellular uptake, drug solubility, and circulation time, all of which lead to a more efficacious delivery and action of therapeutics. The focus of this review is injectable, targeted nanoparticle drug delivery carriers highlighting the diversity of nanoparticle materials and structures as well as highlighting current therapeutics and targeting moieties. Structures and materials discussed include liposomes, polymersomes, dendrimers, cyclodextrin-containing polymers (CDPs), carbon nanotubes (CNTs), and gold nanoparticles. Additionally, current clinical trial information and details such as trial phase, treatment, active drug, carrier sponsor, and clinical trial identifier for different materials and structures are presented and discussed.

  15. Spherons as a drug target in Alzheimer's disease.

    Science.gov (United States)

    Averback, P

    1998-10-01

    Spherons are unique brain entities that are causally linked to the amyloid plaques (SPs [senile plaques]) of Alzheimer's disease (AD). SPs are the quantitatively major tissue abnormality of AD. Spherons increase in size (but not in number) gradually throughout life until they reach a size range where they burst and form SPs. Drugs targeted at attenuating the process of spheron transformation into SPs are a logical approach to AD therapy. There are 20 criteria of validity for an SP causal entity that are satisfied by spherons-and no more than a few of these 20 criteria are satisfied by any other known hypothesis. These criteria of validity are reviewed, in addition to common difficulties in understanding spheron theory and a number of common-sense considerations in AD therapeutic research. Spheron-based drug therapy in AD potentially can retard the process of spheron bursting and subsequent plaque formation by: 1) blocking the formation of SPs; 2) reducing the size of SPs; 3) delaying spheron breakdown; and 4) retarding spheron growth. Isolated spherons from human brain are intact human drug targets and can be used as human in vitro or in vivo screening targets. The paramount importance of spherons as a target for drug therapy in AD is emphasized by considering that regardless of any other type of real or potential therapy, there still already exists in every middle-aged adult a full population of spherons in the brain, filled with more than enough amyloid to bring about full-blown AD.

  16. In silico search of DNA drugs targeting oncogenes.

    Science.gov (United States)

    Papadakis, George; Gizeli, Electra

    2012-01-01

    Triplex forming oligonucleotides (TFOs) represent a class of drug candidates for antigene therapy. Based on strict criteria, we investigated the potential of 25 known oncogenes to be regulated by TFOs in the mRNA synthesis level and we report specific target sequences found in seven of these genes. PMID:23221090

  17. Mitochondrial chaperones may be targets for anti-cancer drugs

    Science.gov (United States)

    Scientists at NCI have found that a mitochondrial chaperone protein, TRAP1, may act indirectly as a tumor suppressor as well as a novel target for developing anti-cancer drugs. Chaperone proteins, such as TRAP1, help other proteins adapt to stress, but sc

  18. Nanofabricated biomimetic structures for smart targeting and drug delivery

    NARCIS (Netherlands)

    Dudia, Alma; Kanger, Johannes S.; Subramaniam, Vinod

    2005-01-01

    We present a new approach to hybrid artificial cells (AC) designed for specific targeting and active drug delivery by combining an impermeable non-biological scaffold with an artificial bilayer lipid membrane (BLM) that supports the functioning bio-molecules required to provide AC functionality. We

  19. Current and future drug targets in weight management

    NARCIS (Netherlands)

    Witkamp, R.F.

    2011-01-01

    Obesity will continue to be one of the leading causes of chronic disease unless the ongoing rise in the prevalence of this condition is reversed. Accumulating morbidity figures and a shortage of effective drugs have generated substantial research activity with several molecular targets being investi

  20. Leishmaniasis:Current status of available drugs and new potential drug targets

    Institute of Scientific and Technical Information of China (English)

    Nisha Singh; Manish Kumar; Rakesh Kumar Singh

    2012-01-01

    The control ofLeishmania infection relies primarily on chemotherapy till date. Resistance to pentavalent antimonials, which have been the recommended drugs to treat cutaneous and visceral leishmaniasis, is now widespread in Indian subcontinents. New drug formulations like amphotericinB, its lipid formulations, and miltefosine have shown great efficacy to treat leishmaniasis but their high cost and therapeutic complications limit their usefulness. In addition, irregular and inappropriate uses of these second line drugs in endemic regions like state of Bihar, India threaten resistance development in the parasite. In context to the limited drug options and unavailability of either preventive or prophylactic candidates, there is a pressing need to develop true antileishmanial drugs to reduce the disease burden of this debilitating endemic disease. Notwithstanding significant progress of leishmanial research during last few decades, identification and characterization of novel drugs and drug targets are far from satisfactory. This review will initially describe current drug regimens and later will provide an overview on few important biochemical and enzymatic machineries that could be utilized as putative drug targets for generation of true antileishmanial drugs.

  1. The Role of Carrier Geometry in Overcoming Biological Barriers to Drug Delivery.

    Science.gov (United States)

    Jordan, Carolyn; Shuvaev, Vladimir V; Bailey, Mark; Muzykantov, Vladimir R; Dziubla, Thomas D

    2016-01-01

    For a variety of diseases, effective therapy is severely limited or rendered impossible due to an inability to deliver medications to the intended sites of action. Multiple barriers exist through the body, which have evolved over time to limit the migration of foreign compounds from entering the tissues. Turning toward biology as inspiration, it has been the general goal of drug delivery to create carrier strategies that mimic, in part, features of bacteria/ viruses that allow them overcome these barriers. By packaging drugs into nano and micron scale vehicles, it should be possible to completely change the biodistribution and residence times of pharmaceutically active compounds. Recently, due to advances in formulation technologies, it has become possible to control not just the material selection, surface chemistry, and/or size, but also the overall geometry and plasticity of the drug carriers. These approaches aid in the formulation of nonspherical particles such as, discs, rods, and even unique structures such as cubes and nanodiamonds. The adjustment of size and shape can be used for the aid or prevention in cellular uptake and also to overcome the vascular and mucosal barrier. In this review, we present a summary of some approaches used to control carrier shape and the impact these geometries have upon drug transport across biological barriers. PMID:26675218

  2. The Role of Carrier Geometry in Overcoming Biological Barriers to Drug Delivery.

    Science.gov (United States)

    Jordan, Carolyn; Shuvaev, Vladimir V; Bailey, Mark; Muzykantov, Vladimir R; Dziubla, Thomas D

    2016-01-01

    For a variety of diseases, effective therapy is severely limited or rendered impossible due to an inability to deliver medications to the intended sites of action. Multiple barriers exist through the body, which have evolved over time to limit the migration of foreign compounds from entering the tissues. Turning toward biology as inspiration, it has been the general goal of drug delivery to create carrier strategies that mimic, in part, features of bacteria/ viruses that allow them overcome these barriers. By packaging drugs into nano and micron scale vehicles, it should be possible to completely change the biodistribution and residence times of pharmaceutically active compounds. Recently, due to advances in formulation technologies, it has become possible to control not just the material selection, surface chemistry, and/or size, but also the overall geometry and plasticity of the drug carriers. These approaches aid in the formulation of nonspherical particles such as, discs, rods, and even unique structures such as cubes and nanodiamonds. The adjustment of size and shape can be used for the aid or prevention in cellular uptake and also to overcome the vascular and mucosal barrier. In this review, we present a summary of some approaches used to control carrier shape and the impact these geometries have upon drug transport across biological barriers.

  3. Nanoparticle mediated P-glycoprotein silencing for improved drug delivery across the blood-brain barrier: a siRNA-chitosan approach.

    Directory of Open Access Journals (Sweden)

    Jostein Malmo

    Full Text Available The blood-brain barrier (BBB, composed of tightly organized endothelial cells, limits the availability of drugs to therapeutic targets in the central nervous system. The barrier is maintained by membrane bound efflux pumps efficiently transporting specific xenobiotics back into the blood. The efflux pump P-glycoprotein (P-gp, expressed at high levels in brain endothelial cells, has several drug substrates. Consequently, siRNA mediated silencing of the P-gp gene is one possible strategy how to improve the delivery of drugs to the brain. Herein, we investigated the potential of siRNA-chitosan nanoparticles in silencing P-gp in a BBB model. We show that the transfection of rat brain endothelial cells mediated effective knockdown of P-gp with subsequent decrease in P-gp substrate efflux. This resulted in increased cellular delivery and efficacy of the model drug doxorubicin.

  4. Functional and mechanistic analysis of telomerase: An antitumor drug target.

    Science.gov (United States)

    Chen, Yinnan; Zhang, Yanmin

    2016-07-01

    The current research on anticancer drugs focuses on exploiting particular traits or hallmarks unique to cancer cells. Telomerase, a special reverse transcriptase, has been recognized as a common factor in most tumor cells, and in turn a distinctive characteristic with respect to non-malignant cells. This feature has made telomerase a preferred target for anticancer drug development and cancer therapy. This review aims to analyze the pharmacological function and mechanism and role of telomerase in oncogenesis; to provide fundamental knowledge for research on the structure, function, and working mechanism of telomerase; to expound the role that telomerase plays in the initiation and development of tumor and its relationship with tumor cell growth, proliferation, apoptosis, and related pathway molecules; and to display potential targets of antitumor drug for inhibiting the expression, reconstitution, and trafficking of the enzyme. We therefore summarize recent advances in potential telomerase inhibitors for antitumor including natural products, synthetic small molecules, peptides and proteins, which indicate that optimizing the delivery method and drug combination could be of help in a combinatorial drug treatment for tumor. More extensive understanding of the structure, biogenesis, and mechanism of telomerase will provide invaluable information for increasing the efficiency of rational antitumor drug design. PMID:27118336

  5. The tuberculosis drug discovery and development pipeline and emerging drug targets.

    Science.gov (United States)

    Mdluli, Khisimuzi; Kaneko, Takushi; Upton, Anna

    2015-06-01

    The recent accelerated approval for use in extensively drug-resistant and multidrug-resistant-tuberculosis (MDR-TB) of two first-in-class TB drugs, bedaquiline and delamanid, has reinvigorated the TB drug discovery and development field. However, although several promising clinical development programs are ongoing to evaluate new TB drugs and regimens, the number of novel series represented is few. The global early-development pipeline is also woefully thin. To have a chance of achieving the goal of better, shorter, safer TB drug regimens with utility against drug-sensitive and drug-resistant disease, a robust and diverse global TB drug discovery pipeline is key, including innovative approaches that make use of recently acquired knowledge on the biology of TB. Fortunately, drug discovery for TB has resurged in recent years, generating compounds with varying potential for progression into developable leads. In parallel, advances have been made in understanding TB pathogenesis. It is now possible to apply the lessons learned from recent TB hit generation efforts and newly validated TB drug targets to generate the next wave of TB drug leads. Use of currently underexploited sources of chemical matter and lead-optimization strategies may also improve the efficiency of future TB drug discovery. Novel TB drug regimens with shorter treatment durations must target all subpopulations of Mycobacterium tuberculosis existing in an infection, including those responsible for the protracted TB treatment duration. This review summarizes the current TB drug development pipeline and proposes strategies for generating improved hits and leads in the discovery phase that could help achieve this goal. PMID:25635061

  6. Pericyte-targeting drug delivery and tissue engineering

    Science.gov (United States)

    Kang, Eunah; Shin, Jong Wook

    2016-01-01

    Pericytes are contractile mural cells that wrap around the endothelial cells of capillaries and venules. Depending on the triggers by cellular signals, pericytes have specific functionality in tumor microenvironments, properties of potent stem cells, and plasticity in cellular pathology. These features of pericytes can be activated for the promotion or reduction of angiogenesis. Frontier studies have exploited pericyte-targeting drug delivery, using pericyte-specific peptides, small molecules, and DNA in tumor therapy. Moreover, the communication between pericytes and endothelial cells has been applied to the induction of vessel neoformation in tissue engineering. Pericytes may prove to be a novel target for tumor therapy and tissue engineering. The present paper specifically reviews pericyte-specific drug delivery and tissue engineering, allowing insight into the emerging research targeting pericytes. PMID:27313454

  7. Cancer targeted therapeutics: From molecules to drug delivery vehicles.

    Science.gov (United States)

    Liu, Daxing; Auguste, Debra T

    2015-12-10

    The pitfall of all chemotherapeutics lies in drug resistance and the severe side effects experienced by patients. One way to reduce the off-target effects of chemotherapy on healthy tissues is to alter the biodistribution of drug. This can be achieved in two ways: Passive targeting utilizes shape, size, and surface chemistry to increase particle circulation and tumor accumulation. Active targeting employs either chemical moieties (e.g. peptides, sugars, aptamers, antibodies) to selectively bind to cell membranes or responsive elements (e.g. ultrasound, magnetism, light) to deliver its cargo within a local region. This article will focus on the systemic administration of anti-cancer agents and their ability to home to tumors and, if relevant, distant metastatic sites.

  8. Computational design of nanoparticle drug delivery systems for selective targeting

    Science.gov (United States)

    Duncan, Gregg A.; Bevan, Michael A.

    2015-09-01

    Ligand-functionalized nanoparticles capable of selectively binding to diseased versus healthy cell populations are attractive for improved efficacy of nanoparticle-based drug and gene therapies. However, nanoparticles functionalized with high affinity targeting ligands may lead to undesired off-target binding to healthy cells. In this work, Monte Carlo simulations were used to quantitatively determine net surface interactions, binding valency, and selectivity between targeted nanoparticles and cell surfaces. Dissociation constant, KD, and target membrane protein density, ρR, are explored over a range representative of healthy and cancerous cell surfaces. Our findings show highly selective binding to diseased cell surfaces can be achieved with multiple, weaker affinity targeting ligands that can be further optimized by varying the targeting ligand density, ρL. Using the approach developed in this work, nanomedicines can be optimally designed for exclusively targeting diseased cells and tissues.Ligand-functionalized nanoparticles capable of selectively binding to diseased versus healthy cell populations are attractive for improved efficacy of nanoparticle-based drug and gene therapies. However, nanoparticles functionalized with high affinity targeting ligands may lead to undesired off-target binding to healthy cells. In this work, Monte Carlo simulations were used to quantitatively determine net surface interactions, binding valency, and selectivity between targeted nanoparticles and cell surfaces. Dissociation constant, KD, and target membrane protein density, ρR, are explored over a range representative of healthy and cancerous cell surfaces. Our findings show highly selective binding to diseased cell surfaces can be achieved with multiple, weaker affinity targeting ligands that can be further optimized by varying the targeting ligand density, ρL. Using the approach developed in this work, nanomedicines can be optimally designed for exclusively targeting

  9. The biological significance of brain barrier mechanisms: help or hindrance in drug delivery to the central nervous system?

    Science.gov (United States)

    Saunders, Norman R; Habgood, Mark D; Møllgård, Kjeld; Dziegielewska, Katarzyna M

    2016-01-01

    provide an important component of the barrier functions by either preventing entry of or expelling numerous molecules including toxins, drugs, and other xenobiotics. In this review, we summarize these influx and efflux mechanisms in normal developing and adult brain, as well as indicating their likely involvement in a wide range of neuropathologies. There have been extensive attempts to overcome the barrier mechanisms that prevent the entry of many drugs of therapeutic potential into the brain. We outline those that have been tried and discuss why they may so far have been largely unsuccessful. Currently, a promising approach appears to be focal, reversible disruption of the blood-brain barrier using focused ultrasound, but more work is required to evaluate the method before it can be tried in patients. Overall, our view is that much more fundamental knowledge of barrier mechanisms and development of new experimental methods will be required before drug targeting to the brain is likely to be a successful endeavor. In addition, such studies, if applied to brain pathologies such as stroke, trauma, or multiple sclerosis, will aid in defining the contribution of brain barrier pathology to these conditions, either causative or secondary. PMID:26998242

  10. Multiple Targets for Drug-Induced Mitochondrial Toxicity.

    Science.gov (United States)

    Wallace, Kendall B

    2015-01-01

    Mitochondrial toxicity is rapidly gaining the interest of researchers and practitioners as a prominent liability in drug discovery and development, accounting for a growing proportion of preclinical drug attrition and post-market withdrawals or black box warnings by the U.S. FDA. To date, the focus of registries of drugs that elicit mitochondrial toxicity has been largely restricted to those that either inhibit the mitochondrial electron transport chain (ETC) or uncouple mitochondrial oxidative phosphorylation. Less appreciated are the toxicities that are secondary to the drug affecting either the molecular regulation, assembly or incorporation of the ETC into the inner mitochondrial membrane or those that limit substrate availability. The current article describes the complexities of molecular events and biochemical pathways required to sustain mitochondrial fidelity and substrate homeostasis with examples of drugs that interfere which the various pathways. The principal objective of this review is to shed light on the broader scope of drug-induced mitochondrial toxicities and how these secondary targets may account for a large portion of drug failures. PMID:25973981

  11. Mechanistic models enable the rational use of in vitro drug-target binding kinetics for better drug effects in patients.

    NARCIS (Netherlands)

    Witte, W.E.; Wong, Y.C.; Nederpelt, I.; Heitman, L.H.; Danhof, M.; Graaf, van der P.H.; Gilissen, R.A.; de, Lange E.C.

    2016-01-01

    INTRODUCTION Drug-target binding kinetics are major determinants of the time course of drug action for several drugs, as clearly described for the irreversible binders omeprazole and aspirin. This supports the increasing interest to incorporate newly developed high-throughput assays for drug-target

  12. Magnetic nanoformulation of azidothymidine 5’-triphosphate for targeted delivery across the blood–brain barrier

    Directory of Open Access Journals (Sweden)

    Zainulabedin M Saiyed

    2010-03-01

    Full Text Available Zainulabedin M Saiyed, Nimisha H Gandhi, Madhavan PN Nair1Department of Immunology, College of Medicine, Florida International University, Miami, FL, USAAbstract: Despite significant advances in highly active antiretroviral therapy (HAART, the prevalence of neuroAIDS remains high. This is mainly attributed to inability of antiretroviral therapy (ART to cross the blood–brain barrier (BBB, thus resulting in insufficient drug concentration within the brain. Therefore, development of an active drug targeting system is an attractive strategy to increase the efficacy and delivery of ART to the brain. We report herein development of magnetic azidothymidine 5’-triphosphate (AZTTP liposomal nanoformulation and its ability to transmigrate across an in vitro BBB model by application of an external magnetic field. We hypothesize that this magnetically guided nanoformulation can transverse the BBB by direct transport or via monocyte-mediated transport. Magnetic AZTTP liposomes were prepared using a mixture of phosphatidyl choline and cholesterol. The average size of prepared liposomes was about 150 nm with maximum drug and magnetite loading efficiency of 54.5% and 45.3%, respectively. Further, magnetic AZTTP liposomes were checked for transmigration across an in vitro BBB model using direct or monocyte-mediated transport by application of an external magnetic field. The results show that apparent permeability of magnetic AZTTP liposomes was 3-fold higher than free AZTTP. Also, the magnetic AZTTP liposomes were efficiently taken up by monocytes and these magnetic monocytes showed enhanced transendothelial migration compared to normal/non-magnetic monocytes in presence of an external magnetic field. Thus, we anticipate that the developed magnetic nanoformulation can be used for targeting active nucleotide analog reverse transcriptase inhibitors to the brain by application of an external magnetic force and thereby eliminate the brain HIV reservoir and help

  13. A review on target drug delivery: magnetic microspheres

    Directory of Open Access Journals (Sweden)

    Amit Chandna

    2013-01-01

    Magnetic microsphere is newer approach in pharmaceutical field. Magnetic microspheres as an alternative to traditional radiation methods which use highly penetrating radiation that is absorbed throughout the body. Its use is limited by toxicity and side effects. The aim of the specific targeting is to enhance the efficiency of drug delivery & at the same time to reduce the toxicity & side effects. This kind of delivery system is very much important which localises the drug to the disease site. In this larger amount of freely circulating drug can be replaced by smaller amount of magnetically targeted drug. Magnetic carriers receive magnetic responses to a magnetic field from incorporated materials that are used for magnetic microspheres are chitosan, dextran etc. magnetic microspheres can be prepared from a variety of carrier material. One of the most utilized is serum albumin from human or other appropriate species. Drug release from albumin microspheres can be sustained or controlled by various stabilization procedures generally involving heat or chemical cross-linking of the protein carrier matrix.

  14. Development of a blood-brain barrier model in a membrane-based microchip for characterization of drug permeability and cytotoxicity for drug screening.

    Science.gov (United States)

    Shao, Xiaojian; Gao, Dan; Chen, Yongli; Jin, Feng; Hu, Guangnan; Jiang, Yuyang; Liu, Hongxia

    2016-08-31

    Since most of the central nervous system (CNS) drug candidates show poor permeability across the blood-brain barrier (BBB), development of a reliable platform for permeability assay will greatly accelerate drug discovery. Herein, we constructed a microfluidic BBB model to mimic drug delivery into the brain to induce cytotoxicity at target cells. To reconstitute the in vivo BBB properties, human cerebral microvessel endothelial cells (hCMEC/D3) were dynamically cultured in a membrane-based microchannel. Sunitinib, a model drug, was then delivered into the microchannel and forced to permeate through the BBB model. The permeated amount was directly quantified by an electrospray ionization quadrupole time-of-flight mass spectrometer (ESI-Q-TOF MS) after on-chip SPE (μSPE) pretreatment. Moreover, the permeated drug was incubated with glioma cells (U251) cultured inside agarose gel in the downstream to investigate drug-induced cytotoxicity. The resultant permeability of sunitinib was highly correlated with literature reported value, and it only required 30 min and 5 μL of sample solution for each permeation experiment. Moreover, after 48 h of treatment, the survival rate of U251 cells cultured in 3D scaffolds was nearly 6% higher than that in 2D, which was in accordance with the previously reported results. These results demonstrate that this platform provides a valid tool for drug permeability and cytotoxicity assays which have great value for the research and development of CNS drugs. PMID:27506359

  15. Genetic Approaches To Identifying Novel Osteoporosis Drug Targets.

    Science.gov (United States)

    Brommage, Robert

    2015-10-01

    During the past two decades effective drugs for treating osteoporosis have been developed, including anti-resorptives inhibiting bone resorption (estrogens, the SERM raloxifene, four bisphosphonates, RANKL inhibitor denosumab) and the anabolic bone forming daily injectable peptide teriparatide. Two potential drugs (odanacatib and romosozumab) are in late stage clinical development. The most pressing unmet need is for orally active anabolic drugs. This review describes the basic biological studies involved in developing these drugs, including the animal models employed for osteoporosis drug development. The genomics revolution continues to identify potential novel osteoporosis drug targets. Studies include human GWAS studies and identification of mutant genes in subjects having abnormal bone mass, mouse QTL and gene knockouts, and gene expression studies. Multiple lines of evidence indicate that Wnt signaling plays a major role in regulating bone formation and continued study of this complex pathway is likely to lead to key discoveries. In addition to the classic Wnt signaling targets DKK1 and sclerostin, LRP4, LRP5/LRP6, SFRP4, WNT16, and NOTUM can potentially be targeted to modulate Wnt signaling. Next-generation whole genome and exome sequencing, RNA-sequencing and CRISPR/CAS9 gene editing are new experimental techniques contributing to understanding the genome. The International Knockout Mouse Consortium efforts to knockout and phenotype all mouse genes are poised to accelerate. Accumulating knowledge will focus attention on readily accessible databases (Big Data). Efforts are underway by the International Bone and Mineral Society to develop an annotated Skeletome database providing information on all genes directly influencing bone mass, architecture, mineralization or strength. PMID:25833316

  16. Pericyte-targeting drug delivery and tissue engineering

    Directory of Open Access Journals (Sweden)

    Kang E

    2016-05-01

    Full Text Available Eunah Kang,1 Jong Wook Shin2 1School of Chemical Engineering and Material Science, 2Division of Allergic and Pulmonary Medicine, Department of Internal Medicine, College of Medicine, Chung-Ang University, Dongjak-Gu, Seoul, South Korea Abstract: Pericytes are contractile mural cells that wrap around the endothelial cells of capillaries and venules. Depending on the triggers by cellular signals, pericytes have specific functionality in tumor microenvironments, properties of potent stem cells, and plasticity in cellular pathology. These features of pericytes can be activated for the promotion or reduction of angiogenesis. Frontier studies have exploited pericyte-targeting drug delivery, using pericyte-specific peptides, small molecules, and DNA in tumor therapy. Moreover, the communication between pericytes and endothelial cells has been applied to the induction of vessel neoformation in tissue engineering. Pericytes may prove to be a novel target for tumor therapy and tissue engineering. The present paper specifically reviews pericyte-specific drug delivery and tissue engineering, allowing insight into the emerging research targeting pericytes. Keywords: pericytes, pericyte-targeting drug delivery, tissue engineering, platelet-derived growth factor, angiogenesis, vascular remodeling

  17. Drugs that target pathogen public goods are robust against evolved drug resistance.

    Science.gov (United States)

    Pepper, John W

    2012-11-01

    Pathogen drug resistance is a central problem in medicine and public health. It arises through somatic evolution, by mutation and selection among pathogen cells within a host. Here, we examine the hypothesis that evolution of drug resistance could be reduced by developing drugs that target the secreted metabolites produced by pathogen cells instead of directly targeting the cells themselves. Using an agent-based computational model of an evolving population of pathogen cells, we test this hypothesis and find support for it. We also use our model to explain this effect within the framework of standard evolutionary theory. We find that in our model, the drugs most robust against evolved drug resistance are those that target the most widely shared external products, or 'public goods', of pathogen cells. We also show that these drugs exert a weak selective pressure for resistance because they create only a weak correlation between drug resistance and cell fitness. The same principles apply to design of vaccines that are robust against vaccine escape. Because our theoretical results have crucial practical implications, they should be tested by empirical experiments.

  18. NIOSOMES: A ROLE IN TARGETED DRUG DELIVERY SYSTEM

    Directory of Open Access Journals (Sweden)

    Soumya Singh

    2013-02-01

    Full Text Available Niosomes are non-ionic surfactant vesicles inclosing an aqueous phase and a wide range of molecules could be encapsulated within aqueous spaces of lipid membrane vesicles. They are microscopic lamellar structures formed on the admixture of a non-ionic surfactant, cholesterol and phosphate with subsequent hydration in aqueous media. Niosomes belongs to novel drug delivery system which offers a large number of advantages over other conventional and vesicular delivery systems. Namely they are the targeted drug delivery system which showing reduction of dose, stability and compatibility of non-ionic surfactants, easy modification, delayed clearance, suitability for a wide range of Active Pharmaceutical Agents.

  19. An efficient targeted drug delivery through apotransferrin loaded nanoparticles.

    Directory of Open Access Journals (Sweden)

    Athuluri Divakar Sai Krishna

    Full Text Available BACKGROUND: Cancerous state is a highly stimulated environment of metabolically active cells. The cells under these conditions over express selective receptors for assimilation of factors essential for growth and transformation. Such receptors would serve as potential targets for the specific ligand mediated transport of pharmaceutically active molecules. The present study demonstrates the specificity and efficacy of protein nanoparticle of apotransferrin for targeted delivery of doxorubicin. METHODOLOGY/PRINCIPAL FINDINGS: Apotransferrin nanoparticles were developed by sol-oil chemistry. A comparative analysis of efficiency of drug delivery in conjugated and non-conjugated forms of doxorubicin to apotransferrin nanoparticle is presented. The spherical shaped apotransferrin nanoparticles (nano have diameters of 25-50 etam, which increase to 60-80 etam upon direct loading of drug (direct-nano, and showed further increase in dimension (75-95 etam in conjugated nanoparticles (conj-nano. The competitive experiments with the transferrin receptor specific antibody showed the entry of both conj-nano and direct-nano into the cells through transferrin receptor mediated endocytosis. Results of various studies conducted clearly establish the superiority of the direct-nano over conj-nano viz. (a localization studies showed complete release of drug very early, even as early as 30 min after treatment, with the drug localizing in the target organelle (nucleus (b pharmacokinetic studies showed enhanced drug concentrations, in circulation with sustainable half-life (c the studies also demonstrated efficient drug delivery, and an enhanced inhibition of proliferation in cancer cells. Tissue distribution analysis showed intravenous administration of direct nano lead to higher drug localization in liver, and blood as compared to relatively lesser localization in heart, kidney and spleen. Experiments using rat cancer model confirmed the efficacy of the formulation in

  20. Core as a Novel Viral Target for Hepatitis C Drugs

    OpenAIRE

    Guillaume Mousseau; Snyder, John K.; Arthur Donny Strosberg; Virginia Takahashi; Smitha Kota

    2010-01-01

    Hepatitis C virus (HCV) infects over 130 million people worldwide and is a major cause of liver disease. No vaccine is available. Novel specific drugs for HCV are urgently required, since the standard-of-care treatment of pegylated interferon combined with ribavirin is poorly tolerated and cures less than half of the treated patients. Promising, effective direct-acting drugs currently in the clinic have been described for three of the ten potential HCV target proteins: NS3/NS4A protease, NS5B...

  1. Bacterial Transcription as a Target for Antibacterial Drug Development.

    Science.gov (United States)

    Ma, Cong; Yang, Xiao; Lewis, Peter J

    2016-03-01

    Transcription, the first step of gene expression, is carried out by the enzyme RNA polymerase (RNAP) and is regulated through interaction with a series of protein transcription factors. RNAP and its associated transcription factors are highly conserved across the bacterial domain and represent excellent targets for broad-spectrum antibacterial agent discovery. Despite the numerous antibiotics on the market, there are only two series currently approved that target transcription. The determination of the three-dimensional structures of RNAP and transcription complexes at high resolution over the last 15 years has led to renewed interest in targeting this essential process for antibiotic development by utilizing rational structure-based approaches. In this review, we describe the inhibition of the bacterial transcription process with respect to structural studies of RNAP, highlight recent progress toward the discovery of novel transcription inhibitors, and suggest additional potential antibacterial targets for rational drug design.

  2. Glycoprotein mucin molecular brush on cancer cell surface acting as mechanical barrier against drug delivery

    Science.gov (United States)

    Wang, Xin; Shah, Aalok A.; Campbell, Robert B.; Wan, Kai-tak

    2010-12-01

    Uptake of cytotoxic drugs by typical tumor cells is limited by the dense dendritic network of oligosaccharide mucin chains that forms a mechanical barrier. Atomic force microscopy is used to directly measure the force needed to pierce the mucin layer to reach the cell surface. Measurements are analyzed by de Gennes' steric reptation theory. Multidrug resistant ovarian tumor cells shows significantly larger penetration load compared to the wide type. A pool of pancreatic, lung, colorectal, and breast cells are also characterized. The chemotherapeutic agent, benzyl-α-GalNac, for inhibiting glycosylation is shown to be effective in reducing the mechanical barrier.

  3. Functional liposomes in the cancer-targeted drug delivery.

    Science.gov (United States)

    Tila, Dena; Ghasemi, Saeed; Yazdani-Arazi, Seyedeh Narjes; Ghanbarzadeh, Saeed

    2015-07-01

    Cancer is considered as one of the most severe health problems and is currently the third most common cause of death in the world after heart and infectious diseases. Novel therapies are constantly being discovered, developed and trialed. Many of the current anticancer agents exhibit non-ideal pharmaceutical and pharmacological properties and are distributed non-specifically throughout the body. This results in death of the both normal healthy and malignant cells and substantially leads to accruing a variety of serious toxic side effects. Therefore, the efficient systemic therapy of cancer is almost impossible due to harmful side effects of anticancer agents to the healthy organs and tissues. Furthermore, several problems such as low bioavailability of the drugs, low drug concentrations at the site of action, lack of drug specificity and drug-resistance also cause many restrictions on clinical applications of these drugs in the tumor therapy. Different types of the liposomal formulations have been used in medicine due to their distinctive advantages associated with their structural flexibility in the encapsulation of various agents with different physicochemical properties. They can also mediate delivery of the cargo to the appropriate cell type and subcellular compartment, reducing the effective dosage and possible side effects which are related to high systemic concentrations. Therefore, these novel systems were found very promising and encouraging dosage forms for the treatment of different types of cancer by increasing efficiency and reducing the systemic toxicity due to the specific drug delivery and targeting. PMID:25823898

  4. Approaches of targeting Rho GTPases in cancer drug discovery

    Science.gov (United States)

    Lin, Yuan; Zheng, Yi

    2016-01-01

    Introduction Rho GTPases are master regulators of actomyosin structure and dynamics and play pivotal roles in a variety of cellular processes including cell morphology, gene transcription, cell cycle progression and cell adhesion. Because aberrant Rho GTPase signaling activities are widely associated with human cancer, key components of Rho GTPase signaling pathways have attracted increasing interest as potential therapeutic targets. Similar to Ras, Rho GTPases themselves were, until recently, deemed “undruggable” because of structure-function considerations. Several approaches to interfere with Rho GTPase signaling have been explored and show promise as new ways for tackling cancer cells. Areas covered This review focuses on the recent progress in targeting the signaling activities of three prototypical Rho GTPases, i.e. RhoA, Rac1, and Cdc42. The authors describe the involvement of these Rho GTPases, their key regulators and effectors in cancer. Furthermore, the authors discuss the current approaches for rationally targeting aberrant Rho GTPases along their signaling cascades, upstream and downstream of Rho GTPases and posttranslational modifications at a molecular level. Expert opinion To date, while no clinically effective drugs targeting Rho GTPase signaling for cancer treatment are available, tool compounds and lead drugs that pharmacologically inhibit Rho GTPase pathways have shown promise. Small molecule inhibitors targeting Rho GTPase signaling may add new treatment options for future precision cancer therapy, particularly in combination with other anti-cancer agents. PMID:26087073

  5. Targeted Drug Delivery to the Brain by MRI-guided Focused Ultrasound

    Science.gov (United States)

    Treat, Lisa Hsu; McDannold, Nathan; Vykhodtseva, Natalia; Zhang, Yongzhi; Tam, Karen; Hynynen, Kullervo

    2006-05-01

    The effect of focused ultrasound on the absorption of liposome-encapsulated doxorubicin in the brain was investigated. By applying focused ultrasound in the presence of microbubble ultrasound contrast agent, we achieved targeted drug delivery to the brain in vivo. Tissue drug concentrations in sonicated brain corresponded with cytotoxic levels measured in various human tumors and were significantly different from those measured in unexposed contralateral control samples (p ⩽ 0.02). In addition, increased MR signal enhancement at the focal location on contrast-enhanced T1-weighted fast spin echo images correlated with increased penetration of doxorubicin into brain tissue (r = 0.85), indicating the potential of MRI to be used as an indicator of blood-brain barrier permeability during treatment. Further investigation is required to evaluate the efficacy of this technique and to optimize its parameters for clinical application.

  6. Drug targets for lymphatic filariasis: A bioinformatics approach

    Directory of Open Access Journals (Sweden)

    Om Prakash Sharma

    2013-08-01

    Full Text Available This review article discusses the current scenario of the national and international burden due to lymphatic filariasis (LF and describes the active elimination programmes for LF and their achievements to eradicate this most debilitating disease from the earth. Since, bioinformatics is a rapidly growing field of biological study, and it has an increasingly significant role in various fields of biology. We have reviewed its leading involvement in the filarial research using different approaches of bioinformatics and have summarized available existing drugs and their targets to re-examine and to keep away from the resisting conditions. Moreover, some of the novel drug targets have been assembled for further study to design fresh and better pharmacological therapeutics. Various bioinformatics-based web resources, and databases have been discussed, which may enrich the filarial research.

  7. Smooth muscle-specific drug targets for next generation Drug-eluting stent

    OpenAIRE

    Tang, Rui; Chen, Shiyou

    2013-01-01

    The occurrence of stent thrombosis is one of the major obstacles limiting the long-term clinical efficacy of percutaneous coronary intervention. The anti-smooth muscle proliferation drugs coated on drug-eluting stents (DES) often indistinguishably block re-endothelialization, an essential step toward successful vascular repair, due to their non-specific effect on endothelial cells (EC). Therefore, identification of therapeutic targets that differentially regulate vascular smooth muscle cell (...

  8. Metaphors in Nanomedicine: The Case of Targeted Drug Delivery

    OpenAIRE

    Bensaude Vincent, Bernadette; Loeve, Sacha

    2014-01-01

    The promises of nanotechnology have been framed by a variety of metaphors, that not only channel the attention of the public, orient the questions asked by researchers, and convey epistemic choices closely linked to ethical preferences. In particular, the image of the 'therapeutic missile' commonly used to present targeted drug delivery devices emphasizes precision, control, surveillance and efficiency. Such values are highly praised in the current context of crisis of pharmaceutical innovati...

  9. MITOCHONDRIA: INSIGHT TARGET OF DRUG DEVELOPMENT IN CANCER CELLS

    Directory of Open Access Journals (Sweden)

    Md. Ataur Rahman

    2012-09-01

    Full Text Available Mitochondria are involved in different physiological and pathological processes that are crucial for tumor cell physiology, growth and survival and its dysfunction leads to many human abnormalities, including cardiovascular diseases, neurodegenerative diseases, autoimmune disorders and cancer. The present review is focused on the different experimental and therapeutic cancer strategies addressed to either target mitochondria directly, or use mitochondria as mediators of apoptosis, although its total molecular mechanism has not been elucidated. Therefore, the role of mitochondria in the etiology and progression of several function and explore potential therapeutic benefits of targeting mitochondria in the disease processes. Newly evolving advances in disease diagnostics and therapy will further facilitate future growth in the field of mitochondrian biology, where there is a dire need for sensitive and more affordable diagnostic tools and an urgency to develop effective therapies and identify reliable drug to predict accurately the response to a cancer therapy. These approaches to treat mitochondrial dysfunction rationally could lead to selective protection of cells in different tissues and various disease states. To avoid mitochondrial liabilities, routine screens need to be positioned within the drug-development process as targets of drug-induced cytotoxicity or cancer promotion, as regulators of apoptosis, as sources of cell signalling through reactive oxygen species, and mitochondrial control of specific nuclear responses. However, several novel mitochondrial targets are now emerging, including the potential to manipulate the mitochondrial pool to maintain function via biogenesis and mitophagy. Forthcoming insights into the fine regulation of mitochondrial apoptosis will likely open future perspectives for cancer drug development.

  10. Decorating Nanoparticle Surface for Targeted Drug Delivery: Opportunities and Challenges

    Directory of Open Access Journals (Sweden)

    Zhiqiang Shen

    2016-03-01

    Full Text Available The size, shape, stiffness (composition and surface properties of nanoparticles (NPs have been recognized as key design parameters for NP-mediated drug delivery platforms. Among them, the surface functionalization of NPs is of great significance for targeted drug delivery. For instance, targeting moieties are covalently coated on the surface of NPs to improve their selectively and affinity to cancer cells. However, due to a broad range of possible choices of surface decorating molecules, it is difficult to choose the proper one for targeted functions. In this work, we will review several representative experimental and computational studies in selecting the proper surface functional groups. Experimental studies reveal that: (1 the NPs with surface decorated amphiphilic polymers can enter the cell interior through penetrating pathway; (2 the NPs with tunable stiffness and identical surface chemistry can be selectively accepted by the diseased cells according to their stiffness; and (3 the NPs grafted with pH-responsive polymers can be accepted or rejected by the cells due to the local pH environment. In addition, we show that computer simulations could be useful to understand the detailed physical mechanisms behind these phenomena and guide the design of next-generation NP-based drug carriers with high selectivity, affinity, and low toxicity. For example, the detailed free energy analysis and molecular dynamics simulation reveals that amphiphilic polymer-decorated NPs can penetrate into the cell membrane through the “snorkeling” mechanism, by maximizing the interaction energy between the hydrophobic ligands and lipid tails. We anticipate that this work will inspire future studies in the design of environment-responsive NPs for targeted drug delivery.

  11. Membrane-targeting liquid crystal nanoparticles (LCNPs) for drug delivery

    Science.gov (United States)

    Nag, Okhil K.; Naciri, Jawad; Spillmann, Christopher M.; Delehanty, James B.

    2016-03-01

    In addition to maintaining the structural integrity of the cell, the plasma membrane regulates multiple important cellular processes, such as endocytosis and trafficking, apoptotic pathways and drug transport. The modulation or tracking of such cellular processes by means of controlled delivery of drugs or imaging agents via nanoscale delivery systems is very attractive. Nanoparticle-mediated delivery systems that mediate long-term residence (e.g., days) and controlled release of the cargoes in the plasma membrane while simultaneously not interfering with regular cellular physiology would be ideal for this purpose. Our laboratory has developed a plasma membrane-targeted liquid crystal nanoparticle (LCNP) formulation that can be loaded with dyes or drugs which can be slowly released from the particle over time. Here we highlight the utility of these nanopreparations for membrane delivery and imaging.

  12. New alginic acid–atenolol microparticles for inhalatory drug targeting

    Energy Technology Data Exchange (ETDEWEB)

    Ceschan, Nazareth Eliana; Bucalá, Verónica [Planta Piloto de Ingeniería Química (PLAPIQUI), CONICET, Universidad Nacional del Sur (UNS), Camino La Carrindanga Km 7, 8000 Bahía Blanca (Argentina); Departamento de Ingeniería Química, UNS, Avenida Alem 1253, 8000 Bahía Blanca (Argentina); Ramírez-Rigo, María Verónica, E-mail: vrrigo@plapiqui.edu.ar [Planta Piloto de Ingeniería Química (PLAPIQUI), CONICET, Universidad Nacional del Sur (UNS), Camino La Carrindanga Km 7, 8000 Bahía Blanca (Argentina); Departamento de Biología, Bioquímica y Farmacia, UNS, San Juan 670, 8000 Bahía Blanca (Argentina)

    2014-08-01

    The inhalatory route allows drug delivery for local or systemic treatments in a noninvasively way. The current tendency of inhalable systems is oriented to dry powder inhalers due to their advantages in terms of stability and efficiency. In this work, microparticles of atenolol (AT, basic antihypertensive drug) and alginic acid (AA, acid biocompatible polyelectrolyte) were obtained by spray drying. Several formulations, varying the relative composition AT/AA and the total solid content of the atomized dispersions, were tested. The powders were characterized by: Fourier Transform Infrared Spectroscopy, Differential Scanning Calorimetry and Powder X-ray Diffraction, while also the following properties were measured: drug load efficiency, flow properties, particles size and density, moisture content, hygroscopicity and morphology. The ionic interaction between AA and AT was demonstrated, then the new chemical entity could improve the drug targeting to the respiratory membrane and increase its time residence due to the mucoadhesive properties of the AA polymeric chains. Powders exhibited high load efficiencies, low moisture contents, adequate mean aerodynamic diameters and high cumulative fraction of respirable particles (lower than 10 μm). - Highlights: • Novel particulate material to target atenolol to the respiratory membrane was developed. • Crumbled microparticles were obtained by spray drying of alginic–atenolol dispersions. • Ionic interaction between alginic acid and atenolol was demonstrated in the product. • Amorphous solids with low moisture content and high load efficiency were produced. • Relationships between the feed formulation and the product characteristics were found.

  13. tcTKB: an integrated cardiovascular toxicity knowledge base for targeted cancer drugs

    OpenAIRE

    Xu, Rong; Wang, QuanQiu

    2015-01-01

    Targeted cancer drugs are often associated with unexpectedly high cardiovascular (CV) adverse events. Systematic approaches to studying CV events associated with targeted anticancer drugs have high potential for elucidating the complex pathways underlying targeted anti-cancer drugs. In this study, we built tcTKB, a comprehensive CV toxicity knowledge base for targeted cancer drugs, by extracting drug-CV pairs from five large-scale and complementary data sources. The data sources include FDA d...

  14. Reprofiled drug targets ancient protozoans: drug discovery for parasitic diarrheal diseases.

    Science.gov (United States)

    Debnath, Anjan; Ndao, Momar; Reed, Sharon L

    2013-01-01

    Recently, we developed a novel automated, high throughput screening (HTS) methodology for the anaerobic intestinal parasite Entamoeba histolytica. We validated this HTS platform by screening a chemical library containing US Food and Drug Administration (FDA)-approved drugs and bioactive compounds. We identified an FDA-approved drug, auranofin, as most active against E. histolytica both in vitro and in vivo. Our cell culture and animal studies indicated that thioredoxin reductase, an enzyme involved in reactive oxygen species detoxification, was the target for auranofin in E. histolytica. Here, we discuss the rationale for drug development for three parasites which are major causes of diarrhea worldwide, E. histolytica, Giardia lamblia and Cryptosporidium parvum and extend our current finding of antiparasitic activity of auranofin to Entamoeba cysts, G. lamblia and C. parvum. These studies support the use of HTS assays and reprofiling FDA-approved drugs for new therapy for neglected tropical diseases.

  15. Self-Assembling Peptide Amphiphiles for Targeted Drug Delivery

    Science.gov (United States)

    Moyer, Tyson

    The systemic delivery of therapeutics is currently limited by off-target side effects and poor drug uptake into the cells that need to be treated. One way to circumvent these issues is to target the delivery and release of therapeutics to the desired location while limiting systemic toxicity. Using self-assembling peptide amphiphiles (PAs), this work has investigated supramolecular nanostructures for the development of targeted therapies. Specifically, the research has focused on the interrelationships between presentation of targeting moeities and the control of nanostructure morphology in the context of systemic delivery for targeting cancer and vascular injuries. The self-assembly region of the PA was systematically altered to achieve control of nanostructure widths, from 100 nm to 10 nm, by the addition of valine-glutamic acid dimers into the chemical structure, subsequently increasing the degree of nanostructure twist. For the targeting of tumors, a homing PA was synthesized to include a dimeric, cyclic peptide sequence known to target the cancer-specific, death receptor 5 (DR5) and initiate apoptosis through the oligomerization of DR5. This PA presented a multivalent display of DR5-binding peptides, resulting in improved binding affinity measured by surface plasmon resonance. The DR5-targeting PA also showed enhanced efficacy in both in vitro and in vivo tumor models relative to non-targeted controls. Alternative modifications to the PA-based antitumor therapies included the use of a cytotoxic, membrane-lytic PA coassembled with a pegylated PA, which showed enhanced biodistribution and in vivo activity after coassembly. The functionalization of the hydrophobic core was also accomplished through the encapsulation of the chemotherapy camptothecin, which was shown to be an effective treatment in vivo. Additionally, a targeted PA nanostructure was designed to bind to the site of vascular intervention by targeting collagen IV. Following balloon angioplasty

  16. Cyclotriazadisulfonamides: promising new CD4-targeted anti-HIV drugs.

    Science.gov (United States)

    Vermeire, Kurt; Schols, Dominique

    2005-08-01

    It is imperative to continue efforts to identify novel effective therapies that can assist in containing the spread of HIV. Recently acquired knowledge about the HIV entry process points to new strategies to block viral entry. For most HIV strains, the successful infection of their target cells is mainly dependent on the presence of the CD4 surface molecule, which serves as the primary virus receptor. The attachment of the viral envelope to this cellular CD4 receptor can be considered as an ideal target with multiple windows of opportunity for therapeutic intervention. Therefore, drugs that interfere with the CD4 receptor, and thus inhibit viral entry, may be promising agents for the treatment of AIDS. The CD4-targeted HIV entry inhibitors cyclotriazadisulfonamides represent a novel class of small molecule antiviral agents with a unique mode of action. The lead compound, CADA, specifically interacts with the cellular CD4 receptor and is active against a wide variety of HIV strains at submicromolar levels when evaluated in different cell-types such as T cells, monocytes and dendritic cells. Moreover, a strict correlation has been demonstrated between anti-HIV activity and CD4 interaction of about 20 different CADA analogues. In addition, CADA acted synergistically in combination with all other FDA-approved anti-HIV drugs as well as with compounds that target the main HIV co-receptors. In this article, the characteristics of cyclotriazadisulfonamide compounds are presented and the possible application of CADA as a microbicide is also discussed. PMID:15980096

  17. Stroke and Drug Delivery--In Vitro Models of the Ischemic Blood-Brain Barrier

    DEFF Research Database (Denmark)

    Tornabene, Erica; Brodin, Birger

    2016-01-01

    and Drug Administration-approved tissue plasminogen activator for treatment of acute ischemic stroke being the most prominent example. A large number of potential drug candidates for treatment of ischemic brain tissue have been developed and subsequently failed in clinical trials. A deeper understanding......Stroke is a major cause of death and disability worldwide. Both cerebral hypoperfusion and focal cerebral infarcts are caused by a reduction of blood flow to the brain, leading to stroke and subsequent brain damage. At present, only few medical treatments of stroke are available, with the Food...... of permeation pathways across the barrier in ischemic and postischemic brain endothelium is important for development of new medical treatments. The blood-brain barrier, that is, the endothelial monolayer lining the brain capillaries, changes properties during an ischemic event. In vitro models of the blood-brain...

  18. Salinomycin as a Drug for Targeting Human Cancer Stem Cells

    Directory of Open Access Journals (Sweden)

    Cord Naujokat

    2012-01-01

    Full Text Available Cancer stem cells (CSCs represent a subpopulation of tumor cells that possess self-renewal and tumor initiation capacity and the ability to give rise to the heterogenous lineages of malignant cells that comprise a tumor. CSCs possess multiple intrinsic mechanisms of resistance to chemotherapeutic drugs, novel tumor-targeted drugs, and radiation therapy, allowing them to survive standard cancer therapies and to initiate tumor recurrence and metastasis. Various molecular complexes and pathways that confer resistance and survival of CSCs, including expression of ATP-binding cassette (ABC drug transporters, activation of the Wnt/β-catenin, Hedgehog, Notch and PI3K/Akt/mTOR signaling pathways, and acquisition of epithelial-mesenchymal transition (EMT, have been identified recently. Salinomycin, a polyether ionophore antibiotic isolated from Streptomyces albus, has been shown to kill CSCs in different types of human cancers, most likely by interfering with ABC drug transporters, the Wnt/β-catenin signaling pathway, and other CSC pathways. Promising results from preclinical trials in human xenograft mice and a few clinical pilote studies reveal that salinomycin is able to effectively eliminate CSCs and to induce partial clinical regression of heavily pretreated and therapy-resistant cancers. The ability of salinomycin to kill both CSCs and therapy-resistant cancer cells may define the compound as a novel and an effective anticancer drug.

  19. Polymeric nanoparticles for targeted drug delivery system for cancer therapy.

    Science.gov (United States)

    Masood, Farha

    2016-03-01

    A targeted delivery system based on the polymeric nanoparticles as a drug carrier represents a marvelous avenue for cancer therapy. The pivotal characteristics of this system include biodegradability, biocompatibility, non-toxicity, prolonged circulation and a wide payload spectrum of a therapeutic agent. Other outstanding features are their distinctive size and shape properties for tissue penetration via an active and passive targeting, specific cellular/subcellular trafficking pathways and facile control of cargo release by sophisticated material engineering. In this review, the current implications of encapsulation of anticancer agents within polyhydroxyalkanoates, poly-(lactic-co-glycolic acid) and cyclodextrin based nanoparticles to precisely target the tumor site, i.e., cell, tissue and organ are highlighted. Furthermore, the promising perspectives in this emerging field are discussed. PMID:26706565

  20. Social and Structural Barriers to Housing Among Street-Involved Youth Who Use Illicit Drugs

    OpenAIRE

    Krüsi, Andrea; Fast, Danya; Small, Will; Wood, Evan; Kerr, Thomas

    2010-01-01

    In Canada, approximately 150,000 youth live on the street. Street-involvement and homelessness have been associated with various health risks, including increased substance use, blood-borne infections, and sexually transmitted diseases. We undertook a qualitative study to better understand the social and structural barriers street-involved youth who use illicit drugs encounter when seeking housing. We conducted 38 semi-structured interviews with street-involved youth in Vancouver, Canada from...

