WorldWideScience

Sample records for barred spiral galaxy

  1. Central Mass Concentration and Bar Dissolution in Nearby Spiral Galaxies

    CERN Document Server

    Das, M; Vogel, S N; Regan, M W; Sheth, K; Harris, A I; Jefferys, W H; Das, Mousumi; Teuben, Peter J.; Vogel, Stuart N.; Regan, Michael W.; Sheth, Kartik; Harris, Andrew I.; Jefferys, William H.

    2003-01-01

    We use data from the BIMA Survey of Nearby Galaxies (SONG) to investigate the relationship between ellipticity and central mass concentration in barred spirals. Existing simulations predict that bar ellipticity decreases as inflowing mass driven by the bar accumulates in the central regions, ultimately destroying the bar. Using the ratio of the bulge mass to the mass within the bar radius as an estimate of the central mass concentration, we obtain dynamical mass estimates from SONG CO 1-0 rotation curve data. We find an inverse correlation between bar ellipticity and central mass concentration, consistent with simulations of bar dissolution.

  2. The formation of spiral arms and rings in barred galaxies

    CERN Document Server

    Romero-Gomez, M; Masdemont, J J; García-Gomez, C

    2007-01-01

    We propose a new theory to explain the formation of spiral arms and of all types of outer rings in barred galaxies. We have extended and applied the technique used in celestial mechanics to compute transfer orbits. Thus, our theory is based on the chaotic orbital motion driven by the invariant manifolds associated to the periodic orbits around the hyperbolic equilibrium points. In particular, spiral arms and outer rings are related to the presence of heteroclinic or homoclinic orbits. Thus, R1 rings are associated to the presence of heteroclinic orbits, while R1R2 rings are associated to the presence of homoclinic orbits. Spiral arms and R2 rings, however, appear when there exist neither heteroclinic nor homoclinic orbits. We examine the parameter space of three realistic, yet simple, barred galaxy models and discuss the formation of the different morphologies according to the properties of the galaxy model. The different morphologies arise from differences in the dynamical parameters of the galaxy.

  3. Stellar diffusion in barred spiral galaxies

    CERN Document Server

    Brunetti, Maura; Pfenniger, Daniel

    2011-01-01

    We characterize empirically the radial diffusion of stars in the plane of a typical barred disk galaxy by calculating the local spatial diffusion coefficient and diffusion time-scale for bulge-disk-halo N-body self-consistent systems which initially differ in the Safronov-Toomre-Q_T parameter. We find different diffusion scenarios that depend on the bar strength and on the degree of instability of the disk. Marginally stable disks, with Q_T \\sim 1, have two families of bar orbits with different values of angular momentum and energy, which determine a large diffusion in the corotation region. In hot disks, Q_T> 1, stellar diffusion is reduced with respect to the case of marginally stable disks. In cold models, we find that spatial diffusion is not constant in time and strongly depends on the activity of the bar, which can move stars all over the disk recurrently. We conclude that to realistically study the impact of radial migration on the chemical evolution modeling of the Milky Way the role of the bar has to...

  4. Formation of Nuclear Spirals in Barred Galaxies

    CERN Document Server

    Ann, H B; Thakur, Parijat

    2004-01-01

    We have performed smoothed particle hydrodynamics (SPH) simulations for the response of the gaseous disk to the imposed moderately strong non-axisymmetric potentials. The model galaxies are composed of the three stellar components (disk, bulge and bar) and two dark ones (supermassive black hole and halo) whose gravitational potentials are assumed to be invariant in time in the frame corotating with the bar. We found that the torques alone generated by the moderately strong bar that gives the maximum of tangential-to-radial force ratio as $(F_{Tan}/F_{Rad})_{max}= 0.3$ are not sufficient to drive the gas particles close to the center due to the barrier imposed by the inner Lindblad resonances (ILRs). In order to transport the gas particles towards the nucleus ($r<100$ pc), a central supermassive black hole (SMBH) and high sound speed of the gas are required to be present. The former is required to remove the inner inner Lindblad resonance (IILR) that prevents gas inflow close to the nucleus, while the latte...

  5. Diffusion in barred-spiral galaxies

    CERN Document Server

    Brunetti, Maura; Pfenniger, Daniel

    2010-01-01

    We characterize the radial migration of stars in the disk plane by calculating the diffusion coefficient and the diffusion time-scale for a bulge-disk N-body self-consistent system with a marginally-stable Toomre-Q parameter. We find that diffusion is not constant in time, but follows the evolution of the bar, and becomes maximum near the corotation region and in the external disk region, where asymmetric patterns develop.

  6. Hydrodynamical Simulations of the Barred Spiral Galaxy NGC 1097

    CERN Document Server

    Lin, Lien-Hsuan; Hsieh, Pei-Ying; Taam, Ronald E; Yang, Chao-Chin; Yen, David C C

    2013-01-01

    NGC 1097 is a nearby barred spiral galaxy believed to be interacting with the elliptical galaxy NGC 1097A located to its northwest. It hosts a Seyfert 1 nucleus surrounded by a circumnuclear starburst ring. Two straight dust lanes connected to the ring extend almost continuously out to the bar. The other ends of the dust lanes attach to two main spiral arms. To provide a physical understanding of its structural and kinematical properties, two-dimensional hydrodynamical simulations have been carried out. Numerical calculations reveal that many features of the gas morphology and kinematics can be reproduced provided that the gas flow is governed by a gravitational potential associated with a slowly rotating strong bar. By including the self-gravity of the gas disk in our calculation, we have found the starburst ring to be gravitationally unstable which is consistent with the observation in \\citet{hsieh11}. Our simulations show that the gas inflow rate is 0.17 M$_\\sun$ yr$^{-1}$ into the region within the starbu...

  7. The Chemical Anatomy of Nuclei of Nearby Barred Spiral Galaxies

    Science.gov (United States)

    Meier, D. S.; Turner, J. L.

    2004-12-01

    We present images of the millimeter lines of eight molecules---C2H, C34S, N2H+, CH3OH, HNCO, HNC, HC3N, and SO---in the nuclei of the nearby barred spiral galaxies, IC 342 and Maffei 2, made with the OVRO and BIMA arrays. These maps are compared to obtain a picture of changes in chemistry on sizescales of individual giant molecular clouds (GMCs) within a nucleus and between nuclei of similar morphological type. Emission from all species except SO are detected in both galaxies. Marked differences in morphology between the observed species are seen in both galaxies. A principal component analysis (PCA) is performed to quantify differences among the images. In IC 342, the PCA reveals that while all molecules are zeroth order correlated, that is, trace dense GMCs, there are three distinct groups of molecules distinguished by the location of their emission within the nucleus. N2H+ and HNC are widespread and bright, tracing all of the GMCs. C2H and C34S, tracers of photo-dissociation region chemistry, originate exclusively from the central ˜ 5'' ring illuminated by the 60 Myr, massive central cluster. CH3OH (and HNCO), a typical tracer of grain processing, correlates well with the expected locations of bar-induced orbital shocks. In Maffei 2, the PCA demonstrates that its chemistry is quite similar to IC 342, with the molecules tending to couple together in the same groups and with the same structural components of the nucleus. C2H dominates from the central starburst region, but is significantly more extended than IC 342 because its star formation is more extended. The correlation between HNCO and CH3OH in Maffei 2 is even strongly than in IC 342, being entirely dominated by the bar ends and orbit intersections. This provides strong evidence that HNCO is formed by the same processes as CH3OH. Funding for this research is provided by the Laboratory for Astronomical Imaging at the University of Illinois through the NSF grant AST-0228953, and by NSF grants AST-0071276 and

  8. Effects of Spiral Arms on Star Formation in Nuclear Rings of Barred-spiral Galaxies

    CERN Document Server

    Seo, Woo-Young

    2014-01-01

    We use hydrodynamic simulations to study the effect of spiral arms on the star formation rate (SFR) occurring in nuclear rings of barred-spiral galaxies. We find that spiral arms can be an efficient means of gas transport from the outskirts to the central parts, provided that the arms are rotating slower than the bar. While the ring star formation in models with no-arm or corotating arms is active only during about the bar growth phase, arm-driven gas accretion makes the ring star formation both enhanced and prolonged significantly in models with slow-rotating arms. The arm-enhanced SFR is larger by a factor of ~ 3-20 than in the no-arm model, with larger values corresponding to stronger and slower arms. Arm-induced mass inflows also make dust lanes stronger. Nuclear rings in slow-arm models are ~ 45% larger than in the no-arm counterparts. Star clusters that form in a nuclear ring exhibit an age gradient in the azimuthal direction only when the SFR is small, whereas no noticeable age gradient is found in the...

  9. Spiral- and bar-driven peculiar velocities in Milky Way-sized galaxy simulations

    Science.gov (United States)

    Grand, Robert J. J.; Bovy, Jo; Kawata, Daisuke; Hunt, Jason A. S.; Famaey, Benoit; Siebert, Arnaud; Monari, Giacomo; Cropper, Mark

    2015-10-01

    We investigate the kinematic signatures induced by spiral and bar structure in a set of simulations of Milky Way-sized spiral disc galaxies. The set includes test particle simulations that follow a quasi-stationary density wave-like scenario with rigidly rotating spiral arms, and N-body simulations that host a bar and transient, corotating spiral arms. From a location similar to that of the Sun, we calculate the radial, tangential and line-of-sight peculiar velocity fields of a patch of the disc and quantify the fluctuations by computing the power spectrum from a two-dimensional Fourier transform. We find that the peculiar velocity power spectrum of the simulation with a bar and transient, corotating spiral arms fits very well to that of APOGEE red clump star data, while the quasi-stationary density wave spiral model without a bar does not. We determine that the power spectrum is sensitive to the number of spiral arms, spiral arm pitch angle and position with respect to the spiral arm. However, it is necessary to go beyond the line-of-sight velocity field in order to distinguish fully between the various spiral models with this method. We compute the power spectrum for different regions of the spiral discs, and discuss the application of this analysis technique to external galaxies.

  10. Gas accretion on spiral galaxies bar formation and renewal

    CERN Document Server

    Bournaud, F

    2002-01-01

    The effects of gas accretion on spiral disk dynamics and stability are studied through N-body simulations, including star formation and gas/stars mass exchange. The detailed processes of bar formation, bar destruction and bar re-formation are followed, while in the same time the disk to bulge ratio is varying. The accreted gas might be first prevented to flow inwards to the center by the bar gravity torques, which maintains it to the outer Lindblad resonance. While the first bar is weakening, the accreted gas replenishes the disk, increasing the disk-to-bulge ratio, and the disk self-gravity. A second bar is then unstable, with a higher pattern speed, due both to the increased mass, and shorter bar length. Three or four bar episodes have been followed over a Hubble time. Their strength is decreasing with time, while their pattern speed is increasing. Detailed balance of the angular momentum transfer and evolution can account for these processes. The gas recycled through star formation, and rejected through st...

  11. Stellar Populations in the Barred Spiral Galaxy NGC 4900

    CERN Document Server

    Cantin, Simon; Mollá, Mercedes; Pellerin, Anne

    2010-01-01

    We present OASIS observations obtained at the Canada-France-Hawaii Telescope for the SB(rs)c galaxy NGC 4900. About 800 spectra in the wavelength range 4700-5500 AA and 6270- 7000 AA have been collected with a spatial resolution of ~50 pc. This galaxy is part of a sample to study the stellar populations and their history in the central region of galaxies. In this paper, we present our iterative technique developed to describe consistently the different stellar com- ponents seen through emission and absorption lines. In NGC 4900 we find many young bursts of star formation distributed along the galaxy large scale bar on each side of the nucleus. They represent nearly 40 per cent of the actual stellar mass in the field of view. The age for these bursts ranges from 5.5 to 8 Myr with a metallicity near and above 2 Zsun . The extinction map gives E(B-V) values from 0.19+/-0.01 near the youngest bursts to 0.62+/-0.06 in a dusty internal bar perpendicular to the large scale bar. The Mg 2 and Fe I absorption lines ind...

  12. Starbursts in Barred Spiral Galaxies; 2, Molecular and Optical Study of Three Wolf-Rayet Galaxies

    CERN Document Server

    Contini, T; Considère, S; Davoust, E

    1997-01-01

    We have searched for dense molecular gas in three barred spiral galaxies with young starbursts, NGC 3049, 5430 and 6764, which are known Wolf-Rayet galaxies. We detected HCN in the latter two, and CS was marginally detected in NGC 6764. The dense molecular gas contents of the three galaxies are compared to those of other galaxies and to other indicators of star formation. The HCN luminosities (relative to the CO and far infrared ones) in these galaxies with very young starbursts are consistent with those observed in galaxies with older starbursts and in normal galaxies, and so are our upper limits to the CS intensities (relative to CO). The starburst ages evaluated from our spectrophotometric observations are in the range 3.4 to 6.0 Myr. A circum-nuclear ring is apparent on our images of NGC 5430, the galaxy with the oldest central starburst; this galaxy also has the widest molecular lines. The central star formation rates derived from the Halpha luminosity are consistent with those expected from the global F...

  13. Spiral and bar driven peculiar velocities in Milky Way sized galaxy simulations

    CERN Document Server

    Grand, Robert J J; Kawata, Daisuke; Hunt, Jason A S; Famaey, Benoit; Siebert, Arnaud; Monari, Giacomo; Cropper, Mark

    2015-01-01

    We investigate the kinematic signatures induced by spiral and bar structure in a set of simulations of Milky Way-sized spiral disc galaxies. The set includes test particle simulations that follow a quasi-stationary density wave-like scenario with rigidly rotating spiral arms, and $N$-body simulations that host a bar and transient, co-rotating spiral arms. From a location similar to that of the Sun, we calculate the radial, tangential and line-of-sight peculiar velocity fields of a patch of the disc and quantify the fluctuations by computing the power spectrum from a two-dimensional Fourier transform. We find that the peculiar velocity power spectrum of the simulation with a bar and transient, co-rotating spiral arms fits very well to that of APOGEE red clump star data, while the quasi-stationary density wave spiral model without a bar does not. We determine that the power spectrum is sensitive to the number of spiral arms, spiral arm pitch angle and position with respect to the spiral arm. However, it is nece...

  14. Invariant manifolds and the response of spiral arms in barred galaxies

    CERN Document Server

    Tsoutsis, P; Efthymiopoulos, C; Contopoulos, George

    2008-01-01

    The unstable invariant manifolds of the short-period family of periodic orbits around the unstable Lagrangian points $L_1$ and $L_2$ of a barred galaxy define loci in the configuration space which take the form of a trailing spiral pattern. In the present paper we investigate this association in the case of the self-consistent models of Kaufmann & Contopoulos (1996) which provide an approximation of real barred-spiral galaxies. We also examine the relation of `response' models of barred-spiral galaxies with the theory of the invariant manifolds. Our main results are the following: The invariant manifolds yield the correct form of the imposed spiral pattern provided that their calculation is done with the spiral potential term turned on. We provide a theoretical model explaining the form of the invariant manifolds that supports the spiral structure. The azimuthal displacement of the Lagrangian points with respect to the bar's major axis is a crucial parameter in this modeling. When this is taken into accou...

  15. The role of interactions in triggering bars, spiral arms and AGN in disk galaxies

    Science.gov (United States)

    Nair, Preethi; Ellison, Sara L.; Patton, David R.

    2016-01-01

    The role of secular structures like bars, rings and spiral arms in triggering star formation and AGN activity in disk galaxies are not well understood. In addition, the mechanisms which create and destroy these structures are not well characterized. Mergers are considered to be one of the main mechanisms which can trigger bars in massive disk galaxies. Using a sample of ~8000 close pair galaxies at 0.02 MaNGA will help to place stronger constraints on the role of these structures in triggering star formation and AGN.

  16. Optical observations of Dwingeloo 1, a nearby barred spiral galaxy behind the Milky Way

    NARCIS (Netherlands)

    Loan, AJ; Maddox, SJ; Lahav, O; Balcells, M; KraanKorteweg, RC; Assendorp, R; Almoznino, E; Brosch, N; Goldberg, E; Ofek, EO

    1996-01-01

    We present new optical observations of the nearby barred spiral galaxy Dwingeloo 1 (Dw1) obtained with the Isaac Newton, William Herschel and Wise telescopes. Dw1 lies at Galactic coordinates (l=138.degrees 52, b=-0.degrees 11) and it is heavily obscured by dust and gas in the Milky Way. We infer th

  17. The effects of bar-spiral coupling on stellar kinematics in the Galaxy

    CERN Document Server

    Monari, Giacomo; Siebert, Arnaud; Grand, Robert J J; Kawata, Daisuke; Boily, Christian

    2016-01-01

    We investigate models of the Milky Way disc taking into account simultaneously the bar and a two-armed quasi-static spiral pattern. Away from major resonance overlaps, the mean stellar radial motions in the plane are essentially a linear superposition of the isolated effects of the bar and spirals. Thus, provided the bar is strong enough, even in the presence of spiral arms, these mean radial motions are predominantly affected by the Galactic bar for large scale velocity fluctuations. This is evident when comparing the peculiar line-of-sight velocity power spectrum of our coupled models with bar-only models. However, we show how forthcoming spectroscopic surveys could disentangle bar-only non-axisymmetric models of the Galaxy from models in which spiral arms have a significant amplitude. We also point out that overlaps of low-order resonances are sufficient to enhance stellar churning within the disc, even when the spirals amplitude is kept constant. Nevertheless, for churning to be truly non-local, stronger ...

  18. A neutral hydrogen study of the barred spiral galaxy NGC 3319

    Science.gov (United States)

    Moore, E. M.; Gottesman, S. T.

    1998-03-01

    Neutral hydrogen line observations of the late-type barred spiral galaxy NGC 3319 are presented. The distribution and kinematics of the galaxy are studied using the Very Large Array, with spatial resolutions between 11 and 50 arcsec and a channel separation of 10.33 km/s. As is typical for late-type galaxies, NGC 3319 is rich in H I, with a gaseous bar and spiral features. Several large, low-density regions are present, and the H I spiral structure is distorted, especially in the south. The gas distribution is asymmetric and extends significantly further to the southeast due to a long, off-center tail. Noncircular motions caused by the bar, spiral structure, and low-density regions are present in the radial velocity field, complicating the rotation curve analysis. These nonaxisymmetric structures cause the values of the position angle and inclination derived from the velocity field to vary across the disk. In addition, beyond a radius of 180 arcsec, the velocity field is severely perturbed on the approaching (southern) side of the galaxy, and the disk becomes nonplanar. However, the galaxy does not show the typical 'integral sign' shape of a warped system. We detect a small system approximately 11 arcmin south of the center of NGC 3319. It is seen in eight velocity channels and is coincident with a small, resolved object in the Palomar Sky Survey. A tidal interaction between this object and NGC 3319 is the most likely cause of the distorted spiral structure, the H I tail, and the velocity perturbations found in the southern half of the galaxy. Infalling tidal debris from such an event may account for the large, low-density regions found in the disk, several of which show kinematic evidence that suggest they are expanding superstructures.

  19. Properties of the giant HII regions and bar in the nearby spiral galaxy NGC5430

    CERN Document Server

    Brière, É; Spekkens, K

    2012-01-01

    In order to better understand the impact of the bar on the evolution of spiral galaxies, we measure the properties of giant HII regions and the bar in the SB(s)b galaxy NGC5430. We use two complementary data sets, both obtained at the Observatoire du Mont-M\\'egantic: a hyperspectral data cube from the imaging Fourier transform spectrograph SpIOMM, and high-resolution spectra across the bar from a long-slit spectrograph. We flux-calibrate SpIOMM spectra for the first time, and produce H{\\alpha} and [NII]{\\lambda}6584\\r{A} intensity maps from which we identify 51 giant HII regions in the spiral arms and bar. We evaluate the type of activity, the oxygen abundance and the age of the young populations contained in these giant HII regions and in the bar. Thus, we confirm that NGC5430 does not harbour a strong AGN, and that its Wolf-Rayet knot shows a pure HII region nature. We find no variation in abundance or age between the bar and spiral arms, nor as a function of galactocentric radius. These results are consist...

  20. Bar Diagnostics in Edge-On Spiral Galaxies; 1, The Periodic Orbits Approach

    CERN Document Server

    Bureau, M

    1999-01-01

    We develop diagnostics to detect the presence and orientation of a bar in an edge-on disk, using its kinematical signature in the position-velocity diagram (PVD) of a spiral galaxy observed edge-on. Using a well-studied barred spiral galaxy mass model, we briefly review the orbital properties of two-dimensional non-axisymmetric disks and identify the main families of periodic orbits. We use those families as building blocks to model real galaxies and calculate the PVDs obtained for various realistic combinations of periodic orbit families and for a number of viewing angles with respect to the bar. We show that the global structure of the PVD is a reliable bar diagnostic in edge-on disks. Specifically, the presence of a gap between the signatures of the families of periodic orbits in the PVD follows directly from the non-homogeneous distribution of the orbits in a barred galaxy. Similarly, material in the two so-called forbidden quadrants of the PVD results from the elongated shape of the orbits. We show how t...

  1. The effects of bar-spiral coupling on stellar kinematics in the Galaxy

    Science.gov (United States)

    Monari, Giacomo; Famaey, Benoit; Siebert, Arnaud; Grand, Robert J. J.; Kawata, Daisuke; Boily, Christian

    2016-10-01

    We investigate models of the Milky Way disc taking into account simultaneously the bar and a two-armed quasi-static spiral pattern. Away from major resonance overlaps, the mean stellar radial motions in the plane are essentially a linear superposition of the isolated effects of the bar and spirals. Thus, provided the bar is strong enough, even in the presence of spiral arms, these mean radial motions are predominantly affected by the Galactic bar for large-scale velocity fluctuations. This is evident when comparing the peculiar line-of-sight velocity power spectrum of our coupled models with bar-only models. However, we show how forthcoming spectroscopic surveys could disentangle bar-only non-axisymmetric models of the Galaxy from models in which spiral arms have a significant amplitude. We also point out that overlaps of low-order resonances are sufficient to enhance stellar churning within the disc, even when the spirals amplitude is kept constant. Nevertheless, for churning to be truly non-local, stronger or (more likely) transient amplitudes would be needed: otherwise the disc is actually mostly unaffected by churning in the present models. Finally, regarding vertical breathing modes, the combined effect of the bar and spirals on vertical motions is a clear non-linear superposition of the isolated effects of both components, significantly superseding the linear superposition of modes produced by each perturber separately, thereby providing an additional effect to consider when analysing the observed breathing mode of the Galactic disc in the extended solar neighbourhood.

  2. Star formation properties in barred galaxies. III. Statistical study of bar-driven secular evolution using a sample of nearby barred spirals

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Zhi-Min; Wu, Hong [Key Laboratory of Optical Astronomy, National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012 (China); Cao, Chen, E-mail: zmzhou@bao.ac.cn, E-mail: hwu@bao.ac.cn, E-mail: caochen@sdu.edu.cn [School of Space Science and Physics, Shandong University at Weihai, Weihai, Shandong 264209 (China)

    2015-01-01

    Stellar bars are important internal drivers of secular evolution in disk galaxies. Using a sample of nearby spiral galaxies with weak and strong bars, we explore the relationships between the star formation feature and stellar bars in galaxies. We find that galaxies with weak bars tend coincide with low concentrical star formation activity, while those with strong bars show a large scatter in the distribution of star formation activity. We find enhanced star formation activity in bulges toward stronger bars, although not predominantly, consistent with previous studies. Our results suggest that different stages of the secular process and many other factors may contribute to the complexity of the secular evolution. In addition, barred galaxies with intense star formation in bars tend to have active star formation in their bulges and disks, and bulges have higher star formation densities than bars and disks, indicating the evolutionary effects of bars. We then derived a possible criterion to quantify the different stages of the bar-driven physical process, while future work is needed because of the uncertainties.

  3. Rings and spirals in barred galaxies. III. Further comparisons and links to observations

    CERN Document Server

    Athanassoula, E; Bosma, A; Masdemont, J J

    2010-01-01

    In a series of papers, we propose a theory to explain the formation and properties of rings and spirals in barred galaxies. The building blocks of these structures are orbits guided by the manifolds emanating from the unstable Lagrangian points located near the ends of the bar. In this paper, the last of the series, we present more comparisons of our theoretical results to observations and also give new predictions for further comparisons. Our theory provides the right building blocks for the rectangular-like bar outline and for ansae. We consider how our results can be used to give estimates for the pattern speed values, as well as their effect on abundance gradients in barred galaxies. We present the kinematics along the manifold loci, to allow comparisons with the observed kinematics along the ring and spiral loci. We consider gaseous arms and their relations to stellar ones. We discuss several theoretical aspects and stress that the orbits that constitute the building blocks of the spirals and rings are c...

  4. A Numerical Simulation of Star Formation in Nuclear Rings of Barred-Spiral Galaxies

    Science.gov (United States)

    Seo, Woo-Young; Kim, W.

    2014-01-01

    We use grid-based hydrodynamic simulations to study star formation history in nuclear rings of barred-spiral galaxies. We assume infinitesimally thin, isothermal, and unmagnetized gaseous disk. To investigate effects of spiral arm potential, we calculate both models with and without spiral. We find that star formation rate (SFR) in a nuclear ring is determined by the mass inflow rate to the ring rather than the total gas mass in the ring. In case of models without spiral arms, the SFR shows a strong primary burst at early time, and declines to small values after after that. The primary burst is caused by the rapid gas infall to the ring due to the bar growth. On the other hand, models with spiral arms show multiple star bursts at late time caused by additional gas inflow from outside bar region. When the SFR is low, ages of young star clusters exhibit a bipolar azimuthal gradient along the ring since star formation occurs near the contact points between dust lanes and the nuclear ring. When the SFR is large, there are no age gradient of star clusters since star formation sites are widely distributed throughout the whole ring region.

  5. Investigating the nuclear activity of barred spiral galaxies: the case of NGC 1672

    CERN Document Server

    Jenkins, L P; Colbert, E J M; Koribalski, B; Kuntz, K D; Levan, A J; Ojha, R; Roberts, T P; Ward, M J; Zezas, A

    2011-01-01

    We have performed an X-ray study of the nearby barred spiral galaxy NGC1672, primarily to ascertain the effect of the bar on its nuclear activity. We use both Chandra and XMM-Newton observations to investigate its X-ray properties, together with supporting high-resolution optical imaging data from the Hubble Space Telescope (HST), infrared imaging from the Spitzer Space Telescope, and ATCA ground-based radio data. We detect 28 X-ray sources within the D25 area of the galaxy, many of which correlate spatially with star-formation in the bar and spiral arms, while two are identified as background galaxies in the HST images. Nine of the X-ray sources are ULXs, with the three brightest (LX > 5E39 erg/s) located at the ends of the bar. With the spatial resolution of Chandra, we are able to show for the first time that NGC1672 possesses a hard (Gamma~1.5) nuclear X-ray source with a 2-10 keV luminosity of 4E38 erg/s. This is surrounded by an X-ray bright circumnuclear star-forming ring, comprised of point sources an...

  6. Determination of resonance locations in barred spiral galaxies using multiband photometry

    CERN Document Server

    Sierra, Amber D; Treuthardt, Patrick; Puerari, Ivanio

    2015-01-01

    In this paper, we apply a method identified by Puerari & Dottori (1997) to find the corotation radii (CR) in spiral galaxies. We apply our method to 57 galaxies, 17 of which have already have their CR locations determined using other methods. The method we adopted entails taking Fourier transforms along radial cuts in the u, g, r, i, and z wavebands and comparing the phase angles as a function of radius between them. The radius at which the phase angles cross indicates the location of the corotation radius. We then calculated the relative bar pattern speed, $\\mathcal{R}$, and classified the bar as "fast", where $\\mathcal{R} < 1.4$, slow, where $\\mathcal{R} \\geq 1.4$, or intermediate, where the errors on $\\mathcal{R}$ are consistent with the bar being "slow" or "fast". For the 17 galaxies that had their CR locations previously measured, we found that our results were consistent with the values of $\\mathcal{R}$ obtained by the computer simulations of Rautiainen, Salo & Laurikainen (2008). For the lar...

  7. New insights into the X-ray properties of the nearby barred spiral galaxy NGC 1672

    CERN Document Server

    Jenkins, L P; Colbert, E J M; Levan, A J; Roberts, T P; Ward, M J; Zezas, A

    2008-01-01

    We present some preliminary results from new Chandra and XMM-Newton X-ray observations of the nearby barred spiral galaxy NGC1672. It shows dramatic nuclear and extra-nuclear star formation activity, including starburst regions located near each end of its strong bar, both of which host ultraluminous X-ray sources (ULXs). With the new high-spatial-resolution Chandra imaging, we show for the first time that NGC1672 possesses a faint ($L(X)~10^39 erg/s), hard central X-ray source surrounded by an X-ray bright circumnuclear starburst ring that dominates the X-ray emission in the region. The central source may represent low-level AGN activity, or alternatively the emission from X-ray binaries associated with star-formation in the nucleus.

  8. The mass dependence of star formation histories in barred spiral galaxies

    Science.gov (United States)

    Carles, Christian; Martel, Hugo; Ellison, Sara L.; Kawata, Daisuke

    2016-11-01

    We performed a series of 29 gas dynamical simulations of disc galaxies, barred and unbarred, with various stellar masses, to study the impact of the bar on star formation history. Unbarred galaxies evolve very smoothly, with a star formation rate (SFR) that varies by at most a factor of 3 over a period of 2 Gyr. The evolution of barred galaxies is much more irregular, especially at high stellar masses. In these galaxies, the bar drives a substantial amount of gas towards the centre, resulting in a high SFR, and producing a starburst in the most massive galaxies. Most of the gas is converted into stars, and gas exhaustion leads to a rapid drop of star formation after the starburst. In massive barred galaxies (stellar mass M_{ast }>2{×} 10^{10} {M_{⊙}}) the large amount of gas funnelled towards the centre is completely consumed by the starburst, while in lower mass barred galaxies it is only partially consumed. Gas concentration is thus higher in lower mass barred galaxies than it is in higher mass ones. Even though unbarred galaxies funnelled less gas towards their centre, the lower SFR allows this gas to accumulate. At late times, the star formation efficiency is higher in barred galaxies than unbarred ones, enabling these galaxies to maintain a higher SFR with a smaller gas supply. Several properties, such as the global SFR, central SFR, or central gas concentration, vary monotonically with time for unbarred galaxies, but not for barred galaxies. Therefore one must be careful when comparing barred and unbarred galaxies that share one observational property, since these galaxies might be at very different stages of their respective evolution.

  9. How Different are Normal and Barred Spirals?

    CERN Document Server

    Bergh, Sidney van den

    2011-01-01

    No significant color differences are found between normal and barred spirals over the range of Hubble stages a - ab - b - bc. Furthermore, no significant difference is seen between the luminosity distributions of normal and barred galaxies over the same range of Hubble stages. However, SBc galaxies are found to be systematically fainter than Sc galaxies at 99% confidence. The observation that normal and barred spirals with Hubble stages a - ab - b - bc have indistinguishable intrinsic colors hints at the possibility that the bars in such spiral galaxies might be ephemeral structures. Finally, it is pointed out that lenticular galaxies of types S0 and SB0 are systematically fainter than are other early-type galaxies, suggesting that such galaxies are situated on evolutionary tracks that differ systematically from those of galaxies that lie along the E - Sa - Sb -Sc and E - SBa - SBb - SBc sequences.

  10. Effect of bars on the galaxy properties

    Science.gov (United States)

    Vera, Matias; Alonso, Sol; Coldwell, Georgina

    2016-10-01

    Aims: With the aim of assessing the effects of bars on disk galaxy properties, we present an analysis of different characteristics of spiral galaxies with strong bars, weak bars and without bars. Methods: We identified barred galaxies from the Sloan Digital Sky Survey (SDSS). By visual inspection of SDSS images we classified the face-on spiral galaxies brighter than glog (M∗/M⊙) processing, reflected in the significant changes in the physical properties of the host galaxies.

  11. The Mass Dependence of Star Formation Histories in Barred Spiral Galaxies

    CERN Document Server

    Carles, Christian; Ellison, Sara L; Kawata, Daisuke

    2016-01-01

    We performed a series of 29 gasdynamical simulations of disc galaxies, barred and unbarred, with various stellar masses, to study the impact of the bar on star formation history. Unbarred galaxies evolve very smoothly, with a star formation rate (SFR) that varies by at most a factor of three over a period of 2 Gyr. The evolution of barred galaxies is much more irregular, especially at high stellar masses. In these galaxies, the bar drives a substantial amount of gas toward the centre, resulting in a high SFR, and producing a starburst in the most massive galaxies. Most of the gas is converted into stars, and gas exhaustion leads to a rapid drop of star formation after the starburst. In massive barred galaxies (stellar mass M* > 2x10^10 Msun) the large amount of gas funnelled toward the centre is completely consumed by the starburst, while in lower-mass barred galaxies it is only partially consumed. Gas concentration is thus higher in lower-mass barred galaxies than it is in higher-mass ones. Even though unbar...

  12. GMC Evolution in a Barred Spiral Galaxy with Star Formation and Thermal Feedback

    CERN Document Server

    Fujimoto, Yusuke; Tasker, Elizabeth J; Habe, Asao; Simpson, Christine M

    2016-01-01

    We explore the impact of star formation and thermal stellar feedback on the giant molecular cloud (GMC) population forming in a M83-type barred spiral galaxy. We compare three high-resolution simulations (1.5 pc cell size) with different star formation/feedback models: one with no star formation, one with star formation but no feedback, and one with star formation and thermal energy injection. We analyze the resulting population of clouds, finding that we can identify the same population of massive, virialized clouds and transient, low-surface density clouds found in our previous work (that did not include star formation or feedback). Star formation and feedback can affect the mix of clouds we identify. In particular, star formation alone simply converts dense cloud gas into stars with only a small change to the cloud populations, principally resulting in a slight decrease in the transient population. Feedback, however, has a stronger impact: while it is not generally sufficient to entirely destroy the clouds...

  13. Bar-driven evolution and quenching of spiral galaxies in cosmological simulations

    Science.gov (United States)

    Spinoso, Daniele; Bonoli, Silvia; Dotti, Massimo; Mayer, Lucio; Madau, Piero; Bellovary, Jillian

    2017-03-01

    We analyse the outputs of the cosmological 'zoom-in' hydrodynamical simulation ErisBH to study a strong stellar bar which naturally emerges in the late evolution of the simulated Milky Way-type galaxy. We focus on the analysis of the formation and evolution of the bar and on its effects on the galactic structure, the gas distribution and the star formation. A large central region in the ErisBH disc becomes bar unstable after z ∼ 1.4, but a clear bar starts to grow significantly only after z ≃ 0.4, possibly triggered by the interaction with a massive satellite. At z ≃ 0.1, the bar stabilizes and reaches its maximum radial extent of l ≈ 2.2 kpc. As the bar grows, it becomes prone to buckling instability. The actual buckling event, observable at z ≃ 0.1, results in the formation of a boxy-peanut bulge clearly discernible at z = 0. During its early growth, the bar exerts a strong torque on the gas and drives gas inflows that enhance the nuclear star formation on sub-kpc scales. Later on, as the bar reaches its maximum length and strength, the gas within its extent is nearly all consumed into stars, leaving behind a gas-depleted region in the central ∼2 kpc. Observations would more likely identify a prominent, large-scale bar at the stage when the galactic central region has already been gas depleted, giving a hint at the fact that bar-driven quenching may play an important role in the evolution of disc-dominated galaxies.

  14. Dark and luminous matter in the NGC 3992 group of galaxies, I. The large barred spiral NGC 3992

    CERN Document Server

    Bottema, R; Bottema, Roelof; Verheijen, Marc A.W.

    2002-01-01

    Detailed neutral hydrogen observations have been obtained of the large barred spiral galaxy NGC 3992 and its three small companion galaxies, UGC 6923, UGC 6940, and UGC 6969. For the main galaxy, the HI distribution is regular with a low level radial extension outside the stellar disc. However, at exactly the region of the bar, there is a pronounced central HI hole in the gas distribution. Likely gas has been transported inwards by the bar and because of the emptyness of the hole no large accretion events can have happened in recent galactic times. The gas kinematics is very regular and it is demonstrated that the influence of the bar potential on the velocity field is negligible. A precise and extended rotation curve has been derived showing some distinct features which can be explained by the non-exponential radial light distribution of NGC 3992. The decomposition of the rotation curve gives a slight preference for a sub maximal disc, though a range of disc contributions, up to a maximum disc situation fits...

  15. The impact of bars on the mid-infrared dust emission of spiral galaxies global and circumnuclear properties

    CERN Document Server

    Roussel, H; Vigroux, L; Bosma, A; Bonoli, C; Gallais, P; Hawarden, T G; Madden, S; Mazzei, P

    2001-01-01

    We study the mid-infrared properties of a sample of 69 nearby spiral galaxies, selected to avoid Seyfert activity contributing a significant fraction of the central energetics, or strong tidal interaction, and to have normal infrared luminosities. These observations were obtained with ISOCAM, which provides an angular resolution of the order of 10 arcsec (half-power diameter of the point spread function) and low-resolution spectro-imaging information. Between 5 and 18 microns, we mainly observe two dust phases, aromatic infrared bands and very small grains, both out of thermal equilibrium. On this sample, we show that the global F15/F7 colors of galaxies are very uniform, the only increase being found in early-type strongly barred galaxies, consistent with previous IRAS studies. The F15/F7 excesses are unambiguously due to galactic central regions where bar-induced starbursts occur. However, the existence of strongly barred early-type galaxies with normal circumnuclear colors indicates that the relationship b...

  16. Bar Diagnostics in Edge-On Spiral Galaxies. III. N-Body Simulations of Disks

    CERN Document Server

    Bureau, M

    2004-01-01

    Present in over 45% of local spirals, boxy and peanut-shaped bulges are generally interpreted as edge-on bars and may represent a key phase in the evolution of bulges. Aiming to test such claims, the kinematic properties of self-consistent 3D N-body simulations of bar-unstable disks are studied. Using Gauss-Hermite polynomials to describe the stellar kinematics, a number of characteristic bar signatures are identified in edge-on disks: 1) a major-axis light profile with a quasi-exponential central peak and a plateau at moderate radii (Freeman Type II profile); 2) a ``double-hump'' rotation curve; 3) a sometime flat central velocity dispersion peak with a plateau at moderate radii and occasional local central minimum and secondary peak; 4) an h3-V correlation over the projected bar length. All those kinematic features are spatially correlated and can easily be understood from the orbital structure of barred disks. They thus provide a reliable and easy-to-use tool to identify edge-on bars. Interestingly, they a...

  17. Magnetic Fields in Spiral Galaxies

    CERN Document Server

    Beck, Rainer

    2015-01-01

    Radio synchrotron emission is a powerful tool to study the strength and structure of magnetic fields in galaxies. Unpolarized synchrotron emission traces isotropic turbulent fields which are strongest in spiral arms and bars (20-30\\mu G) and in central starburst regions (50-100\\mu G). Such fields are dynamically important; they affect gas flows and drive gas inflows in central regions. Polarized emission traces ordered fields, which can be regular or anisotropic turbulent, where the latter originates from isotropic turbulent fields by the action of compression or shear. The strongest ordered fields (10-15\\mu G) are generally found in interarm regions. In galaxies with strong density waves, ordered fields are also observed at the inner edges of spiral arms. Ordered fields with spiral patterns exist in grand-design, barred and flocculent galaxies, and in central regions. Ordered fields in interacting galaxies have asymmetric distributions and are a tracer of past interactions between galaxies or with the interg...

  18. Improving Stellar Velocity Dispersion Measurements in Barred Spiral Galaxies With Supermassive Black Holes

    Science.gov (United States)

    Dittenber, Benjamin; Valluri, Monica

    2017-01-01

    For the past decade researchers have focused on accurately measuring the masses of supermassive black holes in different types of galaxies. Relatively less effort has been devoted to possible systematic errors in the measurement of the central velocity dispersion of stars, sigma_*, with which the masses of supermassive black holes are known to be well correlated. In barred galaxies the measurement of sigma_* depends quite sensitively on the method used to calculate it and the kind of spectroscopic data (long-slit or IFU) and the orientation of the bar to the line-of-sight and inclination of the disk. We used simulations of barred disk galaxies with adiabatically grown SMBHs to generate mock kinematical data from which sigma_* is derived and compared with the true 3D velocity dispersion of stars in the simulations. By comparing simulations with real IFU data we aim to correct the measured sigma_* for aperture size /shape, disk inclination and bar position angle, to obtain the intrinsic central velocity dispersion of stars.

  19. Do Bars Drive Spiral Density Waves?

    CERN Document Server

    Buta, R J; Elmegreen, B G; Salo, H; Laurikainen, E; Elmegreen, D M; Puerari, I; Block, D L

    2009-01-01

    We present deep near-infrared K_s-band AAT IRIS2 observations of a selected sample of nearby barred spiral galaxies, including some with the strongest known bars. The sample covers a range of Hubble types from SB0- to SBc. The goal is to determine if the torque strengths of the spirals correlate with those of the bars, which might be expected if the bars actually drive the spirals as has been predicted by theoretical studies. This issue has implications for interpreting bar and spiral fractions at high redshift. Analysis of previous samples suggested that such a correlation exists in the near-infrared, where effects of extinction and star formation are less important. However, the earlier samples had only a few excessively strong bars. Our new sample largely confirms our previous studies, but still any correlation is relatively weak. We find two galaxies, NGC 7513 and UGC 10862, where there is a only a weak spiral in the presence of a very strong bar. We suggest that some spirals probably are driven by their ...

  20. Magnetic fields in spiral galaxies

    Science.gov (United States)

    Beck, Rainer

    2015-12-01

    Radio synchrotron emission, its polarization and Faraday rotation of the polarization angle are powerful tools to study the strength and structure of magnetic fields in galaxies. Unpolarized synchrotron emission traces isotropic turbulent fields which are strongest in spiral arms and bars (20-30 \\upmu G) and in central starburst regions (50-100 \\upmu G). Such fields are dynamically important; they affect gas flows and drive gas inflows in central regions. Polarized emission traces ordered fields, which can be regular or anisotropic turbulent, where the latter originates from isotropic turbulent fields by the action of compression or shear. The strongest ordered fields (10-15 \\upmu G) are generally found in interarm regions. In galaxies with strong density waves, ordered fields are also observed at the inner edges of spiral arms. Ordered fields with spiral patterns exist in grand-design, barred and flocculent galaxies and in central regions. Ordered fields in interacting galaxies have asymmetric distributions and are a tracer of past interactions between galaxies or with the intergalactic medium.—Faraday rotation measures of the diffuse polarized radio emission from galaxy disks reveal large-scale spiral patterns that can be described by the superposition of azimuthal modes; these are signatures of regular fields generated by mean-field dynamos. "Magnetic arms" between gaseous spiral arms may also be products of dynamo action, but need a stable spiral pattern to develop. Helically twisted field loops winding around spiral arms were found in two galaxies so far. Large-scale field reversals, like the one found in the Milky Way, could not yet be detected in external galaxies. In radio halos around edge-on galaxies, ordered magnetic fields with X-shaped patterns are observed. The origin and evolution of cosmic magnetic fields, in particular their first occurrence in young galaxies and their dynamical importance during galaxy evolution, will be studied with

  1. Effect of bars on the galaxy properties

    CERN Document Server

    Vera, Matias; Coldwell, Georgina

    2016-01-01

    Aims: With the aim of assessing the effects of bars on disc galaxy properties, we present an analysis of different characteristics of spiral galaxies with strong, weak and without bars. Method: We identified barred galaxies from the Sloan Digital Sky Survey. By visual inspection, we classified the face-on spiral galaxies brighter than g<16.5 mag into strong-bar, weak-bar and unbarred. In order to provide an appropiate quantification of the influence of bars on galaxy properties, we also constructed a suitable control sample of unbarred galaxies with similar redshift, magnitude, morphology, bulge sizes, and local density environment distributions to that of barred galaxies. Results: We found 522 strong-barred and 770 weak-barred galaxies, representing a 25.82% of the full sample of spiral galaxies, in good agreement with previous studies. We also found that strong-barred galaxies show less efficient star formation activity and older stellar populations compared to weak-barred and unbarred spirals from the c...

  2. The VIRUS-P Exploration of Nearby Spiral Galaxies (VENGA): Spatially Resolved Gas-Phase Metallicity Distributions in Barred and Unbarred Spirals

    CERN Document Server

    Kaplan, Kyle F; Kewley, Lisa; Blanc, Guillermo A; Weinzirl, Tim; Song, Mimi; Drory, Niv; Luo, Rongxin; Bosch, Remco C E van den

    2016-01-01

    We present a study of the excitation conditions and metallicity of ionized gas ($Z_{\\rm gas}$) in eight nearby barred and unbarred spiral galaxies from the VIRUS-P Exploration of Nearby Galaxies (VENGA) survey, which provides high spatial sampling and resolution (median $\\sim$ 387 pc), large coverage from the bulge to outer disc, broad wavelength range (3600-6800 \\AA{}), and medium spectral resolution ($\\sim$ 120 km s$^{-1}$ at 5000 \\AA{}). Our results are: (1) We present high resolution gas excitation maps to differentiate between regions with excitation typical of Seyfert, LINER, or recent star formation. We find LINER-type excitation at large distances (3-10 kpc) from the centre, and associate this excitation with diffuse ionized gas (DIG). (2) After excluding spaxels dominated by Seyfert, LINER, or DIG, we produce maps with the best spatial resolution and sampling to date of the ionization parameter $q$, star formation rate, and $Z_{\\rm gas}$ using common strong line diagnostics. We find that isolated bar...

  3. Nuclear spirals in galaxies

    OpenAIRE

    Maciejewski, Witold

    2006-01-01

    Recent high-resolution observations indicate that nuclear spirals are often present in the innermost few hundred parsecs of disc galaxies. My models show that nuclear spirals form naturally as a gas response to non-axisymmetry in the gravitational potential. Some nuclear spirals take the form of spiral shocks, resulting in streaming motions in the gas, and in inflow comparable to the accretion rates needed to power local Active Galactic Nuclei. Recently streaming motions of amplitude expected...

  4. Superluminous Spiral Galaxies

    CERN Document Server

    Ogle, Patrick M; Nader, Cyril; Helou, George

    2015-01-01

    We report the discovery of spiral galaxies that are as optically luminous as elliptical brightest cluster galaxies, with r-band monochromatic luminosity L_r=8-14L* (4.3-7.5E44 erg/s). These super spiral galaxies are also giant and massive, with diameter D=57-134 kpc and stellar mass M_stars=0.3-3.4E11 M_sun. We find 53 super spirals out of a complete sample of 1,616 SDSS galaxies with redshift z8L*. The closest example is found at z=0.089. We use existing photometry to estimate their stellar masses and star formation rates (SFRs). The SDSS and WISE colors are consistent with normal star-forming spirals on the blue sequence. However, the extreme masses and rapid SFRs of 5-65 M_sun/yr place super spirals in a sparsely populated region of parameter space, above the star-forming main sequence of disk galaxies. Super spirals occupy a diverse range of environments, from isolation to cluster centers. We find four super spiral galaxy systems that are late-stage major mergers--a possible clue to their formation. We su...

  5. SUPERLUMINOUS SPIRAL GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Ogle, Patrick M.; Lanz, Lauranne; Nader, Cyril; Helou, George, E-mail: ogle@ipac.caltech.edu [IPAC, California Institute of Technology, Mail Code 220-6, Pasadena, CA 91125 (United States)

    2016-02-01

    We report the discovery of spiral galaxies that are as optically luminous as elliptical brightest cluster galaxies, with r-band monochromatic luminosity L{sub r} = 8–14L* (4.3–7.5 × 10{sup 44} erg s{sup −1}). These super spiral galaxies are also giant and massive, with diameter D = 57–134 kpc and stellar mass M{sub stars} = 0.3–3.4 × 10{sup 11}M{sub ⊙}. We find 53 super spirals out of a complete sample of 1616 SDSS galaxies with redshift z < 0.3 and L{sub r} > 8L*. The closest example is found at z = 0.089. We use existing photometry to estimate their stellar masses and star formation rates (SFRs). The SDSS and Wide-field Infrared Survey Explorer colors are consistent with normal star-forming spirals on the blue sequence. However, the extreme masses and rapid SFRs of 5–65 M{sub ⊙} yr{sup −1} place super spirals in a sparsely populated region of parameter space, above the star-forming main sequence of disk galaxies. Super spirals occupy a diverse range of environments, from isolation to cluster centers. We find four super spiral galaxy systems that are late-stage major mergers—a possible clue to their formation. We suggest that super spirals are a remnant population of unquenched, massive disk galaxies. They may eventually become massive lenticular galaxies after they are cut off from their gas supply and their disks fade.

  6. CO Multi-line Imaging of Nearby Galaxies (COMING). I. Physical properties of molecular gas in the barred spiral galaxy NGC 2903

    Science.gov (United States)

    Muraoka, Kazuyuki; Sorai, Kazuo; Kuno, Nario; Nakai, Naomasa; Nakanishi, Hiroyuki; Takeda, Miho; Yanagitani, Kazuki; Kaneko, Hiroyuki; Miyamoto, Yusuke; Kishida, Nozomi; Hatakeyama, Takuya; Umei, Michiko; Tanaka, Takahiro; Tomiyasu, Yuto; Saita, Chey; Ueno, Saeko; Matsumoto, Naoko; Salak, Dragan; Morokuma-Matsui, Kana

    2016-10-01

    We present simultaneous mappings of J = 1-0 emission of 12CO, 13CO, and C18O molecules toward the whole disk (8' × 5' or 20.8 kpc × 13.0 kpc) of the nearby barred spiral galaxy NGC 2903 with the Nobeyama Radio Observatory 45 m telescope at an effective angular resolution of 20″ (or 870 pc). We detected 12CO(J = 1-0) emission over the disk of NGC 2903. In addition, significant 13CO(J = 1-0) emission was found at the center and bar-ends, whereas we could not detect any significant C18O(J = 1-0) emission. In order to improve the signal-to-noise ratio of CO emission and to obtain accurate line ratios of 12CO(J = 2-1)/12CO(J = 1-0) (R2-1/1-0) and 13CO(J = 1-0)/12CO(J = 1-0) (R13/12), we performed the stacking analysis for our 12CO(J = 1-0), 13CO(J = 1-0), and archival 12CO(J = 2-1) spectra with velocity axis alignment in nine representative regions of NGC 2903. We successfully obtained the stacked spectra of the three CO lines, and could measure averaged R2-1/1-0 and R13/12 with high significance for all the regions. We found that both R2-1/1-0 and R13/12 differ according to the regions, which reflects the difference in the physical properties of molecular gas, i.e., density (n_H_2) and kinetic temperature (TK). We determined n_H_2 and TK using R2-1/1-0 and R13/12 based on the large velocity gradient approximation. The derived n_H_2 ranges from ˜1000 cm-3 (in the bar, bar-ends, and spiral arms) to 3700 cm-3 (at the center) and the derived TK ranges from 10 K (in the bar and spiral arms) to 30 K (at the center). We examined the dependence of star formation efficiencies (SFEs) on n_H_2 and TK, and found a positive correlation between SFE and n_H_2 with correlation coefficient for the least-squares power-law fit R2 of 0.50. This suggests that molecular gas density governs the spatial variations in SFEs.

  7. Simulations of Normal Spiral Galaxies

    CERN Document Server

    Bottema, R

    2003-01-01

    Results are presented of numerical simulations of normal isolated late type spiral galaxies. Specifically the galaxy NGC 628 is used as a template. The method employs a TREESPH code including stellar particles, gas particles, cooling and heating of the gas, star formation according to a Jeans criterion, and Supernova feedback. A regular spiral disc can be generated as an equilibrium situation of two opposing actions. On the one hand cooling and dissipation of the gas, on the other hand gas heating by the FUV field of young stars and SN mechanical forcing. The disc exhibits small and medium scale spiral structure of which the multiplicity increases as a function of radius. The theory of swing amplification can explain, both qualitatively and quantitatively, the emerging spiral structure. In addition, swing amplification predicts that the existence of a grand design m=2 spiral is only possible if the disc is massive. The simulations show that the galaxy is then unstable to bar formation. A general criterion is ...

  8. Genesis of spiral galaxies

    CERN Document Server

    Kiselev, Valery V

    2013-01-01

    Enigmatic spiral structure of many galaxies and its huge orbital momentum originated due to the capture of lightweight bare black hole by gravity of heavy primordial gas cloud at large impact parameter. The rotating of black hole caused the formation of accretion disc from the cloud and the transfer of orbital momentum to the disc, while during the fall to the center of mass, the spiral trace of black hole in the disc did create the spiral front line of sound waves in the gas, that further evolved into the stellar spiral arms. This mechanism opens the way to study features of spiral galaxy formation, say, an influence and a significance of dark matter in this process.

  9. N-body simulations of collective effects in spiral and barred galaxies

    Science.gov (United States)

    Zhang, X.

    2016-10-01

    We present gravitational N-body simulations of the secular morphological evolution of disk galaxies induced by density wave modes. In particular, we address the demands collective effects place on the choice of simulation parameters, and show that the common practice of the use of a large gravity softening parameter was responsible for the failure of past simulations to correctly model the secular evolution process in galaxies, even for those simulations where the choice of basic state allows an unstable mode to emerge, a prerequisite for obtaining the coordinated radial mass flow pattern needed for secular evolution of galaxies along the Hubble sequence. We also demonstrate that the secular evolution rates measured in our improved simulations agree to an impressive degree with the corresponding rates predicted by the recently-advanced theories of dynamically-driven secular evolution of galaxies. The results of the current work, besides having direct implications on the cosmological evolution of galaxies, also shed light on the general question of how irreversibility emerges from a nominally reversible physical system.

  10. CO Multi-line Imaging of Nearby Galaxies (COMING): I. Physical properties of molecular gas in the barred spiral galaxy NGC 2903

    CERN Document Server

    Muraoka, Kazuyuki; Kuno, Nario; Nakai, Naomasa; Nakanishi, Hiroyuki; Takeda, Miho; Yanagitani, Kazuki; Kaneko, Hiroyuki; Miyamoto, Yusuke; Kishida, Nozomi; Hatakeyama, Takuya; Umei, Michiko; Tanaka, Takahiro; Tomiyasu, Yuto; Saita, Chey; Ueno, Saeko; Matsumoto, Naoko; Salak, Dragan; Morokuma, Kana

    2016-01-01

    We present simultaneous mappings of J=1-0 emission of 12CO, 13CO, and C18O molecules toward the whole disk (8' x 5' or 20.8 kpc x 13.0 kpc) of the nearby barred spiral galaxy NGC 2903 with the Nobeyama Radio Observatory 45-m telescope at an effective angular resolution of 20" (or 870 pc). We detected 12CO(J=1-0) emission over the disk of NGC 2903. In addition, significant 13CO(J=1-0) emission was found at the center and bar-ends, whereas we could not detect any significant C18O(J=1-0) emission. In order to improve the signal-to-noise ratio of CO emission and to obtain accurate line ratios of 12CO(J=2-1)/12CO(J=1-0) ($R_{2-1/1-0}$) and 13CO(J=1-0)/12CO(J=1-0) ($R_{13/12}$), we performed the stacking analysis for our 12CO(J=1-0), 13CO(J=1-0), and archival 12CO(J=2-1) spectra with velocity-axis alignment in nine representative regions of NGC 2903. We successfully obtained the stacked spectra of the three CO lines, and could measure averaged $R_{2-1/1-0}$ and $R_{13/12}$ with high significance for all the regions...

  11. Investigating Dwarf Spiral Galaxies

    Science.gov (United States)

    Weerasooriya, Sachithra; Dunn, Jacqueline M.

    2017-01-01

    Several studies have proposed that dwarf elliptical / spheroidal galaxies form through the transformation of dwarf irregular galaxies. Early and late type dwarfs resemble each other in terms of their observed colors and light distributions (each can often be represented by exponential disks), providing reason to propose an evolutionary link between the two types. The existence of dwarf spirals has been largely debated. However, more and more recent studies are using the designation of dwarf spiral to describe their targets of interest. This project seeks to explore where dwarf spirals fit into the above mentioned evolutionary sequence, if at all. Optical colors will be compared between a sample of dwarf irregular, dwarf elliptical, and dwarf spiral galaxies. The dwarf irregular and dwarf elliptical samples have previously been found to overlap in both optical color and surface brightness profile shape when limiting the samples to their fainter members. A preliminary comparison including the dwarf spiral sample will be presented here, along with a comparison of available ultraviolet and near-infrared data. Initial results indicate a potential evolutionary link that merits further investigation.

  12. The VIRUS-P Exploration of Nearby Galaxies (VENGA): spatially resolved gas-phase metallicity distributions in barred and unbarred spirals

    Science.gov (United States)

    Kaplan, Kyle F.; Jogee, Shardha; Kewley, Lisa; Blanc, Guillermo A.; Weinzirl, Tim; Song, Mimi; Drory, Niv; Luo, Rongxin; van den Bosch, Remco C. E.

    2016-10-01

    We present a study of the excitation conditions and metallicity of ionized gas (Zgas) in eight nearby barred and unbarred spiral galaxies from the VIRUS-P Exploration of Nearby Galaxies (VENGA) survey, which provides high spatial sampling and resolution (median ˜387 pc), large coverage from the bulge to outer disc, broad wavelength range (3600-6800 Å), and medium spectral resolution (˜120 km s-1 at 5000 Å). Our results are: (1) We present high resolution gas excitation maps to differentiate between regions with excitation typical of Seyfert, LINER, or recent star formation. We find LINER-type excitation at large distances (3-10 kpc) from the centre, and associate this excitation with diffuse ionized gas (DIG). (2) After excluding spaxels dominated by Seyfert, LINER, or DIG, we produce maps with the best spatial resolution and sampling to date of the ionization parameter q, star formation rate, and Zgas using common strong line diagnostics. We find that isolated barred and unbarred spirals exhibit similarly shallow Zgas profiles from the inner kpc out to large radii (7-10 kpc or 0.5-1.0 R25). This implies that if profiles had steeper gradients at earlier epochs, then the present-day bar is not the primary driver flattening gradients over time. This result contradicts earlier claims, but agrees with recent IFU studies. (3) The Zgas gradients in our z ˜ 0 massive spirals are markedly shallower, by ˜0.2 dex kpc-1, than published gradients for lensed lower mass galaxies at z ˜ 1.5-2.0. Cosmologically motivated hydrodynamical simulations best match this inferred evolution, but the match is sensitive to adopted stellar feedback prescriptions.

  13. Galaxy Zoo: Passive Red Spirals

    CERN Document Server

    Masters, Karen L; Romer, A Kathy; Nichol, Robert C; Bamford, Steven P; Schawinski, Kevin; Lintott, Chris J; Andreescu, Dan; Campbell, Heather C; Crowcroft, Ben; Doyle, Isabelle; Edmondson, Edward M; Murray, Phil; Raddick, M Jordan; Slosar, Anze; Szalay, Alexander S; Vandenberg, Jan

    2009-01-01

    We study the spectroscopic properties and environments of red spiral galaxies found by the Galaxy Zoo project. By carefully selecting face-on, disk dominated spirals we construct a sample of truly passive disks (not dust reddened, nor dominated by old stellar populations in a bulge). As such, our red spirals represent an interesting set of possible transition objects between normal blue spirals and red early types. We use SDSS data to investigate the physical processes which could have turned these objects red without disturbing their morphology. Red spirals prefer intermediate density regimes, however there are no obvious correlations between red spiral properties and environment - environment alone is not sufficient to determine if a galaxy will become a red spiral. Red spirals are a small fraction of spirals at low masses, but dominate at large stellar masses - massive galaxies are red independent of morphology. We confirm that red spirals have older stellar populations and less recent star formation than ...

  14. Rebuilding Spiral Galaxies

    Science.gov (United States)

    2005-01-01

    Major Observing Programme Leads to New Theory of Galaxy Formation Summary Most present-day large galaxies are spirals, presenting a disc surrounding a central bulge. Famous examples are our own Milky Way or the Andromeda Galaxy. When and how did these spiral galaxies form? Why do a great majority of them present a massive central bulge? An international team of astronomers [1] presents new convincing answers to these fundamental questions. For this, they rely on an extensive dataset of observations of galaxies taken with several space- and ground-based telescopes. In particular, they used over a two-year period, several instruments on ESO's Very Large Telescope. Among others, their observations reveal that roughly half of the present-day stars were formed in the period between 8,000 million and 4,000 million years ago, mostly in episodic burst of intense star formation occurring in Luminous Infrared Galaxies. From this and other evidence, the astronomers devised an innovative scenario, dubbed the "spiral rebuilding". They claim that most present-day spiral galaxies are the results of one or several merger events. If confirmed, this new scenario could revolutionise the way astronomers think galaxies formed. PR Photo 02a/05: Luminosity - Oxygen Abundance Relation for Galaxies (VLT) PR Photo 02b/05: The Spiral Rebuilding Scenario A fleet of instruments How and when did galaxies form? How and when did stars form in these island universes? These questions are still posing a considerable challenge to present-day astronomers. Front-line observational results obtained with a fleet of ground- and space-based telescopes by an international team of astronomers [1] provide new insights into these fundamental issues. For this, they embarked on an ambitious long-term study at various wavelengths of 195 galaxies with a redshift [2] greater than 0.4, i.e. located more than 4000 million light-years away. These galaxies were studied using ESO's Very Large Telescope, as well as the

  15. Satellites of spiral galaxies

    Science.gov (United States)

    Zaritsky, Dennis; Smith, Rodney; Frenk, Carlos; White, Simon D. M.

    1993-01-01

    We present a survey of satellites around a homogeneous set of late-type spirals with luminosity similar to that of the Milky Way. On average, we find fewer than 1.5 satellites per primary, but we argue that we can treat the survey as an ensemble and so derive the properties of the halo of a 'typical' isolated spiral. The projected density profile of the ensemble falls off approximately as 1/r. Within 50 kpc the azimuthal distribution of satellites shows some evidence for the 'Holmberg effect', an excess near the minor axis of the primary; however, at larger projected distances, the distribution appears isotropic. There is a weak but significant correlation between the size of a satellite and its distance from its primary, as expected if satellites are tidally truncated. Neither Hubble type nor spectral characteristics correlate with apparent separation. The ensemble of satellites appears to be rotating at about 30 km/s in the same direction as the galactic disk. Satellites on prograde orbits tend to be brighter than those on retrograde orbits. The typical velocity difference between a satellite and its primary shows no clear dependence either on apparent separation, or on the rotation speed of the primary. Thus our survey demonstrates that isolated spiral galaxies have massive halos that extend to many optical radii.

  16. 棒对旋涡星系中央恒星形成的作用%The Effects of Bar Sturcture on the Central sSFR of Spiral Galaxies

    Institute of Scientific and Technical Information of China (English)

    林野

    2014-01-01

    We investigate the effects of bars in spiral galaxies on galaxy central specific Star Formation Rate (sSFR) using a sample of over 9000 spiral galaxies drawn from Sloan Digital Sky Survey, with morphological classifications assigned by visual inspection. Our sample includes three types: none-barred galaxies and galaxies hosting long or short bars, respectively. By identifying star-forming and quiescent population, we find barred spiral galaxies tend to be central quiescent. However, the star-forming barred spiral galaxies tend to have stronger central star forming activities than the unbarred spiral galaxies. In order to find the connection between central sSFR and the presence of a bar within the spiral galaxy, we construct control samples where barred and unbarred ones are closely matched by stellar mass. We then find the same proportion of central quiescent galaxies for barred and unbarred ones. Furthermore, the star-forming barred ones still have stronger central star forming activities than the unbarred ones with the signal mainly coming from the long barred ones. These results demonstrate that bars may have no influence on central star quiescence, but bars can induce the central star formation in their host spiral galaxies where the effect are mainly contributed by long bars.%使用了目前最大的棒旋星系样本之一,着重于研究旋涡星系中央的比恒星形成率(sSFR)和棒结构的关系。我们用lg sSFR =−11 a−1作为星系宁静态和活跃态的分界,统计对比了棒旋星系和非棒旋星系中央的sSFR,发现相对于非棒旋星系,棒旋星系处于中央宁静态的比重更大,而在中央活跃态其恒星形成活动更剧烈。为消除星系样本恒星质量差异对星系中央sSFR统计结果的影响,获得控制样本,使棒旋星系和非棒旋星系具有相同的恒星质量分布。随后发现这两类星系在中央宁静态中的统计差异消失,而在中央活跃态棒旋星系的恒星

  17. Galaxy Zoo: Dust in Spirals

    CERN Document Server

    Masters, Karen L; Bamford, Steven; Mosleh, Moein; Lintott, Chris J; Andreescu, Dan; Edmondson, Edward M; Keel, William C; Murray, Phil; Raddick, M Jordan; Schawinski, Kevin; Slosar, Anze; Szalay, Alexander S; Thomas, Daniel; Vandenberg, Jan

    2010-01-01

    We investigate the effect of dust on spiral galaxies by measuring the inclination-dependence of optical colours for 24,276 well-resolved SDSS galaxies visually classified in Galaxy Zoo. We find clear trends of reddening with inclination which imply a total extinction from face-on to edge-on of 0.7, 0.6, 0.5 and 0.4 magnitudes for the ugri passbands. We split the sample into "bulgy" (early-type) and "disky" (late-type) spirals using the SDSS fracdeV (or f_DeV) parameter and show that the average face-on colour of "bulgy" spirals is redder than the average edge-on colour of "disky" spirals. This shows that the observed optical colour of a spiral galaxy is determined almost equally by the spiral type (via the bulge-disk ratio and stellar populations), and reddening due to dust. We find that both luminosity and spiral type affect the total amount of extinction, with "disky" spirals at M_r ~ -21.5 mags having the most reddening. This decrease of reddening for the most luminous spirals has not been observed before ...

  18. 棒对星系核区恒星形成活动的影响%The Effect of Bar on Nuclear Star-forming Activities in Nearby Spiral Galaxies

    Institute of Scientific and Technical Information of China (English)

    汪潋

    2009-01-01

    利用SDSS光谱,研究了IRAS卫星亮红外源星表中的盘状星系中的恒星形成性质,并着重探讨了棒对星系核区恒星形成活动的影响.利用星族合成的方法得到了每个样本星系核区的恒星组成性质、恒星形成活动的强度等信息,并比较了星系整体和核区恒星形成性质的差异.得到的结论:除去相互作用,样本中的棒星系显示出比非棒旋星系更强的核区恒星形成活动和更多的年轻星族成分.%By using SDSS spectra, we have studied nuclear star-forming properties of nearby spiral galaxies selected from Infrared Revised Bright Galaxy Sample, and try to find the effect of bar structure on star-forming activities in the nuclear regions of nearby galaxies. The composition of stellar population and the strength of star formation activities in the sample galaxies are acquired by using stellar population synthesis code ?STARLIGHT, and the star formation properties in nuclear regions are compared with that of the whole galaxies. We find that the star formation in barred spiral galaxies is more intensive than non-barred ones and barred spirals show much younger stellar populations.

  19. Galactic Bar/Spiral Arm Interactions in NGC3627

    CERN Document Server

    Beuther, H; Schinnerer, E; Paladino, R; Leroy, A

    2016-01-01

    Aims: To gain insight into the expected gas dynamics at the interface of the Galactic bar and spiral arms in our own Milky Way galaxy, we examine as an extragalactic counterpart the evidence for multiple distinct velocity components in the cold, dense molecular gas populating a comparable region at the end of the bar in the nearby galaxy NGC3627. Methods: We assemble a high resolution view of molecular gas kinematics traced by CO(2-1) emission and extract line-of-sight velocity profiles from regions of high and low gas velocity dispersion. Results: The high velocity dispersions arise with often double-peaked or multiple line-profiles. We compare the centroids of the different velocity components to expectations based on orbital dynamics in the presence of bar and spiral potential perturbations. A model of the region as the interface of two gas-populated orbits families supporting the bar and the independently rotating spiral arms provides an overall good match to the data. An extent of the bar to the corotati...

  20. Quantitative analysis of spirality in elliptical galaxies

    CERN Document Server

    Dojcsak, Levente

    2013-01-01

    We use an automated galaxy morphology analysis method to quantitatively measure the spirality of galaxies classified manually as elliptical. The data set used for the analysis consists of 60,518 galaxy images with redshift obtained by the Sloan Digital Sky Survey (SDSS) and classified manually by Galaxy Zoo, as well as the RC3 and NA10 catalogues. We measure the spirality of the galaxies by using the Ganalyzer method, which transforms the galaxy image to its radial intensity plot to detect galaxy spirality that is in many cases difficult to notice by manual observation of the raw galaxy image. Experimental results using manually classified elliptical and S0 galaxies with redshift <0.3 suggest that galaxies classified manually as elliptical and S0 exhibit a nonzero signal for the spirality. These results suggest that the human eye observing the raw galaxy image might not always be the most effective way of detecting spirality and curves in the arms of galaxies.

  1. Spiral Galaxies as Chiral Objects?

    CERN Document Server

    Capozziello, S; Capozziello, Salvatore; Lattanzi, Alessandra

    2005-01-01

    Spiral galaxies show axial symmetry and an intrinsic 2D-chirality. Environmental effects can influence the chirality of originally isolated stellar systems and a progressive loss of chirality can be recognised in the Hubble sequence. We point out a preferential modality for genetic galaxies as in microscopic systems like aminoacids, sugars or neutrinos. This feature could be the remnant of a primordial symmetry breaking characterizing systems at all scales.

  2. Barred Galaxies: an Observer's Perspective

    CERN Document Server

    Gadotti, Dimitri A

    2008-01-01

    I review both well established and more recent findings on the properties of bars, and their host galaxies, stemming from photometric and spectroscopic observations, and discuss how these findings can be understood in terms of a global picture of the formation and evolution of bars, keeping a connection with theoretical developments. In particular, I show the results of a detailed structural analysis of ~ 300 barred galaxies in the Sloan Digital Sky Survey, providing physical quantities, such as bar length, ellipticity and boxyness, and bar-to-total luminosity ratio, that can either be used as a solid basis on which realistic models can be built, or be compared against more fundamental theoretical results. I also show correlations that indicate that bars grow longer, thinner and stronger with dynamical age, and that the growth of bars and bulges is connected. Finally, I briefly discuss open questions and possible directions for future research.

