WorldWideScience

Sample records for barrel toroid coil

  1. ATLAS-Lowering the first Barrel Toroid coil

    CERN Multimedia

    2004-01-01

    Cranes lowered the first of ATLAS's eight Barrel Toroid coils into the cavern. The part is 25 metres long and the cranes had to hold the 100 tonne coil at a sharp angle while it passed through the 18-metre diameter vertical shaft into the cavern. Then they laid the magnet to a horisontal robust platform. Images from Camera 1

  2. ATLAS-Lowering the first Barrel Toroid coil

    CERN Multimedia

    CERN Audiovisual Unit

    2004-01-01

    Cranes lowered the first of ATLAS's eight Barrel Toroid coils into the cavern. The part is 25 meters long and the cranes had to hold the 100 tonne coil at a sharp angle while it passed through the 18-meter diameter vertical shaft into the cavern. Then they laid the magnet to a horizontal robust platform. Images from Camera 2

  3. First ATLAS Barrel Toroid coil casing arrives at CERN

    CERN Multimedia

    2002-01-01

    The first of eight 25-metre long coil casings for the ATLAS experiment's barrel toroid magnet system arrived at CERN on Saturday 2 March by road from Heidelberg. This structure will be part of the largest superconducting toroid magnet ever made.   The first coil casing for the toroidal magnets of Atlas arrives at Building 180. This is the start of an enormous three-dimensional jigsaw puzzle. Each of the eight sets of double pancake coils will be housed inside aluminium coil casings, which in turn will be held inside a stainless steel vacuum vessel. A huge construction, the casing that arrived at CERN measures 25 metres in length and 5 metres in width. It weighs 20 tones. And this is just the beginning of the toroid jigsaw: by early April a batch of four double pancake coils, which altogether weighs 65 tones, will arrive from Ansaldo in Italy. The first vacuum vessel will also be arriving from Felguera in Spain this month. It will take about two years for all these 25 m long structures of casings, coils a...

  4. Second Barrel Toroid Coil Installed in ATLAS Cavern

    CERN Multimedia

    Tappern, G.

    The second barrel toroid coil was lowered into the ATLAS Cavern on Friday, 26 November. The operation takes approximately five hours of precision crane and winch operations. Before lowering, several checks are made to ensure that no loose items have been left on the coil which would fall during the lowering down the shaft. This is a very difficult, but very important check, with the first coil in position, and partly below the shaft. After changing the winch tooling on Wednesday December 1st, the coil was lifted, rotated and placed into the feet. The girders which support the coil and the Z direction stops had all been pre-set before putting the coil in the feet. The angle is controlled by an inclinometer. When the final adjustments of position have been made, which will locate the coils at the plus/minus two mm level, the connection beams (voussoirs and struts) will be put in place; this requires a complex shimming procedure. This will lock together the two coils into the feet and forms the foundation for th...

  5. The thermal and magnetic stress analyses of the ATLAS Barrel Toroid- B0 coil

    CERN Document Server

    Sun, Z; Daël, A; Mayri, C; Pes, C; Reytier, M

    2002-01-01

    The B0 coil is a test-model of the ATLAS Barrel Toroid (BT) coils. It has been installed in the test station at CERN. One important item of the B0 test is the strain/stress measurements. In order to determine the expected stress values at the strain gage locations on the coil casing and the tie rods, detailed thermal and magnetic stress analyses of the B0 coil have been carried out. The analysis results are prepared for a later one-to-one comparison with the measurement results. (6 refs).

  6. The protection system of the superconducting coils in the Barrel Toroid of ATLAS

    CERN Document Server

    Acerbi, E; Volpini, G; Daël, A; Lesmond, C

    1999-01-01

    An analysis of the discharge of the Barrel Toroid under several operating conditions has been carried out. The main critical parameters of the discharge (i.e. the maximum temperature inside the coils, the maximum temperature $9 gradient, the maximum voltage at the coil ends and the maximum decentering forces acting on the BT and ECT magnets) have been calculated for several operating conditions (heaters on, heaters off, short circuit with heaters on or $9 off). The aim of this analysis is to provide a cross check of the protection design of the Barrel Toroid coils with an independent study. The results validate the choice to use a low value of dump resistance, and give some important $9 warning in the case of heater failure or presence of a short circuit. (5 refs).

  7. The First ATLAS Barrel Toroid Coil Successfully Tested in Hall 180

    CERN Multimedia

    Rabbers, J J

    2004-01-01

    The first Barrel Toroid coil has been successfully tested with magnetic mirror at nominal current I=20.5 kA, up to a maximum current Imax=22 kA. After 14 days of cooling down, BT1 reached 4.5 Kelvin and the test program started on September 2nd. First the instrumentation and safety systems of the coil were tested at relatively low operating currents, up to 5 kA. Since all the systems and the coil were performing well, the current was increased by steps in several runs, while monitoring and evaluating the temperatures, voltages and mechanics. On early Wednesday morning September 8th the current was ramped up to 22 kA, shown by the red curve in the picture shown below: Thereafter the current was ramped down by a slow dump, where the stored energy of about 130 MJ is dissipated in a resistor/diode ramp down unit. This is the regular way of ramping down the current, which takes about one hour. Thereafter the current was ramped up to 22 kA for a second time, this time a so-called fast dump was initiated, ...

  8. First full-size ATLAS barrel toroid coil successfully tested up to 22 kA at 4 T

    CERN Document Server

    Dudarev, A; Benoit, P; Berriaud, C P; Broggi, F; Deront, L; Foussat, A; Junker, S; ten Kate, H H J; Kopeykin, N; Olesen, G; Olyunin, A; Pengo, R; Rabbers, J J; Ravat, S; Rey, J M; Sbrissa, E; Shugaev, I; Stepanov, V; Védrine, P; Volpini, Giovanni

    2005-01-01

    The Superconducting Barrel Toroid is providing (together with the two End-Cap Toroids not presented here) the magnetic field for the muon detectors in the ATLAS Experiment at the LHC at CERN. The toroid with outer dimensions of 25 m length and 20 m diameter, is built up from 8 identical racetrack coils. The coils with 120 turns each are wound with an aluminum stabilized NbTi conductor and operate at 20.5 kA at 3.9 T local field in the windings and is conduction cooled at 4.8 K by circulating forced flow helium in cooling tubes attached to the cold mass. The 8 coils of 25 m * 5 m are presently under construction and the first coils have already been fully integrated and tested. Meanwhile the assembly of the toroid 100 m underground in the ATLAS cavern at CERN has started. The 8 coils are individually tested on surface before installation. In this paper the test of the first coil, unique in size and manufacturing technology, is described in detail and the results are compared to the previous experience with the...

  9. ATLAS Barrel Toroid magnet reached nominal field

    CERN Multimedia

    2006-01-01

     On 9 November the barrel toroid magnet reached its nominal field of 4 teslas, with an electrical current of 21 000 amperes (21 kA) passing through the eight superconducting coils as shown on this graph

  10. ATLAS barrel toroid integration and test area in building 180

    CERN Multimedia

    Maximilien Brice

    2003-01-01

    The ATLAS barrel toroid system consists of eight coils, each of axial length 25.3 m, assembled radially and symmetrically around the beam axis. The coils are of a flat racetrack type with two 'double-pancake' windings made of 20.5 kA aluminium-stabilized niobium-titanium superconductor. The barrel toroid is being assembled in building 180 on the Meyrin site. In the first phase of assembly, the coils are packed into their aluminium-alloy casing. These photos show the double-pancake coils from ANSALDO and the coil casings from ALSTOM. In the foreground is the tooling from COSMI used to turn over the coil casings during this first phase. In the right background is the yellow lifting gantry manufactured at JINR-Dubna, Russia which will transport the coil casings to a heating table for prestressing. Two test benches with magnetic mirror are also visible.

  11. TFTR toroidal field coil design

    International Nuclear Information System (INIS)

    The design of the Tokamak Fusion Test Reactor (TFTR) Toroidal Field (TF) magnetic coils is described. The TF coil is a 44-turn, spiral-wound, two-pancake, water-cooled configuration which, at a coil current of 73.3 kiloamperes, produces a 5.2-Tesla field at a major radius of 2.48 meters. The magnetic coils are installed in titanium cases, which transmit the loads generated in the coils to the adjacent supporting structure. The TFTR utilizes 20 of these coils, positioned radially at 180 intervals, to provide the required toroidal field. Because it is very highly loaded and subject to tight volume constraints within the machine, the coil presents unique design problems. The TF coil requirements are summarized, the coil configuration is described, and the problems highlighted which have been encountered thus far in the coil design effort, together with the development tests which have been undertaken to verify the design

  12. Celebrating the Barrel Toroid commissioning

    CERN Multimedia

    Peter Jenni

    ATLAS invited Funding Agency representatives and Laboratory Heads directly related to the funding and construction of the Barrel Toroid for a small ceremony on 13th December 2006 at Point 1, in order to mark the successful first full excitation of the BT (see last eNews). On that date, which was during the December CERN Council week, several of the Funding Agency Heads or their representatives could be present, representing CEA France, INFN Italy, BMBF Germany, Spain, Sweden, Switzerland, Russia, JINR Dubna and CERN. Speeches were delivered by the ATLAS spokesperson Peter Jenni thanking the Funding Partners in the name of the Collaboration, by Magnet Project Leader Herman ten Kate tracing the BT construction history, and by the CERN Director-General Robert Aymar congratulating all those who have contributed to the successful project. Herman ten Kate addressing the delegates. The text of the introductory address by Peter Jenni is reproduced here. "It is a great pleasure for me to welcome you all here...

  13. NCSX Toroidal Field Coil Design

    Energy Technology Data Exchange (ETDEWEB)

    Kalish, M.; Rushinski, J.; Myatt, L.; Brooks, A.; Dahlgren, F.; Chrzanowski, J.; Reiersen, W.; Freudenberg, K.

    2005-10-07

    The National Compact Stellarator Experiment (NCSX) is an experimental device whose design and construction is underway at the Department of Energy's Princeton Plasma Physics Laboratory (PPPL). The primary coil systems for the NCSX device consist of the twisted plasma-shaping Modular Coils, the Poloidal Field Coils, and the Toroidal Field (TF) Coils. The TF Coils are D-shaped coils wound from hollow copper conductor, and vacuum impregnated with a glass-epoxy resin system. There are 18 identical, equally spaced TF coils providing 1/R field at the plasma. They operate within a cryostat, and are cooled by LN2, nominally, to 80K. Wedge shaped castings are assembled to the inboard face of these coils, so that inward radial loads are reacted via the nesting of each of the coils against their adjacent partners. This paper outlines the TF Coil design methodology, reviews the analysis results, and summarizes how the design and analysis support the design requirements.

  14. Celebration for the ATLAS Barrel Toroid magnet

    CERN Multimedia

    2007-01-01

    Representatives from Funding Agencies and Barrel Toroid Magnet Laboratories during the ceremony. From left to right: Jean Zinn-Justin (Head of DAPNIA/CEA/Saclay), CERN Director-General Robert Aymar, and Roberto Petronzio (President INFN).Allan Clark (DPNC University Geneva) and Enrique Fernandez (IFAE Barcelona) were among the guests visiting the ATLAS cavern. The barrel toroid is visible in the background. A celebration took place at Point 1 on 13 December to toast the recent powering-up of the ATLAS barrel toroid magnet to full field (Bulletin No. 47-48/06). About 70 guests were invited to attend, mainly composed of representatives from funding partners and key members of the laboratory management teams of the barrel toroid magnet, representing CEA France, INFN Italy, BMBF Germany, Spain, Sweden, Switzerland, Russia, JINR Dubna and CERN. An introductory speech by ATLAS spokesperson Peter Jenni the scene for evening. This was followed by the ATLAS magnet system project leader Herman Ten Kate's account of the...

  15. Barrel Toroid fully charged to nominal field, and it works!

    CERN Multimedia

    Herman ten Kate

    After a few weeks of testing up to intermediate currents, finally, on Thursday evening November 9, the current in the Barrel Toroid was pushed up to its nominal value of 20500 A and even 500 A beyond this value to prove that we have some margin. It went surprisingly well. Of course, the 8 coils forming the toroid were already tested individually at the surface but still, some surprise may have come from those parts added to the toroid in the cavern for the first time like the 8 cryoring sections linking the coils as well as the valve box at the bottom in sector 13 regulating the helium flow or the current lead cryostat on the top in sector 5. No training quenches, nothing to worry about, and the test was concluded with a fast dump triggered at 00:40 in the very early morning of November 10. (left) The toroid current during the evening and night of November 9. (right) The test crew oscillated between fear and hope while looking at the control panels as the current approached 21kA. Big relief was in the...

  16. 3D Printing the ATLAS' barrel toroid

    CERN Document Server

    Goncalves, Tiago Barreiro

    2016-01-01

    The present report summarizes my work as part of the Summer Student Programme 2016 in the CERN IR-ECO-TSP department (International Relations – Education, Communication & Outreach – Teacher and Student Programmes). Particularly, I worked closely with the S’Cool LAB team on a science education project. This project included the 3D designing, 3D printing, and assembling of a model of the ATLAS’ barrel toroid. A detailed description of the project' development is presented and a short manual on how to use 3D printing software and hardware is attached.

  17. Cryogenic Characteristics of the ATLAS Barrel Toroid Superconducting Magnet

    CERN Document Server

    Pengo, R; Delruelle, N; Pezzetti, M; Pirotte, O; Passardi, Giorgio; Dudarev, A; ten Kate, H

    2008-01-01

    ATLAS, one of the experiments of the LHC accelerator under commissioning at CERN, is equipped with a large superconducting magnet the Barrel Toroid (BT) that has been tested at nominal current (20500 A). The BT is composed of eight race-track superconducting coils (each one weights about 45 tons) forming the biggest air core toroidal magnet ever built. By means of a large throughput centrifugal pump, a forced flow (about 10 liter/second at 4.5 K) provides the indirect cooling of the coils in parallel. The paper describes the results of the measurements carried out on the complete cryogenic system assembled in the ATLAS cavern situated 100 m below the ground level. The measurements include, among other ones, the static heat loads, i.e., with no or constant current in the magnet, and the dynamic ones, since additional heat losses are produced, during the current ramp-up or slow dump, by eddy currents induced on the coil casing.

  18. The barrel muon spectrometer of the ATLAS detector has acquired its first cosmic event in a magnetic field produced by the barrel toroid magnet.

    CERN Multimedia

    2006-01-01

    A 3-D event display of a cosmic muon event, showing the path of a muon travelling through three layers of the barrel muon spectrometer. Three of the eight coils of the barrel toroid magnet can be seen in the top half of the drawing.

  19. First assembly phase for the ATLAS toroid coils

    CERN Multimedia

    Maximilien Brice

    2003-01-01

    The ATLAS barrel toroid system consists of eight coils, each of axial length 25.3 m, assembled radially and symmetrically around the beam axis. The coils are of a flat racetrack type with two double-pancake windings made of 20.5 kA aluminium-stabilized niobium-titanium superconductor. In the first phase of assembly, the two 'pancakes' are packed into their vacuum vessel. This is done using bladders filled with resin and glass microbeads under pressure. The resin is heated and, once cooled, holds the pancakes in place. The operation has to be performed on both sides of the coil, which necessitated a special technique to turn the coils over and then transport them to the heating table. Photos 01, 02, 03: Transporting the coil to the heating table using a special lifting gantry manufactured at JINR-Dubna, Russia in preparation for the 'bladderisation' operation.

  20. OCLATOR (One Coil Low Aspect Toroidal Reactor)

    International Nuclear Information System (INIS)

    A new approach to construct a tokamak-type reactor(s) is presented. Basically the return conductors of toroidal field coils are eliminated and the toroidal field coil is replaced by one single large coil, around which there will be placed several tokamaks or other toroidal devices. The elimination of return conductors should, in addition to other advantages, improve the accessibility and maintainability of the tokamaks and offer a possible alternative to the search for special materials to withstand large neutron wall loading, as the frequency of changeover would be increased due to minimum downtime. It also makes it possible to have a low aspect ratio tokamak which should improve the β limit, so that a low toroidal magnetic field strength might be acceptable, meaning that the NbTi superconducting wire could be used. This system is named OCLATOR

  1. First assembly phase for the ATLAS toroid coils

    CERN Multimedia

    Patrice Loïez

    2003-01-01

    The ATLAS barrel toroid system consists of eight coils, each of axial length 25.3 m, assembled radially and symmetrically around the beam axis. The coils are of a flat racetrack type with two double-pancake windings made of 20.5 kA aluminium-stabilized niobium-titanium superconductor. In the first phase of assembly, the two 'pancakes' are packed into their vacuum vessel. This is done using bladders filled with resin and glass microbeads under pressure. The resin is heated and, once cooled, holds the pancakes in place. The operation has to be performed on both sides of the coil, which necessitated a special technique to turn the coils over and then transport them to the heating table. Photos 01, 02, 03: Use of the overhead travelling crane to hoist the coil up and then tilt it over, the coil frame's metal feet being used as rotational pivots, supporting half the coil's weight. Once it has been turned over, the coil, now with only half the frame, is transported to the heating table using a special lifting gant...

  2. First ATLAS Barrel Toroid Coil Passes Test

    CERN Multimedia

    2004-01-01

    First they secured anything magnetic: metal tools, nuts and bolts, tables. Then they cleared the magnet assembly building, as big as an airplane hangar, and locked it tight. Before turning on the magnet for its maiden test, they waited till the dead of night so no one else would be around.

  3. Toroid cavity/coil NMR multi-detector

    Science.gov (United States)

    Gerald, II, Rex E.; Meadows, Alexander D.; Gregar, Joseph S.; Rathke, Jerome W.

    2007-09-18

    An analytical device for rapid, non-invasive nuclear magnetic resonance (NMR) spectroscopy of multiple samples using a single spectrometer is provided. A modified toroid cavity/coil detector (TCD), and methods for conducting the simultaneous acquisition of NMR data for multiple samples including a protocol for testing NMR multi-detectors are provided. One embodiment includes a plurality of LC resonant circuits including spatially separated toroid coil inductors, each toroid coil inductor enveloping its corresponding sample volume, and tuned to resonate at a predefined frequency using a variable capacitor. The toroid coil is formed into a loop, where both ends of the toroid coil are brought into coincidence. Another embodiment includes multiple micro Helmholtz coils arranged on a circular perimeter concentric with a central conductor of the toroid cavity.

  4. General Atomic's superconducting toroidal field coil concept

    International Nuclear Information System (INIS)

    General Atomic's concept for a superconducting toroidal field coil is presented. The concept is generic for large tokamak devices, while a specific design is indicated for a 3.8 meter (major radius) ignition/burn machine. The concept utilizes bath cooled NbTi conductor to generate a peak field of 10 tesla at 4.2 K. The design is simple and straightforward, requires a minimum of developmental effort, and draws extensively upon the perspective of past experience in the design and construction of large superconducting magnets for high energy physics. Thus, the primary emphasis is upon economy, reliability, and expeditious construction scheduling. (author)

  5. The Common Cryogenic Test Facility for the Atlas Barrel and End-Cap Toroid Magnet

    CERN Document Server

    Delruelle, N; Junker, S; Passardi, Giorgio; Pengo, R; Pirotte, O

    2004-01-01

    The large ATLAS toroidal superconducting magnet made of the Barrel and two End-Caps needs extensive testing at the surface of the individual components prior to their final assembly into the underground cavern of LHC. A cryogenic test facility specifically designed for cooling sequentially the eight coils making the Barrel Toroid (BT) has been fully commissioned and is now ready for final acceptance of these magnets. This facility, originally designed for testing individually the 46 tons BT coils, will be upgraded to allow the acceptance tests of the two End-Caps, each of them having a 160 tons cold mass. The integrated system mainly comprises a 1.2 kW@4.5 K refrigerator, a 10 kW liquid-nitrogen precooler, two cryostats housing liquid helium centrifugal pumps of respectively 80 g/s and 600 g/s nominal flow and specific instrumentation to measure the thermal performances of the magnets. This paper describes the overall facility with particular emphasis to the cryogenic features adopted to match the specific re...

  6. The common cryogenic test facility for the ATLAS barrel and end-cap toroid magnets

    CERN Document Server

    Delruelle, N; Junker, S; Passardi, Giorgio; Pengo, R; Pirotte, O

    2004-01-01

    The large ATLAS toroidal superconducting magnet made of the Barrel and two End-Caps needs extensive testing at the surface of the individual components prior to their final assembly into the underground cavern of LHC. A cryogenic test facility specifically designed for cooling sequentially the eight coils making the Barrel Toroid (BT) has been fully commissioned and is now ready for final acceptance of these magnets. This facility, originally designed for testing individually the 46 tons BT coils, will be upgraded to allow the acceptance tests of the two End-Caps, each of them having 160 tons cold mass. The integrated system mainly comprises a 1.2 kW@4.5 K refrigerator, a 10 kW liquid-nitrogen precooler, two cryostats housing liquid helium centrifugal pumps of respectively 80 g/s and 600 g/s nominal flow and specific instrumentation to measure the thermal performances of the magnets. This paper describes the overall facility with particular emphasis to the cryogenic features adopted to match the specific requ...

  7. Bi-2223 HTS winding in toroidal configuration for SMES coil

    Energy Technology Data Exchange (ETDEWEB)

    Kondratowicz-Kucewicz, B; Kozak, S; Kozak, J; Wojtasiewicz, G; Majka, M [Electrotechnical Institute in Warsaw (Poland); Janowski, T, E-mail: t.janowski@pollub.p [Lublin University of Technology (Poland)

    2010-06-01

    Energy can be stored in the magnetic field of a coil. Superconducting Magnetic Energy Storage (SMES) is very promising as a power storage system for load levelling or power stabilizer. However, the strong electromagnetic force caused by high magnetic field and large coil current is a problem in SMES systems. A toroidal configuration would have a much less extensive external magnetic field and electromagnetic forces in winding. The paper describes the design of HTS winding for SMES coil in modular toroid configuration consist of seven Bi-2223 double-pancakes as well as numerical analysis of SMES magnet model using FLUX 3D package. As the results of analysis the paper presents the optimal coil configuration and the parameters such as radius of toroidal magnet, energy stored in magnet and magnetic field distribution.

  8. The CERN cryogenic test facility for the ATLAS barrel toroid magnets

    CERN Document Server

    Haug, F; Delruelle, N; Orlic, J P; Passardi, Giorgio; Tischhauser, Johann

    2000-01-01

    The superconducting magnet system of the ATLAS detector will consist of a central solenoid, two end-cap toroidal magnets (ECT) and the barrel toroid magnet (BT) made of eight coils symmetrically placed around the central axis of the detector. The magnets will be tested individually in a 5000 m/sup 2/ experimental area prior to their final installation at an underground cavern of the LHC Collider. For the BT magnets, a dedicated cryogenic test facility has been designed which is currently under the construction and commissioning phase. A liquid nitrogen pre-cooling unit and a 1200 W@4.5K refrigerator will allow flexible operating conditions via a rather complex distribution and transfer line system. Flow of two-phase helium for cooling the coils is provided by centrifugal pumps immersed in a saturated liquid helium bath. The integration of the pumps in an existing cryostat required the adoption of novel mechanical solutions. Tests conducted permitted the validation of the technical design of the cryostat and i...

  9. The CERN Cryogenic Test Facility for the Atlas Barrel Toroid Magnets

    CERN Document Server

    Haug, F; Delruelle, N; Orlic, J P; Passardi, Giorgio; Tischhauser, Johann

    1999-01-01

    The superconducting magnet system of the ATLAS detector will consist of a central solenoid, two end-cap toroidal magnets (ECT) and the barrel toroid magnet (BT) made of eight coils symmetrically placed around the central axis of the detector. The magnets will be tested individually in a 5000 m2 experimental area prior to their final installation at an underground cavern of the LHC Collider. For the BT magnets, a dedicated cryogenic test facility has been designed which is currently under the construction and commissioning phase. A liquid nitrogen pre-cooling unit and a 1200 W@4.5K refrigerator will allow flexible operating conditions via a rather complex distribution and transfer line system. Flow of two-phase helium for cooling the coils is provided by centrifugal pumps immersed in a saturated liquid helium bath. The integration of the pumps in an existing cryostat required the adoption of novel mechanical solutions. Tests conducted permitted the validation of the technical design of the cryostat and its ins...

  10. Modular coils: a promising toroidal-reactor-coil system

    International Nuclear Information System (INIS)

    The concept of modular coils originated from a need to find reactor-relevant stellarator windings, but its usefulness can be extended to provide an externally applied, additional rotational transform in tokamaks. Considerations of (1) basic principles of modular coils, (2) types of coils, (3) types of configurations (general, helically symmetric, helically asymmetric, with magnetic well, with magnetic hill), (4) types of rotational transform profile, and (5) structure and origin of ripples are given. These results show that modular coils can offer a wide range of vacuum magnetic field configurations, some of which cannot be obtained with the classical stellarator or torsatron coil configuration

  11. Toroidal field coil system for STARFIRE, a preliminary assessment

    International Nuclear Information System (INIS)

    An important element of STARFIRE is the 12-coil superconducting toroidal field coil system which is required to generate 5.6 tesla at the 7.0 m plasma axis, with a peak-to-peak field ripple of 1% (maximum). Internal spatial requirements dictate a clear bore about 15 1/2 m high x 10 m wide, resulting in a total stored energy of 67 GJ

  12. Sliding joint concept for toroidal field coils of a tokamak

    International Nuclear Information System (INIS)

    A low-cost, compact, copper-coil ignition tokamak is the focus of design studies in FY85. For a minimum-cost machine, the toroidal field (TF) coils must be as compact as practical. On the other hand, smaller TF coils inhibit the assembly and maintenance of the components entrapped by the TF coils, such as the plasma vacuum vessel, limiter, poloidal field coils, etc. If the compact TF coil has at least two demountable electrical joints, removal of the outer part of the TF coil would permit servicing of the entrapped components. The vertical straight leg of a TF coil has the smallest cross-sectional area, but it experiences the largest tensile and compressive forces. The tensile load on the vertical leg can be eliminated if the demountable joints can slide. A possible sliding joint design concept is described in this paper. This sliding joint transfers only current. No forces are transferred from the outer curved leg to the straight leg of the TF coils. The outer curved leg can be separated at the sliding joint to gain access to the components inside the TF coil bore

  13. Toroid magnet test facility

    CERN Multimedia

    2002-01-01

    Because of its exceptional size, it was not feasible to assemble and test the Barrel Toroid - made of eight coils - as an integrated toroid on the surface, prior to its final installation underground in LHC interaction point 1. It was therefore decided to test these eight coils individually in a dedicated test facility.

  14. Advances in the Fabrication of Toroidal Field Coil Prototypes*

    Science.gov (United States)

    Pizzuto, A.; Cucchiaro, A.; Frosi, R.; Ramogida, G.; Boert, F.; Wobker, H. G.; Bianchi, A.; Parodi, B.; Coppi, B.

    2006-10-01

    The Bitter-type Toroidal Field Coils (TFC) adopted for Ignitor consist of plates that are cooled down to 30 K by Helium gas. Copper OFHC has been selected for these plates, allowing for an Electron Beam (EB) welding solution of the cooling channels. Kabel Metal set up the welding parameters and qualified the process to achieve full joint penetration with acceptable metallurgical structure. The qualification covers both the welding of the cooling channels and the inlet/outlet tube made on two full size samples. A metallographic examination and vacuum and pressure tests have been preformed to validate the basic suitability of the EB welding process. *Sponsored in part by ENEA of Italy and by the U.S. DOE.

  15. Insertion of the CMS coil into the barrel yoke on 14 September 2005

    CERN Multimedia

    Maximilien Brice

    2005-01-01

    Insertion of the CMS coil into the barrel yoke on 14 September 2005. The pictures have been taken in the CMS experimental hall SX5 in Cessy, neighbouring France. The second picture shows the insertion of the Inner Vacuum Tank.

  16. Validation of Helium Inlet Design for ITER Toroidal Field Coil

    CERN Document Server

    Boyer, C; Hamada, K; Foussat, A; Le Rest, M; Mitchell, N; Decool, P; Savary, F; Sgobba, S; Weiss, K-P

    2014-01-01

    The ITER organization has performed design and its validation tests on a helium inlet structure for the ITER Toroidal Field (TF) coil under collaboration with CERN, KIT, and CEA-Cadarache. Detailed structural analysis was performed in order to optimize the weld shape. A fatigue resistant design on the fillet weld between the shell covers and the jacket is an important point on the helium inlet structure. A weld filler material was selected based on tensile test at liquid helium temperature after Nb3Sn reaction heat treatment. To validate the design of the weld joint, fatigue tests at 7 K were performed using heat-treated butt weld samples. A pressure drop measurement of a helium inlet mock-up was performed by using nitrogen gas at room temperature in order to confirm uniform flow distribution and pressure drop characteristic. These tests have validated the helium inlet design. Based on the validation, Japanese and European Union domestic agencies, which have responsibilities of the TF coil procurement, are pr...

  17. Project status of manufacturing of European toroidal coils ITER. Validation tests

    International Nuclear Information System (INIS)

    The toroidal field coils are the ITER magnets responsible for confining the plasma inside the vacuum vessel. The consortium formed by IBERDROLA Ingenieria y Construccion, ASG Superconductors y ELYTT Energy is the responsible for the supply of 10 coils that the european agency F4E has to supply for the ITER project. At present, the coils are been manufactured in La Spezia (Italy), after the qualification of all the manufacturing process and the sucessfull manufacturing of a full scale prototype. (Author)

  18. Toroidal modelling of RMP response in ASDEX Upgrade: coil phase scan, q 95 dependence, and toroidal torques

    Science.gov (United States)

    Liu, Yueqiang; Ryan, D.; Kirk, A.; Li, Li; Suttrop, W.; Dunne, M.; Fischer, R.; Fuchs, J. C.; Kurzan, B.; Piovesan, P.; Willensdorfer, M.; the ASDEX Upgrade Team; the EUROfusion MST1 Team

    2016-05-01

    The plasma response to the vacuum resonant magnetic perturbation (RMP) fields, produced by the ELM control coils in ASDEX Upgrade experiments, is computationally modelled using the MARS-F/K codes (Liu et al 2000 Phys. Plasmas 7 3681, Liu et al 2008 Phys. Plasmas 15 112503). A systematic investigation is carried out, considering various plasma and coil configurations as in the ELM control experiments. The low q plasmas, with {{q}95}˜ 3.8 (q 95 is the safety factor q value at 95% of the equilibrium poloidal flux), responding to low n (n is the toroidal mode number) field perturbations from each single row of the ELM coils, generates a core kink amplification effect. Combining two rows, with different toroidal phasing, thus leads to either cancellation or reinforcement of the core kink response, which in turn determines the poloidal location of the peak plasma surface displacement. The core kink response is typically weak for the n  =  4 coil configuration at low q, and for the n  =  2 configuration but only at high q ({{q}95}˜ 5.5 ). A phase shift of around 60 degrees for low q plasmas, and around 90 degrees for high q plasmas, is found in the coil phasing, between the plasma response field and the vacuum RMP field, that maximizes the edge resonant field component. This leads to an optimal coil phasing of about 100 (-100) degrees for low (high) q plasmas, that maximizes both the edge resonant field component and the plasma surface displacement near the X-point of the separatrix. This optimal phasing closely corresponds to the best ELM mitigation observed in experiments. A strong parallel sound wave damping moderately reduces the core kink response but has minor effect on the edge peeling response. For low q plasmas, modelling shows that both the resonant electromagnetic torque and the neoclassical toroidal viscous (NTV) torque (due to the presence of 3D magnetic field perturbations) contribute to the toroidal flow damping, in particular near the

  19. Operation of a Fluorinert{trademark} cooling system for the toroidal field coils on TFTR

    Energy Technology Data Exchange (ETDEWEB)

    Barnes, G.W.; Pysher, R.; Chrzanowski, J.; Woolley, R. [Princeton Plasma Physics Lab., NJ (United States)

    1995-12-31

    An alternate cooling fluid (Fluorinert{trademark}) was introduced during the D-T experimental runs for cooling the toroidal field (TF) coils on TFTR. This paper addresses how this system performed during the D-T operational period and the special techniques that the alternate cooling system requires for operations and maintenance. Radiation from neutron activation of Fluorinet{trademark} (Fluorine 18 etc) and associated personnel safety issues and safeguards are discussed. Flow reversal in the TF Coils has proven to be a valuable mechanism by which any loose particulates can be cleared from the coolant passages and the development of this operational tool is addressed. Specific draining procedures for the TF Coils have been developed during the D-t run in order to minimize losses of fluid. The toroidal field coil operational characteristics with Fluorinert {trademark} are compared to those previously observed with water cooling.

  20. Remote replacement of TF [toroidal field] and PF [poloidal field] coils for the compact ignition tokamak

    International Nuclear Information System (INIS)

    The use of deuterium-tritium fuel in the Compact Ignition Tokamak will require applying remote handling technology for ex-vessel maintenance and replacement of machine components. Highly activated and contaminated components of the fusion devices auxiliary systems, such as diagnostics and RF heating, must be replaced using remotely operated maintenance equipment in the test cell. In-vessel remote maintenance included replacement of divertor and first wall hardware, faraday shields, and for an in-vessel inspection system. Provision for remote replacement of a vacuum vessel sector, toroidal field coil or poloidal field ring coil was not included in the project baseline. As a result of recent coil failures experienced at a number of facilities, the CIT project decided to reconsider the question of remote recovery from a coil failure and, in January of 1990, initiated a coil replacement study. This study focused on the technical requirements and impact on fusion machine design associated with remote recovery from any coil failure

  1. Performance assessment and optimization of the ITER toroidal field coil joints

    NARCIS (Netherlands)

    Rolando, G.; Foussat, A.; Knaster, J.; Illiin, Y.; Nijhuis, A.

    2013-01-01

    The ITER toroidal field (TF) system features eighteen coils that will provide the magnetic field necessary to confine the plasma. Each winding pack is composed of seven double pancakes (DP) connected through praying hands joints. Shaking hands joints are used to interface the terminals of the conduc

  2. SDC muon barrel toroid 1/9.197 scale test model at SSC

    International Nuclear Information System (INIS)

    The purpose of the scale model for the muon barrel toroid (MBT) is to discover any problems in the preliminary design associated with the fabrication, assembly and installation. The information obtained from the model fabrication, assembly, installation, and testing processes will be used to evaluate the MBT preliminary design and to verify the finite element (FE) analysis. The final design of the MBT will take advantage of the experience gained from the test model to improve the design and engineering, fabrication methods, and assembly methods. The goals that are considered relevant to the test model include the following: Verify the in-plane and out-of-plane stiffness of the test model as predicted by the FE analysis. Verify the corner joint stiffness of the test model as predicted by the FE analysis. Verify the fabrication and assembly methods for the blocks, pins and keys on a small scale. Demonstrate the plate flattening scheme on a small scale. Insure that the preliminary design of the MBT can be assembled into the correct shape on a small scale. A magnetic measurement will be performed to record the field density inside an air gap. The main goal is to find out the field distribution for the test model due to geometry variation. The field measurements will also provide the information to verify the magnetic property of the steel material as well as the impact on the field distribution due to material variation

  3. Sacral Theater, a code to simulate the propagation of the superconducting magnet LHC atlas barrel toroid transition; Sacral theater, un code pour simuler la propagation de la transition de l'aimant supraconducteur LHC atlas barrel toroid

    Energy Technology Data Exchange (ETDEWEB)

    Gastineau, B

    2000-06-01

    Sacral Theater has been developed for the toroid magnet Atlas of the CERN LHC project. This three dimensional calculations code calculates the propagation of the transition of a superconducting coil in 25 m long hippodrome. Procedures to study low currents have been included. This work is a part of the magnet safety system because the coils protection is made by warmers activating the quench propagation in case of default detection. This allows the complete dissipation of storage energy that can reach 1080 MJ on Atlas. (N.C.)

  4. Strain Measurement on the Toroidal Field (TF) Coil Cases

    Institute of Scientific and Technical Information of China (English)

    Chen Zhuomin; Long Feng; Wu Hao

    2005-01-01

    The stress-strain state of the structure is a matter of interest to designer. The strain measurement of superconducting magnets at cryogenic temperature is a specific technique. Based on strain measurement of TF coil case for EAST, this paper presents a measuring technique at cryogenic temperature and on intense magnetic field. The compensation methods for both temperature and magnetic field effects of the gauges, together with the measured results are involved, and the discussions of the measured results are given in the paper.

  5. Tokamak Fusion Core Experiment: design studies based on superconducting and hybrid toroidal field coils. Design overview

    International Nuclear Information System (INIS)

    This document is a design overview that describes the scoping studies and preconceptual design effort performed in FY 1983 on the Tokamak Fusion Core Experiment (TFCX) class of device. These studies focussed on devices with all-superconducting toroidal field (TF) coils and on devices with superconducting TF coils supplemented with copper TF coil inserts located in the bore of the TF coils in the shield region. Each class of device is designed to satisfy the mission of ignition and long pulse equilibrium burn. Typical design parameters are: major radius = 3.75 m, minor radius = 1.0 m, field on axis = 4.5 T, plasma current = 7.0 MA. These designs relay on lower hybrid (LHRH) current rampup and heating to ignition using ion cyclotron range of frequency (ICRF). A pumped limiter has been assumed for impurity control. The present document is a design overview; a more detailed design description is contained in a companion document

  6. Toroid field coil shear key installation study, DOE task No. 22

    Energy Technology Data Exchange (ETDEWEB)

    Jones, C.E.; Meier, R.W.; Yuen, J.L.

    1995-01-09

    Concepts for fitting and installation of the scissor keys, triangular keys, and truss keys in the ITER Toroidal Field (TF) Coil Assembly were developed and evaluated. In addition, the process of remote removal and replacement of a failed TF coil was considered. Two concepts were addressed: central solenoid installed last (Naka Option 1) and central solenoid installed first (Naka Option 2). In addition, a third concept was developed which utilized the favorable features of both concepts. A time line for installation was estimated for the Naka Option 1 concept.

  7. Integrated Design System of Toroidal Field Coil for CFETR

    Science.gov (United States)

    Luo, Zhiren; Liu, Xufeng; Du, Shuangsong; Wang, Zhongwei; Song, Yuntao

    2016-09-01

    Integrating engineering software is meaningful but challenging for a system code of a fusion device. This issue is seldom considered by system codes currently. Therefore, to discuss the issue, the Integrated Design System of TF Coil (IDS-TFC) has been worked out, which consists of physical calculation, CAD, and Finite Element Analysis (FEA). Furthermore, an Integrated and Automatically Optimized Method (IAOM) has been created to address the integration and interfaces. The method utilizes a geometry parameter to connect each design submodule and achieve automatic optimization. Double-objectives optimization has been realized, confirming it is feasible to integrate and optimize engineering design and physical calculation. Moreover, IDS-TFC can also serve as a useful reference of integrated design processing for subsequent fusion design. supported by the National Magnetic Confinement Fusion Science Program of China (Nos. 2014GB110000, 2014GB110002)

  8. Upgrades to Power Systems and Magnetic Field Coils in the Pegasus Toroidal Experiment

    Science.gov (United States)

    Perry, J. M.; Bongard, M. W.; Bradisse, M. R.; Fonck, R. J.; Lewicki, B. T.; Swager, S. M.

    2012-10-01

    A set of facility upgrades for Pegasus is currently underway to improve the control and performance of the power systems and the magnetic field coils, with the aim of increased helicity-driven current drive for non-inductive startup. The plasma current achieved through helicity injection goes as √ITF Iinj , the toroidal field rod current and injector bias current, respectively. To increase this quantity, the toroidal field power system will be upgraded. Eight new high-current IGBT bridges will replace the 6 bridges currently in place, bringing ITF from 288 kA-turns to 600 kA-turns. Iinj is increased via a new 14 kA, 2.2 kV, single-quadrant IGCT switching power supply. The main poloidal field coil system is expanded to provide faster vertical field penetration of the vessel wall, thereby providing more flexible control of plasma position during startup and current growth. The L/R time for these coils is reduced by ˜40%. New divertor coils are being installed to provide more shaping flexibility and separatrix-limited operations. Overall power supply control will be improved and simplified by deployment of digital feedback controllers using Field Programmable Gate Arrays (FPGAs) to replace PWM analog feedback controllers. FPGAs will provide faster control frequencies, improved fault-handling capability, and streamlined recording of power system operations.

  9. Elastic-plastic analysis of the toroidal field coil inner leg of the compact ignition tokamak

    International Nuclear Information System (INIS)

    Elastic-plastic analyses were made for the inner leg of the Compact Ignition Tokamak toroidal field (TF) coil, which is made of copper-Inconel composite material. From the result of the elastic-plastic analysis, the effective Young's moduli of the inner leg were determined by the analytical equations. These Young's moduli are useful for the three-dimensional, elastic, overall TF coil analysis. Comparison among the results of the baseline design (R = 1.324 m), the bucked pressless design, the 1.527-m major radius design, and the 1.6-m major radius design was also made, based on the elastic-plastic TF coil inner leg analyses

  10. Comparative evaluation of existing concepts for a 10 tesla FED toroidal field coil

    International Nuclear Information System (INIS)

    The existing design concept options for FED toroidal field coils have been studied and evaluated by General Atomic Company as part of the FED/INTOR Critical Magnetic Issues effort for 1982. The various design concepts studied are: (1) forced flow cooled NbTi cabled conductor, (2) He-II bath cooled Nb3Sn-NbTi hybrid with cabled conductor. These design concepts are evaluated based upon their relative merits, including technological maturity, operational reliability, overall reactor compatability, maintainability, and cost. An important aspect of this study was the normalization of each design concept to meet similar operational requirements. The critical issues in the TF coil design, including the structural role of the helium vessel, quench protection, accommodation of neutronic and eddy current heating, credible fault criteria, and the possibility of prototype coil demonstration are discussed. The consequences and implications of extending the peak field in the range from 8 to 10 tesla was also studied

  11. Electromechanical analysis of a prototype 20 TESLA, single turn toroidal field coil for IGNITEX

    International Nuclear Information System (INIS)

    The fusion ignition experiment (IGNITEX) device is a single turn coil tokamak designed to produce and control an ignited plasma using ohmic heating alone. The proposed high strength toroidal field (TF) magnet operates at a magnetic field on axis of 20 T, using homopolar generators (HPGs). In this paper, the electromechanical analysis of a scaled down prototype (0.06 scale in linear dimensions) of the IGNITEX TF magnet is presented. The objective of the Ignition Technology, Demonstration (ITD) program is to design, build, and test the operation of a single turn, 20 T, TF coil, powered by an existing: HPG power supply system. Unlike conventional TF coils that use: multiple turns of the conductor, the single turn coil eliminates the need for turn-to-turn insulation; therefore, better utilizing the available area for stress and thermal management. Precooling of the coil to liquid-nitrogen temperature permits the magnet to operate in a wider temperature regime without exceeding material properties. Scaling relationships presented in this paper show that temperatures and stresses of a scaled-down coil and their relative distribution will approximate predicted levels of the full-scale IGNITEX device. A finite element program (TEXCOR) which solves a set of coupled electrical circuit, magnetic diffusion, and thermal diffusion equations with temperature dependent properties was developed. TEXCOR provides temperatures and magnetic body force densities for stress analysis of the magnet structure. The effect of flatness tolerance stackups in the TF coil assembly is discussed and methods to characterize and minimize the negative effect of nonideal conditions are given. Generator fault scenarios are also addressed. 5 refs., 8 figs., 1 tab

  12. Development of high-mechanical strength electrical insulations for tokamak toroidal field coils

    International Nuclear Information System (INIS)

    The electrical insulation for the TF (Toroidal Field) coils is subjected to a high interlaminar shear, tensile and compressive stresses. Two candidate epoxy/glass fiber systems using prepreg and vacuum impregnation techniques were evaluated. Specimens were prepared and processed under controlled conditions to simulate specification manufacturing procedures. The strengths of the insulation were measured in interlaminar shear, tension, compression, and combined shear and compression statically. Shear modulus determinations were also made. Various techniques of surface treatments to increase bond strengths with three resin primers were tested

  13. NbTi based conductors for use in 12 Tesla toroidal field coils

    International Nuclear Information System (INIS)

    The feasibility of using NbTi based alloy for high field applications has been investigated. Results have shown that the useful range of alloys of NbTi and NbTiTa can easily be extended to 12 Tesla by operating at temperatures in the 2 K range. In this paper the results of the conductor optimization of 5 NbTi based alloys are presented. These results have been used in the design of 12 Tesla toroidal field coils based on ETF design parameters. 8 refs

  14. Feasibility Study on Welding Structure of the HT-7U Toroidal Field Coil Case

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The Toroidal Field (TF) coil case of the HT-7U superconducting tokamak device is made of austenitic stainless steel 316LN and is designed to operate at cryogenic temperature (4 K). 316LN can retain high strength and fracture toughness at 4 K. Feasibility study on technical process of welding has been experimentally considered as a hopeful joint method for suppression of post-welding deformation and reduction of over-heating. Meanwhile the final range of stress in- tensity and the stress intensity factor (K) for pre-cracks of welding structure have been determined by using J-integral. These related results are optimistic and have shown that there's no problem in strength and fracture toughness at the vicinity of the pre-crack tip. This paper introduces the welding structure of TF coil case in detail.

  15. Mass production and quality control of Nb3Sn superconducting strands for ITER toroidal field coils

    International Nuclear Information System (INIS)

    Superconducting conductors are applied in the toroidal field (TF) coils, poloidal field coils, and central solenoid (CS) in the ITER. The Japan Atomic Energy Agency plans to procure 25% of the TF conductors and 100% of the CS conductors. Mass-produced Nb3Sn superconducting strands for TF conductors have been supplied by two manufacturers since 2008. The total length of the strands is approximately 23,000 km; thus, quality control is extremely important. A statistical process control has been adopted in order to reduce the dispersion of strand performance, and stable performance of the mass-produced strands was achieved. Both manufacturers improved the fabrication yield through mass production. Approximately 72% of the Japanese share in TF strands has been produced as of October 2011. (author)

  16. Barrel-stave model or toroidal model? A case study on melittin pores.

    OpenAIRE

    Yang, L; Harroun, T A; Weiss, T M; Ding, L; Huang, H W

    2001-01-01

    Transmembrane pores induced by amphiphilic peptides, including melittin, are often modeled with the barrel-stave model after the alamethicin pore. We examine this assumption on melittin by using two methods, oriented circular dichroism (OCD) for detecting the orientation of melittin helix and neutron scattering for detecting transmembrane pores. OCD spectra of melittin were systematically measured. Melittin can orient either perpendicularly or parallel to a lipid bilayer, depending on the phy...

  17. Development of the KfK NET toroidal field coil react and wind conductor

    International Nuclear Information System (INIS)

    In the frame of the Euratom Fusion Technology program an A15 forced flow cooled conductor for the toroidal field (TF) coils of the Next European Torus (NET) was developed at KfK Karlsruhe. The conductor is based on the bronze route of Nb3Sn. It was designed as a react and wind conductor in a sandwich type where the flat Nb3Sn Rutherford cable was enclosed between two Cu stabilizers based on roebeled Cu profiles. A subsize conductor at the scale 1:1.75 was fabricated for developing the industrial fabrication procedure and testing the electrical properties within an acceptable cost frame. For the heat treatment of the Rutherford cable a suitable process was developed. No unexpected degradations were found on samples taken at different fabrication stages and tested in the FBI facility at KfK. In a late stage of development the NET parameters were changed which loaded the conductor with 10 times higher field transients caused by plasmas disruption with respect to the original specifications. A detailed analysis showed that the conductor fulfilled further all specifications except the field transients of the plasma disruption where the conductor will quench. The development of the Nb3Sn conductor in react and wind technique demonstrate that this conductor type is feasible using the common manufacturing techniques of large coils which were already successfully demonstrated in the Large Coil Task and in the KfK-Polo project. (orig.)

  18. Comparative evaluation of existing concepts for a 10-tesla FED toroidal field coil

    International Nuclear Information System (INIS)

    The existing design concept options for FED toroidal field coils have been studied and evaluated by General Atomic Company as part of the FED/INTOR Critical Magnetic Issues effort for 1982. The various design concepts studied are: (1) forced flow cooled NbTi cabled conductor, (2) He-II bath cooled NbTi cabled conductor, and (3) He-I bath cooled Nb3Sn-NbTi hybrid with cabled conductor. These design concepts are evaluated based upon their relative merits, including technological maturity, operational reliability, overall reactor compatability, maintainability, and cost. An important aspect of this study was the normalization of each design concept to meet similar operational requirements. The critical issues in the TF coil design, including the structural role of the helium vessel, quench protection, accommodation of neutronic and eddy current heating, credible fault criteria, and the possibility of prototype coil demonstration are discussed. The consequences and implications of extending the peak field in the range from 8 to 10 tesla was also studied

  19. Axial preloading of a 20 TESLA prototype of a single turn Tokamak toroidal field coil

    International Nuclear Information System (INIS)

    An axial preloading system has been designed and built as part of the 0.06 scale prototype toroidal field (TF) magnet for the IGNITEX experiment. In the prototype TF coil, as in the full size IGNITEX tokamak, the peak stresses in the inner leg during discharge are made more isotropic (hence the von Mises stress intensity is lowered) through axial preloading. Although preliminary (nonpreloaded) tests of the TF magnet should produce fields as high as 15 T, preloading will permit demonstration of the high (20 T) on-axis magnetic field to be achieved in the IGNITEX device. The preloading system for the prototype is a hydraulic press capable of a load of 580 tons. The press is designed with a short stroke which takes the press from a condition of noncontact to full preloading. During the magnet's pulse and subsequent thermal growth, the hydraulic system of the press maintains the preload force

  20. Solenoid-free toroidal plasma start-up concept utilizing only the outer poloidal field coils

    International Nuclear Information System (INIS)

    Full text: Eventual elimination of in-board ohmic heating solenoid is required for the spherical torus (ST) reactors and it is considered to be highly desirable for advanced tokamak reactors. A fundamental challenge for using only the outer poloidal field coils for the start-up purpose is the difficulty of creating a sufficiently high quality field null region while retaining significant poloidal flux needed for subsequent current ramp up. Here, we show through both static and dynamic calculations that a carefully chosen proper set of outer poloidal field coils can indeed offer a promising prospect of creating a good quality 'multi-pole' field null while retaining sufficient poloidal flux, in particular, satisfying the 'Lloyd' criteria for the inductive plasma start-up. For a single turn TF system envisioned for ST-based CTF and power plant, the poloidal magnetic flux stored in the TF inner leg can provide additional significant flux. This concept can be readily extended to future devices for a multi-MA level start-up current due to the relatively simple physics principles and a favorable scaling with device size and toroidal magnetic field. (author)

  1. Team one (GA/MCA) effort of the DOE 12 Tesla Coil Development Program. 12 Tesla ETF toroidal field coil helium bath cooled NbTi alloy concept

    International Nuclear Information System (INIS)

    This report presents the conceptual design of an ETF compatible toroidal field coil, employing helium bath cooled NbTi alloy conductor. The ten TF-coil array generates a peak field of 11-1/2 tesla at 2.87 m radius, corresponding to a major axis field of 6.1 tesla. The 10 kA conductor is an uninsulated, unsoldered Rutherford cable, employing NbTiTa ally as developed in Phase I of this effort. The conductor is encased within a four element frame of stainless steel strips to provide hoop and bearing load support

  2. Technology development and mass production of Nb3Sn conductors for ITER toroidal field coils in Japan

    International Nuclear Information System (INIS)

    The design and manufacture of Nb3Sn conductors for ITER toroidal field (TF) coils have many technical challenges. Although it was demonstrated in the ITER model coil project that the conductors have a sufficiently high performance and the engineering design is valid, unexpected issues arose. Through both theoretical and experimental efforts improved conductors were developed. The Japan Atomic Energy Agency started to procure improved conductors for TF coils as part of the ITER project. Because the required tonnage of Nb3Sn strands is quite large compared with past experience and the required superconducting performance is higher than that of the model coils, quality control techniques are very important for the successful manufacture of the strands. Approximately 60 ton of Nb3Sn strands have been successfully completed under a severe quality control regimen and all strands meet ITER specifications. This paper summarizes the technical developments leading to the first successful mass production of ITER TF conductors.

  3. Mechanical characteristics of the ATLAS B0 model coil

    CERN Document Server

    Foussat, A; Dudarev, A; Mayri, C; Miele, P; Sun, Z; ten Kate, H H J; Volpini, G

    2003-01-01

    The ATLAS B0 model coil has been tested at CERN to verify the design parameters of the Barrel Toroid coils (BT). The mechanical behavior of the B0 superconducting coil and its support structure is reported and compared with coil design calculations. The mechanical stresses and structural force levels during cooling down and excitation phases were monitored using strain gauges, position sensors and capacitive force transducers instrumentation. In the ATLAS magnet test facility, a magnetic mirror is used to reproduce the electromagnetic forces present in the BT coils, once these are assembled in toroid in the underground cavern in 2004. (8 refs).

  4. Quench propagation and protection analysis of the ATLAS Toroids

    CERN Document Server

    Dudarev, A; ten Kate, H H J; Baynham, D Elwyn; Courthold, M J D; Lesmond, C

    2000-01-01

    The ATLAS superconducting magnet system consists of the Barrel Toroid, two End Cap Toroids and the Central Solenoid. However, the Toroids of eight coils each are magnetically separate systems to the Central Solenoid. The Toroids are electrically connected in series and energized by a single power supply. The quench protection system is based on the use of relatively small external dump resistances in combination with quench-heaters activated after a quench event detection to initiate the internal dump of stored energy in all the coils. A rather strong quench-back effect due to eddy-currents in the coil casings at the transport current decay is beneficial for the quench protection efficiency in the event of heater failures. The quench behaviour of the ATLAS Toroids was computer simulated for normal operation of the quench protection system and its complete non-operation (failure) mode. (3 refs).

  5. Mechanical design of the coils encapsulated of toroidal field of Tokamak TPM1; Diseno mecanico del encapsulado de las bobinas de campo toroidal del Tokamak TPM1

    Energy Technology Data Exchange (ETDEWEB)

    Caldino H, U.; Francois L, J. L., E-mail: ucaldino@outlook.com [UNAM, Facultad de Ingenieria, Departamento de Sistemas Energeticos, Paseo Cuauhnahuac 8532, 62550 Jiutepec, Morelos (Mexico)

    2014-10-15

    The TPM1 is a small Tokamak that belongs to the Centro de Investigacion en Ciencias Aplicadas y Tecnologia Avanzada of Instituto Politecnico Nacional (CICATA-IPN); the project is under construction. Currently it has the vacuum chamber, and is intended that the machine can operate with electric pulses of 10 ms to study the behavior of plasmas in order to provide knowledge in the field of nuclear fusion by magnetic confinement. To achieve this goal is necessary to design the toroidal field coils which operate the Tokamak. This paper presents an analysis which was performed to obtain the correct configuration of coils depending on design parameters for operation of the machine. Once determined this configuration, an analysis of electromagnetic forces present in normal machine operation on one coil was conducted, this to know the stresses in the encapsulation of the same. Considering the pulsed operation, a thickness of 5 mm is determined in the encapsulated, considering fatigue failure based on studies of fatigue failures in epoxy resins. (Author)

  6. Project status of manufacturing of European toroidal coils ITER. Validation tests; Estado del proyecto de fabricacion de las bobinas toroidales european para el ITER. Ensayos de validacion

    Energy Technology Data Exchange (ETDEWEB)

    Pando, F.; Felipe, A.; Madorran, A.; Pallisa, J.; Dormicch, O.; Valle, N.; D' Urzo, C.; Marin, M.; Pesenti, P.; Lucas, J.; Moreno, N.; Bonito-Oliva, A.; Harrison, R.; Bellesia, B.; Cornelis, M.; Cornella, J.

    2015-07-01

    The toroidal field coils are the ITER magnets responsible for confining the plasma inside the vacuum vessel. The consortium formed by IBERDROLA Ingenieria y Construccion, ASG Superconductors y ELYTT Energy is the responsible for the supply of 10 coils that the european agency F4E has to supply for the ITER project. At present, the coils are been manufactured in La Spezia (Italy), after the qualification of all the manufacturing process and the sucessfull manufacturing of a full scale prototype. (Author)

  7. ATLAS: Full power for the toroid magnet

    CERN Multimedia

    2006-01-01

    The 9th of November was a memorable day for ATLAS. Just before midnight, the gigantic Barrel toroid magnet reached its nominal field of 4 teslas in the coil windings, with an electrical current of 21000 amperes (21 kA) passing through the eight superconducting coils (as seen on the graph). This achievement was obtained after several weeks of commissioning. The ATLAS Barrel Toroid was first cooled down for about six weeks in July-August to -269°C (4.8 K) and then powered up step-by-step in successive test sessions to 21 kA. This is 0.5 kA above the current required to produce the nominal magnetic field. Afterwards, the current was safely switched off and the stored magnetic energy of 1.1 gigajoules was dissipated in the cold mass, raising its temperature to a safe -218°C (55 K). 'We can now say that the ATLAS Barrel Toroid is ready for physics,' said Herman ten Kate, project leader for the ATLAS magnet system. The ATLAS barrel toroid magnet is the result of a close collaboration between the magnet la...