  1. Ultrasound effects on brain-targeting mannosylated liposomes: in vitro and blood–brain barrier transport investigations

    Directory of Open Access Journals (Sweden)

    Zidan AS

    2015-07-01

    Full Text Available Ahmed S Zidan,1,2 Hibah Aldawsari1 1Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia; 2Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt Abstract: Delivering drugs to intracerebral regions can be accomplished by improving the capacity of transport through blood–brain barrier. Using sertraline as model drug for brain targeting, the current study aimed at modifying its liposomal vesicles with mannopyranoside. Box-Behnken design was employed to statistically optimize the ultrasound parameters, namely ultrasound amplitude, time, and temperature, for maximum mannosylation capacity, sertraline entrapment, and surface charge while minimizing vesicular size. Moreover, in vitro blood–brain barrier transport model was established to assess the transendothelial capacity of the optimized mannosylated vesicles. Results showed a dependence of vesicular size, mannosylation capacity, and sertraline entrapment on cavitation and bubble implosion events that were related to ultrasound power amplitude, temperature. However, short ultrasound duration was required to achieve >90% mannosylation with nanosized vesicles (<200 nm of narrow size distribution. Optimized ultrasound parameters of 65°C, 27%, and 59 seconds for ultrasound temperature, amplitude, and time were elucidated to produce 81.1%, 46.6 nm, and 77.6% sertraline entrapment, vesicular size, and mannosylation capacity, respectively. Moreover, the transendothelial ability was significantly increased by 2.5-fold by mannosylation through binding with glucose transporters. Hence, mannosylated liposomes processed by ultrasound could be a promising approach for manufacturing and scale-up of brain-targeting liposomes. Keywords: CNS delivery, sizing, lipid based formulations, quality by design, sertraline hydrochloride

  2. Development of high drug-loading nanomicelles targeting steroids to the brain.

    Science.gov (United States)

    Zheng, Sijia; Xie, Yanqi; Li, Yuan; Li, Ling; Tian, Ning; Zhu, Wenbo; Yan, Guangmei; Wu, Chuanbin; Hu, Haiyan

    2014-01-01

    The objective of this research was to develop and evaluate high drug-loading ligand-modified nanomicelles to deliver a steroidal compound to the brain. YC1 (5α-cholestane-24-methylene-3β, 5α, 6β, 19-tetraol), with poor solubility and limited access to the brain, for the first time, has been proved to be an effective neuroprotective steroid by our previous studies. Based on the principle of 'like dissolves like', cholesterol, which shares the same steroidal parent nucleus with YC1, was selected to react with sodium alginate, producing amphiphilic sodium alginate- cholesterol derivatives (SACDs). To increase the grafting ratio and drug loading, cholesterol was converted to cholesteryl chloroformate, for the first time, before reacting with sodium alginate. Further, lactoferrin was conjugated on SACDs to provide lactoferrin-SACDs (Lf-SACD), which was established by immune electron microscopy (IEM) and self-assembled into brain-targeting nanomicelles. These nanomicelles were negatively charged and spherical in nature, with an average size of drug loading was increased due to the cholesteryl inner cores of the nanomicelles, and the higher the grafting ratio was, the lower the critical micelle concentration (CMC) value of SACD, and the higher drug loading. The in vitro drug release, studied by bulk-equilibrium dialysis in 20 mL of 6% hydroxypropyl-β-cyclodextrin solution at 37°C, indicated a prolonged release profile. The YC1 concentration in mouse brain delivered by lactoferrin-modified nanomicelles was higher than in those delivered by non-modified nanomicelles and YC1 solution. The unique brain-targeting nanomicelle system may provide a promising carrier to deliver hydrophobic drugs across the blood-brain barrier for the treatment of brain diseases.

  3. Encapsulation of methotrexate loaded magnetic microcapsules for magnetic drug targeting and controlled drug release

    Energy Technology Data Exchange (ETDEWEB)

    Chakkarapani, Prabu [Department of Pharmaceutical Technology & Centre for Excellence in Nanobio Translational Research, Anna University, Bharathidasan Institute of Technology Campus, Tiruchirappalli 620024, Tamil Nadu (India); Subbiah, Latha, E-mail: lathasuba2010@gmail.com [Department of Pharmaceutical Technology & Centre for Excellence in Nanobio Translational Research, Anna University, Bharathidasan Institute of Technology Campus, Tiruchirappalli 620024, Tamil Nadu (India); Palanisamy, Selvamani; Bibiana, Arputha [Department of Pharmaceutical Technology & Centre for Excellence in Nanobio Translational Research, Anna University, Bharathidasan Institute of Technology Campus, Tiruchirappalli 620024, Tamil Nadu (India); Ahrentorp, Fredrik; Jonasson, Christian; Johansson, Christer [Acreo Swedish ICT AB, Arvid Hedvalls backe 4, SE-411 33 Göteborg (Sweden)

    2015-04-15

    We report on the development and evaluation of methotrexate magnetic microcapsules (MMC) for targeted rheumatoid arthritis therapy. Methotrexate was loaded into CaCO{sub 3}-PSS (poly (sodium 4-styrenesulfonate)) doped microparticles that were coated successively with poly (allylamine hydrochloride) and poly (sodium 4-styrenesulfonate) by layer-by-layer technique. Ferrofluid was incorporated between the polyelectrolyte layers. CaCO{sub 3}-PSS core was etched by incubation with EDTA yielding spherical MMC. The MMC were evaluated for various physicochemical, pharmaceutical parameters and magnetic properties. Surface morphology, crystallinity, particle size, zeta potential, encapsulation efficiency, loading capacity, drug release pattern, release kinetics and AC susceptibility studies revealed spherical particles of ~3 µm size were obtained with a net zeta potential of +24.5 mV, 56% encapsulation and 18.6% drug loading capacity, 96% of cumulative drug release obeyed Hixson-Crowell model release kinetics. Drug excipient interaction, surface area, thermal and storage stability studies for the prepared MMC was also evaluated. The developed MMC offer a promising mode of targeted and sustained release drug delivery for rheumatoid arthritis therapy. - Highlights: • Development of methotrexate magnetic microcapsules (MMC) by layer-by-layer method. • Characterization of physicochemical, pharmaceutical and magnetic properties of MMC. • Multiple layers of alternative polyelectrolytes prolongs methotrexate release time. • MMC is capable for targeted and sustained release rheumatoid arthritis therapy.

  4. Encapsulation of methotrexate loaded magnetic microcapsules for magnetic drug targeting and controlled drug release

    International Nuclear Information System (INIS)

    We report on the development and evaluation of methotrexate magnetic microcapsules (MMC) for targeted rheumatoid arthritis therapy. Methotrexate was loaded into CaCO3-PSS (poly (sodium 4-styrenesulfonate)) doped microparticles that were coated successively with poly (allylamine hydrochloride) and poly (sodium 4-styrenesulfonate) by layer-by-layer technique. Ferrofluid was incorporated between the polyelectrolyte layers. CaCO3-PSS core was etched by incubation with EDTA yielding spherical MMC. The MMC were evaluated for various physicochemical, pharmaceutical parameters and magnetic properties. Surface morphology, crystallinity, particle size, zeta potential, encapsulation efficiency, loading capacity, drug release pattern, release kinetics and AC susceptibility studies revealed spherical particles of ~3 µm size were obtained with a net zeta potential of +24.5 mV, 56% encapsulation and 18.6% drug loading capacity, 96% of cumulative drug release obeyed Hixson-Crowell model release kinetics. Drug excipient interaction, surface area, thermal and storage stability studies for the prepared MMC was also evaluated. The developed MMC offer a promising mode of targeted and sustained release drug delivery for rheumatoid arthritis therapy. - Highlights: • Development of methotrexate magnetic microcapsules (MMC) by layer-by-layer method. • Characterization of physicochemical, pharmaceutical and magnetic properties of MMC. • Multiple layers of alternative polyelectrolytes prolongs methotrexate release time. • MMC is capable for targeted and sustained release rheumatoid arthritis therapy

  5. Lymphatic Targeting of Nanosystems for Anticancer Drug Therapy.

    Science.gov (United States)

    Abellan-Pose, Raquel; Csaba, Noemi; Alonso, Maria Jose

    2016-01-01

    The lymphatic system represents a major route of dissemination in metastatic cancer. Given the lack of selectivity of conventional chemotherapy to prevent lymphatic metastasis, in the last years there has been a growing interest in the development of nanocarriers showing lymphotropic characteristics. The goal of this lymphotargeting strategy is to facilitate the delivery of anticancer drugs to the lymph node-resident cancer cells, thereby enhancing the effectiveness of the anti-cancer therapies. This article focuses on the nanosystems described so far for the active or passive targeting of oncological drugs to the lymphatic circulation. To understand the design and performance of these nanosystems, we will discuss first the physiology of the lymphatic system and how physiopathological changes associated to tumor growth influence the biodistribution of nanocarriers. Second, we provide evidence on how the tailoring of the physicochemical characteristics of nanosystems, i.e. particle size, surface charge and hydrophilicity, allows the modulation of their access to the lymphatic circulation. Finally, we provide an overview of the relationship between the biodistribution and antimetastatic activity of the nanocarriers loaded with oncological drugs, and illustrate the most promising active targeting approaches investigated so far. PMID:26675222

  6. Targeted Tumor Therapy with "Magnetic Drug Targeting": Therapeutic Efficacy of Ferrofluid Bound Mitoxantrone

    Science.gov (United States)

    Alexiou, Ch.; Schmid, R.; Jurgons, R.; Bergemann, Ch.; Arnold, W.; Parak, F.G.

    The difference between success or failure of chemotherapy depends not only on the drug itself but also on how it is delivered to its target. Biocompatible ferrofluids (FF) are paramagnetic nanoparticles, that may be used as a delivery system for anticancer agents in locoregional tumor therapy, called "magnetic drug targeting". Bound to medical drugs, such magnetic nanoparticles can be enriched in a desired body compartment (tumor) using an external magnetic field, which is focused on the area of the tumor. Through this form of target directed drug application, one attempts to concentrate a pharmacological agent at its site of action in order to minimize unwanted side effects in the organism and to increase its locoregional effectiveness. Tumor bearing rabbits (VX2 squamous cell carcinoma) in the area of the hind limb, were treated by a single intra-arterial injection (A. femoralis) of mitoxantrone bound ferrofluids (FF-MTX), while focusing an external magnetic field (1.7 Tesla) onto the tumor for 60 minutes. Complete tumor remissions could be achieved in these animals in a dose related manner (20% and 50% of the systemic dose of mitoxantrone), without any negative side effects, like e.g. leucocytopenia, alopecia or gastrointestinal disorders. The strong and specific therapeutic efficacy in tumor treatment with mitoxantrone bound ferrofluids may indicate that this system could be used as a delivery system for anticancer agents, like radionuclids, cancer-specific antibodies, anti-angiogenetic factors, genes etc.

  7. Development of high drug-loading nanomicelles targeting steroids to the brain.

    Science.gov (United States)

    Zheng, Sijia; Xie, Yanqi; Li, Yuan; Li, Ling; Tian, Ning; Zhu, Wenbo; Yan, Guangmei; Wu, Chuanbin; Hu, Haiyan

    2014-01-01

    The objective of this research was to develop and evaluate high drug-loading ligand-modified nanomicelles to deliver a steroidal compound to the brain. YC1 (5α-cholestane-24-methylene-3β, 5α, 6β, 19-tetraol), with poor solubility and limited access to the brain, for the first time, has been proved to be an effective neuroprotective steroid by our previous studies. Based on the principle of 'like dissolves like', cholesterol, which shares the same steroidal parent nucleus with YC1, was selected to react with sodium alginate, producing amphiphilic sodium alginate- cholesterol derivatives (SACDs). To increase the grafting ratio and drug loading, cholesterol was converted to cholesteryl chloroformate, for the first time, before reacting with sodium alginate. Further, lactoferrin was conjugated on SACDs to provide lactoferrin-SACDs (Lf-SACD), which was established by immune electron microscopy (IEM) and self-assembled into brain-targeting nanomicelles. These nanomicelles were negatively charged and spherical in nature, with an average size of cyclodextrin solution at 37°C, indicated a prolonged release profile. The YC1 concentration in mouse brain delivered by lactoferrin-modified nanomicelles was higher than in those delivered by non-modified nanomicelles and YC1 solution. The unique brain-targeting nanomicelle system may provide a promising carrier to deliver hydrophobic drugs across the blood-brain barrier for the treatment of brain diseases. PMID:24379663

  8. Electrospun Nanofibers of Guar Galactomannan for Targeted Drug Delivery

    Science.gov (United States)

    Chu, Hsiao Mei Annie

    2011-12-01

    Guar galactomannan is a biodegradable polysaccharide used widely in the food industry but also in the cosmetics, pharmaceutical, oil drilling, textile and paper industries. Guar consists of a mannose backbone and galactose side groups that are both susceptible to enzyme degradation, a unique property that can be explored for targeted drug delivery especially since those enzymes are naturally secreted by the microflora in human colon. The present study can be divided into three parts. In the first part, we discuss ways to modify guar to produce nanofibers by electrospinning, a process that involves the application of an electric field to a polymer solution or melt to facilitate production of fibers in the sub-micron range. Nanofibers are currently being explored as the next generation of drug carriers due to its many advantages, none more important than the fact that nanofibers are on a size scale that is a fraction of a hair's width and have large surface-to-volume ratio. The incorporation and controlled release of nano-sized drugs is one way in which nanofibers are being utilized in drug delivery. In the second part of the study, we explore various methods to crosslink guar nanofibers as a means to promote water-resistance in a potential drug carrier. The scope and utility of water-resistant guar nanofibers can only be fully appreciated when subsequent drug release studies are carried out. To that end, the third part of our study focuses on understanding the kinetics and diffusion mechanisms of a model drug, Rhodamine B, through moderately-swelling (crosslinked) hydrogel nanofibers in comparison to rapidly-swelling (non-crosslinked) nanofibers. Along the way, our investigations led us to a novel electrospinning set-up that has a unique collector designed to capture aligned nanofibers. These aligned nanofiber bundles can then be twisted to hold them together like yarn. From a practical standpoint, these yarns are advantageous because they come freely suspended and

  9. Targeting the treatment of drug abuse with molecular imaging

    International Nuclear Information System (INIS)

    Although imaging studies in and of themselves have significant contributions to the study of human behavior, imaging in drug abuse has a much broader agenda. Drugs of abuse bind to molecules in specific parts of the brain in order to produce their effects. Positron emission tomography (PET) provides a unique opportunity to track this process, capturing the kinetics with which an abused compound is transported to its site of action. The specific examples discussed here were chosen to illustrate how PET can be used to map the regional distribution and kinetics of compounds that may or may not have abuse liability. We also discussed some morphological and functional changes associated with drug abuse and different stages of recovery following abstinence. PET measurements of functional changes in the brain have also led to the development of several treatment strategies, one of which is discussed in detail here. Information such as this becomes more than a matter of academic interest. Such knowledge can provide the bases for anticipating which compounds may be abused and which may not. It can also be used to identify biological markers or changes in brain function that are associated with progression from drug use to drug abuse and also to stage the recovery process. This new knowledge can guide legislative initiatives on the optimal duration of mandatory treatment stays, promoting long-lasting abstinence and greatly reducing the societal burden of drug abuse. Imaging can also give some insights into potential pharmacotherapeutic targets to manage the reinforcing effects of addictive compounds, as well as into protective strategies to minimize their toxic consequences

  10. Pharmacoinformatics elucidation of potential drug targets against migraine to target ion channel protein KCNK18.

    Science.gov (United States)

    Sehgal, Sheikh Arslan; Hassan, Mubashir; Rashid, Sajid

    2014-01-01

    Migraine, a complex debilitating neurological disorder is strongly associated with potassium channel subfamily K member 18 (KCNK18). Research has emphasized that high levels of KCNK18 may be responsible for improper functioning of neurotransmitters, resulting in neurological disorders like migraine. In the present study, a hybrid approach of molecular docking and virtual screening were followed by pharmacophore identification and structure modeling. Screening was performed using a two-dimensional similarity search against recommended migraine drugs, keeping in view the physicochemical properties of drugs. LigandScout tool was used for exploring pharmacophore properties and designing novel molecules. Here, we report the screening of four novel compounds that have showed maximum binding affinity against KCNK18, obtained through the ZINC database, and Drug and Drug-Like libraries. Docking studies revealed that Asp-46, Ile-324, Ile-44, Gly-118, Leu-338, Val-113, and Phe-41 are critical residues for receptor-ligand interaction. A virtual screening approach coupled with docking energies and druglikeness rules illustrated that ergotamine and PB-414901692 are potential inhibitor compounds for targeting KCNK18. We propose that selected compounds may be more potent than the previously listed drug analogs based on the binding energy values. Further analysis of these inhibitors through site-directed mutagenesis could be helpful for exploring the details of ligand-binding pockets. Overall, the findings of this study may be helpful for designing novel therapeutic targets to cure migraine. PMID:24899801

  11. Dual responsive PNIPAM–chitosan targeted magnetic nanopolymers for targeted drug delivery

    Energy Technology Data Exchange (ETDEWEB)

    Yadavalli, Tejabhiram, E-mail: tejabhiram@gmail.com [Nanotechnology Research Centre, SRM University, Chennai 603203 (India); Ramasamy, Shivaraman [Nanotechnology Research Centre, SRM University, Chennai 603203 (India); School of Physics, The University of Western Australia, 35 Stirling Hwy, Crawley, WA 6009 (Australia); Chandrasekaran, Gopalakrishnan; Michael, Isaac; Therese, Helen Annal [Nanotechnology Research Centre, SRM University, Chennai 603203 (India); Chennakesavulu, Ramasamy [Department of Pharmacy practice, SRM College of Pharmacy, Chennai 603203 (India)

    2015-04-15

    A dual stimuli sensitive magnetic hyperthermia based drug delivery system has been developed for targeted cancer treatment. Thermosensitive amine terminated poly-N-isopropylacrylamide complexed with pH sensitive chitosan nanoparticles was prepared as the drug carrier. Folic acid and fluorescein were tagged to the nanopolymer complex via N-hydroxysuccinimide and ethyl-3-(3-dimethylaminopropyl)carbodiimide reaction to form a fluorescent and cancer targeting magnetic carrier system. The formation of the polymer complex was confirmed using infrared spectroscopy. Gadolinium doped nickel ferrite nanoparticles prepared by a hydrothermal method were encapsulated in the polymer complex to form a magnetic drug carrier system. The proton relaxation studies on the magnetic carrier system revealed a 200% increase in the T1 proton relaxation rate. These magnetic carriers were loaded with curcumin using solvent evaporation method with a drug loading efficiency of 86%. Drug loaded nanoparticles were tested for their targeting and anticancer properties on four cancer cell lines with the help of MTT assay. The results indicated apoptosis of cancer cell lines within 3 h of incubation. - Highlights: • The use of gadolinium doped nickel ferrite with the suggested doping level. • The use of PNIPMA–chitosan polymer with folic acid and fluorescein as a drug carrier complex. • Magnetic hyperthermia studies of gadolinium doped nickel ferrites are being reported for the first time. • Proton relaxivity studies which indicate the MRI contrasting properties on the reported system are new. • Use of curcumin, a hydrophobic Indian spice as a cancer killing agent inside the reported magnetic polymer complex.

  12. Dual responsive PNIPAM–chitosan targeted magnetic nanopolymers for targeted drug delivery

    International Nuclear Information System (INIS)

    A dual stimuli sensitive magnetic hyperthermia based drug delivery system has been developed for targeted cancer treatment. Thermosensitive amine terminated poly-N-isopropylacrylamide complexed with pH sensitive chitosan nanoparticles was prepared as the drug carrier. Folic acid and fluorescein were tagged to the nanopolymer complex via N-hydroxysuccinimide and ethyl-3-(3-dimethylaminopropyl)carbodiimide reaction to form a fluorescent and cancer targeting magnetic carrier system. The formation of the polymer complex was confirmed using infrared spectroscopy. Gadolinium doped nickel ferrite nanoparticles prepared by a hydrothermal method were encapsulated in the polymer complex to form a magnetic drug carrier system. The proton relaxation studies on the magnetic carrier system revealed a 200% increase in the T1 proton relaxation rate. These magnetic carriers were loaded with curcumin using solvent evaporation method with a drug loading efficiency of 86%. Drug loaded nanoparticles were tested for their targeting and anticancer properties on four cancer cell lines with the help of MTT assay. The results indicated apoptosis of cancer cell lines within 3 h of incubation. - Highlights: • The use of gadolinium doped nickel ferrite with the suggested doping level. • The use of PNIPMA–chitosan polymer with folic acid and fluorescein as a drug carrier complex. • Magnetic hyperthermia studies of gadolinium doped nickel ferrites are being reported for the first time. • Proton relaxivity studies which indicate the MRI contrasting properties on the reported system are new. • Use of curcumin, a hydrophobic Indian spice as a cancer killing agent inside the reported magnetic polymer complex

  13. A conceptual framework for the identification of candidate drugs and drug targets in acute promyelocytic leukemia

    DEFF Research Database (Denmark)

    Marstrand, T T; Borup, R; Willer, A;

    2010-01-01

    regulation, and (ii) the identification of candidate drugs and drug targets for therapeutic interventions. Significantly, our study provides a conceptual framework that can be applied to any subtype of AML and cancer in general to uncover novel information from published microarray data sets at low cost......Chromosomal translocations of transcription factors generating fusion proteins with aberrant transcriptional activity are common in acute leukemia. In acute promyelocytic leukemia (APL), the promyelocytic leukemia-retinoic-acid receptor alpha (PML-RARA) fusion protein, which emerges....... In a broader perspective, our study provides strong evidence that genomic strategies might be used in a clinical setting to prospectively identify candidate drugs that subsequently are validated in vitro to define the most effective drug combination for individual cancer patients on a rational basis....

  14. Quantification of biodegradable PLGA nanoparticles for drug targeting

    Directory of Open Access Journals (Sweden)

    Nadira Ibrišimović

    2010-11-01

    Full Text Available Objective. The aim of this work was the development of appropriate analytical methods and assays for determining and monitoring composition and degradation of nanoparticles built from PLGA (poly D, L-lactid-co-glycolid, which can be reloaded with different drugs. A sensitive and precise method for monitoring of nanoparticle degradation in vitro was developed and optimized. Nanoparticles allow a selective enrichment of different drugs and knowledge of the nature and type of their degradation is essential for characterization and control of drug release and dosage. Materials and methods. The first method developed during this work to quantify the PLGA polymer matrix use advantage of the chemical reaction of aliphatic carboxylic acids with ferric chloride (FeCl3 thus quantifying both degradation products of PLGA, lactic and glycol acids, at the same time. A second assay method of choice was to react to the polymer hydrolysate with lactate dehydrogenase, thus assaying selectively the lactic acid part. Results. During development of both of described methods was possible to determine dynamic range for PLGA matrix and nanoparticles, as well as to characterize impact of Pluronic F-68 and glycolic acid on lactate dehydrogenase activity. Conclusion. During our work we were able to develop two sensitive methods for monitoring of biodegradation of polymers which are consecutively used as a nanoparticle matrix in drug targeting.

  15. Magnetically responsive microparticles for targeted drug and radionuclide delivery.

    Energy Technology Data Exchange (ETDEWEB)

    Kaminski, M. D.; Ghebremeskel, A. N.; Nunez, L.; Kasza, K. E.; Chang, F.; Chien, T.-H.; Fisher, P. F.; Eastman, J. A.; Rosengart, A. J.; McDonald, L.; Xie, Y.; Johns, L.; Pytel, P.; Hafeli, U. O.

    2004-02-16

    We are currently investigating the use of magnetic particles--polymeric-based spheres containing dispersed magnetic nanocrystalline phases--for the precise delivery of drugs via the human vasculature. According to this review, meticulously prepared magnetic drug targeting holds promise as a safe and effective method of delivering drugs to specific organ, tissue or cellular targets. We have critically examined the wide range of approaches in the design and implementation of magnetic-particle-based drug delivery systems to date, including magnetic particle preparation, drug encapsulation, biostability, biocompatibility, toxicity, magnetic field designs, and clinical trials. However, we strongly believe that there are several limitations with past developments that need to be addressed to enable significant strides in the field. First, particle size has to be carefully chosen. Micrometer-sized magnetic particles are better attracted over a distance than nanometer sized magnetic particles by a constant magnetic field gradient, and particle sizes up to 1 {micro}m show a much better accumulation with no apparent side effects in small animal models, since the smallest blood vessels have an inner diameter of 5-7 {micro}m. Nanometer-sized particles <70 nm will accumulate in organ fenestrations despite an effective surface stabilizer. To be suitable for future human applications, our experimental approach synthesizes the magnetic drug carrier according to specific predefined outcome metrics: monodisperse population in a size range of 100 nm to 1.0 {micro}m, non-toxic, with appropriate magnetic properties, and demonstrating successful in vitro and in vivo tests. Another important variable offering possible improvement is surface polarity, which is expected to prolong particle half-life in circulation and modify biodistribution and stability of drugs in the body. The molecules in the blood that are responsible for enhancing the uptake of particles by the reticuloendothelial

  16. Chronic neuropathic pain: mechanisms, drug targets and measurement

    DEFF Research Database (Denmark)

    Finnerup, Nanna Brix; Sindrup, Søren H.; Jensen, Troels Staehelin

    2007-01-01

    Neuropathic pain is common in many diseases or injuries of the peripheral or central nervous system, and has a substantial impact on quality of life and mood. Lesions of the nervous system may lead to potentially irreversible changes and imbalance between excitatory and inhibitory systems. Precli...... assess various symptoms and signs in neuropathic pain and knowledge of drug mechanisms are prerequisites for pursuing this approach. The present review summarizes mechanisms of neuropathic pain, targets of currently used drugs, and measures used in neuropathic pain trials.......Neuropathic pain is common in many diseases or injuries of the peripheral or central nervous system, and has a substantial impact on quality of life and mood. Lesions of the nervous system may lead to potentially irreversible changes and imbalance between excitatory and inhibitory systems...

  17. Genetic Validation of Aminoacyl-tRNA Synthetases as Drug Targets in Trypanosoma brucei

    OpenAIRE

    Kalidas, Savitha; Cestari, Igor; Monnerat, Severine; Li, Qiong; Regmi, Sandesh; Hasle, Nicholas; Labaied, Mehdi; Parsons, Marilyn; Stuart, Kenneth; Phillips, Margaret A.

    2014-01-01

    Human African trypanosomiasis (HAT) is an important public health threat in sub-Saharan Africa. Current drugs are unsatisfactory, and new drugs are being sought. Few validated enzyme targets are available to support drug discovery efforts, so our goal was to obtain essentiality data on genes with proven utility as drug targets. Aminoacyl-tRNA synthetases (aaRSs) are known drug targets for bacterial and fungal pathogens and are required for protein synthesis. Here we survey the essentiality of...

  18. Nanomechanics of drug-target interactions and antibacterial resistance detection.

    Science.gov (United States)

    Ndieyira, Joseph W; Watari, Moyu; McKendry, Rachel A

    2013-01-01

    The cantilever sensor, which acts as a transducer of reactions between model bacterial cell wall matrix immobilized on its surface and antibiotic drugs in solution, has shown considerable potential in biochemical sensing applications with unprecedented sensitivity and specificity. The drug-target interactions generate surface stress, causing the cantilever to bend, and the signal can be analyzed optically when it is illuminated by a laser. The change in surface stress measured with nano-scale precision allows disruptions of the biomechanics of model bacterial cell wall targets to be tracked in real time. Despite offering considerable advantages, multiple cantilever sensor arrays have never been applied in quantifying drug-target binding interactions. Here, we report on the use of silicon multiple cantilever arrays coated with alkanethiol self-assembled monolayers mimicking bacterial cell wall matrix to quantitatively study antibiotic binding interactions. To understand the impact of vancomycin on the mechanics of bacterial cell wall structures. We developed a new model(1) which proposes that cantilever bending can be described by two independent factors; i) namely a chemical factor, which is given by a classical Langmuir adsorption isotherm, from which we calculate the thermodynamic equilibrium dissociation constant (Kd) and ii) a geometrical factor, essentially a measure of how bacterial peptide receptors are distributed on the cantilever surface. The surface distribution of peptide receptors (p) is used to investigate the dependence of geometry and ligand loading. It is shown that a threshold value of p ~10% is critical to sensing applications. Below which there is no detectable bending signal while above this value, the bending signal increases almost linearly, revealing that stress is a product of a local chemical binding factor and a geometrical factor combined by the mechanical connectivity of reacted regions and provides a new paradigm for design of powerful

  19. TRPV1: A Target for Rational Drug Design.

    Science.gov (United States)

    Carnevale, Vincenzo; Rohacs, Tibor

    2016-01-01

    Transient Receptor Potential Vanilloid 1 (TRPV1) is a non-selective, Ca(2+) permeable cation channel activated by noxious heat, and chemical ligands, such as capsaicin and resiniferatoxin (RTX). Many compounds have been developed that either activate or inhibit TRPV1, but none of them are in routine clinical practice. This review will discuss the rationale for antagonists and agonists of TRPV1 for pain relief and other conditions, and strategies to develop new, better drugs to target this ion channel, using the newly available high-resolution structures. PMID:27563913

  20. Calculation of nanoparticle capture efficiency in magnetic drug targeting

    International Nuclear Information System (INIS)

    The implant assisted magnetic targeted drug delivery system of Aviles, Ebner and Ritter, which uses high gradient magnetic separation (HGMS) is considered. In this 2D model large ferromagnetic particles are implanted as seeds to aid collection of multiple domain nanoparticles (radius ∼200nm). Here, in contrast, single domain magnetic nanoparticles (radius in 20-100 nm) are considered and the Langevin function is used to describe the magnetization. Simulations based on this model were performed using the open source C++ finite volume library OpenFOAM. The simulations indicate that use of the Langevin function predicts greater collection efficiency than might be otherwise expected

  1. Mining nematode genome data for novel drug targets.

    Science.gov (United States)

    Foster, Jeremy M; Zhang, Yinhua; Kumar, Sanjay; Carlow, Clotilde K S

    2005-03-01

    Expressed sequence tag projects have currently produced over 400 000 partial gene sequences from more than 30 nematode species and the full genomic sequences of selected nematodes are being determined. In addition, functional analyses in the model nematode Caenorhabditis elegans have addressed the role of almost all genes predicted by the genome sequence. This recent explosion in the amount of available nematode DNA sequences, coupled with new gene function data, provides an unprecedented opportunity to identify pre-validated drug targets through efficient mining of nematode genomic databases. This article describes the various information sources available and strategies that can expedite this process.

  2. Qualitative investigation of barriers to accessing care by people who inject drugs in Saskatoon, Canada: perspectives of service providers

    OpenAIRE

    Lang, Katherine; Neil, Jaycie; Wright, Judith; Dell, Colleen Anne; Berenbaum, Shawna; El-Aneed, Anas

    2013-01-01

    Background People who inject drugs (PWID) often encounter barriers when attempting to access health care and social services. In our previous study conducted to identify barriers to accessing care from the perspective of PWIDs in Saskatoon, Canada: poverty, lack of personal support, discrimination, and poor knowledge and coordination of service providers among other key barriers were identified. The purpose of the present investigation was to explore what service providers perceive to be the ...

  3. Virtual target screening to rapidly identify potential protein targets of natural products in drug discovery

    Directory of Open Access Journals (Sweden)

    Yuri Pevzner

    2014-05-01

    Full Text Available Inherent biological viability and diversity of natural products make them a potentially rich source for new therapeutics. However, identification of bioactive compounds with desired therapeutic effects and identification of their protein targets is a laborious, expensive process. Extracts from organism samples may show desired activity in phenotypic assays but specific bioactive compounds must be isolated through further separation methods and protein targets must be identified by more specific phenotypic and in vitro experimental assays. Still, questions remain as to whether all relevant protein targets for a compound have been identified. The desire is to understand breadth of purposing for the compound to maximize its use and intellectual property, and to avoid further development of compounds with insurmountable adverse effects. Previously we developed a Virtual Target Screening system that computationally screens one or more compounds against a collection of virtual protein structures. By scoring each compound-protein interaction, we can compare against averaged scores of synthetic drug-like compounds to determine if a particular protein would be a potential target of a compound of interest. Here we provide examples of natural products screened through our system as we assess advantages and shortcomings of our current system in regards to natural product drug discovery.

  4. An ex Vivo Model for Evaluating Blood-Brain Barrier Permeability, Efflux, and Drug Metabolism

    DEFF Research Database (Denmark)

    Hellman, Karin; Aadal Nielsen, Peter; Ek, Fredrik;

    2016-01-01

    The metabolism of drugs in the brain is difficult to study in most species because of enzymatic instability in vitro and interference from peripheral metabolism in vivo. A locust ex vivo model that combines brain barrier penetration, efflux, metabolism, and analysis of the unbound fraction...... in intact brains was evaluated using known drugs. Clozapine was analyzed, and its major metabolites, clozapine N-oxide (CNO) and N-desmethylclozapine (NDMC), were identified and quantified. The back-transformation of CNO into clozapine observed in humans was also observed in locusts. In addition......, risperidone, citalopram, fluoxetine, and haloperidol were studied, and one preselected metabolite for each drug was analyzed, identified, and quantified. Metabolite identification studies of clozapine and midazolam showed that the locust brain was highly metabolically active, and 18 and 14 metabolites...

  5. Development of modified pulsincap drug delivery system of metronidazole for drug targeting

    Directory of Open Access Journals (Sweden)

    Abraham Sindhu

    2007-01-01

    Full Text Available A modified Pulsincap dosage form of metronidazole was developed to target drug release in the colon. Bodies of hard gelatin capsules were treated with formaldehyde keeping the caps as such. Metronidazole pellets prepared by extrusion-spheronization method were incorporated into these specialized capsule shells and plugged with polymers guar gum, hydroxypropylmethylcellulose 10K, carboxymethylcellulose sodium and sodium alginate separately at concentrations 20 mg, 30 mg and 40 mg. The filled capsules were completely coated with 5% cellulose acetate phthalate to prevent variable gastric emptying. All the formulations were assayed to determine drug content and the ability of the modified Pulsincap to provide colon-specific drug delivery was assessed by in vitro drug release studies in buffer pH 1.2 for 2 h, pH 7.4 (simulated intestinal fluid for 3 h and pH 6.8 (stimulated colonic fluid for 7 h. The results indicated that significant drug release occurred only after 5 h from the start of experiment. Thus, metronidazole could be successfully colon targeted by the use of the modified Pulsincap, thereby reducing systemic side effects.

  6. Brain-targeting study of stearic acid–grafted chitosan micelle drug-delivery system

    Directory of Open Access Journals (Sweden)

    Xie YT

    2012-06-01

    Full Text Available Yi-Ting Xie, Yong-Zhong Du, Hong Yuan, Fu-Qiang HuCollege of Pharmaceutical Sciences, Zhejiang University, Hangzhou, ChinaPurpose: Therapy for central nervous system disease is mainly restricted by the blood–brain barrier. A drug-delivery system is an effective approach to overcome this barrier. In this research, the potential of polymeric micelles for brain-targeting drug delivery was studied.Methods: Stearic acid–grafted chitosan (CS-SA was synthesized by hydrophobic modification of chitosan with stearic acid. The physicochemical characteristics of CS-SA micelles were investigated. bEnd.3 cells were chosen as model cells to evaluate the internalization ability and cytotoxicity of CS-SA micelles in vitro. Doxorubicin (DOX, as a model drug, was physically encapsulated in CS-SA micelles. The in vivo brain-targeting ability of CS-SA micelles was qualitatively and quantitatively studied by in vivo imaging and high-performance liquid chromatography analysis, respectively. The therapeutic effect of DOX-loaded micelles in vitro was performed on glioma C6 cells.Results: The critical micelle concentration of CS-SA micelles with 26.9% ± 1.08% amino substitute degree was 65 µg/mL. The diameter and surface potential of synthesized CS-SA micelles in aqueous solution was 22 ± 0.98 nm and 36.4 ± 0.71 mV, respectively. CS-SA micelles presented excellent cellular uptake ability on bEnd.3 cells, the IC50 of which was 237.6 ± 6.61 µg/mL. DOX-loaded micelles exhibited slow drug-release behavior, with a cumulative release up to 72% within 48 hours in vitro. The cytotoxicity of DOX-loaded CS-SA micelles against C6 was 2.664 ± 0.036 µg/mL, compared with 0.181 ± 0.066 µg/mL of DOX • HCl. In vivo imaging results indicated that CS-SA was able to transport rapidly across the blood–brain barrier and into the brain. A maximum DOX distribution in brain of 1.01%/g was observed 15 minutes after administration and maintained above 0.45%/g within 1 hour

  7. Transporter protein and drug-conjugated gold nanoparticles capable of bypassing the blood-brain barrier.

    Science.gov (United States)

    Zhang, Yanhua; Walker, Janelle Buttry; Minic, Zeljka; Liu, Fangchao; Goshgarian, Harry; Mao, Guangzhao

    2016-01-01

    Drug delivery to the central nervous system (CNS) is challenging due to the inability of many drugs to cross the blood-brain barrier (BBB). Here, we show that wheat germ agglutinin horse radish peroxidase (WGA-HRP) chemically conjugated to gold nanoparticles (AuNPs) can be transported to the spinal cord and brainstem following intramuscular injection into the diaphragm of rats. We synthesized and determined the size and chemical composition of a three-part nanoconjugate consisting of WGA-HRP, AuNPs, and drugs for the treatment of diaphragm paralysis associated with high cervical spinal cord injury (SCI). Upon injection into the diaphragm muscle of rats, we show that the nanoconjugate is capable of delivering the drug at a much lower dose than the unconjugated drug injected systemically to effectively induce respiratory recovery in rats following SCI. This study not only demonstrates a promising strategy to deliver drugs to the CNS bypassing the BBB but also contributes a potential nanotherapy for the treatment of respiratory muscle paralysis resulted from cervical SCI. PMID:27180729

  8. Tumor Targeting and Drug Delivery by Anthrax Toxin.

    Science.gov (United States)

    Bachran, Christopher; Leppla, Stephen H

    2016-01-01

    Anthrax toxin is a potent tripartite protein toxin from Bacillus anthracis. It is one of the two virulence factors and causes the disease anthrax. The receptor-binding component of the toxin, protective antigen, needs to be cleaved by furin-like proteases to be activated and to deliver the enzymatic moieties lethal factor and edema factor to the cytosol of cells. Alteration of the protease cleavage site allows the activation of the toxin selectively in response to the presence of tumor-associated proteases. This initial idea of re-targeting anthrax toxin to tumor cells was further elaborated in recent years and resulted in the design of many modifications of anthrax toxin, which resulted in successful tumor therapy in animal models. These modifications include the combination of different toxin variants that require activation by two different tumor-associated proteases for increased specificity of toxin activation. The anthrax toxin system has proved to be a versatile system for drug delivery of several enzymatic moieties into cells. This highly efficient delivery system has recently been further modified by introducing ubiquitin as a cytosolic cleavage site into lethal factor fusion proteins. This review article describes the latest developments in this field of tumor targeting and drug delivery. PMID:27376328

  9. Epigenetic drugs that do not target enzyme activity.

    Science.gov (United States)

    Owen, Dafydd R; Trzupek, John D

    2014-06-01

    While the installation and removal of epigenetic post-translational modifications or ‘marks’ on both DNA and histone proteins are the tangible outcome of enzymatically catalyzed processes, the role of the epigenetic reader proteins looks, at first, less obvious. As they do not catalyze a chemical transformation or process as such, their role is not enzymatic. However, this does not preclude them from being potential targets for drug discovery as their function is clearly correlated to transcriptional activity and as a class of proteins, they appear to have binding sites of sufficient definition and size to be inhibited by small molecules. This suggests that this third class of epigenetic proteins that are involved in the interpretation of post-translational marks (as opposed to the creation or deletion of marks) may represent attractive targets for drug discovery efforts. This review mainly summarizes selected publications, patent literature and company disclosures on these non-enzymatic epigenetic reader proteins from 2009 to the present.

  10. Predicting enzyme targets for cancer drugs by profiling human Metabolic reactions in NCI-60 cell lines

    Directory of Open Access Journals (Sweden)

    Ching Wai-Ki

    2010-10-01

    Full Text Available Abstract Background Drugs can influence the whole metabolic system by targeting enzymes which catalyze metabolic reactions. The existence of interactions between drugs and metabolic reactions suggests a potential way to discover drug targets. Results In this paper, we present a computational method to predict new targets for approved anti-cancer drugs by exploring drug-reaction interactions. We construct a Drug-Reaction Network to provide a global view of drug-reaction interactions and drug-pathway interactions. The recent reconstruction of the human metabolic network and development of flux analysis approaches make it possible to predict each metabolic reaction's cell line-specific flux state based on the cell line-specific gene expressions. We first profile each reaction by its flux states in NCI-60 cancer cell lines, and then propose a kernel k-nearest neighbor model to predict related metabolic reactions and enzyme targets for approved cancer drugs. We also integrate the target structure data with reaction flux profiles to predict drug targets and the area under curves can reach 0.92. Conclusions The cross validations using the methods with and without metabolic network indicate that the former method is significantly better than the latter. Further experiments show the synergism of reaction flux profiles and target structure for drug target prediction. It also implies the significant contribution of metabolic network to predict drug targets. Finally, we apply our method to predict new reactions and possible enzyme targets for cancer drugs.

  11. Drug-target interaction prediction by random walk on the heterogeneous network.

    Science.gov (United States)

    Chen, Xing; Liu, Ming-Xi; Yan, Gui-Ying

    2012-07-01

    Predicting potential drug-target interactions from heterogeneous biological data is critical not only for better understanding of the various interactions and biological processes, but also for the development of novel drugs and the improvement of human medicines. In this paper, the method of Network-based Random Walk with Restart on the Heterogeneous network (NRWRH) is developed to predict potential drug-target interactions on a large scale under the hypothesis that similar drugs often target similar target proteins and the framework of Random Walk. Compared with traditional supervised or semi-supervised methods, NRWRH makes full use of the tool of the network for data integration to predict drug-target associations. It integrates three different networks (protein-protein similarity network, drug-drug similarity network, and known drug-target interaction networks) into a heterogeneous network by known drug-target interactions and implements the random walk on this heterogeneous network. When applied to four classes of important drug-target interactions including enzymes, ion channels, GPCRs and nuclear receptors, NRWRH significantly improves previous methods in terms of cross-validation and potential drug-target interaction prediction. Excellent performance enables us to suggest a number of new potential drug-target interactions for drug development.

  12. Development of high drug-loading nanomicelles targeting steroids to the brain

    Directory of Open Access Journals (Sweden)

    Zheng S

    2013-12-01

    nanomicelle system may provide a promising carrier to deliver hydrophobic drugs across the blood–brain barrier for the treatment of brain diseases.Keywords: drug-loading, lactoferrin, nanomicelles, sodium alginate, cholesterol, brain-targeting

  13. Nanomaterials for the Local and Targeted Delivery of Osteoarthritis Drugs

    Directory of Open Access Journals (Sweden)

    Parthiban Chinnagounder Periyasamy

    2012-01-01

    Full Text Available Nanotechnology has found its potential in every possible field of science and engineering. It offers a plethora of options to design tools at the nanometer scale, which can be expected to function more effectively than micro- and macrosystems for specific applications. Although the debate regarding the safety of synthetic nanomaterials for clinical applications endures, it is a promising technology due to its potential to augment current treatments. Various materials such as synthetic polymer, biopolymers, or naturally occurring materials such as proteins and peptides can serve as building blocks for adaptive nanoscale formulations. The choice of materials depends highly on the application. We focus on the use of nanoparticles for the treatment of degenerative cartilage diseases, such as osteoarthritis (OA. Current therapies for OA focus on treating the symptoms rather than modifying the disease. The usefulness of OA disease modifying drugs is hampered by side effects and lack of suitable drug delivery systems that target, deliver, and retain drugs locally. This challenge can be overcome by using nanotechnological formulations. We describe the different nanodrug delivery systems and their potential for cartilage repair. This paper provides the reader basal understanding of nanomaterials and aims at drawing new perspectives on the use of existing nanotechnological formulations for the treatment of osteoarthritis.

  14. New drugs targeting Th2 lymphocytes in asthma.

    Science.gov (United States)

    Caramori, Gaetano; Groneberg, David; Ito, Kazuhiro; Casolari, Paolo; Adcock, Ian M; Papi, Alberto

    2008-02-27

    Asthma represents a profound worldwide public health problem. The most effective anti-asthmatic drugs currently available include inhaled beta2-agonists and glucocorticoids and control asthma in about 90-95% of patients. The current asthma therapies are not cures and symptoms return soon after treatment is stopped even after long term therapy. Although glucocorticoids are highly effective in controlling the inflammatory process in asthma, they appear to have little effect on the lower airway remodelling processes that appear to play a role in the pathophysiology of asthma at currently prescribed doses. The development of novel drugs may allow resolution of these changes. In addition, severe glucocorticoid-dependent and resistant asthma presents a great clinical burden and reducing the side-effects of glucocorticoids using novel steroid-sparing agents is needed. Furthermore, the mechanisms involved in the persistence of inflammation are poorly understood and the reasons why some patients have severe life threatening asthma and others have very mild disease are still unknown. Drug development for asthma has been directed at improving currently available drugs and findings new compounds that usually target the Th2-driven airway inflammatory response. Considering the apparently central role of T lymphocytes in the pathogenesis of asthma, drugs targeting disease-inducing Th2 cells are promising therapeutic strategies. However, although animal models of asthma suggest that this is feasible, the translation of these types of studies for the treatment of human asthma remains poor due to the limitations of the models currently used. The myriad of new compounds that are in development directed to modulate Th2 cells recruitment and/or activation will clarify in the near future the relative importance of these cells and their mediators in the complex interactions with the other pro-inflammatory/anti-inflammatory cells and mediators responsible of the different asthmatic

  15. Blood-brain barrier transport of drugs for the treatment of brain diseases.

    Science.gov (United States)

    Gabathuler, Reinhard

    2009-06-01

    The central nervous system is a sanctuary protected by barriers that regulate brain homeostasis and control the transport of endogenous compounds into the brain. The blood-brain barrier, formed by endothelial cells of the brain capillaries, restricts access to brain cells allowing entry only to amino acids, glucose and hormones needed for normal brain cell function and metabolism. This very tight regulation of brain cell access is essential for the survival of neurons which do not have a significant capacity to regenerate, but also prevents therapeutic compounds, small and large, from reaching the brain. As a result, various strategies are being developed to enhance access of drugs to the brain parenchyma at therapeutically meaningful concentrations to effectively manage disease.

  16. Nanocomplexes for gene therapy of respiratory diseases: Targeting and overcoming the mucus barrier.

    Science.gov (United States)

    Di Gioia, Sante; Trapani, Adriana; Castellani, Stefano; Carbone, Annalucia; Belgiovine, Giuliana; Craparo, Emanuela Fabiola; Puglisi, Giovanni; Cavallaro, Gennara; Trapani, Giuseppe; Conese, Massimo

    2015-10-01

    Gene therapy, i.e. the delivery and expression of therapeutic genes, holds great promise for congenital and acquired respiratory diseases. Non-viral vectors are less toxic and immunogenic than viral vectors, although they are characterized by lower efficiency. However, they have to overcome many barriers, including inflammatory and immune mediators and cells. The respiratory and airway epithelial cells, the main target of these vectors, are coated with a layer of mucus, which hampers the effective reaching of gene therapy vectors carrying either plasmid DNA or small interfering RNA. This barrier is thicker in many lung diseases, such as cystic fibrosis. This review summarizes the most important advancements in the field of non-viral vectors that have been achieved with the use of nanoparticulate (NP) systems, composed either of polymers or lipids, in the lung gene delivery. In particular, different strategies of targeting of respiratory and airway lung cells will be described. Then, we will focus on the two approaches that attempt to overcome the mucus barrier: coating of the nanoparticulate system with poly(ethylene glycol) and treatment with mucolytics. Our conclusions are: 1) Ligand and physical targeting can direct therapeutic gene expression in specific cell types in the respiratory tract; 2) Mucopenetrating NPs are endowed with promising features to be useful in treating respiratory diseases and should be now advanced in pre-clinical trials. Finally, we discuss the development of such polymer- and lipid-based NPs in the context of in vitro and in vivo disease models, such as lung cancer, as well as in clinical trials. PMID:26192479

  17. Fighting cancer with nanomedicine---drug-polyester nanoconjugates for targeted cancer therapy

    Science.gov (United States)

    Yin, Qian

    The aim of my Ph. D. research is to develop drug-polyester nanoconjugates (NCs) as a novel translational polymeric drug delivery system that can successfully evade non-specific uptake by reticuloendothelial system (RES) and facilitate targeted cancer diagnosis and therapy. By uniquely integrating well-established chemical reaction-controlled ring opening polymerization (ROP) with nanoprecipitation technique, I successfully developed a polymeric NC system based on poly(lactic acid) and poly(O-carboxyanhydrides) (OCA) that allows for the quantitative loading and controlled release of a variety of anticancer drugs. The developed NC system could be easily modified with parmidronate, one of bisphosphonates commonly used as the treatment for disease characterized by osteolysis, to selectively deliver doxorubicin (Doxo) to the bone tissues and substantially to improve their therapeutic efficiency in inhibiting the growth of osteosarcoma in both murine and canine models. More importantly, the developed NCs could avidly bind to human serum albumin, a ubiquitous protein in the blood, to bypass the endothelium barrier and penetrate into tumor tissues more deeply and efficiently. When compared with PEGylated NCs, these albumin-bound NCs showed significantly reduced accumulation in RES and enhanced tumor accumulation, which consequently contributed to higher their tumor inhibition capabilities. In addition, the developed NC system allows easy incorporation of X-ray computed tomography (CT) contrast agents to largely facilitate personalized therapy by improving diagnosis accuracy and monitoring therapeutic efficacy. Through the synthetic and formulation strategy I developed, a large quantity (grams or larger-scale) of drug-polyester NCs can be easily obtained, which can be used as a model drug delivery system for fundamental studies as well as a real drug delivery system for disease treatment in clinical settings.