  3. Lopsided spiral galaxies: evidence for gas accretion

    CERN Document Server

    Bournaud, F; Jog, C J; Puerari, I

    2005-01-01

    We quantify the degree of lopsidedness for a sample of 149 galaxies observed in the near-infrared from the OSUBGS sample, and try to explain the physical origin for the observed disk lopsidedness. We confirm previous studies, but now for a larger sample, that a large fraction of galaxies show significant lopsidedness in their stellar disks, measured as the Fourier amplitude of the m=1 component, normalised to the average or m=0 component, in the surface density. Late-type galaxies are found to be more lopsided, while the presence of m=2 spiral arms and bars is correlated. The m=1 amplitude is found to be uncorrelated with the tidal forces acting on a galaxy via nearby companions. Numerical simulations are carried out to study the generation of m=1 via different processes: galaxy tidal encounters, galaxy mergers, and external gas accretion and subsequent star formation. The simulations show that galaxy interactions and mergers can trigger strong lopsidedness, but do not explain several independent statistical ...

  4. Environment Dependence of Disk Morphology of Spiral Galaxies

    CERN Document Server

    Ann, H B

    2014-01-01

    We analyze the dependence of disk morphology (arm class, Hubble type, bar type) of nearby spiral galaxies on the galaxy environment by using local background density ($\\Sigma_{n}$), projected distance ($r_{p}$), and tidal index ($TI$) as measures of the environment. There is a strong dependence of arm class and Hubble type on the galaxy environment, while the bar type exhibits a weak dependence with a high frequency of SB galaxies in high density regions. Grand design fractions and early-type fractions increase with increasing $\\Sigma_{n}$, $1/r_{p}$, and $TI$, while fractions of flocculent spirals and late-type spirals decrease. Multiple-arm and intermediate-type spirals exhibit nearly constant fractions with weak trends similar to grand design and early-type spirals. While bar types show only a marginal dependence on $\\Sigma_{n}$, they show a fairly clear dependence on $r_{p}$ with a high frequency of SB galaxies at small $r_{p}$. The arm class also exhibits a stronger correlation with $r_{p}$ than $\\Sigma_...

  5. Scale height determination of spiral galaxies

    Institute of Scientific and Technical Information of China (English)

    计朝晖; 商朝晖; 彭秋和

    1997-01-01

    The method adopted here is based on the rigorous solution of Poison’s equation for logarithmic disturbance density within finite thickness galaxies. After their spiral arms are fitted directly with logarithmic spirals, the morphological parameters, scale heights and their relative errors for 32 spiral galaxies, such as NGC4814, are ob-tained.

  6. Lopsided Spiral Galaxies

    CERN Document Server

    Jog, Chanda J

    2008-01-01

    The light distribution in the disks of many galaxies is non-axisymmetric or `lopsided' with a spatial extent much larger along one half of a galaxy than the other, as in M101. Recent near-IR observations show that lopsidedness is common. The stellar disks in nearly 30 % of galaxies have significant lopsidedness, greater than 10 % measured as the Fourier amplitude of the m=1 component normalized to the average value. This asymmetry is traced particularly well by the atomic hydrogen gas distribution lying in the outer parts. The lopsidedness also occurs in the nuclear regions, where the nucleus is offset with respect to the outer isophotes. The galaxies in a group environment show higher lopsidedness. The origin of lopsidedness could be due to the disk response to a tidally distorted halo, or via gas accretion. The lopsidedness has a large impact on the dynamics of the galaxy, its evolution, the star formation in it, and on the growth of the central black hole and on the nuclear fueling, merging of binary black...

  7. Disc heating: possible link between weak bars and superthin galaxies

    CERN Document Server

    Saha, Kanak

    2014-01-01

    The extreme flatness of stellar discs in superthin galaxies is puzzling and the apparent dearth of these objects in cosmological simulation poses challenging problem to the standard cold dark matter paradigm. Irrespective of mergers or accretion that a galaxy might be going through, stars are heated as they get older while they interact with the spirals and bars which are ubiquitous in disc galaxies -- leading to a puffed up stellar disc. It remains unclear how superthin galaxies maintain their thinness through the cosmic evolution. We follow the internal evolution of a sample of 16 initially extremely thin stellar discs using collisionless N-body simulation. All of these discs eventually form a bar in their central region. Depending on the initial condition, some of these stellar discs readily form strong bars while others grow weak bars over secular evolution time scale. We show that galaxies with strong bars heat the stars very efficiently, eventually making their stellar discs thicker. On the other hand, ...

  8. Tidally Induced Offset Disks in Magellanic Spiral Galaxies

    Science.gov (United States)

    Pardy, Stephen A.; D'Onghia, Elena; Athanassoula, E.; Wilcots, Eric M.; Sheth, Kartik

    2016-08-01

    Magellanic spiral galaxies are a class of one-armed systems that often exhibit an offset stellar bar and are rarely found around massive spiral galaxies. Using a set of N-body and hydrodynamic simulations, we consider a dwarf-dwarf galaxy interaction as the driving mechanism for the formation of this peculiar class of systems. We investigate here the relation between the dynamical, stellar, and gaseous disk center and the bar. In all our simulations the bar center always coincides with the dynamical center, while the stellar disk becomes highly asymmetric during the encounter, causing the photometric center of the Magellanic galaxy disk to become mismatched with both the bar and the dynamical center. The disk asymmetries persist for almost 2 Gyr, the time that it takes for the disk to be recentered with the bar, and well after the companion has passed. This explains the nature of the offset bar found in many Magellanic-type galaxies, including the Large Magellanic Cloud (LMC) and NGC 3906. In particular, these results, once applied to the LMC, suggest that the dynamical center should reside in the bar center instead of the H i center as previously assumed, pointing to a variation in the current estimate of the north component of the LMC proper motion.

  9. On Three-Dimensional Spiral Galaxies

    Institute of Scientific and Technical Information of China (English)

    LUO Xin-Lian; PENG Qiu-He; LONG Min; PENG Fang; ZOU Zhi-Gang

    2000-01-01

    Density waves in 3D spiral galaxies are studied. In order to eliminate the forbidden region near the corotation in the grand-design galaxies, we assume that the perturbation satisfies the stable condition Q(r) > 1 over all the disk except that at the corotation. Then, a new method is put forward here to determine some basic parameters of spiral galaxies. We apply it to our Galaxy, and the results are in good agreement with the previous results.

  10. ANGULAR-MOMENTUM IN BINARY SPIRAL GALAXIES

    NARCIS (Netherlands)

    OOSTERLOO, T

    1993-01-01

    In order to investigate the relative orientations of spiral galaxies in pairs, the distribution of the angle between the spin-vectors for a new sample of 40 binary spiral galaxies is determined. From this distribution it is found, contrary to an earlier result obtained by Helou (1984), that there is

  11. Damping of the Milky Way Bar by Manifold-driven Spirals

    Science.gov (United States)

    Łokas, Ewa L.

    2016-10-01

    We describe a new phenomenon of “bar damping” that may have played an important role in shaping the Milky Way bar and bulge as well as its spiral structure. We use a collisionless N-body simulation of a Milky Way–like galaxy initially composed of a dark matter halo and an exponential disk with a Toomre parameter slightly above unity. In this configuration, dominated by the disk in the center, a bar forms relatively quickly, after 1 Gyr of evolution. This is immediately followed by the formation of two manifold-driven spiral arms and the outflow of stars that modifies the potential in the vicinity of the bar, apparently shifting the position of the L 1/L 2 Lagrange points. This modification leads to the shortening of the bar and the creation of a next generation of manifold-driven spiral arms at a smaller radius. The process repeats itself a few times over the next 0.5 Gyr resulting in further substantial weakening and shortening of the bar. The time when the damping comes to an end coincides with the first buckling episode in the bar that rebuilds the orbital structure so that no more new spiral arms are formed. The morphology of the bar and the spiral structure at this time show remarkable similarity to the present properties of the Milky Way. Later on, the bar starts to grow rather steadily again, weakened only by subsequent buckling episodes occurring at more distant parts of the disk.

  12. An atlas of mid-infrared dust emission in spiral galaxies

    CERN Document Server

    Roussel, H; Bosma, A; Sauvage, M; Bonoli, C; Gallais, P; Hawarden, T G; Lequeux, J; Madden, S; Mazzei, P

    2001-01-01

    We present maps of dust emission at 7 microns and 15 microns/7 microns intensity ratios of selected regions in 43 spiral galaxies observed with ISOCAM. This atlas is a complement to studies based on these observations, dealing with star formation in centers of barred galaxies and in spiral disks. It is accompanied by a detailed description of data reduction and an inventory of generic morphological properties in groups defined according to bar strength and HI gas content.

  13. Scale heights of 84 northern spiral galaxies

    Institute of Scientific and Technical Information of China (English)

    马骏; 彭秋和

    1997-01-01

    Using the method proposed by Peng (1988) on the basis of density waves theory and the solution of three-dimensional Poisson s equation for a logarithmic disturbance of density,and analyzing the spiral patterns,the scale heights of 84 northern spiral galaxies,whose images are taken from the Digitized Sky Survey at Xinglong Observational Station of Beijing Observatory,are measured.The spiral arms of all these galaxies have been fitted on their photographs with some logarithmic spiral curves for getting their correct inclinations.

  14. Gravitational torques in spiral galaxies gas accretion as a driving mechanism of galactic evolution

    CERN Document Server

    Block, D L; Combes, F; Puerari, I; Buta, R J; Block, David L.; Bournaud, Frederic; Combes, Francoise; Puerari, Ivanio; Buta, Ron

    2002-01-01

    The distribution of gravitational torques and bar strengths in the local Universe is derived from a detailed study of 163 galaxies observed in the near-infrared. The results are compared with numerical models for spiral galaxy evolution. It is found that the observed distribution of torques can be accounted for only with external accretion of gas onto spiral disks. Accretion is responsible for bar renewal - after the dissolution of primordial bars - as well as the maintenance of spiral structures. Models of isolated, non-accreting galaxies are ruled out. Moderate accretion rates do not explain the observational results: it is shown that galactic disks should double their mass in less than the Hubble time. The best fit is obtained if spiral galaxies are open systems, still forming today by continuous gas accretion, doubling their mass every 10 billion years.

  15. Star formation in isolated AMIGA galaxies: dynamical influence of bars

    CERN Document Server

    Verley, S; Verdes-Montenegro, L; Bergond, G; Leon, S

    2007-01-01

    Star formation depends strongly both on the local environment of galaxies, and on the internal dynamics of the interstellar medium. To disentangle the two effects, we obtained, in the framework of the AMIGA project, Ha and Gunn r photometric data for more than 200 spiral galaxies lying in very low-density regions of the local Universe. We characterise the Ha emission, tracing current star formation, of the 45 largest and less inclined galaxies observed for which we estimate the torques between the gas and the bulk of the optical matter. We could subsequently study the Ha morphological aspect of these isolated spiral galaxies. Using Fourier analysis, we focus on the modes of the spiral arms and also on the strength of the bars, computing the torques between the gas and newly formed stars (Ha) and the bulk of the optical matter (Gunn r). We interpret the various bar/spiral morphologies observed in terms of the secular evolution experienced by galaxies in isolation. We also classify the different spatial distrib...

  16. Model-based pattern speed estimates for 38 barred galaxies

    CERN Document Server

    Rautiainen, P; Laurikainen, E

    2008-01-01

    We have modelled 38 barred galaxies by using near-IR and optical data from the Ohio State University Bright Spiral Galaxy Survey. We constructed the gravitational potentials of the galaxies from $H$-band photometry, assuming constant mass-to-light ratio. The halo component we chose corresponds to the so called universal rotation curve. In each case, we used the response of gaseous and stellar particle disc to rigidly rotating potential to determine the pattern speed. We find that the pattern speed of the bar depends roughly on the morphological type. The average value of corotation resonance radius to bar radius, $\\mathcal{R}$, increases from $1.15 \\pm 0.25$ in types SB0/a -- SBab to $1.44 \\pm 0.29$ in SBb and $1.82\\pm 0.63$ in SBbc -- SBc. Within the error estimates for the pattern speed and bar radius, all galaxies of type SBab or earlier have a fast bar ($\\mathcal{R} \\le 1.4$), whereas the bars in later type galaxies include both fast and slow rotators. Of 16 later type galaxies with a nominal value of $\\m...

  17. Simulations of dual morphology in spiral galaxies

    CERN Document Server

    Berman, S L

    2003-01-01

    Gas and stars in spiral galaxies are modelled with the DUAL code, using hydrodynamic and N-body techniques. The simulations reveal morphological differences mirroring the dual morphologies seen in B and K' band observations of many spiral galaxies. In particular, the gaseous images are more flocculent with lower pitch angles than the stellar images, and the stellar arm-interarm contrast correlates with the degree of morphological decoupling.

  18. Uncovering spiral structure in flocculent galaxies

    CERN Document Server

    Thornley, M D

    1996-01-01

    We present K'(2.1 micron) observations of four nearby flocculent spirals, which clearly show low-level spiral structure and suggest that kiloparsec-scale spiral structure is more prevalent in flocculent spirals than previously supposed. In particular, the prototypical flocculent spiral NGC 5055 is shown to have regular, two-arm spiral structure to a radius of 4 kpc in the near infrared, with an arm-interarm contrast of 1.3. The spiral structure in all four galaxies is weaker than that in grand design galaxies. Taken in unbarred galaxies with no large, nearby companions, these data are consistent with the modal theory of spiral density waves, which maintains that density waves are intrinsic to the disk. As an alternative, mechanisms for driving spiral structure with non-axisymmetric perturbers are also discussed. These observations highlight the importance of near infrared imaging for exploring the range of physical environments in which large-scale dynamical processes, such as density waves, are important.

  19. Galaxy Zoo: Observing Secular Evolution Through Bars

    CERN Document Server

    Cheung, Edmond; Masters, Karen L; Nichol, Robert C; Bosma, A; Bell, Eric F; Faber, S M; Koo, David C; Lintott, Chris; Melvin, Thomas; Schawinski, Kevin; Skibba, Ramin A; Willett, Kyle W

    2013-01-01

    Observations have shown that there is a connection between the presence of a bar and the properties of a galaxy. In a parallel effort, simulations have shown that this connection is consistent with the theory of bar-driven secular evolution. But observational evidence of bar-driven secular evolution has been sparse. In this paper, we use the Galaxy Zoo 2 dataset to look for evidence of this secular evolution. Our sample consists of 13,295 disk galaxies, with an overall bar fraction of 23.6 +/- 0.4%, of which 1,154 barred galaxies also have bar length measurements. These samples are the largest ever used to study the role of bars in disk galaxy evolution. We characterize bars by the bar likelihood, the likelihood a bar is present in a given galaxy, and the bar length. These two bar properties show interesting correlations with the specific star formation rate and the inner central structure of galaxies. Comparing these observations to state-of-the-art simulations of bar evolution, which include live halos and ...

  20. Arm Structure in Anemic Spiral Galaxies

    CERN Document Server

    Elmegreen, D M; Frogel, J A; Eskridge, P B; Pogge, R W; Gallagher, A; Iams, J; Elmegreen, Debra Meloy; Elmegreen, Bruce G.; Frogel, Jay A.; Eskridge, Paul B.; Pogge, Richard W.; Gallagher, Andrew; Iams, Joel

    2002-01-01

    Anemic galaxies have less prominent star formation than normal galaxies of the same Hubble type. Previous studies showed they are deficient in total atomic hydrogen but not in molecular hydrogen. Here we compare the combined surface densities of HI and H2 at mid-disk radii with the Kennicutt threshold for star formation. The anemic galaxies are below threshold, which explains their lack of prominent star formation, but they are not much different than other early type galaxies, which also tend to be below threshold. The spiral wave amplitudes of anemic and normal galaxies were also compared, using images in B and J passbands from the OSU Bright Spiral Galaxy Survey. Anemic galaxies have normal spiral wave properties too, with the same amplitudes and radial dependencies as other galaxies of the same arm class. Because of the lack of gas, spiral waves in early type galaxies and anemics do not have a continuous supply of stars with low velocity dispersions to maintain a marginally stable disk. As a result, they ...

  1. A two-arm gaseous spiral in the inner 200 pc of the early-type galaxy NGC 2974: signature of an inner bar

    CERN Document Server

    Emsellem, E; Ferruit, P; Emsellem, Eric; Goudfrooij, Paul; Ferruit, Pierre

    2003-01-01

    TIGER integral-field spectrography and HST/WFPC2 imaging of the E3 galaxy NGC 2974 are used to derive the kinematics of the stellar and ionized gas components in its central 500 pc. We derive a numerical two-integral distribution function from a MGE mass model using the HQ formalism. The TIGER as well as published long-slit stellar kinematics are well fitted with this self-consistent model, requiring neither the addition of a significant mass contribution from a hidden disc structure, nor the presence of a central dark mass. The data reveal the presence of a striking, highly contrasted, two-arm gaseous spiral structure within a radius of ~200 pc, corresponding to a total mass of 6.8x10^4 Msun of ionized gas. We use a deconvolved TIGER datacube to probe its kinematics at a resolution of about 0.35 arcsec. Strong departures from circular motions are observed, as well as high velocity dispersion values on the inner side of the arms. We interpret the observed gas morphology and kinematics as the signature of stre...

  2. Gaseous Structures in Barred Galaxies: Effects of the Bar Strength

    CERN Document Server

    Kim, Woong-Tae; Kim, Yonghwi

    2012-01-01

    Using hydrodynamic simulations, we investigate the physical properties of gaseous substructures in barred galaxies and their relationships with the bar strength. The gaseous medium is assumed to be isothermal and unmagnetized. The bar potential is modeled as a Ferrers prolate with index n. To explore situations with differing bar strength, we vary the bar mass fbar relative to the spheroidal component as well as its aspect ratio. We derive expressions as functions of fbar and the aspect ratio for the bar strength Qb and the radius r(Qb) where the maximum bar torque occurs. When applied to observations, these expressions suggest that bars in real galaxies are most likely to have fbar=0.25-0.5 and n0.2 and self-gravity is included.

  3. Galaxy Zoo: CANDELS Barred Disks and Bar Fractions

    CERN Document Server

    Simmons, B D; Lintott, Chris; Masters, Karen L; Willett, Kyle W; Keel, William C; Smethurst, R J; Cheung, Edmond; Nichol, Robert C; Schawinski, Kevin; Rutkowski, Michael; Kartaltepe, Jeyhan S; Bell, Eric F; Casteels, Kevin R V; Conselice, Christopher J; Almaini, Omar; Ferguson, Henry C; Fortson, Lucy; Hartley, William; Kocevski, Dale; Koekemoer, Anton M; McIntosh, Daniel H; Mortlock, Alice; Newman, Jeffrey A; Ownsworth, Jamie; Bamford, Steven; Dahlen, Tomas; Faber, Sandra M; Finkelstein, Steven L; Fontana, Adriano; Galametz, Audrey; Grogin, N A; Grutzbauch, Ruth; Guo, Yicheng; Haussler, Boris; Jek, Kian J; Kaviraj, Sugata; Lucas, Ray A; Peth, Michael; Salvato, Mara; Wiklind, Tommy; Wuyts, Stijn

    2014-01-01

    The formation of bars in disk galaxies is a tracer of the dynamical maturity of the population. Previous studies have found that the incidence of bars in disks decreases from the local Universe to z ~ 1, and by z > 1 simulations predict that bar features in dynamically mature disks should be extremely rare. Here we report the discovery of strong barred structures in massive disk galaxies at z ~ 1.5 in deep rest-frame optical images from CANDELS. From within a sample of 876 disk galaxies identified by visual classification in Galaxy Zoo, we identify 123 barred galaxies. Selecting a sub-sample within the same region of the evolving galaxy luminosity function (brighter than L*), we find that the bar fraction across the redshift range 0.5< z < 2 (f_bar = 10.7 +6.3 -3.5% after correcting for incompleteness) does not significantly evolve. We discuss the implications of this discovery in the context of existing simulations and our current understanding of the way disk galaxies have evolved over the last 11 bil...

  4. Decreased Frequency of Strong Bars in S0 Galaxies: Evidence for Secular Evolution?

    CERN Document Server

    Buta, R; Salo, H; Knapen, J

    2010-01-01

    Using data from the Near-Infrared S0 Survey (NIRS0S) of nearby, early-type galaxies, we examine the distribution of bar strengths in S0 galaxies as compared to S0/a and Sa galaxies, and as compared to previously published bar strength data for Ohio State University Bright Spiral Galaxy Survey (OSUBSGS) spiral galaxies. Bar strengths based on the gravitational torque method are derived from 2.2 micron Ks-band images for a statistical sample of 138 (98 S0, 40 S0/a,Sa) galaxies having a mean total blue magnitude <= 12.5 and generally inclined less than 65 degrees. We find that S0 galaxies have weaker bars on average than spiral galaxies in general, even compared to their closest spiral counterparts, S0/a and Sa galaxies. The differences are significant and cannot be due entirely to uncertainties in the assumed vertical scale-heights or in the assumption of constant mass-to-light ratios. Part of the difference is likely due simply to the dilution of the bar torques by the higher mass bulges seen in S0s. If sp...

  5. Dense Cloud Formation and Star Formation in a Barred Galaxy

    CERN Document Server

    Nimori, M; Sorai, K; Watanabe, Y; Hirota, A; Namekata, D

    2012-01-01

    We investigate the properties of massive, dense clouds formed in a barred galaxy and their possible relation to star formation, performing a two-dimensional hydrodynamical simulation with the gravitational potential obtained from the 2Mass data from the barred spiral galaxy, M83. Since the environment for cloud formation and evolution in the bar region is expected to be different from that in the spiral arm region, barred galaxies are a good target to study the environmental effects on cloud formation and the subsequent star formation. Our simulation uses for an initial 80 Myr an isothermal flow of non-self gravitating gas in the barred potential, then including radiative cooling, heating and self-gravitation of the gas for the next 40 Myr, during which dense clumps are formed. We identify many cold, dense gas clumps for which the mass is more than $10^4M_{\\odot}$ (a value corresponding to the molecular clouds) and study the physical properties of these clumps. The relation of the velocity dispersion of the i...

  6. A diversity of progenitors and histories for isolated spiral galaxies

    CERN Document Server

    Martig, Marie; Croton, Darren J; Dekel, Avishai; Teyssier, Romain

    2012-01-01

    We analyze a suite of 33 cosmological simulations following the evolution of Milky Way-mass galaxies in low-density environments. Our sample at z = 0 comprises galaxies with a broad range of Hubble types, from nearly bulgeless disks to bulge-dominated galaxies. The bulges are typically pseudo-bulges, with a Sersic index lower than 2, and 70% of the galaxies have bars. Despite the fact that a large fraction of the bulge is typically in place by z = 1, we find no significant correlation between the morphology at z = 1 and at z = 0. The progenitors of disk galaxies span a whole range of morphologies at z = 1, including smooth disks, unstable disks, interacting galaxies and bulge-dominated systems. By z = 0.5, the progenitor morphology is correlated with the z = 0 morphology, with spiral arms and bars largely in place at z = 0.5. From this sample we analyze the formation histories of galaxies with a bulge-to-total ratio below 0.3 (typically Sb and later types). They do form in our simulations, but with a lower ab...

  7. Radial transport of dust in spiral galaxies

    CERN Document Server

    Vorobyov, E I; Shchekinov, Yu. A.

    2006-01-01

    Motivated by recent observations which detect dust at large galactocentric distances in the disks of spiral galaxies, we propose a mechanism of outward radial transport of dust by spiral stellar density waves. We consider spiral galaxies in which most of dust formation is localized inside the corotation radius. We show that in the disks of such spiral galaxies, the dust grains can travel over radial distances that exceed the corotation radius by roughly 25%. A fraction of the dust grains can be trapped on kidney-shaped stable orbits between the stellar spiral arms and thus can escape the destructive effect of supernova explosions. These grains form diffuse dusty spiral arms, which stretch 4-5 kpc from the sites of active star formation. About 10% of dust by mass injected inside corotation, can be transported over radial distances 3-4 kpc during approximately 1.0 Gyr. This is roughly an order of magnitude more efficient than can be provided by the turbulent motions.

  8. Fast magnetohydrodynamic density waves in spiral galaxies

    Science.gov (United States)

    Lou, Yu-Qing; Han, J. L.; Fan, Zuhui

    1999-09-01

    The newly observed large-scale structures of a southern grand-design spiral galaxy NGC 2997 in total and polarized radio-continuum emission together with their overall correlations with the known optical spiral structure are physically interpreted in terms of fast magnetohydrodynamic (MHD) density waves in contrast to slow MHD density waves in NGC 6946. The global spiral pattern of such fast MHD density waves extends from the very centre, where the disc rotates almost rigidly within ~0.5arcmin, all the way to the outer disc with a more or less flat rotation curve. To strengthen the case, several known features of spiral galaxies M51 and IC 342 are referred to and their pattern identifications discussed. It is emphasized that the nature of a magnetized spiral galaxy would be much better appreciated by examining large-scale structures in optical, atomic hydrogen Hi, total and polarized radio-continuum and infrared emission together. As various star-formation processes occur concurrently and/or sequentially in spiral arms of high gas concentration, relatively broad and fuzzy Hi arms, roughly coincident with optical arms in the inner disc, are expected to extend from the extremities of fading optical arms further into the outer gas disc. We predict that the south-east `magnetic arm', apparently isolated from any optical features, in total and polarized radio-continuum intensity maps of NGC 2997 should be associated with an Hi gas arm yet to be detected in 21-cm line emission.

  9. Dependence of Barred Galaxy Fraction on Galaxy Properties and Environment

    CERN Document Server

    Lee, Gwang-Ho; Lee, Myung Gyoon; Choi, Yun-Young

    2011-01-01

    We investigate the dependence of occurrence of bars in galaxies on galaxy properties and environment. We use a volume-limited sample of 33,391 galaxies brighter than $M_{r}=-19.5+5$log$h$ at $0.02\\le z\\le0.05489$, drawn from the SDSS DR 7. We classify the galaxies into early and late types, and identify bars by visual inspection. Among 10,674 late-type galaxies with axis ratio $b/a>0.60$, we find 3,240 barred galaxies ($f_{bar}=30.4%$) which divide into 2,542 strong bars ($f_{SB1}=23.8%$) and 698 weak bars ($f_{SB2}=6.5%$). We find that $f_{SB1}$ increases as $u-r$ color becomes redder, and that it has a maximum value at intermediate velocity dispersion ($\\sigma\\simeq$150 km s$^{-1}$). This trend suggests that strong bars are dominantly hosted by intermediate-mass systems. Weak bars prefer bluer galaxies with lower mass and lower concentration. In the case of strong bars, their dependence on the concentration index appears only for massive galaxies with $\\sigma>150$ km s${}^{-1}$. We also find that $f_{bar}$ ...

  10. Are spiral galaxies optically thin or thick?

    CERN Document Server

    Xilouris, E M; Kylafis, N D; Paleologou, E V; Papamastorakis, J

    1999-01-01

    The opacity of spiral galaxies is examined by modelling the dust and stellar content of individual galaxies. The model is applied to five late-type spiral galaxies (NGC 4013, IC 2531, UGC 1082, NGC 5529 and NGC 5907). Having analyzed a total of seven galaxies thus far, the five galaxies mentioned above plus UGC 2048 and NGC 891 presented in (Xilouris et al. 1997, 1998), we are able to draw some general conclusions, the most significant of which are: 1) The face-on central optical depth is less than one in all optical bands indicating that typical spiral galaxies like the ones that we have modelled would be completely transparent if they were to be seen face-on. 2) The dust scaleheight is about half that of the stars, which means that the dust is more concentrated near the plane of the disk. 3) The dust scalelength is about 1.4 times larger than that of the stars and the dust is more radially extended than the stars. 4) The dust mass is found to be about an order of a magnitude more than previously measured us...

  11. Short WSRT HI observations of spiral galaxies

    NARCIS (Netherlands)

    Rhee, MH; vanAlbada, TS

    1996-01-01

    We have obtained short HI observations of 60 late type spiral galaxies with the Westerbork Synthesis Radio Telescope (WSRT). Several HI properties are presented, including the radial surface density distribution of HI and a position-velocity map. When possible these are compared to those measured fr

  12. Damping of the Milky Way bar by manifold-driven spirals

    CERN Document Server

    Lokas, Ewa L

    2016-01-01

    We describe a new phenomenon of `bar damping' that may have played an important role in shaping the Milky Way bar and bulge as well as its spiral structure. We use a collisionless N-body simulation of a Milky Way-like galaxy initially composed of a dark matter halo and an exponential disk with Toomre parameter slightly above unity. In this configuration, dominated by the disk in the center, a bar forms relatively quickly, after 1 Gyr of evolution. This is immediately followed by the formation of two manifold-driven spiral arms and the outflow of stars that modifies the potential in the vicinity of the bar, apparently shifting the position of the L_1/L_2 Lagrange points. This modification leads to the shortening of the bar and the creation of a next generation of manifold-driven spiral arms at a smaller radius. The process repeats itself a few times over the next 0.5 Gyr resulting in further substantial weakening and shortening of the bar. The time when the damping comes to an end coincides with the first buck...

  13. The Milky Way and other spiral galaxies

    Directory of Open Access Journals (Sweden)

    Wang J.L.

    2012-02-01

    Full Text Available Cosmologists have often considered the Milky Way as a typical spiral galaxy, and its properties have considerably influenced the current scheme of galaxy formation. Here we compare the general properties of the Milky Way disk and halo with those of galaxies selected from the SDSS. Assuming the recent measurements of its circular velocity results in the Milky Way being offset by ~2σ from the fundamental scaling relations. On the basis of their location in the (MK, Rd, Vflat volume, the fraction of SDSS spirals like the MilkyWay is only 1.2% in sharp contrast with M31, which appears to be quite typical. Comparison of the Milky Way with M31 and with other spirals is also discussed to investigate whether or not there is a fundamental discrepancy between their mass assembly histories. Possibly the Milky Way is one of the very few local galaxies that could be a direct descendant of very distant, z = 2-3 galaxies, thanks to its quiescent history since thick disk formation.

  14. Modelling Neutral Hydrogen Discs of Spiral Galaxies

    Institute of Scientific and Technical Information of China (English)

    林伟鹏; 洪碧海

    2002-01-01

    We present an analytical model of a neutral hydrogen disc in a spiral galaxy. The gas disc of the spiral galaxy isassumed to have an exponential surface density profile and to be ionized by the cosmic ultraviolet background.To compare with observations, we consider the disc position angle and inclination angle for a line of sight goingthrough the galaxy disc. The HI column densities depend on the strength of ionizing field and disc position andinclination. The model was applied to NGC 3198 and the results were compared with observational data. TheHI disc profile at large disc radii can be tested by further HI observations using radio telescopes with a largeraperture than the present facilities. This HI disc model can be used to predict quasar absorption line systems bygalaxy discs if quasar lines of sight go through the discs.

  15. Tidally Induced Bars of Galaxies in Clusters

    Science.gov (United States)

    Łokas, Ewa L.; Ebrová, Ivana; del Pino, Andrés; Sybilska, Agnieszka; Athanassoula, E.; Semczuk, Marcin; Gajda, Grzegorz; Fouquet, Sylvain

    2016-08-01

    Using N-body simulations, we study the formation and evolution of tidally induced bars in disky galaxies in clusters. Our progenitor is a massive, late-type galaxy similar to the Milky Way, composed of an exponential disk and a Navarro-Frenk-White dark matter halo. We place the galaxy on four different orbits in a Virgo-like cluster and evolve it for 10 Gyr. As a reference case, we also evolve the same model in isolation. Tidally induced bars form on all orbits soon after the first pericenter passage and survive until the end of the evolution. They appear earlier, are stronger and longer, and have lower pattern speeds for tighter orbits. Only for the tightest orbit are the properties of the bar controlled by the orientation of the tidal torque from the cluster at pericenter. The mechanism behind the formation of the bars is the angular momentum transfer from the galaxy stellar component to its halo. All of the bars undergo extended periods of buckling instability that occur earlier and lead to more pronounced boxy/peanut shapes when the tidal forces are stronger. Using all simulation outputs of galaxies at different evolutionary stages, we construct a toy model of the galaxy population in the cluster and measure the average bar strength and bar fraction as a function of clustercentric radius. Both are found to be mildly decreasing functions of radius. We conclude that tidal forces can trigger bar formation in cluster cores, but not in the outskirts, and thus can cause larger concentrations of barred galaxies toward the cluster center.

  16. Near-infrared imaging of barred halo-dominated low surface brightness galaxies

    Science.gov (United States)

    Honey, M.; Das, M.; Ninan, J. P.; Manoj, P.

    2016-10-01

    We present a near-infrared (NIR) imaging study of barred low surface brightness (LSB) galaxies using the TIFR1 NIR Spectrometer and Imager. LSB galaxies are dark matter dominated, late-type spirals that have low-luminosity stellar discs but large neutral hydrogen (H I) gas discs. Using Sloan Digital Sky Survey images of a very large sample of LSB galaxies derived from the literature, we found that the barred fraction is only 8.3 per cent. We imaged 25 barred LSB galaxies in the J, H, KS wavebands and 29 in the KS band. Most of the bars are much brighter than their stellar discs, which appear to be very diffuse. Our image analysis gives deprojected mean bar sizes of Rb/R25 = 0.40 and ellipticities e ≈ 0.45, which are similar to bars in high surface brightness galaxies. Thus, although bars are rare in LSB galaxies, they appear to be just as strong as bars found in normal galaxies. There is no correlation of Rb/R25 or e with the relative H I or stellar masses of the galaxies. In the (J - KS) colour images most of the bars have no significant colour gradient which indicates that their stellar population is uniformly distributed and confirms that they have low dust content.

  17. The Geometry of the Galaxy's Spiral Arms

    Science.gov (United States)

    Steiman-Cameron, Thomas Y.; Wolfire, M.; Hollenbach, D.

    2008-05-01

    We present a new model for the spiral structure of the Milky Way based upon an analysis of the essentially all-sky spectral data obtained by the Far Infrared Absolute Spectrophotometer (FIRAS) instrument of the Cosmic Background Explorer (COBE) satellite. The model provides the volume emissivities of the [C II] 128 µm and [N II] 205 µm lines, as a function of position within the Galaxy. These lines are important coolants of the interstellar medium and strong tracers of the spiral structure. Despite decades of work, there is still no full agreement on the number of spiral arms in the Milky Way, much less the details of their geometry. Motivated, in part, by this fact, we conducted a systematic search for 2-arm, 3-arm, and 4-arm models that maximize agreement with the COBE data. We find that only a four-arm model, with arms defined by logarithmic spiral forms and pitch angles ranging from 13.5 to 15.6 degrees, is consistent with the observations. The arms are neither evenly spaced nor identical in form. The resultant volume emissivity models for C+ and N+, when convolved with the FIRAS beam and integrated over the Galaxy, reproduce the COBE [C II] 128 µm and [N II] 205 µm intensity maps extremely well. We also examine all models for the Galaxy's spiral structure that have been proposed over the past half century in the context of the same COBE observations. A significant fraction of these models, including many recent ones, appear to be incompatible with the data. However, several four-arm models from the literature are consistent with the COBE observations.

  18. Magnetic fields in spiral galaxies

    Science.gov (United States)

    Krause, Marita

    2015-03-01

    The magnetic field structure in edge-on galaxies observed so far shows a plane-parallel magnetic field component in the disk of the galaxy and an X-shaped field in its halo. The plane-parallel field is thought to be the projected axisymmetric (ASS) disk field as observed in face-on galaxies. Some galaxies addionionally exhibit strong vertical magnetic fields in the halo right above and below the central region of the disk. The mean-field dynamo theory in the disk cannot explain these observed fields without the action of a wind, which also probably plays an important role to keep the vertical scale heights constant in galaxies of different Hubble types and star formation activities, as has been observed in the radio continuum: At λ6 cm the vertical scale heights of the thin disk and the thick disk/halo in a sample of five edge-on galaxies are similar with a mean value of 300 +/- 50 pc for the thin disk and 1.8 +/- 0.2 kpc for the thick disk (a table and references are given in Krause 2011) with our sample including the brightest halo observed so far, NGC 253, with strong star formation, as well as one of the weakest halos, NGC 4565, with weak star formation. If synchrotron emission is the dominant loss process of the relativistic electrons the outer shape of the radio emission should be dumbbell-like as has been observed in several edge-on galaxies like e.g. NGC 253 (Heesen et al. 2009) and NGC 4565. As the synchrotron lifetime t syn at a single frequency is proportional to the total magnetic field strength B t -1.5, a cosmic ray bulk speed (velocity of a galactic wind) can be defined as v CR = h CR /t syn = 2 h z /t syn , where h CR and h z are the scale heights of the cosmic rays and the observed radio emission at this freqnency. Similar observed radio scale heights imply a self regulation mechanism between the galactic wind velocity, the total magnetic field strength and the star formation rate SFR in the disk: v CR ~ B t 1.5 ~ SFR ~ 0.5 (Niklas & Beck 1997).

  19. Stellar Orbital Studies in Normal Spiral Galaxies I: Restrictions to the Pitch Angle

    CERN Document Server

    Pérez-Villegas, A; Moreno, E

    2013-01-01

    We built a family of non-axisymmetric potential models for normal non-barred or weakly-barred spiral galaxies as defined in the simplest classification of galaxies: the Hubble sequence. For this purpose a three-dimensional self-gravitating model for spiral arms PERLAS is superimposed to the galactic axisymmetric potentials. We analyze the stellar dynamics varying only the pitch angle of the spiral arms, from 4$\\deg$ to 40$\\deg$, for an Sa galaxy, from 8$\\deg$ to 45$\\deg$, for an Sb galaxy, and from 10$\\deg$ to 60$\\deg$, for an Sc galaxy. Self-consistency is indirectly tested through periodic orbital analysis, and through density response studies for each morphological type. Based on ordered behavior, periodic orbits studies show that for pitch angles up to approximately $15\\deg$, $18\\deg$, and $20\\deg$ for Sa, Sb and Sc galaxies, respectively, the density response supports the spiral arms potential, a requisite for the existence of a long-lasting large-scale spiral structure. Beyond those limits, the density ...

  20. A Photometrically and Spectroscopically Confirmed Population of Passive Spiral Galaxies

    CERN Document Server

    Fraser-McKelvie, Amelia; Pimbblet, Kevin A; Dolley, Tim; Crossett, Jacob P; Bonne, Nicolas J

    2016-01-01

    We have identified a population of passive spiral galaxies from photometry and integral field spectroscopy. We selected z<0.035 spiral galaxies that have WISE colours consistent with little mid-infrared emission from warm dust. Matched aperture photometry of 51 spiral galaxies in ultraviolet, optical and mid-infrared show these galaxies have colours consistent with passive galaxies. Six galaxies form a spectroscopic pilot study and were observed using the Wide-Field Spectrograph (WiFeS) to check for signs of nebular emission from star formation. We see no evidence of substantial nebular emission found in previous red spiral samples. These six galaxies possess absorption-line spectra with 4000\\AA\\ breaks consistent with an average luminosity-weighted age of 2.3 Gyr. Our photometric and IFU spectroscopic observations confirm the existence of a population of local passive spiral galaxies, implying that transformation into early-type morphologies is not required for the quenching of star formation.

  1. The cold interstellar medium - An HI view of spiral galaxies

    NARCIS (Netherlands)

    Sancisi, R; Bender, R; Davies, RL

    1996-01-01

    An HI view of spiral galaxies is presented. In the first part the standard picture of isolated, normal spiral galaxies is briefly reviewed. In the second part attention is drawn to all those phenomena, such as tidal interactions, accretion and mergers, that depend on the galaxy environment and seem

  2. A two-arm gaseous spiral in the inner 200 pc of the early-type galaxy NGC 2974: signature of an inner bar

    OpenAIRE

    Emsellem, Eric; Goudfrooij, Paul; Ferruit, Pierre

    2003-01-01

    TIGER integral-field spectrography and HST/WFPC2 imaging of the E3 galaxy NGC 2974 are used to derive the kinematics of the stellar and ionized gas components in its central 500 pc. We derive a numerical two-integral distribution function from a MGE mass model using the HQ formalism. The TIGER as well as published long-slit stellar kinematics are well fitted with this self-consistent model, requiring neither the addition of a significant mass contribution from a hidden disc structure, nor the...

  3. Application of the global modal approach to spiral galaxies

    CERN Document Server

    Korchagin, V; Kikuchi, N; Miyama, S M; Moiseev, A V

    2005-01-01

    We have tested the applicability of the global modal approach in the density wave theory of spiral structure for a sample of six spiral galaxies: NGC 488, NGC 628, NGC 1566, NGC 2985, NGC 3938 and NGC 6503. The galaxies demonstrate a variety of spiral patterns from the regular open and tightly wound spiral patterns to a multi-armed spiral structure. Using the observed radial distributions of the stellar velocity dispersions and the rotation curves we have constructed equilibrium models for the galactic disks in each galaxy and analyzed the dynamics of the spiral perturbations using linear global modal analysis and nonlinear hydrodynamical simulations. The theory reproduces qualitatively the observed properties of the spiral arms in the galactic disks. Namely the theory predicts observed grand-design spiral structure in the galaxy NGC 1566, the tightly-wound spirals in galaxies NGC 488 and NGC 2985, the two-armed spiral pattern with the third spiral arm in the galaxy NGC 628, and the multi-armed spiral structu...

  4. Interactions of the Galactic bar and spiral arm in NGC 3627

    Science.gov (United States)

    Beuther, H.; Meidt, S.; Schinnerer, E.; Paladino, R.; Leroy, A.

    2017-01-01

    Aims: To gain insight into the expected gas dynamics at the interface of the Galactic bar and spiral arms in our own Milky Way galaxy, we examine as an extragalactic counterpart the evidence of multiple distinct velocity components in the cold dense molecular gas that populates a similar region at the end of the bar in the nearby galaxy NGC 3627. Methods: We assembled a high-resolution view of molecular gas kinematics traced by CO(2-1) emission and extracted line-of-sight velocity profiles from regions of high and low gas velocity dispersion. Results: The high velocity dispersions arise with often double-peaked or multiple line-profiles. We compare the centroids of the different velocity components to expectations based on orbital dynamics in the presence of bar and spiral potential perturbations. A model of the region as the interface of two gas-populated orbits families supporting the bar and the independently rotating spiral arms provides an overall good match to the data. An extent of the bar to the corotation radius of the galaxy is favored. Conclusions: Using NGC 3627 as an extragalactic example, we expect situations like this to favor strong star formation events such as are observed in our own Milky Way since gas can pile up where the orbit families cross. The relative motions of the material following these orbits is most likely even more important for the build-up of high density in the region. The surface densities in NGC 3627 are also so high that shear at the bar end is unlikely to significantly weaken the star formation activity. We speculate that scenarios in which the bar and spiral rotate at two different pattern speeds may be the most favorable for intense star formation at such interfaces. Based on observations carried out with the IRAM PdBI and 30 m telescope.The reduced images (FITS files) are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/597

  5. A Unified Scaling Law in Spiral Galaxies.

    Science.gov (United States)

    Koda; Sofue; Wada

    2000-03-01

    We investigate the origin of a unified scaling relation in spiral galaxies. Observed spiral galaxies are spread on a plane in the three-dimensional logarithmic space of luminosity L, radius R, and rotation velocity V. The plane is expressed as L~&parl0;VR&parr0;alpha in the I passband, where alpha is a constant. On the plane, observed galaxies are distributed in an elongated region which looks like the shape of a surfboard. The well-known scaling relations L-V (Tully-Fisher [TF] relation), V-R (also the TF relation), and R-L (Freeman's law) can be understood as oblique projections of the surfboard-like plane into two-dimensional spaces. This unified interpretation of the known scaling relations should be a clue to understand the physical origin of all the relations consistently. Furthermore, this interpretation can also explain why previous studies could not find any correlation between TF residuals and radius. In order to clarify the origin of this plane, we simulate formation and evolution of spiral galaxies with the N-body/smoothed particle hydrodynamics method, including cooling, star formation, and stellar feedback. Initial conditions are set to 14 isolated spheres with two free parameters, such as mass and angular momentum. The cold dark matter (h=0.5, Omega0=1) cosmology is considered as a test case. The simulations provide the following two conclusions: (1) The slope of the plane is well reproduced but the zero point is not. This zero-point discrepancy could be solved in a low-density (Omega00.5) cosmology. (2) The surfboard-shaped plane can be explained by the control of galactic mass and angular momentum.

  6. Slowly rotating bars-Morphologies introduced by bistability in barred-spiral galactic potentials

    CERN Document Server

    Tsigaridi, L

    2015-01-01

    We investigate the orbital dynamics of a \\textit{barred-spiral} model when the system is rotating slowly and corotation is located beyond the end of the spiral arms. In the characteristic of the central family of periodic orbits we find a "bistable region". In the response model we observe a ring surrounding the bar and spiral arms starting tangential to the ring. This is a morphology resembling barred-spiral systems with inner rings. However, the dynamics associated with this structure in the case we study is different from that of a typical bar ending close to corotation. The ring of our model is round, or rather elongated perpendicular to the bar. It is associated with a folding (an "S" shaped feature) of the characteristic of the central family, which is typical in bistable bifurcations. Along the "S" part of the characteristic we have a change in the orientation of the periodic orbits from a x1-type to a x2-type morphology. The orbits populated in the response model change rather abruptly their orientati...

  7. Near-Infrared Imaging of Barred Halo Dominated Low Surface Brightness Galaxies

    CERN Document Server

    Honey, M; Ninan, J P; Purvankara, M

    2016-01-01

    We present a near-infrared (NIR) imaging study of barred low surface brightness (LSB) galaxies using the TIFR near-infrared Spectrometer and Imager (TIRSPEC). LSB galaxies are dark matter dominated, late type spirals that have low luminosity stellar disks but large neutral hydrogen (HI) gas disks. Using SDSS images of a very large sample of LSB galaxies derived from the literature, we found that the barred fraction is only 8.3%. We imaged twenty five barred LSB galaxies in the J, H, K$_S$ wavebands and twenty nine in the K$_S$ band. Most of the bars are much brighter than their stellar disks, which appear to be very diffuse. Our image analysis gives deprojected mean bar sizes of $R_{b}/R_{25}$ = 0.40 and ellipticities $e$ $\\approx$ 0.45, which are similar to bars in high surface brightness galaxies. Thus, although bars are rare in LSB galaxies, they appear to be just as strong as bars found in normal galaxies. There is no correlation of $R_{b}/R_{25}$ or $e$ with the relative HI or stellar masses of the galax...

  8. Halpha Morphologies and Environmental Effects in Virgo Cluster Spiral Galaxies

    CERN Document Server

    Koopmann, R A

    2004-01-01

    We describe the various Halpha morphologies of Virgo Cluster and isolated spiral galaxies, and associate the Halpha morphologies with the types of environmental interactions which have altered the cluster galaxies. The spatial distributions of Halpha and R-band emission are used to divide the star formation morphologies of the 52 Virgo Cluster spirals into several categories: normal (37%), anemic (6%), enhanced (6%), and (spatially) truncated (52%). Truncated galaxies are further subdivided based on their inner star formation rates into truncated/normal (37%), truncated/compact (6%), truncated/anemic (8%), and truncated/enhanced (2%). The fraction of anemic galaxies is relatively small (6-13%) in both environments, suggesting that starvation is not a major factor in the reduced star formation rates of Virgo spirals. The majority of Virgo spiral galaxies have their Halpha disks truncated (52%), whereas truncated Halpha disks are rarer in isolated galaxies (12%). Most of the Halpha-truncated galaxies have relat...

  9. H{\\alpha} Kinematics of S4G spiral galaxies I. NGC 864

    CERN Document Server

    Erroz-Ferrer, Santiago; Font, Joan; Beckman, John E; Falcón-Barroso, Jesús; Sánchez-Gallego, José Ramón; Athanassoula, E; Bosma, Albert; Gadotti, Dimitri A; Muñoz-Mateos, Juan Carlos; Sheth, Kartik; Buta, Ronald J; Comerón, Sébastien; de Paz, Armando Gil; Hinz, Joannah L; Ho, Luis C; Kim, Taehyun; Laine, Jarkko; Laurikainen, Eija; Madore, Barry F; Menéndez-Delmestre, Karín; Mizusawa, Trisha; Regan, Michael W; Salo, Heikki; Seibert, Mark

    2012-01-01

    We present a study of the kinematics of the isolated spiral galaxy NGC 864, using H{\\alpha} Fabry-Perot data obtained with the GH{\\alpha}FaS instrument at the William Herschel Telescope in La Palma, complemented with images at 3.6 {\\mu}m, in the R band and in H{\\alpha} filter, and integral field spectroscopic data. The resulting data cubes and velocity maps allow the study of the kinematics of the galaxy, including in-depth investigations of the rotation curve, velocity moment maps, velocity residual maps, gradient maps and position-velocity diagrams. We find asymmetries in the velocity field in the bar zone, caused by non-circular motions, probably in response to the potential of the bar. We also find a flat-profile bar, in agreement with the strong bar, with the grand design spiral pattern, and with the gap between the ends of the bar and the start of the spiral arms. We quantify the rate of massive star formation, which is concentrated in the two spiral arms.

  10. The Nature of Red-Sequence Cluster Spiral Galaxies

    Science.gov (United States)

    Kashur, Lane; Barkhouse, Wayne; Sultanova, Madina; Kalawila Vithanage, Sandanuwa; Archer, Haylee; Foote, Gregory; Mathew, Elijah; Rude, Cody; Lopez-Cruz, Omar

    2017-01-01

    Preliminary analysis of the red-sequence galaxy population from a sample of 57 low-redshift galaxy clusters observed using the KPNO 0.9m telescope and 74 clusters from the WINGS dataset, indicates that a small fraction of red-sequence galaxies have a morphology consistent with spiral systems. For spiral galaxies to acquire the color of elliptical/S0s at a similar luminosity, they must either have been stripped of their star-forming gas at an earlier epoch, or contain a larger than normal fraction of dust. To test these ideas we have compiled a sample of red-sequence spiral galaxies and examined their infrared properties as measured by 2MASS, WISE, Spitzer, and Herschel. These IR data allows us to estimate the amount of dust in each of our red-sequence spiral galaxies. We compare the estimated dust mass in each of these red-sequence late-type galaxies with spiral galaxies located in the same cluster field but having colors inconsistent with the red-sequence. We thus provide a statistical measure to discriminate between purely passive spiral galaxy evolution and dusty spirals to explain the presence of these late-type systems in cluster red-sequences.

  11. Scale Heights of Non-Edge-on Spiral Galaxies

    Institute of Scientific and Technical Information of China (English)

    Tao Hu; Qiu-He Peng; Ying-He Zhao

    2006-01-01

    We present a method of calculating the scale height of non-edge-on spiral galaxies, together with a formula for errors. The method is based on solving Poisson's equation for a logarithmic disturbance of matter density in spiral galaxies. We show that the spiral arms can not extend to inside the "forbidden radius" γ0, due to the effect of the finite thickness of the disk. The method is tested by re-calculating the scale heights of 71 northern spiral galaxies previously calculated by Ma, Peng & Gu.Our results differ from theirs by less than 9%. We also present the scale heights of a further 23 non-edge-on spiral galaxies.

  12. The relation between bar formation, galaxy luminosity, and environment

    CERN Document Server

    Corsini, E M; Sanchez-Janssen, R; Aguerri, J A L; Zarattini, S

    2013-01-01

    We derive the bar fraction in three different environments ranging from the field to Virgo and Coma clusters, covering an unprecedentedly large range of galaxy luminosities (or, equivalently, stellar masses). We confirm that the fraction of barred galaxies strongly depends on galaxy luminosity. We also show that the difference between the bar fraction distributions as a function of galaxy luminosity (and mass) in the field and Coma cluster are statistically significant, with Virgo being an intermediate case. We interpret this result as a variation of the effect of environment on bar formation depending on galaxy luminosity. We speculate that brighter disk galaxies are stable enough against interactions to keep their cold structure, thus, the interactions are able to trigger bar formation. For fainter galaxies the interactions become strong enough to heat up the disks inhibiting bar formation and even destroying the disks. Finally, we point out that the controversy regarding whether the bar fraction depends on...

  13. Effects of interaction on the properties of spiral galaxies. II. Isolated galaxies: The zero point

    Science.gov (United States)

    Márquez, I.; Moles, M.

    1999-04-01

    We analyse the properties of a sample of 22 bright isolated spiral galaxies on the basis of Johnson B,V,I images and optical rotation curves. The fraction of early morphological types in our sample of isolated galaxies (or in other samples of non-interacting spiral galaxies) appears to be smaller than in samples including interacting systems. The overall morphological aspect is regular and symmetric, but all the galaxies present non-axisymmetric components in the form of bars or rings. We find that the color indices become bluer towards the outer parts and that their central values are well correlated with the total colors. The properties of the bulges span a larger range than those of the disks, that thus are more alike between them. None of the galaxies shows a truncated, type II disk profile. It is found that the relation between surface brightness and size for the bulges, the Kormendy relation, is tighter when only isolated galaxies are considered. We find a similar relation for the disk parameters with an unprecedented low scatter. A Principal Component Analysis of the measured parameters shows that 2 eigenvectors suffice to explain more than 95 % of the total variance. These are, as found for other samples including spiral galaxies in different environmental situations, a scale parameter given by the mass or, equivalently, the luminosity or the size; and a form parameter given by the bulge to disk luminosity ratio, B/D, or, equivalently, by the gradient of the solid-body rotation region of the rotation curve, the G-parameter. We report here a tight correlation between G and B/D for our sample of isolated spirals that could be used as a new distance indicator. Based on data obtained at the 1.5m telescope of the Estacion de Observacion de Calar Alto, Instituto Geografico Nacional, which is jointly operated by the Instituto Geografico Nacional and the Consejo Superior de Investigaciones Cientificas through the Instituto de Astrofisica de Andalucia

  14. THE SURFACE BRIGHTNESS OF OUR GALAXY AND OTHER SPIRALS

    NARCIS (Netherlands)

    VANDERKRUIT, PC

    1990-01-01

    In this review I discuss some aspects of the luminosity distributions in our Galaxy and external spiral galaxies. The major conclusions are the following: (1) the radial scale length of the luminosity distribution in the disk of our Galaxy is 5.0 +/- 0.5 kpc, (2) on this basis the Hubble constant ne

  15. On galaxy spiral arms' nature as revealed by rotation frequencies

    NARCIS (Netherlands)

    Roca-Fabrega, Santi; Valenzuela, Octavio; Figueras, Francesca; Romero-Gomez, Merce; Velazquez, Hector; Antoja Castelltort, Teresa; Pichardo, Barbara

    2013-01-01

    High-resolution N-body simulations using different codes and initial condition techniques reveal two different behaviours for the rotation frequency of transient spiral arms like structures. Whereas unbarred discs present spiral arms nearly corotating with disc particles, strong barred models (bulge

  16. Multi-Wavelength Properties of Barred Galaxies in the Local Universe: Environment and evolution across the Hubble sequence

    CERN Document Server

    Giordano, Lea; Moore, Ben; Saintonge, Amelie

    2011-01-01

    We investigate possible environmental and morphological trends in the $z\\sim0$ bar fraction using two carefully selected samples representative of a low-density environment (the isolated galaxies from the AMIGA sample) and of a dense environment (galaxies in the Virgo cluster). Galaxies span a stellar mass range from $10^8$ to $10^{12}$M$_{\\odot}$ and are visually classified using both high-resolution NIR (H-band) imaging and optical \\texttt{rgb} images. We find that the bar fraction in disk galaxies is independent of environment suggesting that bar formation may occur prior to the formation of galaxy clusters. The bar fraction in early type spirals ($Sa-Sb$) is $\\sim$50%, which is twice as high as the late type spirals ($Sbc-Sm$). The higher bar fraction in early type spirals may be due to the fact that a significant fraction of their bulges are pseudo-bulges which form via the buckling instability of a bar. i.e. a large part of the Hubble sequence is due to secular processes which move disc galaxies from la...

  17. Self-Perpetuating Spiral Arms in Disk Galaxies

    CERN Document Server

    D'Onghia, Elena; Hernquist, Lars

    2012-01-01

    The precise nature of spiral structure in galaxies remains uncertain. Recent studies suggest that spiral arms result from interactions between disks and satellite galaxies. Instead, leaving aside the grand bisymmetric spirals, here we consider the possibility that the multi-armed spiral features originate from density inhomogeneities orbiting within disks. Using high-resolution N-body simulations, we follow the motions of stars under the influence of gravity, and show that mass concentrations with properties similar to those of giant molecular clouds can induce the development of spiral arms through a process termed swing amplification. However, unlike in earlier work, we demonstrate that the eventual response of the disk can be highly non-linear, significantly modifying the formation and longevity of the resulting patterns. Contrary to expectations, ragged spiral structures can survive at least in a statistical sense long after the original perturbing influence has been removed. Our findings thus motivate a ...

  18. Observational Evidence of Secular Evolution in Barred Galaxies

    NARCIS (Netherlands)

    Perez, I.; Sanchez-Blazquez, P.; Zurita, A.; Funes, JG; Corsini, EM

    2008-01-01

    We report preliminary results of the derived stellar population metallicities and ages along the bars of a sample of 20 barred galaxies. We find that some galaxies show a positive radial bar metallicity gradient, implying that there has been a chemical enrichment and so that the star formation has l

  19. The flaring HI disk of the nearby spiral galaxy NGC 2683

    OpenAIRE

    Vollmer, B.; Nehlig, F.; Ibata, R.

    2015-01-01

    New deep VLA D array HI observations of the highly inclined nearby spiral galaxy NGC 2683 are presented. Archival C array data were processed and added to the new observations. To investigate the 3D structure of the atomic gas disk, we made different 3D models for which we produced model HI data cubes. The main ingredients of our best-fit model are (i) a thin disk inclined by 80 degrees; (ii) a crude approximation of a spiral and/or bar structure by an elliptical surface density distribution ...

  20. IR STAR FORMING KNOTS IN GRAND DESIGN SPIRAL GALAXIES: SPIRAL STRUCTURE STAR FORMATION CONNECTION

    Directory of Open Access Journals (Sweden)

    H. Dottori

    2009-01-01

    Full Text Available We are studying 46 Grand Design spirals widely spread in types, which have been imaged in the K-band with the ESO NTT telescope. Eleven objects show knots strongly associated to the m=2 Fourier component of the spiral structure. Corotation ressonance (CR for the two-armed pattern have been derived for ve galaxies.

  1. The impact of bars on the radial distribution of supernovae in disc galaxies

    Science.gov (United States)

    Hakobyan, A. A.; Karapetyan, A. G.; Barkhudaryan, L. V.; Mamon, G. A.; Kunth, D.; Petrosian, A. R.; Adibekyan, V.; Aramyan, L. S.; Turatto, M.

    2016-07-01

    We present an analysis of the impact of bars on the radial distributions of the different types of supernovae (SNe) in the stellar discs of host galaxies with various morphologies. We find that in Sa-Sbc galaxies, the radial distribution of core-collapse (CC) SNe in barred hosts is inconsistent with that in unbarred ones, while the distributions of SNe Ia are not significantly different. At the same time, the radial distributions of both types of SNe in Sc-Sm galaxies are not affected by bars. We propose that the additional mechanism shaping the distributions of Type Ia and CC SNe can be explained within the framework of substantial suppression of massive star formation in the radial range swept by strong bars, particularly in early-type spirals. The radial distribution of CC SNe in unbarred Sa-Sbc galaxies is more centrally peaked and inconsistent with that in unbarred Sc-Sm hosts, while the distribution of SNe Ia in unbarred galaxies is not affected by host morphology. These results can be explained by the distinct distributions of massive stars in the discs of early-and late-type spirals.

  2. IC3328 a "dwarf elliptical galaxy" with spiral structure

    CERN Document Server

    Jerjen, H; Binggeli, B; Jerjen, Helmut; Kalnajs, Agris; Binggeli, Bruno

    2000-01-01

    We present the 2-D photometric decomposition of the Virgo galaxy IC3328. The analysis of the global light distribution of this morphologically classified nucleated dwarf elliptical galaxy (dE1,N) reveals a tightly wound, bi-symmetric spiral structure with a diameter of 4.5 kpc, precisely centered on the nucleus of the dwarf. The amplitude of the spiral is only three percent of the dwarf's surface brightness making it the faintest and smallest spiral ever found in a galaxy. In terms of pitch angle and arm winding the spiral is similar to the intermediate-type galaxy M51, but it lacks the dust and prominent HII regions which signal the presence of gas. The visual evidence of a spiral pattern in an early-type dwarf galaxy reopens the question on whether these dwarfs are genuine rotationally supported or anisotropic stellar systems. In the case of IC3328, we argue for a nearly face-on disk (dS0) galaxy with an estimated maximum rotation velocity of v_c,max = 55kms-1. The faintness of the spiral and the small moti...

  3. The formation of molecular clouds in spiral galaxies

    CERN Document Server

    Dobbs, C L

    2006-01-01

    We present Smoothed Particle Hydrodynamics (SPH) simulations of molecular cloud formation in spiral galaxies. These simulations model the response of a non-self-gravitating gaseous disk to a galactic potential. The formation of molecular gas occurs when cold ($T \\le 100$ K) gas is compressed during the passage of a spiral arm. The spiral arms display considerable structure and the molecular gas accumulates into dense clouds. We identify the formation of these structures as due to the dynamics of clumpy shocks, which perturb the orbits of particles passing through the spiral arm. In addition, the spiral shocks induce a large velocity dispersion in the spiral arms, comparable with the magnitude of the velocity dispersion observed in molecular clouds. The molecular clouds are largely confined to the spiral arms, since most molecular gas is photodissociated to atomic hydrogen upon leaving the arms. However a low photodissociation rate increases the amount of interarm molecular gas, and the possibility of molecula...

  4. The Emission Line Sequence of Normal Spiral Galaxies

    CERN Document Server

    Sodré, L; Stasinska, Grazyna

    1999-01-01

    We have analyzed the emission line properties in the integrated spectra of 15 normal spiral galaxies. We show that very clear trends appear when plotting relevant emission line ratios or equivalent widths as a function of galaxy spectral types, obtained with a Principal Component Analysis of the continua and absorption features of spectra. The equivalent widths of all the lines analyzed correlate extremely well with spectral types, implying that each of them can be considered a good indicator of the spectral type in normal galaxies. The position of most galaxies of our sample in classical emission line diagnostic diagrams follows that of individual giant HII regions in spiral galaxies, but for the earliest type galaxies, the emission line pattern resembles more that of LINERs. Therefore, the direct interpretation of equivalent widths in terms of star formation rates would be misleading in such cases. The observed trends in the emission line ratios as a function of galaxy spectral type suggest a decrease of O/...

  5. CHARACTERISTICS OF SPIRAL ARMS IN LATE-TYPE GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Honig, Z. N.; Reid, M. J., E-mail: mreid@cfa.harvard.edu [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States)

    2015-02-10

    We have measured the positions of large numbers of H II regions in four nearly face-on, late-type, spiral galaxies: NGC 628 (M74), NGC 1232, NGC 3184, and NGC 5194 (M51). Fitting log-periodic spiral models to segments of each arm yields local estimates of spiral pitch angle and arm width. While pitch angles vary considerably along individual arms, among arms within a galaxy, and among galaxies, we find no systematic trend with galactocentric distance. We estimate the widths of the arm segments from the scatter in the distances of the H II regions from the spiral model. All major arms in these galaxies show spiral arm width increasing with distance from the galactic center, similar to the trend seen in the Milky Way. However, in the outermost parts of the galaxies, where massive star formation declines, some arms reverse this trend and narrow. We find that spiral arms often appear to be composed of segments of ∼5 kpc length, which join to form kinks and abrupt changes in pitch angle and arm width; these characteristics are consistent with properties seen in the large N-body simulations of D'Onghia et al. and others.

  6. Gas mass fractions and the evolution of spiral galaxies

    NARCIS (Netherlands)

    McGaugh, SS; DeBlok, WJG

    1997-01-01

    We show that the gas mass fraction of spiral galaxies is strongly correlated with luminosity and surface brightness. It is not correlated with linear size. Gas fraction varies with luminosity and surface brightness at the same rate, indicating evolution at fixed size. Dim galaxies are clearly less e

  7. Turbulence and Star Formation in a Sample of Spiral Galaxies

    Science.gov (United States)

    Maier, Erin; Chien, Li-Hsin; Hunter, Deidre A.

    2016-11-01

    We investigate turbulent gas motions in spiral galaxies and their importance to star formation in far outer disks, where the column density is typically far below the critical value for spontaneous gravitational collapse. Following the methods of Burkhart et al. on the Small Magellanic Cloud, we use the third and fourth statistical moments, as indicators of structures caused by turbulence, to examine the neutral hydrogen (H i) column density of a sample of spiral galaxies selected from The H i Nearby Galaxy Survey. We apply the statistical moments in three different methods—the galaxy as a whole, divided into a function of radii and then into grids. We create individual grid maps of kurtosis for each galaxy. To investigate the relation between these moments and star formation, we compare these maps with their far-ultraviolet images taken by the Galaxy Evolution Explorer satellite.We find that the moments are largely uniform across the galaxies, in which the variation does not appear to trace any star-forming regions. This may, however, be due to the spatial resolution of our analysis, which could potentially limit the scale of turbulent motions that we are sensitive to greater than ∼700 pc. From comparison between the moments themselves, we find that the gas motions in our sampled galaxies are largely supersonic. This analysis also shows that the Burkhart et al. methods may be applied not just to dwarf galaxies but also to normal spiral galaxies.

  8. Dust Attenuation in Hydrodynamic Simulations of Spiral Galaxies

    CERN Document Server

    Rocha, M; Primack, J R; Cox, T J; Rocha, Miguel; Jonsson, Patrik; Primack, Joel R.

    2007-01-01

    We study the effects of dust in hydrodynamic simulations of spiral galaxies when different radial metallicity gradients are assumed. SUNRISE, a Monte-Carlo radiative-transfer code, is used to make detailed calculations of the internal extinction of disk galaxies caused by their dust content. SUNRISE is used on eight different Smooth Particle Hydrodynamics (SPH) simulations of isolated spiral galaxies. These galaxies vary mainly in mass and hence luminosity, spanning a range in luminosities from -16 to -22 magnitudes in the B band. We focus on the attenuation in different wavelength bands as a function of the disk inclination and the luminosity of the models, and compare this to observations. Observations suggest different metallicity gradients for galaxies of different luminosities. These metallicity gradients were explored in our different models, finding that the resulting dust attenuation matches observations for edge-on galaxies, but do not show a linear behaviour in log axis ratio as some observations ha...

  9. Evidence for a Large Stellar Bar in the LSB Galaxy UGC 7321

    CERN Document Server

    Pohlen, M; Lütticke, R; Dettmar, R J

    2003-01-01

    Late-type spiral galaxies are thought to be the dynamically simplest type of disk galaxies and our understanding of their properties plays a key role in the galaxy formation and evolution scenarios. The low surface brightness (LSB) galaxy UGC 7321, a nearby, isolated, ``superthin'' edge-on galaxy, is an ideal object to study those purely disk dominated bulge-less galaxies. Although late type spirals are believed to exhibit the simplest possible structure, even prior observations showed deviations from a pure single component exponential disk in the case of UGC 7321. We present for the first time photometric evidence for peanut-shaped outer isophotes from a deep optical (R-band) image of UGC 7321. Observations and dynamical modeling suggest that boxy/peanut-shaped (b/p) bulges in general form through the buckling instability in bars of the parent galaxy disks. Together with recent HI observations supporting the presence of a stellar bar in UGC 7321 this could be the earliest known case of the buckling process ...

  10. The rotation curve of spiral galaxies and its cosmological implications

    CERN Document Server

    Florido, E

    2000-01-01

    We review the topic of rotation curves of spiral galaxies emphasizing the standard interpretation as evidence for the existence of dark matter halos. Galaxies other than spirals and late-type dwarfs may also possess great amounts of dark matter, and therefore ellipticals, dwarf spirals, lenticulars and polar ring galaxies are also considered. Furthermore, other methods for determining galactic dark matter, such as those provided by binaries, satellites or globular clusters, have to be included. Cold dark matter hierarchical models constitute the standard way to explain rotation curves, and thus the problem becomes just one aspect of a more general theory explaining structure and galaxy formation. Alternative theories also are included. In the magnetic model, rotation curves could also be a particular aspect of the whole history of cosmic magnetism during different epochs of the Universe. Modifications of Newtonian Dynamics provide another interesting possibility which is discussed here.

  11. A Survey of nearby, nearly face-on spiral galaxies

    Science.gov (United States)

    Garmire, Gordon

    2014-09-01

    This is a continuation of a survey of nearby, nearly face-on spiral galaxies. The main purpose is to search for evidence of collisions with small galaxies that show up in X-rays by the generation of hot shocked gas from the collision. Secondary objectives include study of the spatial distribution point sources in the galaxy and to detect evidence for a central massive blackhole.

  12. Scalable Automated Detection of Spiral Galaxy Arm Segments

    CERN Document Server

    Davis, Darren R

    2014-01-01

    Given an approximately centered image of a spiral galaxy, we describe an entirely automated method that finds, centers, and sizes the galaxy and then automatically extracts structural information about the spiral arms. For each arm segment found, we list the pixels in that segment and perform a least-squares fit of a logarithmic spiral arc to the pixels in the segment. The algorithm takes about 1 minute per galaxy, and can easily be scaled using parallelism. We have run it on all ~644,000 Sloan objects classified as "galaxy" and large enough to observe some structure. Our algorithm is stable in the sense that the statistics across a large sample of galaxies vary smoothly based on algorithmic parameters, although results for individual galaxies can sometimes vary in a non-smooth but easily understood manner. We find a very good correlation between our quantitative description of spiral structure and the qualitative description provided by humans via Galaxy Zoo. In addition, we find that pitch angle often varie...