  8. Mechanical behavior of the ATLAS B0 model coil

    CERN Document Server

    Foussat, A; Acerbi, E; Alessandria, F; Berthier, R; Broggi, F; Daël, A; Dudarev, A; Mayri, C; Miele, P; Reytier, M; Rossi, L; Sorbi, M; Sun, Z; ten Kate, H H J; Vanenkov, I; Volpini, G

    2002-01-01

    The ATLAS B0 model coil has been developed and constructed to verify the design parameters and the manufacture techniques of the Barrel Toroid coils (BT) that are under construction for the ATLAS Detector. Essential for successful operation is the mechanical behavior of the superconducting coil and its support structure. In the ATLAS magnet test facility, a magnetic mirror is used to reproduce in the model coil the electromagnetic forces of the BT coils when assembled in the final Barrel Toroid magnet system. The model coil is extensively equipped with mechanical instrumentation to monitor stresses and force levels as well as contraction during a cooling down and excitation up to nominal current. The installed set up of strain gauges, position sensors and capacitive force transducers is presented. Moreover the first mechanical results in terms of expected main stress, strain and deformation values are presented based on detailed mechanical analysis of the design. (7 refs).

  9. Fast Dump of the ATLAS Toroids

    CERN Document Server

    Dudarev, A; Volpini, Giovanni; Dudarev, Alexey; Kate, Herman Ten

    2010-01-01

    The toroidal magnet system of the ATLAS Detector at CERN consists of a Barrel Toroid (BT) and two End Cap Toroids (ECT-A and ECT-C). Each toroid is built up from eight racetrack coils wound with an aluminum stabilized NbTi conductor and indirectly cooled by forced flow liquid helium. The three toroids operate in series at 20.5 kA with a total stored energy of 1.5 GJ. In order to verify the reliability and effectiveness of the quench protection system, series of fast dump tests have been performed first of the single toroids and finally of the entire toroidal magnet system. In this paper a model to simulate the fast dump of the ATLAS toroids in single mode operation and in full system configuration is presented. The model is validated through comparison with measured data extracted from the ramp-and-quench runs. The calculated energy dissipation in the various coils is in very good agreement (within 1-2\\%) with the enthalpy changes estimated from the temperature measurements of the different parts of the cold ...

  10. A Consideration on Increasing Current Density in Normal Conducting Toroidal Field Coil for Spherical Tokamak Power Plant

    Institute of Scientific and Technical Information of China (English)

    Song Yuntao; Satoshi NISHIO

    2005-01-01

    The center post is the most critical component as an inboard part of the toroidal field coil for the low aspect ratio tokamak. During the discharge it endures not only a tremendous ohmic heating owing to its carrying a rather high current but also a large nuclear heating and irradiation owing to the plasma operation. All the severe operating conditions, including the structure stress intensity and the stability of the structure, largely limit the maximum allowable current density. But in order to contain a very high dense plasma, it is hoped that the fusion power plant system can operate with a much high maximum magnetic field BT ≥12 T~15 T in the center post. A new method is presented in this paper to improve the maximum magnetic field up to 17 T and to investigate the possibility of the normal conducting center post to be used in the future fusion tokamak power plant.

  11. Situation of the project of manufacture of 10 european toroidal coils for ITER; Situacion del proyecto de fabricacion de 10 bobinas toroidales europeas para el ITER

    Energy Technology Data Exchange (ETDEWEB)

    Felipe, A.; Mrenio, A.; Pando, F.; Pallisa, J.; Merino, O.; Condado, J. P.; Madorran, A.; Dormicchi, O.; Valle, N.; Presenti, P.; Durzo, C.; Pittaluga, S.; Lucas, J.; Ruiz de Villa, E.; Harrison, R.; Cornelis, M.; Cornella, J.; Poncet, L.; Bonito-Oliva, A.

    2013-07-01

    The toroidal coils are part of the magnetic confinement system, of tool of plasma ITER being them making a significant technological challenge since there is no previous experience of manufacture of similar dimensions superconducting coils (14 m X 9 m). F4E, is the agency responsible for making 10 of these coils, having awarded to the consortium of Iberdrola Ingenieria, ASG Superconductors and Elytt Energy making them. This project is now in the process of manufacture of the first Double Pancake prototype that will serve as a qualification of the manufacturing process.

  12. Nb/sub 3/Sn conductors for 12 Tesla toroidal field coils

    International Nuclear Information System (INIS)

    Several advanced multifilamentary Nb/sub 3/Sn conductors were examined for various modes of cooling for the 12 Tesla ETF application. Of these, a pancake-wound 15,000 amp flat cable of triplets of large strands in a perforated stainless steel channel was selected as the preferred candidate. This cable will be cold-end cryostable in a pool-boiling environment with a maximum heat transfer from the unoccluded strand surface of 0.24 w/cm/sup 2/. The construction of the conductor and coil is relatively simple, offering potential economies in quality assurance and production costs. 15 refs

  13. Mechanical properties of full austenitic welding joint at cryogenic temperature for the ITER toroidal field coil structure

    Energy Technology Data Exchange (ETDEWEB)

    Iguchi, M., E-mail: iguchi.masahide@jaea.go.jp [Japan Atomic Energy Agency, ITER Superconducting Magnet Technology Group, 801-1 Mukoyama, Naka, Ibaraki 311-0193 Japan (Japan); Saito, T.; Kawano, K.; Chida, Y.; Nakajima, H. [Japan Atomic Energy Agency, ITER Superconducting Magnet Technology Group, 801-1 Mukoyama, Naka, Ibaraki 311-0193 Japan (Japan); Ogawa, T.; Katayama, Y.; Ogata, H.; Minemura, T. [Toshiba Cooperation, Power Systems Company, 2-4, Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 2300-0045 (Japan); Tokai, D.; Niimi, K. [Kawasaki Heavy Industries, LTD., Plant and Infrastructure Company, Production Center, 8, Niijima, Harima-cho, Kako-gun, Hyogo 675-0180 (Japan)

    2013-10-15

    Highlights: • No significant distribution of tensile strengths at 4 K, 77 K and room temperature along welding thickness of 200 mm manufactured by one side narrow gap TIG welding with FMYJJ1. • Tensile strengths at cryogenic temperature of welded joint are increased with increasing of C + N contents of base material. • In the case that welded joint is manufactured by combination of different base materials, strength at 4 K of welded joints are below strength of base material having higher C + N contents. -- Abstract: ITER toroidal field coil (TFC) structures are large welding structures composed of coil case and support structures made of heavy thick high strength and high toughness stainless steels. Japan Atomic Energy Agency plans to apply narrow gap Tungsten Inert Gas (TIG) welding with FMYJJ1 (0.03C–10Mn–12Cr–14Ni–5Mo–0.13N) which is full austenitic stainless filler material. In order to evaluate effect of base material thickness and combinations of base material on tensile properties, tensile tests were performed at room temperature, 77 K and 4 K by using tensile specimens taken from 200 mm thickness welded joints of two combinations of base materials and 40 mm thickness welded joints of four combinations of base materials. As the results, it was confirmed that there were no large distribution of yield and tensile strength along the thickness of welded joints of 200 mm thickness and yield and tensile strengths of welded joints were decreased with decreasing of C + N contents of base material.

  14. Technical aspects and manufacturing methods for JT-60SA toroidal field coil casings

    Energy Technology Data Exchange (ETDEWEB)

    Rossi, Paolo, E-mail: paolo.rossi@enea.it [ENEA, Via Enrico Fermi 45, 00044 Frascati, Rome (Italy); Cucchiaro, A.; Brolatti, G.; Cocilovo, V.; Ginoulhiac, G.; Polli, G. [ENEA, Via Enrico Fermi 45, 00044 Frascati, Rome (Italy); Gabriele, M.; Di Muzio, F. [Walter Tosto, Via Erasmo Piaggio, 66100 Chieti (Italy); Philips, G.; Tomarchio, V. [JT-60SA European Home Team, Boltzmannstrasse 2, D-85748 Garching (Germany)

    2014-10-15

    Highlights: • A contract between ENEA and Walter Tosto started on July 2012 for the construction of 18 TF coil casings for JT-60SA. • Design and manufacturing of mock-ups representative of straight and curved legs of the casings have been completed. • Final design of the casings has been completed and manufacturing activities have already started and are ongoing. • The completion of the first three casings will be completed within the end of 2013 and the production of all the 18 casings is foreseen by the end of 2015. - Abstract: JT-60SA is a superconducting tokamak machine to be assembled in Naka site, Japan, designed to contribute to the early realization of fusion energy by supporting the exploitation of ITER and research toward DEMO. In the frame of the Broader Approach Agreement a contract between ENEA and Walter Tosto (Chieti, Italy) started on July 2012 for the construction of 18 TF coil casings for JT-60SA. Two different sets of 9 casings each will be progressively delivered, from 2013 to the end of 2015, to ASG Superconductors (Genoa, Italy) and to Alstom (Belfort, France), where the integration of the winding pack into the casing will be carried out. Each TF coil casing (height 7.5 m and width 4.5 m) consists of four main components: one “Straight Leg Outboard” and one “Curved Leg Outboard” both with their own covers, “Straight Leg Inboard” and “Curved Leg Inboard”. The casing components are segmented in forgings and plates made of FM316LNL. The straight leg outboard is composed of two wings welded to a central core and two elbows welded at the ends with a cooling channel installed inside. Elbows of straight leg outboard are segmented in two half-elbows machined from 1 rough forging and welded to the central core made by plate. Welding of wings to the central core is performed in EBW (electron beam welding) and the straight part is welded to the elbows by NGTIG (TIG narrow gap) process. The curved leg outboard is composed of two

  15. Intelligent shell feedback control in EXTRAP T2R reversed field pinch with partial coverage of the toroidal surface by a discrete active coil array

    Science.gov (United States)

    Yadikin, D.; Brunsell, P. R.; Drake, J. R.

    2006-01-01

    An active feedback system is required for long pulse operation of the reversed field pinch (RFP) device to suppress resistive wall modes (RWMs). A general feature of a feedback system using a discrete active coil array is a coupling effect which arises when a set of side band modes determined by the number of active coils is produced. Recent results obtained on the EXTRAP T2R RFP demonstrated the suppression of independent m = 1 RWMs using an active feedback system with a two-dimensional array of discrete active coils in the poloidal and toroidal directions. One of the feedback algorithms used is the intelligent shell feedback scheme. Active feedback systems having different number of active coils in the poloidal (Mc) and toroidal (Nc) directions (Mc × Nc = 2 × 32 and Mc × Nc = 4 × 16) are studied. Different side band effects are seen for these configurations. A significant prolongation of the plasma discharge is achieved for the intelligent shell feedback scheme using the 2 × 32 active coil configuration. This is attributed to the side band sets including only one of the dominant unstable RWMs and avoiding coupling to resonant modes. Analog proportional-integral-derivative controllers are used in the feedback system. Regimes with different values of the proportional gain are studied. The requirement of the proportional-integral control for low proportional gain and proportional-derivative control for high proportional gain is seen in the experiments.

  16. Toroidal field coil design concept and structural support system for CTHR

    International Nuclear Information System (INIS)

    The CTHR conceptual design consists of a magnetically confined (tokamak) fusion reactor fitted with a fertile uranium blanket. The fusion driver concept was based on an ignited plasma. All concepts and parameters were selected on the basis that technical feasibility would be achieved by 1995 to assure a viable commercial operation in the early to mid-21st century. The reactor was designed to achieve good fissile fuel production, with electricity production being a second order priority. However, the resulting concepts that evolved were all excellent power producers which significantly improved the economic performance. The subsystems discussed in the following paragraphs provide a background of the application for the TF coil design described in this report

  17. A novel approach to calculate inductance and analyze magnetic flux density of helical toroidal coil applicable to Superconducting Magnetic Energy Storage systems (SMES)

    Science.gov (United States)

    Alizadeh Pahlavani, M. R.; Shoulaie, A.

    2010-04-01

    In this paper, formulas are proposed for the self and mutual inductance calculations of the helical toroidal coil (HTC) by the direct and indirect methods at superconductivity conditions. The direct method is based on the Neumann’s equation and the indirect approach is based on the toroidal and the poloidal components of the magnetic flux density. Numerical calculations show that the direct method is more accurate than the indirect approach at the expense of its longer computational time. Implementation of some engineering assumptions in the indirect method is shown to reduce the computational time without loss of accuracy. Comparison between the experimental measurements and simulated results for inductance, using the direct and the indirect methods indicates that the proposed formulas have high reliability. It is also shown that the self inductance and the mutual inductance could be calculated in the same way, provided that the radius of curvature is >0.4 of the minor radius, and that the definition of the geometric mean radius in the superconductivity conditions is used. Plotting contours for the magnetic flux density and the inductance show that the inductance formulas of helical toroidal coil could be used as the basis for coil optimal design. Optimization target functions such as maximization of the ratio of stored magnetic energy with respect to the volume of the toroid or the conductor’s mass, the elimination or the balance of stress in some coordinate directions, and the attenuation of leakage flux could be considered. The finite element (FE) approach is employed to present an algorithm to study the three-dimensional leakage flux distribution pattern of the coil and to draw the magnetic flux density lines of the HTC. The presented algorithm, due to its simplicity in analysis and ease of implementation of the non-symmetrical and three-dimensional objects, is advantageous to the commercial software such as ANSYS, MAXWELL, and FLUX. Finally, using the

  18. A novel approach to calculate inductance and analyze magnetic flux density of helical toroidal coil applicable to Superconducting Magnetic Energy Storage systems (SMES)

    Energy Technology Data Exchange (ETDEWEB)

    Alizadeh Pahlavani, M.R., E-mail: Mr_Alizadehp@iust.ac.i [Department of Electrical Engineering, Iran University of Science and Technology (IUST), Power Electronic Research Laboratory (PERL), 16846 Tehran (Iran, Islamic Republic of); Shoulaie, A., E-mail: shoulaie@iust.ac.i [Department of Electrical Engineering, Iran University of Science and Technology (IUST), Power Electronic Research Laboratory (PERL), 16846 Tehran (Iran, Islamic Republic of)

    2010-04-01

    In this paper, formulas are proposed for the self and mutual inductance calculations of the helical toroidal coil (HTC) by the direct and indirect methods at superconductivity conditions. The direct method is based on the Neumann's equation and the indirect approach is based on the toroidal and the poloidal components of the magnetic flux density. Numerical calculations show that the direct method is more accurate than the indirect approach at the expense of its longer computational time. Implementation of some engineering assumptions in the indirect method is shown to reduce the computational time without loss of accuracy. Comparison between the experimental measurements and simulated results for inductance, using the direct and the indirect methods indicates that the proposed formulas have high reliability. It is also shown that the self inductance and the mutual inductance could be calculated in the same way, provided that the radius of curvature is >0.4 of the minor radius, and that the definition of the geometric mean radius in the superconductivity conditions is used. Plotting contours for the magnetic flux density and the inductance show that the inductance formulas of helical toroidal coil could be used as the basis for coil optimal design. Optimization target functions such as maximization of the ratio of stored magnetic energy with respect to the volume of the toroid or the conductor's mass, the elimination or the balance of stress in some coordinate directions, and the attenuation of leakage flux could be considered. The finite element (FE) approach is employed to present an algorithm to study the three-dimensional leakage flux distribution pattern of the coil and to draw the magnetic flux density lines of the HTC. The presented algorithm, due to its simplicity in analysis and ease of implementation of the non-symmetrical and three-dimensional objects, is advantageous to the commercial software such as ANSYS, MAXWELL, and FLUX. Finally, using

  19. An important step for the ATLAS toroid magnet

    CERN Document Server

    2000-01-01

    The ATLAS experiment's prototype toroid coil arrives at CERN from the CEA laboratory in Saclay on 6 October. The world's largest superconducting toroid magnet is under construction for the ATLAS experiment. A nine-metre long fully functional prototype coil was delivered to CERN at the beginning of October and has since been undergoing tests in the West Area. Built mainly by companies in France and Italy under the supervision of engineers from the CEA-Saclay laboratory near Paris and Italy's INFN-LASA, the magnet is a crucial step forward in the construction of the ATLAS superconducting magnet system. Unlike any particle detector that has gone before, the ATLAS detector's magnet system consists of a large toroidal system enclosing a small central solenoid. The barrel part of the toroidal system will use eight toroid coils, each a massive 25 metres in length. These will dwarf the largest toroids in the world when ATLAS was designed, which measure about six metres. So the ATLAS collaboration decided to build a...

  20. Tokamak Physics EXperiment (TPX): Toroidal field magnet design, development and manufacture. SDRL 32, Coil assembly documentation. Volume 5

    Energy Technology Data Exchange (ETDEWEB)

    Weber, C.M. [Babcock and Wilcox Co., Lynchburg, VA (United States)

    1995-08-18

    This document is intended to address the contract requirement for providing coil assembly documentation, as required in the applicable Statement of Work: `Provide preliminary procedures and preliminary design and supporting analysis of the equipment, fixtures, and hardware required to integrate and align the impregnated coil assemblies with the coil cases and intercoil structure. Each of the three major processes associated with the coil case and intercoil structure (ICS), TF Case Fabrication, Coil Preparation for Case Assembly are examined in detail. The specific requirements, processes, equipment, and technical concerns for each of these assembly processes is presented.

  1. An interim report on the materials and selection criteria analysis for the Compact Ignition Tokamak Toroidal Field Coil Turn-to-Turn Insulation System

    International Nuclear Information System (INIS)

    Design criteria for the Compact Ignition Tokamak, Toroidal-Field (TF) Coil, Turn-to-Turn Insulation System require an insulation sheet and bonding system that will survive cryogenic cycling in a radiation environment and maintain structural integrity during exposure to the significant compressive and shear loads associated with each operating cycle. For thermosetting resin systems, a complex interactive dependency exists between optimum peak value, in-service property performance capabilities of candidate generic materials; key handling and processing parameters required to achieve their optimum in-service property performance as an insulation system; and suitability of their handling and processing parameters as a function of design configuration and assembly methodology. This dependency is assessed in a weighted study matrix in which two principal programmatic approaches for the development of the TF Coil Subassembly Insulation System have been identified. From this matrix study, two viable approaches to the fabrication of the insulation sheet were identified: use of a press-formed sheet bonded in place with epoxy for mechanical bonding and tolerance take-up and formation of the insulation sheet by placement of dry cloth and subsequent vacuum pressure impregnation. Laboratory testing was conducted to screen a number of combinations of resins and hardeners on a generic basis. These combinations were chosen for their performance in similar applications. Specimens were tested to screen viscosity, thermal-shock tolerance, and cryogenic tolerance. Cryogenic shock and cryogenic temperature proved to be extremely lethal to many combinations of resin, hardener, and cure. Two combinations survived: a heavily flexibilized bisphenol A resin with a flexibilized amine hardener and a bisphenol A resin with cycloaliphatic amine hardener. 7 refs., 12 figs., 6 tabs

  2. Artificial Neural Networks: a viable tool to design heat load smoothing strategies for the ITER Toroidal Field coils

    Science.gov (United States)

    Froio, A.; Bonifetto, R.; Carli, S.; Quartararo, A.; Savoldi, L.; Zanino, R.

    2015-12-01

    In superconducting tokamaks, cryoplants provide the helium needed to cool the superconducting magnet systems. The evaluation of the heat load from the magnets to the cryoplant is fundamental for the design of the latter and the assessment of suitable strategies to smooth the heat load pulses induced by the pulsed plasma scenarios is crucial for the operation. Here, a simplified thermal-hydraulic model of an ITER Toroidal Field (TF) magnet, based on Artificial Neural Networks (ANNs), is developed and inserted into a detailed model of the ITER TF winding and casing cooling circuits based on the state-of-the-art 4C code, which also includes active controls. The low computational effort requested by such a model allows performing a fast parametric study, to identify the best smoothing strategy during standard plasma operation. The ANNs are trained using 4C simulations, and the predictive capabilities of the simplified model are assessed against 4C simulations, both with and without active smoothing, in terms of accuracy and computational time.

  3. The Superconducting Toroid for the New International AXion Observatory (IAXO)

    CERN Document Server

    Shilon, I; Silva, H; Wagner, U; Kate, H H J ten

    2013-01-01

    IAXO, the new International AXion Observatory, will feature the most ambitious detector for solar axions to date. Axions are hypothetical particles which were postulated to solve one of the puzzles arising in the standard model of particle physics, namely the strong CP (Charge conjugation and Parity) problem. This detector aims at achieving a sensitivity to the coupling between axions and photons of one order of magnitude beyond the limits of the current detector, the CERN Axion Solar Telescope (CAST). The IAXO detector relies on a high-magnetic field distributed over a very large volume to convert solar axions to detectable X-ray photons. Inspired by the ATLAS barrel and end-cap toroids, a large superconducting toroid is being designed. The toroid comprises eight, one meter wide and twenty one meters long racetrack coils. The assembled toroid is sized 5.2 m in diameter and 25 m in length and its mass is about 250 tons. The useful field in the bores is 2.5 T while the peak magnetic field in the windings is 5....

  4. The normal zone propagation in ATLAS B00 model coil

    CERN Document Server

    Boxman, E W; ten Kate, H H J

    2002-01-01

    The B00 model coil has been successfully tested in the ATLAS Magnet Test Facility at CERN. The coil consists of two double pancakes wound with aluminum stabilized cables of the barrel- and end-cap toroids conductors for the ATLAS detector. The magnet current is applied up to 24 kA and quenches are induced by firing point heaters. The normal zone velocity is measured over a wide range of currents by using pickup coils, voltage taps and superconducting quench detectors. The signals coming from various sensors are presented and analyzed. The results extracted from the various detection methods are in good agreement. It is found that the characteristic velocities vary from 5 to 20 m/s at 15 and 24 kA respectively. In addition, the minimum quench energies at different applied magnet currents are presented. (6 refs).

  5. NCSX Trim Coil Design

    Energy Technology Data Exchange (ETDEWEB)

    M. Kalish, A. Brooks, J. Rushinski, R. Upcavage

    2009-05-29

    The National Compact Stellarator Experiment (NCSX) was being constructed at the Princeton Plasma Physics Laboratory in partnership with Oak Ridge National Laboratory before work was stopped in 2008. The objective of this experiment was to develop the stellarator concept and evaluate it's potential as a model for future fusion power plants. Stellarator design requires very precisely positioned Modular Coils of complex shape to form 3D plasmas. In the design of NCSX, Trim Coils were required to compensate for both the positioning of the coils during assembly and the fabrication tolerances of the Modular Coils. Use of the Trim Coils allowed for larger tolerances increasing ease of assembly and decreasing overall cost. A set of Trim coils was developed to suppress the toroidal flux in island regions due to misalignment, magnetic materials, and eddy currents. The requirement imposed upon the design forced the toroidal flux in island regions below 10% of the total toroidal flux in the plasma. An analysis was first performed to evaluate candidate Trim Coil configurations iterating both the size, number, and position of the coils. The design was optimized considering both performance and cost while staying within the tight restraints presented by the space limited geometry. The final design of the Trim Coils incorporated a 48 Coil top bottom symmetric set. Fabrication costs were minimized by having only two coil types and using a planar conventional design with off the shelf commercial conductor. The Trim Coil design incorporated supports made from simple structural shapes assembled together in a way which allowed for adjustment as well as accommodation for the tolerance build up on the mating surfaces. This paper will summarize the analysis that led to the optimization of the Trim Coils set, the trim coil mechanical design, thermal and stress analysis, and the design of the supporting Trim Coil structure.

  6. Beam Transport in Toroidal Magnetic Field

    CERN Document Server

    Joshi, N; Meusel, O; Ratzinger, U

    2016-01-01

    The concept of a storage ring with toroidal magnetic field was presented in the two previous EPAC conferences. Here we report the first results of experiments performed with beam transport in toroidal magnetic fields and details of the injection system. The beam transport experiments were carried out with 30 degree toroidal segments with an axial magnetic field of 0.6T. The multi turn injection system relies on a transverse injection coil together with an electric kicker system.

  7. Transient behaviour of a resistive joint in the ATLAS toroids during the magnet ramp-up and discharge

    CERN Document Server

    Volpini, G

    2000-01-01

    Several resistive joints are foreseen inside the coils of the ATLAS Barrel Toroid. Here we investigate the problems linked to nonstationary effects: during the magnet charge and dump discharge the magnetic field induces eddy-currents inside the joints, increasing the Joule dissipation and possibly exceeding the conductor's critical current. We have developed an electrical model of the joint to predict the current distribution under nonstationary conditions and consequent heat dissipation; this model allowed us to compute the optimum length of these joints in order to minimise the heat dissipation and the eddy-currents. (5 refs).

  8. Lowering the first ATLAS toroid

    CERN Multimedia

    Maximilien Brice

    2004-01-01

    The ATLAS detector on the LHC at CERN will consist of eight toroid magnets, the first of which was lowered into the cavern in these images on 26 October 2004. The coils are supported on platforms where they will be attached to form a giant torus. The platforms will hold about 300 tonnes of ATLAS' muon chambers and will envelop the inner detectors.

  9. Quench evolution and hot spot temperature in the ATLAS B0 model coil

    CERN Document Server

    Dudarev, A; Boxman, H; Broggi, F; Dolgetta, N; Juster, F P; Tetteroo, M; ten Kate, H H J

    2004-01-01

    The 9-m long superconducting model coil B0 was built to verify design parameters and exercise the construction of the Barrel Toroid magnet of ATLAS Detector. The model coil has been successfully tested at CERN. An intensive test program to study quench propagation through the coil windings as well as the temperature distribution has been carried out. The coil is well equipped with pickup coils, voltage taps, superconducting quench detectors and temperature sensors. The current is applied up to 24 kA and about forty quenches have been induced by firing internal heaters. Characteristic numbers at full current of 24 kA are a normal zone propagation of 15 m/s in the conductor leading to a turn-to-turn propagation of 0.1 m/s, the entire coil in normal state within 5.5 s and a safe peak temperature in the windings of 85 K. The paper summarizes the quench performance of the B0 coil. Based on this experience the full-size coils are now under construction and first test results are awaited by early 2004. 7 Refs.

  10. Elongated toroid fusion device

    International Nuclear Information System (INIS)

    A device for achieving ignition of a plasma with ohmic heating is described comprising: means for defining a toroidal plasma chamber,a and confining gas therein, and means including electrically conductive coils for generating plasma within the chamber and for confining and shaping such plasma substantially into and filling a predetermined single region of the chamber without an axisymmetric internal separatix and ohmically heating the confined plasma to ignition. The predetermined region is toroidal with a major axis defining an axial direction parallel thereto and a transaxial direction perpendicular to the axis and having an axial cross section with an elongation, k, greater than 4, where k is the ratio of the maximum axial dimension of the cross section to the maximum transaxial dimension of the cross section

  11. Resource Review Board Celebrates the Magnet and Liquid Argon Barrel Tests in Hall 180

    CERN Multimedia

    Jenni, P.

    2004-01-01

    Address by the Director-General, R. Aymar, in front of the barrel cryostat. On 25th October 2004 many RRB delegates and guests, ATLAS National Contact Physicists, and colleagues from far and from CERN working on the Liquid Argon calorimeter and the magnet system were gathering in Hall 180 to celebrate the major milestones reached during the past months in this hall: the successful cold tests of the first barrel toroid coil, of the solenoid, and of the barrel Liquid Argon calorimeter. About 250 people spent a relaxing evening after the speeches by the Director-General R. Aymar and by the spokesperson who gave the following address: 'It is a great pleasure for me to welcome you all here in Hall 180 in the name of the ATLAS Collaboration! With a few words I would like to recall why we are actually here today to share, what I hope, is a relaxed and joyful moment. To concentrate it all in one sentence I could say: To thank cordially all the main actors for the enormous work accomplished here over many years,...

  12. Transporting the first ATLAS toroid

    CERN Multimedia

    Maximilien Brice

    2004-01-01

    The first coil for the ATLAS toroid magnet is transported from its assembly hall at the CERN Meyrin site to the storage hall above the ATLAS cavern. This involves driving the massive transportation vehicle first through the Meyrin site and then across a main road only metres from the France-Swiss border. Eight magnets in total will be transported in this way before being lowered into the experimental cavern where they will be mounted in a huge ring surrounding the detector.

  13. New superconducting toroidal magnet system for IAXO, the international AXion observatory

    Energy Technology Data Exchange (ETDEWEB)

    Shilon, I.; Dudarev, A.; Silva, H.; Wagner, U.; Kate, H. H. J. ten [European Organization for Nuclear Research (CERN), CH-1211, Genève 23 (Switzerland)

    2014-01-29

    Axions are hypothetical particles that were postulated to solve one of the puzzles arising in the standard model of particle physics, namely the strong CP (Charge conjugation and Parity) problem. The new International AXion Observatory (IAXO) will incorporate the most promising solar axions detector to date, which is designed to enhance the sensitivity to the axion-photon coupling by one order of magnitude beyond the limits of the current state-of-the-art detector, the CERN Axion Solar Telescope (CAST). The IAXO detector relies on a high-magnetic field distributed over a very large volume to convert solar axions into X-ray photons. Inspired by the successful realization of the ATLAS barrel and end-cap toroids, a very large superconducting toroid is currently designed at CERN to provide the required magnetic field. This toroid will comprise eight, one meter wide and twenty one meter long, racetrack coils. The system is sized 5.2 m in diameter and 25 m in length. Its peak magnetic field is 5.4 T with a stored energy of 500 MJ. The magnetic field optimization process to arrive at maximum detector yield is described. In addition, materials selection and their structure and sizing has been determined by force and stress calculations. Thermal loads are estimated to size the necessary cryogenic power and the concept of a forced flow supercritical helium based cryogenic system is given. A quench simulation confirmed the quench protection scheme.

  14. Finite Element Analyses and Instrumentation Layout for Single Coil Testing of TF Coils in HT-7U

    Institute of Scientific and Technical Information of China (English)

    陈文革; 翁佩德

    2003-01-01

    The HT-7U tokamak is a magnetically-confined full superconducting fusion device,consisting of superconducting toroidal field (TF) coils and superconducting poloidal field (PF)coils. These coils are wound with cable-in-conductor (CICC) which is based on UNK NbTi wiresmade in Russian [1]. A single D-shaped toroidal field magnet coil will be tested for large andexpensive magnets systems before assembling them in the toroidal configuration. This paperdescribes the layout of the instrumentation for a superconducting test facility based on the resultsof a finite element modeling of the single coil of toroidal magnetic field (TF) coils in HT-7Utokamak device. At the same time, the design of coil support structure in the test facility isparticularly discussed in some detail.

  15. Superconducting Magnet with the Reduced Barrel Yoke for the Hadron Future Circular Collider

    CERN Document Server

    Klyukhin, V I; Berriaud, C; Curé, B; Dudarev, A; Gaddi, A; Gerwig, H; Hervé, A; Mentink, M; Rolando, G; Da Silva, H F Pais; Wagner, U; Kate, H H J ten

    2015-01-01

    The conceptual design study of a hadron Future Circular Collider (FCC-hh) with a center-of-mass energy of the order of 100 TeV in a new tunnel of 80-100 km circumference assumes the determination of the basic requirements for its detectors. A superconducting solenoid magnet of 12 m diameter inner bore with the central magnetic flux density of 6 T is proposed for a FCC-hh experimental setup. The coil of 24.518 m long has seven 3.5 m long modules included into one cryostat. The steel yoke with a mass of 21 kt consists of two barrel layers of 0.5 m radial thickness, and 0.7 m thick nose disk, four 0.6 m thick end-cap disks, and three 0.8 m thick muon toroid disks each side. The outer diameter of the yoke is 17.7 m; the length without the forward muon toroids is 33 m. The air gaps between the end-cap disks provide the installation of the muon chambers up to the pseudorapidity of \\pm 3.5. The conventional forward muon spectrometer provides the measuring of the muon momenta in the pseudorapidity region from \\pm 2.7...

  16. Electromagnetic Gun With Commutated Coils

    Science.gov (United States)

    Elliott, David G.

    1991-01-01

    Proposed electromagnetic gun includes electromagnet coil, turns of which commutated in sequence along barrel. Electrical current fed to two armatures by brushes sliding on bus bars in barrel. Interaction between armature currents and magnetic field from coil produces force accelerating armature, which in turn, pushes on projectile. Commutation scheme chosen so magnetic field approximately coincides and moves with cylindrical region defined by armatures. Scheme has disadvantage of complexity, but in return, enables designer to increase driving magnetic field without increasing armature current. Attainable muzzle velocity increased substantially.

  17. Large Coil Program magnetic system design study

    International Nuclear Information System (INIS)

    The primary objective of the Large Coil Program (LCP) is to demonstrate the reliable operation of large superconducting coils to provide a basis for the design principles, materials, and fabrication techniques proposed for the toroidal magnets for the THE NEXT STEP (TNS) and other future tokamak devices. This paper documents a design study of the Large Coil Test Facility (LCTF) in which the structural response of the Toroidal Field (TF) Coils and the supporting structure was evaluated under simulated reactor conditions. The LCP test facility structural system consists of six TF Coils, twelve coil-to-coil torsional restraining beams (torque rings), a central bucking post with base, and a Pulse Coil system. The NASTRAN Finite Element Structural Analysis computer Code was utilized to determine the distribution of deflections, forces, and stresses for each of the TF Coils, torque rings, and the central bucking post. Eleven load conditions were selected to represent probable test operations. Pulse Coils suspended in the bore of the test coil were energized to simulate the pulsed field environment characteristic of the TNS reactor system. The TORMAC Computer Code was utilized to develop the magnetic forces in the TF Coils for each of the eleven loading conditions examined, with or without the Pulse Coils energized. The TORMAC computer program output forces were used directly as input load conditions for the NASTRAN analyses. Results are presented which demonstrate the reliability of the LCTF under simulated reactor operating conditions

  18. Mechanical characterization of the tie rods for the ATLAS B0 model coil

    CERN Document Server

    Alessandria, Franco; Todero, Maurizio

    2002-01-01

    The ATLAS Barrel Toroid (BT) consists of 8 superconducting coils of 25 m length and 5 m width. Each coil is equipped with eight titanium alloy tie rods acting as support for the magnetic forces, the intensity of which will be up to 180 t for the most loaded one. The B0 model coil is about 1/3 length scale of the BT, equipped with three tie rods. In order to simulate the behavior of the coil supports, a test facility has been built to test individual tie rods at cryogenic temperature. The initial aim was to verify the amount of stick and slip, the possibility of it occurring during the excitation and the flexion of the support at the anchoring point on the magnet. This was achieved by inducing in the support the same movements foreseen during the cool-down and the excitation of the magnet and loading with the same forces. Following the evolution of the project it was decided to test the tie rod simply in traction at 250 tons, without displacements. In this paper the test facility is described and the data of t...

  19. Last Few Metres for the Barrel Calorimeter

    CERN Multimedia

    Nyman, T.

    On Friday 4th November, the ATLAS Barrel Calorimeter was moved from its assembly point at the side of the ATLAS cavern to the centre of the toroidal magnet system. The detector was finally aligned, to the precision of within a millimetre, on Wednesday 9th November. The ATLAS installation team, led by Tommi Nyman, after having positioned the Barrel Calorimeter in its final location in the ATLAS experimental cavern UX15. The Barrel Calorimeter which will absorb and measure the energy of photons, electrons and hadrons at the core of the ATLAS detector is 8.6 meters in diameter, 6.8 meters long, and weighs over 1600 Tonnes. It consists of two concentric cylindrical detector elements. The innermost comprises aluminium pressure vessels containing the liquid argon electromagnetic calorimeter and the solenoid magnet. The outermost is an assembly of 64 hadron tile calorimeter sectors. Assembled 18 meters away from its final position, the Barrel Calorimeter was relocated with the help of a railway, which allows ...

  20. The outer vactank, an object of 7.6m diameter and 13m length is built up of three cylindrical parts. The central part that is integral part of the central barrel and the the extension on either side each one 4.5m long. These extensions house the shoulders that will support and prestress the CMS Coil. To weld the extensions onto the central part a full penetration weld of 24m length and 45 mm thickness has to be done by hand from inside and outside the vacuum tank and its deformation is controled permanently.

    CERN Multimedia

    Hubert Gerwig

    2001-01-01

    The outer vacuum tank will hold the coil suspension system and transmits the weight of the inner detectors to the central barrel. Its thickness is staggered. In the central part its thickness is 60 mm and then goes down to 30 mm at the extremity.

  1. Axisymmetric Toroidal Equilibrium with Sheared Toroidal Flows

    Institute of Scientific and Technical Information of China (English)

    石秉仁

    2002-01-01

    Problem of the axisymmetric toroidal equilibrium with pure sheared toroidal flow is involved. For standard tokamak equilibrium, general approximate solutions are analytically pursued for arbitrary current profile and non-circular cross-section. Equilibrium properties including the flow-induced density asymmetry are analyzed.

  2. Design and manufacture of a toroidal-type SMES for combination with real-time digital simulator (RTDS)

    Science.gov (United States)

    Kim, Kwang-min; Kim, A.-Rong; Park, Minwon; Yu, In-Keun; Eom, Bum-Yong; Sim, Kidoek; Kim, Seok-Ho; Sohn, Myung-Hwan; Kim, Hae-Jong; Bae, Joon-Han; Seong, Ki-Cheol

    2011-06-01

    The authors designed and manufactured a toroidal-type superconducting magnetic energy storage (SMES) system. The toroidal-type SMES was designed using a 3D CAD program. The toroidal-type magnet consists of 30 double pancake coils (DPCs). The single pancake coils (SPCs), which constitute the double pancake coils, are arranged at an angle of 6° from each other, based on the central axis of the toroidal-type magnet. The cooling method used for the toroidal-type SMES is the conduction cooling type. When the cooling method for the toroidal-type SMES was designed, the two-stage Gifford-McMahon (GM) refrigerator was considered. The Bi-2223 HTS wire, which was made by soldering brass on both sides of the superconductor, is used for the magnet winding. Finally, the authors connected the toroidal-type SMES to a real-time digital simulator (RSCAD/RTDS) to simulate voltage sag compensation in a power utility.

  3. Toroidal circular dichroism

    Science.gov (United States)

    Raybould, T. A.; Fedotov, V. A.; Papasimakis, N.; Kuprov, I.; Youngs, I. J.; Chen, W. T.; Tsai, D. P.; Zheludev, N. I.

    2016-07-01

    We demonstrate that the induced toroidal dipole, represented by currents flowing on the surface of a torus, makes a distinct and indispensable contribution to circular dichroism. We show that toroidal circular dichroism supplements the well-known mechanism involving electric dipole and magnetic dipole transitions. We illustrate this with rigorous analysis of the experimentally measured polarization-sensitive transmission spectra of an artificial metamaterial, constructed from elements of toroidal symmetry. We argue that toroidal circular dichroism will be found in large biomolecules with elements of toroidal symmetry and should be taken into account in the interpretation of circular dichroism spectra of organics.

  4. SCT Barrel Assembly Complete

    CERN Multimedia

    L. Batchelor

    As reported in the April 2005 issue of the ATLAS eNews, the first of the four Semiconductor Tracker (SCT) barrels, complete with modules and services, arrived safely at CERN in January of 2005. In the months since January, the other three completed barrels arrived as well, and integration of the four barrels into the entire barrel assembly commenced at CERN, in the SR1 building on the ATLAS experimental site, in July. Assembly was completed on schedule in September, with the addition of the innermost layer to the 4-barrel assembly. Work is now underway to seal the barrel thermal enclosure. This is necessary in order to enclose the silicon tracker in a nitrogen atmosphere and provide it with faraday-cage protection, and is a delicate and complicated task: 352 silicon module powertapes, 352 readout-fibre bundles, and over 400 Detector Control System sensors must be carefully sealed into the thermal enclosure bulkhead. The team is currently verifying the integrity of the low mass cooling system, which must be d...

  5. TRT Barrel milestones passed

    CERN Multimedia

    Ogren, H

    2004-01-01

    The barrel TRT detector passed three significant milestones this spring. The Barrel Support Structure (BSS) was completed and moved to the SR-1 building on February 24th. On March 12th the first module passed the quality assurance testing in Building 154 and was transported to the assembly site in the SR-1 building for barrel assembly. Then on April 21st the final production module that had been scanned at Hampton University was shipped to CERN. TRT Barrel Module Production The production of the full complement of barrel modules (96 plus 9 total spares) is now complete. This has been a five-year effort by Duke University, Hampton University, and Indiana University. Actual construction of the modules in the United States was completed in the first part of 2004. The production crews at each of the sites in the United States have now completed their missions. They are shown in the following pictures. Duke University: Production crew with the final completed module. Indiana University: Module producti...

  6. Design and Comparison of a 1 MW / 5s HTS SMES with Toroidal and Solenoidal Geometry

    CERN Document Server

    Morandi, Antonio; Gholizad, Babak; Grilli, Francesco; Sirois, Frédéric; Zermeño, Víctor M R

    2015-01-01

    The design of a HTS SMES coil with solenoidal and toroidal geometry is carried out based on a commercially available 2G HTS conductor. A SMES system of practical interest (1 MW / 5 s) is considered. The comparison between ideal toroidal and solenoidal geometry is first discussed and the criteria used for choosing the geometrical parameters of the coils' bore are explained. The design of the real coil is then carried out and the final amount of conductor needed is compared. A preliminary comparison of the two coils in terms of AC loss during one charge discharge cycle is also discussed.

  7. The MDT Barrel Organ

    CERN Multimedia

    Claudia Marcelloni de Oliveira

    Have you ever looked for an interesting use for the spare detector parts once the construction phase was finished? Henk Tiecke, with the help of Oscar van Petten and Marco Kraan, all from NIKHEF, came up with a great idea for leftover MDT tubes. They simply built a pipe organ! See the MDT Barrel Organ in action, as recorded during a party thrown on the occasion of the first shipment of MDT chambers from NIKHEF to CERN. Want to know more about the organ? Please contact Henk Tiecke. Henk Tiecke playing the MDT Barrel Organ.

  8. Barrelled locally convex spaces

    CERN Document Server

    Pérez Carreras, P

    1987-01-01

    This book is a systematic treatment of barrelled spaces, and of structures in which barrelledness conditions are significant. It is a fairly self-contained study of the structural theory of those spaces, concentrating on the basic phenomena in the theory, and presenting a variety of functional-analytic techniques.Beginning with some basic and important results in different branches of Analysis, the volume deals with Baire spaces, presents a variety of techniques, and gives the necessary definitions, exploring conditions on discs to ensure that they are absorbed by the barrels of the sp

  9. α/β coiled coils.

    Science.gov (United States)

    Hartmann, Marcus D; Mendler, Claudia T; Bassler, Jens; Karamichali, Ioanna; Ridderbusch, Oswin; Lupas, Andrei N; Hernandez Alvarez, Birte

    2016-01-15

    Coiled coils are the best-understood protein fold, as their backbone structure can uniquely be described by parametric equations. This level of understanding has allowed their manipulation in unprecedented detail. They do not seem a likely source of surprises, yet we describe here the unexpected formation of a new type of fiber by the simple insertion of two or six residues into the underlying heptad repeat of a parallel, trimeric coiled coil. These insertions strain the supercoil to the breaking point, causing the local formation of short β-strands, which move the path of the chain by 120° around the trimer axis. The result is an α/β coiled coil, which retains only one backbone hydrogen bond per repeat unit from the parent coiled coil. Our results show that a substantially novel backbone structure is possible within the allowed regions of the Ramachandran space with only minor mutations to a known fold.

  10. Calculation of modification to the toroidal magnetic field of the Tokamak Novillo. Part II; Calculo de modificacion al campo magnetico toroidal del Tokamak nivillo. Parte II

    Energy Technology Data Exchange (ETDEWEB)

    Melendez L, L.; Chavez A, E.; Colunga S, S.; Valencia A, R.; Lopez C, R.; Gaytan G, E

    1992-03-15

    In a cylindrical magnetic topology. the confined plasma experiences 'classic' collisional transport phenomena. When bending the cylinder with the purpose of forming a toro, the magnetic field that before was uniform now it has a radial gradient which produces an unbalance in the magnetic pressure that is exercised on the plasma in the transverse section of the toro. This gives place to transport phenomena call 'neo-classicist'. In this work the structure of the toroidal magnetic field produced by toroidal coils of triangular form, to which are added even of coils of compensation with form of half moon is analyzed. With this type of coils it is looked for to minimize the radial gradient of the toroidal magnetic field. The values and characteristics of B (magnetic field) in perpendicular planes to the toro in different angular positions in the toroidal direction, looking for to cover all the cases of importance are exhibited. (Author)

  11. New Toroid shielding design

    CERN Multimedia

    Hedberg V

    On the 15th of June 2001 the EB approved a new conceptual design for the toroid shield. In the old design, shown in the left part of the figure above, the moderator part of the shielding (JTV) was situated both in the warm and cold areas of the forward toroid. It consisted both of rings of polyethylene and hundreds of blocks of polyethylene (or an epoxy resin) inside the toroid vacuum vessel. In the new design, shown to the right in the figure above, only the rings remain inside the toroid. To compensate for the loss of moderator in the toroid, the copper plug (JTT) has been reduced in radius so that a layer of borated polyethylene can be placed around it (see figure below). The new design gives significant cost-savings and is easier to produce in the tight time schedule of the forward toroid. Since the amount of copper is reduced the weight that has to be carried by the toroid is also reduced. Outgassing into the toroid vacuum was a potential problem in the old design and this is now avoided. The main ...

  12. Induced toroid structures and toroid polarizabilities

    International Nuclear Information System (INIS)

    The frequency-dependent toroid dipole polarizability γ(ω) of a (nonrelativistic, spinless) hydrogen-like atom in its ground state is calculated analytically in terms of two Gauss hypergeometric functions. The static result reads simply γ(ω=0)=(23/60)α2Z-4a05 (α - fine structure constant, Z - nucleus charge number, a0 - Bohr radius). Comparing the present evaluations for H-like atoms with previous ones for pions, one sees that the role of the induced toroid moments (as against that of the usual electric ones) increases considerably when passing from atomic to particle physics

  13. A crystal barrel

    CERN Multimedia

    2007-01-01

    The production of crystals for the barrel of the CMS electromagnetic calorimeter has been completed. This is an important milestone for the experiment, which received the last of its 62,960 crystals on 9 March. The members of the team responsible for the crystal acceptance testing at CERN display the last crystal for the CMS electromagnetic calorimeter barrel. From left to right: Igor Tarasov, Etiennette Auffray and Hervé Cornet.One of the six machines specially developed to measure 67 different parameters on each crystal. Igor Tarasov is seen inserting the last batch of crystals into the machine. The last of the 62,960 CMS barrel crystals arrived at CERN on 9 March. Once removed from its polystyrene protection, this delicate crystal, like thousands of its predecessors, will be inserted into the last of the 36 supermodules of the barrel electromagnetic calorimeter in a few days' time. This marks the end of an important chapter in an almost 15-year-long journey by the CMS crystals team, some of whose member...

  14. Thin Concrete Barrel Vault

    NARCIS (Netherlands)

    Kamerling, M.W.

    2013-01-01

    The paper presents the structural design of a thin barrel vault constructed with Fusée Ceramique infill elements. The load transfer is analyzed and validated. For the structure composed of Fusée Ceramique elements, steel and concrete the stresses are calculated and compared to the stresses given in

  15. Axisymmetric Toroidal Equilibrium with Sheared Toroidal Flows

    Institute of Scientific and Technical Information of China (English)

    SHIBingren

    2002-01-01

    Since the early 1960' s, the developments of the tokamak research make plasma flows a reality in many devices where neutral beam injections were used as heating in general and refueling in particular. Compared to the static axi-symmetric toroidal equilibrium that

  16. Invisibility cloaks for toroids.

    Science.gov (United States)

    You, Yu; Kattawar, George W; Yang, Ping

    2009-04-13

    The material properties of toroidal invisibility cloaks are derived based on the coordinate transformation method. The permittivity and permeability tensors for toroidal cloaks are substantially different from those for spherical cloaks, but quite similar to those for 2D cylindrical cloaks because a singularity is involved at the inner boundary in both the cases. The cloaking effect is confirmed by the electric field distribution in the vicinity of toroidal cloaks simulated from the generalized discrete-dipole approximation (DDA) method. This study extends the concept of electromagnetic cloaking of arbitrarily-shaped objects to a complex geometry. PMID:19365485

  17. ATLAS TRT barrel

    CERN Multimedia

    CERN Video Productions

    2005-01-01

    On 3 February 2005, members of the US-TRT team proceeded to the installation of the last TRT barrel module for the Transition Radiation Tracker, which will be used for tracking in the Atlas detector. The TRT barrel is made of 96 modules containing around 52 000 4-mm straws, each of them equipped with a 20 microns sense wire. The modules were first designed at CERN, then built in the USA between 1996 and 2003. Duke, Hampton and Indiana Universities, tested in details at CERN between 2003 and 2005 by members of the US-TRT group, and mounted on the support structure in the SR-1 building where this video was taken. During assembly of the last module, one can see Kirill Egorov (PNPI, Gatchina, Russia), Chuck Mahlong (Hampton) as well as John Callahan and Pauline Gagnon (Indiana). (Written by Pauline Gagnon)

  18. Paying by the Barrel

    Institute of Scientific and Technical Information of China (English)

    Francis L.Sackitey; Ghana

    2012-01-01

    CHINA'S UNIPEC Asia Co. Ltd. will buy up the entire oil share from Ghana's Jubilee field for the next 15 years in a commercial agreement entered into by the government of Ghana. Under the agreement, the West African nation will be supplying China with 13,000 barrels of crude oil daily to pay for a $3 billion loan granted to Ghana by China under a Master Facility Agreement with the China Development Bank.

  19. ALEPH Coil

    CERN Multimedia

    ALEPH was one of the four experiments installed at the LEP particle accelerator from 1989 - 2000. The detector was used by a collaboration of hundreds of physicists, mostly from Europe but also from China and the USA. The ALEPH superconducting magnet coils provide a very uniform magnetic field of 1.5 Tesla. The current in the coil is about 5000 A and the stored energy is 136 MJ. The coils are cooled by liquid Helium. Two correction coils serve to improve the uniformity of the field. This piece is connected to OBJ-DE-054.

  20. Weapons barrel life cycle determination

    Directory of Open Access Journals (Sweden)

    Nebojša Pene Hristov

    2013-10-01

    Full Text Available This article describes the dynamic processes within the gun barrel during the firing process in exploitation. It generally defines the basic principles of constructing tube elements, and shows the distortion of the basic geometry of the tube interior due to wear as well as the impact it causes during exploitation. The article also defines basic empirical models as well as a model based on fracture mechanics for the calculation of a use-life of the barrel, and other elements essential for the safe use of the barrel as the basic weapon element. Erosion causes are analysed in order to control and reduce wear and prolong the lifetime of the gun barrel. It gives directions for the reparation of barrels with wasted resources. In conclusion, the most influential elements of tube wear are given as well as possible modifications of existing systems, primarily propellant charges, with a purpose of prolonging lifetime of gun barrels. The guidelines for a proper determination of the lifetime based on the barrel condition assessment are given as well. INTRODUCTION The barrel as the basic element of each weapon is described as well as the processes occurring during the firing that have impulsive character and are accompanied by large amounts of energy. The basic elements of barrel and itheir constructive characteristics are descibed. The relation between Internal ballistics, ie calculation of the propellant gas pressure in the firing process, and structural elements defined by the barrel material resistance is shown. In general, this part of the study explains the methodology of the gun barrel structural elements calculation, ie. barrel geometry, taking into account the degrees of safety in accordance with Military Standards.   TUBE WEAR AND DEFORMATIONS The weapon barrel gradually wears out during exploitation due to which it no longer satisfies the set requirements. It is considered that the barrel has experienced a lifetime when it fails to fulfill the

  1. Progress in the ICCS-HFTF 12 Tesla coil program

    International Nuclear Information System (INIS)

    The U.S. Magnetic Fusion Energy Program requires the development of very large and powerful superconducting toroidal magnets. Combined with optimized reactors, these superconducting coils will provide plasma confinement for the generation of electricity. This development is being carried out on two parallel fronts. The Large Coil Program (LCP) is focusing on the development of 5 m scale toroidal coils in a medium field. The second so-called 12 tesla program has its focus on high magnetic field and the development of advanced superconductors. Four advanced superconductor concepts are being developed as part of this 12T program. One of these programs is reported. 3 refs

  2. Heat characteristic analysis of a conduction cooling toroidal-type SMES magnet

    Energy Technology Data Exchange (ETDEWEB)

    Kim, K.M.; Kim, A.R.; Kim, J.G.; Kim, D.W.; Park, M. [Changwon National University, 9 Sarim-dong, Changwon 641-773 (Korea, Republic of); Yu, I.K., E-mail: yuik@changwon.ac.k [Changwon National University, 9 Sarim-dong, Changwon 641-773 (Korea, Republic of); Eom, B.Y.; Sim, K.; Kim, S.H.; Shon, M.H.; Kim, H.J.; Bae, H.J.; Seong, K.C. [Superconducting Device and Cryogenics Group, Korea Electrotechnology Research Institute, Changwon 641-120 (Korea, Republic of)

    2010-11-01

    This paper analyzed the heat characteristics of a conduction cooling toroidal-type SMES magnet. The authors designed and manufactured a conduction cooling toroidal-type SMES magnet which consists of 30 double pancake coils. One (a single pancake coil) of a double pancake coil is arranged at an angle of 6{sup o} from each other. The shape of the toroidal-type SMES magnet was designed by a 3D CAD program. The heat invasion was investigated under no-load condition and the thermal characteristic of the toroidal-type SMES magnet was analyzed using the Finite Elements Method program. Both the analyzed and the experiment results are compared and discussed in detail.

  3. Triggering and measuring bent cosmic muon tracks with the Muon Spectrometer barrel for the first time

    CERN Multimedia

    Fabio Cerutti

    During the ATLAS barrel toroid stability test, bent cosmic muon tracks were seen for the first time in the ATLAS cavern by means of the ATLAS muon spectrometer. The barrel toroid has been powered at its nominal current (20.5 thousand Amperes) and kept in steady state for more than one day during the weekend of 18-19 November (see a report on this test in the Magnet section). During this test one large sector and part of a small sector of the barrel muon spectrometer were readout and used to detect the cosmic muons tracks bent by the toroidal magnetic field. Thirteen muon stations in the feet sectors (sectors 13 and 14) have been used in this test. The muon stations are formed of Resistive Plate Chambers (RPC) that were providing the muon trigger, and Monitored Drift Tubes that were used to measure with high accuracy the muon curvature hence their momentum. The Level-1 Barrel trigger chain was based on the Barrel Middle Large chambers equipped with final production modules on both the on-detector and the o...

  4. Numerical simulation for seismic response of ITER toroidal field coil and gravity support system%ITER环向场线圈及重力支撑的地震响应数值模拟

    Institute of Scientific and Technical Information of China (English)

    陈玲莉; 彭海强; 陈振茂; 张扬

    2013-01-01

    A finite element model of the toroida field (TF) coil and gravity support system is established at first by taking its cyclic symmetry condition into account. The first ten order natural frequencies and their corresponding modal vectors of the system are calculated then by using the ANSYS software. Based on these modal information and the spectrum analysis method, the displacement response distribution of the TF system is obtained finally by using the standard seismic spectrum given in ITER EDA report. Furthermore, the feasibility of the numerical model is validated by comparing its results with those of a simplified model of single degree of freedom.%基于循环对称特性建立了ITER环向场(TF)线圈及重力支撑结构系统的整体力学模型,通过有限元数值模拟计算了结构的前10阶固有频率和模态振型,进而利用谱分析方法得到了结构在已知地震谱条件下的位移响应分布.通过与已有单自由度简化模型的理论计算结果相对比,验证了计算模型和结果的有效性.

  5. Modular Coils and Plasma Configurations for Quasi-axisymmetric Stellarators

    Energy Technology Data Exchange (ETDEWEB)

    L.P. Ku and A.H. Boozer

    2010-09-10

    Characteristics of modular coils for quasi-axisymmetric stellarators that are related to the plasma aspect ratio, number of field periods and rotational transform have been examined systematically. It is observed that, for a given plasma aspect ratio, the coil complexity tends to increase with the increased number of field periods. For a given number of field periods, the toroidal excursion of coil winding is reduced as the plasma aspect ratio is increased. It is also clear that the larger the coil-plasma separation is, the more complex the coils become. It is further demonstrated that it is possible to use other types of coils to complement modular coils to improve both the physics and the modular coil characteristics.

  6. Induction Motor with Switchable Number of Poles and Toroidal Winding

    Directory of Open Access Journals (Sweden)

    MUNTEANU, A.

    2011-05-01

    Full Text Available This paper presents a study of an induction motor provided with toroidal stator winding. The ring-type coils offer a higher versatility in obtaining a different number of pole pairs by means of delta/star and series/parallel connections respectively. As consequence, the developed torque can vary within large limits and the motor can be utilized for applications that require, for example, high load torque values for a short time. The study involves experimental tests and FEM simulation for an induction machine with three configurations of pole pairs. The conclusions attest the superiority of the toroidal winding for certain applications such as electric vehicles or lifting machines.

  7. Drift in toroidal configurations

    Science.gov (United States)

    Evangelidis, E. A.

    1990-12-01

    This paper considers possible mechanisms involved in amplifying the drift velocity of plasma particles, under conditions of toroidal geometry. It is shown that particles constrained to move on an axisymmetric circular spheroidal surface, develop a sinusoidal motion with a characteristic frequency which depends on the energy of the particles, the value of the isoflux surface, and the value of the general momentum. It is also shown that the incorporation of the effects of toroidal geometry in the Lorentz equation produces a nonambipolar charge-dependent particle flux amplified by a factor 2(q/epsilon) squared.