  18. Micro RNA, A Review: Pharmacogenomic drug targets for complex diseases

    Directory of Open Access Journals (Sweden)

    Ritesh Bajaj

    2010-01-01

    Full Text Available Micro RNAs (miRNAs are non-coding RNAs that can regulate gene expression to target several mRNAs in a gene regulatory network. MiRNA related Single Nucleotide Polymorphisms (S.N.P.s represent a newly identified type of genetic variability that can be of influence to the risk of certain human diseases and also affect how drugs can be activated and metabolized by patients. This will help in personalized medicines which are used for adminis-trating the correct dosage of drug and drug efficacy. miRNA deregulated expression has been extensively de-scribed in a variety of diseases such as Cancer, Obesity , Diabetes, Schizophrenia and control and self renewal of stem cells. MiRNA can function as oncogenes and/or tumor suppressors. MiRNAs may act as key regulators of processes as diverse as early development, cell proliferation and cell death, apoptosis and fat metabolism and cell differentiation .miRNA expression have shown their role in brain development chronic lymphocytic leukemia, colonic adeno carcinoma, Burkiff′s lymphoma and viral infection. These show their links with viral disease, neu-rodevelopment and cancer. It has been shown that they play a key role in melanoma metastasis. These may be differentially expressed in malignant cells compared to normal cells altering the regulation of expression of many important genes. MiRNA expression has been used for prognosis and early diagnosis of these complex diseases. The present paper focuses on the role of miRNAs in various complex diseases, which will help in improving the drug discovery process and personalized medicines.

  19. Pharmacoinformatics elucidation of potential drug targets against migraine to target ion channel protein KCNK18

    Directory of Open Access Journals (Sweden)

    Sehgal SA

    2014-05-01

    Full Text Available Sheikh Arslan Sehgal, Mubashir Hassan, Sajid Rashid National Center for Bioinformatics, Quaid-i-Azam University, Islamabad, Pakistan Abstract: Migraine, a complex debilitating neurological disorder is strongly associated with potassium channel subfamily K member 18 (KCNK18. Research has emphasized that high levels of KCNK18 may be responsible for improper functioning of neurotransmitters, resulting in neurological disorders like migraine. In the present study, a hybrid approach of molecular docking and virtual screening were followed by pharmacophore identification and structure modeling. Screening was performed using a two-dimensional similarity search against recommended migraine drugs, keeping in view the physicochemical properties of drugs. LigandScout tool was used for exploring pharmacophore properties and designing novel molecules. Here, we report the screening of four novel compounds that have showed maximum binding affinity against KCNK18, obtained through the ZINC database, and Drug and Drug-Like libraries. Docking studies revealed that Asp-46, Ile-324, Ile-44, Gly-118, Leu-338, Val-113, and Phe-41 are critical residues for receptor–ligand interaction. A virtual screening approach coupled with docking energies and druglikeness rules illustrated that ergotamine and PB-414901692 are potential inhibitor compounds for targeting KCNK18. We propose that selected compounds may be more potent than the previously listed drug analogs based on the binding energy values. Further analysis of these inhibitors through site-directed mutagenesis could be helpful for exploring the details of ligand-binding pockets. Overall, the findings of this study may be helpful for designing novel therapeutic targets to cure migraine. Keywords: migraine, bioinformatics, modeling and docking, KCNK18, TRESK, virtual screening, pharmacoinformatics

  20. Blood-brain barrier in vitro models as tools in drug discovery: assessment of the transport ranking of antihistaminic drugs.

    Science.gov (United States)

    Neuhaus, W; Mandikova, J; Pawlowitsch, R; Linz, B; Bennani-Baiti, B; Lauer, R; Lachmann, B; Noe, C R

    2012-05-01

    In the course of our validation program testing blood-brain barrier (BBB) in vitro models for their usability as tools in drug discovery it was evaluated whether an established Transwell model based on porcine cell line PBMEC/C1-2 was able to differentiate between the transport properties of first and second generation antihistaminic drugs. First generation antihistamines can permeate the BBB and act in the central nervous system (CNS), whereas entry to the CNS of second generation antihistamines is restricted by efflux pumps such as P-glycoprotein (P-gP) located in brain endothelial cells. P-gP functionality of PBMEC/C1-2 cells grown on Transwell filter inserts was proven by transport studies with P-gP substrate rhodamine 123 and P-gP blocker verapamil. Subsequent drug transport studies with the first generation antihistamines promethazine, diphenhydramine and pheniramine and the second generation antihistamines astemizole, ceterizine, fexofenadine and loratadine were accomplished in single substance as well as in group studies. Results were normalised to diazepam, an internal standard for the transcellular transport route. Moreover, effects after addition of P-gP inhibitor verapamil were investigated. First generation antihistamine pheniramine permeated as fastest followed by diphenhydramine, diazepam, promethazine and second generation antihistaminic drugs ceterizine, fexofenadine, astemizole and loratadine reflecting the BBB in vivo permeability ranking well. Verapamil increased the transport rates of all second generation antihistamines, which suggested involvement of P-gP during their permeation across the BBB model. The ranking after addition of verapamil was significantly changed, only fexofenadine and ceterizine penetrated slower than internal standard diazepam in the presence of verapamil. In summary, permeability data showed that the BBB model based on porcine cell line PBMEC/C1-2 was able to reflect the BBB in vivo situation for the transport of

  1. AVN-101: A Multi-Target Drug Candidate for the Treatment of CNS Disorders.

    Science.gov (United States)

    Ivachtchenko, Alexandre V; Lavrovsky, Yan; Okun, Ilya

    2016-05-25

    Lack of efficacy of many new highly selective and specific drug candidates in treating diseases with poorly understood or complex etiology, as are many of central nervous system (CNS) diseases, encouraged an idea of developing multi-modal (multi-targeted) drugs. In this manuscript, we describe molecular pharmacology, in vitro ADME, pharmacokinetics in animals and humans (part of the Phase I clinical studies), bio-distribution, bioavailability, in vivo efficacy, and safety profile of the multimodal drug candidate, AVN-101. We have carried out development of a next generation drug candidate with a multi-targeted mechanism of action, to treat CNS disorders. AVN-101 is a very potent 5-HT7 receptor antagonist (Ki = 153 pM), with slightly lesser potency toward 5-HT6, 5-HT2A, and 5HT-2C receptors (Ki = 1.2-2.0 nM). AVN-101 also exhibits a rather high affinity toward histamine H1 (Ki = 0.58 nM) and adrenergic α2A, α2B, and α2C (Ki = 0.41-3.6 nM) receptors. AVN-101 shows a good oral bioavailability and facilitated brain-blood barrier permeability, low toxicity, and reasonable efficacy in animal models of CNS diseases. The Phase I clinical study indicates the AVN-101 to be well tolerated when taken orally at doses of up to 20 mg daily. It does not dramatically influence plasma and urine biochemistry, nor does it prolong QT ECG interval, thus indicating low safety concerns. The primary therapeutic area for AVN-101 to be tested in clinical trials would be Alzheimer's disease. However, due to its anxiolytic and anti-depressive activities, there is a strong rational for it to also be studied in such diseases as general anxiety disorders, depression, schizophrenia, and multiple sclerosis. PMID:27232215

  2. New insight into p-glycoprotein as a drug target.

    Science.gov (United States)

    Breier, Albert; Gibalova, Lenka; Seres, Mario; Barancik, Miroslav; Sulova, Zdenka

    2013-01-01

    changes in cell sensitivity to substances that are not P-gp substrates or modulators. We recently reported that P-gppositive L1210 cells exhibit reduced sensitivity to cisplatin, concanavalin A, thapsigargin and tunicamycin. Thus, P-gp-mediated MDR represents a more complex process than was expected, and the unintended effects of P-gp overexpression should be considered when describing this phenotype. The present review aims to provide the most current informations about P-gp-mediated MDR while paying particular attention to the possible dual function of this protein as a drug efflux pump and a regulatory protein that influences diverse cell processes. From a clinical standpoint, overexpression of P-gp in cancer cells represents a real obstacle to effective chemotherapy for malignant diseases. Therefore, this protein should be considered as a viable target for pharmaceutical design. PMID:22931413

  3. Nanoscale Quantifying the Effects of Targeted Drug on Chemotherapy in Lymphoma Treatment Using Atomic Force Microscopy.

    Science.gov (United States)

    Li, Mi; Xiao, Xiubin; Liu, Lianqing; Xi, Ning; Wang, Yuechao

    2016-10-01

    The applications of targeted drugs in treating cancers have significantly improved the survival rates of patients. However, in the clinical practice, targeted drugs are commonly combined with chemotherapy drugs, causing that the exact contribution of targeted drugs to the clinical outcome is difficult to evaluate. Quantitatively investigating the effects of targeted drugs on chemotherapy drugs on cancer cells is useful for us to understand drug actions and design better drugs. The advent of atomic force microscopy (AFM) provides a powerful tool for probing the nanoscale physiological activities of single live cells. In this paper, the detailed changes in cell morphology and mechanical properties were quantified on single lymphoma cells during the actions of rituximab (a monoclonal antibody targeted drug) and two chemotherapy drugs (cisplatin and cytarabine) by AFM. AFM imaging revealed the distinct changes of cellular ultramicrostructures induced by the drugs. The changes of cellular mechanical properties after the drug stimulations were measured by AFM indenting. The statistical histograms of cellular surface roughness and mechanical properties quantitatively showed that rituximab could remarkably strengthen the killing effects of chemotherapy drugs. The study offers a new way to quantify the synergistic interactions between targeted drugs and chemotherapy drugs at the nanoscale, which will have potential impacts on predicting the efficacies of drug combinations before clinical treatments.

  4. Candidiasis drug discovery and development: new approaches targeting virulence for discovering and identifying new drugs

    Science.gov (United States)

    Pierce, Christopher G.; Lopez-Ribot, Jose L.

    2014-01-01

    Introduction Targeting pathogenetic mechanisms rather than essential processes represents a very attractive alternative for the development of new antibiotics. This may be particularly important in the case of antimycotics, due to the urgent need for novel antifungal drugs and the paucity of selective fungal targets. The opportunistic pathogenic fungus Candida albicans is the main etiological agent of candidiasis, the most common human fungal infection. These infections carry unacceptably high mortality rates, a clear reflection of the many shortcomings of current antifungal therapy, including the limited armamentarium of antifungal agents, their toxicity, and the emergence of resistance. Moreover the antifungal pipeline is mostly dry. Areas covered This review covers some of the most recent progress towards understanding C. albicans pathogenetic processes and how to harness this information for the development of anti-virulence agents. The two principal areas covered are filamentation and biofilm formation, as C. albicans pathogenicity is intimately linked to its ability to undergo morphogenetic conversions between yeast and filamentous morphologies and to its ability to form biofilms. Expert opinion We argue that filamentation and biofilm formation represent high value targets, yet clinically unexploited, for the development of novel anti-virulence approaches against candidiasis. Although this has proved a difficult task despite increasing understanding at the molecular level of C. albicans virulence, we highlight new opportunities and prospects for antifungal drug development targeting these two important biological processes. PMID:23738751

  5. RAS GTPase AS THE DRUG TARGET FOR ANTI-CANCER DESIGNING OF DRUG FROM TEMPLATE

    Directory of Open Access Journals (Sweden)

    A.S. Krishnapriya and P.K. Krishnan Namboori*

    2013-11-01

    Full Text Available Ras proteins in association with GTP and GDP act as a bio-molecular switch for signaling cell growth, cell survival and signal transduction. The presence of mutated Ras proteins is found to vary in different cancer types and the highest occurrence of about 90% is observed in pancreatic cancer. The Ras GTPase binding site is mainly involved in signal cell proliferation. Hence, this binding site has been considered as a major target. At the same time, targeting a specific protein and designing the drug molecule with respect to that is practically of no use as the target proteins are fast mutating. In this scenario, designing the template from the hot spot of proteins and fitting the template for all the target protein molecules seem to be a promising technique. The templates are initially screened on the basis of pharmacokinetic and pharmacodynamic requirements. Six templates are found to be satisfying conditions like IC50, lipophilic efficiency, ligand efficiency etc. and their efficiencies are compared with standard reference molecules. The computed enrichment factors support these templates to be leads for effective anti-cancer drugs subject to further in vitro and in vivo evaluation.

  6. Advanced drug delivery and targeting technologies for the ocular diseases

    Science.gov (United States)

    Barar, Jaleh; Aghanejad, Ayuob; Fathi, Marziyeh; Omidi, Yadollah

    2016-01-01

    Introduction: Ocular targeted therapy has enormously been advanced by implementation of new methods of drug delivery and targeting using implantable drug delivery systems (DDSs) or devices (DDDs), stimuli-responsive advanced biomaterials, multimodal nanomedicines, cell therapy modalities and medical bioMEMs. These technologies tackle several ocular diseases such as inflammation-based diseases (e.g., scleritis, keratitis, uveitis, iritis, conjunctivitis, chorioretinitis, choroiditis, retinitis, retinochoroiditis), ocular hypertension and neuropathy, age-related macular degeneration and mucopolysaccharidosis (MPS) due to accumulation of glycosaminoglycans (GAGs). Such therapies appear to provide ultimate treatments, even though much more effective, yet biocompatible, noninvasive therapies are needed to control some disabling ocular diseases/disorders. Methods: In the current study, we have reviewed and discussed recent advancements on ocular targeted therapies. Results: On the ground that the pharmacokinetic and pharmacodynamic analyses of ophthalmic drugs need special techniques, most of ocular DDSs/devices developments have been designed to localized therapy within the eye. Application of advanced DDSs such as Subconjunctival insert/implants (e.g., latanoprost implant, Gamunex-C), episcleral implant (e.g., LX201), cationic emulsions (e.g., Cationorm™, Vekacia™, Cyclokat™), intac/punctal plug DDSs (latanoprost punctal plug delivery system, L-PPDS), and intravitreal implants (I-vitaion™, NT-501, NT- 503, MicroPump, Thethadur, IB-20089 Verisome™, Cortiject, DE-102, Retisert™, Iluvein™ and Ozurdex™) have significantly improved the treatment of ocular diseases. However, most of these DDSs/devices are applied invasively and even need surgical procedures. Of these, use of de novo technologies such as advanced stimuli-responsive nanomaterials, multimodal nanosystems (NSs)/nanoconjugates (NCs), biomacromolecualr scaffolds, and bioengineered cell therapies

  7. Quantitative analysis on the characteristics of targets with FDA approved drugs

    Directory of Open Access Journals (Sweden)

    Meena K. Sakharkar, Peng Li, Zhaowei Zhong, Kishore R. Sakharkar

    2008-01-01

    Full Text Available Accumulated knowledge of genomic information, systems biology, and disease mechanisms provide an unprecedented opportunity to elucidate the genetic basis of diseases, and to discover new and novel therapeutic targets from the wealth of genomic data. With hundreds to a few thousand potential targets available in the human genome alone, target selection and validation has become a critical component of drug discovery process. The explorations on quantitative characteristics of the currently explored targets (those without any marketed drug and successful targets (targeted by at least one marketed drug could help discern simple rules for selecting a putative successful target. Here we use integrative in silico (computational approaches to quantitatively analyze the characteristics of 133 targets with FDA approved drugs and 3120 human disease genes (therapeutic targets not targeted by FDA approved drugs. This is the first attempt to comparatively analyze targets with FDA approved drugs and targets with no FDA approved drug or no drugs available for them. Our results show that proteins with 5 or fewer number of homologs outside their own family, proteins with single-exon gene architecture and proteins interacting with more than 3 partners are more likely to be targetable. These quantitative characteristics could serve as criteria to search for promising targetable disease genes.

  8. Autophagy modulation as a target for anticancer drug discovery

    Institute of Scientific and Technical Information of China (English)

    Xin LI; Huai-long XU; Yong-xi LIU; Na AN; Si ZHAO; Jin-ku BAO

    2013-01-01

    Autophagy,an evolutionarily conserved catabolic process involving the engulfment and degradation of non-essential or abnormal cellular organelles and proteins,is crucial for homeostatic maintenance in living cells.This highly regulated,multi-step process has been implicated in diverse diseases including cancer.Autophagy can function as either a promoter or a suppressor of cancer,which makes it a promising and challenging therapeutic target.Herein,we overview the regulatory mechanisms and dual roles of autophagy in cancer.We also describe some of the representative agents that exert their anticancer effects by regulating autophagy.Additionally,some emerging strategies aimed at modulating autophagy are discussed as having the potential for future anticancer drug discovery.In summary,these findings will provide valuable information to better utilize autophagy in the future development of anticancer therapeutics that meet clinical requirements.

  9. Adipokines as drug targets in diabetes and underlying disturbances.

    Science.gov (United States)

    Andrade-Oliveira, Vinícius; Câmara, Niels O S; Moraes-Vieira, Pedro M

    2015-01-01

    Diabetes and obesity are worldwide health problems. White fat dynamically participates in hormonal and inflammatory regulation. White adipose tissue is recognized as a multifactorial organ that secretes several adipose-derived factors that have been collectively termed "adipokines." Adipokines are pleiotropic molecules that gather factors such as leptin, adiponectin, visfatin, apelin, vaspin, hepcidin, RBP4, and inflammatory cytokines, including TNF and IL-1β, among others. Multiple roles in metabolic and inflammatory responses have been assigned to these molecules. Several adipokines contribute to the self-styled "low-grade inflammatory state" of obese and insulin-resistant subjects, inducing the accumulation of metabolic anomalies within these individuals, including autoimmune and inflammatory diseases. Thus, adipokines are an interesting drug target to treat autoimmune diseases, obesity, insulin resistance, and adipose tissue inflammation. The aim of this review is to present an overview of the roles of adipokines in different immune and nonimmune cells, which will contribute to diabetes as well as to adipose tissue inflammation and insulin resistance development. We describe how adipokines regulate inflammation in these diseases and their therapeutic implications. We also survey current attempts to exploit adipokines for clinical applications, which hold potential as novel approaches to drug development in several immune-mediated diseases.

  10. Discovery of the target for immunomodulatory drugs (IMiDs).

    Science.gov (United States)

    Ito, Takumi; Ando, Hideki; Handa, Hiroshi

    2016-05-01

    Half a century ago, the sedative thalidomide caused a serious drug disaster because of its teratogenicity and was withdrawn from the market. However, thalidomide, which has returned to the market, is now used for the treatment of leprosy and multiple myeloma (MM) under strict control. The mechanism of thalidomide action had been a long-standing question. We developed a new affinity bead technology and identified cereblon (CRBN) as a thalidomide-binding protein. We found that CRBN functions as a substrate receptor of an E3 cullin-Ring ligase complex 4 (CRL4) and is a primary target of thalidomide teratogenicity. Recently, new thalidomide derivatives, called immunomodulatory drugs (IMiDs), have been developed by Celgene. Among them, lenalidomide (Len) and pomalidomide (Pom) were shown to exert strong therapeutic effects against MM. It was found that Len and Pom both bind CRBN-CRL4 and recruit neomorphic substrates (Ikaros and Aiolos). More recently it was reported that casein kinase 1a (Ck1a) was identified as a substrate for CRBN-CRL4 in the presence of Len, but not Pom. Ck1a breakdown explains why Len is specifically effective for myelodysplastic syndrome with 5q deletion. It is now proposed that binding of IMiDs to CRBN appears to alter the substrate specificity of CRBN-CRL4. In this review, we introduce recent findings on IMiDs. PMID:27263779

  11. TRPV1: A Potential Drug Target for Treating Various Diseases

    Directory of Open Access Journals (Sweden)

    Rafael Brito

    2014-05-01

    Full Text Available Transient receptor potential vanilloid 1 (TRPV1 is an ion channel present on sensory neurons which is activated by heat, protons, capsaicin and a variety of endogenous lipids termed endovanilloids. As such, TRPV1 serves as a multimodal sensor of noxious stimuli which could trigger counteractive measures to avoid pain and injury. Activation of TRPV1 has been linked to chronic inflammatory pain conditions and peripheral neuropathy, as observed in diabetes. Expression of TRPV1 is also observed in non-neuronal sites such as the epithelium of bladder and lungs and in hair cells of the cochlea. At these sites, activation of TRPV1 has been implicated in the pathophysiology of diseases such as cystitis, asthma and hearing loss. Therefore, drugs which could modulate TRPV1 channel activity could be useful for the treatment of conditions ranging from chronic pain to hearing loss. This review describes the roles of TRPV1 in the normal physiology and pathophysiology of selected organs of the body and highlights how drugs targeting this channel could be important clinically.

  12. Discovery of the target for immunomodulatory drugs (IMiDs).

    Science.gov (United States)

    Ito, Takumi; Ando, Hideki; Handa, Hiroshi

    2016-05-01

    Half a century ago, the sedative thalidomide caused a serious drug disaster because of its teratogenicity and was withdrawn from the market. However, thalidomide, which has returned to the market, is now used for the treatment of leprosy and multiple myeloma (MM) under strict control. The mechanism of thalidomide action had been a long-standing question. We developed a new affinity bead technology and identified cereblon (CRBN) as a thalidomide-binding protein. We found that CRBN functions as a substrate receptor of an E3 cullin-Ring ligase complex 4 (CRL4) and is a primary target of thalidomide teratogenicity. Recently, new thalidomide derivatives, called immunomodulatory drugs (IMiDs), have been developed by Celgene. Among them, lenalidomide (Len) and pomalidomide (Pom) were shown to exert strong therapeutic effects against MM. It was found that Len and Pom both bind CRBN-CRL4 and recruit neomorphic substrates (Ikaros and Aiolos). More recently it was reported that casein kinase 1a (Ck1a) was identified as a substrate for CRBN-CRL4 in the presence of Len, but not Pom. Ck1a breakdown explains why Len is specifically effective for myelodysplastic syndrome with 5q deletion. It is now proposed that binding of IMiDs to CRBN appears to alter the substrate specificity of CRBN-CRL4. In this review, we introduce recent findings on IMiDs.

  13. Structures of Trypanosome Vacuolar Soluble Pyrophosphatases: Antiparasitic Drug Targets.

    Science.gov (United States)

    Yang, Yunyun; Ko, Tzu-Ping; Chen, Chun-Chi; Huang, Guozhong; Zheng, Yingying; Liu, Weidong; Wang, Iren; Ho, Meng-Ru; Hsu, Shang-Te Danny; O'Dowd, Bing; Huff, Hannah C; Huang, Chun-Hsiang; Docampo, Roberto; Oldfield, Eric; Guo, Rey-Ting

    2016-05-20

    Trypanosomatid parasites are the causative agents of many neglected tropical diseases, including the leishmaniases, Chagas disease, and human African trypanosomiasis. They exploit unusual vacuolar soluble pyrophosphatases (VSPs), absent in humans, for cell growth and virulence and, as such, are drug targets. Here, we report the crystal structures of VSP1s from Trypanosoma cruzi and T. brucei, together with that of the T. cruzi protein bound to a bisphosphonate inhibitor. Both VSP1s form a hybrid structure containing an (N-terminal) EF-hand domain fused to a (C-terminal) pyrophosphatase domain. The two domains are connected via an extended loop of about 17 residues. Crystallographic analysis and size exclusion chromatography indicate that the VSP1s form tetramers containing head-to-tail dimers. Phosphate and diphosphate ligands bind in the PPase substrate-binding pocket and interact with several conserved residues, and a bisphosphonate inhibitor (BPH-1260) binds to the same site. On the basis of Cytoscape and other bioinformatics analyses, it is apparent that similar folds will be found in most if not all trypanosomatid VSP1s, including those found in insects (Angomonas deanei, Strigomonas culicis), plant pathogens (Phytomonas spp.), and Leishmania spp. Overall, the results are of general interest since they open the way to structure-based drug design for many of the neglected tropical diseases. PMID:26907161

  14. Are Pharmaceuticals with Evolutionary Conserved Molecular Drug Targets More Potent to Cause Toxic Effects in Non-Target Organisms?

    OpenAIRE

    Sara Furuhagen; Anne Fuchs; Elin Lundström Belleza; Magnus Breitholtz; Elena Gorokhova

    2014-01-01

    The ubiquitous use of pharmaceuticals has resulted in a continuous discharge into wastewater and pharmaceuticals and their metabolites are found in the environment. Due to their design towards specific drug targets, pharmaceuticals may be therapeutically active already at low environmental concentrations. Several human drug targets are evolutionary conserved in aquatic organisms, raising concerns about effects of these pharmaceuticals in non-target organisms. In this study, we hypothesized th...

  15. Optimized shapes of magnetic arrays for drug targeting applications

    Science.gov (United States)

    Barnsley, Lester C.; Carugo, Dario; Stride, Eleanor

    2016-06-01

    Arrays of permanent magnet elements have been utilized as light-weight, inexpensive sources for applying external magnetic fields in magnetic drug targeting applications, but they are extremely limited in the range of depths over which they can apply useful magnetic forces. In this paper, designs for optimized magnet arrays are presented, which were generated using an optimization routine to maximize the magnetic force available from an arbitrary arrangement of magnetized elements, depending on a set of design parameters including the depth of targeting (up to 50 mm from the magnet) and direction of force required. A method for assembling arrays in practice is considered, quantifying the difficulty of assembly and suggesting a means for easing this difficulty without a significant compromise to the applied field or force. Finite element simulations of in vitro magnetic retention experiments were run to demonstrate the capability of a subset of arrays to retain magnetic microparticles against flow. The results suggest that, depending on the choice of array, a useful proportion of particles (more than 10% ) could be retained at flow velocities up to 100 mm s-1 or to depths as far as 50 mm from the magnet. Finally, the optimization routine was used to generate a design for a Halbach array optimized to deliver magnetic force to a depth of 50 mm inside the brain.

  16. Leptin signaling molecular actions and drug target in hepatocellular carcinoma

    Directory of Open Access Journals (Sweden)

    Jiang N

    2014-11-01

    leptin and Ob-R in cancer cells compared to normal cells, makes leptin an ideal drug target for the prevention and treatment of HCC, especially in obese patients. Keywords: hepatocellular carcinoma, leptin, leptin antagonist, leptin signaling, tumor angiogenesis, drug target

  17. Intrinsically Unstructured Proteins: Potential Targets for Drug Discovery

    Directory of Open Access Journals (Sweden)

    Pathan Salma

    2009-01-01

    Full Text Available Problem statement: The function of a protein is dependent on its three-dimensional structure. However, numerous proteins lacking intrinsic globular 3D structure under physiological conditions had been recognized. These proteins are frequently involved in some of the most critical cellular control mechanisms and it appears that their rapid turnover, aided by their unstructured nature in the unbound state, provides a level of control that allows rapid and accurate responses of the cell to changing environmental conditions. Approach: A significant number of proteins known to be involved in protein deposition disorders were now considered to Be Intrinsically Unstructured Proteins (IUPs. For example, Aß peptide and tau protein in Alzheimer’s disease, PrP in Prion’s disease and a-Synuclein in Parkinson’s disease. The disorder of intrinsically unstructured proteins (IUP's was crucial to their functions. They may adopt defined but extended structures when bound to cognate ligands. Their amino acid compositions were less hydrophobic than those of soluble proteins. They lack hydrophobic cores and hence did not become insoluble when heated. About 40% of eukaryotic proteins had at least one long (>50 residues disordered region. Roughly 10% of proteins in various genomes had been predicted to be fully disordered. Presently over 100 IUP's had been identified; none are enzymes. Obviously, IUP's were greatly underrepresented in the Protein Data Bank, although there were few cases of an IUP bound to a folded (intrinsically structured protein. Results: The five functional categories for intrinsically unstructured proteins and domains were entropic chains (bristles to ensure spacing, springs, flexible spacers/linkers, effectors (inhibitors and disassemblers, scavengers, assemblers and display sites. These IUPs could serve as potential targets for Structure Based Drug Design (SBDD which stress on the transition

  18. Dendrimers in drug delivery and targeting: Drug-dendrimer interactions and toxicity issues

    Directory of Open Access Journals (Sweden)

    Kanika Madaan

    2014-01-01

    Full Text Available Dendrimers are the emerging polymeric architectures that are known for their defined structures, versatility in drug delivery and high functionality whose properties resemble with biomolecules. These nanostructured macromolecules have shown their potential abilities in entrapping and/or conjugating the high molecular weight hydrophilic/hydrophobic entities by host-guest interactions and covalent bonding (prodrug approach respectively. Moreover, high ratio of surface groups to molecular volume has made them a promising synthetic vector for gene delivery. Owing to these properties dendrimers have fascinated the researchers in the development of new drug carriers and they have been implicated in many therapeutic and biomedical applications. Despite of their extensive applications, their use in biological systems is limited due to toxicity issues associated with them. Considering this, the present review has focused on the different strategies of their synthesis, drug delivery and targeting, gene delivery and other biomedical applications, interactions involved in formation of drug-dendrimer complex along with characterization techniques employed for their evaluation, toxicity problems and associated approaches to alleviate their inherent toxicity.

  19. Modeling leukocyte trafficking at the human blood-nerve barrier in vitro and in vivo geared towards targeted molecular therapies for peripheral neuroinflammation.

    Science.gov (United States)

    Greathouse, Kelsey M; Palladino, Steven P; Dong, Chaoling; Helton, Eric S; Ubogu, Eroboghene E

    2016-01-01

    Peripheral neuroinflammation is characterized by hematogenous mononuclear leukocyte infiltration into peripheral nerves. Despite significant clinical knowledge, advancements in molecular biology and progress in developing specific drugs for inflammatory disorders such as rheumatoid arthritis, inflammatory bowel disease, and multiple sclerosis, there are currently no specific therapies that modulate pathogenic peripheral nerve inflammation. Modeling leukocyte trafficking at the blood-nerve barrier using a reliable human in vitro model and potential intravital microscopy techniques in representative animal models guided by human observational data should facilitate the targeted modulation of the complex inflammatory cascade needed to develop safe and efficacious therapeutics for immune-mediated neuropathies and chronic neuropathic pain. PMID:26732309

  20. Orexin Receptor Targets for Anti-Relapse Medication Development in Drug Addiction

    OpenAIRE

    See, Ronald E.; Luyi Zhou; Wei-Lun Sun

    2011-01-01

    Drug addiction is a chronic illness characterized by high rates of relapse. Relapse to drug use can be triggered by re-exposure to drug-associated cues, stressful events, or the drug itself after a period of abstinence. Pharmacological intervention to reduce the impact of relapse-instigating factors offers a promising target for addiction treatment. Growing evidence has implicated an important role of the orexin/hypocretin system in drug reward and drug-seeking, including animal models of rel...

  1. Ultrasound/Magnetic Targeting with SPIO-DOX-Microbubble Complex for Image-Guided Drug Delivery in Brain Tumors

    Science.gov (United States)

    Fan, Ching-Hsiang; Cheng, Yu-Hang; Ting, Chien-Yu; Ho, Yi-Ju; Hsu, Po-Hung; Liu, Hao-Li; Yeh, Chih-Kuang

    2016-01-01

    One of the greatest challenges in the deployment of chemotherapeutic drugs against brain tumors is ensuring that sufficient drug concentrations reach the tumor, while minimizing drug accumulation at undesired sites. Recently, injection of therapeutic agents following blood-brain barrier (BBB) opening by focused ultrasound (FUS) with microbubbles (MBs) has been shown to enhance drug delivery in targeted brain regions. Nevertheless, the distribution and quantitative deposition of agents delivered to the brain are still hard to estimate. Based on our previous work on superparamagnetic iron oxide (SPIO)-loaded MBs, we present a novel theranostic complex of SPIO-Doxorubicin (DOX)-conjugated MB (SD-MB) for drug delivery to the brain. Magnetic labeling of the drug enables direct visualization via magnetic resonance imaging, and also facilitates magnetic targeting (MT) to actively enhance targeted deposition of the drug. In a rat glioma model, we demonstrated that FUS sonication can be used with SD-MBs to simultaneously facilitate BBB opening and allow dual ultrasound/magnetic targeting of chemotherapeutic agent (DOX) delivery. The accumulation of SD complex within brain tumors can be significantly enhanced by MT (25.7 fold of DOX, 7.6 fold of SPIO). The change in relaxation rate R2 (1/T2) within tumors was highly correlated with SD deposition as quantified by high performance liquid chromatography (R2 = 0.93) and inductively coupled plasma-atomic emission spectroscopy (R2 = 0.94), demonstrating real-time monitoring of DOX distribution. Our results suggest that SD-MBs can serve as multifunction agents to achieve advanced molecular theranostics. PMID:27446489

  2. A platinum-based hybrid drug design approach to circumvent acquired resistance to molecular targeted tyrosine kinase inhibitors

    Science.gov (United States)

    Wei, Yuming; Poon, Daniel C.; Fei, Rong; Lam, Amy S. M.; Au-Yeung, Steve C. F.; To, Kenneth K. W.

    2016-05-01

    Three molecular targeted tyrosine kinase inhibitors (TKI) were conjugated to classical platinum-based drugs with an aim to circumvent TKI resistance, predominately mediated by the emergence of secondary mutations on oncogenic kinases. The hybrids were found to maintain specificity towards the same oncogenic kinases as the original TKI. Importantly, they are remarkably less affected by TKI resistance, presumably due to their unique structure and the observed dual mechanism of anticancer activity (kinase inhibition and DNA damage). The study is also the first to report the application of a hybrid drug approach to switch TKIs from being efflux transporter substrates into non-substrates. TKIs cannot penetrate into the brain for treating metastases because of efflux transporters at the blood brain barrier. The hybrids were found to escape drug efflux and they accumulate more than the original TKI in the brain in BALB/c mice. Further development of the hybrid compounds is warranted.

  3. Polymeric particulate technologies for oral drug delivery and targeting: A pathophysiological perspective

    DEFF Research Database (Denmark)

    Hunter, A. Christy; Elsom, Jacqueline; Wibroe, Peter Popp;

    2012-01-01

    to optimize drug targeting and bioavailability. Frequently the carrier systems used are either constructed from or contain polymeric materials. Examples of these nanocarriers include polymeric nanoparticles, solid lipid nanocarriers, self-nanoemulsifying drug delivery systems and nanocrystals...

  4. Targeting the microenvironment of pancreatic cancer: overcoming treatment barriers and improving local immune responses.

    Science.gov (United States)

    Strauss, J; Alewine, C; Figg, W D; Duffy, A

    2016-07-01

    Historically, patients diagnosed with metastatic pancreatic cancer have faced a grim prognosis. The survival benefit seen with systemic chemotherapies and even combinations thereof have been disappointing. However, growing data suggest that the microenvironment of pancreatic cancer may be contributing to this poor prognosis. This microenvironment has a dense fibrotic stroma, and is hypoxic and highly immunosuppressive, all of which pose barriers to treatment. Newer strategies looking to disrupt the fibrotic stroma, target hypoxic areas, and improve local immune responses in the tumor microenvironment are currently undergoing clinical evaluation and seem to offer great promise. In addition to these therapies, preclinical work evaluating novel cytotoxic agents including nanoparticles has also been encouraging. While much research still needs to be done, these strategies offer new hope for patients with pancreatic cancer. PMID:26661112

  5. The effects of psychostimulant drugs on blood brain barrier function and neuroinflammation

    Directory of Open Access Journals (Sweden)

    Sharanya M Kousik

    2012-06-01

    Full Text Available The blood brain barrier (BBB is a highly dynamic interface between the central nervous system and periphery. The BBB is comprised of a number of components and is part of the larger neuro(gliovascular unit. Current literature suggests that psychostimulant drugs of abuse alter the function of the BBB which likely contributes to the neurotoxicities associated with these drugs. In both preclinical and clinical studies, psychostimulants including methamphetamine, MDMA, cocaine, and nicotine, produce BBB dysfunction through alterations in tight junction protein expression and conformation, increased glial activation, increased enzyme activation related to BBB cytoskeleton remodeling, and induction of neuroinflammatory pathways. These detrimental changes lead to increased permeability of the BBB and subsequent vulnerability of the brain to peripheral toxins. In fact, abuse of these psychostimulants, notably methamphetamine and cocaine, has been shown to increase the invasion of peripheral bacteria and viruses into the brain. Much work in this field has focused on the co-morbidity of psychostimulant abuse and human immunodeficiency virus (HIV infection. As psychostimulants alter BBB permeability, it is likely that this BBB dysfunction results in increased penetration of the HIV virus into the brain thus increasing the risk of and severity of neuroAIDS. This review will provide an overview of the specific changes in components within the BBB associated with psychostimulant abuse as well as the implications of these changes in exacerbating the neuropathology associated with psychostimulant drugs and HIV co-morbidity.

  6. Cellular uptake and transcytosis of lipid-based nanoparticles across the intestinal barrier: Relevance for oral drug delivery.

    Science.gov (United States)

    Neves, Ana Rute; Queiroz, Joana Fontes; Costa Lima, Sofia A; Figueiredo, Francisco; Fernandes, Rui; Reis, Salette

    2016-02-01

    Oral administration is the preferred route for drug delivery and nanosystems represent a promising tool for protection and transport of hardly soluble, chemically unstable and poorly permeable drugs through the intestinal barrier. In the present work, we have studied lipid nanoparticles cellular uptake, internalization pathways and transcytosis routes through Caco-2 cell monolayers. Both lipid nanosystems presented similar size (∼180nm) and surface charge (-30mV). Nanostructured lipid carriers showed a higher cellular uptake and permeability across the barrier, but solid lipid nanoparticles could enter cells faster than the former. The internalization of lipid nanoparticles occurs mainly through a clathrin-mediated endocytosis mechanism, although caveolae-mediated endocytosis is also involved in the uptake. Both lipid nanoparticles were able to cross the intestinal barrier by a preferential transcellular route. This work contributed to a better knowledge of the developed nanosystems for the oral delivery of a wide spectrum of drugs.

  7. Serine Proteases of Malaria Parasite Plasmodium falciparum: Potential as Antimalarial Drug Targets

    OpenAIRE

    Asrar Alam

    2014-01-01

    Malaria is a major global parasitic disease and a cause of enormous mortality and morbidity. Widespread drug resistance against currently available antimalarials warrants the identification of novel drug targets and development of new drugs. Malarial proteases are a group of molecules that serve as potential drug targets because of their essentiality for parasite life cycle stages and feasibility of designing specific inhibitors against them. Proteases belonging to various mechanistic classes...

  8. The antihelmintic drug pyrvinium pamoate targets aggressive breast cancer.

    Directory of Open Access Journals (Sweden)

    Wei Xu

    Full Text Available WNT signaling plays a key role in the self-renewal of tumor initiation cells (TICs. In this study, we used pyrvinium pamoate (PP, an FDA-approved antihelmintic drug that inhibits WNT signaling, to test whether pharmacologic inhibition of WNT signaling can specifically target TICs of aggressive breast cancer cells. SUM-149, an inflammatory breast cancer cell line, and SUM-159, a metaplastic basal-type breast cancer cell line, were used in these studies. We found that PP inhibited primary and secondary mammosphere formation of cancer cells at nanomolar concentrations, at least 10 times less than the dose needed to have a toxic effect on cancer cells. A comparable mammosphere formation IC50 dose to that observed in cancer cell lines was obtained using malignant pleural effusion samples from patients with IBC. A decrease in activity of the TIC surrogate aldehyde dehydrogenase was observed in PP-treated cells, and inhibition of WNT signaling by PP was associated with down-regulation of a panel of markers associated with epithelial-mesenchymal transition. In vivo, intratumoral injection was associated with tumor necrosis, and intraperitoneal injection into mice with tumor xenografts caused significant tumor growth delay and a trend toward decreased lung metastasis. In in vitro mammosphere-based and monolayer-based clonogenic assays, we found that PP radiosensitized cells in monolayer culture but not mammosphere culture. These findings suggest WNT signaling inhibition may be a feasible strategy for targeting aggressive breast cancer. Investigation and modification of the bioavailability and toxicity profile of systemic PP are warranted.

  9. Legionella pneumophila Carbonic Anhydrases: Underexplored Antibacterial Drug Targets.

    Science.gov (United States)

    Supuran, Claudiu T

    2016-01-01

    Carbonic anhydrases (CAs, EC 4.2.1.1) are metalloenzymes which catalyze the hydration of carbon dioxide to bicarbonate and protons. Many pathogenic bacteria encode such enzymes belonging to the α-, β-, and/or γ-CA families. In the last decade, enzymes from some of these pathogens, including Legionella pneumophila, have been cloned and characterized in detail. These enzymes were shown to be efficient catalysts for CO₂ hydration, with kcat values in the range of (3.4-8.3) × 10⁵ s(-1) and kcat/KM values of (4.7-8.5) × 10⁷ M(-1)·s(-1). In vitro inhibition studies with various classes of inhibitors, such as anions, sulfonamides and sulfamates, were also reported for the two β-CAs from this pathogen, LpCA1 and LpCA2. Inorganic anions were millimolar inhibitors, whereas diethyldithiocarbamate, sulfamate, sulfamide, phenylboronic acid, and phenylarsonic acid were micromolar ones. The best LpCA1 inhibitors were aminobenzolamide and structurally similar sulfonylated aromatic sulfonamides, as well as acetazolamide and ethoxzolamide (KIs in the range of 40.3-90.5 nM). The best LpCA2 inhibitors belonged to the same class of sulfonylated sulfonamides, together with acetazolamide, methazolamide, and dichlorophenamide (KIs in the range of 25.2-88.5 nM). Considering such preliminary results, the two bacterial CAs from this pathogen represent promising yet underexplored targets for obtaining antibacterials devoid of the resistance problems common to most of the clinically used antibiotics, but further studies are needed to validate them in vivo as drug targets. PMID:27322334

  10. Legionella pneumophila Carbonic Anhydrases: Underexplored Antibacterial Drug Targets

    Directory of Open Access Journals (Sweden)

    Claudiu T. Supuran

    2016-06-01

    Full Text Available Carbonic anhydrases (CAs, EC 4.2.1.1 are metalloenzymes which catalyze the hydration of carbon dioxide to bicarbonate and protons. Many pathogenic bacteria encode such enzymes belonging to the α-, β-, and/or γ-CA families. In the last decade, enzymes from some of these pathogens, including Legionella pneumophila, have been cloned and characterized in detail. These enzymes were shown to be efficient catalysts for CO2 hydration, with kcat values in the range of (3.4–8.3 × 105 s−1 and kcat/KM values of (4.7–8.5 × 107 M−1·s−1. In vitro inhibition studies with various classes of inhibitors, such as anions, sulfonamides and sulfamates, were also reported for the two β-CAs from this pathogen, LpCA1 and LpCA2. Inorganic anions were millimolar inhibitors, whereas diethyldithiocarbamate, sulfamate, sulfamide, phenylboronic acid, and phenylarsonic acid were micromolar ones. The best LpCA1 inhibitors were aminobenzolamide and structurally similar sulfonylated aromatic sulfonamides, as well as acetazolamide and ethoxzolamide (KIs in the range of 40.3–90.5 nM. The best LpCA2 inhibitors belonged to the same class of sulfonylated sulfonamides, together with acetazolamide, methazolamide, and dichlorophenamide (KIs in the range of 25.2–88.5 nM. Considering such preliminary results, the two bacterial CAs from this pathogen represent promising yet underexplored targets for obtaining antibacterials devoid of the resistance problems common to most of the clinically used antibiotics, but further studies are needed to validate them in vivo as drug targets.

  11. RGD-modified lipid disks as drug carriers for tumor targeted drug delivery

    Science.gov (United States)

    Gao, Jie; Xie, Cao; Zhang, Mingfei; Wei, Xiaoli; Yan, Zhiqiang; Ren, Yachao; Ying, Man; Lu, Weiyue

    2016-03-01

    Melittin, the major component of the European bee venom, is a potential anticancer candidate due to its lytic properties. However, in vivo applications of melittin are limited due to its main side effect, hemolysis, especially when applied through intravenous administration. The polyethylene glycol-stabilized lipid disk is a novel type of nanocarrier, and the rim of lipid disks has a high affinity to amphiphilic peptides. In our study, a c(RGDyK) modified lipid disk was developed as a tumor targeted drug delivery system for melittin. Cryo-TEM was used to confirm the shape and size of lipid disks with or without c(RGDyK) modification. In vitro and in vivo hemolysis analyses revealed that the hemolysis effect significantly decreased after melittin associated with lipid disks. Importantly, the results of our in vivo biodistribution and tumor growth inhibitory experiments showed that c(RGDyK) modification increased the distribution of lipid disks in the tumor and the anticancer efficacy of melittin loaded lipid disks. Thus, we successfully achieved a targeted drug delivery system for melittin and other amphiphilic peptides with a good therapeutic effect and low side effects.

  12. Targeted lipid based drug conjugates: a novel strategy for drug delivery.

    Science.gov (United States)

    Vadlapudi, Aswani Dutt; Vadlapatla, Ramya Krishna; Kwatra, Deep; Earla, Ravinder; Samanta, Swapan K; Pal, Dhananjay; Mitra, Ashim K

    2012-09-15

    A majority of studies involving prodrugs are directed to overcome low bioavailability of the parent drug. The aim of this study is to increase the bioavailability of acyclovir (ACV) by designing a novel prodrug delivery system which is more lipophilic, and at the same time site specific. In this study, a lipid raft has been conjugated to the parent drug molecule to impart lipophilicity. Simultaneously a targeting moiety that can be recognized by a specific transporter/receptor in the cell membrane has also been tethered to the other terminal of lipid raft. Targeted lipid prodrugs i.e., biotin-ricinoleicacid-acyclovir (B-R-ACV) and biotin-12hydroxystearicacid-acyclovir (B-12HS-ACV) were synthesized with ricinoleicacid and 12hydroxystearicacid as the lipophilic rafts and biotin as the targeting moiety. Biotin-ACV (B-ACV), ricinoleicacid-ACV (R-ACV) and 12hydroxystearicacid-ACV (12HS-ACV) were also synthesized to delineate the individual effects of the targeting and the lipid moieties. Cellular accumulation studies were performed in confluent MDCK-MDR1 and Caco-2 cells. The targeted lipid prodrugs B-R-ACV and B-12HS-ACV exhibited much higher cellular accumulation than B-ACV, R-ACV and 12HS-ACV in both cell lines. This result indicates that both the targeting and the lipid moiety act synergistically toward cellular uptake. The biotin conjugated prodrugs caused a decrease in the uptake of [(3)H] biotin suggesting the role of sodium dependent multivitamin transporter (SMVT) in uptake. The affinity of these targeted lipid prodrugs toward SMVT was studied in MDCK-MDR1 cells. Both the targeted lipid prodrugs B-R-ACV (20.25 ± 1.74 μM) and B-12HS-ACV (23.99 ± 3.20 μM) demonstrated higher affinity towards SMVT than B-ACV (30.90 ± 4.19 μM). Further, dose dependent studies revealed a concentration dependent inhibitory effect on [(3)H] biotin uptake in the presence of biotinylated prodrugs. Transepithelial transport studies showed lowering of [(3)H] biotin permeability in

  13. The drug-target residence time model: a 10-year retrospective.

    Science.gov (United States)

    Copeland, Robert A

    2016-02-01

    The drug-target residence time model was first introduced in 2006 and has been broadly adopted across the chemical biology, biotechnology and pharmaceutical communities. While traditional in vitro methods view drug-target interactions exclusively in terms of equilibrium affinity, the residence time model takes into account the conformational dynamics of target macromolecules that affect drug binding and dissociation. The key tenet of this model is that the lifetime (or residence time) of the binary drug-target complex, and not the binding affinity per se, dictates much of the in vivo pharmacological activity. Here, this model is revisited and key applications of it over the past 10 years are highlighted.

  14. Enzymology of the nematode cuticle: A potential drug target?

    Science.gov (United States)

    Page, Antony P; Stepek, Gillian; Winter, Alan D; Pertab, David

    2014-08-01

    All nematodes possess an external structure known as the cuticle, which is crucial for their development and survival. This structure is composed primarily of collagen, which is secreted from the underlying hypodermal cells. Extensive studies using the free-living nematode Caenorhabditis elegans demonstrate that formation of the cuticle requires the activity of an extensive range of enzymes. Enzymes are required both pre-secretion, for synthesis of component proteins such as collagen, and post-secretion, for removal of the previous developmental stage cuticle, in a process known as moulting or exsheathment. The excretion/secretion products of numerous parasitic nematodes contain metallo-, serine and cysteine proteases, and these proteases are conserved across the nematode phylum and many are involved in the moulting/exsheathment process. This review highlights the enzymes required for cuticle formation, with a focus on the post-secretion moulting events. Where orthologues of the C. elegans enzymes have been identified in parasitic nematodes these may represent novel candidate targets for future drug/vaccine development. PMID:25057463

  15. Neuropeptides as targets for the development of anticonvulsant drugs.

    Science.gov (United States)

    Clynen, Elke; Swijsen, Ann; Raijmakers, Marjolein; Hoogland, Govert; Rigo, Jean-Michel

    2014-10-01

    Epilepsy is a common neurological disorder characterized by recurrent seizures. These seizures are due to abnormal excessive and synchronous neuronal activity in the brain caused by a disruption of the delicate balance between excitation and inhibition. Neuropeptides can contribute to such misbalance by modulating the effect of classical excitatory and inhibitory neurotransmitters. In this review, we discuss 21 different neuropeptides that have been linked to seizure disorders. These neuropeptides show an aberrant expression and/or release in animal seizure models and/or epilepsy patients. Many of these endogenous peptides, like adrenocorticotropic hormone, angiotensin, cholecystokinin, cortistatin, dynorphin, galanin, ghrelin, neuropeptide Y, neurotensin, somatostatin, and thyrotropin-releasing hormone, are able to suppress seizures in the brain. Other neuropeptides, such as arginine-vasopressine peptide, corticotropin-releasing hormone, enkephalin, β-endorphin, pituitary adenylate cyclase-activating polypeptide, and tachykinins have proconvulsive properties. For oxytocin and melanin-concentrating hormone both pro- and anticonvulsive effects have been reported, and this seems to be dose or time dependent. All these neuropeptides and their receptors are interesting targets for the development of new antiepileptic drugs. Other neuropeptides such as nesfatin-1 and vasoactive intestinal peptide have been less studied in this field; however, as nesfatin-1 levels change over the course of epilepsy, this can be considered as an interesting marker to diagnose patients who have suffered a recent epileptic seizure.

  16. A small molecule nanodrug consisting of amphiphilic targeting ligand-chemotherapy drug conjugate for targeted cancer therapy.

