WorldWideScience

Sample records for barley seed proteomics

  1. Aspects of the barley seed proteome during development and germination

    DEFF Research Database (Denmark)

    Finnie, Christine; Maeda, K.; Østergaard, O.

    2004-01-01

    Analysis of the water-soluble barley seed proteome has led to the identification of proteins by MS in the major spots on two-dimensional gels covering the pi ranges 4-7 and 6-11. This provides the basis for in-depth studies of proteome changes during seed development and germination, tissue...

  2. Barley seed proteomics from spots to structures

    DEFF Research Database (Denmark)

    Finnie, Christine; Svensson, Birte

    2009-01-01

    forms on 2D-gels. Specific protein families, including peroxidases and alpha-amylases have been subjected to in-depth analysis resulting in characterisation of different isozymes, post-translational. modifications and processing. A functional proteomics study focusing on the seed thioredoxin system has...

  3. Proteome analysis of dissected barley seed tissue during germination and radicle elongation

    DEFF Research Database (Denmark)

    Bønsager, Birgit Christine

    2007-01-01

    by mass spectrometry based on the 2D gel pattern of APX in germinated barley embryos, which indicated the presence of several APX forms with different pI values. The barley limit dextrinase inhibitor (LDI) is thought to be at least partly responsible for the presence of non-fermentable branched dextrins...... at the protein or the DNA level. In addition, germination of barley seeds is of interest for the brewing industry since this process corresponds to the steeping process that starts the industrial malting. In the present study a proteomics approach was employed to understand the initial changes in the water...... elongation. These proteins had different tissue distribution and most of them either remained constant or decreased in abundance during radicle elongation, except for ascorbate peroxidase (APX) which was only present in the germinating barley embryo after 24 h. Other proteins involved in osmotic and salinity...

  4. From Proteomics to Structural Studies of Cytosolic/Mitochondrial-Type Thioredoxin Systems in Barley Seeds

    DEFF Research Database (Denmark)

    Shahpiri, Azar; Svensson, Birte; Finnie, Christine

    2009-01-01

    for Trx, indicating that Trx plays a key role in several aspects of cell metabolism. In contrast to other organisms, plants contain multiple forms of Trx that are classified based on their primary structures and sub-cellular localization. The reduction of cytosolic and mitochondrial types of Trx...... is dependent on NADPH and catalyzed by NADPH-dependent thioredoxin reductase (NTR). In barley, two isoforms each of Trx and NTR have been identified and investigated using proteomics, gene expression, and structural studies. This review outlines the diverse roles suggested for cytosolic/mitochondrial-type Trx...... systems in cereal seeds and summarizes the current knowledge of the barley system including recent data on function, regulation, interactions, and structure. Directions for future research are discussed....

  5. Environmental and transgene expression effects on the barley seed proteome

    DEFF Research Database (Denmark)

    Finnie, Christine; Steenholdt, T.; Noguera, O.R.

    2004-01-01

    analysis was used to describe the water-soluble protein fraction of Golden Promise seeds in comparison with the modern malting cultivar Barke. Using 2D-gel electrophoresis to visualise several hundred proteins in the pH ranges 4-7 and 6-11, 16 protein spots were found to differ between the two cultivars...

  6. Spatio-temporal changes in germination and radical elongation of barley seeds tracked by proteome analysis of dissected embryo, aleurone layer and endosperm tissues

    DEFF Research Database (Denmark)

    Bønsager, Birgit Christine; Finnie, Christine; Roepstorff, P.

    2007-01-01

    and functions to the seed embryo, aleurone, and endosperm. Abundance in 2-DE patterns was monitored for 48 different proteins appearing in 79 gel spots at 8 time-points up to 72 h post imbibition (PI). In embryo, a beta-type proteasome subunit and a heat shock protein 70 fragment were among the earliest......Germination of barley is accompanied by changes in water-soluble seed proteins. 2-DE was used to describe spatio-temporal proteome differences in dissected seed tissues associated with germination and the subsequent radicle elongation. Protein identification by MS enabled assignment of proteins......, increased in abundance at 36 h PI. The surprisingly early changes seen in the protein profiles already 4 h after imbibition indicate that germination is programmed during seed maturation...

  7. Proteome analysis of barley seeds: Identification of major proteins from two-dimensional gels (pl 4-7)

    DEFF Research Database (Denmark)

    Østergaard, O.; Finnie, Christine; Laugesen, S.

    2004-01-01

    Germination of monocotyledonous plants involves activation and de novo synthesis of enzymes that degrade cell walls and starch and mobilize stored endosperm reserves for embryo growth. Two-dimensional (2-D) gel electrophoresis and mass spectrometry were applied to identify major water......-soluble proteins in extracts of mature barley (Hordeum vulgare) seeds and to follow their fate during germination. About 1200 and 600 spots of p/ 4-7 were detected on 2-D gels by silver staining and colloidal Coomassie Brilliant Blue staining, respectively. About 300 spots were selected for in-gel digestion...... followed by matrix-assisted laser desorption/ionization-mass spectrometry-peptide map fingerprint analysis. Database searches using measured peptide masses resulted in 198 identifications of 103 proteins in 177 spots. These include housekeeping enzymes, chaperones, defence proteins (including enzyme...

  8. Barley seed aging

    NARCIS (Netherlands)

    Nagel, Manuela; Kodde, Jan; Pistrick, Sibylle; Mascher, Martin; Börner, Andreas; Groot, Steven P.C.

    2016-01-01

    Experimental seed aging approaches intend to mimic seed deterioration processes to achieve a storage interval reduction. Common methods apply higher seed moisture levels and temperatures. In contrast, the “elevated partial pressure of oxygen” (EPPO) approach treats dry seed stored at ambient

  9. Alanine aminotransferase controls seed dormancy in barley.

    Science.gov (United States)

    Sato, Kazuhiro; Yamane, Miki; Yamaji, Nami; Kanamori, Hiroyuki; Tagiri, Akemi; Schwerdt, Julian G; Fincher, Geoffrey B; Matsumoto, Takashi; Takeda, Kazuyoshi; Komatsuda, Takao

    2016-05-18

    Dormancy allows wild barley grains to survive dry summers in the Near East. After domestication, barley was selected for shorter dormancy periods. Here we isolate the major seed dormancy gene qsd1 from wild barley, which encodes an alanine aminotransferase (AlaAT). The seed dormancy gene is expressed specifically in the embryo. The AlaAT isoenzymes encoded by the long and short dormancy alleles differ in a single amino acid residue. The reduced dormancy allele Qsd1 evolved from barleys that were first domesticated in the southern Levant and had the long dormancy qsd1 allele that can be traced back to wild barleys. The reduced dormancy mutation likely contributed to the enhanced performance of barley in industrial applications such as beer and whisky production, which involve controlled germination. In contrast, the long dormancy allele might be used to control pre-harvest sprouting in higher rainfall areas to enhance global adaptation of barley.

  10. Wheat and barley seed systems in Ethiopia and Syria

    NARCIS (Netherlands)

    Bishaw, Z.

    2004-01-01

    Keywords: Wheat,Triticumspp., Barley,Hordeumvulgare L., Seed Systems, Formal Seed Sector, Informal Seed Sector, National Seed Program, Seed Source, Seed Selection, Seed Management, Seed Quality,

  11. Search for endophytic diazotrophs in barley seeds

    Directory of Open Access Journals (Sweden)

    Myriam S. Zawoznik

    2014-06-01

    Full Text Available Eight endophytic isolates assigned to Pseudomonas, Azospirillum, and Bacillus genera according to pheno-genotypic features were retrieved from barley seeds under selective pressure for nitrogen-fixers. Genetic relationships among related isolates were investigated through RAPD. Six isolates displayed nitrogen-fixing ability, while all could biosynthesize indolacetic acid in vitro and showed no antibiosis effects against Azospirillum brasilense Az39, a recognized PGPR.

  12. ALTERATIONS IN BARLEY PROTEOME UPON FUNGAL INFECTION AND TRICYCLAZOLE TREATMENT

    Directory of Open Access Journals (Sweden)

    Manoj Kumar a,b

    2017-04-01

    Full Text Available The barley proteome was investigated upon fungal infection and subsequent treatment by tricyclazole (TCZ, which is known to have applications in spot blotch disease management in barley.Significantly enhanced chlorophyll content was recorded in TCZ treated plants. The disease severity was significantly reduced after TCZ application in pathogen inoculated plants by reducing the appressoria formation at infection site in barley leaves. Two-dimensional gel electrophoresis (2-DE revealed the expression profile of proteins from (I control plants (healthy barley leaves; application with sterile water,(II plants after foliar application of TCZ (100 µg/ml, (III plants inoculated with B. sorokiniana and (IV plants treated with TCZ (72 h after B. sorokiniana inoculation. A set of 33 proteins expressed differentially after TCZ treatment. Out of this 19 had known functions, while others were unknown or hypothetical proteins. These differentially expressed proteins were related to redox-activity and gene expression, electron transfer,cell division and chromosome partitioning, cell envelop biogenesis, energy metabolism and conversion, respiration and pathogenesis related functions in the barley plants. The study provides a platform and documents the proteins that might be involved in disease management in barley following TCZ application. It is expected that the study will provide boost in understanding proteome regulation upon fungal infection and subsequent anti-fungal treatment and will attract researchers for further validation leading to better pest management.

  13. Application of proteomics to investigate barley-Fusarium graminearum interaction

    DEFF Research Database (Denmark)

    Yang, Fen

    that i) spots increasing in intensity in the infected plants included fungal proteins and proteolytic fragments of plant proteins, ii) spots decreasing in intensity contained plant proteins possibly degraded by fungal proteases, iii) greater spot volume changes in response to the fungus were observed......-wall-degrading enzymes and proteases. Besides Tri5 gene, ten selected genes encoding protein expressed in vitro were also expressed in the F. graminearum-infected wheat and barley from 2-6 day after inoculation (dai), suggesting the in vitro proteome approach may be an ideal strategy to discover pathogenicity factors....... In addition, sharper increase in fungal biomass was observed in barley than in wheat and fungal induced proteolytic fragments of - amylases were only observed in barley not in wheat. Furthermore, a barley PR17 protein and a fungal hypothetical protein were expressed in E. coli and purified in Chapter 5...

  14. Integration of the barley genetic and seed proteome maps for chromosome 1H, 2H, 3H, 5H and 7H

    DEFF Research Database (Denmark)

    Finnie, Christine; Bagge, Merethe; Steenholdt, Torben

    2009-01-01

    between cultivar traits, proteome and genome. Proteome analysis of doubled haploid lines derived from a cross between a malting (Scarlett) and a feed cultivar (Meltan) enabled genetic localisation of protein phenotypes represented by 48 spot variations, involving e.g. peroxidases, serpins, alpha-amylase...

  15. Wheat and barley seed system in Syria: farmers' varietal perceptions, seed sources and seed management

    NARCIS (Netherlands)

    Bishaw, Z.; Struik, P.C.; Gastel, van A.J.G.

    2011-01-01

    A total of 206 wheat and 200 barley farmers were interviewed in northeastern Syria to understand farmer perceptions and practice relating to modern varieties, seed sources and seed quality. Wheat farmers had better awareness and grew modern varieties (87%), applied fertilizers (99.5%), herbicides

  16. Functional proteomics of barley and barley chloroplasts – strategies, methods and perspectives

    DEFF Research Database (Denmark)

    Petersen, Jørgen; Rogowska-Wrzesinska, Adelina; Jensen, Ole Nørregaard

    2013-01-01

    Barley (Hordeum vulgare) is an important cereal grain that is used in a range of products for animal and human consumption. Crop yield and seed quality has been optimized during decades by plant breeding programs supported by biotechnology and molecular biology techniques. The recently completed...

  17. Proteomes of the barley aleurone layer: A model system for plant signalling and protein secretion

    DEFF Research Database (Denmark)

    Finnie, Christine; Andersen, Birgit; Shahpiri, Azar

    2011-01-01

    to gibberellic acid produced by the embryo, the aleurone layer synthesises hydrolases that are secreted to the endosperm for the degradation of storage products. The barley aleurone layer can be separated from the other seed tissues and maintained in culture, allowing the study of the effect of added signalling...... molecules in an isolated system. These properties have led to its use as a model system for the study of plant signalling and germination. More recently, proteome analysis of the aleurone layer has provided new insight into this unique tissue including identification of plasma membrane proteins and targeted...... analysis of germination-related changes and the thioredoxin system. Here, analysis of intracellular and secreted proteomes reveals features of the aleurone layer system that makes it promising for investigations of plant protein secretion mechanisms....

  18. The plasma membrane proteome of germinating barley embryos

    DEFF Research Database (Denmark)

    Hynek, Radovan; Svensson, Birte; Jensen, O.N.

    2009-01-01

    Cereal seed germination involves a complex coordination between different seed tissues. Plasma membranes must play crucial roles in coordination and execution of germination; however, very little is known about seed plasma membrane proteomes due to limited tissue amounts combined with amphiphilic...... was used to reduce soluble protein contamination and enrich for hydrophobic proteins. Sixty-one proteins in 14 SDS-PAGE bands were identified by LC-MS/MS and database searches. The identifications provide new insight into the plasma membrane functions in seed germination....

  19. Response of germinating barley seeds to Fusarium graminearum: The first molecular insight into Fusarium seedling blight.

    Science.gov (United States)

    Yang, Fen; Svensson, Birte; Finnie, Christine

    2011-11-01

    Fusarium seedling blight in cereals can result in significant reductions in plant establishment but has not received much attention. The disease often starts during seed germination due to sowing of the seeds infected by Fusarium spp. including Fusarium graminearum. In order to gain the first molecular insights into the response of the germinating barley seeds to F. graminearum for controlling the disease, germinating seeds were treated with water as control or inoculated with F. graminearum conidia and samples were harvested at 1, 2 and 3 days after inoculation (dai). Although germination rates were not significantly different between F. graminearum-inoculated and control samples, albumins and hydrogen peroxide were accumulated in the inoculated samples at 1-3 dai, indicating that there was an interaction between the germinating seeds and F. graminearum. Subsequently, a gel-based proteomic approach was employed to identify differentially expressed proteins in the seeds responding to fungal infection at 3 dai, which revealed 42 protein spots, 41 of which were identified by mass spectrometry. The up-regulated proteins mainly included heat shock proteins, antioxidant enzymes and the proteins involved in primary metabolism and detoxification whereas the majority of down-regulated proteins were plant protease inhibitors. The results suggest that there is a link between increased energy metabolism and oxidative stress in the germinating barley seeds in response to F. graminearum infection, which provides the first molecular insight into Fusarium seedling blight. Copyright © 2011 Elsevier Masson SAS. All rights reserved.

  20. Differential appearance of isoforms and cultivar variation in protein temporal profiles revealed in the maturing barley grain proteome

    DEFF Research Database (Denmark)

    Finnie, Christine; Bak-Jensen, K.S.; Laugesen, Sabrina

    2006-01-01

    Proteome analysis of mature barley (Hordeum vulgare subsp. vulgare) seeds has led to the identification of proteins in about 450 spots on 2D-gels. To shed light on the role of some of these proteins, their temporal appearance was monitored over 5 weeks during grain-filling and maturation of field......-grown barley. Appearance profiles are described for 105 proteins identified in 185 2D-gel spots in the overlapping pI ranges 4-7 and 6-11. Grouping of proteins according to appearance across functional categories revealed instances of differential regulation of protein forms. Thus, a single 1-cys......-peroxiredoxin isoform was identified in three spots, one present throughout grain filling, one appearing during desiccation and one observed only in mature seeds. This suggested post-translational modification of the protein to different degrees during seed maturation. Distinct isoforms of several proteins were...