  8. The PANDA Barrel DIRC

    Science.gov (United States)

    Dzhygadlo, R.; Schwarz, C.; Belias, A.; Gerhardt, A.; Götzen, K.; Kalicy, G.; Krebs, M.; Lehmann, D.; Nerling, F.; Patsyuk, M.; Peters, K.; Schepers, G.; Schmitt, L.; Schwiening, J.; Traxler, M.; Zühlsdorf, M.; Britting, A.; Eyrich, W.; Lehmann, A.; Pfaffinger, M.; Uhlig, F.; Düren, M.; Etzelmüller, E.; Föhl, K.; Hayrapetyan, A.; Kröck, B.; Merle, O.; Rieke, J.; Schmidt, M.; Cowie, E.; Keri, T.; Achenbach, P.; Cardinali, M.; Hoek, M.; Lauth, W.; Schlimme, S.; Sfienti, C.; Thiel, M.

    2016-05-01

    The PANDA detector at the international accelerator Facility for Antiproton and Ion Research in Europe (FAIR) addresses fundamental questions of hadron physics. Experiments concerning charmonium spectroscopy, the search for hybrids and glueballs and the interaction of hidden and open charm particles with nucleons and nuclei will be performed with antiproton beams impinging on hydrogen or nuclear targets. Cooled beams allow the precision scan of resonances in formation experiments. The momentum range of the antiproton beam between 1.5 GeV/c and 15 GeV/c tests predictions by perturbation theory and will reveal deviations originating from strong QCD . An excellent hadronic particle identification will be accomplished by DIRC (Detection of Internally Reflected Cherenkov light) counters. The design for the barrel region is based on the successful BaBar DIRC with several key improvements, such as fast photon timing and a compact imaging region. DIRC designs based on different radiator geometries with several focusing options were studied in simulation. The performance of each design was characterized in terms of photon yield and single photon Cherenkov angle resolution. Selected design options were implemented in prototypes and tested with hadronic particle beams at GSI and CERN.

  9. Plasma Theory: Toroidal Field Ripple Induced Excursion of Banana Orbit in Tokamak Plasmas

    Institute of Scientific and Technical Information of China (English)

    GAOQingdi

    2003-01-01

    Magnetic confinement of thermonuclear plasma ions within a tokamak must be achieved with a finite number of toroidal field(TF) coils. This results in a rippled toroidal field structure, and consequent distortions in fast ion orbits with potentially rapid loss of the affected ions. The ripple loss is an important issue for the design of future tokamak reactors such as ITER because it results in reduced alpha heating as well as potentially severe localized wallreactors.

  10. Structure design of the Westinghouse superconducting magnet for the Large Coil Program

    International Nuclear Information System (INIS)

    In the on-going development of superconducting toroidal field coils for tokamak reactors, the Large Coil Program (LCP) managed by Union Carbide Corporation will include the design, fabrication, and testing of large superconducting coils to determine their feasibility for use in the magnetic fusion energy effort. Structural analysis of the large coil is essential to ensure adequate safety in the test coil design and confidence in the scalability of the design. This paper will discuss the action of tensile and shear loads on the various materials used in the coil. These loads are of magnetic and thermal origin

  11. Barrel-shaped supernova remnants

    International Nuclear Information System (INIS)

    The authors argue that the majority of radio supernova remnants have a three-dimensional distribution of emissivity which is barrel shaped, with little emission from the end-caps. They examine some mechanisms which could produce this distribution

  12. Pulse Coil Tester

    Science.gov (United States)

    Simon, Richard A.

    1988-01-01

    Set of relays tested easily and repeatedly. Pulse coil tester causes coil under test to generate transient voltage; waveform indicates condition of coil. Tester accommodates assembly of up to four coils at a time.

  13. Smaller coil systems for tokamak reactors

    International Nuclear Information System (INIS)

    Ripple reduction by ferro-magnetic iron shielding is used to reduce the size of the toroidal field coils down to 7.8 by 10.4 m bore for a commercial tokamak reactor design with plasma parameters similar to STARFIRE. For maximum effectiveness, it is found that the blocks of ferromagnetic iron shielding should have triangular cross section and should be placed as close to the plasma as possible

  14. OCLATOR II (One Coil Low Aspect Toroidal Reactor)

    International Nuclear Information System (INIS)

    Following the general description of OCLATOR (I), more thoughts are presented here. It suggests that the blanket may not be changed for the plant lifetime. Also miniaturization of OCLATOR is discussed, especially if the ripple turbulence could be improved upon the presently set limit which applies to a large number of ripples

  15. TFTR TF coil thermal analysis and test

    International Nuclear Information System (INIS)

    A water cooling passage leak which developed in a TFTR toroidal field (TF) coil has precipitated interest in developing alternative cooling options for this coil system. A test on a spare coil was performed to establish a low power heating schedule and to determine the efficacy of gas cooling the TF coils. A computer analysis was also performed using the test results to benchmark the code. The investigation of gas cooling was initiated as a contingency in the event of future irreparable leaks developing in the TF coil cooling passages. It is generally acknowledged that gas leakage into the electrical insulation would have a relatively benign effect on its dielectric strength whereas recent experience on TFTR indicates a substantial degradation of dielectric strength when wetted with water (the use of high dielectric silicone oil as an alternative coolant, is discussed elsewhere in these proceedings). The purpose of the low power heating test was to establish the proper current settings and IR drop to maintain the TF coil at a prescribed temperature of 80 degree C, in preparation for an elevated temperature dry-out cycle on the leaking coil in TFTR. 3 figs., 9 tabs

  16. 10 tesla toroidal field magnet system for General Atomic's PGFR concept

    International Nuclear Information System (INIS)

    General Atomic's concept for a reactor compatible superconducting toroidal field coil is presented. The concept employs bath cooled, copper stabilized NbTi conductor to generate 10 tesla at a nominal temperature of 4.50K. The emphasis of this paper is on the coil configuration, stability criterion, cryodynamic performance, and support of magnetic loads. The guiding principles of the design are fabrication economy, reactor compatibility, and operational reliability

  17. FORCE DISTRIBUTIONS AND STRESS ANALYSIS OF THE INTOR-CH SUPERCONDUCTING COIL

    OpenAIRE

    Marinucci, C.; Palladino, L.; Pasotti, G.; Ricci, M.; Vécsey, G.

    1984-01-01

    The status of the electro-mechanical calculations of the SIN concept for the INTOR/NET 11 Tesla toroidal field coils is presented. Optimization of the constant-tension D-shape curve, calculations of electromagnetic forces and stress analysis of conductor, winding and complete coil are discussed.

  18. Design study of toroidal magnets for tokamak experimental power reactors

    International Nuclear Information System (INIS)

    This report contains the results of a six-month study of superconducting toroidal field coils for a Tokamak Experimental Power Reactor to be built in the late 1980s. The designs are for 8 T and 12 T maximum magnetic field at the superconducting winding. At each field level two main concepts were generated; one in which each of the 16 coils comprising the system has an individual vacuum vessel and the other in which all the coils are contained in a single vacuum vessel. The coils have a D shape and have openings of 11.25 m x 7.5 m for the 8 T coils and 10.2 m x 6.8 m for the 12 T coils. All the designs utilize rectangular cabled conductor made from copper stabilized Niobium Titanium composite which operates at 4.2 K for the 8 T design and at 2.5 K for the 12 T design. Manufacturing procedures, processes and schedule estimates are also discussed

  19. On the Toroidal Leibniz Algebras

    Institute of Scientific and Technical Information of China (English)

    Dong LIU; Lei LIN

    2008-01-01

    Toroidal Leibniz algebras are the universal central extensions of the iterated loop algebras gOC[t±11 ,...,t±v1] in the category of Leibniz algebras. In this paper, some properties and representations of toroidal Leibniz algebras are studied. Some general theories of central extensions of Leibniz algebras are also obtained.

  20. Integrated-blanket-coil (IBC) applications to the TITAN reversed-field pinch reactor

    International Nuclear Information System (INIS)

    The Integrated-Blanket-Coil (IBC) concept has been adopted for use in the toroidal field and divertor coil systems of the TITAN-I lithium/vanadium design. The IBC approach combines the breeding and energy recovery functions of the blanket with the magnetic field production of the coils into a single component. This is accomplished by passing the current through the liquid metal coolant, lithium, which flows poloidally around the plasma. A reversed-field pinch (RFP) reactor offers an attractive context for IBC coils since the low toroidal field at the plasma surface (-- 0.36 T) leads to relatively low coil currents. Examination of nuclear, magnetic, thermal-hydraulic, electrical and design integration issues indicates that the IBC coils are a viable and attractive option for the TITAN reactor

  1. Divertor Coil Design and Implementation on Pegasus

    Science.gov (United States)

    Shriwise, P. C.; Bongard, M. W.; Cole, J. A.; Fonck, R. J.; Kujak-Ford, B. A.; Lewicki, B. T.; Winz, G. R.

    2012-10-01

    An upgraded divertor coil system is being commissioned on the Pegasus Toroidal Experiment in conjunction with power system upgrades in order to achieve higher β plasmas, reduce impurities, and possibly achieve H-mode operation. Design points for the divertor coil locations and estimates of their necessary current ratings were found using predictive equilibrium modeling based upon a 300 kA target plasma. This modeling represented existing Pegasus coil locations and current drive limits. The resultant design calls for 125 kA-turns from the divertor system to support the creation of a double null magnetic topology in plasmas with IpIGBT power supply modules to provide IDIV<=4 kA. The resulting 20 kA-turn capability of the existing divertor coil will be augmented by a new coil providing additional A-turns in series. Induced vessel wall current modeling indicates the time response of a 28 turn augmentation coil remains fast compared to the poloidal field penetration rate through the vessel. First results operating the augmented system are shown.

  2. ID Barrel installed in cryostat

    CERN Multimedia

    Apsimon, R.; Romaniouk, A.

    Wednesday 23rd August was a memorable day for the Inner Detector community as they witnessed the transport and installation of the central part of the inner detector (ID-barrel) into the ATLAS detector. Many members of the collaboration gathered to witness this moment at Point 1. After years of design, construction and commissioning, the outer two detectors (TRT and SCT) of the ID barrel were moved from the SR1 cleanroom to the ATLAS cavern. The barrel was moved across the car park from building 2175 to SX1. Although only a journey of about 100 metres, this required weeks of planning and some degree of luck as far as the weather was concerned. Accelerometers were fitted to the barrel to provide real-time monitoring and no values greater than 0.1 g were recorded, fully satisfying the transport specification for this extremely precise and fragile detector. Muriel, despite her fear of heights, bravely volunteered to keep a close eye on the detector. Swapping cranes to cross the entire parking lot, while Mur...

  3. Designing Stable Antiparallel Coiled Coil Dimers

    Institute of Scientific and Technical Information of China (English)

    曾宪纲; 周海梦

    2001-01-01

    The history of antiparallel coiled coil dimer design is briefly reviewed and the main principles governing the successful designs are explained. They include analysis of the inter-subunit electrostatic repulsion for determining partners for dimerization and of the buried polar interaction for determining the relative orientation of the partners. A theory is proposed to explain the lack of antiparallel coiled coil homodimers in nature.

  4. Pareto optimal design of sectored toroidal superconducting magnet for SMES

    Energy Technology Data Exchange (ETDEWEB)

    Bhunia, Uttam, E-mail: ubhunia@vecc.gov.in; Saha, Subimal; Chakrabarti, Alok

    2014-10-15

    Highlights: • The optimization approach minimizes both the magnet size and necessary cable length of a sectored toroidal SMES unit. • Design approach is suitable for low temperature superconducting cable suitable for medium size SMES unit. • It investigates coil parameters with respect to practical engineering aspects. - Abstract: A novel multi-objective optimization design approach for sectored toroidal superconducting magnetic energy storage coil has been developed considering the practical engineering constraints. The objectives include the minimization of necessary superconductor length and torus overall size or volume, which determines a significant part of cost towards realization of SMES. The best trade-off between the necessary conductor length for winding and magnet overall size is achieved in the Pareto-optimal solutions, the compact magnet size leads to increase in required superconducting cable length or vice versa The final choice among Pareto optimal configurations can be done in relation to other issues such as AC loss during transient operation, stray magnetic field at outside the coil assembly, and available discharge period, which is not considered in the optimization process. The proposed design approach is adapted for a 4.5 MJ/1 MW SMES system using low temperature niobium–titanium based Rutherford type cable. Furthermore, the validity of the representative Pareto solutions is confirmed by finite-element analysis (FEA) with a reasonably acceptable accuracy.

  5. Temperature detection circuit on the low-temperature superconducting coils

    International Nuclear Information System (INIS)

    Experimental Advanced Superconducting Tokamak (EAST) is the fully superconducting Tokamak. The EAST magnet system comprises 16 D-shaped toroidal field coils and 14 poloidal field coils which are cooled by supercritical helium at 4.2 K and 3.8 K. The temperature of superconducting coils is measured by Cernox as a new type low-temperature sensor, and monitored during the cooling and operation. The helium temperature can offer reference for quench signal. In this paper, a technique for the weak temperature signal measurement of superconducting coils is introduced, and its weak voltage is extracted from the intrinsic noise of the amplifier by the low-noise instrumentation amplifier, filter circuit, and high-linearity analog optocoupler. The temperature detection circuit works accurately and safely whether in cooling or operating process. This technique is an effective for the temperature detection on the low-temperature superconducting coils. (authors)

  6. Experimental investigation of transitional flow in a toroidal pipe

    CERN Document Server

    Kühnen, J; Hof, B; Kuhlmann, H

    2015-01-01

    The flow instability and further transition to turbulence in a toroidal pipe (torus) with curvature (tube-to-coiling diameter) 0.049 is investigated experimentally. The flow inside the toroidal pipe is driven by a steel sphere fitted to the inner pipe diameter. The sphere is moved with constant azimuthal velocity from outside the torus by a moving magnet. The experiment is designed to investigate curved pipe flow by optical measurement techniques. Using stereoscopic particle image velocimetry, laser Doppler velocimetry and pressure drop measurements, the flow is measured for Reynolds numbers ranging from 1000 to 15000. Time- and space-resolved velocity fields are obtained and analysed. The steady axisymmetric basic flow is strongly influenced by centrifugal effects. On an increase of the Reynolds number we find a sequence of bifurcations. For Re=4075 a supercritical bifurcation to an oscillatory flow is found in which waves travel in the streamwise direction with a phase velocity slightly faster than the mean...

  7. The PANDA Barrel DIRC detector

    Energy Technology Data Exchange (ETDEWEB)

    Hoek, M., E-mail: matthias.hoek@uni-mainz.de [Institut für Kernphysik, Johannes Gutenberg University Mainz, Mainz (Germany); Dzhygadlo, R.; Gerhardt, A.; Götzen, K.; Hohler, R.; Kalicy, G.; Kumawat, H.; Lehmann, D.; Lewandowski, B.; Patsyuk, M.; Peters, K.; Schepers, G.; Schmitt, L.; Schwarz, C.; Schwiening, J.; Traxler, M.; Zühlsdorf, M. [GSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt (Germany); Dodokhov, V. Kh. [Joint Institute for Nuclear Research, Dubna (Russian Federation); Britting, A.; Eyrich, W. [Friedrich Alexander-University of Erlangen-Nuremberg, Erlangen (Germany); and others

    2014-12-01

    The PANDA experiment at the new Facility for Antiproton and Ion Research in Europe (FAIR) at GSI, Darmstadt, will study fundamental questions of hadron physics and QCD using high-intensity cooled antiproton beams with momenta between 1.5 and 15 GeV/c. Efficient Particle Identification for a wide momentum range and the full solid angle is required for reconstructing the various physics channels of the PANDA program. Hadronic Particle Identification in the barrel region of the detector will be provided by a DIRC counter. The design is based on the successful BABAR DIRC with important improvements, such as focusing optics and fast photon timing. Several of these improvements, including different radiator geometries and optics, were tested in particle beams at GSI and at CERN. The evolution of the conceptual design of the PANDA Barrel DIRC and the performance of complex prototypes in test beam campaigns will be discussed.

  8. Toroidal Multipole Confinement Experiment

    International Nuclear Information System (INIS)

    Confinement of plasma is studied in the General Atomic toroidal octopole machine. The magnetic field is produced by four current carrying rings supported inside a contoured conductor. The rings are energized by a transformer core linking the machine. The major radius of the machine is 63.5 cm with an aspect ratio of 5. The magnetic field on the minor axis is zero and increases to 3500 G at the wall between the rings. After crowbarring, the field decays in 6 msec to its half value. The MHD stability calculation has been carried out and the stability is assured up to the plasma pressure of 1016 eV cm-3. Hydrogen plasmas from either a coaxial gun or a pinch gun with ion energies of 50 to 200 eV and with densities of 1014 cm-3 are successfully injected through a port located at the outer conductor wall. After the injection, plasma spreads azimuthally, filling the machine. Electric probes, magnetic probes, and calorimetric probes have been used extensively. Optical spectrometers and particle detectors are also used. The initial plasma density of 1013 cm-'3 decays with a time constant of 700 μsec. The electron temperature decays more quickly in about 100 μsec. No electric or magnetic fluctuations have been observed on any of the probes. Since no provision is made to avoid the plasma loss to the ring supports which penetrate the plasma region, the decay of ion temperature may be attributed to the support loss. (author)

  9. Completion of the TRT Barrel

    CERN Multimedia

    Gagnon, P

    On February 3, the US-TRT team proudly completed the installation of the 96th barrel TRT module on its support structure in the SR building at CERN. This happy event came after many years of R&D initiated in the nineties by the TA1 team at CERN, followed by the construction of the modules in three American institutes (Duke, Hampton and Indiana Universities) from 1996 to 2003. In total, the 96 barrel modules contain 52544 kapton straws, each 4 mm in diameter and strung with a 30 micron gold-plated tungsten wire. Each wire was manually inserted, a feat in itself! The inner layer modules contain 329 straws, the middle layer modules have 520 straws and the outer layer, 793 straws. Thirty- two modules of each type form a full layer. Their special geometry was designed such as to leave no dead region. On average, a particle will cross 36 straws. Kirill Egorov, Chuck Mahlon and John Callahan inserted the last module in the Barrel Support Structure. After completion in the US, all modules were transferred...

  10. Coil Welding Aid

    Science.gov (United States)

    Wiesenbach, W. T.; Clark, M. C.

    1983-01-01

    Positioner holds coil inside cylinder during tack welding. Welding aid spaces turns of coil inside cylinder and applies contact pressure while coil is tack-welded to cylinder. Device facilitates fabrication of heat exchangers and other structures by eliminating hand-positioning and clamping of individual coil turns.

  11. Constraints on the scale of toroidal-fusion experiments with application to the design of a helical-axis stellarator

    International Nuclear Information System (INIS)

    Applying the constraints to the design of a helical axis stellarator we find a limit on the combination of toroidal field, current density and major radius. Another major constraint for this concept is the ability to obtain the plasma physics parameters dictated by similarity considerations. This depends on the heating method used. A minimum scale experiment with 2 periods and no linkage of the toroidal and poloidal coils, would have a major radius of 1.2m, a toroidal field of 3.5T and 2MW of ECRH power (for β = 1% nu2 = 10)

  12. High-frequency toroidal sensor of superconducting quantum magnetometer

    International Nuclear Information System (INIS)

    The toroidal sensor consists of a superconducting induction loop electrically closed with a superconducting weak junction. The sensor features a cylindrical body. The body is integral and is made of superconducting material. It is provided with tow O-shape cavities in which cylindrical signal and exciting coils are installed. The precise cavity geometry and coil fitting is described on an example and shown in figures. The advantages of the configuration include suppression of spurious signals and improvement of the internal sensor shielding against external electromagnetic fields. The device is used for measuring low intensity magnetic fields, e.g., in the measurement of nuclear magnetic resonance, in particle detection, thermometry, geology, medicine, etc. (E.J.). 5 figs

  13. Confinement studies of ECRH plasmas in a toroidal heliac

    International Nuclear Information System (INIS)

    The SHEILA heliac is a toroidal device of major radius Ro=18.75 cm and mean minor radius a (last closed flux surface) of about 3.1 cm. 24 toroidal field coils displaced 2.5 cm about a poloidal ring coil (radius Ro) form a N=3 period helical axis stellarator. SHEILA has been converted to a flexible heliac by an additional l=1 helical winding about the ring coil. Considerable variation in the magnetic geometry can be obtained by adjusting the current ratio C=Ih/Ir between -0.16 to +0.25, equivalent to the range 0.55≥ι(0)≥1.86, where Ih and Ir are the currents in the helical winding and poloidal ring. The vacuum flux surfaces are generally bean-shaped in cross section, but change considerably with variations in the helical current. The |B| surfaces, however, remain roughly circular, concentric with the poloidal ring coil. Plasma formation by electron cyclotron resonance (ECR) depends critically on the position of the fundamental resonance surface, and also the second harmonic surface at low field strengths, relative to the plasma column and the launching antenna. In this paper we investigate the particle confinement properties of the heliac geometry as the rotational transform is varied using up to 2.5 kW peak 10 ms wide pulses of microwave ECR power at 2.45 GHz. Cool (Te=6-10eV) but highly ionized argon plasmas with very reproducible characteristics are generated by discrete dipole/monopole or helical antennae positioned close to the plasma surface. Depending on the magnetic geometry and field strength the antennae can launch either from the high field side (HFS) or the low field side (LFS) of the fundamental resonance surface. (author) 3 refs., 5 figs

  14. Overview of Torus Magnet Coil Production at Fermilab for the Jefferson Lab 12-GeV Hall B Upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Krave, S. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Velev, G. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Makarov, A. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Nobrega, F. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Kiemschies, O. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Robotham, B. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Elementi, L. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Elouadrhiri, Latifa [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Luongo, Cesar [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Kashy, David H. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Wiseman, Mark A. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)

    2016-06-01

    Fermi National Accelerator Laboratory (Fermilab) fabricated the torus magnet coils for the 12 GeV Hall B upgrade at Jefferson Laboratory (JLab). The production consisted of 6 large superconducting coils for the magnet and 2 spare coils. The toroidal field coils are approximately 2 m x 4 m x 5 cm thick. Each of these coils consists of two layers, each of which has 117 turns of copper-stabilized superconducting cable which will be conduction cooled by helium gas. Due to the size of the coils and their unique geometry, Fermilab designed and fabricated specialized tooling and, together with JLab, developed unique manufacturing techniques for each stage of the coil construction. This paper describes the tooling and manufacturing techniques required to produce the six production coils and two spare coils needed by the project.

  15. Design of a 4.5 MJ/1 MW sectored toroidal superconducting energy storage magnet

    Science.gov (United States)

    Bhunia, Uttam; Akhter, Javed; Nandi, Chinmay; Pal, Gautam; Saha, Subimal

    2014-09-01

    A 4.5 MJ/1 MW superconducting magnetic energy storage (SMES) system is being developed at VECC centre, Kolkata. The magnet system consists of the cryostat and coil assembly comprising eight superconducting solenoid coils made of custom-made NbTi based Rutherford-type cable and arranged in toroidal fashion with finite inter-sector gap. Since the strong electromagnetic force distributed to the coil is asymmetric and non-uniform in nature, a precise 3-D finite element analysis (FEA) has been carried out to design a mechanically stable coil and support structure under various operational scenarios. The results reveal that maximum stress developed on coil and its support structure is below allowable stress limit. Extensive transient analysis has also been carried out to evaluate transient loss and assess the feasibility of using helium re-condensation technology with commercially available cryo-refrigerators. Finally, quench protection scenario has also been discussed suitable for this toroidal-type SMES system. The article investigates the design concept of the cryostat and coil assembly.

  16. The OPAL muon barrel detector

    Energy Technology Data Exchange (ETDEWEB)

    Akers, R.J. [Manchester Univ. (United Kingdom). Dept. of Phys. and Astron.; Allison, J. [Manchester Univ. (United Kingdom). Dept. of Phys. and Astron.; Ashton, P. [Manchester Univ. (United Kingdom). Dept. of Phys. and Astron.; Bahan, G.A. [Manchester Univ. (United Kingdom). Dept. of Phys. and Astron.; Baines, J.T.M. [Manchester Univ. (United Kingdom). Dept. of Phys. and Astron.; Banks, J.N. [Manchester Univ. (United Kingdom). Dept. of Phys. and Astron.; Barlow, R.J. [Manchester Univ. (United Kingdom). Dept. of Phys. and Astron.; Barnett, S. [Manchester Univ. (United Kingdom). Dept. of Phys. and Astron.; Beeston, C. [Manchester Univ. (United Kingdom). Dept. of Phys. and Astron.; Chrin, J.T.M. [Manchester Univ. (United Kingdom). Dept. of Phys. and Astron.; Clowes, S.G. [Manchester Univ. (United Kingdom). Dept. of Phys. and Astron.; Davies, O.W. [Manchester Univ. (United Kingdom). Dept. of Phys. and Astron.; Duerdoth, I.P. [Manchester Univ. (United Kingdom). Dept. of Phys. and Astron.; Hinde, P.S. [Manchester Univ. (United Kingdom). Dept. of Phys. and Astron.; Hughes-Jones, R.E. [Manchester Univ. (United Kingdom). Dept. of Phys. and Astron.; Lafferty, G.D. [Manchester Univ. (United Kingdom). Dept. of Phys. and Astron.; Loebinger, F.K. [Manchester Univ. (United Kingdom). Dept. of Phys. and Astron.; Macbeth, A.A. [Manchester Univ. (United Kingdom). Dept. of Phys. and Astron.; McGowan, R.F. [Manchester Univ. (United Kingdom). Dept. of Phys. and Astron.; Moss, M.W. [Manchester Univ. (United Kingdom). Dept. of Phys. and Astron.; Murphy, P.G. [Manchester Univ. (United Kingdom). Dept. of Phys. and Astron.; Nijjhar, B. [Manchester Univ. (United Kingdom). Dept. of Phys. and Astron.; O`Dowd, A.J.P. [Manchester Univ. (United Kingdom). Dept. of Phys. and Astron.; Pawley, S.J. [Manchester Univ. (United Kingdom). Dept. of Phys. and Astron.; Phillips, P.D. [Manchester Univ. (United Kingdom). Dept. of Phys. and Astron.; Richards, G.E.

    1995-04-21

    The barrel part of the OPAL muon detector consists of 110 drift chambers forming four layers outside the hadron absorber. Each chamber covers an area of 1.2 m by up to 10.4 m and has two cells with wires parallel to the beam and a drift distance of 297 mm. A detailed description of the design, construction, operation and performance of the sub-detector is given. The system has been operating successfully since the start of LEP in 1989. ((orig.)).

  17. Protective link for superconducting coil

    Science.gov (United States)

    Umans, Stephen D.

    2009-12-08

    A superconducting coil system includes a superconducting coil and a protective link of superconducting material coupled to the superconducting coil. A rotating machine includes first and second coils and a protective link of superconducting material. The second coil is operable to rotate with respect to the first coil. One of the first and second coils is a superconducting coil. The protective link is coupled to the superconducting coil.

  18. Heavy ion toroidal collective accelerator

    International Nuclear Information System (INIS)

    Experiments on HIPAC at Maxwell Laboratories have shown that almost all of the confined electrons are trapped and do not go around the torus. A toroidal electric field produces a negligible toroidal electron current. An ion accelerator where electrons are magnetically contained and their space charge contains ions is considered. A toroidal electric field of suitable magnitude can be applied so that it accelerates all of the ions but does not accelerate most of the electrons. This is possible if the magnetic moment of electrons μsub(e) > μsub(i)/Z, where μsub(i) is the ion magnetic moment and Z is the charge of the ion. Ions would be contained by the electron space-charge electric field E, for energies up to ZeER/2 approximately 100 GeV where Z = 60, E = 107 V/cm and the major radius of the torus is R = 3.3 metres. (author)

  19. RF breakdown by toroidal helicons

    Indian Academy of Sciences (India)

    S K P Tripathi; D Bora; M Mishra

    2001-04-01

    Bounded whistlers are well-known for their efficient plasma production capabilities in thin cylindrical tubes. In this paper we shall present their radio frequency (RF) breakdown and discharge sustaining capabilities in toroidal systems. Pulsed RF power in the electronmagnetohydrodynamic (EMHD) frequency regime is fed to the neutral background medium. After the breakdown stage, discharge is sustained by toroidal bounded whistlers. In these pulsed experiments the behaviour of the time evolution of the discharge could be studied in four distinct phases of RF breakdown, steady state attainment, decay and afterglow. In the steady state average electron density of ≈ 1012 per cc and average electron temperature of ≈ 20 eV are obtained at 10-3 mbar of argon filling pressure. Experimental results on toroidal mode structure, background effects and time evolution of the electron distribution function will be presented and their implications in understanding the breakdown mechanism are discussed.

  20. Extension of TFTR operations to higher toroidal field levels

    International Nuclear Information System (INIS)

    For the past year, TFTR has sometimes operated at extended toroidal field (TF) levels. The extension to 5.6 Tesla (79 kA) was crucial for TFTR's November 1994 10.7 MW DT fusion power record. The extension to 6.0 Tesla (85 kA) was commissioned on 9 September 1995. There are several reasons that one could expect the TF coils to survive the higher stresses that develop at higher fields. They were designed to operate at 5.2 Tesla with a vertical field of 0.5 Tesla, whereas the actual vertical field needed for the plasma does not exceed 0.35 Tesla. Their design specification explicitly required they survive some pulses at 6.0 Tesla. TF coil mechanical analysis computer models available during coil design were crude, leading to conservative design. And design analyses also had to consider worst-case misoperations that TFTR's real time Coil Protection Calculators (CPCs) now positively prevent from occurring

  1. TRT and SCT barrels merge

    CERN Multimedia

    Wells, P S

    2006-01-01

    The SCT barrel was inserted in the TRT on 17 February, just missing Valentine's day. This was a change of emphasis for the two detectors. In the preceeding months there had been a lot of focus on testing their performance. The TRT had been observing cosmic rays through several sectors of the barrel, and all the modules on each of the four layers of the SCT had been characterised prior to integration. In parallel, the engineering teams, lead by Marco Olcese, Andrea Catinaccio, Eric Perrin, Neil Dixon, Iourii Gusakov, Gerard Barbier and Takashi Kohriki, had been preparing for this critical operation. Figure 1: Neil Dixon and Marco Olcese verifying the final alignment The two detectors had to be painstakingly aligned to be concentric to within a millimetre. The SCT was held on a temporary cantilever stand, and the TRT in the ID trolley had to inch over it. Finally the weight of the SCT was transferred to the rails on the inside of the TRT itself. The SCT services actually protruded a little outside the oute...

  2. Hybrid winding concept for toroids

    DEFF Research Database (Denmark)

    Schneider, Henrik; Andersen, Thomas; Knott, Arnold;

    2013-01-01

    This paper proposes a hybrid winding concept for toroids using the traces in a printed circuit board to make connection to bended copper foil cutouts. In a final product a number of strips with a certain thickness would be held by a former and the whole assembly could be placed by pick...... and placement machinery. This opens up the possibility for both an automated manufacturing process and an automated production process of toroidal magnetics such as power inductors, filtering inductors, air core inductors, transformers etc. Both the proposed hybrid and the common wire wound winding...

  3. Integrated-blanket-coil applications in the TITAN-I reversed-field pinch reactor

    International Nuclear Information System (INIS)

    The TITAN-I Reversed-Field Pinch reactor incorporates the Integrated-Blanket-Coil (IBC) concept for the toroidal field and divertor field coil systems. The IBC approach combines the breeding and energy recovery functions of the blanket with the magnetic field production of the coils in a single component. This is accomplished by passing the current through the liquid metal coolant, lithium, which flows poloidally around the plasma. A reversed-field pinch reactor offers an attractive context for IBC coils since the low toroidal field at the plasma surface (∼0.36 T) leads to relatively low coil currents. Design of IBC components addresses four areas: (1) Neutronics, including tritium breeding and blanket energy multiplication; (2) thermal hydraulics, including magnetohydrodynamic (MHD) pressure drops; (3) magnetics, including field magnitude and topology; and (4) electrical engineering of the circuit determining the power supply requirements. The TF-IBC approach, in comparison to copper coils, offers several advantages for a compact RFP reactor: Increased access for coolant and auxiliary services, improved viability for single-piece maintenance, and reduced magnetic ripple in the toroidal magnetic field. In the divertor system, improved magnetic coupling and additional energy recovery and tritium breeding enhance the attractiveness of the IBC relative to copper coils. (orig.)

  4. Mechanical Self-shrinkage of Artillery Barrels

    Directory of Open Access Journals (Sweden)

    Ioan Ciorba

    2012-09-01

    Full Text Available Objective of this paper is to define what self-shrink artillery barrel is. She is considered to be a compound barrel like as a thick-walled tube (k>2, in his wall being introduced a state of stress and strain using specific technological proceeds. This type of treatment is aimed to increase the artillery barrel load capacity and wear resistance in operation. The experimental part was realized using an industrial plant at Mechanical Factory of Resita. This part presents a comparative study between mechanical self-shrinkage on artillery head barrel, first using a mandrel and seconds a ball.

  5. 3D toroidal physics: Testing the boundaries of symmetry breakinga)

    Science.gov (United States)

    Spong, Donald A.

    2015-05-01

    Toroidal symmetry is an important concept for plasma confinement; it allows the existence of nested flux surface MHD equilibria and conserved invariants for particle motion. However, perfect symmetry is unachievable in realistic toroidal plasma devices. For example, tokamaks have toroidal ripple due to discrete field coils, optimized stellarators do not achieve exact quasi-symmetry, the plasma itself continually seeks lower energy states through helical 3D deformations, and reactors will likely have non-uniform distributions of ferritic steel near the plasma. Also, some level of designed-in 3D magnetic field structure is now anticipated for most concepts in order to provide the plasma control needed for a stable, steady-state fusion reactor. Such planned 3D field structures can take many forms, ranging from tokamaks with weak 3D edge localized mode suppression fields to stellarators with more dominant 3D field structures. This motivates the development of physics models that are applicable across the full range of 3D devices. Ultimately, the questions of how much symmetry breaking can be tolerated and how to optimize its design must be addressed for all fusion concepts. A closely coupled program of simulation, experimental validation, and design optimization is required to determine what forms and amplitudes of 3D shaping and symmetry breaking will be compatible with the requirements of future fusion reactors.

  6. 3D toroidal physics: Testing the boundaries of symmetry breaking

    Energy Technology Data Exchange (ETDEWEB)

    Spong, Donald A., E-mail: spongda@ornl.gov [Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6169 (United States)

    2015-05-15

    Toroidal symmetry is an important concept for plasma confinement; it allows the existence of nested flux surface MHD equilibria and conserved invariants for particle motion. However, perfect symmetry is unachievable in realistic toroidal plasma devices. For example, tokamaks have toroidal ripple due to discrete field coils, optimized stellarators do not achieve exact quasi-symmetry, the plasma itself continually seeks lower energy states through helical 3D deformations, and reactors will likely have non-uniform distributions of ferritic steel near the plasma. Also, some level of designed-in 3D magnetic field structure is now anticipated for most concepts in order to provide the plasma control needed for a stable, steady-state fusion reactor. Such planned 3D field structures can take many forms, ranging from tokamaks with weak 3D edge localized mode suppression fields to stellarators with more dominant 3D field structures. This motivates the development of physics models that are applicable across the full range of 3D devices. Ultimately, the questions of how much symmetry breaking can be tolerated and how to optimize its design must be addressed for all fusion concepts. A closely coupled program of simulation, experimental validation, and design optimization is required to determine what forms and amplitudes of 3D shaping and symmetry breaking will be compatible with the requirements of future fusion reactors.

  7. The complex and unique ATLAS Toroid family

    CERN Multimedia

    2002-01-01

    Big parts for the toroid magnets that will be used in the ATLAS experiment have been continuously arriving at CERN since March. These structures will create the largest superconducting toroid magnet ever.

  8. Intrinsic rotation of toroidally confined magnetohydrodynamics

    OpenAIRE

    Morales, Jorge; Bos, Wouter; Schneider, Kai; Montgomery, David

    2012-01-01

    The spatiotemporal self-organization of viscoresistive magnetohydrodynamics (MHD) in a toroidal geometry is studied. Curl-free toroidal magnetic and electric fields are imposed. It is observed in our simulations that a flow is generated, which evolves from dominantly poloidal to toroidal when the Lundquist numbers are increased. It is shown that this toroidal organization of the flow is consistent with the tendency of the velocity field to align with the magnetic field. Up-down asymmetry of t...

  9. ATLAS End Cap toroid in upstanding position

    CERN Multimedia

    2005-01-01

    End Cap toroid The ATLAS End Cap toroid weights 240-ton and is 12-m diameter high. The parts of this vacuum vessel had to be integrated and tested so that End Cap Toroid has no leaks. After that it could be cooled down to 80 K.

  10. Extremely high Q-factor toroidal metamaterials

    CERN Document Server

    Basharin, Alexey A; Volsky, Nikita; Kafesaki, Maria; Economou, Eleftherios N; Ustinov, Alexey V

    2016-01-01

    We demonstrate that, owing to the unique topology of the toroidal dipolar mode, its electric/magnetic field can be spatially confined within subwavelength, externally accessible regions of the metamolecules, which makes the toroidal planar metamaterials a viable platform for high Q-factor resonators due to interfering toroidal and other dipolar modes in metamolecules.

  11. Technology of toroidal plasma devices

    International Nuclear Information System (INIS)

    After research into many different magnetic confinement systems, there is now general agreement that the most favorable ones for future fusion reactors are all based on toroidal geometry, as distinct from having open ends like mirror machines. For this reason plasma physics research, even when not aimed directly at the fusion problems, has in recent years increasingly concentrated on toroidal systems. One reason is that by using their good confinement properties the experimenter has available a range of high temperature plasma parameters in quasisteady (or even steady) state conditions not otherwise available on Earth. Despite the wide variety of both geometrical possibilities and sizes, ranging from table-top experiments with plasmas a few centimetres across to near reactor scale ones like JET with plasmas several metres across, toroidal systems have many common features, both in their physical principles and of experimental design: the purpose of this paper is to highlight those common features, using some specific examples for illustration, and emphasizing some of the more practical aspects. It will also try to point out important differences between two of the main classes of toroidal systems

  12. Toroidal solutions in Horava Gravity

    OpenAIRE

    Ghodsi, Ahmad

    2009-01-01

    Recently a new four-dimensional non relativistic renormalizable theory of gravity was proposed by Horava. This gravity reduces to Einstein gravity at large distances. In this paper by using the new action for gravity we present different toroidal solutions to the equations of motion. Our solutions describe the near horizon geometry with slow rotating parameter.

  13. Recent results from Crystal Barrel

    CERN Document Server

    Doser, Michael

    2000-01-01

    The Crystal Barrel detector has collected data on antiproton annihilation on Hydrogen and Deuterium at rest and at momenta up to 1940 MeV/c, accumulating a total of 600 M events with the goal of studying meson spectroscopy and searching for non-qbarq states. This large amount of data has allowed high statistics studies of exclusive final states produced under various initial conditions. Comparisons between different initial and final states greatly constrain the interpretation of these data sets. In particular, the requirement of consistency between fits of 3-body final state Dalitz plots is a powerful tool in the search for non-standard model resonances [1]. More recently, the study of the same Dalitz plot produced from antiproton annihilation on liquid and gaseous hydrogen, on deuterium or on liquid hydrogen at different center-of-mass energies has extended this approach to higher mass resonances.

  14. Prototyping the PANDA Barrel DIRC

    Energy Technology Data Exchange (ETDEWEB)

    Schwarz, C., E-mail: C.Schwarz@gsi.de [GSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt (Germany); Kalicy, G.; Dzhygadlo, R.; Gerhardt, A.; Götzen, K.; Hohler, R.; Kumawat, H.; Lehmann, D.; Lewandowski, B.; Patsyuk, M.; Peters, K.; Schepers, G.; Schmitt, L.; Schwiening, J.; Traxler, M.; Zühlsdorf, M. [GSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt (Germany); Dodokhov, V.Kh. [Joint Institute for Nuclear Research, Dubna (Russian Federation); Britting, A.; Eyrich, W.; Lehmann, A. [Friedrich Alexander-University of Erlangen-Nuremberg, Erlangen (Germany); and others

    2014-12-01

    The design of the Barrel DIRC detector for the future PANDA experiment at FAIR contains several important improvements compared to the successful BABAR DIRC, such as focusing and fast timing. To test those improvements as well as other design options a prototype was build and successfully tested in 2012 with particle beams at CERN. The prototype comprises a radiator bar, focusing lens, mirror, and a prism shaped expansion volume made of synthetic fused silica. An array of micro-channel plate photomultiplier tubes measures the location and arrival time of the Cherenkov photons with sub-nanosecond resolution. The development of a fast reconstruction algorithm allowed to tune construction details of the detector setup with test beam data and Monte-Carlo simulations.

  15. RESISTANCE OF FIRE-HOSE BARRELS

    Directory of Open Access Journals (Sweden)

    I. V. Kachanov

    2010-01-01

    Full Text Available Values of hydraulic resistance of main fire-hose barrels are determined in the paper. Such approach has made it possible to obtain analytical dependencies between main parameters of fire jets with due account of hydraulic losses in fire-hose barrels.

  16. Intrinsic rotation of toroidally confined magnetohydrodynamics.

    Science.gov (United States)

    Morales, Jorge A; Bos, Wouter J T; Schneider, Kai; Montgomery, David C

    2012-10-26

    The spatiotemporal self-organization of viscoresistive magnetohydrodynamics in a toroidal geometry is studied. Curl-free toroidal magnetic and electric fields are imposed. It is observed in our simulations that a flow is generated, which evolves from dominantly poloidal to toroidal when the Lundquist numbers are increased. It is shown that this toroidal organization of the flow is consistent with the tendency of the velocity field to align with the magnetic field. Up-down asymmetry of the geometry causes the generation of a nonzero toroidal angular momentum. PMID:23215195

  17. Design study of superconducting toroidal field magnet for tokamak fusion power reactor

    International Nuclear Information System (INIS)

    Design study of the superconducting toroidal field magnet for a 2000 MW sub(t) tokamak fusion power reactor has been carried out. Performed here were conductor design, magnetic field calculation, design of coil support, stress analysis and design of refrigeration system. The maximum toroidal field at the coil is 12T, providing 6T at the plasma center. Nb3Sn superconductors are employed in the higher field zone. The operation current is 34.72 kA, and the conductors are fully stabilized. The heat load in the magnet is 21.1 kW, and the required liquefaction rate is 36,000 l/h. Many technological problems were revealed by the design study. (auth.)

  18. Design and Simulation of Toroidal Twister Model

    Institute of Scientific and Technical Information of China (English)

    TIAN Huifang; LIN Xizhen; ZENG Qinqin

    2006-01-01

    Toroidal composite vessel winded with fiber is a new kind of structural pressure vessels, which not only has high structure efficiency of compound materials pressure vessel, good security and so on, but also has special shape and the property of utilizing toroidal space, and the prospect of the application of toroidal composite vessel winded with fiber is extremely broad. By introducing parameters establishment of toroidal vessel and elaborating the principle of filament winding for toroidal vessel, the design model of filament winding machine for toroidal vessel has been introduced, and the design model has been dynamically simulated by the software of ADAMS, which will give more referrence for the design of real toroidal vessel twister.

  19. Development of ITER toroidal field insert. International collaboration with Russia

    International Nuclear Information System (INIS)

    The Central Solenoid (CS) model coil programme was performed since 1992 as one of the projects in the Engineering Design Activity (EDA) of the International Thermonuclear Experimental Reactor(ITER). The CS model coil programme involves a plan to develop the Toroidal Field (TF) insert to demonstrate the conductor performance of ITER TF coils under a magnetic flux density of 13T. The TF insert was fabricated by Russia and tested by Japan under the framework of the ITER-EDA. The TF insert developed a single-layer solenoid with nine turns. It is wound with a cable-in-conduit (CIC) conductor which consists of 1,152 Nb3Sn strands, a thin titanium jacket and a central channel. The outer diameter, height and weight of the TF insert are 1.56 m, 3.2 m and 3.1 ton, respectively. Fabrication of the TF insert was completed in May 2001 at the D.V.Efremov Scientific Research Institute for Electrophysical Apparatus (Efremov institute) in St. Petersburg, Russia. The TF insert was then transported to the Japan Atomic Energy Research Institute (JAERI). Installation of the TF insert to CS model coil test facility was completed in August, 2001. Experiments including the cooldown and warmup processes, were completed in November 2001. The TF insert was charged to 13T with 46 kA without any instability under a back up magnetic field from the CS model coil. This report introduces an overview of the fabrication, installation and experiments for the TF insert conducted under collaboration between Japan and Russia. (author)

  20. MANUFACTURING OF MAGNETIC PROBE COILS FOR DIII-D

    Energy Technology Data Exchange (ETDEWEB)

    BOZEK,A.S; STRAIT,E.J

    2003-10-01

    OAK-B135 The magnetic diagnostics program at DIII-D adds to its in-vessel installations of induction-type loops and coils almost every year. The current design of toroidal and poloidal magnetic field coils (45-50 kHz, N {center_dot} A = 0.06 m{sup 2}) has been in existence since 1987. Many coils were installed in DIII-D during that year and are still operating and reliable today. The high reliability of the coils is owing to the use of a continuous length of mineral-insulated cable, eliminating any electrical connections inside the vacuum vessel. The geometry of the probes was designed to achieve a bandwidth of 50 kHz, despite the conducting shell formed by the stainless steel sheath of the mineral-insulated cable. The bandwidth is sensitive to the details of the cable dimensions and winding technique, and care must be taken in the fabrication in order to maintain this specification. With possible future magnetic diagnostics installations IN ITER and other long-pulse machines requiring large numbers of coils and/or multiple layers per coil, the manufacturing scale-up, quality control, and the development of layered coils should all be investigated in addition to the obvious issues such as irradiation effects.

  1. Structural design of the toroidal configuration of the HTS SMES cooling system

    Science.gov (United States)

    Yeom, H. K.; Koh, D. Y.; Ko, J. S.; Kim, H. B.; Hong, Y. J.; Kim, S. H.; Seong, K. C.

    2011-11-01

    The superconducting magnetic energy storage (SMES) system is working on around 30 K, because the magnet is made of high temperature superconductor. To maintain the cryogenic temperature, the superconducting coil is cooled by cryogen, helium gas or liquid neon. But there are some weak points in the cryogen cooling system. For example periodic charge of the cryogen and size is big and so on. So, we have designed the conduction cooling system for toroidal configuration HTS SMES. The toroidal type HTS SMES has some merits, so it is very small magnetic field leakage, and magnetic field applied perpendicular to the tape surface can be reduced. Our system has 28 numbers of HTS double pancake coils and they are arrayed toroidal configuration. The toroidal inner radius is 162 mm, and outer radius is 599 mm, and height is about 162 mm. In this study, we have designed the cooling structure and analyzed temperature distribution of cooling path, thermal stress and deformation of the cooling structure.

  2. Structural design of the toroidal configuration of the HTS SMES cooling system

    Energy Technology Data Exchange (ETDEWEB)

    Yeom, H.K., E-mail: hkyeom@kimm.re.kr [Cryogenic Engineering Team of Korea Institute of Machinery and Materials, 104 Sinseong-no, Yuseong-gu, Daejeon 305-343 (Korea, Republic of); Koh, D.Y.; Ko, J.S.; Kim, H.B.; Hong, Y.J. [Cryogenic Engineering Team of Korea Institute of Machinery and Materials, 104 Sinseong-no, Yuseong-gu, Daejeon 305-343 (Korea, Republic of); Kim, S.H. [Mechanical Engineering Department of Changwon National University, 65 Sonamu 5-gil, Euichang-gu, Changwon 641-773 (Korea, Republic of); Seong, K.C. [Applied Superconducting Research Team of Korea Electrotechnology Research Institute, 70 Bulmosan-gil, Seongsan-gu, Changwon 641-120 (Korea, Republic of)

    2011-11-15

    The superconducting magnetic energy storage (SMES) system is working on around 30 K, because the magnet is made of high temperature superconductor. To maintain the cryogenic temperature, the superconducting coil is cooled by cryogen, helium gas or liquid neon. But there are some weak points in the cryogen cooling system. For example periodic charge of the cryogen and size is big and so on. So, we have designed the conduction cooling system for toroidal configuration HTS SMES. The toroidal type HTS SMES has some merits, so it is very small magnetic field leakage, and magnetic field applied perpendicular to the tape surface can be reduced. Our system has 28 numbers of HTS double pancake coils and they are arrayed toroidal configuration. The toroidal inner radius is 162 mm, and outer radius is 599 mm, and height is about 162 mm. In this study, we have designed the cooling structure and analyzed temperature distribution of cooling path, thermal stress and deformation of the cooling structure.

  3. Prospects for toroidal fusion reactors

    International Nuclear Information System (INIS)

    Work on the International Thermonuclear Experimental Reactor (ITER) tokamak has refined understanding of the realities of a deuterium-tritium (D-T) burning magnetic fusion reactor. An ITER-like tokamak reactor using ITER costs and performance would lead to a cost of electricity (COE) of about 130 mills/kWh. Advanced tokamak physics to be tested in the Toroidal Physics Experiment (TPX), coupled with moderate components in engineering, technology, and unit costs, should lead to a COE comparable with best existing fission systems around 60 mills/kWh. However, a larger unit size, ∼2000 MW(e), is favored for the fusion system. Alternative toroidal configurations to the conventional tokamak, such as the stellarator, reversed-field pinch, and field-reversed configuration, offer some potential advantage, but are less well developed, and have their own challenges

  4. Classification of symmetric toroidal orbifolds

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, Maximilian; Ratz, Michael; Torrado, Jesus [Technische Univ. Muenchen, Garching (Germany). Physik-Department; Vaudrevange, Patrick K.S. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2012-09-15

    We provide a complete classification of six-dimensional symmetric toroidal orbifolds which yield N{>=}1 supersymmetry in 4D for the heterotic string. Our strategy is based on a classification of crystallographic space groups in six dimensions. We find in total 520 inequivalent toroidal orbifolds, 162 of them with Abelian point groups such as Z{sub 3}, Z{sub 4}, Z{sub 6}-I etc. and 358 with non-Abelian point groups such as S{sub 3}, D{sub 4}, A{sub 4} etc. We also briefly explore the properties of some orbifolds with Abelian point groups and N=1, i.e. specify the Hodge numbers and comment on the possible mechanisms (local or non-local) of gauge symmetry breaking.

  5. Simulation of chain of quenches on toroidal HTS-SMES taking account of thermal and electromagnetic characteristics

    Science.gov (United States)

    Oga, Y.; Noguchi, S.; Igarashi, H.

    When a temperature rise occurs at a local area inside a coil of toroidal HTS-SMES by any reason, a temperature hotspot which results in a thermal runaway appears at the local area. Subsequently, after appearing the local normal zone in the HTS coil, the transport current of the HTS coil decrease since the resistance of HTS coil appears and the current partially flows into a parallel-connecting shunt resistance. However, if the transport current of the normal-transitioned HTS coil is hardly changed, the temperature on the hotspot would rise more and then the normal zone would spread rapidly. It may cause a serious accident due to high stored energy. Therefore, using the numerical simulation, we have investigated the behaviors of the coil current, the critical current, and the temperature in the superconducting element coils of HTS-SMES. Consequently, the temperature of the superconducting element coils rises up extremely when a large heat is generated at a certain area of one of them by any reason. Moreover, there is a possibility that the shunt resister hardly functions for protection since the coil is burned out due to high inductances and low resistance of the superconducting element coil.

  6. Applications of the integrated-blanket-coil concept to the compact reversed-field pinch reactor

    International Nuclear Information System (INIS)

    Compact reactors, by their nature, are high-power-density devices. They place a premium on space usage within the system volume, and access to the fusion power core components is limited. The integrated-blanket-coil (IBC) concept relaxes some of these requirements by combining the functions of the breeding blanket with those of the magnet systems. In this paper, the IBC potential is analyzed for the compact reversed-field pinch reactor (CRFPR) coil sets: (a) the toroidal field (TF) system; (b) the polidal field (PF) system; (c) the ohmic heating (OH) subsystem of the PF system; and (d) the divertor coils in the impurity control system. Use is made of the Los Alamos National Laboratory (LANL) RFP systems code with suitable modifications, to estimate ohmic losses, coil masses, and economic (cost of electricity) impact of the different configurations. Preliminary evaluations indicate that a symmetric toroidal divertor would be suitable for the CRFPR. This presents a special attraction for use of IBC divertor coils. Since the minority field (TF) is < 1 T at the plasma edge, the required nulling current is modest. In addition, IBC coils can be placed closer to the plasma, allowing a trade-off between the higher resistive losses and reduced current requirements. Perhaps most importantly, use of IBC divertor coils would improve the tritium breeding ratio, which is somewhat marginal with copper divertor coils

  7. Liquid Argon Barrel Cryostat Arrived

    CERN Multimedia

    Pailler, P

    Last week the first of three cryostats for the ATLAS liquid argon calorimeter arrived at CERN. It had travelled for 46 days over several thousand kilometers from Japan to CERN. During three years it has been fabricated by Kawasaki Heavy Industries Ltd. at Harima, close to Kobe, under contract from Brookhaven National Laboratory (BNL) of the U.S.. This cryostat consists of two concentric cylinders made of aluminium: the outer vacuum vessel with a diameter of 5.5 m and a length of 7 m, and the inner cold vessel which will contain the electromagnetic barrel calorimeter immersed in liquid argon. The total weight will be 270 tons including the detectors and the liquid argon. The cryostat is now located in building 180 where it will be equipped with 64 feed-throughs which serve for the passage of 122,880 electrical lines which will carry the signals of the calorimeter. After integration of the calorimeter, the solenoidal magnet of ATLAS will be integrated in the vacuum vessel. A final cold test of the cryostat inc...

  8. Magnetic Properties of 3D Printed Toroids

    Science.gov (United States)

    Bollig, Lindsey; Otto, Austin; Hilpisch, Peter; Mowry, Greg; Nelson-Cheeseman, Brittany; Renewable Energy; Alternatives Lab (REAL) Team

    Transformers are ubiquitous in electronics today. Although toroidal geometries perform most efficiently, transformers are traditionally made with rectangular cross-sections due to the lower manufacturing costs. Additive manufacturing techniques (3D printing) can easily achieve toroidal geometries by building up a part through a series of 2D layers. To get strong magnetic properties in a 3D printed transformer, a composite filament is used containing Fe dispersed in a polymer matrix. How the resulting 3D printed toroid responds to a magnetic field depends on two structural factors of the printed 2D layers: fill factor (planar density) and fill pattern. In this work, we investigate how the fill factor and fill pattern affect the magnetic properties of 3D printed toroids. The magnetic properties of the printed toroids are measured by a custom circuit that produces a hysteresis loop for each toroid. Toroids with various fill factors and fill patterns are compared to determine how these two factors can affect the magnetic field the toroid can produce. These 3D printed toroids can be used for numerous applications in order to increase the efficiency of transformers by making it possible for manufacturers to make a toroidal geometry.

  9. Operation of a 20 tesla on-axis tokamak toroidal field magnet

    International Nuclear Information System (INIS)

    The Center for Electromechanics at The University of Texas at Austin (CEM-UT) has designed, built, and is presently testing a 20 T on-axis, single turn, toroidal field (TF) coil. The Ignition Technology Demonstration (ITD) is a 0.06-scale IGNITEX (Texas Fusion Ignition Experiment) TF-coil experiment. The purpose of the ITD program is to demonstrate the operation of a 20 T, single turn, TF coil powered by homopolar generators (HPGs). This program is funded by the Advanced Technology Program and the Texas Atomic Energy Research Foundation. Scaling of the prototype 20 T TF coil was selected to be 0.06 on the basis of the maximum current capability of CEM-UT's 60 MJ HPG power supply, which has a rating of 9 MA at 100 V in a parallel configuration. Stresses and temperatures reached in the scale TF coil are representative of those that would be experienced in a full-scale IGNITEX TF coil with a 1.5 m major radius and a 5 s flat top current profile. The 60 MJ HPG system consists of six, 20 MJ, drum-type HPGs each capable of 1.5 MA at 100 V. Only 25% of the available system energy is used to drive the single turn TF coil to 20 T

  10. Equilibrium modeling of the TFCX poloidal field coil system

    International Nuclear Information System (INIS)

    The Toroidal Fusion Core Experiment (TFCX) isproposed to be an ignition device with a low safety factor (q approx. = 2.0), rf or rf-assisted startup, long inductive burn pulse (approx. 300 s), and an elongated plasma cross section (kappa = 1.6) with moderate triangularity (delta = 0.3). System trade studies have been carried out to assist in choosing an appropriate candidate for TFCX conceptual design. This report describes an important element in these system studies - the magnetohydrodynamic (MHD) equilibrium modeling of the TFCX poloidal field (PF) coil system and its impact on the choice of machine size. Reference design points for the all-super-conducting toroidal field (TF) coil (TFCX-S) and hybrid (TFCX-H) options are presented that satisfy given PF system criteria, including volt-second requirements during burn, mechanical configuration constraints, maximum field constraints at the superconducting PF coils, and plasma shape parameters. Poloidal coil current waveforms for the TFCX-S and TFCX-H reference designs consistent with the equilibrium requirements of the plasma startup, heating, and burn phases of a typical discharge scenario are calculated. Finally, a possible option for quasi-steady-state operation is discussed

  11. The JET divertor coil

    International Nuclear Information System (INIS)

    The divertor coil is mounted inside the Jet vacuum vessel and is able to carry 1 MA turns. It is of conventional construction - water cooled copper, epoxy glass insulation -and is contained in a thin stainless steel case. The coil has to be assembled, insulated and encased inside the Jet vacuum vessel. A description of the coil is given, together with technical information (including mechanical effects on the vacuum vessel), an outline of the manufacture process and a time schedule. (author)

  12. Characteristics for beam focusing of a magnetically insulated diode with a toroidal magnetic field (TMID)

    International Nuclear Information System (INIS)

    For the purpose of focusing intense pulsed ion beams, an ion diode insulated for electrons with a toroidal magnetic field (TMID) has been designed and tested as a preliminary experiment. The annular diode assembly is contained in the toroidal field produced with a toroidal coil. The diode power was supplied from a pulsed power supply ''ERIDATRON-II'' at a stored energy of 5kJ. Ion beams of 10 - 20kA with energies of 250 - 350 keV have been produced with an efficiency of about 10 %. It is suggested from observations of circulating current around the anode in nearly E x B direction, that the diode efficiency will be enhanced by increasing the toroidal field strength much above the critical magnetic field for insulation. The measured ion orbits agree well with the calculated single-particle ion orbits in this field even when the conditions for cross-field propagation are satisfied. The toroidal field was found to act as a magnetic lens as well as the insulating field for electrons in the diode. The features of the TMID appear to be very useful for obtaining a well focused ion beam in a simple device. (author)

  13. High performance railgun barrels for laboratory use

    Science.gov (United States)

    Bauer, David P.; Newman, Duane C.