  13. Spiral structure in nearby galaxies II. comparative analysis and conclusions

    CERN Document Server

    Kendall, S; Kennicutt, R C

    2014-01-01

    This paper presents a detailed analysis of two-armed spiral structure in a sample of galax- ies from the Spitzer Infrared Nearby Galaxies Survey (SINGS), with particular focus on the relationships between the properties of the spiral pattern in the stellar disc and the global struc- ture and environment of the parent galaxies. Following Paper I we have used a combination of Spitzer Space Telescope mid-infrared imaging and visible multi-colour imaging to isolate the spiral pattern in the underlying stellar discs, and we examine the systematic behaviours of the observed amplitudes and shapes (pitch angles) of these spirals. In general, spiral morphology is found to correlate only weakly at best with morphological parameters such as stellar mass, gas fraction, disc/bulge ratio, and vflat. In contrast to weak correlations with galaxy structure a strong link is found between the strength of the spiral arms and tidal forcing from nearby companion galaxies. This appears to support the longstanding suggestion that ei...

  14. Molecular Gas in NUclei of GAlaxies (NUGA) XIV. The barred LINER/Seyfert 2 galaxy NGC 3627

    CERN Document Server

    Casasola, V; Combes, F; Garcia-Burillo, S; Neri, R

    2011-01-01

    We present CO(1-0) and CO(2-1) maps of the interacting barred LINER/Seyfert 2 galaxy NGC 3627 obtained with the IRAM interferometer at resolutions of 2.1" x 1.3" and 0.9" x 0.6", respectively. The molecular gas emission shows a nuclear peak, an elongated bar-like structure of ~18" (~900 pc) diameter in both CO maps and, in CO(1-0), a two-arm spiral feature from r~9" (~450 pc) to r~16" (~800 pc). The inner ~18" bar-like structure, with a north/south orientation (PA = 14{\\deg}), forms two peaks at the extremes of this elongated emission region. The kinematics of the inner molecular gas shows signatures of non-circular motions associated both with the 18" bar-like structure and the spiral feature detected beyond it. The 1.6 micron H-band 2MASS image of NGC 3627 shows a stellar bar with a PA = -21{\\deg}, different from the PA (= 14{\\deg}) of the CO bar-like structure, indicating that the gas is leading the stellar bar. The torques computed with the HST-NICMOS F160W image and our PdBI maps are negative down to the...

  15. Star formation in galaxies: the role of spiral arms

    CERN Document Server

    Dobbs, Clare

    2013-01-01

    Studying star formation in spiral arms tells us not only about the evolution of star formation, and molecular clouds, but can also tell us about the nature of spiral structure in galaxies. I will address both these topics using the results of recent simulations and observations. Galactic scale simulations are beginning to examine in detail the evolution of GMCs as they form in spiral arms, and then disperse by stellar feedback or shear. The overall timescale for this process appears comparable to the crossing time of the GMCs, a few Myrs for $10^5$ M$_{\\odot}$ clouds, 20 Myr or so for more massive GMCs. Both simulations and observations show that the massive clouds are found in the spiral arms, likely as a result of cloud-cloud collisions. Simulations including stars should also tell us about the stellar age distribution in GMCs, and across spiral arms. More generally, recent work on spiral galaxies suggests that the dynamics of gas flows in spiral arms are different in longlived and transient spiral arms, re...

  16. Tidal Origin of Spiral Arms in Galaxies Orbiting a Cluster

    Science.gov (United States)

    Semczuk, Marcin; Łokas, Ewa L.; del Pino, Andrés

    2017-01-01

    One of the scenarios for the formation of grand-design spiral arms in disky galaxies involves their interactions with a satellite or another galaxy. Here we consider another possibility, where the perturbation is instead due to the potential of a galaxy cluster. Using N-body simulations we investigate the formation and evolution of spiral arms in a Milky-Way-like galaxy orbiting a Virgo-like cluster. The galaxy is placed on a few orbits of different size but similar eccentricity and its evolution are followed for 10 Gyr. The tidally induced, two-armed, approximately logarithmic spiral structure forms on each of them during the pericenter passages. The spiral arms dissipate and wind up with time, to be triggered again at the next pericenter passage. We confirm this transient and recurrent nature of the arms by analyzing the time evolution of the pitch angle and the arm strength. We find that the strongest arms are formed on the tightest orbit; however, they wind up rather quickly and are disturbed by another pericenter passage. The arms on the most extended orbit, which we analyze in more detail, wind up slowly and survive for the longest time. Measurements of the pattern speed of the arms indicate that they are kinematic density waves. We attempt a comparison with observations by selecting grand-design spiral galaxies in the Virgo cluster. Among those, we find nine examples bearing no sign of recent interactions or the presence of companions. For three of them we present close structural analogues among our simulated spiral galaxies.

  17. Bar pattern speeds in CALIFA galaxies. I. Fast bars across the Hubble sequence

    Science.gov (United States)

    Aguerri, J. A. L.; Méndez-Abreu, J.; Falcón-Barroso, J.; Amorin, A.; Barrera-Ballesteros, J.; Cid Fernandes, R.; García-Benito, R.; García-Lorenzo, B.; González Delgado, R. M.; Husemann, B.; Kalinova, V.; Lyubenova, M.; Marino, R. A.; Márquez, I.; Mast, D.; Pérez, E.; Sánchez, S. F.; van de Ven, G.; Walcher, C. J.; Backsmann, N.; Cortijo-Ferrero, C.; Bland-Hawthorn, J.; del Olmo, A.; Iglesias-Páramo, J.; Pérez, I.; Sánchez-Blázquez, P.; Wisotzki, L.; Ziegler, B.

    2015-04-01

    Context. The bar pattern speed (Ωb) is defined as the rotational frequency of the bar, and it determines the bar dynamics. Several methods have been proposed for measuring Ωb. The non-parametric method proposed by Tremaine & Weinberg (1984, ApJ, 282, L5; TW) and based on stellar kinematics is the most accurate. This method has been applied so far to 17 galaxies, most of them SB0 and SBa types. Aims: We have applied the TW method to a new sample of 15 strong and bright barred galaxies, spanning a wide range of morphological types from SB0 to SBbc. Combining our analysis with previous studies, we investigate 32 barred galaxies with their pattern speed measured by the TW method. The resulting total sample of barred galaxies allows us to study the dependence of Ωb on galaxy properties, such as the Hubble type. Methods: We measured Ωb using the TW method on the stellar velocity maps provided by the integral-field spectroscopy data from the CALIFA survey. Integral-field data solve the problems that long-slit data present when applying the TW method, resulting in the determination of more accurate Ωb. In addition, we have also derived the ratio ℛ of the corotation radius to the bar length of the galaxies. According to this parameter, bars can be classified as fast (ℛ 1.4). Results: For all the galaxies, ℛ is compatible within the errors with fast bars. We cannot rule out (at 95% level) the fast bar solution for any galaxy. We have not observed any significant trend between ℛ and the galaxy morphological type. Conclusions: Our results indicate that independent of the Hubble type, bars have been formed and then evolve as fast rotators. This observational result will constrain the scenarios of formation and evolution of bars proposed by numerical simulations.

  18. Rotation curves of 967 spiral galaxies: implications for dark matter.

    Science.gov (United States)

    Persic, M.; Salucci, P.; Stel, F.

    1996-02-01

    The authors present the rotation curves of 967 spiral galaxies, obtained by deprojecting and folding the raw Hα data published by Mathewson et al. (1992). Of these, 80 meet objective excellence criteria and are suitable for individual detailed mass modelling, while 820 are suitable for statistical studies. A preliminary analysis of their properties confirms that rotation curves are a universal function of luminosity and that the dark matter fraction in spirals increases with decreasing luminosity.

  19. Spiral Galaxies - classical description of spiral arms and rotational velocity pattern - toy model

    CERN Document Server

    Lobodzinski, Bogdan

    2014-01-01

    We propose an explanation of features of spiral galaxies: spiral arms and observed flat rotation curves, without the presence of an exotic form of matter. The formalism is based on Boltzmanns transport equation for the collisional matter and the very-low-velocity post-Newtonian approximation of the general relativity equations expressed in the Maxwell-like form. The Maxwell-like formulation provides the base for the explanation of the above phenomena in the language of dynamically created gravitoelectromagnetic fields by the movement of mass streams in the plane of the galaxy disc. In the model we use radical simplifications expressed as neglect of the gravitational interaction between neighbors and approximation of the incompressible mass flow. In this frame we show that if the galaxy is fuelled constantly by mass from an external gas reservoir, then the amplification of the gravitomagnetic field can be large enough to create the rotational velocity pattern and spiral arms without the necessity of introducin...

  20. Self-perpetuating Spiral Arms in Disk Galaxies

    Science.gov (United States)

    D'Onghia, Elena; Vogelsberger, Mark; Hernquist, Lars

    2013-03-01

    The causes of spiral structure in galaxies remain uncertain. Leaving aside the grand bisymmetric spirals with their own well-known complications, here we consider the possibility that multi-armed spiral features originate from density inhomogeneities orbiting within disks. Using high-resolution N-body simulations, we follow the motions of stars under the influence of gravity, and show that mass concentrations with properties similar to those of giant molecular clouds can induce the development of spiral arms through a process termed swing amplification. However, unlike in earlier work, we demonstrate that the eventual response of the disk can be highly non-linear, significantly modifying the formation and longevity of the resulting patterns. Contrary to expectations, ragged spiral structures can thus survive at least in a statistical sense long after the original perturbing influence has been removed.

  1. Stellar, Gas, and Dark Matter Content of Barred Galaxies

    Science.gov (United States)

    Cervantes Sodi, Bernardo

    2017-01-01

    We select a sample of galaxies from the Sloan Digital Sky Survey Data Release 7 (SDSS-DR7) where galaxies are classified, through visual inspection, as hosting strong bars, weak bars, or as unbarred galaxies, and make use of H i mass and kinematic information from the Arecibo Legacy Fast ALFA survey catalog, to study the stellar, atomic gas, and dark matter content of barred disk galaxies. We find, in agreement with previous studies, that the bar fraction increases with increasing stellar mass. A similar trend is found with total baryonic mass, although the dependence is not as strong as with stellar mass, due to the contribution of gas. The bar fraction shows a decrease with increasing gas mass fraction. This anticorrelation between the likelihood of a galaxy hosting a bar with the gas richness of the galaxy results from the inhibiting effect the gas has in the formation of bars. We also find that for massive galaxies with stellar masses larger than 1010 M⊙, at fixed stellar mass, the bar fraction decreases with increasing global halo mass (i.e., halo mass measured up to a radius of the order of the H i disk extent).

  2. Arm classification and velocity gradients in spiral galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Biviano, A.; Girardi, M.; Giuricin, G.; Mardirossian, F.; Mezzetti, M. (Trieste Univ. (Italy) Scuola Internazionale Superiore di Studi Avanzati (Italy) Scuola Internazionale Superiore di Studi Avanzati, Trieste (Italy) Scuola Internazionale Superiore di Studi Avanzati (Italy) Centro Interuniversitario Regionale di Astrofisica e Cosmologia (Italy))

    1991-08-01

    On the basis of published rotation curves, velocity gradients are compiled for 94 galaxies. A significant correlation is found in this sample of galaxies between their gradients and arm classes (as given by Elmegreen and Elmegreen, 1982); galaxies with steeper curves tend to have a flocculent arm structure, and galaxies with flatter curves tend to have a grand design morphology. The correlation is true, since it is not induced by other correlations. The present result is in agreement with previous suggestions by Whitmore (1984) and with the recent result by Elmegreen and Elmegreen; it is also consistent with the predictions of density wave theory for the formation of the spiral structure. 89 refs.

  3. The spiral structure of our Milky Way Galaxy

    CERN Document Server

    Hou, L G; Shi, W B

    2009-01-01

    The spiral structure of our Milky Way Galaxy is not yet known. HII regions and Giant molecular clouds are the most prominent spiral tracers. The 2-, 3- and 4-arm models have previously been proposed to outline the structure of our Galaxy. Recently, new data of spiral tracers covering a larger region of the Galactic disk have been published in literature. We wish to obtain the updated spiral structure of the Milky way using all tracer data. We collected the spiral tracer data of our Milky Way from literature, namely, HII regions and giant molecular clouds (GMCs). With the weighting factors based on the excitation parameters of HII regions or the masses of GMCs, we fitted the distribution of these tracers with the models of two-, three-, four-spiral-arms or polynomial spiral arms. The distances of tracers, if not available from stellar or direct measurements, were estimated kinetically from the standard rotation curve of Brand & Blitz (1993) with R_0=8.5 kpc, and \\Theta_0 =220 km s^{-1} or the newly fitted ...

  4. How can double-barred galaxies be long-lived?

    CERN Document Server

    Wozniak, Herve

    2015-01-01

    Double-barred galaxies account for almost one third of all barred galaxies, suggesting that secondary stellar bars, which are embedded in large-scale primary bars, are long-lived structures. However, up to now it has been hard to self-consistently simulate a disc galaxy that sustains two nested stellar bars for longer than a few rotation periods. N-body/hydrodynamical simulations including star formation recipes have been performed. Their properties have been compared with the most recent observational data in order to prove that they are representative of double-barred galaxies, even SB0. Overlaps in dynamical resonances and bar modes have been looked for using Fourier spectrograms. Double-barred galaxies have been successfully simulated with lifetimes as long as 7 Gyr. The stellar population of the secondary bar is younger on average than for the primary large-scale bar. An important feature of these simulations is the absence of any resonance overlap for several Gyr. In particular, there is no overlap betw...

  5. Rotation and mass in the Milky Way and spiral galaxies

    Science.gov (United States)

    Sofue, Yoshiaki

    2017-02-01

    Rotation curves are the basic tool for deriving the distribution of mass in spiral galaxies. In this review, we describe various methods to measure rotation curves in the Milky Way and spiral galaxies. We then describe two major methods to calculate the mass distribution using the rotation curve. By the direct method, the mass is calculated from rotation velocities without employing mass models. By the decomposition method, the rotation curve is deconvolved into multiple mass components by model fitting assuming a black hole, bulge, exponential disk, and dark halo. The decomposition is useful for statistical correlation analyses among the dynamical parameters of the mass components. We also review recent observations and derived results.

  6. An HST Archival Survey of Feathers in Spiral Galaxies

    CERN Document Server

    La Vigne, M A; Ostriker, E C; Vigne, Misty A. La; Vogel, Stuart N.; Ostriker, Eve C.

    2006-01-01

    We present a survey of spiral arm extinction substructure referred to as feathers in 223 spiral galaxies using HST WFPC2 images. The sample includes all galaxies in the RC3 catalog with cz < 5000 km/s, B_T < 15, i < 60 degrees, and types Sa--Sd with well-exposed broadband WFPC2 images. The detection frequency of delineated, periodic feathers in this sample is 20% (45 of 223). This work is consistent with Lynds (1970), who concluded that feathers are common in prototypical Sc galaxies; we find that feathers are equally common in Sb galaxies. Sb--Sc galaxies without clear evidence for feathers either had poorer quality images, or flocculent or complex structure. We did not find clearly defined feathers in any Scd--Sd galaxy. The probability of detecting feathers was highest (83%) for spirals with well-defined primary dust lanes (PDLs; the lanes which line the inner edge of an arm); well-defined PDLs were only noted in Sab--Sc galaxies. Consistent with earlier work, we find that neighboring feathers ten...

  7. Supernovae and their host galaxies - II. The relative frequencies of supernovae types in spirals

    CERN Document Server

    Hakobyan, A A; Adibekyan, V Zh; Petrosian, A R; Aramyan, L S; Kunth, D; Mamon, G A; de Lapparent, V; Bertin, E; Gomes, J M; Turatto, M

    2014-01-01

    (Abridged) In this second paper of a series, we present an analysis of the relative frequencies of different supernova (SN) types in spirals with various morphologies and in barred or unbarred galaxies. We use a well-defined and homogeneous sample of host galaxies from the Sloan Digital Sky Survey (SDSS) in different stages of galaxy-galaxy interaction. We propose that the underlying mechanisms shaping the number ratios of SNe types can be interpreted within the framework of interaction-induced star formation, in addition to the known relations between morphologies and stellar populations. We find a strong trend in behaviour of the NIa/NCC ratio depending on host morphology, such that early spirals include more type Ia SNe, reflecting the change of the specific star formation rate (SFR). The NIbc/NII ratio is higher in a broad bin of early-type hosts. The NIa/NCC ratio is nearly constant when changing from normal, perturbed to interacting galaxies, then declines in merging galaxies, whereas it jumps to the hi...

  8. Spirality: A Noval Way to Measure Spiral Arm Pitch Angle

    Science.gov (United States)

    Shields, Douglas; Arkansas Galaxy Evolution Survey

    2017-01-01

    We present the MATLAB code Spirality, a novel method for measuring spiral arm pitch angles by fitting galaxy images to spiral templates of known pitch. Computation time is typically on the order of 2 minutes per galaxy, assuming 8 GB of working memory. We tested the code using 117 synthetic spiral images with known pitches, varying both the spiral properties and the input parameters. The code yielded correct results for all synthetic spirals with galaxy-like properties. We also compared the code’s results to two-dimensional Fast Fourier Transform (2DFFT) measurements for the sample of nearby galaxies defined by DMS PPak. Spirality’s error bars overlapped 2DFFT’s error bars for 26 of the 30 galaxies. The two methods’ agreement correlates strongly with galaxy radius in pixels and also with i-band magnitude, but not with redshift, a result that is consistent with at least some galaxies’ spiral structure being fully formed by z=1.2, beyond which there are few galaxies in our sample. We also analyze apparent spiral structure of three galaxies beyond z=2. The Spirality code package also includes GenSpiral, which produces FITS images of synthetic spirals, and SpiralArmCount, which uses a one-dimensional Fast Fourier Transform to count the spiral arms of a galaxy after its pitch is determined.

  9. Galaxy Zoo: the dependence of the star formation-stellar mass relation on spiral disc morphology

    Science.gov (United States)

    Willett, Kyle W.; Schawinski, Kevin; Simmons, Brooke D.; Masters, Karen L.; Skibba, Ramin A.; Kaviraj, Sugata; Melvin, Thomas; Wong, O. Ivy; Nichol, Robert C.; Cheung, Edmond; Lintott, Chris J.; Fortson, Lucy

    2015-05-01

    We measure the stellar mass-star formation rate (SFR) relation in star-forming disc galaxies at z ≤ 0.085, using Galaxy Zoo morphologies to examine different populations of spirals as classified by their kiloparsec-scale structure. We examine the number of spiral arms, their relative pitch angle, and the presence of a galactic bar in the disc, and show that both the slope and dispersion of the M⋆-SFR relation is constant when varying all the above parameters. We also show that mergers (both major and minor), which represent the strongest conditions for increases in star formation at a constant mass, only boost the SFR above the main relation by ˜0.3 dex; this is significantly smaller than the increase seen in merging systems at z > 1. Of the galaxies lying significantly above the M⋆-SFR relation in the local Universe, more than 50 per cent are mergers. We interpret this as evidence that the spiral arms, which are imperfect reflections of the galaxy's current gravitational potential, are either fully independent of the various quenching mechanisms or are completely overwhelmed by the combination of outflows and feedback. The arrangement of the star formation can be changed, but the system as a whole regulates itself even in the presence of strong dynamical forcing.

  10. Tidal origin of spiral arms in galaxies orbiting a cluster

    CERN Document Server

    Semczuk, Marcin; del Pino, Andres

    2016-01-01

    One of the scenarios for the formation of grand-design spiral arms in disky galaxies involves their interactions with a satellite or another galaxy. Here we consider another possibility, where the perturbation is instead due to the potential of a galaxy cluster. Using $N$-body simulations we investigate the formation and evolution of spiral arms in a Milky Way-like galaxy orbiting a Virgo-like cluster. The galaxy is placed on a few orbits of different size but similar eccentricity and its evolution is followed for 10 Gyr. The tidally induced, two-armed, approximately logarithmic spiral structure forms on each of them during the pericenter passages. The spiral arms dissipate and wind up with time, to be triggered again at the next pericenter passage. We confirm this transient and recurrent nature of the arms by analyzing the time evolution of the pitch angle and the arm strength. We find that the strongest arms are formed on the tightest orbit, however they wind up rather quickly and are disturbed by another p...

  11. Enhanced Abundances in Spiral Galaxies of the Pegasus I Cluster

    CERN Document Server

    Robertson, Paul; Blanc, Guillermo A

    2011-01-01

    We study the influence of cluster environment on the chemical evolution of spiral galaxies in the Pegasus I cluster. We determine the gas-phase heavy element abundances of six galaxies in Pegasus derived from H II region spectra obtained from integral-field spectroscopy. These abundances are analyzed in the context of Virgo, whose spirals are known to show increasing interstellar metallicity as a function of H I deficiency. The galaxies in the Pegasus cluster, despite its lower density and velocity dispersion, also display gas loss due to ISM-ICM interaction, albeit to a lesser degree. Based on the abundances of 3 H I deficient spirals and 2 H I normal spirals, we observe a heavy element abundance offset of +0.13\\pm0.07 dex for the H I deficient galaxies. This abundance differential is consistent with the differential observed in Virgo for galaxies with a similar H I deficiency, and we observe a correlation between log(O/H) and the H I deficiency parameter DEF for the two clusters analyzed together. Our resul...

  12. The impact of bars on the radial distribution of supernovae in disc galaxies

    CERN Document Server

    Hakobyan, A A; Barkhudaryan, L V; Mamon, G A; Kunth, D; Petrosian, A R; Adibekyan, V; Aramyan, L S; Turatto, M

    2016-01-01

    We present an analysis of the impact of bars on the radial distributions of the different types of supernovae (SNe) in the stellar discs of host galaxies with various morphologies. We find that in Sa-Sbc galaxies, the radial distribution of core-collapse (CC) SNe in barred hosts is inconsistent with that in unbarred ones, while the distributions of SNe Ia are not significantly different. At the same time, the radial distributions of both types of SNe in Sc-Sm galaxies are not affected by bars. We propose that the additional mechanism shaping the distributions of Type Ia and CC SNe can be explained within the framework of substantial suppression of massive star formation in the radial range swept by strong bars, particularly in early-type spirals. The radial distribution of CC SNe in unbarred Sa-Sbc galaxies is more centrally peaked and inconsistent with that in unbarred Sc-Sm hosts, while the distribution of SNe Ia in unbarred galaxies is not affected by host morphology. These results can be explained by the ...

  13. Grand Design and Flocculent Spirals in the Spitzer Survey of Stellar Structure in Galaxies (S4G)

    CERN Document Server

    Elmegreen, Debra Meloy

    2011-01-01

    Spiral arm properties of 46 galaxies in the Spitzer Survey of Stellar Structure in Galaxies (S4G) were measured at 3.6mu, where extinction is small and the old stars dominate. The sample includes flocculent, multiple arm, and grand design types with a wide range of Hubble and bar types. We find that most optically flocculent galaxies are also flocculent in the mid-IR because of star formation uncorrelated with stellar density waves, whereas multiple arm and grand design galaxies have underlying stellar waves. Arm-interarm contrasts increase from flocculent to multiple arm to grand design galaxies and with later Hubble types. Structure can be traced further out in the disk than in previous surveys. Some spirals peak at mid-radius while others continuously rise or fall, depending on Hubble and bar type. We find evidence for regular and symmetric modulations of the arm strength in NGC 4321. Bars tend to be long, high amplitude, and flat-profiled in early type spirals, with arm contrasts that decrease with radius...

  14. Stellar, gas and dark matter content of barred galaxies

    CERN Document Server

    Sodi, Bernardo Cervantes

    2016-01-01

    We select a sample of galaxies from the Sloan Digital Sky Survey Data Release 7 (SDSS-DR7) where galaxies are classified, through visual inspection, as hosting strong bars, weak bars or as unbarred galaxies, and make use of HI mass and kinematic information from the Arecibo Legacy Fast ALFA (ALFALFA) survey catalog, to study the stellar, atomic gas and dark matter content of barred disk galaxies. We find, in agreement with previous studies, that the bar fraction increases with increasing stellar mass. A similar trend is found with total baryonic mass, although the dependence is not as strong as with stellar mass, this due to the contribution of gas. The bar fraction shows a decrease with increasing gas mass fraction. This anticorrelation between the likelihood of a galaxy hosting a bar with the gas richness of the galaxy results from the inhibiting effect the gas has in the formation of bars. We also find that for massive galaxies with stellar masses larger than 10$^{10} M_{\\odot}$, at fixed stellar mass, the...

  15. Arm & Interarm Star Formation in Spiral Galaxies

    CERN Document Server

    Foyle, Kelly; Walter, Fabian; Leroy, Adam

    2010-01-01

    We investigate the relationship between spiral arms and star formation in the grand-design spirals NGC 5194 and NGC 628 and in the flocculent spiral NGC 6946. Filtered maps of near-IR (3.6 micron) emission allow us to identify "arm regions" that should correspond to regions of stellar mass density enhancements. The two grand-design spirals show a clear two-armed structure, while NGC 6946 is more complex. We examine these arm and interarm regions, looking at maps that trace recent star formation - far-ultraviolet (GALEX NGS) and 24 micron emission (Spitzer, SINGS) - and cold gas - CO (Heracles) and HI (Things). We find the star formation tracers and CO more concentrated in the spiral arms than the stellar 3.6 micron flux. If we define the spiral arms as the 25% highest pixels in the filtered 3.6 micron images, we find that the majority (60%) of star formation tracers occurs in the interarm regions; this result persists qualitatively even when considering the potential impact of finite data resolution and diffu...

  16. Environmental Dependence of Warps in Spiral Galaxies

    Science.gov (United States)

    Ann, Hong Bae; Bae, Hyun Jeong

    2016-12-01

    We determined the warp parameters of 192 warped galaxies which are selected from 340 edge-on galaxies using color images as well as r-band isophotal maps. We derive the local background density (Σ_{n}) to examine the dependence of the warp amplitudes on the galaxy environment. We find a clear trend that strongly warped galaxies are likely to be found in high density regions where tidal interactions are supposed to be frequent. However, the correlation between α_{w} and Σ_{n} is too weak for weakly warped galaxies (α_{w} decisive role in the formation of weak warps.}

  17. Mass Distribution and Bar Formation in Growing Disk Galaxy Models

    CERN Document Server

    Berrier, Joel C

    2016-01-01

    We report idealized simulations that mimic the growth of galaxy disks embedded in responsive halos and bulges. The disks manifested an almost overwhelming tendency to form strong bars that we found very difficult to prevent. We found that fresh bars formed in growing disks after we had destroyed the original, indicating that bar formation also afflicts continued galaxy evolution, and not just the early stages of disk formation. This behavior raises still more insistently the previously unsolved question of how some galaxies avoid bars. Since our simulations included only collisionless star and halo particles, our findings may apply to gas-poor galaxies only; however the conundrum persists for the substantial unbarred fraction of those galaxies. Our original objective was to study how internal dynamics rearranged the distribution of mass in the disk as a generalization of our earlier study with rigid spherical components. With difficulty, we were able to construct some models that were not strongly influenced ...

  18. Detection of spiral magnetic fields in two flocculent galaxies

    CERN Document Server

    Knapik, J; Dettmar, R J; Beck, R; Urbanik, M

    2000-01-01

    Two flocculent galaxies NGC 3521 and NGC 5055 has been observed at 10.55GHz with the Effelsberg 100m telescope. In both cases polarized emission reveals substantial radial component of regular magnetic field - similar to that in grand-designed spirals. Comparison with H_alpha distribution obtained at Lowell Observatory is presented. Polarization models discussed, support modern non-standard dynamo concepts for magnetic field generation in galaxies.

  19. Simulations of the grand design galaxy M51: a case study for analysing tidally induced spiral structure

    Science.gov (United States)

    Dobbs, C. L.; Theis, C.; Pringle, J. E.; Bate, M. R.

    2010-04-01

    We present hydrodynamical models of the grand design spiral M51 (NGC 5194), and its interaction with its companion NGC 5195. Despite the simplicity of our models, our simulations capture the present-day spiral structure of M51 remarkably well, and even reproduce details such as a kink along one spiral arm, and spiral arm bifurcations. We investigate the offset between the stellar and gaseous spiral arms, and find at most times (including the present day) there is no offset between the stars and gas within our error bars. We also compare our simulations with recent observational analysis of M51. We compute the pattern speed versus radius, and similar to observations, find no single global pattern speed. We also show that the spiral arms cannot be fitted well by logarithmic spirals. We interpret these findings as evidence that M51 does not exhibit a quasi-steady density wave, as would be predicted by density wave theory. The internal structure of M51 derives from the complicated and dynamical interaction with its companion, resulting in spiral arms showing considerable structure in the form of short-lived kinks and bifurcations. Rather than trying to model such galaxies in terms of global spiral modes with fixed pattern speeds, it is more realistic to start from a picture in which the spiral arms, while not being simple material arms, are the result of tidally induced kinematic density `waves' or density patterns, which wind up slowly over time.

  20. Determining the Co-Rotation Radius of Nearby Spiral Galaxies Using Spiral Arm Overlays

    Science.gov (United States)

    Shameer Abdeen, Mohamed; Kennefick, Daniel; Kennefick, Julia D.; Pour Imani, Hamed; Shields, Douglas W.; Eufrasio, Rafael; Berlanga Medina, Jazmin; Monson, Erik

    2017-01-01

    Density wave theory, originally proposed by C.C. Lin and Frank Shu (Lin & Shu 1964), views the spiral arm structures in spiral galaxies as density waves that propagates through the galactic disk. Resonances within orbits create standing wave patterns of density waves that we observe as spiral arms. The theory predicts the existence of a radius known as the co-rotation radius in which the spiral arm pattern speed matches the velocities of the stars within the disk. We introduce a novel way of determining the co-rotation radius, based on an image overlaying technique, which involves tracing the arms of spiral galaxies on images observed from different wavelengths. For the purpose of this study, 12 nearby galaxies were analyzed from four different wavelengths using pitch angle measurements from a previous study (Hamed et al. 2016). We used optical wavelength images (B-Band,440 nm), two infrared wavelength (Infrared; 3.6 µm and 8 µm) Spitzer Space Telescope images and ultraviolet images from GALEX. The results were verified by checking against results compiled from the literature.

  1. Magnetic field evolution and reversals in spiral galaxies

    Science.gov (United States)

    Dobbs, C. L.; Price, D. J.; Pettitt, A. R.; Bate, M. R.; Tricco, T. S.

    2016-10-01

    We study the evolution of galactic magnetic fields using 3D smoothed particle magnetohydrodynamics (SPMHD) simulations of galaxies with an imposed spiral potential. We consider the appearance of reversals of the field, and amplification of the field. We find that magnetic field reversals occur when the velocity jump across the spiral shock is above ≈20 km s-1, occurring where the velocity change is highest, typically at the inner Lindblad resonance in our models. Reversals also occur at corotation, where the direction of the velocity field reverses in the corotating frame of a spiral arm. They occur earlier with a stronger amplitude spiral potential, and later or not at all with weaker or no spiral arms. The presence of a reversal at radii of around 4-6 kpc in our fiducial model is consistent with a reversal identified in the Milky Way, though we caution that alternative Galaxy models could give a similar reversal. We find that relatively high resolution, a few million particles in SPMHD, is required to produce consistent behaviour of the magnetic field. Amplification of the magnetic field occurs in the models, and while some may be genuinely attributable to differential rotation or spiral arms, some may be a numerical artefact. We check our results using ATHENA, finding reversals but less amplification of the field, suggesting that some of the amplification of the field with SPMHD is numerical.

  2. Kinematic classification of non-interacting spiral galaxies

    CERN Document Server

    Wiegert, Theresa

    2013-01-01

    Using neutral hydrogen (HI) rotation curves of 79 galaxies, culled from the literature, as well as measured from HI data, we present a method for classifying disk galaxies by their kinematics. In order to investigate fundamental kinematic properties we concentrate on non-interacting spiral galaxies. We employ a simple parameterized form for the rotation curve in order to derive the three parameters: the maximum rotational velocity, the turnover radius and a measure of the slope of the rotation curve beyond the turnover radius. Our approach uses the statistical Hierarchical Clustering method to guide our division of the resultant 3D distribution of galaxies into five classes. Comparing the kinematic classes in this preliminary classification scheme to a number of galaxy properties we find that our class containing galaxies with the largest rotational velocities has a mean morphological type of Sb/Sbc while the other classes tend to later types. Other trends also generally agree with those described by previous...

  3. Quintessence-like Dark Matter in Spiral Galaxies

    CERN Document Server

    Matos, T; Núñez, D; Ramírez, E

    2000-01-01

    Through the geodesic analysis of a static and axially symmetric space time,we present conditions over the state equation of an isotropic perfect fluid$p=\\omega d$, when it is considered as dark matter in spiral galaxies. The mainconclusion is that it can be an exotic fluid ($-1<\\omega <-1/3$) as it is foundfor Quintessence at cosmological scale.

  4. Ultraviolet Halos Around Spiral Galaxies. I. Morphology

    CERN Document Server

    Hodges-Kluck, Edmund; Bregman, Joel

    2016-01-01

    We examine ultraviolet halos around a sample of highly inclined galaxies within 25 Mpc to measure their morphology and luminosity. Despite contamination from galactic light scattered into the wings of the point-spread function, we find that UV halos occur around each galaxy in our sample. Around most galaxies the halos form a thick, diffuse disk-like structure, but starburst galaxies with galactic superwinds have qualitatively different halos that are more extensive and have filamentary structure. The spatial coincidence of the UV halos above star-forming regions, the lack of consistent association with outflows or extraplanar ionized gas, and the strong correlation between the halo and galaxy UV luminosity suggest that the UV light is an extragalactic reflection nebula. UV halos may thus represent 1-10 million solar masses of dust within 2-10 kpc of the disk, whose properties may change with height in starburst galaxies.

  5. Radio spectral index images of the spiral galaxies NGC 0628, NGC 3627, and NGC 7331

    CERN Document Server

    Paladino, R; Orrù, E

    2009-01-01

    In order to understand the cosmic ray propagation mechanism in galaxies, and its correlation with the sites of star formation, we compare the spatially resolved radio spectral index of three spiral galaxies with their IR distribution. We present new low-frequency radio continuum observations of the galaxies NGC 0628, NGC 3627, and NGC 7331, taken at 327 MHz with the Very Large Array. We complemented our data set with sensitive archival observations at 1.4 GHz and we studied the variations of the radio spectral index within the disks of these spiral galaxies. We also compared the spectral index distribution and the IR distribution, using 70 $\\mu$m Spitzer observations. We found that in these galaxies the non-thermal spectral index is anticorrelated with the radio brightness. Bright regions, like the bar in NGC 3627 or the circumnuclear region in NGC 7331, are characterized by a flatter spectrum with respect to the underlying disk. Therefore, a systematic steepening of the spectral index with the increasing dis...

  6. The flaring HI disk of the nearby spiral galaxy NGC 2683

    CERN Document Server

    Vollmer, B; Ibata, R

    2015-01-01

    New deep VLA D array HI observations of the highly inclined nearby spiral galaxy NGC 2683 are presented. Archival C array data were processed and added to the new observations. To investigate the 3D structure of the atomic gas disk, we made different 3D models for which we produced model HI data cubes. The main ingredients of our best-fit model are (i) a thin disk inclined by 80 degrees; (ii) a crude approximation of a spiral and/or bar structure by an elliptical surface density distribution of the gas disk; (iii) a slight warp in inclination; (iv) an exponential flare; and (v) a low surface-density gas ring. The slope of NGC 2683's flare is comparable, but somewhat steeper than those of other spiral galaxies. NGC 2683's maximum height of the flare is also comparable to those of other galaxies. On the other hand, a saturation of the flare is only observed in NGC 2683. Based on the comparison between the high resolution model and observations, we exclude the existence of an extended atomic gas halo around the ...

  7. Magnetic Fields in a Sample of Nearby Spiral Galaxies

    CERN Document Server

    Van Eck, Cameron; Shukurov, Anvar; Fletcher, Andrew

    2014-01-01

    Both observations and modelling of magnetic fields in the diffuse interstellar gas of spiral galaxies are well developed but the theory has been confronted with observations for only a handful of individual galaxies. There is now sufficient data to consider statistical properties of galactic magnetic fields. We have collected data from the literature on the magnetic fields and interstellar media (ISM) of 20 spiral galaxies, and tested for various physically motivated correlations between magnetic field and ISM parameters. Clear correlations emerge between the total magnetic field strength and molecular gas density as well as the star formation rate. The magnetic pitch angle exhibits correlations with the total gas density, the star formation rate and the strength of the axisymmetric component of the mean magnetic field. The total and mean magnetic field strengths exhibit noticeable degree of correlation, suggesting a universal behaviour of the degree of order in galactic magnetic fields. We also compare the p...

  8. Turbulence and Star Formation in a Sample of Spiral Galaxies

    CERN Document Server

    Maier, Erin; Hunter, Deidre A

    2016-01-01

    We investigate turbulent gas motions in spiral galaxies and their importance to star formation in far outer disks, where the column density is typically far below the critical value for spontaneous gravitational collapse. Following the methods of Burkhart et al. (2010) on the Small Magellanic Cloud, we use the third and fourth statistical moments, as indicators of structures caused by turbulence, to examine the neutral hydrogen (HI) column density of a sample of spiral galaxies selected from The HI Nearby Galaxy Survey (THINGS, Walter et al. 2008). We apply the statistical moments in three different methods- the galaxy as a whole, divided into a function of radii and then into grids. We create individual grid maps of kurtosis for each galaxy. To investigate the relation between these moments and star formation, we compare these maps with their far-ultraviolet images taken by the Galaxy Evolution Explorer (GALEX) satellite. We find that the moments are largely uniform across the galaxies, in which the variatio...

  9. Photometric asymmetry between clockwise and counterclockwise spiral galaxies in SDSS

    CERN Document Server

    Shamir, Lior

    2016-01-01

    While galaxies with clockwise and counterclockwise handedness are visually different, they are expected to be symmetric in all of their other characteristics. Previous experiments using both manual analysis and machine vision have shown that the handedness of Sloan Digital Sky Survey (SDSS) galaxies can be predicted with accuracy significantly higher than mere chance using its photometric data alone, showing that SDSS photometry pipeline is sensitive to the handedness of the galaxy. However, some of these previous experiments were based on manually classified galaxies, and the results may therefore be subjected to bias originated from the human perception. This paper describes an experiment based on a set of 162,514 celestial objects classified as clockwise and counterclockwise spiral galaxies in a fully automatic process, showing that the source of the asymmetry is more than the human perception bias. The results are compared to two smaller datasets, and confirm the observation that the handedness of SDSS ga...

  10. New low surface brightness dwarf galaxies detected around nearby spirals

    Science.gov (United States)

    Karachentsev, I. D.; Riepe, P.; Zilch, T.; Blauensteiner, M.; Elvov, M.; Hochleitner, P.; Hubl, B.; Kerschhuber, G.; Küppers, S.; Neyer, F.; Pölzl, R.; Remmel, P.; Schneider, O.; Sparenberg, R.; Trulson, U.; Willems, G.; Ziegler, H.

    2015-10-01

    We conduct a survey of low surface brightness (LSB) satellite galaxies around the Local Volume massive spirals using long exposures with small amateur telescopes. We identified 27 low and very low surface brightness objects around the galaxies NGC672, 891, 1156, 2683, 3344, 4258, 4618, 4631, and 5457 situated within 10 Mpc from us, and found nothing new around NGC2903, 3239, 4214, and 5585. Assuming that the dwarf candidates are the satellites of the neighboring luminous galaxies, their absolute magnitudes are in the range of -8.6 > M B > -13.3, their effective diameters are 0.4-4.7 kpc, and the average surface brightness is 26ṃ1/□″. The mean linear projected separation of the satellite candidates from the host galaxies is 73 kpc. Our spectroscopic observations of two LSB dwarfs with the Russian 6-meter telescope confirm their physical connection to the host galaxies NGC891 and NGC2683.

  11. New Low Surface Brightness Dwarf Galaxies Detected Around Nearby Spirals

    CERN Document Server

    Karachentsev, I D; Zilch, T; Blauensteiner, M; Elvov, M; Hochleitner, P; Hubl, B; Kerschhuber, G; Küppers, S; Neyer, F; Pölzl, R; Remmel, P; Schneider, O; Sparenberg, R; Trulson, U; Willems, G; Ziegler, H

    2015-01-01

    We conduct a survey of low surface brightness (LSB) satellite galaxies around the Local Volume massive spirals using long exposures with small amateur telescopes. We identified 27 low and very low surface brightness objects around the galaxies NGC,672, 891, 1156, 2683, 3344, 4258, 4618, 4631, and 5457 situated within 10 Mpc from us, and found nothing new around NGC,2903, 3239, 4214, and 5585. Assuming that the dwarf candidates are the satellites of the neighboring luminous galaxies, their absolute magnitudes are in the range of -8.6 > M_B > -13.3, their effective diameters are 0.4-4.7 kpc, and the average surface brightness is 26.1 mag/sq arcsec. The mean linear projected separation of the satellite candidates from the host galaxies is 73 kpc. Our spectroscopic observations of two LSB dwarfs with the Russian 6-meter telescope confirm their physical connection to the host galaxies NGC,891 and NGC,2683.

  12. Magnetic field evolution and reversals in spiral galaxies

    CERN Document Server

    Dobbs, C L; Pettitt, A R; Bate, M R; Tricco, T

    2016-01-01

    We study the evolution of galactic magnetic fields using 3D smoothed particle magnetohydrodynamics (SPMHD) simulations of galaxies with an imposed spiral potential. We consider the appearance of reversals of the field, and amplification of the field. We find magnetic field reversals occur when the velocity jump across the spiral shock is above $\\approx$20km s$^{-1}$, occurring where the velocity change is highest, typically at the inner Lindblad resonance (ILR) in our models. Reversals also occur at corotation, where the direction of the velocity field reverses in the co-rotating frame of a spiral arm. They occur earlier with a stronger amplitude spiral potential, and later or not at all with weaker or no spiral arms. The presence of a reversal at a radii of around 4--6 kpc in our fiducial model is consistent with a reversal identified in the Milky Way, though we caution that alternative Galaxy models could give a similar reversal. We find that relatively high resolution, a few million particles in SPMHD, is ...

  13. The Properties of Spiral Galaxies in Semi-Analytic Galaxy Formation Models

    OpenAIRE

    2000-01-01

    We examine the present-day galaxy disk colors and star formation rates (SFRs) in the semi-analytic model of Cole et al. (2000). We find that the fiducial model is a good match to Kennicutt's (1998) observed global star formation law, the color-based metallicity-magnitude correlation and the colors of low-luminosity galaxies. The main limitation of the model, from the point of view of present-day spirals, is that the optical colors of the disks of very luminous spiral galaxies are too blue, ev...

  14. The Ultraviolet Attenuation Law in Backlit Spiral Galaxies

    CERN Document Server

    Keel, William C; Holwerda, Benne W; Lintott, Chris J; Schawinski, Kevin

    2014-01-01

    (Abridged) The effective extinction law (attenuation behavior) in galaxies in the emitted ultraviolet is well known only for actively star-forming objects and combines effects of the grain properties, fine structure in the dust distribution, and relative distributions of stars and dust. We use GALEX, XMM Optical Monitor, and HST data to explore the UV attenuation in the outer parts of spiral disks which are backlit by other UV-bright galaxies, starting with candidates provided by Galaxy Zoo participants. Our analysis incorporates galaxy symmetry, using non-overlapping regions of each galaxy to derive error estimates on the attenuation measurements. The entire sample has an attenuation law close to the Calzetti et al. (1994) form; the UV slope for the overall sample is substantially shallower than found by Wild et al. (2011), a reasonable match to the more distant galaxies in our sample but not to the weighted combination including NGC 2207. The nearby, bright spiral NGC 2207 alone gives accuracy almost equal ...

  15. Photometric Asymmetry Between Clockwise and Counterclockwise Spiral Galaxies in SDSS

    Science.gov (United States)

    Shamir, Lior

    2017-02-01

    While galaxies with clockwise and counterclockwise handedness are visually different, they are expected to be symmetric in all of their other characteristics. Previous experiments using both manual analysis and machine vision have shown that the handedness of Sloan Digital Sky Survey galaxies can be predicted with accuracy significantly higher than mere chance using its photometric data alone. However, some of these previous experiments were based on manually classified galaxies, and the results may therefore be subjected to bias originated from the human perception. This paper describes an experiment based on a set of 162,514 galaxies classified automatically to clockwise and counterclockwise spiral galaxies, showing that the source of the asymmetry in Sloan Digital Sky Survey (SDSS) database is not the human perception bias. The results are compared to two smaller datasets, and confirm the observation that the handedness of SDSS galaxies can be predicted by their photometry. The experiment also shows statistically significant differences in the measured magnitude of SDSS galaxies, according which galaxies with clockwise patterns are brighter than galaxies with counterclockwise patterns. The magnitude of that difference changes across RA ranges, and exhibits a strong correlation with the cosine of the right ascension.

  16. Signatures of Galaxy-Cluster Interactions Spiral Galaxy Rotation Curve Asymmetry, Shape, and Extent

    CERN Document Server

    Dale, D A; Haynes, M P; Hardy, E; Campusano, L E; Dale, Daniel A.; Giovanelli, Riccardo; Haynes, Martha P.; Hardy, Eduardo; Campusano, Luis E.

    2001-01-01

    The environmental dependencies of the characteristics of spiral galaxy rotation curves are studied in this work. We use our large, homogeneously collected sample of 510 cluster spiral galaxy rotation curves to test the claim that the shape of a galaxy's rotation curve strongly depends on its location within the cluster, and thus presumably on the strength of the local intracluster medium and on the frequency and strength of tidal interactions with the cluster and cluster galaxies. Our data do not corroborate such a scenario, consistent with the fact that Tully-Fisher residuals are independent of galaxy location within the cluster; while the average late-type spiral galaxy shows more rise in the outer parts of its rotation curve than does the typical early-type spiral galaxy, there is no apparent trend for either subset with cluster environment. We also investigate as a function of cluster environment rotation curve asymmetry and the radial distribution of H II region tracers within galactic disks. Mild trends...

  17. Extended HI disks in nearby spiral galaxies

    Science.gov (United States)

    Bosma, Albert

    2017-03-01

    In this short write-up, I will concentrate on a few topics of interest. In the 1970s I found very extended HI disks in galaxies such as NGC 5055 and NGC 2841, out to 2 - 2.5 times the Holmberg radius. Since these galaxies are warped, a ``tilted ring model'' allows rotation curves to be derived, and evidence for dark matter to be found. The evaluation of the amount of dark matter is hampered by a disk-halo degeneracy, which can possibly be broken by observations of velocity dispersions in both the MgI region and the CaII region.

  18. Extended HI disks in nearby spiral galaxies

    CERN Document Server

    Bosma, A

    2016-01-01

    In this short write-up, I will concentrate on a few topics of interest. In the 1970s I found very extended HI disks in galaxies such as NGC 5055 and NGC 2841, out to 2 - 2.5 times the Holmberg radius. Since these galaxies are warped, a "tilted ring model" allows rotation curves to be derived, and evidence for dark matter to be found. The evaluation of the amount of dark matter is hampered by a disk-halo degeneracy, which can possibly be broken by observations of velocity dispersions in both the MgI region and the CaII region.

  19. Rotation and Mass in the Milky Way and Spiral Galaxies

    CERN Document Server

    Sofue, Yoshiaki

    2016-01-01

    [PASJ Review Paper] Rotation curves are the basic tool for deriving the distribution of mass in spiral galaxies. In this review, we describe various methods to measure rotation curves in the Milky Way and spiral galaxies. We then describe two major methods to calculate the mass distribution using the rotation curve. By the direct method, the mass is calculated from rotation velocities without employing mass models. By the decomposition method, the rotation curve is deconvolved into multiple mass components by model fitting assuming a black hole, bulge, exponential disk and dark halo. The decomposition is useful for statistical correlation analyses among the dynamical parameters of the mass components. We also review recent observations and derived results. ( Full resolution copy is available at URL: http://www.ioa.s.u-tokyo.ac.jp/~sofue/htdocs/PASJreview2016/ )

  20. The (C II) 158 micron line mapping of spiral galaxies

    Science.gov (United States)

    Stacey, Gordon J.; Geis, N.; Genzel, Reinhard; Jackson, J. M.; Poglitsch, Albrecht; Townes, Charles H.

    1990-01-01

    Large scale maps of the face of spiral galaxies M51, M83, and NGC 6946 in the 158 micron (C II) fine structure line. The maps are obtained from the Far-infrared Imaging Fabry-Perot Interferometer (FIFI) during its first series of flights on board the Kuiper Airborne Observatory. The (C II) line emission is ubiquitous and easily traced over the mapped regions of each of the galaxies. The (C II) maps are compared with those obtained with similar sized beams in the CO line. The data available from these maps is interpreted.

  1. Internal Extinction in Spiral Galaxies in the Near Infrared

    CERN Document Server

    Masters, K L; Haynes, M P; Masters, Karen L.; Giovanelli, Riccardo; Haynes, Martha P.

    2003-01-01

    In order to study the effects of internal extinction in spiral galaxies we search for correlations of near infrared (NIR) photometric parameters with inclination. We use data from the 2 Micron All-Sky Survey (2MASS) Extended Source Catalog (XSC) on 15,224 spiral galaxies for which we also have redshifts. For 3035 of the galaxies, I-band photometry is available which is included in the analysis. From the simple dependence of reddening on inclination we derive a lower limit to the difference in magnitude between the face-on and edge-on aspect of 0.9, 0.3 and 0.1 magnitudes in I (0.81 um), J (1.25 um) and H (1.65 um) bands. We find that the faintest isophotal radius reported in the XSC (at the 21st mag/arc sq level) is closer to the centers of the galaxies than other common isophotal measures (e.g. the 23.5 mag/arc sq radius in I-band), and argue that it should not be assumed to represent an outer isophote at which galaxies are transparent at all viewing angles. A simple linear extinction law (i.e. Delta M = gam...

  2. A Morphological and Statistical Analysis of Ansae in Barred Galaxies

    CERN Document Server

    Martinez-Valpuesta, I; Buta, R

    2007-01-01

    Many barred galaxies show a set of symmetric enhancements at the ends of the stellar bar, called {\\it ansae}, or the ``handles'' of the bar. The ansa bars have been in the literature for some decades, but their origin has still not been specifically addressed, although, they could be related to the growth process of bars. But even though ansae have been known for a long time, no statistical analysis of their relative frequency of occurrence has been performed yet. Similarly, there has been no study of the varieties in morphology of ansae even though significant morphological variations are known to characterise the features. In this paper, we make a quantitative analysis of the occurrence of ansae in barred galaxies, making use of {\\it The de Vaucouleurs Atlas of Galaxies} by Buta and coworkers. We find that $\\sim 40%$ of SB0's show ansae in their bars, thus confirming that ansae are common features in barred lenticulars. The ansa frequency decreases dramatically with later types, and hardly any ansae are fou...

  3. The ratio of pattern speeds in double-barred galaxies

    CERN Document Server

    Font, Joan; Zaragoza-Cardiel, Javier; Fathi, Kambiz; Epinat, Benoît; Amram, Philippe

    2014-01-01

    We have obtained two-dimensional velocity fields in the ionized gas of a set of 8 double-barred galaxies, at high spatial and spectral resolution, using their H$\\alpha$ emission fields measured with a scanning Fabry-Perot spectrometer. Using the technique by which phase reversals in the non-circular motion indicate a radius of corotation, taking advantage of the high angular and velocity resolution we have obtained the corotation radii and the pattern speeds of both the major bar and the small central bar in each of the galaxies; there are few such measurements in the literature. Our results show that the inner bar rotates more rapidly than the outer bar by a factor between 3.3 and 3.6.

  4. Kinematic properties of double-barred galaxies: simulations vs. integral-field observations

    CERN Document Server

    Du, Min; Shen, Juntai; Cappellari, Michele

    2016-01-01

    Using high resolution $N$-body simulations, we recently reported that a dynamically cool inner disk embedded in a hotter outer disk can naturally generate a steady double-barred (S2B) structure. Here we study the kinematics of these S2B simulations, and compare them to integral-field observations from ATLAS$^{3D}$ and SAURON. We show that S2B galaxies exhibit several distinct kinematic features, namely: (1) significantly distorted isovelocity contours at the transition region between the two bars, (2) peaks in $\\sigma_\\mathrm{LOS}$ along the minor axis of inner bars, which we term "$\\sigma$-humps", that are often accompanied by ring/spiral-like features of increased $\\sigma_\\mathrm{LOS}$, (3) $h_3-\\bar{v}$ anti-correlations in the region of the inner bar for certain orientations, and (4) rings of positive $h_4$ when viewed at low inclinations. The most impressive of these features are the $\\sigma$-humps, these evolve with the inner bar, oscillating in strength just as the inner bar does as it rotates relative...

  5. Bar pattern speeds in CALIFA galaxies: I. Fast bars across the Hubble sequence

    CERN Document Server

    Aguerri, J A L; Falcón-Barroso, J; Amorin, A; Barrera-Ballesteros, J; Fernandes, R Cid; García-Benito, R; García-Lorenzo, B; Delgado, R M González; Husemann, B; Kalinova, V; Lyubenova, M; Marino, R A; Márquez, I; Mast, D; Pérez, E; Sánchez, S F; van de Ven, G; Walcher, C J; Backsmann, N; Cortijo-Ferrero, C; Bland-Hawthorn, J; del Olmo, A; Iglesias-Páramo, J; Pérez, I; Sánchez-Blázquez, P; Wisotzki, L; Ziegler, B

    2015-01-01

    The bar pattern speed ($\\Omega_{\\rm b}$) is defined as the rotational frequency of the bar, and it determines the bar dynamics. Several methods have been proposed for measuring $\\Omega_{\\rm b}$. The non-parametric method proposed by Tremaine \\& Weinberg (1984; TW) and based on stellar kinematics is the most accurate. This method has been applied so far to 17 galaxies, most of them SB0 and SBa types. We have applied the TW method to a new sample of 15 strong and bright barred galaxies, spanning a wide range of morphological types from SB0 to SBbc. Combining our analysis with previous studies, we investigate 32 barred galaxies with their pattern speed measured by the TW method. The resulting total sample of barred galaxies allows us to study the dependence of $\\Omega_{\\rm b}$ on galaxy properties, such as the Hubble type. We measured $\\Omega_{\\rm b}$ using the TW method on the stellar velocity maps provided by the integral-field spectroscopy data from the CALIFA survey. Integral-field data solve the problem...

  6. On the apparent coupling of neutral hydrogen and dark matter in spiral galaxies

    NARCIS (Netherlands)

    Hoekstra, H; van Albada, TS; Sancisi, R

    2001-01-01

    We have studied a mass model for spiral galaxies in which the dark matter surface density is a scaled version of the observed H I surface density. Applying this mass model to a sample of 24 spiral galaxies with reliable rotation curves, one obtains good fits for most galaxies. The scaling factors cl

  7. Galaxy Zoo and ALFALFA: Atomic Gas and the Regulation of Star Formation in Barred Disc Galaxies

    CERN Document Server

    Masters, Karen L; Haynes, Martha P; Keel, William C; Lintott, Chris; Simmons, Brooke; Skibba, Ramin; Bamford, Steven; Giovanelli, Riccardo; Schawinski, Kevin

    2012-01-01

    We study the observed correlation between atomic gas content and the likelihood of hosting a large scale bar in a sample of 2090 disc galaxies. Such a test has never been done before on this scale. We use data on morphologies from the Galaxy Zoo project and information on the galaxies' HI content from the ALFALFA blind HI survey. Our main result is that the bar fraction is significantly lower among gas rich disc galaxies than gas poor ones. This is not explained by known trends for more massive (stellar) and redder disc galaxies to host more bars and have lower gas fractions: we still see at fixed stellar mass a residual correlation between gas content and bar fraction. We discuss three possible causal explanations: (1) bars in disc galaxies cause atomic gas to be used up more quickly, (2) increasing the atomic gas content in a disc galaxy inhibits bar formation, and (3) bar fraction and gas content are both driven by correlation with environmental effects (e.g. tidal triggering of bars, combined with strangu...

  8. Hα kinematics of S4G spiral galaxies - III. Inner rotation curves

    Science.gov (United States)

    Erroz-Ferrer, Santiago; Knapen, Johan H.; Leaman, Ryan; Díaz-García, Simón; Salo, Heikki; Laurikainen, Eija; Querejeta, Miguel; Muñoz-Mateos, Juan Carlos; Athanassoula, E.; Bosma, Albert; Comerón, Sebastien; Elmegreen, Bruce G.; Martínez-Valpuesta, Inma

    2016-05-01

    We present a detailed study of the shape of the innermost part of the rotation curves of a sample of 29 nearby spiral galaxies, based on high angular and spectral resolution kinematic Hα Fabry-Perot observations. In particular, we quantify the steepness of the rotation curve by measuring its slope dRvc(0). We explore the relationship between the inner slope and several galaxy parameters, such as stellar mass, maximum rotational velocity, central surface brightness (μ0), bar strength and bulge-to-total ratio. Even with our limited dynamical range, we find a trend for low-mass galaxies to exhibit shallower rotation curve inner slopes than high-mass galaxies, whereas steep inner slopes are found exclusively in high-mass galaxies. This trend may arise from the relationship between the total stellar mass and the mass of the bulge, which are correlated among them. We find a correlation between the inner slope of the rotation curve and the morphological T-type, complementary to the scaling relation between dRvc(0) and μ0 previously reported in the literature. Although we find that the inner slope increases with the Fourier amplitude A2 and decreases with the bar torque Qb, this may arise from the presence of the bulge implicit in both A2 and Qb. As previously noted in the literature, the more compact the mass in the central parts of a galaxy (more concretely, the presence of a bulge), the steeper the inner slopes. We conclude that the baryonic matter dominates the dynamics in the central parts of our sample galaxies.

  9. The warm ionized medium in spiral galaxies

    CERN Document Server

    Haffner, L M; Beckman, J E; Wood, K; Slavin, J D; Giammanco, C; Madsen, G J; Zurita, A; Reynolds, R J

    2009-01-01

    This article reviews observations and models of the diffuse ionized gas that permeates the disk and halo of our Galaxy and others. It was inspired by a series of invited talks presented during an afternoon scientific session of the 65th birthday celebration for Professor Carl Heiles held at Arecibo Observatory in August 2004. This review is in recognition of Carl's long standing interest in and advocacy for studies of the ionized as well as the neutral components of the interstellar medium.

  10. Prominent spiral arms in the gaseous outer galaxy disks

    CERN Document Server

    Bertin, G

    2009-01-01

    Context: Several spiral galaxies, as beautifully exhibited by the case of NGC 6946, display a prominent large-scale spiral structure in their gaseous outer disk. Such structure is often thought to pose a dynamical puzzle, because grand-design spiral structure is traditionally interpreted as the result of density waves carried mostly in the stellar disk. Aims. Here we argue that the outer spiral arms in the cold gas outside the bright optical disk actually have a natural interpretation as the manifestation of the mechanism that excites grand-design spiral structure in the main, star-dominated body of the disk: the excitation is driven by angular momentum transport to the outer regions, through trailing density waves outside the corotation circle that can penetrate beyond the Outer Lindblad Resonance in the gaseous component of the disk. Methods: Because of conservation of the density wave action, these outgoing waves are likely to become more prominent in the outer disk and eventually reach non-linear amplitud...

  11. Branch, Spur, and Feather Formation in Spiral Galaxies

    CERN Document Server

    Chakrabarti, S; Shu, F H

    2003-01-01

    We use hydrodynamical simulations to investigate the response of geometrically thin, self-gravitating, singular isothermal disks of gas to imposed rigidly rotating spiral potentials. By minimizing reflection-induced feedback from boundaries, and by restricting our attention to models where the swing parameter $X sim 10$, we minimize the swing amplification of global normal modes even in models where Toomre's $Q_g sim 1-2$ in the gas disk. We perform two classes of simulations: short-term ones over a few galactic revolutions where the background spiral forcing is large, and long-term ones over many galactic revolutions where the spiral forcing is considerably smaller. In both classes of simulations, the initial response of the gas disk is smooth and mimics the driving spiral field. At late times, many of the models evince substructure akin to the so-called branches, spurs, and feathers observed in real spiral galaxies. We comment on the parts played respectively by ultraharmonic resonances, reflection off inte...

  12. Dynamics of Non-Steady Spiral Arms in Disk Galaxies

    CERN Document Server

    Baba, Junichi; Wada, Keiichi

    2012-01-01

    In order to understand the physical mechanisms underlying non-steady stellar spiral arms in disk galaxies, we analyzed the growing and damping phases of their spiral arms using three-dimensional $N$-body simulations. We confirmed that the spiral arms are formed due to a swing amplification mechanism that reinforces density enhancement as a seeded wake. In the damping phase, the Coriolis force exerted on a portion of the arm surpasses the gravitational force that acts to shrink the portion. Consequently, the stars in the portion escape from the arm, and subsequently they form a new arm at a different location. The time-dependent nature of the spiral arms are originated in the continual repetition of this non-linear phenomenon. Since a spiral arm does not rigidly rotate, but follows the galactic differential rotation, the stars in the arm rotate at almost the same rate as the arm. In other words, every single position in the arm can be regarded as the co-rotation point. Due to interaction with their host arms, ...

  13. HST detection of spiral structure in two Coma Cluster dwarf galaxies

    CERN Document Server

    Graham, A W; Guzmán, R; Graham, Alister W.; Jerjen, Helmut; Guzman, Rafael

    2003-01-01

    We report the discovery of (stellar) spiral-like structure in Hubble Space Telescope images of two dwarf galaxies (GMP 3292 and GMP 3629) belonging to the Coma cluster. GMP 3629 is the faintest such galaxy detected in a cluster environment, and it is the first such galaxy observed in the dense Coma cluster. The large bulge and the faintness of the broad spiral-like pattern in GMP 3629 suggests that its disk may have been largely depleted. >We may therefore have found an example of the ``missing link'' in theories of galaxy evolution which have predicted that dwarf spiral galaxies, particularly in clusters, evolve into dwarf elliptical galaxies.

  14. Which bulges are favoured by barred S0 galaxies?

    CERN Document Server

    Barway, Sudhanshu; Vaghmare, Kaustubh; Kembhavi, Ajit K

    2016-01-01

    S0 galaxies are known to host classical bulges with a broad range of size and mass, while some such S0s are barred and some not. The origin of the bars has remained as a long-standing problem -- what made bar formation possible in certain S0s? By analysing a large sample of S0s with classical bulges observed by the Spitzer space telescope, we find that most of our barred S0s host comparatively low-mass classical bulges, typically with bulge-to-total ratio ($B/T$) less than $0.5$; whereas S0s with more massive classical bulges than these do not host any bar. Furthermore, we find that amongst the barred S0s, there is a trend for the longer and massive bars to be associated with comparatively bigger and massive classical bulges -- possibly suggesting bar growth being facilitated by these classical bulges. In addition, we find that the bulge effective radius is always less than the bar effective radius --indicating an interesting synergy between the host classical bulge and bars being maintained while bar growth ...

  15. Magnetic fields and rotation of spiral galaxies

    CERN Document Server

    Battaner, E; Florido, E

    1998-01-01

    We present a simplified model in which we suggest that two important galactic problems -the magnetic field configuration at large scales and the flat rotation curve- may be simultaneously explained. A highly convective disc produces a high turbulent magnetic diffusion in the vertical direction, stablishing a merging of extragalactic and galactic magnetic fields. The outer disc may then adquire a magnetic energy gradient very close to the gradient required to explain the rotation curve, without the hypothesis of galactic dark matter. Our model predicts symmetries of the galactic field in noticeable agreement with the large scale structure of our galaxy.

  16. Stellar populations of the bulges of four spiral galaxies

    CERN Document Server

    Morelli, L; Corsini, E M; Bontà, E Dalla; Coccato, L; Méndez-Abreu, J; Parmiggiani, M

    2015-01-01

    Key information to understand the formation and evolution of disk galaxies are imprinted in the stellar populations of their bulges. This paper has the purpose to make available new measurements of the stellar population properties of the bulges of four spiral galaxies. Both the central values and radial profiles of the line strength of some of the most common Lick indices are measured along the major- and minor- axis of the bulge-dominated region of the sample galaxies. The corresponding age, metallicity, and {\\alpha}/Fe ratio are derived by using the simple stellar population synthesis model predictions. The central values and the gradients of the stellar population properties of ESO-LV1890070, ESO-LV4460170, and ESO-LV 5140100 are consistent with previous findings for bulges of spiral galaxies. On the contrary, the bulge of ESO-LV 4500200 shows peculiar chemical properties possibly due to the presence of a central kinematically-decoupled component. The negative metallicity gradient found in our bulges samp...

  17. Automated bar detection in local disc galaxies from the SDSS - The colors of bars

    CERN Document Server

    Consolandi, Guido

    2016-01-01

    This paper describes an automatic isophotal fitting procedure that succeeds, without the support of any visual inspection of neither the images nor the ellipticity/P.A. radial profiles, at extracting a fairly pure sample of barred LTGs among thousands of optical images from the SDSS. The procedure relies on the methods described in Consolandi et al. (2016) to robustly extract the photometrical properties of a large sample of local SDSS galaxies and is tailored to extract bars on the basis of their well-known peculiarities in their P.A. and ellipticity profiles. It has been run on a sample of 5853 galaxies in the Coma and Local supercluster. The procedure extracted for each galaxy a color, an ellipticity and a position angle radial profile of the ellipses fitted to the isophotes. Examining automatically the profiles of 922 face-on late-type galaxies (B/A >0.7) the procedure found that ~ 36 % are barred. The local bar fraction strongly increases with stellar mass. The sample of barred galaxies is used to constr...

  18. Kinematic Properties of Double-barred Galaxies: Simulations versus Integral-field Observations

    Science.gov (United States)

    Du, Min; Debattista, Victor P.; Shen, Juntai; Cappellari, Michele

    2016-09-01

    Using high-resolution N-body simulations, we recently reported that a dynamically cool inner disk embedded in a hotter outer disk can naturally generate a steady double-barred (S2B) structure. Here we study the kinematics of these S2B simulations, and compare them to integral-field observations from ATLAS 3D and SAURON. We show that S2B galaxies exhibit several distinct kinematic features, namely: (1) significantly distorted isovelocity contours at the transition region between the two bars, (2) peaks in σ LOS along the minor axis of inner bars, which we term “σ-humps,” that are often accompanied by ring/spiral-like features of increased σ LOS, (3) {h}3{--}\\bar{v} anti-correlations in the region of the inner bar for certain orientations, and (4) rings of positive h 4 when viewed at low inclinations. The most impressive of these features are the σ-humps these evolve with the inner bar, oscillating in strength just as the inner bar does as it rotates relative to the outer bar. We show that, in cylindrical coordinates, the inner bar has similar streaming motions and velocity dispersion properties as normal large-scale bars, except for σ z , which exhibits peaks on the minor axis, i.e., humps. These σ z humps are responsible for producing the σ-humps. For three well-resolved early-type S2Bs (NGC 2859, NGC 2950, and NGC 3941) and a potential S2B candidate (NGC 3384), the S2B model qualitatively matches the integral-field data well, including the “σ-hollows” previously identified. We also discuss the kinematic effect of a nuclear disk in S2Bs.

  19. Galaxy And Mass Assembly (GAMA): Stellar mass growth of spiral galaxies in the cosmic web

    CERN Document Server

    Alpaslan, Mehmet; Marcum, Pamela M; Popescu, Cristina; Tuffs, Richard; Bland-Hawthorn, Joss; Brough, Sarah; Brown, Michael J I; Davies, Luke J M; Driver, Simon P; Holwerda, Benne W; Kelvin, Lee S; Lara-López, Maritza A; López-Sánchez, Ángel R; Loveday, Jon; Moffett, Amanda; Taylor, Edward N; Owers, Matt; Robotham, Aaron S G

    2016-01-01

    We look for correlated changes in stellar mass and star formation rate along filaments in the cosmic web by examining the stellar masses and UV-derived star formation rates (SFR) of 1,799 ungrouped and unpaired spiral galaxies that reside in filaments. We devise multiple distance metrics to characterise the complex geometry of filaments, and find that galaxies closer to the cylindrical centre of a filament have higher stellar masses than their counterparts near the periphery of filaments, on the edges of voids. In addition, these peripheral spiral galaxies have higher specific star formation rates (SSFR) at a given mass. Complementing our sample of filament spiral galaxies with spiral galaxies in tendrils and voids, we find that the average SFR of these objects in different large scale environments are similar to each other with the primary discriminant in SFR being stellar mass, in line with previous works. However, the distributions of SFRs are found to vary with large-scale environment. Our results thus su...

  20. Barred galaxies in the EAGLE cosmological hydrodynamical simulation

    CERN Document Server

    Algorry, David G; Abadi, Mario G; Sales, Laura V; Bower, Richard G; Crain, Robert A; Vecchia, Claudio Dalla; Frenk, Carlos S; Schaller, Matthieu; Schaye, Joop; Theuns, Tom

    2016-01-01

    We examine the properties of barred disc galaxies in a LCDM cosmological hydrodynamical simulation from the EAGLE project. Our study follows the formation of 269 discs identified at z = 0 in the stellar mass range 10.6 < log Mstr /M < 11. These discs show a wide range of bar strengths, from unbarred discs to weak bars to strongly barred systems (= 20%). Bars in these systems develop after redshift = 1.3, on timescales that depend sen- sitively on the strength of the pattern. Strong bars develop relatively quickly (in a few Gyr, = 10 disc rotation periods) in systems that are disc dominated, gas poor, and have declining rotation curves. Weak bars develop more slowly in systems where the disc is less gravitation- ally important, and are still growing at z = 0. Unbarred galaxies are comparatively gas-rich discs whose rotation speeds do not exceed the maximum circular velocity of the halos they inhabit. Bar lengths compare favourably with observations, ranging from 0.2 to 0.8 times the radius containing 90%...