  1. Mitochondrial Proteome Studies in Seeds during Germination

    Directory of Open Access Journals (Sweden)

    Malgorzata Czarna

    2016-06-01

    Full Text Available Seed germination is considered to be one of the most critical phases in the plant life cycle, establishing the next generation of a plant species. It is an energy-demanding process that requires functioning mitochondria. One of the earliest events of seed germination is progressive development of structurally simple and metabolically quiescent promitochondria into fully active and cristae-containing mitochondria, known as mitochondrial biogenesis. This is a complex and tightly regulated process, which is accompanied by sequential and dynamic gene expression, protein synthesis, and post-translational modifications. The aim of this review is to give a comprehensive summary of seed mitochondrial proteome studies during germination of various plant model organisms. We describe different gel-based and gel-free proteomic approaches used to characterize mitochondrial proteomes of germinating seeds as well as challenges and limitations of these proteomic studies. Furthermore, the dynamic changes in the abundance of the mitochondrial proteomes of germinating seeds are illustrated, highlighting numerous mitochondrial proteins involved in respiration, tricarboxycylic acid (TCA cycle, metabolism, import, and stress response as potentially important for seed germination. We then review seed mitochondrial protein carbonylation, phosphorylation, and S-nitrosylation as well as discuss the possible link between these post-translational modifications (PTMs and the regulation of seed germination.

  2. Proteomics and posttranslational proteomics of seed dormancy and germination.

    Science.gov (United States)

    Rajjou, Loïc; Belghazi, Maya; Catusse, Julie; Ogé, Laurent; Arc, Erwann; Godin, Béatrice; Chibani, Kamel; Ali-Rachidi, Sonia; Collet, Boris; Grappin, Philippe; Jullien, Marc; Gallardo, Karine; Job, Claudette; Job, Dominique

    2011-01-01

    The seed is the dispersal unit of plants and must survive the vagaries of the environment. It is the object of intense genetic and genomic studies because processes related to seed quality affect crop yield and the seed itself provides food for humans and animals. Presently, the general aim of postgenomics analyses is to understand the complex biochemical and molecular processes underlying seed quality, longevity, dormancy, and vigor. Due to advances in functional genomics, the recent past years have seen a tremendous progress in our understanding of several aspects of seed development and germination. Here, we describe the proteomics protocols (from protein extraction to mass spectrometry) that can be used to investigate several aspects of seed physiology, including germination and its hormonal regulation, dormancy release, and seed longevity. These techniques can be applied to the study of both model plants (such as Arabidopsis) and crops.

  3. Rapid cultivar identification of barley seeds through disjoint principal component modeling.

    Science.gov (United States)

    Whitehead, Iain; Munoz, Alicia; Becker, Thomas

    2017-01-01

    Classification of barley varieties is a crucial part of the control and assessment of barley seeds especially for the malting and brewing industry. The correct classification of barley is essential in that a majority of decisions made regarding process specifications, economic considerations, and the type of product produced with the cereal are made based on the barley variety itself. This fact combined with the need to promptly assess the cereal as it is delivered to a malt house or production facility creates the need for a technique to quickly identify a barley variety based on a sample. This work explores the feasibility of differentiating between barley varieties based on the protein spectrum of barley seeds. In order to produce a rapid analysis of the protein composition of the barley seeds, lab-on-a-chip micro fluid technology is used to analyze the protein composition. Classification of the barley variety is then made using disjoint principle component models. This work included 19 different barley varieties. The varieties consisted of both winter and summer barley types. In this work, it is demonstrated that this system can identify the most likely barley variety with an accuracy of 95.9% based on cross validation and can screen summer barley with an accuracy of 95.2% and a false positive rate of 0.0% based on cross validation. This demonstrates the feasibility of the method to provide a rapid and relatively inexpensive method to verify the heritage of barley seeds.

  4. Effect of pulsed electric field on the germination of barley seeds

    DEFF Research Database (Denmark)

    Dymek, Katarzyna; Dejmek, Petr; Panarese, Valentina

    2012-01-01

    This study explores metabolic responses of germinating barley seeds upon the application of pulsed electric fields (PEF). Malting barley seeds were steeped in aerated water for 24 h and PEF-treated at varying voltages (0 (control), 110, 160, 240, 320, 400 and 480 V). The seeds were then allowed...

  5. Identification of Microbial Metabolites Elevating Vitamin Contents in Barley Seeds.

    Science.gov (United States)

    Yousaf, Anam; Qadir, Abdul; Anjum, Tehmina; Ahmad, Aqeel

    2015-08-19

    The current investigation analyzes metabolites of Acetobacter aceti to explore chemical compounds responsible for the induction of vitamins in barley seeds. A bioactivity guided assay of bacterial extracts and chromatographic analyses of barley produce revealed 13 chemical compounds, which were subjected to principal component analysis (PCA). PCA determined four chemical compounds (i.e., quinolinic acid, pyridoxic acid, p-aminobenzoate, and α-oxobutanoic acid) highly associated with increased quantities of vitamins. Further experimentations confirmed that quinolinic acid and p-aminobenzoate were the most efficient vitamin inducers. The results indicated chloroform/ethanol (4:1) as the best solvent system for the extraction of active compounds from crude metabolites of A. aceti. Significant quantities of mevalonic acid were detected in the extracted fraction, indicating the possible induction of the isoprenoid pathway. Altogether, the current investigation broadens the frontiers in plant-microbe interaction.

  6. Spatio-temporal profiling and degradation of alpha-amylase isozymes during barley seed germination

    DEFF Research Database (Denmark)

    Bak-Jensen, K.S.; Laugesen, Sabrina; Østergaard, Ole

    2007-01-01

    Ten genes from two multigene families encode barley alpha-amylases. To gain insight into the occurrence and fate of individual isoforms during seed germination, the alpha-amylase repertoire was mapped by using a proteomics approach consisting of 2D gel electrophoresis, western blotting, and mass...... spectrometry. Mass spectrometric analysis confirmed that the 29 alpha-amylase positive 2D gel spots contained products of one ( GenBank accession gi| 113765) and two ( gi vertical bar 4699831 and gi vertical bar 166985) genes encoding alpha-amylase 1 and 2, respectively, but lacked products from seven other...... genes. Eleven spots were identified only by immunostaining. Mass spectrometry identified 12 full-length forms and 12 fragments from the cultivar Barke. Products of both alpha-amylase 2 entries co-migrated in five full-length and one fragment spot. The alpha-amylase abundance and the number of fragments...

  7. Comparatiave analysis of the grain proteome fraction in barley genotypes with contrasting salinity tolerance during germination

    NARCIS (Netherlands)

    Witzel, K.; Weidner, A.; Surabhi, G.K.; Varshney, R.K.; Kunze, G.; Buck-Sorlin, G.H.; Börner, A.; Mock, H.P.

    2010-01-01

    In the present paper, we based a search for candidates underlying different levels of salinity tolerance during germination in the Oregon Wolfe Barley mapping population (DOM × REC) by proteomic profiling of the mature grain of lines showing differing levels of salinity tolerance. By contrasting the

  8. The proteomic analysis of barley albumins and globulins

    Czech Academy of Sciences Publication Activity Database

    Laštovičková, Markéta; Bobálová, Janette

    2008-01-01

    Roč. 102, č. 15 (2008), s709-s711 ISSN 1803-2389. [Meeting on Chemistry and Life /4./. Brno, 09.09.2008-11.09.2008] R&D Projects: GA MŠk 1M0570 Institutional research plan: CEZ:AV0Z40310501 Keywords : barley * albumins * globulins Subject RIV: CB - Analytical Chemistry, Separation

  9. MS based proteomic approaches for analysis of barley malt

    Czech Academy of Sciences Publication Activity Database

    Laštovičková, Markéta; Bobálová, Janette

    2012-01-01

    Roč. 56, č. 3 (2012), s. 519-530 ISSN 0733-5210 R&D Projects: GA ČR(CZ) GPP503/12/P395 Institutional research plan: CEZ:AV0Z40310501 Keywords : barley * malt * mass spectrometry Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 2.088, year: 2012

  10. Viability of barley seeds after long-term exposure to outer side of international space station

    Science.gov (United States)

    Sugimoto, Manabu; Ishii, Makoto; Mori, Izumi C.; Elena, Shagimardanova; Gusev, Oleg A.; Kihara, Makoto; Hoki, Takehiro; Sychev, Vladimir N.; Levinskikh, Margarita A.; Novikova, Natalia D.; Grigoriev, Anatoly I.

    2011-09-01

    Barley seeds were exposed to outer space for 13 months in a vented metal container without a climate control system to assess the risk of physiological and genetic mutation during long-term storage in space. The space-stored seeds (S0 generation), with an 82% germination rate in 50 seeds, lost about 20% of their weight after the exposure. The germinated seeds showed normal growth, heading, and ripening. The harvested seeds (S1 generation) also germinated and reproduced (S2 generation) as did the ground-stored seeds. The culm length, ear length, number of seed, grain weight, and fertility of the plants from the space-stored seeds were not significantly different from those of the ground-stored seeds in each of the S0 and S1 generation. Furthermore, the S1 and S2 space-stored seeds respectively showed similar β-glucan content to those of the ground-stored seeds. Amplified fragment length polymorphism analysis with 16 primer combinations showed no specific fragment that appears or disappears significantly in the DNA isolated from the barley grown from the space-stored seeds. Though these data are derived from nine S0 space-stored seeds in a single exposure experiment, the results demonstrate the preservation of barley seeds in outer space for 13 months without phenotypic or genotypic changes and with healthy and vigorous growth in space.

  11. High voltage electric field effects on structure and biological characteristics of barley seeds

    Energy Technology Data Exchange (ETDEWEB)

    Khazaei, J. [Tehran Univ., Tehran (Iran, Islamic Republic of). Dept. of Agrotechnology, Univ. College of Abouraihan; Aliabadi, E. [Tehran Univ., Tehran (Iran, Islamic Republic of). Dept. of Crop Production Horticulture, Univ. College of Aburaihan; Shayegani, A.A. [Tehran Univ., Tehran (Iran, Islamic Republic of). Univ. College of Engineering

    2010-07-01

    Electric biostimulation of seeds is a pre-sowing treatment in which an electric field is applied to seeds to increase germination of non standard seeds. This paper reported on a study that examined the effects of AC electric field and exposure time on the structure and biological characteristics of barley seeds. The objective was to determine the potential to accelerate seed germination, plant growth and root development by the electric field strength and exposure time. Makooei cultivar barley seeds were used in this study. The effect of electric field strength (at 2, 4, 9, and 14 kV/m) and exposure time (at 15, 45, 80, and 150 min) on seed germination was studied along with height of seedling, length or root, height of stem, length of leaves, earliness, dry weight and wet weight of seedling. The treated seeds were stored for a month in a refrigerator at 5 degrees C prior to the germination experiments. The initial germination percent of the seed was 81 per cent. The treatment of barley seeds in an AC electric field had a positive effect on all investigated parameters. The germination percent of the treated seed increased to 94.5 per cent . The seeds exposed for long periods of time (45 to 150 min) showed better germination than the seeds exposed to lower exposure times. Dry and wet weights of seedling increased 143.4 per cent and 45.7 per cent, respectively.

  12. Proteomic and activity profiles of ascorbate-glutathione cycle enzymes in germinating barley embryo

    DEFF Research Database (Denmark)

    Bønsager, Birgit Christine; Shahpiri, Azar; Finnie, Christine

    2010-01-01

    Enzymes involved in redox control are important during seed germination and seedling growth. Ascorbate-glutathione cycle enzymes in barley embryo extracts were monitored both by 2D-gel electrophoresis and activity measurements from 4 to 144 h post imbibition (PI). Strikingly different activity...

  13. The Effect of Fungicides for Seed Treatment on Germination of Barley

    Directory of Open Access Journals (Sweden)

    Vesna Stevanović

    2009-01-01

    Full Text Available The application of chemicals, such as fungicides for seed treatment, is one of the most reliable and perhaps most efficient measures for integrated preservation of crops, and its practicing has become a legal obligation for all seed producers. This investigation was carried out in the laboratory for seed quality and phytopathology of the Small Grains Research Center in Kragujevac. The objective was to establish the effect of fungicides on germination energy and seed germinability (determined after treatments. Two varieties were tested due to a possibility of specific sensitivities of some varieties, so that the results acquired on one variety would not necessarily be valid for another one. Fungicides based on active ingredients from the triasol chemical group had different effects on the energy of germination of barley seeds. Applying Raxil S040-FS, the average germination of barley seeds was 79.3% for the variety Record, and 91.3% for the Grand variety. The variety Record achieved a lower value than the minimum for barley seed germination (88% stipulated by the Rules on Seed Quality of Agricultural Crops.Regardless of barley type, the product Raxil S040-FS showed a statistically significant effect on the number of atypical seedlings and increase in the number of non-germinated seeds, compared to the control.

  14. Genes controlling seed dormancy and pre-harvest sprouting in a rice-wheat-barley comparison

    DEFF Research Database (Denmark)

    Li, Chengdao; Ni, Peixiang; Francki, Michael

    2004-01-01

    Pre-harvest sprouting results in significant economic loss for the grain industry around the world. Lack of adequate seed dormancy is the major reason for pre-harvest sprouting in the field under wet weather conditions. Although this trait is governed by multiple genes it is also highly heritable....... A major QTL controlling both pre-harvest sprouting and seed dormancy has been identified on the long arm of barley chromosome 5H, and it explains over 70% of the phenotypic variation. Comparative genomics approaches among barley, wheat and rice were used to identify candidate gene(s) controlling seed...... dormancy and hence one aspect of pre-harvest sprouting. The barley seed dormancy/pre-harvest sprouting QTL was located in a region that showed good synteny with the terminal end of the long arm of rice chromosome 3. The rice DNA sequences were annotated and a gene encoding GA20-oxidase was identified...

  15. Use of proteomics to understand seed development in rice.

    Science.gov (United States)

    Deng, Zhu Yun; Gong, Chun Yan; Wang, Tai

    2013-06-01

    Rice is an important cereal crop and has become a model monocot for research into crop biology. Rice seeds currently feed more than half of the world's population and the demand for rice seeds is rapidly increasing because of the fast-growing world population. However, the molecular mechanisms underlying rice seed development is incompletely understood. Genetic and molecular studies have developed our understanding of substantial proteins related to rice seed development. Recent advancements in proteomics have revolutionized the research on seed development at the single gene or protein level. Proteomic studies in rice seeds have provided the molecular explanation for cellular and metabolic events as well as environmental stress responses that occur during embryo and endosperm development. They have also led to the new identification of a large number of proteins associated with regulating seed development such as those involved in stress tolerance and RNA metabolism. In the future, proteomics, combined with genetic, cytological, and molecular tools, will help to elucidate the molecular pathways underlying seed development control and help in the development of valuable and potential strategies for improving yield, quality, and stress tolerance in rice and other cereals. Here, we reviewed recent progress in understanding the mechanisms of seed development in rice with the use of proteomics. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Proteomic profiling of barley spent grains guides enzymatic solubilization of the remaining proteins.

    Science.gov (United States)

    Bi, Xuezhi; Ye, Lijuan; Lau, Ally; Kok, Yee Jiun; Zheng, Lu; Ng, Daniel; Tan, Kelly; Ow, Dave; Ananta, Edwin; Vafiadi, Christina; Muller, Jeroen

    2018-03-17

    Within the brewing industry, malted barley is being increasingly replaced by raw barley supplemented with exogenous enzymes to lessen reliance on the time-consuming, high water and energy cost of malting. Regardless of the initial grain of choice, malted or raw, the resultant bulk spent grains are rich in proteins (up to 25% dry weight). Efficient enzymatic solubilization of these proteins requires knowledge of the protein composition within the spent grains. Therefore, a comprehensive proteomic profiling was performed on spent grains derived from (i) malted barley (spent grain A, SGA) and (ii) enzymatically treated raw barley (spent grain B, SGB); data are available via ProteomeXchange with identifier PXD008090. Results from complementary shotgun proteomics and 2D gel electrophoresis showed that the most abundant proteins in both spent grains were storage proteins (hordeins and embryo globulins); these were present at an average of two fold higher in spent grain B. Quantities of other major proteins were generally consistent in both spent grains A and B. Subsequent in silico protein sequence analysis of the predominant proteins facilitated knowledge-based protease selection to enhance spent grain solubilization. Among tested proteases, Alcalase 2.4 L digestion resulted in the highest remaining protein solubilization with 9.2 and 11.7% net dry weight loss in SGA and SGB respectively within 2 h. Thus, Alcalase alone can significantly reduce spent grain side stream, which makes it a possible solution to increase the value of this low-value side stream from the brewing and malt extract beverage manufacturing industry.