    1993-01-01

    High performance low-cost, laboratory railgun barrels are now available, comprised of an inherently stiff containment structure which surrounds the bore components machined from 'off the-shelf' materials. The shape of the containment structure was selected to make the barrel inherently stiff. The structure consists of stainless steel laminations which do not compromise the electrical efficiency of the railgun. The modular design enhances the utility of the barrel, as it is easy to service between shots, and can be 're-cored' to produce different configurations and sizes using the same structure. We have produced barrels ranging from 15 mm to 90 mm square bore, a 30 mm round bore, and in lengths varying from 0.25 meters to 10 meters long. Successful tests with both plasma and solid metal armatures have demonstrated the versatility and performance of this design.

  14. Coil system for plasmoid thruster

    Science.gov (United States)

    Eskridge, Richard H. (Inventor); Lee, Michael H. (Inventor); Martin, Adam K. (Inventor); Fimognari, Peter J. (Inventor)

    2010-01-01

    A coil system for a plasmoid thruster includes a bias coil, a drive coil and field coils. The bias and drive coils are interleaved with one another as they are helically wound about a conical region. A first field coil defines a first passage at one end of the conical region, and is connected in series with the bias coil. A second field coil defines a second passage at an opposing end of the conical region, and is connected in series with the bias coil.

  15. Work on the ATLAS semiconductor tracker barrel

    CERN Multimedia

    Maximilien Brice

    2005-01-01

    Precision work is performed on the semiconductor tracker barrel of the ATLAS experiment. All work on these delicate components must be performed in a clean room so that impurities in the air, such as dust, do not contaminate the detector. The semiconductor tracker will be mounted in the barrel close to the heart of the ATLAS experiment to detect the path of particles produced in proton-proton collisions.

  16. Performance of a 12-coil superconducting 'bumpy torus' magnet facility.

    Science.gov (United States)

    Roth, J. R.; Holmes, A. D.; Keller, T. A.; Krawczonek, W. M.

    1972-01-01

    The NASA-Lewis 'bumpy torus' facility consists of 12 superconducting coils, each 19 cm ID and capable of 3.0 tesla on their axes. The coils are equally spaced around a toroidal array with a major diameter of 1.52 m, and are mounted with the major axis of the torus vertical in a single vacuum tank 2.6 m in diameter. Final shakedown tests of the facility mapped out its magnetic, cryogenic, vacuum, mechanical, and electrical performance. The facility is now ready for use as a plasma physics research facility. A maximum magnetic field on the magnetic axis of 3.23 teslas has been held for a period of more than sixty minutes without a coil normalcy.

  17. First SCT Barrel arrives at CERN

    CERN Document Server

    Apsimon, R

    Mid-January saw the arrival at CERN of Barrel #3, the first of four SCT barrels. The barrels are formed as low-mass cylinders of carbon fibre skins on a honeycomb carbon core. They are manufactured in industry and then have all the final precision supports added and the final geometric metrology carried out at Geneva University. Barrel #3, complete with its 384 silicon detector modules, arrived by road from Oxford University in England where the modules were mounted using a purpose-built robot. The modules had been selected from the output of all four barrel module building clusters (in Japan, Scandinavia, USA and the UK). Since Barrel #3 will be exposed to high radiation levels within the tracker volume, these modules, representing over half a million readout channels, have been extensively tested at their operational temperature of around -25 degrees Celcius and at voltages of up to 500V. The dangers of shipping such a fragile component of ATLAS were apparent to all and considerable attention was focused...

  18. The TileCal Barrel Test Assembly

    CERN Multimedia

    Leitner, R

    On 30th October, the mechanics test assembly of the central barrel of the ATLAS tile hadronic calorimeter was completed in building 185. It started on 23rd June and is the second wheel for the Tilecal completely assembled this year. The ATLAS engineers and technicians are quick: instead of the 27 weeks initially foreseen for assembling the central barrel of the tile hadronic calorimeter (Tilecal) in building 185, they inserted the last of the 64 modules on 30th October after only 19 weeks. In part, this was due to the experience gained in the dry run assembly of the first extended barrel, produced in Spain, in spring this year (see Bulletin 23/2003); however, the central barrel is twice as long - and twice as heavy. With a length of 6.4 metres, an outer diameter of 8.5 metres and an inner diameter of 4.5 metres, the object weight is 1300 tonnes. The whole barrel cylinder is supported by the stainless steel support structure weighing only 27 tons. The barrel also has to have the right shape: over the whole 8...

  19. Performance of a 12-coil superconducting bumpy torus magnet facility

    Science.gov (United States)

    Roth, J. R.; Holmes, A. D.; Keller, T. A.; Krawczonek, W. M.

    1972-01-01

    The bumpy torus facility consists of 12 superconducting coils, each 19 cm i.d. and capable of 3.0 teslas on their axes. The coils are equally spaced around a toroidal array with a major diameter of 1.52 m, and are mounted with the major axis of the torus vertical in a single vacuum tank 2.6 m in diameter. Final shakedown tests of the facility mapped out its magnetic, cryogenic, vacuum, mechanical, and electrical performance. The facility is now ready for use as a plasma physics research facility. A maximum magnetic field on the magnetic axis of 3.23 teslas was held for a period of more than sixty minutes without a coil normalcy. The design field was 3.00 teslas. The steady-state liquid helium boil-off rate was 87 liters per hour of liquid helium without the coils charged. The coil array was stable when subjected to an impulsive loading, even with the magnets fully charged. When the coils were charged to a maximum magnetic field of 3.35 teslas, the system was driven normal without damage.

  20. Melittin-Induced Bilayer Leakage Depends on Lipid Material Properties: Evidence for Toroidal Pores

    OpenAIRE

    Allende, Daniel; Simon, S. A.; McIntosh, Thomas J.

    2004-01-01

    The membrane-lytic peptide melittin has previously been shown to form pores in lipid bilayers that have been described in terms of two different structural models. In the “barrel stave” model the bilayer remains more or less flat, with the peptides penetrating across the bilayer hydrocarbon region and aggregating to form a pore, whereas in the “toroidal pore” melittin induces defects in the bilayer such that the bilayer bends sharply inward to form a pore lined by both peptides and lipid head...

  1. Complex Coil Assisted Single Coil Embolization for Small Intracranial Aneurysm

    OpenAIRE

    Yang, Ming-Shiang; Yang, Tzu-Hsien; Ou, Chang-Hsien; Chan, Si-Wa; Chen, Tai-I; Yang, Chia-Jung; Chiang, Chia-Ming; Huang, Wen-Chien

    2013-01-01

    The purpose of the technical note is to introduce the complex coil assisted coil embolization method in the treatment of intracranial small aneurysm, in order to enhance the safety of the procedure. The first microcatheter was navigated into the aneurysm sac and the ultrasoft coil was used as the embolization coil. If the embolizations coil could not stay within the aneurysm sac smoothly, such as coil herniation into parent artery during the delivery process. The second microcatheter would be...

  2. Active internal corrector coils

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, P.A.; Cottingham, J.; Dahl, P.; Fernow, R.; Garber, M.; Ghosh, A.; Goodzeit, C.; Greene, A.; Hahn, H.; Herrera, J.

    1986-01-01

    Trim or corrector coils to correct main magnet field errors and provide higher multipole fields for beam optics purposes are a standard feature of superconducting magnet accelerator systems. This paper describes some of the design and construction features of powered internal trim coils and a sampling of the test results obtained.

  3. Liquid rope coiling

    NARCIS (Netherlands)

    N.M. Ribe; M. Habibi; D. Bonn

    2012-01-01

    A thin stream or rope of viscous fluid falling from a sufficient height onto a surface forms a steadily rotating helical coil. Tabletop laboratory experiments in combination with a numerical model for slender liquid ropes reveal that finite-amplitude coiling can occur in four distinct regimes (visco

  4. Pellet injection and toroidal confinement

    International Nuclear Information System (INIS)

    The proceedings of a technical committee meeting on pellet injection and toroidal confinement, held in Gut Ising, Federal Republic of Germany, 24-26 October, 1988, are given in this report. Most of the major fusion experiments are using pellet injectors; these were reported at this meeting. Studies of confinement, which is favorably affected, impurity transport, radiative energy losses, and affects on the ion temperature gradient instability were given. Studies of pellet ablation and effects on plasma profiles were presented. Finally, several papers described present and proposed injection guns. Refs, figs and tabs

  5. Optimal Bitter Coil Solenoid

    CERN Document Server

    Kobelev, V

    2016-01-01

    Bitter coil is an electromagnet used for the generation of exceptionally strong magnetic fields. The upper bound of magnet flux density is restricted by several factors. One principal restriction is the high stresses due to Lorentz forces in the coil. The Lorentz forces generate the distributed body force, which acts as the pressure of magnetic field. The common radial thickness profile of the Bitter coil is constant. In this paper the possibility of optimization by means of non-constant radial thickness profile of the Bitter coil is studied. The close form expression for optimal thickness profile is obtained. Both designs are compared and the considerable improvement of magnetic flux density is demonstrated. Moreover, the optimal design improves the shape of cooling channels. Namely, the highest cross-section of cooling channel is at the most thermally loaded inner surface of the coil.

  6. Effects of 3D Toroidally Asymmetric Magnetic Field on Tokamak Magnetic Surfaces

    Science.gov (United States)

    Lao, L. L.

    2005-10-01

    The effects of 3D error magnetic field on magnetic surfaces are investigated using the DIII-D internal coils (I-Coils). Slowly rotating n=1 traveling waves at 5 Hz and various amplitudes were applied to systematically perturb the edge surfaces by programming the I-Coil currents. The vertical separatrix location difference between EFIT magnetic reconstructions that assumes toroidal symmetry and Thomson scattering Te measurements responds in phase to the applied perturbed field. The oscillation amplitudes increase with the strength of the applied field but are much smaller than those expected from the applied field alone. The results indicate that plasma response is important. Various plasma response models based on results from the MHD codes MARS and GATO are being developed and compared to the experimental observations. To more accurately evaluate the effects of magnetic measurement errors, a new form of the magnetic uncertainty matrix is also being implemented into EFIT. Details will be presented.

  7. Toroidal Theory of MHD Instabilities

    International Nuclear Information System (INIS)

    We continue with the adventures of the Alfven wave and its two magnetosonic companions as they travel in the curved space of magnetic surfaces and field lines (Sec. 2), find themselves trapped in singularities of an unprecedented richness (Sec. 3), decide to get themselves better maps of the landscape to do the required twisting while some of their youthful energy is leaking away (Sec. 4), cause trouble at the edge of a powerful empire (Sec. 5), and finally see the light in a distant future (Sec. 6). Needed on the trip are the evolution equations of both ideal and resistive MHD 'derived' in reference [1], the solutions to the toroidal equilibrium equations discussed in reference [2], the general background on spectral theory of inhomogeneous plasmas presented in reference [3], which is extended in the two directions of toroidal geometry and resistivity in this lecture [4]. This leads to such intricate dynamics that numerical techniques are virtually the only way to proceed. This aspect is further elaborated in reference [5] on numerical techniques

  8. Modular coils and finite-β operation of a quasi-axially symmetric tokamak

    International Nuclear Information System (INIS)

    Quasi-axially symmetric tokamaks (QA tokamaks) are an extension of the conventional tokamak concept. In these devices the magnetic field strength is independent of the generalized toroidal magnetic co-ordinate even though the cross-sectional shape changes. An optimized plasma equilibrium belonging to the class of QA tokamaks has been proposed by Nuehrenberg. It features the small aspect ratio of a tokamak while allowing part of the rotational transform to be generated by the external field. In this article, two particular aspects of the viability of QA tokamaks are explored, namely the feasibility of modular coils and the possibility of maintaining quasi-axial symmetry in the free-boundary equilibria obtained with the coils found. A set of easily feasible modular coils for the configuration is presented. It was designed using the extended version of the NESCOIL code (MERKEL, P., Nucl. Fusion 27 (1987) 867). Using this coil system, free-boundary calculations of the plasma equilibrium were carried out using the NEMEC code (HIRSHMAN, S.P., VAN RIJ, W.I., MERKEL, P., Comput. Phys. Commun. 43 (1986) 143). It is observed that the effects of finite β and net toroidal plasma current can be compensated for with good precision by applying a vertical magnetic field and by separately adjusting the currents of the modular coils. A set of fully three dimensional (3-D) auxiliary coils is proposed to exert control on the rotational transform in the plasma. Deterioration of the quasi-axial symmetry induced by the auxiliary coils can be avoided by adequate adjustment of the currents in the primary coils. Finally, the neoclassical transport properties of the configuration are examined. It is observed that optimization with respect to confinement of the alpha particles can be maintained at operation with finite toroidal current if the aforementioned corrective measures are used. In this case, the neoclassical behaviour is shown to be very similar to that of a conventional tokamak

  9. Electrostatics of a Family of Conducting Toroids

    Science.gov (United States)

    Lekner, John

    2009-01-01

    An exact solution is found for the electrostatic potential of a family of conducting charged toroids. The toroids are characterized by two lengths "a" and "b", with "a" greater than or equal to "2b". They are closed, with no hole in the "doughnut". The results are obtained by considering the potential of two equal charges, displaced from the…

  10. Toroidal Alfven wave stability in ignited tokamaks

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, C.Z.; Fu, G.Y.; Van Dam, J.W.

    1989-01-01

    The effects of fusion-product alpha particles on the stability of global-type shear Alfven waves in an ignited tokamak plasma are investigated in toroidal geometry. Finite toroidicity can lead to stabilization of the global Alfven eigenmodes, but it induces a new global shear Alfven eigenmodes, which is strongly destabilized via transit resonance with alpha particles. 8 refs., 2 figs.

  11. GA effort of the DOE 12 Tesla Coil Development Program. Progress report, 1983

    International Nuclear Information System (INIS)

    This report covers the FY 83 effort of the GA 12 Tesla Coil Development Program. During the course of this six-year program, Team One (GA/MCA/University of Wisconsin) has developed a generic concept for a 10 to 12 tesla tokamak toroidal field coil system, employing cabled NbTi/Cu conductor, bath-cooled with superfluid helium at 1.8 K. Following a conductor development effort (FY 79, 80), a 40-cm bore coil/cryostat unit was constructed, using conductor/support/cooling features prototypical of those envisioned for full-scale TF-coils. This was delivered to LLNL in September 1983, for testing within the LLNL High Field Test Facility (TFTF) during FY 84. This report describes the test coil, and its fabrication. Included are facsimiles of the fabrication drawings, and procedures for testing in the LLNL HFTF

  12. Real-time protection of the ohmic heating coil force limits in DIII-D

    Energy Technology Data Exchange (ETDEWEB)

    Broesch, J.D.; Scoville, J.T.; Hyatt, A.W.; Coon, R.M.

    1997-11-01

    The maximum safe operating limits of the DIII-D tokamak are determined by the force produced in the ohmic heating coil and the toroidal field coil during a plasma pulse. This force is directly proportional to the product of the current in the coils. Historically, the current limits for each coil were set statically before each pulse without regard for the time varying nature of the currents. In order to allow the full time-dependent capability of the ohmic coil to be used, a system was developed for monitoring the product of the currents dynamically and making appropriate adjustments in real time. This paper discusses the purpose, implementation, and results of this work.

  13. Toroidal Vortices in Resistive Magnetohydrodynamic Equilibria

    CERN Document Server

    Montgomery, D C; Li, S; Montgomery, David; Bates, Jason W.; Li, Shuojun

    1996-01-01

    Resistive steady states in toroidal magnetohydrodynamics (MHD), where Ohm's law must be taken into account, differ considerably from ideal ones. Only for special (and probably unphysical) resistivity profiles can the Lorentz force, in the static force-balance equation, be expressed as the gradient of a scalar and thus cancel the gradient of a scalar pressure. In general, the Lorentz force has a curl directed so as to generate toroidal vorticity. Here, we calculate, for a collisional, highly viscous magnetofluid, the flows that are required for an axisymmetric toroidal steady state, assuming uniform scalar resistivity and viscosity. The flows originate from paired toroidal vortices (in what might be called a ``double smoke ring'' configuration), and are thought likely to be ubiquitous in the interior of toroidally driven magnetofluids of this type. The existence of such vortices is conjectured to characterize magnetofluids beyond the high-viscosity limit in which they are readily calculable.

  14. Toroidal effects on drift wave turbulence

    Energy Technology Data Exchange (ETDEWEB)

    LeBrun, M.J.; Tajima, T.; Gray, M.G.; Furnish, G.; Horton, W.

    1992-09-23

    The universal drift instability and other drift instabilities driven by density and temperature gradients in a toroidal system are investigated in both linear and nonlinear regimes via particle simulation. Runs in toroidal and cylindrical geometry show dramatic differences in plasma behavior, primarily due to the toroidicity-induced coupling of rational surfaces through the poloidal mode number m. In the toroidal system studied, the eigenmodes are seen to possess (i) an elongated, nearly global radial extent (ii) a higher growth rate than in the corresponding cylindrical system, (iii) an eigenfrequency nearly constant with radius, (iv) a global temperature relaxation and enhancement of thermal heat conduction. Most importantly, the measured Xi shows an increase with radius and an absolute value on the order of that observed in experiment. On the basis of our observations, we argue that the increase in Xi with radius observed in experiment is caused by the global nature of heat convection in the presence of toroidicity-induced mode coupling.

  15. Coil spring venting arrangement

    Science.gov (United States)

    McCugh, R.M.

    1975-10-21

    A simple venting device for trapped gas pockets in hydraulic systems is inserted through a small access passages, operated remotely, and removed completely. The device comprises a small diameter, closely wound coil spring which is pushed through a guide temporarily inserted in the access passage. The guide has a central passageway which directs the coil spring radially upward into the pocket, so that, with the guide properly positioned for depth and properly oriented, the coil spring can be pushed up into the top of the pocket to vent it. By positioning a seal around the free end of the guide, the spring and guide are removed and the passage is sealed.

  16. Development of Toroidal Core Transformers

    Energy Technology Data Exchange (ETDEWEB)

    Leon, Francisco

    2014-05-31

    The original objective of this project was to design, build and test a few prototypes of singlephase dry-type distribution transformers of 25 kVA, 2.4 kV primary to 120 V transformers using cores made of a continuous steel strip shaped like a doughnut (toroid). At different points during the development of the project, the scope was enhanced to include the more practical case of a 25 kVA transformer for a 13.8 kV primary system voltage. Later, the scope was further expanded to design and build a 50 kVA unit to transformer voltage from 7.62 kV to 2x120 V. This is a common transformer used by Con Edison of New York and they are willing to test it in the field. The project officially started in September 2009 and ended in May 2014. The progress was reported periodically to DOE in eighteen quarterly reports. A Continuation Application was submitted to DOE in June 2010. In May 2011 we have requested a non-cost extension of the project. In December 2011, the Statement of Project Objectives (SOPO) was updated to reflect the real conditions and situation of the project as of 2011. A second Continuation Application was made and funding was approved in 2013 by DOE and the end date was extended to May 2014.The technical challenges that were overcome in this project include: the development of the technology to pass the impulse tests, derive a model for the thermal performance, produce a sound mechanical design, and estimate the inrush current. However, the greatest challenge that we faced during the development of the project was the complications of procuring the necessary parts and materials to build the transformers. The actual manufacturing process is relatively fast, but getting all parts together is a very lengthy process. The main products of this project are two prototypes of toroidal distribution transformers of 7.62 kV (to be used in a 13.8 kV system) to 2x120 V secondary (standard utilization voltage); one is rated at 25 kVA and the other at 50 kVA. The 25 k

  17. 3D toroidal physics: testing the boundaries of symmetry breaking

    Science.gov (United States)

    Spong, Don

    2014-10-01

    Toroidal symmetry is an important concept for plasma confinement; it allows the existence of nested flux surface MHD equilibria and conserved invariants for particle motion. However, perfect symmetry is unachievable in realistic toroidal plasma devices. For example, tokamaks have toroidal ripple due to discrete field coils, optimized stellarators do not achieve exact quasi-symmetry, the plasma itself continually seeks lower energy states through helical 3D deformations, and reactors will likely have non-uniform distributions of ferritic steel near the plasma. Also, some level of designed-in 3D magnetic field structure is now anticipated for most concepts in order to lead to a stable, steady-state fusion reactor. Such planned 3D field structures can take many forms, ranging from tokamaks with weak 3D ELM-suppression fields to stellarators with more dominant 3D field structures. There is considerable interest in the development of unified physics models for the full range of 3D effects. Ultimately, the questions of how much symmetry breaking can be tolerated and how to optimize its design must be addressed for all fusion concepts. Fortunately, significant progress is underway in theory, computation and plasma diagnostics on many issues such as magnetic surface quality, plasma screening vs. amplification of 3D perturbations, 3D transport, influence on edge pedestal structures, MHD stability effects, modification of fast ion-driven instabilities, prediction of energetic particle heat loads on plasma-facing materials, effects of 3D fields on turbulence, and magnetic coil design. A closely coupled program of simulation, experimental validation, and design optimization is required to determine what forms and amplitudes of 3D shaping and symmetry breaking will be compatible with future fusion reactors. The development of models to address 3D physics and progress in these areas will be described. This work is supported both by the US Department of Energy under Contract DE

  18. Design and manufacturing status of trim coils for the Wendelstein 7-X stellarator experiment

    Energy Technology Data Exchange (ETDEWEB)

    Riße, K., E-mail: konrad.risse@ipp.mpg.de [Max-Planck-Institut für Plasmaphysik, Greifswald (Germany); Rummel, Th.; Freundt, S.; Dudek, A.; Renard, S.; Bykov, V.; Köppen, M. [Max-Planck-Institut für Plasmaphysik, Greifswald (Germany); Langish, S.; Neilson, G.H.; Brown, Th.; Chrzanowski, J.; Mardenfeld, M.; Malinowski, F.; Khodak, A.; Zhao, X. [Princeton Plasma Physics Laboratory, Princeton, NJ (United States); Eksaa, G. [Everson Tesla Inc., Nazareth, PA (United States)

    2013-10-15

    Highlights: ► The trim coil system will fine tune the main magnetic field during plasma operation by reducing the magnetic field errors. ► The coil design and operational parameters are fixed, the manufacturing is running. ► The coils are equipped with temperature sensors and a voltage tap system to monitor the coil temperature. ► The max. operational deflection is in the order of 4.5 mm; the max. shearing stress across bond planes is of order 16 MPa. ► Special clamps equipped with elastomeric pads allow fixing the coils on the outer cryostat wall. -- Abstract: The stellarator fusion experiment Wendelstein 7-X (W7-X) is currently under construction at the Max-Planck-Institut für Plasmaphysik in Greifswald, Germany. The main magnetic field will be provided by a superconducting magnet system which generates a fivefold toroidal periodic magnetic field. However, unavoidable tolerances can result in small deviations of the magnetic field which disturb the toroidal periodicity. In order to have a tool to influence these field errors five additional normal conducting trim coils were designed to allow fine tuning of the main magnetic field during plasma operation. In the frame of an international cooperation the trim coils will be contributed by the US partners. Princeton Plasma Physics Laboratory has accomplished several tasks to develop the final design ready for manufacturing e.g. detailed manufacturing design for the winding and for the coil connection area. The design work was accompanied by a detailed analysis of resulting forces and moments to prove the design. The manufacturing of the coils is running at Everson Tesla Inc; the first two coils were received at IPP.

  19. Coiled tubing sidetrack: Slaughter Field case history

    Energy Technology Data Exchange (ETDEWEB)

    Hightower, C.M.; Blount, C.G.; Ward, S.L.; Martin, R.F.; Cantwell, D.L.; Ackers, M.J.

    1995-03-01

    The paper describes the successful sidetrack of an oil well in the Slaughter Field in West Texas using coiled tubing (CT). Several first-time CT operations performed during this workover include: setting a whipstock in casing on CT; cutting a window with CT; using mud pulse measurement-while-drilling (MWD) with CT in a real well; use of a fluid-operated orientation tool for in-hole toolface changes; successful use of an autodriller to maintain weight on bit while drilling. Directional control of the sidetracked hole proved to be ineffective due to a surface software problem. The resultant wellbore was not horizontal as planned, but instead closely paralleled the original well for much of its length. However, the previously non-productive well flowed 1,000 barrels of fluid per day (BFPD) from the sidetrack following the workover.

  20. Thermal analysis of the forced cooled conductor for the TF superconducting coils in the TIBER II ETR Design

    International Nuclear Information System (INIS)

    The baseline design for TIBER II is to provide steady-state nuclear burn capabilities. The design is constrained to be cost effective and must therefore be sized as small as possible. This constraint limits the nuclear shielding in TIBER and dictates a nuclear heat load of up to 4.5 kW per coil for the toroidal field coils. The cooling scenario and thermal analysis for this design are presented

  1. Pareto optimal design of sectored toroidal superconducting magnet for SMES

    Science.gov (United States)

    Bhunia, Uttam; Saha, Subimal; Chakrabarti, Alok

    2014-10-01

    A novel multi-objective optimization design approach for sectored toroidal superconducting magnetic energy storage coil has been developed considering the practical engineering constraints. The objectives include the minimization of necessary superconductor length and torus overall size or volume, which determines a significant part of cost towards realization of SMES. The best trade-off between the necessary conductor length for winding and magnet overall size is achieved in the Pareto-optimal solutions, the compact magnet size leads to increase in required superconducting cable length or vice versa The final choice among Pareto optimal configurations can be done in relation to other issues such as AC loss during transient operation, stray magnetic field at outside the coil assembly, and available discharge period, which is not considered in the optimization process. The proposed design approach is adapted for a 4.5 MJ/1 MW SMES system using low temperature niobium-titanium based Rutherford type cable. Furthermore, the validity of the representative Pareto solutions is confirmed by finite-element analysis (FEA) with a reasonably acceptable accuracy.

  2. Fault Analysis of ITER Coil Power Supply System

    International Nuclear Information System (INIS)

    The ITER magnet coils are all designed using superconductors with high current carrying capability. The Toroidal Field (TF) coils operate in a steadystate mode with a current of 68 kA and discharge the stored energy in case of quench with using 9 interleaved Fast Discharge Units (FDUs). The Central Solenoid (CS) coils and Poloidal Field (PF) coils operate in a pulse mode with currents of up to 45 kA and require fast variation of currents inducing more than 10 kV during normal operation on the coil terminals using Switching Network (SN) systems (CSs, PF1 and 6) and Booster and VS converters (PF2 to 5), which are series connected to Main converters. SN and FDU systems comprise high current DC circuit breakers and resistors for generating high voltage (SN) and to dissipate magnetic energy (FDUs). High transient voltages can arise due to the switching operation of SN and FD and the characteristics of resistors and stray components of DC distribution systems. Also, faults in power supply control such as shorts or grounding faults can produce higher voltages between terminals and between terminal and ground. Therefore, the design of the coil insulation, coil terminal regions, feeders, feed throughs, pipe breaks and instrumentation must take account of these high voltages during normal and abnormal conditions. Voltage insulation level can be defined and it is necessary to test the coils at higher voltages, to be sure of reliable performance during the lifetime of operation. This paper describes the fault analysis of the TF, CS and PF coil power supply systems, taking account of the stray parameter of the power supply and switching systems and inductively coupled superconducting coil models. Resistor grounding systems are included in the simulation model and all fault conditions such as converter hardware and software faults, switching system hardware and software faults, DC short circuits and single grounding faults are simulated. The occurrence of two successive faults

  3. Study of the feasibility of installing a toroidal or bundle divertor in EBT-S. Phase I: EBT-S divertor project. Final report

    International Nuclear Information System (INIS)

    The following chapters are included: (1) magnetic field analysis of the basic EBT-S geometry with and without aspect ratio enhancement coils; (2) analyses of a toroidal divertor for EBT-S; (3) analysis of a bundle divertor for EBT-S; (4) engineering; and (5) divertor vacuum pumping

  4. LHCb magnet coils arrive

    CERN Multimedia

    Maximilien Brice

    2003-01-01

    Each of the two coils for the LHCb magnet comprises 15 individual monolayer 'pancakes' of identical trapezoidal racetrack shape, and is bent at 45 degrees on the two transverse sides. Each pancake consists of eight turns of conductor, wound from a single length (approx. 290 m) of extruded aluminium. The coils have arrived at CERN; one of them is seen here being unloaded above the LHCb experimental cavern.

  5. Coiling of yield stress fluids

    NARCIS (Netherlands)

    Y. Rahmani; M. Habibi; A. Javadi; D. Bonn

    2011-01-01

    We present an experimental investigation of the coiling of a filament of a yield stress fluid falling on a solid surface. We use two kinds of yield stress fluids, shaving foam and hair gel, and show that the coiling of the foam is similar to the coiling of an elastic rope. Two regimes of coiling (el

  6. Design and Performance of a Novel Pancake Rogowski Coil for Measuring Pulse Currents%Design and Performance of a Novel Pancake Rogowski Coil for Measuring Pulse Currents

    Institute of Scientific and Technical Information of China (English)

    王春杰; 汲胜昌; 聂济宇; 欧小波; 韩钟健; 张乔根

    2011-01-01

    A novel pancake Rogowski coil without magnetic core is introduced in this paper. Owing to its special pancake winding structure, the coil is of low self-resistance and high self-inductance, and thus has excellent low frequency characteristic in the self-integral mode. Moreover, because of its unique installation method, the coil has a flexible sensitivity and can be applied under situations where toroidal air-core Rogowski coils or printed aircuit board (PCB) coils are not available. The parameters and performance of the pancake Rogowski coil are presented, and the principle of shielding is given. Measurements of step pulse current and oscillating pulse current by the coil are studied experimentally to illustrate its good linearity, reliable and flexible sensitivity and excellent frequency characteristic, especially its advantage in low frequency characteristic. The pancake Rogowski coil can be designed to assume round, square or rectangle shape, and has thus broad prospects in its application to the current measurement in such areas as plasma physics and pulsed power technology.

  7. Stability tests of the Westinghouse coil in the International Fusion Superconducting Magnet Test Facility

    International Nuclear Information System (INIS)

    The Westinghouse coil is one of three forced-flow coils in the six-coil toroidal array of the International Fusion Superconducting Magnet Test Facility at Oak Ridge National Laboratory. It is wound with an 18-kA, Nb3Sn/Cu, cable-in-conduit superconductor structurally supported by aluminum plates and cooled by 4-K, 15-atm supercritical helium. The coil is instrumented to permit measurement of helium temperature, pressure, and flow rate; structure temperature and strain; field; and normal zone voltage. A resistive heater has been installed to simulate nuclear heating, and inductive heaters have been installed to facilitate stability testing. The coil has been tested both individually and in the six-coil array. The tests covered charging to full design current and field, measuring the current-sharing threshold temperature using the resistive heaters, and measuring the stability margin using the pulsed inductive heaters. At least one section of the conductor exhibits a very broad resistive transition (resistive transition index = 4). The broad transition, though causing the appearance of voltage at relatively low temperatures, does not compromise the stability margin of the coil, which was greater than 1.1 J/cm3 of strands. In another, nonresistive location, the stability margin was between 1.7 and 1.9 J/cm3 of strands. The coil is completely stable in operation at 100% design current in both the single- and six-coil modes

  8. Analysis of an HTS coil for large scale superconducting magnetic energy storage

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ji Young; Lee, Se Yeon; Choi, Kyeong Dal; Park, Sang Ho; Hong, Gye Won; Kim, Sung Soo; Kim, Woo Seok [Korea Polytechnic University, Siheung (Korea, Republic of); Lee, Ji Kwang [Woosuk University, Wanju (Korea, Republic of)

    2015-06-15

    It has been well known that a toroid is the inevitable shape for a high temperature superconducting (HTS) coil as a component of a large scale superconducting magnetic energy storage system (SMES) because it is the best option to minimize a magnetic field intensity applied perpendicularly to the HTS wires. Even though a perfect toroid coil does not have a perpendicular magnetic field, for a practical toroid coil composed of many HTS pancake coils, some type of perpendicular magnetic field cannot be avoided, which is a major cause of degradation of the HTS wires. In order to suggest an optimum design solution for an HTS SMES system, we need an accurate, fast, and effective calculation for the magnetic field, mechanical stresses, and stored energy. As a calculation method for these criteria, a numerical calculation such as an finite element method (FEM) has usually been adopted. However, a 3-dimensional FEM can involve complicated calculation and can be relatively time consuming, which leads to very inefficient iterations for an optimal design process. In this paper, we suggested an intuitive and effective way to determine the maximum magnetic field intensity in the HTS coil by using an analytic and statistical calculation method. We were able to achieve a remarkable reduction of the calculation time by using this method. The calculation results using this method for sample model coils were compared with those obtained by conventional numerical method to verify the accuracy and availability of this proposed method. After the successful substitution of this calculation method for the proposed design program, a similar method of determining the maximum mechanical stress in the HTS coil will also be studied as a future work.

  9. Stabilization of the vertical instability by non-axisymmetric coils

    Science.gov (United States)

    Turnbull, A. D.; Reiman, A. H.; Lao, L. L.; Cooper, W. A.; Ferraro, N. M.; Buttery, R. J.

    2016-08-01

    In a published Physical Review Letter (Reiman 2007 Phys. Rev. Lett. 99 135007), it was shown that axisymmetric (or vertical) stability can be improved by placing a set of parallelogram coils above and below the plasma oriented at an angle to the constant toroidal planes. The physics of this stabilization can be understood as providing an effective additional positive stability index. The original work was based on a simplified model of a straight tokamak and is not straightforwardly applicable to a finite aspect ratio, strongly shaped plasma such as in DIII-D. Numerical calculations were performed in a real DIII-D -like configuration to provide a proof of principal that 3-D fields can, in fact raise the elongation limits as predicted. A four field period trapezioid-shaped coil set was developed in toroidal geometry and 3D equilibria were computed using trapezium coil currents of 10 kA , 100 kA , and 500 kA . The ideal magnetohydrodynamics growth rates were computed as a function of the conformal wall position for the n = 0 symmetry-preserving family. The results show an insignificant relative improvement in the stabilizing wall location for the two lower coil current cases, of the order of 10‑3 and less. In contrast, the marginal wall position is increased by 7% as the coil current is increased to 500 kA , confirming the main prediction from the original study in a real geometry case. In DIII-D the shift in marginal wall position of 7% would correspond to being able to move the existing wall outward by 5 to 10 cm. While the predicted effect on the axisymmetric stability is real, it appears to require higher coil currents than could be provided in an upgrade to existing facilities. Additional optimization over the pitch of the coils, the number of field periods and the coil positions, as well as plasma parameters, such as the internal inductivity {{\\ell}\\text{i}} , β , and {{q}95} would mitigate this but seem unlikely to change the conclusion.

  10. Iron Blocks of CMS Magnet Barrel Yoke.

    CERN Multimedia

    2000-01-01

    On the occasion of presenting the CMS Award 2000 to Deggendorfer Werft und Eisenbau GmbH the delivered blocks were inspected at CERN Point 5. From left to right: H. Gerwig (CERN, CMS Magnet Barrel Yoke Coordinator), G. Waurick (CERN), F. Leher (DWE, Project Engineer) and W. Schuster (DWE, Project Manager).

  11. ATLAS semiconductor tracker installed into its barrel

    CERN Multimedia

    Maximilien Brice

    2005-01-01

    The ATLAS silicon tracker is installed in the silicon tracker barrel. Absolute precision was required in this operation to ensure that the tracker was inserted without damage through minimal clearance. The installation was performed in a clean room on the CERN site so that no impurities in the air would contaminate the tracker's systems.

  12. Toroidal magnetic field system for a 2-MA reversed-field pinch experiment

    International Nuclear Information System (INIS)

    The engineering design of the toroidal magnetic field (TF) system for a 2-MA Reversed-Field Pinch experiment (ZT-H) is described. ZT-H is designed with major radius 2.15 meters, minor radius 0.40 meters, and a peak toroidal magnetic field of 0.85 Tesla. The requirement for highly uniform fields, with spatial ripple <0.2% leads to a design with 72 equally spaced circular TF coils, located at minor radius 0.6 meters, carrying a maximum current of 9.0 MA. The coils are driven by a 12-MJ capacitor bank which is allowed to ring in order to aid the reversal of magnetic field. A stress analysis is presented, based upon calculated hoop tension, centering force, and overturning moment, treating these as a combination of static loads and considering that the periodic nature of the loading causes little amplification. The load transfer of forces and moments is considered as a stress distribution resisted by the coils, support structures, wedges, and the structural shell

  13. High current transmission and switching system for a prototype 20 tesla toroidal magnet

    International Nuclear Information System (INIS)

    The Ignition Technology Demonstration (ITD) is a 0.06 scale prototype toroidal field magnet of the proposed full-scale IGNITEX (Ignition Experiment) tokamak. The goal of ITD is to achieve an on-axis magnetic confinement field of 20 T while demonstrating the magnet's ability to withstand high magnetic and thermal stresses. To accomplish this task, a peak current of 9 Ma must be transferred from six balanced homopolar generator (HPG)/busbar circuits to the liquid nitrogen (LN2) cooled magnet. HPGs are well suited for operation of single-turn coils because they are inherently high current, low voltage machines which can inertially store the energy required for a pulsed discharge. To date the system has delivered pulses of up to 8.14 MA to the toroidal magnet, producing an on-axis field of 18.1 T. Description of the ITD busbar/switching system, design improvements, and operational experience are presented in this paper

  14. Modelling of 3D fields due to ferritic inserts and test blanket modules in toroidal geometry at ITER

    Science.gov (United States)

    Liu, Yueqiang; Äkäslompolo, Simppa; Cavinato, Mario; Koechl, Florian; Kurki-Suonio, Taina; Li, Li; Parail, Vassili; Saibene, Gabriella; Särkimäki, Konsta; Sipilä, Seppo; Varje, Jari

    2016-06-01

    Computations in toroidal geometry are systematically performed for the plasma response to 3D magnetic perturbations produced by ferritic inserts (FIs) and test blanket modules (TBMs) for four ITER plasma scenarios: the 15 MA baseline, the 12.5 MA hybrid, the 9 MA steady state, and the 7.5 MA half-field helium plasma. Due to the broad toroidal spectrum of the FI and TBM fields, the plasma response for all the n  =  1-6 field components are computed and compared. The plasma response is found to be weak for the high-n (n  >  4) components. The response is not globally sensitive to the toroidal plasma flow speed, as long as the latter is not reduced by an order of magnitude. This is essentially due to the strong screening effect occurring at a finite flow, as predicted for ITER plasmas. The ITER error field correction coils (EFCC) are used to compensate the n  =  1 field errors produced by FIs and TBMs for the baseline scenario for the purpose of avoiding mode locking. It is found that the middle row of the EFCC, with a suitable toroidal phase for the coil current, can provide the best correction of these field errors, according to various optimisation criteria. On the other hand, even without correction, it is predicted that these n  =  1 field errors will not cause substantial flow damping for the 15 MA baseline scenario.

  15. Tokamak with in situ magnetohydrodynamic generation of toroidal magnetic field

    Science.gov (United States)

    Schaffer, Michael J.

    1986-01-01

    A tokamak apparatus includes an electrically conductive metal pressure vessel for defining a chamber and confining liquid therein. A liner disposed within said chamber defines a toroidal space within the liner and confines gas therein. The metal vessel provides an electrically conductive path linking the toroidal space. Liquid metal is forced outwardly through the chamber outside of the toroidal space to generate electric current in the conductive path and thereby generate a toroidal magnetic field within the toroidal space. Toroidal plasma is developed within the toroidal space about the major axis thereof.

  16. LASL toroidal reversed-field pinch programme

    International Nuclear Information System (INIS)

    The determination of the absolute energy loss due to radiation from impurities in the LASL toroidal reversed-field pinch experiment ZT-S is reported. The measurements show that over half the energy loss is accounted for by this mechanism. Thomson-scattering electron density measurements indicate only a gradual increase in temperature as the filling pressure is reduced, indicating an increased energy loss at lower pressures. Cylindrical and toroidal simulations of the experiment indicate either that a highly radiative pinch boundary or anomalous transport is needed to match the experimental results. New effects on the equilibrium due to plasma flows induced by the toroidal geometry are predicted by the toroidal simulations. The preliminary results on the low-temperature discharge cleaning of the ZT-S torus are reported. A description of the upgrade of the ZT-S experiment and the objectives, construction and theoretical predictions for the new ZT-40 experiment are given. (author)

  17. Toroidal Horizons in Binary Black Hole Mergers

    CERN Document Server

    Bohn, Andy; Teukolsky, Saul A

    2016-01-01

    We find the first binary black hole event horizon with a toroidal topology. It had been predicted that generically the event horizons of merging black holes should briefly have a toroidal topology, but such a phase has never been seen prior to this work. In all previous binary black hole simulations, in the coordinate slicing used to evolve the black holes, the topology of the event horizon transitions directly from two spheres during the inspiral to a single sphere as the black holes merge. We present a coordinate transformation to a foliation of spacelike hypersurfaces that "cut a hole" through the event horizon surface, resulting in a toroidal event horizon. A torus could potentially provide a mechanism for violating topological censorship. However, these toroidal event horizons satisfy topological censorship by construction, because we can always trivially apply the inverse coordinate transformation to remove the topological feature.

  18. Toroidal horizons in binary black hole mergers

    Science.gov (United States)

    Bohn, Andy; Kidder, Lawrence E.; Teukolsky, Saul A.

    2016-09-01

    We find the first binary black hole event horizon with a toroidal topology. It has been predicted that generically the event horizons of merging black holes should briefly have a toroidal topology. However, such a phase has never been seen in numerical simulations. Instead, in all previous simulations, the topology of the event horizon transitions directly from two spheres during the inspiral to a single sphere as the black holes merge. We find a coordinate transformation to a foliation of spacelike hypersurfaces that "cut a hole" through the event horizon surface, resulting in a toroidal event horizon, thus reconciling the numerical work with theoretical expectations. The demonstration requires extremely high numerical precision, which is made possible by a new event horizon code described in a companion paper. A torus could potentially provide a mechanism for violating topological censorship. However, these toroidal event horizons satisfy topological censorship by construction, because we can always trivially apply the inverse coordinate transformation to remove the topological feature.

  19. Low-n shear Alfven spectra in axisymmetric toroidal plasmas

    International Nuclear Information System (INIS)

    In toroidal plasmas, the toroidal magnetic field is nonuniform over a magnetic surface and causes coupling of different poloidal harmonics. It is shown both analytically and numerically that the toroidicity not only breaks up the shear Alfven continuous spectrum, but also creates new, discrete, toroidicity-induced shear Alfven eigenmodes with frequencies inside the continuum gaps. Potential applications of the low-n toroidicity-induced shear Alfven eigenmodes on plasma heating and instabilities are addressed. 17 refs., 4 figs

  20. Anomalous transport in toroidal plasmas

    International Nuclear Information System (INIS)

    When the magnetic moment of particle is conserved, there are three mechanisms which cause anomalous transport. These are: variation of magnetic field strength in flux surface, variation of electrostatic potential in flux surface, and destruction of flux surface. The anomalous transport of different groups of particles resulting from each of these mechanisms is different. This fact can be exploited to determine the cause of transport operative in an experimental situation. This approach can give far more information on the transport than the standard confinement time measurements. To implement this approach, we have developed Monte Carlo codes for toroidal geometries. The equations of motion are developed in a set of non-canonical, practical Boozer co-ordinates by means of Jacobian transformations of the particle drift Hamiltonian equations of motion. Effects of collisions are included by appropriate stochastic changes in the constants of motion. Effects of the loop voltage on particle motions are also included. We plan to apply our method to study two problems: the problem of the hot electron tail observed in edge region of ZT-40, and the energy confinement time in TOKAPOLE II. For the ZT-40 problem three situations will be considered: a single mode in the core, a stochastic region that covers half the minor radius, a stochastic region that covers the entire plasma. A turbulent spectrum of perturbations based on the experimental data of TOKAPOLE II will be developed. This will be used to simulate electron transport resulting from ideal instabilities and resistive instabilities in TOKAPOLE II

  1. Correction coil cable

    Science.gov (United States)

    Wang, Sou-Tien

    1994-11-01

    A wire cable assembly (10, 310) adapted for the winding of electrical coils is taught. A primary intended use is for use in particle tube assemblies (532) for the superconducting super collider. The correction coil cables (10, 310) have wires (14, 314) collected in wire arrays (12, 312) with a center rib (16, 316) sandwiched therebetween to form a core assembly (18, 318 ). The core assembly (18, 318) is surrounded by an assembly housing (20, 320) having an inner spiral wrap (22, 322) and a counter wound outer spiral wrap (24, 324). An alternate embodiment (410) of the invention is rolled into a keystoned shape to improve radial alignment of the correction coil cable (410) on a particle tube (733) in a particle tube assembly (732).

  2. Meiosis specific coiled-coil proteins in Shizosaccharomyces pombe

    Directory of Open Access Journals (Sweden)

    Okuzaki Daisuke

    2007-05-01

    Full Text Available Abstract Many meiosis-specific proteins in Schizosaccharomyces pombe contain coiled-coil motifs which play essential roles for meiotic progression. For example, the coiled-coil motifs present in Meu13 and Mcp7 are required for their function as a putative recombinase cofactor complex during meiotic recombination. Mcp6/Hrs1 and Mcp5/Num1 control horsetail chromosome movement by astral microtubule organization and anchoring dynein respectively. Dhc1 and Ssm4 are also required for horsetail chromosome movement. It is clear from these examples that the coiled-coil motif in these proteins plays an important role during the progression of cells through meiosis. However, there are still many unanswered questions on how these proteins operate. In this paper, we briefly review recent studies on the meiotic coiled-coil proteins in Sz. pombe.

  3. Conceptual studies of toroidal field magnets for the tokamak experimental power reactor. Final report

    International Nuclear Information System (INIS)

    This report documents the principal results of a Conceptual Design Study for the Superconducting Toroidal Field System for a Tokamak Experimental Power Reactor. Two concepts are described for peak operating fields at the windings of 8 tesla, and 12 tesla, respectively. The design and manufacturing considerations are treated in sufficient detail that cost and schedule estimates could be developed. Major uncertainties in the design are identified and their potential impact discussed, along with recommendations for the necessary research and development programs to minimize these uncertainties. The minimum dimensions of a sub-size test coil for experimental qualification of the full size design are developed and a test program is recommended

  4. Conceptual studies of toroidal field magnets for the tokamak experimental power reactor. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Buncher, B.R.; Chi, J.W.H.; Fernandez, R.

    1976-10-26

    This report documents the principal results of a Conceptual Design Study for the Superconducting Toroidal Field System for a Tokamak Experimental Power Reactor. Two concepts are described for peak operating fields at the windings of 8 tesla, and 12 tesla, respectively. The design and manufacturing considerations are treated in sufficient detail that cost and schedule estimates could be developed. Major uncertainties in the design are identified and their potential impact discussed, along with recommendations for the necessary research and development programs to minimize these uncertainties. The minimum dimensions of a sub-size test coil for experimental qualification of the full size design are developed and a test program is recommended.

  5. Analytical and experimental investigation of electrical characteristics of a metallic insulation GdBCO coil

    Science.gov (United States)

    Yang, D. G.; Choi, Y. H.; Kim, Y. G.; Song, J. B.; Lee, H. G.

    2016-03-01

    This paper presents results, experimental and analytical, of the electrical characteristics of GdBCO single-pancake coils co-wound with a brass tape as metallic insulation (MI coil). The GdBCO pancakes were subjected to sudden discharge, charge-discharge, and over-current tests. The sudden discharge and charge-discharge test results of the MI coil demonstrated that MI coils can be charged and discharged significantly faster than non-insulated coils that are wound only with GdBCO tape. In over-current tests at 150 A (1.25Ic), the MI coil exhibited better electrical behavior, i.e., self-protecting features, than its counterpart co-wound with Kapton tape, an insulator. Moreover, the experimental and analytical results are in agreement, validating the use of a concise equivalent parallel-RL circuit model for the MI coil to characterize its electrical behavior. Overall, the MI winding technique is highly promising to help build compact, mechanically robust, and self-protecting magnets composed of REBCO pancake coils. With no organic material in the winding, MI REBCO pancakes will be immune to neutron radiation damage, making the MI winding technique a viable option for fusion reactors, such as for toroidal field, poroidal field magnets, and central solenoid.

  6. Application of the integrated blanket-coil concept (IBC) to fusion reactors

    International Nuclear Information System (INIS)

    A novel concept is proposed for combining the blanket and coil functions of a fusion reactor into a single component and several unique applications to fusion reactor embodiments are identified. The proposed concept takes advantage of the fact that lithium is a good electrical conductor in addition to being a unique tritium-breeding material capable of energy recovery and transport at high temperatures. This concept, designated the ''integrated-blanket-coil (IBC) concept'' has the potential for: allowing fusion reactor embodiments which are easier to maintain; making fusion reactors more compact with an intrinsic ultra-high mass power density (net kW/sub E//metric tonne); and enhancing the tritium breeding potential for special coil applications such as ohmic heating and bean identation. By assuming a sandwich construction for the IBC walls (i.e., a layered combination of a thin wall of structural material, insulator and structural materials) the magnetohydrodynamic (MHD)-induced pressure drops and associated pressure stresses are modest and well below design limits. Possible unique applications of the IBC concept have been investigated and include the IBC concept applied to the poloidal field (PF) coils, toroidal field (TF) coils, divertor coils, ohmic heating (OH) coils, and identation coils for bean shaping

  7. Demonstration Model Development of the Force-Balanced Coil for SMES

    Science.gov (United States)

    Nomura, Shinichi; Kasuya, Koji; Tanaka, Norihiro; Tsuboi, Kenji; Tsutsui, Hiroaki; Shimada, Ryuichi; Ninomiya, Akira; Ishigohka, Takashi

    In large-scale SMES, the superconducting coils require special considerations for induced electromagnetic forces to limit allowable tensile stress. Force-balanced coil (FBC) is a helically wound hybrid coil of toroidal field coils and a solenoid. The FBC can significantly reduce the required mass of the structure for induced electromagnetic forces. In order to demonstrate the feasibility of the FBC concept for SMES, the authors have developed a superconducting model coil. The outer diameter of the model FBC is 0.53m. The hand-made winding, using NbTi/Cu composite strands with a diameter of 1.17mm, was finished with 10584 poloidal turns after four months. The helical windings of the model FBC were neither impregnated with epoxy resin nor reinforced with stainless steel wires. Three test runs were conducted with liquid helium cooling at intervals of several months. The number of quench tests was 81 in total. The first quench current was 293A, which was 53% of the critical coil current. The training phenomena could be observed even after the coil was warmed up to room temperature. After successive quenches the quench current was improved to 476A, corresponding to 86% of the critical coil current, and it was successfully excited up to 6.1T.

  8. Barrel calorimeter of the CMD-3 detector

    Energy Technology Data Exchange (ETDEWEB)

    Shebalin, V. E., E-mail: V.E.Shebalin@inp.nsk.su; Anisenkov, A. V.; Aulchenko, V. M.; Bashtovoy, N. S. [Russian Academy of Sciences, Budker Institute of Nuclear Physics, Siberian Branch (Russian Federation); Epifanov, D. A. [University of Tokyo, Department of Physics (Japan); Epshteyn, L. B.; Grebenuk, A. A.; Ignatov, F. V.; Erofeev, A. L.; Kovalenko, O. A.; Kozyrev, A. N.; Kuzmin, A. S.; Logashenko, I. B.; Mikhailov, K. Yu.; Razuvaev, G. P.; Ruban, A. A.; Shwartz, B. A.; Talyshev, A. A.; Titov, V. M.; Yudin, Yu. V. [Russian Academy of Sciences, Budker Institute of Nuclear Physics, Siberian Branch (Russian Federation)

    2015-12-15

    The structure of the barrel calorimeter of the CMD-3 detector is presented in this work. The procedure of energy calibration of the calorimeter and the method of photon energy restoration are described. The distinctive feature of this barrel calorimeter is its combined structure; it is composed of two coaxial subsystems: a liquid xenon calorimeter and a crystalline CsI calorimeter. The calorimeter spatial resolution of the photon conversion point is about 2 mm, which corresponds to an angular resolution of ∼6 mrad. The energy resolution of the calorimeter is about 8% for photons with energy of 200 MeV and 4% for photons with energy of 1 GeV.

  9. Impact of Stationary Direct Current in the Central Solenoidal Coil on Tokamak Plasma Formation by Non-induction Heating

    Science.gov (United States)

    Watanabe, Osamu

    2016-09-01

    Stationary direct current in the central solenoidal coil (DCCS) of tokamak devices can reduce the non-induction heating energy necessary for tokamak plasma formation. The magnetic field energy in the inner region of the central solenoidal coil (CS region) is expelled during the tokamak plasma formation, because the vertical magnetic field intensity generated by the central solenoidal coil and poloidal field coils is partly cancelled by the increase in the toroidal plasma current. Because this magnetic field energy expelled from the CS region is distributed to the tokamak plasma in accordance with the mutual inductance, this expelled energy can drive the toroidal plasma current inductively. This energy expulsion in the CS region can be enhanced by the DCCS without the modification of the tokamak plasma configuration, when the CS coil current has negligible leakage magnetic field in the plasma area. Because the drive of the toroidal plasma current by non-induction heating can be assisted by this inductive current drive mechanism, the non-induction heating energy necessary for the tokamak plasma formation can be reduced by the DCCS. If the non-induction heating is constant, the tokamak plasma formation time can be shorted by the DCCS.

  10. Technical Diagnostics of Tank Cannon Smooth Barrel Bore and Ramming Device

    OpenAIRE

    Jiri Balla; Stanislav Prochazka; Robert Jankovych; Stanislav Beer; Zbynek Krist; Michal Kovarik

    2015-01-01

    The technical diagnostics of 125 mm tank cannon 2A46 smooth barrel and ramming devices are discussed respectively. Focuses on barrel diagnostics and suggests new procedures based on reconstructed BG20 Gun Barrel Bore Gauge System, measuring internal diameter of the barrel bore. The new system measures throughout the whole barrel bore the inner diameter not only at the beginning of barrel bore as it was usually measured before. Different nature of barrel wear was revealed between barrels firin...

  11. Optical force on toroidal nanostructures: toroidal dipole versus renormalized electric dipole

    CERN Document Server

    Zhang, Xu-Lin; Lin, Zhifang; Sun, Hong-Bo; Chan, C T

    2015-01-01

    We study the optical forces acting on toroidal nanostructures. A great enhancement of optical force is unambiguously identified as originating from the toroidal dipole resonance based on the source-representation, where the distribution of the induced charges and currents is characterized by the three families of electric, magnetic, and toroidal multipoles. On the other hand, the resonant optical force can also be completely attributed to an electric dipole resonance in the alternative field-representation, where the electromagnetic fields in the source-free region are expressed by two sets of electric and magnetic multipole fields based on symmetry. The confusion is resolved by conceptually introducing the irreducible electric dipole, toroidal dipole, and renormalized electric dipole. We demonstrate that the optical force is a powerful tool to identify toroidal response even when its scattering intensity is dwarfed by the conventional electric and magnetic multipoles.

  12. A Hybrid Heating Method for the HT-7U Coils during Vacuum-Pressure Impregnation

    Science.gov (United States)

    Cui, Yi-min; Wu, Song-tao; Pan, Wan-jiang; Weng, Pei-de; Wan, Yuan-xi

    2001-04-01

    The HT-7U superconducting tokamak is a full-superconducting magnetically confined fusion device, The toroidal magnet system of HT-7U is a very important part of the device. In VPI (Vacuum-Pressure Impregnation) process the magnet coils must be heated and degassed before impregnating and must be heated to the gel temperature and then the curing temperature, and keep the two kinds of temperatures for a long period of time after impregnating. Thus the heating method of VPI is critical. In this paper, a hybrid method of combining the internal and external heating for the coils is analyzed, especially the possibility of the internal heating method is proved.

  13. Joule heating of the ITER TF cold structure: Effects of vertical control coil currents and ELMS

    Energy Technology Data Exchange (ETDEWEB)

    Radovinsky, A.; Pillsbury, R.D. Jr.