  1. TWO-DIMENSIONAL KINEMATICS OF THE EDGE-ON SPIRAL GALAXY ESO 379-006

    Energy Technology Data Exchange (ETDEWEB)

    Rosado, M.; Gabbasov, R. F.; Repetto, P.; Martos, M. [Instituto de Astronomia, Universidad Nacional Autonoma de Mexico, Apartado Postal 70-264, CP 04510 Mexico, D. F. (Mexico); Fuentes-Carrera, I. [Escuela Superior de Fisica y Matematicas, Instituto Politecnico Nacional, U. P. Adolfo Lopez Mateos, Zacatenco, 07730 Mexico, D. F. (Mexico); Amram, P.; Hernandez, O. [Laboratoire d' Astrophysique de Marseille, Aix-Marseille University (France); CNRS, 38 rue Frederic Joliot-Curie, 13338 Marseille Cedex 13 (France)

    2013-05-15

    We present a kinematical study of the nearly edge-on galaxy ESO 379-006 that shows the existence of extraplanar ionized gas. With Fabry-Perot spectroscopy at H{alpha}, we study the kinematics of ESO 379-006 using velocity maps and position-velocity diagrams parallel to the major and to the minor axis of the galaxy. We build the rotation curve of the disk and discuss the role of projection effects due to the fact of viewing this galaxy nearly edge-on. The twisting of the isovelocities in the radial velocity field of the disk of ESO 379-006 as well as the kinematical asymmetries found in some position-velocity diagrams parallel to the minor axis of the galaxy suggest the existence of deviations to circular motions in the disk that can be modeled and explained with the inclusion of a radial inflow probably generated by a bar or by spiral arms. We succeeded in detecting extraplanar diffuse ionized gas in this galaxy. At the same time, from the analysis of position-velocity diagrams, we found some evidence that the extraplanar gas could lag in rotation velocity with respect to the midplane rotation.

  2. 2D kinematics of the edge-on spiral galaxy ESO 379-G006

    CERN Document Server

    Rosado, M; Repetto, P; Fuentes-Carrera, I; Amram, P; Martos, M; Hernandez, O

    2013-01-01

    We present a kinematical study of the nearly edge-on galaxy ESO 379-G006 that shows the existence of extraplanar ionized gas. With Fabry-Perot spectroscopy at H-alpha, we study the kinematics of ESO 379-G006 using velocity maps and position-velocity diagrams parallel to the major and to the minor axis of the galaxy. We build the rotation curve of the disk and discuss the role of projection effects due to the fact of viewing this galaxy nearly edge-on. The twisting of the isovelocities in the radial velocity field of the disk of ESO 379-G006 as well as the kinematic asymmetries found in some position-velocity diagrams parallel to the minor axis of the galaxy suggest the existence of deviations to circular motions in the disk that can be modeled and explained with the inclusion of a radial inflow probably generated by a bar or by spiral arms. We succeeded in detecting extraplanar Diffuse Ionized Gas in this galaxy. At the same time, from the analysis of position-velocity diagrams, we found some evidence that th...

  3. Halpha Kinematics of S4G Spiral Galaxies - III. Inner rotation curves

    CERN Document Server

    Erroz-Ferrer, Santiago; Leaman, Ryan; Dıaz-Garcia, Simon; Salo, Heikki; Laurikainen, Eija; Querejeta, Miguel; Muñoz-Mateos, Juan Carlos; Athanassoula, E; Bosma, Albert; Comeron, Sebastien; Elmegreen, Bruce G; Martınez-Valpuesta, Inma

    2016-01-01

    We present a detailed study of the shape of the innermost part of the rotation curves of a sample of 29 nearby spiral galaxies, based on high angular and spectral resolution kinematic Halpha Fabry-Perot observations. In particular, we quantify the steepness of the rotation curve by measuring its slope dRvc(0). We explore the relationship between the inner slope and several galaxy parameters, such as stellar mass, maximum rotational velocity, central surface brightness ({\\mu}0), bar strength and bulge-to-total ratio. Even with our limited dynamical range, we find a trend for low-mass galaxies to exhibit shallower rotation curve inner slopes than high-mass galaxies, whereas steep inner slopes are found exclusively in high-mass galaxies. This trend may arise from the relationship between the total stellar mass and the mass of the bulge, which are correlated among them. We find a correlation between the inner slope of the rotation curve and the morphological T-type, complementary to the scaling relation between d...

  4. The Red and Featureless Outer Disks of Nearby Spiral Galaxies

    Science.gov (United States)

    Watkins, Aaron E.; Mihos, J. Christopher; Harding, Paul

    2016-07-01

    We present results from deep, wide-field surface photometry of three nearby (D = 4-7 Mpc) spiral galaxies: M94 (NGC 4736), M64 (NGC 4826), and M106 (NGC 4258). Our imaging reaches a limiting surface brightness of {μ }B ˜ 28-30 mag arcsec-2 and probes colors down to {μ }B ˜ 27.5 mag arcsec-2. We compare our broadband optical data to available ultraviolet and high column density H i data to better constrain the star-forming history and stellar populations of the outermost parts of each galaxy’s disk. Each galaxy has a well-defined radius beyond which little star formation occurs and the disk light appears both azimuthally smooth and red in color, suggestive of old, well-mixed stellar populations. Given the lack of ongoing star formation or blue stellar populations in these galaxies’ outer disks, the most likely mechanisms for their formation are dynamical processes such as disk heating or radial migration, rather than inside-out growth of the disks. This is also implied by the similarity in outer disk properties despite each galaxy showing distinct levels of environmental influence, from a purely isolated galaxy (M94) to one experiencing weak tidal perturbations from its satellite galaxies (M106) to a galaxy recovering from a recent merger (M64), suggesting that a variety of evolutionary histories can yield similar outer disk structure. While this suggests a common secular mechanism for outer disk formation, the large extent of these smooth, red stellar populations—which reach several disk scale lengths beyond the galaxies’ spiral structure—may challenge models of radial migration given the lack of any nonaxisymmetric forcing at such large radii.

  5. Energetic constraints to chemo-photometric evolution of spiral galaxies

    Science.gov (United States)

    Buzzoni, Alberto

    2011-08-01

    galaxies; (iii) although lower-mass galaxies tend more likely to take the look of later-type spirals, it is mass, not morphology, that drives galaxy chemical properties. Facing the relatively flat trend of ? versus galaxy type, the increasingly poorer gas metallicity, as traced by the [O/H] abundance of H II regions along the Sa → Im Hubble sequence, seems to be mainly the result of the softening process, that dilute enriched stellar mass within a larger fraction of residual gas. The problem of the residual lifetime for spiral galaxies as active star-forming systems has been investigated. If returned mass is left as the main (or unique) gas supplier to the ISM, as implied by the Roberts time-scale, then star formation might continue only at a maximum birthrate bmax≪f/(1 -f) ≲ 0.45, for a Salpeter IMF. As a result, only massive (Mgal≳ 1011 M⊙) Sa/Sb spirals may have some chance to survive ˜30 per cent or more beyond a Hubble time. Things may be worse, on the contrary, for dwarf systems, that seem currently on the verge of ceasing their star formation activity unless to drastically reduce their apparent birthrate below the bmax threshold.

  6. Kinematic and Structural Evolution of Field and Cluster Spiral Galaxies

    CERN Document Server

    Ziegler, Bodo L; Da Rocha, Cristiano; Böhm, Asmus; Peletier, Reynier F; Verdugo, Miguel

    2009-01-01

    To understand the processes that build up galaxies we investigate the stellar structure and gas kinematics of spiral and irregular galaxies out to redshift 1. We target 92 galaxies in four cluster (z = 0.3 & 0.5) fields to study the environmental influence. Their stellar masses derived from multiband VLT/FORS photometry are distributed around but mostly below the characteristic Schechter-fit mass. From HST/ACS images we determine morphologies and structural parameters like disk length, position angle and ellipticity. Combining the spectra of three slit positions per galaxy using the MXU mode of VLT/FORS2 we construct the two-dimensional velocity field from gas emission lines for 16 cluster members and 33 field galaxies. The kinematic position angle and flatness are derived by a Fourier expansion of elliptical velocity profiles. To trace possible interaction processes, we define three irregularity indicators based on an identical analysis of local galaxies from the SINGS project. Our distant sample display...

  7. Chemical abundances from planetary nebulae in local spiral galaxies

    CERN Document Server

    Richer, M G

    2015-01-01

    While the chemical abudances observed in bright planetary nebulae in local spiral galaxies are less varied than their counterparts in dwarfs, they provide new insight. Their helium abundances are typically enriched by less than 50\\% compared to the primordial abundance. Nitrogen abundances always show some level of secondary enrichment, but the absolute enrichment is not extreme. In particular, type I PNe are rare among the bright PNe in local spirals. The oxygen and neon abundances are very well correlated and follow the relation between these abundances observed in star-forming galaxies, implying that either the progenitor stars of these PNe modify neither abundance substantially or that they modify both to maintain the ratio (not predicted by theory). According to theory, these results imply that the progenitor stars of bright PNe in local spirals have masses of about $2\\,\\mathrm M_{\\odot}$ or less. If so, the progenitors of these PNe have substantial lifetimes that allow us to use them to study the recent...

  8. Dynamical effect of gas on spiral pattern speed in galaxies

    CERN Document Server

    Ghosh, Soumavo

    2016-01-01

    In the density wave theory of spiral structure, the grand-design two-armed spiral pattern is taken to rotate rigidly in a galactic disc with a constant, definite pattern speed. The observational measurement of the pattern speed of the spiral arms, though difficult, has been achieved in a few galaxies such as NGC 6946, NGC 2997, and M 51 which we consider here. We examine whether the theoretical dispersion relation permits a real solution for wavenumber corresponding to a stable wave, for the observed rotation curve and the pattern speed values. We find that the disc when treated to consist of stars alone, as is usually done in literature, does not generally support a stable density wave for the observed pattern speed. Instead the inclusion of the low velocity dispersion component, namely, gas, is essential to obtain a stable density wave. Further, we obtain a theoretical range of allowed pattern speeds that correspond to a stable density wave at a certain radius, and check that for the three galaxies consider...

  9. The Vertical Stellar Kinematics in Face-On Barred Galaxies: Estimating the Ages of Bars

    CERN Document Server

    Gadotti, D A; Gadotti, Dimitri A.; Souza, Ronaldo E. de

    2005-01-01

    In order to perform a detailed study of the stellar kinematics in the vertical axis of bars, we obtained high signal-to-noise spectra along the major and minor axes of the bars in a sample of 14 face-on galaxies, and used them to determine the line of sight stellar velocity distribution, parameterized as Gauss-Hermite series. With these data, we developed a diagnostic tool that allows one to distinguish between recently formed and evolved bars, as well as estimate their ages, assuming that bars form in vertically thin disks, recognizable by low values for the vertical velocity dispersion sigma_z. Through N-body realizations of bar unstable disk galaxies we could also check the time scales involved in the processes which give bars an important vertical structure. We show that sigma_z in evolved bars is roughly around 100 Km/s, which translates to a height scale of about 1.4 Kpc, giving support to scenarios in which bulges form through disk material. Furthermore, the bars in our numerical simulations have value...

  10. Gas velocity patterns in simulated galaxies: Observational diagnostics of spiral structure theories

    CERN Document Server

    Baba, Junichi; Miyamoto, Yusuke; Egusa, Fumi; Kuno, Nario

    2016-01-01

    There are two theories of stellar spiral arms in isolated disc galaxies that model stellar spiral arms with different longevities: quasi-stationary density wave theory, which characterises spirals as rigidly rotating, long-lived patterns (i.e. steady spirals), and dynamic spiral theory, which characterises spirals as differentially rotating, transient, recurrent patterns (i.e. dynamic spirals). In order to discriminate between these two spiral models observationally, we investigated the differences between the gas velocity patterns predicted by these two spiral models in hydrodynamic simulations. We found that the azimuthal phases of the velocity patterns relative to the gas density peaks (i.e. gaseous arms) differ between the two models, as do the gas flows; nevertheless, the velocity patterns themselves are similar for both models. Such similarity suggests that the mere existence of streaming motions does not conclusively confirm the steady spiral model. However, we found that the steady spiral model shows ...

  11. The BaLROG project - I. Quantifying the influence of bars on the kinematics of nearby galaxies

    CERN Document Server

    Seidel, M K; Martínez-Valpuesta, I; Díaz-García, S; Laurikainen, E; Salo, H; Knapen, J H

    2015-01-01

    We present the BaLROG (Bars in Low Redshift Optical Galaxies) sample of 16 morphologically distinct barred spirals to characterise observationally the influence of bars on nearby galaxies. Each galaxy is a mosaic of several pointings observed with the IFU spectrograph SAURON leading to a tenfold sharper spatial resolution (~100 pc) compared to ongoing IFU surveys. In this paper we focus on the kinematic properties. We calculate the bar strength Qb from classical torque analysis using 3.6 {\\mu}m Spitzer (S4G) images, but also develop a new method based solely on the kinematics. A correlation between the two measurements is found and backed up by N-body simulations, verifying the measurement of Qb . We find that bar strengths from ionised gas kinematics are ~2.5 larger than those measured from stellar kinematics and that stronger bars have enhanced influence on inner kinematic features. We detect that stellar angular momentum "dips" at 0.2$\\pm$0.1 bar lengths and half of our sample exhibits an anti-correlation ...

  12. Rotation curves of 967 spiral galaxies implications for dark matter

    CERN Document Server

    Persic, M; Stel, F; Persic, Massimo; Salucci, Paolo; Stel, Fulvio

    1995-01-01

    We present the rotation curves of 967 spiral galaxies, obtained by deprojecting and folding the raw data published by Mathewson et al. (1992). Of these, 80 meet objective excellence criteria and are suitable for individual detailed mass modelling, while 820 are suitable for statistical studies. A preliminary analysis of theire properties confirms that rotation curves are a universal function of luminosity and that the dark matter fraction in spirals increase with decreasing luminosity. Quantitative considerations on the virial radius of dark halos allow us to make hypotheses about their structure and nature. The deprojected folded curves, the smoothed curves, and various related quantities are available via anonymous ftp at ftp://galileo.sissa.it/users/ftp/pub/psrot

  13. In-spiraling Clumps in Blue Compact Dwarf Galaxies

    CERN Document Server

    Elmegreen, Bruce G; Hunter, Deidre

    2012-01-01

    Giant star-formation clumps in dwarf irregular galaxies can have masses exceeding a few percent of the galaxy mass enclosed inside their orbital radii. They can produce sufficient torques on dark matter halo particles, halo stars, and the surrounding disk to lose their angular momentum and spiral into the central region in 1 Gyr. Pairs of giant clumps with similarly large relative masses can interact and exchange angular momentum to the same degree. The result of this angular momentum loss is a growing central concentration of old stars, gas, and star formation that can produce a long-lived starburst in the inner region, identified with the BCD phase. This central concentration is proposed to be analogous to the bulge in a young spiral galaxy. Observations of star complexes in five local BCDs confirm the relatively large clump masses that are expected for this process. The observed clumps also seem to contain old field stars, even after background light subtraction, in which case the clumps may be long-lived....

  14. MAGNETIC FIELDS IN A SAMPLE OF NEARBY SPIRAL GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Van Eck, C. L. [Department of Astrophysics, Faculty of Science, Radboud University Nijmegen, P.O. Box 9010, 6500 GL Nijmegen (Netherlands); Brown, J. C. [Department of Physics and Astronomy, University of Calgary, Calgary, AB T2N 1N4 (Canada); Shukurov, A.; Fletcher, A., E-mail: c.vaneck@astro.ru.nl, E-mail: jocat@ucalgary.ca, E-mail: anvar.shukurov@ncl.ac.uk, E-mail: andrew.fletcher@ncl.ac.uk [School of Mathematics and Statistics, Newcastle University, Newcastle upon Tyne NE1 7RU (United Kingdom)

    2015-01-20

    Both observations and modeling of magnetic fields in the diffuse interstellar gas of spiral galaxies are well developed, but the theory has been confronted with observations for only a handful of individual galaxies. There is now sufficient data to consider the statistical properties of galactic magnetic fields. We have collected data from the literature on the magnetic fields and interstellar media of 20 spiral galaxies, and tested for various physically motivated correlations between magnetic field and interstellar medium parameters. Clear correlations emerge between the total magnetic field strength and molecular gas density as well as the star formation rate. The magnetic pitch angle exhibits correlations with the total gas density, the star formation rate, and the strength of the axisymmetric component of the mean magnetic field. The total and mean magnetic field strengths exhibit a noticeable degree of correlation, suggesting a universal behavior of the degree of order in galactic magnetic fields. We also compare the predictions of galactic dynamo theory to observed magnetic field parameters and identify directions in which theory and observations might be usefully developed.

  15. Nuclear Bar, Star Formation and Gas Fueling in the Active Galaxy NGC 4303

    CERN Document Server

    Colina, L

    1999-01-01

    A combination of Hubble Space Telescope (HST) WFPC2 and NICMOS images are used to investigate the gas/dust and stellar structure inside the central 300 pc of the nearby active galaxy NGC 4303. The NICMOS H-band (F160W) image reveals a bright core and a nuclear elongated bar-like structure of 250 pc in diameter. The bar is centered on the bright core, and its major axis is oriented in proyection along the spin axis of the nuclear gaseous rotating disk recently detected (Colina & Arribas 1999). The V-H (F606W - F160W) image reveals a complex gas/dust distribution with a two-arm spiral structure of about 225 pc in radius. The southwestern arm is traced by young star-forming knots while the northeastern arm is detected by the presence of dust lanes. These spirals do not have a smooth structure but rather they are made of smaller flocculent spirals or filament-like structures. The magnitudes and colors of the star-forming knots are typical of clusters of young stars with masses of 0.5 to 1 x $10^5 M_{solar}, a...

  16. Dynamics of barred galaxies: effects of disk height

    CERN Document Server

    Klypin, A; Colin, P; Quinn, T

    2008-01-01

    We study dynamics of bars in models of disk galaxies embeded in realistic dark matter halos. We find that disk thickness plays an important, if not dominant, role in the evolution and structure of the bars. We also make extensive numerical tests of different N-body codes used to study bar dynamics. Models with thick disks typically used in this type of modeling (height-to-length ratio hz/Rd=0.2) produce slowly rotating, and very long, bars. In contrast, more realistic thin disks with the same parameters as in our Galaxy (hz/Rd= 0.1) produce bars with normal length Rbar approx R_d, which rotate quickly with the ratio of the corotation radius to the bar radius 1.2-1.4 compatible with observations. Bars in these models do not show a tendency to slow down, and may lose as little as 2-3 percent of their angular momentum due to dynamical friction with the dark matter over cosmological time. We attribute the differences between the models to a combined effect of high phase-space density and smaller Jeans mass in the...

  17. On the bar formation mechanism in galaxies with cuspy bulges

    Science.gov (United States)

    Polyachenko, E. V.; Berczik, P.; Just, A.

    2016-11-01

    We show by numerical simulations that a purely stellar dynamical model composed of an exponential disc, a cuspy bulge, and a Navarro-Frenk-White halo with parameters relevant to the Milky Way is subject to bar formation. Taking into account the finite disc thickness, the bar formation can be explained by the usual bar instability, in spite of the presence of an inner Lindblad resonance, that is believed to damp any global modes. The effect of replacing the live halo and bulge by a fixed external axisymmetric potential (rigid models) is studied. It is shown that while the e-folding time of bar instability increases significantly (from 250 to 500 Myr), the bar pattern speed remains almost the same. For the latter, our average value of 55 km s-1 kpc-1 agrees with the assumption that the Hercules stream in the solar neighbourhood is an imprint of the bar-disc interaction at the outer Lindblad resonance of the bar. Vertical averaging of the radial force in the central disc region comparable to the characteristic scale length allows us to reproduce the bar pattern speed and the growth rate of the rigid models, using normal mode analysis of linear perturbation theory in a razor-thin disc. The strong increase of the e-folding time with decreasing disc mass predicted by the mode analysis suggests that bars in galaxies similar to the Milky Way have formed only recently.

  18. Stellar mass distribution of S4G disk galaxies and signatures of bar-induced secular evolution

    Science.gov (United States)

    Díaz-García, S.; Salo, H.; Laurikainen, E.

    2016-12-01

    obtain the tangential-to-radial force ratio (QT) and A2 profiles in the different bins. We also apply ellipse fitting to quantitatively characterize the shape of the bar stacks. Results: For M∗ ≥ 109M⊙, we find a significant difference in the stellar density profiles of barred and non-barred systems: (i) disks in barred galaxies show larger scalelengths (hR) and fainter extrapolated central surface brightnesses (Σ°); (ii) the mean surface brightness profiles (Σ∗) of barred and non-barred galaxies intersect each other slightly beyond the mean bar length, most likely at the bar corotation; and (iii) the central mass concentration of barred galaxies is higher (by almost a factor 2 when T ≤ 5) than in their non-barred counterparts. The averaged Σ∗ profiles follow an exponential slope down to at least 10 M⊙ pc-2, which is the typical depth beyond which the sample coverage in the radial direction starts to drop. Central mass concentrations in massive systems (≥1010M⊙) are substantially larger than in fainter galaxies, and their prominence scales with T. This segregation also manifests in the inner slope of the mean stellar component of the circular velocity: lenticular (S0) galaxies present the most sharply rising V3.6 μm. Based on the analysis of bar stacks, we show that early- and intermediate-type spirals (0 ≤ Tgalaxy family and quantitative estimates of bar strength. In early- and intermediate-type spirals, A2 is larger within and beyond the typical bar region among barred galaxies than in the non-barred subsample. Strongly barred systems also tend to have larger A2 amplitudes at all radii than their weakly barred counterparts. Conclusions: Using near-IR wavelengths (S4G 3.6 μm), we provide observational constraints that galaxy formation models can be checked against. In particular, we calculate the mean stellar density profiles, and the disk(+bulge) component of the rotation curve (and their dispersion) in bins of M∗ and T. We find evidence for

  19. Magnetic fields and star formation in spiral galaxies

    CERN Document Server

    Krause, Marita

    2008-01-01

    The main observational results from radio continuum and polarization observations about the magnetic field strength and large-scale pattern for face-on and edge-on spiral galaxies are summarized and compared within our sample of galaxies of different morphological types, inclinations, and star formation rates (SFR). We found that galaxies with low SFR have higher thermal fractions/smaller synchrotron fractions than those with normal or high SFR. Adopting an equipartition model, we conclude that the nonthermal radio emission and the \\emph{total magnetic field} strength grow nonlinearly with SFR, while the regular magnetic field strength does not seem to depend on SFR. We also studied the magnetic field structure and disk thicknesses in highly inclined (edge-on) galaxies. We found in four galaxies that - despite their different radio appearance - the vertical scale heights for both, the thin and thick disk/halo, are about equal (0.3/1.8 kpc at 4.75 GHz), independently of their different SFR. This implies that a...

  20. Fundamental mass-spin-morphology relation of spiral galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Obreschkow, D. [International Centre for Radio Astronomy Research (ICRAR), M468, University of Western Australia, 35 Stirling Hwy, Crawley, WA 6009 (Australia); Glazebrook, K. [ARC Centre of Excellence for All-sky Astrophysics (CAASTRO) (Australia)

    2014-03-20

    This work presents high-precision measurements of the specific baryon angular momentum j {sub b} contained in stars, atomic gas, and molecular gas, out to ≳ 10 scale radii, in 16 nearby spiral galaxies of the THINGS sample. The accuracy of these measurements improves on existing studies by an order of magnitude, leading to the discovery of a strong correlation between the baryon mass M {sub b}, j {sub b}, and the bulge mass fraction β, fitted by β=−(0.34±0.03) lg (j{sub b}M{sub b}{sup −1}/[10{sup −7} kpc km s{sup −1} M{sub ⊙}{sup −1}])−(0.04±0.01) on the full sample range of 0 ≤ β ≲ 0.3 and 10{sup 9} M {sub ☉} < M {sub b} < 10{sup 11} M {sub ☉}. The corresponding relation for the stellar quantities M {sub *} and j {sub *} is identical within the uncertainties. These M-j-β relations likely originate from the proportionality between jM {sup –1} and the surface density of the disk that dictates its stability against (pseudo-)bulge formation. Using a cold dark matter model, we can approximately explain classical scaling relations, such as the fundamental plane of spiral galaxies, the Tully-Fisher relation, and the mass-size relation, in terms of the M-j(-β) relation. These results advocate the use of mass and angular momentum as the most fundamental quantities of spiral galaxies.

  1. Chandra ACIS Observations of the Nearby Spiral Galaxy NGC 300

    Science.gov (United States)

    Bobar, Dale; Turner, Kevin; Schlegel, Eric M.

    2017-01-01

    The ACIS detector (Advanced CCD Imaging Spectrometer) onboard the Chandra X-ray Observatory has imaged the nearby spiral NGC 300 over three epochs for a total exposure of 1.885x102 ksec. We describe each observation as well as the merged data set. Each exposure contains 132 individual sources. We focus on the time variability and luminosity distributions of the sources. Initial results show no diffuse emissions in the galaxy. Finally, we compare the merged data set and the detected sources with other wavebands.

  2. Gas Dynamics and Outflow in the Barred Starburst Galaxy NGC 1808 Revealed with ALMA

    Science.gov (United States)

    Salak, Dragan; Nakai, Naomasa; Hatakeyama, Takuya; Miyamoto, Yusuke

    2016-05-01

    NGC 1808 is a nearby barred starburst galaxy with an outflow from the nuclear region. To study the inflow and outflow processes related to star formation and dynamical evolution of the galaxy, we have carried out 12CO (J=1-0) mapping observations of the central r ˜ 4 kpc of NGC 1808 using the Atacama Large Millimeter/submillimeter Array. Four distinct components of molecular gas are revealed at high spatial resolution of 2″ (˜100 pc): (1) a compact (r CND), (2) r ˜ 500 pc ring, (3) gas-rich galactic bar, and (4) spiral arms. Basic geometric and kinematic parameters are derived for the central 1 kpc region using tilted-ring modeling. The derived rotation curve reveals multiple mass components that include (1) a stellar bulge, (2) a nuclear bar and molecular CND, and (3) an unresolved massive (˜107 M ⊙) core. Two systemic velocities, 998 km s-1 for the CND and 964 km s-1 for the 500 pc ring, are revealed, indicating a kinematic offset. The pattern speed of the primary bar, derived by using a cloud-orbit model, is 56 ± 11 km s-1 kpc-1. Noncircular motions are detected associated with a nuclear spiral pattern and outflow in the central 1 kpc region. The ratio of the mass outflow rate to the star formation rate is {\\dot{M}}{out}/{SFR}˜ 0.2 in the case of optically thin CO (1-0) emission in the outflow, suggesting low efficiency of star formation quenching.

  3. Spirality: A Novel Way to Measure Spiral Arm Pitch Angle

    CERN Document Server

    Shields, Douglas W; Pfountz, Casey; Davis, Benjamin L; Hartley, Matthew; Imani, Hamed Pour; Slade, Zac; Kennefick, Daniel; Kennefick, Julia

    2015-01-01

    We present the MATLAB code Spirality, a novel method for measuring spiral arm pitch angles by fitting galaxy images to spiral templates of known pitch. Computation time is typically on the order of 2 minutes per galaxy, assuming at least 8 GB of working memory. We tested the code using 117 synthetic spiral images with known pitches, varying both the spiral properties and the input parameters. The code yielded correct results for all synthetic spirals with galaxy-like properties. We also compared the code's results to two-dimensional Fast Fourier Transform (2DFFT) measurements for the sample of nearby galaxies defined by DMS PPak. Spirality's error bars overlapped 2DFFT's error bars for 26 of the 30 galaxies. The two methods' agreement correlates strongly with galaxy radius in pixels and also with i-band magnitude, but not with redshift, a result that is consistent with at least some galaxies' spiral structure being fully formed by z=1.2, beyond which there are few galaxies in our sample. The Spirality code pa...

  4. The outer disks of early-type galaxies. I. Surface-brightness profiles of barred galaxies

    NARCIS (Netherlands)

    Erwin, Peter; Pohlen, Michael; Beckman, John E.

    2008-01-01

    We present a study of 66 barred, early-type (S0-Sb) disk galaxies, focused on the disk surface brightness profile outside the bar region, with the aim of throwing light on the nature of Freeman type I and II profiles, their origins, and their possible relation to disk truncations. This paper discuss

  5. Composite Bulges: The Coexistence of Classical Bulges and Disky Pseudobulges in S0 and Spiral Galaxies

    CERN Document Server

    Erwin, Peter; Fabricius, Maximilian; Thomas, Jens; Nowak, Nina; Rusli, Stephanie; Bender, Ralf; Beltran, Juan Carlos Vega; Beckman, John E

    2014-01-01

    We study nine S0-Sb galaxies with (photometric) bulges consisting of two distinct components. The outer component is a flattened, kinematically cool, disklike structure: a "disky pseudobulge". Embedded inside is a rounder, kinematically hot spheroid: a "classical bulge". This indicates that pseudobulges and classical bulges are not mutually exclusive: some galaxies have both. The disky pseudobulges almost always have an exponential disk (scale lengths = 125-870 pc, mean $\\sim 440$ pc) with disk-related subcomponents: nuclear rings, bars, and/or spiral arms. They constitute 11-59% of the galaxy stellar mass (mean PB/T = 0.33), with stellar masses $\\sim 7 \\times 10^{9}$-$9 \\times 10^{10} M_{\\odot}$. Classical-bulge components have Sersic indices of 0.9-2.2, effective radii of 25-430 pc and stellar masses of $5 \\times 10^{8}$-$3 \\times 10^{10} M_{\\odot}$ (usually < 10% of the galaxy's stellar mass; mean B/T = 0.06). The classical bulges show rotation, but are kinematically hotter than the disky pseudobulges. ...

  6. Particle Paths of Lagrangian Velocity Distribution Simulating the Spiral Arms of Galaxy M51

    Institute of Scientific and Technical Information of China (English)

    Tzu-Fang Chen; Georgios H. Vatistas; Sui Lin

    2008-01-01

    Galaxies are huge families of stars held together by their own gravities. The system M51 is a spiral galaxy. It possesses billions of stars. The range of the spiral arms extends hundred thousand light years. The present study is in an attempt in using the particle paths of the Lagrangian flow field to simulate the spiral arms of Galaxy M51.The Lagrangian flow field is introduced. The initial locations of fluid particles in the space between two concentric cylinders are first specified. Then a linear velocity distribution of the fluid particles is used with different angle rotations of the particles to obtain the particle paths in the Lagrangian diagram. For simulating the spiral arms of Galaxy M51, the Lagrangian M51 diagram is developed. The particle paths of the Lagrangian M51 diagram agree quite well with the spiral arms of Galaxy M51.

  7. The Red and Featureless Outer Disks of Nearby Spiral Galaxies

    CERN Document Server

    Watkins, Aaron E; Harding, Paul

    2016-01-01

    We present results from deep, wide-field surface photometry of three nearby (D=4--7 Mpc) spiral galaxies: M94 (NGC 4736), M64 (NGC 4826), and M106 (NGC 4258). Our imaging reaches limiting surface brightnesses of $\\mu_{B} \\sim$ 28 -- 30 mag arcsec$^{-2}$ and probes colors down to $\\mu_{B} \\sim$ 27.5 mag arcsec$^{-2}$. We compare our broadband optical data to available ultraviolet and high column-density HI data to better constrain the star forming history and stellar populations of the outermost parts of each galaxy's disk. Each galaxy has a well-defined radius beyond which little star formation occurs and the disk light appears both azimuthally smooth and red in color, suggestive of old, well-mixed stellar populations. Given the lack of ongoing star formation or blue stellar populations in these galaxies' outer disks, the most likely mechanisms for their formation are dynamical processes such as disk heating or radial migration, rather than inside-out growth of the disks. This is also implied by the similarit...

  8. Does the Milky Way Obey Spiral Galaxy Scaling Relations?

    CERN Document Server

    Licquia, Timothy C; Bershady, Matthew A

    2016-01-01

    It is crucial to understand how the Milky Way, the galaxy we can study in the most intimate detail, fits in amongst other galaxies. Key examples include the Tully-Fisher relation (TFR) --- i.e., the tight correlation between luminosity ($L$) and rotational velocity ($V_\\textrm{rot}$) --- and the 3-dimensional luminosity-velocity-radius ($LVR$) scaling relation. Several past studies have characterized the MW as a 1--1.5$\\sigma$ outlier to the TFR. This study reexamines such comparisons using new estimates of MW properties that are robust to many of the systematic uncertainties that have been a problem in the past and are based on assumptions consistent with those used for other spiral galaxies. Comparing to scaling relations derived from modern extragalactic data, we find that our Galaxy's properties are in excellent agreement with TFRs defined using any SDSS-filter absolute magnitude, stellar mass, or baryonic mass as the $L$ proxy. We next utilize disk scale length ($R_\\textrm{d}$) measurements to extend thi...

  9. Spectroscopy of Outlying H II Regions in Spiral Galaxies Abundances and Radial Gradients

    CERN Document Server

    Van Zee, L; Haynes, M P; O'Donoghue, A A; Balonek, T J

    1998-01-01

    We present the results of low dispersion optical spectroscopy of 186 H II regions spanning a range of radius in 13 spiral galaxies. Abundances for several elements (oxygen, nitrogen, neon, sulfur, and argon) were determined for 185 of the H II regions. As expected, low metallicities were found for the outlying H II regions of these spiral galaxies. Radial abundance gradients were derived for the 11 primary galaxies; similar to results for other spiral galaxies, the derived abundance gradients are typically -0.04 to -0.07 dex/kpc.

  10. Fundamental Mass-Spin-Morphology Relation of Spiral Galaxies

    CERN Document Server

    Obreschkow, Danail

    2013-01-01

    This work present high-precision measurements of the specific baryon angular momentum jb, contained in stars, atomic gas, and molecular gas, out to ~10 scale radii, in 16 nearby spiral galaxies of the THINGS sample. The accuracy of these measurements improves on existing studies by more than an order of magnitude, leading to the discovery of a strong correlation between the baryon mass Mb, jb, and the bulge mass fraction B/T, fitted by B/T=-(0.34+-0.03)*log(jb/Mb/[1e-7 kpc km/s/Msun])-(0.04+-0.01) on the full sample range of B/T=0.00-0.32 and Mb/Msun=1e9-1e11. The corresponding relation for the stellar quantities Ms and js is identical within the uncertainties. These M-j-B/T relations likely originate from the proportionality between j/M and the surface density of the disk that dictates its stability against (pseudo-)bulge formation. Using a CDM model, we can approximately explain classical scaling relations, such as the fundamental plane of spiral galaxies, the Tully-Fisher relation, and the mass-size relati...

  11. Gas Dynamics and Outflow in the Barred Starburst Galaxy NGC 1808 Revealed with ALMA

    CERN Document Server

    Salak, Dragan; Hatakeyama, Takuya; Miyamoto, Yusuke

    2016-01-01

    NGC 1808 is a nearby barred starburst galaxy with an outflow from the nuclear region. To study the inflow and outflow processes related to star formation and dynamical evolution of the galaxy, we have carried out \\(^{12}\\)CO (\\(J=1-0\\)) mapping observations of the central \\(r\\sim4\\) kpc of NGC 1808 using the Atacama Large Millimeter/submillimeter Array (ALMA). Four distinct components of molecular gas are revealed at high spatial resolution of 2\\arcsec (\\(\\sim100\\) pc): (1) a compact (\\(r<200\\) pc) circumnuclear disk (CND), (2) \\(r\\sim500\\) pc ring, (3) gas-rich galactic bar, and (4) spiral arms. Basic geometric and kinematic parameters are derived for the central 1-kpc region using tilted-ring modeling. The derived rotation curve reveals multiple mass components that include (1) a stellar bulge, (2) nuclear bar and molecular CND, and (3) unresolved massive (\\(\\sim10^7~M_\\sun\\)) core. Two systemic velocities, 998 km s\\(^{-1}\\) for the CND and 964 km s\\(^{-1}\\) for the 500-pc ring, are revealed, indicating ...

  12. Kinematics of Ionised Gas in the Barred Seyfert Galaxy NGC 4151

    CERN Document Server

    Asif, M W; Pedlar, A

    2005-01-01

    We have determined the structure and kinematics of ionised gas in the weak oval bar of the archetypal Seyfert 1 galaxy, NGC 4151, using the TAURUS Fabry-Perot interferometer to simultaneously map the distribution and kinematics of Hbeta emission. We also present broad-band ultraviolet imaging of the host galaxy, obtained with XMM-Newton, that shows the detailed distribution of star formation in the bar and in the optically-faint outer spiral arms. We compare the distribution and kinematics of ionised gas with that previously determined in neutral hydrogen by Mundell & Shone; we suggest that the distribution of bright, patchy UV emission close to the HI shocks is consistent with ionisation by star clusters that have formed in compressed pre-shock gas. These clusters then travel ballistically through the gaseous shock to ionise gas downstream along the leading edge of the bar. In addition, we detect, for the first time, ionised gas within the shock itself which is streaming to smaller radii in the same mann...

  13. Galaxy Zoo: comparing the demographics of spiral arm number and a new method for correcting redshift bias

    Science.gov (United States)

    Hart, Ross E.; Bamford, Steven P.; Willett, Kyle W.; Masters, Karen L.; Cardamone, Carolin; Lintott, Chris J.; Mackay, Robert J.; Nichol, Robert C.; Rosslowe, Christopher K.; Simmons, Brooke D.; Smethurst, Rebecca J.

    2016-10-01

    The majority of galaxies in the local Universe exhibit spiral structure with a variety of forms. Many galaxies possess two prominent spiral arms, some have more, while others display a many-armed flocculent appearance. Spiral arms are associated with enhanced gas content and star formation in the discs of low-redshift galaxies, so are important in the understanding of star formation in the local universe. As both the visual appearance of spiral structure, and the mechanisms responsible for it vary from galaxy to galaxy, a reliable method for defining spiral samples with different visual morphologies is required. In this paper, we develop a new debiasing method to reliably correct for redshift-dependent bias in Galaxy Zoo 2, and release the new set of debiased classifications. Using these, a luminosity-limited sample of ˜18 000 Sloan Digital Sky Survey spiral galaxies is defined, which are then further sub-categorized by spiral arm number. In order to explore how different spiral galaxies form, the demographics of spiral galaxies with different spiral arm numbers are compared. It is found that whilst all spiral galaxies occupy similar ranges of stellar mass and environment, many-armed galaxies display much bluer colours than their two-armed counterparts. We conclude that two-armed structure is ubiquitous in star-forming discs, whereas many-armed spiral structure appears to be a short-lived phase, associated with more recent, stochastic star-formation activity.

  14. The Dragonfly nearby Galaxies Survey. I. Substantial Variation in the Diffuse Stellar Halos around Spiral Galaxies

    Science.gov (United States)

    Merritt, Allison; van Dokkum, Pieter; Abraham, Roberto; Zhang, Jielai

    2016-10-01

    Galaxies are thought to grow through accretion; as less massive galaxies are disrupted and merge over time, their debris results in diffuse, clumpy stellar halos enveloping the central galaxy. Here we present a study of the variation in the stellar halos of galaxies, using data from the Dragonfly Nearby Galaxies Survey (DNGS). The survey consists of wide field, deep ({μ }g\\gt 31 mag arcsec‑2) optical imaging of nearby galaxies using the Dragonfly Telephoto Array. Our sample includes eight spiral galaxies with stellar masses similar to that of the Milky Way, inclinations of 16-19 degrees and distances between 7-18 Mpc. We construct stellar mass surface density profiles from the observed g-band surface brightness in combination with the g ‑ r color as a function of radius, and compute the halo fractions from the excess stellar mass (relative to a disk+bulge fit) beyond 5 half-mass radii. We find a mean halo fraction of 0.009 ± 0.005 and a large rms scatter of {1.01}-0.26+0.9 dex. The peak-to-peak scatter of the halo fraction is a factor of \\gt 100—while some galaxies feature strongly structured halos resembling that of M31, three of the eight have halos that are completely undetected in our data. We conclude that spiral galaxies as a class exhibit a rich variety in stellar halo properties, implying that their assembly histories have been highly non-uniform. We find no convincing evidence for an environmental or stellar mass dependence of the halo fraction in the sample.

  15. ON THE STAR FORMATION LAW FOR SPIRAL AND IRREGULAR GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Elmegreen, Bruce G., E-mail: bge@us.ibm.com [IBM Research Division, T.J. Watson Research Center, 1101 Kitchawan Road, Yorktown Heights, NY 10598 (United States)

    2015-12-01

    A dynamical model for star formation on a galactic scale is proposed in which the interstellar medium is constantly condensing to star-forming clouds on the dynamical time of the average midplane density, and the clouds are constantly being disrupted on the dynamical timescale appropriate for their higher density. In this model, the areal star formation rate scales with the 1.5 power of the total gas column density throughout the main regions of spiral galaxies, and with a steeper power, 2, in the far outer regions and in dwarf irregular galaxies because of the flaring disks. At the same time, there is a molecular star formation law that is linear in the main and outer parts of disks and in dIrrs because the duration of individual structures in the molecular phase is also the dynamical timescale, canceling the additional 0.5 power of surface density. The total gas consumption time scales directly with the midplane dynamical time, quenching star formation in the inner regions if there is no accretion, and sustaining star formation for ∼100 Gyr or more in the outer regions with no qualitative change in gas stability or molecular cloud properties. The ULIRG track follows from high densities in galaxy collisions.

  16. The Local Galaxy Density and the Arm Class of Spiral Galaxies

    CERN Document Server

    Giuricin, G; Mardirossian, F; Mezzetti, M

    1993-01-01

    We have examined the effect of the environmental density on the arm classification of an extensive sample of spiral galaxies included in the Nearby Galaxy Catalog (Tully, 1988a). We have also explored the dependence of the arm class of a galaxy on other factors, such as its blue absolute magnitude and its disk-to-total mass ratio, inferred in the literature either from the gradient of a good galaxy rotation curve or from a photometric mass decomposition method. We have found that the arm class is strongly related to the absolute magnitude in the mid-type spirals (in the sense that grand design galaxies are, on average, more luminous than flocculent objects), whilst this relation is considerably weaker in the early and late types. In general the influence of the local density on the arm structure appears to be much weaker than that of the absolute magnitude. The local density acts essentially in strengthening the arm class--absolute magnitude relation for the mid types, whereas no environmental density effects...

  17. Study of the stellar population properties in the discs of ten spiral galaxies

    CERN Document Server

    Morelli, L; Pizzella, A; Bontà, E Dalla; Coccato, L; Méndez-Abreu, J

    2015-01-01

    We investigated the properties of the stellar populations in the discs of a sample of ten spiral galaxies. Our analysis focused on the galaxy region where the disc contributes more than 95 per cent of total surface brightness in order to minimise the contamination of the bulge and bar. The luminosity-weighted age and metallicity were obtained by fitting the galaxy spectra with a linear combination of stellar population synthesis models, while the total overabundance of {\\alpha}-elements over iron was derived by measuring the line-strength indices. Most of the sample discs display a bimodal age distribution and they are characterised by a total [{\\alpha}/Fe] enhancement ranging from solar and supersolar. We interpreted the age bimodality as due to the simultaneous presence of both a young (Age$\\,\\leq\\,4$ Gyr) and an old (Age$\\,>\\,$4 Gyr) stellar population. The old stellar component usually dominates the disc surface brightness and its light contribution is almost constant within the observed radial range. For...

  18. Spirality: A Noval Way to Measure Spiral Arm Pitch Angle

    Science.gov (United States)

    Shields, Douglas W.; Boe, Benjamin; Henderson, Casey L.; Hartley, Matthew; Davis, Benjamin L.; Pour Imani, Hamed; Kennefick, Daniel; Kennefick, Julia D.

    2015-01-01

    We present the MATLAB code Spirality, a novel method for measuring spiral arm pitch angles by fitting galaxy images to spiral templates of known pitch. For a given pitch angle template, the mean pixel value is found along each of typically 1000 spiral axes. The fitting function, which shows a local maximum at the best-fit pitch angle, is the variance of these means. Error bars are found by varying the inner radius of the measurement annulus and finding the standard deviation of the best-fit pitches. Computation time is typically on the order of 2 minutes per galaxy, assuming at least 8 GB of working memory. We tested the code using 128 synthetic spiral images of known pitch. These spirals varied in the number of spiral arms, pitch angle, degree of logarithmicity, radius, SNR, inclination angle, bar length, and bulge radius. A correct result is defined as a result that matches the true pitch within the error bars, with error bars no greater than ±7°. For the non-logarithmic spiral sample, the correct answer is similarly defined, with the mean pitch as function of radius in place of the true pitch. For all synthetic spirals, correct results were obtained so long as SNR > 0.25, the bar length was no more than 60% of the spiral's diameter (when the bar was included in the measurement), the input center of the spiral was no more than 6% of the spiral radius away from the true center, and the inclination angle was no more than 30°. The synthetic spirals were not deprojected prior to measurement. The code produced the correct result for all barred spirals when the measurement annulus was placed outside the bar. Additionally, we compared the code's results against 2DFFT results for 203 visually selected spiral galaxies in GOODS North and South. Among the entire sample, Spirality's error bars overlapped 2DFFT's error bars 64% of the time. For those galaxies in which Source code is available by email request from the primary author.

  19. Disk Thicknesses and Some Parameters of 108 Non-Edge-On Spiral Galaxies

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    We present disk thicknesses, some other parameters and their statistics of 108 non-edge-on spiral galaxies. The method for determining the disk thickness is based on solving Poisson's equation for a disturbance of matter density in three-dimensional spiral galaxies.From the spiral arms found we could obtain the pitch angles, the inclination of the galactic disk, and the position of the innermost point (the forbidden region with radius r0 to the galactic center) of the spiral arm, and finally the thickness.

  20. Vertical Scale Parameter Estimates for 48 Non-edge-on Spiral Galaxies

    Institute of Scientific and Technical Information of China (English)

    Jun Ma

    2003-01-01

    In the first paper of this series, we directly studied the mathematical forms, symmetry of spiral structure, and the projection of galactic discs on the images, and measured the pitch angles of the spiral arms and inclination angles of the galactic discs for 60 spiral galaxies. In this second paper, we estimate the vertical scale parameters of 48 non-edge-on spiral galaxies based on the method proposed by Peng et al. and on the results given in Paper I. As we know, for edge-on disc galaxies we can obtain the vertical scale parameter from the photometry, once a mathematical form is specified for the vertical light distribution. For non-edgeon galaxies, some other methods have to be used. The statistical result was that the vertical scale parameter is comparable for edge-on and non-edge-on galaxies,although it is obtained from two very different methods.

  1. Spiral galaxies : the light and color distributions in the optical and near-infrared

    NARCIS (Netherlands)

    de Jong, Roelof Sybe

    1995-01-01

    This thesis deals with surface photometry of face-on spiral galaxies in a statistical way, using both single passband as well as color information of a large sample of galaxies. In this chapter I first discuss galaxy formation and evolution models and the role that photometry plays in testing these

  2. STAR FORMATION IN THE OUTER DISK OF SPIRAL GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Barnes, Kate L.; Van Zee, Liese [Department of Astronomy, Indiana University, Bloomington, IN 47405 (United States); Cote, Stephanie [Canadian Gemini Office, Herzberg Institute of Astrophysics, National Research Council of Canada, Victoria (Canada); Schade, David, E-mail: barneskl@astro.indiana.edu, E-mail: vanzee@astro.indiana.edu, E-mail: Stephanie.Cote@nrc-cnrc.gc.ca, E-mail: David.Schade@nrc-cnrc.gc.ca [Herzberg Institute of Astrophysics, National Research Council of Canada, Victoria (Canada)

    2012-09-20

    We combine new deep and wide field of view H{alpha} imaging of a sample of eight nearby (d Almost-Equal-To 17 Mpc) spiral galaxies with new and archival H I and CO imaging to study the star formation and the star formation regulation in the outer disk. We find that, in agreement with previous studies, star formation in the outer disk has low covering fractions, and star formation is typically organized into spiral arms. The star formation in the outer disk is at extremely low levels, with typical star formation rate surface densities of {approx}10{sup -5} to 10{sup -6} M{sub Sun} yr{sup -1} kpc{sup -2}. We find that the ratio of the radial extent of detected H II regions to the radius of the H I disk is typically {approx}>85%. This implies that in order to further our understanding of the implications of extended star formation, we must further our understanding of the formation of extended H I disks. We measure the gravitational stability of the gas disk, and find that the outer gaseous disk is typically a factor of {approx}2 times more stable than the inner star-forming disk. We measure the surface density of outer disk H I arms, and find that the disk is closer to gravitational instability along these arms. Therefore, it seems that spiral arms are a necessary, but not sufficient, requirement for star formation in the outer disk. We use an estimation of the flaring of the outer gas disk to illustrate the effect of flaring on the Schmidt power-law index; we find that including flaring increases the agreement between the power-law indices of the inner and outer disks.

  3. The Dragonfly Nearby Galaxies Survey. I. Substantial variation in the diffuse stellar halos around spiral galaxies

    CERN Document Server

    Merritt, Allison; Abraham, Roberto; Zhang, Jielai

    2016-01-01

    Galaxies are thought to grow through accretion; as less massive galaxies are disrupted and merge over time, their debris results in diffuse, clumpy stellar halos enveloping the central galaxy. Here we present a study of the variation in the stellar halos of galaxies, using data from the Dragonfly Nearby Galaxies Survey (DNGS). The survey consists of wide field, deep ($\\mu_{g} > 31$ mag arcsec$^{-2}$) optical imaging of nearby galaxies using the Dragonfly Telephoto Array. Our sample includes eight spiral galaxies with stellar masses similar to that of the Milky Way, inclinations of $16-90$ degrees and distances between $7-18$ Mpc. We construct stellar mass surface density profiles from the observed $g$-band surface brightness in combination with the $g-r$ color as a function of radius, and compute the halo fractions from the excess stellar mass (relative to a disk$+$bulge fit) beyond $5$ half-mass radii. We find a mean halo fraction of $0.009 \\pm 0.005$ and a large RMS scatter of $1.01^{+0.9}_{-0.26}$ dex. The...

  4. UIT Ultraviolet Surface Photometry of the Spiral Galaxy M74

    Science.gov (United States)

    Cornett, R. H.; Greason, M. R.; Offenberg, J. D.; Bohlin, R. C.; Cheng, K. P.; O'Connell, R. W.; Roberts, M. R.; Smith, A. M.; Smith, E. P.; Angione, R. J.; Talbert, F. D.; Stecher, T. P.

    1993-05-01

    UV photometry from Ultraviolet Imaging Telescope (UIT) images at 1520 Angstroms (magnitudes mbone) and 2490 Angstroms (maone) of the spiral galaxy M74 (NGC628) is compared with ha, R, V, and B surface photometry and models. M74's surface brightness profiles have central peaks with exponential falloffs; the profiles' exponential scale lengths increase with decreasing continuum wavelength. The slope of the continuum-subtracted ha profile is between those of FUV and NUV profiles, consistent with related origins of ha and UV emission in extreme Population I material. M74's color profiles have small gradients, all becoming bluer with increasing radius. The UIT color (mbone-maone) averages near 0.0, the color of an A0 star, over the central 20 arcsec radius, and slopes from ~ -0.2 to ~ -0.4 from 20 to 200 arcsec. Spiral arms dominate surface photometry colors; interarm regions are slightly redder. In the UV, M74's nuclear region resembles disk/spiral arm material in color and morphology, unlike M81. (mbone-maone) colors and models of M74's central region clearly demonstrate that there are no O or B stars in the central 10 arcsec. M74's (mbone-maone) profile is similar to M33's but is ~ 0.5 mag redder. M74 is ~ 0.4 mag bluer than M81 in its outer disk. We investigate explanations for both the color profiles and the differences among the galaxies. M74's maone-V and mbone-V color profiles cannot be explained by a disk of uniform color behind a screen of dust with a known reddening function, distributed like the neutral gas with a fixed gas-to-dust ratio. Known abundance variations could produce the observed color gradient in M74; however, evolutionary cluster models show that sensible time parameters, including star formation start time and exponential decay rate, also produce the observed colors of M74, M33, and M81.

  5. Molecular Gas in NUclei of GAlaxies (NUGA): IX. The decoupled bars and gas inflow in NGC 2782

    CERN Document Server

    Hunt, L K; García-Burillo, S; Schinnerer, E; Krips, M; Baker, A J; Boone, F; Eckart, A; Léon, S; Neri, R; Tacconi, L J

    2008-01-01

    We present CO(1-0) and CO(2-1) maps of the starburst/Seyfert 1 galaxy NGC 2782, obtained with the IRAM interferometer. The CO emission is aligned along the stellar nuclear bar of radius 1 kpc, configured in an elongated structure with two spiral arms at high pitch angle. At the extremity of the nuclear bar, the CO changes direction to trace two more extended spiral features at a lower pitch angle. These are the beginning of two straight dust lanes, which are aligned parallel to an oval distortion, reminiscent of a primary bar, almost perpendicular to the nuclear one. The two embedded bars appear in Spitzer IRAC near-infrared images, and HST color images, although highly obscured by dust in the latter. We compute the torques exerted by the stellar bars on the gas, and find systematically negative average torques down to the resolution limit of the images, providing evidence of gas inflow tantalizingly close to the nucleus of NGC 2782. The observations are well reproduced by numerical simulations, including gas...

  6. On the Star Formation Law for Spiral and Irregular Galaxies

    CERN Document Server

    Elmegreen, Bruce G

    2015-01-01

    A dynamical model for star formation on a galactic scale is proposed in which the interstellar medium is constantly condensing to star-forming clouds on the dynamical time of the average midplane density, and the clouds are constantly being disrupted on the dynamical time scale appropriate for their higher density. In this model, the areal star formation rate scales with the 1.5 power of the total gas column density throughout the main regions of spiral galaxies, and with a steeper power, 2, in the far outer regions and in dwarf irregular galaxies because of the flaring disks. At the same time, there is a molecular star formation law that is linear in the main and outer parts of disks and in dIrrs because the duration of individual structures in the molecular phase is also the dynamical time scale, canceling the additional 0.5 power of surface density. The total gas consumption time scales directly with the midplane dynamical time, quenching star formation in the inner regions if there is no accretion, and su...

  7. Gas and stellar spiral arms and their offsets in the grand-design spiral galaxy M51

    Science.gov (United States)

    Egusa, Fumi; Mentuch Cooper, Erin; Koda, Jin; Baba, Junichi

    2017-02-01

    Theoretical studies on the response of interstellar gas to a gravitational potential disc with a quasi-stationary spiral arm pattern suggest that the gas experiences a sudden compression due to standing shock waves at spiral arms. This mechanism, called a galactic shock wave, predicts that gas spiral arms move from downstream to upstream of stellar arms with increasing radius inside a corotation radius. In order to investigate if this mechanism is at work in the grand-design spiral galaxy M51, we have measured azimuthal offsets between the peaks of stellar mass and gas mass distributions in its two spiral arms. The stellar mass distribution is created by the spatially resolved spectral energy distribution fitting to optical and near-infrared images, while the gas mass distribution is obtained by high-resolution CO and H I data. For the inner region (r ≤ 150 arcsec), we find that one arm is consistent with the galactic shock while the other is not. For the outer region, results are less certain due to the narrower range of offset values, the weakness of stellar arms, and the smaller number of successful offset measurements. The results suggest that the nature of two inner spiral arms is different, which is likely due to an interaction with the companion galaxy.

  8. Stellar Orbital Studies in Normal Spiral Galaxies II: Restrictions to Structural and Dynamical parameters on Spiral Arms

    CERN Document Server

    Pérez-Villegas, Angeles; Moreno, Edmundo

    2015-01-01

    Making use of a set of detailed potential models for normal spiral galaxies, we analyze the disk stellar orbital dynamics as the structural and dynamical parameters of the spiral arms (mass, pattern speed and pitch angle) are gradually modified. With this comprehensive study of ordered and chaotic behavior, we constructed an assemblage of orbitally supported galactic models and plausible parameters for orbitally self-consistent spiral arms models. We find that, to maintain orbital support for the spiral arms, the spiral arm mass, M$_{sp}$, must decrease with the increase of the pitch angle, $i$; if $i$ is smaller than $\\sim10\\deg$, M$_{sp}$ can be as large as $\\sim7\\%$, $\\sim6\\%$, $\\sim5\\%$ of the disk mass, for Sa, Sb, and Sc galaxies, respectively. If $i$ increases up to $\\sim25\\deg$, the maximum M$_{sp}$ is $\\sim1\\%$ of the disk mass independently in this case of morphological type. For values larger than these limits, spiral arms would likely act as transient features. Regarding the limits posed by extrem...

  9. Supermassive black holes in the Sbc spiral galaxies NGC 3310, NGC 4303 and NGC 4258

    CERN Document Server

    Pastorini, G; Capetti, A; Axon, D J; Alonso-Herrero, A; Atkinson, J; Batcheldor, D; Carollo, C M; Collett, J; Dressel, L; Hughes, M A; Macchetto, D; Maciejewski, W; Sparks, W; van der Marel, R; Pastorini, Guia; Marconi, Alessandro; Capetti, Alessandro; Axon, David J.; Alonso-Herrero, Almudena; Atkinson, John; Batcheldor, Dan; Collett, James; Dressel, Linda; Hughes, Mark A.; Macchetto, Duccio; Maciejewski, Witold; Sparks, William; Marel, Roeland van der

    2007-01-01

    We present new Space Telescope Imaging Spectrograph (STIS) observations of three spiral galaxies, NGC 4303, NGC 3310 and NGC 4258. The bright optical emission lines H$\\alpha$ $\\lambda$ $6564 \\AA$, [NII] $\\lambda

  10. The Opacity of Spiral Galaxy Disks III : Automating the "Synthetic Field Method"

    NARCIS (Netherlands)

    Holwerda, B. W.; González, R. A.; Allen, R. J.; Kruit, P. C. van der

    2004-01-01

    Abstract: The dust extinction in spiral disks can be estimated from the counts of background field galaxies, provided the deleterious effects of confusion introduced by structure in the image of the foreground spiral disk can be calibrated. Gonzalez et al. (1998) developed a method for this calibrat

  11. The opacity of spiral galaxy disks. III. Automating the synthetic field method

    NARCIS (Netherlands)

    Holwerda, BW; Gonzalez, RA; Allen, RJ; van der Kruit, PC

    2005-01-01

    Dust extinction in spiral disks can be estimated from the counts of background field galaxies, provided the deleterious effects of confusion introduced by structure in the image of the foreground spiral disk can be calibrated. Gonzalez et al. developed a method for this calibration, the Synthetic Fi

  12. Star cluster evolution in barred disc galaxies. I. Planar periodic orbits

    CERN Document Server

    Berentzen, I

    2011-01-01

    The dynamical evolution of stellar clusters is driven to a large extent by their environment. Several studies so far have considered the effect of tidal fields and their variations, such as, e.g., from giant molecular clouds, galactic discs, or spiral arms. In this paper we will concentrate on a tidal field whose effects on star clusters have not yet been studied, namely that of bars. We present a set of direct N-body simulations of star clusters moving in an analytic potential representing a barred galaxy. We compare the evolution of the clusters moving both on different planar periodic orbits in the barred potential and on circular orbits in a potential obtained by axisymmetrising its mass distribution. We show that both the shape of the underlying orbit and its stability have strong impact on the cluster evolution as well as the morphology and orientation of the tidal tails and the sub-structures therein. We find that the dissolution time-scale of the cluster in our simulations is mainly determined by the ...

  13. SpArcFiRe: Scalable Automated Detection of Spiral Galaxy Arm Segments

    Science.gov (United States)

    Davis, Darren R.; Hayes, Wayne B.

    2014-08-01

    Given an approximately centered image of a spiral galaxy, we describe an entirely automated method that finds, centers, and sizes the galaxy (possibly masking nearby stars and other objects if necessary in order to isolate the galaxy itself) and then automatically extracts structural information about the spiral arms. For each arm segment found, we list the pixels in that segment, allowing image analysis on a per-arm-segment basis. We also perform a least-squares fit of a logarithmic spiral arc to the pixels in that segment, giving per-arc parameters, such as the pitch angle, arm segment length, location, etc. The algorithm takes about one minute per galaxies, and can easily be scaled using parallelism. We have run it on all ~644,000 Sloan objects that are larger than 40 pixels across and classified as "galaxies." We find a very good correlation between our quantitative description of a spiral structure and the qualitative description provided by Galaxy Zoo humans. Our objective, quantitative measures of structure demonstrate the difficulty in defining exactly what constitutes a spiral "arm," leading us to prefer the term "arm segment." We find that pitch angle often varies significantly segment-to-segment in a single spiral galaxy, making it difficult to define the pitch angle for a single galaxy. We demonstrate how our new database of arm segments can be queried to find galaxies satisfying specific quantitative visual criteria. For example, even though our code does not explicitly find rings, a good surrogate is to look for galaxies having one long, low-pitch-angle arm—which is how our code views ring galaxies. SpArcFiRe is available at http://sparcfire.ics.uci.edu.

  14. VLA High Resolution 1.4 and 8.4 GHz Mapping of the Barred Galaxy NGC 3367

    CERN Document Server

    García-Barreto, J A; Rudnick, L; Franco, Jose; Rudnick, Larry

    2002-01-01

    We report new radio continuum observations with an angular resolution of 2''.1 at 1.4 GHz and 0''.28 at 8.4 GHz of the barred galaxy NGC 3367. In the map at 1.4 GHz the central nuclear region connects to the SW lobe, with a projected structure at a position angle of PA = 230 forming a jet-like structure. The map at 8.4 GHz shows a compact unresolved source (smaller than 65 pc in diameter) associated with emission from the nucleus and several compact sources located within a radius of about 300 pc, forming a circumnuclear structure. The compact core, jet, and lobes form a small, low power counterpart to radio galaxies, with a flow axis that is out of the plane of the galaxy. The flow axis (PA=230) coincides with the PA of the major axis of the galaxy and is thus inclined to the rotation axis of the disk. In addition, the flow axis differs by about 20 deg. from the major axis of the stellar bar. Assuming that the stellar bar rotates counterclockwise (ie. assuming trailing spiral arms), this difference in angle ...

  15. Secular- and merger-built bulges in barred galaxies

    CERN Document Server

    Mendez-Abreu, J; Corsini, E M; Aguerri, J A L

    2014-01-01

    (Abridged) We study the incidence, as well as the nature, of composite bulges in a sample of 10 face-on barred galaxies to constrain the formation and evolutionary processes of the central regions of disk galaxies. We analyze the morphological, photometric, and kinematic properties of each bulge. Then, by using a case-by-case analysis we identify composite bulges and classify every component into a classical or pseudobulge. In addition, bar-related boxy/peanut (B/P) structures were also identified and characterised. We find only three galaxies hosting a single-component bulge (two pseudobulges and one classical bulge). We find evidence of composite bulges coming in two main types based on their formation: secular-built and merger- and secular-built. We call secular-built to composite bulges made of entirely by structures associated with secular processes such as pseudo bulges, central disks, or B/P bulges. We find four composite bulges of this kind in our sample. On the other hand, merger- and secular-built b...

  16. A Comparative Study of Knots of Star Formation in Interacting vs. Spiral Galaxies

    CERN Document Server

    Smith, Beverly J; Struck, Curtis; Olmsted, Susan; Jones, Keith

    2016-01-01

    Interacting galaxies are known to have higher global rates of star formation on average than normal galaxies, relative to their stellar masses. Using UV and IR photometry combined with new and published H-alpha images, we have compared the star formation rates of ~700 star forming complexes in 46 nearby interacting galaxy pairs with those of regions in 39 normal spiral galaxies. The interacting galaxies have proportionally more regions with high star formation rates than the spirals. The most extreme regions in the interacting systems lie at the intersections of spiral/tidal structures, where gas is expected to pile up and trigger star formation. Published Hubble Telescope images show unusually large and luminous star clusters in the highest luminosity regions. The star formation rates of the clumps correlate with measures of the dust attenuation, consistent with the idea that regions with more interstellar gas have more star formation. For the clumps with the highest star formation rates, the apparent dust a...

  17. Aperture corrections for disk galaxy properties derived from the CALIFA survey. Balmer emission lines in spiral galaxies

    CERN Document Server

    Iglesias-Páramo, J; Galbany, L; Sánchez, S F; Rosales-Ortega, F F; Mast, D; García-Benito, R; Husemann, B; Aguerri, J A L; Alves, J; Bekeraité, S; Bland-Hawthorn, J; Catalán-Torrecilla, C; de Amorim, A L; de Lorenzo-Cáceres, A; Ellis, S; Falcón-Barroso, J; Flores, H; Florido, E; Gallazzi, A; Gomes, J M; Delgado, R M González; Haines, T; Hernández-Fernández, J D; Kehrig, C; López-Sánchez, A R; Lyubenova, M; Marino, R A; Mollá, M; Monreal-Ibero, A; Mourão, A; Papaderos, P; Sánchez-Blázquez, P; Spekkens, K; Stanishev, V; van de Ven, G; Walcher, C J; Wisotzki, L; Zibetti, S; Ziegler, B

    2013-01-01

    This work investigates the effect of the aperture size on derived galaxy properties for which we have spatially-resolved optical spectra. We focus on some indicators of star formation activity and dust attenuation for spiral galaxies that have been widely used in previous work on galaxy evolution. We have used 104 spiral galaxies from the CALIFA survey for which 2D spectroscopy with complete spatial coverage is available. From the 3D cubes we have derived growth curves of the most conspicuous Balmer emission lines (Halpha, Hbeta) for circular apertures of different radii centered at the galaxy's nucleus after removing the underlying stellar continuum. We find that the Halpha flux (f(Halpha)) growth curve follows a well defined sequence with aperture radius showing low dispersion around the median value. From this analysis, we derive aperture corrections for galaxies in different magnitude and redshift intervals. Once stellar absorption is properly accounted for, the f(Halpha)/f(Hbeta) ratio growth curve shows...

  18. Time-dependent Corotation Resonance in Barred Galaxies

    CERN Document Server

    Wu, Yu-Ting; Taam, Ronald E

    2016-01-01

    The effective potential neighboring the corotation resonance region in barred galaxies is shown to be strongly time-dependent in any rotating frame because of the competition of nearby perturbations of similar strengths with differing rotation speeds. Contrary to the generally adopted assumption, that in the bar rotating frame the corotation region should possess four stationary equilibrium points (Lagrange points), with high quality N-body simulations we localize the instantaneous equilibrium points and find that they circulate or oscillate broadly in azimuth with respect to the pattern speeds of the inner or outer perturbations. This implies that at the particle level the Jacobi integral is not well conserved around the corotation radius. That is, angular momentum exchanges decouple from energy exchanges, enhancing the chaotic diffusion of stars through the corotation region.

  19. Time-dependent Corotation Resonance in Barred Galaxies

    Science.gov (United States)

    Wu, Yu-Ting; Pfenniger, Daniel; Taam, Ronald E.

    2016-10-01

    The effective potential neighboring the corotation resonance region in barred galaxies is shown to be strongly time-dependent in any rotating frame, due to the competition of nearby perturbations of similar strengths with differing rotation speeds. Contrary to the generally adopted assumption that in the bar rotating frame the corotation region should possess four stationary equilibrium points (Lagrange points), with high quality N-body simulations, we localize the instantaneous equilibrium points (EPs) and find that they circulate or oscillate broadly in azimuth with respect to the pattern speeds of the inner or outer perturbations. This implies that at the particle level the Jacobi integral is not well conserved around the corotation radius. That is, angular momentum exchanges decouple from energy exchanges, enhancing the chaotic diffusion of stars through the corotation region.

  20. Connecting Global to Local Parameters in Barred Galaxy Models

    Indian Academy of Sciences (India)

    N. D. Caranicolas

    2002-09-01

    We present connections between global and local parameters in a realistic dynamical model, describing motion in a barred galaxy. Expanding the global model in the vicinity of a stable Lagrange point, we find the potential of a two-dimensional perturbed harmonic oscillator, which describes local motion near the centre of the global model. The frequencies of oscillations and the coefficients of the perturbing terms are not arbitrary but are connected to the mass, the angular rotation velocity, the scale length and the strength of the galactic bar. The local energy is also connected to the global energy. A comparison of the properties of orbits in the global and local potential is also made.

  1. A spiral galaxy's mass distribution uncovered through lensing and dynamics

    CERN Document Server

    Trick, Wilma H; Dutton, Aaron A

    2016-01-01

    We investigate the matter distribution of a spiral galaxy with a counter-rotating stellar core, SDSS J1331+3628 (J1331), independently with gravitational lensing and stellar dynamical modelling. By fitting a gravitational potential model to a quadruplet of lensing images around J1331's bulge, we tightly constrain the mass inside the Einstein radius R_ein = (0.91 +/- 0.02)'' (~= 1.83 +/- 0.04 kpc) to within 4%: M_ein = (7.8 +/- 0.3) x 10^10 M_Sun. We model observed long-slit major axis stellar kinematics in J1331's central regions by finding Multi-Gaussian Expansion (MGE) models for the stellar and dark matter distribution that solve the axisymmetric Jeans equations. The lens and dynamical model are independently derived, but in very good agreement with each other around ~R_ein. We find that J1331's center requires a steep total mass-to-light ratio gradient. A dynamical model including an NFW halo (with virial velocity v_200 ~= 240 +/- 40 km/s and concentration c_200 ~= 8 +/- 2) and moderate tangential velocit...