  17. Glycoproteins and Glycosylation Site Assignments in Cereal seed Proteomes

    DEFF Research Database (Denmark)

    Dedvisitsakul, Plaipol

    The study of plant proteomes is important to further the understanding of biological processes and enhance the agronomical and nutritional value of crops and food products. To gain deeper understanding on the proteome level, it is important to characterize posttranslational modifications. Glycosy......The study of plant proteomes is important to further the understanding of biological processes and enhance the agronomical and nutritional value of crops and food products. To gain deeper understanding on the proteome level, it is important to characterize posttranslational modifications...... by supplementing cotton wool with ZIC-HILIC in a microcolumn (called ZIC-cotton). This approach reduced co-enrichment of non-glycosylated peptides and allowed glycoppeptide identification from large protein mixtures. It was applied for glycoprotein identification and glycosylation site assignment in wheat albumin...... and barley aleurone layer proteins. By sitespecific glycosylation labeling and LC-MS/MS analysis, 76 different glycosylation sites within 65 wheat albumin proteins were identified using a combination of ZIC-cotton and cotton wool. In addition, ZIC-cotton has been also applied to proteins produced from barley...

  18. Demarcation of mutant-carrying regions in barley plants after ethylmethane-sulfonate seed treatment

    DEFF Research Database (Denmark)

    Jacobsen, P.

    1966-01-01

    The branching pattern of the barley plant is analyzed and the anatomical structure of the resting barley embryo studied in longitudinal and cross-sections as well as by dissection techniques. The frequency and distribution of ethylmethane-sulfonate induced chloroplast and morphological seedling...... was obtained.The absence of cluster sharing allows the recognition in the barley plant of 8 mutually exclusive mutant sectors which never had a mutant cluster in common. The anatomical analysis proves that the barley embryo contains at least 6 separate shoot meristems or prospective shoot meristems, which...... in the embryo of the seed. These will, however, not appear in plants under normal development.There are, according to the present analysis, 6 spikes for which 1 or 2 functional initial cells for their sporogenous tissue are already established in the embryo, i.e. at the time of mutagenic treatment. Except...

  19. Mitogen-Activated Protein Kinase Kinase 3 Regulates Seed Dormancy in Barley.

    Science.gov (United States)

    Nakamura, Shingo; Pourkheirandish, Mohammad; Morishige, Hiromi; Kubo, Yuta; Nakamura, Masako; Ichimura, Kazuya; Seo, Shigemi; Kanamori, Hiroyuki; Wu, Jianzhong; Ando, Tsuyu; Hensel, Goetz; Sameri, Mohammad; Stein, Nils; Sato, Kazuhiro; Matsumoto, Takashi; Yano, Masahiro; Komatsuda, Takao

    2016-03-21

    Seed dormancy has fundamental importance in plant survival and crop production; however, the mechanisms regulating dormancy remain unclear [1-3]. Seed dormancy levels generally decrease during domestication to ensure that crops successfully germinate in the field. However, reduction of seed dormancy can cause devastating losses in cereals like wheat (Triticum aestivum L.) and barley (Hordeum vulgare L.) due to pre-harvest sprouting, the germination of mature seed (grain) on the mother plant when rain occurs before harvest. Understanding the mechanisms of dormancy can facilitate breeding of crop varieties with the appropriate levels of seed dormancy [4-8]. Barley is a model crop [9, 10] and has two major seed dormancy quantitative trait loci (QTLs), SD1 and SD2, on chromosome 5H [11-19]. We detected a QTL designated Qsd2-AK at SD2 as the single major determinant explaining the difference in seed dormancy between the dormant cultivar "Azumamugi" (Az) and the non-dormant cultivar "Kanto Nakate Gold" (KNG). Using map-based cloning, we identified the causal gene for Qsd2-AK as Mitogen-activated Protein Kinase Kinase 3 (MKK3). The dormant Az allele of MKK3 is recessive; the N260T substitution in this allele decreases MKK3 kinase activity and appears to be causal for Qsd2-AK. The N260T substitution occurred in the immediate ancestor allele of the dormant allele, and the established dormant allele became prevalent in barley cultivars grown in East Asia, where the rainy season and harvest season often overlap. Our findings show fine-tuning of seed dormancy during domestication and provide key information for improving pre-harvest sprouting tolerance in barley and wheat. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Influence of ultrasonic stimulation on the germination of barley seed ...

    African Journals Online (AJOL)

    In this study, the influence of ultrasonic stimulation was investigated on the germination of barley and alpha-amylase activity grains in the dry state before steeping. All experiments have been performed using an ultrasonic horn operating at a fixed frequency of 20 KHz in 3 different ultrasonic power (20, 60 and 100% setting ...

  1. Molecular Clustering Interrelationships and Carbohydrate Conformation in Hull and Seeds Among Barley Cultivars

    Energy Technology Data Exchange (ETDEWEB)

    N Liu; P Yu

    2011-12-31

    The objective of this study was to use molecular spectral analyses with the diffuse reflectance Fourier transform infrared spectroscopy (DRIFT) bioanlytical technique to study carbohydrate conformation features, molecular clustering and interrelationships in hull and seed among six barley cultivars (AC Metcalfe, CDC Dolly, McLeod, CDC Helgason, CDC Trey, CDC Cowboy), which had different degradation kinetics in rumen. The molecular structure spectral analyses in both hull and seed involved the fingerprint regions of ca. 1536-1484 cm{sup -1} (attributed mainly to aromatic lignin semicircle ring stretch), ca. 1293-1212 cm{sup -1} (attributed mainly to cellulosic compounds in the hull), ca. 1269-1217 cm{sup -1} (attributed mainly to cellulosic compound in the seeds), and ca. 1180-800 cm{sup -1} (attributed mainly to total CHO C-O stretching vibrations) together with an agglomerative hierarchical cluster (AHCA) and principal component spectral analyses (PCA). The results showed that the DRIFT technique plus AHCA and PCA molecular analyses were able to reveal carbohydrate conformation features and identify carbohydrate molecular structure differences in both hull and seeds among the barley varieties. The carbohydrate molecular spectral analyses at the region of ca. 1185-800 cm{sup -1} together with the AHCA and PCA were able to show that the barley seed inherent structures exhibited distinguishable differences among the barley varieties. CDC Helgason had differences from AC Metcalfe, MeLeod, CDC Cowboy and CDC Dolly in carbohydrate conformation in the seed. Clear molecular cluster classes could be distinguished and identified in AHCA analysis and the separate ellipses could be grouped in PCA analysis. But CDC Helgason had no distinguished differences from CDC Trey in carbohydrate conformation. These carbohydrate conformation/structure difference could partially explain why the varieties were different in digestive behaviors in animals. The molecular spectroscopy

  2. The Interrelationship between Abscisic Acid and Reactive Oxygen Species Plays a Key Role in Barley Seed Dormancy and Germination.

    Science.gov (United States)

    Ishibashi, Yushi; Aoki, Nozomi; Kasa, Shinsuke; Sakamoto, Masatsugu; Kai, Kyohei; Tomokiyo, Reisa; Watabe, Gaku; Yuasa, Takashi; Iwaya-Inoue, Mari

    2017-01-01

    Seed dormancy is one of the adaptive responses in the plant life cycle and an important agronomic trait. Reactive oxygen species (ROS) release seed dormancy and promote seed germination in several cereal crops; however, the key regulatory mechanism of ROS-mediated seed dormancy and germination remains controversial. Here, we focused on the relationship between hydrogen peroxide (a ROS) and abscisic acid (ABA) in dormant and non-dormant barley seeds. The hydrogen peroxide (H 2 O 2 ) level produced in barley seed embryos after imbibition was higher in non-dormant seeds than in dormant seeds. H 2 O 2 regulated the ABA content in the embryos through ABA-8'-hydroxylase, an ABA catabolic enzyme. Moreover, compared with non-dormant seeds, in dormant seeds the activity of NADPH oxidase, which produces ROS, was lower, whereas the activity of catalase, which is a H 2 O 2 scavenging enzyme, was higher, as was the expression of HvCAT2 . Furthermore, precocious germination of isolated immature embryos was suppressed by the transient introduction of HvCAT2 driven by the maize ( Zea mays ) ubiquitin promoter. HvCAT2 expression was regulated through an ABA-responsive transcription factor (HvABI5) induced by ABA. These results suggest that the changing of balance between ABA and ROS is active in barley seed embryos after imbibition and regulates barley seed dormancy and germination.

  3. The Interrelationship between Abscisic Acid and Reactive Oxygen Species Plays a Key Role in Barley Seed Dormancy and Germination

    Science.gov (United States)

    Ishibashi, Yushi; Aoki, Nozomi; Kasa, Shinsuke; Sakamoto, Masatsugu; Kai, Kyohei; Tomokiyo, Reisa; Watabe, Gaku; Yuasa, Takashi; Iwaya-Inoue, Mari

    2017-01-01

    Seed dormancy is one of the adaptive responses in the plant life cycle and an important agronomic trait. Reactive oxygen species (ROS) release seed dormancy and promote seed germination in several cereal crops; however, the key regulatory mechanism of ROS-mediated seed dormancy and germination remains controversial. Here, we focused on the relationship between hydrogen peroxide (a ROS) and abscisic acid (ABA) in dormant and non-dormant barley seeds. The hydrogen peroxide (H2O2) level produced in barley seed embryos after imbibition was higher in non-dormant seeds than in dormant seeds. H2O2 regulated the ABA content in the embryos through ABA-8′-hydroxylase, an ABA catabolic enzyme. Moreover, compared with non-dormant seeds, in dormant seeds the activity of NADPH oxidase, which produces ROS, was lower, whereas the activity of catalase, which is a H2O2 scavenging enzyme, was higher, as was the expression of HvCAT2. Furthermore, precocious germination of isolated immature embryos was suppressed by the transient introduction of HvCAT2 driven by the maize (Zea mays) ubiquitin promoter. HvCAT2 expression was regulated through an ABA-responsive transcription factor (HvABI5) induced by ABA. These results suggest that the changing of balance between ABA and ROS is active in barley seed embryos after imbibition and regulates barley seed dormancy and germination. PMID:28377774

  4. Physiological and proteomic analyses on artificially aged Brassica napus seed

    Directory of Open Access Journals (Sweden)

    Pingfang eYang

    2015-02-01

    Full Text Available Plant seeds lose their viability when they are exposed to long term storage or controlled deterioration treatments, by a process known as seed ageing. Based on previous studies, artificially ageing treatments have been developed to accelerate the process of seed ageing in order to understand its underlying mechanisms. In this study, we used Brassica napus seeds to investigate the mechanisms of ageing initiation. B. napus seeds were exposed to artificially ageing treatment (40 oC and 90% relative humidity and their physio-biochemical characteristics were analyzed. Although the treatment delayed germination, it did not increase the concentration of cellular reactive oxygen species (ROS. Comparative proteomic analysis was conducted among the control and treated seeds at different stages of germination. The proteins responded to the treatment were mainly involved in metabolism, protein modification and destination, stress response, development and miscellaneous enzymes. Except for peroxiredoxin, no changes were observed in the accumulation of other antioxidant enzymes in the artificially aged seeds. Increased content of ABA was observed in the artificially treated seeds which might be involved in the inhibition of germination. Taken together, our results highlight the involvement of ABA in the initiation of seed ageing in addition to the ROS which was previously reported to mediate the seed ageing process.

  5. Proteomic analysis of Magnolia sieboldii K. Koch seed germination.

    Science.gov (United States)

    Lu, Xiu-Jun; Zhang, Xiao-Lin; Mei, Mei; Liu, Guang-Lin; Ma, Bei-Bei

    2016-02-05

    Magnolia sieboldii is a deciduous tree native to China. This species has a deep dormancy characteristic. To better understand seed germination, we used protein analysis of changes in seed protein at 0, 65, 110 and 150 d of stratification. Comparative 2DE analysis of M. sieboldii seed protein profiles at 0, 65, 110 and 150 d of stratification revealed 80 differentially abundance protein species. Comparative analysis showed that ADP-glucose pyrophosphorylase small subunit was degraded during germination. In particular, it was degraded almost completely at 110 d of germination. Starch granules in the microstructure decreased after 65 d of stratification. Starch granules provided a sufficient amount of substrates and ATPs for subsequent germination. Four storage protein species were identified, of which all were down accumulated. Spots 44 and 46 had different MW and pI values, spots 36 and 46 had nearly the same MW with pI shift in the 2-DE gels, suggesting that they might be present as different isoforms of the same protein family and the post translational modification. Our results suggested that degradation of starch granules and storage protein species prepared the seed embryo for growth, as well as regulated seed germination. The present proteomics analysis provides novel insights into the mobilisation of nutrient reserves during the germination of M. sieboldii seeds. To better understand seed germination, a complex developmental process, we developed a proteome analysis of M. sieboldii seed. We performed the first comprehensive proteomic and microstructure analysis during different seed stratification stages of M. sieboldii. Among the 80 protein species, 26 were identified, 7 and 14 protein species were up or down accumulated significantly. Many of the identified key proteins were involved in embryo development, starch biosynthesis and energy metabolism, Microstructure of stratification seed analysis revealed degradation of starch was used for preparing the seed

  6. Comparative analysis of the grain proteome fraction in barley genotypes with contrasting salinity tolerance during germination.

    Science.gov (United States)

    Witzel, Katja; Weidner, Annette; Surabhi, Giridara-Kumar; Varshney, Rajeev K; Kunze, Gotthard; Buck-Sorlin, Gerhard H; Börner, Andreas; Mock, Hans-Peter

    2010-02-01

    In the present paper, we based a search for candidates underlying different levels of salinity tolerance during germination in the Oregon Wolfe Barley mapping population (DOM x REC) by proteomic profiling of the mature grain of lines showing differing levels of salinity tolerance. By contrasting the parents DOM and REC, displaying divergent stress responses, and two tolerant and two sensitive segregants, six protein spots were identified that showed a differential abundance between the tolerant and the sensitive lines. The tolerant lines expressed a higher level of 6-phosphogluconate dehydrogenase and glucose/ribitol dehydrogenase (Glc/RibDH). Both proteins were heterologously over-expressed in an osmo-sensitive yeast strain and over-expression of Glc/RibDH resulted in an enhanced ability of yeast transformants to grow on salt containing media. A quantitative trait locus (QTL) analysis of the population germinating at different salt concentrations led to the identification of two chromosome regions on 5H and one on 7H associated with salt stress response. A dense barley transcript map was employed to map the genomic region of all identified proteins. Two of these, heat-shock protein 70 and Glc/RibDH, co-localized with the identified QTL on chromosome 5H. The putative functional role of the candidates is discussed.

  7. Chloroindolyl-3-acetic Acid and its Methyl Ester Incorporation of 36Cl in Immature Seeds of Pea and Barley

    DEFF Research Database (Denmark)

    Engvild, Kjeld Christensen

    1974-01-01

    Immature seeds of pea and barley were harvested on plants grown in solutions containing 36Cl−, but no other chlorides. Autoradiography of two-dimensional thin layer chromatograms (silicagel) of butanol extracts of freeze-dried seeds showed the presence in both species of several radioactive...... compounds besides Cl−. One compound, present in pea and probably in barley, cochromatographed with a mixture of 4- and 6-chloroindolyl-3-acetic acid methyl esters. Another, detected in pea, but probably not in barley, cochromatographed with a mixture of 4-and 6-chloroindolyl-3-acetic acids....

  8. Modification of radiation-induced oxic and anoxic damage by caffeine and potassium permanganate in barley seeds

    International Nuclear Information System (INIS)

    Kesavan, P.C.; Dodd, N.J.F.