    1993-11-09

    The toroidal field coil and support structures for ITER are maintained at cryogenic temperatures. The time-varying currents in the poloidal field coil system will induce eddy currents in these structures. The associated Joule dissipation will cause local heating and require heat removal which will show up as a load on the cryogenic system. Studies of Joule heating of the ITER TF cold structure (TFCS) due to the currents in the poloidal field coil system are presented. The two regimes considered in this study are the plasma vertical stability control and the Edge Loss Mode (ELM) events. The 3-D, thin-shell, eddy current program, EDDYCUFF was used to analyze the eddy currents and Joule losses in the cold structure. The current versus time scenarios were defined. Four control coil options were studied. All schemes use coils external to the TF cold structure. Analyses of power depositions during the plasma vertical stability control were performed for each of the four options. For each of these options three different recovery times were assumed. The times were 3, 1, and 1/3 seconds. Sets of four sequential ELMs, as well as isolated ELMs have been studied for various sets of active PF coils. The results showed that the lowest average power dissipation in the TF cold structure occurs when a subset of PF2 and PF7 are active, and all the other PF coils are passive. The general conclusion is that to minimize power dissipation in the TF cold structure it is preferable that only coils PF2 and PF7 are active. The other coils (PF3-PF6) should be passive and driven by a condition of constant flux. It is recommended in particular, that coils PF3 and PF5 be allowed to change currents to conserve flux, since they provide the maximum shielding of the TFCS from the fields caused by the active coils.

  14. ORNL Levitated Toroidal Multipole Program

    International Nuclear Information System (INIS)

    We are studying confinement of gun-injected and microwave-produced plasmas in a levitated toroidal quadrupole in which internal hoop supports are not present to limit plasma confinement. Electromagnetic levitation is made possible by reducing the 60 Hz skin depth in the copper walls with liquid nitrogen cooling. The cooling also increases the magnetic field lifetime so that an e-folding time of 17 ms was measured after crowbarring. Computations indicate that in a properly designed, larger device, an e-folding time of 100 ms can be reached. Washer-gun hydrogen plasmas and Bostick-type lithium gun plasmas were injected into the levitated quadrupole with typical parameters: B ≥ 3 kG, Te ≈ 3 eV, ni ≈ 109 cm-3, and 1 i i ≈ 1010 cm-3, Te ≈ 30 eV, and τ/τBohm ≈ 30. Density fluctuations (Δn/n) in the region of good field curvature were less than 0.05 and in the region of bad curvature 0.10-0.25. With the removal of the magnetic well (by removing the inner hoop), τ/τBohm and ni each dropped a factor of 4 and Δn/n became greater than 0.25. Recent experiments using 200 W at λ = 3 cm have produced plasmas with higher densities (n > 1011 cm-3 assuming Te ≈ 100 eV), higher temperatures (Te ≈ 100 eV) and longer lifetimes (τ ≈ 80 μs ≈ 40 τBohm) than in the λ = 12 cm experiments. Detailed probe measurements of density and temperature are consistent with models for plasma behaviour based on computed magnetic field plots. Probe data show clear evidence of the changes in heating zones during the variation of the sinusoidal magnetic field and a large obstacle intercepting all flux lines effectively prevents the formation of the plasma. We are also studying a levitated helical hexapole, whose advantages over the quadrupole are a better ratio of connection length to radius of bad curvature and more confinement volume. (author)

  15. A Classification Scheme For Toroidal Molecules

    CERN Document Server

    Berger, J; Berger, Jorge; Avron, Joseph E.

    1995-01-01

    We construct a class of periodic tilings of the plane, which corresponds to toroidal arrangements of trivalent atoms, with pentagonal, hexagonal and heptagonal rings. Each tiling is characterized by a set of four integers and determines a toroidal molecule. The tiling rules are motivated by geometric considerations and the tiling patterns are rich enough to describe a wide class of toroidal carbon molecules, with a broad range of shapes and numbers of atoms. The molecular dimensions are simply related to the integers that determine the tiling. The configurational energy and the delocalisation energy of several molecules obtained in this way were computed for Tersoff and H\\"uckel models. The results indicate that many of these molecules are not strained, and may be expected to be stable. We studied the influence of size on the H\\"{u}ckel spectrum: it bears both similarities and differences as compared with the case of tubules.

  16. Ferroic nature of magnetic toroidal order.

    Science.gov (United States)

    Zimmermann, Anne S; Meier, Dennis; Fiebig, Manfred

    2014-09-05

    Electric dipoles and ferroelectricity violate spatial inversion symmetry, and magnetic dipoles and ferromagnetism break time-inversion symmetry. Breaking both symmetries favours magnetoelectric charge-spin coupling effects of enormous interest, such as multiferroics, skyrmions, polar superconductors, topological insulators or dynamic phenomena such as electromagnons. Extending the rationale, a novel type of ferroic order violating space- and time-inversion symmetry with a single order parameter should exist. This existence is fundamental and the inherent magnetoelectric coupling is technologically interesting. A uniform alignment of magnetic vortices, called ferrotoroidicity, was proposed to represent this state. Here we demonstrate that the magnetic vortex pattern identified in LiCoPO4 exhibits the indispensable hallmark of such a ferroic state, namely hysteretic poling of ferrotoroidic domains in the conjugate toroidal field, along with a distinction of toroidal from non-toroidal poling effects. This consolidates ferrotoroidicity as fourth form of ferroic order.

  17. Packing of charged chains on toroidal geometries

    Science.gov (United States)

    Yao, Zhenwei; de la Cruz, Monica Olvera

    2013-01-01

    We study a strongly adsorbed flexible polyelectrolyte chain on tori. In this generalized Thomson problem, the patterns of the adsorbed chain are analyzed in the space of the toroidal coordinates and in terms of the orientation of each chain segment. Various patterns are found, including double spirals, disclination-like structures, Janus tori, and uniform wrappings, arising from the long-range electrostatic interaction and the toroidal geometry. Their broken mirror symmetry is quantitatively characterized by introducing an order parameter, an integral of the torsion. The uniform packing, which breaks the mirror symmetry the least, has the lowest value of the order parameter. In addition, it is found that the electrostatic energy of confined chains on tori conforms to a power law regardless of the screening effect in some typical cases studied. Furthermore, we study random walks on tori that generate chain configurations in the large screening limit or at large thermal fluctuation; some features associated with the toroidal geometry are discussed.

  18. Anomalous transport equations in toroidal plasmas

    International Nuclear Information System (INIS)

    Reduced transport equations for a toroidal plasma with fluctuations are derived. These equations include the effects of both anomalous and standard neoclassical transport, and allow clarification of the structure of convective fluxes caused by electrostatic and magnetic fluctuations. Special attention is paid to the combined effects of fluctuations and toroidicity on the transport. The formulation retains the effects of a magnetic field inhomogeneity on the anomalous transport. It is shown that phase space diffusion caused by the gradient in the equilibrium magnetic field appears as a pinch flux in the real space

  19. Models for large superconducting toroidal magnet systems

    International Nuclear Information System (INIS)

    Prior to the design of large GJ toroidal magnet systems it is appropriate to procure small scale models, which can simulate their pertinent properties and allow to investigate their relevant phenomena. The important feature of the model is to show under which circumstances the system performance can be extrapolated to large magnets. Based on parameters such as the maximum magnetic field and the current density, the maximum tolerable magneto-mechanical stresses, a simple method of designing model magnets is presented. It is shown how pertinent design parameters are changed when the toroidal dimensions are altered. In addition some conductor cost estimations are given based on reactor power output and wall loading

  20. Toroidal Horizons in Binary Black Hole Mergers

    OpenAIRE

    Bohn, Andy; Kidder, Lawrence E.; Teukolsky, Saul A.

    2016-01-01

    We find the first binary black hole event horizon with a toroidal topology. It had been predicted that generically the event horizons of merging black holes should briefly have a toroidal topology, but such a phase has never been seen prior to this work. In all previous binary black hole simulations, in the coordinate slicing used to evolve the black holes, the topology of the event horizon transitions directly from two spheres during the inspiral to a single sphere as the black holes merge. ...

  1. Toroidal Precession as a Geometric Phase

    Energy Technology Data Exchange (ETDEWEB)

    J.W. Burby and H. Qin

    2012-09-26

    Toroidal precession is commonly understood as the orbit-averaged toroidal drift of guiding centers in axisymmetric and quasisymmetric configurations. We give a new, more natural description of precession as a geometric phase effect. In particular, we show that the precession angle arises as the holonomy of a guiding center's poloidal trajectory relative to a principal connection. The fact that this description is physically appropriate is borne out with new, manifestly coordinate-independent expressions for the precession angle that apply to all types of orbits in tokamaks and quasisymmetric stellarators alike. We then describe how these expressions may be fruitfully employed in numerical calculations of precession.

  2. Some properties of toroidal isodynamic magnetostatic equilibria

    Energy Technology Data Exchange (ETDEWEB)

    Aly, J.-J. [AIM, Unite Mixte de Recherche CEA, CNRS, Universite Paris VII, UMR no 7158, Centre d' Etudes de Saclay, F-91191 Gif sur Yvette Cedex (France)

    2011-09-15

    We establish some general properties of a 3D isodynamic magnetostatic equilibrium admitting a family of nested toroidal flux surfaces. In particular, we use the virial theorem to prove a simple relation between the total pressure (magnetic + thermal) and the magnetic pressure on each flux surface, and we derive some useful consequences of the latter. We also show the constancy on each rational surface of two integrals along magnetic lines. As a simple application of our results, we show the nonexistence of an equilibrium with vanishing toroidal current, and of an equilibrium with closed lines.

  3. The crystal barrel spectrometer at LEAR

    International Nuclear Information System (INIS)

    The Crystal Barrel spectrometer used at LEAR, CERN to study the products of anti pp and anti pd annihilations is described. A 1380 element array of CsI crystals measures photons from the decay of π0, η, η' and ω mesons. A segmented drift chamber in a 1.5 T magnetic field is used to identify and measure charged particles. A fast on-line trigger on charged and neutral multiplicities and on the invariant mass of secondary particles is available. The performance of the detector is discussed. (orig.)

  4. The effect of sheared toroidal rotation on pressure driven magnetic islands in toroidal plasmas

    Science.gov (United States)

    Hegna, C. C.

    2016-05-01

    The impact of sheared toroidal rotation on the evolution of pressure driven magnetic islands in tokamak plasmas is investigated using a resistive magnetohydrodynamics model augmented by a neoclassical Ohm's law. Particular attention is paid to the asymptotic matching data as the Mercier indices are altered in the presence of sheared flow. Analysis of the nonlinear island Grad-Shafranov equation shows that sheared flows tend to amplify the stabilizing pressure/curvature contribution to pressure driven islands in toroidal tokamaks relative to the island bootstrap current contribution. As such, sheared toroidal rotation tends to reduce saturated magnetic island widths.

  5. Modular Coil Design Developments for the National Compact Stellarator Experiment (NCSX)

    Energy Technology Data Exchange (ETDEWEB)

    Williamson, David E [ORNL; Brooks, A. [Princeton Plasma Physics Laboratory (PPPL); Brown, T. [Princeton Plasma Physics Laboratory (PPPL); Chrzanowski, J. [Princeton Plasma Physics Laboratory (PPPL); Cole, Michael J [ORNL; Fan, H-M. [Princeton Plasma Physics Laboratory (PPPL); Freudenberg, Kevin D [ORNL; Fogarty, Paul J [ORNL; Hargrove, Tom [ORNL; Heitzenroeder, P. [Princeton Plasma Physics Laboratory (PPPL); Lovett, G. [MK Technologies, Knoxville, TN; Miller, P. [MK Technologies, Knoxville, TN; Myatt, R. [Myatt Consulting, Norfolk, MA; Nelson, Brad E [ORNL; Reiersen, W. [Princeton Plasma Physics Laboratory (PPPL); Strickler, Dennis J [ORNL

    2005-01-01

    The National Compact Stellarator Experiment (NCSX) is a quasi-axisymmetric facility that combines the high beta and good confinement features of an advanced tokamak with the low current, disruption-free characteristics of a stellarator. The experiment is based on a three field-period plasma configuration with an average major radius of 1.4 m, a minor radius of 0.3m, and a toroidal magnetic field on axis of up to 2 T. The modular coils are set in a complex assembly of four coil systems that surround the highly shaped plasma. There are six each of three coil types in the assembly for a total of 18 modular coils. The coils are constructed by winding copper cable onto a cast stainless steel winding form that has been machined to high accuracy, so that the current center of the winding pack is within 1.5 mm of its theoretical position. The modular coils operate at a temperature of 80K and are subjected to rapid heating and stress during a pulse. At this time, the project has completed construction of several prototype components which validate the fabrication and inspection processes that are planned for the production coils. In addition, some advanced techniques for error-field compensation and assembly simulation using computer-aided design (CAD) have been developed.

  6. Modular coil design developments for the National Compact Stellarator Experiment (NCSX)

    Energy Technology Data Exchange (ETDEWEB)

    Williamson, D. [Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831-6169 (United States)]. E-mail: williamsonde@ornl.gov; Brooks, A. [Princeton Plasma Physics Laboratory, P.O. Box 451, Princeton, NJ 08502 (United States); Brown, T. [Princeton Plasma Physics Laboratory, P.O. Box 451, Princeton, NJ 08502 (United States); Chrzanowski, J. [Princeton Plasma Physics Laboratory, P.O. Box 451, Princeton, NJ 08502 (United States); Cole, M. [Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831-6169 (United States); Fan, H.-M. [Princeton Plasma Physics Laboratory, P.O. Box 451, Princeton, NJ 08502 (United States); Freudenberg, K. [BWXT Y-12, P.O. Box 2009, Oak Ridge, TN 37831-8073 (United States); Fogarty, P. [Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831-6169 (United States); Hargrove, T. [Hargrove Engineering, 118 Colonial Dr, Scottsboro, AL 35768 (United States); Heitzenroeder, P. [Princeton Plasma Physics Laboratory, P.O. Box 451, Princeton, NJ 08502 (United States); Lovett, G. [MK Technologies, P.O. Box 30197, Knoxville, TN 37930 (United States); Miller, P. [MK Technologies, P.O. Box 30197, Knoxville, TN 37930 (United States); Myatt, R. [Myatt Consulting, Norfolk, MA 02056 (United States); Nelson, B. [Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831-6169 (United States); Reiersen, W. [Princeton Plasma Physics Laboratory, P.O. Box 451, Princeton, NJ 08502 (United States); Strickler, D. [Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831-6169 (United States)

    2005-11-15

    The National Compact Stellarator Experiment (NCSX) is a quasi-axisymmetric facility that combines the high beta and good confinement features of an advanced tokamak with the low current, disruption-free characteristics of a stellarator. The experiment is based on a three field-period plasma configuration with an average major radius of 1.4 m, a minor radius of 0.3 m, and a toroidal magnetic field on axis of up to 2 T. The modular coils are one set in a complex assembly of four coil systems that surround the highly shaped plasma. There are six, each of three coil types in the assembly for a total of 18 modular coils. The coils are constructed by winding copper cable onto a cast stainless steel winding form that has been machined to high accuracy, so that the current center of the winding pack is within {+-}1.5 mm of its theoretical position. The modular coils operate at a temperature of 80 K and are subjected to rapid heating and stress during a pulse. At this time, the project has completed construction of several prototype components which validate the fabrication and inspection processes that are planned for the production coils. In addition, some advanced techniques for error-field compensation and assembly simulation using computer-aided design (CAD) have been developed.

  7. Electromagnetic toroidal excitations in matter and free space.

    Science.gov (United States)

    Papasimakis, N; Fedotov, V A; Savinov, V; Raybould, T A; Zheludev, N I

    2016-03-01

    The toroidal dipole is a localized electromagnetic excitation, distinct from the magnetic and electric dipoles. While the electric dipole can be understood as a pair of opposite charges and the magnetic dipole as a current loop, the toroidal dipole corresponds to currents flowing on the surface of a torus. Toroidal dipoles provide physically significant contributions to the basic characteristics of matter including absorption, dispersion and optical activity. Toroidal excitations also exist in free space as spatially and temporally localized electromagnetic pulses propagating at the speed of light and interacting with matter. We review recent experimental observations of resonant toroidal dipole excitations in metamaterials and the discovery of anapoles, non-radiating charge-current configurations involving toroidal dipoles. While certain fundamental and practical aspects of toroidal electrodynamics remain open for the moment, we envision that exploitation of toroidal excitations can have important implications for the fields of photonics, sensing, energy and information. PMID:26906961

  8. Control of Compact-Toroid Characteristics by External Copper Shell

    Science.gov (United States)

    Matsumoto, T.; Sekiguchi, J.; Asai, T.; Gota, H.; Roche, T.; Allfrey, I.; Cordero, M.; Garate, E.; Kinley, J.; Valentine, T.; Waggoner, W.; the TAE Team

    2015-11-01

    A collaborative research project by Tri Alpha Energy and Nihon University has been conducted for several years, which led to the development of a new compact toroid (CT) injector for efficient FRC particle refueling in the C-2U experiment. The CT is formed by a magnetized coaxial plasma gun (MCPG), consisting of coaxial cylindrical electrodes. In CT formation via MCPG, the magnetic helicity content of the generated CT is one of the critical parameters. A bias coil is inserted into the inner electrode to generate a poloidal flux. The resultant bias magnetic field is spread out of MCPG with time due to its low-frequency bias current. To obtain a more effectively distributed bias magnetic field as well as to improve the voltage breakdown between electrodes, the MCPG incorporates a novel ~ 1 mm thick copper shell mounted outside of the outer electrode. This allows for reliable and controlled operation and more robust CT generation. A detailed discussion of the copper shell and experimental test results will be presented.

  9. Development of Compact Toroid Injector for C-2 FRCs

    Science.gov (United States)

    Matsumoto, Tadafumi; Sekiguchi, Junichi; Asai, Tomohiko; Gota, Hiroshi; Garate, Eusebio; Allfrey, Ian; Valentine, Travis; Smith, Brett; Morehouse, Mark; TAE Team

    2014-10-01

    Collaborative research project with Tri Alpha Energy has been started and we have developed a new compact toroid (CT) injector for the C-2 device, mainly for fueling field-reversed configurations (FRCs). The CT is formed by a magnetized coaxial plasma-gun (MCPG), which consists of coaxial cylinder electrodes; a spheromak-like plasma is generated by discharge and pushed out from the gun by Lorentz force. The inner diameter of outer electrode is 83.1 mm and the outer diameter of inner electrode is 54.0 mm. The surface of the inner electrode is coated with tungsten in order to reduce impurities coming out from the electrode. The bias coil is mounted inside of the inner electrode. We have recently conducted test experiments and achieved a supersonic CT translation speed of up to ~100 km/s. Other typical plasma parameters are as follows: electron density ~ 5 × 1021 m-3, electron temperature ~ 40 eV, and the number of particles ~0.5-1.0 × 1019. The CT injector is now planned to be installed on C-2 and the first CT injection experiment will be conducted in the near future. The detailed MCPG design as well as the test experimental results will be presented.

  10. ATLAS TRT Barrel in Test Beam

    CERN Multimedia

    Luehring, F

    In July, the TRT group made a highly successful test of 6 Barrel TRT modules in the ATLAS H8 testbeam. Over 3000 TRT straw tubes (4 mm diameter gas drift tubes) were instrumented and found to operate well. The prototype represents 1/16 of the ATLAS TRT barrel and was assembled from TRT modules produced as spares. This was the largest scale test of the TRT to this date and the measured detector performance was as good as or better than what was expected in all cases. The 2004 TRT testbeam setup before final cabling was attached. The readout chain and central DAQ system used in the TRT testbeam is a final prototype for the ATLAS experiment. The TRT electronics used to read out the data were: The Amplifier/Shaper/Discriminator with Baseline Restoration (ASDBLR) chip is the front-end analog chip that shapes and discriminates the electronic pulses generated by the TRT straws. The Digital Time Measurement Read Out Chip (DTMROC) measures the time of the pulse relative to the beam crossing time. The TRT-ROD ...

  11. Progress of the EM Barrel Presampler Assembly

    CERN Multimedia

    Hostachy, J.Y.

    The liquid argon barrel presampler is a separate detector which will be placed in front of the electromagnetic barrel calorimeter, in the same cryostat. It is made of 32×2 sectors, each of them being 3.1 m long, about 28 cm large and a few cm thick. Three countries are involved in its construction: France (ISN-Grenoble), Sweden (KTH-Stockholm) and Morocco (Universities: Hassan II Ain Chock-Casablanca and Mohamed V-Rabat, and CNESTEN-Rabat). The design of the presampler started ten years ago and the series production began at the end of the year 2000. Today two-thirds of the sectors are produced and validated. In November 2002, half the detector (i.e. 32 sectors), was inserted on the internal face of the first EM calorimeter wheel (see pictures). Despite the fact that only 0.4 mm was available between sectors, it was possible to insert them all without meeting major difficulties. This operation was led by a team of four people, the sectors being systematically tested after insertion in the wheel. The inserti...

  12. Cosmic Ray Data in TRT Barrel

    CERN Multimedia

    M. Hance

    "I had a great day in August when I went into SR1," said Daniel Froidevaux, former project leader of the ATLAS Transition Radiation Tracker, "not only had all SCT barrels arrived at CERN, but there were cosmic ray tracks seen in the TRT!" Daniel's excitement was mirrored by the rest of the TRT collaboration when, on July 29, the first cosmic ray tracks were seen in the barrel. Along with many others in the community, Daniel was quick to point out that this is the cumulative result of years of R&D, test beam work, and an intense installation and integration schedule. Indeed, the cosmic ray readout is only possible through the coordination of many efforts, from detector mechanics to module assembly, power and high voltage control, cooling, gas systems, electronics and cabling, data acquisition, and monitoring. "Many people have worked very hard on the the TRT, some of them for more than 10 years," said Brig Williams, the leader of the UPenn group responsible for much of the TRT front end electronics. He ...

  13. Experiments on feedback control of multiple resistive wall modes comparing different active coil arrays and sensor types

    International Nuclear Information System (INIS)

    Experiments have been carried out on the EXTRAP T2R reversed-field pinch device to study several important issues related to feedback control of resistive wall modes (RWMs). The feedback system includes a sensor coil array, a feedback controller implementing a feedback law and an active coil array. The issues include 1) effects of sideband harmonics produced by the feedback system, 2) the form of the controller and the feedback law, 3) feedback system stability, 4) selection of the sensor coil configuration and 5) effects of field errors on the feedback system. Side band harmonics are produced by the feedback system because the active saddle coil array consists of discrete coils. The presence of side bands can couple modes thus preventing simultaneous stabilisation of the coupled modes. The side band effect sets requirements for the minimum number of active coils in the array in both the poloidal and toroidal directions. Recent experiments using the intelligent shell concept with proportional-integral-derivative controller action have achieved complete simultaneous stabilisation of all RWMs modes when the requirements are satisfied. In addition to the intelligent shell concept, preliminary experiments have been performed to test the fake rotating shell concept. For this concept, the sensor coil array is shifted in phase relative to the active coil array thus a detected harmonic is induced to rotate by the active coil-produced control field. Under the condition that the phase shift is less than a quarter-wave length of the mode, mode suppression can be achieved. Feedback using a controller incorporating individual mode control has also been tested. This has enabled the first feedback experiments using a sensor array measuring the toroidal field component to be carried out. For this concept, an array consisting of localised toroidal field sensor coils is used. Mode suppression has been successfully accomplished. However pick-up of high order field error harmonics due

  14. On the stabilization of toroidal pinches by finite larmor radius effects and toroidal magnetic field

    International Nuclear Information System (INIS)

    The radial eigenvalue problem for internal modes in a large aspect ratio toriodal pinch has been solved. A particularly stable regime for a weak but nonzero toroidal magnetic field has been found. (31 refs.)

  15. Reduced Magnetohydrodynamic Equations in Toroidal Geometry

    Institute of Scientific and Technical Information of China (English)

    REN Shen-Ming; YU Guo-Yang

    2001-01-01

    By applying a new assumption of density, I.e. R2 p = const, the continuity equation is satisfied to the order ofe2`+with e being the inverse aspect ratio. In the case of large aspect ratio, a set of reduced magnetohydrodynamicequations in toroidal geometry are obtained. The new assumption about the density is supported by experimentalobservation to some extent.

  16. Chiral Anomaly in Toroidal Carbon Nanotubes

    OpenAIRE

    Sasaki, K.

    2001-01-01

    It is pointed out that the chiral anomaly in 1+1 dimensions should be observed in toroidal carbon nanotubes on a planar geometry with varying magnetic field. We show that the chiral anomaly is closely connected with the persistent current in a one-dimensional metallic ring.

  17. Dynamical model for the toroidal sporadic meteors

    Energy Technology Data Exchange (ETDEWEB)

    Pokorný, Petr; Vokrouhlický, David [Institute of Astronomy, Charles University, V Holešovičkách 2, CZ-18000 Prague 8 (Czech Republic); Nesvorný, David [Department of Space Studies, Southwest Research Institute, 1050 Walnut Street, Suite 300, Boulder, CO 80302 (United States); Campbell-Brown, Margaret; Brown, Peter, E-mail: petr.pokorny@volny.cz, E-mail: vokrouhl@cesnet.cz, E-mail: davidn@boulder.swri.edu, E-mail: margaret.campbell@uwo.ca, E-mail: pbrown@uwo.ca [Department of Physics and Astronomy, University of Western Ontario, London, ON N6A 3K7 (Canada)

    2014-07-01

    More than a decade of radar operations by the Canadian Meteor Orbit Radar have allowed both young and moderately old streams to be distinguished from the dispersed sporadic background component. The latter has been categorized according to broad radiant regions visible to Earth-based observers into three broad classes: the helion and anti-helion source, the north and south apex sources, and the north and south toroidal sources (and a related arc structure). The first two are populated mainly by dust released from Jupiter-family comets and new comets. Proper modeling of the toroidal sources has not to date been accomplished. Here, we develop a steady-state model for the toroidal source of the sporadic meteoroid complex, compare our model with the available radar measurements, and investigate a contribution of dust particles from our model to the whole population of sporadic meteoroids. We find that the long-term stable part of the toroidal particles is mainly fed by dust released by Halley type (long period) comets (HTCs). Our synthetic model reproduces most of the observed features of the toroidal particles, including the most troublesome low-eccentricity component, which is due to a combination of two effects: particles' ability to decouple from Jupiter and circularize by the Poynting-Robertson effect, and large collision probability for orbits similar to that of the Earth. Our calibrated model also allows us to estimate the total mass of the HTC-released dust in space and check the flux necessary to maintain the cloud in a steady state.

  18. Traveling wave instability in helical coil flow

    Science.gov (United States)

    Webster, D. R.; Humphrey, J. A. C.

    1997-02-01

    Complementary flow visualization photographs and numerical calculations are presented for the transitional state between the laminar and turbulent flow regimes in a helically coiled pipe. The flow visualization covers a Reynolds number range from 3800 to 8650 (890video recordings at Re=5060 and 5480 (De=1190 and 1280). The unsteady three-dimensional finite difference approximations of the Navier-Stokes equations formulated for the toroidal coordinate system are solved numerically. The calculations are performed in a curved pipe with a radius of curvature to pipe radius ratio equal to 18.2 and Re=5480 (De=1280). These test conditions match the flow visualization and previously reported laser Doppler velocimetry measurements. The calculations reveal a complex interaction between the centrifugal force and the cross-stream velocity, hence explaining the mechanism for maintaining the traveling wave. An analogy is made with known centrifugal instabilities to explain the character of the motion observed in the inner half of the pipe along planes defined by the radial and streamwise coordinate directions. Simple considerations show that the cross-stream flow has the potential for a centrifugal instability.

  19. Modeling of a poloidally symmetric toroidal field divertor in a reversed--field-pinch plasma machine

    International Nuclear Information System (INIS)

    Magnetic divertors have been shown to be successful in minimizing plasma-wall interactions and in leading to high confinement regimes in Tokamaks. This leads to the hope that similar benefits may occur in an Reversed-Field-Pinch (RPF) fitted with a divertor. Previous experiments using divertors in a RFP have used a poloidal field divertor configuration such as is used in Tokamaks. This study investigates another approach; namely a toroidal field divertor. In this study a simple model of a poloidally symmetric toroidal field divertor is developed and used in a study of stochastic effects due to the divertor and in a 3-D magnetohydrodynamic (MHD) code to study the response of the plasma to the large poloidal m = 0 perturbations caused by the divertor coils. It is found that the topology of the RFP-divertor system is much more complex than had been expected. Stochasticity is enhanced in the outer edge region of the plasma because of this geometrical complexity. The way of the RFP reaches an equilibrium in this complex system is investigated with the 3-D relaxation code, DEBS (authored by Dalton Schnack). This code showed that the divertor will not hinder the formation of a reversed toroidal field in the plasma, and that the dynamics of its formation is altered when toroidal effects are considered. The plasma develops flows and currents in the throat of the divertor in response to the vacuum-like divertor fields. These flows and currents help to restore the force free character of the plasma

  20. Proto-CIRCUS Tilted-Coil Tokamak-Torsatron Hybrid: Design and Construction

    CERN Document Server

    Clark, A W; Hammond, K C; Kornbluth, Y; Spong, D A; Sweeney, R; Volpe, F A

    2014-01-01

    We present the field-line modeling, design and construction of a prototype circular-coil tokamak-torsatron hybrid called Proto-CIRCUS. The device has a major radius R = 16 cm and minor radius a < 5 cm. The six "toroidal field" coils are planar as in a tokamak, but they are tilted. This, combined with induced or driven plasma current, is expected to generate rotational transform, as seen in field-line tracing and equilibrium calculations. The device is expected to operate at lower plasma current than a tokamak of comparable size and magnetic field, which might have interesting implications for disruptions and steady-state operation. Additionally, the toroidal magnetic ripple is less pronounced than in an equivalent tokamak in which the coils are not tilted. The tilted coils are interlocked, resulting in a relatively low aspect ratio, and can be moved, both radially and in tilt angle, between discharges. This capability will be exploited for detailed comparisons between calculations and field-line mapping me...

  1. Development of compact toroids injector for direct plasma controls

    International Nuclear Information System (INIS)

    The application of the compact toroids injector for direct plasma controls has been investigated. The compact toroids injection can fuel particles directly into the core of the plasma and modify the plasma profiles at the desired locations. The acceleration tests of the compact toroids have been conducted at Himeji Institute of Technology. The tests showed that the hydrogen compact toroid was accelerated up to 80km/s and the plasma density of the compact toroid was compressed to 1.2 x 1021m-3. (orig.)

  2. Quantitative Testing of Defect for Gun Barrels

    Institute of Scientific and Technical Information of China (English)

    WANG Chang-long; JI Feng-zhu; WANG Jin; CHEN Zheng-ge

    2007-01-01

    The magnetic flux leakage (MFL) method is commonly used in the nondestructive evaluation (NDE) of gun barrels. The key point of MFL testing is to estimate the crack geometry parameters based on the measured signal. The analysis of magnetic leakage fields can be obtained by solving Maxwell's equations using finite element method (FEM).The radial component of magnetic flux density is measured in MFL testing. The peak-peak value, the separation distance between positive and negative peaks of signal and the lift-off value of Hall-sensor are used as the main features of every sample. This paper establishes the multi-regression equations related to the width (the depth) of crack and the main characteristic values. The regression model is tested by use of the magnetic leakage data. The experimental results indicate that the regression equations can accurately predict the 2-D defect geometry parameters and the MFL quantitative testing can be achieved.

  3. Triple Halo Coil: Development and Comparison with Other TMS Coils

    Science.gov (United States)

    Rastogi, Priyam; Hadimani, Ravi; Jiles, David

    Transcranial Magnetic Stimulation (TMS) is a non-invasive stimulation technique that can be used for the treatment of various neurological disorders such as Parkinson's Disease, PTSD, TBI and anxiety by regulating synaptic activity. TMS is FDA approved for the treatment of major depressive disorder. There is a critical need to develop deep TMS coils that can stimulate deeper regions of the brain without excessively stimulating the cortex in order to provide an alternative to surgical methods. We have developed a novel multi-coil configuration called ``Triple Halo Coil'' (THC) that can stimulate deep brain regions. Investigation of induced electric and magnetic field in these regions have been achieved by computer modelling. Comparison of the results due to THC configuration have been conducted with other TMS coils such as ``Halo Coil'', circular coil and ``Figure of Eight'' coil. There was an improvement of more than 15 times in the strength of magnetic field, induced by THC configuration at 10 cm below the vertex of the head when compared with the ``Figure of Eight'' coil alone. Carver Charitable Trust.

  4. Parametric system studies of candidate TF coil system options for the Tokamak Fusion Core Experiment (TFCX)

    International Nuclear Information System (INIS)

    System studies were performed to determine the sensitivity of hybrid and superconducting toroidal field (TF) coil system options to maximum field at the TF coil and to field enhancement due to resistive insert coils. The studies were performed using Tokamak Fusion Core Experiment (TFCX) design assumptions, guidelines, and criteria and involved iterative execution of the Fusion Engineering Design Center (FEDC) systems code, magnetohydrodynamics (MHD) equilibrium code, and EFFI (a code to evaluate magnetic field strength). The results indicate that for TFCX with no minimum wall loading specified, a design point chosen solely on the basis of cost would likely be in the low-field region of design space where the cost advantage of hybrids is least apparent. However, as the desired neutron wall loading increases, the hybrid option suggests an increasing cost advantage over the all-superconducting option; this cost advantage is countered by increased complexity in design - particularly in assembly and maintenance

  5. Room Temperature Magnetic Determination of the Current Center Line for the ITER TF Coils

    CERN Document Server

    Lerch, Philippe; Buzio, Marco; Negrazus, Marco; Baynham, Elwyn; Sanfilippo, Stephane; Foussat, Arnaud

    2014-01-01

    The ITER tokamak includes 18 superconducting D-shaped toroidal field (IT) coils. Unavoidable shape deformations as well as assembly errors will lead to field errors, which can be modeled with the knowledge of the current center line (CCL). Accurate survey during the entire manufacturing and assembly process, including transfer of survey points, is complex. In order to increase the level of confidence, a room temperature magnetic measurement of the CCL on assembled and closed winding packs is foreseen, prior to insertion into their cold case. In this contribution, we discuss the principle of the CCL determination and present a low frequency ac measurement system under development at PSI, within an ITER framework contract. The largest current allowed to flow in the TF coil at room temperature and the precision requirements for the determination of the CCL loci of the coil are hard boundaries. Eddy currents in the radial plates, the winding pack enclosures, and possibly from iron in the reinforced concrete floor...

  6. Toroidal dipole excitations in metamolecules formed by interacting plasmonic nanorods

    CERN Document Server

    Watson, Derek W; Ruostekoski, Janne; Fedotov, Vassili A; Zheludev, Nikolay I

    2015-01-01

    We show how the elusive toroidal dipole moment appears as a radiative excitation eigenmode in a metamolecule resonator that is formed by pairs of plasmonic nanorods. We analyze one such nanorod configuration - a toroidal metamolecule. We find that the radiative interactions in the toroidal metamolecule can be qualitatively represented by a theoretical model based on an electric point dipole arrangement. Both a finite-size rod model and the point dipole approximation demonstrate how the toroidal dipole moment is subradiant and difficult to excite by incident light. By means of breaking the geometric symmetry of the metamolecule, the toroidal mode can be excited by linearly polarized light and we provide simple optimization protocols for maximizing the toroidal dipole mode excitation. This opens up possibilities for simplified control and driving of metamaterial arrays consisting of toroidal dipole unit-cell resonators.

  7. Coil Knotting during Endovascular Coil Embolization for Ruptured MCA Aneurysm: A Case Report

    OpenAIRE

    Kwon, S.C.; Lyo, I.U.; Shin, S. H.; Park, J B; Kim, Y.

    2008-01-01

    Complications during coil embolization of cerebral aneurysms include thromboembolic events, hemorrhagic complications related to procedural aneurysmal rupture and parent vessel perforation, and coil-related complications. The present report describes a rare coil-related complication involving spontaneous coil knotting.

  8. Team one (GA/MCA) effort of the DOE 12 Tesla Coil Development Program. Progress report for the quarter ending September 30, 1980

    International Nuclear Information System (INIS)

    The basic mission of this effort is to demonstrate the feasibility of, and establish an engineering data base for utilizing bath cooled NbTi alloy to generate a peak toroidal field of 12 tesla in a tokamak reactor. The FY-1980 effort has been concentrated upon four major tasks: completion of the conceptual design of an ETF reactor compatible TF-coil employing helium bath cooled NbTi alloy conductor, procurement of conductor for the coil to be tested at the LLNL HFTF during FY-1982, design of the test coil, and a series of relevant tests using the GA High Field Test Facility

  9. Test Results of a 1.2 kg/s Centrifugal Liquid Helium Pump for the ATLAS Superconducting Toroid Magnet System

    CERN Document Server

    Pengo, R; Passardi, Giorgio; Pirotte, O; ten Kate, H H J

    2002-01-01

    The toroid superconducting magnet of ATLAS-LHC experiment at CERN will be indirectly cooled by means of forced flow of liquid helium at about 4.5 K. A centrifugal pump will be used, providing a mass flow of 1.2 kg/s and a differential pressure of 40 kPa (ca. 400 mbar) at about 4300 rpm. Two pumps are foreseen, one for redundancy, in order to feed in parallel the cooling circuits of the Barrel and the two End-Caps toroid magnets. The paper describes the tests carried out at CERN to measure the characteristic curves, i.e. the head versus the mass flow at different rotational speeds, as well as the pump total efficiency. The pump is of the "fullemission" type, i.e. with curved blades and it is equipped with an exchangeable inducer. A dedicated pump test facility has been constructed at CERN, which includes a Coriolis-type liquid helium mass flow meter. This facility is connected to the helium refrigerator used for the tests at CERN of the racetrack magnets of the Barrel and of the End-Cap toroids.

  10. 27 CFR 25.141 - Barrels and kegs.

    Science.gov (United States)

    2010-04-01

    ... OF THE TREASURY LIQUORS BEER Marks, Brands, and Labels § 25.141 Barrels and kegs. (a) General requirements. The brewer's name or trade name and the place of production (city and, if necessary for identification, State) shall be permanently marked on each barrel or keg. If the place of production is...

  11. A Finite Element Solution for Barrel Dynamic Stress

    Institute of Scientific and Technical Information of China (English)

    ZENG Zhi-yin; NING Bian-fang; WANG Zai-sen

    2007-01-01

    With the APDL language of ANSYS finite element analysis software, the solution program for barrel dynamic stress is developed. The paper describes the pivotal problems of dynamic strength design and provides a foundation for realizing the engineering and programming of barrel dynamic strength design.

  12. Contributions to the design and to the fabrication of the magnet of the toroidal field of Tore Supra

    International Nuclear Information System (INIS)

    This report is a collection of published papers in French and in English about the design and the qualification of the magnet of the toroidal field of Tore Supra. The development test programme, the controls during conductor manufacturing and the acceptance tests have shown to be the bases for achieving a very low level of rejection for the whole production. A systematic study of the performances correlated to the fabrication conditions has provided valuable informations for the optimization of the manufacturing processes of superconductors. The tests of single coils have enabled the commissioning of a monitoring and protection system specially adapted for this magnet of 18 coils cooled in a superfluid helium bath. After the accident caused by an arcing in one coil of the Torus, and the replacement of the faulty coil, the monitoring and safety discharge system have been adapted. The current in the magnet has been increased up to 1 455 A for 9.3 T on the conductors (nominal values 1 400 A and 9 T). During the last three years (1989-1991) only one transition to normal state has been observed in one coil strongly irradiated after a severe plasma disruption. In these conditions the protection system acted very well and as expected

  13. A high-performance OH coil for the Los Alamos CPRF

    International Nuclear Information System (INIS)

    A high-performance Ohmic Heating (OH) magnet has been designed for the Confinement Physics Research Facility at the Los Alamos National Laboratory. The magnet has an outside radius at its throat of 1.00 meters. At maximum current, the maximum current density is 40 amperes per square millimetre, at which point it generates 38.32 webers, single swing (or 76.6 webers, double swing), and generates a central field of 17.37 teslas. The maximum von Miess stress is 408.6 MPa (59.26 ksi). The magnet stores 637 megajoules, with a time constant of 8.30 seconds. The magnet consists of two zones: a central hour-glass-shaped coil, and an outer coil gallery of trimming coils. The central stack is built of bandsawed spirals, the construction technique which was pioneered at MIT for the OH coils for Alcater A and C. the coil uses 42 spirals, each of which is sawed from a 5-cm-thick plate of either MZC, Elbrodur, SSC-155, or OFE copper, depending on the maximum ambient stress. The inner radius of every plate is 0.60 m, and the outside radius is tangent to a toroid whose major radius is 2.00 m and whose minor radius is 1.00 m. The pitch of each spiral is adjusted to minimize the field error. The outer trimming coils are built of high-conductivity aluminum (Alloy 1350). For ease of fabrication, all but the outermost pair of trimming coils lie in a single ''coil-gallery'' plane and carry the same current density, so that all can be wound from a single continuous strip. The trimming coils are positioned within this gallery to yield a field error of less than 7 gauss throughout a toroidal volume centered at R/sub T/ = 2.00 meters, and whose minor radius is r/sub p/ = 0.80 meters. The current density in the trimming coils is so low that vertical diagnostic access can be provided by boring 15-cm holes through the windings themselves

  14. Analysis of Heat Transfer in Actively Cooled Compound Gun Barrel

    Institute of Scientific and Technical Information of China (English)

    WU Bin; XIA Wei

    2005-01-01

    when a gun fires, a large amount of heat is brought in the barrel. Erosion/wear and security problems(self ignition of the propellant) associated with this high thermal energy have to be solved owing to the use of higher combustion gas temperature for improved cannon performance and firing at the sustained high rates. Barrel cooling technologies are the effective measures for addressing this issue. In view of the importance of having knowledge of the heat flux, an approach to calculate heat flux based on measurements was presented and validated. The calculated heat flux is used as the inner boundary condition for modeling heat transfer in a 155 mm mid-wall cooled compound gun barrel. Theoretical analysis and simulated results show that natural air cooling is dramatically slower than the forced liquid mid-wall cooling, accordingly wear life of actively cooled barrel is increased and barrel overheating is prevented.

  15. Mechanical design and construction qualification program on ITER correction coils structures

    Energy Technology Data Exchange (ETDEWEB)

    Foussat, A., E-mail: arnaud.foussat@iter.org [ITER Organization, Route de Vinon sur Verdon, 13115 Saint Paul Lez Durance (France); Weiyue, Wu; Jing, Wei; Shuangsong, Du [Academy of Science Institute of Plasma Physics, PO 1126, Hefei, Anhui 230031 (China); Sgobba, S. [European Center for Nuclear Research, CH-1211 Geneva 23 (Switzerland); Hongwei, Li [China International Nuclear Fusion Energy Program Execution Center, Ministry of Science and Technology, 15B Fuxing Rd., Beijing 100862 (China); Libeyre, Paul; Jong, Cornelis; Klofac, Kamil; Mitchell, Neil [ITER Organization, Route de Vinon sur Verdon, 13115 Saint Paul Lez Durance (France)

    2014-04-01

    The ITER Magnet system consists of 4 main coils sub-systems, i.e. 18 toroidal field coils (TFC), a central solenoid (CS), 6 poloidal field coils (PF) and 3 sets of correction coils (CC). The ITER fusion project has selected the stainless steel 316LN as main material for the magnet structure. The CC contribute to reducing the range of magnetic error fields created by imperfections in the location and geometry of the other coils used to confine, heat, and shape the plasma. During plasma operation, a large number of loading condition scenarios have been considered and structural analysis performed on key items like Cable-In-Conduit Conductor and the coil case. The results obtained are used for both static and fatigue structural assessment defining the present baseline design. For the construction of the structural cases, welding techniques such as GTAW (Gas Tungsten Arc Welding) and techniques resulting in low distortion and shrinkage like EBW (Electron Beam Welding) or Laser Beam Welding (LBW) with filler metal wire have been selected. Those methods are considered for future qualifications to guarantee proper weld parameters and specified weld properties. In order to determine the strength and fracture toughness of 316LN stainless steel welds with respect to design criteria, some mechanical tests have been carried out at 7 K (or 77 K), and room temperature.

  16. Diagnostic system for a 20 TESLA single turn coil magnet prototype

    International Nuclear Information System (INIS)

    The Center for Electromechanics at The University of Texas at Austin (CEM-UT) has designed, fabricated, and is testing a prototype 20 T on-axis, single turn, toroidal field TF) coil. The purpose of this Ignition Technology Demonstration (ITD) is to prove the feasibility of the single-turn coil powered by homopolar generators (HPGs). A scaling factor of 0.06 was selected based on the current capability of CEM-UT's 60 MJ HPG power supply. The Balcones HPG power supply consists of six, 10 MJ HPGs, each rated at 1.5 MA at 100 V. When connected in a parallel configuration to the prototype TF coil they provide a 9 MA, 100 ms, critically damped current pulse. The objective of the diagnostic system for the prototype 20 T, TF coil is to determine displacements, temperatures, and magnetic fields at various locations in the coil. The values are then compared to predictions by the electromagnetic (EM) analysis to validate computational results. Operating conditions for instrumentation in a 20 T, cryogenically-cooled magnet are rather severe. Electromechanical simulations show that the 0.06 scale IGNITEX TF prototype will experience localized temperature rise from liquid-nitrogen temperature (-196 degrees C) to approximately 200 degrees C in less than 100 ms. Close to the inner leg of the coil where stresses and temperatures are maximum, the instrumentation experiences a 30 T field rise in 26 ms

  17. Solar concentrator with a toroidal relay module.

    Science.gov (United States)

    Lin, Jhe-Syuan; Liang, Chao-Wen

    2015-10-01

    III-V multijunction solar cells require solar concentrators with a high concentration ratio to reduce per watt cost and to increase solar energy transforming efficiency. This paper discusses a novel solar concentrator design that features a high concentration ratio, high transfer efficiency, thin profile design, and a high solar acceptance angle. The optical design of the concentrator utilizes a toroidal relay module, which includes both the off-axis relay lens and field lens design in a single concentric toroidal lens shape. The optical design concept of the concentrator is discussed and the simulation results are shown. The given exemplary design has an aspect ratio of 0.24, a high averaged optical concentration ratio 1230×, a maximum efficiency of 76.8%, and the solar acceptance angle of ±0.9°.

  18. Antimicrobial Peptides in Toroidal and Cylindrical Pores

    OpenAIRE

    Mihajlovic, Maja; Lazaridis, Themis

    2010-01-01

    Antimicrobial peptides (AMPs) are small, usually cationic peptides, which permeabilize biological membranes. Their mechanism of action is still not well understood. Here we investigate the preference of alamethicin and melittin for pores of different shapes, using molecular dynamics (MD) simulations of the peptides in pre-formed toroidal and cylindrical pores. When an alamethicin hexamer is initially embedded in a cylindrical pore, at the end of the simulation the pore remains cylindrical or ...

  19. Kinetic Damping of Toroidal Alfven Eigenmodes

    Energy Technology Data Exchange (ETDEWEB)

    G.Y. Fu; H.L. Berk; A. Pletzer

    2005-05-03

    The damping of Toroidal Alfven Eigenmodes in JET plasmas is investigated by using a reduced kinetic model. Typically no significant damping is found to occur near the center of the plasma due to mode conversion to kinetic Alfven waves. In contrast, continuum damping from resonance near the plasma edge may be significant, and when it is, it gives rise to damping rates that are compatible with the experimental observations.

  20. Toroidal geometry subroutines for MORSE-CG

    International Nuclear Information System (INIS)

    The equations, coding, and procedures that are required to include a torus in the Combinatorial Geometry subroutines of the MORSE-CG code are described. The derivation and solutions of the quartic equation that describes a torus along with additional subroutines and the modifications to existing subroutines required to carry out the transport of neutrons and gamma rays in toroidal geometry are presented. The input requirements and a sample problem are included

  1. Stellarator approach to toroidal plasma confinement

    International Nuclear Information System (INIS)

    An overview is presented of the development and current status of the stellarator approach to controlled thermonuclear confinement. Recent experimental, theoretical, and systems developments have made this concept a viable option for the evolution of the toroidal confinement program. Some experimental study of specific problems associated with departure from two-dimensional symmetry must be undertaken before the full advantages and opportunities of steady-state, net-current-free operation can be realized

  2. Conceptual studies of toroidal field magnets for the tokamak (fusion) experimental power reactor. Final report

    International Nuclear Information System (INIS)

    This report presents the results of ''Conceptual Studies of Toroidal Field Magnets for the Tokamak Experimental Power Reactor'' performed for the Energy Research and Development Administration, Oak Ridge Operations. Two conceptual coil designs are developed. One design approach to produce a specified 8 Tesla maximum field uses a novel NbTi superconductor design cooled by pool-boiling liquid helium. For a highest practicable field design, a unique NbSn3 conductor is used with forced-flow, single-phase liquid helium cooling to achieve a 12 Tesla peak field. Fabrication requirements are also developed for these approximately 7 meter horizontal bore by 11 meter vertical bore coils. Cryostat design approaches are analyzed and a hybrid cryostat approach selected. Structural analyses are performed for approaches to support in-plane and out-of-plane loads and a structural approach selected. In addition to the conceptual design studies, cost estimates and schedules are prepared for each of the design approaches, major uncertainties and recommendations for research and development identified, and test coil size for demonstration recommended

  3. Aspects of Tokamak toroidal magnet protection

    Energy Technology Data Exchange (ETDEWEB)

    Green, R.W.; Kazimi, M.S.

    1979-07-01

    Simple but conservative geometric models are used to estimate the potential for damage to a Tokamak reactor inner wall and blanket due to a toroidal magnet field collapse. The only potential hazard found to exist is due to the MHD pressure rise in a lithium blanket. A survey is made of proposed protection methods for superconducting toroidal magnets. It is found that the two general classifications of protection methods are thermal and electrical. Computer programs were developed which allow the toroidal magnet set to be modeled as a set of circular filaments. A simple thermal model of the conductor was used which allows heat transfer to the magnet structure and which includes the effect of temperature dependent properties. To be effective in large magnets an electrical protection system should remove at least 50% of the stored energy in the protection circuit assuming that all of the superconductor in the circuit quenches when the circuit is activated. A protection system design procedure based on this criterion was developed.

  4. Superconducting poloidal coils for STARFIRE commercial reactor

    International Nuclear Information System (INIS)

    STARFIRE is considered to be the tenth commercial tokamak power plant. A preliminary design study on its superconducting poloidal coil system is presented. Key features of the design studies are: the elimination of the ohmic heating coil; the trade-off studies of the equilibrium field coil locations; and the development of a conceptual design for the superconducting equilibrium field coils. Described are the 100 kA cryostable conductor design, the coil structure, and evaluation of the coil forces

  5. TEST RESULTS OF 60-cm BORE Nb3Sn TEST MODULE COIL (TMC-I) IN THE CLUSTER TEST FACILITY

    OpenAIRE

    Ando, T; Shimamoto, S.; T. Hiyama; Tsuji, H; Takahashi, Y.; Nishi, M; Tada, E.; Yoshida, K; Okuno, K.; Koizurmi, K.; Kato, T.; Nakajima, H; Takahashi, O; Oshikiri, M.; Yasukochi, K.

    1984-01-01

    An extended test of a 60-cm-bore Nb3Sn coil (TMC-I), constructed as a development of superconducting toroidal coil in tokamak machine, has been carried out in the cluster test facility. A 192-cm-length (one turn) normal zone, nucleated by a heat-input in the innermost turn, is recovered to superconducting state at 6 kA and 10 T. For the manual dump with a decay time constant of 6.6 sec (B = 1.0 T/sec), no damage is found on the TMC-I. In addition, a out-of-plane force mode operation, using on...

  6. Toroidal mode number estimation of the edge-localized modes using the KSTAR 3-D electron cyclotron emission imaging system

    Energy Technology Data Exchange (ETDEWEB)

    Lee, J.; Yun, G. S., E-mail: gunsu@postech.ac.kr; Lee, J. E.; Kim, M.; Choi, M. J.; Lee, W. [Pohang University of Science and Technology, Pohang 790-784 (Korea, Republic of); Park, H. K. [Ulsan National Institute of Science and Technology, Ulsan 689-798 (Korea, Republic of); Domier, C. W.; Luhmann, N. C. [University of California at Davis, Davis, California 95616 (United States); Sabbagh, S. A.; Park, Y. S. [Columbia University, New York, New York 10027 (United States); Lee, S. G.; Bak, J. G. [National Fusion Research Institute, Daejeon 305-333 (Korea, Republic of)

    2014-06-15

    A new and more accurate technique is presented for determining the toroidal mode number n of edge-localized modes (ELMs) using two independent electron cyclotron emission imaging (ECEI) systems in the Korea Superconducting Tokamak Advanced Research (KSTAR) device. The technique involves the measurement of the poloidal spacing between adjacent ELM filaments, and of the pitch angle α{sub *} of filaments at the plasma outboard midplane. Equilibrium reconstruction verifies that α{sub *} is nearly constant and thus well-defined at the midplane edge. Estimates of n obtained using two ECEI systems agree well with n measured by the conventional technique employing an array of Mirnov coils.

  7. Toroidal sensor of superconducting quantum magnetometer

    International Nuclear Information System (INIS)

    The sensor has a high sensitivity achieved by the 100-times higher suppression of external electromagnetic disturbances as compared with sensors used so far. This is given by the design of the sensor which consists of a superconducting induction loop, electrically closed by a superconducting weak junction and made of one single piece of superconducting material in which there is an O-shaped cavity. In the space defined by this cavity there are two coaxial openings for the insertion of the superconducting junction. The parts of the cavity are interconnected with a planar slot. Also inserted in the cavity are two coils - a field coil and a signal coil. The superconducting weak junction is either of a bridge or point type. The sensor may be used in all areas where the measurement of very small variables may be converted to the measurement of magnetic field. (J.B.) 5 figs

  8. Efficient magnetic fields for supporting toroidal plasmas

    CERN Document Server

    Landreman, Matt

    2016-01-01

    The magnetic field that supports tokamak and stellarator plasmas must be produced by coils well separated from the plasma. However the larger the separation, the more difficult it is to produce a given magnetic field in the plasma region, so plasma configurations should be chosen that can be supported as efficiently as possible by distant coils. The properties of curl-free magnetic fields allow magnetic field distributions to be ranked in order of their difficulty of production from a distance. Plasma shapes with low curvature and spectral width may be difficult to support, whereas plasma shapes with sharp edges may be efficiently supported by distant coils. Two measures of difficulty, which correctly identify such differences in difficulty, will be examined. These measures, which can be expressed as matrices, relate the externally-produced normal magnetic field on the plasma surface to the either the normal field or current on a distant control surface. A singular value decomposition (SVD) of either matrix y...

  9. Optimal design of HTS magnets for a modular toroid-type 2.5 MJ SMES using multi-grouped particle swarm optimization

    Science.gov (United States)

    Lee, S. Y.; Kwak, S. Y.; Seo, J. H.; Lee, S. Y.; Park, S. H.; Kim, W. S.; Lee, J. K.; Bae, J. H.; Kim, S. H.; Sim, K. D.; Seong, K. C.; Jung, H. K.; Choi, K.; Hahn, S.

    2009-10-01

    Superconducting magnetic energy storage (SMES) is one of the promising power system applications of superconducting technology and has been actively researched and developed worldwide. Generally, there are three types of SMES-solenoid, multiple solenoid, and toroid. Among these types, toroid type seems to require more wires than solenoid type and multiple solenoid type at the same operating current. However toroid type reduces normal field in the wire and stray field dramatically because magnetic field is confined inside the coil. So, the total length of wire in the toroid type can be reduced in comparison with that in the solenoid type by increasing operating current. In this paper, a 2.5 MJ class SMES with HTS magnets of single solenoid, multiple solenoid and modular toroid type were optimized using a recently developed multi-modal optimization technique named multi-grouped particle swarm optimization (MGPSO). The objective of the optimization was to minimize the total length of HTS superconductor wires satisfying some equality and inequality constraints. The stored energy and constraints were calculated using 3D magnetic field analysis techniques and an automatic tetrahedral mesh generator. Optimized results were verified by 3D finite element method (FEM).

  10. Optimal design of HTS magnets for a modular toroid-type 2.5 MJ SMES using multi-grouped particle swarm optimization

    Energy Technology Data Exchange (ETDEWEB)

    Lee, S.Y.; Kwak, S.Y.; Seo, J.H. [Seoul National University (Korea, Republic of); Lee, S.Y.; Park, S.H. [Korea Polytechnic University (Korea, Republic of); Kim, W.S. [Seoul National University (Korea, Republic of); Lee, J.K. [Woosuk University (Korea, Republic of); Bae, J.H.; Kim, S.H.; Sim, K.D.; Seong, K.C. [Korea Electrotechnology Research Institute (Korea, Republic of); Jung, H.K. [Seoul National University (Korea, Republic of); Choi, K., E-mail: choidal@kpu.ac.k [Korea Polytechnic University (Korea, Republic of); Hahn, S. [Seoul National University (Korea, Republic of)

    2009-10-15

    Superconducting magnetic energy storage (SMES) is one of the promising power system applications of superconducting technology and has been actively researched and developed worldwide. Generally, there are three types of SMES-solenoid, multiple solenoid, and toroid. Among these types, toroid type seems to require more wires than solenoid type and multiple solenoid type at the same operating current. However toroid type reduces normal field in the wire and stray field dramatically because magnetic field is confined inside the coil. So, the total length of wire in the toroid type can be reduced in comparison with that in the solenoid type by increasing operating current. In this paper, a 2.5 MJ class SMES with HTS magnets of single solenoid, multiple solenoid and modular toroid type were optimized using a recently developed multi-modal optimization technique named multi-grouped particle swarm optimization (MGPSO). The objective of the optimization was to minimize the total length of HTS superconductor wires satisfying some equality and inequality constraints. The stored energy and constraints were calculated using 3D magnetic field analysis techniques and an automatic tetrahedral mesh generator. Optimized results were verified by 3D finite element method (FEM).