  2. The Evolution of Interacting Spiral Galaxy NGC 5194

    CERN Document Server

    Kang, Xiaoyu; Zhang, Fenghui; Cheng, Liantao; Wang, Lang

    2015-01-01

    NGC 5194 (M51a) is a grand-design spiral galaxy and undergoing interactions with its companion. Here we focus on investigating main properties of its star-formation history (SFH) by constructing a simple evolution model, which assumes that the disc builds up gradually by cold gas infall and the gas infall rate can be parameterizedly described by a Gaussian form. By comparing model predictions with the observed data, we discuss the probable range for free parameter in the model and then know more about the main properties of the evolution and SFH of M51a. We find that the model predictions are very sensitive to the free parameter and the model adopting a constant infall-peak time $t_{\\rm p}\\,=\\,7.0{\\rm Gyr}$ can reproduce most of the observed constraints of M51a. Although our model does not assume the gas infall time-scale of the inner disc is shorter than that of the outer disc, our model predictions still show that the disc of M51a forms inside-out. We find that the mean stellar age of M51a is younger than t...

  3. The opacity of spiral galaxy disks V. Dust opacity, HI distributions and sub-mm emission

    NARCIS (Netherlands)

    Holwerda, BW; Gonzalez, RA; Allen, RJ; van der Kruit, PC

    2005-01-01

    The opacity of spiral galaxy disks, from counts of distant galaxies, is compared to HI column densities. The opacity measurements are calibrated using the "Synthetic Field Method" from Gonzalez et al. (1998, ApJ, 506, 152), Holwerda et al. (2005a, AJ, 129, 1381). When compared for individual disks,

  4. Synthetic Observations of the HI Line in SPH-Simulated Spiral Galaxies

    NARCIS (Netherlands)

    Douglas, Kevin A.; Acreman, David; Dobbs, Clare; Brunt, Chris

    2009-01-01

    Using the radiative transfer code Torus, we produce spectral-line cubes of the predicted HI profile from global SPH simulations of spiral galaxies. Torus grids the SPH galaxy using Adaptive Mesh Refinement, then applies a ray-tracing method to infer the HI profile along the line(s) of sight. The gri

  5. Determining Star Formation Timescale and Pattern Speed in Nearby Spiral Galaxies

    CERN Document Server

    Egusa, Fumi; Sofue, Yoshiaki; Nakanishi, Hiroyuki; Komugi, Shinya

    2009-01-01

    We present a revised method for simultaneous determination of the pattern speed and star formation timescale of spiral galaxies, its application, and results for CO and Ha images of nearby spiral galaxies. Out of 13 galaxies, we were able to derive the 2 parameters for 5 galaxies. We categorize them as "C" galaxies, and find (1) The corotation radius is close to the edge of the CO data, and is about half of the optical radius for 3 galaxies. (2) The star formation timescale is roughly consistent with the free-fall time of typical molecular clouds, which indicates that the gravitational instability is the dominant mechanism triggering star formation in spiral arms. (3) The timescale is found to be almost independent of surface density of molecular gas, metallicity, or spiral arm strengths. The number of "C" galaxies and the quality of CO data, however, are not enough to confirm these relationships. We also find that 2 other galaxies show no offsets between CO and Ha, although their arms are clearly traced, and...

  6. Towards understanding the dynamics of the bar/bulge region in our Galaxy

    Directory of Open Access Journals (Sweden)

    Athanassoula E.

    2012-02-01

    Full Text Available I review some of the work on bars which is closely linked to the bar/bulge system in our Galaxy. Several independent studies, using totally independent methods, come to the same results about the 3D structure of a bar, i.e., that a bar is composed of a vertically thick inner part and a vertically thin outer part. I give examples of this from simulations and substantiate the discussion with input from orbital structure analysis and from observations. The thick part has a considerably shorter radial extent than the thin part. I then see how this applies to our Galaxy, where two bars have been reported, the COBE/DIRBE bar and the Long bar. Comparing their extents and making the reasonable and necessary assumption that our Galaxy has properties similar to those of other galaxies of similar type, leads to the conclusion that these two bars can not form a standard double bar system. I then discuss arguments in favour of the two bars being simply different parts of the same bar, the COBE/DIRBE bar being the thick inner part and the Long bar being the thin outer part of this bar. I also very briefly discuss some related new results. I first consider bar formation and evolution in disc galaxies with a gaseous component – including star formation, feedback and evolution – and a triaxial halo. Then I consider bar formation in a fully cosmological context using hydrodynamical LCDM simulations, where the host galaxies grow, accrete matter and significantly evolve during the formation and evolution of the bar.

  7. Anti-truncated stellar light profiles in the outer regions of STAGES spiral galaxies: bulge or disc related?

    CERN Document Server

    Maltby, David T; Gray, Meghan E; Aragón-Salamanca, Alfonso; Wolf, Christian

    2011-01-01

    We present a comparison of azimuthally averaged radial surface brightness mu(r) profiles and analytical bulge-disc decompositions (de Vaucouleurs, r^(1/4) bulge plus exponential disc) for spiral galaxies using Hubble Space Telescope/Advanced Camera for Surveys V-band imaging from the Space Telescope A901/2 Galaxy Evolution Survey (STAGES). In the established classification scheme, antitruncated mu(r) profiles (Type III) have a broken exponential disc with a shallower region beyond the break radius r_brk. The excess light at large radii (r > r_brk) can either be caused by an outer exponential disc (Type III-d) or an extended spheroidal component (Type III-s). Using our comparisons, we determine the contribution of bulge light at r > r_brk for a large sample of 78 (barred/unbarred, Sa-Sd) spiral galaxies with outer disc antitruncations (mu_brk > 24 mag arcsec^-2). In the majority of cases (~85 per cent), evidence indicates that excess light at r > r_brk is related to an outer shallow disc (Type III-d). Here, th...

  8. Supernovae and their host galaxies - IV. The distribution of supernovae relative to spiral arms

    CERN Document Server

    Aramyan, L S; Petrosian, A R; de Lapparent, V; Bertin, E; Mamon, G A; Kunth, D; Nazaryan, T A; Adibekyan, V; Turatto, M

    2016-01-01

    Using a sample of 215 supernovae (SNe), we analyze their positions relative to the spiral arms of their host galaxies, distinguishing grand-design (GD) spirals from non-GD (NGD) galaxies. We find that: (1) in GD galaxies, an offset exists between the positions of Ia and core-collapse (CC) SNe relative to the peaks of arms, while in NGD galaxies the positions show no such shifts; (2) in GD galaxies, the positions of CC SNe relative to the peaks of arms are correlated with the radial distance from the galaxy nucleus. Inside (outside) the corotation radius, CC SNe are found closer to the inner (outer) edge. No such correlation is observed for SNe in NGD galaxies nor for SNe Ia in either galaxy class; (3) in GD galaxies, SNe Ibc occur closer to the leading edges of the arms than do SNe II, while in NGD galaxies they are more concentrated towards the peaks of arms. In both samples of hosts, the distributions of SNe Ia relative to the arms have broader wings. These observations suggest that shocks in spiral arms of...

  9. A New Method to Determine the Thickness of Spiral Galaxies: Apply to M31

    Institute of Scientific and Technical Information of China (English)

    LI Meng; LUO Xin-Lian; PENG Qiu-He; ZOU Zhi-Gang

    2000-01-01

    A new method is presented to determine the thickness of spiral galaxies. Based on the rigorous solution of the Poisson equation for logarithmic density disturbance in three-dimensional spiral galaxies, we have derived an accurate dispersion relation for the stellar and gaseous disk with a finite thickness. From this relation, a new method is put forward here for determining the thickness of galaxies. We apply this way to M31 and get the thickness of about 0.7kpc, which is in good agreement with the previous results.

  10. Analysis of the spiral structure in a simulated galaxy

    CERN Document Server

    Mata-Chávez, Dolores; Puerari, Ivânio

    2014-01-01

    We analyze the spiral structure that results in a numerical simulation of a galactic disk with stellar and gaseous components evolving in a potential that includes an axisymmetric halo and bulge. We perform a second simulation without the gas component to observe how it affects the spiral structure in the disk. To quantify this, we use a Fourier analysis and obtain values for the pitch angle and the velocity of the self-excited spiral pattern of the disk. The results show a tighter spiral in the simulation with gaseous component. The spiral structure is consistent with a superposition of waves, each with a constant pattern velocity in given radial ranges.

  11. Galactic Scale Flows and the Triggering of Star Formation in Spiral Galaxies

    Science.gov (United States)

    Ramón-Fox, F. G.; Bonnell, I. A.

    2016-06-01

    Galactic scale gas flows feed the growth of molecular clouds where stars form in high-density cores. Large scale flows also play a role in injecting the energy that drives the internal dynamics of these clouds, which affects their overall stability and star formation activity. The triggering of star formation involves a connection between large and small-scale dynamical processes in galaxies, which can be explored using high-resolution hydrodynamical simulations. We present results of current work in high-resolution N-body and Smoothed Particle Hydrodynamics simulations of a model spiral galaxy with a realistic spiral arm morphology. These simulations allow to study gas flows in a self-consistent galaxy and their role on molecular cloud formation and growth. They also provide a ground for studying molecular cloud properties in different environments of a galaxy, the effects of spiral arms on large scale flows and for understanding global star formation relations.

  12. Structure and kinematics of candidate double-barred galaxies

    CERN Document Server

    Moiseev, A V; Chavushyan, V H

    2003-01-01

    Results of optical and NIR spectral and photometric observations of a sample of candidate double-barred galaxies are presented. Velocity fields and velocity dispersion maps of stars and ionized gas, continuum and emission-line images were constructed from integral-field spectroscopy observations carried out at the 6m telescope (BTA) of SAO RAS, with the MPFS spectrograph and the scanning Fabry-Perot Interferometer. NGC2681 was also observed with long-slit spectrograph of the BTA. Optical and NIR images were obtained at the BTA and at the 2.1m telescope (OAN, M\\'exico). High-resolution images were retrieved from the HST data archive. Morphological and kinematic features of all 13 sample objects are described in detail. Attention is focused on the interpretation of observed non-circular motions of gas and stars in circumnuclear (one kiloparsec- scale) regions. We have shown first of all that these motions are caused by a gravitational potential of large-scale bar. NGC3368 and NGC3786 have nuclear bars only, the...

  13. Magnetic fields in barred galaxies. V. Modelling NGC 1365

    CERN Document Server

    Moss, D; Englmaier, P; Shukurov, A; Beck, R; Sokoloff, D D; 10.1051/0004-6361:20066222

    2009-01-01

    We present a model of the global magnetic field in the barred galaxy NGC 1365 based jointly on the large-scale velocity field of interstellar gas fitted to HI and CO observations of this galaxy and on mean-field dynamo theory. The aim of the paper is to present a detailed quantitative comparison of a galactic dynamo model with independent radio observations. We consider several gas dynamical and nonlinear dynamo models that include plausible variations of parameters that are poorly known. Models of cosmic ray distribution in the galaxy are introduced to produce synthetic radio polarization maps allowing direct comparison with those observed at 3.5cm and 6.2cm. We show that the dynamo model is robust in that the most important magnetic features are controlled by the relatively well established properties of the density distribution and gas velocity field. The optimal agreement between the synthetic polarization maps and observations is obtained when a uniform cosmic ray distribution is adopted. We find some in...

  14. The impact of gas inflows on star formation rates and metallicities in barred galaxies

    CERN Document Server

    Ellison, Sara L; Patton, David R; Scudder, Jillian M; Mendel, J Trevor; Simard, Luc

    2011-01-01

    The star formation rates (SFRs) and metallicities of a sample of 294 galaxies with visually classified, strong, large-scale bars are compared to a control sample of unbarred disk galaxies selected from the Sloan Digital Sky Survey Data Release 4. The fibre (inner few kpc) metallicities of barred galaxies are uniformly higher (at a given mass) than the unbarred sample by ~0.06 dex. However, the fibre SFRs of the visually classified barred galaxies are higher by about 60% only in the galaxies with total stellar mass log M > 10. The metal enhancement at log M10. However, due to the much lower fraction of pairs than bars, bars account for ~3.5 times more triggered central star formation than interactions.

  15. Orbital and escape dynamics in barred galaxies - II. The 3D system: exploring the role of the normally hyperbolic invariant manifolds

    Science.gov (United States)

    Jung, Christof; Zotos, Euaggelos E.

    2016-12-01

    A three degrees of freedom (3-dof) barred galaxy model composed of a spherically symmetric nucleus, a bar, a flat disc and a spherically symmetric dark matter halo is used for investigating the dynamics of the system. We use colour-coded plots to demonstrate how the value of the semimajor axis of the bar influences the regular or chaotic dynamics of the 3-dof system. For distinguishing between ordered and chaotic motion, we use the Smaller ALingment Index (SALI) method, a fast yet very accurate tool. Undoubtedly, the most important elements of the dynamics are the normally hyperbolic invariant manifolds (NHIMs) located in the vicinity of the index 1 Lagrange points L2 and L3. These manifolds direct the flow of stars over the saddle points, while they also trigger the formation of rings and spirals. The dynamics in the neighbourhood of the saddle points is visualized by bifurcation diagrams of the Lyapunov orbits as well as by the restriction of the Poincaré map to the NHIMs. In addition, we reveal how the semimajor axis of the bar influences the structure of these manifolds which determine the final stellar structure (rings or spirals). Our numerical simulations suggest that in galaxies with weak bars the formation of R1 rings or R_1^' } pseudo-rings is favoured. In the case of galaxies with intermediate and strong bars, the invariant manifolds seem to give rise to R1R2 rings and twin spiral formations, respectively. We also compare our numerical outcomes with earlier related work and with observational data.

  16. Gas and stellar spiral arms and their offsets in the grand-design spiral galaxy M51

    CERN Document Server

    Egusa, Fumi; Koda, Jin; Baba, Junichi

    2016-01-01

    Theoretical studies on the response of interstellar gas to a gravitational potential disc with a quasi-stationary spiral arm pattern suggest that the gas experiences a sudden compression due to standing shock waves at spiral arms. This mechanism, called a galactic shock wave, predicts that gas spiral arms move from downstream to upstream of stellar arms with increasing radius inside a corotation radius. In order to investigate if this mechanism is at work in the grand-design spiral galaxy M51, we have measured azimuthal offsets between the peaks of stellar mass and gas mass distributions in its two spiral arms. The stellar mass distribution is created by the spatially resolved spectral energy distribution fitting to optical and near infrared images, while the gas mass distribution is obtained by high-resolution CO and HI data. For the inner region (r < 150"), we find that one arm is consistent with the galactic shock while the other is not. For the outer region, results are less certain due to the narrower...

  17. The JCMT Nearby Galaxies Legacy Survey I. Star Forming Molecular Gas in Virgo Cluster Spiral Galaxies

    CERN Document Server

    Wilson, C D; Israel, F P; Serjeant, S; Bendo, G; Brinks, E; Clements, D; Courteau, S; Irwin, J; Knapen, J H; Leech, J; Matthews, H E; Muehle, S; Mortier, A M J; Petitpas, G; Sinukoff, E; Spekkens, K; Tan, B K; Tilanus, R P J; Usero, A; Van der Werf, P P; Wiegert, T; Zhu, M

    2008-01-01

    We present large-area maps of the CO J=3-2 emission obtained at the James Clerk Maxwell Telescope for four spiral galaxies in the Virgo Cluster. We combine these data with published CO J=1-0, 24 micron, and Halpha images to measure the CO line ratios, molecular gas masses, and instantaneous gas depletion times. For three galaxies in our sample (NGC 4254, NGC4321, and NGC 4569), we obtain molecular gas masses of 7E8-3E9 Msun and disk-averaged instantaneous gas depletion times of 1.1-1.7 Gyr. We argue that the CO J=3-2 line is a better tracer of the dense star forming molecular gas than the CO J=1-0 line, as it shows a better correlation with the star formation rate surface density both within and between galaxies. NGC 4254 appears to have a larger star formation efficiency(smaller gas depletion time), perhaps because it is on its first passage through the Virgo Cluster. NGC 4569 shows a large-scale gradient in the gas properties traced by the CO J=3-2/J=1-0 line ratio, which suggests that its interaction with ...

  18. The M_bh-sigma diagram, and the offset nature of barred active galaxies

    CERN Document Server

    Graham, Alister W

    2009-01-01

    From a sample of 50 predominantly inactive galaxies with direct supermassive black hole mass measurements, it has recently been established that barred galaxies tend to reside rightward of the M_bh-sigma relation defined by non-barred galaxies. Either black holes in barred galaxies tend to be anemic or the central velocity dispersions in these galaxies have a tendency to be elevated by the presence of the bar. The latter option is in accord with studies connecting larger velocity dispersions in galaxies with old bars, while the former scenario is at odds with the observation that barred galaxies do not deviate from the M_bh-luminosity relation. Using a sample of 88 galaxies with active galactic nuclei, whose supermassive black hole masses have been estimated from their associated emission lines, we reveal for the first time that they also display this same general behavior in the M_bh-sigma diagram depending on the presence of a bar or not. A new symmetrical and non-symmetrical "barless" M_bh-sigma relation i...

  19. Spiral structure in nearby galaxies I. Sample, data analysis, and overview of results

    CERN Document Server

    Kendall, S; Clarke, C

    2011-01-01

    This paper, the first of two, introduces an observational study of spiral structure in galaxies chosen from the SINGS survey. Near infrared (NIR) and optical data are used to produce mass surface density maps, and from these the morphology of the disc is examined. The aim of this work is to characterise the prevalence of spiral structure in this sample and, in the cases where a clear spiral pattern is found, include the findings in a comparative study (reported in paper II). A two-armed (`grand design') spiral pattern is found in approximately half the galaxies studied, including all those that are designated as grand design in the optical, but also including some, but not all, optically flocculent galaxies. It is found that the level of non-axisymmetric structure in the galaxies' mass distributions is only modestly higher in those galaxies that are classified as `grand design' compared with those that are not, implying that non-grand design galaxies possess significant power in higher order modes. There is n...

  20. Effect of dark matter halo on global spiral modes in galaxies

    Science.gov (United States)

    Ghosh, Soumavo; Saini, Tarun Deep; Jog, Chanda J.

    2016-02-01

    Low surface brightness (LSB) galaxies form a major class of galaxies, and are characterized by low disc surface density and low star formation rate. These are known to be dominated by dark matter halo from the innermost regions. Here, we study the role of the dark matter halo on the grand-design, m = 2, spiral modes in a galactic disc by carrying out a global mode analysis in the WKB approximation. The Bohr-Sommerfeld quantization rule is used to determine how many discrete global spiral modes are permitted. First, a typical superthin, LSB galaxy UGC 7321 is studied by taking only the galactic disc, modelled as a fluid; and then the disc embedded in a dark matter halo. We find that both cases permit the existence of global spiral modes. This is in contrast to earlier results where the inclusion of dark matter halo was shown to nearly fully suppress local, swing-amplified spiral features. Although technically global modes are permitted in the fluid model as shown here, we argue that due to lack of tidal interactions, these are not triggered in LSB galaxies. For comparison, we carried out a similar analysis for the Galaxy, for which the dark matter halo does not dominate in the inner regions. We show that here too the dark matter halo has little effect, hence the disc embedded in a halo is also able to support global modes. The derived pattern speed of the global mode agrees fairly well with the observed value for the Galaxy.

  1. Circumnuclear star-forming regions in early type spiral galaxies: dynamical masses

    CERN Document Server

    Hagele, G F; Bosch, G L; Diaz, A I; Terlevich, E; Terlevich, R

    2012-01-01

    We present the measurements of gas and stellar velocity dispersions in 17 circumnuclear star-forming regions (CNSFRs) and the nuclei of three barred spiral galaxies: NGC2903, NGC3310 and NGC3351 from high dispersion spectra. The stellar dispersions have been obtained from the CaII triplet (CaT) lines at 8494, 8542, 8662A, while the gas velocity dispersions have been measured by Gaussian fits to the Hbeta and to the [OIII]5007A\\ lines. The CNSFRs, with sizes of about 100 to 150pc in diameter, are seen to be composed of several individual star clusters with sizes between 1.5 and 6.2pc on HST images. Using the stellar velocity dispersions, we have derived dynamical masses for the entire star-forming complexes and for the individual star clusters. Values of the stellar velocity dispersions are between 31 and 73 km/s. Dynamical masses for the whole CNSFRs are between 4.9x10^6 and 1.9x10^8 Mo and between 1.4x10^6 and 1.1x10^7 Mo for the individual star clusters. We have found indications for the presence of two dif...

  2. A Chandra Observation of the Face-on Spiral Galaxy NGC 3938

    Science.gov (United States)

    Buhidar, Kelsey; Schlegel, Eric M.

    2017-01-01

    The ACIS detector (Advanced CCD Imaging Spectrometer) onboard the Chandra X-ray Observatory has imaged the face-on spiral NGC 3938 for 50 ksec. We will detect ~50 sources within the D25 radius. We will describe the luminosity distribution in comparison with distributions from other nearby spiral galaxies. We do not detect any diffuse emission. We will compare the X-ray data to observations at other wavebands.

  3. AXIAL RATIO OF EDGE-ON SPIRAL GALAXIES AS A TEST FOR BRIGHT RADIO HALOS

    Energy Technology Data Exchange (ETDEWEB)

    Singal, J.; Jones, E.; Dunlap, H. [Physics Department, University of Richmond 28 Westhampton Way, Richmond, VA 23173 (United States); Kogut, A., E-mail: jsingal@richmond.edu [Code 665, NASA Goddard Space Flight Center Greenbelt, MD 20771 (United States)

    2015-01-20

    We use surface brightness contour maps of nearby edge-on spiral galaxies to determine whether extended bright radio halos are common. In particular, we test a recent model of the spatial structure of the diffuse radio continuum by Subrahmanyan and Cowsik which posits that a substantial fraction of the observed high-latitude surface brightness originates from an extended Galactic halo of uniform emissivity. Measurements of the axial ratio of emission contours within a sample of normal spiral galaxies at 1500 MHz and below show no evidence for such a bright, extended radio halo. Either the Galaxy is atypical compared to nearby quiescent spirals or the bulk of the observed high-latitude emission does not originate from this type of extended halo. (letters)

  4. A Search for double-lobed radio emission from Galactic Stars and Spiral Galaxies

    CERN Document Server

    Martínez, Abiel Felipe Ortiz

    2016-01-01

    We present a systematic search for two types of very unusual astronomical objects: Galactic stars and spiral galaxies with double radio lobes, i.e. radio emission on opposite sides of the optical object, suggesting the ejection of jets from them. We designed an algorithm to search for pairs of radio sources straddling objects from two unprecedented samples of 878,031 Galactic stars from the Sloan Digital Sky Survey and 675,874 spiral galaxy candidates drawn from the recent literature. We found three new examples of double-lobed radio stars, while for the spiral galaxies we only rediscovered one known such double source, confirming that the latter objects are extremely rare.

  5. Galaxy Zoo: the effect of bar-driven fueling on the presence of an active galactic nucleus in disc galaxies

    CERN Document Server

    Galloway, Melanie A; Fortson, Lucy F; Cardamone, Carolin N; Schawinski, Kevin; Cheung, Edmond; Lintott, Chris J; Masters, Karen L; Melvin, Thomas; Simmons, Brooke D

    2015-01-01

    We study the influence of the presence of a strong bar in disc galaxies which host an active galactic nucleus (AGN). Using data from the Sloan Digital Sky Survey and morphological classifications from the Galaxy Zoo 2 project, we create a volume-limited sample of 19,756 disc galaxies at $0.01bar. Within this sample, AGN host galaxies have a higher overall percentage of bars (51.8%) than inactive galaxies exhibiting central star formation (37.1%). This difference is primarily due to known effects; that the presence of both AGN and galactic bars is strongly correlated with both the stellar mass and integrated colour of the host galaxy. We control for this effect by examining the difference in AGN fraction between barred and unbarred galaxies in fixed bins of mass and colour. Once this effect is accounted for, there remains a small but statistically significant increase that represents 16% of the average barred AGN fraction. Using the $L_{\\rm...

  6. Galaxy Zoo: comparing the demographics of spiral arm number and a new method for correcting redshift bias

    CERN Document Server

    Hart, Ross E; Willett, Kyle W; Masters, Karen L; Cardamone, Carolin; Lintott, Chris J; Mackay, Robert J; Nichol, Robert C; Rosslowe, Christopher K; Simmons, Brooke D; Smethurst, Rebecca J

    2016-01-01

    The majority of galaxies in the local Universe exhibit spiral structure with a variety of forms. Many galaxies possess two prominent spiral arms, some have more, while others display a many-armed flocculent appearance. Spiral arms are associated with enhanced gas content and star-formation in the disks of low-redshift galaxies, so are important in the understanding of star-formation in the local universe. As both the visual appearance of spiral structure, and the mechanisms responsible for it vary from galaxy to galaxy, a reliable method for defining spiral samples with different visual morphologies is required. In this paper, we develop a new debiasing method to reliably correct for redshift-dependent bias in Galaxy Zoo 2, and release the new set of debiased classifications. Using these, a luminosity-limited sample of ~18,000 Sloan Digital Sky Survey spiral galaxies is defined, which are then further sub-categorised by spiral arm number. In order to explore how different spiral galaxies form, the demographic...

  7. Formation of S0 galaxies through mergers. Explaining angular momentum and concentration change from spirals to S0s

    NARCIS (Netherlands)

    Querejeta, M.; Eliche-Moral, M. C.; Tapia, T.; Borlaff, A.; van de Ven, G.; Lyubenova, M.; Martig, M.; Falcón-Barroso, J.; Méndez-Abreu, J.

    2015-01-01

    The CALIFA team has recently found that the stellar angular momentum and concentration of late-type spiral galaxies are incompatible with those of lenticular galaxies (S0s), concluding that fading alone cannot satisfactorily explain the evolution from spirals into S0s. Here we explore whether major

  8. Gas-phase Oxygen Abundances and Radial Metallicity Gradients in the Two nearby Spiral Galaxies NGC 7793 and NGC 4945

    Science.gov (United States)

    Stanghellini, Letizia; Magrini, Laura; Casasola, Viviana

    2015-10-01

    Gas-phase abundances in H ii regions of two spiral galaxies, NGC 7793 and NGC 4945, have been studied to determine their radial metallicity gradients. We used the strong-line method to derive oxygen abundances from spectra acquired with GMOS-S, the multi-object spectrograph on the 8 m Gemini South telescope. We found that NGC 7793 has a well-defined gas-phase radial oxygen gradient of -0.321 ± 0.112 dex {R}25-1 (or -0.054 ± 0.019 dex kpc-1) in the galactocentric range 0.17 < RG/R25 < 0.82, not dissimilar from gradients calculated with direct abundance methods in galaxies of similar mass and morphology. We also determined a shallow radial oxygen gradient in NGC 4945, -0.253 ± 0.149 dex {R}25-1 (or -0.019 ± 0.011 dex kpc-1) for 0.04 < RG/R25 < 0.51, where the larger relative uncertainty derives mostly from the larger inclination of this galaxy. NGC 7793 and NGC 4945 have been selected for this study because they are similar, in mass and morphology, to M33 and the Milky Way, respectively. Since at zeroth order we expect the radial metallicity gradients to depend on mass and galaxy type, we compared our galaxies in the framework of radial metallicity models best suited for M33 and the Galaxy. We found a good agreement between M33 and NGC 7793, pointing toward similar evolution for the two galaxies. We notice instead differences between NGC 4945 and the radial metallicity gradient model that best fits the Milky Way. We found that these differences are likely related to the presence of an active galactic nucleus combined with a bar in the central regions of NGC 4945, and to its interacting environment.

  9. XCHANGES: XMM-Newton data on CHANG-ES spiral galaxies

    Science.gov (United States)

    Wezgowiec, M.; Dettmar, R.

    2014-07-01

    The CHANG-ES survey of galaxies provides a unique sample of edge-on spiral galaxies with deep radio observations, that allow detailed analysis of their magnetic fields. Since the co-existence of halo magnetic fields and hot gas is likely to greatly influence the dynamics of the galactic halo, we analyse diffuse X-ray emission for the sample galaxies. Here, we present preliminary results of the imaging of the soft X-ray emission (0.2-1 keV) from selected galaxies of the sample using archive data of the XMM-Newton X-ray telescope.

  10. The transformation of Spirals into S0 galaxies in the cluster environment

    Directory of Open Access Journals (Sweden)

    Mauro eD'onofrio

    2015-08-01

    Full Text Available We discuss the observational evidences of the morphological transformation of Spirals into S0 galaxies in the cluster environment exploiting two big databases of galaxy clusters: WINGS (0.04galaxies in clusters is almost a factor of ∼ 3 − 4 larger today than at redshift z ∼ 1; 2 the fraction of S0’s to Spirals increases on average by a factor ∼ 2 every Gyr; 3 the average rate of transformation for Spirals (not considering the infall of new galaxies from the cosmic web is: ∼ 5 Sp→S0’s per Gyr and ∼ 2 Sp→E’s per Gyr; 4 there are evidences that the interstellar gas of Spirals is stripped by an hot intergalactic medium; 5 there are also indirect hints that major/minor merging events have played a role in the transformation of Spiral galaxies. In particular, we show that: 1 the ratio between the number of S0’s and Spirals (NS0/NSp in the WINGS clusters is correlated with their X-ray luminosity LX ; 2 that the brightest and massive S0’s are always close to the cluster center; 3 that the mean Se ́rsic index of S0’s is always larger than that of Spirals (and lower than E’s for galaxy stellar masses above 10^9.5M⊙; 4 that the number of E’s in clusters cannot be constant; 5 that the largest difference between the mean mass of S0’s and E’s with respect to Spirals is observed in clusters with low velocity dispersion.Finally, by comparing the properties of the various morphological types for galaxies in clusters and in the field, we find that the most significant effect of the environment is the stripping of the outer galaxy regions, resulting in a systematic difference in effective radius and Se ́rsic index.

  11. A COMPARATIVE STUDY OF KNOTS OF STAR FORMATION IN INTERACTING VERSUS SPIRAL GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Beverly J.; Olmsted, Susan; Jones, Keith [Department of Physics and Astronomy, East Tennessee State University, Johnson City TN 37614 (United States); Zaragoza-Cardiel, Javier [Instituto de Astrofisica de Canarias, La Laguna, Tenerife (Spain); Struck, Curtis, E-mail: smithbj@etsu.edu [Department of Physics and Astronomy, Iowa State University, Ames IA 50011 (United States)

    2016-03-15

    Interacting galaxies are known to have higher global rates of star formation on average than normal galaxies, relative to their stellar masses. Using UV and IR photometry combined with new and published Hα images, we have compared the star formation rates (SFRs) of ∼700 star forming complexes in 46 nearby interacting galaxy pairs with those of regions in 39 normal spiral galaxies. The interacting galaxies have proportionally more regions with high SFRs than the spirals. The most extreme regions in the interacting systems lie at the intersections of spiral/tidal structures, where gas is expected to pile up and trigger star formation. Published Hubble Space Telescope images show unusually large and luminous star clusters in the highest luminosity regions. The SFRs of the clumps correlate with measures of the dust attenuation, consistent with the idea that regions with more interstellar gas have more star formation. For the clumps with the highest SFRs, the apparent dust attenuation is consistent with the Calzetti starburst dust attenuation law. This suggests that the high luminosity regions are dominated by a central group of young stars surrounded by a shell of clumpy interstellar gas. In contrast, the lower luminosity clumps are bright in the UV relative to Hα, suggesting either a high differential attenuation between the ionized gas and the stars, or a post-starburst population bright in the UV but faded in Hα. The fraction of the global light of the galaxies in the clumps is higher on average for the interacting galaxies than for the spirals. Thus either star formation in interacting galaxies is “clumpier” on average, or the star forming regions in interacting galaxies are more luminous, dustier, or younger on average.

  12. BARRED GALAXY PHOTOMETRY: COMPARING RESULTS FROM THE CANANEA SAMPLE WITH N-BODY SIMULATIONS

    Directory of Open Access Journals (Sweden)

    E. Athanassoula

    2009-01-01

    Full Text Available We compare the results of the photometrical analysis of barred galaxies with those of a similar analysis from N-body simulations. The photometry is for a sample of nine barred galaxies observed in the J and Ks bands with the CANICA near infrared (NIR camera at the 2.1 m telescope of the Observatorio Astrofisico Guillermo Haro (OAGH in Cananea, Sonora, Mexico. The comparison includes radial ellipticity pro les and surface brightness (density for the N-body galaxies pro les along the bar major and minor axes. We nd very good agreement, arguing that the exchange of angular momentum within the galaxy plays a determinant role in the evolution of barred galaxies.

  13. The opacity of spiral galaxy disks. IV. Radial extinction profiles from counts of distant galaxies seen through foreground disks

    NARCIS (Netherlands)

    Holwerda, BW; Gonzalez, RA; Allen, RJ; van der Kruit, PC

    2005-01-01

    Dust extinction can be determined from the number of distant field galaxies seen through a spiral disk. To calibrate this number for the crowding and confusion introduced by the foreground image, Gonzalez et al. and Holwerda et al. developed the Synthetic Field Method (SFM), which analyzes synthetic

  14. Bars in Disk-Dominated and Bulge-Dominated Galaxies at z~0: New Insights from ~3600 SDSS Galaxies

    CERN Document Server

    Barazza, Fabio D; Marinova, Irina

    2007-01-01

    We present a study of large-scale bars in the local Universe, based on a large sample of ~3692 galaxies, with -18.5 60^{\\circ}$) systems, we find the following results. (1) The optical r-band fraction (f_opt-r) of barred galaxies, when averaged over the whole sample, is ~48%-52%. (2)~When galaxies are separated according to half light radius (r_e), or normalized r_e/R_24, which is a measure of the bulge-to-disk (B/D) ratio, a remarkable result is seen: f_opt-r rises sharply, from ~40% in galaxies that have small r_e/R_24 and visually appear to host prominent bulges, to ~70% for galaxies that have large r_e/R_24 and appear disk-dominated. (3)~f_opt-r rises for galaxies with bluer colors, lower masses, or fainter luminosities. (4) While hierarchical $\\Lambda$CDM models of galaxy evolution models fail to produce galaxies without classical bulges, our study finds that ~20% of disk galaxies appear to be ``quasi-bulgeless''. (5) After applying the same cutoffs in magnitude (M_V= 1.5 kpc), and bar ellipticity (e_bar...

  15. The Black Hole Mass - Pitch Angle Relation of Type I AGN In Spiral Galaxies

    Science.gov (United States)

    Schilling, Amanda; Jones, Logan; Hughes, John A.; Barrows, R. Scott; Kennefick, Julia D.

    2017-01-01

    A relationship between the mass of supermassive black holes, M, at the center of galaxies and the pitch angle, P, a measure of tightness of spiral arms, was recently reported by Berrier, et al. (2013 ApJ 769, 132) for late type galaxies. The relationship, established for a local sample, shows that spiral galaxies with tighter pitch angles host higher mass black holes. In this work, we explore the M-P relation for a sample of 50 low to moderate redshift (0.04spiral galaxies that host Type 1 Active Galactic Nuclei, AGN. These objects were selected from the SDSS quasar catalog and various studies involving HST imaging. Broad Hβ, Hα, and MgII and narrow [OIII]λ5007 emission lines were used with established mass scaling relations to estimate black-hole mass. Pitch angles were measured using a 2DFFT technique (Davis, et al., 2012 ApJS 199, 33). We find that the M-P relation for the higher redshift, AGN sample differs from that of the local sample and discuss the possibility of AGN feedback by looking at a proposed Fundamental Plane for late-type galaxies - a correlation between bulge mass, disk mass, and spiral-arm pitch angle (Davis, et al. 2015, ApJ 802, L13).

  16. DGSAT: Dwarf Galaxy Survey with Amateur Telescopes. I. Discovery of low surface brightness systems around nearby spiral galaxies

    Science.gov (United States)

    Javanmardi, B.; Martinez-Delgado, D.; Kroupa, P.; Henkel, C.; Crawford, K.; Teuwen, K.; Gabany, R. J.; Hanson, M.; Chonis, T. S.; Neyer, F.

    2016-04-01

    Context. We introduce the Dwarf Galaxy Survey with Amateur Telescopes (DGSAT) project and report the discovery of eleven low surface brightness (LSB) galaxies in the fields of the nearby galaxies NGC 2683, NGC 3628, NGC 4594 (M 104), NGC 4631, NGC 5457 (M 101), and NGC 7814. Aims: The DGSAT project aims to use the potential of small-sized telescopes to probe LSB features around large galaxies and to increase the sample size of the dwarf satellite galaxies in the Local Volume. Methods: Using long exposure images, fields of the target spiral galaxies are explored for extended LSB objects. After identifying dwarf galaxy candidates, their observed properties are extracted by fitting models to their light profiles. Results: We find three, one, three, one, one, and two new LSB galaxies in the fields of NGC 2683, 3628, 4594, 4631, 5457, and 7814, respectively. In addition to the newly found galaxies, we analyse the structural properties of nine already known galaxies. All of these 20 dwarf galaxy candidates have effective surface brightnesses in the range 25.3 ≲ μe ≲ 28.8 mag arcsec-2 and are fit with Sersic profiles with indices n ≲ 1. Assuming that they are in the vicinity of the above mentioned massive galaxies, their r-band absolute magnitudes, their effective radii, and their luminosities are in the ranges -15.6 ≲ Mr ≲ -7.8, 160 pc ≲ Re ≲ 4.1 kpc, and 0.1 × 106 ≲ (L/L⊙)r ≲ 127 × 106, respectively. To determine whether these LSB galaxies are indeed satellites of the above mentioned massive galaxies, their distances need to be determined via further observations. Conclusions: Using small telescopes, we are readily able to detect LSB galaxies with similar properties to the known dwarf galaxies of the Local Group.

  17. Galaxy And Mass Assembly (GAMA): Gas Fueling of Spiral Galaxies in the Local Universe. I. The Effect of the Group Environment on Star Formation in Spiral Galaxies

    Science.gov (United States)

    Grootes, M. W.; Tuffs, R. J.; Popescu, C. C.; Norberg, P.; Robotham, A. S. G.; Liske, J.; Andrae, E.; Baldry, I. K.; Gunawardhana, M.; Kelvin, L. S.; Madore, B. F.; Seibert, M.; Taylor, E. N.; Alpaslan, M.; Brown, M. J. I.; Cluver, M. E.; Driver, S. P.; Bland-Hawthorn, J.; Holwerda, B. W.; Hopkins, A. M.; Lopez-Sanchez, A. R.; Loveday, J.; Rushton, M.

    2017-03-01

    We quantify the effect of the galaxy group environment (for group masses of 1012.5–1014.0 M ⊙) on the current star formation rate (SFR) of a pure, morphologically selected sample of disk-dominated (i.e., late-type spiral) galaxies with redshift ≤0.13. The sample embraces a full representation of quiescent and star-forming disks with stellar mass M * ≥ 109.5 M ⊙. We focus on the effects on SFR of interactions between grouped galaxies and the putative intrahalo medium (IHM) of their host group dark matter halos, isolating these effects from those induced through galaxy–galaxy interactions, and utilizing a radiation transfer analysis to remove the inclination dependence of derived SFRs. The dependence of SFR on M * is controlled for by measuring offsets Δlog(ψ *) of grouped galaxies about a single power-law relation in specific SFR, {\\psi }* \\propto {M}* -0.45+/- 0.01, exhibited by non-grouped “field” galaxies in the sample. While a small minority of the group satellites are strongly quenched, the group centrals and a large majority of satellites exhibit levels of ψ * statistically indistinguishable from their field counterparts, for all M *, albeit with a higher scatter of 0.44 dex about the field reference relation (versus 0.27 dex for the field). Modeling the distributions in Δlog(ψ *), we find that (i) after infall into groups, disk-dominated galaxies continue to be characterized by a similar rapid cycling of gas into and out of their interstellar medium shown prior to infall, with inflows and outflows of ∼1.5–5 x SFR and ∼1–4 x SFR, respectively; and (ii) the independence of the continuity of these gas flow cycles on M * appears inconsistent with the required fueling being sourced from gas in the circumgalactic medium on scales of ∼100 kpc. Instead, our data favor ongoing fueling of satellites from the IHM of the host group halo on ∼Mpc scales, i.e., from gas not initially associated with the galaxies upon infall. Consequently

  18. Unequal-mass galaxy merger remnants: spiral-like morphology but elliptical-like kinematics

    CERN Document Server

    Bournaud, F; Jog, C J

    2004-01-01

    It is generally believed that major galaxy mergers with mass ratios in the range 1:1-3:1 result in remnants that have properties similar to elliptical galaxies, and minor mergers below 10:1 result in disturbed spiral galaxies. The intermediate range of mass ratios 4:1-10:1 has not been studied so far. Using N-body simulations, we show that such mergers can result in very peculiar systems, that have the morphology of a disk galaxy with an exponential profile, but whose kinematics is closer to that of elliptical systems. These objects are similar to those recently observed by Jog & Chitre (2002). We present two cases with mass ratios 4.5:1 and 7:1, and show that the merging causes major heating and results in the appearance of elliptical-type kinematics, while surprisingly the initial spiral-like mass profile is conserved.

  19. SPIN ALIGNMENTS OF SPIRAL GALAXIES WITHIN THE LARGE-SCALE STRUCTURE FROM SDSS DR7

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Youcai; Yang, Xiaohu; Luo, Wentao [Key Laboratory for Research in Galaxies and Cosmology, Shanghai Astronomical Observatory, Nandan Road 80, Shanghai 200030 (China); Wang, Huiyuan [Key Laboratory for Research in Galaxies and Cosmology, University of Science and Technology of China, Hefei, Anhui 230026 (China); Wang, Lei [Purple Mountain Observatory, The Partner Group of MPI für Astronomie, 2 West Beijing Road, Nanjing 210008 (China); Mo, H. J. [Department of Astronomy, University of Massachusetts, Amherst, MA 01003-9305 (United States); Van den Bosch, Frank C., E-mail: yczhang@shao.ac.cn, E-mail: xyang@sjtu.edu.cn [Department of Astronomy, Yale University, P.O. Box 208101, New Haven, CT 06520-8101 (United States)

    2015-01-01

    Using a sample of spiral galaxies selected from the Sloan Digital Sky Survey Data Release 7 and Galaxy Zoo 2, we investigate the alignment of spin axes of spiral galaxies with their surrounding large-scale structure, which is characterized by the large-scale tidal field reconstructed from the data using galaxy groups above a certain mass threshold. We find that the spin axes only have weak tendencies to be aligned with (or perpendicular to) the intermediate (or minor) axis of the local tidal tensor. The signal is the strongest in a cluster environment where all three eigenvalues of the local tidal tensor are positive. Compared to the alignments between halo spins and the local tidal field obtained in N-body simulations, the above observational results are in best agreement with those for the spins of inner regions of halos, suggesting that the disk material traces the angular momentum of dark matter halos in the inner regions.

  20. The 2X-HI disks of spiral galaxies

    CERN Document Server

    Koribalski, B S

    2016-01-01

    The outskirts of galaxies - especially the very extended HI disks of galaxies - are strongly affected by their local environment. I highlight the giant 2X-HI disks of nearby galaxies (M 83, NGC 3621, and NGC 1512), studied as part of the Local Volume HI Survey (LVHIS), their kinematics and relation to XUV disks, signatures of tidal interactions and accretion events, the MHI - DHI relation as well as the formation of tidal dwarf galaxies. - Using multi-wavelength data, I create 3D visualisations of the gas and stars in galaxies, with the shape of their warped disks obtained through kinematic modelling of their HI velocity fields.

  1. Sustaining star formation rates in spiral galaxies - Supernova-driven turbulent accretion disk models applied to THINGS galaxies

    CERN Document Server

    Vollmer, B

    2010-01-01

    Gas disks of spiral galaxies can be described as clumpy accretion disks without a coupling of viscosity to the actual thermal state of the gas. The model description of a turbulent disk consisting of emerging and spreading clumps (Vollmer & Beckert 2003) contains free parameters, which can be constrained by observations of molecular gas, atomic gas and the star formation rate for individual galaxies. Radial profiles of 18 nearby spiral galaxies from THINGS, HERACLES, SINGS, and GALEX data are used to compare the observed star formation efficiency, molecular fraction, and velocity dispersion to the model. The observed radially decreasing velocity dispersion can be reproduced by the model. In the framework of this model the decrease in the inner disk is due to the stellar mass distribution which dominates the gravitational potential. Introducing a radial break in the star formation efficiency into the model improves the fits significantly. This change in star formation regime is realized by replacing the fr...

  2. THE MASS PROFILE AND SHAPE OF BARS IN THE SPITZER SURVEY OF STELLAR STRUCTURE IN GALAXIES (S{sup 4}G): SEARCH FOR AN AGE INDICATOR FOR BARS

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Taehyun; Lee, Myung Gyoon [Astronomy Program, Department of Physics and Astronomy, Seoul National University, Seoul 151-742 (Korea, Republic of); Sheth, Kartik; Muñoz-Mateos, Juan-Carlos [National Radio Astronomy Observatory/NAASC, 520 Edgemont Road, Charlottesville, VA 22903 (United States); Gadotti, Dimitri A. [European Southern Observatory, Casilla 19001, Santiago 19 (Chile); Zaritsky, Dennis [University of Arizona, 933 N. Cherry Avenue, Tucson, AZ 85721 (United States); Elmegreen, Bruce G. [IBM Research Division, T. J. Watson Research Center, Yorktown Heights, NY 10598 (United States); Athanassoula, E.; Bosma, Albert [Aix Marseille Université, CNRS, LAM (Laboratoire d' Astrophysique de Marseille) UMR 7326, 13388 Marseille (France); Holwerda, Benne [European Space Agency, ESTEC, Keplerlaan 1, 2200-AG, Noordwijk (Netherlands); Ho, Luis C. [Kavli Institute for Astronomy and Astrophysics, Peking University, Beijing 100871 (China); Comerón, Sébastien; Laurikainen, Eija; Salo, Heikki [Division of Astronomy, Department of Physical Sciences, University of Oulu, Oulu, FIN-90014 (Finland); Knapen, Johan H.; Erroz-Ferrer, Santiago [Instituto de Astrofísica de Canarias, E-38200 La Laguna, Tenerife (Spain); Hinz, Joannah L. [MMTO, University of Arizona, 933 N. Cherry Avenue, Tucson, AZ 85721 (United States); Buta, Ronald J. [Department of Physics and Astronomy, University of Alabama, Box 870324, Tuscaloosa, AL 35487 (United States); Kim, Minjin [Korea Astronomy and Space Science Institute, Daejeon 305-348 (Korea, Republic of); Madore, Barry F. [The Observatories of the Carnegie Institution of Washington, 813 Santa Barbara Street, Pasadena, CA 91101 (United States); and others

    2015-01-20

    We have measured the radial light profiles and global shapes of bars using two-dimensional 3.6 μm image decompositions for 144 face-on barred galaxies from the Spitzer Survey of Stellar Structure in Galaxies. The bar surface brightness profile is correlated with the stellar mass and bulge-to-total (B/T) ratio of their host galaxies. Bars in massive and bulge-dominated galaxies (B/T > 0.2) show a flat profile, while bars in less massive, disk-dominated galaxies (B/T ∼ 0) show an exponential, disk-like profile with a wider spread in the radial profile than in the bulge-dominated galaxies. The global two-dimensional shapes of bars, however, are rectangular/boxy, independent of the bulge or disk properties. We speculate that because bars are formed out of disks, bars initially have an exponential (disk-like) profile that evolves over time, trapping more disk stars to boxy bar orbits. This leads bars to become stronger and have flatter profiles. The narrow spread of bar radial profiles in more massive disks suggests that these bars formed earlier (z > 1), while the disk-like profiles and a larger spread in the radial profile in less massive systems imply a later and more gradual evolution, consistent with the cosmological evolution of bars inferred from observational studies. Therefore, we expect that the flatness of the bar profile can be used as a dynamical age indicator of the bar to measure the time elapsed since the bar formation. We argue that cosmic gas accretion is required to explain our results on bar profile and the presence of gas within the bar region.

  3. Galaxy Zoo: the effect of bar-driven fuelling on the presence of an active galactic nucleus in disc galaxies

    Science.gov (United States)

    Galloway, Melanie A.; Willett, Kyle W.; Fortson, Lucy F.; Cardamone, Carolin N.; Schawinski, Kevin; Cheung, Edmond; Lintott, Chris J.; Masters, Karen L.; Melvin, Thomas; Simmons, Brooke D.

    2015-04-01

    We study the influence of the presence of a strong bar in disc galaxies which host an active galactic nucleus (AGN). Using data from the Sloan Digital Sky Survey and morphological classifications from the Galaxy Zoo 2 project, we create a volume-limited sample of 19 756 disc galaxies at 0.01 < z < 0.05 which have been visually examined for the presence of a bar. Within this sample, AGN host galaxies have a higher overall percentage of bars (51.8 per cent) than inactive galaxies exhibiting central star formation (37.1 per cent). This difference is primarily due to known effects: that the presence of both AGN and galactic bars is strongly correlated with both the stellar mass and integrated colour of the host galaxy. We control for this effect by examining the difference in AGN fraction between barred and unbarred galaxies in fixed bins of mass and colour. Once this effect is accounted for, there remains a small but statistically significant increase that represents 16 per cent of the average barred AGN fraction. Using the L_{[O III]}/MBH ratio as a measure of AGN strength, we show that barred AGNs do not exhibit stronger accretion than unbarred AGNs at a fixed mass and colour. The data are consistent with a model in which bar-driven fuelling does contribute to the probability of an actively growing black hole, but in which other dynamical mechanisms must contribute to the direct AGN fuelling via smaller, non-axisymmetric perturbations.

  4. Observable Properties of Double-Barred Galaxies in N-Body Simulations

    CERN Document Server

    Shen, Juntai

    2007-01-01

    Although at least one quarter of early-type barred galaxies host secondary stellar bars embedded in their large-scale primary counterparts, the dynamics of such double barred galaxies are still not well understood. Recently we reported success at simulating such systems in a repeatable way in collisionless systems. In order to further our understanding of double-barred galaxies, here we characterize the density and kinematics of the N-body simulations of these galaxies. This will facilitate comparison with observations and lead to a better understanding of the observed double-barred galaxies. We find the shape and size of our simulated secondary bars are quite reasonable compared to the observed ones. We demonstrate that an authentic decoupled secondary bar may produce only a weak twist of the kinematic minor axis in the stellar velocity field, due to the relatively large random motion of stars in the central region. We also find that the edge-on nuclear bars are probably not related to boxy peanut-shaped bul...

  5. Central enhancement of the nitrogen-to-oxygen abundance ratio in barred galaxies

    Science.gov (United States)

    Florido, E.; Zurita, A.; Pérez, I.; Pérez-Montero, E.; Coelho, P. R. T.; Gadotti, D. A.

    2015-12-01

    Context. Bar-induced gas inflows towards galaxy centres are recognised as a key agent for the secular evolution of galaxies. One immediate consequence of this inflow is the accumulation of gas in the centre of galaxies where it can form stars and alter the chemical and physical properties. Aims: Our aim is to study whether the properties of the ionised gas in the central parts of barred galaxies are altered by the presence of a bar and whether the change in central properties is related to bar and/or parent galaxy properties. Methods: We use a sample of nearby face-on disc galaxies with available SDSS spectra, morphological decomposition, and information on the stellar population of their bulges, to measure the internal Balmer extinction from the Hα to Hβ line ratio, star formation rate, and relevant line ratios to diagnose chemical abundances and gas density. Results: The distributions of all the parameters analysed (internal Balmer extinction at Hβ (c(Hβ)), star formation rate per unit area, electron density, [N ii]λ6583/Hα emission-line ratio, ionisation parameter, and nitrogen-to-oxygen (N/O) abundance ratio) are different for barred and unbarred galaxies, except for the R23 metallicity tracer and the oxygen abundance obtained from photoionisation models. The median values of the distributions of these parameters point towards (marginally) larger dust content, star formation rate per unit area, electron density, and ionisation parameter in the centres of barred galaxies than in their unbarred counterparts. The most remarkable difference between barred and unbarred galaxies appears in the [N ii]λ6583/Hα line ratio that is, on average, ~25% higher in barred galaxies, due to an increased N/O abundance ratio in the centres of these galaxies compared to the unbarred ones. We analyse these differences as a function of galaxy morphological type (as traced by bulge-to-disc light ratios and bulge mass), total stellar mass, and bulge Sérsic index. We observe an

  6. The Luminous Convolution Model as an alternative to dark matter in spiral galaxies

    CERN Document Server

    Cisneros, S; Formaggio, J A; Ott, R A; Chester, D; Battaglia, D J; Ashley, A; Robinson, R; Rodriguez, A

    2014-01-01

    The Luminous Convolution Model (LCM) demonstrates that it is possible to predict the rotation curves of spiral galaxies directly from estimates of the luminous matter. We consider two frame-dependent effects on the light observed from other galaxies: relative velocity and relative curvature. With one free parameter, we predict the rotation curves of twenty-three (23) galaxies represented in forty-two (42) data sets. Relative curvature effects rely upon knowledge of both the gravitational potential from luminous mass of the emitting galaxy and the receiving galaxy, and so each emitter galaxy is compared to four (4) different Milky Way luminous mass models. On average in this sample, the LCM is more successful than either dark matter or modified gravity models in fitting the observed rotation curve data. Implications of LCM constraints on populations synthesis modeling are discussed in this paper. This paper substantially expands the results in arXiv:1309.7370.

  7. Disc colours in field and cluster spiral galaxies at 0.5 < z < 0.8

    CERN Document Server

    Cantale, Nicolas; Courbin, Frederic; Rudnick, Gregory; Zaritsky, Dennis; Meylan, Georges; Desai, Vandana; De Lucia, Gabriella; Aragon-Salamanca, Alfonso; Poggianti, Bianca M; Finn, Rose; Simard, Luc

    2016-01-01

    We present a detailed study of the colours in late-type galaxy discs for ten of the EDisCS galaxy clusters with 0.5 < z < 0.8. Our cluster sample contains 172 spiral galaxies, and our control sample is composed of 96 field disc galaxies. We deconvolve their ground-based V and I images obtained with FORS2 at the VLT with initial spatial resolutions between 0.4 and 0.8 arcsec to achieve a final resolution of 0.1 arcsec with 0.05 arcsec pixels, which is close to the resolution of the ACS at the HST. After removing the central region of each galaxy to avoid pollution by the bulges, we measured the V-I colours of the discs. We find that 50% of cluster spiral galaxies have disc V-I colours redder by more than 1 sigma of the mean colours of their field counterparts. This is well above the 16% expected for a normal distribution centred on the field disc properties. The prominence of galaxies with red discs depends neither on the mass of their parent cluster nor on the distance of the galaxies to the cluster cor...

  8. Formation of S0 galaxies through mergers: Explaining angular momentum and concentration change from spirals to S0s

    CERN Document Server

    Querejeta, Miguel; Tapia, Trinidad; Borlaff, Alejandro; van de Ven, Glenn; Lyubenova, Mariya; Martig, Marie; Falcón-Barroso, Jesús; Méndez-Abreu, Jairo

    2015-01-01

    The CALIFA team has recently found that the stellar angular momentum and concentration of late-type spiral galaxies are incompatible with those of lenticular galaxies (S0s), concluding that fading alone cannot satisfactorily explain the evolution from spirals into S0s. Here we explore whether major mergers can provide an alternative way to transform spirals into S0s by analysing the spiral-spiral major mergers from the GalMer database that lead to realistic, relaxed S0-like galaxies. We find that the change in stellar angular momentum and concentration can explain the differences in the $\\lambda_\\mathrm{Re}$--$R_{90}/R_{50}$ plane found by the CALIFA team. Major mergers thus offer a feasible explanation for the transformation of spirals into S0s.

  9. Long-lived double-barred galaxies in N-body simulations

    CERN Document Server

    Shen, Juntai

    2010-01-01

    Many barred galaxies harbor small-scale secondary bars in the center. The evolution of such double-barred galaxies is still not well understood, partly because of a lack of realistic N-body models with which to study them. Here we report the generation of such systems in the presence of rotating pseudobulges. We demonstrate with high mass and force resolution collisionless N-body simulations that long-lived secondary bars can form spontaneously without requiring gas, contrary to previous claims. We find that secondary bars rotate faster than primary ones. The rotation is not rigid: the secondary bars pulsate, with their amplitude and pattern speed oscillating as they rotate through the primary bars. This self-consistent study supports previous work based on orbital analysis in the potential of two rigidly rotating bars. We also characterize the density and kinematics of the N-body simulations of the double-barred galaxies, compare with observations to achieve a better understanding of such galaxies. The pulsa...

  10. The opacity of spiral galaxy disks. VIII. Structure of the cold ISM

    NARCIS (Netherlands)

    Holwerda, B. W.; Draine, B.; Gordon, K. D.; Gonzalez, R. A.; Calzetti, D.; Thornley, M.; Buckalew, B.; Allen, Ronald J.; van der Kruit, P. C.

    2007-01-01

    The quantity of dust in a spiral disk can be estimated using the dust's typical emission or the extinction of a known source. In this paper we compare two techniques, one based on emission and one on absorption, applied to sections of 14 disk galaxies. The two measurements reflect, respectively, the

  11. The opacity of spiral galaxy disks VI. Extinction, stellar light and color

    NARCIS (Netherlands)

    Holwerda, BW; Gonzalez, RA; van der Kruit, PC; Allen, RJ

    2005-01-01

    In this paper we explore the relation between dust extinction and stellar light distribution in disks of spiral galaxies. Extinction influences our dynamical and photometric perception of disks, since it can distort our measurement of the contribution of the stellar component. To characterize the to

  12. HI study of the warped spiral galaxy NGC5055 : a disk/dark matter halo offset?

    NARCIS (Netherlands)

    Battaglia, G; Fraternali, F; Oosterloo, T; Sancisi, R

    2006-01-01

    We present a study of the Hi distribution and dynamics of the nearby spiral galaxy NGC 5055 based on observations with the Westerbork Synthesis Radio Telescope. The gaseous disk of NGC5055 extends out to about 40 kpc, equal to 3.5 R-25, and shows a pronounced warp that starts at the end of the brigh

  13. HI study of the warped spiral galaxy NGC5055 : a disk/dark matter halo offset?

    NARCIS (Netherlands)

    Battaglia, G.; Fraternali, F.; Oosterloo, T.; Sancisi, R.

    2005-01-01

    Abstract: We present a study of the HI distribution and the dynamics of the nearby spiral galaxy NGC5055 based on observations with the Westerbork Synthesis Radio Telescope. The gaseous disk of NGC5055 extends out to about 40 kpc, equal to 3.5 R_25 and shows a pronounced warp, starting at the end of

  14. The DiskMass Survey. VII. The distribution of luminous and dark matter in spiral galaxies

    NARCIS (Netherlands)

    Martinsson, Thomas P. K.; Verheijen, Marc A. W.; Westfall, Kyle B.; Bershady, Matthew A.; Andersen, David R.; Swaters, Rob A.

    2013-01-01

    We present dynamically-determined rotation-curve mass decompositions of 30 spiral galaxies, which were carried out to test the maximum-disk hypothesis and to quantify properties of their dark-matter halos. We used measured vertical velocity dispersions of the disk stars to calculate dynamical mass s

  15. Comparison between Disk-like Objects Formed in Hierarchical Hydrodynamical Simulations and Observations of Spiral Galaxies

    CERN Document Server

    Saiz, A; Tissera, P B; Courteau, S

    2001-01-01

    We analyze the structural and dynamical properties of disk-like objects formed in fully consistent cosmological simulations which include inefficient star formation. Comparison with data of similar observable properties of spiral galaxies gives satisfactory agreement, in contrast with previous findings using other codes. This suggests that the stellar formation implementation used has allowed the formation of disks as well as guaranteed their stability.

  16. Energetic constraints to chemo-photometric evolution of spiral galaxies

    CERN Document Server

    Buzzoni, Alberto

    2011-01-01

    The problem of chemo-photometric evolution of late-type galaxies is dealt with relying on prime physical arguments of energetic self-consistency between chemical enhancement of galaxy mass, through nuclear processing inside stars, and luminosity evolution of the system. Chemical enhancement is assessed in terms of the so-called "yield metallicity", that is the metal abundance of processed mass inside stars, as constrained by the galaxy photometric history.

  17. The Mass Profile and Shape of Bars in the Spitzer Survey of Stellar Structure in Galaxies (S4G): Search for an Age Indicator for Bars

    CERN Document Server

    Kim, Taehyun; Gadotti, Dimitri A; Lee, Myung Gyoon; Zaritsky, Dennis; Elmegreen, Bruce G; Athanassoula, E; Bosma, Albert; Holwerda, Benne; Ho, Luis C; Comerón, Sébastien; Knapen, Johan H; Hinz, Joannah L; Muñoz-Mateos, Juan-Carlos; Erroz-Ferrer, Santiago; Buta, Ronald J; Kim, Minjin; Laurikainen, Eija; Salo, Heikki; Madore, Barry F; Laine, Jarkko; Menéndez-Delmestre, Karín; Regan, Michael W; de Swardt, Bonita; de Paz, Armando Gil; Seibert, Mark; Mizusawa, Trisha

    2014-01-01

    We have measured the radial light profiles and global shapes of bars using two-dimensional 3.6 $\\mu m $ image decompositions for 144 face-on barred galaxies from the Spitzer Survey of Stellar Structure in Galaxies (S4G). The bar surface brightness profile is correlated with the stellar mass and bulge-to-total (B/T) ratio of their host galaxies. Bars in massive and bulge-dominated galaxies (B/T$>$0.2) show a flat profile, while bars in less massive, disk-dominated galaxies (B/T$\\sim$0) show an exponential, disk-like profile with a wider spread in the radial profile than in the bulge-dominated galaxies. The global two-dimensional shapes of bars, however, are rectangular/boxy, independent of the bulge or disk properties. We speculate that because bars are formed out of disk, bars initially have an exponential (disk-like) profile which evolves over time, trapping more stars into the boxy bar orbits. This leads bars to become stronger and have flatter profiles. The narrow spread of bar radial profiles in more mass...

  18. Long-Lived Spiral Structure for Galaxies with Intermediate Size Bulges

    CERN Document Server

    Saha, Kanak

    2016-01-01

    Spiral structure in disk galaxies is modeled with nine collisionless N-body simulations including live disks, halos, and bulges with a range of masses. Two of these simulations make long-lasting and strong two-arm spiral wave modes that last for $\\sim5$ Gyr with constant pattern speed. These two had a light stellar disk and the largest values of the Toomre $Q$ parameter in the inner region at the time the spirals formed, suggesting the presence of a Q-barrier to wave propagation resulting from the bulge. The relative bulge mass in these cases is about 10\\%. Models with weak two-arm spirals had pattern speeds that followed the radial dependence of the Inner Lindblad Resonance.

  19. A close nuclear black-hole pair in the spiral galaxy NGC 3393.

    Science.gov (United States)

    Fabbiano, G; Wang, Junfeng; Elvis, M; Risaliti, G

    2011-08-31

    The current picture of galaxy evolution advocates co-evolution of galaxies and their nuclear massive black holes, through accretion and galactic merging. Pairs of quasars, each with a massive black hole at the centre of its galaxy, have separations of 6,000 to 300,000 light years (refs 2 and 3; 1 parsec = 3.26 light years) and exemplify the first stages of this gravitational interaction. The final stages of the black-hole merging process, through binary black holes and final collapse into a single black hole with gravitational wave emission, are consistent with the sub-light-year separation inferred from the optical spectra and light-variability of two such quasars. The double active nuclei of a few nearby galaxies with disrupted morphology and intense star formation (such as NGC 6240 with a separation of about 2,600 light years and Mrk 463 with a separation of about 13,000 light years between the nuclei) demonstrate the importance of major mergers of equal-mass spiral galaxies in this evolution; such mergers lead to an elliptical galaxy, as in the case of the double-radio-nucleus elliptical galaxy 0402+379 (with a separation of about 24 light years between the nuclei). Minor mergers of a spiral galaxy with a smaller companion should be a more common occurrence, evolving into spiral galaxies with active massive black-hole pairs, but have hitherto not been seen. Here we report the presence of two active massive black holes, separated by about 490 light years, in the Seyfert galaxy NGC 3393 (50 Mpc, about 160 million light years). The regular spiral morphology and predominantly old circum-nuclear stellar population of this galaxy, and the closeness of the black holes embedded in the bulge, provide a hitherto missing observational point to the study of galaxy/black hole evolution. Comparison of our observations with current theoretical models of mergers suggests that they are the result of minor merger evolution.

  20. Galaxy Zoo: the dependence of the star formation-stellar mass relation on spiral disk morphology

    CERN Document Server

    Willett, Kyle W; Simmons, Brooke D; Masters, Karen L; Skibba, Ramin A; Kaviraj, Sugata; Melvin, Thomas; Wong, O Ivy; Nichol, Robert C; Cheung, Edmond; Lintott, Chris J; Fortson, Lucy

    2015-01-01

    We measure the stellar mass-star formation rate relation in star-forming disk galaxies at z1. Of the galaxies lying significantly above the M-SFR relation in the local Universe, more than 50% are mergers. We interpret this as evidence that the spiral arms, which are imperfect reflections of the galaxy's current gravitational potential, are either fully independent of the various quenching mechanisms or are completely overwhelmed by the combination of outflows and feedback. The arrangement of the star formation can be changed, but the system as a whole regulates itself even in the presence of strong dynamical forcing.

  1. Gravitational Instability of Nuclear Rings in Barred Galaxies

    Science.gov (United States)

    Kim, Woong-Tae; Moon, Sanghyuk

    2017-01-01

    Nuclear rings at centers of barred galaxies exhibit strong star formation activities. They are thought to undergo gravitational instability when sufficiently massive. We approximate them as rigidly-rotating isothermal objects and investigate their gravitational instability. Using a self-consistent field method, we first construct their equilibrium sequences specified by two parameters: alpha corresponding to the thermal energy relative to gravitational potential energy, and R_B measuring the ellipticity or ring thickness. The density distributions in the meridional plane are steeper for smaller alpha, and well approximated by those of infinite cylinders for slender rings. We also calculate the dispersion relations of nonaxisymmetric modes in rigidly-rotating slender rings with angular frequency Omega and central density rho_c. Rings with smaller are found more unstable with a larger unstable range of the azimuthal mode number. The instability is completely suppressed by rotation when Omega exceeds the critical value. The critical angular frequency is found to be almost constant at 0.7(G rho_c)^0.5 for alph > 0.01 and increases rapidly for smaller alpha . We apply our results to a sample of observed star-forming rings and confirm that rings without a noticeable azimuthal age gradient of young star clusters are indeed gravitationally unstable.

  2. The JCMT Nearby Galaxies Legacy Survey II: Warm Molecular Gas and Star Formation in Three Field Spiral Galaxies

    CERN Document Server

    Warren, B E; Israel, F P; Serjeant, S; Bendo, G J; Brinks, E; Clements, D L; Irwin, J A; Knapen, J H; Leech, J; Matthews, H E; Mühle, S; Mortimer, A M J; Petitpas, G; Sinukoff, E; Spekkens, K; Tan, B K; Tilanus, R P J; Usero, A; van der Werf, P P; Vlahakis, C; Wiegert, T; Zhu, M

    2010-01-01

    We present the results of large-area CO J=3-2 emission mapping of three nearby field galaxies, NGC 628, NGC 3521, and NGC 3627, completed at the James Clerk Maxwell Telescope as part of the Nearby Galaxies Legacy Survey. These galaxies all have moderate to strong CO J=3-2 detections over large areas of the fields observed by the survey, showing resolved structure and dynamics in their warm/dense molecular gas disks. All three galaxies were part of the Spitzer Infrared Nearby Galaxies Survey sample, and as such have excellent published multi-wavelength ancillary data. These data sets allow us to examine the star formation properties, gas content, and dynamics of these galaxies on sub-kiloparsec scales. We find that the global gas depletion times for dense/warm molecular gas in these galaxies is consistent with other results for nearby spiral galaxies, indicating this may be independent of galaxy properties such as structures, gas compositions, and environments. Similar to the results from the THINGS HI survey,...

  3. Star formation properties in barred galaxies (SFB) Ⅱ.NGC 2903 and NGC 7080

    Institute of Scientific and Technical Information of China (English)

    Zhi-Min Zhou; Chen Cao; Hong Wu

    2012-01-01

    Stellar bars are important for the secular evolution of disk galaxies because they can drive gas into the galactic central regions.To investigate the star formation properties in barred galaxies,we presented a multi-wavelength study of two barred galaxies:NGC 2903 and NGC 7080.We performed the three-component bulge-diskbar decomposition using the 3.6 μm images,and identified the bulges in the two galaxies as pseudobulges.Based on the narrowband Hα images,the star formation clumps were identified and analyzed.The clumps in the bulge regions have the highest surface densities of star formation rates in both galaxies,while the star formation activities in the bar of NGC 2903 are more intense than those in the bar of NGC 7080.Finally,we compared our results with the scenario of bar-driven secular evolution in previous studies,and discussed the possible evolutionary stages of the two galaxies.

  4. The environmental dependence of the structure of outer galactic discs in STAGES spiral galaxies

    CERN Document Server

    Maltby, David T; Aragón-Salamanca, Alfonso; Wolf, Christian; Bell, Eric F; Jogee, Shardha; Haeussler, Boris; Barazza, Fabio D; Boehm, Asmus; Jahnke, Knud

    2011-01-01

    We present an analysis of V-band radial surface brightness profiles for spiral galaxies from the field and cluster environments using Hubble Space Telescope/Advanced Camera for Surveys imaging and data from the Space Telescope A901/2 Galaxy Evolution Survey (STAGES). We use a large sample of ~330 face-on to intermediately inclined spiral galaxies and assess the effect of the galaxy environment on the azimuthally averaged radial surface brightness mu profiles for each galaxy in the outer stellar disc (24 < mu < 26.5 mag per sq arcsec). For galaxies with a purely exponential outer disc (~50 per cent), we determine the significance of an environmental dependence on the outer disc scalelength h_out. For galaxies with a broken exponential in their outer disc, either down-bending (truncation, ~10 per cent) or up-bending (anti-truncation, ~40 per cent), we measure the strength T (outer-to-inner scalelength ratio, log_10(h_out/h_in) of the mu breaks and determine the significance of an environmental dependence ...