    1976-01-01

    It has been demonstrated that both the immediate and post-irradiation oxygen effects in barley seeds decrease in magnitude in the presence of potassium permanganate and caffeine. This implied that these two types of oxygen effect have features in common. With the removal of the radiation-induced oxygen-sensitive sites, by anoxic hydration, caffeine potentiated the oxygen-independent component of damage, in seeds irradiated in a dry or pre-soaked state. Potassium permanganate, on the other hand, enhanced the anoxic radiation damage only in seeds irradiated in a dry state. The possible mode of action of KMnO 4 and caffeine in barley seeds is discussed. (author)

  9. Uptake and distribution of 14C-nicotinic acid in barley seeds and seedlings

    International Nuclear Information System (INIS)

    Bernhardt, D.; Bandzhyulene, R.S.; Mateikene, I.K.; Ozheraitene, M.V.; Shimkunas, R.A.; Bluzmanas, P.I.

    1991-01-01

    The authors investigated uptake and distribution of 14 C-nicotinic acid in seeds and seedlings of barley (Hordeum vulgare L.). It is established that nicotinic acid can enter barley plants in different ways depending upon the method of treatment, being capable of entering both dry seeds (through the endosperm) and seedlings (through roots and leaves equally well). Distribution of this acid throughout the plant was practically the same regardless of the method of introduction and was characterized by weak entry into stem growing points, absence of translocation into leaves with completed growth, and accumulation in young leaves. It may be hypothesized that nicotinic acid entering growing leaves is intensively converted to other compounds. However, the conversion products do not lose their mobility, since the radioactive label is detected in reproductive organs at the end of vegetation

  10. Proteomic analysis of endoplasmic reticulum stress responses in rice seeds.

    Science.gov (United States)

    Qian, Dandan; Tian, Lihong; Qu, Leqing

    2015-09-23

    The defects in storage proteins secretion in the endosperm of transgenic rice seeds often leads to endoplasmic reticulum (ER) stress, which produces floury and shrunken seeds, but the mechanism of this response remains unclear. We used an iTRAQ-based proteomics analysis of ER-stressed rice seeds due to the endosperm-specific suppression of OsSar1 to identify changes in the protein levels in response to ER stress. ER stress changed the expression of 405 proteins in rice seed by >2.0- fold compared with the wild-type control. Of these proteins, 140 were upregulated and 265 were downregulated. The upregulated proteins were mainly involved in protein modification, transport and degradation, and the downregulated proteins were mainly involved in metabolism and stress/defense responses. A KOBAS analysis revealed that protein-processing in the ER and degradation-related proteasome were the predominant upregulated pathways in the rice endosperm in response to ER stress. Trans-Golgi protein transport was also involved in the ER stress response. Combined with bioinformatic and molecular biology analyses, our proteomic data will facilitate our understanding of the systemic responses to ER stress in rice seeds.

  11. Proteomics of seed development, desiccation tolerance, germination and vigor.

    Science.gov (United States)

    Wang, Wei-Qing; Liu, Shu-Jun; Song, Song-Quan; Møller, Ian Max

    2015-01-01

    Proteomics, the large-scale study of the total complement of proteins in a given sample, has been applied to all aspects of seed biology mainly using model species such as Arabidopsis or important agricultural crops such as corn and rice. Proteins extracted from the sample have typically been separated and quantified by 2-dimensional polyacrylamide gel electrophoresis followed by liquid chromatography and mass spectrometry to identify the proteins in the gel spots. In this way, qualitative and quantitative changes in the proteome during seed development, desiccation tolerance, germination, dormancy release, vigor alteration and responses to environmental factors have all been studied. Many proteins or biological processes potentially important for each seed process have been highlighted by these studies, which greatly expands our knowledge of seed biology. Proteins that have been identified to be particularly important for at least two of the seed processes are involved in detoxification of reactive oxygen species, the cytoskeleton, glycolysis, protein biosynthesis, post-translational modifications, methionine metabolism, and late embryogenesis-abundant (LEA) proteins. It will be useful for molecular biologists and molecular plant breeders to identify and study genes encoding particularly interesting target proteins with the aim to improve the yield, stress tolerance or other critical properties of our crop species. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  12. In Planta Proteomics and Proteogenomics of the Biotrophic Barley Fungal Pathogen Blumeria graminis f. sp. hordei*

    Science.gov (United States)

    Bindschedler, Laurence V.; Burgis, Timothy A.; Mills, Davinia J. S.; Ho, Jenny T. C.; Cramer, Rainer; Spanu, Pietro D.

    2009-01-01

    To further our understanding of powdery mildew biology during infection, we undertook a systematic shotgun proteomics analysis of the obligate biotroph Blumeria graminis f. sp. hordei at different stages of development in the host. Moreover we used a proteogenomics approach to feed information into the annotation of the newly sequenced genome. We analyzed and compared the proteomes from three stages of development representing different functions during the plant-dependent vegetative life cycle of this fungus. We identified 441 proteins in ungerminated spores, 775 proteins in epiphytic sporulating hyphae, and 47 proteins from haustoria inside barley leaf epidermal cells and used the data to aid annotation of the B. graminis f. sp. hordei genome. We also compared the differences in the protein complement of these key stages. Although confirming some of the previously reported findings and models derived from the analysis of transcriptome dynamics, our results also suggest that the intracellular haustoria are subject to stress possibly as a result of the plant defense strategy, including the production of reactive oxygen species. In addition, a number of small haustorial proteins with a predicted N-terminal signal peptide for secretion were identified in infected tissues: these represent candidate effector proteins that may play a role in controlling host metabolism and immunity. PMID:19602707

  13. In planta proteomics and proteogenomics of the biotrophic barley fungal pathogen Blumeria graminis f. sp. hordei.

    Science.gov (United States)

    Bindschedler, Laurence V; Burgis, Timothy A; Mills, Davinia J S; Ho, Jenny T C; Cramer, Rainer; Spanu, Pietro D

    2009-10-01

    To further our understanding of powdery mildew biology during infection, we undertook a systematic shotgun proteomics analysis of the obligate biotroph Blumeria graminis f. sp. hordei at different stages of development in the host. Moreover we used a proteogenomics approach to feed information into the annotation of the newly sequenced genome. We analyzed and compared the proteomes from three stages of development representing different functions during the plant-dependent vegetative life cycle of this fungus. We identified 441 proteins in ungerminated spores, 775 proteins in epiphytic sporulating hyphae, and 47 proteins from haustoria inside barley leaf epidermal cells and used the data to aid annotation of the B. graminis f. sp. hordei genome. We also compared the differences in the protein complement of these key stages. Although confirming some of the previously reported findings and models derived from the analysis of transcriptome dynamics, our results also suggest that the intracellular haustoria are subject to stress possibly as a result of the plant defense strategy, including the production of reactive oxygen species. In addition, a number of small haustorial proteins with a predicted N-terminal signal peptide for secretion were identified in infected tissues: these represent candidate effector proteins that may play a role in controlling host metabolism and immunity.

  14. Approaches to improving the nutritional quality of barley seed proteins

    International Nuclear Information System (INIS)

    Shewry, P.R.; Bright, S.W.J.; Burgess, S.R.; Miflin, B.J.

    1984-01-01

    The poor nutritional quality of barley grain is determined by the low level of lysine in the prolamin storage proteins (hordein). These account for between 35 to 50% of the total grain nitrogen, depending on the nutritional status of the plant. There is a reduced proportion of hordein in mutant high lysine lines but these also have reduced synthesis of storage carbohydrates and hence low yields. Three strategies for improvement are discussed. Increases in the lysine content of hordein may be difficult to achieve because of the presence of complex families of structural genes. It would also be necessary to insert a large number of additional lysine residues. Two more promising approaches are to increase the level of expression of genes coding for lysine-rich globulin storage proteins and to increase the pool of free lysine by selecting mutant lines with relaxed feedback regulation of lysine synthesis. (author)

  15. Barley seed ageing: genetics behind the dry elevated pressure of oxygen ageing and moist controlled deterioration

    Directory of Open Access Journals (Sweden)

    Manuela eNagel

    2016-03-01

    Full Text Available Experimental seed ageing approaches intend to mimic seed deterioration processes to achieve a storage interval reduction. Common methods apply higher seed moisture levels and temperatures. In contrast, the elevated partial pressure of oxygen (EPPO approach treats dry seed stored at ambient temperatures with high oxygen pressure. To analyse the genetic background of seed longevity and the effects of seed ageing under dry conditions, the EPPO approach was applied to the progeny of the Oregon Wolfe Barley (OWB mapping population. In comparison to a non-treated control and a control high-pressure nitrogen treatment, EPPO stored seeds showed typical symptoms of ageing with a significant reduction of normal seedlings, slower germination, and less total germination. Thereby, the parent Dom (OWB-D, carrying dominant alleles, is more sensitive to ageing in comparison to the population mean and in most cases to the parent Rec (OWB-R, carrying recessive alleles. Quantitative trait locus (QTL analyses using 2,832 markers revealed 65 QTLs, including two major loci for seed vigor on 2H and 7H. QTLs for EPPO tolerance were detected on 3H, 4H, and 5H. An applied controlled deterioration (CD treatment (aged at higher moisture level and temperature revealed a tolerance QTL on 5H, indicating that the mechanism of seed deterioration differs in part between EPPO or CD conditions.

  16. Barley Seed Aging: Genetics behind the Dry Elevated Pressure of Oxygen Aging and Moist Controlled Deterioration.

    Science.gov (United States)

    Nagel, Manuela; Kodde, Jan; Pistrick, Sibylle; Mascher, Martin; Börner, Andreas; Groot, Steven P C

    2016-01-01

    Experimental seed aging approaches intend to mimic seed deterioration processes to achieve a storage interval reduction. Common methods apply higher seed moisture levels and temperatures. In contrast, the "elevated partial pressure of oxygen" (EPPO) approach treats dry seed stored at ambient temperatures with high oxygen pressure. To analyse the genetic background of seed longevity and the effects of seed aging under dry conditions, the EPPO approach was applied to the progeny of the Oregon Wolfe Barley (OWB) mapping population. In comparison to a non-treated control and a control high-pressure nitrogen treatment, EPPO stored seeds showed typical symptoms of aging with a significant reduction of normal seedlings, slower germination, and less total germination. Thereby, the parent Dom ("OWB-D"), carrying dominant alleles, is more sensitive to aging in comparison to the population mean and in most cases to the parent Rec ("OWB-R"), carrying recessive alleles. Quantitative trait locus (QTL) analyses using 2832 markers revealed 65 QTLs, including two major loci for seed vigor on 2H and 7H. QTLs for EPPO tolerance were detected on 3H, 4H, and 5H. An applied controlled deterioration (CD) treatment (aged at higher moisture level and temperature) revealed a tolerance QTL on 5H, indicating that the mechanism of seed deterioration differs in part between EPPO or CD conditions.

  17. Proteomics

    DEFF Research Database (Denmark)

    Dam, Svend; Stougaard, Jens

    2014-01-01

    Proteomics is an efficient tool to identify proteins present in specific tissues, cell types, or organelles. The resulting proteome reference maps and/or comparative analyses provide overviews of regulated proteins between wild type and mutants or between different conditions together...... proteomics data. Two characteristics of legumes are the high seed protein level and the nitrogen fixing symbiosis. Thus, the majority of the proteomics studies in Lotus have been performed on seed/pod and nodule/root tissues in order to create proteome reference maps and to enable comparative analyses within...... Lotus tissues or toward similar tissues from other legume species. More recently, N-glycan structures and compositions have been determined from mature Lotus seeds using glycomics and glycoproteomics, and finally, phosphoproteomics has been employed...

  18. Influence of ultrasonic stimulation on the germination of barley seed ...

    African Journals Online (AJOL)

    STORAGESEVER

    2008-07-18

    Jul 18, 2008 ... by measuring the reducing sugars released as a result of the alpha-amylase action on soluble starch using 3,5-dinitrosalicylate ... have applied sonication under dry conditions which may be carried out up to several ... days faster germination of corn seeds (Hebling and Silva,. 1995; Shors et al., 1999) and a ...

  19. Improvement of seedling establishment under flood condition by seed coating with molybdenum compounds for wheat and barley

    Directory of Open Access Journals (Sweden)

    Yoshitaka Hara

    2016-04-01

    Full Text Available Wheat and barley are often cultivated also in paddy fields in winter in Japan. The drainage of paddy fields is often poor. The seedling establishment of wheat and barley is more prone to become poor if it rains heavily after sowing. The flooding damage on seedling establishment is thought to be caused by many factors. The generation of sulfide ions in flooded and reduced soil is thought to be one factor of the flooding damage. In this study, the effect of seed coating with molybdenum compounds, which suppress the generation of sulfide ions, on the flooding damage of wheat and barley seedling establishment. Two poorly soluble molybdenum compounds were coated on wheat or barley seeds at different amounts. Coated seeds were sown in soil and soon flooded for 2 d at 20 °C. When seeds were not coated with molybdenum compounds, rates of seedling establishment were no more than 32%. However, when any molybdenum compounds of .05–.5 mol-Mo kg−1 were coated, seedling establishment was significantly improved and rates of seedling establishment were no less than 54%. However, when sown seed were not flooded, the establishment rates of the seeds, which were coated with a molybdenum compound of no less than .1 or .2 mol-Mo kg-1, were significantly decreased. Accordingly, coating of molybdenum compounds could improve the seedling establishment of coated seeds under flooded condition, but might impair the seedling establishment of coated seeds under unflooded condition.

  20. Genomic Prediction of Seed Quality Traits Using Advanced Barley Breeding Lines

    Science.gov (United States)

    Nielsen, Nanna Hellum; Jahoor, Ahmed; Jensen, Jens Due; Orabi, Jihad; Cericola, Fabio; Edriss, Vahid; Jensen, Just

    2016-01-01

    Genomic selection was recently introduced in plant breeding. The objective of this study was to develop genomic prediction for important seed quality parameters in spring barley. The aim was to predict breeding values without expensive phenotyping of large sets of lines. A total number of 309 advanced spring barley lines tested at two locations each with three replicates were phenotyped and each line was genotyped by Illumina iSelect 9Kbarley chip. The population originated from two different breeding sets, which were phenotyped in two different years. Phenotypic measurements considered were: seed size, protein content, protein yield, test weight and ergosterol content. A leave-one-out cross-validation strategy revealed high prediction accuracies ranging between 0.40 and 0.83. Prediction across breeding sets resulted in reduced accuracies compared to the leave-one-out strategy. Furthermore, predicting across full and half-sib-families resulted in reduced prediction accuracies. Additionally, predictions were performed using reduced marker sets and reduced training population sets. In conclusion, using less than 200 lines in the training set can result in low prediction accuracy, and the accuracy will then be highly dependent on the family structure of the selected training set. However, the results also indicate that relatively small training sets (200 lines) are sufficient for genomic prediction in commercial barley breeding. In addition, our results indicate a minimum marker set of 1,000 to decrease the risk of low prediction accuracy for some traits or some families. PMID:27783639

  1. Genomic Prediction of Seed Quality Traits Using Advanced Barley Breeding Lines.

    Directory of Open Access Journals (Sweden)

    Nanna Hellum Nielsen

    Full Text Available Genomic selection was recently introduced in plant breeding. The objective of this study was to develop genomic prediction for important seed quality parameters in spring barley. The aim was to predict breeding values without expensive phenotyping of large sets of lines. A total number of 309 advanced spring barley lines tested at two locations each with three replicates were phenotyped and each line was genotyped by Illumina iSelect 9Kbarley chip. The population originated from two different breeding sets, which were phenotyped in two different years. Phenotypic measurements considered were: seed size, protein content, protein yield, test weight and ergosterol content. A leave-one-out cross-validation strategy revealed high prediction accuracies ranging between 0.40 and 0.83. Prediction across breeding sets resulted in reduced accuracies compared to the leave-one-out strategy. Furthermore, predicting across full and half-sib-families resulted in reduced prediction accuracies. Additionally, predictions were performed using reduced marker sets and reduced training population sets. In conclusion, using less than 200 lines in the training set can result in low prediction accuracy, and the accuracy will then be highly dependent on the family structure of the selected training set. However, the results also indicate that relatively small training sets (200 lines are sufficient for genomic prediction in commercial barley breeding. In addition, our results indicate a minimum marker set of 1,000 to decrease the risk of low prediction accuracy for some traits or some families.