    Science.gov (United States)

    Mou, Quanbing; Ma, Yuan; Zhu, Xinyuan; Yan, Deyue

    2016-05-28

    Targeted drug delivery is a broadly applicable approach for cancer therapy. However, the nanocarrier-based targeted delivery system suffers from batch-to-batch variation, quality concerns and carrier-related toxicity issues. Thus, to develop a carrier-free targeted delivery system with nanoscale characteristics is very attractive. Here, a novel targeting small molecule nanodrug self-delivery system consisting of targeting ligand and chemotherapy drug was constructed, which combined the advantages of small molecules and nano-assemblies together and showed excellent targeting ability and long blood circulation time with well-defined structure, high drug loading ratio and on-demand drug release behavior. As a proof-of-concept, lactose (Lac) and doxorubicin (DOX) were chosen as the targeting ligand and chemotherapy drug, respectively. Lac and DOX were conjugated through a pH-responsive hydrazone group. For its intrinsic amphiphilic property, Lac-DOX conjugate could self-assemble into nanoparticles in water. Both in vitro and in vivo assays indicated that Lac-DOX nanoparticles exhibited enhanced anticancer activity and weak side effects. This novel active targeting nanodrug delivery system shows great potential in cancer therapy. PMID:27040815

  17. Drug target mining and analysis of the Chinese tree shrew for pharmacological testing.

    Directory of Open Access Journals (Sweden)

    Feng Zhao

    Full Text Available The discovery of new drugs requires the development of improved animal models for drug testing. The Chinese tree shrew is considered to be a realistic candidate model. To assess the potential of the Chinese tree shrew for pharmacological testing, we performed drug target prediction and analysis on genomic and transcriptomic scales. Using our pipeline, 3,482 proteins were predicted to be drug targets. Of these predicted targets, 446 and 1,049 proteins with the highest rank and total scores, respectively, included homologs of targets for cancer chemotherapy, depression, age-related decline and cardiovascular disease. Based on comparative analyses, more than half of drug target proteins identified from the tree shrew genome were shown to be higher similarity to human targets than in the mouse. Target validation also demonstrated that the constitutive expression of the proteinase-activated receptors of tree shrew platelets is similar to that of human platelets but differs from that of mouse platelets. We developed an effective pipeline and search strategy for drug target prediction and the evaluation of model-based target identification for drug testing. This work provides useful information for future studies of the Chinese tree shrew as a source of novel targets for drug discovery research.

  18. Identifying the Right Disease Targets to Develop Better Drugs, Faster | NIH MedlinePlus the Magazine

    Science.gov (United States)

    ... this page please turn JavaScript on. Identifying the Right Disease Targets to Develop Better Drugs, Faster Past ... reason is that we're not selecting the right biological changes to target from the start. How ...

  19. Social and structural barriers to housing among street-involved youth who use illicit drugs.

    Science.gov (United States)

    Krüsi, Andrea; Fast, Danya; Small, Will; Wood, Evan; Kerr, Thomas

    2010-05-01

    In Canada, approximately 150,000 youth live on the street. Street-involvement and homelessness have been associated with various health risks, including increased substance use, blood-borne infections and sexually transmitted diseases. We undertook a qualitative study to better understand the social and structural barriers street-involved youth who use illicit drugs encounter when seeking housing. We conducted 38 semi-structured interviews with street-involved youth in Vancouver, Canada from May to October 2008. Interviewees were recruited from the At-risk Youth Study (ARYS) cohort, which follows youth aged 14 to 26 who have experience with illicit drug use. All interviews were thematically analyzed, with particular emphasis on participants' perspectives regarding their housing situation and their experiences seeking housing. Many street-involved youth reported feeling unsupported in their efforts to find housing. For the majority of youth, existing abstinence-focused shelters did not constitute a viable option and, as a result, many felt excluded from these facilities. Many youth identified inflexible shelter rules and a lack of privacy as outweighing the benefits of sleeping indoors. Single-room occupancy hotels (SROs) were reported to be the only affordable housing options, as many landlords would not rent to youth on welfare. Many youth reported resisting moving to SROs as they viewed them as unsafe and as giving up hope for a return to mainstream society. The findings of the present study shed light on the social and structural barriers street-involved youth face in attaining housing and challenge the popular view of youth homelessness constituting a lifestyle choice. Our findings point to the need for housing strategies that include safe, low threshold, harm reduction focused housing options for youth who engage in illicit substance use.

  20. Micro RNA, A Review: Pharmacogenomic drug targets for complex diseases

    Directory of Open Access Journals (Sweden)

    Sandhya Bawa

    2010-01-01

    Full Text Available

    Micro RNAs (miRNAs are non-coding RNAs that can regulate gene expression to target several mRNAs in a gene regulatory network. MiRNA related Single Nucleotide Polymorphisms (S.N.P.s represent a newly identified type of genetic variability that can be of influence to the risk of certain human diseases and also affect how drugs can be activated and metabolized by patients. This will help in personalized medicines which are used for administrating the correct dosage of drug and drug efficacy. miRNA deregulated expression has been extensively described in a variety of diseases such as Cancer, Obesity , Diabetes, Schizophrenia and control and self renewal of stem cells. MiRNA can function as oncogenes and/or tumor suppressors. MiRNAs may act as key regulators of processes as diverse as early development, cell proliferation and cell death, apoptosis and fat metabolism and cell differentiation .miRNA expression have shown their role in brain development chronic lymphocytic leukemia, colonic adeno carcinoma, Burkiff’s lymphoma and viral infection. These show their links with viral disease, neurodevelopment and cancer. It has been shown that they play a key role in melanoma metastasis. These may be

    1. iDrug-Target: predicting the interactions between drug compounds and target proteins in cellular networking via benchmark dataset optimization approach.

      Science.gov (United States)

      Xiao, Xuan; Min, Jian-Liang; Lin, Wei-Zhong; Liu, Zi; Cheng, Xiang; Chou, Kuo-Chen

      2015-01-01

      Information about the interactions of drug compounds with proteins in cellular networking is very important for drug development. Unfortunately, all the existing predictors for identifying drug-protein interactions were trained by a skewed benchmark data-set where the number of non-interactive drug-protein pairs is overwhelmingly larger than that of the interactive ones. Using this kind of highly unbalanced benchmark data-set to train predictors would lead to the outcome that many interactive drug-protein pairs might be mispredicted as non-interactive. Since the minority interactive pairs often contain the most important information for drug design, it is necessary to minimize this kind of misprediction. In this study, we adopted the neighborhood cleaning rule and synthetic minority over-sampling technique to treat the skewed benchmark datasets and balance the positive and negative subsets. The new benchmark datasets thus obtained are called the optimized benchmark datasets, based on which a new predictor called iDrug-Target was developed that contains four sub-predictors: iDrug-GPCR, iDrug-Chl, iDrug-Ezy, and iDrug-NR, specialized for identifying the interactions of drug compounds with GPCRs (G-protein-coupled receptors), ion channels, enzymes, and NR (nuclear receptors), respectively. Rigorous cross-validations on a set of experiment-confirmed datasets have indicated that these new predictors remarkably outperformed the existing ones for the same purpose. To maximize users' convenience, a public accessible Web server for iDrug-Target has been established at http://www.jci-bioinfo.cn/iDrug-Target/ , by which users can easily get their desired results. It has not escaped our notice that the aforementioned strategy can be widely used in many other areas as well.

    2. Permeability analysis of neuroactive drugs through a dynamic microfluidic in vitro blood-brain barrier model.

      Science.gov (United States)

      Booth, R; Kim, H

      2014-12-01

      This paper presents the permeability analysis of neuroactive drugs and correlation with in vivo brain/plasma ratios in a dynamic microfluidic blood-brain barrier (BBB) model. Permeability of seven neuroactive drugs (Ethosuximide, Gabapentin, Sertraline, Sunitinib, Traxoprodil, Varenicline, PF-304014) and trans-endothelial electrical resistance (TEER) were quantified in both dynamic (microfluidic) and static (transwell) BBB models, either with brain endothelial cells (bEnd.3) in monoculture, or in co-culture with glial cells (C6). Dynamic cultures were exposed to 15 dyn/cm(2) shear stress to mimic the in vivo environment. Dynamic models resulted in significantly higher average TEER (respective 5.9-fold and 8.9-fold increase for co-culture and monoculture models) and lower drug permeabilities (average respective decrease of 0.050 and 0.052 log(cm/s) for co-culture and monoculture) than static models; and co-culture models demonstrated higher average TEER (respective 90 and 25% increase for static and dynamic models) and lower drug permeability (average respective decrease of 0.063 and 0.061 log(cm/s) for static and dynamic models) than monoculture models. Correlation of the resultant logP e values [ranging from -4.06 to -3.63 log(cm/s)] with in vivo brain/plasma ratios (ranging from 0.42 to 26.8) showed highly linear correlation (R (2) > 0.85) for all model conditions, indicating the feasibility of the dynamic microfluidic BBB model for prediction of BBB clearance of pharmaceuticals.

    3. Metal Nanoparticles as Targeted Carriers Circumventing the Blood-Brain Barrier.

      Science.gov (United States)

      Sintov, A C; Velasco-Aguirre, C; Gallardo-Toledo, E; Araya, E; Kogan, M J

      2016-01-01

      Metal nanoparticles have been proposed as a carrier and a therapeutic agent in biomedical field because of their unique physiochemical properties. Due to these physicochemical properties, they can be used in different fields of biomedicine. In relation to this, plasmonic nanoparticles can be used for detection and photothermal destruction of tumor cells or toxic protein aggregates, and magnetic iron nanoparticles can be used for imaging and for hyperthermia of tumor cells. In addition, both therapy and imaging can be combined in one nanoparticle system, in a process called theranostics. Metal nanoparticles can be synthesized to modulate their size and shape, and conjugated with different ligands, which allow their application in drug delivery, diagnostics, and treatment of central nervous system diseases. This review is focused on the potential applications of metal nanoparticles and their capability to circumvent the blood-brain barrier (BBB). Although many articles have demonstrated delivery of metal nanoparticles to the brain by crossing the BBB after systemic administration, the percentage of the injected dose that reaches this organ is low in comparison to others, especially the liver and spleen. In connection with this drawback, we elaborate the architecture of the BBB and review possible mechanisms to cross this barrier by engineered nanoparticles. The potential uses of metal nanoparticles for treatment of disorders as well as related neurotoxicological considerations are also discussed. Finally, we bring up for discussion a direct and relatively simpler solution to the problem. We discuss this in detail after having proposed the use of the intranasal administration route as a way to circumvent the BBB. This route has not been extensively studied yet for metal nanoparticles, although it could be used as a research tool for mechanistic understanding and toxicity as well as an added value for medical practice. PMID:27678178

    4. Tetrahydrobiopterin Biosynthesis as an Off-Target of Sulfa Drugs

      OpenAIRE

      Haruki, H.; Pedersen, M.G.; Gorska, K. I.; Pojer, F.; Johnsson, K.

      2013-01-01

      The introduction of sulfa drugs for the chemotherapy of bacterial infections in 1935 revolutionized medicine. Although their mechanism of action is understood, the molecular bases for most of their side effects remain obscure. Here, we report that sulfamethoxazole and other sulfa drugs interfere with tetrahydrobiopterin biosynthesis through inhibition of sepiapterin reductase. Crystal structures of sepiapterin reductase with bound sulfa drugs reveal how structurally diverse sulfa drugs achiev...

    5. Identification of multi-drug resistant Pseudomonas aeruginosa clinical isolates that are highly disruptive to the intestinal epithelial barrier

      Directory of Open Access Journals (Sweden)

      Shevchenko Olga

      2006-06-01

      Full Text Available Abstract Background Multi-drug resistant Pseudomonas aeruginosa nosocomial infections are increasingly recognized worldwide. In this study, we focused on the virulence of multi-drug resistant clinical strains P. aeruginosa against the intestinal epithelial barrier, since P. aeruginosa can cause lethal sepsis from within the intestinal tract of critically ill and immuno-compromised patients via mechanisms involving disruption of epithelial barrier function. Methods We screened consecutively isolated multi-drug resistant P. aeruginosa clinical strains for their ability to disrupt the integrity of human cultured intestinal epithelial cells (Caco-2 and correlated these finding to related virulence phenotypes such as adhesiveness, motility, biofilm formation, and cytotoxicity. Results Results demonstrated that the majority of the multi-drug resistant P. aeruginosa clinical strains were attenuated in their ability to disrupt the barrier function of cultured intestinal epithelial cells. Three distinct genotypes were found that displayed an extreme epithelial barrier-disrupting phenotype. These strains were characterized and found to harbor the exoU gene and to display high swimming motility and adhesiveness. Conclusion These data suggest that detailed phenotypic analysis of the behavior of multi-drug resistant P. aeruginosa against the intestinal epithelium has the potential to identify strains most likely to place patients at risk for lethal gut-derived sepsis. Surveillance of colonizing strains of P. aeruginosa in critically ill patients beyond antibiotic sensitivity is warranted.

    6. Blood-brain barrier models and their relevance for a successful development of CNS drug delivery systems: a review.

      Science.gov (United States)

      Bicker, Joana; Alves, Gilberto; Fortuna, Ana; Falcão, Amílcar

      2014-08-01

      During the research and development of new drugs directed at the central nervous system, there is a considerable attrition rate caused by their hampered access to the brain by the blood-brain barrier. Throughout the years, several in vitro models have been developed in an attempt to mimic critical functionalities of the blood-brain barrier and reliably predict the permeability of drug candidates. However, the current challenge lies in developing a model that retains fundamental blood-brain barrier characteristics and simultaneously remains compatible with the high throughput demands of pharmaceutical industries. This review firstly describes the roles of all elements of the neurovascular unit and their influence on drug brain penetration. In vitro models, including non-cell based and cell-based models, and in vivo models are herein presented, with a particular emphasis on their methodological aspects. Lastly, their contribution to the improvement of brain drug delivery strategies and drug transport across the blood-brain barrier is also discussed.

    7. Thiamin (Vitamin B1 Biosynthesis and Regulation: A Rich Source of Antimicrobial Drug Targets?

      Directory of Open Access Journals (Sweden)

      Qinglin Du, Honghai Wang, Jianping Xie

      2011-01-01

      Full Text Available Drug resistance of pathogens has necessitated the identification of novel targets for antibiotics. Thiamin (vitamin B1 is an essential cofactor for all organisms in its active form thiamin diphosphate (ThDP. Therefore, its metabolic pathways might be one largely untapped source of antibiotics targets. This review describes bacterial thiamin biosynthetic, salvage, and transport pathways. Essential thiamin synthetic enzymes such as Dxs and ThiE are proposed as promising drug targets. The regulation mechanism of thiamin biosynthesis by ThDP riboswitch is also discussed. As drug targets of existing antimicrobial compound pyrithiamin, the ThDP riboswitch might serves as alternative targets for more antibiotics.

    8. Sterol Biosynthesis Pathway as Target for Anti-trypanosomatid Drugs

      Directory of Open Access Journals (Sweden)

      Wanderley de Souza

      2009-01-01

      Full Text Available Sterols are constituents of the cellular membranes that are essential for their normal structure and function. In mammalian cells, cholesterol is the main sterol found in the various membranes. However, other sterols predominate in eukaryotic microorganisms such as fungi and protozoa. It is now well established that an important metabolic pathway in fungi and in members of the Trypanosomatidae family is one that produces a special class of sterols, including ergosterol, and other 24-methyl sterols, which are required for parasitic growth and viability, but are absent from mammalian host cells. Currently, there are several drugs that interfere with sterol biosynthesis (SB that are in use to treat diseases such as high cholesterol in humans and fungal infections. In this review, we analyze the effects of drugs such as (a statins, which act on the mevalonate pathway by inhibiting HMG-CoA reductase, (b bisphosphonates, which interfere with the isoprenoid pathway in the step catalyzed by farnesyl diphosphate synthase, (c zaragozic acids and quinuclidines, inhibitors of squalene synthase (SQS, which catalyzes the first committed step in sterol biosynthesis, (d allylamines, inhibitors of squalene epoxidase, (e azoles, which inhibit C14α-demethylase, and (f azasterols, which inhibit Δ24(25-sterol methyltransferase (SMT. Inhibition of this last step appears to have high selectivity for fungi and trypanosomatids, since this enzyme is not found in mammalian cells. We review here the IC50 values of these various inhibitors, their effects on the growth of trypanosomatids (both in axenic cultures and in cell cultures, and their effects on protozoan structural organization (as evaluted by light and electron microscopy and lipid composition. The results show that the mitochondrial membrane as well as the membrane lining the protozoan cell body and flagellum are the main targets. Probably as a consequence of these primary effects, other important changes take

    9. ORAL COLON TARGETED DRUG DELIVERY SYSTEM: A REVIEW ON CURRENT AND NOVEL PERSPECTIVES

      Directory of Open Access Journals (Sweden)

      Asija Rajesh

      2012-10-01

      Full Text Available Small intestine is mostly the site for drug absorption but in some cases the drug needs to be targeted to colon due to some factors like local colonic disease, degradation related conditions, delayed release of drugs, systemic delivery of protein and peptide drugs etc. Colon targeted drug delivery is important and relatively new concept for the absorption of drugs because it offers almost neutral pH and long residence time, thereby increasing the drug absorption. Colon has proved to be a site for the absorption of poorly soluble drugs. For the successful targeting of drugs to colon the dosage form should be designed such that it prevents the drug release in upper GIT and releasing it in the colonic region. This review article discusses in brief about introduction of colon along with the novel and emerging technologies for colon targeting of drug molecule. Treatment of these diseases with colon-specific drug delivery system provides an interesting alternative over systemic drug administration because of lower dosing and fewer systemic side effects.

    10. Are pharmaceuticals with evolutionary conserved molecular drug targets more potent to cause toxic effects in non-target organisms?

      Directory of Open Access Journals (Sweden)

      Sara Furuhagen

      Full Text Available The ubiquitous use of pharmaceuticals has resulted in a continuous discharge into wastewater and pharmaceuticals and their metabolites are found in the environment. Due to their design towards specific drug targets, pharmaceuticals may be therapeutically active already at low environmental concentrations. Several human drug targets are evolutionary conserved in aquatic organisms, raising concerns about effects of these pharmaceuticals in non-target organisms. In this study, we hypothesized that the toxicity of a pharmaceutical towards a non-target invertebrate depends on the presence of the human drug target orthologs in this species. This was tested by assessing toxicity of pharmaceuticals with (miconazole and promethazine and without (levonorgestrel identified drug target orthologs in the cladoceran Daphnia magna. The toxicity was evaluated using general toxicity endpoints at individual (immobility, reproduction and development, biochemical (RNA and DNA content and molecular (gene expression levels. The results provide evidence for higher toxicity of miconazole and promethazine, i.e. the drugs with identified drug target orthologs. At the individual level, miconazole had the lowest effect concentrations for immobility and reproduction (0.3 and 0.022 mg L-1, respectively followed by promethazine (1.6 and 0.18 mg L-1, respectively. At the biochemical level, individual RNA content was affected by miconazole and promethazine already at 0.0023 and 0.059 mg L-1, respectively. At the molecular level, gene expression for cuticle protein was significantly suppressed by exposure to both miconazole and promethazine; moreover, daphnids exposed to miconazole had significantly lower vitellogenin expression. Levonorgestrel did not have any effects on any endpoints in the concentrations tested. These results highlight the importance of considering drug target conservation in environmental risk assessments of pharmaceuticals.

    11. Are pharmaceuticals with evolutionary conserved molecular drug targets more potent to cause toxic effects in non-target organisms?

      Science.gov (United States)

      Furuhagen, Sara; Fuchs, Anne; Lundström Belleza, Elin; Breitholtz, Magnus; Gorokhova, Elena

      2014-01-01

      The ubiquitous use of pharmaceuticals has resulted in a continuous discharge into wastewater and pharmaceuticals and their metabolites are found in the environment. Due to their design towards specific drug targets, pharmaceuticals may be therapeutically active already at low environmental concentrations. Several human drug targets are evolutionary conserved in aquatic organisms, raising concerns about effects of these pharmaceuticals in non-target organisms. In this study, we hypothesized that the toxicity of a pharmaceutical towards a non-target invertebrate depends on the presence of the human drug target orthologs in this species. This was tested by assessing toxicity of pharmaceuticals with (miconazole and promethazine) and without (levonorgestrel) identified drug target orthologs in the cladoceran Daphnia magna. The toxicity was evaluated using general toxicity endpoints at individual (immobility, reproduction and development), biochemical (RNA and DNA content) and molecular (gene expression) levels. The results provide evidence for higher toxicity of miconazole and promethazine, i.e. the drugs with identified drug target orthologs. At the individual level, miconazole had the lowest effect concentrations for immobility and reproduction (0.3 and 0.022 mg L-1, respectively) followed by promethazine (1.6 and 0.18 mg L-1, respectively). At the biochemical level, individual RNA content was affected by miconazole and promethazine already at 0.0023 and 0.059 mg L-1, respectively. At the molecular level, gene expression for cuticle protein was significantly suppressed by exposure to both miconazole and promethazine; moreover, daphnids exposed to miconazole had significantly lower vitellogenin expression. Levonorgestrel did not have any effects on any endpoints in the concentrations tested. These results highlight the importance of considering drug target conservation in environmental risk assessments of pharmaceuticals.

    12. Associating Drugs, Targets and Clinical Outcomes into an Integrated Network Affords a New Platform for Computer-Aided Drug Repurposing

      DEFF Research Database (Denmark)

      Oprea, Tudor; Nielsen, Sonny Kim; Ursu, Oleg;

      2011-01-01

      benefit from an integrated, semantic-web compliant computer-aided drug repurposing (CADR) effort, one that would enable deep data mining of associations between approved drugs (D), targets (T), clinical outcomes (CO) and SE. We report preliminary results from text mining and multivariate statistics, based...

    13. High concentrations of drug in target tissues following local controlled release are utilized for both drug distribution and biologic effect: An example with epicardial inotropic drug delivery

      OpenAIRE

      Maslov, Mikhail Y.; Edelman, Elazer R.; Wei, Abraham E.; Pezone, Matthew J.; Lovich, Mark A.

      2013-01-01

      Local drug delivery preferentially loads target tissues with a concentration gradient from the surface or point of release that tapers down to more distant sites. Drug that diffuses down this gradient must be in unbound form, but such drug can only elicit a biologic effect through receptor interactions. Drug excess loads tissues, increasing gradients and driving penetration, but with limited added biological response. We examined the hypothesis that local application reduces dramatically syst...

    14. Targeted and non-targeted drug screening in whole blood by UHPLC-TOF-MS with data-independent acquisition

      DEFF Research Database (Denmark)

      Mollerup, Christian Brinch; Dalsgaard, Petur Weihe; Mardal, Marie;

      2016-01-01

      High-resolution mass spectrometry (HRMS) is widely used for the drug screening of biological samples in clinical and forensic laboratories. With the continuous addition of new psychoactive substances (NPS), keeping such methods updated is challenging. HRMS allows for combined targeted and non-targeted...... screening. The aims of the study were to apply a combined targeted and non-targeted screening approach to authentic driving-under-the-influence-of-drugs (DUID) samples (n = 44) and further validate the approach using whole-blood samples spiked with eleven low-dose synthetic benzodiazepine analogues (SBA......). Analytical data were acquired using ultra-high-performance liquid chromatography coupled with a time-of-flight mass spectrometer (UHPLC-TOF-MS) with data-independent acquisition (DIA). We present a combined targeted and non-targeted screening, where peak deconvolution and filtering reduced the number...

    15. In silico identification of candidate drug and vaccine targets from various pathways in Neisseria gonorrhoeae.

      Science.gov (United States)

      Barh, Debmalya; Kumar, Anil

      2009-01-01

      Neisseria gonorrhoeae is responsible for causing gonorrhea, one of the most common sexually transmitted diseases prevailing globally. Although extensive researches are in progress in order to control the transmission of the disease and to develop drug(s) against the pathogen, till date no effective vaccine or specific drug could be developed and only antibiotic treatment is in use. Perhaps, due to excess use of antibiotics, several resistant strains have been found. In the present study, metabolic pathways-related candidate drug and vaccine targets have been identified in N. gonorrhoeae virulent strain FA 1090 using an in silico subtractive genomics approach. 106 putative drug targets out of 537 essential genes have been predicted. 67 cytoplasmic and 9 membrane enzymes, along with 10 membrane transporters are found to be the potential drug targets from the host-pathogen common metabolic pathways. Among these targets, competence lipoproteins (NGO0277) and cysW have been identified as candidate vaccine targets. 20 drug targets have been identified from pathogen specific unique metabolic pathways. Out of these, 6 enzymes are involved in dual metabolic pathways and 2 are expressed in cell wall and fimbrium. These gonococci-specific proteins are expected to be better possible drug targets. Screening of the functional inhibitors against these novel targets may result in discovery of novel therapeutic compounds that can be effective against antibiotic resistant strains. PMID:20109152

    16. Glutamatergic Targets for Enhancing Extinction Learning in Drug Addiction

      OpenAIRE

      Cleva, R.M; Gass, J.T.; Widholm, J J; Olive, M.F.

      2010-01-01

      The persistence of the motivational salience of drug-related environmental cues and contexts is one of the most problematic obstacles to successful treatment of drug addiction. Behavioral approaches to extinguishing the salience of drug-associated cues, such as cue exposure therapy, have generally produced disappointing results which have been attributed to, among other things, the context specificity of extinction and inadequate consolidation of extinction learning. Extinction of any behavio...

    17. Current Status of Targets and Assays for Anti-HIV Drug Screening

      Institute of Scientific and Technical Information of China (English)

      2007-01-01

      HIV/AIDS is one of the most serious public health challenges globally. Despite the great efforts that are being devoted to prevent, treat and to better understand the disease, it is one of the main causes of morbidity and mortality worldwide. Currently, there are 30 drugs or combinations of drugs approved by FDA. Because of the side-effects, price and drug resistance, it is essential to discover new targets, to develop new technology and to find new anti-HIV drugs. This review summarizes the major targets and assays currently used in anti-HIV drug screening.

    18. Target Nanoparticles for Therapy - SANS and DLS of Drug Carrier Liposomes and Polymer Nanoparticles

      Science.gov (United States)

      Nawroth, T.; Johnson, R.; Krebs, L.; Khoshakhlagh, P.; Langguth, P.; Hellmann, N.; Goerigk, G.; Boesecke, P.; Bravin, A.; Le Duc, G.; Szekely, N.; Schweins, R.

      2016-09-01

      T arget Nano-Pharmaceutics shall improve therapy and diagnosis of severe diseases, e.g. cancer, by individual targeting of drug-loaded nano-pharmaceuticals towards cancer cells, and drug uptake receptors in other diseases. Specific ligands, proteins or cofactors, which are recognized by the diseased cells or cells of food and drug uptake, are bound to the nanoparticle surface, and thus capable of directing the drug carriers. The strategy has two branches: a) for parenteral cancer medicine a ligand set (2-5 different, surface-linked) are selected according to the biopsy analysis of the patient tissue e.g. from tumor.; b) in the oral drug delivery part the drug transport is enforced by excipients/ detergents in combination with targeting materials for cellular receptors resulting in an induced drug uptake. Both targeting nanomaterials are characterized by a combination of SANS + DLS and SAXS or ASAXS in a feedback process during development by synthesis, nanoparticle assembly and formulation.

    19. Selection between Michaelis–Menten and target-mediated drug disposition pharmacokinetic models

      OpenAIRE

      Yan, Xiaoyu; Mager, Donald E.; Krzyzanski, Wojciech

      2009-01-01

      Target-mediated drug disposition (TMDD) models have been applied to describe the pharmacokinetics of drugs whose distribution and/or clearance are affected by its target due to high binding affinity and limited capacity. The Michaelis–Menten (M–M) model has also been frequently used to describe the pharmacokinetics of such drugs. The purpose of this study is to investigate conditions for equivalence between M–M and TMDD pharmacokinetic models and provide guidelines for selection between these...

    20. On the possibility of the unification of drug targeting systems. Studies with liposome transport to the mixtures of target antigens.

      Science.gov (United States)

      Trubetskoy, V S; Berdichevsky, V R; Efremov, E E; Torchilin, V P

      1987-03-15

      In order to make the drug targeting system more effective, simple and technological, we suggest creation of drug-bearing conjugates capable of simultaneous binding with different antigenic components of the target via specific antibodies. It is supposed that the targeted therapy should include sequential administration of the mixture of modified antibodies (or other specific vectors) against different components of affected tissue and, upon antibody accumulation in the desired region, administration of modified drugs or drug carrying systems which can recognize and bind with the target via accumulated antibodies due to the interaction between vector modifier and carrier modifier. Using as a model system monolayers consisting of the mixture of extracellular antigens and appropriated antibodies, it was shown that the treatment of the target with the mixture of biotinylated antibodies against all target components and subsequent binding with the target of biotinylated liposomes via avidin permits high liposome accumulation on the monolayer. The binding achieved is always higher than in the case of the utilization of single antibody-bearing liposomes. Besides, the system suggested is very simple and its components can be easily obtained on technological scale in standardized conditions.

    1. Perception of the usefulness of drug/gene pairs and barriers for pharmacogenomics in Latin America.

      Science.gov (United States)

      Quinones, Luis Abel; Lavanderos, Maria Alejandra; Cayun, Juan Pablo; Garcia-Martin, Elena; Agundez, Jose Augusto; Caceres, Dante Daniel; Roco, Angela Margarita; Morales, Jorge E; Herrera, Luisa; Encina, Gonzalo; Isaza, Carlos Alberto; Redal, Maria Ana; Larovere, Laura; Soria, Nestor Walter; Eslava-Schmalbach, Javier; Castaneda-Hernandez, Gilberto; Lopez-Cortes, Andres; Magno, Luiz Alexandre; Lopez, Marisol; Chiurillo, Miguel Angel; Rodeiro, Idania; Castro de Guerra, Dinorah; Teran, Enrique; Estevez-Carrizo, Francisco; Lares-Assef, Ismael

      2014-02-01

      Pharmacogenetics and Pharmacogenomics areas are currently emerging fields focused to manage pharmacotherapy that may prevent undertreatment while avoiding associated drug toxicity in patients. Large international differences in the awareness and in the use of pharmacogenomic testing are presumed, but not well assessed to date. In the present study we review the awareness of Latin American scientific community about pharmacogenomic testing and the perceived barriers for their clinical application. In order to that, we have compiled information from 9 countries of the region using a structured survey which is compared with surveys previously performed in USA and Spain. The most relevant group of barriers was related to the need for clear guidelines for the use of pharmacogenomics in clinical practice, followed by insufficient awareness about pharmacogenomics among clinicians and the absence of regulatory institutions that facilitate the use of pharmacogenetic tests. The higher ranked pairs were TPMT/thioguanine, TPMT/azathioprine, CYP2C9/warfarin, UGT1A1/irinotecan, CYP2D6/amitriptiline, CYP2C19/citalopram and CYP2D6/clozapine. The lower ranked pairs were SLCO1B1/simvastatin, CYP2D6/metoprolol and GP6D/chloroquine. Compared with USA and Spanish surveys, 25 pairs were of lower importance for Latin American respondents. Only CYP2C19/esomeprazole, CYP2C19/omeprazole, CYP2C19/celecoxib and G6PD/dapsone were ranked higher or similarly to the USA and Spanish surveys. Integration of pharmacogenomics in clinical practice needs training of healthcare professionals and citizens, but in addition legal and regulatory guidelines and safeguards will be needed. We propose that the approach offered by pharmacogenomics should be incorporated into the decision-making plans in Latin America.

    2. The biological significance of brain barrier mechanisms: help or hindrance in drug delivery to the central nervous system? [version 1; referees: 2 approved

      Directory of Open Access Journals (Sweden)

      Norman R. Saunders

      2016-03-01

      transporters, that provide an important component of the barrier functions by either preventing entry of or expelling numerous molecules including toxins, drugs, and other xenobiotics. In this review, we summarize these influx and efflux mechanisms in normal developing and adult brain, as well as indicating their likely involvement in a wide range of neuropathologies. There have been extensive attempts to overcome the barrier mechanisms that prevent the entry of many drugs of therapeutic potential into the brain. We outline those that have been tried and discuss why they may so far have been largely unsuccessful. Currently, a promising approach appears to be focal, reversible disruption of the blood-brain barrier using focused ultrasound, but more work is required to evaluate the method before it can be tried in patients. Overall, our view is that much more fundamental knowledge of barrier mechanisms and development of new experimental methods will be required before drug targeting to the brain is likely to be a successful endeavor. In addition, such studies, if applied to brain pathologies such as stroke, trauma, or multiple sclerosis, will aid in defining the contribution of brain barrier pathology to these conditions, either causative or secondary.

    3. Preparation and Optimization of Nanoemulsions for targeting Drug Delivery

      Directory of Open Access Journals (Sweden)

      Navneet Sharma

      2013-12-01

      Full Text Available Nanoemulsions have appeared as a novel drug delivery system which allows sustained or controlled release of drug, biological active ingredient and genetic material. Nanoemulsion is a dispersion consisting of oil, surfactant and an aqueous phase, which is a isotropically clear and thermo-dynamically or kinetically stable liquid solution, usually with droplet diameter within the range of 10-500nm. Although interest in nano-emulsions was developed for more than two decades now, mainly for nanoparticle preparation, it is in the last few years that direct applications of nano-emulsions in consumer products are being developed, mainly in pharmacy and cosmetics. These recent applications have made that studies on optimization methods for nano-emulsion preparation be a requirement. The design of effective formulations for drugs has long been a major task, because drug efficacy can severely limited by instability or poor solubility in the vehicle. Nanoemulsion is being applied to enhance the solubility and bioavailability of water insoluble drugs. The nanosized droplets leading to an enormous increase in interfacial areas associated with nanoemulsion would influence the transport properties of the drug [1, 2]. Recently, there has been a considerable attraction for this formulation, for the delivery of hydrophilic as well as hydrophobic drug as drug carriers because of its improved drug solubilization capacity, long shelf life, ease of preparation and improvement of bioavailability of drugs. This review is focused on the most recent literature on developments of nano-emulsions as final application products and on the optimization of their preparation.

    4. THERMO-TARGETED DRUG DELIVERY OF GELDANAMYCIN TO HYPERTHERMIC TUMOR MARGINS WITH DIBLOCK ELASTIN-BASED BIOPOLYMERS

      Science.gov (United States)

      Chen, Y; Youn, P; Furgeson, DY

      2011-01-01

      The tumor margins are the barrier to hepatocellular carcinoma (HCC) eradication for tumors > 3 cm. Indeed, inadequately treated tumor margins commonly result in local and regional HCC recurrence with increased size and mass. Tumor recurrence is a common problem with chemotherapy, radiotherapy, thermal ablation, and/or surgical resection, by the inability to properly treat the tumor core and the tumor margins. Here we present novel thermosensitive biopolymer-drug conjugates for thermo-targeted chemotherapy at hyperthermic isotherms produced by focal, locoregional thermal ablation. The chemotherapeutic target is heat shock protein 90 (HSP90), a key molecular chaperone of several, and potent pro-oncogenic pathways including Akt, Raf-1, and mutated p53 that is upregulated in HCC. To inhibit HSP90, we have chosen geldanamycin (GA), a potent HSP90 inhibitor. GA has gained significant attention for its low IC50 ~ 1nM and inhibition of Akt and Raf-1, amongst other critical pro-oncogenic pathways. Despite such evidence, clinical trials of GA have not shown promise due to off-target toxicity and poor formulation design. Here, we propose using diblock elastin-based biopolymers as a Ringsdorf macromolecular GA solubilizer - a new generation containing functional poly(Asp)/(Glu) blocks for facile drug conjugation and an ELP block for thermo-targeting of hyperthermic ablative margins. GA release is controlled by pH-sensitive, covalent hydrazone bonds with the biopolymer backbone to avoid systemic toxicity and off-target effects. The resultant biopolymer-conjugates form stable nanoconstructs and display tunable, acute phase transitions at high temperatures. Drug release kinetics are favorable with or without the presence of serum. Thermo-targeted chemotherapy and synchronous thermal ablation provide a unique opportunity for simultaneous destruction of the HCC ablative margins and tumor core for focal, locoregional control of HCC. PMID:21846483

    5. Drugs developed to treat diabetes, liraglutide and lixisenatide, cross the blood brain barrier and enhance neurogenesis

      Directory of Open Access Journals (Sweden)

      Hunter Kerry

      2012-03-01

      Full Text Available Abstract Background Type 2 diabetes is a risk factor for Alzheimer's disease (AD, most likely linked to an impairment of insulin signalling in the brain. Therefore, drugs that enhance insulin signalling may have therapeutic potential for AD. Liraglutide (Victoza and exenatide (Byetta are novel long-lasting analogues of the GLP-1 incretin hormone and are currently available to treat diabetes. They facilitate insulin signalling via the GLP-1 receptor (GLP-1R. Numerous in vitro and in vivo studies have shown that GLP-1 analogues have a range of neuroprotective properties. GLP-1Rs are expressed in the hippocampal area of the brain an important site of adult neurogenesis and maintenance of cognition and memory formation. Therefore, if GLP-1 analogues can cross the blood brain barrier, diffuse through the brain to reach the receptors and most importantly activate them, their neuroprotective effects may be realized. Results In the present study we profiled the GLP-1 receptor agonists liraglutide (Victoza and lixisenatide (Lyxumia. We measured the kinetics of crossing the blood brain barrier (BBB, activation of the GLP-1R by measuring cAMP levels, and physiological effects in the brain on neuronal stem cell proliferation and neurogenesis. Both drugs were able to cross the BBB. Lixisenatide crossed the BBB at all doses tested (2.5, 25, or 250 nmol/kg bw ip. when measured 30 min post-injection and at 2.5-25 nmol/kg bw ip. 3 h post-injection. Lixisenatide also enhanced neurogenesis in the brain. Liraglutide crossed the BBB at 25 and 250 nmol/kg ip. but no increase was detectable at 2.5 nmol/kg ip. 30 min post-injection, and at 250 nmol/kg ip. at 3 h post-injection. Liraglutide and lixisenatide enhanced cAMP levels in the brain, with lixisenatide being more effective. Conclusions Our results suggest that these novel incretin analogues cross the BBB and show physiological activity and neurogenesis in the brain, which may be of use as a treatment of

    6. A Modular Probe Strategy for Drug Localization, Target Identification and Target Occupancy Measurement on Single Cell Level.

      Science.gov (United States)

      Rutkowska, Anna; Thomson, Douglas W; Vappiani, Johanna; Werner, Thilo; Mueller, Katrin M; Dittus, Lars; Krause, Jana; Muelbaier, Marcel; Bergamini, Giovanna; Bantscheff, Marcus

      2016-09-16

      Late stage failures of candidate drug molecules are frequently caused by off-target effects or inefficient target engagement in vivo. In order to address these fundamental challenges in drug discovery, we developed a modular probe strategy based on bioorthogonal chemistry that enables the attachment of multiple reporters to the same probe in cell extracts and live cells. In a systematic evaluation, we identified the inverse electron demand Diels-Alder reaction between trans-cyclooctene labeled probe molecules and tetrazine-tagged reporters to be the most efficient bioorthogonal reaction for this strategy. Bioorthogonal biotinylation of the probe allows the identification of drug targets in a chemoproteomics competition binding assay using quantitative mass spectrometry. Attachment of a fluorescent reporter enables monitoring of spatial localization of probes as well as drug-target colocalization studies. Finally, direct target occupancy of unlabeled drugs can be determined at single cell resolution by competitive binding with fluorescently labeled probe molecules. The feasibility of the modular probe strategy is demonstrated with noncovalent PARP inhibitors.

    7. A Modular Probe Strategy for Drug Localization, Target Identification and Target Occupancy Measurement on Single Cell Level.

      Science.gov (United States)

      Rutkowska, Anna; Thomson, Douglas W; Vappiani, Johanna; Werner, Thilo; Mueller, Katrin M; Dittus, Lars; Krause, Jana; Muelbaier, Marcel; Bergamini, Giovanna; Bantscheff, Marcus

      2016-09-16

      Late stage failures of candidate drug molecules are frequently caused by off-target effects or inefficient target engagement in vivo. In order to address these fundamental challenges in drug discovery, we developed a modular probe strategy based on bioorthogonal chemistry that enables the attachment of multiple reporters to the same probe in cell extracts and live cells. In a systematic evaluation, we identified the inverse electron demand Diels-Alder reaction between trans-cyclooctene labeled probe molecules and tetrazine-tagged reporters to be the most efficient bioorthogonal reaction for this strategy. Bioorthogonal biotinylation of the probe allows the identification of drug targets in a chemoproteomics competition binding assay using quantitative mass spectrometry. Attachment of a fluorescent reporter enables monitoring of spatial localization of probes as well as drug-target colocalization studies. Finally, direct target occupancy of unlabeled drugs can be determined at single cell resolution by competitive binding with fluorescently labeled probe molecules. The feasibility of the modular probe strategy is demonstrated with noncovalent PARP inhibitors. PMID:27384741

    8. For Some Skin Cancers, Targeted Drug Hits the Mark

      Science.gov (United States)

      Two studies reported June 7, 2012, in NEJM indicate that the drug vismodegib can elicit responses in people with advanced or metastatic basal cell carcinoma and help shrink or prevent tumors in those with basal cell nevus syndrome.

    9. The use of microbubbles to target drug delivery

      Directory of Open Access Journals (Sweden)

      Porter Richard

      2004-11-01

      Full Text Available Abstract Ultrasound-mediated microbubbles destruction has been proposed as an innovative method for noninvasive delivering of drugs and genes to different tissues. Microbubbles are used to carry a drug or gene until a specific area of interest is reached, and then ultrasound is used to burst the microbubbles, causing site-specific delivery of the bioactive materials. Furthermore, the ability of albumin-coated microbubbles to adhere to vascular regions with glycocalix damage or endothelial dysfunction is another possible mechanism to deliver drugs even in the absence of ultrasound. This review focuses on the characteristics of microbubbles that give them therapeutic properties and some important aspects of ultrasound parameters that are known to influence microbubble-mediated drug delivery. In addition, current studies involving this novel therapeutical application of microbubbles will be discussed.

    10. For Some Skin Cancers, Targeted Drug Hits the Mark

      Science.gov (United States)

      ... 29 new BCCs among those who received a placebo . However, more than half of the patients taking vismodegib discontinued treatment because of side effects. Once patients stopped taking the drug, tumors began ...

    11. Molecular Targets Versus Models for New Antiepileptic Drug Discovery

      OpenAIRE

      Rogawski, Michael A.

      2006-01-01

      Animal models have played a key role in the discovery and characterization of all marketed antiepileptic drugs (AED). The conventional wisdom is that the standard animal screening models are becoming obsolete because they fail to identify compounds that act in mechanistically new ways and as a result do not offer therapeutic advantages over presently available agents. In fact, far from only detecting me-too drugs, the models often uncover compounds with distinctive profiles of activity in var...

    12. Identification of drug targets by chemogenomic and metabolomic profiling in yeast

      KAUST Repository

      Wu, Manhong

      2012-12-01

      OBJECTIVE: To advance our understanding of disease biology, the characterization of the molecular target for clinically proven or new drugs is very important. Because of its simplicity and the availability of strains with individual deletions in all of its genes, chemogenomic profiling in yeast has been used to identify drug targets. As measurement of drug-induced changes in cellular metabolites can yield considerable information about the effects of a drug, we investigated whether combining chemogenomic and metabolomic profiling in yeast could improve the characterization of drug targets. BASIC METHODS: We used chemogenomic and metabolomic profiling in yeast to characterize the target for five drugs acting on two biologically important pathways. A novel computational method that uses a curated metabolic network was also developed, and it was used to identify the genes that are likely to be responsible for the metabolomic differences found. RESULTS AND CONCLUSION: The combination of metabolomic and chemogenomic profiling, along with data analyses carried out using a novel computational method, could robustly identify the enzymes targeted by five drugs. Moreover, this novel computational method has the potential to identify genes that are causative of metabolomic differences or drug targets. © 2012 Wolters Kluwer Health | Lippincott Williams & Wilkins.

    13. Towards a clinical practice guide in pharmacogenomics testing for functional polymorphisms of drug-metabolising enzymes. Gene/drug pairs and barriers perceived in Spain.

      Directory of Open Access Journals (Sweden)

      José A G Agúndez

      2012-11-01

      Full Text Available The development of clinical practice recommendations or guidelines for the clinical use of biomarkers is an issue of great importance with regard to adverse drug reactions. The potential of pharmacogenomic biomarkers has been extensively investigated in recent years. However, several barriers to implementing the use of pharmacogenomics testing exist. We conducted a survey among members of the Spanish Societies of Pharmacology and Clinical Pharmacology to obtain information about the perception of such barriers and to compare the perceptions of participants about the relative importance of major gene/drug pairs.Of 11 potential barriers, the highest importance was attributed to lack of institutional support for pharmacogenomics testing, and to the issues related to the lack of guidelines. Of the proposed gene/drug pairs the highest importance was assigned to HLA-B/abacavir, UGT1A1/irinotecan and CYP2D6/tamoxifen. In this perspective article we compare the relative importance of 29 gene/drug pairs in the Spanish study with that of the same pairs in the American Society for Clinical Pharmacology & Therapeutics study, and we provide suggestions and areas of focus to develop a guide for clinical practice in pharmacogenomics testing.

    14. Structure-based DNA-targeting strategies with small molecule ligands for drug discovery.

      Science.gov (United States)

      Sheng, Jia; Gan, Jianhua; Huang, Zhen

      2013-09-01

      Nucleic acids are the molecular targets of many clinical anticancer drugs. However, compared with proteins, nucleic acids have traditionally attracted much less attention as drug targets in structure-based drug design, partially because limited structural information of nucleic acids complexed with potential drugs is available. Over the past several years, enormous progresses in nucleic acid crystallization, heavy-atom derivatization, phasing, and structural biology have been made. Many complicated nucleic acid structures have been determined, providing new insights into the molecular functions and interactions of nucleic acids, especially DNAs complexed with small molecule ligands. Thus, opportunities have been created to further discover nucleic acid-targeting drugs for disease treatments. This review focuses on the structure studies of DNAs complexed with small molecule ligands for discovering lead compounds, drug candidates, and/or therapeutics.

    15. Raltegravir permeability across blood-tissue barriers and the potential role of drug efflux transporters.

      Science.gov (United States)

      Hoque, M Tozammel; Kis, Olena; De Rosa, María F; Bendayan, Reina

      2015-05-01

      The objectives of this study were to investigate raltegravir transport across several blood-tissue barrier models and the potential interactions with drug efflux transporters. Raltegravir uptake, accumulation, and permeability were evaluated in vitro in (i) P-glycoprotein (P-gp), breast cancer resistance protein (BCRP), multidrug resistance-associated protein 1 (MRP1), or MRP4-overexpressing MDA-MDR1 (P-gp), HEK-ABCG2, HeLa-MRP1, or HEK-MRP4 cells, respectively; (ii) cell culture systems of the human blood-brain (hCMEC/D3), mouse blood-testicular (TM4), and human blood-intestinal (Caco-2) barriers; and (iii) rat jejunum and ileum segments using an in situ single-pass intestinal perfusion model. [(3)H]Raltegravir accumulation by MDA-MDR1 (P-gp) and HEK-ABCG2-overexpressing cells was significantly enhanced in the presence of PSC833 {6-[(2S,4R,6E)-4-methyl-2-(methylamino)-3-oxo-6-octenoic acid]-7-L-valine-cyclosporine}, a P-gp inhibitor, or Ko143 [(3S,6S,12aS)-1,2,3,4,6,7,12,12a-octahydro-9-methoxy-6-(2-methylpropyl)-1,4-dioxopyrazino[1',2':1,6]pyrido[3,4-b]indole-3-propanoic acid 1,1-dimethylethyl ester], a BCRP inhibitor, suggesting the inhibition of a P-gp- or BCRP-mediated efflux process, respectively. Furthermore, [(3)H]raltegravir accumulation by human cerebral microvessel endothelial hCMEC/D3 and mouse Sertoli TM4 cells was significantly increased by PSC833 and Ko143. In human intestinal Caco-2 cells grown on Transwell filters, PSC833, but not Ko143, significantly decreased the [(3)H]raltegravir efflux ratios. In rat intestinal segments, [(3)H]raltegravir in situ permeability was significantly enhanced by the concurrent administration of PSC833 and Ko143. In contrast, in the transporter inhibition assays, raltegravir (10 to 500 μM) did not increase the accumulation of substrate for P-gp (rhodamine-6G), BCRP ([(3)H]mitoxantrone), or MRP1 [2',7'-bis(2-carboxyethyl)-5(6)-carboxyfluorescein (BCECF)] by MDA-MDR1 (P-gp)-, HEK-ABCG2-, or HeLa-MRP1-overexpressing

    16. Predicted essential proteins ofPlasmodium falciparum for potential drug targets

      Institute of Scientific and Technical Information of China (English)

      Qing-Feng He; Li Deng; Qin-Ying Xu; Zheng Shao

      2012-01-01

      ABSTRACT Objective:To identify novel drug targets for treatment ofPlasmodium falciparum.Methods:LocalBLASTP were used to find the proteins non-homologous to human essential proteins as novel drug targets. Functional domains of novel drug targets were identified by InterPro and Pfam,3D structures of potential drug targets were predicated by theSWISS-MODELworkspace. Ligands and ligand-binding sites of the proteins were searched byEf-seek.Results:Three essential proteins were identified that might be considered as potential drug targets.AAN37254.1 belonged to1-deoxy-D-xylulose5-phosphate reductoisomerase,CAD50499.1 belonged to chorismate synthase,CAD51220.1 belonged toFAD binging3 family, but the function of CAD51220.1 was unknown. The3D structures, ligands and ligand-binding sites ofAAN37254.1 andCAD50499.1 were successfully predicated.Conclusions:Two of these potential drug targets are key enzymes in2-C-methyl-d-erythritol4-phosphate pathway and shikimate pathway, which are absent in humans, so these two essential proteins are good potential drug targets. The function and3D structures ofCAD50499.1 is still unknown, it still need further study.

    17. Analysis of Cancer-Targeting Alkylphosphocholine Analogue Permeability Characteristics Using a Human Induced Pluripotent Stem Cell Blood-Brain Barrier Model.

      Science.gov (United States)

      Clark, Paul A; Al-Ahmad, Abraham J; Qian, Tongcheng; Zhang, Ray R; Wilson, Hannah K; Weichert, Jamey P; Palecek, Sean P; Kuo, John S; Shusta, Eric V

      2016-09-01

      Cancer-targeting alkylphosphocholine (APC) analogues are being clinically developed for diagnostic imaging, intraoperative visualization, and therapeutic applications. These APC analogues derived from chemically synthesized phospholipid ethers were identified and optimized for cancer-targeting specificity using extensive structure-activity studies. While they strongly label human brain cancers associated with disrupted blood-brain barriers (BBB), APC permeability across intact BBB remains unknown. Three of our APC analogues, CLR1404 (PET radiotracer), CLR1501 (green fluorescence), and CLR1502 (near-infrared fluorescence), were tested for permeability across a BBB model composed of human induced pluripotent stem cell-derived brain microvascular endothelial cells (iPSC-derived BMECs). This in vitro BBB system has reproducibly consistent high barrier integrity marked by high transendothelial electrical resistance (TEER > 1500 Ω-cm(2)) and functional expression of drug efflux transporters. The radioiodinated and fluorescent APC analogues demonstrated fairly low permeability across the iPSC-BMEC (35 ± 5.7 (CLR1404), 54 ± 3.2 (CLR1501), and 26 ± 4.9 (CLR1502) × 10(-5) cm/min) compared with BBB-impermeable sucrose (13 ± 2.5) and BBB-permeable diazepam (170 ± 29). Only the fluorescent APC analogues (CLR1501, CLR1502) underwent BCRP and MRP polarized drug efflux transport in the brain-to-blood direction of the BBB model, and this efflux can be specifically blocked with pharmacological inhibition. None of the tested APC analogues appeared to undergo substantial P-gp transport. Limited permeability of the APC analogues across an intact BBB into normal brain likely contributes to the high tumor to background ratios observed in initial human trials. Moreover, addition of fluorescent moieties to APCs resulted in greater BMEC efflux via MRP and BCRP, and may affect fluorescence-guided applications. Overall, the characterization of APC analogue permeability across human BBB

    18. Delivery of drugs to intracellular organelles using drug delivery systems: Analysis of research trends and targeting efficiencies.