  5. Megamaser Disks Reveal a Broad Distribution of Black Hole Mass in Spiral Galaxies

    Science.gov (United States)

    Greene, J. E.; Seth, A.; Kim, M.; Läsker, R.; Goulding, A.; Gao, F.; Braatz, J. A.; Henkel, C.; Condon, J.; Lo, K. Y.; Zhao, W.

    2016-08-01

    We use new precision measurements of black hole (BH) masses from water megamaser disks to investigate scaling relations between macroscopic galaxy properties and supermassive BH mass. The megamaser-derived BH masses span 106-108 {M}⊙ , while all the galaxy properties that we examine (including total stellar mass, central mass density, and central velocity dispersion) lie within a narrower range. Thus, no galaxy property correlates tightly with {M}{BH} in ˜L* spiral galaxies as traced by megamaser disks. Of them all, stellar velocity dispersion provides the tightest relation, but at fixed {σ }* the mean megamaser {M}{BH} are offset by -0.6 ± 0.1 dex relative to early-type galaxies. Spiral galaxies with non-maser dynamical BH masses do not appear to show this offset. At low mass, we do not yet know the full distribution of BH mass at fixed galaxy property; the non-maser dynamical measurements may miss the low-mass end of the BH distribution due to an inability to resolve their spheres of influence and/or megamasers may preferentially occur in lower-mass BHs.

  6. Megamaser Disks Reveal a Broad Distribution of Black Hole Mass in Spiral Galaxies

    CERN Document Server

    Greene, Jenny E; Kim, Minjin; Laesker, Ronald; Goulding, Andy D; Gao, Feng; Braatz, James A; Henkel, Christian; Condon, James; Lo, Fred K Y; Zhao, Wei

    2016-01-01

    We use new precision measurements of black hole masses from water megamaser disks to investigate scaling relations between macroscopic galaxy properties and supermassive black hole (BH) mass. The megamaser-derived BH masses span 10^6-10^8 M_sun, while all the galaxy properties that we examine (including stellar mass, central mass density, central velocity dispersion) lie within a narrow range. Thus, no galaxy property correlates tightly with M_BH in ~L* spiral galaxies. Of them all, stellar velocity dispersion provides the tightest relation, but at fixed sigma* the mean megamaser M_BH are offset by -0.6+/-0.1 dex relative to early-type galaxies. Spiral galaxies with non-maser dynamical BH masses do not show this offset. At low mass, we do not yet know the full distribution of BH mass at fixed galaxy property; the non-maser dynamical measurements may miss the low-mass end of the BH distribution due to inability to resolve the spheres of influence and/or megamasers may preferentially occur in lower-mass BHs.

  7. A catalog of warps in spiral and lenticular galaxies in the Southern hemisphere

    CERN Document Server

    Sánchez-Saavedra, M L; Guijarro, A; López-Corredoira, M; Castro-Rodriguez, N

    2003-01-01

    A catalog of optical warps of galaxies is presented. This can be considered complementary to that reported by Sanchez-Saavedra et al., with 42 galaxies in the northern hemisphere, and to that by Reshetnikov & Combes, with 60 optical warps. The limits of the present catalog are: logr25 > 0.60, B_{t} < 14.5, delta(2000) < 0, -2.5 < t < 7. Therefore, lenticular galaxies have also been considered. This catalog lists 150 warped galaxies out of a sample of 276 edge-on galaxies and covers the whole southern hemisphere, except the Avoidance Zone. It is therefore very suitable for statistical studies of warps. It also provides a source guide for detailed particular observations. We confirm the large frequency of warped spirals: nearly all galaxies are warped. The frequency and warp angle do not present important differences for the different types of spirals. However, no lenticular warped galaxy has been found within the specified limits. This finding constitutes an important restriction for theoretica...

  8. Outer Spiral Disks as Clues to Galaxy Formation and Evolution

    CERN Document Server

    Vlajić, Marija

    2010-01-01

    Recent studies of outer spiral disks have given rise to an abundance of new results. We discuss the observational and theoretical advances that have spurred the interest in disk outskirts, as well as where we currently stand in terms of our understanding of outer disk structure, ages and metallicities.

  9. Dependence of Spiral Galaxy Distribution on Viewing Angle in RC3

    Institute of Scientific and Technical Information of China (English)

    MA Jun; SONG Guo-Xuan; SHU Cheng-Gang

    2000-01-01

    The normalized inclination distributions are presented for the spiral galaxies in RC3. The results show that,except for the bin of 81°-90°, in which the apparent minor isophotal diameters that are used to obtain the inclinations are affected by the central bulges, the distributions for Sa, Sab, Scd and Sd are well consistent with the Monte-Carlo simulation of random inclinations within 3-σ, and Sb and Sbc almost, but Sc is different. One reason for the difference between the real distribution and the Monte-Carlo simulation of Sc may be that some quite inclined spirals, the arms of which are inherently loosely wound on the galactic plane and should be classified to Sc galaxies, have been incorrectly classified to the earlier ones, because the tightness of spiral arms which is one of the criteria of the Hubble classification in RC3 is different between on the galactic plane and on the tangent plane of the celestial sphere. Our result also implies that there might exist biases in the luminosity functions of individual Hubble types if spiral galaxies are only classified visually.

  10. Effect of dark matter halo on global spiral modes in galaxies

    CERN Document Server

    Ghosh, Soumavo; Jog, Chanda J

    2015-01-01

    Low surface brightness (LSB) galaxies form a major class of galaxies, and are characterized by low disc surface density and low star formation rate. These are known to be dominated by dark matter halo from the innermost regions. Here we study the role of dark matter halo on the grand-design, $m=2$, spiral modes in a galactic disc by carrying out a global mode analysis in the WKB approximation. The Bohr-Sommerfeld quantization rule is used to determine how many discrete global spiral modes are permitted. First a typical superthin LSB galaxy, UGC 7321 is studied by taking only the galactic disc, modelled as fluid; and then the disc embedded in a dark matter halo. We find that both cases permit the existence of global spiral modes. This is in contrast to earlier results where the inclusion of dark matter halo was shown to nearly fully suppress local, swing-amplified spiral features. Although technically global modes are permitted in the fluid model as shown here, we argue that due to lack of tidal interactions, ...

  11. PITCH ANGLE RESTRICTIONS IN LATE-TYPE SPIRAL GALAXIES BASED ON CHAOTIC AND ORDERED ORBITAL BEHAVIOR

    Energy Technology Data Exchange (ETDEWEB)

    Perez-Villegas, A.; Pichardo, B.; Moreno, E.; Peimbert, A. [Instituto de Astronomia, Universidad Nacional Autonoma de Mexico, A.P. 70-264, 04510 Mexico D.F. (Mexico); Velazquez, H. M., E-mail: barbara@astroscu.unam.mx [Observatorio Astronomico Nacional, Universidad Nacional Autonoma de Mexico, Apdo. Postal 877, 22800 Ensenada (Mexico)

    2012-01-20

    We built models for low bulge mass spiral galaxies (late type as defined by the Hubble classification) using a three-dimensional self-gravitating model for spiral arms, and analyzed the orbital dynamics as a function of pitch angle, ranging from 10 Degree-Sign to 60 Degree-Sign . Indirectly testing orbital self-consistency, we search for the main periodic orbits and studied the density response. For pitch angles up to approximately {approx}20 Degree-Sign , the response closely supports the potential readily permitting the presence of long-lasting spiral structures. The density response tends to 'avoid' larger pitch angles in the potential by keeping smaller pitch angles in the corresponding response. Spiral arms with pitch angles larger than {approx}20 Degree-Sign would not be long-lasting structures but would rather be transient. On the other hand, from an extensive orbital study in phase space, we also find that for late-type galaxies with pitch angles larger than {approx}50 Degree-Sign , chaos becomes pervasive, destroying the ordered phase space surrounding the main stable periodic orbits and even destroying them. This result is in good agreement with observations of late-type galaxies, where the maximum observed pitch angle is {approx}50 Degree-Sign .

  12. Departures From Axisymmetric Morphology and Dynamics in Spiral Galaxies

    CERN Document Server

    Kornreich, D A; Lovelace, R V E; Van Zee, L; Kornreich, David A.; Haynes, Martha P.; Zee, Liese van

    2000-01-01

    New HI synthesis data have been obtained for six face-on galaxies with the Very Large Array. These data and reanalyses of three additional data sets make up a sample of nine face-on galaxies analyzed for deviations from axisymmetry in morphology and dynamics. This sample represents a subsample of galaxies already analyzed for morphological symmetry properties in the R-band. Four quantitative measures of dynamical nonaxisymmetry are compared to one another and to the quantitative measures of morphological asymmetry in HI and R-band to investigate the relationships between nonaxisymmetric morphology and dynamics. We find no significant relationship between asymmetric morphology and most of the dynamical measures in our sample. A possible relationship is found, however, between morphology and dynamical position angle differences between approaching and receding sides of the galaxy.

  13. Gas Clouds in Whirlpool Galaxy Yield Important Clues Supporting Theory on Spiral Arms

    Science.gov (United States)

    2004-06-01

    Astronomers studying gas clouds in the famous Whirlpool Galaxy have found important clues supporting a theory that seeks to explain how the spectacular spiral arms of galaxies can persist for billions of years. The astronomers applied techniques used to study similar gas clouds in our own Milky Way to those in the spiral arms of a neighbor galaxy for the first time, and their results bolster a theory first proposed in 1964. M51 The spiral galaxy M51: Left, as seen with the Hubble Space Telescope; Right, radio image showing location of Carbon Monoxide gas. CREDIT: STScI, OVRO, IRAM (Click on image for larger version) Image Files Optical and Radio (CO) Views (above image) HST Optical Image with CO Contours Overlaid Radio/Optical Composite Image of M51 VLA/Effelsberg Radio Image of M51, With Panel Showing Magnetic Field Lines The Whirlpool Galaxy, about 31 million light-years distant, is a beautiful spiral in the constellation Canes Venatici. Also known as M51, it is seen nearly face-on from Earth and is familiar to amateur astronomers and has been featured in countless posters, books and magazine articles. "This galaxy made a great target for our study of spiral arms and how star formation works along them," said Eva Schinnerer, of the National Radio Astronomy Observatory in Socorro, NM. "It was ideal for us because it's one of the closest face-on spirals in the sky," she added. Schinnerer worked with Axel Weiss of the Institute for Millimeter Radio Astronomy (IRAM) in Spain, Susanne Aalto of the Onsala Space Observatory in Sweden, and Nick Scoville of Caltech. The astronomers presented their findings to the American Astronomical Society's meeting in Denver, Colorado. The scientists analyzed radio emission from Carbon Monoxide (CO) molecules in giant gas clouds along M51's spiral arms. Using telescopes at Caltech's Owens Valley Radio Observatory and the 30-meter radio telescope of IRAM, they were able to determine the temperatures and amounts of turbulence within the

  14. Reviewing the observational evidence against long-lived spiral arms in galaxies

    CERN Document Server

    Martinez-Garcia, Eric E

    2013-01-01

    We review Foyle et al. (2011) previous results, by applying a Fourier intensity phases method to a nine object sample of galaxies. It was found that two of the objects (NGC 628 and NGC 5194), with strong two-arm patterns, present positive evidence for long-lived spirals. Only one of the objects (NGC 3627) shows the contrary evidence. As determined by an analysis of resolved mass maps, the rest of the objects can not be included in the analysis because they belong to flocculent and multi-arm type of spiral arms, which are not described by density wave theory.

  15. Detection of a Hot Gaseous Halo Around the Giant Spiral Galaxy NGC 1961

    CERN Document Server

    Anderson, Michael E

    2011-01-01

    Hot gaseous halos are predicted around all large galaxies and are critically important for our understanding of galaxy formation, but they have never been detected at distances beyond a few kpc around a spiral galaxy. We used the Chandra ACIS-I instrument to search for diffuse X-ray emission around an ideal candidate galaxy: the isolated giant spiral NGC 1961. We observed four quadrants around the galaxy for 30 ks each, carefully subtracting background and point source emission, and found diffuse emission that appears to extend to 40-50 kpc. We fit $\\beta$-models to the emission, and estimate a hot halo mass within 50 kpc of $5\\times10^9 M_{\\odot}$. When this profile is extrapolated to 500 kpc (the approximate virial radius), the implied hot halo mass is $1-3\\times10^{11} M_{\\odot}$. These mass estimates assume a gas metallicity of $Z = 0.5 Z_{\\odot}$. This galaxy's hot halo is a large reservoir of gas, but falls significantly below observational upper limits set by pervious searches, and suggests that NGC 19...

  16. The Study of Nebular Emission on Nearby Spiral Galaxies in the IFU Era

    Directory of Open Access Journals (Sweden)

    Fernando Fabián Rosales-Ortega

    2013-01-01

    Full Text Available A new generation of wide-field emission-line surveys based on integral field units (IFU is allowing us to obtain spatially resolved information of the gas-phase emission in nearby late-type galaxies, based on large samples of HII regions and full two-dimensional coverage. These observations are allowing us to discover and characterise abundance differentials between galactic substructures and new scaling relations with global physical properties. Here I review some highlights of our current studies employing this technique: (1 the case study of NGC 628, the largest galaxy ever sampled with an IFU; (2 a statistical approach to the abundance gradients of spiral galaxies, which indicates a universal radial gradient for oxygen abundance; and (3 the discovery of a new scaling relation of HII regions in spiral galaxies, the local mass-metallicity relation of star-forming galaxies. The observational properties and constrains found in local galaxies using this new technique will allow us to interpret the gas-phase abundance of analogue high-z systems.

  17. Near-Infrared Surface Photometry of a Sample of Barred Galaxies

    CERN Document Server

    Gadotti, Dimitri; Carrasco, Luis; Bosma, Albert; de Souza, Ronaldo; Recillas, Elsa

    2007-01-01

    We have obtained deep J and Ks images of a sample of nine barred galaxies in order to collect a reliable and homogeneous set of images to which N-body simulations of barred galaxies will be compared. The observations were performed using the new near-infrared camera available at the 2.1-m telescope of the Observatorio Astrofisico Guillermo Haro (OAGH) in Cananea, Sonora, Mexico. We present the results of surface photometry techniques applied to the observed images, as well as to the deprojected images. These results include radial profiles of surface brightness (elliptically averaged), colour, position angle, ellipticity and the b4 Fourier component. In addition, we present isophotal maps, colour maps, surface brightness profiles along the bar major and minor axes, characteristic radial scale-lengths and bar length estimates. We discuss how projection effects can influence these measurements and the uncertainties introduced by deprojecting galaxy images. We show that analytical expressions can be used to obta...

  18. Mega parsec relativistic jets launched from an accreting supermassive blackhole in an extreme spiral galaxy

    CERN Document Server

    Bagchi, Joydeep; Vikram, Vinu; Hota, Ananda; G., Biju K; Sirothia, S K; Srianand, Raghunathan; Gopal-Krishna,; Jacob, Joe

    2014-01-01

    Radio galaxy phenomenon is directly connected to mass accreting, spinning supermassive black holes found in the active galactic nuclei (AGN). It is still unclear how the collimated jets of relativistic plasma on hundreds to thousands of kpc scale form, and why nearly always they are launched from the nuclei of bulge dominated elliptical galaxies and not flat spirals. Here we present the discovery of giant radio source J2345-0449 (z=0.0755), a clear and extremely rare counter example where relativistic jets are ejected from a luminous and massive spiral galaxy on scale of ~1.6 Mpc, the largest known so far. Extreme physical properties observed for this bulgeless spiral host, such as its high optical and infra-red luminosity, large dynamical mass, rapid disk rotation, and episodic jet activity are possibly the results of its unusual formation history, which has also assembled, via gas accretion from a disk, its central black hole of mass >2 x 10^8 M_sun. The very high mid-IR luminosity of the galaxy suggests th...

  19. Simulating a slow bar in the low surface brightness galaxy UGC 628

    Science.gov (United States)

    Chequers, Matthew H.; Spekkens, Kristine; Widrow, Lawrence M.; Gilhuly, Colleen

    2016-12-01

    We present a disc-halo N-body model of the low surface brightness galaxy UGC 628, one of the few systems that harbours a `slow' bar with a ratio of corotation radius to bar length of R ≡ R_c/a_b ˜ 2. We select our initial conditions using SDSS DR10 photometry, a physically motivated radially variable mass-to-light ratio profile, and rotation curve data from the literature. A global bar instability grows in our submaximal disc model, and the disc morphology and dynamics agree broadly with the photometry and kinematics of UGC 628 at times between peak bar strength and the onset of buckling. Prior to bar formation, the disc and halo contribute roughly equally to the potential in the galaxy's inner region, giving the disc enough self-gravity for bar modes to grow. After bar formation, there is significant mass redistribution, creating a baryon-dominated inner and dark matter-dominated outer disc. This implies that, unlike most other low surface brightness galaxies, UGC 628 is not dark matter dominated everywhere. Our model nonetheless implies that UGC 628 falls on the same relationship between dark matter fraction and rotation velocity found for high surface brightness galaxies, and lends credence to the argument that the disc mass fraction measured at the location where its contribution to the potential peaks is not a reliable indicator of its dynamical importance at all radii.

  20. X-ray emission from spiral galaxies with normal and low-activity nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Giuricin, G. (Trieste Univ. (Italy). Dip. di Astronomia); Bertotti, G. (Centre for Advanced Research in Space Optics, Trieste (Italy)); Mardirossian, F.; Mezzetti, M. (Trieste Univ. (Italy). Dip. di Astronomia Centro Interuniversitario Regionale per l' Astrofisica e la Cosmologia (CIRAC), Trieste (Italy))

    1991-05-15

    A statistical analysis of the soft X-ray emission from spiral galaxies with normal and low-luminosity active nuclei (LINERs and Seyfert 2) - derived from published observations obtained with the Einstein Observatory - has revealed a number of previously unrecognised characteristics of the X-ray emission. Seyfert 2 galaxies (the least powerful X-ray sources of the Seyfert class) turn out to be, on average, stronger X-ray emitters (per unit light) than non-Seyfert galaxies, whereas galaxies with LINER nuclei and H II-region-like nuclei exhibit X-ray emissions of comparable strength. We have verified that the X-ray luminosity (per unit light) is linked to the total H {alpha} emission-line strength. Remarkably, more enhanced X-ray emission (per unit light) has been found in Arp atlas galaxies, in galaxies included in the Atlas and Catalogue of Interacting Galaxies of Vorontsov-Vel'yaminov, and in interacting galaxies compared to normal galaxies. (Author).

  1. Integral-Field Stellar and Ionized Gas Kinematics of Peculiar Virgo Cluster Spiral Galaxies

    CERN Document Server

    Cortés, J R; Hardy, E

    2014-01-01

    We present the stellar and ionized gas kinematics of 13 bright peculiar Virgo cluster galaxies observed with the DensePak Integral Field Unit at the WIYN 3.5-meter telescope, to seek kinematic evidence that these galaxies have experienced gravitational interactions or gas stripping. 2-Dimensional maps of the stellar velocity $V$, and stellar velocity dispersion $\\sigma$ and the ionized gas velocity (H$\\beta$ and/or [\\ion{O}{3}]) are presented for galaxies in the sample. The stellar rotation curves and velocity dispersion profiles are determined for 13 galaxies, and the ionized gas rotation curves are determined for 6 galaxies. Misalignments between the optical and kinematical major axis are found in several galaxies. While in some cases this is due to a bar, in other cases it seems associated with a gravitational interaction or ongoing ram pressure stripping. Non-circular gas motions are found in nine galaxies, with various causes including bars, nuclear outflows, or gravitational disturbances. Several galaxi...

  2. Bar pattern speeds in CALIFA galaxies. I. Fast bars across the Hubble sequence

    NARCIS (Netherlands)

    Aguerri, J. A. L.; Méndez-Abreu, J.; Falcón-Barroso, J.; Amorin, A.; Barrera-Ballesteros, J.; Cid Fernandes, R.; García-Benito, R.; García-Lorenzo, B.; González Delgado, R. M.; Husemann, B.; Kalinova, V.; Lyubenova, M.; Marino, R. A.; Márquez, I.; Mast, D.; Pérez, E.; Sánchez, S. F.; van de Ven, G.; Walcher, C. J.; Backsmann, N.; Cortijo-Ferrero, C.; Bland-Hawthorn, J.; del Olmo, A.; Iglesias-Páramo, J.; Pérez, I.; Sánchez-Blázquez, P.; Wisotzki, L.; Ziegler, B.

    2015-01-01

    Context. The bar pattern speed (Ωb) is defined as the rotational frequency of the bar, and it determines the bar dynamics. Several methods have been proposed for measuring Ωb. The non-parametric method proposed by Tremaine & Weinberg (1984, ApJ, 282, L5; TW) and based on stellar kinematics is the mo

  3. Determining the type of orbits in the central regions of barred galaxies

    CERN Document Server

    Zotos, Euaggelos E

    2016-01-01

    We use a simple dynamical model which consists of a harmonic oscillator and a spherical component, in order to investigate the regular or chaotic character of orbits in a barred galaxy with a central spherically symmetric nucleus. Our aim is to explore how the basic parameters of the galactic system influence the nature of orbits, by computing in each case the percentage of chaotic orbits, as well as the percentages of different types of regular orbits. We also give emphasis to the types of regular orbits that support either the formation of nuclear rings or the barred structure of the galaxy. We provide evidence that the traditional x1 orbital family does not always dominate in barred galaxy models since we found several other types of resonant orbits which can also support the barred structure. We also found that sparse enough nuclei, fast rotating bars and high energy models can support the galactic bars. On the other hand, weak bars, dense central nuclei, slowly rotating bars and low energy models favor t...

  4. Model of Outgrowths in the Spiral Galaxies NGC 4921 and NGC 7049 and the Origin of Spiral Arms

    CERN Document Server

    Carlqvist, Per

    2012-01-01

    NGC 4921 and 7049 are two spiral galaxies presenting narrow, distinct dust features. A detailed study of the morphology of those features has been carried out using Hubble Space Telescope archival images. NGC 4921 shows a few but well-defined dust arms midway to its centre while NGC 7049 displays many more dusty features, mainly collected within a ring-shaped formation. Numerous dark and filamentary structures, called outgrowths, are found to protrude from the dusty arms in both galaxies. The outgrowths point both outwards and inwards in the galaxies. Mostly they are found to be V-shaped or Y-shaped with the branches connected to dark arm filaments. Often the stem of the Y appears to consist of intertwined filaments. Remarkably, the outgrowths show considerable similarities to elephant trunks in H II regions. A model of the outgrowths, based on magnetized filaments, is proposed. The model provides explanations of both the shapes and orientations of the outgrowths. Most important, it can also give an account f...

  5. The discovery of seven extremely low surface brightness galaxies in the field of the nearby spiral galaxy M101

    CERN Document Server

    Merritt, Allison; Abraham, Roberto

    2014-01-01

    Dwarf satellite galaxies are a key probe of dark matter and of galaxy formation on small scales and of the dark matter halo masses of their central galaxies. They have very low surface brightness, which makes it difficult to identify and study them outside of the Local Group. We used a low surface brightness-optimized telescope, the Dragonfly Telephoto Array, to search for dwarf galaxies in the field of the massive spiral galaxy M101. We identify seven large, low surface brightness objects in this field, with effective radii of \\(10 - 30\\) arcseconds and central surface brightnesses of \\(\\mu_{g} \\sim 25.5 - 27.5\\) mag arcsec\\(^{-2}\\). Given their large apparent sizes and low surface brightnesses, these objects would likely be missed by standard galaxy searches in deep fields. Assuming the galaxies are dwarf satellites of M101, their absolute magnitudes are in the range \\(-11.6 \\lesssim M_{V} \\lesssim -9.3\\) and their effective radii are \\(350\\) pc \\(-\\) \\(1.3\\) kpc. Their radial surface brightness profiles ar...

  6. A spectroscopic method for determining the luminosities of spiral galaxies and estimating their stellar population

    Science.gov (United States)

    Cowley, A. P.; Crampton, D.; McClure, R. D.

    1982-12-01

    Spectra of the nuclei of 44 normal spiral galaxies have been obtained using the McGraw-Hill Observatory intensified Reticon scanner. A composite spectral index, Σ, has been formed which measures the strengths of Ca II, Hδ , CH, and Mg, all of which correlate with absolute magnitude of the nuclear bulge. It is found that this index can predict the magnitudes of normal galaxies with a dispersion of 0.5 mag. This index is used to show that many galaxies within 6° of the Virgo cluster center, normally assumed to be members, may not be at the mean cluster distance. Using the same instrument, we also obtained fluxed spectra of halo globular clusters and solar neighborhood stars of both Population I and II. These data were used to construct simple population models for the nuclei of late-type spiral galaxies. It was found that, except in the case of the ˜2" semistellar nucleus in M33, the line strengths of Sc galaxy nuclei fit well models constructed from globular cluster observations but could not be reproduced using only a Population I stellar mix. The reverse was true, on the other hand, for the semistellar nucleus of M33, where a good fit is obtained by using young star light plus a smaller contribution from an old metalpoor population. We interpret this to indicate that the predominant light from the amorphous nuclear bulges of late-type spiral nuclei is old, but some of these galaxies may have had recent bursts of star formation that affect the spectral characteristics of a central component of the nucleus.

  7. Megaparsec relativistic jets launched from an accreting supermassive black hole in an extreme spiral galaxy

    Energy Technology Data Exchange (ETDEWEB)

    Bagchi, Joydeep; Vivek, M.; Srianand, Raghunathan; Gopal-Krishna [The Inter-University Centre for Astronomy and Astrophysics (IUCAA), Pune University Campus, Post Bag 4, Pune 411007 (India); Vikram, Vinu [Department of Physics and Astronomy, University of Pennsylvania, PA 19104 (United States); Hota, Ananda [UM-DAE Centre for Excellence in Basic Sciences, Vidyanagari, Mumbai 400098 (India); Biju, K. G. [Department of Physics, W.M.O. Arts and Science College, Post Office Muttil, North Kalpetta, Wayanad (India); Sirothia, S. K. [National Centre for Radio Astrophysics (NCRA), TIFR, Pune University Campus, Post Bag 3, Ganeshkhind, Pune 411 007 (India); Jacob, Joe, E-mail: joydeep@iucaa.ernet.in [Department of Physics, Newman College, Thodupuzha 685 585 (India)

    2014-06-20

    The radio galaxy phenomenon is directly connected to mass-accreting, spinning supermassive black holes found in the active galactic nuclei. It is still unclear how the collimated jets of relativistic plasma on hundreds to thousands of kiloparsec scales form and why they are nearly always launched from the nuclei of bulge-dominated elliptical galaxies and not flat spirals. Here we present the discovery of the giant radio source J2345–0449 (z = 0.0755), a clear and extremely rare counterexample where relativistic jets are ejected from a luminous and massive spiral galaxy on a scale of ∼1.6 Mpc, the largest known so far. Extreme physical properties observed for this bulgeless spiral host, such as its high optical and infrared luminosity, large dynamical mass, rapid disk rotation, and episodic jet activity, are possibly the results of its unusual formation history, which has also assembled, via gas accretion from a disk, its central black hole of mass >2 × 10{sup 8} M {sub ☉}. The very high mid-IR luminosity of the galaxy suggests that it is actively forming stars and still building a massive disk. We argue that the launch of these powerful jets is facilitated by an advection-dominated, magnetized accretion flow at a low Eddington rate onto this unusually massive (for a bulgeless disk galaxy) and possibly fast spinning central black hole. Therefore, J2345–0449 is an extremely rare, unusual galactic system whose properties challenge the standard paradigms for black hole growth and the formation of relativistic jets in disk galaxies. Thus, it provides fundamental insight into accretion disk-relativistic jet coupling processes.

  8. Modelling resonances and orbital chaos in disk galaxies. Application to a Milky Way spiral model

    CERN Document Server

    Michtchenko, Tatiana A; Barros, Douglas A; Lépine, Jacques R D

    2016-01-01

    Context: Resonances in the stellar orbital motion under perturbations from spiral arms structure play an important role in the evolution of the disks of spiral galaxies. The epicyclic approximation allows the determination of the corresponding resonant radii on the equatorial plane (for nearly circular orbits), but is not suitable in general. Aims: To expand the study of resonant orbits by analysing stellar motions perturbed by spiral arms with Gaussian-shaped profiles, without any restriction on the stellar orbital configurations, and expand the concept of Lindblad (epicyclic) resonances for orbits with large radial excursions. Methods: We define a representative plane of initial conditions, which covers the whole phase space of the system. Dynamical maps on representative planes are constructed numerically, in order to characterize the phase-space structure and identify the precise location of the resonances. The study is complemented by the construction of dynamical power spectra, which provide the identif...

  9. Luminous X-ray sources in spiral and star-forming galaxies.

    Science.gov (United States)

    Ward, Martin

    2002-09-15

    For studies of discrete X-ray source populations in nearby galaxies, high spatial resolution is a key to making progress. Now, for the first time, using the Chandra X-ray observatory, we are able to study these source populations in detail for galaxies beyond M31 and our local group galaxies. Analysis of accretion-driven and supernova-related discrete sources provides a new perspective on the evolution of galactic stellar populations, as well as giving insights into the physical mechanisms operating in individual cases. A particularly intriguing area, which we are only just beginning to address, is the nature of the most X-ray-luminous sources that are being discovered in many spiral and star-forming galaxies.

  10. MOND rotation curves for spiral galaxies with Cepheid-based distances

    CERN Document Server

    Bottema, R; Rothberg, B; Sanders, R H; Bottema, Roelof; Pestana, Jose L.G.; Rothberg, Barry; Sanders, Robert H.

    2002-01-01

    Rotation curves for four spiral galaxies with recently determined Cepheid-based distances are reconsidered in terms of modified Newtonian dynamics (MOND). For two of the objects, NGC 2403 and NGC 7331, the rotation curves predicted by MOND are compatible with the observed curves when these galaxies are taken to be at the Cepheid distance. For NGC 3198, the largest distance for which reasonable agreement is obtained is 10% smaller than the Cepheid-based distance; i.e., MOND clearly prefers a smaller distance. This conclusion is unaltered when new near-infrared photometry of NGC 3198 is taken as the tracer of the stellar mass distribution. For the large Sc spiral, NGC 2841, MOND requires a distance which is at least 20% larger than the Cepheid-based distance. However, the discrepancy of the Tully-Fisher and SNIa distances with the Cepheid determination casts some doubt upon the Cepheid method in this case.

  11. Spiral-like Light Profiles but Elliptical-like Kinematics in Mergers of Galaxies

    CERN Document Server

    Jog, C J; Jog, Chanda J.; Chitre, Aparna

    2002-01-01

    It is commonly accepted that a merger of two spiral galaxies results in a remnant with an elliptical-like surface-brightness profile. Surprisingly, our recent study (Chitre & Jog 2002) of the 2MASS data for twenty-seven advanced mergers of galaxies has shown that half of these have a light distribution that decreases exponentially with radius. Such a distribution normally characterizes a rotationally supported disk in a spiral galaxy. Here we show from kinematic data for two of these mergers, Arp 224 and Arp 214, that the main support against gravitational collapse comes from pressure due to random motion of stars as seen in an elliptical galaxy rather than from rotation. The origin of the unusual combination of properties seen here is a puzzle. The standard theoretical N-body models in the literature cannot account for these systems. Further observational and dynamical studies of this new class of merger remnants are needed, and would be important for understanding merger dynamics and galaxy evolution.

  12. The influence of the cluster environment on the star formation efficiency of 12 Virgo spiral galaxies

    CERN Document Server

    Vollmer, B; Braine, J; Chung, A; Kenney, J D P

    2012-01-01

    The influence of the environment on gas surface density and star formation efficiency of cluster spiral galaxies is investigated. We extend previous work on radial profiles by a pixel-to pixel analysis looking for asymmetries due to environmental interactions. The star formation rate is derived from GALEX UV and Spitzer total infrared data. As in field galaxies, the star formation rate for most Virgo galaxies is approximately proportional to the molecular gas mass. Except for NGC 4438, the cluster environment does not affect the star formation efficiency with respect to the molecular gas. Gas truncation is not associated with major changes in the total gas surface density distribution of the inner disk of Virgo spiral galaxies. In three galaxies, possible increases in the molecular fraction and the star formation efficiency with respect to the total gas, of factors of 1.5 to 2, are observed on the windward side of the galactic disk. A significant increase of the star formation efficiency with respect to the m...

  13. A Pilot Survey of Stellar Tidal Streams in Nearby Spiral Galaxies

    Science.gov (United States)

    Martínez-Delgado, David; Gabany, R. Jay; Peñarrubia, Jorge; Rix, Hans-Walter; Majewski, Steven R.; Trujillo, Ignacio; Pohlen, Michael

    Within the hierarchical framework for galaxy formation, merging and tidal interactions are expected to shape large galaxies to this day. While major mergers are quite rare at present, minor mergers and satellite disruptions-which result in stellar streams-should be common, and are indeed seen in both the Milky Way and the Andromeda Galaxy. As a pilot study, we have carried out ultra-deep, wide-field imaging of some spiral galaxies in the Local Volume, which has revealed external views of such stellar tidal streams at unprecedented detail, with data taken at small robotic telescopes (0.1-0.5m) that provide exquisite surface brightness sensitivity. The goal of this project is to undertake the first systematic and comprehensive imaging survey of stellar tidal streams, from a sample of˜50 nearby Milky Way-like spiral galaxies within 15Mpc, that features a surface brightness sensitivity of˜30mag/arcsec2. The survey will result in estimates of the incidence, size/geometry and stellar luminosity/mass distribution of such streams. This will not only put our Milky Way and M31 in context but, for the first time, also provide an extensive statistical basis for comparison with state-of-the-art, self-consistent cosmological simulations of this phenomenon.

  14. Large and small-scale structures and the dust energy balance problem in spiral galaxies

    CERN Document Server

    Saftly, W; De Geyter, G; Camps, P; Renaud, F; Guedes, J; De Looze, I

    2015-01-01

    The interstellar dust content in galaxies can be traced in extinction at optical wavelengths, or in emission in the far-infrared. Several studies have found that radiative transfer models that successfully explain the optical extinction in edge-on spiral galaxies generally underestimate the observed FIR/submm fluxes by a factor of about three. In order to investigate this so-called dust energy balance problem, we use two Milky Way-like galaxies produced by high-resolution hydrodynamical simulations. We create mock optical edge-on views of these simulated galaxies (using the radiative transfer code SKIRT), and we then fit the parameters of a basic spiral galaxy model to these images (using the fitting code FitSKIRT). The basic model includes smooth axisymmetric distributions along a S\\'ersic bulge and exponential disc for the stars, and a second exponential disc for the dust. We find that the dust mass recovered by the fitted models is about three times smaller than the known dust mass of the hydrodynamical in...

  15. The NIR structure of the barred galaxy NGC253 from VISTA

    CERN Document Server

    Iodice, E; Rejkuba, M; Neeser, M J; Greggio, L; Gonzalez, O A; Irwin, M; Emerson, J P

    2014-01-01

    [abridged] We used J and Ks band images acquired with the VISTA telescope as part of the science verification to quantify the structures in the stellar disk of the barred Sc galaxy NGC253. Moving outward from the galaxy center, we find a nuclear ring within the bright 1 kpc diameter nucleus, then a bar, a ring with 2.9 kpc radius. From the Ks image we obtain a new measure of the deprojected length of the bar of 2.5 kpc. The bar's strength, as derived from the curvature of the dust lanes in the J-Ks image, is typical of weak bars. From the deprojected length of the bar, we establish the corotation radius (R_CR=3 kpc) and bar pattern speed (Omega_b = 61.3 km /s kpc), which provides the connection between the high-frequency structures in the disk and the orbital resonances induced by the bar. The nuclear ring is located at the inner Lindblad resonance. The second ring does not have a resonant origin, but it could be a merger remnant or a transient structure formed during an intermediate stage of the bar formatio...

  16. Frequency and properties of bars in cluster and field galaxies at intermediate redshifts

    CERN Document Server

    Barazza, Fabio D; Desai, Vandana; Jogee, Shardha; Aragon-Salamanca, Alfonso; De Lucia, Gabriella; Saglia, Roberto P; Halliday, Claire; Poggianti, Bianca M; Dalcanton, Julianne J; Rudnick, Gregory; Milvang-Jensen, Bo; Noll, Stefan; Simard, Luc; Clowe, Douglas I; Pello, Roser; White, Simon D M; Zaritsky, Dennis

    2009-01-01

    We present a study of large-scale bars in field and cluster environments out to redshifts of ~0.8 using a final sample of 945 moderately inclined disk galaxies drawn from the EDisCS project. We characterize bars and their host galaxies and look for relations between the presence of a bar and the properties of the underlying disk. We investigate whether the fraction and properties of bars in clusters are different from their counterparts in the field. The total optical bar fraction in the redshift range z=0.4-0.8 (median z=0.60), averaged over the entire sample, is 25% (20% for strong bars). For the cluster and field subsamples, we measure bar fractions of 24% and 29%, respectively. We find that bars in clusters are on average longer than in the field and preferentially found close to the cluster center, where the bar fraction is somewhat higher (~31%) than at larger distances (~18%). These findings however rely on a relatively small subsample and might be affected by small number statistics. In agreement with...

  17. The central region of spiral galaxies as seen by Herschel. M81, M99 and M100

    CERN Document Server

    Sauvage, M; Bendo, G J; Boselli, A; Pohlen, M; Wilson, C D; Auld, R; Baes, M; Barlow, M J; Bock, J J; Bradford, M; Buat, V; Castro-Rodriguez, N; Chanial, P; Charlot, S; Ciesla, L; Clements, D L; Cooray, A; Cormier, D; Cortese, L; Davies, J I; Dwek, E; Eales, S A; Elbaz, D; Galametz, M; Galliano, F; Gear, W K; Glenn, J; Gomez, H L; Griffin, M; Hony, S; Isaak, K G; Levenson, L R; Lu, N; Madden, S C; O'Halloran, B; Okumura, K; Oliver, S; Page, M J; Panuzzo, P; Papageorgiou, A; Parkin, T J; Perez-Fournon, I; Rangwala, N; Rigby, E E; Roussel, H; Rykala, A; Schulz, B; Schirm, M R P; Smith, M W L; Spinoglio, L; Stevens, J A; Srinivasan, S; Symeonidis, M; Trichas, M; Vaccari, M; Vigroux, L; Wozniak, H; Wright, G S; Zeilinger, W W

    2010-01-01

    With appropriate spatial resolution, images of spiral galaxies in thermal infrared (~10 micron and beyond) often reveal a bright central component, distinct from the stellar bulge, superimposed on a disk with prominent spiral arms. ISO and Spitzer studies have shown that much of the scatter in the mid-infrared colors of spiral galaxies is related to changes in the relative importance of these two components, rather than to other modifications, such as the morphological type or star formation rate, that affect the properties of the galaxy as a whole. With the Herschel imaging capability from 70 to 500 micron, we revisit this two-component approach at longer wavelengths, to see if it still provides a working description of the brightness distribution of galaxies, and to determine its implications on the interpretation of global far-infrared properties of galaxies.

  18. The relation between magnetic and material arms in models for spiral galaxies

    CERN Document Server

    Moss, D; Sokoloff, D; Stepanov, R; Krause, M; Arshakian, T G

    2013-01-01

    Context. Observations of polarized radio emission show that large-scale (regular) magnetic fields in spiral galaxies are not axisymmetric, but generally stronger in interarm regions. In some nearby galaxies such as NGC 6946 they are organized in narrow magnetic arms situated between the material spiral arms. Aims. The phenomenon of magnetic arms and their relation to the optical spiral arms (the material arms) call for an explanation in the framework of galactic dynamo theory. Several possibilities have been suggested but are not completely satisfactory; here we attempt a consistent investigation. Methods. We use a 2D mean-field dynamo model in the no-z approximation and add injections of small-scale magnetic field, taken to result from supernova explosions, to represent the effects of dynamo action on smaller scales. This injection of small scale field is situated along the spiral arms, where star-formation mostly occurs. Results. A straightforward explanation of magnetic arms as a result of modulation of th...

  19. Pitch Angle Restrictions in Late Type Spiral Galaxies Based on Chaotic and Ordered Orbital Behavior

    CERN Document Server

    Perez-Villegas, Angeles; Moreno, Edmundo; Peimbert, Antonio; Velazquez, Hector M

    2011-01-01

    We built models for low bulge mass spiral galaxies (late type as defined by the Hubble classification) using a 3-D self-gravitating model for spiral arms, and analyzed the orbital dynamics as a function of pitch angle, going from 10$\\deg$ to 60$\\deg$. Testing undirectly orbital self-consistency, we search for the main periodic orbits and studied the density response. For pitch angles up to approximately $\\sim 20\\deg$, the response supports closely the potential permitting readily the presence of long lasting spiral structures. The density response tends to "avoid" larger pitch angles in the potential, by keeping smaller pitch angles in the corresponding response. Spiral arms with pitch angles larger than $\\sim 20\\deg$, would not be long-lasting structures but rather transient. On the other hand, from an extensive orbital study in phase space, we also find that for late type galaxies with pitch angles larger than $\\sim 50\\deg$, chaos becomes pervasive destroying the ordered phase space surrounding the main sta...

  20. Simulating a slow bar in the low surface brightness galaxy UGC 628

    CERN Document Server

    Chequers, Matthew H; Widrow, Lawrence M; Gilhuly, Colleen

    2016-01-01

    We present a disc-halo N-body model of the low surface brightness galaxy UGC 628, one of the few systems that harbours a "slow" bar with a ratio of corotation radius to bar length of $\\mathcal{R} \\equiv R_c/a_b \\sim 2$. We select our initial conditions using SDSS DR10 photometry, a physically motivated radially variable mass-to-light ratio profile, and rotation curve data from the literature. A global bar instability grows in our submaximal disc model, and the disc morphology and dynamics agree broadly with the photometry and kinematics of UGC 628 at times between peak bar strength and the onset of buckling. Prior to bar formation, the disc and halo contribute roughly equally to the potential in the galaxy's inner region, giving the disc enough self gravity for bar modes to grow. After bar formation there is significant mass redistribution, creating a baryon dominated inner and dark matter dominated outer disc. This implies that, unlike most other low surface brightness galaxies, UGC 628 is not dark matter do...

  1. Structure and mass distribution of spiral galaxies at intermediate redshifts

    CERN Document Server

    Tamm, A; Tamm, Antti; Tenjes, Peeter

    2003-01-01

    Using the HST archive WFPC2 observations and rotation curves measeured by Vogt et al. (1996), we constructed self-consistent light and mass distribution models for three disk galaxies at redshifts z = 0.15, 0.90 and 0.99. The models consist of three components: the bulge, the disk and the dark matter. Spatial density distribution parameters for the components were calculated. After applying k-corrections, mass-to-light ratios for galactic disks within the maximum disk assumption are M/L_B = 4.4, 1.2 and 1.2, respectively. Corresponding central densities of dark matter halos within a truncated isothermal model are 0.0092, 0.028 and 0.015 in units M_sol/pc^3. The light distribution of galaxies in outer parts is steeper than a simple exponential disk.

  2. The JCMT Nearby Galaxies Legacy Survey X. Environmental Effects on the Molecular Gas and Star Formation Properties of Spiral Galaxies

    CERN Document Server

    Mok, Angus; Golding, J; Warren, B E; Israel, F P; Serjeant, S; Knapen, J H; Sanchez-Gallego, J R; Barmby, P; Bendo, G J; Rosolowsky, E; van der Werf, P

    2015-01-01

    We present a study of the molecular gas properties in a sample of 98 HI - flux selected spiral galaxies within $\\sim25$ Mpc, using the CO $J=3-2$ line observed with the James Clerk Maxwell Telescope. We use the technique of survival analysis to incorporate galaxies with CO upper limits into our results. Comparing the group and Virgo samples, we find a larger mean H$_{2}$ mass in the Virgo galaxies, despite their lower mean HI mass. This leads to a significantly higher H$_{2}$ to HI ratio for Virgo galaxies. Combining our data with complementary H$\\alpha$ star formation rate measurements, Virgo galaxies have longer molecular gas depletion times compared to group galaxies, due to their higher H$_{2}$ masses and lower star formation rates. We suggest that the longer depletion times may be a result of heating processes in the cluster environment or differences in the turbulent pressure. From the full sample, we find that the molecular gas depletion time has a positive correlation with the stellar mass, indicative...

  3. A Massive Spiral Galaxy in the Zone of Avoidance

    CERN Document Server

    Donley, J L; Koribalski, B S; Kraan-Korteweg, R C; Schröder, A; Staveley-Smith, L

    2006-01-01

    We report the discovery of a very HI-massive disk galaxy, HIZOA J0836-43, at a velocity of v_hel = 10689 km/s, corresponding to a distance of 148 Mpc (assuming H_0=75 km/s/Mpc). It was found during the course of a systematic HI survey of the southern Zone of Avoidance (|b| < 5 deg) with the multibeam system at the 64m Parkes radio telescope. Follow-up observations with the Australia Telescope Compact Array (ATCA) reveal an extended HI disk. We derive an HI mass of 7.5 x 10^10 Msun. Using the HI radius, we estimate a total dynamical mass of 1.4 x 10^12 Msun, similar to the most massive known disk galaxies such as Malin 1. HIZOA J0836-43 lies deep in the Zone of Avoidance (l, b = 262.48 deg, -1.64 deg) where the optical extinction is very high, A_B = 9.8. However, in the near-infrared wavebands, where the extinction is considerably lower, HIZOA J0836-43 is clearly detected by both DENIS and 2MASS. Deep AAT near-infrared (Ks and H-band) images show that HIZOA J0836-43 is an inclined disk galaxy with a promine...

  4. The incidence of bar-like kinematic flows in CALIFA galaxies

    Science.gov (United States)

    Holmes, L.; Spekkens, K.; Sánchez, S. F.; Walcher, C. J.; García-Benito, R.; Mast, D.; Cortijo-Ferrero, C.; Kalinova, V.; Marino, R. A.; Mendez-Abreu, J.; Barrera-Ballesteros, J. K.

    2015-08-01

    We carry out a direct search for bar-like non-circular flows in intermediate-inclination, gas-rich disc galaxies with a range of morphological types and photometric bar classifications from the first data release (DR1) of the Calar Alto Legacy Integral Field Spectroscopy Area (CALIFA) survey. We use the DISKFIT algorithm to apply rotation only and bisymmetric flow models to H α velocity fields for 49/100 CALIFA DR1 systems that meet our selection criteria. We find satisfactory fits for a final sample of 37 systems. DISKFIT is sensitive to the radial or tangential components of a bar-like flow with amplitudes greater than 15 km s-1 across at least two independent radial bins in the fit, or ˜2.25 kpc at the characteristic final sample distance of ˜75 Mpc. The velocity fields of 25/37 {(67.6^{+6.6}_{-8.5} per cent)} galaxies are best characterized by pure rotation, although only 17/25 {(68.0^{+7.7}_{-10.4} per cent)} of them have sufficient H α emission near the galaxy centre to afford a search for non-circular flows. We detect non-circular flows in the remaining 12/37 {(32.4^{+8.5}_{-6.6} per cent)} galaxies. We conclude that the non-circular flows detected in 11/12 {(91.7^{+2.8}_{-14.9} per cent)} systems stem from bars. Galaxies with intermediate (AB) bars are largely undetected, and our detection thresholds therefore represent upper limits to the amplitude of the non-circular flows therein. We find 2/23 {(8.7^{+9.6}_{-2.9} per cent)} galaxies that show non-circular motions consistent with a bar-like flow, yet no photometric bar is evident. This suggests that in ˜10 per cent of galaxies either the existence of a bar may be missed completely in photometry or other processes may drive bar-like flows and thus secular galaxy evolution.

  5. A new model for the gravitational potential perturbations in disks of spiral galaxies. An application to our Galaxy

    CERN Document Server

    Junqueira, T C; Braga, C A S; Barros, D A

    2012-01-01

    We propose a new, more realistic, description of the perturbed gravitational potential of spiral galaxies, with spiral arms having Gaussian-shaped groove profiles. We investigate the stable stellar orbits in galactic disks, using the new perturbed potential. The influence of the bulge mass on the stellar orbits in the inner regions of a disk is also investigated. The new description offers the advantage of easy control of the parameters of the Gaussian profile of its potential. We find a range of values for the perturbation amplitude from 400 to 800 km^2 s^{-2} kpc^{-1} which implies a maximum ratio of the tangential force to the axisymmetric force between 3% and 6%, approximately. Good self-consistency of arm shapes is obtained between the Inner Lindblad resonance (ILR) and the 4:1 resonance. Near the 4:1 resonance the response density starts to deviate from the imposed logarithmic spiral form. This creates bifurcations that appear as short arms. Therefore the deviation from a perfect logarithmic spiral in g...

  6. Large-Scale Asymmetry of Rotation Curves in Lopsided Spiral Galaxies

    CERN Document Server

    Jog, C J

    2002-01-01

    Many spiral galaxies show a large-scale asymmetry with a cos\\phi dependence in their rotation curves as well as in their morphology, such as M101 and NGC 628. We show that both these features can be explained by the response of a galactic disk to an imposed lopsided halo potential. A perturbation potential of 5 % is deduced for the morphologically lopsided galaxies in the Rix & Zaritsky (1995) sample. This is shown to result in a difference of 10 % or about 20-30 kms^{-1} in the rotation velocity on the two sides of the major axis. Interestingly, the observed isophotal asymmetry in a typical spiral galaxy is not much smaller and it results in a velocity asymmetry of 7 % or about 14-21 kms^{-1} . Hence, we predict that most galaxies show a fairly significant rotational asymmetry. The rotation velocity is shown to be maximum along the elongated isophote - in agreement with the observations along the SW in M101, while it is minimum along the opposite direction. This result leads to the distinctive asymmetric...

  7. Bulge and Clump Evolution in Hubble Ultra Deep Field Clump Clusters, Chains and Spiral Galaxies

    CERN Document Server

    Elmegreen, Bruce G; Fernandez, Maria Ximena; Lemonias, Jenna Jo

    2008-01-01

    Clump clusters and chain galaxies in the Hubble Ultra Deep Field are examined for bulges in the NICMOS images. Approximately 50% of the clump clusters and 30% of the chains have relatively red and massive clumps that could be young bulges. Magnitudes and colors are determined for these bulge-like objects and for the bulges in spiral galaxies, and for all of the prominent star-formation clumps in these three galaxy types. The colors are fitted to population evolution models to determine the bulge and clump masses, ages, star-formation rate decay times, and extinctions. The results indicate that bulge-like objects in clump cluster and chain galaxies have similar ages and 2 to 5 times larger masses compared to the star-formation clumps, while the bulges in spirals have ~6 times larger ages and 20 to 30 times larger masses than the clumps. All systems appear to have an underlying red disk population. The masses of star-forming clumps are typically in a range from 10^7 to 10^8 Msun; their ages have a wide range ar...

  8. Spin alignments of spiral galaxies within the large-scale structure from SDSS DR7

    CERN Document Server

    Zhang, Youcai; Wang, Huiyuan; Wang, Lei; Luo, Wentao; Mo, H J; Bosch, Frank C van den

    2014-01-01

    Using a sample of spiral galaxies selected from the Sloan Digital Sky Survey Data Release 7 (SDSS DR7) and Galaxy Zoo 2 (GZ2), we investigate the alignment of spin axes of spiral galaxies with their surrounding large scale structure, which is characterized by the large-scale tidal field reconstructed from the data using galaxy groups above a certain mass threshold. We find that the spin axes of only have weak tendency to be aligned with (or perpendicular to) the intermediate (or minor) axis of the local tidal tensor. The signal is the strongest in a \\cluster environment where all the three eigenvalues of the local tidal tensor are positive. Compared to the alignments between halo spins and local tidal field obtained in N-body simulations, the above observational results are in best agreement with those for the spins of inner regions of halos, suggesting that the disk material traces the angular momentum of dark matter halos in the inner regions.

  9. An extended star cluster at the outer edge of the spiral galaxy M33

    CERN Document Server

    Stonkute, Rima; Arimoto, Nobuo; Hasegawa, Takashi; Narbutis, Donatas; Tamura, Naoyuki; Jablonka, Pascale; Ohta, Kouji; Yamada, Yoshihiko

    2008-01-01

    We report a discovery of an extended globular-like star cluster, M33-EC1, at the outer edge of the spiral galaxy M33. The distance to the cluster is 890 kpc, and it lies at a 12.5 kpc projected distance from the center of M33. Old age (>~7 Gyr) and low metallicity ([M/H] <~ -1.4) are estimated on the basis of isochrone fits. Color-magnitude diagrams of stars, located in the cluster's area, photometric and structural parameters of the cluster are presented. Cluster's luminosity (M_V = -6.6) and half-light radius (r_h = 20.3 pc) are comparable to those of the extended globular clusters, discovered in more luminous Local Group galaxies, the Milky Way and M31. Extended globular clusters are suspected to be remnants of accreted dwarf galaxies, and the finding of such a cluster in the late-type dwarf spiral galaxy M33 would imply a complex merging history in the past.

  10. Effect of halo component on bar-formation in disk galaxies

    Science.gov (United States)

    Hohl, F.

    1975-01-01

    Numerical experiments are performed to determine the effect of a fixed halo component of mass on the stability of purely stellar disks. The rotation curve of the fixed halo component corresponds to the Schmidt model of the galaxy. It is found that when the stellar disk contains less than 50% of the total mass, the large-scale bar-making instability is effectively suppressed. For disks containing 50% or more of the total mass, a bar structure quickly forms.

  11. A new method to estimate local pitch angles in spiral galaxies: Application to spiral arms and feathers in M81 and M51

    CERN Document Server

    Puerari, Ivânio; Block, David L

    2014-01-01

    We examine $8\\mu$m IRAC images of the grand design two-arm spiral galaxies M81 and M51 using a new method whereby pitch angles are locally determined as a function of scale and position, in contrast to traditional Fourier transform spectral analyses which fit to average pitch angles for whole galaxies. The new analysis is based on a correlation between pieces of a galaxy in circular windows of $(\\ln R, \\theta)$ space and logarithmic spirals with various pitch angles. The diameter of the windows is varied to study different scales. The result is a best-fit pitch angle to the spiral structure as a function of position and scale, or a distribution function of pitch angles as a function of scale for a given galactic region or area. We apply the method to determine the distribution of pitch angles in the arm and interarm regions of these two galaxies. In the arms, the method reproduces the known pitch angles for the main spirals on a large scale, but also shows higher pitch angles on smaller scales resulting from ...

  12. GHASP : An Halpha kinematic survey of spiral and irregular galaxies - VI. New Halpha data cubes for 108 galaxies

    CERN Document Server

    Epinat, B; Marcelin, M; Balkowski, C; Daigle, O; Hernández, O; Chemin, L; Carignan, C; Gach, J L; Balard, P

    2008-01-01

    We present the Fabry-Perot observations obtained for a new set of 108 galaxies that completes the GHASP survey (Gassendi HAlpha survey of SPirals). The GHASP survey consists of 3D Ha data cubes for 203 spiral and irregular galaxies, covering a large range in morphological types and absolute magnitudes, for kinematics analysis. The GHASP sample is by now the largest sample of Fabry-Perot data ever published. We have derived Ha data cubes from which are computed Ha maps, radial velocity fields as well as residual velocity fields, position-velocity diagrams, rotation curves and the kinematical parameters for almost all galaxies. Original improvements in the determination of the kinematical parameters, rotation curves and their uncertainties have been implemented in the reduction procedure. This new method is based on the whole 2D velocity field and on the power spectrum of the residual velocity fieldrather than the classical method using successive crowns in the velocity field. Among the results, we point out th...

  13. Barred Galaxies in the Abell 901/2 Supercluster with STAGES

    CERN Document Server

    Marinova, I; Heiderman, A; Barazza, F D; Gray, M E; Barden, M; Wolf, C; Peng, C Y; Bacon, D; Balogh, M; Bell, E F; Böhm, A; Caldwell, J A R; Haussler, B; Heymans, C; Jahnke, K; Van Kampen, E; Koposov, S; Lane, K; McIntosh, D H; Meisenheimer, K; Rix, H -W; Sánchez, S F; Taylor, A; Wisotzki, L; Zheng, X

    2009-01-01

    We present a study of bar and host disk evolution in a dense cluster environment, based on a sample of ~800 bright (MV <= -18) galaxies in the Abell 901/2 supercluster at z~0.165. We use HST ACS F606W imaging from the STAGES survey, and data from Spitzer, XMM-Newton, and COMBO-17. We identify and characterize bars through ellipse-fitting, and other morphological features through visual classification. (1) We explore three commonly used methods for selecting disk galaxies. We find 625, 485, and 353 disk galaxies, respectively, via visual classification, a single component S'ersic cut (n <= 2.5), and a blue-cloud cut. In cluster environments, the latter two methods miss 31% and 51%, respectively, of visually-identified disks. (2) For moderately inclined disks, the three methods of disk selection yield a similar global optical bar fraction (f_bar-opt) of 34% +10%/-3%, 31% +10%/-3%, and 30% +10%/-3%, respectively. (3) f_bar-opt rises in brighter galaxies and those which appear to have no significant bulge c...

  14. A Turbulent Origin for Flocculent Spiral Structure in Galaxies

    CERN Document Server

    Elmegreen, B G; Leitner, S N; Elmegreen, Bruce G.; Elmegreen, Debra Meloy; Leitner, Samuel N.

    2003-01-01

    The flocculent structure of star formation in 7 galaxies has a Fourier transform power spectrum for azimuthal intensity scans with a power law slope that increases systematically from -1 at large scales to -1.7 at small scales. This is the same pattern as in the power spectra for azimuthal scans of HI emission in the Large Magellanic Clouds and for flocculent dust clouds in galactic nuclei. The steep part also corresponds to the slope of -3 for two-dimensional power spectra that have been observed in atomic and molecular gas surveys of the Milky Way and the Large and Small Magellanic Clouds. The same power law structure for star formation arises in both flocculent and grand design galaxies, which implies that the star formation process is the same in each. Fractal Brownian motion models that include discrete stars and an underlying continuum of starlight match the observations if all of the emission is organized into a global fractal pattern with an intrinsic 1D power spectrum having a slope between 1.3 and 1...

  15. On the origin of the luminosity-metalicity relation for late-type galaxies Spirals to irregulars transition

    CERN Document Server

    Pilyugin, L S

    2000-01-01

    We consider the roles of two widely invoked mechanisms for the metallicity-luminosity correlation among late-type galaxies: higher astration level and decreasing efficiency of heavy-element loss with increasing luminosity. We find that both mechanisms contribute about equally to the range in oxygen abundance between low (logL_B = 8) and high (logL_B = 10.5) luminosity galaxies. We also consider the transition from spirals to irregulars, finding that both the oxygen abundance deficiency (indicating the degree of mass exchange between a galaxy and its environment) and the gas fraction vary smoothly along the sequence. Thus we find no "irregular versus spiral dichotomy".

  16. Untangling the magnetic fields in spiral galaxy NGC 6946 with wide-band polarimetry

    Science.gov (United States)

    Williams, Anna; Heald, George; Wilcots, Eric M.; Gould Zweibel, Ellen

    2017-01-01

    We present 13 cm polarization observations of nearby spiral galaxy NGC 6946. These data provide a new perspective into the magnetic field structure of this galaxy. Previous observations show strong depolarization between 6 cm and 22 cm, and we show that the morphology of the 13 cm polarization bridges this gap. We combine all available high resolution polarization observations to fit models of the line of sight magnetic field structure across the disk. We find simple screens of Faraday rotation, differential Faraday rotation, and internal Faraday dispersion are insufficient to explain the observed depolarization, and present the results of the best fit models. We discuss how future broadband observations and improved models will help reconstruct the full 3D model of the magnetic field structure in the disks and haloes of galaxies.

  17. A new method to estimate local pitch angles in spiral galaxies: Application to spiral arms and feathers in M81 and M51

    Energy Technology Data Exchange (ETDEWEB)

    Puerari, Ivânio [Instituto Nacional de Astrofísica, Optica y Electrónica, Calle Luis Enrique Erro 1, 72840 Santa María Tonantzintla, Puebla (Mexico); Elmegreen, Bruce G. [IBM T. J. Watson Research Center, 1101 Kitchawan Road, Yorktown Heights, New York 10598 (United States); Block, David L., E-mail: puerari@inaoep.mx [School of Computational and Applied Mathematics, University of Witwatersrand, Private Bag 3, WITS 2050 (South Africa)

    2014-12-01

    We examine 8 μm IRAC images of the grand design two-arm spiral galaxies M81 and M51 using a new method whereby pitch angles are locally determined as a function of scale and position, in contrast to traditional Fourier transform spectral analyses which fit to average pitch angles for whole galaxies. The new analysis is based on a correlation between pieces of a galaxy in circular windows of (lnR,θ) space and logarithmic spirals with various pitch angles. The diameter of the windows is varied to study different scales. The result is a best-fit pitch angle to the spiral structure as a function of position and scale, or a distribution function of pitch angles as a function of scale for a given galactic region or area. We apply the method to determine the distribution of pitch angles in the arm and interarm regions of these two galaxies. In the arms, the method reproduces the known pitch angles for the main spirals on a large scale, but also shows higher pitch angles on smaller scales resulting from dust feathers. For the interarms, there is a broad distribution of pitch angles representing the continuation and evolution of the spiral arm feathers as the flow moves into the interarm regions. Our method shows a multiplicity of spiral structures on different scales, as expected from gas flow processes in a gravitating, turbulent and shearing interstellar medium. We also present results for M81 using classical 1D and 2D Fourier transforms, together with a new correlation method, which shows good agreement with conventional 2D Fourier transforms.

  18. The JCMT Nearby Galaxies Legacy Survey IV. Velocity Dispersions in the Molecular Interstellar Medium in Spiral Galaxies

    CERN Document Server

    Wilson, C D; Irwin, J; Knapen, J H; Israel, F P; Serjeant, S; Attewell, D; Bendo, G J; Brinks, E; Butner, H M; Clements, D L; Leech, J; Matthews, H E; Muehle, S; Mortier, A M J; Parkin, T J; Petitpas, G; Tan, B K; Tilanus, R P J; Usero, A; Vaccari, M; van der Werf, P; Wiegert, T; Zhu, M

    2010-01-01

    An analysis of large-area CO J=3-2 maps from the James Clerk Maxwell Telescope for 12 nearby spiral galaxies reveals low velocity dispersions in the molecular component of the interstellar medium. The three lowest luminosity galaxies show a relatively flat velocity dispersion as a function of radius while the remaining nine galaxies show a central peak with a radial fall-off within 0.2-0.4 r(25). Correcting for the average contribution due to the internal velocitydispersions of a population of giant molecular clouds, the average cloud-cloud velocity dispersion across the galactic disks is 6.1 +/- 1.0 km/s (standard deviation 2.9 km/s), in reasonable agreement with previous measurements for the Galaxy andM33. The cloud-cloud velocity dispersion derived from the CO data is on average two times smaller than the HI velocity dispersion measured in the same galaxies. The low cloud-cloudvelocity dispersion implies that the molecular gas is the critical component determining the stability of the galactic disk against...

  19. Central enhancement of nitrogen-to-oxygen abundance ratio in barred galaxies

    CERN Document Server

    Florido, E; Perez, I; Perez-Montero, E; Coelho, P R T; Gadotti, D A

    2015-01-01

    Bar-induced gas inflows towards the galaxy centres are recognized as a key agent for the secular evolution of galaxies. One immediate consequence is the accumulation of gas in the centre of galaxies where it can form stars and alter the chemical and physical properties. We use a sample of nearby face--on disc galaxies with available SDSS spectra to study whether the properties of the ionised gas in the central parts (radii 10^10 M_sun) or galaxies with total stellar mass above ~ 10^10.8 M_sun. In conclusion, we find observational evidence that the presence of a galactic bar affects the central ionised gas properties of disc galaxies, where the most striking effect is an enhancement in the N/O abundance ratio, which can be qualitatively interpreted as due to a different origin or evolutionary processes for less and more massive bulges, with the gaseous phase of the former having currently a closer relation with bars.

  20. On the influence of ram-pressure stripping on the star formation of simulated spiral galaxies

    CERN Document Server

    Kronberger, T; Ferrari, C; Unterguggenberger, S; Schindler, S

    2008-01-01

    We investigate the influence of ram-pressure stripping on the star formation and the mass distribution in simulated spiral galaxies. Special emphasis is put on the question where the newly formed stars are located. The stripping radius from the simulation is compared to analytical estimates. Disc galaxies are modelled in combined N-body/hydrodynamic simulations (GADGET-2) with prescriptions for cooling, star formation, stellar feedback, and galactic winds. These model galaxies move through a constant density and temperature gas, which has parameters comparable to the intra-cluster medium (ICM) in the outskirts of a galaxy cluster (T=3 keV ~3.6x10^7 K and rho=10^-28 g/cm^3). With this numerical setup we analyse the influence of ram-pressure stripping on the star formation rate of the model galaxy. We find that the star formation rate is significantly enhanced by the ram-pressure effect (up to a factor of 3). Stars form in the compressed central region of the galaxy as well as in the stripped gas behind the gal...

  1. The Red Spiral Galaxy UGC11680: Clues for the Inside-Out Quenching.

    Science.gov (United States)

    Bárcenas, J.; Sanchez, S. F.

    2016-06-01

    Broadly, galaxies can be divided in two groups, thanks to the Color-Magnitude Diagram: the lively star formation ones, ``The blue Cloud'' and galaxies which halted their star formation, ``The Red Sequence''. It is a currently accepted that the galaxies start their lifespan as a blue objects, turning red when they stop to assembly more mass and thus more stars. Nevertheless, This change need to be quick (˜ 1 Gyr), due to the dearth of galaxies between this two populations (the so called ``green valley'').Previous works have found two distinct stellar mass assembly modes, they are termed as ``the inside-out'' and ``the outside-in'' growth scenarios in the literature. In the ``inside-out'' scenario, mass assembly is finished in the galactic central region. In some cases, the inflow gas can fuel the central SuperMassive BlackHole. The subsequent AGN feedback will then shut-off the central star formation. One possible case of this scenario is the galaxy UGC11680, an unusual face-on red spiral galaxy with an AGN type 2, at the red sequence belonging to the CALIFA survey. We used the so called fossil method to study its star formation history and try to understand what happened to its stellar populations.

  2. Globular Clusters and Spur Clusters in NGC 4921, the Brightest Spiral Galaxy in the Coma Cluster

    CERN Document Server

    Lee, Myung Gyoon

    2016-01-01

    We resolve a significant fraction of globular clusters (GCs) in NGC 4921, the brightest spiral galaxy in Coma. Also we find a number of extended bright star clusters (star complexes) in the spur region of the arms. The latter are much brighter and bluer than those in the normal star-forming region, being as massive as 3x10^5 M_odot. The color distribution of the GCs in this galaxy is found to be bimodal. The turnover magnitudes of the luminosity functions (LF) of the blue (metal-poor) GCs (0.70<(V-I)<1.05) in the halo are estimated to be V(max) =27.11+-0.09 mag and I(max)=26.21+-0.11 mag. We obtain similar values for NGC 4923, a companion S0 galaxy, and two Coma cD galaxies (NGC 4874 and NGC 4889). The mean value for the turnover magnitudes of these four galaxies is I(max)=26.25+-0.03 mag. Adopting M_I (max) = -8.56+-0.09 mag for the metal-poor GCs, we determine the mean distance to the four Coma galaxies, 91+-4 Mpc. Combining this and the Coma radial velocity, we derive a value of the Hubble constant, ...

  3. The angular momentum of cosmological coronae and the inside-out growth of spiral galaxies

    Science.gov (United States)

    Pezzulli, Gabriele; Fraternali, Filippo; Binney, James

    2017-01-01

    Massive and diffuse haloes of hot gas (coronae) are important intermediaries between cosmology and galaxy evolution, storing mass and angular momentum acquired from the cosmic web until eventual accretion onto star forming discs. We introduce a method to reconstruct the rotation of a galactic corona, based on its angular momentum distribution (AMD). This allows us to investigate in what conditions the angular momentum acquired from tidal torques can be transferred to star forming discs and explain observed galaxy-scale processes, such as inside-out growth and the build-up of abundance gradients. We find that a simple model of an isothermal corona with a temperature slightly smaller than virial and a cosmologically motivated AMD is in good agreement with galaxy evolution requirements, supporting hot-mode accretion as a viable driver for the evolution of spiral galaxies in a cosmological context. We predict moderately sub-centrifugal rotation close to the disc and slow rotation close to the virial radius. Motivated by the observation that the Milky Way has a relatively hot corona (T ≃ 2 × 106 K), we also explore models with a temperature larger than virial. To be able to drive inside-out growth, these models must be significantly affected by feedback, either mechanical (ejection of low angular momentum material) or thermal (heating of the central regions). However, the agreement with galaxy evolution constraints becomes, in these cases, only marginal, suggesting that our first and simpler model may apply to a larger fraction of galaxy evolution history.