  2. A proteomic analysis of seed development in Brassica campestri L.

    Science.gov (United States)

    Li, Wenlan; Gao, Yi; Xu, Hong; Zhang, Yu; Wang, Jianbo

    2012-01-01

    To gain insights into the protein dynamics during seed development, a proteomic study on the developing Brassica campestri L. seeds with embryos in different embryogenesis stages was carried out. The seed proteins at 10, 16, 20, 25 and 35 DAP (days after pollination), respectively, were separated using two-dimensional gel electrophoresis and identities of 209 spots with altered abundance were determined by matrix-assisted laser desorption ionization time-of-flight/time-of-flight mass spectrometry (MALDI-TOF/TOF MS). These proteins were classified into 16 groups according to their functions. The most abundant proteins were related to primary metabolism, indicating the heavy demand of materials for rapid embryo growth. Besides, the high amount of proteins involved in protein processing and destination indicated importance of protein renewal during seed development. The remaining were those participated in oxidation/detoxification, energy, defense, transcription, protein synthesis, transporter, cell structure, signal transduction, secondary metabolism, transposition, DNA repair, storage and so on. Protein abundance profiles of each functional class were generated and hierarchical cluster analysis established 8 groups of dynamic patterns. Our results revealed novel characters of protein dynamics in seed development in Brassica campestri L. and provided valuable information about the complex process of seed development in plants.

  3. Proteomic analysis of early seed development in Pinus massoniana L.

    Science.gov (United States)

    Zhen, Yan; Zhao, Zhen-Zhou; Zheng, Ren-Hua; Shi, Jisen

    2012-05-01

    Understanding seed development is important for large-scale propagation and germplasm conservation for the Masson pine. We undertook a proteomic analysis of Masson pine seeds during the early stages of embryogenesis. Two-dimensional difference gel electrophoresis (2D DIGE) was used to quantify the differences in protein expression during early seed development. Using electrospray ionization mass spectrometry/mass spectrometry, we identified proteins from 43 gel spots that had been excised from preparative "pick" gels. Proteins involved in carbon metabolism were identified and were predominantly expressed at higher levels during the cleavage polyembryony and columnar embryo stages. Functional annotation of one seed protein revealed it involvement in programmed cell death and translation of selective mRNAs, which may play an important role in subordinate embryo elimination and suspensor degeneration in polyembryonic seed gymnosperms. Other identified proteins were associated with protein folding, nitrogen metabolism, disease/defense response, and protein storage, synthesis and stabilization. The comprehensive protein expression profiles generated by this study will provide new insights into the complex developmental process of seed development in Masson pine. Copyright © 2012 Elsevier Masson SAS. All rights reserved.

  4. A proteomic analysis of seed development in Brassica campestri L.

    Directory of Open Access Journals (Sweden)

    Wenlan Li

    Full Text Available To gain insights into the protein dynamics during seed development, a proteomic study on the developing Brassica campestri L. seeds with embryos in different embryogenesis stages was carried out. The seed proteins at 10, 16, 20, 25 and 35 DAP (days after pollination, respectively, were separated using two-dimensional gel electrophoresis and identities of 209 spots with altered abundance were determined by matrix-assisted laser desorption ionization time-of-flight/time-of-flight mass spectrometry (MALDI-TOF/TOF MS. These proteins were classified into 16 groups according to their functions. The most abundant proteins were related to primary metabolism, indicating the heavy demand of materials for rapid embryo growth. Besides, the high amount of proteins involved in protein processing and destination indicated importance of protein renewal during seed development. The remaining were those participated in oxidation/detoxification, energy, defense, transcription, protein synthesis, transporter, cell structure, signal transduction, secondary metabolism, transposition, DNA repair, storage and so on. Protein abundance profiles of each functional class were generated and hierarchical cluster analysis established 8 groups of dynamic patterns. Our results revealed novel characters of protein dynamics in seed development in Brassica campestri L. and provided valuable information about the complex process of seed development in plants.

  5. The effect of irradiating barley seeds (Hordeum Vulgare) on plantlet growth and net blotch resistance

    International Nuclear Information System (INIS)

    Arabi, M.I.

    1995-01-01

    Barley seeds of two cultivars (Smash and Thibaut) and one line (74-F-6) with water contents adjusted between 12.8 and 13.3%, were irradiated with various doses (1-sup 1 sup 6 sup 0 Gy) of sup 6 sup 0 Co γ rays. Doses of 1-sup 4 sup 0 Gy favored an increases length of the first leaf. In general, doses of 15 and sup 2 sup 0 Gy decreased barley susceptibility to Drechrlera teres f. maculata by 25 and 21%, respectively. This reduction was a function of the line or cultivar used. The best response was obtained with cv. Smash. Seedling growth stimulation and host susceptibility to D. teres were significantly correlated (r= -0.68). The stimulatory effect of γ rays on growth could be used at low levels, to provide adequate field resistance to net blotch caused by D. teres f. maculata. (author). 28 refs., 3 tabs

  6. In silico analysis of the core signaling proteome from the barley powdery mildew pathogen (Blumeria graminis f.sp. hordei).

    Science.gov (United States)

    Kusch, Stefan; Ahmadinejad, Nahal; Panstruga, Ralph; Kuhn, Hannah

    2014-10-02

    Compared to other ascomycetes, the barley powdery mildew pathogen Blumeria graminis f.sp. hordei (Bgh) has a large genome (ca. 120 Mbp) that harbors a relatively small number of protein-coding genes (ca. 6500). This genomic assemblage is thought to be the result of numerous gene losses, which likely represent an evolutionary adaptation to a parasitic lifestyle in close association with its host plant, barley (Hordeum vulgare). Approximately 8% of the Bgh genes are predicted to encode virulence effectors that are secreted into host tissue and/or cells to promote pathogenesis; the remaining proteome is largely uncharacterized at present. We provide a comparative analysis of the conceptual Bgh proteome, with an emphasis on proteins with known roles in fungal development and pathogenicity, for example heterotrimeric G proteins and G protein coupled receptors; components of calcium and cAMP signaling; small monomeric GTPases; mitogen-activated protein cascades and transcription factors. The predicted Bgh proteome lacks a number of proteins that are otherwise conserved in filamentous fungi, including two proteins that are required for the formation of anastomoses (somatic hyphal connections). By contrast, apart from minor modifications, all major canonical signaling pathways are retained in Bgh. A family of kinases that preferentially occur in pathogenic species of the fungal clade Leotiomyceta is unusually expanded in Bgh and its close relative, Blumeria graminis f.sp. tritici. Our analysis reveals characteristic features of the proteome of a fungal phytopathogen that occupies an extreme habitat: the living plant cell.

  7. The analysis of proteome changes in sunflower seeds induced by N ...

    Indian Academy of Sciences (India)

    In this work, the proteomic changes induced by N+ ion implantation were investigated using a sunflower seed model by a two-dimensional electrophoretic analysis. To further understand the changes of total protein irradiated with N+ ion, a proteomic analysis of N+ ion implantation seeds was developed. Among ...

  8. Sensitivity reduction in Blumeria graminis f. sp. hordei to triadimenol fungicide applied as barley seed treatment

    Directory of Open Access Journals (Sweden)

    Erlei Melo Reis

    2013-12-01

    Full Text Available Experiments were carried out in a growth chamber with controlled temperature and photoperiod to test two populations of Blumeria graminis f. sp. hordei from Guarapuava, Paraná State, and Passo Fundo, Rio Grande do Sul State, Brazil. Treatments consisted in application of the fungicide triadimenol (Baytan 150 SC® at three rates of its commercial formulation: 150, 250, 350 mL/100 Kg barley seeds. The experiments were conducted separately in a growth chamber for each population, adopting the same temperature and photoperiod. For inoculation, pots containing barley seedlings colonized by the fungus were placed among the plots. After emergence of the first symptoms, the disease severity was assessed at two-day intervals. The experiments were repeated twice for each fungus population. Data were expressed as area under the disease progress curve and as powdery mildew control by comparing the severity after the fungicide treatments to that of control. Data were subjected to analysis of variance and regression analysis; the area under the disease progress curve was also calculated. Comparing the data obtained in the present study with those reported in the literature and the control, the maximum value of 26.1% is considered insufficient to prevent the damages caused by the disease. The control response to the fungicide rate was significant. We can conclude that there was a reduction in the sensitivity of both B. graminis f.sp. hordei populations to the fungicide triadimenol, which explains the control failure observed in barley farms.

  9. Plasma membrane proteome analysis identifies a role of barley Membrane Steroid Binding Protein in root architecture response to salinity.

    Science.gov (United States)

    Witzel, Katja; Matros, Andrea; Møller, Anders L B; Ramireddy, Eswarrayya; Finnie, Christine; Peukert, Manuela; Rutten, Twan; Herzog, Andreas; Kunze, Gotthard; Melzer, Michael; Kaspar-Schoenefeld, Stephanie; Schmülling, Thomas; Svensson, Birte; Mock, Hans-Peter

    2018-01-31

    Although physiological consequences of plant growth under saline conditions have been well described, understanding the core mechanisms conferring plant salt adaptation has only started. We target the root plasma membrane (PM) proteomes of two barley varieties, cvs. Steptoe and Morex, with contrasting salinity tolerance. In total, 588 PM proteins were identified by mass spectrometry, of which 182 were either cultivar- or salinity stress-responsive. Three candidate proteins with increased abundance in the tolerant cv. Morex were involved either in sterol-binding (a GTPase-activating protein for the ADP ribosylation factor, ZIGA2, and a membrane steroid binding protein, MSBP) or in phospholipid synthesis (phosphoethanolamine methyltransferase, PEAMT). Overexpression of barley MSBP conferred salinity tolerance to yeast cells, while knock-out of the heterologous AtMSBP1 increased salt sensitivity in Arabidopsis. Atmsbp1 plants showed a reduced number of lateral roots under salinity and root tip-specific expression of barley MSBP in Atmsbp1 complemented this phenotype. In barley, an increased abundance of MSBP correlates with reduced root length and lateral root formation as well as increased levels of auxin under salinity being stronger in the tolerant cv. Morex. Hence, we concluded the involvement of MSBP in phytohormone-directed adaptation of root architecture in response to salinity. This article is protected by copyright. All rights reserved.

  10. Study of variation in radiosensitivity of barley (Hardeum Vulgare) as a function of seed water content

    International Nuclear Information System (INIS)

    Arabi, M.I.; Barrault, G.; Sarrafi, A.; Albertini, I.

    1993-01-01

    The study of the sorption curve representing the development of water content versus relative humidity, in barley seeds (CV. Thibaut), shows that water is present in three different states: Constitutive water at less than 8.1%, absorption water between 8.1 and 10.9%, and free water at more than 10.9%. Along with these states, radiosensitivity is respectively high, low, and high. The seeds detached from the rachis have less radioresistance than the attached ones. However, this difference in behaviour is reduced when the water content is high (presence of free water). We also observed that growth was stimulated by weak doses of irradiation (20 Gy), whatever the water content was. (author). 35 refs., 4 figs., 1 tab

  11. Effect of gamma-radiation of pollen tube growth and seed set in barley-rye crosses

    International Nuclear Information System (INIS)

    Rohilla, J.S.; Khanna, V.K.

    1993-01-01

    One variety of barley and one variety of rye were taken to study the effect of gamma-radiation on pollen germination, pollen tube growth and seed set in barley-rye crosses. There was an increase in pollen germination and pollen tube growth over control at 1 kR dose but it was reduced at higher doses. Seed set was maximum at 1 kR and it was more than control from 1-5 kR. Only seeds of the cross Karan - 4 (1 kR)*MRSP-992 were able to germinate. In these germinated seeds the root growth was arrested after the fourth day of germination and they turned brown. The shoot growth was also very poor and it stopped after a week. (author) 11 refs.; 2 tabs

  12. A high-throughput RNA extraction for sprouted single-seed malting barley (Hordeum vulgare L.) rich in polysaccharides

    Science.gov (United States)

    Germinated seed from cereal crops including barley (Hordeum vulgare L.) is an important tissue to extract RNA and analyze expression levels of genes that control aspects of germination. These tissues are rich in polysaccharides and most methods for RNA extraction are not suitable to handle the exces...

  13. Barley germination

    DEFF Research Database (Denmark)

    Daneri-Castro, Sergio N.; Svensson, Birte; Roberts, Thomas H.

    2016-01-01

    Germination of barley grain is central to the malting industry and is a valuable model for cereal grain germination. Our current understanding of the complexity of germination at the molecular level is facilitated by access to genomic, transcriptomic, proteomic and metabolomic data. Here we review...... recent progress in barley germination research and discuss the factors to be considered when designing 'omics' experiments and interpreting the results. These factors include the structural and functional relationships between the various tissues of the barley caryopsis and the timing of the events...... of germination in the context of industrial malting. For transcriptomics, recent advances in sequencing the barley genome allow next-generation sequencing approaches to reveal novel effects of variety and environment on germination. For proteomics, selection of the source tissue(s) and the protein extraction...

  14. Modification of the radiosensitivity of barley seed by post-treatment with caffeine

    International Nuclear Information System (INIS)

    Nadkarni, S.; Kesavan, P.C.

    1975-01-01

    In dry barley seeds (3.1 per cent moisture content), the maximal level of oxic damage (class III damage) was reached within the first 40 min a post-hydration in oxygenated water at 5 +- 1 0 C. The decay of the gamma-ray-induced oxygensensitive sites required however, about 120 min. The mechanism leading to partial protection against the class III damage were initiated when caffeine was present during the dirst 30 min of oxygenated post-hydration. If added after 30 min of oxygenated hydration, caffeine had no protective action. For the potentiation of an oxygen-independent component of damage, caffeine had to be present during the first 240 min of oxygen-free hydration. These observations involving a physiologically inert system raised questions regarding physico-chemical vis-a-vis biochemical mechanisms of caffeine effect on irradiated systems and these have been briefly discussed. (author)

  15. Proteomic analysis of seed germination under salt stress in soybeans.

    Science.gov (United States)

    Xu, Xiao-yan; Fan, Rui; Zheng, Rui; Li, Chun-mei; Yu, De-yue

    2011-07-01

    Soybean (Glycine max (L.) Merrill) is a salt-sensitive crop, and its production is severely affected by saline soils. Therefore, the response of soybean seeds to salt stress during germination was investigated at both physiological and proteomic levels. The salt-tolerant cultivar Lee68 and salt-sensitive cultivar N2899 were exposed to 100 mmol/L NaCl until radicle protrusion from the seed coat. In both cultivars, the final germination percentage was not affected by salt, but the mean germination times of Lee68 and N2899 were delayed by 0.3 and 1.0 d, respectively, compared with controls. In response to salt stress, the abscisic acid content increased, and gibberellic acid (GA₁+₃) and isopentenyladenosine decreased. Indole-3-acetic acid increased in Lee68, but remained unchanged in N2899. The proteins extracted from germinated seeds were separated using two-dimensional gel electrophoresis (2-DE), followed by Coomassie brilliant blue G-250 staining. About 350 protein spots from 2-DE gels of pH range 3 to 10 and 650 spots from gels of pH range 4 to 7 were reproducibly resolved, of which 18 protein spots showed changes in abundance as a result of salt stress in both cultivars. After matrix-assisted laser desorption ionization-time of flight-mass spectroscopy (MALDI-TOF-MS) analysis of the differentially expressed proteins, the peptide mass fingerprint was searched against the soybean UniGene database and nine proteins were successfully identified. Ferritin and 20S proteasome subunit β-6 were up-regulated in both cultivars. Glyceraldehyde 3-phosphate dehydrogenase, glutathione S-transferase (GST) 9, GST 10, and seed maturation protein PM36 were down-regulated in Lee68 by salt, but still remained at a certain level. However, these proteins were present in lower levels in control N2899 and were up-regulated under salt stress. The results indicate that these proteins might have important roles in defense mechanisms against salt stress during soybean seed germination.