      Science.gov (United States)

      Maity, Amit Ranjan; Stepensky, David

      2015-12-30

      Targeting of drug delivery systems (DDSs) to specific intracellular organelles (i.e., subcellular targeting) has been investigated in numerous publications, but targeting efficiency of these systems is seldom reported. We searched scientific publications in the subcellular DDS targeting field and analyzed targeting efficiency and major formulation parameters that affect it. We identified 77 scientific publications that matched the search criteria. In the majority of these studies nanoparticle-based DDSs were applied, while liposomes, quantum dots and conjugates were used less frequently. The nucleus was the most common intracellular target, followed by mitochondrion, endoplasmic reticulum and Golgi apparatus. In 65% of the publications, DDSs surface was decorated with specific targeting residues, but the efficiency of this surface decoration was not analyzed in predominant majority of the studies. Moreover, only 23% of the analyzed publications contained quantitative data on DDSs subcellular targeting efficiency, while the majority of publications reported qualitative results only. From the analysis of publications in the subcellular targeting field, it appears that insufficient efforts are devoted to quantitative analysis of the major formulation parameters and of the DDSs' intracellular fate. Based on these findings, we provide recommendations for future studies in the field of organelle-specific drug delivery and targeting.

    19. INVESTIGATION ON THE IMPACT OF CORE AND BARRIER LAYER COMPOSITION ON THE DRUG RELEASE FROM A TRIPLE LAYER TABLET

      Directory of Open Access Journals (Sweden)

      Kanwarpreet Singh Bakshi*, K. Vivek, Rajan K. Verma, Murali Krishna B., Sreekanth Narravula, Romi Barat Singh and Ajay K. Singla

      2012-07-01

      Full Text Available In this study, Monolayer matrix (MLM tablet and triple layer matrix (TLM tablet formulation of metoprolol succinate were fabricated by using Hydroxypropyl-methylcellulose and Polymethacrylates (Eudragit as the matrix forming agent in both the tablet core layer and barrier layers. The prepared tablets were analyzed for their drug content and in-vitro drug release studies. In-vitro evaluation and comparison of the MLM dosage form and TLM dosage form was done. The role of impermeable barrier layer in controlling the drug release from the core was studied. The in-vitro dissolution studies were carried out and showed a significant difference statistically (P value > 0.05 by ANOVA tool. Mean dissolution time (MDT increased, while dissolution efficiency (DE % decreased, indicating that the release of metoprolol succinate is slower from triple layer matrix tablets. The thermal analysis studies (DSC performed on the initial TLM formulation and three month old accelerated stability sample of the same showed no variation in the thermograph, indicating TLM as stable formulation. The finding of the study indicated that the MLM tablets may prolonged the drug release, but a non linear drug release profile was observed with an initial burst release. In TLM tablets, layering with Hydroxypropyl-methylcellulose and Polymethacrylates (Eudragit as impermeable barrier on the matrix core, resulted in linear/zero order drug release kinetics. The initial burst release was not observed in TLM tablets.TLM tablets showed significant and marked controlled release of a freely water soluble drug as compared to MLM tablets.

    20. Advances in Bone-targeted Drug Delivery Systems for Neoadjuvant Chemotherapy for Osteosarcoma.

      Science.gov (United States)

      Li, Cheng-Jun; Liu, Xiao-Zhou; Zhang, Lei; Chen, Long-Bang; Shi, Xin; Wu, Su-Jia; Zhao, Jian-Ning

      2016-05-01

      Targeted therapy for osteosarcoma includes organ, cell and molecular biological targeting; of these, organ targeting is the most mature. Bone-targeted drug delivery systems are used to concentrate chemotherapeutic drugs in bone tissues, thus potentially resolving the problem of reaching the desired foci and minimizing the toxicity and adverse effects of neoadjuvant chemotherapy. Some progress has been made in bone-targeted drug delivery systems for treatment of osteosarcoma; however, most are still at an experimental stage and there is a long transitional period to clinical application. Therefore, determining how to combine new, polymolecular and multi-pathway targets is an important research aspect of designing new bone-targeted drug delivery systems in future studies. The purpose of this article was to review the status of research on targeted therapy for osteosarcoma and to summarize the progress made thus far in developing bone-targeted drug delivery systems for neoadjuvant chemotherapy for osteosarcoma with the aim of providing new ideas for highly effective therapeutic protocols with low toxicity for patients with osteosarcoma.

    1. Nitric oxide-related drug targets in headache

      DEFF Research Database (Denmark)

      Olesen, Jes

      2010-01-01

      SUMMARY: Nitric oxide (NO) is a very important molecule in the regulation of cerebral and extra cerebral cranial blood flow and arterial diameters. It is also involved in nociceptive processing. Glyceryl trinitrate (GTN), a pro-drug for NO, causes headache in normal volunteers and a so-called del......SUMMARY: Nitric oxide (NO) is a very important molecule in the regulation of cerebral and extra cerebral cranial blood flow and arterial diameters. It is also involved in nociceptive processing. Glyceryl trinitrate (GTN), a pro-drug for NO, causes headache in normal volunteers and a so...

    2. Chronic neuropathic pain: mechanisms, drug targets and measurement

      DEFF Research Database (Denmark)

      Finnerup, Nanna B; Sindrup, Søren H; Jensen, Troels S

      2007-01-01

      . Preclinical research provides several promising targets for treatment such as sodium and calcium channels, glutamate receptors, monoamines and neurotrophic factors; however, treatment is often insufficient. A mechanism-based treatment approach is suggested to improve treatment. Valid and reliable tools...

    3. One for All? Hitting Multiple Alzheimer's Disease Targets with One Drug.

      Science.gov (United States)

      Hughes, Rebecca E; Nikolic, Katarina; Ramsay, Rona R

      2016-01-01

      HIGHLIGHTS Many AD target combinations are being explored for multi-target drug design.New databases and models increase the potential of computational drug designLiraglutide and other antidiabetics are strong candidates for repurposing to AD.Donecopride a dual 5-HT/AChE inhibitor shows promise in pre-clinical studies Alzheimer's Disease is a complex and multifactorial disease for which the mechanism is still not fully understood. As new insights into disease progression are discovered, new drugs must be designed to target those aspects of the disease that cause neuronal damage rather than just the symptoms currently addressed by single target drugs. It is becoming possible to target several aspects of the disease pathology at once using multi-target drugs (MTDs). Intended as an introduction for non-experts, this review describes the key MTD design approaches, namely structure-based, in silico, and data-mining, to evaluate what is preventing compounds progressing through the clinic to the market. Repurposing current drugs using their off-target effects reduces the cost of development, time to launch, and the uncertainty associated with safety and pharmacokinetics. The most promising drugs currently being investigated for repurposing to Alzheimer's Disease are rasagiline, originally developed for the treatment of Parkinson's Disease, and liraglutide, an antidiabetic. Rational drug design can combine pharmacophores of multiple drugs, systematically change functional groups, and rank them by virtual screening. Hits confirmed experimentally are rationally modified to generate an effective multi-potent lead compound. Examples from this approach are ASS234 with properties similar to rasagiline, and donecopride, a hybrid of an acetylcholinesterase inhibitor and a 5-HT4 receptor agonist with pro-cognitive effects. Exploiting these interdisciplinary approaches, public-private collaborative lead factories promise faster delivery of new drugs to the clinic.

    4. PDTD: a web-accessible protein database for drug target identification

      Directory of Open Access Journals (Sweden)

      Gao Zhenting

      2008-02-01

      Full Text Available Abstract Background Target identification is important for modern drug discovery. With the advances in the development of molecular docking, potential binding proteins may be discovered by docking a small molecule to a repository of proteins with three-dimensional (3D structures. To complete this task, a reverse docking program and a drug target database with 3D structures are necessary. To this end, we have developed a web server tool, TarFisDock (Target Fishing Docking http://www.dddc.ac.cn/tarfisdock, which has been used widely by others. Recently, we have constructed a protein target database, Potential Drug Target Database (PDTD, and have integrated PDTD with TarFisDock. This combination aims to assist target identification and validation. Description PDTD is a web-accessible protein database for in silico target identification. It currently contains >1100 protein entries with 3D structures presented in the Protein Data Bank. The data are extracted from the literatures and several online databases such as TTD, DrugBank and Thomson Pharma. The database covers diverse information of >830 known or potential drug targets, including protein and active sites structures in both PDB and mol2 formats, related diseases, biological functions as well as associated regulating (signaling pathways. Each target is categorized by both nosology and biochemical function. PDTD supports keyword search function, such as PDB ID, target name, and disease name. Data set generated by PDTD can be viewed with the plug-in of molecular visualization tools and also can be downloaded freely. Remarkably, PDTD is specially designed for target identification. In conjunction with TarFisDock, PDTD can be used to identify binding proteins for small molecules. The results can be downloaded in the form of mol2 file with the binding pose of the probe compound and a list of potential binding targets according to their ranking scores. Conclusion PDTD serves as a comprehensive and

    5. Polymeric micelles with stimuli-triggering systems for advanced cancer drug targeting.

      Science.gov (United States)

      Nakayama, Masamichi; Akimoto, Jun; Okano, Teruo

      2014-08-01

      Since the 1990s, nanoscale drug carriers have played a pivotal role in cancer chemotherapy, acting through passive drug delivery mechanisms and subsequent pharmaceutical action at tumor tissues with reduction of adverse effects. Polymeric micelles, as supramolecular assemblies of amphiphilic polymers, have been considerably developed as promising drug carrier candidates, and a number of clinical studies of anticancer drug-loaded polymeric micelle carriers for cancer chemotherapy applications are now in progress. However, these systems still face several issues; at present, the simultaneous control of target-selective delivery and release of incorporated drugs remains difficult. To resolve these points, the introduction of stimuli-responsive mechanisms to drug carrier systems is believed to be a promising approach to provide better solutions for future tumor drug targeting strategies. As possible trigger signals, biological acidic pH, light, heating/cooling and ultrasound actively play significant roles in signal-triggering drug release and carrier interaction with target cells. This review article summarizes several molecular designs for stimuli-responsive polymeric micelles in response to variation of pH, light and temperature and discusses their potentials as next-generation tumor drug targeting systems.

    6. Infringement of the barriers of cancer via dietary phytoconstituents capsaicin through novel drug delivery system.

      Science.gov (United States)

      Giri, Tapan Kumar; Alexander, Amit; Ajazuddin; Barman, Tapan Kumar; Maity, Subhasis

      2016-01-01

      Cancer is the major cause of fatality and the number of new cases is increasing incessantly. Conventional therapies and existing anticancer agents cause serious side effects and expand the patient's lifespan by a few years. There is the need to exploit alternative anticancer agents and novel drug delivery system to deliver these agents to the tumor site for the prevention of cancer. Recently, biologically active compounds isolated from plants used for the management of cancer have been the heart of interest. Capsaicin is a major pungent agent present in the chili peppers that is heavily consumed in the world. Capsaicin has demonstrated effectiveness as an anticancer agent, but a restraining factor is its pungency, extremely low aqueous solubility, and poor oral bioavailability which impede its use as an anticancer agent. Many technologies have been developed and applied to conquer this drawback. We bring to light the benefits of this phytoconstituent for treating different types of cancer. We also discussed some of the delivery approaches that have already made an impact by either delivering a drug to target tissue or increasing its bioavailability by many folds. PMID:26036845

    7. Discovering the first microRNA-targeted drug

      DEFF Research Database (Denmark)

      Lindow, Morten; Kauppinen, Sakari

      2012-01-01

      MicroRNAs (miRNAs) are important post-transcriptional regulators of nearly every biological process in the cell and play key roles in the pathogenesis of human disease. As a result, there are many drug discovery programs that focus on developing miRNA-based therapeutics. The most advanced...

    8. Emergence of the silicon human and network targeting drugs

      NARCIS (Netherlands)

      Kolodkin, Alexey; Boogerd, Fred C.; Plant, Nick; Bruggeman, Frank J.; Goncharuk, Valeri; Lunshof, Jeantine; Moreno-Sanchez, Rafael; Yilmaz, Nilgun; Bakker, Barbara M.; Snoep, Jacky L.; Balling, Rudi; Westerhoff, Hans V.

      2012-01-01

      The development of disease may be characterized as a pathological shift of homeostasis; the main goal of contemporary drug treatment is, therefore, to return the pathological homeostasis back to the normal physiological range. From the view point of systems biology, homeostasis emerges from the inte

    9. Tailored polymer-lipid hybrid nanoparticles for the delivery of drug conjugate: dual strategy for brain targeting.

      Science.gov (United States)

      Agrawal, Udita; Chashoo, Gousia; Sharma, Parduman Raj; Kumar, Ashok; Saxena, Ajit Kumar; Vyas, S P

      2015-02-01

      The object of the present study was to investigate the glioma targeting propensity of folic acid (F) decorated polymer-lipid hybrid nanoparticles (PLNs) encapsulating cyclo-[Arg-Gly-Asp-D-Phe-Lys] (cRGDfK) modified paclitaxel (PtxR-FPLNs). The prepared PLNs were supposed to bypass the blood-brain barrier (BBB) efficiently and subsequently target integrin rich glioma cells. The developed formulations were characterized for size, shape, drug entrapment efficiency, and in vitro release profile. PtxR-FPLNs demonstrated highest in vitro inhibitory effect, cell apoptosis and cell uptake. Pharmacokinetics and biodistribution studies showed efficacy of PtxR-FPLNs in vivo. In vivo anti-tumor studies clearly revealed that the median survival time for Balb/C mice treated with PtxR-FPLNs (42 days) was extended significantly as compared to PtxR-PLNs (35 days), free PtxR (18 days), Ptx-FPLNs (38 days), Ptx-PLNs (30 days), free Ptx (14 days) and control group (12 days). From the results it can be concluded that the developed dual targeted nanoformulation was able to efficiently cross the BBB and significantly deliver higher amounts of drug to brain tumor for better therapeutic outcome.

    10. Process on Drug Delivery for Brain Targeting%脑靶向制剂的研究进展

      Institute of Scientific and Technical Information of China (English)

      陈振振; 陆洋; 杜守颖

      2012-01-01

      介绍了近年来脑靶向制剂的研究现状,为新型中药脑靶向制剂的研究和开发提供参考.通过查阅国内外相关文献资料并进行分析、归纳和总结,解释了血脑屏障的生理结构特点,介绍了常用的促进药物透过血脑屏障的方法;通过了解脑靶向制剂的给药方式及新剂型研究(β-环糊精包合物、前体药物、脂质体、纳米粒、微乳、原位凝胶),阐述了中药经鼻腔给药发挥中枢治疗作用的优势和可行性,认为中药在脑靶向给药方面必将有更加广阔的应用前景.%Process on drug delivery for brain targeting was summarized to provide basis for traditional Chinese mediline (TCM). Literatures about the development of brain-targeted preparation in recent years were reviewed and analyzed. This paper not only described the physiological structure characteristics of blood-brain-barrier, but also introduced some common methods for promoting drugs through the blood-brain-barrier. The paper also described the administration methods and new preparations (?CD, prodrug, liposomes, nanoparticles, micro emulsion, in situ gel) to understand the advantages and feasibility of traditional Chinese medicine (TCM) nasal administration. Brain-targeted preparations of TCM had wide development prospect.

    11. Drugs targeting the mitochondrial pore act as citotoxic and cytostatic agents in temozolomide-resistant glioma cells

      Directory of Open Access Journals (Sweden)

      Benvenuti Lucia

      2009-02-01

      Full Text Available Abstract Background High grade gliomas are one of the most difficult cancers to treat and despite surgery, radiotherapy and temozolomide-based chemotherapy, the prognosis of glioma patients is poor. Resistance to temozolomide is the major barrier to effective therapy. Alternative therapeutic approaches have been shown to be ineffective for the treatment of genetically unselected glioma patients. Thus, novel therapies are needed. Mitochondria-directed chemotherapy is an emerging tool to combat cancer, and inner mitochondrial permeability transition (MPT represents a target for the development of cytotoxic drugs. A number of agents are able to induce MPT and some of them target MPT-pore (MPTP components that are selectively up-regulated in cancer, making these agents putative cancer cell-specific drugs. Objective The aim of this paper is to report a comprehensive analysis of the effects produced by selected MPT-inducing drugs (Betulinic Acid, Lonidamine, CD437 in a temozolomide-resistant glioblastoma cell line (ADF cells. Methods EGFRvIII expression has been assayed by RT-PCR. EGFR amplification and PTEN deletion have been assayed by differential-PCR. Drugs effect on cell viability has been tested by crystal violet assay. MPT has been tested by JC1 staining. Drug cytostatic effect has been tested by mitotic index analysis. Drug cytotoxic effect has been tested by calcein AM staining. Apoptosis has been assayed by Hoechst incorporation and Annexine V binding assay. Authophagy has been tested by acridine orange staining. Results We performed a molecular and genetic characterization of ADF cells and demonstrated that this line does not express the EGFRvIII and does not show EGFR amplification. ADF cells do not show PTEN mutation but differential PCR data indicate a hemizygous deletion of PTEN gene. We analyzed the response of ADF cells to Betulinic Acid, Lonidamine, and CD437. Our data demonstrate that MPT-inducing agents produce concentration

    12. Molecular Communication Model for Targeted Drug Delivery in Multiple Disease Sites With Diversely Expressed Enzymes.

      Science.gov (United States)

      Chude-Okonkwo, Uche A K; Malekian, Reza; Maharaj, B T Sunil

      2016-04-01

      Targeted drug delivery (TDD) for disease therapy using liposomes as nanocarriers has received extensive attention in the literature. The liposome's ability to incorporate capabilities such as long circulation, stimuli responsiveness, and targeting characteristics, makes it a versatile nanocarrier. Timely drug release at the targeted site requires that trigger stimuli such as pH, light, and enzymes be uniquely overexpressed at the targeted site. However, in some cases, the targeted sites may not express trigger stimuli significantly, hence, achieving effective TDD at those sites is challenging. In this paper, we present a molecular communication-based TDD model for the delivery of therapeutic drugs to multiple sites that may or may not express trigger stimuli. The nanotransmitter and nanoreceiver models for the molecular communication system are presented. Here, the nanotransmitter and nanoreceiver are injected into the targeted body system's blood network. The compartmental pharmacokinetics model is employed to model the transportation of these therapeutic nanocarriers to the targeted sites where they are meant to anchor before the delivery process commences. We also provide analytical expressions for the delivered drug concentration. The effectiveness of the proposed model is investigated for drug delivery on tissue surfaces. Results show that the effectiveness of the proposed molecular communication-based TDD depends on parameters such as the total transmitter volume capacity, the receiver radius, the diffusion characteristic of the microenvironment of the targeted sites, and the concentration of the enzymes associated with the nanotransmitter and the nanoreceiver designs.

    13. Liposomal Tumor Targeting in Drug Delivery Utilizing MMP-2- and MMP-9-Binding Ligands

      Directory of Open Access Journals (Sweden)

      Oula Penate Medina

      2011-01-01

      Full Text Available Nanotechnology offers an alternative to conventional treatment options by enabling different drug delivery and controlled-release delivery strategies. Liposomes being especially biodegradable and in most cases essentially nontoxic offer a versatile platform for several different delivery approaches that can potentially enhance the delivery and targeting of therapies to tumors. Liposomes penetrate tumors spontaneously as a result of fenestrated blood vessels within tumors, leading to known enhanced permeability and subsequent drug retention effects. In addition, liposomes can be used to carry radioactive moieties, such as radiotracers, which can be bound at multiple locations within liposomes, making them attractive carriers for molecular imaging applications. Phage display is a technique that can deliver various high-affinity and selectivity peptides to different targets. In this study, gelatinase-binding peptides, found by phage display, were attached to liposomes by covalent peptide-PEG-PE anchor creating a targeted drug delivery vehicle. Gelatinases as extracellular targets for tumor targeting offer a viable alternative for tumor targeting. Our findings show that targeted drug delivery is more efficient than non-targeted drug delivery.

    14. Versatile surface engineering of porous nanomaterials with bioinspired polyphenol coatings for targeted and controlled drug delivery

      Science.gov (United States)

      Li, Juan; Wu, Shuxian; Wu, Cuichen; Qiu, Liping; Zhu, Guizhi; Cui, Cheng; Liu, Yuan; Hou, Weijia; Wang, Yanyue; Zhang, Liqin; Teng, I.-Ting; Yang, Huang-Hao; Tan, Weihong

      2016-04-01

      The development of biocompatible drug delivery systems with targeted recognition and controlled release has experienced a number of design challenges, including, for example, complicated preparation steps and premature drug release. Herein, we address these problems through an in situ self-polymerization method that synthesizes biodegradable polyphenol-coated porous nanomaterials for targeted and controlled drug delivery. As a proof of concept, we synthesized polyphenol-coated mesoporous silica nanoparticles, termed MSN@polyphenol. The polyphenol coatings not only improved colloidal stability and prevented premature drug leakage, but also provided a scaffold for immobilization of targeting moieties, such as aptamers. Both immobilization of targeting aptamers and synthesis of polyphenol coating are easily accomplished without the aid of any other organic reagents. Importantly, the polyphenol coating (EGCg) used in this study could be biodegraded by acidic pH and intracellular glutathione, resulting in the release of trapped anticancer drugs. Based on confocal fluorescence microscopy and cytotoxicity experiments, drug-loaded and polyphenol-coated MSNs were shown to possess highly efficient internalization and an apparent cytotoxic effect on target cancer, but not control, cells. Our results suggest that these highly biocompatible and biodegradable polyphenol-coated MSNs are promising vectors for controlled-release biomedical applications and cancer therapy.The development of biocompatible drug delivery systems with targeted recognition and controlled release has experienced a number of design challenges, including, for example, complicated preparation steps and premature drug release. Herein, we address these problems through an in situ self-polymerization method that synthesizes biodegradable polyphenol-coated porous nanomaterials for targeted and controlled drug delivery. As a proof of concept, we synthesized polyphenol-coated mesoporous silica nanoparticles

    15. Central nervous system myeloid cells as drug targets: current status and translational challenges.

      Science.gov (United States)

      Biber, Knut; Möller, Thomas; Boddeke, Erik; Prinz, Marco

      2016-02-01

      Myeloid cells of the central nervous system (CNS), which include parenchymal microglia, macrophages at CNS interfaces and monocytes recruited from the circulation during disease, are increasingly being recognized as targets for therapeutic intervention in neurological and psychiatric diseases. The origin of these cells in the immune system distinguishes them from ectodermal neurons and other glia and endows them with potential drug targets distinct from classical CNS target groups. However, despite the identification of several promising therapeutic approaches and molecular targets, no agents directly targeting these cells are currently available. Here, we assess strategies for targeting CNS myeloid cells and address key issues associated with their translation into the clinic.

    16. Transcytosis of Listeria monocytogenes across the intestinal barrier upon specific targeting of goblet cell accessible E-cadherin

      OpenAIRE

      Nikitas G; Deschamps C; Disson O; Niault T; Cossart P; Lecuit M

      2011-01-01

      Listeria monocytogenes (Lm) is a foodborne pathogen that crosses the intestinal barrier upon interaction between its surface protein InlA and its species-specific host receptor E-cadherin (Ecad). Ecad, the key constituent of adherens junctions, is typically situated below tight junctions and therefore considered inaccessible from the intestinal lumen. In this study, we investigated how Lm specifically targets its receptor on intestinal villi and crosses the intestinal epithelium to disseminat...

    17. An inflammation-targeting hydrogel for local drug delivery in inflammatory bowel disease

      OpenAIRE

      Zhang, Sufeng; Ermann, Joerg; Succi, Marc D.; Zhou, Allen; Hamilton, Matthew J.; Cao, Bonnie; Korzenik, Joshua R.; Glickman, Jonathan N.; Vemula, Praveen K.; Glimcher, Laurie H.; Traverso, Giovanni; Langer, Robert; Karp, Jeffrey M.

      2015-01-01

      There is a clinical need for new, more effective treatments for chronic and debilitating inflammatory bowel disease (IBD), including Crohn’s disease and ulcerative colitis. Targeting drugs selectively to the inflamed intestine may improve therapeutic outcomes and minimize systemic toxicity. We report the development of an inflammation-targeting hydrogel (IT-hydrogel) that acts as a drug delivery system to the inflamed colon. Hydrogel microfibers were generated from ascorbyl palmitate, an amph...

    18. Shear-stress sensitive lenticular vesicles for targeted drug delivery

      Science.gov (United States)

      Holme, Margaret N.; Fedotenko, Illya A.; Abegg, Daniel; Althaus, Jasmin; Babel, Lucille; Favarger, France; Reiter, Renate; Tanasescu, Radu; Zaffalon, Pierre-Léonard; Ziegler, André; Müller, Bert; Saxer, Till; Zumbuehl, Andreas

      2012-08-01

      Atherosclerosis results in the narrowing of arterial blood vessels and this causes significant changes in the endogenous shear stress between healthy and constricted arteries. Nanocontainers that can release drugs locally with such rheological changes can be very useful. Here, we show that vesicles made from an artificial 1,3-diaminophospholipid are stable under static conditions but release their contents at elevated shear stress. These vesicles have a lenticular morphology, which potentially leads to instabilities along their equator. Using a model cardiovascular system based on polymer tubes and an external pump to represent shear stress in healthy and constricted vessels of the heart, we show that drugs preferentially release from the vesicles in constricted vessels that have high shear stress.

    19. Phenotypic drug profiling in droplet microfluidics for better targeting of drug-resistant tumors

      Science.gov (United States)

      Sarkar, S.; Cohen, N.; Sabhachandani, P.; Konry, T.

      2015-01-01

      Acquired drug resistance is a key factor in the failure of chemotherapy. Due to intratumoral heterogeneity, cancer cells depict variations in intracellular drug uptake and efflux at the single cell level, which may not be detectable in bulk assays. In this study we present a droplet microfluidics-based approach to assess the dynamics of drug uptake, efflux and cytotoxicity in drug-sensitive and drug-resistant breast cancer cells. An integrated droplet generation and docking microarray was utilized to encapsulate single cells as well as homotypic cell aggregates. Drug-sensitive cells showed greater death in the presence or absence of Doxorubicin (Dox) compared to the drug-resistant cells. We observed heterogeneous Dox uptake in individual drug-sensitive cells while the drug-resistant cells showed uniformly low uptake and retention. Dox-resistant cells were classified into distinct subsets based on their efflux properties. Cells that showed longer retention of extracellular reagents also demonstrated maximal death. We further observed homotypic fusion of both cell types in droplets, which resulted in increased cell survival in the presence of high doses of Dox. Our results establish the applicability of this microfluidic platform for quantitative drug screening in single cells and multicellular interactions. PMID:26456240

    20. Approaches to target identification and validation for tuberculosis drug discovery: a UCT perspective.

      Science.gov (United States)

      Warner, Digby F; Mizrahi, Valerie

      2012-06-01

      Tuberculosis (TB) disproportionately affects a few high-burden countries including South Africa. In these regions, basic TB research is rare, endemic countries being valued primarily as sites for drug trials and clinical studies. Our basic mycobacterial research focuses on current approaches to drug target identification and validation within the context of international trends in TB drug discovery. Increased funding for TB drug development globally prompted a significant shift in the composition of drug discovery consortia, with academic laboratories assuming a major role in collaboration with industrial partners. This hybrid model holds promise for the expansion of local programmes, especially where actively supported by government. However, the application of industry-standard business practices to research projects involving biology and chemistry expertise demands a greater appreciation of the differences between a chemically, versus biologically, validated drug target, and of the factors informing these differences. PMID:22668936

    1. New development and application of ultrasound targeted microbubble destruction in gene therapy and drug delivery.

      Science.gov (United States)

      Chen, Zhi-Yi; Yang, Feng; Lin, Yan; Zhang, Jin-Shan; Qiu, Ri-Xiang; Jiang, Lan; Zhou, Xing-Xing; Yu, Jiang-Xiu

      2013-08-01

      Ultrasound is a common used technique for clinical imaging. In recent years, with the advances in preparation technology of microbubbles and the innovations in ultrasound imaging, ultrasound is no longer confined to detection of tissue perfusion, but extends to specific ultrasound molecular imaging and target therapy gradually. With the development of research, ultrasound molecular imaging and target therapy have made great progresses. Targeted microbubbles for molecular imaging are achieved by binding target molecules, specific antibody or ligand to the surface of microbubbles to obtain specific imaging by attaching to target tissues. Meanwhile, it can also achieve targeting gene therapy or drug delivery by ultrasound targeted microbubble destruction (UTMD) mediating genes or drugs to specific target sites. UTMD has a number of advantages, such as target-specific, highly effective, non-invasivity, relatively low-cost and no radiation, and has broad application prospects, which is regarded as one hot spot in medical studies. We reviewed the new development and application of UTMD in gene therapy and drug delivery in this paper. With further development of technology and research, the gene or drug delivery system and related methods will be widely used in application and researches.

    2. Investigation on a Potential Targeting Drug Delivery System Consisting of Folate, Mitoxantrone and Human Serum Albumin

      Institute of Scientific and Technical Information of China (English)

      ZHOU Qiu-Jua; BI Ya-Jing; XIANG Jun-Feng; TANG Ya-Lin; YANG Qian-Fan; XU Guang-Zhi

      2008-01-01

      A potential targeting drug delivery system consisting of folate (FA), the targeting molecule, human serum al- bumin (HSA), the carrier, and mitoxantrone (MTO), the medicine, has been designed. Data obtained by UV absorp-tion, fluorescence, and NMR techniques indicated the formation of ternary complexes and possible application to building a targeting drug delivery system by using FA, MTO and HSA. Furthermore, cytotoxicity assay indicated that the toxicity of the FA-HSA-MTO against PC-3 cell line was 79.95%, which was much higher than that of free MTO tested in totally the same conditions. About 30% increase of the toxicity should be owed to the targeting ef-fect of FA. Thus, the feasibility and validity of a novel targeting drug delivery system, FA-HSA-MTO, was con-firmed.

    3. Grants4Targets - an innovative approach to translate ideas from basic research into novel drugs.

      Science.gov (United States)

      Lessl, Monika; Schoepe, Stefanie; Sommer, Anette; Schneider, Martin; Asadullah, Khusru

      2011-04-01

      Collaborations between industry and academia are steadily gaining importance. To combine expertises Bayer Healthcare has set up a novel open innovation approach called Grants4Targets. Ideas on novel drug targets can easily be submitted to http://www.grants4targets.com. After a review process, grants are provided to perform focused experiments to further validate the proposed targets. In addition to financial support specific know-how on target validation and drug discovery is provided. Experienced scientists are nominated as project partners and, depending on the project, tools or specific models are provided. Around 280 applications have been received and 41 projects granted. According to our experience, this type of bridging fund combined with joint efforts provides a valuable tool to foster drug discovery collaborations.

    4. A new look at drugs targeting malignant melanoma--an application for mass spectrometry imaging.

      Science.gov (United States)

      Sugihara, Yutaka; Végvári, Akos; Welinder, Charlotte; Jönsson, Göran; Ingvar, Christian; Lundgren, Lotta; Olsson, Håkan; Breslin, Thomas; Wieslander, Elisabet; Laurell, Thomas; Rezeli, Melinda; Jansson, Bo; Nishimura, Toshihide; Fehniger, Thomas E; Baldetorp, Bo; Marko-Varga, György

      2014-09-01

      Malignant melanoma (MM) patients are being treated with an increasing number of personalized medicine (PM) drugs, several of which are small molecule drugs developed to treat patients with specific disease genotypes and phenotypes. In particular, the clinical application of protein kinase inhibitors has been highly effective for certain subsets of MM patients. Vemurafenib, a protein kinase inhibitor targeting BRAF-mutated protein, has shown significant efficacy in slowing disease progression. In this paper, we provide an overview of this new generation of targeted drugs, and demonstrate the first data on localization of PM drugs within tumor compartments. In this study, we have introduced MALDI-MS imaging to provide new information on one of the drugs currently used in the PM treatment of MM, vemurafenib. In a proof-of-concept in vitro study, MALDI-MS imaging was used to identify vemurafenib applied to metastatic lymph nodes tumors of subjects attending the regional hospital network of Southern Sweden. The paper provides evidence of BRAF overexpression in tumors isolated from MM patients and localization of the specific drug targeting BRAF, vemurafenib, using MS fragment ion signatures. Our ability to determine drug uptake at the target sites of directed therapy provides important opportunity for increasing our understanding about the mode of action of drug activity within the disease environment. PMID:25044963

    5. DRUG TARGETING TO THE KIDNEY WITH LOW-MOLECULAR-WEIGHT PROTEINS

      NARCIS (Netherlands)

      FRANSSEN, EJF; MOOLENAAR, F; DEZEEUW, D; MEIJER, DKF

      1993-01-01

      This paper reviews the design of a drug targeting strategy for renal specific delivery and endorenal release of drugs using low-molecular-weight proteins (LMWPs). In general, LMWPs are known to be filtered and subsequently reabsorbed by the proximal tubular cells of the kidneys. Within these cells L

    6. Genome-wide identification of structural variants in genes encoding drug targets

      DEFF Research Database (Denmark)

      Rasmussen, Henrik Berg; Dahmcke, Christina Mackeprang

      2012-01-01

      The objective of the present study was to identify structural variants of drug target-encoding genes on a genome-wide scale. We also aimed at identifying drugs that are potentially amenable for individualization of treatments based on knowledge about structural variation in the genes encoding...

    7. MITOCHONDRIA: INSIGHT TARGET OF DRUG DEVELOPMENT IN CANCER CELLS

      OpenAIRE

      Md. Ataur Rahman

      2012-01-01

      Mitochondria are involved in different physiological and pathological processes that are crucial for tumor cell physiology, growth and survival and its dysfunction leads to many human abnormalities, including cardiovascular diseases, neurodegenerative diseases, autoimmune disorders and cancer. The present review is focused on the different experimental and therapeutic cancer strategies addressed to either target mitochondria directly, or use mitochondria as mediators of apoptosis, although it...

    8. Protein target discovery of drug and its reactive intermediate metabolite by using proteomic strategy

      OpenAIRE

      Lianghai Hu; John Paul Fawcett; Jingkai Gu

      2012-01-01

      Identifying protein targets of bioactive compounds is an effective approach to discover unknown protein functions, identify molecular mechanisms of drug action, and obtain information for optimization of lead compounds. At the same time, metabolic activation of a drug can lead to cytotoxicities. Therefore, it is very important to systemically characterize the drug and its reactive intermediate. Mass spectrometry-based proteomic approach has emerged as the most efficient to study protein funct...

    9. Stroke and Drug Delivery—In Vitro Models of the Ischemic Blood-Brain Barrier

      DEFF Research Database (Denmark)

      Tornabene, Erica; Brodin, Birger

      2016-01-01

      of permeation pathways across the barrier in ischemic and postischemic brain endothelium is important for development of new medical treatments. The blood-brain barrier, that is, the endothelial monolayer lining the brain capillaries, changes properties during an ischemic event. In vitro models of the blood...

    10. One For All? Hitting multiple Alzheimer’s Disease targets with one drug

      Directory of Open Access Journals (Sweden)

      Rebecca Ellen Hughes

      2016-04-01

      Full Text Available Alzheimer’s disease is a complex and multifactorial disease for which the mechanism is still not fully understood. As new insights into disease progression are discovered, new drugs must be designed to target those aspects of the disease that cause neuronal damage rather than just the symptoms currently addressed by single target drugs. It is becoming possible to target several aspects of the disease pathology at once using multi-target drugs. Intended as a introduction for non-experts, this review describes the key multi-target drug design approaches, namely structure-based, in silico, and data-mining, to evaluate what is preventing compounds progressing through the clinic to the market. Repurposing current drugs using their off-target effects reduces the cost of development, time to launch and also the uncertainty associated with safety and pharmacokinetics. The most promising drugs currently being investigated for repurposing to Alzheimer’s Disease are rasagiline, originally developed for the treatment of Parkinson’s Disease, and liraglutide, an antidiabetic. Rational drug design can combine pharmacophores of multiple drugs, systematically change functional groups, and rank them by virtual screening. Hits confirmed experimentally are rationally modified to generate an effective multi-potent lead compound. Examples from this approach are ASS234 with properties similar to rasagiline, and donecopride, a hybrid of an acetylcholinesterase inhibitor and a 5-HT4 receptor agonist with pro-cognitive effects. Exploiting these interdisciplinary approaches, public-private collaborative lead factories promise faster delivery of new drugs to the clinic.

    11. Mining predicted essential genes of Brugia malayi for nematode drug targets.

      Science.gov (United States)

      Kumar, Sanjay; Chaudhary, Kshitiz; Foster, Jeremy M; Novelli, Jacopo F; Zhang, Yinhua; Wang, Shiliang; Spiro, David; Ghedin, Elodie; Carlow, Clotilde K S

      2007-01-01

      We report results from the first genome-wide application of a rational drug target selection methodology to a metazoan pathogen genome, the completed draft sequence of Brugia malayi, a parasitic nematode responsible for human lymphatic filariasis. More than 1.5 billion people worldwide are at risk of contracting lymphatic filariasis and onchocerciasis, a related filarial disease. Drug treatments for filariasis have not changed significantly in over 20 years, and with the risk of resistance rising, there is an urgent need for the development of new anti-filarial drug therapies. The recent publication of the draft genomic sequence for B. malayi enables a genome-wide search for new drug targets. However, there is no functional genomics data in B. malayi to guide the selection of potential drug targets. To circumvent this problem, we have utilized the free-living model nematode Caenorhabditis elegans as a surrogate for B. malayi. Sequence comparisons between the two genomes allow us to map C. elegans orthologs to B. malayi genes. Using these orthology mappings and by incorporating the extensive genomic and functional genomic data, including genome-wide RNAi screens, that already exist for C. elegans, we identify potentially essential genes in B. malayi. Further incorporation of human host genome sequence data and a custom algorithm for prioritization enables us to collect and rank nearly 600 drug target candidates. Previously identified potential drug targets cluster near the top of our prioritized list, lending credibility to our methodology. Over-represented Gene Ontology terms, predicted InterPro domains, and RNAi phenotypes of C. elegans orthologs associated with the potential target pool are identified. By virtue of the selection procedure, the potential B. malayi drug targets highlight components of key processes in nematode biology such as central metabolism, molting and regulation of gene expression.

    12. Mining predicted essential genes of Brugia malayi for nematode drug targets.

      Directory of Open Access Journals (Sweden)

      Sanjay Kumar

      Full Text Available We report results from the first genome-wide application of a rational drug target selection methodology to a metazoan pathogen genome, the completed draft sequence of Brugia malayi, a parasitic nematode responsible for human lymphatic filariasis. More than 1.5 billion people worldwide are at risk of contracting lymphatic filariasis and onchocerciasis, a related filarial disease. Drug treatments for filariasis have not changed significantly in over 20 years, and with the risk of resistance rising, there is an urgent need for the development of new anti-filarial drug therapies. The recent publication of the draft genomic sequence for B. malayi enables a genome-wide search for new drug targets. However, there is no functional genomics data in B. malayi to guide the selection of potential drug targets. To circumvent this problem, we have utilized the free-living model nematode Caenorhabditis elegans as a surrogate for B. malayi. Sequence comparisons between the two genomes allow us to map C. elegans orthologs to B. malayi genes. Using these orthology mappings and by incorporating the extensive genomic and functional genomic data, including genome-wide RNAi screens, that already exist for C. elegans, we identify potentially essential genes in B. malayi. Further incorporation of human host genome sequence data and a custom algorithm for prioritization enables us to collect and rank nearly 600 drug target candidates. Previously identified potential drug targets cluster near the top of our prioritized list, lending credibility to our methodology. Over-represented Gene Ontology terms, predicted InterPro domains, and RNAi phenotypes of C. elegans orthologs associated with the potential target pool are identified. By virtue of the selection procedure, the potential B. malayi drug targets highlight components of key processes in nematode biology such as central metabolism, molting and regulation of gene expression.

    13. Quantitative modeling of selective lysosomal targeting for drug design

      DEFF Research Database (Denmark)

      Trapp, Stefan; Rosania, G.; Horobin, R.W.;

      2008-01-01

      the diffusion of neutral and ionic molecules across biomembranes, protonation to mono- or bivalent ions, adsorption to lipids, and electrical attraction or repulsion. Based on simulation results, high and selective accumulation in lysosomes was found for weak mono- and bivalent bases with intermediate to high...... predicted by the model and three were close. Five of the antimalarial drugs were lipophilic weak dibasic compounds. The predicted optimum properties for a selective accumulation of weak bivalent bases in lysosomes are consistent with experimental values and are more accurate than any prior calculation...

    14. Targeting aerobic glycolysis: 3-bromopyruvate as a promising anticancer drug.

      Science.gov (United States)

      Cardaci, Simone; Desideri, Enrico; Ciriolo, Maria Rosa

      2012-02-01

      The Warburg effect refers to the phenomenon whereby cancer cells avidly take up glucose and produce lactic acid under aerobic conditions. Although the molecular mechanisms underlying tumor reliance on glycolysis remains not completely clear, its inhibition opens feasible therapeutic windows for cancer treatment. Indeed, several small molecules have emerged by combinatorial studies exhibiting promising anticancer activity both in vitro and in vivo, as a single agent or in combination with other therapeutic modalities. Therefore, besides reviewing the alterations of glycolysis that occur with malignant transformation, this manuscript aims at recapitulating the most effective pharmacological therapeutics of its targeting. In particular, we describe the principal mechanisms of action and the main targets of 3-bromopyruvate, an alkylating agent with impressive antitumor effects in several models of animal tumors. Moreover, we discuss the chemo-potentiating strategies that would make unparalleled the putative therapeutic efficacy of its use in clinical settings. PMID:22328057

    15. [New targets and new drugs in thoracic oncology].

      Science.gov (United States)

      Rouviere, D; Bousquet, E; Pons, E; Milia, J-D; Guibert, N; Mazieres, J

      2015-10-01

      A number of mechanisms that drive oncogenesis have been deciphered over the last 20 years. The main oncogenic factors in the field of thoracic oncology are mutations of EGFR, KRAS, and EML4-ALK translocation, which are most often reported in adenocarcinomas. However, new molecular targets have been highlighted recently including BRAF mutations, HER2 or PI3K, new translocations such as ROS1 or KIF5B-RET. Molecular abnormalities have also been identified in tumors other than adenocarcinoma (squamous and small cell carcinoma). Therapeutic strategies have been designed to inhibit these signaling pathways including monoclonal antibodies and tyrosine kinase inhibitors. Some of these molecules are now approved as therapies, others are currently undergoing testing in clinical trials. We here present a review of novel targeted agents for lung cancer.

    16. Anti-cancer drug loaded iron-gold core-shell nanoparticles (Fe@Au) for magnetic drug targeting.

      Science.gov (United States)

      Kayal, Sibnath; Ramanujan, Raju Vijayaraghavan

      2010-09-01

      Magnetic drug targeting, using core-shell magnetic carrier particles loaded with anti-cancer drugs, is an emerging and significant method of cancer treatment. Gold shell-iron core nanoparticles (Fe@Au) were synthesized by the reverse micelle method with aqueous reactants, surfactant, co-surfactant and oil phase. XRD, XPS, TEM and magnetic property measurements were utilized to characterize these core-shell nanoparticles. Magnetic measurements showed that the particles were superparamagnetic at room temperature and that the saturation magnetization decreased with increasing gold concentration. The anti-cancer drug doxorubicin (DOX) was loaded onto these Fe@Au nanoparticle carriers and the drug release profiles showed that upto 25% of adsorbed drug was released in 80 h. It was found that the amine (-NH2) group of DOX binds to the gold shell. An in vitro apparatus simulating the human circulatory system was used to determine the retention of these nanoparticle carriers when exposed to an external magnetic field. A high percentage of magnetic carriers could be retained for physiologically relevant flow speeds of fluid. The present findings show that DOX loaded gold coated iron nanoparticles are promising for magnetically targeted drug delivery. PMID:21133071

    17. Chemical Genomics and Emerging DNA Technologies in the Identification of Drug Mechanisms and Drug Targets

      DEFF Research Database (Denmark)

      Olsen, Louise Cathrine Braun; Færgeman, Nils J.

      2012-01-01

      critical roles in the genomic age of biological research and drug discovery. In the present review we discuss how simple biological model organisms can be used as screening platforms in combination with emerging genomic technologies to advance the identification of potential drugs and their molecular...

    18. Label-free integrative pharmacology on-target of drugs at the β2-adrenergic receptor

      Science.gov (United States)

      Ferrie, Ann M.; Sun, Haiyan; Fang, Ye

      2011-07-01

      We describe a label-free integrative pharmacology on-target (iPOT) method to assess the pharmacology of drugs at the β2-adrenergic receptor. This method combines dynamic mass redistribution (DMR) assays using an array of probe molecule-hijacked cells with similarity analysis. The whole cell DMR assays track cell system-based, ligand-directed, and kinetics-dependent biased activities of the drugs, and translates their on-target pharmacology into numerical descriptors which are subject to similarity analysis. We demonstrate that the approach establishes an effective link between the label-free pharmacology and in vivo therapeutic indications of drugs.

    19. Neoadjuvant Window Studies of Metformin and Biomarker Development for Drugs Targeting Cancer Metabolism.

      Science.gov (United States)

      Lord, Simon R; Patel, Neel; Liu, Dan; Fenwick, John; Gleeson, Fergus; Buffa, Francesca; Harris, Adrian L

      2015-05-01

      There has been growing interest in the potential of the altered metabolic state typical of cancer cells as a drug target. The antidiabetes drug, metformin, is now under intense investigation as a safe method to modify cancer metabolism. Several studies have used window of opportunity in breast cancer patients before neoadjuvant chemotherapy to correlate gene expression analysis, metabolomics, immunohistochemical markers, and metabolic serum markers with those likely to benefit. We review the role metabolite measurement, functional imaging and gene sequencing analysis play in elucidating the effects of metabolically targeted drugs in cancer treatment and determining patient selection. PMID:26063894

    20. Transcription factors as targets for DNA-interacting drugs.

      Science.gov (United States)

      Gniazdowski, Marek; Denny, William A; Nelson, Stephanie M; Czyz, Malgorzata

      2003-06-01

      Gene expression, both tissue specific or inducible, is controlled at the level of transcription by various transcription factors interacting with specific sequences of DNA. Anticancer drugs and other potential therapeutic agents alter interactions of regulatory proteins with DNA by a variety of different mechanisms. The main ones, considered in the review, are: i) competition for the transcription factor DNA binding sequences by drugs that interact non-covalently with DNA (e.g. anthracyclines, acridines, actinomycin D, pyrrole antibiotics and their polyamide derivatives); ii) covalent modifications of DNA by alkylating agents (e.g. nitrogen mustards, cisplatin) that prevent transcription factors from recognizing their specific sequences, or that result in multiple "unnatural" binding sites in DNA which hijack the transcription factors, thus decreasing their availability in the nucleus; iii) competition with binding sites on the transcription factors by synthetic oligonucleotides or peptide nucleic acids in an antigene strategy. The latter compounds may also compete for binding sites on regulatory proteins, acting as decoys to lower their active concentration in the cell. In this review, we have summarized recent advances which have been made towards understanding the above mechanisms by which small molecules interfere with the function of transcription factors. PMID:12678680

    1. Visualization of network target crosstalk optimizes drug synergism in myocardial ischemia.

      Directory of Open Access Journals (Sweden)

      Xiaojing Wan

      Full Text Available Numerous drugs and compounds have been validated as protecting against myocardial ischemia (MI, a leading cause of heart failure; however, synergistic possibilities among them have not been systematically explored. Thus, there appears to be significant room for optimization in the field of drug combination therapy for MI. Here, we propose an easy approach for the identification and optimization of MI-related synergistic drug combinations via visualization of the crosstalk between networks of drug targets corresponding to different drugs (each drug has a unique network of targets. As an example, in the present study, 28 target crosstalk networks (TCNs of random pairwise combinations of 8 MI-related drugs (curcumin, capsaicin, celecoxib, raloxifene, silibinin, sulforaphane, tacrolimus, and tamoxifen were established to illustrate the proposed method. The TCNs revealed a high likelihood of synergy between curcumin and the other drugs, which was confirmed by in vitro experiments. Further drug combination optimization showed a synergistic protective effect of curcumin, celecoxib, and sililinin in combination against H₂O₂-induced ischemic injury of cardiomyocytes at a relatively low concentration of 500 nM. This result is in agreement with the earlier finding of a denser and modular functional crosstalk between their networks of targets in the regulation of cell apoptosis. Our study offers a simple approach to rapidly search for and optimize potent synergistic drug combinations, which can be used for identifying better MI therapeutic strategies. Some new light was also shed on the characteristic features of drug synergy, suggesting that it is possible to apply this method to other complex human diseases.