  4. 13CO/C18O Gradients across the Disks of Nearby Spiral Galaxies

    Science.gov (United States)

    Jiménez-Donaire, María J.; Cormier, Diane; Bigiel, Frank; Leroy, Adam K.; Gallagher, Molly; Krumholz, Mark R.; Usero, Antonio; Hughes, Annie; Kramer, Carsten; Meier, David; Murphy, Eric; Pety, Jérôme; Schinnerer, Eva; Schruba, Andreas; Schuster, Karl; Sliwa, Kazimierz; Tomicic, Neven

    2017-02-01

    We use the IRAM Large Program EMPIRE and new high-resolution ALMA data to measure 13CO(1-0)/C18O(1-0) intensity ratios across nine nearby spiral galaxies. These isotopologues of 12CO are typically optically thin across most of the area in galaxy disks, and this ratio allows us to gauge their relative abundance due to chemistry or stellar nucleosynthesis effects. Resolved 13CO/C18O gradients across normal galaxies have been rare due to the faintness of these lines. We find a mean 13CO/C18O ratio of 6.0 ± 0.9 for the central regions of our galaxies. This agrees well with results in the Milky Way, but differs from results for starburst galaxies (3.4 ± 0.9) and ultraluminous infrared galaxies (1.1 ± 0.4). In our sample, the 13CO/C18O ratio consistently increases with increasing galactocentric radius and decreases with increasing star formation rate surface density. These trends could be explained if the isotopic abundances are altered by fractionation; the sense of the trends also agrees with those expected for carbon and oxygen isotopic abundance variations due to selective enrichment by massive stars.

  5. Star Formation Histories Across the Interacting Galaxy NGC 6872, the Largest-Known Spiral

    CERN Document Server

    Eufrasio, Rafael T; Arendt, Richard G; de Mello, Duilia F; Gadotti, Dimitri; Urrutia-Viscarra, Fernanda; de Oliveira, Claudia Mendes; Benford, Dominic

    2014-01-01

    NGC 6872, hereafter the Condor, is a large spiral galaxy that is interacting with its closest companion, the S0 galaxy IC 4970. The extent of the Condor provides an opportunity for detailed investigation of the impact of the interaction on the current star formation rate and its history across the galaxy, on the age and spatial distribution of its stellar population, and on the mechanism that drive the star formation activity. To address these issues we analyzed the far-ultraviolet (FUV) to near-infrared (near-IR) spectral energy distribution (SED) of 17, 10 kpc diameter, regions across the galaxy, and derived their star formation history, current star formation rate, and stellar population and mass. We find that most of the star formation takes place in the extended arms, with very little star formation in the central 5 kpc of the galaxy, in contrast to what was predicted from previous numerical simulations. There is a trend of increasing star formation activity with distance from the nucleus of the galaxy, ...

  6. STAR Formation Histories Across the Interacting Galaxy NGC 6872, the Largest-Known Spiral

    Science.gov (United States)

    Eufrasio, Rafael T.; Dwek, E.; Arendt, RIchard G.; deMello, Duilia F.; Gadotti, DImitri A.; Urrutia-Viscarra, Fernanda; deOliveira, CLaudia Mendes; Benford, Dominic J.

    2014-01-01

    NGC6872, hereafter the Condor, is a large spiral galaxy that is interacting with its closest companion, the S0 galaxy IC 4970. The extent of the Condor provides an opportunity for detailed investigation of the impact of the interaction on the current star formation rate and its history across the galaxy, on the age and spatial distribution of its stellar population, and on the mechanism that drives the star formation activity. To address these issues we analyzed the far-ultraviolet (FUV) to near-infrared (near-IR) spectral energy distribution of seventeen 10 kpc diameter regions across the galaxy, and derived their star formation history, current star formation rate, and stellar population and mass. We find that most of the star formation takes place in the extended arms, with very little star formation in the central 5 kpc of the galaxy, in contrast to what was predicted from previous numerical simulations. There is a trend of increasing star formation activity with distance from the nucleus of the galaxy, and no evidence for a recent increase in the current star formation rate due to the interaction. The nucleus itself shows no significant current star formation activity. The extent of the Condor also provides an opportunity to test the applicability of a single standard prescription for conversion of the FUV + IR (22 micrometer) intensities to a star formation rate for all regions. We find that the conversion factor differs from region to region, arising from regional differences in the stellar populations.

  7. Star formation in grand-design, spiral galaxies. Young, massive clusters in the near-infrared

    Science.gov (United States)

    Grosbøl, P.; Dottori, H.

    2012-06-01

    Aims: Spiral structure is a prominent feature in many disk galaxies and is often outlined by bright, young objects. We study the distribution of young stellar clusters in grand-design spiral galaxies and thereby determine whether strong spiral perturbations can influence star formation. Methods: Deep, near-infrared JHK-maps were observed for ten nearby, grand-design, spiral galaxies using HAWK-I at the Very Large Telescope. Complete, magnitude-limited candidate lists of star-forming complexes were obtained by searching within the K-band maps. The properties of the complexes were derived from (H - K) - (J - H) diagrams including the identification of the youngest complexes (i.e. ≲7 Myr) and the estimation of their extinction. Results: Young stellar clusters with ages ≲7 Myr have significant internal extinction in the range of AV = 3-7m, while older ones typically have AV pattern, the star formation rate in the arms is higher by a factor of 2-5 than in the inter-arm regions. The CLF in the arms is also shifted towards brighter MK by at least 0.4m. We also detect clusters with colors compatible with Large Magellanic Cloud intermediate age clusters and Milky Way globular clusters. The (J - K) - MK diagram of several galaxies shows, for the brightest clusters, a clear separation between young clusters that are highly attenuated by dust and older ones with low extinction. Conclusions: The gap in the (J - K) - MK diagrams implies that there has been a rapid expulsion of dust at an age around 7 Myr, possibly triggered by supernovae. Strong spiral perturbations concentrate the formation of clusters in the arm regions and shifts their CLF towards brighter magnitudes. Based on observations collected at the European Southern Observatory, Chile; program: ESO 82.B-0331.Appendices A-C are available in electronic form at http://www.aanda.orgThe photometric data are available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http

  8. Catalog of observed tangents to the spiral arms in the Milky Way galaxy

    CERN Document Server

    Vallee, Jacques P

    2014-01-01

    From the sun's location in the Galactic disk, one can use different arm tracers (CO, HII, thermal or ionized or relativistic electrons, masers, cold or hot dust, etc) to locate a tangent to each spiral arm in the disk of the Milky Way galaxy. We present a Master catalog of the astronomically observed tangents to the Galaxy's spiral arms, using different arm tracers from the literature. Some arm tracers can have slightly divergent results from several papers, so a mean is taken - see Appendix for CO, HII, and masers. The Master catalog of means currently consists of 63 mean tracer entries, spread over many arms (Carina, Crux-Centaurus, Norma, Perseus origin, near 3-kpc, Scutum, Sagittarius), stemming from 107 original arm tracer entries. Additionally, we updated and revised a previous a previous statistical analysis of the angular offset and linear separation from the mid-arm, for each different mean arm tracer. Given enough arm tracers, and summing and averaging over all spiral arms, one could determine if ar...

  9. Destruction of star clusters due to the radial migration in spiral galaxies

    CERN Document Server

    Fujii, M S

    2012-01-01

    Most stars in galactic disks are believed to be born as a member of star clusters or associations. Star clusters formed in disks are disrupted due to the tidal stripping and the evolution of star clusters themselves, and as a results new stars are supplied to the galactic disks. We performed $N$-body simulations of star clusters in galactic disks, in which both star clusters and galactic disks are modeled as $N$-body ("live") systems, and as a consequence the disks form transient and recurrent spiral arms. In such non-steady spiral arms, star clusters migrate radially due to the interaction with spiral arms. We found that the migration timescale is a few hundreds Myr and that the angular momentum changes of star clusters are at most $\\sim 50$% in 1 Gyr. Radial migration of star clusters to the inner region of galaxies results in a fast disruption of the star clusters because of a stronger tidal field in the inner region of the galaxy. This effect is not negligible for the disruption timescale of star clusters...

  10. Strong Evidence for the Density-wave Theory of Spiral Structure in Disk Galaxies

    CERN Document Server

    Pour-Imani, Hamed; Kennefick, Julia; Davis, Benjamin L; Shields, Douglas W; Abdeen, Mohamed Shameer

    2016-01-01

    The density-wave theory of galactic spiral-arm structure makes a striking prediction that the pitch angle of spiral arms should vary with the wavelength of the galaxy's image. The reason is that stars are born in the density wave but move out of it as they age. They move ahead of the density wave inside the co-rotation radius, and fall behind outside of it, resulting in a tighter pitch angle at wavelengths that image stars (optical and near-infrared) than those that are associated with star formation (far-infrared and ultraviolet). In this study we combined large sample size with wide range of wavelengths, from the ultraviolet to the infrared to investigate this issue. For each galaxy we used an optical wavelength image (B-band: 445 nm) and images from the Spitzer Space Telescope at two infrared wavelengths (infrared: 3.6 and 8.0 {\\mu}m) and we measured the pitch angle with the 2DFFT and Spirality codes. We find that the B-band and 3.6 {\\mu}m images have smaller pitch angles than the infrared 8.0 {\\mu}m image...

  11. Study of the stellar line-strength indices and kinematics along bars

    NARCIS (Netherlands)

    Perez, I.; Sanchez-Blazquez, P.; Zurita, A.

    2009-01-01

    Aims. This is the first paper of a series that aims to understand the formation and evolution of bars in early-type spirals and their influence in the evolution of the galaxy. Methods. Optical long-slit spectra along the bar major-axis of a sample of 20 galaxies are analyzed. Velocity and velocity d

  12. INTEGRAL FIELD SPECTROSCOPY AND MULTI-WAVELENGTH IMAGING OF THE NEARBY SPIRAL GALAXY NGC 5668 : AN UNUSUAL FLATTENING IN METALLICITY GRADIENT

    Energy Technology Data Exchange (ETDEWEB)

    Marino, R. A.; Gil de Paz, A.; Castillo-Morales, A.; Perez-Gonzalez, P. G.; Gallego, J.; Zamorano, J. [CEI Campus Moncloa, UCM-UPM, Departamento de Astrofisica y CC. de la Atmosfera, Facultad de CC. Fisicas, Universidad Complutense de Madrid, Avda. Complutense s/n, 28040 Madrid (Spain); Munoz-Mateos, J. C. [National Radio Astronomy Observatory, 520 Edgemont Road, Charlottesville, VA 22903-2475 (United States); Sanchez, S. F. [Centro Astronomico Hispano Aleman, Calar Alto (CSIC-MPG), C/Jesus Durban Remon 2-2, E-04004 Almeria (Spain); Alonso-Herrero, A. [Instituto de Fisica de Cantabria, CSIC-UC, Avenida de los Castros s/n, 39005 Santander (Spain); Boissier, S., E-mail: ramarino@fis.ucm.es [Laboratoire dAstrophysique de Marseille, OAMP, Universite Aix-Marseille and CNRS UMR 6110, 38 rue Frederic Joliot-Curie, 13388 Marseille cedex 13 (France)

    2012-07-20

    We present an analysis of the full bidimensional optical spectral cube of the nearby spiral galaxy NGC 5668, observed with the Pmas fiber PAcK Integral Field Unit (IFU) at the Calar Alto observatory 3.5 m telescope. We make use of broadband imaging to provide further constraints on the evolutionary history of the galaxy. This data set will allow us to improve our understanding of the mechanisms that drive the evolution of disks. We investigated the properties of 62 H II regions and concentric rings in NGC 5668 and derived maps in ionized-gas attenuation and chemical (oxygen) abundances. We find that while inward of r {approx}36'' {approx} 4.4 kpc {approx} 0.36 (D{sub 25}/2) the derived O/H ratio follows the radial gradient typical of spiral galaxies, the abundance gradient beyond r {approx} 36'' flattens out. The analysis of the multi-wavelength surface brightness profiles of NGC 5668 is performed by fitting these profiles with those predicted by chemo-spectrophotometric evolutionary models of galaxy disks. From this, we infer a spin and circular velocity of {lambda} = 0.053 and v{sub c} = 167 km s{sup -1}, respectively. The metallicity gradient and rotation curve predicted by this best-fitting galaxy model nicely match the values derived from the IFU observations, especially within r {approx}36''. The same is true for the colors despite some small offsets and a reddening in the bluest colors beyond that radius. On the other hand, deviations of some of these properties in the outer disk indicate that a secondary mechanism, possibly gas transfer induced by the presence of a young bar, must have played a role in shaping the recent chemical and star formation histories of NGC 5668.

  13. H{\\alpha} to FUV ratios in resolved star forming region populations of nearby spiral galaxies

    CERN Document Server

    Hermanowicz, Maciej T; Eldridge, John J

    2013-01-01

    We present a new study of H{\\alpha}/FUV flux ratios of star forming regions within a sample of nearby spiral galaxies. We search for evidence of the existence of a cluster mass dependent truncation in the underlying stellar initial mass function (IMF). We use an automated approach to identification of extended objects based on the SExtractor algorithm to catalogue resolved Hii regions within a set of nearby spiral galaxies. Corrections due to dust attenuation effects are applied to avoid artificially boosted H{\\alpha}/FUV values. We use the BPASS stellar population synthesis code of Eldridge & Stanway (2009) to create a benchmark population of star forming regions to act as a reference for our observations. Based on those models, we identify a zone of parameter space populated by regions that cannot be obtained with a cluster mass dependent truncation in the stellar IMF imposed. We find that the investigated galaxies display small subpopulations of star forming regions falling within our zone of interest,...

  14. The Spiral Host Galaxy of the Double Radio Source 0313-192

    CERN Document Server

    Keel, W C; Owen, F N; Ledlow, M J; Keel, William C.; III, Raymond E. White; Owen, Frazer N.; Ledlow, Michael J.

    2006-01-01

    We present new Hubble, Gemini-S, and Chandra observations of the radio galaxy 0313-192, which hosts a 350-kpc double source and jets, even though previous data have suggested that it is a spiral galaxy. We measure the bulge scale and luminosity, radial and vertical profiles of disk starlight, and consider the distributions of H II regions and absorbing dust. In each case, the HST data confirm its classification as an edge-on spiral galaxy, the only such system known to produce such an extended radio source of this kind. The Gemini near-IR images and Chandra spectral fit reveal a strongly obscured central AGN, seen through the entire ISM path length of the disk and showing X-ray evidence of additional absorption from warm or dense material close to the central object. We consider several possible mechanisms for producing such a rare combination of AGN and host properties, some combination of which may be at work. These include an unusually luminous bulge (suggesting a black hole of mass 0.5-0.9 billion solar m...

  15. Complex central structures suggest complex evolutionary paths for barred S0 galaxies

    CERN Document Server

    Dullo, Bililign T; Knapen, Johan H

    2016-01-01

    We investigate three barred lenticular galaxies (NGC 2681, NGC 3945 and NGC 4371) which were previously reported to have complex central structures but without a detailed structural analysis of these galaxies' high-resolution data. We have therefore performed four- to six-component (pseudo-)bulge/disk/bar/ring/point source) decompositions of the composite (Hubble Space Telescope plus ground-based) surface brightness profiles. We find that NGC 2681 hosts three bars, while NGC 3945 and NGC 4371 are double- and single-barred galaxies, respectively, in agreement with past isophotal analysis. We find that the bulges in these galaxies are compact, and have S\\'ersic indices of $n\\sim 2.2 - 3.6$ and stellar masses of $M_{*}$ $\\sim 0.28\\times10^{10} - 1.1\\times10^{10} M_{\\sun}$. NGC 3945 and NGC 4371 have intermediate-scale `pseudo-bulges' that are well described by a S\\'ersic model with low $n \\la 0.5$ instead of an exponential ($n=1$) profile as done in the past. We measure emission line fluxes enclosed within 9 dif...

  16. THE INFLUENCE OF RED SPIRAL GALAXIES ON THE SHAPE OF THE LOCAL K-BAND LUMINOSITY FUNCTION

    Energy Technology Data Exchange (ETDEWEB)

    Bonne, Nicolas J.; Brown, Michael J. I.; Jones, Heath; Pimbblet, Kevin A., E-mail: nicolas.bonne@monash.edu [School of Physics, Monash University, P.O. Box 27, Clayton, Victoria 3800 (Australia)

    2015-02-01

    We have determined K-band luminosity functions for 13,325 local universe galaxies as a function of morphology and color (for K {sub tot} ≤ 10.75). Our sample is drawn from the Two Micron All Sky Survey Extended Source Catalog, with all sample galaxies having measured morphologies and distances (including 4219 archival redshift-independent distances). The luminosity function for our total sample is in good agreement with previous works, but is relatively smooth at faint magnitudes (due to bulk flow distance corrections). We investigated the differences due to morphological and color selection using 5417 sample galaxies with NASA Sloan Atlas optical colors and find that red spirals comprise 20%-50% of all spirals with –25 ≤ M{sub K}  < –20. Fainter than M{sub K} = –24, red spirals are as common as early types, explaining the different faint end slopes (α = –0.87 and –1.00 for red and early-types, respectively). While we find red spirals comprise more than 50% of all M{sub K}  < –25 spiral galaxies, they do not dominate the bright end of the overall red galaxy luminosity function, which is dominated by early-type galaxies. The brightest red spirals have ongoing star formation and those without are frequently misclassified as early-types. The faintest ones have an appearance and Sérsic indices consistent with faded disks, rather than true bulge-dominated galaxies.

  17. The effects of ram-pressure stripping on the internal kinematics of simulated spiral galaxies

    CERN Document Server

    Kronberger, T; Unterguggenberger, S; Schindler, S; Ziegler, B L

    2008-01-01

    We investigate the influence of ram-pressure stripping on the internal gas kinematics of simulated spiral galaxies. Additional emphasis is put on the question of how the resulting distortions of the gaseous disc are visible in the rotation curve and/or the full 2D velocity field of galaxies at different redshifts. A Milky-Way type disc galaxy is modelled in combined N-body/hydrodynamic simulations with prescriptions for cooling, star formation, stellar feedback, and galactic winds. This model galaxy moves through a constant density and temperature gas, which has parameters similar to the intra-cluster medium (ICM). Rotation curves (RCs) and 2D velocity fields of the gas are extracted from these simulations in a way that follows the procedure applied to observations of distant, small, and faint galaxies as closely as possible. We find that the appearance of distortions of the gaseous disc due to ram-pressure stripping depends on the direction of the acting ram pressure. In the case of face-on ram pressure, the...

  18. Multi-Wavelength Properties of Barred Galaxies in the Local Universe. I: Virgo Cluster

    CERN Document Server

    Giordano, Lea; Moore, Ben; Saintonge, Amelie

    2010-01-01

    We study in detail how the barred galaxy fraction varies as a function of luminosity, HI gas mass, morphology and color in the Virgo cluster in order to provide a well defined, statistically robust measurement of the bar fraction in the local universe spanning a wide range in luminosity (factor of ~100) and HI gas mass. We combine multiple public data-sets (UKIDSS near-infrared imaging, ALFALFA HI gas masses, GOLDMine photometry). After excluding highly inclined systems, we define three samples where galaxies are selected by their B-band luminosity, H-band luminosity, and HI gas mass. We visually assign bars using the high resolution H-band imaging from UKIDSS. When all morphologies are included, the barred fraction is ~17-24% while for morphologically selected discs, we find that the barred fraction in Virgo is ~29-34%: it does not depend strongly on how the sample is defined and does not show variations with luminosity or HI gas mass. The barred fraction depends most strongly on the morphological compositio...

  19. Wide-field 12CO (J = 1-0) Imaging of the Nearby Barred Galaxy M83 with NMA and Nobeyema 45-m telescope: Molecular Gas Kinematics and Star Formation Along the Bar

    CERN Document Server

    Hirota, Akihiko; Baba, Junichi; Egusa, Fumi; Habe, Asao; Muraoka, Kazuyuki; Tanaka, Ayako; Nakanishi, Hiroyuki; Kawabe, Ryohei

    2014-01-01

    We present the results of the wide-field $^{12}$CO (1--0) observations of the nearby barred galaxy M83 carried out with the Nobeyama Millimeter Array (NMA). The interferometric data are combined with the data obtained with the Nobeyama 45-m telescope to recover the total-flux. The target fields of the observations cover the molecular bar and part of the spiral arms, with a spatial resolution of ~110 pc x 260 pc. By exploiting the resolution and sensitivity to extended CO emission, the impact of the galactic structures on the molecular gas content is investigated in terms of the gas kinematics and the star formation. By inspecting the gas kinematics, the pattern speed of the bar is estimated to be 57.4 $\\pm$ 2.8 km s$^{-1}$ kpc$^{-1}$, which places the corotation radius to be about 1.7 times the semi-major radius of the bar. Within the observed field, HII regions brighter than 10$^{37.6}$ erg s$^{-1}$ in H{\\alpha} luminosity are found to be preferentially located downstream of the CO emitting regions. Azimutha...

  20. CATALOG OF OBSERVED TANGENTS TO THE SPIRAL ARMS IN THE MILKY WAY GALAXY

    Energy Technology Data Exchange (ETDEWEB)

    Vallée, Jacques P., E-mail: jacques.vallee@nrc-cnrc.gc.ca [Herzberg Astrophysics, National Research Council Canada, National Science Infrastructure portfolio, 5071 West Saanich Road, Victoria, BC, V9E 2E7 (Canada)

    2014-11-01

    From the Sun's location in the Galactic disk, one can use different arm tracers (CO, H I, thermal or ionized or relativistic electrons, masers, cold and hot dust, etc.) to locate a tangent to each spiral arm in the disk of the Milky Way. We present a master catalog of the astronomically observed tangents to the Galaxy's spiral arms, using different arm tracers from the literature. Some arm tracers can have slightly divergent results from several papers, so a mean value is taken—see the Appendix for CO, H II, and masers. The catalog of means currently consists of 63 mean tracer entries, spread over many arms (Carina, Crux-Centaurus, Norma, Perseus origin, near 3 kpc, Scutum, Sagittarius), stemming from 107 original arm tracer entries. Additionally, we updated and revised a previous statistical analysis of the angular offset and linear separation from the mid-arm for each different mean arm tracer. Given enough arm tracers, and summing and averaging over all four spiral arms, one could determine if arm tracers have separate and parallel lanes in the Milky Way. This statistical analysis allows a cross-cut of a Galactic spiral arm to be made, confirming a recent discovery of a linear separation between arm tracers. Here, from the mid-arm's CO to the inner edge's hot dust, the arm halfwidth is about 340 pc; doubling would yield a full arm width of 680 pc. We briefly compare these observations with the predictions of many spiral arm theories, notably the density wave theory.

  1. UBVI Surface Photometry of the Spiral Galaxy NGC 300 in the Sculptor Group

    Institute of Scientific and Technical Information of China (English)

    Sang Chul Kim; Hwankyung Sung; Hong Soo Park; Eon-Chang Sung

    2004-01-01

    We present UB Visurface photometry over a 20.5'× 20.5' area of the latetype spiral galaxy NGC 300.We have derived isophotal maps,surface brightness profiles,ellipticity profiles,position angle profiles,and color profiles.By merging ourI-band measurements with those of Boker et al.Based on Hubble Space Telescope observations,we have obtained combinedI-band surface brightness profiles for the region 0.02″< r < 500″ and have decomposed the profiles into three components:a nucleus,a bulge,and an exponential disk.

  2. Spectroscopy of H II Regions in the Late-Type Spiral Galaxy NGC 6946

    CERN Document Server

    Gusev, Alexander S; Dodonov, Sergey N; 10.1134/S1990341313010045

    2013-01-01

    We present the results of spectroscopy of 39 H II regions in the spiral galaxy NGC 6946. The spectral observations were carried out at the 6-m BTA telescope of the SAO RAS with the SCORPIO focal reducer in the multi-slit mode with the dispersion of 2.1A/px and spectral resolution of 10A. The absorption estimates for 39 H II regions were obtained. Using the "strong line" method (NS-calibration) we determined the electron temperature, and the abundances of oxygen and nitrogen for 30 H II regions. The radial gradients of O/H and N/H were constructed.

  3. Angular momentum, accretion and radial flows in chemodynamical models of spiral galaxies

    CERN Document Server

    Pezzulli, Gabriele

    2016-01-01

    Gas accretion and radial flows are key ingredients of the chemical evolution of spiral galaxies. They are also tightly linked to each other (accretion drives radial flows, due to angular momentum conservation) and should therefore be modelled simultaneously. We summarise an algorithm that can be used to consistently compute accretion profiles, radial flows and abundance gradients under quite general conditions and we describe illustrative applications to the Milky Way. We find that gas-phase abundance gradients strongly depend on the angular momentum of the accreting material and, in the outer regions, they are significantly affected by the choice of boundary conditions.

  4. Interplay of CR-driven galactic wind, magnetic field, and galactic dynamo in spiral galaxies

    CERN Document Server

    Krause, Marita

    2009-01-01

    From our radio observations of the magnetic field strength and large-scale pattern of spiral galaxies of different Hubble types and star formation rates (SFR) we conclude that - though a high SFR in the disk increases the total magnetic field strength in the disk and the halo - the SFR does not change the global field configuration nor influence the global scale heights of the radio emission. The similar scale heights indicate that the total magnetic field regulates the galactic wind velocities. The galactic wind itself may be essential for an effective dynamo action.

  5. Carbon abundances and radial gradients in NGC300 and other nearby spiral galaxies

    CERN Document Server

    Cipriano, L Toribio San; Esteban, C

    2014-01-01

    We present preliminary results of deep echelle spectrophotometry of a sample of HII regions along the disk of the Scd galaxy NGC300 obtained with the Ultraviolet and Visual Echelle Spectrograph (UVES) at the Very Large Telescope (VLT) with the aim of detect and measure very faint OII and CII permitted lines. We focus this study on the C and O abundances obtained from faint optical recombination lines (ORLs) instead of the most commonly used collisionally excited lines (CELs). We have derived the ionic abundances of C++ from the CII 4267 angstrom RL and O++ from the multiplet 1 of OII around 4649 angstrom in several objects. Finally, we have computed the radial gradients of C/H, O/H and C/O ratios in NGC300 from RLs, which has allowed the comparison with similar data obtained by our group in other nearby spiral galaxies.

  6. The impact of interactions, bars, bulges, and AGN on star formation efficiency in local massive galaxies

    CERN Document Server

    Saintonge, A; Fabello, S; Wang, J; Catinella, B; Genzel, R; Gracia-Carpio, J; Kramer, C; Moran, S; Heckman, T M; Schiminovich, D; Schuster, K; Wuyts, S

    2012-01-01

    Using observations from the GASS and COLD GASS surveys and complementary data from SDSS and GALEX, we investigate the nature of variations in gas depletion time observed across the local massive galaxy population. The large and unbiased COLD GASS sample allows us to assess the relative importance of galaxy interactions, bar instabilities, morphologies and the presence of AGN in regulating star formation efficiency. Both the H2 mass fraction and depletion time vary as a function of the distance of a galaxy from the main sequence in the SFR-M* plane. The longest gas depletion times are found in below-main sequence bulge-dominated galaxies that are either gas-poor, or else on average less efficient than disk-dominated galaxy at converting into stars any cold gas they may have. We find no link between AGN and these long depletion times. The galaxies undergoing mergers or showing signs of morphological disruptions have the shortest molecular gas depletion times, while those hosting strong stellar bars have only ma...

  7. STAR FORMATION IN THE OUTER DISKS OF SPIRAL GALAXIES: ULTRAVIOLET AND H{alpha} PHOTOMETRY

    Energy Technology Data Exchange (ETDEWEB)

    Barnes, Kate L.; Van Zee, Liese [Department of Astronomy, Indiana University, Bloomington, IN 47405 (United States); Skillman, Evan D., E-mail: barneskl@astro.indiana.edu, E-mail: vanzee@astro.indiana.edu, E-mail: skillman@astro.umn.edu [Department of Astronomy, University of Minnesota, Minneapolis, MN 55455 (United States)

    2011-12-20

    We present an analysis of ultradeep UV and H{alpha} imaging of five nearby spiral galaxies to study the recent star formation in the outer disk. Using azimuthally averaged ellipse photometry as well as aperture photometry of individual young stellar complexes, we measure how star formation rates (SFRs) and UV and H{alpha} colors vary with radius. We detect azimuthally averaged UV flux to {approx}1.2-1.4 R{sub 25} in most galaxies; at the edge of the detected UV disk, the surface brightnesses are 28-29 mag arcsec{sup -2}, corresponding to SFR surface densities of {approx}3 Multiplication-Sign 10{sup -4} M{sub Sun} yr{sup -1} kpc{sup -2}. Additionally, we detect between 120 and 410 young stellar complexes per galaxy, with a significant number of detections out to {approx}1.5 R{sub 25}. We measure radial FUV-NUV profiles, and find that the dispersion in the UV colors of individual young stellar complexes increases with radius. We investigate how radial variations in the frequency of star formation episodes can create color gradients and increasing dispersion in the UV colors of star-forming regions, like those observed in our study. Specifically, we use recently published, high spatial and temporal resolution measurements of {Sigma}{sub SFR} throughout the disk of M33 to estimate the frequency of star formation episodes throughout the disk of a typical spiral galaxy. We use stellar synthesis models of these star formation histories (SFHs) to measure the variations in UV colors and find that we can replicate large dispersions in UV colors based on episodic SFHs.

  8. Massive Star Formation Rates and Radial Distributions from Halpha Imaging of 84 Virgo Cluster and Isolated Spiral Galaxies

    CERN Document Server

    Koopmann, R A; Koopmann, Rebecca A.; Kenney, Jeffrey D. P.

    2002-01-01

    The massive star formation properties of 55 Virgo Cluster and 29 isolated S0-Scd spiral galaxies are compared via analyses of R and Halpha surface photometry and integrated fluxes as functions of Hubble type and central R light concentration. The total massive star formation rates in Virgo Cluster spirals have been reduced by factors up to 2.5 in the median compared to isolated spirals. The inner disk star formation rates of most Virgo Cluster spirals are similar or enhanced by factors up to 2.5 in the median, while outer disk star formation rates are reduced by factors up to 7.1 in the median. Thus the reduction in total star formation of Virgo Cluster spirals is caused primarily by truncation of the star-forming disks. The star formation morphologies of Virgo Cluster spirals compared to isolated spirals can be divided into four categories: normal (27%), anemic (6%), enhanced (15%), and truncated (52%). Several galaxies with truncated star-forming disks have anemic inner disks, but the majority have normal-e...

  9. Ram-Pressure Stripping of Gas from Companions and Accretion onto a Spiral Galaxy A Gaseous Merger

    CERN Document Server

    Sofue, Y

    1993-01-01

    We simulated the behavior of interstellar gas clouds in a companion galaxy during a gas-dynamical interaction with the halo and disk of a spiral galaxy. By ram pressure, the gas clouds are stripped from the companion, and accreted to ward the disk of the spiral galaxy. If the companion's orbit is retrograde with respect to the rotation of the spiral galaxy, infalling clouds hit the nuclear region. Angular momentum transfer causes disruption of the inner gaseous disk, and makes a void of interstellar gas in the bulge. If the companion's orbit is either prograde or polar, infalling clouds are accreted by the outer disk, and form a rotating gas ring. We show that the ram-pressure stripping-and-accretion is one way from the companion to a gas-rich larger galaxy, which causes disposal of interstellar gas from the companion and effectively changes its galaxy type into earlier (redder). The ram-pressure process is significant durig merger of galaxies, in which interstellar gas is stripped and accreted prior to the s...

  10. The nature of the UV halo around the spiral galaxy NGC 3628

    CERN Document Server

    Baes, Maarten

    2016-01-01

    Thanks to deep UV observations with GALEX and Swift, diffuse UV haloes have recently been discovered around galaxies. Based on UV-optical colours, it has been advocated that the UV haloes around spiral galaxies are due to UV radiation emitted from the disc and scattered off dust grains at high latitudes. Detailed UV radiative transfer models that take into account scattering and absorption can explain the morphology of the UV haloes, and they require the presence of an additional thick dust disc next the to traditional thin disc for half of the galaxies in their sample. We test whether such an additional thick dust disc agrees with the observed infrared emission in NGC 3628, an edge-on galaxy with a clear signature of a thick dust disc. We extend the far-ultraviolet radiative transfer models to full-scale panchromatic models. Our model, which contains no fine-tuning, can almost perfectly reproduce the observed spectral energy distribution from UV to mm wavelengths. These results corroborate the interpretation...

  11. The DiskMass Survey. X. Radio synthesis imaging of spiral galaxies

    CERN Document Server

    Martinsson, Thomas P K; Bershady, Matthew A; Westfall, Kyle B; Andersen, David R; Swaters, Rob A

    2016-01-01

    We present results from 21 cm radio synthesis imaging of 28 spiral galaxies from the DiskMass Survey obtained with the VLA, WSRT, and GMRT facilities. We detail the observations and data reduction procedures and present a brief analysis of the radio data. We construct 21 cm continuum images, global HI emission-line profiles, column-density maps, velocity fields, and position-velocity diagrams. From these we determine star formation rates (SFRs), HI line widths, total HI masses, rotation curves, and azimuthally-averaged radial HI column-density profiles. All galaxies have an HI disk that extends beyond the readily observable stellar disk, with an average ratio and scatter of R_{HI}/R_{25}=1.35+/-0.22, and a majority of the galaxies appear to have a warped HI disk. A tight correlation exists between total HI mass and HI diameter, with the largest disks having a slightly lower average column density. Galaxies with relatively large HI disks tend to exhibit an enhanced stellar velocity dispersion at larger radii, ...

  12. Effect of the disc on the rotation curves of spiral galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Salucci, Paolo; Frenk, C.S.

    1989-03-01

    We discuss the role of the galactic disc in the interpretation of the circular velocities of spiral galaxies at large galactocentric radii. The fractional amount of mass in the disc can be shown to be an increasing function of the luminosity. As a result, the shape of the rotation curve near the edge of the optical disc is expected to vary systematically with luminosity. Using a simple disc/halo model we find that in bright, disc-dominated galaxies the rotation curve should drop by a few tens of km s/sup -1/ immediately outside the disc, even in the presence of an extended dark halo. Only in faint, halo-dominated galaxies, do we expect the rotation curve to remain flat or even to rise beyond the optical radius. We find evidence for this behaviour in several published rotation curves. In the case of the Milky Way we show that if the disc dominates the gravitational potential in the inner regions, then the low mass estimated from the dynamics of the outer satellites is consistent with a dark halo that extends beyond the region sampled. This and other available data are well fit by a model in which the luminous component of the Galaxy contributes /similar to/ 70 per cent of the mass at 12 kpc from the centre and the mass at large radii increases in proportion to the radius.

  13. Multi-dimensional analysis of the chemical and physical properties of spiral galaxies

    CERN Document Server

    Rosales-Ortega, F F

    2010-01-01

    In this thesis, wide-field 2D spectroscopy is employed in order to characterise the nebular properties of late-type field galaxies. The observations performed for this dissertation represent the first endeavour to obtain full 2D coverage of the disks of a sample of nearby spiral galaxies, by the application of the Integral Field Spectroscopy (IFS) technique, under the PPAK IFS Nearby Galaxies Survey: PINGS. A self-consistent methodology is defined in terms of observation, data reduction and analysis techniques for this and upcoming IFS surveys, as well as providing a whole new set of IFS visualization and analysis software made available for the public domain (PINGSoft). The scientific analysis comprises the study of the integrated properties of the ionized gas and a detailed 2D study from the emission line spectra of four selected galaxies. Evidence is found suggesting that measurements of emission lines of classical HII regions are not only aperture, but spatial dependent, and therefore, the derived physica...

  14. Quantifying the Faint Structure of Galaxies: The Late-type Spiral NGC 2403

    CERN Document Server

    Barker, Mike K; Irwin, Mike J; Arimoto, Nobuo; Jablonka, Pascale

    2011-01-01

    Ground-based surveys have mapped the stellar outskirts of Local Group galaxies in unprecedented detail, but extending this work to other galaxies is necessary to overcome stochastic variations in evolutionary history and provide more stringent constraints on cosmological galaxy formation models. As part of our continuing program of ultra-deep imagery of galaxies beyond the Local Group, we present a wide-field analysis of the isolated late-type spiral NGC2403 using data obtained with Suprime-Cam on Subaru. The survey reaches a maximum projected radius of 30 kpc or deprojected radius of R_dp~60 kpc. The colour-magnitude diagram reaches 1.5 mag below the tip of the metal-poor red giant branch (RGB) at a completeness rate > 50% for R_dp >12 kpc. Using the combination of diffuse light photometry and resolved star counts, we are able to trace the radial surface brightness (SB) profile over a much larger range of radii and surface brightness than is possible with either technique alone. The exponential disc as trace...

  15. On the nature and correction of the spurious S-wise spiral galaxy winding bias in Galaxy Zoo 1

    CERN Document Server

    Hayes, Wayne; Silva, Pedro

    2016-01-01

    The Galaxy Zoo 1 catalog displays a bias towards the S-wise winding direction in spiral galaxies which has yet to be explained. The lack of an explanation confounds our attempts to verify the Cosmological Principle, and has spurred some debate as to whether a bias exists in the real universe. The bias manifests not only in the obvious case of trying to decide if the universe as a whole has a winding bias, but also in the more insidious case of selecting which galaxies to include in a winding direction survey. While the former bias has been accounted for in a previous image-mirroring study, the latter has not. Furthermore, the bias has never been {\\em corrected} in the GZ1 catalog, as only a small sample of the GZ1 catalog was re-examined during the mirror study. We show that the existing bias is a human {\\em selection} effect rather than a human chirality bias. In effect, the excess S-wise votes are spuriously "stolen" from the elliptical and edge-on-disk categories, not the Z-wise category. Thus, when select...

  16. 2MTF III. HI 21cm observations of 1194 spiral galaxies with the Green Bank Telescope

    CERN Document Server

    Masters, Karen L; Hong, Tao; Jarrett, T H; Koribalski, Baerbel S; Macri, Lucas; Springob, Christopher M; Staveley-Smith, Lister

    2014-01-01

    We present HI 21cm observations of 1194 galaxies out to a redshift of 10,000 km/s selected as inclined spirals (i>60deg) from the 2MASS Redshift Survey. These observations were carried out at the National Radio Astronomy Observatory Robert C. Byrd Green Bank Telescope (GBT). This observing program is part of the 2MASS Tully-Fisher (2MTF) survey. This project will combine HI widths from these GBT observations with those from further dedicated observing at the Parkes Telescope, from the ALFALFA survey at Arecibo, and S/N>10 and spectral resolution, v_res < 10km/s published widths from a variety of telescopes. We will use these HI widths along with 2MASS photometry to estimate Tully-Fisher distances to nearby spirals and investigate the peculiar velocity field of the local Universe. In this paper we report on detections of neutral hydrogen in emission in 727 galaxies, and measure good signal-to-noise and symmetric HI global profiles suitable for use in the Tully-Fisher relation in 484.

  17. Modelling CO emission from hydrodynamic simulations of nearby spirals, starbursting mergers, and high-redshift galaxies

    CERN Document Server

    Bournaud, F; Weiss, A; Renaud, F; Mastropietro, C; Teyssier, R

    2014-01-01

    We model the intensity of emission lines from the CO molecule, based on hydrodynamic simulations of spirals, mergers, and high-redshift galaxies with very high resolutions (3pc and 10^3 Msun) and detailed models for the phase-space structure of the interstellar gas including shock heating, stellar feedback processes and galactic winds. The simulations are analyzed with a Large Velocity Gradient (LVG) model to compute the local emission in various molecular lines in each resolution element, radiation transfer and opacity effects, and the intensity emerging from galaxies, to generate synthetic spectra for various transitions of the CO molecule. This model reproduces the known properties of CO spectra and CO-to-H2 conversion factors in nearby spirals and starbursting major mergers. The high excitation of CO lines in mergers is dominated by an excess of high-density gas, and the high turbulent velocities and compression that create this dense gas excess result in broad linewidths and low CO intensity-to-H2 mass r...

  18. Enhanced dust heating in the bulges of early-type spiral galaxies

    CERN Document Server

    Engelbracht, C W; Skibba, R A; Hinz, J L; Calzetti, D; Gordon, K D; Roussel, H; Crocker, A F; Misselt, K A; Bolatto, A D; Kennicutt, R C; Appleton, P N; Armus, L; Beirão, P; Brandl, B R; Croxall, K V; Dale, D A; Draine, B T; Dumas, G; de Paz, A Gil; Groves, B; Hao, C -N; Johnson, B D; Koda, J; Krause, O; Leroy, A K; Meidt, S E; Murphy, E J; Rahman, N; Rix, H -W; Sandstrom, K M; Sauvage, M; Schinnerer, E; Smith, J -D T; Srinivasan, S; Vigroux, L; Walter, F; Warren, B E; Wilson, C D; Wolfire, M G; Zibetti, S

    2010-01-01

    Stellar density and bar strength should affect the temperatures of the cool (T ~ 20-30 K) dust component in the inner regions of galaxies, which implies that the ratio of temperatures in the circumnuclear regions to the disk should depend on Hubble type. We investigate the differences between cool dust temperatures in the central 3 kpc and disk of 13 nearby galaxies by fitting models to measurements between 70 and 500 microns. We attempt to quantify temperature trends in nearby disk galaxies, with archival data from Spitzer/MIPS and new observations with Herschel/SPIRE, which were acquired during the first phases of the Herschel observations for the KINGFISH (key insights in nearby galaxies: a far-infrared survey with Herschel) sample. We fit single-temperature modified blackbodies to far-infrared and submillimeter measurements of the central and disk regions of galaxies to determine the temperature of the component(s) emitting at those wavelengths. We present the ratio of central-region-to-disk-temperatures ...

  19. Radial metallicity gradients in spiral galaxies from H II regions and planetary nebulae: probing galactic chemical evolution

    Science.gov (United States)

    Stanghellini, Letizia

    2015-08-01

    Radial metallicity gradients, typically observed in spiral galaxies, are excellent constraints for chemical evolution models. The contemporary studies of the two stellar populations, whose progenitors have formed at different times, yield to the chemical and time constraining of the models. In this context, planetary nebula and HII region analysis proved to be ideal two-epochs test populations. We present an assortment of galaxies whose oxygen abundances have been determined both with weak- and strong-line methods, and whose radial metallicity gradients and their evolution in time have disclosed very interesting correlations with the galaxy characteristics. New results from our Gemini/GMOS observations, and a review of the best literature data, set the stage for a better understanding of spiral galaxy evolution.

  20. GHASP: an Hα kinematic survey of spiral galaxies - X. Surface photometry, decompositions and the Tully-Fisher relation in the Rc band

    Science.gov (United States)

    Barbosa, C. E.; Mendes de Oliveira, C.; Amram, P.; Ferrari, F.; Russeil, D.; Epinat, B.; Perret, V.; Adami, C.; Marcelin, M.

    2015-11-01

    We present Rc-band surface photometry for 170 of the 203 galaxies in GHASP, the Gassendi H-alpha survey of spirals, a sample of late-type galaxies for which high-resolution Fabry-Perot Hα maps have previously been obtained. Our data set is constructed using new Rc-band observations taken at the Observatoire de Haute-Provence, supplemented with Sloan Digital Sky Survey archival data, obtained with the purpose of deriving homogeneous photometric profiles and parameters. Our results include Rc-band surface brightness profiles for 170 galaxies and ugriz profiles for 108 of these objects. We catalogue several parameters of general interest for further reference, such as total magnitude, effective radius and isophotal parameters (magnitude, position angle, ellipticity and inclination). We also perform a structural decomposition of the surface brightness profiles using a multi-component method to separate discs from bulges and bars, and to observe the main scaling relations involving luminosities, sizes and maximum velocities. We determine the Rc-band Tully-Fisher relation using maximum velocities derived solely from Hα rotation curves for a sample of 80 galaxies, resulting in a slope of -8.1 ± 0.5, zero-point of -3.0 ± 1.0 and an estimated intrinsic scatter of 0.28 ± 0.07. We note that, unlike the Tully-Fisher relation in the near-infrared derived for the same sample, no change in the slope of the relation is seen at the low-mass end (for galaxies with Vmax power law while the near-infrared has two), may be caused by differences in the stellar mass-to-light ratio for galaxies with Vmax < 125 km s-1.

  1. On the Galactic Spiral Arms Nature as revealed by rotation frequencies

    CERN Document Server

    Roca-Fàbrega, Santi; Figueras, Francesca; Romero-Gómez, Mercè; Velázquez, Hector; Antoja, Teresa; Pichardo, Bárbara

    2013-01-01

    High resolution N-body simulations using different codes and initial condition techniques reveal two different behaviours for the rotation frequency of transient spiral arms like structures. Whereas unbarred disks present spiral arms nearly corotatingwith disk particles, strong barred models (bulged or bulge-less) quickly develop a bar-spiral structure dominant in density, with a pattern speed almost constant in radius. As the bar strength decreases the arm departs from bar rigid rotation and behaves similar to the unbarred case. In strong barred models we detect in the frequency space other subdominant and slower modes at large radii, in agreement with previous studies, however we also detect them in the configuration space. We propose that the distinctive behaviour of the dominant spiral modes can be exploited in order to constraint the nature of Galactic spiral arms by the astrometric survey GAIA and by 2-D spectroscopic surveys like CALIFA and MANGA in external galaxies.

  2. Differences between CO- and calcium triplet-derived velocity dispersions in spiral galaxies: evidence for central star formation?

    CERN Document Server

    Riffel, Rogemar A; Mason, Rachel; Rodriguez-Ardila, Alberto; Martins, Lucimara; Riffel, Rogerio; Diaz, Ruben; Colina, Luis; Alonso-Herrero, Almudena; Flohic, Helene; Martin, Omaira Gonzalez; Lira, Paulina; McDermid, Richard; Almeida, Cristina Ramos; Schiavon, Ricardo; Thanjavur, Karun; Dutra, Daniel Ruschel; Winge, Claudia; Perlman, Eric

    2014-01-01

    We examine the stellar velocity dispersions (sigma) of a sample of 48 galaxies, 35 of which are spirals, from the Palomar nearby galaxy survey. It is known that for ultra-luminous infrared galaxies (ULIRGs) and merger remnants thesigma derived from the near-infrared CO band-heads is smaller than that measured from optical lines, while no discrepancy between these measurements is found for early-type galaxies. No such studies are available for spiral galaxies - the subject of this paper. We used cross-dispersed spectroscopic data obtained with the Gemini Near-Infrared Spectrograph (GNIRS), with spectral coverage from 0.85 to 2.5um, to obtain sigma measurements from the 2.29 $\\mu$m CO band-heads (sigma_{CO}), and the 0.85 um calcium triplet (sigma_{CaT}). For the spiral galaxies in the sample, we found that sigma_{CO} is smaller than sigma_{CaT}, with a mean fractional difference of 14.3%. The best fit to the data is given by sigma_{opt} = (46.0+/-18.1) + (0.85+/-0.12)sigma_{CO}. This "sigma discrepancy" may be...

  3. GALEX Observations of "Passive Spirals" in the Cluster Cl 0024+17: Clues to the Formation of S0 Galaxies

    CERN Document Server

    Moran, S M; Treu, T; Salim, S; Rich, R M; Smith, G P; Kneib, J P; Moran, Sean M.; Ellis, Richard S.; Treu, Tommaso; Salim, Samir; Smith, Graham P.; Kneib, Jean-Paul

    2006-01-01

    We present new results from deep GALEX UV imaging of the cluster Cl 0024+17 at z~0.4. Rest-frame far UV emission is detected from a large fraction of so-called ``passive spiral galaxies'' -a significant population which exhibits spiral morphology with little or no spectroscopic evidence for ongoing star formation. This population is thought to represent infalling galaxies whose star formation has been somehow truncated by environmental processes, possibly in morphological transition to S0 galaxies. Compared to normal cluster spirals, we find that passive spirals are redder in FUV-optical color, while exhibiting much stronger UV emission than cluster E/S0s - as expected for recently-truncated star formation. By modeling the different temporal sensitivities of UV and spectroscopic data to recent activity, we show that star formation in passive spirals decayed on timescales of less than 1 Gyr, consistent with `gas starvation' - a process where the cluster environment prevents cold gas from accreting onto the spi...

  4. The detection of spiral arm modulation in the stellar disk of an optically flocculent and an optically grand design galaxy

    CERN Document Server

    Puerari, I; Elmegreen, B G; Frogel, J A; Eskridge, P B; Puerari, Ivanio; Block, David L.; Elmegreen, Bruce G.; Frogel, Jay A.; Eskridge, Paul B.

    2000-01-01

    Two dimensional Fourier spectra of near-infrared images of galaxies provide a powerful diagnostic tool for the detection of spiral arm modulation in stellar disks. Spiral arm modulation may be understood in terms of interference patterns of outgoing and incoming density wave packets or modes. The brightness along a spiral arm will be increased where two wave crests meet and constructively interfere, but will be decreased where a wave crest and a wave trough destructively interfere. Spiral arm modulation has hitherto only been detected in grand design spirals (such as Messier 81). Spiral arm amplitude variations have the potential to become a powerful constraint for the study of galactic dynamics. We illustrate our method in two galaxies: NGC 4062 and NGC 5248. In both cases, we have detected trailing and leading m=2 waves with similar pitch angles. This suggests that the amplification mechanism is the WASER type II. In this mechanism, the bulge region reflects (rather than refracts) incoming waves with no cha...

  5. Late-type galaxies observed with SAURON : two-dimensional stellar and emission-line kinematics of 18 spirals

    NARCIS (Netherlands)

    Ganda, K; Falcon-Barroso, J; Peletier, RF; Cappellari, M; Emsellem, E; McDermid, RM; de Zeeuw, PT; Carollo, CM; Andersen, DR; Swaters, RA

    2006-01-01

    We present the stellar and gas kinematics of a sample of 18 nearby late-type spiral galaxies (Hubble types ranging from Sb to Sd), observed with the integral-field spectrograph SAURON at the 4.2-m William Herschel Telescope. SAURON covers the spectral range 4800-5380 angstrom, allowing us to measure

  6. The opacity of Spiral Disks IV : Radial Extinction Profiles from Counts of Distant Galaxies seen through Foreground Disks

    NARCIS (Netherlands)

    Holwerda, B. W.; González, R. A.; Allen, R. J.; Kruit, P.C. van der

    2004-01-01

    Dust extinction can be determined from the number of distant field galaxies seen through a spiral disk. To calibrate this number for the crowding and confusion introduced by the foreground image, Gonzalez et al. (1998) and Holwerda et al. (2005a) developed the ``Synthetic Field Method'' (SFM), which

  7. The DiskMass Survey. VI. Gas and stellar kinematics in spiral galaxies from PPak integral-field spectroscopy

    NARCIS (Netherlands)

    Martinsson, Thomas P. K.; Verheijen, Marc A. W.; Westfall, Kyle B.; Bershady, Matthew A.; Schechtman-Rook, Andrew; Andersen, David R.; Swaters, Rob A.

    2013-01-01

    We present ionized-gas ([Oiii]λ5007 Å) and stellar kinematics (velocities and velocity dispersions) for 30 nearly face-on spiral galaxies out to as many as three K-band disk scale lengths (hR). These data have been derived from PPak integral-field-unit spectroscopy from 4980-5370 Å observed at a mea

  8. The DiskMass Survey : VI. Gas and stellar kinematics in spiral galaxies from PPak integral-field spectroscopy

    NARCIS (Netherlands)

    Martinsson, Thomas P. K.; Verheijen, Marc A. W.; Westfall, Kyle B.; Bershady, Matthew A.; Schechtman-Rook, Andrew; Andersen, David R.; Swaters, Rob A.

    2013-01-01

    We present ionized-gas ([OIII]lambda 5007 angstrom) and stellar kinematics (velocities and velocity dispersions) for 30 nearly face-on spiral galaxies out to as many as three K-band disk scale lengths (h(R)). These data have been derived from PPak integral-field-unit spectroscopy from 4980-5370 angs

  9. Simulations of the grand design galaxy M51: a case study for analysing tidally induced spiral structure

    CERN Document Server

    Dobbs, C L; Pringle, J E; Bate, M R

    2009-01-01

    We present hydrodynamical models of the grand design spiral M51 (NGC 5194), and its interaction with its companion NGC 5195. Despite the simplicity of our models, our simulations capture the present day spiral structure of M51 remarkably well, and even reproduce details such as a kink along one spiral arm, and spiral arm bifurcations. We investigate the offset between the stellar and gaseous spiral arms, and find at most times (including the present day) there is no offset between the stars and gas to within our error bars. We also compare our simulations with recent observational analysis of M51. We compute the pattern speed versus radius, and like the observations, find no single global pattern speed. We also show that the spiral arms cannot be fitted well by logarithmic spirals. We interpret these findings as evidence that M51 does not exhibit a quasi-steady density wave, as would be predicted by density wave theory. The internal structure of M51 derives from the complicated and dynamical interaction with ...

  10. Galaxy Zoo: Are Bars Responsible for the Feeding of Active Galactic Nuclei at 0.2 < z < 1.0?

    CERN Document Server

    Cheung, Edmond; Athanassoula, E; Bamford, Steven P; Bell, Eric F; Bosma, A; Cardamone, Carolin N; Casteels, Kevin R V; Faber, S M; Fang, Jerome J; Fortson, Lucy F; Kocevski, Dale D; Koo, David C; Laine, Seppo; Lintott, Chris; Masters, Karen L; Melvin, Thomas; Nichol, Robert C; Schawinski, Kevin; Simmons, Brooke; Smethurst, Rebecca; Willett, Kyle W

    2014-01-01

    We present a new study investigating whether active galactic nuclei (AGN) beyond the local universe are preferentially fed via large-scale bars. Our investigation combines data from Chandra and Galaxy Zoo: Hubble (GZH) in the AEGIS, COSMOS, and GOODS-S surveys to create samples of face-on, disc galaxies at 0.2 1, our findings suggest that large-scale bars have likely never directly been a dominant fueling mechanism for supermassive black hole growth.

  11. Modelling resonances and orbital chaos in disk galaxies. Application to a Milky Way spiral model

    Science.gov (United States)

    Michtchenko, T. A.; Vieira, R. S. S.; Barros, D. A.; Lépine, J. R. D.

    2017-01-01

    Context. Resonances in the stellar orbital motion under perturbations from the spiral arm structure can play an important role in the evolution of the disks of spiral galaxies. The epicyclic approximation allows the determination of the corresponding resonant radii on the equatorial plane (in the context of nearly circular orbits), but is not suitable in general. Aims: We expand the study of resonant orbits by analysing stellar motions perturbed by spiral arms with Gaussian-shaped groove profiles without any restriction on the stellar orbital configurations, and we expand the concept of Lindblad (epicyclic) resonances for orbits with large radial excursions. Methods: We define a representative plane of initial conditions, which covers the whole phase space of the system. Dynamical maps on representative planes of initial conditions are constructed numerically in order to characterize the phase-space structure and identify the precise location of the co-rotation and Lindblad resonances. The study is complemented by the construction of dynamical power spectra, which provide the identification of fundamental oscillatory patterns in the stellar motion. Results: Our approach allows a precise description of the resonance chains in the whole phase space, giving a broader view of the dynamics of the system when compared to the classical epicyclic approach. We generalize the concept of Lindblad resonances and extend it to cases of resonant orbits with large radial excursions, even for objects in retrograde motion. The analysis of the solar neighbourhood shows that, depending on the current azimuthal phase of the Sun with respect to the spiral arms, a star with solar kinematic parameters (SSP) may evolve in dynamically distinct regions, either inside the stable co-rotation resonance or in a chaotic zone. Conclusions: Our approach contributes to quantifying the domains of resonant orbits and the degree of chaos in the whole Galactic phase-space structure. It may serve as a

  12. The incidence of bar-like kinematic flows in CALIFA galaxies

    CERN Document Server

    Holmes, L; Sánchez, S F; Walcher, C J; García-Benito, R; Mast, D; Cortijo-Ferrero, C; Kalinova, V; Marino, R A; Mendez-Abreu, J; Barrera-Ballesteros, J K

    2015-01-01

    We carry out a direct search for bar-like non-circular flows in intermediate-inclination, gas-rich disk galaxies with a range of morphological types and photometric bar classifications from the first data release (DR1) of the CALIFA survey. We use the DiskFit algorithm to apply rotation only and bisymmetric flow models to H$\\alpha$ velocity fields for 49/100 CALIFA DR1 systems that meet our selection criteria. We find satisfactory fits for a final sample of 37 systems. DiskFit is sensitive to the radial or tangential components of a bar-like flow with amplitudes greater than $15\\,$km$\\,$s$^{-1}$ across at least two independent radial bins in the fit, or ~2.25 kpc at the characteristic final sample distance of ~75 Mpc. The velocity fields of 25/37 $(67.6^{+6.6}_{-8.5}\\%)$ galaxies are best characterized by pure rotation, although only 17/25 $(68.0^{+7.7}_{-10.4}\\%)$ of them have sufficient H$\\alpha$ emission near the galaxy centre to afford a search for non-circular flows. We detect non-circular flows in the r...

  13. Milgrom Relation Models for Spiral Galaxies from Two-Dimensional Velocity Maps

    CERN Document Server

    Barnes, E I; Sellwood, J A; Barnes, Eric I.; Kosowsky, Arthur; Sellwood, Jerry A.

    2007-01-01

    Using two-dimensional velocity maps and I-band photometry, we have created mass models of 40 spiral galaxies using the Milgrom relation (the basis of modified Newtonian dynamics, or MOND) to complement previous work. A Bayesian technique is employed to compare several different dark matter halo models to Milgrom and Newtonian models. Pseudo-isothermal dark matter halos provide the best statistical fits to the data in a majority of cases, while the Milgrom relation generally provides good fits as well. We also find that Milgrom models give mass-to-light ratios that roughly correlate with galaxy color, as predicted by stellar population models. A subsample of galaxies in the Hydra cluster follow a tight relation between mass-to-light and color, but one that is significantly different from relations found in previous studies. Ruling out the Milgrom relation with rotational kinematics is difficult due to systematic uncertainties in the observations as well as underlying model assumptions. We discuss in detail two...

  14. The \\HI column density power spectrum of six nearby spiral galaxies

    CERN Document Server

    Dutta, Prasun

    2013-01-01

    We propose a method to determine the power spectrum of \\HI column density fluctuations using radio-interferometric observations of 21-cm emission from the ISM of galaxies. We have used this to estimate the power spectra of six nearly face on nearby spiral galaxies. Earlier work has shown that these power spectra are well fitted by power laws with slopes around -1.6 across length-scales $\\sim 1 \\, {\\rm kpc}$ to $\\sim 10 \\, {\\rm kpc}$, the amplitude however was undetermined. In the present work we have determined the amplitude of the \\HI column density power spectrum. We find that the \\HI column density $N_{\\rm HI}$ expressed in units of $10^{20} \\, {\\rm cm}^{-2}$ has mean square fluctuations in the range $\\sim 0.03$ to $\\sim 20$. The amplitude of the power spectrum is found to be tightly correlated with the \\HI mass fraction of the galaxies. The physical process responsible for these scale-invariant fluctuations is, however, at present not known.

  15. Internal kinematics of spiral galaxies in distant clusters III. Velocity fields from FORS2/MXU spectroscopy

    CERN Document Server

    Kutdemir, E; Peletier, R F; Da Rocha, C; Kronberger, T; Kapferer, W; Schindler, S; Böhm, A; Jäger, K; Kuntschner, Harald; Verdugo, M

    2008-01-01

    (Abridged) We study the impact of cluster environment on the evolution of spiral galaxies by examining their structure and kinematics. Rather than two-dimensional rotation curves, we observe complete velocity fields by placing three adjacent and parallel FORS2 MXU slits on each object, yielding several emission and absorption lines. The gas velocity fields are reconstructed and decomposed into circular rotation and irregular motions using kinemetry. To quantify irregularities in the gas kinematics, we define three parameters: sigma_{PA} (standard deviation of the kinematic position angle), Delta phi (the average misalignment between kinematic and photometric position angles) and k_{3,5} (squared sum of the higher order Fourier terms). Using local, undistorted galaxies from SINGS, these can be used to establish the regularity of the gas velocity fields. Here we present the analysis of 22 distant galaxies in the MS0451.6-0305 field with 11 members at z=0.54. In this sample we find both field (4 out of 8) and cl...

  16. On the effective oxygen yield in the disks of spiral galaxies

    CERN Document Server

    Zasov, A; Abramova, O

    2015-01-01

    The factors influencing chemical evolution of galaxies are poorly understood. Both gas inflow and gas outflow reduce a gas-phase abundance of heavy elements (metallicity) whereas the ongoing star formation continuously increases it. To exclude the stellar nucleosynthesis from consideration, we analyze for the sample of 14 spiral galaxies the radial distribution of the effective yield of oxygen $y_{eff}$, which would be identical to the true stellar yield (per stellar generation) $y_o$ if the evolution followed the closed box model. As the initial data for gas-phase abundance we used the O/H radial profiles from Moustakas, Kennicutt, Tremonti et al. (2010), based on two different calibrations (Pilyugin & Thuan 2005 (PT2005) and Kobulnicky & Kewley 2004 (KK2004) methods). In most of galaxies with the PT2005 calibration, which we consider as a preferred one, the yield $y_{eff}$ in the main disk ($R \\ge 0.2~R_{25}$, where $R_{25}$ is the optical radius) increases with radius, remaining lower than the empi...

  17. GHASP: an H$\\alpha$ kinematic survey of spiral galaxies - X. Surface photometry, decompositions and the Tully-Fisher relation in the Rc-band

    CERN Document Server

    Barbosa, C E; Amram, P; Ferrari, F; Russeil, D; Epinat, B; Perret, V; Adami, C; Marcelin, M

    2015-01-01

    We present Rc-band surface photometry for 170 of the 203 galaxies in GHASP, Gassendi H-Alpha survey of SPirals, a sample of late-type galaxies for which high-resolution Fabry-Perot H{\\alpha} maps have previously been obtained. Our data set is constructed by new Rc-band observations taken at the Observatoire de Haute-Provence (OHP), supplemented with Sloan Digital Sky Survey (SDSS) archival data, obtained with the purpose of deriving homogeneous photometric profiles and parameters. Our results include Rc-band surface brightness profiles for 170 galaxies and $ugriz$ profiles for 108 of these objects. We catalogue several parameters of general interest for further reference, such as total magnitude, effective radius and isophotal parameters -- magnitude, position angle, ellipticity and inclination. We also perform a structural decomposition of the surface brightness profiles using a multi-component method in order to separate disks from bulges and bars, and to observe the main scaling relations involving luminos...

  18. X-ray nuclear activity in S4G barred galaxies: No link between bar strength and co-occurrent supermassive black hole fueling

    CERN Document Server

    Cisternas, Mauricio; Knapen, Johan H; Kim, Taehyun; Díaz-García, Simón; Laurikainen, Eija; Salo, Heikki; González-Martín, Omaira; Ho, Luis C; Elmegreen, Bruce G; Zaritsky, Dennis; Sheth, Kartik; Athanassoula, E; Bosma, Albert; Comerón, Sébastien; Erroz-Ferrer, Santiago; De Paz, Armando Gil; Hinz, Joannah L; Holwerda, Benne W; Laine, Jarkko; Meidt, Sharon; Menéndez-Delmestre, Karín; Mizusawa, Trisha; Muñoz-Mateos, Juan-Carlos; Regan, Michael; Seibert, Mark

    2013-01-01

    Stellar bars can lead to gas inflow toward the center of a galaxy and stimulate nuclear star formation. However, there is no compelling evidence on whether they also feed a central supermassive black hole: by measuring the fractions of barred active and inactive galaxies, previous studies have yielded conflicting results. In this paper, we aim to understand the lack of observational evidence for bar-driven active galactic nucleus (AGN) activity by studying a sample of 41 nearby (d < 35 Mpc) barred galaxies from the Spitzer Survey for Stellar Structure in Galaxies. We use Chandra observations to measure nuclear 2--10 keV X-ray luminosities and estimate Eddington ratios, together with Spitzer 3.6um imaging to quantify the strength of the stellar bar in two independent ways: (1) from its structure, as traced by its ellipticity and boxiness, and (2) from its gravitational torque Q_b, taken as the maximum ratio of the tangential force to the mean background radial force. In this way, rather than discretizing th...

  19. Galaxy Secular Mass Flow Rate Determination Using the Potential-Density Phase Shift Approach: Application to Six Nearby Spiral Galaxies

    CERN Document Server

    Zhang, Xiaolei

    2016-01-01

    Using the potential-density phase shift approach developed by the present authors in earlier publications, we estimate the magnitude of radial mass accretion/excretion rates across the disks of six nearby spiral galaxies having a range of Hubble types. Our goal is to examine these rates in the context of bulge building and secular morphological evolution along the Hubble sequence. Stellar surface density maps of the sample galaxies are derived from SINGS 3.6um and SDSS i-band images. Corresponding molecular and atomic gas surface densities are derived from published CO(1-0) and HI interferometric observations of the BIMA SONG, THINGS, and VIVA surveys. The mass flow rate calculations utilize a volume-type torque integral to calculate the angular momentum exchange rate between the basic state disk matter and density wave modes. The potential-density phase shift approach yields angular momentum transport rates several times higher than those estimated using the Lynden-Bell and Kalnajs (1972) approach. The curre...

  20. The HST/ACS Coma Cluster Survey. VIII. Barred Disk Galaxies in the Core of the Coma Cluster

    CERN Document Server

    Marinova, Irina; Weinzirl, Tim; Erwin, Peter; Trentham, Neil; Ferguson, Henry C; Hammer, Derek; Brok, Mark den; Graham, Alister W; Carter, David; Balcells, Marc; Goudfrooij, Paul; Guzman, Rafael; Hoyos, Carlos; Mobasher, Bahram; Mouhcine, Mustapha; Peletier, Reynier F; Peng, Eric; Kleijn, Gijs Verdoes

    2012-01-01

    (ABRIDGED) We use high resolution (~0.1") F814W ACS images from the HST ACS Treasury survey of the Coma cluster at z~0.02 to study bars in massive disk galaxies (S0s), and in dwarf galaxies in the Coma core. Our study helps constrain the evolution of bars and disks in dense environments and provides a comparison point for studies in lower density environments and at higher redshifts. (1) We characterize the fraction and properties of bars in a sample of 32 bright (M_V 10^9.5 M_sun) S0 galaxies, which dominate the population of massive disk galaxies in the Coma core. Measuring the S0 bar fraction must be handled carefully, as the results depend on the method used: the bar fraction for bright S0s in the Coma core is 50%+/-11%, 65%+/-11%, and 60%+/-11% for three methods of bar detection: strict ellipse fit criteria, relaxed ellipse fit criteria, and visual classification. (2) We compare the S0 bar fraction across different environments (Coma core, A901/902, Virgo). We find that the bar fraction among bright S0 ...

  1. GLOBULAR CLUSTERS AND SPUR CLUSTERS IN NGC 4921, THE BRIGHTEST SPIRAL GALAXY IN THE COMA CLUSTER

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Myung Gyoon; Jang, In Sung, E-mail: mglee@astro.snu.ac.kr, E-mail: isjang@astro.snu.ac.kr [Astronomy Program, Department of Physics and Astronomy, Seoul National University, Gwanak-gu, Seoul 151-742 (Korea, Republic of)

    2016-03-01

    We resolve a significant fraction of globular clusters (GCs) in NGC 4921, the brightest spiral galaxy in the Coma cluster. We also find a number of extended bright star clusters (star complexes) in the spur region of the arms. The latter are much brighter and bluer than those in the normal star-forming region, being as massive as 3 × 10{sup 5} M{sub ⊙}. The color distribution of the GCs in this galaxy is found to be bimodal. The turnover magnitudes of the luminosity functions of the blue (metal-poor) GCs (0.70 < (V − I) ≤ 1.05) in the halo are estimated V(max) = 27.11 ± 0.09 mag and I(max) = 26.21 ± 0.11 mag. We obtain similar values for NGC 4923, a companion S0 galaxy, and two Coma cD galaxies (NGC 4874 and NGC 4889). The mean value for the turnover magnitudes of these four galaxies is I(max) = 26.25 ± 0.03 mag. Adopting M{sub I} (max) = −8.56 ± 0.09 mag for the metal-poor GCs, we determine the mean distance to the four Coma galaxies to be 91 ± 4 Mpc. Combining this with the Coma radial velocity, we derive a value of the Hubble constant, H{sub 0} = 77.9 ± 3.6 km s{sup −1} Mpc{sup −1}. We estimate the GC specific frequency of NGC 4921 to be S{sub N} = 1.29 ± 0.25, close to the values for early-type galaxies. This indicates that NGC 4921 is in the transition phase to S0s.

  2. Eventful Evolution of Giant Molecular Clouds in Dynamically Evolving Spiral Arms

    CERN Document Server

    Baba, Junichi; Saitoh, Takayuki R

    2016-01-01

    The formation and evolution of giant molecular clouds (GMCs) in spiral galaxies have been investigated in the traditional framework of the combined quasi-stationary density wave and galactic shock model. However, our understanding of the dynamics of spiral arms is changing from the traditional spiral model to a dynamically evolving spiral model. In this study, we investigate the structure and evolution of GMCs in a dynamically evolving spiral arm using a three-dimensional N-body/hydrodynamic simulation of a barred spiral galaxy at parsec-scale resolution. This simulation incorporated self-gravity, molecular hydrogen formation, radiative cooling, heating due to interstellar far-ultraviolet radiation, and stellar feedback by both HII regions and Type-II supernovae. In contrast to a simple expectation based on the traditional spiral model, the GMCs exhibited no systematic evolutionary sequence across the spiral arm. Our simulation showed that the GMCs behaved as highly dynamic objects with eventful lives involvi...

  3. Extinction law variations and dust excitation in the spiral galaxy NGC 300

    CERN Document Server

    Roussel, H; Seibert, M; Helou, G; Madore, B F; Martin, C

    2005-01-01

    We investigate the origin of the strong radial gradient in the ultraviolet-to-infrared ratio in the spiral galaxy NGC 300, and emphasize the importance of local variations in the interstellar medium geometry, concluding that they cannot be neglected with respect to metallicity effects. This analysis is based upon a combination of maps from GALEX and Spitzer, and from the ground (UBVRI, Halpha and Hbeta). We select ionizing stellar clusters associated with HII regions of widely varying morphologies, and derive their fundamental parameters from population synthesis fitting of their spectral energy distributions, measured to eliminate local backgrounds accurately. From these fits, we conclude that the stellar extinction law is highly variable in the line of sight of young clusters of similar ages. In the particular model geometry that we consider most appropriate to the sampled regions, we checked that our findings are not significantly altered by the correct treatment of radiative transfer effects. The variatio...