  16. MICROBIOLIZATION WITH TRICHODERMA SPP., COMBINED OR NOT WITH POLYMER, ON THE HEALTH, GERMINATION AND VIGOR OF BLACK OATS AND BARLEY SEEDS

    Directory of Open Access Journals (Sweden)

    E. R. Baseggio

    2017-12-01

    Full Text Available The use of bioprotectors in the coating of seeds is increasing, and these become an alternative for the use of chemical fungicides. The aim of this work was to evaluate the use of Trichoderma spp., with or without polymerization, in the control of pathogens associated with black oats (Avena strigosa and barley (Hordeum vulgare seeds of the cultivars 'Comum' (black oats and BRS Cauê (barley, 2014 crop. After asepsis and dried of the seeds, the treatments were applied, using a dose of 5 mL of Trichoderma spp. kg-1 and 10 mL of seed polymer kg-1 of seeds. Sanity tests; germination; germination and emergency rate index; length of seedling (shoot and root; and fresh and dry weight were performed. The coating of oat and barley seeds with Trichoderma spp. was efficient in the control of pathogens, as well as increased the germination and development of the seedlings for both cultures evaluated.

  17. In-depth proteomic analysis of Glycine max seeds during controlled deterioration treatment reveals a shift in seed metabolism.

    Science.gov (United States)

    Min, Cheol Woo; Lee, Seo Hyun; Cheon, Ye Eun; Han, Won Young; Ko, Jong Min; Kang, Hang Won; Kim, Yong Chul; Agrawal, Ganesh Kumar; Rakwal, Randeep; Gupta, Ravi; Kim, Sun Tae

    2017-10-03

    Seed aging is one of the major events, affecting the overall quality of agricultural seeds. To analyze the effect of seed aging, soybean seeds were exposed to controlled deterioration treatment (CDT) for 3 and 7days, followed by their physiological, biochemical, and proteomic analyses. Seed proteins were subjected to protamine sulfate precipitation for the enrichment of low-abundance proteins and utilized for proteome analysis. A total of 14 differential proteins were identified on 2-DE, whereas label-free quantification resulted in the identification of 1626 non-redundant proteins. Of these identified proteins, 146 showed significant changes in protein abundance, where 5 and 141 had increased and decreased abundances, respectively while 352 proteins were completely degraded during CDT. Gene ontology and KEGG analyses suggested the association of differential proteins with primary metabolism, ROS detoxification, translation elongation and initiation, protein folding, and proteolysis, where most, if not all, had decreased abundance during CDT. Western blotting confirmed reduced level of antioxidant enzymes (DHAR, APx1, MDAR, and SOD) upon CDT. This in-depth integrated study reveals a major downshift in seed metabolism upon CDT. Reported data here serve as a resource for its exploitation to metabolic engineering of seeds for multiple purposes, including increased seed viability, vigor, and quality. Controlled deterioration treatment (CDT) is one of the major events that negatively affects the quality and nutrient composition of agricultural seeds. However, the molecular mechanism of CDT is largely unknown. A combination of gel-based and gel-free proteomic approach was utilized to investigate the effects of CDT in soybean seeds. Moreover, we utilized protamine sulfate precipitation method for enrichment of low-abundance proteins, which are generally masked due to the presence of high-abundance seed storage proteins. Reported data here serve as resource for its

  18. Carbon nanofibers suppress fungal inhibition of seed germination of maize (Zea mays) and barley (Hordeum vulgare L.) crop

    Energy Technology Data Exchange (ETDEWEB)

    Joshi, Anjali, E-mail: joshianjali1982@gmail.com; Sharma, Arti [Centre For Nanoscience and Nanotechnology, Panjab University, Chandigarh (India); Nayyar, Harsh [Department of Botany, Panjab University, Chandigarh (India); Verma, Gaurav [Dr. SS Bhatnagar University Institute of Chemical Engineering and Technology, Panjab University, Chandigarh (India); Dharamvir, Keya [Department of Physics, Panjab University, Chandigarh (India)

    2015-08-28

    Carbon nanofibers (CNFs) are one of allotropes of carbon, consists of graphene layers arrangement in the form of stacked cones or like a cup diameter in nanometer and several millimeters in length. Their extraordinary mechanical, chemical and electronic properties are due to their small size. CNFs have been successfully applied in field of medicine in variety of diagnostic methods. They proven to be an excellent system for drug delivery, tissue regeneration, biosensor etc. This research focuses the applications of CNFs in all fields of Agriculture. In the we treated some fungal disease seed of maize and barley using functionalised CNFs. We find that the tested seeds grow just as well as the healthy seeds whereas the untreated fungal disease seeds, by themselves show very poor germination and seedling growth. This simple experiment shows the extraordinary ability of Carbon nanofibers in carrying effectively inside the germinated seeds.

  19. Carbon nanofibers suppress fungal inhibition of seed germination of maize (Zea mays) and barley (Hordeum vulgare L.) crop

    Science.gov (United States)

    Joshi, Anjali; Sharma, Arti; Nayyar, Harsh; Verma, Gaurav; Dharamvir, Keya

    2015-08-01

    Carbon nanofibers (CNFs) are one of allotropes of carbon, consists of graphene layers arrangement in the form of stacked cones or like a cup diameter in nanometer and several millimeters in length. Their extraordinary mechanical, chemical and electronic properties are due to their small size. CNFs have been successfully applied in field of medicine in variety of diagnostic methods. They proven to be an excellent system for drug delivery, tissue regeneration, biosensor etc. This research focuses the applications of CNFs in all fields of Agriculture. In the we treated some fungal disease seed of maize and barley using functionalised CNFs. We find that the tested seeds grow just as well as the healthy seeds whereas the untreated fungal disease seeds, by themselves show very poor germination and seedling growth. This simple experiment shows the extraordinary ability of Carbon nanofibers in carrying effectively inside the germinated seeds.

  20. Carbon nanofibers suppress fungal inhibition of seed germination of maize (Zea mays) and barley (Hordeum vulgare L.) crop

    International Nuclear Information System (INIS)

    Joshi, Anjali; Sharma, Arti; Nayyar, Harsh; Verma, Gaurav; Dharamvir, Keya

    2015-01-01

    Carbon nanofibers (CNFs) are one of allotropes of carbon, consists of graphene layers arrangement in the form of stacked cones or like a cup diameter in nanometer and several millimeters in length. Their extraordinary mechanical, chemical and electronic properties are due to their small size. CNFs have been successfully applied in field of medicine in variety of diagnostic methods. They proven to be an excellent system for drug delivery, tissue regeneration, biosensor etc. This research focuses the applications of CNFs in all fields of Agriculture. In the we treated some fungal disease seed of maize and barley using functionalised CNFs. We find that the tested seeds grow just as well as the healthy seeds whereas the untreated fungal disease seeds, by themselves show very poor germination and seedling growth. This simple experiment shows the extraordinary ability of Carbon nanofibers in carrying effectively inside the germinated seeds

  1. Differential proteomics reveals the hallmarks of seed development in common bean (Phaseolus vulgaris L.)

    NARCIS (Netherlands)

    Parreira, J R; Bouraada, J; Fitzpatrick, M A; Silvestre, S; Bernardes da Silva, A; Marques da Silva, J; Almeida, A M; Fevereiro, P; Altelaar, A F M; Araújo, S S

    2016-01-01

    Common bean (Phaseolus vulgaris L.) is one of the most consumed staple foods worldwide. Little is known about the molecular mechanisms controlling seed development. This study aims to comprehensively describe proteome dynamics during seed development of common bean. A high-throughput gel-free

  2. Differences in grain ultrastructure, phytochemical and proteomic profiles between the two contrasting grain Cd-accumulation barley genotypes.

    Directory of Open Access Journals (Sweden)

    Hongyan Sun

    Full Text Available To reveal grain physio-chemical and proteomic differences between two barley genotypes, Zhenong8 and W6nk2 of high- and low-grain-Cd-accumulation, grain profiles of ultrastructure, amino acid and proteins were compared. Results showed that W6nk2 possesses significantly lower protein content, with hordein depicting the greatest genotypic difference, compared with Zhenong8, and lower amino acid contents with especially lower proportion of Glu, Tyr, Phe and Pro. Both scanning and transmission electron microscopy observation declared that the size of A-type starch molecule in W6nk2 was considerably larger than that of Zhenong8. Grains of Zhenong8 exhibited more protein-rich deposits around starch granules, with some A-type granules having surface pits. Seventeen proteins were identified in grains, using 2-DE coupled with mass spectrometry, with higher expression in Zhenong8 than that in W6nk2; including z-type serpin, serpin-Z7 and alpha-amylase/trypsin inhibitor CM, carbohydrate metabolism, protein synthesis and signal transduction related proteins. Twelve proteins were less expressed in Zhenong8 than that in W6nk2; including barley trypsin inhibitor chloroform/methanol-soluble protein (BTI-CMe2.1, BTI-CMe2.2, trypsin inhibitor, dehydroascorbate reductase (DHAR, pericentrin, dynein heavy chain and some antiviral related proteins. The data extend our understanding of mechanisms underlying Cd accumulation/tolerance and provides possible utilization of elite genetic resources in developing low-grain-Cd barley cultivars.

  3. The Barley Grain Thioredoxin System – an Update

    Directory of Open Access Journals (Sweden)

    Per eHägglund

    2013-05-01

    Full Text Available Thioredoxin reduces disulfide bonds and play numerous important functions in plants. In cereal seeds, cytosolic h-type thioredoxin facilitates the release of energy reserves during the germination process and is recycled by NADPH-dependent thioredoxin reductase. This review presents a summary of the research conducted during the last ten years to elucidate the structure and function of the barley seed thioredoxin system at the molecular level combined with proteomic approaches to identify target proteins.

  4. The Proteome of Seed Development in the Model Legume Lotus japonicus1[C][W

    Science.gov (United States)

    Dam, Svend; Laursen, Brian S.; Ørnfelt, Jane H.; Jochimsen, Bjarne; Stærfeldt, Hans Henrik; Friis, Carsten; Nielsen, Kasper; Goffard, Nicolas; Besenbacher, Søren; Krusell, Lene; Sato, Shusei; Tabata, Satoshi; Thøgersen, Ida B.; Enghild, Jan J.; Stougaard, Jens

    2009-01-01

    We have characterized the development of seeds in the model legume Lotus japonicus. Like soybean (Glycine max) and pea (Pisum sativum), Lotus develops straight seed pods and each pod contains approximately 20 seeds that reach maturity within 40 days. Histological sections show the characteristic three developmental phases of legume seeds and the presence of embryo, endosperm, and seed coat in desiccated seeds. Furthermore, protein, oil, starch, phytic acid, and ash contents were determined, and this indicates that the composition of mature Lotus seed is more similar to soybean than to pea. In a first attempt to determine the seed proteome, both a two-dimensional polyacrylamide gel electrophoresis approach and a gel-based liquid chromatography-mass spectrometry approach were used. Globulins were analyzed by two-dimensional polyacrylamide gel electrophoresis, and five legumins, LLP1 to LLP5, and two convicilins, LCP1 and LCP2, were identified by matrix-assisted laser desorption ionization quadrupole/time-of-flight mass spectrometry. For two distinct developmental phases, seed filling and desiccation, a gel-based liquid chromatography-mass spectrometry approach was used, and 665 and 181 unique proteins corresponding to gene accession numbers were identified for the two phases, respectively. All of the proteome data, including the experimental data and mass spectrometry spectra peaks, were collected in a database that is available to the scientific community via a Web interface (http://www.cbs.dtu.dk/cgi-bin/lotus/db.cgi). This database establishes the basis for relating physiology, biochemistry, and regulation of seed development in Lotus. Together with a new Web interface (http://bioinfoserver.rsbs.anu.edu.au/utils/PathExpress4legumes/) collecting all protein identifications for Lotus, Medicago, and soybean seed proteomes, this database is a valuable resource for comparative seed proteomics and pathway analysis within and beyond the legume family. PMID:19129418

  5. The proteome of seed development in the model legume Lotus japonicus.

    Science.gov (United States)

    Dam, Svend; Laursen, Brian S; Ornfelt, Jane H; Jochimsen, Bjarne; Staerfeldt, Hans Henrik; Friis, Carsten; Nielsen, Kasper; Goffard, Nicolas; Besenbacher, Søren; Krusell, Lene; Sato, Shusei; Tabata, Satoshi; Thøgersen, Ida B; Enghild, Jan J; Stougaard, Jens

    2009-03-01

    We have characterized the development of seeds in the model legume Lotus japonicus. Like soybean (Glycine max) and pea (Pisum sativum), Lotus develops straight seed pods and each pod contains approximately 20 seeds that reach maturity within 40 days. Histological sections show the characteristic three developmental phases of legume seeds and the presence of embryo, endosperm, and seed coat in desiccated seeds. Furthermore, protein, oil, starch, phytic acid, and ash contents were determined, and this indicates that the composition of mature Lotus seed is more similar to soybean than to pea. In a first attempt to determine the seed proteome, both a two-dimensional polyacrylamide gel electrophoresis approach and a gel-based liquid chromatography-mass spectrometry approach were used. Globulins were analyzed by two-dimensional polyacrylamide gel electrophoresis, and five legumins, LLP1 to LLP5, and two convicilins, LCP1 and LCP2, were identified by matrix-assisted laser desorption ionization quadrupole/time-of-flight mass spectrometry. For two distinct developmental phases, seed filling and desiccation, a gel-based liquid chromatography-mass spectrometry approach was used, and 665 and 181 unique proteins corresponding to gene accession numbers were identified for the two phases, respectively. All of the proteome data, including the experimental data and mass spectrometry spectra peaks, were collected in a database that is available to the scientific community via a Web interface (http://www.cbs.dtu.dk/cgi-bin/lotus/db.cgi). This database establishes the basis for relating physiology, biochemistry, and regulation of seed development in Lotus. Together with a new Web interface (http://bioinfoserver.rsbs.anu.edu.au/utils/PathExpress4legumes/) collecting all protein identifications for Lotus, Medicago, and soybean seed proteomes, this database is a valuable resource for comparative seed proteomics and pathway analysis within and beyond the legume family.

  6. Effects of oxygen and moisture content on the radiation damage in barley seeds irradiated with fast neutrons and gamma rays

    International Nuclear Information System (INIS)

    Ahnstroem, G.

    1968-01-01

    In gamma-irradiated barley seeds the effect of moisture content seems to modify the oxygen effect. If gamma-irradiated seeds (4% H 2 O content) are soaked in oxygen-free water before being transferred to oxygenated water, the oxygen-sensitive centres decay. The decay rate is a function of temperature and is shown to be most likely due to how fast the target molecules are hydrated. When low moisture content seeds were irradiated with fast neutrons in the SNIF, a moisture content effect was also obtained. However, contrary to what was found with gamma-irradiated seeds, no effect of oxygen was obtained. This excludes the possibility that gamma-contamination caused the moisture content effect. A model explaining the difference between the effect of neutrons and gamma-rays, respectively, is discussed. (author). 13 refs, 1 fig., 2 tabs

  7. Post-irradiation modification of oxygen-dependent and independent damage by catalase in barley seeds

    International Nuclear Information System (INIS)

    Sah, N.K.; Kesavan, P.C.