  11. Macroscopic electromagnetic response of metamaterials with toroidal resonances

    CERN Document Server

    Savinov, V; Zheludev, N I

    2013-01-01

    Toroidal dipole, first described by Ia. B. Zeldovich [Sov. Phys. JETP 33, 1184 (1957)], is a distinct electromagnetic excitation that differs both from the electric and the magnetic dipoles. It has a number of intriguing properties: static toroidal nuclear dipole is responsible for parity violation in atomic spectra; interactions between static toroidal dipole and oscillating magnetic dipole are claimed to violate Newton's Third Law while non-stationary charge-current configurations involving toroidal multipoles have been predicted to produce vector potential in the absence of electromagnetic fields. Existence of the toroidal response in metamaterials was recently demonstrated and is now a growing field of research. However, no direct analytical link has yet been established between the transmission and reflection of macroscopic electromagnetic media and toroidal dipole excitations. To address this essential gap in electromagnetic theory we have developed an analytical approach linking microscopic and macrosc...

  12. An overview on research developments of toroidal continuously variable transmissions

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    As environmental protection agencies enact new regulations for automotive fuel economy and emission, the toroidal continuously variable transmissions (CVTs) keep on contribute to the advent of system technologies for better fuel consumption of automobiles with internal combustion engines (ICE). Toroidal CVTs use infinitely adjustable drive ratios instead of stepped gears to achieve optimal performance. Toroidal CVTs are one of the earliest patents to the automotive world but their torque capacities and reliability have limitations in the past. New developments and implementations in the control strategies, and several key technologies have led to development of more robust toroidal CVTs, which enables more extensive automotive application of toroidal CTVs. This paper concerns with the current development, upcoming and progress set in the context of the past development and the traditional problems associated with toroidal CVTs.

  13. CCHMM_PROF: a HMM-based coiled-coil predictor with evolutionary information

    DEFF Research Database (Denmark)

    Bartoli, Lisa; Fariselli, Piero; Krogh, Anders;

    2009-01-01

    MOTIVATION: The widespread coiled-coil structural motif in proteins is known to mediate a variety of biological interactions. Recognizing a coiled-coil containing sequence and locating its coiled-coil domains are key steps towards the determination of the protein structure and function. Different...... tools are available for predicting coiled-coil domains in protein sequences, including those based on position-specific score matrices and machine learning methods. RESULTS: In this article, we introduce a hidden Markov model (CCHMM_PROF) that exploits the information contained in multiple sequence...... alignments (profiles) to predict coiled-coil regions. The new method discriminates coiled-coil sequences with an accuracy of 97% and achieves a true positive rate of 79% with only 1% of false positives. Furthermore, when predicting the location of coiled-coil segments in protein sequences, the method reaches...

  14. Macroscopic electromagnetic response of metamaterials with toroidal resonances

    OpenAIRE

    Savinov, V.; Fedotov, V. A.; Zheludev, N. I.

    2013-01-01

    Toroidal dipole, first described by Ia. B. Zeldovich [Sov. Phys. JETP 33, 1184 (1957)], is a distinct electromagnetic excitation that differs both from the electric and the magnetic dipoles. It has a number of intriguing properties: static toroidal nuclear dipole is responsible for parity violation in atomic spectra; interactions between static toroidal dipole and oscillating magnetic dipole are claimed to violate Newton's Third Law while non-stationary charge-current configurations involving...

  15. ASTROMAG coil cooling study

    Science.gov (United States)

    Maytal, Ben-Zion; Vansciver, Steven W.

    1990-01-01

    ASTROMAG is a planned particle astrophysics magnetic facility. Basically it is a large magnetic spectrometer outside the Earth's atmosphere for an extended period of time in orbit on a space station. A definition team summarized its scientific objectives assumably related to fundamental questions of astrophysics, cosmology, and elementary particle physics. Since magnetic induction of about 7 Tesla is desired, it is planned to be a superconducting magnet cooled to liquid helium 2 temperatures. The general structure of ASTROMAG is based on: (1) two superconducting magnetic coils, (2) dewar of liquid helium 2 to provide cooling capability for the magnets; (3) instrumentation, matter-anti matter spectrometer (MAS) and cosmic ray isotope spectrometer (CRIS); and (4) interfaces to the shuttle and space station. Many configurations of the superconducting magnets and the dewar were proposed and evaluated, since those are the heart of the ASTROMAG. Baseline of the magnet configuration and cryostat as presented in the phase A study and the one kept in mind while doing the present study are presented. ASTROMAG's development schedule reflects the plan of launching to the space station in 1995.

  16. Embedded optical microfiber coil resonator

    OpenAIRE

    Xu, Fei; Brambilla, Gilberto

    2007-01-01

    The embedding of an optical microfiber coil resonator in Teflon is demonstrated. Resonances in excess of 9dB and Q-factors greater than 6000 have been observed. The device is compact, robust and portable.

  17. Coil for LEAR extraction septum

    CERN Multimedia

    1982-01-01

    Which way does the current flow ? This intriguing object is the coil for the LEAR extraction septum. There were two septa, first a thin one, then this one, not so thin, somewhat on the borderline between septum and bending magnet.

  18. Adjustable Induction-Heating Coil

    Science.gov (United States)

    Ellis, Rod; Bartolotta, Paul

    1990-01-01

    Improved design for induction-heating work coil facilitates optimization of heating in different metal specimens. Three segments adjusted independently to obtain desired distribution of temperature. Reduces time needed to achieve required temperature profiles.

  19. Zero-angle helical coil

    Science.gov (United States)

    Troendle, J. A.

    1976-01-01

    Device is constructed of bimetallic stock material formed into segments of small diameters and fastened together by metal strips. Coil is useful in various types of actuators, such as temperature controls.

  20. First coil for the SC

    CERN Multimedia

    CERN PhotoLab

    1955-01-01

    The coils for the SC magnet were stored in the large hangar of the Cointrin Airport (to make sure that they would be available before snow and ice would block the roads and canals from Belgium, where they were built).

  1. European cryogenic material testing program for ITER coils and intercoil structures

    Science.gov (United States)

    Nyilas, A.; Portone, A.; Kiesel, H.

    2002-05-01

    The following materials were characterized for the use in the magnet structures of ITER: 1) Type 316LN cast materials having a modified chemistry used for a Model of the TF (Toroidal Field) outer intercoil structure were investigated with respect to tensile, fracture, fatigue crack growth rate (FCGR), and fatigue life behavior between 7 and 4 K. 2) For Type 316LN 80 mm thick plate used for the TFMC (T_oroidal F_ield M_odel C_oil) structure a complete cryogenic mechanical materials characterization was established. 3) For full size coil case mockups, repair weld properties of 240 mm thick narrow-gap welds were investigated to determine their tensile and fracture behavior. 4) For CSMC (C_enter S_olenoid M_odel C_oil) superconductor jackets, the fatigue lives of orbital butt welds made of Incoloy 908 and Type 316LN (aged and unaged) materials were determined up to one million cycles at 7 K. The results reveal to date that the FCGR of aged Type 316LN is inferior to Incoloy 908 material, whilst the fatigue life properties are comparable. However, for Type 316LN jacket structure considerable improvement of FCGR could be achieved by a solution heat treatment process. In addition, tensile and fatigue life tests performed with a new cryogenic mechanical test facility (630 kN capacity) are presented.

  2. Toroidal plasma enhanced CVD of diamond films

    International Nuclear Information System (INIS)

    An inductively coupled toroidal plasma source is used as an alternative to microwave plasmas for chemical vapor deposition of diamond films. The source, operating at a frequency of 400 kHz, synthesizes diamond films from a mixture of argon, methane, and hydrogen. The toroidal design has been adapted to create a highly efficient environment for diamond film deposition: high gas temperature and a short distance from the sample to the plasma core. Using a toroidal plasma geometry operating in the medium frequency band allows for efficient (≈90%) coupling of AC line power to the plasma and a scalable path to high-power and large-area operation. In test runs, the source generates a high flux of atomic hydrogen over a large area, which is favorable for diamond film growth. Using a deposition temperature of 900–1050 °C and a source to sample distance of 0.1–2.0 cm, diamond films are deposited onto silicon substrates. The results showed that the deposition rate of the diamond films could be controlled using the sample temperature and source to sample spacing. The results also show the films exhibit good-quality polycrystalline diamond as verified by Raman spectroscopy, x-ray diffraction, and scanning electron microscopy. The scanning electron microscopy and x-ray diffraction results show that the samples exhibit diamond (111) and diamond (022) crystallites. The Raman results show that the sp3 peak has a narrow spectral width (FWHM 12 ± 0.5 cm−1) and that negligible amounts of the sp2 band are present, indicating good-quality diamond films

  3. Dynamic equilibria and magnetohydrodynamic instabilities in toroidal plasmas with non-uniform transport coefficients

    Energy Technology Data Exchange (ETDEWEB)

    Futatani, Shimpei; Bos, Wouter J. T. [LMFA-CNRS UMR 5509, Ecole Centrale de Lyon, Université de Lyon, 69134 Ecully (France); Morales, Jorge A. [CEA Cadarache, St. Paul Lez Durance (France)

    2015-05-15

    It can be shown that in the presence of a toroidal magnetic field induced by poloidal coils, combined with the electromagnetic field induced by a central solenoid, no static equilibrium is possible within the MHD description, as soon as non-zero resistivity is assumed. The resulting dynamic equilibrium was previously discussed for the case of spatially homogeneous resisitivity. In the present work, it is shown how a spatial inhomogeneity of the viscosity and resisitivity coefficients influences this equilibrium. Parameters in both the stable, tokamak-like regime and unstable, reversed field pinch-like regime are considered. It is shown that, whereas the magnitudes of the velocity and magnetic field fluctuations are strongly modified by the spatial variation of the transport coefficients, the qualitative flow behaviour remains largely unaffected.

  4. Polar interface phonons in ionic toroidal systems.

    Science.gov (United States)

    Nguyen, N D; Evrard, R; Stroscio, Michael A

    2016-09-01

    We use the dielectric continuum model to obtain the polar (Fuchs-Kliewer like) interface vibration modes of toroids made of ionic materials either embedded in a different material or in vacuum, with applications to nanotoroids specially in mind. We report the frequencies of these modes and describe the electric potential they produce. We establish the quantum-mechanical Hamiltonian appropriate for their interaction with electric charges. This Hamiltonian can be used to describe the effect of this interaction on different types of charged particles either inside or outside the torus. PMID:27357246

  5. Plasma current resonance in asymmetric toroidal systems

    Energy Technology Data Exchange (ETDEWEB)

    Hazeltine, R. D. [Institute for Fusion Studies, University of Texas at Austin, Austin, Texas 78712 (United States); Catto, Peter J. [Plasma Science and Fusion Center, Massachusetts Institute of Technology, 167 Albany Street, Cambridge, Massachusetts 02139 (United States)

    2015-09-15

    The well-known singularity in the magnetic differential equation for plasma current in an asymmetric toroidal confinement system is resolved by including in the pressure tensor corrections stemming from finite Larmor radius. The result provides an estimate of the amplitude of spikes in the parallel current that occur on rational magnetic surfaces. Resolution of the singularity is shown to depend on both the ambipolarity condition—the requirement of zero surface-averaged radial current—and the form of the magnetic differential equation near the rational surface.

  6. Toroidal membrane vesicles in spherical confinement

    CERN Document Server

    Bouzar, Lila; Müller, Martin Michael

    2015-01-01

    We investigate the morphology of a toroidal fluid membrane vesicle confined inside a spherical container. The equilibrium shapes are assembled in a geometrical phase diagram as a function of scaled area and reduced volume of the membrane. For small area the vesicle can adopt its free form. When increasing the area, the membrane cannot avoid contact and touches the confining sphere along a circular contact line, which extends to a zone of contact for higher area. The elastic energies of the equilibrium shapes are compared to those of their confined counterparts of spherical topology to predict under which conditions a topology change is favored energetically.

  7. Toroidal membrane vesicles in spherical confinement

    Science.gov (United States)

    Bouzar, Lila; Menas, Ferhat; Müller, Martin Michael

    2015-09-01

    We investigate the morphology of a toroidal fluid membrane vesicle confined inside a spherical container. The equilibrium shapes are assembled in a geometrical phase diagram as a function of scaled area and reduced volume of the membrane. For small area the vesicle can adopt its free form. When increasing the area, the membrane cannot avoid contact and touches the confining sphere along a circular contact line, which extends to a zone of contact for higher area. The elastic energies of the equilibrium shapes are compared to those of their confined counterparts of spherical topology to predict under which conditions a topology change is favored energetically.

  8. Polar interface phonons in ionic toroidal systems.

    Science.gov (United States)

    Nguyen, N D; Evrard, R; Stroscio, Michael A

    2016-09-01

    We use the dielectric continuum model to obtain the polar (Fuchs-Kliewer like) interface vibration modes of toroids made of ionic materials either embedded in a different material or in vacuum, with applications to nanotoroids specially in mind. We report the frequencies of these modes and describe the electric potential they produce. We establish the quantum-mechanical Hamiltonian appropriate for their interaction with electric charges. This Hamiltonian can be used to describe the effect of this interaction on different types of charged particles either inside or outside the torus.

  9. Polar interface phonons in ionic toroidal systems

    Science.gov (United States)

    Nguyen, N. D.; Evrard, R.; Stroscio, Michael A.

    2016-09-01

    We use the dielectric continuum model to obtain the polar (Fuchs–Kliewer like) interface vibration modes of toroids made of ionic materials either embedded in a different material or in vacuum, with applications to nanotoroids specially in mind. We report the frequencies of these modes and describe the electric potential they produce. We establish the quantum-mechanical Hamiltonian appropriate for their interaction with electric charges. This Hamiltonian can be used to describe the effect of this interaction on different types of charged particles either inside or outside the torus.

  10. Drift waves in general toroidal geometry

    International Nuclear Information System (INIS)

    A model, based on gyro-kinetic ions and fluid electrons, to study drift waves in low-beta [beta = (kinetic pressure)/(magnetic pressure)] stellarator plasmas is presented. The model equations are written in straight-field-line coordinates and are valid for arbitrary, fully three-dimensional configurations with closed, nested magnetic surfaces. An implicit method, coupled with a subcycling technique for the electrons, is used to solve the time-dependent, along-the-field-line equations. Numerical calculations are carried out for a 3-field-period toroidal heliac. The geometrical effects that enter the model equations are calculated and displayed in physical space using advanced visualization techniques

  11. Pulsar Wind Nebulae with Thick Toroidal Structure

    OpenAIRE

    Chevalier, Roger A.; Reynolds, Stephen P.

    2011-01-01

    We investigate a class of pulsar wind nebulae that show synchrotron emission from a thick toroidal structure. The best studied such object is the small radio and X-ray nebula around the Vela pulsar, which can be interpreted as the result of interaction of a mildly supersonic inward flow with the recent pulsar wind. Such a flow near the center of a supernova remnant can be produced in a transient phase when the reverse shock reaches the center of the remnant. Other nebulae with a thick toroida...

  12. Application of articulated absolute co-ordinate measuring machine for quality control in manufacturing of ELM control coil

    International Nuclear Information System (INIS)

    Under India-EU collaboration, Institute for Plasma Research had undertaken an engineering feasibility initiative aimed at developing a 1:1 prototype Edge Localized Modes control coils (ELM CC) for Joint European Torus (JET). The ELM coils comprised of winding pack made of CuCrZr conductor encased in Inconel 625 casing. The ELM control coils are designed in saddle coil configuration having toroidal and poloidal curves similar to that of JET vacuum vessel. ELM coil are in-vessels coils forming the primary boundary with torus vacuum which demands stringent requirement for its quality aspects. The dimensional accuracies of winding pack and casing are critical for its encasing and remote assembly inside vacuum vessel. The articulated arm co-ordinate measuring machine (AACMM) has been extensively used for dimensional metrology of ELM CC from winding to its encasing. The inspection methodology and procedures using noncontact technique for ELM CC with AACMM has been developed and established with extensive trials. The winding pack, their formers and final ELM control coils has been systematically investigated for their dimensional accuracies with AACMM. The effectiveness of AACMM based evaluation for quality control in fabrication of 1:1 prototype of ELM CC has been presented in this paper. (author)

  13. Performance of a Rain Barrel Sharing Network under Climate Change

    OpenAIRE

    Seong Jin Noh; Eun-Sung Chung; Yongwon Seo

    2015-01-01

    Rain barrels can be technically shared through social practices or mutual agreement between individual households. This study proposes the evaluation system for a rain barrel sharing network (RBSN) considering three performance criteria of reliability, resiliency, and vulnerability, under plausible climate change scenarios. First, this study shows how the system can be improved in terms of the performance criteria using historical daily rainfall data based on the storage-reliability-yield rel...

  14. Dynamics of liquid rope coiling

    Science.gov (United States)

    Habibi, Mehdi; Maleki, Maniya; Golestanian, Ramin; Ribe, Neil M.; Bonn, Daniel

    2006-12-01

    We present a combined experimental and numerical investigation of the coiling of a liquid “rope” falling on a solid surface, focusing on three little-explored aspects of the phenomenon: The time dependence of “inertio-gravitational” coiling, the systematic dependence of the radii of the coil and the rope on the experimental parameters, and the “secondary buckling” of the columnar structure generated by high-frequency coiling. Inertio-gravitational coiling is characterized by oscillations between states with different frequencies, and we present experimental observations of four distinct branches of such states in the frequency-fall height space. The transitions between coexisting states have no characteristic period, may take place with or without a change in the sense of rotation, and usually (but not always) occur via an intermediate “figure of eight” state. We present extensive laboratory measurements of the radii of the coil and of the rope within it, and show that they agree well with the predictions of a “slender-rope” numerical model. Finally, we use dimensional analysis to reveal a systematic variation of the critical column height for secondary buckling as a function of (dimensionless) flow rate and surface tension parameters.

  15. Nylon screws make inexpensive coil forms

    Science.gov (United States)

    Aucoin, G.; Rosenthal, C.

    1978-01-01

    Standard nylon screws act as coil form copper wire laid down in spiral thread. Completed coil may be bonded to printed-circuit board. However, it is impossible to tune coil by adjusting spacing between windings, technique sometimes used with air-core coils.

  16. HELMHOLTZ COILS FOR MEASURING MAGNETIC MOMENTS

    Directory of Open Access Journals (Sweden)

    P. N. Dobrodeyev

    2013-01-01

    Full Text Available The optimal configuration of the double Helmholtz coils for measuring of the magnetic dipole moments was defined. It was determined that measuring coils should have round shape and compensative coils – the square one. Analytically confirmed the feasibility of the proposed configuration of these coils as primary transmitters of magnetic dipole moments.

  17. Space-deployed, thin-walled enclosure for a cryogenically-cooled high temperature superconducting coil

    Science.gov (United States)

    Porter, Allison K.

    The interaction of magnetic fields generated by large superconducting coils has multiple applications in space, including actuation of spacecraft or spacecraft components, wireless power transfer, and shielding of spacecraft from radiation and high energy particles. These applications require coils with major diameters as large as 20 meters and a thermal management system to maintain the superconducting material of the coil below its critical temperature. Since a rigid thermal management system, such as a heat pipe, is unsuitable for compact stowage inside a 5 meter payload fairing, a thin-walled thermal enclosure is proposed. A 1.85 meter diameter test article consisting of a bladder layer for containing chilled nitrogen vapor, a restraint layer, and multilayer insulation was tested in a custom toroidal vacuum chamber. The material properties found during laboratory testing are used to predict the performance of the test article in low Earth orbit. Deployment motion of the same test article was measured using a motion capture system and the results are used to predict the deployment in space. A 20 meter major diameter and coil current of 6.7 MA is selected as a point design case. This design point represents a single coil in a high energy particle shielding system. Sizing of the thermal and structural components of the enclosure is completed. The thermal and deployment performance is predicted.

  18. Asymmetric toroidal eddy currents (ATEC) to explain sideways forces at JET

    Science.gov (United States)

    Roccella, R.; Roccella, M.; Riccardo, V.; Chiocchio, S.; Contributors, JET

    2016-10-01

    During some JET vertical displacement events (VDEs) plasma current and position are found to be toroidally asymmetric. When asymmetries lock, the vessel has been observed to move horizontally, consequently strong horizontal forces are expected following plasma asymmetries, whether locked or rotating. The cause of horizontal forces is, as already identified in previous works, the asymmetric circulation of current in the structures. The physics mechanism responsible for these asymmetric currents is instead an open issue and it is the object of the present analysis. In particular it will be shown that the asymmetry is not due to a direct exchange of current between plasma and structure (as in the case of halo currents) but to asymmetric conductive paths which arise, in the structures, when the plasma column asymmetrically wets the wall. Simulations of this phenomenon using finite element (FE) models have been conducted to reproduce the JET observation during locked and rotating asymmetric VDEs. Estimated sideways force, asymmetry (I\\text{p}\\text{asym} ) and normalized asymmetry (A\\text{p}\\text{asym} ) of plasma current, vertical position at different toroidal locations during the disruption and halo current asymmetry have been compared with measurements done at JET during upward AVDEs. The substantial match between experiments and simulations confirms the soundness of the assumptions. Furthermore, the same physical model applied to downward VDEs shows that divertor support and coils, together with the geometry of the limiting surfaces, considerably lessen asymmetric loads as experienced at JET after installing those components.

  19. 百千焦级高温超导环型SMES磁体设计研究%Design of hundred-kilojoule-class HTS toroidal SMES

    Institute of Scientific and Technical Information of China (English)

    何清; 窦建中; 周世平; 金涛; 唐跃进; 焦丰顺; 任丽; 李敬东; 石晶

    2012-01-01

    Toroidal SMES is the developing direction of HTS SMES. There have been many conceptual designs of HTS toroidal SMES, but whose energy storage capacities mainly concentrate on more than trillion joules. HTS toroidal SMES which have been constructed and tested in a power system only has an energy storage capacity of several kilo - joules. Considering that the development of HTS toroidal SMES is still at lab stage, this paper researched on the design of HTS toroidal SMES whose energy storage capacity was more the one hundred kilojoules by means of genetic algorithm ( GA) and FEM. The relationship between the number of unit coils n, inner diameter of unit coils d, the inner diameter of the toridal magnet D and the energy storage capacity E were discussed.%高温超导SMES磁体未来的发展方向是环型磁体,目前对高温超导环型SMES磁体的概念设计比较多,但储能量主要集中在兆焦级,真正制作完成并并网实验的储能量只有千焦级.文中立足高温超导环型SMES处于实验室研究阶段的现实,用遗传算法和有限元法结合的方法对百千焦级高温超导环型SMES磁体进行了设计研究,总结出了单元线圈数量n、单元线圈内直径d和环型磁体内直径D影响磁体储能量E的规律.

  20. Microwave produced plasma in a Toroidal Device

    Science.gov (United States)

    Singh, A. K.; Edwards, W. F.; Held, E. D.

    2010-11-01

    A currentless toroidal plasma device exhibits a large range of interesting basic plasma physics phenomena. Such a device is not in equilibrium in a strict magneto hydrodynamic sense. There are many sources of free energy in the form of gradients in plasma density, temperature, the background magnetic field and the curvature of the magnetic field. These free energy sources excite waves and instabilities which have been the focus of studies in several devices in last two decades. A full understanding of these simple plasmas is far from complete. At Utah State University we have recently designed and installed a microwave plasma generation system on a small tokamak borrowed from the University of Saskatchewan, Saskatoon, Canada. Microwaves are generated at 2.45 GHz in a pulsed dc mode using a magnetron from a commercial kitchen microwave oven. The device is equipped with horizontal and vertical magnetic fields and a transformer to impose a toroidal electric field for current drive. Plasmas can be obtained over a wide range of pressure with and without magnetic fields. We present some preliminary measurements of plasma density and potential profiles. Measurements of plasma temperature at different operating conditions are also presented.

  1. Aspects of Tokamak toroidal magnet protection

    International Nuclear Information System (INIS)

    Simple but conservative geometric models are used to estimate the potential for damage to a Tokamak reactor inner wall and blanket due to a toroidal magnet field collapse. The ofly potential hazard found to exist is due to the MHD pressure rise in a lithium blanket. A survey is made of proposed protection methods for superconducting torgidal magnets. It is found that the two general classificatigls of protectign methods are thermal and electrical. Computer programs were developed which aldow the toroidal magnet set to be modeled as a set of circular filaments. A simple thermal model of the conductor was used which allows heat transfer to the magnet structure and which includes the effect of temperature dependent properties. To be effective in large magnets an electrical protection system should remove at least 50% of the stored energy in the protection circuit assuming that all of the superconductor in the circuit quenches when the circuit is activated. A protection system design procedure based on this criterion was developed

  2. Propulsion using the electron spiral toroid

    International Nuclear Information System (INIS)

    A new propulsion method is proposed which could potentially reduce propellant needed for space travel by three orders of magnitude. It uses the newly patented electron spiral toroid (EST), which stores energy as magnetic field energy. The EST is a hollow toroid of electrons, all spiraling in parallel paths in a thin outer shell. The electrons satisfy the coupling condition, forming an electron matrix. Stability is assured as long as the coupling condition is satisfied. The EST is held in place with a small external electric field; without an external magnetic field. The EST system is contained in a vacuum chamber. The EST can be thought of as an energetic entity, with electrons at 10,000 electron volts. Propulsion would not use combustion, but would heat propellant through elastic collisions with the EST surface and eject them for thrust. Chemical rocket combustion heats propellant to 4000 deg. C; an EST will potentially heat the propellant 29,000 times as much, reducing propellant needs accordingly. The thrust can be turned ON and OFF. The EST can be recharged as needed

  3. Installation of CMS EB (ECAL Barrel) Supermodules 5 and 13 inside HB+ (HCAL Barrel) on 26/27 April 2006

    CERN Multimedia

    2006-01-01

    The first two barrel "supermodules" of the CMS Electromagnetic Calorimeter (ECAL) have been inserted into the barrel hadron calorimeter (HCAL) in the CMS experimental hall (called SX5) in Cessy in preparation for the forthcoming magnet test and cosmic challenge (MTCC). Each of the two supermodules contains 1700 lead tungstate crystals in glass-fibre alveolar support structures, with associated avalanche photodiodes (APDs, for scintillation light detection), electronics and cooling system.

  4. A barrel-related interneuron in layer 4 of rat somatosensory cortex with a high intra-barrel connectivity

    OpenAIRE

    Koelbl, C.; Helmstaedter, Moritz; Lübke, Joachim; Feldmeyer, Dirk

    2015-01-01

    Synaptic connections between identified fast-spiking (FS), parvalbumin (PV)-positive interneurons, and excitatory spiny neurons in layer 4 (L4) of the barrel cortex were investigated using patch-clamp recordings and simultaneous biocytin fillings. Three distinct clusters of FS L4 interneurons were identified based on their axonal morphology relative to the barrel column suggesting that these neurons do not constitute a homogeneous interneuron population. One L4 FS interneuron type had an axon...

  5. Transport and Dynamics in Toroidal Fusion Systems

    Energy Technology Data Exchange (ETDEWEB)

    Schnack, Dalton D

    2006-05-16

    This document reports the successful completion of the OFES Theory Milestone for FY2005, namely, Perform parametric studies to better understand the edge physics regimes of laboratory experiments. Simulate at increased resolution (up to 20 toroidal modes), with density evolution, late into the nonlinear phase and compare results from different types of edge modes. Simulate a single case including a study of heat deposition on nearby material walls. The linear stability properties and nonlinear evolution of Edge Localized Modes (ELMs) in tokamak plasmas are investigated through numerical computation. Data from the DIII-D device at General Atomics (http://fusion.gat.com/diii-d/) is used for the magnetohydrodynamic (MHD) equilibria, but edge parameters are varied to reveal important physical effects. The equilibrium with very low magnetic shear produces an unstable spectrum that is somewhat insensitive to dissipation coefficient values. Here, linear growth rates from the non-ideal NIMROD code (http://nimrodteam.org) agree reasonably well with ideal, i.e. non-dissipative, results from the GATO global linear stability code at low toroidal mode number (n) and with ideal results from the ELITE edge linear stability code at moderate to high toroidal mode number. Linear studies with a more realistic sequence of MHD equilibria (based on DIII-D discharge 86166) produce more significant discrepancies between the ideal and non-ideal calculations. The maximum growth rate for the ideal computations occurs at toroidal mode index n=10, whereas growth rates in the non-ideal computations continue to increase with n unless strong anisotropic thermal conduction is included. Recent modeling advances allow drift effects associated with the Hall electric field and gyroviscosity to be considered. A stabilizing effect can be observed in the preliminary results, but while the distortion in mode structure is readily apparent at n=40, the growth rate is only 13% less than the non-ideal MHD

  6. Perturbing macroscopic magnetohydrodynamic stability for toroidal plasmas

    Science.gov (United States)

    Comer, Kathryn J.

    We have introduced a new perturbative technique to rapidly explore the dependence of long wavelength ideal magnetohydrodynamic (MHD) instabilities on equilibrium profiles, shaping properties, and wall parameters. Traditionally, these relations are studied with numerical parameter scans using computationally intensive stability codes. Our perturbative technique first finds the equilibrium and stability using traditional methods. Subsequent small changes in the original equilibrium parameters change the stability. We quickly find the new stability with an expansion of the energy principle, rather than with another run of the stability codes. We first semi-analytically apply the technique to the screw pinch after eliminating compressional Alfven wave effects. The screw pinch results validate the approach, but also indicate that allowable perturbations to equilibria with certain features may be restricted. Next, we extend the approach to toroidal geometry using experimental equilibria and a simple constructed equilibrium, with the ideal MHD stability code GATO. Stability properties are successfully predicted from perturbed toroidal equilibria when only the vacuum beyond the plasma is perturbed (through wall parameter variations), rather than the plasma itself. Small plasma equilibrium perturbations to both experimental and simple equilibria result in very large errors to the predicted stability, and valid results are found only over a narrow range of most perturbations. Despite the large errors produced when changing plasma parameters, the wall perturbations revealed two useful applications of this technique. Because the calculations are non-iterative matrix multiplications, the convergence issues that can disrupt a full MHD stability code are absent. Marginal stability, therefore, is much easier to find with the perturbative technique. Also, the perturbed results can be input as the initial guess for the eigenvalue for a full stability code, and improve subsequent

  7. Inductive Eigenmodes of a resistive toroidal surface in vacuum

    Energy Technology Data Exchange (ETDEWEB)

    Lo Surdo, C. [ENEA, Centro Ricerche Frascati, Rome (Italy). Dipt. Innovazione

    1999-07-01

    In this paper it has been studied the Electro-Magnetic (EM) Eigenmodes, sufficiently slow as to legitimate the pre-Maxwell approximation of Maxwell's system (or inductive Eigenmodes), of a given smooth, toroidal-un knotted, electrically resistive surface {tau} with given smooth (surface) resistivity 0 < {rho}{sub d}egree < {infinity}, and lying in the (empty) R{sup 3}. Within the above limitations (to be made more precise), the geometry of {tau} is arbitrary. With the eigenvalue associated with the generic Eigenmode being defined as the opposite of its logarithmic time-derivative, one expects that the resulting spectrum be discrete and strictly positive. It shall be interested into the degenerate case where {tau} be cut (i.e. electrically broken) along one or more of its irreducible cycles. This case will be analyzed autonomously, rather than as a limit (for {rho}{sub d}egree {yields} {infinity} along the cuts) of the regular case. Without cuts, the Eigenproblem under consideration is nothing but the two-dimensional (2-dim) generalization of the classical case of a smooth, unknotted, electrically conductive, simple coil in infinite vacuum. Its analysis hinges on the classical potential theory, and turns out to be a special application of the linear, integrodifferential (elliptic) equation theory on a compact, multiply connected, 2-dim manifold. The attention and approach will be confined to strong (or classical) solutions, both in {tau} and C {tau} = R{sup 3} / {tau}. This study is divided in two parts: a General Part (Sects 1 divided 4) is devoted to the case of generic {tau} and {rho}{sub d}egree (within the convenient smoothness requirements), whereas a Special Part (Sects 5 divided 7) deals with the (more or less formal) discussion of a couple of particular cases ({tau} {identical_to} a canonical torus), both of which with uniform {rho}{sub d}egree. Some propaedeutical/supplementary information is provided in a number of Appendices. [Italian] Il presente

  8. Deformation of Linked Polymer Coils

    Institute of Scientific and Technical Information of China (English)

    董朝霞; 李明远; 吴肇亮; 林梅钦

    2003-01-01

    Linked polymer solution (LPS) is defined as the solution of linked polymer coils (LPCs) dispersed in water, composed of low concentration partially hydrolyzed polyacrylamide (HPAM) and aluminum citrate (crosslinker). In the work, the conformational changes of LPCs under different conditions were investigated by the methods of membrane filtering under low pressure, dynamic light scattering and core flooding experiments. The results showed that in some conditions the LPCs could be compressed mechanically to 1/158.5 of their original volume because of relatively lower HPAM cross-linking. The hydration property of LPCs was similar to that of normal polymer coils. The deformation of LPCs was more restricted than that of ordinary polymer coils under the flow shear stress or the shift of hydration equilibrium caused in the variation of the electrolyte concentration which is responsible for the effective plugging in the throats of porous media when LPCs are used for deep diverting.

  9. The structure of the GemC1 coiled coil and its interaction with the Geminin family of coiled-coil proteins

    Energy Technology Data Exchange (ETDEWEB)

    Caillat, Christophe; Fish, Alexander [The Netherlands Cancer Institute, 1066 CX Amsterdam (Netherlands); Pefani, Dafni-Eleftheria; Taraviras, Stavros; Lygerou, Zoi [University of Patras, 26505 Rio, Patras (Greece); Perrakis, Anastassis, E-mail: a.perrakis@nki.nl [The Netherlands Cancer Institute, 1066 CX Amsterdam (Netherlands)

    2015-10-31

    The GemC1 coiled-coil structure has subtle differences compared with its homologues Geminin and Idas. Co-expression experiments in cells and biophysical stability analysis of the Geminin-family coiled coils suggest that the GemC1 coiled coil alone is unstable. GemC1, together with Idas and Geminin, an important regulator of DNA-replication licensing and differentiation decisions, constitute a superfamily sharing a homologous central coiled-coil domain. To better understand this family of proteins, the crystal structure of a GemC1 coiled-coil domain variant engineered for better solubility was determined to 2.2 Å resolution. GemC1 shows a less typical coiled coil compared with the Geminin homodimer and the Geminin–Idas heterodimer structures. It is also shown that both in vitro and in cells GemC1 interacts with Geminin through its coiled-coil domain, forming a heterodimer that is more stable that the GemC1 homodimer. Comparative analysis of the thermal stability of all of the possible superfamily complexes, using circular dichroism to follow the unfolding of the entire helix of the coiled coil, or intrinsic tryptophan fluorescence of a unique conserved N-terminal tryptophan, shows that the unfolding of the coiled coil is likely to take place from the C-terminus towards the N-terminus. It is also shown that homodimers show a single-state unfolding, while heterodimers show a two-state unfolding, suggesting that the dimer first falls apart and the helices then unfold according to the stability of each protein. The findings argue that Geminin-family members form homodimers and heterodimers between them, and this ability is likely to be important for modulating their function in cycling and differentiating cells.

  10. Formation of compact toroidal plasmas by magnetized coaxial plasma gun injection into an oblate flux conserver

    International Nuclear Information System (INIS)

    Initial results are reported on the formation of compact toroidal plasmas in an oblate shaped metallic flux conserver. A schematic of the experimental apparatus is shown. The plasma injector is a coaxial plasma gun with solenoid coils wound on the inner and outer electrodes. The electrode length is 100 cm, the diameter of the inner (outer) electrode is 19.3 cm (32.4 cm). Deuterium gas is puffed into the region between electrodes by eight pulsed valves located on the outer electrode 50 cm from the end of the gun. The gun injects into a cylindrically symmetrical copper shell (wall thickness = 1.6 mm) which acts as a flux conserver for the time scale of experiments reported here. The copper shell consists of a transition cylinder 30 cm long, 34 cm in diameter, a cylindrical oblate pill box 40 cm long, 75 cm in diameter and a downstream cylinder 30 cm long, 30 cm in diameter. The gap between the gun and transition cylinder is 6 cm. An axial array of coils outside the vacuum chamber can be used to establish an initial uniform bias field

  11. Modeling of Feedback Stabilization of External MHD Modes in Toroidal Geometry

    Science.gov (United States)

    Chu, M. S.; Chance, M. S.; Okabayashi, M.

    2000-10-01

    The intelligent shell feedback scheme(C.M. Bishop, Plasma Phys. Contr. Nucl. Fusion 31), 1179 (1989). seeks to utilize external coils to suppress the unstable MHD modes slowed down by the resistive shell. We present a new formulation and numerical results of the interaction between the plasma and its outside vacuum region, with complete plasma response and the inclusion of a resistive vessel in general toroidal geometry. This is achieved by using the Green's function technique, which is a generalization of that previously used for the VACUUM(M.S. Chance, Phys. Plasmas 4), 2161 (1997). code and coupled with the ideal MHD code GATO. The effectiveness of different realizations of the intelligent shell concept is gauged by their ability to minimize the available free energy to drive the MHD mode. Computations indicate poloidal coverage of 30% of the total resistive wall surface area and 6 or 7 segments of ``intelligent coil'' arrays superimposed on the resistive wall will allow recovery of up to 90% the effectiveness of the ideal shell in stabilizing the ideal external kink.

  12. Analysis on Cooling Process of ITER Toroidal Field In-cryostat Feeder System

    International Nuclear Information System (INIS)

    The ITER toroidal field (TF) in-cryostat feeder system (ICF) locates in the main cryostat of the Tokamak.It consists of 18 segments, which form a ring by connectors and hang on the corresponding TF coil terminal area. During cooling down the components in the cryostat,the shrinkage of ICF is not synchronous with the TF coil. In this case, relative displacement occurs on the circumferential end surfaces of the neighbor segments, so that the function of displacement compensation is required on the connector. Researching on cooling process of the ITER TF ICF system, finite element method (FEM) was applied on the numerical simulation of the steady-state and transient temperature field in the ICF. The heat load and temperature distributions in ICF were worked out; furthermore, the temperature-time curve and deformation-time curve were also presented. The results show that active cooling is not required on ICF, the heat load and thermal stress is very weak. Meanwhile, the results will provide primary parameters for the design of connector with compensation function. (authors)

  13. Helicity of a toroidal vortex with swirl

    Science.gov (United States)

    Bannikova, E. Yu.; Kontorovich, V. M.; Poslavsky, S. A.

    2016-04-01

    Based on the solutions of the Bragg-Hawthorne equation, we discuss the helicity of a thin toroidal vortex in the presence of swirl, orbital motion along the torus directrix. The relation between the helicity and circulations along the small and large linked circumferences (the torus directrix and generatrix) is shown to depend on the azimuthal velocity distribution in the core of the swirling ring vortex. In the case of nonuniform swirl, this relation differs from the well-known Moffat relation, viz., twice the product of such circulations multiplied by the number of linkages. The results can find applications in investigating the vortices in planetary atmospheres and the motions in the vicinity of active galactic nuclei.

  14. Helicity of the toroidal vortex with swirl

    CERN Document Server

    Bannikova, Elena Yu; Poslavsky, Sergey A

    2016-01-01

    On the basis of solutions of the Bragg-Hawthorne equations we discuss the helicity of thin toroidal vortices with the swirl - the orbital motion along the torus diretrix. It is shown that relationship of the helicity with circulations along the small and large linked circles - directrix and generatrix of the torus - depends on distribution of the azimuthal velocity in the core of the swirling vortex ring. In the case of non-homogeneous swirl this relationship differs from the well-known Moffat relationship - the doubled product of such circulations multiplied by the number of links. The results can be applied to vortices in planetary atmospheres and to vortex movements in the vicinity of active galactic nuclei.

  15. Fluid interaction with spinning toroidal tanks

    Science.gov (United States)

    Fester, D. A.; Anderson, J. E.

    1977-01-01

    An experimental study was conducted to evaluate propellant behavior in spinning torroidal tanks that could be used in a retropropulsion system of an advanced outer-planet Pioneer orbiter. Information on propellant slosh and settling and on ullage orientation and stability was obtained. The effects of axial acceleration, spin rate, spin-rate change, and spacecraft wobble, both singly and in combination, were evaluated using a one-eighth scale transparent tank in one-g and low-g environments. Liquid loadings ranged from 5% to 96% full. The impact of a surface tension acquisition device was assessed by comparison with bare-tank results. The testing simulated the behavior of the fluorine/hydrazine and nitrogen textroxide/monomethylhydrazine propellants. Results are presented that indicate that no major fluid behavior problems would be encountered with any of the four propellants in the toroidal tanks of a spin-stabilized orbiter spacecraft.

  16. The theory of toroidally confined plasmas

    CERN Document Server

    White, Roscoe B

    2014-01-01

    This graduate level textbook develops the theory of magnetically confined plasma, with the aim of bringing the reader to the level of current research in the field of thermonuclear fusion. It begins with the basic concepts of magnetic field description, plasma equilibria and stability, and goes on to derive the equations for guiding center particle motion in an equilibrium field. Topics include linear and nonlinear ideal and resistive modes and particle transport. It is of use to workers in the field of fusion both for its wide-ranging account of tokamak physics and as a kind of handbook or formulary. This edition has been extended in a number of ways. The material on mode-particle interactions has been reformulated and much new information added, including methodology for Monte Carlo implementation of mode destabilization. These results give explicit means of carrying out mode destabilization analysis, in particular for the dangerous fishbone mode. A new chapter on cyclotron motion in toroidal geometry has ...

  17. Epithelial Proliferation on Curved Toroidal Surfaces

    Science.gov (United States)

    Chang, Ya-Wen; Cruz, Ricardo; Fragkopoulos, Alexandros; Marquez, Samantha; Garcia, Andres; Fernandez-Nieves, Alberto

    Cellular environment influences a multitude of cellular functions by providing chemical and physical signals that modulate cell behavior, dynamics, development, and eventually survival. In strongly interacting epithelial cells, cells coordinate their behavior to respond to mechanical constraints in 2D. Local differences in tissue tension has also been shown to impact cell reproduction within an epithelial-cell sheet. Much less is known about how cells respond to out-of-plane curvatures. Here, we describe the proliferation of MDCK on toroidal hydrogel substrates, which unlike spheres or planes, have regions of both positive and negative Gaussian curvature. Additionally, the range of curvatures can be controlled by varying the size and aspect ratio of the torus, allowing us to quantify the relation between substrate curvature and cell proliferation.

  18. Nonideal magnetohydrodynamic instabilities and toroidal magnetic confinement

    International Nuclear Information System (INIS)

    The marked divergence of experimentally observed plasma instability phenomena from the predictions of ideal magnetohydrodynamics led in the early 1960s to the formulations of finite-resistivity stability theory. Beginning in the 1970s, advanced plasma diagnostics have served to establish a detailed correspondence between the predictions of the finite-resistivity theory and experimental plasma behavior - particularly in the case of the resistive kink mode and the tokamak plasma. Nonlinear resistive-kink phenomena have been found to govern the transport of magnetic flux and plasma energy in the reversed-field pinch. The other predicted finite-resistivity instability modes have been more difficult to identify directly and their implications for toroidal magnetic confinement are still unresolved

  19. Nonideal magnetohydrodynamic instabilities and toroidal magnetic confinement

    Energy Technology Data Exchange (ETDEWEB)

    Furth, H.P.

    1985-05-01

    The marked divergence of experimentally observed plasma instability phenomena from the predictions of ideal magnetohydrodynamics led in the early 1960s to the formulations of finite-resistivity stability theory. Beginning in the 1970s, advanced plasma diagnostics have served to establish a detailed correspondence between the predictions of the finite-resistivity theory and experimental plasma behavior - particularly in the case of the resistive kink mode and the tokamak plasma. Nonlinear resistive-kink phenomena have been found to govern the transport of magnetic flux and plasma energy in the reversed-field pinch. The other predicted finite-resistivity instability modes have been more difficult to identify directly and their implications for toroidal magnetic confinement are still unresolved.

  20. Applications of the Integrated-Blanket-Coil concept to the compact reversed-field pinch reactor

    International Nuclear Information System (INIS)

    A design of a compact fusion reactor is proposed based on the reversed field pinch and utilizing the ''Integrated-Blanket-Coil'' (IBC) concept. The IBC is applied to the toroidal field and divertor systems, with liquid metal used for cooling both the first wall and blanket. This simplifies the overall design by requiring only a single coolant cycle. In addition, safety is increased by eliminating any possible lithium-water interaction in the fusion power core. Finally, replacing conventional copper divertor coils with IBC components enhances tritium breeding and energy recovery. A generic problem with liquid metal coolants is their reduced heat transfer capabilities in magnetic fields. In this context, the use of liquid metal coolants may limit the allowable neutron wall loading to a value of 10 MW/m/sup 2/. Above this value it may be necessary to use water cooling for the first wall and divertor surfaces

  1. Status of the structural design of superconducting magnets for the Large Coil Program

    International Nuclear Information System (INIS)

    Fusion reactor designs based on magnetic confinement will require the use of superconducting magnets to make them economically viable. For a tokamak fusion reactor, large magnetic field coils are required to produce a toroidal magnetic confinement volume. Although superconductors have been used for approximately 20 years, several requirements for their application in fusion reactors are beyond demonstrated technology in existing magnets. The Large Coil Program (LCP) is a research, development, and demonstration effort specifically for the advancement of the technologies involved in the production of large superconducting magnets. This paper presents a review of the status of the structural designs, analysis methods, and verification tests being performed by the participating LCP design teams in the US, Switzerland, Japan, and the Federal Republic of Germany. The significant structural mechanics concerns being investigated with the LCP are presented

  2. A Hybrid Heating Method for the HT-7U Coils during Vacuum-Pressure Impregnation

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The HT-7U superconducting tokamak is a full-superconducting magnetically confined fusion device, The toroidal magnet system of HT-7U is a very important part of the device.In VPI (Vacuum-Pressure Impregnation) process the magnet coils must be heated and degassed before impregnating and must be heated to the gel temperature and then the curing temperature,and keep the two kinds of temperatures for a long period of time after impregnating. Thus the heating method of VPI is critical. In this paper, a hybrid method of combining the internal and external heating for the coils is analyzed, especially the possibility of the internal heating method is proved.

  3. Summary of US-Japan Exchange 2004 New Directions and Physics for Compact Toroids

    Energy Technology Data Exchange (ETDEWEB)

    Intrator, T; Nagata, M; Hoffman, A; Guo, H; Steinhauer, L; Ryutov, D; Miller, R; Okada, S

    2005-08-15

    This exchange workshop was an open meeting coordinated by the P-24 Plasma Physics Group at Los Alamos National Laboratory. We brought together scientists from institutions in the US and Japan who are researching the various and complementary types of Compact Toroids (CT). Many concepts, including both experimental and theoretical investigations, are represented. The range spans Field Reversed Configuration (FRC), spheromak, Reversed Field Pinch (RFP), spherical tokamaks, linear devices dedicated to fundamental physics studies, and hybrid transitions that bridge multiple configurations. The participants represent facilities on which significant experiments are now underway: FRC Injection experiment (FIX), Translation Confinement experiment (TCS), Nihon-University Compact Torus Experiment (NUCTE), HITSI (Helicity Injection experiment, Steady Inductive Helicity Injection (HIT-SIHI)), Field Reversed Configuration experiment-Liner (FRX-L), TS-3/4, Sustained Spheromak Experiment (SSPX), Relaxation Scaling Experiment (RSX), HIST, Caltech Spheromak, or in the design process such as MRX-FRC (PPPL), Pulsed High Density experiment (PHD at UW). Several new directions and results in compact toroid (CT) research have recently emerged, including neutral-beam injection, rotating magnetic fields, flux build up from Ohmic boost coils, electrostatic helicity injection techniques, CT injection into other large devices, and high density configurations for applications to magnetized target fusion and translational compression of CT's. CT experimental programs in both the US and Japan have also shown substantial progress in the control and sustainment of CT's. Both in theory and experiment, there is increased emphasis on 3D dynamics, which is also related to astrophysical and space physics issues. 3D data visualization is now frequently used for experimental data display. There was much discussion of the effects of weak toroidal fields in FRC's and possible implications

  4. Damping of toroidal ion temperature gradient modes

    Energy Technology Data Exchange (ETDEWEB)

    Sugama, H. [National Inst. for Fusion Science, Toki, Gifu (Japan)

    1999-04-01

    The temporal evolution of linear toroidal ion temperature gradient (ITG) modes is studied based on a kinetic integral equation including an initial condition. It is shown how to evaluate the analytic continuation of the integral kernel as a function of a complex-valued frequency, which is useful for analytical and numerical calculations of the asymptotic damping behavior of the ITG mode. In the presence of the toroidal {nabla}B-curvature drift, the temporal dependence of the density and potential perturbations consists of normal modes and a continuum mode, which correspond to contributions from poles and from an integral along a branch cut, respectively, of the Laplace-transformed potential function of the complex-valued frequency. The normal modes have exponential time dependence with frequencies and growth rates determined by the dispersion relation while the continuum mode, which has a ballooning structure, shows a power law decay {proportional_to} t{sup -2} in the asymptotic limit, where t is the time variable. Therefore, the continuum mode dominantly describes the long-time asymptotic behavior of the density and potential perturbations for the stable system where all normal modes have negative growth rates. By performing proper analytic continuation for the homogeneous version of the kinetic integral equation, dependences of the normal modes` growth rate, real frequency, and eigenfunction on {eta}{sub i} (the ratio of the ion temperature gradient to the density gradient), k{sub {theta}} (the poloidal wavenumber), s (the magnetic shear parameter), and {theta}{sub k} (the ballooning angle corresponding to the minimum radial wavenumber) are numerically obtained for both stable and unstable cases. (author)

  5. Coil Optimization for HTS Machines

    DEFF Research Database (Denmark)

    Mijatovic, Nenad; Jensen, Bogi Bech; Abrahamsen, Asger Bech;

    An optimization approach of HTS coils in HTS synchronous machines (SM) is presented. The optimization is aimed at high power SM suitable for direct driven wind turbines applications. The optimization process was applied to a general radial flux machine with a peak air gap flux density of ~3T....... The proposed coil design is optimized with respect to minimizing the perpendicular field while still maximizing the amplitude of fundamental space harmonic. This guarantees the lowest HTS loss density and best utilization of expensive HTS material in the field winding of the SM. Additionally, accounting...

  6. The impact of acceleration on barrel/launch package design

    International Nuclear Information System (INIS)

    This paper discusses the impact of launch acceleration on the design of electromagnetic launcher barrels and on the design of associated launch packages. This is of particular interest because launch package size and mass directly affect the overall armament system size and mass. A common design approach is to use as the peak launch acceleration, the maximum acceleration which the projectile can be designed to withstand. While this approach will minimize barrel length, it may also yield an excessively large overall system size and mass, especially for the long, slender projectile configurations which are desired for high aero-thermal and terminal ballistics performance. An alternate design approach is described which balances the goals of reducing barrel length with reducing launch package mass. Results illustrate the benefits of this balanced design approach on overall armament system size and mass

  7. Cholinergic signals in mouse barrel cortex during active whisker sensing.

    Science.gov (United States)

    Eggermann, Emmanuel; Kremer, Yves; Crochet, Sylvain; Petersen, Carl C H

    2014-12-11

    Internal brain states affect sensory perception, cognition, and learning. Many neocortical areas exhibit changes in the pattern and synchrony of neuronal activity during quiet versus active behaviors. Active behaviors are typically associated with desynchronized cortical dynamics. Increased thalamic firing contributes importantly to desynchronize mouse barrel cortex during active whisker sensing. However, a whisking-related cortical state change persists after thalamic inactivation, which is mediated at least in part by acetylcholine, as we show here by using whole-cell recordings, local pharmacology, axonal calcium imaging, and optogenetic stimulation. During whisking, we find prominent cholinergic signals in the barrel cortex, which suppress spontaneous cortical activity. The desynchronized state of barrel cortex during whisking is therefore driven by at least two distinct signals with opposing functions: increased thalamic activity driving glutamatergic excitation of the cortex and increased cholinergic input suppressing spontaneous cortical activity.

  8. Cholinergic Signals in Mouse Barrel Cortex during Active Whisker Sensing

    Directory of Open Access Journals (Sweden)

    Emmanuel Eggermann

    2014-12-01

    Full Text Available Internal brain states affect sensory perception, cognition, and learning. Many neocortical areas exhibit changes in the pattern and synchrony of neuronal activity during quiet versus active behaviors. Active behaviors are typically associated with desynchronized cortical dynamics. Increased thalamic firing contributes importantly to desynchronize mouse barrel cortex during active whisker sensing. However, a whisking-related cortical state change persists after thalamic inactivation, which is mediated at least in part by acetylcholine, as we show here by using whole-cell recordings, local pharmacology, axonal calcium imaging, and optogenetic stimulation. During whisking, we find prominent cholinergic signals in the barrel cortex, which suppress spontaneous cortical activity. The desynchronized state of barrel cortex during whisking is therefore driven by at least two distinct signals with opposing functions: increased thalamic activity driving glutamatergic excitation of the cortex and increased cholinergic input suppressing spontaneous cortical activity.

  9. Correcting the Chromatic Aberration in Barrel Distortion of Endoscopic Images

    Directory of Open Access Journals (Sweden)

    Y. M. Harry Ng

    2003-04-01

    Full Text Available Modern endoscopes offer physicians a wide-angle field of view (FOV for minimally invasive therapies. However, the high level of barrel distortion may prevent accurate perception of image. Fortunately, this kind of distortion may be corrected by digital image processing. In this paper we investigate the chromatic aberrations in the barrel distortion of endoscopic images. In the past, chromatic aberration in endoscopes is corrected by achromatic lenses or active lens control. In contrast, we take a computational approach by modifying the concept of image warping and the existing barrel distortion correction algorithm to tackle the chromatic aberration problem. In addition, an error function for the determination of the level of centroid coincidence is proposed. Simulation and experimental results confirm the effectiveness of our method.

  10. First two barrel ECAL supermodules inserted in CMS HCAL

    CERN Multimedia

    K.Bell

    2006-01-01

    The first two barrel "supermodules" for the CMS Electromagnetic Calorimeter (ECAL) have been inserted into the barrel hadron calorimeter (HCAL) in the experimental hall (called SX5) in Cessy in preparation for the forthcoming magnet test and cosmic challenge (MTCC). Each of the two supermodules contains 1700 lead tungstate crystals in glass-fibre alveolar support structures, with associated avalanche photodiodes (APDs, for scintillation light detection), electronics and cooling system. The barrel ECAL will consist of 36 supermodules, many of which have already been produced (see CERN Bulletin 17-18, 2006). Team from CMS ECAL, CMS Integration and CEA-DAPNIA were involved in the insertion, with the production/integration of the supermodules themselves involving many technicians, engineers and physicists from many institutes. From left to right: Olivier Teller, Maf Alidra and Lucien Veillet.

  11. Simulation and reconstruction of the PANDA Barrel DIRC

    Energy Technology Data Exchange (ETDEWEB)

    Dzhygadlo, R., E-mail: r.dzhygadlo@gsi.de [GSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt (Germany); Gerhardt, A.; Götzen, K.; Hohler, R.; Kalicy, G.; Kumawat, H.; Lehmann, D.; Lewandowski, B.; Patsyuk, M.; Peters, K.; Schepers, G.; Schmitt, L.; Schwarz, C.; Schwiening, J.; Traxler, M.; Zühlsdorf, M. [GSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt (Germany); Dodokhov, V.Kh. [Joint Institute for Nuclear Research, Dubna (Russian Federation); Britting, A.; Eyrich, W.; Lehmann, A. [Friedrich Alexander-University of Erlangen-Nuremberg, Erlangen (Germany); and others

    2014-12-01

    Hadronic particle identification (PID) in the barrel region of the PANDA experiment at the new Facility for Antiproton and Ion Research in Europe (FAIR) at GSI, Darmstadt will be provided by a DIRC (Detection of Internally Reflected Cherenkov light) counter. To optimize the performance and reduce the detector cost, detailed simulations of different design elements, such as the width of the radiators, the shape of the expansion volume, and the type of focusing system, were performed using Geant. Custom reconstruction algorithms were developed to match the detector geometry. We will discuss the single photon resolution and photon yield as well as the PID performance for the Barrel DIRC baseline design and several detector design options. - Highlights: • Simulation of the PANDA Barrel DIRC with different design options has been performed. • A design with narrow bars and focusing system meets the PANDA PID goals. • Two reconstruction approaches were developed. • A time-based imaging reconstruction method shows promising results.

  12. Small arms mini-fire control system: fiber-optic barrel deflection sensor

    Energy Technology Data Exchange (ETDEWEB)

    Rajic, Slobodan [ORNL; Datskos, Panos G [ORNL

    2012-01-01

    Traditionally the methods to increase firearms accuracy, particularly at distance, have concentrated on barrel isolation (free floating) and substantial barrel wall thickening to gain rigidity. This barrel stiffening technique did not completely eliminate barrel movement but the problem was significantly reduced to allow a noticeable accuracy enhancement. This process, although highly successful, came at a very high weight penalty. Obviously the goal would be to lighten the barrel (firearm), yet achieve even greater accuracy. Thus, if lightweight barrels could ultimately be compensated for both their static and dynamic mechanical perturbations, the result would be very accurate, yet significantly lighter weight, weapons. We discuss our development of a barrel reference sensor system that is designed to accomplish this ambitious goal. Our optical fiber-based sensor monitors the barrel muzzle position and autonomously compensates for any induced perturbations. The reticle is electronically adjusted in position to compensate for the induced barrel deviation in real time.