    2. Reverse Chemical Genetics: Comprehensive Fitness Profiling Reveals the Spectrum of Drug Target Interactions

      Science.gov (United States)

      Sinha, Sunita; Bergeron, Julien R.; Mellor, Joseph C.; Giaever, Guri; Nislow, Corey

      2016-01-01

      The emergence and prevalence of drug resistance demands streamlined strategies to identify drug resistant variants in a fast, systematic and cost-effective way. Methods commonly used to understand and predict drug resistance rely on limited clinical studies from patients who are refractory to drugs or on laborious evolution experiments with poor coverage of the gene variants. Here, we report an integrative functional variomics methodology combining deep sequencing and a Bayesian statistical model to provide a comprehensive list of drug resistance alleles from complex variant populations. Dihydrofolate reductase, the target of methotrexate chemotherapy drug, was used as a model to identify functional mutant alleles correlated with methotrexate resistance. This systematic approach identified previously reported resistance mutations, as well as novel point mutations that were validated in vivo. Use of this systematic strategy as a routine diagnostics tool widens the scope of successful drug research and development. PMID:27588687

    3. Reverse Chemical Genetics: Comprehensive Fitness Profiling Reveals the Spectrum of Drug Target Interactions.

      Science.gov (United States)

      Wong, Lai H; Sinha, Sunita; Bergeron, Julien R; Mellor, Joseph C; Giaever, Guri; Flaherty, Patrick; Nislow, Corey

      2016-09-01

      The emergence and prevalence of drug resistance demands streamlined strategies to identify drug resistant variants in a fast, systematic and cost-effective way. Methods commonly used to understand and predict drug resistance rely on limited clinical studies from patients who are refractory to drugs or on laborious evolution experiments with poor coverage of the gene variants. Here, we report an integrative functional variomics methodology combining deep sequencing and a Bayesian statistical model to provide a comprehensive list of drug resistance alleles from complex variant populations. Dihydrofolate reductase, the target of methotrexate chemotherapy drug, was used as a model to identify functional mutant alleles correlated with methotrexate resistance. This systematic approach identified previously reported resistance mutations, as well as novel point mutations that were validated in vivo. Use of this systematic strategy as a routine diagnostics tool widens the scope of successful drug research and development. PMID:27588687

    4. Novel Methods for Drug-Target Interaction Prediction using Graph Mining

      KAUST Repository

      Ba Alawi, Wail

      2016-08-31

      The problem of developing drugs that can be used to cure diseases is important and requires a careful approach. Since pursuing the wrong candidate drug for a particular disease could be very costly in terms of time and money, there is a strong interest in minimizing such risks. Drug repositioning has become a hot topic of research, as it helps reduce these risks significantly at the early stages of drug development by reusing an approved drug for the treatment of a different disease. Still, finding new usage for a drug is non-trivial, as it is necessary to find out strong supporting evidence that the proposed new uses of drugs are plausible. Many computational approaches were developed to narrow the list of possible candidate drug-target interactions (DTIs) before any experiments are done. However, many of these approaches suffer from unacceptable levels of false positives. We developed two novel methods based on graph mining networks of drugs and targets. The first method (DASPfind) finds all non-cyclic paths that connect a drug and a target, and using a function that we define, calculates a score from all the paths. This score describes our confidence that DTI is correct. We show that DASPfind significantly outperforms other state-of-the-art methods in predicting the top ranked target for each drug. We demonstrate the utility of DASPfind by predicting 15 novel DTIs over a set of ion channel proteins, and confirming 12 out of these 15 DTIs through experimental evidence reported in literature and online drug databases. The second method (DASPfind+) modifies DASPfind in order to increase the confidence and reliability of the resultant predictions. Based on the structure of the drug-target interaction (DTI) networks, we introduced an optimization scheme that incrementally alters the network structure locally for each drug to achieve more robust top 1 ranked predictions. Moreover, we explored effects of several similarity measures between the targets on the prediction

    5. Identification of potential drug targets in Helicobacter pylori strain HPAG1 by in silico genome analysis.

      Science.gov (United States)

      Neelapu, Nageswara R R; Mutha, Naresh V R; Akula, Srinivas

      2015-01-01

      Helicobacter pylori colonizes the stomach, causing gastritis, peptic ulcers and gastric carcinoma. Drugs for treatment of H. pylori relieve from gastritis or pain but are not specific to H. pylori. Therefore, there is an immediate requirement for new therapeutic molecules to treat H. pylori. Current study investigates identification of drug targets in the strain HPAG1 of H. pylori by in silico genome analysis. Genome of HPAG1 was reconstructed for metabolic pathways and compared with Homosapien sapiens to identify genes which are unique to H. pylori. These unique genes were subjected to gene property analysis to identify the potentiality of the drug targets. Among the total number of genes analysed in H. pylori strain HPAG1, nearly 542 genes qualified as unique molecules and among them 29 were identified to be potential drug targets. Co/Zn/Cd efflux system membrane fusion protein, Ferric sidephore transport system and biopolymer transport protein EXbB were found to be critical drug targets to H. pylori HPAG1. Five genes (superoxide dismutase, HtrA protease/chaperone protein, Heatinducible transcription repressor HrcA, HspR, transcriptional repressor of DnaK operon, Cobalt-zinccadmium resistance protein CzcA) of the 29 predicted drug targets are already experimentally validated either genetically or biochemically lending credence to our unique approach. PMID:26205802

    6. UDP-galactopyranose mutase, a potential drug target against human pathogenic nematode Brugia malayi.

      Science.gov (United States)

      Misra, Sweta; Valicherla, Guru R; Mohd Shahab; Gupta, Jyoti; Gayen, Jiaur R; Misra-Bhattacharya, Shailja

      2016-08-01

      Lymphatic filariasis, a vector-borne neglected tropical disease affects millions of population in tropical and subtropical countries. Vaccine unavailability and emerging drug resistance against standard antifilarial drugs necessitate search of novel drug targets for developing alternate drugs. Recently, UDP-galactopyranose mutases (UGM) have emerged as a promising drug target playing an important role in parasite virulence and survival. This study deals with the cloning and characterization of Brugia malayi UGM and further exploring its antifilarial drug target potential. The recombinant protein was actively involved in conversion of UDP-galactopyranose (substrate) to UDP-galactofuranose (product) revealing Km and Vmax to be ∼51.15 μM and ∼1.27 μM/min, respectively. The purified protein appeared to be decameric in native state and its 3D homology modeling using Aspergillus fumigatus UGM enzyme as template revealed conservation of active site residues. Two specific prokaryotic inhibitors (compounds A and B) of the enzyme inhibited B. malayi UGM enzymatic activity competitively depicting Ki values ∼22.68 and ∼23.0 μM, respectively. These compounds were also active in vitro and in vivo against B. malayi The findings suggest that B. malayi UGM could be a potential antifilarial therapeutic drug target. PMID:27465638

    7. Representation of target-bound drugs by computed conformers: implications for conformational libraries

      Directory of Open Access Journals (Sweden)

      Goede Andrean

      2006-06-01

      Full Text Available Abstract Background The increasing number of known protein structures provides valuable information about pharmaceutical targets. Drug binding sites are identifiable and suitable lead compounds can be proposed. The flexibility of ligands is a critical point for the selection of potential drugs. Since computed 3D structures of millions of compounds are available, the knowledge of their binding conformations would be a great benefit for the development of efficient screening methods. Results Integration of two public databases allowed superposition of conformers for 193 approved drugs with 5507 crystallised target-bound counterparts. The generation of 9600 drug conformers using an atomic force field was carried out to obtain an optimal coverage of the conformational space. Bioactive conformations are best described by a conformational ensemble: half of all drugs exhibit multiple active states, distributed over the entire range of the reachable energy and conformational space. A number of up to 100 conformers per drug enabled us to reproduce the bound states within a similarity threshold of 1.0 Å in 70% of all cases. This fraction rises to about 90% for smaller or average sized drugs. Conclusion Single drugs adopt multiple bioactive conformations if they interact with different target proteins. Due to the structural diversity of binding sites they adopt conformations that are distributed over a broad conformational space and wide energy range. Since the majority of drugs is well represented by a predefined low number of conformers (up to 100 this procedure is a valuable method to compare compounds by three-dimensional features or for fast similarity searches starting with pharmacophores. The underlying 9600 generated drug conformers are downloadable from the Super Drug Web site 1. All superpositions are visualised at the same source. Additional conformers (110,000 of 2400 classified WHO-drugs are also available.

    8. Hedgehog pathway as a drug target: Smoothened inhibitors in development

      Directory of Open Access Journals (Sweden)

      Lin TL

      2012-03-01

      Full Text Available Tara L Lin1, William Matsui21Division of Hematology/Oncology, Department of Internal Medicine, University of Kansas, Kansas City, MO, USA; 2Division of Hematologic Malignancies, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USAAbstract: Emerging laboratory and clinical investigations demonstrate that Hedgehog signaling (Hh represents a novel therapeutic target in various human cancers. This conserved signaling pathway precisely regulates self-renewal and terminal differentiation in embryonic development, but is typically silenced in adult tissues, with reactivation usually only during tissue repair. Aberrant Hh pathway signaling has been implicated in the pathogenesis, self-renewal, and chemotherapy resistance of a growing number of solid and hematologic malignancies. Major components of the Hh pathway include the Hh ligands (Sonic, Desert, and Indian, the transmembrane receptor Patched, the signal transducer Smoothened (Smo, and transcription factors Gli1–3 which regulate the transcription of Hh target genes. Mutations in Hh pathway genes, increased Hh signaling in tumor stroma, and Hh overexpression in self-renewing cells (cancer stem cells have been described, and these different modes of Hh signaling have implications for the design of Hh pathway inhibitors and their integration into conventional treatment regimens. Discovery of a naturally-occurring Smo inhibitor, cyclopamine, and the identification of Hh pathway mutations and over expression in cancer cells prompted the development of several cyclopamine derivatives. Encouraging laboratory and in vivo data has resulted in Phase I and II clinical trials of Smo inhibitors. In this review, we will discuss the current understanding of Hh pathway signaling in malignancy and Smo antagonists in development. Recent data with these agents shows that they are well-tolerated and may be effective for subsets of patients. Challenges remain

    9. Inhibition of Glutamine Synthetase: A Potential Drug Target in Mycobacterium tuberculosis

      Directory of Open Access Journals (Sweden)

      Sherry L. Mowbray

      2014-08-01

      Full Text Available Tuberculosis is an infectious disease caused by Mycobacterium tuberculosis. Globally, tuberculosis is second only to AIDS in mortality and the disease is responsible for over 1.3 million deaths each year. The impractically long treatment schedules (generally 6–9 months and unpleasant side effects of the current drugs often lead to poor patient compliance, which in turn has resulted in the emergence of multi-, extensively- and totally-drug resistant strains. The development of new classes of anti-tuberculosis drugs and new drug targets is of global importance, since attacking the bacterium using multiple strategies provides the best means to prevent resistance. This review presents an overview of the various strategies and compounds utilized to inhibit glutamine synthetase, a promising target for the development of drugs for TB therapy.

    10. Drug-loaded bubbles with matched focused ultrasound excitation for concurrent blood-brain barrier opening and brain-tumor drug delivery.

      Science.gov (United States)

      Fan, Ching-Hsiang; Ting, Chien-Yu; Chang, Yuan-Chih; Wei, Kuo-Chen; Liu, Hao-Li; Yeh, Chih-Kuang

      2015-03-01

      Focused ultrasound (FUS) with microbubbles has been used to achieve local blood-brain barrier opening (BBB opening) and increase the penetration of therapeutic drugs into brain tumors. However, inertial cavitation of microbubbles during FUS-induced BBB opening causes intracerebral hemorrhaging (ICH), leading to acute and chronic brain injury and limiting the efficiency of drug delivery. Here we investigated whether induction of drug (1,3-bis(2-chloroethyl)-1-nitrosourea, BCNU)-loaded bubbles (BCNU bubbles) to oscillate at their resonant frequency would reduce inertial cavitation during BBB opening, thereby eliminating ICH and enhancing drug delivery in a rat brain model. FUS was tested at 1 and 10 MHz, over a wide range of pressure (mechanical index ranging from 0.16 to 1.42) in the presence of BCNU bubbles. Excitation of BCNU bubbles by resonance frequency-matched FUS (10 MHz) resulted in predominantly stable cavitation and significantly reduced the occurrence of potential hazards of exposure to biological tissues during the BBB opening process. In addition, the drug release process could be monitored by acoustic emission obtained from ultrasound imaging. In tumor-bearing animals, BCNU bubbles with FUS showed significant control of tumor progression and improved maximum survival from 26 to 35 days. This study provides useful advancements toward the goal of successfully translating FUS theranostic bubble-enhanced brain drug delivery into clinical use.

    11. Target engagement and drug residence time can be observed in living cells with BRET.

      Science.gov (United States)

      Robers, Matthew B; Dart, Melanie L; Woodroofe, Carolyn C; Zimprich, Chad A; Kirkland, Thomas A; Machleidt, Thomas; Kupcho, Kevin R; Levin, Sergiy; Hartnett, James R; Zimmerman, Kristopher; Niles, Andrew L; Ohana, Rachel Friedman; Daniels, Danette L; Slater, Michael; Wood, Monika G; Cong, Mei; Cheng, Yi-Qiang; Wood, Keith V

      2015-12-03

      The therapeutic action of drugs is predicated on their physical engagement with cellular targets. Here we describe a broadly applicable method using bioluminescence resonance energy transfer (BRET) to reveal the binding characteristics of a drug with selected targets within intact cells. Cell-permeable fluorescent tracers are used in a competitive binding format to quantify drug engagement with the target proteins fused to Nanoluc luciferase. The approach enabled us to profile isozyme-specific engagement and binding kinetics for a panel of histone deacetylase (HDAC) inhibitors. Our analysis was directed particularly to the clinically approved prodrug FK228 (Istodax/Romidepsin) because of its unique and largely unexplained mechanism of sustained intracellular action. Analysis of the binding kinetics by BRET revealed remarkably long intracellular residence times for FK228 at HDAC1, explaining the protracted intracellular behaviour of this prodrug. Our results demonstrate a novel application of BRET for assessing target engagement within the complex milieu of the intracellular environment.

    12. Hyaluronic acid modified mesoporous carbon nanoparticles for targeted drug delivery to CD44-overexpressing cancer cells

      Science.gov (United States)

      Wan, Long; Jiao, Jian; Cui, Yu; Guo, Jingwen; Han, Ning; Di, Donghua; Chang, Di; Wang, Pu; Jiang, Tongying; Wang, Siling

      2016-04-01

      In this paper, hyaluronic acid (HA) functionalized uniform mesoporous carbon spheres (UMCS) were synthesized for targeted enzyme responsive drug delivery using a facile electrostatic attraction strategy. This HA modification ensured stable drug encapsulation in mesoporous carbon nanoparticles in an extracellular environment while increasing colloidal stability, biocompatibility, cell-targeting ability, and controlled cargo release. The cellular uptake experiments of fluorescently labeled mesoporous carbon nanoparticles, with or without HA functionalization, demonstrated that HA-UMCS are able to specifically target cancer cells overexpressing CD44 receptors. Moreover, the cargo loaded doxorubicin (DOX) and verapamil (VER) exhibited a dual pH and hyaluronidase-1 responsive release in the tumor microenvironment. In addition, VER/DOX/HA-UMCS exhibited a superior therapeutic effect on an in vivo HCT-116 tumor in BALB/c nude mice. In summary, it is expected that HA-UMCS will offer a new method for targeted co-delivery of drugs to tumors overexpressing CD44 receptors.

    13. Recent discoveries of influenza A drug target sites to combat virus replication.

      Science.gov (United States)

      Patel, Hershna; Kukol, Andreas

      2016-06-15

      Sequence variations in the binding sites of influenza A proteins are known to limit the effectiveness of current antiviral drugs. Clinically, this leads to increased rates of virus transmission and pathogenicity. Potential influenza A inhibitors are continually being discovered as a result of high-throughput cell based screening studies, whereas the application of computational tools to aid drug discovery has further increased the number of predicted inhibitors reported. This review brings together the aspects that relate to the identification of influenza A drug target sites and the findings from recent antiviral drug discovery strategies. PMID:27284062

    14. A RNA-DNA Hybrid Aptamer for Nanoparticle-Based Prostate Tumor Targeted Drug Delivery

      Directory of Open Access Journals (Sweden)

      John C. Leach

      2016-03-01

      Full Text Available The side effects of radio- and chemo-therapy pose long-term challenges on a cancer patient’s health. It is, therefore, highly desirable to develop more effective therapies that can specifically target carcinoma cells without damaging normal and healthy cells. Tremendous efforts have been made in the past to develop targeted drug delivery systems for solid cancer treatment. In this study, a new aptamer, A10-3-J1, which recognizes the extracellular domain of the prostate specific membrane antigen (PSMA, was designed. A super paramagnetic iron oxide nanoparticle-aptamer-doxorubicin (SPIO-Apt-Dox was fabricated and employed as a targeted drug delivery platform for cancer therapy. This DNA RNA hybridized aptamer antitumor agent was able to enhance the cytotoxicity of targeted cells while minimizing collateral damage to non-targeted cells. This SPIO-Apt-Dox nanoparticle has specificity to PSMA+ prostate cancer cells. Aptamer inhibited nonspecific uptake of membrane-permeable doxorubic to the non-target cells, leading to reduced untargeted cytotoxicity and endocytic uptake while enhancing targeted cytotoxicity and endocytic uptake. The experimental results indicate that the drug delivery platform can yield statistically significant effectiveness being more cytotoxic to the targeted cells as opposed to the non-targeted cells.

    15. A RNA-DNA Hybrid Aptamer for Nanoparticle-Based Prostate Tumor Targeted Drug Delivery

      Science.gov (United States)

      Leach, John C.; Wang, Andrew; Ye, Kaiming; Jin, Sha

      2016-01-01

      The side effects of radio- and chemo-therapy pose long-term challenges on a cancer patient’s health. It is, therefore, highly desirable to develop more effective therapies that can specifically target carcinoma cells without damaging normal and healthy cells. Tremendous efforts have been made in the past to develop targeted drug delivery systems for solid cancer treatment. In this study, a new aptamer, A10-3-J1, which recognizes the extracellular domain of the prostate specific membrane antigen (PSMA), was designed. A super paramagnetic iron oxide nanoparticle-aptamer-doxorubicin (SPIO-Apt-Dox) was fabricated and employed as a targeted drug delivery platform for cancer therapy. This DNA RNA hybridized aptamer antitumor agent was able to enhance the cytotoxicity of targeted cells while minimizing collateral damage to non-targeted cells. This SPIO-Apt-Dox nanoparticle has specificity to PSMA+ prostate cancer cells. Aptamer inhibited nonspecific uptake of membrane-permeable doxorubic to the non-target cells, leading to reduced untargeted cytotoxicity and endocytic uptake while enhancing targeted cytotoxicity and endocytic uptake. The experimental results indicate that the drug delivery platform can yield statistically significant effectiveness being more cytotoxic to the targeted cells as opposed to the non-targeted cells. PMID:26985893

    16. In-silico prediction of drug targets, biological activities, signal pathways and regulating networks of dioscin based on bioinformatics

      OpenAIRE

      Yin, Lianhong; Zheng, Lingli; Xu, Lina; Dong, Deshi; Han, Xu; Qi, Yan; Zhao, Yanyan; Xu, Youwei; Peng, Jinyong

      2015-01-01

      Background Inverse docking technology has been a trend of drug discovery, and bioinformatics approaches have been used to predict target proteins, biological activities, signal pathways and molecular regulating networks affected by drugs for further pharmacodynamic and mechanism studies. Methods In the present paper, inverse docking technology was applied to screen potential targets from potential drug target database (PDTD). Then, the corresponding gene information of the obtained drug-targe...

    17. Specific Cell Targeting Therapy Bypasses Drug Resistance Mechanisms in African Trypanosomiasis

      Science.gov (United States)

      Unciti-Broceta, Juan D.; Arias, José L.; Maceira, José; Soriano, Miguel; Ortiz-González, Matilde; Hernández-Quero, José; Muñóz-Torres, Manuel; de Koning, Harry P.; Magez, Stefan; Garcia-Salcedo, José A.

      2015-01-01

      African trypanosomiasis is a deadly neglected disease caused by the extracellular parasite Trypanosoma brucei. Current therapies are characterized by high drug toxicity and increasing drug resistance mainly associated with loss-of-function mutations in the transporters involved in drug import. The introduction of new antiparasitic drugs into therapeutic use is a slow and expensive process. In contrast, specific targeting of existing drugs could represent a more rapid and cost-effective approach for neglected disease treatment, impacting through reduced systemic toxicity and circumventing resistance acquired through impaired compound uptake. We have generated nanoparticles of chitosan loaded with the trypanocidal drug pentamidine and coated by a single domain nanobody that specifically targets the surface of African trypanosomes. Once loaded into this nanocarrier, pentamidine enters trypanosomes through endocytosis instead of via classical cell surface transporters. The curative dose of pentamidine-loaded nanobody-chitosan nanoparticles was 100-fold lower than pentamidine alone in a murine model of acute African trypanosomiasis. Crucially, this new formulation displayed undiminished in vitro and in vivo activity against a trypanosome cell line resistant to pentamidine as a result of mutations in the surface transporter aquaglyceroporin 2. We conclude that this new drug delivery system increases drug efficacy and has the ability to overcome resistance to some anti-protozoal drugs. PMID:26110623

    18. Antibacterial Drug Leads: DNA and Enzyme Multi-Targeting

      Science.gov (United States)

      Zhu, Wei; Wang, Yang; Li, Kai; Gao, Jian; Huang, Chun-Hsiang; Chen, Chun-Chi; Ko, Tzu-Ping; Zhang, Yonghui; Guo, Rey-Ting; Oldfield, Eric

      2015-01-01

      We report the results of an investigation of the activity of a series of amidine and bisamidine compounds against Staphylococcus aureus and Escherichia coli. The most active compounds bound to an AT-rich DNA dodecamer (CGCGAATTCGCG)2, and using DSC were found to increase the melting transition by up to 24 °C. Several compounds also inhibited undecaprenyl diphosphate synthase (UPPS) with IC50 values of 100–500 nM and we found good correlations (R2 = 0.89, S. aureus; R2 = 0.79, E. coli)) between experimental and predicted cell growth inhibition by using DNA ΔTm and UPPS IC50 experimental results together with 1 computed descriptor. We also solved the structures of three bisamidines binding to DNA as well as three UPPS structures. Overall, the results are of general interest in the context of the development of resistance-resistant antibiotics that involve multi-targeting. PMID:25574764

    19. Signaling pathways relevant to cognition-enhancing drug targets.

      Science.gov (United States)

      Ménard, Caroline; Gaudreau, Pierrette; Quirion, Rémi

      2015-01-01

      Aging is generally associated with a certain cognitive decline. However, individual differences exist. While age-related memory deficits can be observed in humans and rodents in the absence of pathological conditions, some individuals maintain intact cognitive functions up to an advanced age. The mechanisms underlying learning and memory processes involve the recruitment of multiple signaling pathways and gene expression, leading to adaptative neuronal plasticity and long-lasting changes in brain circuitry. This chapter summarizes the current understanding of how these signaling cascades could be modulated by cognition-enhancing agents favoring memory formation and successful aging. It focuses on data obtained in rodents, particularly in the rat as it is the most common animal model studied in this field. First, we will discuss the role of the excitatory neurotransmitter glutamate and its receptors, downstream signaling effectors [e.g., calcium/calmodulin-dependent protein kinase II (CaMKII), protein kinase C (PKC), extracellular signal-regulated kinases (ERK), mammalian target of rapamycin (mTOR), cAMP response element-binding protein (CREB)], associated immediate early gene (e.g., Homer 1a, Arc and Zif268), and growth factors [insulin-like growth factors (IGFs) and brain-derived neurotrophic factor (BDNF)] in synaptic plasticity and memory formation. Second, the impact of the cholinergic system and related modulators on memory will be briefly reviewed. Finally, since dynorphin neuropeptides have recently been associated with memory impairments in aging, it is proposed as an attractive target to develop novel cognition-enhancing agents. PMID:25977080

    20. Imaging of a targeted PDT drug with fluorescence tomography

      Science.gov (United States)

      Muffoletto, Dan; Gupta, Anurag; Xu, Zhiqiang; Mahrer, Chris; Bauer, Gretchen; Galas, Scott; Pandey, Ravindra K.; Sunar, Ulas

      2009-02-01

      We constructed a whole-body fluorescence tomography instrument to monitor novel bifunctional phototherapeutic drugs (e.g., HPPH-Cyanine dye conjugate) in small animals. The instrument allows dense source and detector sampling with a fast galvo scanner and a CCD detector for improved resolution and sensitivity (Patwardhan et al., 2005). Here we report tissue phantom measurements to evaluate the imaging performance with a newly constructed tomography instrument. Phantom measurements showed that strong fluorescence generated by HPPH-Cyanine dye (HPPH-CD), having high fluorescence quantum yield and long wavelength fluorescence emission, allowed deep tissue imaging. We also report in vivo fluorescence measurements of the conjugate in Nude mice bearing A549 human non-small cell lung carcinoma (NSCLC) tumors at 24 hr post injection to evaluate tumor detection ability of the conjugate. Our results indicate that the HPPH-CD shows preferential uptake in tumors compared to surrounding normal tissue at 24 hr post injection. This study demonstrates a potential use of HPPH-CD in detection (fluorescence imaging) and treatment (PDT) of deeply seated tumors.

    1. Epigenetic Modifications, Alcoholic Brain and Potential Drug Targets

      Science.gov (United States)

      Jangra, Ashok; Sriram, Chandra Shaker; Pandey, Suryanarayan; Choubey, Priyansha; Rajput, Prabha; Saroha, Babita; Bezbaruah, Babul Kumar; Lahkar, Mangala

      2016-01-01

      Acute and chronic alcohol exposure evidently influences epigenetic changes, both transiently and permanently, and these changes in turn influence a variety of cells and organ systems throughout the body. Many of the alcohol-induced epigenetic modifications can contribute to cellular adaptations that ultimately lead to behavioral tolerance and alcohol dependence. The persistence of behavioral changes demonstrates that long-lasting changes in gene expression, within particular regions of the brain, may contribute importantly to the addiction phenotype. The research activities over the past years have demonstrated a crucial role of epigenetic mechanisms in causing long lasting and transient changes in the expression of several genes in diverse tissues, including brain. This has stimulated recent research work that is aimed at characterizing the influence of epigenetic regulatory events in mediating the long lasting and transient effects of alcohol abuse on the brain in humans and animal models of alcohol addiction. In this study, we update our current understanding of the impact of alcohol exposure on epigenetic mechanisms in the brain and refurbish the knowledge of epigenetics in the direction of new drugs development. PMID:27780992

    2. Polysaccharide-based micro/nanocarriers for oral colon-targeted drug delivery.

      Science.gov (United States)

      Zhang, Lin; Sang, Yuan; Feng, Jing; Li, Zhaoming; Zhao, Aili

      2016-08-01

      Oral colon-targeted drug delivery has attracted many researchers because of its distinct advantages of increasing the bioavailability of the drug at the target site and reducing the side effects. Polysaccharides that are precisely activated by the physiological environment of the colon hold greater promise for colon targeting. Considerable research efforts have been directed towards developing polysaccharide-based micro/nanocarriers. Types of polysaccharides for colon targeting and in vitro/in vivo assessments of polysaccharide-based carriers for oral colon-targeted drug delivery are summarised. Polysaccharide-based microspheres have gained increased importance not just for the delivery of the drugs for the treatment of local diseases associated with the colon (colon cancer, inflammatory bowel disease (IBD), amoebiasis and irritable bowel syndrome (IBS)), but also for it's potential for the delivery of anti-rheumatoid arthritis and anti-chronic stable angina drugs. Besides, Polysaccharide-based micro/nanocarriers such as microbeads, microcapsules, microparticles, nanoparticles, nanogels and nanospheres are also introduced in this review. PMID:26766303

    3. From drug response profiling to target addiction scoring in cancer cell models

      Directory of Open Access Journals (Sweden)

      Bhagwan Yadav

      2015-10-01

      Full Text Available Deconvoluting the molecular target signals behind observed drug response phenotypes is an important part of phenotype-based drug discovery and repurposing efforts. We demonstrate here how our network-based deconvolution approach, named target addiction score (TAS, provides insights into the functional importance of druggable protein targets in cell-based drug sensitivity testing experiments. Using cancer cell line profiling data sets, we constructed a functional classification across 107 cancer cell models, based on their common and unique target addiction signatures. The pan-cancer addiction correlations could not be explained by the tissue of origin, and only correlated in part with molecular and genomic signatures of the heterogeneous cancer cells. The TAS-based cancer cell classification was also shown to be robust to drug response data resampling, as well as predictive of the transcriptomic patterns in an independent set of cancer cells that shared similar addiction signatures with the 107 cancers. The critical protein targets identified by the integrated approach were also shown to have clinically relevant mutation frequencies in patients with various cancer subtypes, including not only well-established pan-cancer genes, such as PTEN tumor suppressor, but also a number of targets that are less frequently mutated in specific cancer types, including ABL1 oncoprotein in acute myeloid leukemia. An application to leukemia patient primary cell models demonstrated how the target deconvolution approach offers functional insights into patient-specific addiction patterns, such as those indicative of their receptor-type tyrosine-protein kinase FLT3 internal tandem duplication (FLT3-ITD status and co-addiction partners, which may lead to clinically actionable, personalized drug treatment developments. To promote its application to the future drug testing studies, we have made available an open-source implementation of the TAS calculation in the form

    4. Predicting Molecular Targets for Small-Molecule Drugs with a Ligand-Based Interaction Fingerprint Approach.

      Science.gov (United States)

      Cao, Ran; Wang, Yanli

      2016-06-20

      The computational prediction of molecular targets for small-molecule drugs remains a great challenge. Herein we describe a ligand-based interaction fingerprint (LIFt) approach for target prediction. Together with physics-based docking and sampling methods, we assessed the performance systematically by modeling the polypharmacology of 12 kinase inhibitors in three stages. First, we examined the capacity of this approach to differentiate true targets from false targets with the promiscuous binder staurosporine, based on native complex structures. Second, we performed large-scale profiling of kinase selectivity on the clinical drug sunitinib by means of computational simulation. Third, we extended the study beyond kinases by modeling the cross-inhibition of bromodomain-containing protein 4 (BRD4) for 10 well-established kinase inhibitors. On this basis, we made prospective predictions by exploring new kinase targets for the anticancer drug candidate TN-16, originally known as a colchicine site binder and microtubule disruptor. As a result, p38α was highlighted from a panel of 187 different kinases. Encouragingly, our prediction was validated by an in vitro kinase assay, which showed TN-16 as a low-micromolar p38α inhibitor. Collectively, our results suggest the promise of the LIFt approach in predicting potential targets for small-molecule drugs. PMID:26222196

    5. Identifying co-targets to fight drug resistance based on a random walk model

      Directory of Open Access Journals (Sweden)

      Chen Liang-Chun

      2012-01-01

      Full Text Available Abstract Background Drug resistance has now posed more severe and emergent threats to human health and infectious disease treatment. However, wet-lab approaches alone to counter drug resistance have so far still achieved limited success due to less knowledge about the underlying mechanisms of drug resistance. Our approach apply a heuristic search algorithm in order to extract active network under drug treatment and use a random walk model to identify potential co-targets for effective antibacterial drugs. Results We use interactome network of Mycobacterium tuberculosis and gene expression data which are treated with two kinds of antibiotic, Isoniazid and Ethionamide as our test data. Our analysis shows that the active drug-treated networks are associated with the trigger of fatty acid metabolism and synthesis and nicotinamide adenine dinucleotide (NADH-related processes and those results are consistent with the recent experimental findings. Efflux pumps processes appear to be the major mechanisms of resistance but SOS response is significantly up-regulation under Isoniazid treatment. We also successfully identify the potential co-targets with literature confirmed evidences which are related to the glycine-rich membrane, adenosine triphosphate energy and cell wall processes. Conclusions With gene expression and interactome data supported, our study points out possible pathways leading to the emergence of drug resistance under drug treatment. We develop a computational workflow for giving new insights to bacterial drug resistance which can be gained by a systematic and global analysis of the bacterial regulation network. Our study also discovers the potential co-targets with good properties in biological and graph theory aspects to overcome the problem of drug resistance.

    6. ‘VIROSOMES’ A NOVEL STRATEGY FOR DELIVERY OF DRUGS AND TARGETING: AN OVERVIEW

      Directory of Open Access Journals (Sweden)

      M. Gowtham

      2012-10-01

      Full Text Available Over the years there has been a great revolution in drug delivery technologies. Virosomes drug delivery systems are an example of the various novel drug delivery systems available. A virosome is a drug or vaccine delivery mechanism consisting of unilamellar phospholipid bilayer vesicle incorporating virus derived proteins to allow the virosomes to fuse with target cells. Virosomes are not able to replicate but are pure fusion-active vesicle. These are reconstituted viral envelopes that can serve as vaccines and as vehicles for cellular delivery of macromolecules. The prospect of drug delivery and targeting using virosomes is an interesting field of research and development. Because virosomes are biocompatible, biodegradable, nontoxic, and non-autoimmunogenic, attempts have been made to use them as vaccines or adjuvants as well as delivery systems for drugs, nucleic acids, or genes for therapeutic purposes. The success of virosomal drug delivery depends on the methods used to prepare the encapsulated bioactive materials and incorporate them into the virosomes, as are characterization and formulation of the finished preparation. This article gives an insight of virosomes as a newer method of drug delivery. This article gives an insight of hydrogels and virosomes as a newer futuristic tool.

    7. Prediction of Effective Drug Combinations by Chemical Interaction, Protein Interaction and Target Enrichment of KEGG Pathways

      Directory of Open Access Journals (Sweden)

      Lei Chen

      2013-01-01

      Full Text Available Drug combinatorial therapy could be more effective in treating some complex diseases than single agents due to better efficacy and reduced side effects. Although some drug combinations are being used, their underlying molecular mechanisms are still poorly understood. Therefore, it is of great interest to deduce a novel drug combination by their molecular mechanisms in a robust and rigorous way. This paper attempts to predict effective drug combinations by a combined consideration of: (1 chemical interaction between drugs, (2 protein interactions between drugs’ targets, and (3 target enrichment of KEGG pathways. A benchmark dataset was constructed, consisting of 121 confirmed effective combinations and 605 random combinations. Each drug combination was represented by 465 features derived from the aforementioned three properties. Some feature selection techniques, including Minimum Redundancy Maximum Relevance and Incremental Feature Selection, were adopted to extract the key features. Random forest model was built with its performance evaluated by 5-fold cross-validation. As a result, 55 key features providing the best prediction result were selected. These important features may help to gain insights into the mechanisms of drug combinations, and the proposed prediction model could become a useful tool for screening possible drug combinations.

    8. Autophagy enhances intestinal epithelial tight junction barrier function by targeting claudin-2 protein degradation.

      Science.gov (United States)

      Nighot, Prashant K; Hu, Chien-An Andy; Ma, Thomas Y

      2015-03-13

      Autophagy is an intracellular degradation pathway and is considered to be an essential cell survival mechanism. Defects in autophagy are implicated in many pathological processes, including inflammatory bowel disease. Among the innate defense mechanisms of intestinal mucosa, a defective tight junction (TJ) barrier has been postulated as a key pathogenic factor in the causation and progression of inflammatory bowel disease by allowing increased antigenic permeation. The cross-talk between autophagy and the TJ barrier has not yet been described. In this study, we present the novel finding that autophagy enhances TJ barrier function in Caco-2 intestinal epithelial cells. Nutrient starvation-induced autophagy significantly increased transepithelial electrical resistance and reduced the ratio of sodium/chloride paracellular permeability. Nutrient starvation reduced the paracellular permeability of small-sized urea but not larger molecules. The role of autophagy in the modulation of paracellular permeability was confirmed by pharmacological induction as well as pharmacological and genetic inhibition of autophagy. Consistent with the autophagy-induced reduction in paracellular permeability, a marked decrease in the level of the cation-selective, pore-forming TJ protein claudin-2 was observed after cell starvation. Starvation reduced the membrane presence of claudin-2 and increased its cytoplasmic, lysosomal localization. Therefore, our data show that autophagy selectively reduces epithelial TJ permeability of ions and small molecules by lysosomal degradation of the TJ protein claudin-2.

    9. Iontophoresis of minoxidil sulphate loaded microparticles, a strategy for follicular drug targeting?

      Science.gov (United States)

      Gelfuso, Guilherme M; Barros, M Angélica de Oliveira; Delgado-Charro, M Begoña; Guy, Richard H; Lopez, Renata F V

      2015-10-01

      The feasibility of targeting drugs to hair follicles by a combination of microencapsulation and iontophoresis has been evaluated. Minoxidil sulphate (MXS), which is used in the treatment of alopecia, was selected as a relevant drug with respect to follicular penetration. The skin permeation and disposition of MXS encapsulated in chitosan microparticles (MXS-MP) was evaluated in vitro after passive and iontophoretic delivery. Uptake of MXS was quantified at different exposure times in the stratum corneum (SC) and hair follicles. Microencapsulation resulted in increased (6-fold) drug accumulation in the hair follicles relative to delivery from a simple MXS solution. Application of iontophoresis enhanced follicular delivery for both the solution and the microparticle formulations. It appears, therefore, that microencapsulation and iontophoresis can act synergistically to enhance topical drug targeting to hair follicles.

    10. Nanotechnology-based drug delivery treatments and specific targeting therapy for age-related macular degeneration.

      Science.gov (United States)

      Lin, Tai-Chi; Hung, Kuo-Hsuan; Peng, Chi-Hsien; Liu, Jorn-Hon; Woung, Lin-Chung; Tsai, Ching-Yao; Chen, Shih-Jen; Chen, Yan-Ting; Hsu, Chih-Chien

      2015-11-01

      Nanoparticles combined with cells, drugs, and specially designed genes provide improved therapeutic efficacy in studies and clinical setting, demonstrating a new era of treatment strategy, especially in retinal diseases. Nanotechnology-based drugs can provide an essential platform for sustaining, releasing and a specific targeting design to treat retinal diseases. Poly-lactic-co-glycolic acid is the most widely used biocompatible and biodegradable polymer approved by the Food and Drug Administration. Many studies have attempted to develop special devices for delivering small-molecule drugs, proteins, and other macromolecules consistently and slowly. In this article, we first review current progress in the treatment of age-related macular degeneration. Then, we discuss the function of vascular endothelial growth factor (VEGF) and the pharmacological effects of anti-VEGF-A antibodies and soluble or modified VEGF receptors. Lastly, we summarize the combination of antiangiogenic therapy and nanomedicines, and review current potential targeting therapy in age-related macular degeneration.

    11. Iontophoresis of minoxidil sulphate loaded microparticles, a strategy for follicular drug targeting?

      Science.gov (United States)

      Gelfuso, Guilherme M; Barros, M Angélica de Oliveira; Delgado-Charro, M Begoña; Guy, Richard H; Lopez, Renata F V

      2015-10-01

      The feasibility of targeting drugs to hair follicles by a combination of microencapsulation and iontophoresis has been evaluated. Minoxidil sulphate (MXS), which is used in the treatment of alopecia, was selected as a relevant drug with respect to follicular penetration. The skin permeation and disposition of MXS encapsulated in chitosan microparticles (MXS-MP) was evaluated in vitro after passive and iontophoretic delivery. Uptake of MXS was quantified at different exposure times in the stratum corneum (SC) and hair follicles. Microencapsulation resulted in increased (6-fold) drug accumulation in the hair follicles relative to delivery from a simple MXS solution. Application of iontophoresis enhanced follicular delivery for both the solution and the microparticle formulations. It appears, therefore, that microencapsulation and iontophoresis can act synergistically to enhance topical drug targeting to hair follicles. PMID:26222406

    12. Drug Target Optimization in Chronic Myeloid Leukemia Using Innovative Computational Platform

      Science.gov (United States)

      Chuang, Ryan; Hall, Benjamin A.; Benque, David; Cook, Byron; Ishtiaq, Samin; Piterman, Nir; Taylor, Alex; Vardi, Moshe; Koschmieder, Steffen; Gottgens, Berthold; Fisher, Jasmin

      2015-02-01

      Chronic Myeloid Leukemia (CML) represents a paradigm for the wider cancer field. Despite the fact that tyrosine kinase inhibitors have established targeted molecular therapy in CML, patients often face the risk of developing drug resistance, caused by mutations and/or activation of alternative cellular pathways. To optimize drug development, one needs to systematically test all possible combinations of drug targets within the genetic network that regulates the disease. The BioModelAnalyzer (BMA) is a user-friendly computational tool that allows us to do exactly that. We used BMA to build a CML network-model composed of 54 nodes linked by 104 interactions that encapsulates experimental data collected from 160 publications. While previous studies were limited by their focus on a single pathway or cellular process, our executable model allowed us to probe dynamic interactions between multiple pathways and cellular outcomes, suggest new combinatorial therapeutic targets, and highlight previously unexplored sensitivities to Interleukin-3.

    13. Progress and Challenges in Developing Aptamer-Functionalized Targeted Drug Delivery Systems.

      Science.gov (United States)

      Jiang, Feng; Liu, Biao; Lu, Jun; Li, Fangfei; Li, Defang; Liang, Chao; Dang, Lei; Liu, Jin; He, Bing; Badshah, Shaikh Atik; Lu, Cheng; He, Xiaojuan; Guo, Baosheng; Zhang, Xiao-Bing; Tan, Weihong; Lu, Aiping; Zhang, Ge

      2015-01-01

      Aptamers, which can be screened via systematic evolution of ligands by exponential enrichment (SELEX), are superior ligands for molecular recognition due to their high selectivity and affinity. The interest in the use of aptamers as ligands for targeted drug delivery has been increasing due to their unique advantages. Based on their different compositions and preparation methods, aptamer-functionalized targeted drug delivery systems can be divided into two main categories: aptamer-small molecule conjugated systems and aptamer-nanomaterial conjugated systems. In this review, we not only summarize recent progress in aptamer selection and the application of aptamers in these targeted drug delivery systems but also discuss the advantages, challenges and new perspectives associated with these delivery systems.

    14. Recent advances in lymphatic targeted drug deliver y system for tumor metastasis

      Institute of Scientific and Technical Information of China (English)

      Xiao-Yu Zhang; Wei-Yue Lu

      2014-01-01

      Te lymphatic system has an important defensive role in the human body. hTe metastasis of most tumors initially spreads through the surrounding lymphatic tissue and eventually forms lymphatic metastatic tumors;the tumor cells may even transfer to other organs to form other types of tumors. Clinically, lymphatic metastatic tumors develop rapidly. Given the limitations of surgical resection and the low effectiveness of radiotherapy and chemotherapy, the treatment of lymphatic metastatic tumors remains a great challenge. Lymph node metastasis may lead to the further spread of tumors and may be predictive of the endpoint event. Under these circumstances, novel and effective lymphatic targeted drug delivery systems have been explored to improve the speciifcity of anticancer drugs to tumor cells in lymph nodes. In this review, we summarize the principles of lymphatic targeted drug delivery and discuss recent advances in the development of lymphatic targeted carriers.

    15. Progress and Challenges in Developing Aptamer-Functionalized Targeted Drug Delivery Systems

      Directory of Open Access Journals (Sweden)

      Feng Jiang

      2015-10-01

      Full Text Available Aptamers, which can be screened via systematic evolution of ligands by exponential enrichment (SELEX, are superior ligands for molecular recognition due to their high selectivity and affinity. The interest in the use of aptamers as ligands for targeted drug delivery has been increasing due to their unique advantages. Based on their different compositions and preparation methods, aptamer-functionalized targeted drug delivery systems can be divided into two main categories: aptamer-small molecule conjugated systems and aptamer-nanomaterial conjugated systems. In this review, we not only summarize recent progress in aptamer selection and the application of aptamers in these targeted drug delivery systems but also discuss the advantages, challenges and new perspectives associated with these delivery systems.

    16. Muscarinic Acetylcholine Receptor Subtypes as Potential Drug Targets for the Treatment of Schizophrenia, Drug Abuse and Parkinson's Disease

      DEFF Research Database (Denmark)

      Dencker, Ditte; Thomsen, Morgane; Wörtwein, Gitta;

      2011-01-01

      's disease and drug abuse. Dopaminergic systems are regulated by cholinergic, especially muscarinic, input. Not surprisingly, increasing evidence implicates muscarinic acetylcholine receptor-mediated pathways as potential targets for the treatment of these disorders classically viewed as "dopamine based...... muscarinic receptor subtypes have greatly advanced our knowledge of the physiological roles of the M(1)-M(5) receptors. Recently, new ligands have been developed that can interact with allosteric sites on different muscarinic receptor subtypes, rather than the conventional (orthosteric) acetylcholine binding...

    17. Multidrug resistance in oncology and beyond : from imaging of drug efflux pumps to cellular drug targets

      NARCIS (Netherlands)

      Nagengast, Wouter B; Oude Munnink, Thijs H; Dijkers, Eli; Hospers, Geesiena; Brouwers, Adrienne H; Schröder, Carolien P; Lub-de Hooge, Marjolijn; de Vries, Elisabeth G E

      2010-01-01

      Resistance of tumor cells to several structurally unrelated classes of natural products, including anthracyclines, taxanes, and epipodophyllotoxines, is often referred as multidrug resistance (MDR). This is associated with ATP-binding cassette transporters, which function as drug efflux pumps such a

    18. Pluronic F127 nanomicelles engineered with nuclear localized functionality for targeted drug delivery

      Energy Technology Data Exchange (ETDEWEB)

      Li, Yong-Yong; Li, Lan; Dong, Hai-Qing, E-mail: inano_donghq@tongji.edu.cn; Cai, Xiao-Jun; Ren, Tian-Bin, E-mail: rentianbin@yeah.net

      2013-07-01

      PKKKRKV (Pro-Lys-Lys-Lys-Arg-Lys-Val, PV7), a seven amino acid peptide, has emerged as one of the primary nuclear localization signals that can be targeted into cell nucleus via the nuclear import machinery. Taking advantage of chemical diversity and biological activities of this short peptide sequence, in this study, Pluronic F127 nanomicelles engineered with nuclear localized functionality were successfully developed for intracellular drug delivery. These nanomicelles with the size ∼ 100 nm were self-assembled from F127 polymer that was flanked with two PV7 sequences at its both terminal ends. Hydrophobic anticancer drug doxorubicin (DOX) with inherent fluorescence was chosen as the model drug, which was found to be efficiently encapsulated into nanomicelles with the encapsulation efficiency at 72.68%. In comparison with the non-functionalized namomicelles, the microscopic observation reveals that PV7 functionalized nanomicelles display a higher cellular uptake, especially into the nucleus of HepG2 cells, due to the nuclear localization signal effects. Both cytotoxicity and apoptosis studies show that the DOX-loaded nanomicelles were more potent than drug nanomicelles without nuclear targeting functionality. It was thus concluded that PV7 functionalized nanomicelles could be a potentially alternative vehicle for nuclear targeting drug delivery. - Highlights: ► A new nuclear targeted drug delivery system based on micelles is developed. ► This micellar system features a core-shell structure with the size peaked at 100 nm. ► PV7, a short peptide sequence, is adopted as a nuclear targeting ligand. ► PV7 functionalized drug loaded micelles are more potent in killing tumor cells.

    19. Targeted brain derived neurotropic factors (BDNF delivery across the blood-brain barrier for neuro-protection using magnetic nano carriers: an in-vitro study.

      Directory of Open Access Journals (Sweden)

      Sudheesh Pilakka-Kanthikeel

      Full Text Available Parenteral use of drugs; such as opiates exert immunomodulatory effects and serve as a cofactor in the progression of HIV-1 infection, thereby potentiating HIV related neurotoxicity ultimately leading to progression of NeuroAIDS. Morphine exposure is known to induce apoptosis, down regulate cAMP response element-binding (CREB expression and decrease in dendritic branching and spine density in cultured cells. Use of neuroprotective agent; brain derived neurotropic factor (BDNF, which protects neurons against these effects, could be of therapeutic benefit in the treatment of opiate addiction. Previous studies have shown that BDNF was not transported through the blood brain barrier (BBB in-vivo.; and hence it is not effective in-vivo. Therefore development of a drug delivery system that can cross BBB may have significant therapeutic advantage. In the present study, we hypothesized that magnetically guided nanocarrier may provide a viable approach for targeting BDNF across the BBB. We developed a magnetic nanoparticle (MNP based carrier bound to BDNF and evaluated its efficacy and ability to transmigrate across the BBB using an in-vitro BBB model. The end point determinations of BDNF that crossed BBB were apoptosis, CREB expression and dendritic spine density measurement. We found that transmigrated BDNF was effective in suppressing the morphine induced apoptosis, inducing CREB expression and restoring the spine density. Our results suggest that the developed nanocarrier will provide a potential therapeutic approach to treat opiate addiction, protect neurotoxicity and synaptic density degeneration.

    20. Is the beta3-adrenoceptor (ADRB3) a potential target for uterorelaxant drugs?

      OpenAIRE

      2007-01-01

      The management of premature birth still remains unsatisfactory. Since the relative lack of efficiency and/or safety of current tocolytic agents have been highlighted, it is necessary to develop new uterorelaxant drugs deprived of important maternal and foetal side effects. Our work reported in this review focuses on a potential new target for tocolytic drugs, the beta3-adrenoceptor (ADRB3). This third type of ADRB is shown to be present and functional in human myometrium. We demonstrated that...

    1. Identification of new drug targets and resistance mechanisms in Mycobacterium tuberculosis.

      Directory of Open Access Journals (Sweden)

      Thomas R Ioerger

      Full Text Available Identification of new drug targets is vital for the advancement of drug discovery against Mycobacterium tuberculosis, especially given the increase of resistance worldwide to first- and second-line drugs. Because traditional target-based screening has largely proven unsuccessful for antibiotic discovery, we have developed a scalable platform for target identification in M. tuberculosis that is based on whole-cell screening, coupled with whole-genome sequencing of resistant mutants and recombineering to confirm. The method yields targets paired with whole-cell active compounds, which can serve as novel scaffolds for drug development, molecular tools for validation, and/or as ligands for co-crystallization. It may also reveal other information about mechanisms of action, such as activation or efflux. Using this method, we identified resistance-linked genes for eight compounds with anti-tubercular activity. Four of the genes have previously been shown to be essential: AspS, aspartyl-tRNA synthetase, Pks13, a polyketide synthase involved in mycolic acid biosynthesis, MmpL3, a membrane transporter, and EccB3, a component of the ESX-3 type VII secretion system. AspS and Pks13 represent novel targets in protein translation and cell-wall biosynthesis. Both MmpL3 and EccB3 are involved in membrane transport. Pks13, AspS, and EccB3 represent novel candidates not targeted by existing TB drugs, and the availability of whole-cell active inhibitors greatly increases their potential for drug discovery.

    2. Studies in Multifunctional Drug Development: Preparation and Evaluation of 11beta-Substituted Estradiol-Drug Conjugates, Cell Membrane Targeting Imaging Agents, and Target Multifunctional Nanoparticles

      Science.gov (United States)

      Dao, KinhLuan Lenny D.

      Cancer is the second leading cause of death after cardiovascular disease in the United State. Despite extensive research in development of antitumor drugs, most of these therapeutic entities often possess nonspecific toxicity, thus they can only be used to treat tumors in higher doses or more frequently. Because of the cytotoxicity and severe side effects, the drug therapeutic window normally is limited. Beside the toxicity issue, antitumor drug are also not selectively taken up by tumor cells, thus the necessitating concentrations that would eradicate the tumor can often not be used. In addition, tumor cells tend to develop resistance against the anticancer drugs after prolonged treatment. Therefore, alleviating the systemic cytotoxicity and side effects, improving in tumor selectivity, high potency, and therapeutic efficacy are still major obstacles in the area of anticancer drug development. A more promising approach for developing a selective agent for cancer is to conjugate a potent therapeutic drug, or an imaging agent with a targeting group, such as antibody or a high binding-specificity small molecule, that selectively recognize the overexpressed antigens or proteins on tumor cells. My research combines several approaches to describe this strategy via using different targeting molecules to different diseases, as well as different potent cytotoxic drugs for different therapies. Three studies related to the preparation and biological evaluation of new therapeutic agents, such as estradiol-drug hybrids, cell membrane targeted molecular imaging agents, and multifunctional NPs will be discussed. The preliminary results of these studies indicated that our new reagents achieved their initial objectives and can be further improved for optimized synthesis and in vivo experiments. The first study describes the method in which we employed a modular assembly approach to synthesize a novel 11beta-substituted steroidal anti-estrogen. The key intermediate was synthesized

    3. High concentrations of drug in target tissues following local controlled release are utilized for both drug distribution and biologic effect: an example with epicardial inotropic drug delivery.