    1987-01-01

    If H 2 O 2 is one of the major mediators of the 'oxygen effect' in biological systems then catalase, which enzymically decomposes H 2 O 2 should have a significant influence on radiation damage, particularly under oxygenated conditions. The post-irradiation (300 Gy gamma rays) effect of catalase was, therefore, assessed on barley seeds of about 4% moisture content under oxygenated and oxygen-free conditions at varying temperatures. Catalase affords concentration-dependent radioprotection under oxygenated condition at both 25 0 C and 4 0 C. The level of protection at 4 0 C is less than at 25 0 C. This is obviously due to a decrease in catalase activity at low temperature. Under oxygen-free conditions, catalase enhances radiation damage at 4 0 C while at 25 0 C it it has no effect. This has been substantiated by data on the frequency of chromosomal aberrations and on peroxidase activity. Sodium azide, a catalase inhibitor, was found to eliminate the radioprotective action of catalase. The study supports the view that the 'oxygen effect' is mediated largely through peroxides in irradiated biological systems. However, the observations made particularly at 4 0 C under oxygen-free condition seem to involve physicochemical reactions. (author)

  8. Nitric oxide and reactive oxygen species mediate metabolic changes in barley seed embryo during germination

    Directory of Open Access Journals (Sweden)

    Zhenguo eMa

    2016-02-01

    Full Text Available The levels of nitric oxide (NO and reactive oxygen species (ROS, ATP/ADP ratios, reduction levels of ascorbate and glutathione, expression of the genes encoding proteins involved in metabolism of NO and activities of the enzymes involved in fermentation and in metabolism of NO and ROS were studied in the embryos of germinating seeds of two barley (Hordeum vulgare L. cultivars differing in dormancy level. The level of NO production continuously increased after imbibition while the level of nitrosylated SH-groups in proteins increased. This corresponded to the decrease of free SH-groups in proteins. At early stage of germination (0-48 h postimbibition the genes encoding class 1 phytoglobin (the protein scavenging NO and S-nitrosoglutathione reductase (scavenging S-nitrosoglutathione were markedly expressed. More dormant cultivar exhibited lower ATP/ADP and ascorbate/dehydroascorbate ratios and lower lactate and alcohol dehydrogenase activities, while the production of NO and nitrosylation of proteins was higher as compared to the non-dormant cultivar. The obtained data indicate that at the onset of germination NO is actively generated causing nitrosylation of SH-groups and a switch from respiration to fermentation. After radicle protrusion the metabolism changes in a more reducing type as recorded by ratio of reduced and oxidized glutathione and ascorbate. The turnover of NO by the scavenging systems (phytoglobin, S-nitrosoglutathione reductase and interaction with ROS might contribute to the maintenance of redox and energy balance of germinating seeds and lead to alleviation of dormancy.

  9. Exogenous melatonin improves corn (Zea mays L.) embryo proteome in seeds subjected to chilling stress.

    Science.gov (United States)

    Kołodziejczyk, Izabela; Dzitko, Katarzyna; Szewczyk, Rafał; Posmyk, Małgorzata M

    2016-04-01

    Melatonin (MEL; N-acetyl-5-methoxytryptamine) plays an important role in plant stress defense. Various plant species rich in this indoleamine have shown a higher capacity for stress tolerance. Moreover, it has great potential for plant biostimulation, is biodegradable and non-toxic for the environment. All this indicates that our concept of seed enrichment with exogenous MEL is justified. This work concerns the effects of corn (Zea mays L.) seed pre-sowing treatments supplemented with MEL. Non-treated seeds (nt), and those hydroprimed with water (H) or with MEL solutions 50 and 500 μM (HMel50, HMel500) were compared. Positive effects of seed priming are particularly apparent during germination under suboptimal conditions. The impact of MEL applied by priming on seed protein profiles during imbibition/germination at low temperature has not been investigated to date. In order to identify changes in the corn seed proteome after applying hydropriming techniques, purified protein extracts of chilling stressed seed embryos (14 days, 5°C) were separated by two-dimensional electrophoresis. Then proteome maps were graphically and statistically compared and selected protein spots were qualitatively analyzed using mass spectrometry techniques and identified. This study aimed to analyze the priming-induced changes in maize embryo proteome and at identifying priming-associated and MEL-associated proteins in maize seeds subjected to chilling. We attempt to explain how MEL expands plant capacity for stress tolerance. Copyright © 2016 Elsevier GmbH. All rights reserved.

  10. Differential proteomics reveals the hallmarks of seed development in common bean (Phaseolus vulgaris L.).

    Science.gov (United States)

    Parreira, J R; Bouraada, J; Fitzpatrick, M A; Silvestre, S; Bernardes da Silva, A; Marques da Silva, J; Almeida, A M; Fevereiro, P; Altelaar, A F M; Araújo, S S

    2016-06-30

    Common bean (Phaseolus vulgaris L.) is one of the most consumed staple foods worldwide. Little is known about the molecular mechanisms controlling seed development. This study aims to comprehensively describe proteome dynamics during seed development of common bean. A high-throughput gel-free proteomics approach (LC-MS/MS) was conducted on seeds at 10, 20, 30 and 40days after anthesis, spanning from late embryogenesis until desiccation. Of the 418 differentially accumulated proteins identified, 255 were characterized, most belonging to protein metabolism. An accumulation of proteins belonging to the MapMan functional categories of "protein", "glycolysis", "TCA", "DNA", "RNA", "cell" and "stress" were found at early seed development stages, reflecting an extensive metabolic activity. In the mid stages, accumulation of storage, signaling, starch synthesis and cell wall-related proteins stood out. In the later stages, an increase in proteins related to redox, protein degradation/modification/folding and nucleic acid metabolisms reflect that seed desiccation-resistance mechanisms were activated. Our study unveils new clues to understand the regulation of seed development mediated by post-translational modifications and maintenance of genome integrity. This knowledge enhances the understanding on seed development molecular mechanisms that may be used in the design and selection of common bean seeds with desired quality traits. Common bean (P. vulgaris) is an important source of proteins and carbohydrates worldwide. Despite the agronomic and economic importance of this pulse, knowledge on common bean seed development is limited. Herein, a gel-free high throughput methodology was used to describe the proteome changes during P. vulgaris seed development. Data obtained will enhance the knowledge on the molecular mechanisms controlling this grain legume seed development and may be used in the design and selection of common bean seeds with desired quality traits. Results may

  11. Characterization of the Microchemical Structure of Seed Endosperm within a Cellular Dimension among Six Barley Varieties with Distinct Degradation Kinetics, Using Ultraspatially Resolved Synchrotron-Based Infrared Microspectroscopy

    Science.gov (United States)

    Liu, Na; Yu, Peiqiang

    2013-01-01

    Barley varieties have similar chemical composition but exhibit different rumen degradation kinetics and nutrient availability. These biological differences may be related to molecular, structural, and chemical makeup among the seed endosperm tissue. No detailed study was carried out. The objectives of this study were: (1) to use a molecular spectroscopy technique, synchrotron-based Fourier transform infrared microspectroscopy (SFTIRM), to determine the microchemical–structural features in seed endosperm tissue of six developed barley varieties; (2) to study the relationship among molecular–structural characteristics, degradation kinetics, and nutrient availability in six genotypes of barley. The results showed that inherent microchemical–structural differences in the endosperm among the six barley varieties were detected by the synchrotron-based analytical technique, SFTIRM, with the univariate molecular spectral analysis. The SFTIRM spectral profiles differed (P makeup within cellular and subcellular dimensions without destruction of the inherent structure of cereal grain tissue. PMID:20524612

  12. Demarcation of mutant-carrying regions in barley plants after ethylmethane-sulfonate seed treatment

    DEFF Research Database (Denmark)

    Jacobsen, P.

    1966-01-01

    The branching pattern of the barley plant is analyzed and the anatomical structure of the resting barley embryo studied in longitudinal and cross-sections as well as by dissection techniques. The frequency and distribution of ethylmethane-sulfonate induced chloroplast and morphological seedling...

  13. Comparative investigation of seed coats of brown- versus yellow-colored soybean seeds using an integrated proteomics and metabolomics approach.

    Science.gov (United States)

    Gupta, Ravi; Min, Chul Woo; Kim, So Wun; Wang, Yiming; Agrawal, Ganesh Kumar; Rakwal, Randeep; Kim, Sang Gon; Lee, Byong Won; Ko, Jong Min; Baek, In Yeol; Bae, Dong Won; Kim, Sun Tae

    2015-05-01

    Seed coat color is an important attribute determining consumption of soybean seeds. Soybean cultivar Mallikong (M) has yellow seed coat while its naturally mutated cultivar Mallikong mutant (MM), has brown colored seed coat. We used integrated proteomics and metabolomics approach to investigate the differences between seed coats of M and MM during different stages of seed development (4, 5, and 6 weeks after flowering). 2DE profiling of total seed coat proteins from three stages showed 178 differentially expressed spots between M and MM of which 172 were identified by MALDI-TOF/TOF. Of these, 62 were upregulated and 105 were downregulated in MM compared with M, while five spots were detected only in MM. Proteins involved in primary metabolism showed downregulation in MM suggesting energy in MM might be utilized for proanthocyanidin biosynthesis via secondary metabolic pathways that leads to the development of brown seed coat color. Besides, downregulation of two isoforms of isoflavone reductase indicated reduced isoflavones in seed coat of MM that was confirmed by quantitative estimation of total and individual isoflavones using HPLC. We propose that low isoflavones level in MM may offer a high substrate for proanthocyanidin production that results in the development of brown seed coat in MM. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Gel-based and gel-free proteome data associated with controlled deterioration treatment of Glycine max seeds

    Directory of Open Access Journals (Sweden)

    Cheol Woo Min

    2017-12-01

    Full Text Available Data presented here are associated with the article: “In-depth proteomic analysis of soybean (Glycine max seeds during controlled deterioration treatment (CDT reveals a shift in seed metabolism” (Min et al., 2017 [1]. Seed deterioration is one of the major problems, affecting the seed quality, viability, and vigor in a negative manner. Here, we display the gel-based and gel-free proteomic data, associated with the CDT in soybean seeds. The present data was obtained from 2-DE, shotgun proteomic analysis (label-free quantitative proteomic analysis using Q-Exactive, and gene ontology analysis associated with CDT in soybean seeds (Min et al., 2017 [1].

  15. Evaluation of allergenic potential for rice seed protein components utilizing a rice proteome database and an allergen database in combination with IgE-binding of recombinant proteins.

    Science.gov (United States)

    Hirano, Kana; Hino, Shingo; Oshima, Kenzi; Nadano, Daita; Urisu, Atsuo; Takaiwa, Fumio; Matsuda, Tsukasa

    2016-01-01

    Among 131 rice endosperm proteins previously identified by MS-based proteomics, most of the proteins showed low or almost no sequence similarity to known allergens in databases, whereas nine proteins did it significantly. The sequence of two proteins showed high overall identity with Hsp70-like hazel tree pollen allergen (Cor a 10) and barley α-amylase (Hor v 16), respectively, whereas the others showed low identity (28-58%) with lemon germin-like protein (Cit l 1), corn zein (Zea m 50 K), wheat chitinase-like xylanase inhibitor (Tri a XI), and kinase-like pollen allergen of Russian thistle (Sal k 1). Immuno-dot blot analysis showed that recombinant proteins for these rice seed homologs were positive in the IgE-binding, but not necessarily similarity dependent, from some allergic patients. These results suggest that utilization of proteome and sequence databases in combination with IgE-binding analysis was effective to screen and evaluate allergenic potential of rice seed protein components.

  16. Proteomic Analysis of the Protein Expression Profile in the Mature Nigella sativa (Black Seed).

    Science.gov (United States)

    Alanazi, Ibrahim O; Benabdelkamel, Hicham; Alfadda, Assim A; AlYahya, Sami A; Alghamdi, Waleed M; Aljohi, Hasan A; Almalik, Abdulaziz; Masood, Afshan

    2016-08-01

    Nigella sativa (N. sativa) seed has been used as an important nutritional flavoring agent and in traditional medicine for treating many illnesses since ancient times. Understanding the proteomic component of the seed may lead to enhance the understanding of its structural and biological functional complexity. In this study, we have analyzed its proteome profile based on gel-based proteome mapping technique that includes one-dimensional gel electrophoresis followed by liquid chromatography and tandem mass spectrometry strategy. We have not come across any such studies that have been performed in N. sativa seeds up to date. A total of 277 proteins were identified, and their functional, metabolic, and location-wise annotations were carried out using the UniProt database. The majority of proteins identified in the proteome dataset based on their function were those involved in enzyme catalytic activity, nucleotide binding, and protein binding while the major cellular processes included regulation of biological process followed by regulation of secondary biological process, cell organization and biogenesis, protein metabolism, and transport. The identified proteome was localized mainly to the nucleus then to the cytoplasm, plasma membrane, mitochondria, plastid, and others. A majority of the proteins were involved in biochemical pathways involving carbohydrate metabolism, amino acid and shikimate pathway, lipid metabolism, nucleotide, cell organization and biogenesis, transport, and defense processes. The identified proteins in the dataset help to improve our understanding of the pathways involved in N. sativa seed metabolism and its biochemical features and detail out useful information that may help to utilize these proteins. This study could thus pave a way for future further high-throughput studies using a more targeted proteomic approach.

  17. seeds

    African Journals Online (AJOL)

    Owner

    peptidohydrolase (8.0%) from mung bean seedlings. (Baumgartner and Chrispeels, 1977), EP-HG (4.5%) from horse gram seedlings ( Rajeswari, 1997), acidic protease (15%) from germinating winged-bean seeds. (Usha and Singh, 1996) and EP-1 (1.6%) from barley seedlings and GA3-induced cysteine protease (3.38%).

  18. Seeds in Chernobyl: the database on proteome response on radioactive environment

    Science.gov (United States)

    Klubicová, Katarína; Vesel, Martin; Rashydov, Namik M.; Hajduch, Martin

    2012-01-01

    Two serious nuclear accidents during the last quarter century (Chernobyl, 1986 and Fukushima, 2011) contaminated large agricultural areas with radioactivity. The database “Seeds in Chernobyl” (http://www.chernobylproteomics.sav.sk) contains the information about the abundances of hundreds of proteins from on-going investigation of mature and developing seed harvested from plants grown in radioactive Chernobyl area. This database provides a useful source of information concerning the response of the seed proteome to permanently increased level of ionizing radiation in a user-friendly format. PMID:23087698

  19. Proteome-wide characterization of seed aging in Arabidopsis. A comparison between artificial and natural aging protocols

    NARCIS (Netherlands)

    Rajjou, L.; Lovigny, Y.; Groot, S.P.C.; Belghazi, M.; Job, C.; Job, D.

    2008-01-01

    A variety of mechanisms has been proposed to account for the extension of life span in seeds (seed longevity). In the present work, we have used Arabidopsis thaliana seeds as a model and carried out differential proteomics to investigate this trait, which is of both ecological and agricultural

  20. Proteomic analysis reveals key proteins and phosphoproteins upon seed germination of wheat (Triticum aestivum L.

    Directory of Open Access Journals (Sweden)

    Kun eDong

    2015-11-01

    Full Text Available Wheat (Triticum aestivum L. is one of the oldest cultivated crops and the second most important food crop in the world. Seed germination is the key developmental process in plant growth and development, and poor germination directly affects plant growth and subsequent grain yield. In this study, we performed the first dynamic proteome analysis of wheat seed germination using a two-dimensional differential gel electrophoresis (2D-DIGE-based proteomic approach. A total of 166 differentially expressed protein (DEP spots representing 73 unique proteins were identified, which are mainly involved in storage, stress/defense/detoxification, carbohydrate metabolism, photosynthesis, cell metabolism, and transcription/translation/ transposition. The identified DEPs and their dynamic expression profiles generally correspond to three distinct seed germination phases after imbibition: storage degradation, physiological processes/morphogenesis, and photosynthesis. Some key DEPs involved in storage substance degradation and plant defense mechanisms, such as globulin 3, sucrose synthase type I, serpin, beta-amylase, and plastid ADP-glucose pyrophosphorylase (AGPase small subunit, were found to be phosphorylated during seed germination. Particularly, the phosphorylation site Ser355 was found to be located in the enzyme active region of beta-amylase, which promotes substrate binding. Phosphorylated modification of several proteins could promote storage substance degradation and environmental stress defense during seed germination. The central metabolic pathways involved in wheat seed germination are proposed herein, providing new insights into the molecular mechanisms of cereal seed germination.

  1. Isolation and purification of a papain inhibitor from Egyptian genotypes of barley seeds and its in vitro and in vivo effects on the cowpea bruchid, Callosobruchus maculatus (F.).