  4. Neutrino Flux from Cosmic Ray Accelerators in the Cygnus Spiral Arm of the Galaxy

    CERN Document Server

    Anchordoqui, Luis A; Montaruli, T; O'Murchadha, A; Anchordoqui, Luis; Halzen, Francis; Montaruli, Teresa; Murchadha, Aongus O'

    2006-01-01

    Intriguing evidence has been accumulating for the production of cosmic rays in the Cygnus region of the Galactic plane. We here show that the IceCube experiment can produce incontrovertible evidence for cosmic ray acceleration by observing neutrinos from the decay of charged pions accompanying the TeV photon flux observed in the HEGRA, Whipple, Tibet and Milagro experiments. Our assumption is that the TeV photons observed are the decay products of neutral pions produced by cosmic ray accelerators in the nearby spiral arm of the Galaxy. Because of the proximity of the sources, IceCube will obtain evidence at the 5sigma level in 10 years of observation.

  5. Corrugated velocity patterns in the spiral galaxies: NGC 278, NGC 1058, NGC 2500 \\& UGC 3574

    CERN Document Server

    Sánchez-Gil, M Carmen; Pérez, Enrique

    2015-01-01

    We address the study of the \\Ha\\ vertical velocity field in a sample of four nearly face-on galaxies using long slit spectroscopy taken with the ISIS spectrograph attached to the WHT at the Roque de los Muchachos Observatory (Spain). The spatial structure of the velocity vertical component shows a radial corrugated pattern with spatial scales higher or within the order of { one} kiloparsec. The gas is mainly ionized by high-energy photons: only in some locations of NGC~278 and NGC~1058 is there some evidence of ionization by low-velocity shocks, which, in the case of NGC~278, could be due to minor mergers. The behaviour of the gas in the neighbourhood of the spiral arms fits, in the majority of the observed cases, with that predicted by the so-called hydraulic bore mechanism, where a thick magnetized disk encounters a spiral density perturbation. The results obtained show that it is { difficult to explain the \\Ha\\ large scale velocity field without the presence of a magnetized, thick galactic disk}. Larger sa...

  6. Revealing a spiral-shaped molecular cloud in our galaxy - Cloud fragmentation under rotation and gravity

    CERN Document Server

    Li, Guang-Xing; Menten, Karl

    2016-01-01

    The dynamical processes that control star formation in molecular clouds are not well understood, and in particular, it is unclear if rotation plays a major role in cloud evolution. We investigate the importance of rotation in cloud evolution by studying the kinematic structure of a spiral-shaped Galactic molecular cloud G052.24+00.74. The cloud belongs to a large filament, and is stretching over ~ 100 pc above the Galactic disk midplane. The spiral-shaped morphology of the cloud suggests that the cloud is rotating. We have analysed the kinematic structure of the cloud, and study the fragmentation and star formation. We find that the cloud exhibits a regular velocity pattern along west-east direction - a velocity shift of ~ 10 km/s at a scale of ~ 30 pc. The kinematic structure of the cloud can be reasonably explained by a model that assumes rotational support. Similarly to our Galaxy, the cloud rotates with a prograde motion. We use the formalism of Toomre (1964) to study the cloud's stability, and find that ...

  7. Revealing a spiral-shaped molecular cloud in our galaxy: Cloud fragmentation under rotation and gravity

    Science.gov (United States)

    Li, Guang-Xing; Wyrowski, Friedrich; Menten, Karl

    2017-02-01

    The dynamical processes that control star formation in molecular clouds are not well understood, and in particular, it is unclear if rotation plays a major role in cloud evolution. We investigate the importance of rotation in cloud evolution by studying the kinematic structure of a spiral-shaped Galactic molecular cloud G052.24+00.74. The cloud belongs to a large filament, and is stretching over 100 pc above the Galactic disk midplane. The spiral-shaped morphology of the cloud suggests that the cloud is rotating. We have analysed the kinematic structure of the cloud, and study the fragmentation and star formation. We find that the cloud exhibits a regular velocity pattern along west-east direction - a velocity shift of 10km s-1 at a scale of 30 pc. The kinematic structure of the cloud can be reasonably explained by a model that assumes rotational support. Similarly to our Galaxy, the cloud rotates with a prograde motion. We use the formalism of Toomre (1964) to study the cloud's stability, and find that it is unstable and should fragment. The separation of clumps can be consistently reproduced assuming gravitational instability, suggesting that fragmentation is determined by the interplay between rotation and gravity. Star formation occurs in massive, gravitational bound clumps. Our analysis provides a first example in which the fragmentation of a cloud is regulated by the interplay between rotation and gravity.

  8. Spiral-like star-forming patterns in CALIFA early-type galaxies

    CERN Document Server

    Gomes, J M; Vílchez, J M; Kehrig, C; Iglesias-Páramo, J; Breda, I; Lehnert, M D; Sánchez, S F; Ziegler, B; Reis, S N dos; Bland-Hawthorn, J; Galbany, L; Bomans, D J; Rosales-Ortega, F F; Walcher, C J; García-Benito, R; Márquez, I; del Olmo, A; Mollá, M; Marino, R A; Catalán-Torrecilla, C; Delgado, R M González; López-Sánchez, Á R

    2015-01-01

    Based on a combined analysis of SDSS imaging and CALIFA integral field spectroscopy data, we report on the detection of faint (24 < {\\mu}$_r$ mag/arcsec$^2$ < 26) star-forming spiral-arm-like features in the periphery of three nearby early-type galaxies (ETGs). These features are of considerable interest because they document the still ongoing inside-out growth of some local ETGs and may add valuable observational insight into the origin and evolution of spiral structure in triaxial stellar systems. A characteristic property of the nebular component in the studied ETGs, classified i+, is a two-radial-zone structure, with the inner zone that displays faint (EW(H\\alpha)$\\simeq$1{\\AA}) low-ionization nuclear emission-line region (LINER) properties, and the outer one (3{\\AA}

  9. Interplay Between Chaotic and Regular Motion in a Time-Dependent Barred Galaxy Model

    CERN Document Server

    Manos, T; Skokos, Ch

    2013-01-01

    We study the distinction and quantification of chaotic and regular motion in a time-dependent Hamiltonian barred galaxy model. Recently, a strong correlation was found between the strength of the bar and the presence of chaotic motion in this system, as models with relatively strong bars were shown to exhibit stronger chaotic behavior compared to those having a weaker bar component. Here, we attempt to further explore this connection by studying the interplay between chaotic and regular behavior of star orbits when the parameters of the model evolve in time. This happens for example when one introduces linear time dependence in the mass parameters of the model to mimic, in some general sense, the effect of self-consistent interactions of the actual N-body problem. We thus observe, in this simple time-dependent model also, that the increase of the bar's mass leads to an increase of the system's chaoticity. We propose a new way of using the Generalized Alignment Index (GALI) method as a reliable criterion to es...

  10. Triple Scoop from Galaxy Hunter

    Science.gov (United States)

    2006-01-01

    [figure removed for brevity, see original site] [figure removed for brevity, see original site] [figure removed for brevity, see original site] Figure 1Figure 2Figure 3 Silver Dollar Galaxy: NGC 253 (figure 1) Located 10 million light-years away in the southern constellation Sculptor, the Silver Dollar galaxy, or NGC 253, is one of the brightest spiral galaxies in the night sky. In this edge-on view from NASA's Galaxy Evolution Explorer, the wisps of blue represent relatively dustless areas of the galaxy that are actively forming stars. Areas of the galaxy with a soft golden glow indicate regions where the far-ultraviolet is heavily obscured by dust particles. Gravitational Dance: NGC 1512 and NGC 1510 (figure 2) In this image, the wide ultraviolet eyes of NASA's Galaxy Evolution Explorer show spiral galaxy NGC 1512 sitting slightly northwest of elliptical galaxy NGC 1510. The two galaxies are currently separated by a mere 68,000 light-years, leading many astronomers to suspect that a close encounter is currently in progress. The overlapping of two tightly wound spiral arm segments makes up the light blue inner ring of NGC 1512. Meanwhile, the galaxy's outer spiral arm is being distorted by strong gravitational interactions with NGC 1510. Galaxy Trio: NGC 5566, NGC 5560, and NGC 5569 (figure 3) NASA's Galaxy Evolution Explorer shows a triplet of galaxies in the Virgo cluster: NGC 5560 (top galaxy), NGC 5566 (middle galaxy), and NGC 5569 (bottom galaxy). The inner ring in NGC 5566 is formed by two nearly overlapping bright arms, which themselves spring from the ends of a central bar. The bar is not visible in ultraviolet because it consists of older stars or low mass stars that do not emit energy at ultraviolet wavelengths. The outer disk of NGC 5566 appears warped, and the disk of NGC 5560 is clearly disturbed. Unlike its galactic neighbors, the disk of NGC 5569 does not appear to have been distorted by any passing galaxies.

  11. Caught in the act: Cluster `k+a' galaxies as a link between spirals and S0s

    CERN Document Server

    Del Pino, Bruno Rodriguez; Aragon-Salamanca, Alfonso; Milvang-Jensen, Bo; Merrifield, Michael R; Balcells, Marc

    2013-01-01

    We use integral field spectroscopy of 13 disk galaxies in the cluster AC114 at z ~ 0.31 in an attempt to disentangle the physical processes responsible for the transformation of spiral galaxies in clusters. Our sample is selected to display a dominant young stellar population, as indicated by strong Hdelta absorption lines in their integrated spectra. Most of our galaxies lack the [OII] emission line, and hence ongoing star formation. They therefore possess `k+a' spectra, indicative of a recent truncation of star formation, possibly preceded by a starburst. Disky `k+a' galaxies are a promising candidate for the intermediate stage of the transformation from star-forming spiral galaxies to passive S0s. Our observations allow us to study the spatial distributions and the kinematics of the different stellar populations within the galaxies. We used three different indicators to evaluate the presence of a young population: the equivalent width of Hdelta, the luminosity-weighted fraction of A stars, and the fraction...

  12. The inner mass distribution of late-type spiral galaxies from SAURON stellar kinematic maps

    Science.gov (United States)

    Kalinova, Veselina; van de Ven, Glenn; Lyubenova, Mariya; Falcón-Barroso, Jesús; Colombo, Dario; Rosolowsky, Erik

    2017-01-01

    We infer the central mass distributions within 0.4-1.2 disc scalelengths of 18 late-type spiral galaxies using two different dynamical modelling approaches - the asymmetric drift correction (ADC) and axisymmetric Jeans anisotropic multi-Gaussian expansion (JAM) model. ADC adopts a thin-disc assumption, whereas JAM does a full line-of-sight velocity integration. We use stellar kinematics maps obtained with the integral-field spectrograph {SAURON} to derive the corresponding circular velocity curves from the two models. To find their best-fitting values, we apply the Markov Chain Monte Carlo (MCMC) method. ADC and JAM modelling approaches are consistent within 5 per cent uncertainty when the ordered motions are significant comparable to the random motions, i.e. overline{v_{φ }}/σ _R is locally greater than 1.5. Below this value, the ratio vc, JAM/vc, ADC gradually increases with decreasing overline{v_{φ }}/σ _R, reaching vc,JAM ≈ 2 × vc, ADC. Such conditions indicate that the stellar masses of the galaxies in our sample are not confined to their disc planes and likely have a non-negligible contribution from their bulges and thick discs.

  13. The bolometric and UV attenuation in normal spiral galaxies of the Herschel Reference Survey

    Science.gov (United States)

    Viaene, S.; Baes, M.; Bendo, G.; Boquien, M.; Boselli, A.; Ciesla, L.; Cortese, L.; De Looze, I.; Eales, S.; Fritz, J.; Karczewski, O. Ł.; Madden, S.; Smith, M. W. L.; Spinoglio, L.

    2016-02-01

    The dust in nearby galaxies absorbs a fraction of the UV-optical-near-infrared radiation produced by stars. This energy is consequently re-emitted in the infrared. We investigate the portion of the stellar radiation absorbed by spiral galaxies from the Herschel Reference Survey (HRS) by modelling their UV-to-submillimetre spectral energy distributions. Our models provide an attenuated and intrinsic spectral energy distribution (SED), from which we find that on average 32% of all starlight is absorbed by dust. We define the UV heating fraction as the percentage of dust luminosity that comes from absorbed UV photons and find this to be 56%, on average. This percentage varies with morphological type, with later types having significantly higher UV heating fractions. We find a strong correlation between the UV heating fraction and specific star formation rate and provide a power-law fit. Our models allow us to revisit the IRX - AFUV relations, and derive these quantities directly within a self-consistent framework. We calibrate this relation for different bins of NUV - r colour and provide simple relations to relate these parameters. We investigated the robustness of our method and conclude that the derived parameters are reliable within the uncertainties that are inherent to the adopted SED model. This calls for a deeper investigation of how well extinction and attenuation can be determined through panchromatic SED modelling. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.

  14. Gas and Stellar Kinematics in the Giant Spiral Galaxy NGC 1961

    Science.gov (United States)

    Sacash, Brian; Pinkney, Jason

    2009-04-01

    Long-slit spectroscopy and CCD imaging from the Hubble Space Telescope and the MDM Observatory is presented for the massive spiral galaxy NGC 1961. We aimed to measure the mass of the central supermassive black hole (SMBH). We have developed our own software for spectral extraction and for the fitting of absorption and emission lines. The program subtracts the absorption-line (stellar) component from the emission-line spectra to improve the fidelity of our emission line measurements. We present our line centroids (velocities), widths (velocity dispersions), and strengths for the most prominent emission lines (Hα, [NII], and [SII]). The rotation curve from the ground-based data is in good agreement with previous work by Rubin (1979); its asymmetric appearance suggests a tidal interaction or merger. We use the rotation curve and surface photometry to estimate the enclosed mass profile of the galaxy. The emission lines near the nucleus broaden indicating more intrinsic dispersion than expected for a cold, gas disk. We estimate the BH mass using simple gas disk models. However, the high dispersion and the asymmetry in its inner rotation curve suggest that this approach is unreliable.

  15. The bolometric and UV attenuation in normal spiral galaxies of the Herschel Reference Survey

    CERN Document Server

    Viaene, S; Bendo, G; Boquien, M; Boselli, A; Ciesla, L; Cortese, L; De Looze, I; Eales, S; Fritz, J; Karczewski, O Ł; Madden, S; Smith, M W L; Spinoglio, L

    2016-01-01

    The dust in nearby galaxies absorbs a fraction of the UV-optical-near-infrared radiation produced by stars. This energy is consequently re-emitted in the infrared. We investigate the fraction of the stellar radiation absorbed by spiral galaxies from the HRS by modelling their UV-to-submillimetre spectral energy distributions. Our models provide an attenuated and intrinsic SED from which we find that on average 32 % of all starlight is absorbed by dust. We define the UV heating fraction as the fraction of dust luminosity that comes from absorbed UV photons and find that this is 56 %, on average. This percentage varies with morphological type, with later types having significantly higher UV heating fractions. We find a strong correlation between the UV heating fraction and specific star formation rate and provide a power-law fit. Our models allow us to revisit the IRX-AFUV relations, and derive these quantities directly within a self-consistent framework. We calibrate this relation for different bins of NUV-r c...

  16. Shape of the oxygen abundance profiles in CALIFA face-on spiral galaxies

    CERN Document Server

    Sánchez-Menguiano, L; Pérez, I; García-Benito, R; Husemann, B; Mast, D; Mendoza, A; Ruiz-Lara, T; Ascasibar, Y; Bland-Hawthorn, J; Cavichia, O; Díaz, A I; Florido, E; Galbany, L; Delgado, R M Gónzalez; Kehrig, C; Marino, R A; Márquez, I; Masegosa, J; Méndez-Abreu, J; Mollá, M; del Olmo, A; Pérez, E; Sánchez-Blázquez, P; Stanishev, V; Walcher, C J; López-Sánchez, Á R

    2016-01-01

    We measured the gas abundance profiles in a sample of 122 face-on spiral galaxies observed by the CALIFA survey and included all spaxels whose line emission was consistent with star formation. This type of analysis allowed us to improve the statistics with respect to previous studies, and to properly estimate the oxygen distribution across the entire disc to a distance of up to 3-4 disc effective radii (r$_e$). We confirm the results obtained from classical HII region analysis. In addition to the general negative gradient, an outer flattening can be observed in the oxygen abundance radial profile. An inner drop is also found in some cases. There is a common abundance gradient between 0.5 and 2.0 r$_e$ of $\\alpha_{O/H} = -\\,0.075\\,\\rm{dex}/r_e$ with a scatter of $\\sigma = 0.016\\,\\rm{dex}/r_e$ when normalising the distances to the disc effective radius. By performing a set of Kolmogorov-Smirnov tests, we determined that this slope is independent of other galaxy properties, such as morphology, absolute magnitude...

  17. Radial distribution of gas and dust in the two spiral galaxies M99 and M100

    CERN Document Server

    Pohlen, M; Smith, M W L; Eales, S A; Boselli, A; Bendo, G J; Gomez, H L; Papageorgiou, A; Auld, R; Baes, M; Bock, J J; Bradford, M; Buat, V; Castro-Rodriguez, N; Chanial, P; Charlot, S; Ciesla, L; Clements, D L; Cooray, A; Cormier, D; Dwek, E; Eales, S A; Elbaz, D; Galametz, M; Galliano, F; Gear, W K; Glenn, J; Griffin, M; Hony, S; Isaak, K G; Levenson, L R; Lu, N; Madden, S; O'Halloran, B; Okumura, K; Oliver, S; Page, M J; Panuzzo, P; Parkin, T J; Perez-Fournon, I; Rangwala, N; Rigby, E E; Roussel, H; Rykala, A; Sacchi, N; Sauvage, M; Schulz, B; Schirm, M R P; Smith, M W L; Spinoglio, L; Stevens, J A; Srinivasan, S; Symeonidis, M; Trichas, M; Vaccari, M; Vigroux, L; Wilson, C D; Wozniak, H; Wright, G S; Zeiliner, W W

    2010-01-01

    By combining Herschel-SPIRE data with archival Spitzer, HI, and CO maps, we investigate the spatial distribution of gas and dust in the two famous grand-design spirals M99 and M100 in the Virgo cluster. Thanks to the unique resolution and sensitivity of the Herschel-SPIRE photometer, we are for the first time able to measure the distribution and extent of cool, submillimetre (submm)-emitting dust inside and beyond the optical radius. We compare this with the radial variation in both the gas mass and the metallicity. Although we adopt a model-independent, phenomenological approach, our analysis provides important insights. We find the dust extending to at least the optical radius of the galaxy and showing breaks in its radial profiles at similar positions as the stellar distribution. The colour indices f350/f500 and f250/f350 decrease radially consistent with the temperature decreasing with radius. We also find evidence of an increasing gas to dust ratio with radius in the outer regions of both galaxies.

  18. Building Late-Type Spiral Galaxies by In-Situ and Ex-Situ Star Formation

    CERN Document Server

    Pillepich, Annalisa; Mayer, Lucio

    2014-01-01

    We analyze the formation and evolution of the stellar components in "Eris", a 120 pc-resolution cosmological hydrodynamic simulation of a late-type spiral galaxy. The simulation includes the effects of a uniform UV background, a delayed-radiative-cooling scheme for supernova feedback, and a star formation recipe based on a high gas density threshold. It allows a detailed study of the relative contributions of "in-situ" (within the main host) and "ex-situ" (within satellite galaxies) star formation to each major Galactic component in a close Milky Way analog. We investigate these two star-formation channels as a function of galactocentric distance, along different lines of sight above and along the disk plane, and as a function of cosmic time. We find that: 1) approximately 70 percent of today's stars formed in-situ; 2) more than two thirds of the ex-situ stars formed within satellites after infall; 3) the majority of ex-situ stars are found today in the disk and in the bulge; 4) the stellar halo is dominated ...

  19. A spectral and photometric study of 102 star forming regions in seven spiral galaxies

    CERN Document Server

    Gusev, A S; Piskunov, A E; Kharchenko, N V; Bruevich, V V; Ezhkova, O V; Guslyakova, S A; Lang, V; Shimanovskaya, E V; Efremov, Yu N

    2016-01-01

    We present a study of complexes of young massive star clusters (YMCs), embedded in extragalactic giant HII regions, based on the coupling of spectroscopic with photometric and spectrophotometric observations of about 100 star forming regions in seven spiral galaxies (NGC 628, NGC 783, NGC 2336, NGC 6217, NGC 6946, NGC 7331, and NGC 7678). The complete observational database has been observed and accumulated within the framework of our comprehensive study of extragalactic star forming regions. The current paper presents the last part of either unpublished or refreshed photometric and spectrophotometric observations of the galaxies NGC 6217, NGC 6946, NGC 7331, and NGC 7678. We derive extinctions, chemical abundances, continuum and line emissions of ionised gas, ages and masses for cluster complexes. We find the young massive cluster complexes to have ages no greater than 10 Myr and masses between 10^4Msol and 10^7Msol, and the extinctions A(V) vary between ~ 0 and 3 mag, while the impact of the nebular emissio...

  20. Spatial distribution of far infrared emission in spiral galaxies; 1, relation with radio continuum emission

    CERN Document Server

    Mayya, Y D

    1997-01-01

    We use high resolution IRAS and 20 cm radio continuum (RC) images of a sample of 22 spiral galaxies to study the correlation between the far infra-red (FIR) and RC emissions within the galactic disks. A combination of exponential and gaussian profiles rather than a single exponential profile is found to be a better representation of the observed intensity profiles in the two bands. The gaussian component, which we show is not due to the effects of limited beam-resolution, contains more than 60% of the total flux in majority of the galaxies. The dominance of the gaussian component suggests that the nuclear star forming regions and the bulge stars are more important contributors to the emission in the two bands, rather than the outer exponential stellar disks. The RC profile is flatter compared to the FIR profile, resulting in a decrease of their ratio, Q60, away from the center. However, the Q60 increases in the extreme outer parts, where the dispersion in the FIR and RC correlation is also higher than in the ...

  1. Revealing the Heart of the Galaxy

    NARCIS (Netherlands)

    Sanders, Robert H.

    2014-01-01

    1. Introduction: the luminous pathway; 2. The discovery of the Milky Way Galaxy; 3. The new physics; 4. Parting the veil with radio astronomy; 5. The violent Universe; 6. New windows on the Galactic Center; 7. The Milky Way as a barred spiral galaxy; 8. The evolving view of active galactic nuclei; 9

  2. The Relation between Globular Cluster Systems and Supermassive Black Holes in Spiral Galaxies: The Case Study of NGC 4258

    Science.gov (United States)

    González-Lópezlira, Rosa A.; Lomelí-Núñez, Luis; Álamo-Martínez, Karla; Órdenes-Briceño, Yasna; Loinard, Laurent; Georgiev, Iskren Y.; Muñoz, Roberto P.; Puzia, Thomas H.; Bruzual A., Gustavo; Gwyn, Stephen

    2017-02-01

    We aim to explore the relationship between globular cluster total number, {N}{GC}, and central black hole mass, M •, in spiral galaxies, and compare it with that recently reported for ellipticals. We present results for the Sbc galaxy NGC 4258, from Canada–France–Hawaii Telescope data. Thanks to water masers with Keplerian rotation in a circumnuclear disk, NGC 4258 has the most precisely measured extragalactic distance and supermassive black hole mass to date. The globular cluster (GC) candidate selection is based on the ({u}* -{i}\\prime ) versus ({i}\\prime -{K}s) diagram, which is a superb tool to distinguish GCs from foreground stars, background galaxies, and young stellar clusters, and hence can provide the best number counts of GCs from photometry alone, virtually free of contamination, even if the galaxy is not completely edge-on. The mean optical and optical-near-infrared colors of the clusters are consistent with those of the Milky Way and M 31, after extinction is taken into account. We directly identify 39 GC candidates; after completeness correction, GC luminosity function extrapolation, and correction for spatial coverage, we calculate a total {N}{GC}=144+/- {31}-36+38 (random and systematic uncertainties, respectively). We have thus increased to six the sample of spiral galaxies with measurements of both M • and {N}{GC}. NGC 4258 has a specific frequency {S}{{N}}=0.4+/- 0.1 (random uncertainty), and is consistent within 2σ with the {N}{GC} versus M • correlation followed by elliptical galaxies. The Milky Way continues to be the only spiral that deviates significantly from the relation.

  3. Bridging the Gap from Galactic to Extragalactic: Star Formation and Giant Molecular Clouds within the Nearby Spiral Galaxy NGC 300

    Science.gov (United States)

    Faesi, Christopher

    2017-01-01

    The questions surrounding the origins of stars are of key importance in astrophysics across a huge range in physical scales. However, until recently, investigations have been restricted to either detailed studies targeting a few nearby regions in the Milky Way, or kpc- or larger-scale studies of entire galaxies. Between these two scales lies a crucial gap in understanding. In this thesis work, I have taken steps in bridging this gap between Galactic and extragalactic star formation. I will present the results of a campaign of observations and modeling targeting the nearby spiral galaxy NGC 300. Using an extensive suite of multi-wavelength data I have characterized the star formation activity and molecular gas in a large sample of star-forming regions within this galaxy. Additionally, I have assembled an extensive (300 clouds) and high resolution (10 pc) catalog of Giant Molecular Clouds (GMCs) based on ALMA CO observations. This unprecedented look at the population of GMCs in a nearby spiral galaxy reveals an astonishing range of morphologies and properties in the Molecular Gas as well as providing a key testbed for comparison with GMCs in the Milky Way and other nearby galaxies. The GMCs in NGC 300 appear to have similar global properties and show scaling relations consistent with those seen in the Milky Way. Furthermore, the star formation rate appears to correlate with the mass of molecular gas with approximately 250 Gyr depletion time, extending the relation discovered in the Milky Way linearly to larger scales. These results suggest a level of universality in the star formation process within spiral galaxy disks like our own Milky Way.

  4. Can the Tremaine - Weinberg method be used to derive the pattern speed of the bar and the spiral arms in the Milky Way?

    Science.gov (United States)

    Reina-Campos, M.; Antoja, T.; Romero-Gómez, M.; Figueras, F.; Roca-Fàbrega, S.

    2017-03-01

    The pattern speed of the non-axisymmetric structures in the galactic disc is a key parameter to understand the dynamics in the Milky Way. For none the Galactic bar nor the spiral arms is well determined as the current values have large uncertainties associated. We evaluate whether the Tremaine - Weinberg method as derived by Debattista et al. (2002) can be used to determine the pattern speed of the Galactic bar and the spiral arms in the Milky Way. We consider different situations; from simplistic test particle simulations with one structure to N-body simulations with both structures produced self-consistently. We also investigate Gaia mock catalogues with F0 and Red Clump stars as tracers. We conclude that this method can determine the pattern speed of the Galactic bar when going up to 6 kpc in the direction of the Galactic Center, whereas for the spiral arms all-sky radial velocity data up to 2-3 kpc is required.

  5. Large scale star formation in galaxies. II. The spirals NGC 3377A, NGC 3507 and NGC 4394

    CERN Document Server

    Vicari, A; Capuzzo-Dolcetta, R; Wyder, T K; Arrabito, G

    2001-01-01

    The identification of young star groupings (YSG) in the three spiral galaxies NGC 3377A, NGC 3507, NGC 4394 is obtained by mean of the statistical method described in Paper I. We find 83, 90, 185 YSGs, respectively. An identification map of YSGs, as well as their size distribution, their B-luminosity function, their surface luminosity density radial behaviour, are presented and comparatively discussed. These data, in addition to those in Paper I, constitute a first sample suitable for seeking correlations among properties of galaxies and their YSG, which we briefly discuss here.

  6. Nuclear spirals as feeding channels to the Supermassive Black Hole: the case of the galaxy NGC 6951

    CERN Document Server

    Storchi-Bergmann, Thaisa; Riffel, Rogemar A; Fathi, Kambiz; Axon, David J; Robinson, Andrew; Marconi, Alessandro; Ostlin, Goran

    2007-01-01

    We report the discovery of gas streaming motions along nuclear spiral arms towards the LINER nucleus of the galaxy NGC 6951. The observations, obtained using the GMOS integral field spectrograph on the Gemini North telescope, yielded maps of the flux distributions and gas kinematics in the Halpha, [NII]6584 and [SII]6717,31 emission lines of the inner 7x5 arcsec^2 of the galaxy. This region includes a circumnuclear star-forming ring with radius 500pc, a nuclear spiral inside the ring and the LINER nucleus. The kinematics of the ionized gas is dominated by rotation, but subtraction of a kinematic model of a rotating exponential disk reveals deviations from circular rotation within the nuclear ring which can be attributed to (1) streaming motions along the nuclear spiral arms and (2) a bipolar outflow which seems to be associated to a nuclear jet. On the basis of the observed streaming velocities and geometry of the spiral arms we estimate a mass inflow rate of ionized gas of 3x10^(-4) Msun/yr, which is of the ...

  7. Supernovae and their host galaxies - III. The impact of bars and bulges on the radial distribution of supernovae in disc galaxies

    CERN Document Server

    Hakobyan, A A; Barkhudaryan, L V; Mamon, G A; Kunth, D; Petrosian, A R; Adibekyan, V; Aramyan, L S; Turatto, M

    2016-01-01

    We present an analysis of the impact of bars and bulges on the radial distributions of the different types of supernovae (SNe) in the stellar discs of host galaxies with various morphologies. We use a well-defined sample of 500 nearby (< 100 Mpc) SNe and their low-inclined (i < 60 deg) and morphologically non-disturbed S0-Sm host galaxies from the Sloan Digital Sky Survey. We find that in Sa-Sm galaxies, all core-collapse (CC) and vast majority of SNe Ia belong to the disc, rather than the bulge component. The radial distribution of SNe Ia in S0-S0/a galaxies is inconsistent with their distribution in Sa-Sm hosts, which is probably due to the contribution of the outer bulge SNe Ia in S0-S0/a galaxies. In Sa-Sbc galaxies, the radial distribution of CC SNe in barred hosts is inconsistent with that in unbarred ones, while the distributions of SNe Ia are not significantly different. At the same time, the radial distributions of both types of SNe in Sc-Sm galaxies are not affected by bars. We propose that th...

  8. Magnetic fields in barred galaxies. IV. NGC 1097 and NGC 1365

    CERN Document Server

    Beck, R; Shukurov, A; Snodin, A; Sokoloff, D D; Ehle, M; Moss, D; Shoutenkov, V

    2005-01-01

    We present 3.5cm and 6.2cm radio continuum maps in total and polarized intensity of the barred galaxies NGC 1097 and NGC 1365. Both galaxies exhibit radio ridges roughly overlapping with the massive dust lanes in the bar region. The contrast in total intensity across the radio ridges is compatible with compression and shear of an isotropic random magnetic field. The contrast in polarized intensity is significantly smaller than that expected from compression and shearing of the regular magnetic field; this could be the result of decoupling of the regular field from the dense molecular clouds. The regular field in the ridge is probably strong enough to reduce significantly shear in the diffuse gas (to which it is coupled) and hence to reduce magnetic field amplification by shearing. This contributes to the misalignment of the observed field orientation with respect to the velocity vectors of the dense gas. Our observations, for the first time, indicate that magnetic forces can control the flow of the diffuse in...

  9. BUILDING LATE-TYPE SPIRAL GALAXIES BY IN-SITU AND EX-SITU STAR FORMATION

    Energy Technology Data Exchange (ETDEWEB)

    Pillepich, Annalisa [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Madau, Piero [Department of Astronomy and Astrophysics, University of California Santa Cruz, 1156 High St., Santa Cruz, CA 95064 (United States); Mayer, Lucio [Center for Theoretical Astrophysics and Cosmology, Institute for Computational Science, University of Zurich, Winterthurerstrasse 190, CH-9057 Zurich (Switzerland)

    2015-02-01

    We analyze the formation and evolution of the stellar components in ''Eris'', a 120 pc resolution cosmological hydrodynamic simulation of a late-type spiral galaxy. The simulation includes the effects of a uniform UV background, a delayed-radiative-cooling scheme for supernova feedback, and a star formation recipe based on a high gas density threshold. It allows a detailed study of the relative contributions of ''in-situ'' (within the main host) and ''ex-situ'' (within satellite galaxies) star formation to each major Galactic component in a close Milky Way analog. We investigate these two star-formation channels as a function of galactocentric distance, along different lines of sight above and along the disk plane, and as a function of cosmic time. We find that: (1) approximately 70% of today's stars formed in-situ; (2) more than two thirds of the ex-situ stars formed within satellites after infall; (3) the majority of ex-situ stars are found today in the disk and in the bulge; (4) the stellar halo is dominated by ex-situ stars, whereas in-situ stars dominate the mass profile at distances ≲ 5 kpc from the center at high latitudes; and (5) approximately 25% of the inner, r ≲ 20 kpc, halo is composed of in-situ stars that have been displaced from their original birth sites during Eris' early assembly history.

  10. Spiral symmetry

    CERN Document Server

    Hargittai, Istvan

    1992-01-01

    From the tiny twisted biological molecules to the gargantuan curling arms of many galaxies, the physical world contains a startling repetition of spiral patterns. Today, researchers have a keen interest in identifying, measuring, and defining these patterns in scientific terms. Spirals play an important role in the growth processes of many biological forms and organisms. Also, through time, humans have imitated spiral motifs in their art forms, and invented new and unusual spirals which have no counterparts in the natural world. Therefore, one goal of this multiauthored book is to stress the c

  11. Multi-Wavelength Observations of the Supernova Remnant Populations in the Nearby Spiral Galaxies IC 342 and NGC 4258

    Science.gov (United States)

    Pannuti, Thomas; Chomiuk, L.; Grimes, C. K.; Staggs, W. D.; Tussey, J. M.; Laine, S.; Schlegel, E.

    2011-01-01

    Supernova remnants (SNRs) are intimately tied to many crucial processes associated with the interstellar medium of galaxies, such as the acceleration of cosmic-ray particles and the deposition of vast amounts of kinetic energy and chemically-enriched material. Well-known observational challenges in the study of SNRs located in the Milky Way Galaxy (for example, formidable extinction along Galactic lines of sight and considerable uncertainties in the distances to these sources) have motivated searches for SNRs in nearby galaxies at such characteristic wavelengths as X-ray, optical and radio. These searches have revealed a considerable number of SNRs and led to new insights into their properties, but the SNR populations in only a handful of nearby galaxies have been adequately surveyed at multiple wavelengths. To help remedy this situation, we are conducting a multi-wavelength study of the SNR population of selected nearby galaxies. To illustrate our work, we present the results of studies of the SNR population in two nearby spiral galaxies, IC 342 and NGC 4258. Our results draw upon the analysis of pointed archival radio and X-ray observations of these two galaxies. Initial results will be presented and discussed.

  12. The inner mass distribution of late-type spiral galaxies from SAURON stellar kinematic maps

    CERN Document Server

    Kalinova, Veselina; Lyubenova, Mariya; Falcón-Barroso, Jesús; Colombo, Dario; Rosolowsky, Erik

    2016-01-01

    We infer the central mass distributions within 0.4-1.2 disc scale lengths of 18 late-type spiral galaxies using two different dynamical modelling approaches - the Asymmetric Drift Correction (ADC) and axisymmetric Jeans Anisotropic Multi-gaussian expansion (JAM) model. ADC adopts a thin disc assumption, whereas JAM does a full line-of-sight velocity integration. We use stellar kinematics maps obtained with the integral-field spectrograph SAURON to derive the corresponding circular velocity curves from the two models. To find their best-fit values, we apply Markov Chain Monte Carlo (MCMC) method. ADC and JAM modelling approaches are consistent within 5% uncertainty when the ordered motions are significant comparable to the random motions, i.e, $\\overline{v_{\\phi}}/\\sigma_R$ is locally greater than 1.5. Below this value, the ratio $v_\\mathrm{c,JAM}/v_\\mathrm{c,ADC}$ gradually increases with decreasing $\\overline{v_{\\phi}}/\\sigma_R$, reaching $v_\\mathrm{c,JAM}\\approx 2 \\times v_\\mathrm{c,ADC}$. Such conditions i...

  13. Giant molecular clouds in the non-grand design spiral galaxy NGC 6946

    CERN Document Server

    Rebolledo, David; Leroy, Adam; Koda, Jin; Meyer, Jennifer Donovan

    2012-01-01

    We present high spatial resolution observations of Giant Molecular Clouds (GMCs) in the eastern part of the nearby spiral galaxy NGC 6946 obtained with the Combined Array for Research in Millimeter-wave Astronomy (CARMA). We have observed 12CO(1-0), 12CO(2-1) and 13CO(1-0), achieving spatial resolutions of 5.4" x 5.0", 2.5" x 2.0" and 5.6" x 5.4" respectively over a region of 6 x 6 kpc. This region extends from 1.5 kpc to 8 kpc galactocentric radius, thus avoiding the intense star formation in the central kpc. We have recovered short-spacing u-v components by using single dish observations from the Nobeyama 45m and IRAM 30m telescopes. Using the automated CPROPS algorithm we identified 44 CO cloud complexes in the 12CO(1-0) map and 64 GMCs in the 12CO(2-1) maps. The sizes, line widths, and luminosities of the GMCs are similar to values found in other extragalactic studies. We have classified the clouds into on-arm and inter-arm clouds based on the stellar mass density traced by the 3.6 um map. On-arm clouds p...

  14. Kinematics and excitation of the nuclear spiral in the active galaxy Arp 102B

    CERN Document Server

    Couto, Guilherme S; Axon, David J; Robinson, Andrew; Kharb, Preeti; Riffel, Rogemar A

    2013-01-01

    We present a two-dimensional analysis of the gaseous excitation and kinematics of the inner 2.5 x 1.7 kpc^2 of the LINER/Seyfert 1 galaxy Arp 102B, from optical spectra obtained with the GMOS integral field spectrograph on the Gemini North telescope at a spatial resolution of 250 pc. Emission-line flux maps show the same two-armed nuclear spiral we have discovered in previous observations with the HST-ACS camera. One arm reaches 1 kpc to the east and the other 500 pc to the west, with a 8.4 GHz VLA bent radio jet correlating with the former. The gas density is highest (500 - 900 cm^(-3)) at the nucleus and in the northern border of the east arm, at a region where the radio jet seems to be deflected. Channel maps show blueshifts but also some redshifts at the eastern arm and jet location which can be interpreted as originated in the front and back walls of an outflow pushed by the radio jet, suggesting also that the outflow is launched close to the plane of the sky. We estimate a mass outflow rate along the ea...

  15. Planetary Nebulae in Face-On Spiral Galaxies. I. Planetary Nebula Photometry and Distances

    CERN Document Server

    Herrmann, Kimberly A; Feldmeier, John J; Vinciguerra, Matt

    2008-01-01

    As the first step to determine disk mass-to-light ratios for normal spiral galaxies, we present the results of an imaging survey for planetary nebulae (PNe) in six nearby, face-on systems: IC 342, M74 (NGC 628), M83 (NGC 5236), M94 (NGC 4736), NGC 5068, and NGC 6946. Using Blanco/Mosaic II and WIYN/OPTIC, we identify 165, 153, 241, 150, 19, and 71 PN candidates, respectively, and use the Planetary Nebula Luminosity Function (PNLF) to obtain distances. For M74 and NGC 5068, our distances of 8.6 +/- 0.3 Mpc and 5.4 +0.2/-0.4 Mpc are the first reliable estimates to these objects; for IC 342 (3.5 +/- 0.3 Mpc), M83 (4.8 +/- 0.1 Mpc), M94 (4.4 +0.1/-0.2 Mpc), and NGC 6946 (6.1 +/- 0.6 Mpc) our values agree well with those in the literature. In the larger systems, we find no evidence for any systematic change in the PNLF with galactic position, though we do see minor field-to-field variations in the luminosity function. In most cases, these changes do not affect the measurement of distance, but in one case the fluct...

  16. Ram-pressure stripped molecular gas in the Virgo spiral galaxy NGC 4522

    CERN Document Server

    Vollmer, B; Pappalardo, C; Hily-Blant, P

    2008-01-01

    IRAM 30m 12CO(1-0) and 12CO(2-1) HERA observations are presented for the ram-pressure stripped Virgo spiral galaxy NGC 4522. The CO emission is detected in the galactic disk and the extraplanar gas. The extraplanar CO emission follows the morphology of the atomic gas closely but is less extended. The CO maxima do not appear to correspond to regions where there is peak massive star formation as probed by Halpha emission. The presence of molecular gas is a necessary but not sufficient condition for star formation. Compared to the disk gas, the molecular fraction of the extraplanar gas is 30% lower and the star formation efficiency of the extraplanar gas is about 3 times lower. The comparison with an existing dynamical model extended by a recipe for distinguishing between atomic and molecular gas shows that a significant part of the gas is stripped in the form of overdense arm-like structures. It is argued that the molecular fraction depends on the square root of the total large-scale density. Based on the combi...

  17. Herschel-SPIRE-Fourier Transform Spectroscopy of the nearby spiral galaxy IC342

    CERN Document Server

    Rigopoulou, D; Swinyard, B M; Virdee, J; Croxall, K V; Hopwood, R H B; Lim, T; Magdis, G E; Pearson, C P; Pellegrini, E; Polehampton, E; Smith, J-D

    2013-01-01

    We present observations of the nearby spiral galaxy IC342 with the Herschel Spectral and Photometric Imaging Receiver (SPIRE) Fourier Transform Spectrometer. The spectral range afforded by SPIRE, 196-671 microns, allows us to access a number of 12CO lines from J=4--3 to J=13--12 with the highest J transitions observed for the first time. In addition we present measurements of 13CO, [CI] and [NII]. We use a radiative transfer code coupled with Bayesian likelihood analysis to model and constrain the temperature, density and column density of the gas. We find two 12CO components, one at 35 K and one at 400 K with CO column densities of 6.3x10^{17} cm^{-2} and 0.4x10^{17} cm^{-2} and CO gas masses of 1.26x10^{7} Msolar and 0.15x10^{7} Msolar, for the cold and warm components, respectively. The inclusion of the high-J 12CO line observations, indicate the existence of a much warmer gas component (~400 K) confirming earlier findings from H_{2} rotational line analysis from ISO and Spitzer. The mass of the warm gas i...

  18. Two Populations of Old Star Clusters in the Spiral Galaxy M101 Based on HST/ACS Observations

    CERN Document Server

    Simanton, Lesley A; Whitmore, Bradley C

    2015-01-01

    We present a new photometric catalog of 326 candidate globular clusters (GCs) in the nearby spiral galaxy M101, selected from B, V, and I Hubble Space Telescope Advanced Camera for Surveys images. The luminosity function (LF) of these clusters has an unusually large number of faint sources compared with GCLFs in many other spiral galaxies. Accordingly, we separate and compare the properties of "bright" (M_V -6.5; one magnitude fainter than the expected GC peak) clusters within our sample. The LF of the bright clusters is well fit by a peaked distribution similar to those observed in the Milky Way (MW) and other galaxies. These bright clusters also have similar size (r_{eff}) and spatial distributions as MW GCs. The LF of the faint clusters, on the other hand, is well described by a power law, dN(L_V)/dL_V proportional to L_V^alpha with alpha = -2.6 plus or minus 0.3, similar to those observed for young and intermediate-age cluster systems in star forming galaxies. We find that the faint clusters have larger ...

  19. High-resolution, 3D radiative transfer modeling : I. The grand-design spiral galaxy M51

    CERN Document Server

    De Looze, Ilse; Baes, Maarten; Bendo, George J; Cortese, Luca; Boquien, Médéric; Boselli, Alessandro; Camps, Peter; Cooray, Asantha; Cormier, Diane; Davies, Jon I; De Geyter, Gert; Hughes, Thomas M; Jones, Anthony P; Karczewski, Oskar L; Lebouteiller, Vianney; Lu, Nanyao; Madden, Suzanne C; Rémy-Ruyer, Aurélie; Spinoglio, Luigi; Smith, Matthew W L; Viaene, Sebastien; Wilson, Christine D

    2014-01-01

    Context: Dust reprocesses about half of the stellar radiation in galaxies. The thermal re-emission by dust of absorbed energy is considered driven merely by young stars and, consequently, often applied to trace the star formation rate in galaxies. Recent studies have argued that the old stellar population might anticipate a non-negligible fraction of the radiative dust heating. Aims: In this work, we aim to analyze the contribution of young (< 100 Myr) and old (~ 10 Gyr) stellar populations to radiative dust heating processes in the nearby grand-design spiral galaxy M51 using radiative transfer modeling. High-resolution 3D radiative transfer (RT) models are required to describe the complex morphologies of asymmetric spiral arms and clumpy star-forming regions and model the propagation of light through a dusty medium. Methods: In this paper, we present a new technique developed to model the radiative transfer effects in nearby face-on galaxies. We construct a high-resolution 3D radiative transfer model with...

  20. The BaLROG project - II. Quantifying the influence of bars on the stellar populations of nearby galaxies

    CERN Document Server

    Seidel, Marja K; Martínez-Valpuesta, Inma; Sánchez-Blázquez, Patricia; Pérez, Isabel; Peletier, Reynier; Vazdekis, Alexandre

    2016-01-01

    We continue the exploration of the BaLROG (Bars in Low Redshift Optical Galaxies) sample: 16 large mosaics of barred galaxies observed with the integral field unit SAURON. We quantify the influence of bars on the composition of the stellar component. We derive linestrength indices of H${\\beta}$, Fe5015 and Mgb. Based on single stellar population (SSP) models, we calculate ages, metallicities and [Mg/Fe] abundances and their gradients along the bar major and minor axes. The high spatial resolution of our data allows us to identify breaks among index and SSP profiles, commonly at 0.13$\\pm$0.06 bar length, consistent with kinematic features. Inner gradients are about ten times steeper than outer gradients and become larger when there is a central rotating component, implying that the gradients are not independent of dynamics and orbits. Central ages appear to be younger for stronger bars. Yet, the bar regions are usually old. We find a flattening of the iron (Fe5015) and magnesium (Mgb) outer gradients along the...

  1. The spiral structure of the Galaxy revealed by CS sources and evidence for the 4:1 resonance

    CERN Document Server

    Lepine, J R D; Abraham, Zulema; Junqueira, T C; Mishurov, Yu N

    2010-01-01

    We present a map of the spiral structure of the Galaxy, as traced by molecular CS emission associated with IRAS sources which are believed to be compact HII regions. The CS line velocities are used to determine the kinematic distances of the sources, in order to investigate their distribution in the galactic plane. This allows us to use 870 objects to trace the arms, a number larger than that of previous studies based on classical HII regions. The distance ambiguity of the kinematic distances, when it exists, is solved by different procedures, including the latitude distribution and an analysis of the longitude-velocity diagram. The well defined spiral arms are seen to be confined inside the co-rotation radius, as is often the case in spiral galaxies. We identify a square-shaped sub-structure in the CS map with that predicted by stellar orbits at the 4:1 resonance (4 epicycle oscillations in one turn around the galactic center). The sub-structure is found at the expected radius, based on the known pattern rot...

  2. Comparison between 2D and 3D codes in dynamical simulations of gas flow in barred galaxies

    NARCIS (Netherlands)

    Perez, I.

    2008-01-01

    Context. One of the ways to determine the contribution of the dark halo to the gravitational potential of a galaxy is study non-circular (streaming) motions and the associated gas shocks in the bar region. These motions, determined by the potential in the inner parts, can break the disk-halo degener

  3. Non-Parametric Cell-Based Photometric Proxies for Galaxy Morphology: Methodology and Application to the Morphologically-Defined Star Formation -- Stellar Mass Relation of Spiral Galaxies in the Local Universe

    CERN Document Server

    Grootes, M W; Popescu, C C; Robotham, A S G; Seibert, M; Kelvin, L S

    2013-01-01

    (Abridged) We present a non-parametric cell-based method of selecting highly pure and largely complete samples of spiral galaxies using photometric and structural parameters as provided by standard photometric pipelines and simple shape fitting algorithms, demonstrably superior to commonly used proxies. Furthermore, we find structural parameters derived using passbands longwards of the $g$ band and linked to older stellar populations, especially the stellar mass surface density $\\mu_*$ and the $r$ band effective radius $r_e$, to perform at least equally well as parameters more traditionally linked to the identification of spirals by means of their young stellar populations. In particular the distinct bimodality in the parameter $\\mu_*$, consistent with expectations of different evolutionary paths for spirals and ellipticals, represents an often overlooked yet powerful parameter in differentiating between spiral and non-spiral/elliptical galaxies. We investigate the intrinsic specific star-formation rate - ste...

  4. How to bend galaxy disc profiles II: stars surfing the bar in anti-truncated discs

    CERN Document Server

    Herpich, Jakob; Rix, Hans-Walter; Martig, Marie; Dutton, Aaron A

    2015-01-01

    Simple numerical models can produce the observed radial breaks in the stellar surface density profile of late-type galaxies by varying only one parameter, the initial halo spin {\\lambda}. Here we analyse these simulations in more detail in an effort to identify the physical mechanism that leads to the formation of anti-truncations (Type-III profiles). We find that orbital resonances with a central bar drive stellar orbits from circular orbits with small semi-major axes to rather eccentric orbits with large semi-major axes. These orbits then form a disk-like configuration with high radial dispersion and rotation far below the circular velocity. This will manifest itself in photometry as an anti-truncated (Type-III) outer stellar disk. Whether such outer disks -- with qualitatively new dynamics -- exist in nature can be tested by future observations.

  5. M/L, Hα Rotation Curves, and H I Gas Measurements for 329 Nearby Cluster and Field Spirals. III. Evolution in Fundamental Galaxy Parameters

    Science.gov (United States)

    Vogt, Nicole P.; Haynes, Martha P.; Giovanelli, Riccardo; Herter, Terry

    2004-06-01

    We have conducted a study of optical and H I properties of spiral galaxies (size, luminosity, Hα flux distribution, circular velocity, H I gas mass) to investigate causes (e.g., nature vs. nurture) for variation within the cluster environment. We find H I-deficient cluster galaxies to be offset in fundamental plane space, with disk scale lengths decreased by a factor of 25%. This may be a relic of early galaxy formation, caused by the disk coalescing out of a smaller, denser halo (e.g., higher concentration index) or by truncation of the hot gas envelope due to the enhanced local density of neighbors, although we cannot completely rule out the effect of the gas stripping process. The spatial extent of Hα flux and the B-band radius also decreases, but only in early-type spirals, suggesting that gas removal is less efficient within steeper potential wells (or that stripped late-type spirals are quickly rendered unrecognizable). We find no significant trend in stellar mass-to-light ratios or circular velocities with H I gas content, morphological type, or clustercentric radius, for star-forming spiral galaxies throughout the clusters. These data support the findings of a companion paper that gas stripping promotes a rapid truncation of star formation across the disk and could be interpreted as weak support for dark matter domination over baryons in the inner regions of spiral galaxies.

  6. Populations of High-Luminosity Density-Bounded HII Regions in Spiral Galaxies? Evidence and Implications

    Science.gov (United States)

    Beckman, J. E.; Rozas, M.; Zurita, A.; Watson, R. A.; Knapen, J. H.

    2000-01-01

    In this paper we present evidence that the H II regions of high luminosity in disk galaxies may be density bounded, so that a significant fraction of the ionizing photons emitted by their exciting OB stars escape from the regions. The key piece of evidence is the presence, in the Ha luminosity functions (LFs) of the populations of H iI regions, of glitches, local sharp peaks at an apparently invariant luminosity, defined as the Stromgren luminosity Lstr), LH(sub alpha) = Lstr = 10(sup 38.6) (+/- 10(sup 0.1)) erg/ s (no other peaks are found in any of the LFs) accompanying a steepening of slope for LH(sub alpha) greater than Lstr This behavior is readily explicable via a physical model whose basic premises are: (a) the transition at LH(sub alpha) = Lstr marks a change from essentially ionization bounding at low luminosities to density bounding at higher values, (b) for this to occur the law relating stellar mass in massive star-forming clouds to the mass of the placental cloud must be such that the ionizing photon flux produced within the cloud is a function which rises more steeply than the mass of the cloud. Supporting evidence for the hypothesis of this transition is also presented: measurements of the central surface brightnesses of H II regions for LH(sub alpha) less than Lstr are proportional to L(sup 1/3, sub H(sub alpha)), expected for ionization bounding, but show a sharp trend to a steeper dependence for LH(sub alpha) greater than Lstr, and the observed relation between the internal turbulence velocity parameter, sigma, and the luminosity, L, at high luminosities, can be well explained if these regions are density bounded. If confirmed, the density-bounding hypothesis would have a number of interesting implications. It would imply that the density-bounded regions were the main sources of the photons which ionize the diffuse gas in disk galaxies. Our estimates, based on the hypothesis, indicate that these regions emit sufficient Lyman continuum not only to

  7. A test of arm-induced star formation in spiral galaxies from near-IR and H$\\alpha$ imaging

    CERN Document Server

    Seigar, M S; Seigar, Marc S.; James, Phil A.

    2002-01-01

    We have imaged a sample of 20 spiral galaxies in H$\\alpha$ and in the near-infrared K band (2.2 um), in order to determine the location and strength of star formation in these objects with respect to perturbations in the old stellar population. We have found that star formation rates are significantly enhanced in the vicinity of K band arms. We have also found that this enhancement in star formation rate in arm regions correlates well with a quantity that measures the relative strengths of shocks in arms. Assuming that the K band light is dominated by emission from the old stellar population, this shows that density waves trigger star formation in the vicinity of spiral arms.

  8. The fundamental manifold of spiral galaxies: ordered versus random motions and the morphology dependence of the Tully-Fisher relation

    Science.gov (United States)

    Tonini, C.; Jones, D. H.; Mould, J.; Webster, R. L.; Danilovich, T.; Ozbilgen, S.

    2014-03-01

    We investigate the morphology dependence of the Tully-Fisher (TF) relation, and the expansion of the relation into a three-dimensional manifold defined by luminosity, total circular velocity and a third dynamical parameter, to fully characterize spiral galaxies across all morphological types. We use a full semi-analytic hierarchical model (based on Croton et al.), built on cosmological simulations of structure formation, to model galaxy evolution and build the theoretical TF relation. With this tool, we analyse a unique data set of galaxies for which we cross-match luminosity with total circular velocity and central velocity dispersion. We provide a theoretical framework to calculate such measurable quantities from hierarchical semi-analytic models. We establish the morphology dependence of the TF relation in both model and data. We analyse the dynamical properties of the model galaxies and determine that the parameter σ/VC, i.e. the ratio between random and total motions defined by velocity dispersion and circular velocity, accurately characterizes the varying slope of the TF relation for different model galaxy types. We apply these dynamical cuts to the observed galaxies and find indeed that such selection produces a differential slope of the TF relation. The TF slope in different ranges of σ/VC is consistent with that for the traditional photometric classification in Sa, Sb and Sc. We conclude that σ/VC is a good parameter to classify galaxy type, and we argue that such classification based on dynamics more closely mirrors the physical properties of the observed galaxies, compared to visual (photometric) classification. We also argue that dynamical classification is useful for samples where eye inspection is not reliable or impractical. We conclude that σ/VC is a suitable parameter to characterize the hierarchical assembly history that determines the disc-to-bulge ratio, and to expand the TF relation into a three-dimensional manifold, defined by luminosity

  9. The spatially resolved Kennicutt-Schmidt relation in the HI dominated regions of spiral and dwarf irregular galaxies

    CERN Document Server

    Roychowdhury, Sambit; Kauffmann, Guinevere; Wang, Jing; Chengalur, Jayaram N

    2015-01-01

    We study the Kennicutt-Schmidt relation between average star formation rate and average cold gas surface density in the Hi dominated ISM of nearby spiral and dwarf irregular galaxies. We divide the galaxies into grid cells varying from sub-kpc to tens of kpc in size. Grid-cell measurements of low SFRs using H-alpha emission can be biased and scatter may be introduced because of non-uniform sampling of the IMF or because of stochastically varying star formation. In order to alleviate these issues, we use far-ultraviolet emission to trace SFR, and we sum up the fluxes from different bins with the same gas surface density to calculate the average $\\Sigma_{SFR}$ at a given value of $\\Sigma_{gas}$. We study the resulting Kennicutt-Schmidt relation in 400 pc, 1 kpc and 10 kpc scale grids in nearby massive spirals and in 400 pc scale grids in nearby faint dwarf irregulars. We find a relation with a power law slope of 1.5 in the HI-dominated regions for both kinds of galaxies. The relation is offset towards longer ga...

  10. Star Formation On Sub-kpc Scale Triggered By Non-linear Processes In Nearby Spiral Galaxies

    CERN Document Server

    Momose, Rieko; Kennicutt, Robert C; Egusa, Fumi; Calzetti, Daniela; Liu, Guilin; Meyer, Jennifer Donovan; Okumura, Sachiko K; Scoville, Nick Z; Sawada, Tsuyoshi; Kuno, Nario

    2013-01-01

    We report a super-linear correlation for the star formation law based on new CO($J$=1-0) data from the CARMA and NOBEYAMA Nearby-galaxies (CANON) CO survey. The sample includes 10 nearby spiral galaxies, in which structures at sub-kpc scales are spatially resolved. Combined with the star formation rate surface density traced by H$\\alpha$ and 24 $\\mu$m images, CO($J$=1-0) data provide a super-linear slope of $N$ = 1.3. The slope becomes even steeper ($N$ = 1.8) when the diffuse stellar and dust background emission is subtracted from the H$\\alpha$ and 24 $\\mu$m images. In contrast to the recent results with CO($J$=2-1) that found a constant star formation efficiency (SFE) in many spiral galaxies, these results suggest that the SFE is not independent of environment, but increases with molecular gas surface density. We suggest that the excitation of CO($J$=2-1) is likely enhanced in the regions with higher star formation and does not linearly trace the molecular gas mass. In addition, the diffuse emission contami...

  11. An observer's view of simulated galaxies: disc-to-total ratios, bars, and (pseudo-)bulges

    CERN Document Server

    Scannapieco, Cecilia; Jonsson, Patrik; White, Simon D M

    2010-01-01

    We use cosmological hydrodynamical simulations of the formation of Milky Way mass galaxies to study the relative importance of the main stellar components, discs, bulges, and bars, at z=0. The main aim of this work is to understand if estimates of the structural parameters of these components determined from kinematics (as usually done in simulations) agree well with those obtained using a photometric bulge/disc/bar decomposition (as done in observations). To perform such a comparison, we produced synthetic observations of the simulation outputs with the Monte-Carlo radiative transfer code SUNRISE and used the BUDDA code to make 2D photometric decompositions of the resulting images. We find that the kinematic disc-to-total ratio (D/T) estimates are systematically and significantly lower than the photometric ones. While the maximum D/T ratios obtained with the former method are of the order of 0.2, they are typically >0.4, and can be as high as 0.7, according to the latter. The photometric decomposition shows ...

  12. Orbital and escape dynamics in barred galaxies - I. The 2D system

    CERN Document Server

    Jung, Christof

    2016-01-01

    In this paper we use the two-dimensional (2D) version of a new analytical gravitational model in order to explore the orbital as well as the escape dynamics of the stars in a barred galaxy composed of a spherically symmetric central nucleus, a bar, a flat disk and a dark matter halo component. A thorough numerical investigation is conducted for distinguishing between bounded and escaping motion. Furthermore bounded orbits are further classified into non-escaping regular and trapped chaotic using the Smaller ALingment Index (SALI) method. Our aim is to determine the basins of escape through the two symmetrical escape channels around the Lagrange points $L_2$ and $L_3$ and also to relate them with the corresponding distribution of the escape rates of the orbits. We integrate initial conditions of orbits in several types of planes so as to obtain a more complete view of the overall orbital properties of the dynamical system. We also present evidence that the unstable manifolds which guide the orbits in and out t...

  13. Searching gravitational microlensing events in the galaxy spiral arms by EROS II; Recherche d'evenements de microlentille gravitationnelle dans les bras spiraux de la galaxie avec EROS II

    Energy Technology Data Exchange (ETDEWEB)

    Derue, Frederic [Paris-11 Univ., 91 Orsay (France)

    1999-04-15

    The EROS II experiment is searching for microlensing events due to compact massive objects passing through the line-of-sight of luminous stars. These objects are candidates to explain the baryonic component of Dark Matter in our Galaxy. EROS II was dedicated to different lines-of-sight: Small and Large Magellanic Clouds, Galactic Centre and 4 directions towards the Spiral Arms of the Galaxy. This thesis presents the first search for microlensing towards these last lines-of-sight (about 9 million stars). Simple criteria based on the search for significant fluctuations allowed one to discover a low noise sample of 7 candidates to the microlensing effect, with an average timescale of 50 days. A detailed analysis of the light curve of one candidate allows us to give a confidence interval on its mass 2.7 x 10{sup -3} < M/M{sub 0} < 0.84 at 95% CL. The amplification curve of another candidate shows a modulation which can be interpreted as a microlensing effect acting on a binary source, with an orbital period of P{sub 0} = 50 {+-} 3 days. To improve the knowledge of the distance of the target stars, we have combined observations of EROS II with bibliographic sources on associations of stars linked with the spiral arm features, and we have developed a program to find variable stars. Ten cepheids have thus been found. Distances obtained with different methods are in rough agreement with each other. The average optical depth measured towards the four directions is {tau}-bar = 0.45{sub 0.11}{sup +0.23} x 10{sup -6}. It is compatible with expectations from simple galactic models. The long duration of most events favours interpretation of lensing by objects belonging to the disk instead of the halo. It also seems that some events due to bulge lenses have influenced measurements towards the line-of-sight which is closest to the Galactic Centre. Observation continue towards spiral arms. More accurate measurements should be obtained with increase of statistics, allowing one to

  14. Hot Disks And Delayed Bar Formation

    CERN Document Server

    Sheth, Kartik; Elmegreen, Debra Meloy; Elmegreen, Bruce G; Athanassoula, E; Weiner, Ben

    2012-01-01

    We present observational evidence for the inhibition of bar formation in dispersion-dominated (dynamically hot) galaxies by studying the relationship between galactic structure and host galaxy kinematics in a sample of 257 galaxies between 0.1 $<$ z $\\leq$ 0.84 from the All-Wavelength Extended Groth Strip International Survey (AEGIS) and the Deep Extragalactic Evolutionary Probe 2 (DEEP2) survey. We find that bars are preferentially found in galaxies that are massive and dynamically cold (rotation-dominated) and on the stellar Tully-Fisher relationship, as is the case for barred spirals in the local Universe. The data provide at least one explanation for the steep ($\\times$3) decline in the overall bar fraction from z=0 to z=0.84 in L$^*$ and brighter disks seen in previous studies. The decline in the bar fraction at high redshift is almost exclusively in the lower mass (10 $<$ log M$_{*}$(\\Msun)$<$ 11), later-type and bluer galaxies. A proposed explanation for this "downsizing" of the bar formation ...

  15. Time Variability and Luminosity of X-ray Sources of Face-on Spiral Galaxy NGC 1232

    Science.gov (United States)

    Cantua, Oscar; Rucas, Tyler; Singh, Pranjal; Schlegel, Eric M.

    2017-01-01

    The ACIS detector (Advanced CCD Imaging Spectrometer) onboard the Chandra X-ray Observatory has imaged the face-on spiral NGC 1232 over six epochs for a total exposure of ~250 ksec. We describe each observation as well as the merged data set. Each exposure contains ~50 individual sources. We focus on the time variability and luminosity distributions of the sources. We also describe our search for diffuse emission as well as our search for evidence for a reported collision with a dwarf galaxy. Finally, we compare the merged data set and the detected sources with other wavebands.

  16. Infrared Survey of Pulsating Giant Stars in the Spiral Galaxy M33: Dust Production, Star Formation History, and Galactic Structure

    CERN Document Server

    Javadi, Atefeh; Mirtorabi, Mohammad Taghi

    2011-01-01

    We introduce a near-IR monitoring campaign of the Local Group spiral galaxy M33, carried out with the UK IR Telescope (UKIRT). The pulsating giant stars are identified and their distributions are used to derive the star formation rate as a function of age. We here present the star formation history for the central square kiloparsec. These stars are also important dust factories; we measure their dust production rates from a combination of our data with Spitzer Space Telescope mid-IR photometry.

  17. Simulating Galaxies: Investigating Spiral Pitch Angle and the Efficiency of Radial Mixing

    Science.gov (United States)

    Lifset, Noah; Barbano, Luke; Daniel, Kathryne J.

    2017-01-01

    Radial mixing refers to the permanent rearrangement of orbital angular momenta in a galactic disk due to interactions with transient spiral arms. A star is subject to this dynamical process when it is temporarily in a trapped orbit between the spiral arms near the corotation radius. The purpose of this research was to numerically investigate how spiral shape affects the efficiency of radial mixing. This was done by designing an orbital integrator that numerically simulated the motion of test particles in a 2D disk potential that had a steady spiral pattern and was populated using a Monte Carlo simulation. Several realizations of N=10^4 orbits were simulated and analyzed using the open source, distributed computing service Open Science Grid (OSG). The results were in agreement with previous theoretical predictions, and preliminary analysis of the data indicates that the RMS change in orbital angular momentum for stars in trapped orbits depends on spiral arm pitch angle.

  18. Spiral arms as cosmic ray source distributions

    Science.gov (United States)

    Werner, M.; Kissmann, R.; Strong, A. W.; Reimer, O.

    2015-04-01

    The Milky Way is a spiral galaxy with (or without) a bar-like central structure. There is evidence that the distribution of suspected cosmic ray sources, such as supernova remnants, are associated with the spiral arm structure of galaxies. It is yet not clearly understood what effect such a cosmic ray source distribution has on the particle transport in our Galaxy. We investigate and measure how the propagation of Galactic cosmic rays is affected by a cosmic ray source distribution associated with spiral arm structures. We use the PICARD code to perform high-resolution 3D simulations of electrons and protons in galactic propagation scenarios that include four-arm and two-arm logarithmic spiral cosmic ray source distributions with and without a central bar structure as well as the spiral arm configuration of the NE2001 model for the distribution of free electrons in the Milky Way. Results of these simulation are compared to an axisymmetric radial source distribution. Also, effects on the cosmic ray flux and spectra due to different positions of the Earth relative to the spiral structure are studied. We find that high energy electrons are strongly confined to their sources and the obtained spectra largely depend on the Earth's position relative to the spiral arms. Similar finding have been obtained for low energy protons and electrons albeit at smaller magnitude. We find that even fractional contributions of a spiral arm component to the total cosmic ray source distribution influences the spectra on the Earth. This is apparent when compared to an axisymmetric radial source distribution as well as with respect to the Earth's position relative to the spiral arm structure. We demonstrate that the presence of a Galactic bar manifests itself as an overall excess of low energy electrons at the Earth. Using a spiral arm geometry as a cosmic ray source distributions offers a genuine new quality of modeling and is used to explain features in cosmic ray spectra at the Earth

  19. Two Populations of Old Star Clusters in the Spiral Galaxy M101 Based on HST/ACS Observations

    Science.gov (United States)

    Simanton, Lesley A.; Chandar, Rupali; Whitmore, Bradley C.

    2015-06-01

    We present a new photometric catalog of 326 candidate globular clusters (GCs) in the nearby spiral galaxy M101, selected from B, V, and I Hubble Space Telescope Advanced Camera for Surveys images. The luminosity function (LF) of these clusters has an unusually large number of faint sources compared with GCLFs in many other spiral galaxies. Accordingly, we separate and compare the properties of “bright” ({{M}V}\\lt -6.5) versus “faint” ({{M}V}\\gt -6.5; one magnitude fainter than the expected GC peak) clusters within our sample. The LF of the bright clusters is well fit by a peaked distribution similar to those observed in the Milky Way (MW) and other galaxies. These bright clusters also have similar size (reff) and spatial distributions as MW GCs. The LF of the faint clusters, on the other hand, is well described by a power law, dN({{L}V})/d{{L}V}\\propto LVα with α =-2.6+/- 0.3, similar to those observed for young and intermediate-age cluster systems in star forming galaxies. We find that the faint clusters have larger typical reff than the bright clusters, and have a flatter surface density profile, being more evenly distributed, as we would expect for clusters associated with the disk. We use the shape of the LF and predictions for mass-loss driven by two-body relaxation to constrain the ages of the faint clusters. Our results are consistent with two populations of old star clusters in M101: a bright population of halo clusters and a fainter, possibly younger, population of old disk clusters.

  20. DGSAT: Dwarf Galaxy Survey with Amateur Telescopes I. Discovery of low surface brightness systems around nearby spiral galaxies

    CERN Document Server

    Javanmardi, B; Kroupa, P; Henkel, C; Crawford, K; Teuwen, K; Gabany, R J; Hanson, M; Neyer, F

    2015-01-01

    Context: We introduce the Dwarf Galaxy Survey with Amateur Telescopes (DGSAT) project and report the discovery of eleven Low Surface Brightness (LSB) galaxies in the fields of the nearby galaxies NGC 2683, NGC 3628, NGC 4594 (M104), NGC 4631, NGC 5457 (M101), and NGC7814. Aims: The DGSAT project aims at using the potential of small-sized telescopes to probe LSB features around large galaxies and to increase the sample size of the dwarf satellite galaxies in the Local Volume. Methods: Using long exposure images centred on the target, its field is explored for extended low surface brightness objects. After identifying dwarf galaxy candidates, their observed properties are extracted by fitting models to their light profiles. Results: We find three, one, three, one, one, and two new LSB galaxies in the fields of NGC 2683, 3628, 4594, 4631, 5457, and 7814, respectively. In addition to the newly found galaxies, we analyse the structural properties of 9 already known galaxies. All of these 20 dwarf galaxy candidates...