      Science.gov (United States)

      Maslov, Mikhail Y; Edelman, Elazer R; Wei, Abraham E; Pezone, Matthew J; Lovich, Mark A

      2013-10-28

      Local drug delivery preferentially loads target tissues with a concentration gradient from the surface or point of release that tapers down to more distant sites. Drug that diffuses down this gradient must be in unbound form, but such drug can only elicit a biologic effect through receptor interactions. Drug excess loads tissues, increasing gradients and driving penetration, but with limited added biological response. We examined the hypothesis that local application reduces dramatically systemic circulating drug levels but leads to significantly higher tissue drug concentration than might be needed with systemic infusion in a rat model of local epicardial inotropic therapy. Epinephrine was infused systemically or released locally to the anterior wall of the heart using a novel polymeric platform that provides steady, sustained release over a range of precise doses. Epinephrine tissue concentration, upregulation of cAMP, and global left ventricular response were measured at equivalent doses and at doses equally effective in raising indices of contractility. The contractile stimulation by epinephrine was linked to drug tissue levels and commensurate cAMP upregulation for IV systemic infusion, but not with local epicardial delivery. Though cAMP was a powerful predictor of contractility with local application, tissue epinephrine levels were high and variable--only a small fraction of the deposited epinephrine was utilized in second messenger signaling and biologic effect. The remainder of deposited drug was likely used in diffusive transport and distribution. Systemic side effects were far more profound with IV infusion which, though it increased contractility, also induced tachycardia and loss of systemic vascular resistance, which were not seen with local application. Local epicardial inotropic delivery illustrates then a paradigm of how target tissues differentially handle and utilize drug compared to systemic infusion. PMID:23872515

    4. An inflammation-targeting hydrogel for local drug delivery in inflammatory bowel disease.

      Science.gov (United States)

      Zhang, Sufeng; Ermann, Joerg; Succi, Marc D; Zhou, Allen; Hamilton, Matthew J; Cao, Bonnie; Korzenik, Joshua R; Glickman, Jonathan N; Vemula, Praveen K; Glimcher, Laurie H; Traverso, Giovanni; Langer, Robert; Karp, Jeffrey M

      2015-08-12

      There is a clinical need for new, more effective treatments for chronic and debilitating inflammatory bowel disease (IBD), including Crohn's disease and ulcerative colitis. Targeting drugs selectively to the inflamed intestine may improve therapeutic outcomes and minimize systemic toxicity. We report the development of an inflammation-targeting hydrogel (IT-hydrogel) that acts as a drug delivery system to the inflamed colon. Hydrogel microfibers were generated from ascorbyl palmitate, an amphiphile that is generally recognized as safe (GRAS) by the U.S. Food and Drug Administration. IT-hydrogel microfibers loaded with the anti-inflammatory corticosteroid dexamethasone (Dex) were stable, released drug only upon enzymatic digestion, and demonstrated preferential adhesion to inflamed epithelial surfaces in vitro and in two mouse colitis models in vivo. Dex-loaded IT-hydrogel enemas, but not free Dex enemas, administered every other day to mice with colitis resulted in a significant reduction in inflammation and were associated with lower Dex peak serum concentrations and, thus, less systemic drug exposure. Ex vivo analysis of colon tissue samples from patients with ulcerative colitis demonstrated that IT-hydrogel microfibers adhered preferentially to mucosa from inflamed lesions compared with histologically normal sites. The IT-hydrogel drug delivery platform represents a promising approach for targeted enema-based therapies in patients with colonic IBD. PMID:26268315

    5. Multifunctional Micellar Nanocarriers for Tumor-Targeted Delivery of Hydrophobic Drugs.

      Science.gov (United States)

      Dai, Zhi; Tu, Ying; Zhu, Lin

      2016-06-01

      Poor water solubility, low tumor specificity, insufficient cell internalization, and drug resistance are typical among chemotherapy drugs. In this study, the multifunctional micellar nanocarriers containing the PEG2k-pp-PE, a matrix metalloproteinase 2 (MMP2)-labile self-assembling block copolymer, and the TAT-PEG1k-PE, a cell penetrating moiety, were developed for tumor-targeted delivery of hydrophobic drugs. The functional polymers and their nanocarriers were characterized in terms of their size, zeta potential, micelle formation capability, drug loading and release, cellular uptake, and anticancer activity. After the MMP2-mediated cleavage, the protective long chain PEG (PEG2k) was deshielded and the cell penetrating peptide (TAT) was exposed for the enhanced tumor targeting and cellular penetration. In the in vitro studies, the multifunctional nanocarriers showed the improved cellular uptake and anticancer activity in various cancer cells including both drug sensitive and resistant cells, compared to their nonsensitive counterparts and conventional polymeric micelles. Furthermore, the PEG2k-pp-PE and its containing micelles were found to possess the capability to reverse the P-glycoprotein-mediated multidrug resistance. Our results suggested that the multifunctional micellar nanocarriers would be a promising tumor-targeted drug delivery platform, applicable for the MMP2 up-regulated cancers. PMID:27319214

    6. An inflammation-targeting hydrogel for local drug delivery in inflammatory bowel disease.

      Science.gov (United States)

      Zhang, Sufeng; Ermann, Joerg; Succi, Marc D; Zhou, Allen; Hamilton, Matthew J; Cao, Bonnie; Korzenik, Joshua R; Glickman, Jonathan N; Vemula, Praveen K; Glimcher, Laurie H; Traverso, Giovanni; Langer, Robert; Karp, Jeffrey M

      2015-08-12

      There is a clinical need for new, more effective treatments for chronic and debilitating inflammatory bowel disease (IBD), including Crohn's disease and ulcerative colitis. Targeting drugs selectively to the inflamed intestine may improve therapeutic outcomes and minimize systemic toxicity. We report the development of an inflammation-targeting hydrogel (IT-hydrogel) that acts as a drug delivery system to the inflamed colon. Hydrogel microfibers were generated from ascorbyl palmitate, an amphiphile that is generally recognized as safe (GRAS) by the U.S. Food and Drug Administration. IT-hydrogel microfibers loaded with the anti-inflammatory corticosteroid dexamethasone (Dex) were stable, released drug only upon enzymatic digestion, and demonstrated preferential adhesion to inflamed epithelial surfaces in vitro and in two mouse colitis models in vivo. Dex-loaded IT-hydrogel enemas, but not free Dex enemas, administered every other day to mice with colitis resulted in a significant reduction in inflammation and were associated with lower Dex peak serum concentrations and, thus, less systemic drug exposure. Ex vivo analysis of colon tissue samples from patients with ulcerative colitis demonstrated that IT-hydrogel microfibers adhered preferentially to mucosa from inflamed lesions compared with histologically normal sites. The IT-hydrogel drug delivery platform represents a promising approach for targeted enema-based therapies in patients with colonic IBD.

    7. Crowd sourcing a new paradigm for interactome driven drug target identification in Mycobacterium tuberculosis.

      Directory of Open Access Journals (Sweden)

      Rohit Vashisht

      Full Text Available A decade since the availability of Mycobacterium tuberculosis (Mtb genome sequence, no promising drug has seen the light of the day. This not only indicates the challenges in discovering new drugs but also suggests a gap in our current understanding of Mtb biology. We attempt to bridge this gap by carrying out extensive re-annotation and constructing a systems level protein interaction map of Mtb with an objective of finding novel drug target candidates. Towards this, we synergized crowd sourcing and social networking methods through an initiative 'Connect to Decode' (C2D to generate the first and largest manually curated interactome of Mtb termed 'interactome pathway' (IPW, encompassing a total of 1434 proteins connected through 2575 functional relationships. Interactions leading to gene regulation, signal transduction, metabolism, structural complex formation have been catalogued. In the process, we have functionally annotated 87% of the Mtb genome in context of gene products. We further combine IPW with STRING based network to report central proteins, which may be assessed as potential drug targets for development of drugs with least possible side effects. The fact that five of the 17 predicted drug targets are already experimentally validated either genetically or biochemically lends credence to our unique approach.

    8. A novel targeted system to deliver chemotherapeutic drugs to EphA2-expressing cancer cells

      OpenAIRE

      Wang, Si; Placzek, William J.; Stebbins, John L.; Mitra, Sayantan; Noberini, Roberta; Koolpe, Mitchell; Zhang, Ziming; Dahl, Russell; Pasquale, Elena B.; Pellecchia, Maurizio

      2012-01-01

      The efficacy of anti-cancer drugs is often limited by their systemic toxicities and adverse side effects. We report that the EphA2 receptor is over-expressed preferentially in several human cancer cell lines compared to normal tissues and that an EphA2 targeting peptide (YSAYPDSVPMMS) can be effective in delivering anti-cancer agents to such tumors. Hence, we report on the synthesis and characterizations of a novel EphA2-targeting agent conjugated with the chemotherapeutic drug paclitaxel. We...

    9. Ocular Drug Delivery - New Strategies for Targeting Anterior and Posterior Segments of the Eye.

      Science.gov (United States)

      Fangueiro, Joana F; Veiga, Francisco; Silva, Amelia M; Souto, Eliana B

      2016-01-01

      The ocular delivery of drugs encounters several limitations because of the dynamic and static barriers of the human's eye anatomy and physiology. The poor bioavailability of drugs are mainly related to the topical administration, i.e. eye drops which is the most common drug dosage form for the treatment of eye pathologies. Precorneal factors and drug limitations related to its solubility and susceptibility for physicochemical degradation could be the main reasons for the poor permeation and uptake in the ocular mucosa. Pathologies affecting the anterior and posterior segment of the eye are thereafter difficult to be treated and, given the chronic and degenerative nature of some of these injuries, it is crucial to improve drugs therapeutic effect. Nanotechnology-based delivery systems could be a suitable approach to overcome these limitations. Some of the most important colloidal systems are highlighted in this review, such as the use of mucoadhesive polymers, prodrugs, nanogels, liposomes, microemulsions, lipid and polymeric nanoparticles, cyclodextrins, dendrimers and nanocrystals, along with their clinical and therapeutic relevance for the administration of drugs for ocular delivery. PMID:26675225

    10. The Validation of Nematode-Specific Acetylcholine-Gated Chloride Channels as Potential Anthelmintic Drug Targets

      Science.gov (United States)

      Wever, Claudia M.; Farrington, Danielle; Dent, Joseph A.

      2015-01-01

      New compounds are needed to treat parasitic nematode infections in humans, livestock and plants. Small molecule anthelmintics are the primary means of nematode parasite control in animals; however, widespread resistance to the currently available drug classes means control will be impossible without the introduction of new compounds. Adverse environmental effects associated with nematocides used to control plant parasitic species are also motivating the search for safer, more effective compounds. Discovery of new anthelmintic drugs in particular has been a serious challenge due to the difficulty of obtaining and culturing target parasites for high-throughput screens and the lack of functional genomic techniques to validate potential drug targets in these pathogens. We present here a novel strategy for target validation that employs the free-living nematode Caenorhabditis elegans to demonstrate the value of new ligand-gated ion channels as targets for anthelmintic discovery. Many successful anthelmintics, including ivermectin, levamisole and monepantel, are agonists of pentameric ligand-gated ion channels, suggesting that the unexploited pentameric ion channels encoded in parasite genomes may be suitable drug targets. We validated five members of the nematode-specific family of acetylcholine-gated chloride channels as targets of agonists with anthelmintic properties by ectopically expressing an ivermectin-gated chloride channel, AVR-15, in tissues that endogenously express the acetylcholine-gated chloride channels and using the effects of ivermectin to predict the effects of an acetylcholine-gated chloride channel agonist. In principle, our strategy can be applied to validate any ion channel as a putative anti-parasitic drug target. PMID:26393923

    11. Surface Modified Multifunctional and Stimuli Responsive Nanoparticles for Drug Targeting: Current Status and Uses.

      Science.gov (United States)

      Siafaka, Panoraia I; Üstündağ Okur, Neslihan; Karavas, Evangelos; Bikiaris, Dimitrios N

      2016-01-01

      Nanocarriers, due to their unique features, are of increased interest among researchers working with pharmaceutical formulations. Polymeric nanoparticles and nanocapsules, involving non-toxic biodegradable polymers, liposomes, solid lipid nanoparticles, and inorganic-organic nanomaterials, are among the most used carriers for drugs for a broad spectrum of targeted diseases. In fact, oral, injectable, transdermal-dermal and ocular formulations mainly consist of the aforementioned nanomaterials demonstrating promising characteristics such as long circulation, specific targeting, high drug loading capacity, enhanced intracellular penetration, and so on. Over the last decade, huge advances in the development of novel, safer and less toxic nanocarriers with amended properties have been made. In addition, multifunctional nanocarriers combining chemical substances, vitamins and peptides via coupling chemistry, inorganic particles coated by biocompatible materials seem to play a key role considering that functionalization can enhance characteristics such as biocompatibility, targetability, environmental friendliness, and intracellular penetration while also have limited side effects. This review aims to summarize the "state of the art" of drug delivery carriers in nanosize, paying attention to their surface functionalization with ligands and other small or polymeric compounds so as to upgrade active and passive targeting, different release patterns as well as cell targeting and stimuli responsibility. Lastly, future aspects and potential uses of nanoparticulated drug systems are outlined. PMID:27589733

    12. PET studies on P-glycoprotein function in the blood-brain barrier : How it affects uptake and binding of drugs within the CNS

      NARCIS (Netherlands)

      Elsinga, PH; Hendrikse, Nelis; Bart, J; Vaalburg, W; van Waarde, A

      2004-01-01

      Permeability of the blood-brain barrier (BBB) is one of the factors determining the bioavailability of therapeutic drugs. The BBB only allows entry of lipophilic compounds with low molecular weights by passive diffusion. However, many lipophilic drugs show negligible brain uptake. They are substrate

    13. Crucial role of the biological barrier at the primary targeted organs in controlling the translocation and toxicity of multi-walled carbon nanotubes in the nematode Caenorhabditis elegans

      Science.gov (United States)

      Wu, Qiuli; Li, Yinxia; Li, Yiping; Zhao, Yunli; Ge, Ling; Wang, Haifang; Wang, Dayong

      2013-10-01

      Multi-walled carbon nanotubes (MWCNTs) can be translocated into the targeted organs of organisms. We employed a model organism of the nematode Caenorhabditis elegans to investigate the role of a biological barrier at the primary targeted organs in regulating the translocation and toxicity formation of MWCNTs. A prolonged exposure to MWCNTs at predicted environmental relevant concentrations caused adverse effects associated with both the primary and secondary targeted organs on nematodes. The function of PEGylated modification in reducing MWCNTs toxicity might be mainly due to the suppression of their translocation into secondary targeted organs through the primary targeted organs. A biological barrier at the primary targeted organs contributed greatly to the control of MWCNTs translocation into secondary targeted organs, as indicated by functions of Mn-SODs required for prevention of oxidative stress in the primary targeted organs. Over-expression of Mn-SODs in primary targeted organs effectively suppressed the translocation and toxicity of MWCNTs. Our work highlights the crucial role of the biological barrier at the primary targeted organs in regulating the translocation and toxicity formation of MWCNTs. Our data also shed light on the future development of engineered nanomaterials (ENMs) with improved biocompatibility and design of prevention strategies against ENMs toxicity.Multi-walled carbon nanotubes (MWCNTs) can be translocated into the targeted organs of organisms. We employed a model organism of the nematode Caenorhabditis elegans to investigate the role of a biological barrier at the primary targeted organs in regulating the translocation and toxicity formation of MWCNTs. A prolonged exposure to MWCNTs at predicted environmental relevant concentrations caused adverse effects associated with both the primary and secondary targeted organs on nematodes. The function of PEGylated modification in reducing MWCNTs toxicity might be mainly due to the suppression

    14. Methodologies and Application of New Target Identification, Drug Action Mechanism Investigation and New Molecular Entity Discovery

      Institute of Scientific and Technical Information of China (English)

      2011-01-01

      @@ The group, headed by Prof.JIANG Hualiang with the CAS Shanghai Institute of Materia Medica, has been centering on the basic research of pharmaceutical science, including identifying new targets, studying new drug action mechanisms and discovering new drug candidates.On the basis of new methodology development, an effective multi-disciplinary research platform for drug research and discovery has been established through the integration of different disciplines of computational chemistry, organic synthesis, molecular and cellular biology.A bunch of creative results have been achieved in these areas.

    15. DEVELOPMENT AND EVALUATION OF ENZYMATICALY TRIGGERED MULTIPARTICULATE COLON TARGETED DRUG DELIVERY SYSTEM

      Directory of Open Access Journals (Sweden)

      Mohapatra Santosh K

      2011-02-01

      Full Text Available The most critical challenge in oral colon specific drug delivery approach is to preserve the formulation during its passage through the stomach and about first six meters of the small intestine. Microbial enzyme-triggering mechanisms seem to be promising to provide more reliable colonic delivery .The objective of the present study was to develop biodegradable colon targeted multiparticulate system by using guar gum. In this study drug (Budesonide loaded pellets were coated with aqueous guar gum solution and subjected to In-vitro drug release studies simulating GIT with and without enzyme as well as coating properties were evaluated by SEM. In-vitro release studies indicates that drug release after 4.5 h lag time in presence of enzyme and lag time increase in absence of enzyme which indicated the enzyme triggered system for colonic release. This Multiparticulate system can be effectively used for colonic drug delivery for effective treatment of colonic diseases.

    16. Doxorubicin loaded PVA coated iron oxide nanoparticles for targeted drug delivery

      International Nuclear Information System (INIS)

      Magnetic drug targeting is a drug delivery system that can be used in locoregional cancer treatment. Coated magnetic particles, called carriers, are very useful for delivering chemotherapeutic drugs. Magnetic carriers were synthesized by coprecipitation of iron oxide followed by coating with polyvinyl alcohol (PVA). Characterization was carried out using X-ray diffraction, TEM, TGA, FTIR and VSM techniques. The magnetic core of the carriers was magnetite (Fe3O4), with average size of 10 nm. The room temperature VSM measurements showed that magnetic particles were superparamagnetic. The amount of PVA bound to the iron oxide nanoparticles were estimated by thermogravimetric analysis (TGA) and the attachment of PVA to the iron oxide nanoparticles was confirmed by FTIR analysis. Doxorubicin (DOX) drug loading and release profiles of PVA coated iron oxide nanoparticles showed that up to 45% of adsorbed drug was released in 80 h, the drug release followed the Fickian diffusion-controlled process. The binding of DOX to the PVA was confirmed by FTIR analysis. The present findings show that DOX loaded PVA coated iron oxide nanoparticles are promising for magnetically targeted drug delivery.

    17. Gene Ontology and KEGG Pathway Enrichment Analysis of a Drug Target-Based Classification System.

      Directory of Open Access Journals (Sweden)

      Lei Chen

      Full Text Available Drug-target interaction (DTI is a key aspect in pharmaceutical research. With the ever-increasing new drug data resources, computational approaches have emerged as powerful and labor-saving tools in predicting new DTIs. However, so far, most of these predictions have been based on structural similarities rather than biological relevance. In this study, we proposed for the first time a "GO and KEGG enrichment score" method to represent a certain category of drug molecules by further classification and interpretation of the DTI database. A benchmark dataset consisting of 2,015 drugs that are assigned to nine categories ((1 G protein-coupled receptors, (2 cytokine receptors, (3 nuclear receptors, (4 ion channels, (5 transporters, (6 enzymes, (7 protein kinases, (8 cellular antigens and (9 pathogens was constructed by collecting data from KEGG. We analyzed each category and each drug for its contribution in GO terms and KEGG pathways using the popular feature selection "minimum redundancy maximum relevance (mRMR" method, and key GO terms and KEGG pathways were extracted. Our analysis revealed the top enriched GO terms and KEGG pathways of each drug category, which were highly enriched in the literature and clinical trials. Our results provide for the first time the biological relevance among drugs, targets and biological functions, which serves as a new basis for future DTI predictions.

    18. Layered Double Hydroxide Modified by PEGylated Hyaluronic Acid as a Hybrid Nanocarrier for Targeted Drug Delivery

      Institute of Scientific and Technical Information of China (English)

      董岸杰; 李雪; 王伟伟; 韩尚聪; 刘鉴锋; 刘金剑; 赵军强; 许舒欣; 邓联东

      2016-01-01

      In recent years, organic-inorganic hybrid nanocarriers are explored for effective drug delivery and pref-erable disease treatments. In this study, using 5-fluorouracil(5-FU)as electronegative model drug, a new type of organic-inorganic hybrid drug delivery system(LDH/HA-PEG/5-FU)was conceived and manufactured by the ad-sorption of PEGylated hyaluronic acid(HA-PEG)on the surface of layered double hydroxide(LDH, prepared via hydrothermal method)and the intercalation of 5-FU in the interlamination of LDH via ion exchange strategy. The drug loading amount of LDH/HA-PEG/5-FU achieved as high as 34.2%. LDH, LDH/5-FU and LDH/HA-PEG/5-FU were characterized by FT-IR, XRD, TGA, laser particle size analyzer and SEM. With the benefit of pH-degradable feature of LDH and enzyme-degradable feature of HA, LDH/HA-PEG/5-FU showed pH-degradable and enzyme-degradable capacity inin vitro drug release. Moreover, the drug carrier LDH/HA-PEG contained biocom-patible PEG and tumor-targeted HA, resulting in lower cytotoxicity and better endocytosis compared with LDHin vitro. It was suggested that the organic-inorganic hybrid drug delivery system, which was endowed with the proper-ties of controlled release, low toxicity and tumor-targeting delivery for ameliorative cancer therapy, was advisable and might be applied further to fulfill other treatments.

    19. Combating malaria with nanotechnology-based targeted and combinatorial drug delivery strategies.

      Science.gov (United States)

      Thakkar, Miloni; S, Brijesh

      2016-08-01

      Despite the advancement of science, infectious diseases such as malaria remain an ongoing challenge globally. The main reason this disease still remains a menace in many countries around the world is the development of resistance to many of the currently available anti-malarial drugs. While developing new drugs is rather expensive and the prospect of a potent vaccine is still evading our dream of a malaria-free world, one of the feasible options is to package the older drugs in newer ways. For this, nano-sized drug delivery vehicles have been used and are proving to be promising prospects in the way malaria will be treated in the future. Since, monotherapy has given way to combination therapy in malaria treatment, nanotechnology-based delivery carriers enable to encapsulate various drug moieties in the same package, thus avoiding the complications involved in conjugation chemistry to produce hybrid drug molecules. Further, we envisage that using targeted delivery approaches, we may be able to achieve a much better radical cure and curb the side effects associated with the existing drug molecules. Thus, this review will focus on some of the nanotechnology-based combination and targeted therapies and will discuss the possibilities of better therapies that may be developed in the future. PMID:27067712

    20. Doxorubicin loaded PVA coated iron oxide nanoparticles for targeted drug delivery

      Energy Technology Data Exchange (ETDEWEB)

      Kayal, S. [School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798 (Singapore); Ramanujan, R.V., E-mail: ramanujan@ntu.edu.sg [School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798 (Singapore)

      2010-04-06

      Magnetic drug targeting is a drug delivery system that can be used in locoregional cancer treatment. Coated magnetic particles, called carriers, are very useful for delivering chemotherapeutic drugs. Magnetic carriers were synthesized by coprecipitation of iron oxide followed by coating with polyvinyl alcohol (PVA). Characterization was carried out using X-ray diffraction, TEM, TGA, FTIR and VSM techniques. The magnetic core of the carriers was magnetite (Fe{sub 3}O{sub 4}), with average size of 10 nm. The room temperature VSM measurements showed that magnetic particles were superparamagnetic. The amount of PVA bound to the iron oxide nanoparticles were estimated by thermogravimetric analysis (TGA) and the attachment of PVA to the iron oxide nanoparticles was confirmed by FTIR analysis. Doxorubicin (DOX) drug loading and release profiles of PVA coated iron oxide nanoparticles showed that up to 45% of adsorbed drug was released in 80 h, the drug release followed the Fickian diffusion-controlled process. The binding of DOX to the PVA was confirmed by FTIR analysis. The present findings show that DOX loaded PVA coated iron oxide nanoparticles are promising for magnetically targeted drug delivery.

    1. Exploring New Drug Targets through the Identification of Target Molecules of Bioactive Natural Products.

      Science.gov (United States)

      Arai, Masayoshi

      2016-01-01

      With the development of cell biology and microbiology, it has become easy to culture many types of animal cells and microbes, and they are frequently used for phenotypic screening to explore medicinal seeds. On the other hand, it is recognized that cells and pathogenic microbes present in pathologic sites and infected regions of the human body display unique properties different from those under general culture conditions. We isolated several bioactive compounds from marine medicinal resources using constructed bioassay-guided separation focusing on the unique changes in the characteristics of cells and pathogenic microbes (Mycobacterium spp.) in the human body under disease conditions. In addition, we also carried out identification studies of target molecules of the bioactive compounds by methods utilizing the gene expression profile, transformants of cells or microbes, synthetic probe molecules of the isolated compounds, etc., since bioactive compounds isolated from the phenotypic screening system often target new molecules. This review presents our phenotypic screening systems, isolation of bioactive compounds from marine medicinal resources, and target identification of bioactive compounds. PMID:27040348

    2. Targeted Skipping of Human Dystrophin Exons in Transgenic Mouse Model Systemically for Antisense Drug Development

      OpenAIRE

      Bo Wu; Ehsan Benrashid; Peijuan Lu; Caryn Cloer; Allen Zillmer; Mona Shaban; Qi Long Lu

      2011-01-01

      Antisense therapy has recently been demonstrated with great potential for targeted exon skipping and restoration of dystrophin production in cultured muscle cells and in muscles of Duchenne Muscular Dystrophy (DMD) patients. Therapeutic values of exon skipping critically depend on efficacy of the drugs, antisense oligomers (AOs). However, no animal model has been established to test AO targeting human dystrophin exon in vivo systemically. In this study, we applied Vivo-Morpholino to the hDMD/...

    3. Phytochemical-mediated Protein Expression Profiling and the Potential Applications in Therapeutic Drug Target Identifications.

      Science.gov (United States)

      Wong, Fai-Chu; Tan, Siok-Thing; Chai, Tsun-Thai

      2016-07-29

      Many phytochemicals derived from edible medicinal plants have been investigated intensively for their various bioactivities. However, the detailed mechanism and their corresponding molecular targets frequently remain elusive. In this review, we present a summary of the research works done on phytochemical-mediated molecular targets, identified via proteomic approach. Concurrently, we also highlighted some pharmaceutical drugs which could be traced back to their origins in phytochemicals. For ease of presentation, these identified protein targets were categorized into two important healthcare-related fields, namely anti-bacterial and anti-cancer research. Through this review, we hope to highlight the usefulness of comparative proteomic as a powerful tool in phytochemical-mediated protein target identifications. Likewise, we wish to inspire further investigations on some of these protein targets identified over the last few years. With contributions from all researchers, the accumulative efforts could eventually lead to the discovery of some target-specific, low-toxicity therapeutic agents. PMID:26193174

    4. Depth-targeted transvascular drug delivery by using annular-shaped photomechanical waves

      Science.gov (United States)

      Akiyama, Takuya; Sato, Shunichi; Ashida, Hiroshi; Terakawa, Mitsuhiro

      2011-02-01

      Laser-based drug delivery is attractive for the targeting capability due to high spatial controllability of laser energy. Recently, we found that photomechanical waves (PMWs) can transiently increase the permeability of blood vessels in skin, muscle and brain of rats. In this study, we examined the use of annular-shaped PMWs to increase pressure at target depths due to superposition effect of pressure waves. This can increase the permeability of blood vessels located in the specific depth regions, enabling depth-targeted transvascular drug delivery. Annular PMWs were produced by irradiating a laser-absorbing material with annular-shaped pulsed laser beams that were produced by using an axicon lens. We first examined propagation and pressure characteristics of annular PMWs in tissue phantoms and confirmed an increased pressure at a target depth, which can be controlled by changing laser parameters. We injected Evans blue (EB) into a rat tail vein, and annular PMWs (inner diameter, 3 mm; outer diameter, 5 mm) were applied from the myofascial surface of the anterior tibialis muscle. After perfusion fixation, we observed fluorescence originating from EB in the tissue. We observed intense fluorescence at a target depth region of around 5 mm. These results demonstrate the capability of annular PMWs for depth-targeted transvascular drug delivery.

    5. Enhanced Oral Delivery of Protein Drugs Using Zwitterion-Functionalized Nanoparticles to Overcome both the Diffusion and Absorption Barriers.

      Science.gov (United States)

      Shan, Wei; Zhu, Xi; Tao, Wei; Cui, Yi; Liu, Min; Wu, Lei; Li, Lian; Zheng, Yaxian; Huang, Yuan

      2016-09-28

      Oral delivery of protein drugs based on nanoparticulate delivery system requires permeation of the nanoparticles through the mucus layer and subsequent absorption via epithelial cells. However, overcoming these two barriers requires very different or even contradictory surface properties of the nanocarriers, which greatly limits the oral bioavailability of macromolecular drugs. Here we report a simple zwitterions-based nanoparticle (NP) delivery platform, which showed a great potency in simultaneously overcoming both the mucus and epithelium barriers. The dense and hydrophilic coating of zwitterions endows the NPs with excellent mucus penetrating ability. Moreover, the zwitterions-based NPs also possessed excellent affinity with epithelial cells, which significantly improved (4.5-fold) the cellular uptake of DLPC NPs, compared to PEGylated NPs. Our results also indicated that this affinity was due to the interaction between zwitterions and the cell surface transporter PEPT1. Moreover, the developed NPs loaded with insulin could induce a prominent hypoglycemic response in diabetic rats following oral administration. These results suggest that zwitterions-based NPs might provide a new perspective for oral delivery of protein therapeutics.

    6. Application of CellDesigner to the Selection of Anticancer Drug Targets: Test Case using P53

      OpenAIRE

      Isea, Raul; Hoebeke, Johan; Mayo, Rafael; Alvarez, Fernando; Holmes, David S.

      2013-01-01

      Cancer is a disease involving many genes, consequently it has been difficult to design anticancer drugs that are efficacious over a broad range of cancers. The robustness of cellular responses to gene knockout and the need to reduce undesirable side effects also contribute to the problem of effective anti-cancer drug design. To promote the successful selection of drug targets, each potential target should be subjected to a systems biology scrutiny to locate effective and specific targets whil...

    7. Drug delivery strategies to enhance the permeability of the blood-brain barrier for treatment of glioma.

      Science.gov (United States)

      Zhang, Fang; Xu, Chun-Lei; Liu, Chun-Mei

      2015-01-01

      Gliomas are amongst the most insidious and destructive types of brain cancer and are associated with a poor prognosis, frequent recurrences, and extremely high lethality despite combination treatment of surgery, radiotherapy, and chemotherapy. The existence of the blood-brain barrier (BBB) restricts the delivery of therapeutic molecules into the brain and offers the clinical efficacy of many pharmaceuticals that have been demonstrated to be effective for other kinds of tumors. This challenge emphasizes the need to be able to deliver drugs effectively across the BBB to reach the brain parenchyma. Enhancement of the permeability of the BBB and being able to transport drugs across it has been shown to be a promising strategy to improve drug absorption and treatment efficacy. This review highlights the innovative technologies that have been introduced to enhance the permeability of the BBB and to obtain an optimal distribution and concentration of drugs in the brain to treat gliomas, such as nanotechniques, hyperthermia techniques, receptor-mediated transport, cell-penetrating peptides, and cell-mediated delivery.

    8. Cross-sectional study exploring barriers to adverse drug reactions reporting in community pharmacy settings in Dhaka, Bangladesh

      Science.gov (United States)

      Amin, Mohammad Nurul; Khan, Tahir Mehmood; Dewan, Syed Masudur Rahman; Islam, Mohammad Safiqul; Moghal, Mizanur Rahman

      2016-01-01

      Objectives To assess community pharmacists'/pharmacy technicians' knowledge and perceptions about adverse drug reactions (ADRs) and barriers towards the reporting of such reactions in Dhaka, Bangladesh. Method A cross-sectional study was planned to approach potential respondents for the study. A self-administered questionnaire was delivered to community pharmacists/pharmacy technicians (N=292) practising in Dhaka, Bangladesh. Results The overall response to the survey was 69.5% (n=203). The majority of the sample was comprised of pharmacy technicians (152, 74.9%) who possessed a diploma in pharmacy, followed by pharmacists (37, 18.2%) and others (12, 5.9%). Overall, 72 (35.5%) of the respondents disclosed that they had experienced an ADR at their pharmacy, yet more than half (105, 51.7%) were not familiar with the existence of an ADR reporting body in Bangladesh. Exploring the barriers to the reporting of ADRs, it was revealed that the top four barriers to ADR reporting were ‘I do not know how to report (Relative Importance Index (RII)=0.998)’, ‘reporting forms are not available (0.996)’, ‘I am not motivated to report (0.997)’ and ‘Unavailability of professional environment to discuss about ADR (RII=0.939)’. In addition to these, a majority (141, 69.46%) were not confident about the classification of ADRs (RII=0.889) and were afraid of legal liabilities associated with reporting ADRs (RII=0.806). Moreover, a lack of knowledge about pharmacotherapy and the detection of ADRs was another major factor hindering their reporting (RII=0.731). Conclusions The Directorate of Drug Administration in Bangladesh needs to consider the results of this study to help it improve and simplify ADR reporting in Bangladeshi community pharmacy settings. PMID:27489151

    9. P-glycoprotein alters blood–brain barrier penetration of antiepileptic drugs in rats with medically intractable epilepsy

      Directory of Open Access Journals (Sweden)

      Ma A

      2013-12-01

      Full Text Available Aimei Ma,1,* Cuicui Wang,2,3,* Yinghui Chen,2,3 Weien Yuan4 1Department of Neurology, The People's Hospital of Shanxi Province, Taiyuan, 2Department of Neurology, Jinshan Hospital, Fudan University, 3Department of Neurology, Shanghai Medical College, Shanghai, 4School of Pharmacy, Shanghai JiaoTong University, Shanghai, People's Republic of China *These authors contributed equally to this work Abstract: P-glycoprotein is one of the earliest known multidrug transporters and plays an important role in resistance to chemotherapeutic drugs. In this study, we detected levels of P-glycoprotein and its mRNA expression in a rat brain model of medically intractable epilepsy established by amygdala kindling and drug selection. We investigated whether inhibition of P-glycoprotein affects the concentration of antiepileptic drugs in cortical extracellular fluid. We found that levels of P-glycoprotein and its mRNA expression were upregulated in epileptic cerebral tissue compared with cerebral tissue from normal rats. The concentrations of two antiepileptic drugs, carbamazepine and phenytoin, were very low in the cortical extracellular fluid of rats with medically intractable epilepsy, and were restored after blockade of P-glycoprotein by verapamil. These results show that increased P-glycoprotein levels alter the ability of carbamazepine and phenytoin to penetrate the blood–brain barrier and reduce the concentrations of these agents in extracellular cortical fluid. High P-glycoprotein levels may be involved in resistance to antiepileptic drugs in medically intractable epilepsy. Keywords: P-glycoprotein, medically intractable epilepsy, antiepileptic drugs, amygdala kindling, verapamil

    10. Identification of attractive drug targets in neglected-disease pathogens using an in silico approach.

      Directory of Open Access Journals (Sweden)

      Gregory J Crowther

      Full Text Available BACKGROUND: The increased sequencing of pathogen genomes and the subsequent availability of genome-scale functional datasets are expected to guide the experimental work necessary for target-based drug discovery. However, a major bottleneck in this has been the difficulty of capturing and integrating relevant information in an easily accessible format for identifying and prioritizing potential targets. The open-access resource TDRtargets.org facilitates drug target prioritization for major tropical disease pathogens such as the mycobacteria Mycobacterium leprae and Mycobacterium tuberculosis; the kinetoplastid protozoans Leishmania major, Trypanosoma brucei, and Trypanosoma cruzi; the apicomplexan protozoans Plasmodium falciparum, Plasmodium vivax, and Toxoplasma gondii; and the helminths Brugia malayi and Schistosoma mansoni. METHODOLOGY/PRINCIPAL FINDINGS: Here we present strategies to prioritize pathogen proteins based on whether their properties meet criteria considered desirable in a drug target. These criteria are based upon both sequence-derived information (e.g., molecular mass and functional data on expression, essentiality, phenotypes, metabolic pathways, assayability, and druggability. This approach also highlights the fact that data for many relevant criteria are lacking in less-studied pathogens (e.g., helminths, and we demonstrate how this can be partially overcome by mapping data from homologous genes in well-studied organisms. We also show how individual users can easily upload external datasets and integrate them with existing data in TDRtargets.org to generate highly customized ranked lists of potential targets. CONCLUSIONS/SIGNIFICANCE: Using the datasets and the tools available in TDRtargets.org, we have generated illustrative lists of potential drug targets in seven tropical disease pathogens. While these lists are broadly consistent with the research community's current interest in certain specific proteins, and suggest

    11. Predicting drug-target interaction networks based on functional groups and biological features.

      Directory of Open Access Journals (Sweden)

      Zhisong He

      Full Text Available BACKGROUND: Study of drug-target interaction networks is an important topic for drug development. It is both time-consuming and costly to determine compound-protein interactions or potential drug-target interactions by experiments alone. As a complement, the in silico prediction methods can provide us with very useful information in a timely manner. METHODS/PRINCIPAL FINDINGS: To realize this, drug compounds are encoded with functional groups and proteins encoded by biological features including biochemical and physicochemical properties. The optimal feature selection procedures are adopted by means of the mRMR (Maximum Relevance Minimum Redundancy method. Instead of classifying the proteins as a whole family, target proteins are divided into four groups: enzymes, ion channels, G-protein- coupled receptors and nuclear receptors. Thus, four independent predictors are established using the Nearest Neighbor algorithm as their operation engine, with each to predict the interactions between drugs and one of the four protein groups. As a result, the overall success rates by the jackknife cross-validation tests achieved with the four predictors are 85.48%, 80.78%, 78.49%, and 85.66%, respectively. CONCLUSION/SIGNIFICANCE: Our results indicate that the network prediction system thus established is quite promising and encouraging.

    12. Pluronic F127 nanomicelles engineered with nuclear localized functionality for targeted drug delivery.

      Science.gov (United States)

      Li, Yong-Yong; Li, Lan; Dong, Hai-Qing; Cai, Xiao-Jun; Ren, Tian-Bin

      2013-07-01

      PKKKRKV (Pro-Lys-Lys-Lys-Arg-Lys-Val, PV7), a seven amino acid peptide, has emerged as one of the primary nuclear localization signals that can be targeted into cell nucleus via the nuclear import machinery. Taking advantage of chemical diversity and biological activities of this short peptide sequence, in this study, Pluronic F127 nanomicelles engineered with nuclear localized functionality were successfully developed for intracellular drug delivery. These nanomicelles with the size ~100 nm were self-assembled from F127 polymer that was flanked with two PV7 sequences at its both terminal ends. Hydrophobic anticancer drug doxorubicin (DOX) with inherent fluorescence was chosen as the model drug, which was found to be efficiently encapsulated into nanomicelles with the encapsulation efficiency at 72.68%. In comparison with the non-functionalized namomicelles, the microscopic observation reveals that PV7 functionalized nanomicelles display a higher cellular uptake, especially into the nucleus of HepG2 cells, due to the nuclear localization signal effects. Both cytotoxicity and apoptosis studies show that the DOX-loaded nanomicelles were more potent than drug nanomicelles without nuclear targeting functionality. It was thus concluded that PV7 functionalized nanomicelles could be a potentially alternative vehicle for nuclear targeting drug delivery.

    13. Proteins with complex architecture as potential targets for drug design: a case study of Mycobacterium tuberculosis.

      Directory of Open Access Journals (Sweden)

      Bálint Mészáros

      2011-07-01

      Full Text Available Lengthy co-evolution of Homo sapiens and Mycobacterium tuberculosis, the main causative agent of tuberculosis, resulted in a dramatically successful pathogen species that presents considerable challenge for modern medicine. The continuous and ever increasing appearance of multi-drug resistant mycobacteria necessitates the identification of novel drug targets and drugs with new mechanisms of action. However, further insights are needed to establish automated protocols for target selection based on the available complete genome sequences. In the present study, we perform complete proteome level comparisons between M. tuberculosis, mycobacteria, other prokaryotes and available eukaryotes based on protein domains, local sequence similarities and protein disorder. We show that the enrichment of certain domains in the genome can indicate an important function specific to M. tuberculosis. We identified two families, termed pkn and PE/PPE that stand out in this respect. The common property of these two protein families is a complex domain organization that combines species-specific regions, commonly occurring domains and disordered segments. Besides highlighting promising novel drug target candidates in M. tuberculosis, the presented analysis can also be viewed as a general protocol to identify proteins involved in species-specific functions in a given organism. We conclude that target selection protocols should be extended to include proteins with complex domain architectures instead of focusing on sequentially unique and essential proteins only.

    14. Degradable Magnetic Composites for Minimally Invasive Interventions: Device Fabrication, Targeted Drug Delivery, and Cytotoxicity Tests.

      Science.gov (United States)

      Peters, Christian; Hoop, Marcus; Pané, Salvador; Nelson, Bradley J; Hierold, Christofer

      2016-01-20

      Superparamagnetic nanoparticles and a functional, degradable polymer matrix based on poly(ethylene glycol) are combined to enable fully degradable magnetic microdevices for minimally invasive biomedical applications. A bioinspired helical microrobot platform mimicking Escherichia coli bacteria is fabricated and actuated using weak rotating magnetic fields. Locomotion based on corkscrew propulsion, targeted drug delivery, and low-degradation-product cytotoxicity are demonstrated. PMID:26603856

    15. Rho-kinase as a drug target for the treatment of airway hyperresponsiveness in asthma

      NARCIS (Netherlands)

      Gosens, R; Schaafsma, D; Nelemans, SA; Halayko, AJ

      2006-01-01

      In asthma, inflammatory and structural cells contribute to increased bronchoconstriction acutely and more chronically to airway remodelling. Current asthma therapy doesn't inhibit these features satisfactorily. This review discusses Rho-kinase as a potential drug target, since increasing evidence su

    16. Mechanisms of acquired resistance to androgen receptor targeting drugs in castration resistant prostate cancer

      OpenAIRE

      Chism, David D.; De Silva, Dinuka; Whang, Young E.

      2014-01-01

      After initial response to androgen receptor targeting drugs abiraterone or enzalutamide, most patients develop progressive disease and therefore, castration resistant prostate cancer (CRPC) remains a terminal disease. Multiple mechanisms underlying acquired resistance have been postulated. Intratumoral androgen synthesis may resume after abiraterone treatment. A point mutation in the ligand binding domain of androgen receptor may confer resistance to enzalutamide. Emergence of androgen recept...

    17. Rational Design of Targeted Next-Generation Carriers for Drug and Vaccine Delivery.

      Science.gov (United States)

      Narasimhan, Balaji; Goodman, Jonathan T; Vela Ramirez, Julia E

      2016-07-11

      Pattern recognition receptors on innate immune cells play an important role in guiding how cells interact with the rest of the organism and in determining the direction of the downstream immune response. Recent advances have elucidated the structure and function of these receptors, providing new opportunities for developing targeted drugs and vaccines to treat infections, cancers, and neurological disorders. C-type lectin receptors, Toll-like receptors, and folate receptors have attracted interest for their ability to endocytose their ligands or initiate signaling pathways that influence the immune response. Several novel technologies are being developed to engage these receptors, including recombinant antibodies, adoptive immunotherapy, and chemically modified antigens and drug delivery vehicles. These active targeting technologies will help address current challenges facing drug and vaccine delivery and lead to new tools to treat human diseases.

    18. Near-infrared fluorescence heptamethine carbocyanine dyes mediate imaging and targeted drug delivery for human brain tumor.

      Science.gov (United States)

      Wu, Jason Boyang; Shi, Changhong; Chu, Gina Chia-Yi; Xu, Qijin; Zhang, Yi; Li, Qinlong; Yu, John S; Zhau, Haiyen E; Chung, Leland W K

      2015-10-01

      Brain tumors and brain metastases are among the deadliest malignancies of all human cancers, largely due to the cellular blood-brain and blood-tumor barriers that limit the delivery of imaging and therapeutic agents from the systemic circulation to tumors. Thus, improved strategies for brain tumor visualization and targeted treatment are critically needed. Here we identified and synthesized a group of near-infrared fluorescence (NIRF) heptamethine carbocyanine dyes and derivative NIRF dye-drug conjugates for effective imaging and therapeutic targeting of brain tumors of either primary or metastatic origin in mice, which is mechanistically mediated by tumor hypoxia and organic anion-transporting polypeptide genes. We also demonstrate that these dyes, when conjugated to chemotherapeutic agents such as gemcitabine, significantly restricted the growth of both intracranial glioma xenografts and prostate tumor brain metastases and prolonged survival in mice. These results show promise in the application of NIRF dyes as novel theranostic agents for the detection and treatment of brain tumors.

    19. Challenges in the design of clinically useful brain-targeted drug nanocarriers.

      Science.gov (United States)

      Costantino, L; Boraschi, D; Eaton, M

      2014-01-01

      Nowadays, the delivery of drugs by means of intravenously administered nanosized drug carriers - polymerdrug conjugates, liposomes and micelles, is technically possible. These delivery systems are mainly designed for tumour therapy, and accumulate passively into tumours by means of the well known EPR effect. Targeted nanocarriers, that additionally contain ligands for receptors expressed on cell surfaces, are also widely studied but products of this kind are not marketed, and only a few are in clinical trial. Polymeric nanoparticles (Np) able to deliver drugs to the CNS were pioneered in 1995; a number of papers have been published dealing with brain-targeted drug delivery using polymeric Np able to cross the BBB, mainly for the treatment of brain tumours. At present, however, the translation potential of these Np seems to have been exceeded by targeted liposomes, a platform based on a proven technology. This drug delivery system entered clinical trials soon after its discovery, while the challenges in formulation, characterization and manufacturing of brain-targeted polymeric Np and the cost/benefit ratio could be the factors that have prevented their development. A key issue is that it is virtually impossible to define the in vivo fate of polymers, especially in the brain, which is a regulatory requirement; perhaps this is why no progress has been made. The most advanced Np for brain tumours treatment will be compared here with the published data available for those in clinical trial for tumours outside the CNS, to highlight the knowledge gaps that still penalise these delivery systems. At present, new approaches for brain tumours are emerging, such as lipid Np or the use of monoclonal antibody (mAb)-drug conjugates, which avoid polymers. The success or failure in the approval of the polymeric Np currently in clinical trials will certainly affect the field. At present, the chances of their approval appear to be very low.

    20. Genetic validation of aminoacyl-tRNA synthetases as drug targets in Trypanosoma brucei.

      Science.gov (United States)

      Kalidas, Savitha; Cestari, Igor; Monnerat, Severine; Li, Qiong; Regmi, Sandesh; Hasle, Nicholas; Labaied, Mehdi; Parsons, Marilyn; Stuart, Kenneth; Phillips, Margaret A

      2014-04-01

      Human African trypanosomiasis (HAT) is an important public health threat in sub-Saharan Africa. Current drugs are unsatisfactory, and new drugs are being sought. Few validated enzyme targets are available to support drug discovery efforts, so our goal was to obtain essentiality data on genes with proven utility as drug targets. Aminoacyl-tRNA synthetases (aaRSs) are known drug targets for bacterial and fungal pathogens and are required for protein synthesis. Here we survey the essentiality of eight Trypanosoma brucei aaRSs by RNA interference (RNAi) gene expression knockdown, covering an enzyme from each major aaRS class: valyl-tRNA synthetase (ValRS) (class Ia), tryptophanyl-tRNA synthetase (TrpRS-1) (class Ib), arginyl-tRNA synthetase (ArgRS) (class Ic), glutamyl-tRNA synthetase (GluRS) (class 1c), threonyl-tRNA synthetase (ThrRS) (class IIa), asparaginyl-tRNA synthetase (AsnRS) (class IIb), and phenylalanyl-tRNA synthetase (α and β) (PheRS) (class IIc). Knockdown of mRNA encoding these enzymes in T. brucei mammalian stage parasites showed that all were essential for parasite growth and survival in vitro. The reduced expression resulted in growth, morphological, cell cycle, and DNA content abnormalities. ThrRS was characterized in greater detail, showing that the purified recombinant enzyme displayed ThrRS activity and that the protein localized to both the cytosol and mitochondrion. Borrelidin, a known inhibitor of ThrRS, was an inhibitor of T. brucei ThrRS and showed antitrypanosomal activity. The data show that aaRSs are essential for T. brucei survival and are likely to be excellent targets for drug discovery efforts. PMID:24562907

    1. The Research and Applications of Quantum Dots as Nano-Carriers for Targeted Drug Delivery and Cancer Therapy

      Science.gov (United States)

      Zhao, Mei-Xia; Zhu, Bing-Jie

      2016-04-01

      Quantum dots (QDs), nano-carriers for drugs, can help realize the targeting of drugs, and improve the bioavailability of drugs in biological fields. And, a QD nano-carrier system for drugs has the potential to realize early detection, monitoring, and localized treatments of specific disease sites. In addition, QD nano-carrier systems for drugs can improve stability of drugs, lengthen circulation time in vivo, enhance targeted absorption, and improve the distribution and metabolism process of drugs in organization. So, the development of QD nano-carriers for drugs has become a hotspot in the fields of nano-drug research in recent years. In this paper, we review the advantages and applications of the QD nano-carriers for drugs in biological fields.