  13. Toroidal Spiral Strings in Higher-dimensional Spacetime

    CERN Document Server

    Igata, Takahisa

    2010-01-01

    We report on our progress in research of separability of the Nambu-Goto equation for test strings with a symmetric configuration in a shape of toroidal spiral in a five-dimensional Kerr-AdS black hole. In particular, for a Hopf loop string which is a special class of the toroidal spirals, we show the complete separation of variables occurs in two cases, Kerr background and Kerr-AdS background with equal angular momenta. We also obtain the dynamical solution for the Hopf loop around a black hole and for the general toroidal spiral in Minkowski background.

  14. Toroidal dipole resonances in the relativistic random phase approximation

    CERN Document Server

    Vretenar, D; Ring, P

    2002-01-01

    The isoscalar toroidal dipole strength distributions in spherical nuclei are calculated in the framework of a fully consistent relativistic random phase approximation, based on effective mean-field Lagrangians with nonlinear meson self-interaction terms. It is suggested that the recently observed "low-lying component of the isoscalar dipole mode" might in fact correspond to the toroidal giant dipole resonance. Although predicted by several theoretical models, the existence of toroidal resonances has not yet been confirmed in experiment. In the present analysis the vortex dynamics of these states is displayed by the corresponding velocity fields.

  15. Kinetic effect of toroidal rotation on the geodesic acoustic mode

    Energy Technology Data Exchange (ETDEWEB)

    Guo, W., E-mail: wfguo@ipp.ac.cn; Ye, L.; Zhou, D.; Xiao, X. [Institute of Plasma Physics, Chinese Academy of Science, Hefei, Anhui 230031 (China); Wang, S. [Department of Modern Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China)

    2015-01-15

    Kinetic effects of the toroidal rotation on the geodesic acoustic mode are theoretically investigated. It is found that when the toroidal rotation increases, the damping rate increases in the weak rotation regime due to the rotation enhancement of wave-particle interaction, and it decreases in the strong rotation regime due to the reduction of the number of resonant particles. Theoretical results are consistent with the behaviors of the geodesic acoustic mode recently observed in DIII-D and ASDEX-Upgrade. The kinetic damping effect of the rotation on the geodesic acoustic mode may shed light on the regulation of turbulence through the controlling the toroidal rotation.

  16. Performance of a Folded-Strip Toroidally Wound Induction Machine

    DEFF Research Database (Denmark)

    Jensen, Bogi Bech; Jack, Alan G.; Atkinson, Glynn J.;

    2011-01-01

    This paper presents the measured experimental results from a four-pole toroidally wound induction machine, where the stator is constructed as a pre-wound foldable strip. It shows that if the machine is axially restricted in length, the toroidally wound induction machine can have substantially...... shorter stator end-windings than conventionally wound induction machines, and hence that a toroidally wound induction machine can have lower losses and a higher efficiency. The paper also presents the employed construction method, which emphasizes manufacturability, and highlights the advantages...

  17. Laser-induced production of large carbon-based toroids

    International Nuclear Information System (INIS)

    We report on the production of large carbon-based toroids (CBTs) from fullerenes. The process involves two-step laser irradiation of a mixed fullerene target (76% C60, 22% C70). Transmission electron microscopy (TEM) clearly identifies toroidal-shaped structures as well as Q-shaped constructs. The typical diameters of the CBTs are ∼0.2-0.3 μm with tubular diameters of ∼50-100 nm, but toroids as wide as 0.5 μm are observed making them nanostructures on the verge of being microstructures

  18. Finite element coiled cochlea model

    Science.gov (United States)

    Isailovic, Velibor; Nikolic, Milica; Milosevic, Zarko; Saveljic, Igor; Nikolic, Dalibor; Radovic, Milos; Filipović, Nenad

    2015-12-01

    Cochlea is important part of the hearing system, and thanks to special structure converts external sound waves into neural impulses which go to the brain. Shape of the cochlea is like snail, so geometry of the cochlea model is complex. The simplified cochlea coiled model was developed using finite element method inside SIFEM FP7 project. Software application is created on the way that user can prescribe set of the parameters for spiral cochlea, as well as material properties and boundary conditions to the model. Several mathematical models were tested. The acoustic wave equation for describing fluid in the cochlea chambers - scala vestibuli and scala timpani, and Newtonian dynamics for describing vibrations of the basilar membrane are used. The mechanical behavior of the coiled cochlea was analyzed and the third chamber, scala media, was not modeled because it does not have a significant impact on the mechanical vibrations of the basilar membrane. The obtained results are in good agreement with experimental measurements. Future work is needed for more realistic geometry model. Coiled model of the cochlea was created and results are compared with initial simplified coiled model of the cochlea.

  19. Application of the Integrated-Blanket-Coil concept to a compact reversed-field pinch reactor

    International Nuclear Information System (INIS)

    The Integrated-Blanket-Coil (IBC) concept has been examined in the context of a compact reversed-field pinch (RFP) fusion reactor. The IBC approach is novel in that the functions of the blanket (tritium breeding and energy recovery) and the coil (magnetic field production) are fulfilled in a single component. This combination of functions is accomplished by using lithium metal as the coolant, breeding medium, and electrical conductor. Economics and physics modeling indicates that the toroidal field and divertor coil systems are appropriate applications for IBC components. Conceptual designs for the TF-IBC and IBC divertor systems are developed, based on parameters generated by the TITAN RFP Reactor Design Study. Design of the IBC divertor is similar to the TF-IBC, but with the added concern for proper mapping of the field lines. Improved magnetic coupling and additional energy recovery and tritium breeding enhance the attractiveness of the IBC divertor relative to copper coils. Both the TF and divertor IBC systems are capable of operating compatibly with the Oscillating Field Current Drive (OFCD). The conceptual design process indicates that the TF-IBC and IBC divertor are technically feasible. As such, they represent viable alternatives for a compact RFP reactor

  20. Design issues of the TF AC/DC converter for the ITER coil power supply system

    International Nuclear Information System (INIS)

    The ITER Toroidal Field (TF) coil system is composed of 18 series-connected superconductor coils (L=17.5 Henry), related protection circuits, and an AC/DC converter. The converter for the TF coil system is a 12-pulse and 2-quadrant converter with the two thyristor bridges connected in parallel through the inter-phase reactor. The rated current of the converter is 68 kA, and no-load output voltage is 900 V when 66 kV AC input is used. Because ITER is a pulse system that uses huge power during the pulse, there are additional critical issues in designing the AC/DC converters. In this study the following issues in designing the TF AC/DC converter are discussed to improve the characteristics of the TF coil system; - Fault current issues related with AC input voltage and operational scenario. - Junction temperatures during the faults and the thyristor numbers per an arm. - Efficient and reliable bypass method including resuming. - Protection sequence for the fault conditions. - Reactive power reduction method. - Estimation of the optimum inductance of the DC Reactor (DCR)

  1. Design and modelling of a SMES coil

    Science.gov (United States)

    Yuan, Weijia; Campbell, A. M.; Coombs, T. A.

    2010-06-01

    The design of a Superconducting Magnetic Energy Storage (SMES) coil wound by coated conductors has been presented. Based on an existing model for coated conductor pancake coils, this paper analysed the magnetic field and current density distribution of the coil at two different operation temperatures, 77K and 22K. A comparison table of the critical currents and AC losses at these two temperatures has been presented. Several steps to improve the transport current of the coil have been suggested as well.

  2. MR angiography after coiling of intracranial aneurysms

    OpenAIRE

    Schaafsma, J.D.

    2012-01-01

    Introduction Endovascular occlusion with detachable coils has become an alternative treatment to neurosurgical clipping of intracranial aneurysms over the last two decades. Its minimal invasiveness is the most important advantage of this treatment compared to clipping. The disadvantage of occlusion with coils is an approximately 20% risk of reopening of the aneurysm as a result of coil impaction, dissolution of thrombus, or growth of the aneurysm and 10% of coiled patients need additional tre...

  3. Rotor assembly including superconducting magnetic coil

    Energy Technology Data Exchange (ETDEWEB)

    Snitchler, Gregory L. (Shrewsbury, MA); Gamble, Bruce B. (Wellesley, MA); Voccio, John P. (Somerville, MA)

    2003-01-01

    Superconducting coils and methods of manufacture include a superconductor tape wound concentrically about and disposed along an axis of the coil to define an opening having a dimension which gradually decreases, in the direction along the axis, from a first end to a second end of the coil. Each turn of the superconductor tape has a broad surface maintained substantially parallel to the axis of the coil.

  4. A Methodology for Characterizing Gun Barrel Flexure due to Vehicle Motion

    Directory of Open Access Journals (Sweden)

    Mark Bundy

    2001-01-01

    Full Text Available Barrel centerline curvature is known to influence the location of projectile shot impacts. Superimposed on the unique manufactured barrel centerline is the flexed barrel shape that can occur prior to firing while the vehicle is on the move. In order to understand and quantify the effects of barrel flexure on gun accuracy, it is necessary to determine what combination of fundamental mode shapes is most likely to occur. A method to accomplish this task is described in this paper. The method is demonstrated by enumerating the 10 most likely flexed barrel shapes that were found to occur in a tank-mounted gun barrel while it traversed a bump course.

  5. Influence of toroidal rotation on resistive tearing modes in tokamaks

    Energy Technology Data Exchange (ETDEWEB)

    Wang, S.; Ma, Z. W., E-mail: zwma@zju.edu.cn [Institute for Fusion Theory and Simulation, Zhejiang University, Hangzhou 310027 (China)

    2015-12-15

    Influence of toroidal equilibrium plasma rotation on m/n = 2/1 resistive tearing modes is studied numerically using a 3D toroidal MHD code (CLT). It is found that the toroidal rotation with or without shear can suppress the tearing instability and the Coriolis effect in the toroidal geometry plays a dominant role on the rotation induced stabilization. For a high viscosity plasma (τ{sub R}/τ{sub V} ≫ 1, where τ{sub R} and τ{sub V} represent resistive and viscous diffusion time, respectively), the effect of the rotation shear combined with the viscosity appears to be stabilizing. For a low viscosity plasmas (τ{sub R}/τ{sub V} ≪ 1), the rotation shear shows a destabilizing effect when the rotation is large.

  6. Influence of toroidal rotation on resistive tearing modes in tokamaks

    Science.gov (United States)

    Wang, S.; Ma, Z. W.

    2015-12-01

    Influence of toroidal equilibrium plasma rotation on m/n = 2/1 resistive tearing modes is studied numerically using a 3D toroidal MHD code (CLT). It is found that the toroidal rotation with or without shear can suppress the tearing instability and the Coriolis effect in the toroidal geometry plays a dominant role on the rotation induced stabilization. For a high viscosity plasma (τR/τV ≫ 1, where τR and τV represent resistive and viscous diffusion time, respectively), the effect of the rotation shear combined with the viscosity appears to be stabilizing. For a low viscosity plasmas (τR/τV ≪ 1), the rotation shear shows a destabilizing effect when the rotation is large.

  7. Toroidicity Dependence of Tokamak Edge Safety Factor and Shear

    Institute of Scientific and Technical Information of China (English)

    SHIBingren

    2002-01-01

    In large tokamak device and reactor designs, the relationship between the toroidal current and the edge safety factor is very important because this will determine the eventual device or reactor size according to MHD stability requirements. In many preliminary

  8. Effect of toroidicity during lower hybrid mode conversion

    International Nuclear Information System (INIS)

    The effect of toroidicity during lower hybrid mode conversion is examined by treating the wave propagation in an inhomogeneous medium as an eigenvalue problem for ω2(m,n),m,n poloidal and toroidal wave numbers. Since the frequency regime near ω2 = ω/sub LH/2 is an accumulation point for the eigenvalue spectrum, the degenerate perturbation technique must be applied. The toroidal eigenmodes are constructed by a zeroth order superposition of monochromatic solutions with different poloidal dependence m, thus they generically exhibit a wide spectrum in k/sub parallel/ for given fixed ω2 even for small inverse aspect ratio epsilon. In case that the average is in the neighborhood of k/sub min/, the minimum wave number for accessibility of the mode conversion regime, it is expected that excitation of toroidal modes rather than geometric optics will determine the wave coupling to the plasma

  9. CMS detects the first muons crossing two barrel sectors

    CERN Multimedia

    Franco Gonella

    2006-01-01

    These are some snapshots from the first cosmic muons crossing sectors 11 and 10 of the CMS barrel wheel YB+2. Five chambers were powered up using the final HV system. With a trigger rate of about 1 Hz, over 26000 events were collected in about 6 hours.

  10. End of the EM Barrel Presampler Construction and Insertion

    CERN Multimedia

    Hostachy, J.Y.

    The liquid argon barrel presampler is a thin detector placed in front of the electromagnetic barrel calorimeter, made up of two half barrels also, but with 32 sectors per half barrel instead of 16. Each of these 64 sectors is 3.1 m long, 28 cm large and 2.9 cm thick. Three countries took part in its construction: France (LPSC-Grenoble), Sweden (KTH-Stockholm) and Morocco (Hassan II Ain Chock-Casablanca and Mohamed V-Rabat universities, and CNESTEN-Rabat). The design of the presampler started 11 years ago and the series production began at the end of 2000. Cabling, mechanical and electronic tests of the anodes were achieved in Morocco. Forty-one sectors were assembled and validated at the LPSC-Grenoble and 25 at the KTH-Stockholm. In November 2002, the first half was inserted on the inner face of the first EM calorimeter wheel. The insertion of the other 32 sectors in the second EM calorimeter wheel was achieved in July 2003 (see pictures). The production of two additional sectors will allow us to study the p...

  11. Barrelettes without barrels in the American water shrew.

    Directory of Open Access Journals (Sweden)

    Kenneth C Catania

    Full Text Available Water shrews (Sorex palustris depend heavily on their elaborate whiskers to navigate their environment and locate prey. They have small eyes and ears with correspondingly small optic and auditory nerves. Previous investigations have shown that water shrew neocortex is dominated by large representations of the whiskers in primary and secondary somatosensory cortex (S1 and S2. Flattened sections of juvenile cortex processed for cytochrome oxidase revealed clear borders of the whisker pad representation in S1, but no cortical barrels. We were therefore surprised to discover prominent barrelettes in brainstem of juvenile water shrews in the present investigation. These distinctive modules were found in the principal trigeminal nucleus (PrV, and in two of the three spinal trigeminal subnuclei (interpolaris--SpVi and caudalis--SpVc. Analysis of the shrew's whisker pad revealed the likely relationship between whiskers and barrelettes. Barrelettes persisted in adult water shrew PrV, but barrels were also absent from adult cortex. Thus in contrast to mice and rats, which have obvious barrels in primary somatosensory cortex and less clear barrelettes in the principal nucleus, water shrews have clear barrelettes in the brainstem and no barrels in the neocortex. These results highlight the diverse ways that similar mechanoreceptors can be represented in the central nervous systems of different species.

  12. Measurement Technology on 200 Liters Barrels of Radioactive Waste

    Institute of Scientific and Technical Information of China (English)

    BAI; Lei; SHAO; Jie-wen; LIU; Da-ming; LIU; Hong-bin; CHENG; Yi-mei; HE; Li-xia; ZHU; Li-qun

    2012-01-01

    <正>The measurement device on 200 liters barrel of radioactive waste is designed following the rule of orderly measurement automatically, by using the technology of non-destructive to measure the mass of radioactive waste produced from fuel cycle. Device objects as shown in Fig. 1, which consists of the

  13. Increasing the load bearing capacity of barrel vaults

    NARCIS (Netherlands)

    Kamerling, M.W.

    2011-01-01

    Just after World War II many barrel vaults and domes were built with a structural system, known as Fusée Ceramique. This paper analyses the load bearing capacity of these vaults. Schemes, theories, idealizations and assumptions are analysed, validated and discussed. Methods to increase the load bear

  14. New results in meson spectroscopy from the crystal barrel experiment

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, C.A. [Carnegie Mellon Univ., Pittsburgh, PA (United States)

    1994-04-01

    Recent observations by the Crystal Barrel experiment of two scalar resonances, f{sub o}(1365) and a{sub o}(1450) have allowed the authors to clarify the members of the scalar nonet. In addition, a third scalar, f{sub o}(1500), appears to be supernumerary, and is a candidate for the scalar glueball expected near 1500 MeV.

  15. Numerical solution of quasilinear kinetic diffusion equations in toroidal plasmas

    OpenAIRE

    Höök, Lars Josef

    2013-01-01

    One of the main challenges for the realization of a working fusion power plant is an increased detailed understanding of kinetic phenomena in toroidal plasmas. The tokamak is a toroidal, magnetically confined plasma device and is currently the main line towards a power plant. The spatial and temporal scales in a tokamak plasma are extreme and the only tractable path for quantitative studies is to rely on computer simulations. Present day simulation codes can resolve only some of these scales....

  16. Relation of E1 pygmy and toroidal resonances

    CERN Document Server

    Nesterenko, V O; Reinhard, P -G; Kvasil, J

    2014-01-01

    A possible relation of the low-lying E1 (pygmy resonance) and toroidal strengths is analyzed by using Skyrme-RPA results for the strength functions, transition densities and current fields in $^{208}$Pb. It is shown that the irrotational pygmy motion can appear as a local manifestation of the collective vortical toroidal dipole resonance (TDR) at the nuclear surface. The RPA results are compared to unperturbed (1ph) ones.

  17. Low-aspect-ratio toroidal equilibria of electron clouds

    International Nuclear Information System (INIS)

    Toroidal electron clouds with a low aspect ratio (as small as 1.3) and lasting for thousands of poloidal rotation periods have been formed in the laboratory. Characteristic toroidal effects like a large inward shift of the minor axis of equipotential contours, elliptical and triangular deformations, etc., have been observed experimentally for the first time. The results of new analytic and numerical investigations of low-aspect-ratio electron cloud equilibria, which reproduce many of the observed features, are also presented

  18. Coil Migration through a Neuroform 3 Stent during Endovascular Coiling. A Case Report.

    LENUS (Irish Health Repository)

    O'Hare, A

    2009-07-29

    Summary: A 43-year-old woman attended for stent assisted coiling. A Neuroform 30 x 4.5 mm stent had been successfully placed over the left periophthalmic aneurysm. During the coiling the first coil migrated through the crowns in the stent, lodging at the MCA bifurcation. We believe that the coil herniated through the overlying stent due to the carotid siphon curvature and the open cell design. Furthermore the distal markers of the stent impeded coil extraction with a MERCI device.

  19. Confinement and heating of high beta plasma with emphasis on compact toroids. Compact toroid research

    International Nuclear Information System (INIS)

    Two older projects associated with very high energy density plasmas, specifically the High Density Field Reversed Configuration and the Liner Plasma Compression Experiment, have been completed. Attention has been turned to compact toroid experiments of more conventional density, and three experiments have been initiated. These include the Coaxial Slow Source Experiment, the Variable Length FRC Experiment, and Variable Angle CthetaP Experiment. In each case, the project was begun in order to provide basic plasma physics information on specific unresolved issues of progammatic importance to the national CT Program

  20. Experimental study of high beta toroidal plasmas

    International Nuclear Information System (INIS)

    Experiments on the Wisconsin Levitated Toroidal Octupole have produced a wide range of stable high β plasmas with β significantly above single fluid MHD theory predictions. A stable β approx. 8% plasma, twice the fluid limit, is obtained with 5 rho/sub i/ approx. L/sub n/ and tau/sub β/ approx. = 6000 tau/sub Alfven/ = 600 μsec. The enhanced stability is explained with a kinetic treatment that includes the effect of finite ion gyroradius which couples the ballooning mode to an ion drift wave. In a more collisional, large gyroradius (2 rho/sub i/ approx. L/sub n/) regime, a stable β approx. 35% plasma is obtained with a decay time of 1000 Alfven times. Measurement of the equilibrium magnetic field in this regime indicates that the diamagnetic current density is five times smaller than predicted by ideal MHD, probably due to ion gyroviscosity. Particle transport is anomalous and ranges from agreement with the classical diffusion rate at the highest beta, lowest field plasma (B/sub P/ = 200 G), to thirteen times the classical rate in a β=11%, high field plasma (B/sub P/ = 860 G) where the level of enhancement increase with magnetic field. Fluctuations in density, electrostatic potential, and magnetic field have been studied in plasmas with β from 0.1% to 40%

  1. Compact toroid injection into C-2U

    Science.gov (United States)

    Roche, Thomas; Gota, H.; Garate, E.; Asai, T.; Matsumoto, T.; Sekiguchi, J.; Putvinski, S.; Allfrey, I.; Beall, M.; Cordero, M.; Granstedt, E.; Kinley, J.; Morehouse, M.; Sheftman, D.; Valentine, T.; Waggoner, W.; the TAE Team

    2015-11-01

    Sustainment of an advanced neutral beam-driven FRC for a period in excess of 5 ms is the primary goal of the C-2U machine at Tri Alpha Energy. In addition, a criteria for long-term global sustainment of any magnetically confined fusion reactor is particle refueling. To this end, a magnetized coaxial plasma-gun has been developed. Compact toroids (CT) are to be injected perpendicular to the axial magnetic field of C-2U. To simulate this environment, an experimental test-stand has been constructed. A transverse magnetic field of B ~ 1 kG is established (comparable to the C-2U axial field) and CTs are fired across it. As a minimal requirement, the CT must have energy density greater than that of the magnetic field it is to penetrate, i.e., 1/2 ρv2 >=B2 / 2μ0 . This criteria is easily met and indeed the CTs traverse the test-stand field. A preliminary experiment on C-2U shows the CT also capable of penetrating into FRC plasmas and refueling is observed resulting in a 20 - 30% increase in total particle number per single-pulsed CT injection. Results from test-stand and C-2U experiments will be presented.

  2. Toroidal bubble entrapment under an impacting drop

    Science.gov (United States)

    Thoraval, Marie-Jean; Thoroddsen, Sigurdur T.; Takehara, Kohsei; Etoh, Takeharu Goji

    2012-11-01

    We use ultra-high-speed imaging and numerical simulations (GERRIS, http://gfs.sf.net) to observe and analyze the formation of up to 14 air tori when a water drop impacts on a thin liquid film of water or other miscible liquids. They form during the early contact between the drop and the pool by the vertical oscillations of the ejecta sheet. They then break in micro-bubble rings by the Rayleigh instability. Their formation is associated with the shedding of an axisymmetric vortex street into the liquid from the free surface. These vorticity structures and their dynamics are made apparent by the dynamics of the micro-bubbles, added seed particles and the difference of refractive index for different liquids in the drop and the pool. More robust entrapments are observed for a thin film of ethanol or methanol. We show that while the non-spherical drop shape is not responsible for the toroidal bubble entrapments, the number of rings is increasing for more oblate drops. Individual bubble entrapments are also observed from azimuthal destabilizations of the neck between the drop and the pool.

  3. Tearing Mode Stability of Evolving Toroidal Equilibria

    Science.gov (United States)

    Pletzer, A.; McCune, D.; Manickam, J.; Jardin, S. C.

    2000-10-01

    There are a number of toroidal equilibrium (such as JSOLVER, ESC, EFIT, and VMEC) and transport codes (such as TRANSP, BALDUR, and TSC) in our community that utilize differing equilibrium representations. There are also many heating and current drive (LSC and TORRAY), and stability (PEST1-3, GATO, NOVA, MARS, DCON, M3D) codes that require this equilibrium information. In an effort to provide seamless compatibility between the codes that produce and need these equilibria, we have developed two Fortran 90 modules, MEQ and XPLASMA, that serve as common interfaces between these two classes of codes. XPLASMA provides a common equilibrium representation for the heating and current drive applications while MEQ provides common equilibrium and associated metric information needed by MHD stability codes. We illustrate the utility of this approach by presenting results of PEST-3 tearing stability calculations of an NSTX discharge performed on profiles provided by the TRANSP code. Using the MEQ module, the TRANSP equilibrium data are stored in a Fortran 90 derived type and passed to PEST3 as a subroutine argument. All calculations are performed on the fly, as the profiles evolve.

  4. Sawtooth Instability in the Compact Toroidal Hybrid

    Science.gov (United States)

    Herfindal, J. L.; Maurer, D. A.; Hartwell, G. J.; Ennis, D. A.; Knowlton, S. F.

    2015-11-01

    Sawtooth instabilities have been observed in the Compact Toroidal Hybrid (CTH), a current-carrying stellarator/tokamak hybrid device. The sawtooth instability is driven by ohmic heating of the core plasma until the safety factor drops below unity resulting in the growth of an m = 1 kink-tearing mode. Experiments varying the vacuum rotational transform from 0.02 to 0.13 are being conducted to study sawtooth property dependance on vacuum flux surface structure. The frequency of the sawtooth oscillations increase from 2 kHz to 2.8 kHz solely due the decrease in rise time of the oscillation, the crash time is unchanged. CTH has three two-color SXR cameras, a three-channel 1mm interferometer, and a new bolometer system capable of detecting the signatures of sawtooth instabilities. The new bolometer system consists of two cameras, each containing a pair of diode arrays viewing the plasma directly or through a beryllium filter. Electron temperature measurements are found with the two-color SXR cameras through a ratio of the SXR intensities. Impurity radiation can drastically affect the electron temperature measurement, therefore new filters consisting of aluminum and carbon were selected to avoid problematic line radiation while maximizing the signal for a 100 eV plasma. This work is supported by U.S. Department of Energy Grant No. DE-FG02-00ER54610.

  5. Pseudo-Anosov flows in toroidal manifolds

    CERN Document Server

    Barbot, Thierry

    2010-01-01

    We first prove rigidity results for pseudo-Anosov flows in prototypes of toroidal 3-manifolds: we show that a pseudo-Anosov in a Seifert fibered manifold is up to finite covers topologically conjugate to a geodesic flow. We also show that a pseudo-Anosov flow in a solv manifold is topologically conjugate to a suspension Anosov flow. Then we analyse immersed and embedded incompressible tori in optimal position with respect to a pseudo-Anosov flow. We also study the interaction of a pseudo-Anosov flow with possible Seifert fibered pieces in the torus decomposition: if the fiber is associated to a periodic orbit of the flow, we produce a standard form for the flow in the piece using Birkhoff annuli. Finally we introduce several new classes of examples, some of which are generalized pseudo-Anosov flows which have one prong singularities. The examples show that the results above in Seifert fibered and solvable manifolds do not apply to one prong pseudo-Anosov flows. In addition we also construct a large new class ...

  6. Turbulent Equipartition Theory of Toroidal Momentum Pinch

    Energy Technology Data Exchange (ETDEWEB)

    T.S. Hahm, P.H. Diamond, O.D. Gurcan, and G. Rewaldt

    2008-01-31

    The mode-independet part of magnetic curvature driven turbulent convective (TuroCo) pinch of the angular momentum density [Hahm et al., Phys. Plasmas 14,072302 (2007)] which was originally derived from the gyrokinetic equation, can be interpreted in terms of the turbulent equipartition (TEP) theory. It is shown that the previous results can be obtained from the local conservation of "magnetically weighted angular momentum density," nmi U|| R/B2, and its homogenization due to turbulent flows. It is also demonstrated that the magnetic curvature modification of the parallel acceleration in the nonlinear gyrokinetic equation in the laboratory frame, which was shown to be responsible for the TEP part of the TurCo pinch of angular momentum density in the previous work, is closely related to the Coriolis drift coupling to the perturbed electric field. In addition, the origin of the diffusive flux in the rotating frame is highlighted. Finally, it is illustratd that there should be a difference in scalings between the momentum pinch originated from inherently toroidal effects and that coming from other mechanisms which exist in a simpler geometry.

  7. ''Turbulent Equipartition'' Theory of Toroidal Momentum Pinch

    International Nuclear Information System (INIS)

    The mode-independent part of magnetic curvature driven turbulent convective (TuroCo) pinch of the angular momentum density (Hahm et al., Phys. Plasmas 14,072302 (2007)) which was originally derived from the gyrokinetic equation, can be interpreted in terms of the turbulent equipartition (TEP) theory. It is shown that the previous results can be obtained from the local conservation of 'magnetically weighted angular momentum density', nmi U#parallel# R/B2, and its homogenization due to turbulent flows. It is also demonstrated that the magnetic curvature modification of the parallel acceleration in the nonlinear gyrokinetic equation in the laboratory frame, which was shown to be responsible for the TEP part of the TurCo pinch of angular momentum density in the previous work, is closely related to the Coriolis drift coupling to the perturbed electric field. In addition, the origin of the diffusive flux in the rotating frame is highlighted. Finally, it is illustrated that there should be a difference in scalings between the momentum pinch originated from inherently toroidal effects and that coming from other mechanisms which exist in a simpler geometry.

  8. 3D blob dynamics in toroidal geometry

    DEFF Research Database (Denmark)

    Nielsen, Anders Henry; Reiser, Dirk

    In this paper we study the simple case of the dynamics of a density perturbation localized in the edge region of a medium sized tokamak in a full 3D geometry. The 2D evolution of such a perturbation has been studied in details on the low-field side, where the gradient of the magnetic field always...... dynamics in a full 3D tokamak geometry including the edge and SOL region as well. Previous studies with the ATTEMPT code proved that density blobs appear for typical parameters in the TEXTOR tokamak. The code has been prepared for flux driven simulations with detailed control of the blob initial state....... The DIESEL code is an extension of the ESEL code [1]. It solves a simple interchange model in full 3D tokamak geometry, where the toroidal direction is divided into a number of drift planes. On each drift plane the equations are solved in a domain corresponding to the full 2D cross section of the tokamak...

  9. Spontaneous toroidal flow generation due to negative effective momentum diffusivity

    Science.gov (United States)

    McMillan, Ben F.

    2015-02-01

    Spontaneous structure formation, and in particular, zonal flows, is observed in a broad range of natural and engineered systems, often arising dynamically as the saturated state of a linear instability. Flows in tokamaks are known to self-organise on small scales, but large scale toroidal flows also arise even when externally applied torques are zero. This has previously been interpreted as the result of small externally imposed breaking of a symmetry. However, we show that for large enough field line pitch, a robust spontaneous symmetry breaking occurs, leading to the generation of strong toroidal flow structures; parameters are typical of Spherical Tokamak discharges with reversed shear profiles. The short wavelength dynamics are qualitatively similar to the growth of poloidal flow structures, and toroidal flow gradients nonlinearly saturate at levels where the shearing rate is comparable to linear growth rate. On long wavelengths, we measure Prandtl numbers of around zero for these systems, in conjunction with the formation of structured toroidal flows, and we show that this is consistent with a model of momentum transport where fluxes act to reinforce small flow gradients: the effective momentum diffusivity is negative. Toroidal flow structures are largely unaffected by collisional damping, so this may allow toroidal bulk flows of order the ion thermal velocity to be maintained with zero momentum input. This phenomenon also provides a mechanism for the generation of localised meso-scale structures like transport barriers.

  10. Toroidal momentum pinch velocity due to the coriolis drift effect on small scale instabilities in a toroidal plasma.

    Science.gov (United States)

    Peeters, A G; Angioni, C; Strintzi, D

    2007-06-29

    In this Letter, the influence of the "Coriolis drift" on small scale instabilities in toroidal plasmas is shown to generate a toroidal momentum pinch velocity. Such a pinch results because the Coriolis drift generates a coupling between the density and temperature perturbations on the one hand and the perturbed parallel flow velocity on the other. A simple fluid model is used to highlight the physics mechanism and gyro-kinetic calculations are performed to accurately assess the magnitude of the pinch. The derived pinch velocity leads to a radial gradient of the toroidal velocity profile even in the absence of a torque on the plasma and is predicted to generate a peaking of the toroidal velocity profile similar to the peaking of the density profile. Finally, the pinch also affects the interpretation of current experiments.

  11. ANL experimental program for pulsed superconducting coils

    International Nuclear Information System (INIS)

    Argonne National Laboratory (ANL) had recognized the clear advantage of a superconducting ohmic-heating (OH) coil and started in aggressive development program in FY 1977. The main objectives for FY 1977 are to develop cryostable basic cable configurations with reasonably low ac losses, to develop 12 kA cryostable cable, using it to design and build a 1.5 MJ pulsed coil, and to develop a rather inexpensive large fiberglass reinforced helium cryostat for the 1.5 MJ pulsed coil. The principal objective in building the 1.5 MJ ac coil is to demonstrate ac cryostability of a large coil ranging from 2 T/s up to 12 T/s. Another objective in the pulsed coil program is to determine the feasibility of parallel coil operation in order to avoid excessive voltage and current requirements and to minimize the number of turns for the equilibrium field (EF) coils, should the EF coils be connected in parallel with the OH coils. A two-coil section model using the 11 kA cable will be built and tested

  12. Design of Radioactive Reference Barrels and Simulation Verification of Linear Source

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    Shell source method was used to prepare radioactive reference barrel for the calibration of gamma scan device because filling method in normal ways produces "hot" points easily and decrease the safety in transportation of the barrel.

  13. Effect of resonant magnetic perturbations with toroidal mode numbers of 4 and 6 on ELMs in single null H-mode plasmas in MAST

    OpenAIRE

    Kirk, A.; Chapman, I. T.; Harrison, J.; Liu, Yueqiang; Nardon, E; Saarelma, S.; Scannell, R.; Thornton, A. J.; team, the MAST

    2013-01-01

    The application of resonant magnetic perturbations (RMPs) with a toroidal mode number of n=4 or n=6 to lower single null plasmas in the MAST tokamak produces up to a factor of 5 increase in Edge Localized Mode (ELM) frequency and reduction in plasma energy loss associated with type-I ELMs. A threshold current for ELM mitigation is observed above which the ELM frequency increases approximately linearly with current in the coils. Despite a large scan of parameters, complete ELM suppression has ...

  14. Coiled transmission line pulse generators

    Energy Technology Data Exchange (ETDEWEB)

    McDonald, Kenneth Fox (Columbia, MO)

    2010-11-09

    Methods and apparatus are provided for fabricating and constructing solid dielectric "Coiled Transmission Line" pulse generators in radial or axial coiled geometries. The pour and cure fabrication process enables a wide variety of geometries and form factors. The volume between the conductors is filled with liquid blends of monomers, polymers, oligomers, and/or cross-linkers and dielectric powders; and then cured to form high field strength and high dielectric constant solid dielectric transmission lines that intrinsically produce ideal rectangular high voltage pulses when charged and switched into matched impedance loads. Voltage levels may be increased by Marx and/or Blumlein principles incorporating spark gap or, preferentially, solid state switches (such as optically triggered thyristors) which produce reliable, high repetition rate operation. Moreover, these Marxed pulse generators can be DC charged and do not require additional pulse forming circuitry, pulse forming lines, transformers, or an a high voltage spark gap output switch. The apparatus accommodates a wide range of voltages, impedances, pulse durations, pulse repetition rates, and duty cycles. The resulting mobile or flight platform friendly cylindrical geometric configuration is much more compact, light-weight, and robust than conventional linear geometries, or pulse generators constructed from conventional components. Installing additional circuitry may accommodate optional pulse shape improvements. The Coiled Transmission Lines can also be connected in parallel to decrease the impedance, or in series to increase the pulse length.

  15. Coiled-coil protein composition of 22 proteomes – differences and common themes in subcellular infrastructure and traffic control

    Directory of Open Access Journals (Sweden)

    Meier Iris

    2005-11-01

    Full Text Available Abstract Background Long alpha-helical coiled-coil proteins are involved in diverse organizational and regulatory processes in eukaryotic cells. They provide cables and networks in the cyto- and nucleoskeleton, molecular scaffolds that organize membrane systems and tissues, motors, levers, rotating arms, and possibly springs. Mutations in long coiled-coil proteins have been implemented in a growing number of human diseases. Using the coiled-coil prediction program MultiCoil, we have previously identified all long coiled-coil proteins from the model plant Arabidopsis thaliana and have established a searchable Arabidopsis coiled-coil protein database. Results Here, we have identified all proteins with long coiled-coil domains from 21 additional fully sequenced genomes. Because regions predicted to form coiled-coils interfere with sequence homology determination, we have developed a sequence comparison and clustering strategy based on masking predicted coiled-coil domains. Comparing and grouping all long coiled-coil proteins from 22 genomes, the kingdom-specificity of coiled-coil protein families was determined. At the same time, a number of proteins with unknown function could be grouped with already characterized proteins from other organisms. Conclusion MultiCoil predicts proteins with extended coiled-coil domains (more than 250 amino acids to be largely absent from bacterial genomes, but present in archaea and eukaryotes. The structural maintenance of chromosomes proteins and their relatives are the only long coiled-coil protein family clearly conserved throughout all kingdoms, indicating their ancient nature. Motor proteins, membrane tethering and vesicle transport proteins are the dominant eukaryote-specific long coiled-coil proteins, suggesting that coiled-coil proteins have gained functions in the increasingly complex processes of subcellular infrastructure maintenance and trafficking control of the eukaryotic cell.

  16. Remote maintenance of tandem mirror hybrid coils

    International Nuclear Information System (INIS)

    Hybrid Coils (superconducting coils with normal conducting inserts) are being employed with increasing frequency on Tandem Mirror Devices to obtain high field strengths. The normal conducting copper inserts are short lived in comparison to their encircling superconductors. It becomes desirable, therefore, to devise design features and maintenance procedures to replace the inner normal conducting coils without simultaneously replacing the longer lived (and significantly more costly) superconducting coils. The high neutron wall loadings require that the task be accomplished by remote control. The approach is to permanently mount the coil assemblies on track mounted carriages which serve, during machine operation merely as structural supports, but during maintenance procedures as moveable transport devices. The carriages incorporate all necessary provisions to facilitate remote maintenance operations and to adjust and align the coil assemblies with respect to adjacent machine components. The vacuum vessel is severed on both sides of the hybrid coil by means of a remote cutting machine. The entire coil is transported horizontally, normal to the machine axis to a nearby repair station. Prepositioned carriage mounted repair equipment at the repair station withdraws the damaged normal coil as a single entity and inserts a preassembled spare unit. The repaired hybrid coil is reassembled to the reactor. A cost and risk effective procedure has been evolved to maintain one of the more critical components of a Tandem Mirror Machine

  17. Spectroscopic measurement to study two-fluid relaxation in an internal coil device Mini-RT

    International Nuclear Information System (INIS)

    Mahajan-Yoshida has developed a new relaxation theory, by taking two-fluid effect into account. This theory indicates that the plasma flow confines high beta plasma. We have constructed an internal coil device Mini-RT with high temperature superconductor (HTS) coil, and are expecting the high beta plasma with the fast toroidal plasma flow by inducing the radial electric field. In order to measure the radial profile of the plasma flow we introduced a spectroscopy. By setting up two cylindrical lenses between a monochromator and a charge-coupled device (CCD) detector, we could not only correct astigmatism of the monochromator but also increase the resolution of wavelength up to 2.55 pm/pixel which is equal to the measurement of the plasma flow up to 1.6 x 103 m/s. Additionally we are setting up an opposed fiber array for an accurate measurement. In the Mini-RT device the plasma was produced by 2.45 GHz ECH (Electron Cyclotron Heating) system with the power of 2.6 kW. Typical electron density and temperature are more than 1016 m-3 and 10-20 eV, respectively. The ion temperature measured by this spectroscopy system was 1.0 ± 0.3 eV and the plasma flow velocity was comparable to the resolution of this spectroscopic system. Although the plasma should flow to the toroidal direction by the ∇B/curvature drift in the internal coil device, the drift velocity of 1.3 x 103 m/s is not detectable with this spectroscopy. If the radial electric field of 160 V/m or more is induced in the plasma, the plasma flow due to the E x B drift could be measured with this system. (author)

  18. Simulation and reconstruction of the PANDA Barrel DIRC

    Science.gov (United States)

    Dzhygadlo, R.; Gerhardt, A.; Go¨tzen, K.; Hohler, R.; Kalicy, G.; Kumawat, H.; Lehmann, D.; Lewandowski, B.; Patsyuk, M.; Peters, K.; Schepers, G.; Schmitt, L.; Schwarz, C.; Schwiening, J.; Traxler, M.; Zühlsdorf, M.; Dodokhov, V. Kh.; Britting, A.; Eyrich, W.; Lehmann, A.; Uhlig, F.; Düren, M.; Fo¨hl, K.; Hayrapetyan, A.; Kro¨ck, B.; Merle, O.; Rieke, J.; Cowie, E.; Keri, T.; Montgomery, R.; Rosner, G.; Achenbach, P.; Cardinali, M.; Hoek, M.; Lauth, W.; Sfienti, C.; Thiel, M.; Bühler, P.; Gruber, L.; Marton, J.; Suzuki, K.

    2014-12-01

    Hadronic particle identification (PID) in the barrel region of the PANDA experiment at the new Facility for Antiproton and Ion Research in Europe (FAIR) at GSI, Darmstadt will be provided by a DIRC (Detection of Internally Reflected Cherenkov light) counter. To optimize the performance and reduce the detector cost, detailed simulations of different design elements, such as the width of the radiators, the shape of the expansion volume, and the type of focusing system, were performed using Geant. Custom reconstruction algorithms were developed to match the detector geometry. We will discuss the single photon resolution and photon yield as well as the PID performance for the Barrel DIRC baseline design and several detector design options.

  19. Experiences developing socially acceptable interactions for a robotic trash barrel

    DEFF Research Database (Denmark)

    Yang, Stephen; Mok, Brian Ka Jun; Sirkin, David;

    2015-01-01

    Service robots in public places need to both understand environmental cues and move in ways that people can understand and predict. We developed and tested interactions with a trash barrel robot to better understand the implicit protocols for public interaction. In eight lunch-time sessions spread...... across two crowded campus dining destinations, we experimented with piloting our robot in Wizard of Oz fashion, initiating and responding to requests for impromptu interactions centered on collecting people's trash. Our studies progressed from open-ended experimentation to testing specific interaction...... strategies that seemed to evoke clear engagement and responses, both positive and negative. Observations and interviews show that a) people most welcome the robot's presence when they need its services and it actively advertises its intent through movement; b) people create mental models of the trash barrel...

  20. Physics models in the toroidal transport code PROCTR

    Energy Technology Data Exchange (ETDEWEB)

    Howe, H.C.

    1990-08-01

    The physics models that are contained in the toroidal transport code PROCTR are described in detail. Time- and space-dependent models are included for the plasma hydrogenic-ion, helium, and impurity densities, the electron and ion temperatures, the toroidal rotation velocity, and the toroidal current profile. Time- and depth-dependent models for the trapped and mobile hydrogenic particle concentrations in the wall and a time-dependent point model for the number of particles in the limiter are also included. Time-dependent models for neutral particle transport, neutral beam deposition and thermalization, fusion heating, impurity radiation, pellet injection, and the radial electric potential are included and recalculated periodically as the time-dependent models evolve. The plasma solution is obtained either in simple flux coordinates, where the radial shift of each elliptical, toroidal flux surface is included to maintain an approximate pressure equilibrium, or in general three-dimensional torsatron coordinates represented by series of helical harmonics. The detailed coupling of the plasma, scrape-off layer, limiter, and wall models through the neutral transport model makes PROCTR especially suited for modeling of recycling and particle control in toroidal plasmas. The model may also be used in a steady-state profile analysis mode for studying energy and particle balances starting with measured plasma profiles.

  1. Toroidal linear force-free magnetic fields with axial symmetry

    Science.gov (United States)

    Vandas, M.; Romashets, E.

    2016-01-01

    Aims: Interplanetary magnetic flux ropes are often described as linear force-free fields. To account for their curvature, toroidal configurations must be used. The aim is to find an analytic description of a linear force-free magnetic field of the toroidal geometry in which the cross section of flux ropes can be controlled. Methods: The solution is found as a superposition of fields given by linear force-free cylinders tangential to a generating toroid. The cylindrical field is expressed in a series of terms that are not all cylindrically symmetric. Results: We found the general form of a toroidal linear force-free magnetic field. The field is azimuthally symmetric with respect to the torus axis. It depends on a set of coefficients that enables controlling the flux rope shape (cross section) to some extent. By varying the coefficients, flux ropes with circular and elliptic cross sections were constructed. Numerical comparison suggests that the simple analytic formula for calculating the helicity in toroidal flux ropes of the circular cross section can be used for flux ropes with elliptic cross sections if the minor radius in the formula is set to the geometric mean of the semi-axes of the elliptic cross section.

  2. Physics models in the toroidal transport code PROCTR

    International Nuclear Information System (INIS)

    The physics models that are contained in the toroidal transport code PROCTR are described in detail. Time- and space-dependent models are included for the plasma hydrogenic-ion, helium, and impurity densities, the electron and ion temperatures, the toroidal rotation velocity, and the toroidal current profile. Time- and depth-dependent models for the trapped and mobile hydrogenic particle concentrations in the wall and a time-dependent point model for the number of particles in the limiter are also included. Time-dependent models for neutral particle transport, neutral beam deposition and thermalization, fusion heating, impurity radiation, pellet injection, and the radial electric potential are included and recalculated periodically as the time-dependent models evolve. The plasma solution is obtained either in simple flux coordinates, where the radial shift of each elliptical, toroidal flux surface is included to maintain an approximate pressure equilibrium, or in general three-dimensional torsatron coordinates represented by series of helical harmonics. The detailed coupling of the plasma, scrape-off layer, limiter, and wall models through the neutral transport model makes PROCTR especially suited for modeling of recycling and particle control in toroidal plasmas. The model may also be used in a steady-state profile analysis mode for studying energy and particle balances starting with measured plasma profiles

  3. Braking due to non-resonant magnetic perturbations and comparison with neoclassical toroidal viscosity torque in EXTRAP T2R

    Science.gov (United States)

    Frassinetti, L.; Sun, Y.; Fridström, R.; Menmuir, S.; Olofsson, K. E. J.; Brunsell, P. R.; Khan, M. W. M.; Liang, Y.; Drake, J. R.

    2015-09-01

    The non-resonant magnetic perturbation (MP) braking is studied in the EXTRAP T2R reversed-field pinch (RFP) and the experimental braking torque is compared with the torque expected by the neoclassical toroidal viscosity (NTV) theory. The EXTRAP T2R active coils can apply magnetic perturbations with a single harmonic, either resonant or non-resonant. The non-resonant MP produces velocity braking with an experimental torque that affects a large part of the core region. The experimental torque is clearly related to the plasma displacement, consistent with a quadratic dependence as expected by the NTV theory. The work show a good qualitative agreement between the experimental torque in a RFP machine and NTV torque concerning both the torque density radial profile and the dependence on the non-resonant MP harmonic.

  4. The Golgin Family of Coiled-Coil Tethering Proteins

    Directory of Open Access Journals (Sweden)

    Tomasz M Witkos

    2016-01-01

    Full Text Available The golgins are a family of predominantly coiled-coil proteins that are localized to the Golgi apparatus. Golgins are present in all eukaryotes, suggesting an evolutionary conserved function. Golgins are anchored to the Golgi membrane by their carboxy terminus and are predicted to adopt an extended conformation that projects into the surrounding cytoplasm. This arrangement is ideal for the capture or tethering of nearby membranes or cytoskeletal elements. Golgin-mediated tethering is thought to be important for vesicular traffic at the Golgi apparatus, the maintenance of Golgi architecture, as well as the positioning of the Golgi apparatus within cells. In addition to acting as tethers, some golgins can also sequester various factors at the Golgi membrane, allowing for the spatiotemporal regulation of downstream cellular functions. Although it is now established that golgins are membrane and cytoskeleton tethers, the mechanisms underlying tethering remain poorly defined. Moreover, the importance of golgin-mediated tethering in a physiological context remains to be fully explored. This review will describe our current understanding of golgin function, highlighting recent progress that has been made, and goes on to discuss outstanding questions and potential avenues for future research with regard to this family of conserved Golgi-associated proteins.

  5. The coiled coils of cohesin are conserved in animals, but not in yeast.

    Directory of Open Access Journals (Sweden)

    Glenn E White

    Full Text Available BACKGROUND: The SMC proteins are involved in DNA repair, chromosome condensation, and sister chromatid cohesion throughout Eukaryota. Long, anti-parallel coiled coils are a prominent feature of SMC proteins, and are thought to serve as spacer rods to provide an elongated structure and to separate domains. We reported recently that the coiled coils of mammalian condensin (SMC2/4 showed moderate sequence divergence (approximately 10-15% consistent with their functioning as spacer rods. The coiled coils of mammalian cohesins (SMC1/3, however, were very highly constrained, with amino acid sequence divergence typically <0.5%. These coiled coils are among the most highly conserved mammalian proteins, suggesting that they make extensive contacts over their entire surface. METHODOLOGY/PRINCIPAL FINDINGS: Here, we broaden our initial analysis of condensin and cohesin to include additional vertebrate and invertebrate organisms and multiple species of yeast. We found that the coiled coils of SMC1/3 are highly constrained in Drosophila and other insects, and more generally across all animal species. However, in yeast they are no more constrained than the coils of SMC2/4 and Ndc80/Nuf2p, suggesting that they are serving primarily as spacer rods. CONCLUSIONS/SIGNIFICANCE: SMC1/3 functions for sister chromatid cohesion in all species. Since its coiled coils apparently serve only as spacer rods in yeast, it is likely that this is sufficient for sister chromatid cohesion in all species. This suggests an additional function in animals that constrains the sequence of the coiled coils. Several recent studies have demonstrated that cohesin has a role in gene expression in post-mitotic neurons of Drosophila, and other animal cells. Some variants of human Cornelia de Lange Syndrome involve mutations in human SMC1/3. We suggest that the role of cohesin in gene expression may involve intimate contact of the coiled coils of SMC1/3, and impose the constraint on sequence

  6. Performance improvement of a high-temperature superconducting coil by separating and grading the coil edge

    Energy Technology Data Exchange (ETDEWEB)

    Ishiguri, Shinichi, E-mail: kckyg592@ybb.ne.j [Fukui National College of Technology, Geshi Sabae, Fukui 916-8507 (Japan); Funamoto, Taisuke [Fukui National College of Technology, Geshi Sabae, Fukui 916-8507 (Japan)

    2011-06-15

    Highlights: {yields} We analyze high-temperature superconducting (HTS) coils with anisotropic properties. {yields} To improve performances of the HTS coil, we propose a graded coil. {yields} It was clarified the stored energy improves largely with an optimum graded coil. - Abstract: In this paper, we establish a model to analyze the transport current performance of a high-temperature superconducting (HTS) coil, considering the dependencies of critical current and n-value of an HTS tape on magnetic field and magnetic field angles. This analysis shows that relatively large electric fields appear at the coil's edges, preventing improvement in the transport current performance of the coil. To solve this problem, in this paper, we propose a graded coil in which several coil edges of different heights are separated and graded. Analysis of its performance shows that the coil's critical current increases, thus confirming that there exists an optimum coil cross section at which the stored energy and central magnetic field improve 2.1 times and 45%, respectively, compared with a typical rectangular coil that employs the same total length of the HTS tape. It is recommended that these results of the coil should be applied to SMES.

  7. Optical toroidal dipolar response by an asymmetric double-bar metamaterial

    CERN Document Server

    Dong, Zheng-Gao; Rho, Junsuk; Li, Jia-Qi; Lu, Changgui; Yin, Xiaobo; Zhang, X; 10.1063/1.4757613

    2012-01-01

    We demonstrate that the toroidal dipolar response can be realized in the optical regime by designing a feasible nanostructured metamaterial, comprising asymmetric double-bar magnetic resonators assembled into a toroid-like configuration. It is confirmed numerically that an optical toroidal dipolar moment dominates over other moments. This response is characterized by a strong confinement of an E-field component at the toroid center, oriented perpendicular to the H-vortex plane. The resonance-enhanced optical toroidal response can provide an experimental avenue for various interesting optical phenomena associated with the elusive toroidal moment.

  8. Toroidal field magnets for ZEPHYR tape and bitter concepts conductor and insulation materials

    International Nuclear Information System (INIS)

    The general design aspects of the Toroidal Field Magnet System for a compact ignition experiment ZEPHYR are discussed. The 17 Tesla field calls for a steel reinforcement of the copper conductor. Two different types of magnet systems, a tape magnet and a Bitter magnet, are possible. In both systems the coils will be arranged in a steel casing. Force transfer is achieved by steel wedges between the coil casings. The mechanical stresses of the magnet structure were calculated by employing finite element methods. The pulse-operated magnet system will be force-cooled by liquid nitrogen to an initial starting temperature of 80 K before each single field pulse is applied. The problems of spacer cooling as well as the finally chosen channel cooling are discussed. The steel-reinforced copper conductor was developed in collaboration with industry, resulting in a high strength (700 N/mm2) copper/austenite compound. The insulation system consisting of a glass/kapton wrapping of the conductors and of vacuum impregnation with an epoxy resin has to withstand high mechanical loads and a neutron/gamma irradiation in the order of 5 x 109 rad. The static and cyclic fatigue strength of different insulation systems at ambient and liquid nitrogen temperature has been investigated in mechanical tests of tension, compression and shear samples. The radiation resistance of the insulation resin was tested with gamma and neutron/gamma irradiation to doses of 1010 rad. The aspects of field diffusion in the tape magnet are given in the appendix. (orig.)

  9. Technical Diagnostics of Tank Cannon Smooth Barrel Bore and Ramming Device

    Directory of Open Access Journals (Sweden)

    Jiri Balla

    2015-09-01

    Full Text Available The technical diagnostics of 125 mm tank cannon 2A46 smooth barrel and ramming devices are discussed respectively. Focuses on barrel diagnostics and suggests new procedures based on reconstructed BG20 Gun Barrel Bore Gauge System, measuring internal diameter of the barrel bore. The new system measures throughout the whole barrel bore the inner diameter not only at the beginning of barrel bore as it was usually measured before. Different nature of barrel wear was revealed between barrels firing sub-calibre and high explosive projectiles. A method for ramming device diagnostics is presented. An accurate method was proposed, determining projectile extraction force from barrel, as one of the main ramming device parameters for weapons that are used in all areas of armed forces. Results are based on experimental methods assessing the extraction forces from barrel after projectile loading. These tests were performed as a series of tests with consequent technical diagnostics according to the new Czech Defence Standards (derived from NATO standards. The results are presented as the new methodologies for diagnostics of 125 mm barrel 2A46 and ramming devices of tank T-72 for use by technical logistic units in the Czech Republic Armed Forces.

  10. Energy metrics for driving competitiveness of countries: Energy weakness magnitude, GDP per barrel and barrels per capita

    Energy Technology Data Exchange (ETDEWEB)

    Coccia, Mario, E-mail: m.coccia@ceris.cnr.i [National Research Council of Italy, CERIS-CNR, Institute for Economic Research on Firm and Growth, Collegio Carlo Alberto-via Real Collegio, n. 30, 10024 Moncalieri (Torino) (Italy)

    2010-03-15

    Energy metrics is the development of a whole new theoretical framework for the conception and measurement of energy and economic system performances, energy efficiency and productivity improvements with important political economy implications consistent with the best use of all natural and economic resources. The purpose of this research is to present some vital energy indicators based on magnitude and scale of energy weakness, GDP per barrel of oil that is an indicator of energy productivity and barrels (of oil) per capita that is an indicator of energy efficiency. Energy metrics can support the monitoring of energy and economic system performances in order to design effective energy strategy and political economy interventions focused on the 'competitive advantage' increase of countries in modern economies.

  11. Energy metrics for driving competitiveness of countries. Energy weakness magnitude, GDP per barrel and barrels per capita

    Energy Technology Data Exchange (ETDEWEB)

    Coccia, Mario [National Research Council of Italy, CERIS-CNR, Institute for Economic Research on Firm and Growth, Collegio Carlo Alberto - via Real Collegio, n. 30, 10024 Moncalieri (Torino) (Italy)

    2010-03-15

    Energy metrics is the development of a whole new theoretical framework for the conception and measurement of energy and economic system performances, energy efficiency and productivity improvements with important political economy implications consistent with the best use of all natural and economic resources. The purpose of this research is to present some vital energy indicators based on magnitude and scale of energy weakness, GDP per barrel of oil that is an indicator of energy productivity and barrels (of oil) per capita that is an indicator of energy efficiency. Energy metrics can support the monitoring of energy and economic system performances in order to design effective energy strategy and political economy interventions focused on the 'competitive advantage' increase of countries in modern economies. (author)

  12. Energy metrics for driving competitiveness of countries: Energy weakness magnitude, GDP per barrel and barrels per capita

    International Nuclear Information System (INIS)

    Energy metrics is the development of a whole new theoretical framework for the conception and measurement of energy and economic system performances, energy efficiency and productivity improvements with important political economy implications consistent with the best use of all natural and economic resources. The purpose of this research is to present some vital energy indicators based on magnitude and scale of energy weakness, GDP per barrel of oil that is an indicator of energy productivity and barrels (of oil) per capita that is an indicator of energy efficiency. Energy metrics can support the monitoring of energy and economic system performances in order to design effective energy strategy and political economy interventions focused on the 'competitive advantage' increase of countries in modern economies.

  13. An Experimental Study on Constraint Cooling Process of Hot-rolled CoilS

    Institute of Scientific and Technical Information of China (English)

    Lijuan WANG; Chunli ZHANG

    2003-01-01

    In order to master mechanical property, surface quality and microstructure of constraint cooling (CC) coils undervarious water cooling parameters, more than 100 coils cooling experiments were done with real production process,of which is designed a coolin

  14. Transport vesicle tethering at the trans Golgi network: coiled coil proteins in action

    Directory of Open Access Journals (Sweden)

    Pak-yan Patricia Cheung

    2016-03-01

    Full Text Available The Golgi complex is decorated with so-called Golgin proteins that share a common feature: a large proportion of their amino acid sequences are predicted to form coiled-coil structures. The possible presence of extensive coiled coils implies that these proteins are highly elongated molecules that can extend a significant distance from the Golgi surface. This property would help them to capture or trap inbound transport vesicles and to tether Golgi mini-stacks together. This review will summarize our current understanding of coiled coil tethers that are needed for the receipt of transport vesicles at the trans Golgi network. How do long tethering proteins actually catch vesicles? Golgi-associated, coiled coil tethers contain numerous binding sites for small GTPases, SNARE proteins, and vesicle coat proteins. How are these interactions coordinated and are any or all of them important for the tethering process? Progress towards understanding these questions and remaining, unresolved mysteries will be discussed.