    2. The Research and Applications of Quantum Dots as Nano-Carriers for Targeted Drug Delivery and Cancer Therapy.

      Science.gov (United States)

      Zhao, Mei-Xia; Zhu, Bing-Jie

      2016-12-01

      Quantum dots (QDs), nano-carriers for drugs, can help realize the targeting of drugs, and improve the bioavailability of drugs in biological fields. And, a QD nano-carrier system for drugs has the potential to realize early detection, monitoring, and localized treatments of specific disease sites. In addition, QD nano-carrier systems for drugs can improve stability of drugs, lengthen circulation time in vivo, enhance targeted absorption, and improve the distribution and metabolism process of drugs in organization. So, the development of QD nano-carriers for drugs has become a hotspot in the fields of nano-drug research in recent years. In this paper, we review the advantages and applications of the QD nano-carriers for drugs in biological fields. PMID:27090658

    3. Functional expression of parasite drug targets and their human orthologs in yeast.

      Directory of Open Access Journals (Sweden)

      Elizabeth Bilsland

      2011-10-01

      Full Text Available BACKGROUND: The exacting nutritional requirements and complicated life cycles of parasites mean that they are not always amenable to high-throughput drug screening using automated procedures. Therefore, we have engineered the yeast Saccharomyces cerevisiae to act as a surrogate for expressing anti-parasitic targets from a range of biomedically important pathogens, to facilitate the rapid identification of new therapeutic agents. METHODOLOGY/PRINCIPAL FINDINGS: Using pyrimethamine/dihydrofolate reductase (DHFR as a model parasite drug/drug target system, we explore the potential of engineered yeast strains (expressing DHFR enzymes from Plasmodium falciparum, P. vivax, Homo sapiens, Schistosoma mansoni, Leishmania major, Trypanosoma brucei and T. cruzi to exhibit appropriate differential sensitivity to pyrimethamine. Here, we demonstrate that yeast strains (lacking the major drug efflux pump, Pdr5p expressing yeast ((ScDFR1, human ((HsDHFR, Schistosoma ((SmDHFR, and Trypanosoma ((TbDHFR and (TcDHFR DHFRs are insensitive to pyrimethamine treatment, whereas yeast strains producing Plasmodium ((PfDHFR and (PvDHFR DHFRs are hypersensitive. Reassuringly, yeast strains expressing field-verified, drug-resistant mutants of P. falciparum DHFR ((Pfdhfr(51I,59R,108N are completely insensitive to pyrimethamine, further validating our approach to drug screening. We further show the versatility of the approach by replacing yeast essential genes with other potential drug targets, namely phosphoglycerate kinases (PGKs and N-myristoyl transferases (NMTs. CONCLUSIONS/SIGNIFICANCE: We have generated a number of yeast strains that can be successfully harnessed for the rapid and selective identification of urgently needed anti-parasitic agents.

    4. Candidate Targets for New Anti-Virulence Drugs: Selected Cases of Bacterial Adhesion and Biofilm Formation

      DEFF Research Database (Denmark)

      Klemm, Per; Hancock, Viktoria; Kvist, Malin;

      2007-01-01

      formation are highly attractive targets for new drugs. Specific adhesion provides bacteria with target selection and prevents removal by hydrodynamic flow forces. Bacterial adhesion is of paramount importance for bacterial pathogenesis. Adhesion is also the first step in biofilm formation. Biofilm formation...... is particularly problematic in medical contexts because biofilm-associated bacteria are particularly hard to eradicate. Several promising candidate drugs that target bacterial adhesion and biofilm formation are being developed. Some of these might be valuable weapons for fighting infectious diseases in the future......Management of bacterial infections is becoming increasingly difficult due to the rising frequency of strains that are resistant to many current antibiotics. New types of antibiotics are, therefore, urgently needed. Virulence factors or virulence-associated phenotypes such as adhesins and biofilm...

    5. Identification of the Schistosoma mansoni Molecular Target for the Antimalarial Drug Artemether

      KAUST Repository

      Lepore, Rosalba

      2011-11-28

      Plasmodium falciparum and Schistosoma mansonii are the parasites responsible for most of the malaria and schistosomiasis cases in the world. Notwithstanding their many differences, the two agents have striking similarities in that they both are blood feeders and are targets of an overlapping set of drugs, including the well-known artemether molecule. Here we explore the possibility of using the known information about the mode of action of artemether in Plasmodium to identify the molecular target of the drug in Schistosoma and provide evidence that artemether binds to SmSERCA, a putative Ca2+-ATPase of Schistosoma. We also predict the putative binding mode of the molecule for both its Plasmodium and Schistosoma targets. Our analysis of the mode of binding of artemether to Ca2+-ATPases also provides an explanation for the apparent paradox that, although the molecule has no side effect in humans, it has been shown to possess antitumoral activity. © 2011 American Chemical Society.

    6. Targeted Shiga toxin-drug conjugates prepared via Cu-free click chemistry.

      Science.gov (United States)

      Kostova, Vesela; Dransart, Estelle; Azoulay, Michel; Brulle, Laura; Bai, Siau-Kun; Florent, Jean-Claude; Johannes, Ludger; Schmidt, Frédéric

      2015-11-15

      The main drawback of the anticancer chemotherapy consists in the lack of drug selectivity causing severe side effects. The targeted drug delivery appears to be a very promising strategy for controlling the biodistribution of the cytotoxic agent only on malignant tissues by linking it to tumor-targeting moiety. Here we exploit the natural characteristics of Shiga toxin B sub-unit (STxB) as targeting carrier on Gb3-positive cancer cells. Two cytotoxic conjugates STxB-doxorubicin (STxB-Doxo) and STxB-monomethyl auristatin F (STxB-MMAF) were synthesised using copper-free 'click' chemistry. Both conjugates were obtained in very high yield and demonstrated strong tumor inhibition activity in a nanomolar range on Gb3-positive cells.

    7. Using C. elegans to screen for targets of ethanol and behavior-altering drugs

      Directory of Open Access Journals (Sweden)

      Davies Andrew G.

      2004-01-01

      Full Text Available Caenorhabditis elegans is an attractive model system for determining the targets of neuroactive compounds. Genetic screens in C. elegans provide a relatively unbiased approach to the identification of genes that are essential for behavioral effects of drugs and neuroactive compounds such as alcohol. Much work in vertebrate systems has identified multiple potential targets of ethanol but which, if any, of those candidates are responsible for the behavioral effects of alcohol is uncertain. Here we provide detailed methodology for a genetic screen for mutants of C. elegans that are resistant to the depressive effects of ethanol on locomotion and for the subsequent behavioral analysis of those mutants. The methods we describe should also be applicable for use in screening for mutants that are resistant or hypersensitive to many neuroactive compounds and for identifying the molecular targets or biochemical pathways mediating drug responses.

    8. FLOATING GASTRO-RETENTIVE DOSAGE FORMS - A NOVEL APPROACH FOR TARGETED AND CONTROLLED DRUG DELIVERY

      Directory of Open Access Journals (Sweden)

      Aleksandar Aleksovski

      2012-04-01

      Full Text Available Controlled (modified release dosage forms are one of the key concepts in drug delivery, leading to enhanced drug bioavailability and increased patient’s compliance. However conventional modified release dosage forms encounter one big disadvantage- lack of site-specific drug delivery. Scientists developed different kinds of targeted oral controlled release forms. One of these are gastro-retentive systems- systems which can remain in the stomach region for prolonged period of time and thereby release the active compound in controlled fashion. Floating dosage forms are the most promising approach of all gastro-retentive systems. They are capable to float over the gastric content in longer time intervals. This article makes a review on floating dosage forms in general, different approaches for achieving flotation, advantages and disadvantages of this drug delivery concept. For better understanding the topic,an emphasis is made also on the anatomical and physiological features of the stomach and on the factors affecting gastric retention.

    9. Non-polymeric nano-carriers in HIV/AIDS drug delivery and targeting.

      Science.gov (United States)

      Gupta, Umesh; Jain, Narendra K

      2010-03-18

      Development of an effective drug delivery approach for the treatment of HIV/AIDS is a global challenge. The conventional drug delivery approaches including Highly Active Anti Retroviral Therapy (HAART) have increased the life span of the HIV/AIDS patient. However, the eradication of HIV is still not possible with these approaches due to some limitations. Emergence of polymeric and non-polymeric nanotechnological approaches can be opportunistic in this direction. Polymeric carriers like, dendrimers and nanoparticles have been reported for the targeting of anti HIV drugs. The synthetic pathways as well polymeric framework create some hurdles in their successful formulation development as well as in the possible drug delivery approaches. In the present article, we have discussed the general physiological aspects of the infection along with the relevance of non-polymeric nanocarriers like liposomes, solid lipid nanoparticles (SLN), ethosomes, etc. in the treatment of this disastrous disease. PMID:19913579

    10. Utilizing Chemical Genomics to Identify Cytochrome b as a Novel Drug Target for Chagas Disease.

      Directory of Open Access Journals (Sweden)

      Shilpi Khare

      2015-07-01

      Full Text Available Unbiased phenotypic screens enable identification of small molecules that inhibit pathogen growth by unanticipated mechanisms. These small molecules can be used as starting points for drug discovery programs that target such mechanisms. A major challenge of the approach is the identification of the cellular targets. Here we report GNF7686, a small molecule inhibitor of Trypanosoma cruzi, the causative agent of Chagas disease, and identification of cytochrome b as its target. Following discovery of GNF7686 in a parasite growth inhibition high throughput screen, we were able to evolve a GNF7686-resistant culture of T. cruzi epimastigotes. Clones from this culture bore a mutation coding for a substitution of leucine by phenylalanine at amino acid position 197 in cytochrome b. Cytochrome b is a component of complex III (cytochrome bc1 in the mitochondrial electron transport chain and catalyzes the transfer of electrons from ubiquinol to cytochrome c by a mechanism that utilizes two distinct catalytic sites, QN and QP. The L197F mutation is located in the QN site and confers resistance to GNF7686 in both parasite cell growth and biochemical cytochrome b assays. Additionally, the mutant cytochrome b confers resistance to antimycin A, another QN site inhibitor, but not to strobilurin or myxothiazol, which target the QP site. GNF7686 represents a promising starting point for Chagas disease drug discovery as it potently inhibits growth of intracellular T. cruzi amastigotes with a half maximal effective concentration (EC50 of 0.15 µM, and is highly specific for T. cruzi cytochrome b. No effect on the mammalian respiratory chain or mammalian cell proliferation was observed with up to 25 µM of GNF7686. Our approach, which combines T. cruzi chemical genetics with biochemical target validation, can be broadly applied to the discovery of additional novel drug targets and drug leads for Chagas disease.

    11. A D-peptide ligand of nicotine acetylcholine receptors for brain-targeted drug delivery.

      Science.gov (United States)

      Wei, Xiaoli; Zhan, Changyou; Shen, Qing; Fu, Wei; Xie, Cao; Gao, Jie; Peng, Chunmei; Zheng, Ping; Lu, Weiyue

      2015-03-01

      Lysosomes of brain capillary endothelial cells are implicated in nicotine acetylcholine receptor (nAChR)-mediated transcytosis and act as an enzymatic barrier for the transport of peptide ligands to the brain. A D-peptide ligand of nAChRs (termed (D)CDX), which binds to nAChRs with an IC50 value of 84.5 nM, was developed by retro-inverso isomerization. (D)CDX displayed exceptional stability in lysosomal homogenate and serum, and demonstrated significantly higher transcytosis efficiency in an in vitro blood-brain barrier monolayer compared with the parent L-peptide. When modified on liposomal surface, (D)CDX facilitated significant brain-targeted delivery of liposomes. As a result, brain-targeted delivery of (D)CDX modified liposomes enhanced therapeutic efficiency of encapsulated doxorubicin for glioblastoma. This study illustrates the importance of ligand stability in nAChRs-mediated transcytosis, and paves the way for developing stable brain-targeted entities.

    12. Gender-Specific Barriers to Self-Sufficiency among Former Supplemental Security Income Drug Addiction and Alcoholism Beneficiaries: Implications for Welfare-To-Work Programs and Services

      OpenAIRE

      Hogan, Sean R; Unick, George J; Speiglman, Richard; Norris, Jean C.

      2011-01-01

      This study examines barriers to economic self-sufficiency among a panel of 219 former Supplemental Security Income (SSI) drug addiction and alcoholism (DA&A) recipients following elimination of DA&A as an eligibility category for SSI disability benefits. Study participants were comprehensively surveyed at six measurement points following the policy change. Generalized estimating equations were used to examine full-sample and gender-specific barriers to economic self-sufficiency. Results indic...

    13. HER2-mediated anticancer drug delivery: strategies to prepare targeting ligands highly specific for the receptor.

      Science.gov (United States)

      Calce, Enrica; Monfregola, Luca; Saviano, Michele; De Luca, Stefania

      2015-01-01

      HER2 receptor, for its involvement in tumorigenesis, has been largely studied as topic in cancer research. In particular, the employment of trastuzumab (Herceptin), a humanized anti-HER2 antibody, showed several clinical benefits in the therapy against the breast cancer. Moreover, for its accessible extracellular domain, this receptor is considered an ideal target to deliver anticancer drugs for the receptormediated anticancer therapy. By now, monoclonal antibody and its fragments, affibody, and some peptides have been employed as targeting agents in order to deliver various drugs to HER2 positive tumor cells. In particular, the ability to perform a fast and reliable screening of a large number of peptide molecules would make possible the selection of highly specific compounds to the receptor target. In this regard, the availability of preparing a simplified synthetic model which is a good mimetic of the receptor target and can be used in a reliable screening method of ligands would be of a strategic importance for the development of selective HER2-targeting peptide molecules. Herein, we illustrate the importance of HER2-targeted anticancer therapies. We also report on a synthetic and effective mimetic of the receptor, which revealed to be a useful tool for the selection of specific HER2 ligands. PMID:25994863

    14. Laser-induced disruption of systemically administered liposomes for targeted drug delivery

      Science.gov (United States)

      Mackanos, Mark A.; Larabi, Malika; Shinde, Rajesh; Simanovskii, Dmitrii M.; Guccione, Samira; Contag, Christopher H.

      2009-07-01

      Liposomal formulations of drugs have been shown to enhance drug efficacy by prolonging circulation time, increasing local concentration and reducing off-target effects. Controlled release from these formulations would increase their utility, and hyperthermia has been explored as a stimulus for targeted delivery of encapsulated drugs. Use of lasers as a thermal source could provide improved control over the release of the drug from the liposomes with minimal collateral tissue damage. Appropriate methods for assessing local release after systemic delivery would aid in testing and development of better formulations. We use in vivo bioluminescence imaging to investigate the spatiotemporal distribution of luciferin, used as a model small molecule, and demonstrate laser-induced release from liposomes in animal models after systemic delivery. These liposomes were tested for luciferin release between 37 and 45 °C in PBS and serum using bioluminescence measurements. In vivo studies were performed on transgenic reporter mice that express luciferase constitutively throughout the body, thus providing a noninvasive readout for controlled release following systemic delivery. An Nd:YLF laser was used (527 nm) to heat tissues and induce rupture of the intravenously delivered liposomes in target tissues. These data demonstrate laser-mediated control of small molecule delivery using thermally sensitive liposomal formulations.

    15. Targeting stem cell signaling pathways for drug discovery: advances in the Notch and Wnt pathways.

      Science.gov (United States)

      An, Songzhu Michael; Ding, Qiang; Zhang, Jie; Xie, JingYi; Li, LingSong

      2014-06-01

      Signaling pathways transduce extracellular stimuli into cells through molecular cascades to regulate cellular functions. In stem cells, a small number of pathways, notably those of TGF-β/BMP, Hedgehog, Notch, and Wnt, are responsible for the regulation of pluripotency and differentiation. During embryonic development, these pathways govern cell fate specifications as well as the formation of tissues and organs. In adulthood, their normal functions are important for tissue homeostasis and regeneration, whereas aberrations result in diseases, such as cancer and degenerative disorders. In complex biological systems, stem cell signaling pathways work in concert as a network and exhibit crosstalk, such as the negative crosstalk between Wnt and Notch. Over the past decade, genetic and genomic studies have identified a number of potential drug targets that are involved in stem cell signaling pathways. Indeed, discovery of new targets and drugs for these pathways has become one of the most active areas in both the research community and pharmaceutical industry. Remarkable progress has been made and several promising drug candidates have entered into clinical trials. This review focuses on recent advances in the discovery of novel drugs which target the Notch and Wnt pathways.

    16. Targeting AMPK Signaling Pathway to Overcome Drug Resistance for Cancer Therapy.

      Science.gov (United States)

      Wang, Zhiyu; Liu, Pengxi; Chen, Qianjun; Deng, Shigui; Liu, Xiaoyan; Situ, Honglin; Zhong, Shaowen; Hann, Swei; Lin, Yi

      2016-01-01

      Mulitdrug resistance (MDR) is one of critical factorslimiting the efficacy of cancer chemoor radiotherapy. Emerging evidence has indicated that MDR is a complex process regulated by multiple factors, among which stress response molecules are considered as central players. AMP-activated protein kinase (AMPK) is a major regulator balancing energy supply and ultimately protects cells from harmful stresses via coordinating multiple metabolic pathways Notably, AMPK activation was recently shown to mediate the metabolism reprogramming in drug resistant cancer cells including promoting Warburg effects and mitochondrial biogenesis. Furthermore, AMPK activity has also been shown to regulate the self-renewal ability of cancer stem cells that are often refractory to chemotherapy. In addition, AMPK phosphorylation was critical in mediating autophagy induction, a process demonstrated to be effective in chemosensitivity modulation via degrading cellular components to satisfy nutrients requirement under stressful condition. Meanwhile, drug discovery targeting AMPK has been developed to validate the pathological significance of AMPK in cancer prevention and treatment. Although conflicting evidence focusing on the AMPK modulation for cancer treatment is still remained, this might be attributed to differences in AMPK isotypes in specific tissues, off-targets effects, the degree and duration of drug administration and experimental setting of stress conditions. This review will focus on AMPK mediated resistance to cancer therapy and discuss its potential therapeutic implication and targeting drug development. PMID:25777274

    17. Multifunctional quantum dot-polypeptide hybrid nanogel for targeted imaging and drug delivery

      Science.gov (United States)

      Yang, Jie; Yao, Ming-Hao; Wen, Lang; Song, Ji-Tao; Zhang, Ming-Zhen; Zhao, Yuan-Di; Liu, Bo

      2014-09-01

      A new type of multifunctional quantum dot (QD)-polypeptide hybrid nanogel with targeted imaging and drug delivery properties has been developed by metal-affinity driven self-assembly between artificial polypeptides and CdSe-ZnS core-shell QDs. On the surface of QDs, a tunable sandwich-like microstructure consisting of two hydrophobic layers and one hydrophilic layer between them was verified by capillary electrophoresis, transmission electron microscopy, and dynamic light scattering measurements. Hydrophobic and hydrophilic drugs can be simultaneously loaded in a QD-polypeptide nanogel. In vitro drug release of drug-loaded QD-polypeptide nanogels varies strongly with temperature, pH, and competitors. A drug-loaded QD-polypeptide nanogel with an arginine-glycine-aspartic acid (RGD) motif exhibited efficient receptor-mediated endocytosis in αvβ3 overexpressing HeLa cells but not in the control MCF-7 cells as analyzed by confocal microscopy and flow cytometry. In contrast, non-targeted QD-polypeptide nanogels revealed minimal binding and uptake in HeLa cells. Compared with the original QDs, the QD-polypeptide nanogels showed lower in vitro cytotoxicity for both HeLa cells and NIH 3T3 cells. Furthermore, the cytotoxicity of the targeted QD-polypeptide nanogel was lower for normal NIH 3T3 cells than that for HeLa cancer cells. These results demonstrate that the integration of imaging and drug delivery functions in a single QD-polypeptide nanogel has the potential for application in cancer diagnosis, imaging, and therapy.A new type of multifunctional quantum dot (QD)-polypeptide hybrid nanogel with targeted imaging and drug delivery properties has been developed by metal-affinity driven self-assembly between artificial polypeptides and CdSe-ZnS core-shell QDs. On the surface of QDs, a tunable sandwich-like microstructure consisting of two hydrophobic layers and one hydrophilic layer between them was verified by capillary electrophoresis, transmission electron

    18. Acid-responsive PEGylated doxorubicin prodrug nanoparticles for neuropilin-1 receptor-mediated targeted drug delivery.

      Science.gov (United States)

      Song, Huijuan; Zhang, Ju; Wang, Weiwei; Huang, Pingsheng; Zhang, Yumin; Liu, Jianfeng; Li, Chen; Kong, Deling

      2015-12-01

      Self-assembled prodrug nanoparticles have demonstrated great promise in cancer chemotherapy. In the present study, we developed a new kind of prodrug nanoparticles for targeted drug delivery. PEGylated doxorubicin conjugate with an acid-cleavable cis-aconityl spacer was prepared. Then it was functionalized with a tumor-penetrating peptide, Cys-Arg-Gly-Asp-Lys (CRGDK), providing the prodrug nanoparticles with the specific binding ability to neurophilin-1 receptor. In acid mediums, doxorubicin could be released from the prodrug nanoparticles with an accumulative release around 60% through the acid-triggered hydrolysis of cis-aconityl bond and nanoparticle disassembly. Whereas, drug release was slow under a neutral pH and the accumulative drug release was less than 16%. In the cell culture tests, our prodrug nanoparticles showed enhanced endocytosis and cytotoxicity in cancer cells including HepG2, MCF-7 and MDA-MB-231 cells, but lower cytotoxicity in human cardiomyocyte H2C9. In the animal experiments, the prodrug nanoparticles were intravenously injected into Balb/c nude mice bearing MDA-MB-231 tumors. Enhanced drug penetration and accumulation in tumors, accompanying with a rapid early tumor-binding behavior, was observed after intravenous injection of the peptide modified prodrug nanoparticles. These data suggests that the acid-sensitive and tumor-targeting PEGylated doxorubicin prodrug nanoparticle may be an efficient drug delivery system for cancer chemotherapy.

    19. Hepatocellular carcinoma: Will novel targeted drugs really impact the next future?

      Science.gov (United States)

      Montella, Liliana; Palmieri, Giovannella; Addeo, Raffaele; Del Prete, Salvatore

      2016-01-01

      Cancer treatment has been revolutionized by the advent of new molecular targeted and immunotherapeutic agents. Identification of the role of tumor angiogenesis changed the understanding of many tumors. After the unsuccessful results with chemotherapy, sorafenib, by interfering with angiogenic pathways, has become pivotal in the treatment of hepatocellular carcinoma. Sorafenib is the only systemic treatment to show a modest but statistically significant survival benefit. All novel drugs and strategies for treatment of advanced hepatocellular carcinoma must be compared with the results obtained with sorafenib, but no new drug or drug combination has yet achieved better results. In our opinion, the efforts to impact the natural history of the disease will be directed not only to drug development but also to understanding the underlying liver disease (usually hepatitis B virus- or hepatitis C virus-related) and to interrupting the progression of cirrhosis. It will be important to define the role and amount of mutations in the complex pathogenesis of hepatocellular carcinoma and to better integrate locoregional and systemic therapies. It will be important also to optimize the therapeutic strategies with existing chemotherapeutic drugs and new targeted agents.

    20. Drug targets for cell cycle dysregulators in leukemogenesis: in silico docking studies.

      Directory of Open Access Journals (Sweden)

      Archana Jayaraman

      Full Text Available Alterations in cell cycle regulating proteins are a key characteristic in neoplastic proliferation of lymphoblast cells in patients with Acute Lymphoblastic Leukemia (ALL. The aim of our study was to investigate whether the routinely administered ALL chemotherapeutic agents would be able to bind and inhibit the key deregulated cell cycle proteins such as--Cyclins E1, D1, D3, A1 and Cyclin Dependent Kinases (CDK 2 and 6. We used Schrödinger Glide docking protocol to dock the chemotherapeutic drugs such as Doxorubicin and Daunorubicin and others which are not very common including Clofarabine, Nelarabine and Flavopiridol, to the crystal structures of these proteins. We observed that the drugs were able to bind and interact with cyclins E1 and A1 and CDKs 2 and 6 while their docking to cyclins D1 and D3 were not successful. This binding proved favorable to interact with the G1/S cell cycle phase proteins that were examined in this study and may lead to the interruption of the growth of leukemic cells. Our observations therefore suggest that these drugs could be explored for use as inhibitors for these cell cycle proteins. Further, we have also highlighted residues which could be important in the designing of pharmacophores against these cell cycle proteins. This is the first report in understanding the mechanism of action of the drugs targeting these cell cycle proteins in leukemia through the visualization of drug-target binding and molecular docking using computational methods.

    1. Promises of novel multi-target neuroprotective and neurorestorative drugs for Parkinson's disease.

      Science.gov (United States)

      Youdim, Moussa B H; Kupershmidt, Lana; Amit, Tamar; Weinreb, Orly

      2014-01-01

      The cascade of neurotoxic events involved in neuronal degeneration suggests that it is naive to think mono-target drugs can induce disease modification by slowing the process of neurodegeneration in Parkinson's disease (PD). Employing the pharmacophore of rasagiline (N-propargyl-1-R-aminoindan), we have developed a series of novel multi-target neuroprotective drugs, including: (A) drugs [ladostigil, TV-3326 (N-propargyl-3R-aminoindan-5yl)-ethyl methylcarbamate)] with both cholinesterase-butyrylesterase (Ch-BuE) and brain-selective monamine oxidase-AB (MAO-AB) inhibitory activities and (B) iron chelator-radical scavenging drugs (M30) possessing brain-selective MAO-AB inhibitor activity and the neuroprotective-neurorescue propargylamine moiety of rasagiline. This was considered to be valid since brain MAO and iron increase in PD and aging, which could lead to oxidative stress-dependent neurodegeneration. The multi-target iron chelator, M30, has all the properties of ladostigil, but is not an acetylcholinesterase (CHE) inhibitor. However, M30 has both neuroprotective and neurorestorative activities for nigrostriatal dopamine neurons in post-lesion MPTP, lactacystin and 6-hydroxydopamine animal models of PD. The neurorestorative activity has been identified as being related to the ability of the drug to activate hypoxia-inducible factor (HIF) by inhibiting prolyl-4-hydroxylase. M30 regulates cell cycle arrest and induces the neurotrophins brain-derived neurotrophic factor (BDNF), vascular endothelial growth factor (VEGF), erythropoietin (EPO), as well as glia-derived neurotrophic factor (GDNF). These unique multiple actions of M30 make it potentially useful as a disease modifying drug for the treatment of PD. PMID:24262165

    2. The Transferrin Receptor at the Blood-Brain Barrier - exploring the possibilities for brain drug delivery

      NARCIS (Netherlands)

      Visser, Corine

      2005-01-01

      There are many diseases of the central nervous system (CNS), like Parkinson's disease, Alzheimer's disease, depression, schizophrenia, epilepsy, migraine headache, and HIV infection in the brain. However, treatment is difficult since many drugs cannot reach the brain in sufficient quantities due to

    3. Overcoming barriers to prevention, care, and treatment of hepatitis C in illicit drug users.

      Science.gov (United States)

      Edlin, Brian R; Kresina, Thomas F; Raymond, Daniel B; Carden, Michael R; Gourevitch, Marc N; Rich, Josiah D; Cheever, Laura W; Cargill, Victoria A

      2005-04-15

      Injection drug use accounts for most of the incident infections with hepatitis C virus (HCV) in the United States and other developed countries. HCV infection is a complex and challenging medical condition in injection drug users (IDUs). Elements of care for hepatitis C in illicit drug users include prevention counseling and education; screening for transmission risk behavior; testing for HCV and human immunodeficiency virus infection; vaccination against hepatitis A and B viruses; evaluation for comorbidities; coordination of substance-abuse treatment services, psychiatric care, and social support; evaluation of liver disease; and interferon-based treatment for HCV infection. Caring for patients who use illicit drugs presents challenges to the health-care team that require patience, experience, and an understanding of the dynamics of substance use and addiction. Nonetheless, programs are successfully integrating hepatitis C care for IDUs into health-care settings, including primary care, methadone treatment and other substance-abuse treatment programs, infectious disease clinics, and clinics in correctional facilities. PMID:15768335

    4. The anti-dementia drug candidate, (-)-clausenamide, improves memory impairment through its multi-target effect.

      Science.gov (United States)

      Chu, Shifeng; Liu, Shaolin; Duan, Wenzhen; Cheng, Yong; Jiang, Xueying; Zhu, Chuanjiang; Tang, Kang; Wang, Runsheng; Xu, Lin; Wang, Xiaoying; Yu, Xiaoming; Wu, Kemei; Wang, Yan; Wang, Muzou; Huang, Huiyong; Zhang, Juntian

      2016-06-01

      Multi-target drugs, such as the cocktail therapy used for treating AIDS, often show stronger efficacy than single-target drugs in treating complicated diseases. This review will focus on clausenamide (clau), a small molecule compound originally isolated from the traditional Chinese herbal medicine, Clausenalansium. The finding of four chiral centers in clau molecules predicted the presence of 16 clau enantiomers, including (-)-clau and (+)-clau. All of the predicted enantiomers have been successfully synthesized via innovative chemical approaches, and pharmacological studies have demonstrated (-)-clau as a eutomer and (+)-clau as a distomer in improving cognitive function in both normal physiological and pathological conditions. Mechanistically, the nootropic effect of (-)-clau is mediated by its multi-target actions, which include mild elevation of intracellular Ca(2+) concentrations, modulation of the cholinergic system, regulation of synaptic plasticity, and activation of cellular and molecular signaling pathways involved in learning and memory. Furthermore, (-)-clau suppresses the pathogenesis of Alzheimer's disease by inhibiting multiple etiological processes: (1) beta amyloid protein-induced intracellular Ca(2+) overload and apoptosis and (2) tau hyperphosphorylation and neurodegeneration. In conclusion, the nature of the multi-target actions of (-)-clau substantiates it as a promising chiral drug candidate for enhancing human cognition in normal conditions and treating memory impairment in neurodegenerative diseases. PMID:26812265

    5. Proteome scale comparative modeling for conserved drug and vaccine targets identification in Corynebacterium pseudotuberculosis.

      Science.gov (United States)

      Hassan, Syed Shah; Tiwari, Sandeep; Guimarães, Luís Carlos; Jamal, Syed Babar; Folador, Edson; Sharma, Neha Barve; de Castro Soares, Siomar; Almeida, Síntia; Ali, Amjad; Islam, Arshad; Póvoa, Fabiana Dias; de Abreu, Vinicius Augusto Carvalho; Jain, Neha; Bhattacharya, Antaripa; Juneja, Lucky; Miyoshi, Anderson; Silva, Artur; Barh, Debmalya; Turjanski, Adrian Gustavo; Azevedo, Vasco; Ferreira, Rafaela Salgado

      2014-01-01

      Corynebacterium pseudotuberculosis (Cp) is a pathogenic bacterium that causes caseous lymphadenitis (CLA), ulcerative lymphangitis, mastitis, and edematous to a broad spectrum of hosts, including ruminants, thereby threatening economic and dairy industries worldwide. Currently there is no effective drug or vaccine available against Cp. To identify new targets, we adopted a novel integrative strategy, which began with the prediction of the modelome (tridimensional protein structures for the proteome of an organism, generated through comparative modeling) for 15 previously sequenced C. pseudotuberculosis strains. This pan-modelomics approach identified a set of 331 conserved proteins having 95-100% intra-species sequence similarity. Next, we combined subtractive proteomics and modelomics to reveal a set of 10 Cp proteins, which may be essential for the bacteria. Of these, 4 proteins (tcsR, mtrA, nrdI, and ispH) were essential and non-host homologs (considering man, horse, cow and sheep as hosts) and satisfied all criteria of being putative targets. Additionally, we subjected these 4 proteins to virtual screening of a drug-like compound library. In all cases, molecules predicted to form favorable interactions and which showed high complementarity to the target were found among the top ranking compounds. The remaining 6 essential proteins (adk, gapA, glyA, fumC, gnd, and aspA) have homologs in the host proteomes. Their active site cavities were compared to the respective cavities in host proteins. We propose that some of these proteins can be selectively targeted using structure-based drug design approaches (SBDD). Our results facilitate the selection of C. pseudotuberculosis putative proteins for developing broad-spectrum novel drugs and vaccines. A few of the targets identified here have been validated in other microorganisms, suggesting that our modelome strategy is effective and can also be applicable to other pathogens. PMID:25573232

    6. Near- and sub-barrier fusion of 20O incident ions with 12C target nuclei

      Energy Technology Data Exchange (ETDEWEB)

      Rudolph, M. J. [Indiana University; Gosser, Z. Q. [Indiana University; Brown, K [Indiana University; De Souza, R. T. [Indiana University; Chbihi, A. [GANIL, CEA, Caen, France & CNRS, IN2P3, Caen, France; Jacquot, B. [GANIL, CEA, Caen, France & CNRS, IN2P3, Caen, France; Famiano, M. [Western Michigan University; Liang, J Felix [ORNL; Shapira, Dan [ORNL; Mercier, D. [Centre de Calcul du CNRS, France

      2012-01-01

      Evaporation residues resulting from fusion of {sup 20}O incident ions with {sup 12}C target nuclei have been measured for the first time. The cross-section associated with compound nuclei that de-excite via emission of charged particles is extracted. The resulting excitation function is compared with the predictions of a standard fusion model followed by statistical decay code. A significant underprediction of the measured cross-section by the fusion-evaporation model raises the question of whether the fusion cross-section is larger for the neutron-rich projectile or the statistical de-excitation is incorrectly predicted.

    7. Electroplating fission-recoil barriers onto LEU-metal foils for 99Mo-production targets

      International Nuclear Information System (INIS)

      Electroplating experiments on uranium foil have been conducted in order to develop low-enriched uranium composite targets suitable for the production of 99Mo. Preparation of the foil surface prior to plating was found to play a key role in the quality of the resultant coating. A surface preparation procedure was developed that produces both zinc and nickel coatings with the desired level of coating adherence and coverage. Modifications of the existing plating processes now need investigation to improve to uniformity of the plating thickness, especially at the foil perimeter

    8. Biological characteristics of dengue virus and potential targets for drug design

      Institute of Scientific and Technical Information of China (English)

      Rui-feng Qi; Ling Zhang; Cheng-wu Chi

      2008-01-01

      Dengue infection is a major cause of morbidity in tropical and subtropical regions, bringing nearly 40% of the world population at risk and causing more than 20,000 deaths per year. But there is neither a vaccine for dengue disease nor antiviral drugs to treat the infection. In recent years, dengue infection has been particularly prevalent in India, Southeast Asia, Brazil, and Guangdong Province, China. In this article, we present a brief summary of the biological characteristics of dengue virus and associated flaviviruses, and outline the progress on studies of vaccines and drugs based on potential targets of the dengue virus.

    9. A folate-integrated magnetic polymer micelle for MRI and dual targeted drug delivery

      Science.gov (United States)

      Ao, Lijiao; Wang, Bi; Liu, Peng; Huang, Liang; Yue, Caixia; Gao, Duyang; Wu, Chunlei; Su, Wu

      2014-08-01

      This paper devotes a novel micellar structure for cancer theranostics by incorporating magnetic and therapeutic functionalities into a natural sourced targeting polymer vehicle. Heparin-folic acid micelles taking advantage of both excellent loading capability and cancer targeting ability have been employed to simultaneously incorporate superparamagnetic iron oxide nanoparticles (SPIONs) and doxorubicin through an ultrasonication-assisted microemulsion method. In this system, folic acids not only take the responsibility of micelle construction, but also facilitate cellular uptake due to their specific reorganization by MCF-7 cells over-expressing folate receptors. The obtained micelles exhibit good colloidal stability, a high magnetic content, considerable drug loading and sustained in vitro drug release. These clustered SPIONs exhibited high r2 relaxivity (243.65 mM-1 s-1) and further served as efficient probes for MR imaging. Notably, the transport efficiency of these micelles could be significantly improved under an external magnetic field, owing to their quick magnetic response. As a result, the as-proposed micelle shows great potential in multimodal theranostics, including active targeting, MRI diagnosis and drug delivery.This paper devotes a novel micellar structure for cancer theranostics by incorporating magnetic and therapeutic functionalities into a natural sourced targeting polymer vehicle. Heparin-folic acid micelles taking advantage of both excellent loading capability and cancer targeting ability have been employed to simultaneously incorporate superparamagnetic iron oxide nanoparticles (SPIONs) and doxorubicin through an ultrasonication-assisted microemulsion method. In this system, folic acids not only take the responsibility of micelle construction, but also facilitate cellular uptake due to their specific reorganization by MCF-7 cells over-expressing folate receptors. The obtained micelles exhibit good colloidal stability, a high magnetic content

    10. Pharmacological Targeting of AMP-Activated Protein Kinase and Opportunities for Computer-Aided Drug Design.

      Science.gov (United States)

      Miglianico, Marie; Nicolaes, Gerry A F; Neumann, Dietbert

      2016-04-14

      As a central regulator of metabolism, the AMP-activated protein kinase (AMPK) is an established therapeutic target for metabolic diseases. Beyond the metabolic area, the number of medical fields that involve AMPK grows continuously, expanding the potential applications for AMPK modulators. Even though indirect AMPK activators are used in the clinics for their beneficial metabolic outcome, the few described direct agonists all failed to reach the market to date, which leaves options open for novel targeting methods. As AMPK is not actually a single molecule and has different roles depending on its isoform composition, the opportunity for isoform-specific targeting has notably come forward, but the currently available modulators fall short of expectations. In this review, we argue that with the amount of available structural and ligand data, computer-based drug design offers a number of opportunities to undertake novel and isoform-specific targeting of AMPK. PMID:26510622

    11. Localization and distribution of magnetic chemotherapeutic drugs with magnetic targeting in rat brain

      Institute of Scientific and Technical Information of China (English)

      LI An-min; ZHANG Chuan-xiu; FU Xiang-ping; ZHANG Zhi-wen; XUE Qing-hui; YAN Run-min; YI Lin-hua

      2005-01-01

      Background Magnetic targeting therapy may be a new method for the treatment of malignent tumors. The purpose of this study was to investigate the localization and distribution of ferrofluid microsphere of human serum albumin methotrexate (FM-HSA-MTX) carriers in the brain and to explore the magnetic targeting chemotherapy for malignant brain tumor. Methods Ninety SD rats were divided into three groups: targeting group, non-magnetic targeting group, and control group. Synthesized FM-HSA-MTX carriers (MTX 25 mg/kg) were injected into the systemic circulation via the caudal vein (magnetic targeting group, n=30). A 0.6 T magnetic field was placed around the right hemisphere. The non-magnetic targeting group (n=30) was administered with FM-HSA-MTX without external magnetic field, meanwhile the control group (n=30) was treated with MTX and a magnetic field. Random serial sacrifices (n=10) were conducted at 15, 30 and 45 minutes after drug administration. Bilateral hemispheres were collected respectively, and analyzed for total MTX content. Results MTX content in the right hemisphere of the magnetic targeting group was significantly higher than that in the other two groups at 15, 30 and 45 minutes after drug administration (P<0.05) No difference was seen between the non-targeting group and control group. In the magnetic targeting group, MTX returned to the peak level [(0.564±0.018) mg/g, q15-45=32.252, P<0.05] 45 minutes after the injection but it deceased in the other two groups [non-magnetic targeting group: (0.060±0.015) mg/g, q15-45=9.245, P<0.05, control group: (0.074±0.045) mg/g, q15-45=6.299, P<0.05]. In the magnetic targeting group, the concentration of MTX in the right hemisphere was significantly higher than that in the left hemisphere (t45min=21.135, P=0.000) but no difference was observed between bilateral hemispheres in the other two groups (non-magnetic targeting group: t45min=0.434, P=0.670; control group: t45min=0.533, P=0.600). Conclusion In

    12. A RNA-DNA Hybrid Aptamer for Nanoparticle-Based Prostate Tumor Targeted Drug Delivery

      OpenAIRE

      Leach, John C.; Andrew Wang; Kaiming Ye; Sha Jin

      2016-01-01

      The side effects of radio- and chemo-therapy pose long-term challenges on a cancer patient’s health. It is, therefore, highly desirable to develop more effective therapies that can specifically target carcinoma cells without damaging normal and healthy cells. Tremendous efforts have been made in the past to develop targeted drug delivery systems for solid cancer treatment. In this study, a new aptamer, A10-3-J1, which recognizes the extracellular domain of the prostate specific membrane antig...

    13. Using mitochondrial sirtuins as drug targets: disease implications and available compounds.

      Science.gov (United States)

      Gertz, Melanie; Steegborn, Clemens

      2016-08-01

      Sirtuins are an evolutionary conserved family of NAD(+)-dependent protein lysine deacylases. Mammals have seven Sirtuin isoforms, Sirt1-7. They contribute to regulation of metabolism, stress responses, and aging processes, and are considered therapeutic targets for metabolic and aging-related diseases. While initial studies were focused on Sirt1 and 2, recent progress on the mitochondrial Sirtuins Sirt3, 4, and 5 has stimulated research and drug development for these isoforms. Here we review the roles of Sirtuins in regulating mitochondrial functions, with a focus on the mitochondrially located isoforms, and on their contributions to disease pathologies. We further summarize the compounds available for modulating the activity of these Sirtuins, again with a focus on mitochondrial isoforms, and we describe recent results important for the further improvement of compounds. This overview illustrates the potential of mitochondrial Sirtuins as drug targets and summarizes the status, progress, and challenges in developing small molecule compounds modulating their activity. PMID:27007507

    14. Virus-encoded chemokine receptors--putative novel antiviral drug targets

      DEFF Research Database (Denmark)

      Rosenkilde, Mette M

      2005-01-01

      Large DNA viruses, in particular herpes- and poxviruses, have evolved proteins that serve as mimics or decoys for endogenous proteins in the host. The chemokines and their receptors serve key functions in both innate and adaptive immunity through control of leukocyte trafficking, and have...... to their closest endogenous homologs, are interactions with a wider range of chemokines, which can act as agonists, antagonists and inverse agonists, and the exploitation of many signal transduction pathways. High constitutive activity is another key property of some--but not all--of these receptors. The chemokine...... receptors belong to the superfamily of G-protein coupled 7TM receptors that per se are excellent drug targets. At present, non-peptide antagonists have been developed against many chemokine receptors. The potentials of the virus-encoded chemokine receptors as drug targets--ie. as novel antiviral strategies...

    15. Targeting imperfect vaccines against drug-resistance determinants: a strategy for countering the rise of drug resistance.

      Directory of Open Access Journals (Sweden)

      Regina Joice

      Full Text Available The growing prevalence of antimicrobial resistance in major pathogens is outpacing discovery of new antimicrobial classes. Vaccines mitigate the effect of antimicrobial resistance by reducing the need for treatment, but vaccines for many drug-resistant pathogens remain undiscovered or have limited efficacy, in part because some vaccines selectively favor pathogen strains that escape vaccine-induced immunity. A strain with even a modest advantage in vaccinated hosts can have high fitness in a population with high vaccine coverage, which can offset a strong selection pressure such as antimicrobial use that occurs in a small fraction of hosts. We propose a strategy to target vaccines against drug-resistant pathogens, by using resistance-conferring proteins as antigens in multicomponent vaccines. Resistance determinants may be weakly immunogenic, offering only modest specific protection against resistant strains. Therefore, we assess here how varying the specific efficacy of the vaccine against resistant strains would affect the proportion of drug-resistant vs. -sensitive strains population-wide for three pathogens--Streptococcus pneumoniae, Staphylococcus aureus, and influenza virus--in which drug resistance is a problem. Notably, if such vaccines confer even slightly higher protection (additional efficacy between 1% and 8% against resistant variants than sensitive ones, they may be an effective tool in controlling the rise of resistant strains, given current levels of use for many antimicrobial agents. We show that the population-wide impact of such vaccines depends on the additional effect on resistant strains and on the overall effect (against all strains. Resistance-conferring accessory gene products or resistant alleles of essential genes could be valuable as components of vaccines even if their specific protective effect is weak.

    16. Comparative genomics allowed the identification of drug targets against human fungal pathogens

      Directory of Open Access Journals (Sweden)

      Martins Natalia F

      2011-01-01

      Full Text Available Abstract Background The prevalence of invasive fungal infections (IFIs has increased steadily worldwide in the last few decades. Particularly, there has been a global rise in the number of infections among immunosuppressed people. These patients present severe clinical forms of the infections, which are commonly fatal, and they are more susceptible to opportunistic fungal infections than non-immunocompromised people. IFIs have historically been associated with high morbidity and mortality, partly because of the limitations of available antifungal therapies, including side effects, toxicities, drug interactions and antifungal resistance. Thus, the search for alternative therapies and/or the development of more specific drugs is a challenge that needs to be met. Genomics has created new ways of examining genes, which open new strategies for drug development and control of human diseases. Results In silico analyses and manual mining selected initially 57 potential drug targets, based on 55 genes experimentally confirmed as essential for Candida albicans or Aspergillus fumigatus and other 2 genes (kre2 and erg6 relevant for fungal survival within the host. Orthologs for those 57 potential targets were also identified in eight human fungal pathogens (C. albicans, A. fumigatus, Blastomyces dermatitidis, Paracoccidioides brasiliensis, Paracoccidioides lutzii, Coccidioides immitis, Cryptococcus neoformans and Histoplasma capsulatum. Of those, 10 genes were present in all pathogenic fungi analyzed and absent in the human genome. We focused on four candidates: trr1 that encodes for thioredoxin reductase, rim8 that encodes for a protein involved in the proteolytic activation of a transcriptional factor in response to alkaline pH, kre2 that encodes for α-1,2-mannosyltransferase and erg6 that encodes for Δ(24-sterol C-methyltransferase. Conclusions Our data show that the comparative genomics analysis of eight fungal pathogens enabled the identification of

    17. Aptamers as targeting delivery devices or anti-cancer drugs for fighting tumors.

      Science.gov (United States)

      Scaggiante, Bruna; Dapas, Barbara; Farra, Rossella; Grassi, Mario; Pozzato, Gabriele; Giansante, Carlo; Fiotti, Nicola; Tamai, Elisa; Tonon, Federica; Grassi, Gabriele

      2013-06-01

      Aptamer researches applied to the treatment of human cancers have increased since their discovery in 1990. This is due to different factors including: 1) the technical possibility to select, by SELEX-based procedures, specific aptamers targeting virtually any given molecule, 2) the aptamer favorable bio-activity in vivo, 3) the low production costs and 4) the ease synthesis and storage for the marketing. In the field of cancer treatments, aptamers have been studied as tumor-specific agents driving drugs into cancer cells; additionally they have been used as anti-neoplastic agents, able to inhibit tumor cell growth and dissemination when administered alone or in combination with conventional anti-neoplastic drugs. Aptamers are gaining an increased interest for pharmaceutical companies and some of them are under clinical evaluation trials. In this review we update the findings about the use of aptamers as "escort" molecules able to drive drugs into the cells and as antineoplastic drugs. Current anti-neoplastic treatments suffer from the intrinsic toxicity related to the un-specific targeting of both normal and tumorigenic proliferating cells. The aptamers could be useful to improve: 1) the selective targeting of molecules essential for the viability and expansion of tumor cells and/or the selective driving of chemotherapies into tumor cells, thus resulting in higher effectiveness and lower systemic side-effects compared to conventional anti-neoplastic drugs alone and 2) to improve the therapeutic index of currently used chemotherapies. Even if some problems related to the in vivo stability and pharmacokinetic/dynamics of aptamers remain to be improved, their potential use in the treatment of different human cancers is getting closer and closer to a practical therapeutic use. PMID:23687927

    18. A target repurposing approach identifies N-myristoyltransferase as a new candidate drug target in filarial nematodes.

      Directory of Open Access Journals (Sweden)

      Brendan D Galvin

      2014-09-01

      Full Text Available Myristoylation is a lipid modification involving the addition of a 14-carbon unsaturated fatty acid, myristic acid, to the N-terminal glycine of a subset of proteins, a modification that promotes their binding to cell membranes for varied biological functions. The process is catalyzed by myristoyl-CoA:protein N-myristoyltransferase (NMT, an enzyme which has been validated as a drug target in human cancers, and for infectious diseases caused by fungi, viruses and protozoan parasites. We purified Caenorhabditis elegans and Brugia malayi NMTs as active recombinant proteins and carried out kinetic analyses with their essential fatty acid donor, myristoyl-CoA and peptide substrates. Biochemical and structural analyses both revealed that the nematode enzymes are canonical NMTs, sharing a high degree of conservation with protozoan NMT enzymes. Inhibitory compounds that target NMT in protozoan species inhibited the nematode NMTs with IC50 values of 2.5-10 nM, and were active against B. malayi microfilariae and adult worms at 12.5 µM and 50 µM respectively, and C. elegans (25 µM in culture. RNA interference and gene deletion in C. elegans further showed that NMT is essential for nematode viability. The effects observed are likely due to disruption of the function of several downstream target proteins. Potential substrates of NMT in B. malayi are predicted using bioinformatic analysis. Our genetic and chemical studies highlight the importance of myristoylation in the synthesis of functional proteins in nematodes and have shown for the first time that NMT is required for viability in parasitic nematodes. These results suggest that targeting NMT could be a valid approach for the development of chemotherapeutic agents against nematode diseases including filariasis.

    19. A target repurposing approach identifies N-myristoyltransferase as a new candidate drug target in filarial nematodes.

      Science.gov (United States)

      Galvin, Brendan D; Li, Zhiru; Villemaine, Estelle; Poole, Catherine B; Chapman, Melissa S; Pollastri, Michael P; Wyatt, Paul G; Carlow, Clotilde K S

      2014-09-01

      Myristoylation is a lipid modification involving the addition of a 14-carbon unsaturated fatty acid, myristic acid, to the N-terminal glycine of a subset of proteins, a modification that promotes their binding to cell membranes for varied biological functions. The process is catalyzed by myristoyl-CoA:protein N-myristoyltransferase (NMT), an enzyme which has been validated as a drug target in human cancers, and for infectious diseases caused by fungi, viruses and protozoan parasites. We purified Caenorhabditis elegans and Brugia malayi NMTs as active recombinant proteins and carried out kinetic analyses with their essential fatty acid donor, myristoyl-CoA and peptide substrates. Biochemical and structural analyses both revealed that the nematode enzymes are canonical NMTs, sharing a high degree of conservation with protozoan NMT enzymes. Inhibitory compounds that target NMT in protozoan species inhibited the nematode NMTs with IC50 values of 2.5-10 nM, and were active against B. malayi microfilariae and adult worms at 12.5 µM and 50 µM respectively, and C. elegans (25 µM) in culture. RNA interference and gene deletion in C. elegans further showed that NMT is essential for nematode viability. The effects observed are likely due to disruption of the function of several downstream target proteins. Potential substrates of NMT in B. malayi are predicted using bioinformatic analysis. Our genetic and chemical studies highlight the importance of myristoylation in the synthesis of functional proteins in nematodes and have shown for the first time that NMT is required for viability in parasitic nematodes. These results suggest that targeting NMT could be a valid approach for the development of chemotherapeutic agents against nematode diseases including filariasis.

    20. Pharmacogenomic association study on the role of drug metabolizing, drug transporters and drug target gene polymorphisms in drug-resistant epilepsy in a north Indian population

      OpenAIRE

      Ritu Kumari; Ram Lakhan; Garg, R. K.; Kalita, J; Misra, U K; Balraj Mittal

      2011-01-01

      Background: In epilepsy, in spite of the best possible medications and treatment protocols, approximately one-third of the patients do not respond adequately to anti-epileptic drugs. Such interindividual variations in drug response are believed to result from genetic variations in candidate genes belonging to multiple pathways. Materials and Methods: In the present pharmacogenetic analysis, a total of 402 epilepsy patients were enrolled. Of them, 128 were diagnosed as multiple drug-resist...