  15. Defect-Free Carbon Nanotube Coils.

    Science.gov (United States)

    Shadmi, Nitzan; Kremen, Anna; Frenkel, Yiftach; Lapin, Zachary J; Machado, Leonardo D; Legoas, Sergio B; Bitton, Ora; Rechav, Katya; Popovitz-Biro, Ronit; Galvão, Douglas S; Jorio, Ado; Novotny, Lukas; Kalisky, Beena; Joselevich, Ernesto

    2016-04-13

    Carbon nanotubes are promising building blocks for various nanoelectronic components. A highly desirable geometry for such applications is a coil. However, coiled nanotube structures reported so far were inherently defective or had no free ends accessible for contacting. Here we demonstrate the spontaneous self-coiling of single-wall carbon nanotubes into defect-free coils of up to more than 70 turns with identical diameter and chirality, and free ends. We characterize the structure, formation mechanism, and electrical properties of these coils by different microscopies, molecular dynamics simulations, Raman spectroscopy, and electrical and magnetic measurements. The coils are highly conductive, as expected for defect-free carbon nanotubes, but adjacent nanotube segments in the coil are more highly coupled than in regular bundles of single-wall carbon nanotubes, owing to their perfect crystal momentum matching, which enables tunneling between the turns. Although this behavior does not yet enable the performance of these nanotube coils as inductive devices, it does point a clear path for their realization. Hence, this study represents a major step toward the production of many different nanotube coil devices, including inductors, electromagnets, transformers, and dynamos. PMID:26708150

  16. Tesla coil theoretical model and experimental verification

    OpenAIRE

    Voitkans, Janis; Voitkans, Arnis

    2014-01-01

    Abstract – In this paper a theoretical model of a Tesla coil operation is proposed. Tesla coil is described as a long line with distributed parameters in a single-wired format, where the line voltage is measured against electrically neutral space. It is shown that equivalent two-wired scheme can be found for a single-wired scheme and already known long line theory can be applied to a Tesla coil. Formulas for calculation of voltage in a Tesla coil by coordinate and calculation of resonance fre...

  17. Axion Haloscopes with Toroidal Geometry at CAPP/IBS

    CERN Document Server

    Ko, B R

    2016-01-01

    The present state of the art axion haloscope employs a cylindrical resonant cavity in a solenoidal field. We, the Center for Axion and Precision Physics Research (CAPP) of the Institute for Basic Science (IBS) in Korea, are also pursuing halo axion discovery using this cylindrical geometry. However, the presence of end caps of cavities increases challenges as we explore higher frequency regions for the axion at above 2 GHz. To overcome these challenges we exploit a toroidal design of cavity and magnetic field. A toroidal geometry offers several advantages, two of which are a larger volume for a given space and greatly reduced fringe fields which interfere with our preamps, in particular the planned quantum-based devices. We introduce the concept of toroidal axion haloscopes and present ongoing research activities and plans at CAPP/IBS.

  18. Toroidal and poloidal momentum transport studies in JET

    DEFF Research Database (Denmark)

    Tala, T.; Andrew, Y.; Crombe, K.;

    2007-01-01

    This paper reports on the recent studies of toroidal and poloidal momentum transport in JET. The ratio of the global energy confinement time to the momentum confinement is found to be close to tau(E)/tau(phi) = 1 except for the low density or low collisionality discharges where the ratio is tau...... of toroidal velocity using the Weiland model and GLF23 also confirm that the ratio chi(phi)/chi(i) approximate to 0.4 reproduces the core toroidal velocity profiles well and similar accuracy with the ion temperature profiles. Concerning poloidal velocities on JET, the experimental measurements show...... is the turbulence driven flow through the Reynolds stress. Both CUTIE and TRB turbulence codes show the existence of an anomalous poloidal velocity, being significantly larger than the neo-classical values. And similarly to experiments, the poloidal velocity profiles peak in the vicinity of the ITB and seem...

  19. Dynamics of the Disruption Halo Current Toroidal Asymmetry in NSTX

    Energy Technology Data Exchange (ETDEWEB)

    S.P. Gerhardt

    2012-09-27

    This paper describes the dynamics of disruption halo current non-axisymmetries in the lower divertor of the National Spherical Torus Experiment [M. Ono, et al. Nuclear Fusion 40, 557 (2000)]. While. The halo currents typically have a strongly asymmetric structure where they enter the divertor floor, and this asymmetry has been observed to complete up to 7 toroidal revolutions over the duration of the halo current pulse. However, the rotation speed and toroidal extend of the asymmetry can vary significantly during the pulse. The rotation speed, halo current pulse duration, and total number of revolutions tend to be smaller in cases with large halo currents. The halo current pattern is observed to become toroidally symmetric at the end of the halo current pulse. It is proposed that this symmeterization is due to the loss of most or all of the closed field line geometry in the final phase of the vertical displacement event.

  20. Analytical solutions for Tokamak equilibria with reversed toroidal current

    Energy Technology Data Exchange (ETDEWEB)

    Martins, Caroline G. L.; Roberto, M.; Braga, F. L. [Departamento de Fisica, Instituto Tecnologico de Aeronautica, Sao Jose dos Campos, Sao Paulo 12228-900 (Brazil); Caldas, I. L. [Instituto de Fisica, Universidade de Sao Paulo, 05315-970 Sao Paulo, SP (Brazil)

    2011-08-15

    In tokamaks, an advanced plasma confinement regime has been investigated with a central hollow electric current with negative density which gives rise to non-nested magnetic surfaces. We present analytical solutions for the magnetohydrodynamic equilibria of this regime in terms of non-orthogonal toroidal polar coordinates. These solutions are obtained for large aspect ratio tokamaks and they are valid for any kind of reversed hollow current density profiles. The zero order solution of the poloidal magnetic flux function describes nested toroidal magnetic surfaces with a magnetic axis displaced due to the toroidal geometry. The first order correction introduces a poloidal field asymmetry and, consequently, magnetic islands arise around the zero order surface with null poloidal magnetic flux gradient. An analytic expression for the magnetic island width is deduced in terms of the equilibrium parameters. We give examples of the equilibrium plasma profiles and islands obtained for a class of current density profile.

  1. Toroidal drift waves with an equilibrium velocity field

    International Nuclear Information System (INIS)

    The author investigated the effect of a radially sheared poloidal velocity field on the toroidal drift wave which is well known to escape magnetic shear damping through toroidal coupling between different poloidal harmonics centered on individual rational surfaces. He endeavored to model the velocity profile according to that observed at the plasma edge during H-mode shots. The resultant wave formed by the interference of different poloidal harmonics now sees an antiwell created by the H-mode type velocity profile in the radial direction (in contrast to a well formed by the diamagnetic frequency in the absence of velocity fields). The wave, therefore, convects energy outward and hence undergoes damping. Outgoing wave boundary condition then introduces a negative imaginary contribution to the global eigenvalue -- once again confirming the stabilizing role of H-mode type velocity profiles. On the other hand, L-mode type velocity profiles have destabilizing action on toroidal drift waves

  2. Vlasov tokamak equilibria with sheared toroidal flow and anisotropic pressure

    Energy Technology Data Exchange (ETDEWEB)

    Kuiroukidis, Ap, E-mail: kouirouki@astro.auth.gr [Technological Education Institute of Serres, 62124 Serres (Greece); Throumoulopoulos, G. N., E-mail: gthroum@uoi.gr [Department of Physics, University of Ioannina, GR 451 10 Ioannina (Greece); Tasso, H., E-mail: het@ipp.mpg.de [Max-Planck-Institut für Plasmaphysik, D-85748 Garching (Germany)

    2015-08-15

    By choosing appropriate deformed Maxwellian ion and electron distribution functions depending on the two particle constants of motion, i.e., the energy and toroidal angular momentum, we reduce the Vlasov axisymmetric equilibrium problem for quasineutral plasmas to a transcendental Grad-Shafranov-like equation. This equation is then solved numerically under the Dirichlet boundary condition for an analytically prescribed boundary possessing a lower X-point to construct tokamak equilibria with toroidal sheared ion flow and anisotropic pressure. Depending on the deformation of the distribution functions, these steady states can have toroidal current densities either peaked on the magnetic axis or hollow. These two kinds of equilibria may be regarded as a bifurcation in connection with symmetry properties of the distribution functions on the magnetic axis.

  3. An A15 conductor design and its implications for the NET-II TF coils

    International Nuclear Information System (INIS)

    The paper describes the results of studies for a NET toroidal field coil conductor carried out at KfK-Karlsruhe. The conductor concept is based on the same design principles as used in the Euratom-LCT coil, well proven in all conductor tests and the domestic tests of the coil. These principles are applied to the peculiarities of Nb3Sn for a rated current of 20 kA at 12 T, taking into account ac losses and nuclear heating. A flat Nb3Sn cable is soldered to a surrounding CuNi tape after reaction. Around this rectangular conductor core, Cu profiles are cabled on distance by the Roebel-process and subsequently soldered onto the CuNi tape. The whole system is surrounded by a steel conduit. The conductor data result from electric, thermohydraulic and stability calculations as well as mechanical evaluations. Expected fabrication processes are discussed, and measurements on a first simplified subsize conductor model are presented. (orig.)

  4. TFTR D&D Project: Final Examination and Testing of the TFTR TF-Coils

    Energy Technology Data Exchange (ETDEWEB)

    Irving J. Zatz

    2003-01-31

    In operation for nearly 15 years, TFTR (Tokamak Fusion Test Reactor) was not only a fusion science milestone, but a milestone of achievement in engineering as well. The TFTR D&D (Decommissioning and Decontamination) program provided a rare opportunity to examine machine components that had been exposed to a unique performance environment of greater than 100,000 mechanical and thermal load cycles. In particular, the possible examination of the TFTR toroidal-field (TF) coils, which met, then exceeded, the 5.2 Tesla magnetic field machine specification, could supply the answers to many questions that have been asked and debated since the coils were originally designed and built. A test program conducted in parallel with the D&D effort was the chance to look inside and examine, in detail, the TFTR TF coils for the first time since they were delivered encased to PPPL (Princeton Plasma Physics Laboratory). The results from such a program would provide data and insight that would not only be nefit PPPL and the fusion community, but the broader scientific community as well.

  5. TFTR D and D Project: Final Examination and Testing of the TFTR TF-Coils

    International Nuclear Information System (INIS)

    In operation for nearly 15 years, TFTR (Tokamak Fusion Test Reactor) was not only a fusion science milestone, but a milestone of achievement in engineering as well. The TFTR DandD (Decommissioning and Decontamination) program provided a rare opportunity to examine machine components that had been exposed to a unique performance environment of greater than 100,000 mechanical and thermal load cycles. In particular, the possible examination of the TFTR toroidal-field (TF) coils, which met, then exceeded, the 5.2 Tesla magnetic field machine specification, could supply the answers to many questions that have been asked and debated since the coils were originally designed and built. A test program conducted in parallel with the DandD effort was the chance to look inside and examine, in detail, the TFTR TF coils for the first time since they were delivered encased to PPPL (Princeton Plasma Physics Laboratory). The results from such a program would provide data and insight that would not only be nefit PPPL and the fusion community, but the broader scientific community as well

  6. Superconducting Coil of Po Dipole

    CERN Multimedia

    1983-01-01

    The Po superconducting dipole was built as a prototype beam transport magnet for the SPS extracted proton beam P0. Its main features were: coil aperture 72 mm, length 5 m, room-temperature yoke, NbTi cable conductor impregnated with solder, nominal field 4.2 T at 4.7 K (87% of critical field). It reached its nominal field without any quench.After this successful test up to its nominal field of 4.2 T, the power was not raised to reach a quench. The magnet was not installed in a beam and had no other further use. Nevertheless its construction provided knowledges and experience which became useful in the design and construction of the LHC magnets. The photo shows a detail of the inner layer winding before superposing the outer layer to form the complete coil of a pole. Worth noticing is the interleaved glass-epoxy sheet (white) with grooved channels for the flow of cooling helium. See also 8211532X.

  7. The ATLAS barrel level-1 Muon Trigger Sector-Logic/RX off-detector trigger and acquisition board

    CERN Document Server

    Chiodi, G; Petrolo, E; Pastore, F; Salamon, A; Vari, R; Veneziano, S

    2007-01-01

    The ATLAS experiment uses a system of three concentric layers of Resistive Plate Chambers (RPC) detector for the Level-1 Muon Trigger in the air-core barrel toroid region. The trigger algorithm looks for hit coincidences within different detector layers inside the programmable geometrical road which defines the transverse momentum cut. The on-detector electronics that provides the trigger and detector readout functionalities collects input signals coming from the RPC front-end. Trigger and readout data are then sent via optical fibres to the off-detector electronics. Six or seven optical fibres from one of the 64 trigger sectors go to one Sector-Logic/RX module, that later elaborates the collected trigger and readout data, and sends data respectively to the Read-Out Driver modules and to the Central Level-1 Trigger. We present the functionality and the implementation of the VME Sector-Logic/RX module, and the configuration of the system for the first cosmic ray data collected using this module.

  8. Development and verification of printed circuit board toroidal transformer model

    DEFF Research Database (Denmark)

    Pejtersen, Jens; Mønster, Jakob Døllner; Knott, Arnold

    2013-01-01

    by comparing calculated parameters with 3D finite element simulations and experimental measurement results. The developed transformer model shows good agreement with the simulated and measured results. The model can be used to predict the parameters of printed circuit board toroidal transformer configurations......An analytical model of an air core printed circuit board embedded toroidal transformer configuration is presented. The transformer has been developed for galvanic isolation of very high frequency switch-mode dc-dc power converter applications. The theoretical model is developed and verified...

  9. Experiments with a fully toroidal Extrap Z-pinch

    International Nuclear Information System (INIS)

    In the Extrap plasma confinement scheme, a Z-pinch is produced along the null of an octupole field generated by currents in external conductors. In the paper, studies of the discharge startup process in a fully toroidal configuration are described. Startup involves first breaking down a toroidal discharge and then driving up the current in order to reach the pinch parameter regime. Current densities of 2x106 A·m-2 have been achieved. The estimated plasma density is 6x1020m-3, and the temperature is about 4 eV. These parameters correspond to pinch conditions. (author)

  10. Toroidal Spiral Strings in Higher-dimensional Spacetime

    OpenAIRE

    Igata, Takahisa; Ishihara, Hideki

    2010-01-01

    We report on our progress in research of separability of the Nambu-Goto equation for test strings with a symmetric configuration in a shape of toroidal spiral in a five-dimensional Kerr-AdS black hole. In particular, for a Hopf loop string which is a special class of the toroidal spirals, we show the complete separation of variables occurs in two cases, Kerr background and Kerr-AdS background with equal angular momenta. We also obtain the dynamical solution for the Hopf loop around a black ho...

  11. Comparative study between toroidal coordinates and the magnetic dipole field

    CERN Document Server

    Chávez-Alarcón, Esteban

    2012-01-01

    There is a similar behaviour between the toroidal coordinates and the dipole magnetic field produced by a circular loop. In this work we evaluate up to what extent the former can be used as a representation of the latter. While the tori in the toroidal coordinates have circular cross sections, those of the circular loop magnetic field are nearly elliptical ovoids, but they are very similar for large aspect ratios.The centres of the latter displace from the axis faster than the former. By making a comparison between tori of similar aspect ratios, we find quantitative criteria to evaluate the accuracy of the approximation.

  12. Reevaluation of the Braginskii viscous force for toroidal plasma

    CERN Document Server

    Johnson, Robert W

    2009-01-01

    The model by Braginskii for the viscous stress tensor is used to determine the shear and gyroviscous forces acting within a toroidally confined plasma. Comparison is made to previous evaluations which contain an inconsistent treatment of the radial derivative and neglect the effect of the pitch angle. A radial gyroviscous force is found to survive the limit of constant density and rigid toroidal rotation of the flux surface, and a radial shear viscous force may develop for sufficient vertical asymmetry to the ion velocity profile.

  13. The Linear Evolution of Tearing Mode in Toroidal Geometry*

    Institute of Scientific and Technical Information of China (English)

    任慎明; 俞国扬

    2001-01-01

    A set of linearly-reduced MHD equations in toroidal geometry has been solved numerically in flux coordinate with toroidal coupling. In the case of q > 1 on the magnetic axis.where q is the safety factor, the result shows that an unstable 2/1 tearing mode destabilizes both 1/1 and 3/1 modes. The 1/1 and 3/1 modes contribute local perturbations on the resonant surface of q = 2. And the 2/1 mode also contributes a local perturbation on the resonant surface of q = 3.``

  14. Toroidal vortices as a solution to the dust migration problem

    CERN Document Server

    Loren-Aguilar, Pablo

    2015-01-01

    In an earlier letter, we reported that dust settling in protoplanetary discs may lead to a dynamical dust-gas instability that produces global toroidal vortices. In this letter, we investigate the evolution of a dusty protoplanetary disc with two different dust species (1 mm and 50 cm dust grains), under the presence of the instability. We show how toroidal vortices, triggered by the interaction of mm grains with the gas, stop the radial migration of metre-sized dust, potentially offering a natural and efficient solution to the dust migration problem.

  15. Polygonal silica toroidal microcavity for controlled optical coupling

    CERN Document Server

    Kato, Takumi; Tanabe, Takasumi

    2012-01-01

    We fabricated polygonal silica toroidal microcavities to achieve stable mechanical coupling with an evanescent coupler such as a tapered fiber. The polygonal cavity was fabricated by using a combination of isotropic etching, anisotropic etching and laser reflow. It offers both high and low coupling efficiencies with the cavity mode even when the coupler is in contact with the cavity, which offers the possibility of taking the device outside the laboratory. A numerical simulation showed that an octagonal silica toroidal microcavity had an optical quality factor of 8.8\\times10^6.

  16. Field calculation of D0 toroids and comparison with measurement

    Energy Technology Data Exchange (ETDEWEB)

    Yamada, R.; Ostiguy, F.; Brzezniak, J.

    1992-06-01

    The magnetic structure of the D0 detector is described in an earlier report. The two-dimensional code POISSON was used for the initial design of the magnetic structures and the magnetic properties of the D0 toroids. During the construction, the two-dimensional code ANSYS was used to perform more detailed calculations. Full three-dimensional analysis was also performed using the code TOSCA. These new results are reported here and compared with measurements. In this study the magnetic flux in all toroids, CF, EF, and SAMUS is set in the same direction.

  17. Multicoil2: predicting coiled coils and their oligomerization states from sequence in the twilight zone.

    Directory of Open Access Journals (Sweden)

    Jason Trigg

    Full Text Available The alpha-helical coiled coil can adopt a variety of topologies, among the most common of which are parallel and antiparallel dimers and trimers. We present Multicoil2, an algorithm that predicts both the location and oligomerization state (two versus three helices of coiled coils in protein sequences. Multicoil2 combines the pairwise correlations of the previous Multicoil method with the flexibility of Hidden Markov Models (HMMs in a Markov Random Field (MRF. The resulting algorithm integrates sequence features, including pairwise interactions, through multinomial logistic regression to devise an optimized scoring function for distinguishing dimer, trimer and non-coiled-coil oligomerization states; this scoring function is used to produce Markov Random Field potentials that incorporate pairwise correlations localized in sequence. Multicoil2 significantly improves both coiled-coil detection and dimer versus trimer state prediction over the original Multicoil algorithm retrained on a newly-constructed database of coiled-coil sequences. The new database, comprised of 2,105 sequences containing 124,088 residues, includes reliable structural annotations based on experimental data in the literature. Notably, the enhanced performance of Multicoil2 is evident when tested in stringent leave-family-out cross-validation on the new database, reflecting expected performance on challenging new prediction targets that have minimal sequence similarity to known coiled-coil families. The Multicoil2 program and training database are available for download from http://multicoil2.csail.mit.edu.

  18. HIGH-POWER TURBODRILL AND DRILL BIT FOR DRILLING WITH COILED TUBING

    Energy Technology Data Exchange (ETDEWEB)

    Robert Radtke; David Glowka; Man Mohan Rai; David Conroy; Tim Beaton; Rocky Seale; Joseph Hanna; Smith Neyrfor; Homer Robertson

    2008-03-31

    Commercial introduction of Microhole Technology to the gas and oil drilling industry requires an effective downhole drive mechanism which operates efficiently at relatively high RPM and low bit weight for delivering efficient power to the special high RPM drill bit for ensuring both high penetration rate and long bit life. This project entails developing and testing a more efficient 2-7/8 in. diameter Turbodrill and a novel 4-1/8 in. diameter drill bit for drilling with coiled tubing. The high-power Turbodrill were developed to deliver efficient power, and the more durable drill bit employed high-temperature cutters that can more effectively drill hard and abrasive rock. This project teams Schlumberger Smith Neyrfor and Smith Bits, and NASA AMES Research Center with Technology International, Inc (TII), to deliver a downhole, hydraulically-driven power unit, matched with a custom drill bit designed to drill 4-1/8 in. boreholes with a purpose-built coiled tubing rig. The U.S. Department of Energy National Energy Technology Laboratory has funded Technology International Inc. Houston, Texas to develop a higher power Turbodrill and drill bit for use in drilling with a coiled tubing unit. This project entails developing and testing an effective downhole drive mechanism and a novel drill bit for drilling 'microholes' with coiled tubing. The new higher power Turbodrill is shorter, delivers power more efficiently, operates at relatively high revolutions per minute, and requires low weight on bit. The more durable thermally stable diamond drill bit employs high-temperature TSP (thermally stable) diamond cutters that can more effectively drill hard and abrasive rock. Expectations are that widespread adoption of microhole technology could spawn a wave of 'infill development' drilling of wells spaced between existing wells, which could tap potentially billions of barrels of bypassed oil at shallow depths in mature producing areas. At the same time, microhole

  19. Effects of Toroidal Rotation Sshear on Toroidicity-induced Alfven Eigenmodes in the National Spherical Torus Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Podesta, M; Fredrickson, E D; Gorelenkov, N N; LeBlanc, B P; Heidbrink, W W; Crocker, N A; Kubota, S

    2010-08-19

    The effects of a sheared toroidal rotation on the dynamics of bursting Toroidicity-induced Alfven eigenmodes are investigated in neutral beam heated plasmas on the National Spherical Torus Experiment (NSTX) [M. Ono et al., Nucl. Fusion 40 557 (2000)]. The modes have a global character, extending over most of the minor radius. A toroidal rotation shear layer is measured at the location of maximum drive for the modes. Contrary to results from other devices, no clear evidence of increased damping is found. Instead, experiments with simultaneous neutral beam and radio-frequency auxiliary heating show a strong correlation between the dynamics of the modes and the instability drive. It is argued that kinetic effects involving changes in the mode drive and damping mechanisms other than rotation shear, such as continuum damping, are mostly responsible for the bursting dynamics of the modes.

  20. Effects of Toroidal Rotation Shear on Toroidicity-induced Alfven Eigenmodes in the National Spherical Torus Experiment

    International Nuclear Information System (INIS)

    The effects of a sheared toroidal rotation on the dynamics of bursting Toroidicity-induced Alfven eigenmodes are investigated in neutral beam heated plasmas on the National Spherical Torus Experiment (NSTX) (M. Ono et al., Nucl. Fusion 40 557 (2000)). The modes have a global character, extending over most of the minor radius. A toroidal rotation shear layer is measured at the location of maximum drive for the modes. Contrary to results from other devices, no clear evidence of increased damping is found. Instead, experiments with simultaneous neutral beam and radio-frequency auxiliary heating show a strong correlation between the dynamics of the modes and the instability drive. It is argued that kinetic effects involving changes in the mode drive and damping mechanisms other than rotation shear, such as continuum damping, are mostly responsible for the bursting dynamics of the modes.

  1. Controlling the toroidal excitations in metamaterials for high-Q response

    CERN Document Server

    Fan, Yuancheng; Fu, Quanhong; Wei, Zeyong; Li, Hongqiang

    2016-01-01

    The excitation of toroidal multipoles in metamaterials was investigated for high-Q response at a subwavelength scale. In this study, we explored the optimization of toroidal excitations in a planar metamaterial comprised of asymmetric split ring resonators (ASRRs). It was found that the scattering power of toroidal dipole can be remarkably strengthened by adjusting the characteristic parameter of ASRRs: asymmetric factor. Interestingly, the improvement in toroidal excitation accompanies increasing of the Q-factor of the toroidal metamaterial, it is shown that both the scattering power of toroidal dipole and the Q-factor were increased near one order by changing the asymmetric factor of ASRRs. The optimization in excitation of toroidal multipoles provide opportunity to further increase the Q-factor of toroidal metamaterial and boost light-matter interactions at the subwavelength scale for potential applications in low-power nonlinear processing and sensitive photonic applications.

  2. Transport and Dynamics in Toroidal Fusion Systems

    Energy Technology Data Exchange (ETDEWEB)

    Sovinec, Carl [Univ. of Wisconsin, Madison, WI (United States)

    2016-09-07

    The study entitled, "Transport and Dynamics in Toroidal Fusion Systems," (TDTFS) applied analytical theory and numerical computation to investigate topics of importance to confining plasma, the fourth state of matter, with magnetic fields. A central focus of the work is how non-thermal components of the ion particle distribution affect the "sawtooth" collective oscillation in the core of the tokamak magnetic configuration. Previous experimental and analytical research had shown and described how the oscillation frequency decreases and amplitude increases, leading to "monster" or "giant" sawteeth, when the non-thermal component is increased by injecting particle beams or by exciting ions with imposed electromagnetic waves. The TDTFS study applied numerical computation to self-consistently simulate the interaction between macroscopic collective plasma dynamics and the non-thermal particles. The modeling used the NIMROD code [Sovinec, Glasser, Gianakon, et al., J. Comput. Phys. 195, 355 (2004)] with the energetic component represented by simulation particles [Kim, Parker, Sovinec, and the NIMROD Team, Comput. Phys. Commun. 164, 448 (2004)]. The computations found decreasing growth rates for the instability that drives the oscillations, but they were ultimately limited from achieving experimentally relevant parameters due to computational practicalities. Nonetheless, this effort provided valuable lessons for integrated simulation of macroscopic plasma dynamics. It also motivated an investigation of the applicability of fluid-based modeling to the ion temperature gradient instability, leading to the journal publication [Schnack, Cheng, Barnes, and Parker, Phys. Plasmas 20, 062106 (2013)]. Apart from the tokamak-specific topics, the TDTFS study also addressed topics in the basic physics of magnetized plasma and in the dynamics of the reversed-field pinch (RFP) configuration. The basic physics work contributed to a study of two-fluid effects on interchange dynamics, where

  3. Magnetic Fields at the Center of Coils

    Science.gov (United States)

    Binder, Philippe; Hui, Kaleonui; Goldman, Jesse

    2014-01-01

    In this note we synthesize and extend expressions for the magnetic field at the center of very short and very long current-carrying coils. Elementary physics textbooks present the following equation for the magnetic field inside a very long current-carrying coil (solenoid): B[subscript sol] = µ[subscript 0] (N/L) I, (1) where I is the current, N…

  4. Coil Optimization for High Temperature Superconductor Machines

    DEFF Research Database (Denmark)

    Mijatovic, Nenad; Jensen, Bogi Bech; Abrahamsen, Asger Bech;

    2011-01-01

    This paper presents topology optimization of HTS racetrack coils for large HTS synchronous machines. The topology optimization is used to acquire optimal coil designs for the excitation system of 3 T HTS machines. Several tapes are evaluated and the optimization results are discussed. The optimiz...

  5. Magnetic field on the baseball coil

    International Nuclear Information System (INIS)

    An expression is developed in spherical harmonics for the magnetic field of a baseball coil. A simple dipole-layer model for the coil, and the computer program, MAFCO, yield comparable expansion coefficients, and give practically identical fields near the center of the baseball. 13 refs

  6. 49 CFR 236.730 - Coil, receiver.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Coil, receiver. 236.730 Section 236.730 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION... Coil, receiver. Concentric layers of insulated wire wound around the core of a receiver of an...

  7. Optimal coil orientation for transcranial magnetic stimulation.

    Directory of Open Access Journals (Sweden)

    Lars Richter

    Full Text Available We study the impact of coil orientation on the motor threshold (MT and present an optimal coil orientation for stimulation of the foot. The result can be compared to results of models that predict this orientation from electrodynamic properties of the media in the skull and from orientations of cells, respectively. We used a robotized TMS system for precise coil placement and recorded motor-evoked potentials with surface electrodes on the abductor hallucis muscle of the right foot in 8 healthy control subjects. First, we performed a hot-spot search in standard (lateral orientation and then rotated the coil in steps of 10° or 20°. At each step we estimated the MT. For navigated stimulation and for correlation with the underlying anatomy a structural MRI scan was obtained. Optimal coil orientation was 33.1 ± 18.3° anteriorly in relation to the standard lateral orientation. In this orientation the threshold was 54 ± 18% in units of maximum stimulator output. There was a significant difference of 8.0 ± 5.9% between the MTs at optimal and at standard orientation. The optimal coil orientations were significantly correlated with the direction perpendicular to the postcentral gyrus ([Formula: see text]. Robotized TMS facilitates sufficiently precise coil positioning and orientation to study even small variations of the MT with coil orientation. The deviations from standard orientation are more closely matched by models based on field propagation in media than by models based on orientations of pyramidal cells.

  8. Recent advances in helix-coil theory.

    Science.gov (United States)

    Doig, Andrew J

    2002-12-10

    Peptide helices in solution form a complex mixture of all helix, all coil or, most frequently, central helices with frayed coil ends. In order to interpret experiments on helical peptides and make theoretical predictions on helices, it is therefore essential to use a helix-coil theory that takes account of this equilibrium. The original Zimm-Bragg and Lifson-Roig helix-coil theories have been greatly extended in the last 10 years to include additional interactions. These include preferences for the N-cap, N1, N2, N3 and C-cap positions, capping motifs, helix dipoles, side chain interactions and 3(10)-helix formation. These have been applied to determine energies for these preferences from experimental data and to predict the helix contents of peptides. This review discusses these newly recognised structural features of helices and how they have been included in helix-coil models. PMID:12488008

  9. MIT 12 Tesla Coil test results

    International Nuclear Information System (INIS)

    Test results from the MIT 12 Tesla Coil experiment are presented. The coil was tested in the High Field Test Facility (HFTF) of the Lawrence Livermore National Laboratory in October 1984 and January 1985. The experiment measured the performance of an Internally Cooled, Cabled Superconductor (ICCS) of practical size, intended for use in magnetic fusion experiments. The MIT coil carried 15 kA at 11 T for 5 min with no sign of instability. A half turn length in a 10 T field was able to absorb a heat load in 4 msec of more than 200 mJ/cm3 of cable volume while carrying a current of 12 kA. The MIT coil successfully met the performance requirements of the Department of Energy's 12 Tesla Coil Program

  10. Homogeneous Construction of the Toroidal Lie Algebra of Type A1

    Institute of Scientific and Technical Information of China (English)

    Haifeng Lian; Cui Chen; Qinzhu Wen

    2007-01-01

    In this paper,we consider an analogue of the level two homogeneous construc-tion of the affine Kac-Moody algebra A1(1) by vertex operators.We construct modules for the toroidal Lie algebra and the extended toroidal Lie algebra of type A1.We also prove that the module is completely reducible for the extended toroidal Lie algebra.

  11. Intra-coil interactions in split gradient coils in a hybrid MRI-LINAC system

    Science.gov (United States)

    Tang, Fangfang; Freschi, Fabio; Sanchez Lopez, Hector; Repetto, Maurizio; Liu, Feng; Crozier, Stuart

    2016-04-01

    An MRI-LINAC system combines a magnetic resonance imaging (MRI) system with a medical linear accelerator (LINAC) to provide image-guided radiotherapy for targeting tumors in real-time. In an MRI-LINAC system, a set of split gradient coils is employed to produce orthogonal gradient fields for spatial signal encoding. Owing to this unconventional gradient configuration, eddy currents induced by switching gradient coils on and off may be of particular concern. It is expected that strong intra-coil interactions in the set will be present due to the constrained return paths, leading to potential degradation of the gradient field linearity and image distortion. In this study, a series of gradient coils with different track widths have been designed and analyzed to investigate the electromagnetic interactions between coils in a split gradient set. A driving current, with frequencies from 100 Hz to 10 kHz, was applied to study the inductive coupling effects with respect to conductor geometry and operating frequency. It was found that the eddy currents induced in the un-energized coils (hereby-referred to as passive coils) positively correlated with track width and frequency. The magnetic field induced by the eddy currents in the passive coils with wide tracks was several times larger than that induced by eddy currents in the cold shield of cryostat. The power loss in the passive coils increased with the track width. Therefore, intra-coil interactions should be included in the coil design and analysis process.

  12. A study on geometry effect of transmission coil for micro size magnetic induction coil

    Science.gov (United States)

    Lee, Kyung Hwa; Jun, Byoung Ok; Kim, Seunguk; Lee, Gwang Jun; Ryu, Mingyu; Choi, Ji-Woong; Jang, Jae Eun

    2016-05-01

    The effects of transmission (Tx) coil structure have been studied for micro-size magnetic induction coil. The size of the receiving (Rx) coil should be shrunk to the micrometer level for the various new applications such as micro-robot and wireless body implanted devices. In case of the macro-scale magnetic induction coil, the power transmission efficiency is generally considered to be higher as the inductance of the transmission coil became larger; however, the large size difference between macro-size Tx coil and micro-size Rx coil can decrease the power transmission efficiency due to the difference of resonance frequency. Here, we study a correlation of the power transmission with the size and distance between the macro-size Tx and micro-size Rx coils using magnetic induction technique. The maximum power efficiency was 0.28/0.23/0.13/0.12% at the distance of 0.3/1/3/5 cm between Rx and Tx coil. In addition, more efficient wireless power transferring method is suggested with a floating coil for the body implantable devices. The voltage output increased up to 5.4 mV than the original one Tx coil system. The results demonstrated the foundational wireless power transferring system with enhanced power efficiency.

  13. Stress and Thermal Analysis of the In-Vessel Resonant Magnetic Perturbation Coils on the J-TEXT Tokamak%Stress and Thermal Analysis of the In-Vessel Resonant Magnetic Perturbation Coils on the J-TEXT Tokamak

    Institute of Scientific and Technical Information of China (English)

    郝长端; 张明; 丁永华; 饶波; 岑义顺; 庄革

    2012-01-01

    A set of four in-vessel saddle coils was designed to generate a helical field on the J- TEXT tokamak to study the influences of the external perturbation field on plasma. The coils are fed with alternating current up to 10 kA at frequency up to 10 kHz. Due to the special structure, complex thermal environment and limited space in the vacuum chamber, Jt is very important to make sure that the coils will not be damaged when undergoing the huge electromagnetic forces in the strong toroidal field, and that their temperatures don't rise too much and destroy the in- sulation. A 3D finite element model is developed in this paper using the ANSYS code, stresses are analyzed to find the worst condition, and a mounting method is then established. The results of the stress and modal analyses show that the mounting method meets the strength requirements. Finally, a thermal analysis is performed to study the cooling process and the temperature distribution of the coils.

  14. Compact-Toroid development: status and technical needs

    International Nuclear Information System (INIS)

    This document contains the description, goals, status, plans, and strategy for the technical development of a class of magnetic confinement configurations collectively identified as Compact Toroids. This component of the magnetic fusion development program has been characterized by its potential for physical compactness and range of output power

  15. Toroidal, compression, and vortical dipole strengths in 124Sn

    CERN Document Server

    Kvasil, J; Repko, A; Kleinig, W; Reinhard, P -G; Iudice, N Lo

    2012-01-01

    The toroidal, compression and vortical dipole strength functions in semi-magic $^{124}$Sn (and partly in doubly-magic $^{100,132}$Sn) are analyzed within the random-phase-approximation method with the SkT6, SkI3, SLy6, SV-bas, and SkM* Skyrme forces. The isoscalar (T=0), isovector (T=1), and electromagnetic ('elm') channels are considered. Both convection $j_c$ and magnetization $j_m$ nuclear currents are taken into account. The calculations basically confirm the previous results obtained for $^{208}$Pb with the force SLy6. In particular, it is shown that the vortical and toroidal strengths are dominated by $j_c$ in T=0 channel and by $j_m$ in T=1 and 'elm' channels. The compression strength is always determined by $j_c$. It is also shown that the 'elm' strength (relevant for (e,e') reaction) is very similar to T=1 one. The toroidal mode resides in the region of the pygmy resonance. So, perhaps, this region embraces both irrotational (pygmy) and vortical (toroidal) flows.

  16. Plasma Processes : Minimum dissipative relaxed states in toroidal plasmas

    Indian Academy of Sciences (India)

    R Bhattacharyya; M S Janaki; B Dasgupta

    2000-11-01

    Relaxation of toroidal discharges is described by the principle of minimum energy dissipation together with the constraint of conserved global helicity. The resulting Euler-Lagrange equation is solved in toroidal coordinates for an axisymmetric torus by expressing the solutions in terms of Chandrasekhar-Kendall (C-K) eigenfunctions analytically continued in the complex domain. The C-K eigenfunctions are obtained as hypergeometric functions that are solutions of scalar Helmholtz equation in toroidal coordinates in the large aspect-ratio approximation. Equilibria are constructed by assuming the current to vanish at the edge of plasma. For the = 0; = 0 ( and are the poloidal and toroidal mode numbers respectively) relaxed states, the magnetic field, current, (safety factor) and pressure profiles are calculated for a given value of aspect-ratio of the torus and for different values of the eigenvalue 0. The new feature of the present model is that solutions allow for both tokamak as well as RFP-like behaviour with increase in the values of 0, which is related directly to volt-sec in the experiment.

  17. Evidence of Inward Toroidal Momentum Convection in the JET Tokamak

    DEFF Research Database (Denmark)

    Tala, T.; Zastrow, K.-D.; Ferreira, J.;

    2009-01-01

    Experiments have been carried out on the Joint European Torus tokamak to determine the diffusive and convective momentum transport. Torque, injected by neutral beams, was modulated to create a periodic perturbation in the toroidal rotation velocity. Novel transport analysis shows the magnitude an...

  18. Stability of toroidal magnetic fields in stellar interiors

    CERN Document Server

    Ibañez-Mejia, Juan C

    2015-01-01

    We present 3D MHD simulations of purely toroidal and mixed poloidal-toroidal magnetic field configurations to study the behavior of the Tayler instability. For the first time the simultaneous action of rotation and magnetic diffusion are taken into account and the effects of a poloidal field on the dynamic evolution of unstable toroidal magnetic fields is included. In the absence of diffusion, fast rotation (rotation rate compared to Alfv\\'en frequency) is able to suppress the instability when the rotation and magnetic axes are aligned and when the radial field strength gradient p 1.5, rapid rotation does not suppress the instability but instead introduces a damping factor to the growth rate in agreement with the analytic predictions. For the mixed poloidal-toroidal fields we find an unstable axisymmetric mode, not predicted analytically, right at the stability threshold for the non-axisymmetric modes; it has been argued that an axisymmetric mode is necessary for the closure of the Tayler-Spruit dynamo loop.

  19. Flat-band assembly for toroidal transformer cores

    Science.gov (United States)

    Mclyman, W. T.

    1973-01-01

    Toroidal transformer cores are often banded together by means of strap. Spot welds secure strap. Proper tension is obtained by use of special fixture in conjunction with winding of wire which is placed temporarily on core; winding is excited by dc current to hold core halves together magnetically during alignment.

  20. An Overview of Plasma Confinement in Toroidal Systems

    OpenAIRE

    Dini, Fatemeh; Baghdadi, Reza; Amrollahi, Reza; Khorasani, Sina

    2009-01-01

    This overview presents a tutorial introduction to the theory of magnetic plasma confinement in toroidal confinement systems with particular emphasis on axisymmetric equilibrium geometries, and tokamaks. The discussion covers three important aspects of plasma physics: Equilibrium, Stability, and Transport. The section on equilibrium will go through an introduction to ideal magnetohydrodynamics, curvilinear system of coordinates, flux coordinates, extensions to axisymmetric equilibrium, Grad-Sh...

  1. Theoretical studies of non inductive current drive in compact toroids

    NARCIS (Netherlands)

    Farengo, R; Lifschitz, AF; Caputi, KI; Arista, NR; Clemente, RA

    2002-01-01

    Three non inductive current drive methods that can be applied to compact toroids axe studied. The use of neutral beams to drive current in field reversed configurations and spheromaks is studied using a Monte Carlo code that includes a complete ionization package and follows the exact particle orbit

  2. Preparing an ATLAS toroid magnet end-cap for lowering

    CERN Multimedia

    Claudia Marcelloni

    2007-01-01

    One of the two 13-m high toroid magnet end-caps for the ATLAS experiment being transported from the construction hall to the experimental area. The end-cap will be lowered into the ATLAS cavern and attached to an end of the detector.

  3. Theory of the M = 1 Kink Mode in Toroidal Plasma

    NARCIS (Netherlands)

    de Blank, H. J.; Schep, T. J.

    1991-01-01

    The energy principle of ideal magnetohydrodynamics (MHD) is used to study the ideal MHD stability of the m = 1 internal kink mode in a toroidal plasma. The equilibrium configurations that are considered allow for a broad region where the safety factor q is close to unity. This region may extend to t

  4. Construction and initial operation of the Advanced Toroidal Facility

    International Nuclear Information System (INIS)

    The Advanced Toroidal Facility (ATF) torsatron was designed on a physics basis for access to the second stability regime and on an engineering basis for independent fabrication of high-accuracy components. The actual construction, assembly, and initial operation of ATF are compared with the characteristics expected during the design of ATF. 31 refs., 19 figs., 2 tabs

  5. A toroidal inductor integrated in a standard CMOS process

    DEFF Research Database (Denmark)

    Vandi, Luca; Andreani, Pietro; Temporiti, Enrico;

    2007-01-01

    This paper presents a toroidal inductor integrated in a standard 0.13 um CMOS process. Finite-elements preliminary simulations are provided to prove the validity of the concept. In order to extract fundamental parameters by means of direct calculations, two different and well-known approaches...

  6. Plasma Heating and Losses in Toroidal Multipole Fields

    Energy Technology Data Exchange (ETDEWEB)

    Armentrout, C. J.; Barter, J. D.; Breun, R. A.; Cavallo, A. J.; Drake, J. R.; Etzweiler,; Greenwood, J. R.

    1974-09-01

    The heating and loss of plasmas have been studied in three pulsed, toroidal multipole devices: a large levitated octupole, a small supported octupole and a very .small supported quadrupole. Plasmas are produced by gun injection and heated by electron and ion cyclotron resonance heating and ohmic heating. Electron cyclotron heating rates have been measured over a wide range of parameters, and the results are in quantitative agreement with stochastic heating theory. Electron cyclotron resonance heating produces ions with energies larger than predicted by theory. With the addition of a toroidal field, ohmic heating gives densities as high as 10{sup 13}cm{sup -3} in the toroidal quadrupole and 10{sup 12}cm{sup -3} in the small octupole. Plasma losses for n=5 x 10{sup 9}cm{sup -3} plasmas are inferred from Langmuir probe and Fabry-Perot interferometer measurements, and measured with special striped collectors on the wall and rings. The loss to a levitated ring is measured using a modulated light beam telemeter. The confinement is better than Bohm but considerably worse than classical. Low frequency convective cells which are fixed in space are observed. These cells around the ring are diminished when a weak toroidal field is added, and loss collectors show a vastly reduced flux to the rings. Analysis of the spatial density profile shows features of B-independent diffusion. The confinement is sensitive to some kinds of dc field errors, but surprisingly insensitive to perturbations of the ac confining field.

  7. Performance improvement of a high-temperature superconducting coil by separating and grading the coil edge

    Science.gov (United States)

    Ishiguri, Shinichi; Funamoto, Taisuke

    2011-06-01

    In this paper, we establish a model to analyze the transport current performance of a high-temperature superconducting (HTS) coil, considering the dependencies of critical current and n-value of an HTS tape on magnetic field and magnetic field angles. This analysis shows that relatively large electric fields appear at the coil’s edges, preventing improvement in the transport current performance of the coil. To solve this problem, in this paper, we propose a graded coil in which several coil edges of different heights are separated and graded. Analysis of its performance shows that the coil’s critical current increases, thus confirming that there exists an optimum coil cross section at which the stored energy and central magnetic field improve 2.1 times and 45%, respectively, compared with a typical rectangular coil that employs the same total length of the HTS tape. It is recommended that these results of the coil should be applied to SMES.

  8. HT-7U纵场磁体的真空压力浸渍%Vacuum Pressure Impregnation for Toroidal Magnet Coils

    Institute of Scientific and Technical Information of China (English)

    崔益民; 潘皖江; 武松涛

    2002-01-01

    主要通过模拟匝间流动试验、短样试验和长样试验等,探求低温超导托卡马克HT-7U中纵场磁体线圈的绝缘层真空压力浸渍的工艺参数,确定工艺流程,并以模型线圈试验的电性能和液氦温度下的力学性能来验证工艺参数及工艺流程的可靠性.

  9. First physics pulses in the Barrel Electromagnetic Calorimeter with cosmics

    CERN Multimedia

    Laurent Serin

    2006-01-01

    The electromagnetic barrel calorimeter has been installed in its final position in October 2005. Since then, the calorimeter is being equipped with front-end electronics. Starting in April 2006, electronics calibration runs are taken a few times per week to debug the electronics and to study the performance in the pit (stability, noise). Today, 10 out of the 32 Front End crates are being read out, amounting to about 35000 channels. cool down, few little typos --> After a 6-week cool down, the barrel cryostat was filled with Liquid Argon in May. The presence of a few shorts (~1MΩ) at the edges of the modules was indicating the possibility of conducting dust having entered into the calorimeter with the flowing liquid. In order to try to improve this situation, the calorimeter was emptied and filled again, but this time by condensating the argon instead of flowing it in liquid phase. The new High Voltage tests are not showing any significant improvement but the situation is statisfactory for ATLAS runn...

  10. Performance of a Rain Barrel Sharing Network under Climate Change

    Directory of Open Access Journals (Sweden)

    Seong Jin Noh

    2015-07-01

    Full Text Available Rain barrels can be technically shared through social practices or mutual agreement between individual households. This study proposes the evaluation system for a rain barrel sharing network (RBSN considering three performance criteria of reliability, resiliency, and vulnerability, under plausible climate change scenarios. First, this study shows how the system can be improved in terms of the performance criteria using historical daily rainfall data based on the storage-reliability-yield relationship. This study then examined how the benefits from RBSN are affected by climate change after 100 years. Three climate change scenarios (A1B, A2 and B2 and three global circulation models were used for this purpose. The results showed that the reliability and vulnerability are improved due to sharing and their improvements become larger under climate change conditions. In contrast, the resiliency reduces slightly due to sharing and its reduction is attenuated under climate change conditions. In particular, vulnerability will be reduced significantly under climate change. These results suggest that the sharing of various water resources systems can be an effective climate change adaptation strategy that reduces vulnerability and increases the reliability of the system.

  11. Simultaneous formation of right- and left-handed anti-parallel coiled-coil interfaces by a coil2 fragment of human lamin A.

    Science.gov (United States)

    Kapinos, Larisa E; Burkhard, Peter; Herrmann, Harald; Aebi, Ueli; Strelkov, Sergei V

    2011-04-22

    The elementary building block of all intermediate filaments (IFs) is a dimer featuring a central α-helical rod domain flanked by the N- and C-terminal end domains. In nuclear IF proteins (lamins), the rod domain consists of two coiled-coil segments, coil1 and coil2, that are connected by a short non-helical linker. Coil1 and the C-terminal part of coil2 contain the two highly conserved IF consensus motifs involved in the longitudinal assembly of dimers. The previously solved crystal structure of a lamin A fragment (residues 305-387) corresponding to the second half of coil2 has yielded a parallel left-handed coiled coil. Here, we present the crystal structure and solution properties of another human lamin A fragment (residues 328-398), which is largely overlapping with fragment 305-387 but harbors a short segment of the tail domain. Unexpectedly, no parallel coiled coil forms within the crystal. Instead, the α-helices are arranged such that two anti-parallel coiled-coil interfaces are formed. The most significant interface has a right-handed geometry, which is accounted for by a characteristic 15-residue repeat pattern that overlays with the canonical heptad repeat pattern. The second interface is a left-handed anti-parallel coiled coil based on the predicted heptad repeat pattern. In solution, the fragment reveals only a weak dimerization propensity. We speculate that the C-terminus of coil2 might unzip, thereby allowing for a right-handed coiled-coil interface to form between two laterally aligned dimers. Such an interface might co-exist with a heterotetrameric left-handed coiled-coil assembly, which is expected to be responsible for the longitudinal A(CN) contact.

  12. Switching transients in a superconducting coil

    International Nuclear Information System (INIS)

    A study is made of the transients caused by the fast dump of large superconducting coils. Theoretical analysis, computer simulation, and actual measurements are used. Theoretical analysis can only be applied to the simplest of models. In the computer simulations two models are used, one in which the coil is divided into ten segments and another in which a single coil is employed. The circuit breaker that interrupts the current to the power supply, causing a fast dump, is represented by a time and current dependent conductance. Actual measurements are limited to measurements made incidental to performance tests on the MFTF Yin-yang coils. It is found that the breaker opening time is the critical factor in determining the size and shape of the transient. Instantaneous opening of the breaker causes a lightly damped transient with large amplitude voltages to ground. Increasing the opening time causes the transient to become a monopulse of decreasing amplitude. The voltages at the external terminals are determined by the parameters of the external circuit. For fast opening times the frequency depends on the dump resistor inductance, the circuit capacitance, and the amplitude on the coil current. For slower openings the dump resistor inductance and the current determine the amplitude of the voltage to ground at the terminals. Voltages to ground are less in the interior of the coil, where transients related to the parameters of the coil itself are observed

  13. Crystal structure of a coiled-coil domain from human ROCK I.

    Directory of Open Access Journals (Sweden)

    Daqi Tu

    Full Text Available The small GTPase Rho and one of its targets, Rho-associated kinase (ROCK, participate in a variety of actin-based cellular processes including smooth muscle contraction, cell migration, and stress fiber formation. The ROCK protein consists of an N-terminal kinase domain, a central coiled-coil domain containing a Rho binding site, and a C-terminal pleckstrin homology domain. Here we present the crystal structure of a large section of the central coiled-coil domain of human ROCK I (amino acids 535-700. The structure forms a parallel α-helical coiled-coil dimer that is structurally similar to tropomyosin, an actin filament binding protein. There is an unusual discontinuity in the coiled-coil; three charged residues (E613, R617 and D620 are positioned at what is normally the hydrophobic core of coiled-coil packing. We speculate that this conserved irregularity could function as a hinge that allows ROCK to adopt its autoinhibited conformation.

  14. Latest News From the Magnet System

    CERN Multimedia

    J.J. Rabbers

    Barrel Toroid assembly completed! During the summer of 2005 the last coils of the Barrel Toroid were installed in the cavern and the warm structure was completed. In October the top supports, which were used to hold up the coils in position during toroid assembly were removed. The top of the Barrel Toroid came down by about 18 mm under its own weight. With the installation of muon chambers and detector services, the top of the Toroid will go down by another 7 millimetres or so. The toroid then changed from the "egg" shape during installation to an (almost) circular shape. Remarkably the deflection observed is within the mm as predicted by calculation. The installation and connection of the cryoring is making good progress at the moment. The cryoring, containing the superconducting bus lines between the coils and the cryogenic supply lines, inter-connects the vacuum vessels of the eight coils. On top of the Barrel Toroid the cryoring is connected to the current lead cryostat where the connections with the c...

  15. Experiments on feedback control of multiple resistive wall modes comparing different active coil arrays and sensor types

    International Nuclear Information System (INIS)

    Full text: Experiments have been carried out on the EXTRAP T2R reversed-field pinch device to study several important issues related to feedback control of resistive wall modes (RWMs). In the first series of experiments, the effect of side band coupling due to the limited number of coils in the array was investigated. Different feedback schemes have been used in order to overcome the coupling effect such as the mode control scheme, which includes real time spatial FFT to obtain action on individual modes. The unstable RWM spectrum consists of about 16 modes with m=1 and different toroidal mode number n. In recent experiments using the intelligent shell scheme with a full PID controller action and higher feedback gains, complete stabilisation of the modes is achieved. The active array consists of 128 coils at 4 poloidal and 32 toroidal positions. The pulse length is equivalent to 10 wall times, limited by the power supply. Without feedback the discharge pulse ends prematurely after 3-4 wall times due effects associated with the RWM mode growth. With feedback stabilization, plasma rotation and tearing mode rotation is maintained throughout the pulse, thereby avoiding the locked mode phenomenon often observed in RFPs and manifested in an increased local plasma wall interaction. With feedback control the influx from the wall is maintained at a low level throughout the pulse. The first feedback experiments using a sensor array measuring the toroidal field component have been carried out. The critical gain required for suppression has been compared for the radial and toroidal field sensor cases, and found in qualitative agreement with theory. The phase shift of the control field has been varied. Optimal suppression is achieved at the predicted complex feedback gain phase. Mode rotation is induced at other complex gain phases, in agreement with modelling. Previously developed linear models have guided the feedback experiments. Open-loop experiments have been used for

  16. An analysis of increasing the size of the strategic petroleum reserve to one billion barrels

    Energy Technology Data Exchange (ETDEWEB)

    1990-01-01

    The Department of Energy's Office of Energy Emergency Policy and Evaluation requested that the Energy Information Administration complete an analysis of the proposed expansion in the Strategic Petroleum Reserve (SPR) from its currently planned size of 750 million barrels to 1000 million barrels. Because the SPR contains only 580 million barrels at this point in time, the benefits and costs of increasing the SPR from 600 to 750 million barrels were also estimated. This report documents the assumptions, methodology, and results of the analysis. 17 figs., 15 tabs.

  17. Magnetic field mapper based on rotating coils

    CERN Document Server

    AUTHOR|(CDS)2087244; Arpaia, Pasquale

    This thesis presents a magnetic field mapper based on rotating coils. The requirements, the architecture, the conceptual design, and the prototype for straight magnets were shown. The proposed system is made up of a rotating coil transducer and a train-like system for longitudinal motion and positioning inside magnet bore. The mapper allows a localized measurement of magnetic fields and the variation of the harmonic multipole content in the magnet ends. The proof-of-principle demonstration and the experimental characterization of the rotating-coil transducer specifically conceived for mapping validated the main objective of satisfying the magnetic measurement needs of the next generation of compact accelerators.

  18. Observation of Fano resonance and classical analog of electromagnetically induced transparency in toroidal metamaterials

    Energy Technology Data Exchange (ETDEWEB)

    Han, Song; Yang, Helin [College of Physical Science and Technology, Central China Normal University, Wuhan (China); Cong, Lonqing; Singh, Ranjan [Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore (Singapore); Centre for Disruptive Photonic Technologies, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore (Singapore); Gao, Fei [Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore (Singapore)

    2016-05-15

    Toroidal multipoles have recently been explored in various scientific communities, ranging from atomic and molecular physics, electrodynamics, and solid-state physics to biology. Here we experimentally and numerically demonstrate a three-dimensional toroidal metamaterial where two different toroidal dipoles along orthogonal directions have been observed. The chosen toroidal metamaterial also simultaneously supports Fano resonance and the classical analog of electromagnetically induced transparency (EIT) phenomena in the transmission spectra that originate from the electric-toroidal dipole and electric-magnetic dipole destructive interference. The intriguing properties of the toroidal resonances may open up avenues for applications in toroidal moments generator, sensing and slow-light devices. (copyright 2016 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  19. Installation of CMS EB (ECAL Barrel) Supermodules 5 and 13 inside HB+ (HCAL Barrel) on 26/27 April 2006

    CERN Document Server

    Ken Bell, RAL

    2006-01-01

    The first two barrel "supermodules" of the CMS Electromagnetic Calorimeter (ECAL) have been inserted into the barrel hadron calorimeter (HCAL) in the CMS experimental hall (called SX5) in Cessy in preparation for the forthcoming magnet test and cosmic challenge (MTCC). Each of the two supermodules contains 1700 lead tungstate crystals in glass-fibre alveolar support structures, with associated avalanche photodiodes (APDs, for scintillation light detection), electronics and cooling system. See also the document CMS-PHO-OREACH-2006-019. The first two pictures show the two supermodules in their final position. Fig. 3: the "enfourneur" in position on the HB Cradle. Fig. 4: supermodule n. 5 and extension rails being lifted to the enforneur. Figs. 5-6: supermodule approaching the enforneur. Fig. 7: rotating the Enfourneur to the correct phi direction Figs. 8-9: aligning the extension rails with the rails inside HB and view from inside HB, once the rails are aligned. Figs. 10-12: insertion of supermodule n. 5. Fig. ...

  20. ATLAS TV PROJECT

    CERN Multimedia

    2005-01-01

    CAMERA ON TOROID The ATLAS barrel toroid system consists of eight coils, each of axial length 25.3 m, assembled radially and symmetrically around the beam axis. The coils are of a flat racetrack type with two double-pancake windings made of 20.5 kA aluminium-stabilized niobium-titanium superconductor. The video is about the slow lowering of the toroid down to the cavern of ATLAS. It is very demanding task. The camera is placed on top of the toroid.