    Science.gov (United States)

    Abd El-Latif, Ashraf Oukasha

    2015-02-01

    The cysteine inhibitors that are known as cystatin have been identified and characterized from several plant species. In the current study, 44 barley (Hordeum vulgare) genotypes including 3 varieties and 41 promising lines were screened for their potential as protease inhibitors. The barley genotypes showed low inhibitory activity against trypsin and chymotrypsin enzymes with a mean of 4.15 TIU/mg protein and 4.40 CIU/mg protein. The barley variety, Giza 123, showed strong papain inhibitory activity of 97.09 PIU/mg proteins and was subjected for further purification studies using ammonium sulfate fractionation and DEAE-Sephadex A-25 column. Barley purified proteins showed two bands on SDS-PAGE corresponding to a molecular mass of 12.4-54.8 kDa. The purified barley PI was found to be stable at a temperature below 80 °C and at a wide range of pH from 2 to 12. Barley PI was found to have higher potential inhibitory activity against papain enzyme compared to the standard papain inhibitor, E-64 with an IC50 value of 21.04 µg/ml and 25.62 µg/ml for barley PI and E-64, respectively. The kinetic analysis revealed a non-competitive type of inhibition with a Ki value of 1.95 × 10(-3 )µM. The antimetabolic effect of barley PI was evaluated against C. maculatus by incorporating the F30-60 protein of the purified inhibitor into the artificial diet using artificial seeds. Barley PI significantly prolonged the development of C. maculatus in proportion to PI concentration. Barley PI significantly increased the mortality of C. maculatus and caused a significant reduction in its fecundity. On the other hand, barley PI seemed to have non-significant effects on the adult longevity and the adult dry weight. The in vitro and in vivo results proved the efficiency of the papain inhibitory protein isolated from barley as a tool for managing the cowpea bruchid, C. maculatus. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. Immature Seed Endosperm and Embryo Proteomics of the Lotus (Nelumbo Nucifera Gaertn.) by One-Dimensional Gel-Based Tandem Mass Spectrometry and a Comparison with the Mature Endosperm Proteome

    OpenAIRE

    Moro, Carlo; Fukao, Yoichiro; Shibato, Junko; Rakwal, Randeep; Agrawal, Ganesh; Shioda, Seiji; Kouzuma, Yoshiaki; Yonekura, Masami

    2015-01-01

    Lotus (Nelumbo nucifera Gaertn.) seed proteome has been the focus of our studies, and we have recently established the first proteome dataset for its mature seed endosperm. The current study unravels the immature endosperm, as well as the embryo proteome, to provide a comprehensive dataset of the lotus seed proteins and a comparison between the mature and immature endosperm tissues across the seed’s development. One-dimensional gel electrophoresis (SDS-PAGE) linked with tandem mass spectrome...

  3. Proteome analysis of pod and seed development in the model legume Lotus japonicus

    DEFF Research Database (Denmark)

    Nautrup-Pedersen, G.; Dam, S.; Laursen, B. S.

    2010-01-01

    of the pod and seed proteomes in five developmental stages, paves the way for comparative pathway analysis and provides new metabolic information. Proteins were analyzed by two-dimensional gel electrophoresis and tandem-mass spectrometry. These analyses lead to the identification of 604 pod proteins and 965......Legume pods serve important functions during seed development and are themselves sources of food and feed. Compared to seeds, the metabolism and development of pods are not well-defined. The present characterization of pods from the model legume Lotus japonicus, together with the detailed analyses...... and photosynthesis. Proteins detected only in pods included three enzymes participating in the urea cycle and four in nitrogen and amino group metabolism, highlighting the importance of nitrogen metabolism during pod development. Additionally, five legume seed proteins previously unassigned in the glutamate...

  4. Proteome analysis reveals an energy-dependent central process for Populus×canadensis seed germination.

    Science.gov (United States)

    Zhang, Hong; Zhou, Ke-Xin; Wang, Wei-Qing; Liu, Shu-Jun; Song, Song-Quan

    2017-06-01

    Poplar (Populus×canadensis) seeds rapidly germinated in darkness at 10, 15, and 20°C and reached 50% seed germination after about 22, 4.5, and 3.5h, respectively. Germination of poplar seeds was markedly inhibited by abscisic acid (ABA) at 50μM and cycloheximide (CHX) at 100μM, and these inhibitive roles were temperature-dependent. In the present study, mature poplar seeds were used to investigate the differentially changed proteome of seeds germinating in water, ABA, and CHX. A total of 130 protein spots showed a significant change (1.5-fold increase/decrease, Pgermination of poplar seeds is closely related with the increase in those proteins involved in amino acid and lipid metabolism, the tricarboxylic acid cycle and pentose phosphate pathway, protein synthesis and destination, cell defense and rescue, and degradation of storage proteins. ABA and CHX inhibit the germination of poplar seeds by decreasing the protein abundance associated with protein proteolysis, protein folding, and storage proteins. We conclude that poplar seed germination is an energy-dependent active process, and is accompanied by increasing amino acid activation, protein synthesis and destination, as well as cell defense and rescue, and degradation of storage proteins. Copyright © 2017 Elsevier GmbH. All rights reserved.

  5. Comparative proteomic analysis of seed embryo proteins associated with seed storability in rice (Oryza sativa L) during natural aging.

    Science.gov (United States)

    Gao, Jiadong; Fu, Hua; Zhou, Xinqiao; Chen, Zhongjian; Luo, Yi; Cui, Baiyuan; Chen, Guanghui; Liu, Jun

    2016-06-01

    Seed storability is considered an important trait in rice breeding; however, the underlying regulating mechanisms remain largely unknown. Here, we carried out a physiological and proteomic study to identify proteins possibly related to seed storability under natural conditions. Two hybrid cultivars, IIYou998 (IIY998) and BoYou998 (BY998), were analyzed in parallel because they share the same restorer line but have significant differences in seed storability. After a 2-year storage period, the germination percentage of IIY998 was significantly lower than that of BY998, whereas the level of malondialdehyde was reversed, indicating that IIY998 seeds may suffer from more severe damage than BY998 during storage. However, we did not find correlation between activities of antioxidant enzymes of superoxide dismutase, peroxidase, and catalase and seed storability. We identified 78 embryo proteins in embryo whose abundance varied more than 3-fold different during storage or between IIY998 and BY998. More proteins changed in abundance in IIY998 embryo (67 proteins) during storage than in BY998 (10 proteins). Several redox regulation proteins, mainly glutathione-related proteins, exhibited different degree of change during storage between BY998 and IIY998 and might play an important role protecting embryo proteins from oxidation. In addition, some disease/defense proteins, including DNA-damage-repair/toleration proteins, and a putative late embryogenesis abundant protein were significantly downregulated in IIY998, whereas their levels did not change in BY998, indicating that they might be correlated with seed storability. Further studies on these candidate seed storage proteins might help improve our understanding of seed aging. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  6. A flexible loop controlling the enzymatic activity and specificity in a glycosyl hydrolase family 19 endochitinase from barley seeds

    DEFF Research Database (Denmark)

    Fukamizo, Tamo; Miyake, Ryoh; Tamura, Atsushi

    2009-01-01

    To examine the role of the loop structure consisting of residues 70-82 (70-82 loop) localized to + 3/4 subsite of the substrate binding cleft of a family GH-19 endochitinase from barley seeds, Trp72 and Trp82 were mutated, and the mutated enzymes (W72A, W82A, and W72A/W82A) were characterized....... Thermal stability and specific activities toward glycol chitin and chitin hexasaccharide were significantly affected by the individual mutations. When N-acetylglucosamine hexamer was hydrolyzed by the wild type, the ß-anomer of the substrate was preferentially hydrolyzed, producing the trimer...... predominantly and the dimer and tetramer in lesser amounts. When the mutated enzymes were used instead of the wild type, the enzyme cleavage sites in the hexamer substrate were clearly shifted, and the ß-anomer selectivity was eliminated. The mutation effects on the enzymatic activity and stability were much...

  7. Proteome changes associated with dormancy release of Dongxiang wild rice seeds.

    Science.gov (United States)

    Xu, Heng-Heng; Liu, Shu-Jun; Song, Shun-Hua; Wang, Wei-Qing; Møller, Ian Max; Song, Song-Quan

    2016-11-01

    Seed dormancy provides optimum timing for seed germination and subsequent seedling growth, but the mechanism of seed dormancy is still poorly understood. Here, we used Dongxiang wild rice (DXWR) seeds to investigate the dormancy behavior and the differentially changed proteome in embryo and endosperm during dormancy release. DXWR seed dormancy was caused by interaction of embryo and its surrounding structure, and was an intermediate physiological dormancy. During seed dormancy release, a total of 109 and 97 protein spots showed significant change in abundance and were successfully identified in embryo and endosperm, respectively. As a result of dormancy release, the abundance of nine proteins involved in storage protein, cell defense and rescue and energy changed in the same way in both embryo and endosperm, while 67 and 49 protein spots changed differentially in embryo and endosperm, respectively. Dormancy release of DXWR seeds was closely associated with degradation of storage proteins in both embryo and endosperm. At the same time, the abundance of proteins involved in metabolism, glycolysis and TCA cycle, cell growth and division, protein synthesis and destination and signal transduction increased in embryos while staying constant or decreasing in endosperms. Copyright © 2016 Elsevier GmbH. All rights reserved.

  8. Comparative nutritional compositions and proteomics analysis of transgenic Xa21 rice seeds compared to conventional rice.

    Science.gov (United States)

    Gayen, Dipak; Paul, Soumitra; Sarkar, Sailendra Nath; Datta, Swapan K; Datta, Karabi

    2016-07-15

    Transgenic rice expressing the Xa21 gene have enhanced resistant to most devastating bacterial blight diseases caused by Xanthomonas oryzae pv. oryzae (Xoo). However, identification of unintended modifications, owing to the genetic modification, is an important aspect of transgenic crop safety assessment. In this study, the nutritional compositions of seeds from transgenic rice plants expressing the Xa21 gene were compared against non-transgenic rice seeds. In addition, to detect any changes in protein translation levels as a result of Xa21 gene expression, rice seed proteome analyses were also performed by two-dimensional gel electrophoresis. No significant differences were found in the nutritional compositions (proximate components, amino acids, minerals, vitamins and anti-nutrients) of the transgenic and non-transgenic rice seeds. Although gel electrophoresis identified 11 proteins that were differentially expressed between the transgenic and non-transgenic seed, only one of these (with a 20-fold up-regulation in the transgenic seed) shows nutrient reservoir activity. No new toxins or allergens were detected in the transgenic seeds. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Nucleotide sequence of a cDNA coding for the barley seed protein CMa: an inhibitor of insect α-amylase

    DEFF Research Database (Denmark)

    Rasmussen, Søren Kjærsgård; Johansson, A.

    1992-01-01

    The primary structure of the insect alpha-amylase inhibitor CMa of barley seeds was deduced from a full-length cDNA clone pc43F6. Analysis of RNA from barley endosperm shows high levels 15 and 20 days after flowering. The cDNA predicts an amino acid sequence of 119 residues preceded by a signal...... peptide of 25 amino acids. Ala and Leu account for 55% of the signal peptide. CMa is 60-85% identical with alpha-amylase inhibitors of wheat, but shows less than 50% identity to trypsin inhibitors of barley and wheat. The 10 Cys residues are located in identical positions compared to the cereal inhibitor...

  10. A proteomics-based study of endogenous and microbial xylanases and xylanase inhibitors associated with barley grains used for liquid feed

    DEFF Research Database (Denmark)

    Sultan, Abida

    The mature barley grain contains a complement of enzymes that are synthesized during seed development for degradation of seed storage reserves during germination. These enzyme activities (first wave enzymes) are considered important for maximizing nutrient digestibility in food and feed. Several...... strategies, such as liquid feed and supplementation of amino acids and microbial exogenous enzymes, are applied to improve protein absorption. A diverse commensal microbial community populates the cereal grains. The colonizing microflora constitute an integrated part of the seeds and interact....../influence the plant and/or competitors via secretion of an array of enzymes and compounds/metabolites. The occurrence of these enzyme activities both of plant and fungal origin present a great potential for improvement of grain nutritional components for feed applications. Knowledge is lacking in the variation...

  11. Antioxidant activity of 100% and 80% methanol extracts from barley seeds (Hordeum vulgare L.: stabilization of sunflower oil

    Directory of Open Access Journals (Sweden)

    Iqbal, Shahid

    2010-09-01

    Full Text Available The antioxidant potential of 100% and 80% methanol extracts from the seeds of three barley varieties (Jou 83, Jou 87 and Haider 93 was assessed. The extract yields from barley seeds ranged from 3.23% (Haider 93,100% methanol to 5.31% (Jou 83, 80% methanol. The total phenolic contents, DPPH radical scavenging activity (IC50 values and inhibition of linoleic acid oxidation of barley seed extracts (BSE were determined to be 88.1-145.7 mg/100g, 90.8-168.6 μg/mL and 62.6-74.6%, respectively. The antioxidant effectiveness of BSE was also assessed by stabilizing sunflower oil (SFO with BSE at a concentration of 600 ppm (oil weight basis. The stabilized (treated with extract and the control (without extract addition SFO samples were subjected to accelerated (oven heating at 60ºC for 30 days, 8 h heating cycle/day storage. These were analyzed at regular intervals for the extent of oxidative changes according to the measurements of their contents of peroxide value, para-anisidine value, conjugated dienes and conjugated trienes. Generally, the 80% methanol extract of barely seeds demonstrated better antioxidant action than the 100% methanol extract. The antioxidant activity of BSE was also found to be considerably varied among the varieties tested. The present results suggest that antioxidant extracts from barely seeds might be used to protect vegetable oils from oxidation.El potencial antioxidante de extractos de metanol al 100% y el 80% de semillas de tres variedades de cebada (Jou 83, Jou 87 y Haider 93 fue evaluada. El rendimiento de los extractos de las semillas de cebada vario desde un 3.23% (Haider, 100% methanol a un 5.31% (Jou 83, 80% metanol. El contenido total de fenoles, la actividad atrapadora del radical DPPH (valores IC50 y la inhibición de la oxidación del ácido linoleico de los extractos de semilla de cebada (BSE fueron 88.1-145.7 mg/100g, 90.8-168.6 μg/mL y 62.6- 74.6%, respectivamente. La efectividad antioxidante de BSE fue tambi

  12. Low temperature conditioning of garlic (Allium sativum L. "seed" cloves induces alterations in sprouts proteome

    Directory of Open Access Journals (Sweden)

    Miguel David Dufoo-Hurtado

    2015-05-01

    Full Text Available Low-temperature conditioning of garlic seed cloves substitutes the initial climatic requirements of the crop and accelerates the cycle. We have reported that seed bulbs from ‘Coreano’ variety conditioned at 5 °C for five weeks reduces growth and plant weight as well as the crop yields and increases the synthesis of phenolic compounds and anthocyanins. Therefore, this treatment suggests a cold stress. Plant acclimation to stress is associated with deep changes in proteome composition. Since proteins are directly involved in plant stress response, proteomics studies can significantly contribute to unravel the possible relationships between protein abundance and plant stress acclimation. The aim of this work was to study the changes in the protein profiles of garlic seed cloves subjected to conditioning at low-temperature using proteomics approach. Two sets of garlic bulbs were used, one set was stored at room temperature (23 °C, and the other was conditioned at low temperature (5 °C for five weeks. Total soluble proteins were extracted from sprouts of cloves and separated by two-dimensional gel electrophoresis. Protein spots showing statistically significant changes in abundance were analyzed by LC-ESI-MS/MS and identified by database search analysis using the Mascot search engine. The results revealed that low-temperature conditioning of garlic seed cloves causes alterations in the accumulation of proteins involved in different physiological processes such as cellular growth, antioxidative/oxidative state, macromolecules transport, protein folding and transcription regulation process. The metabolic pathways affected include protein biosynthesis and quality control system, photosynthesis, photorespiration, energy production, and carbohydrate and nucleotide metabolism. These processes can work cooperatively to establish a new cellular homeostasis that might be related with the physiological and biochemical changes observed in previous

  13. Response of germinating barley seeds to Fusarium graminearum: The first molecular insight into Fusarium seedling blight

    DEFF Research Database (Denmark)

    Yang, Fen; Svensson, Birte; Finnie, Christine

    2011-01-01

    Fusarium seedling blight in cereals can result in significant reductions in plant establishment but has not received much attention. The disease often starts during seed germination due to sowing of the seeds infected by Fusarium spp. including Fusarium graminearum. In order to gain the first...... provides the first molecular insight into Fusarium seedling blight....

  14. Proteomic analysis of embryogenesis and the acquisition of seed dormancy in Norway maple (Acer platanoides L.).

    Science.gov (United States)

    Staszak, Aleksandra Maria; Pawłowski, Tomasz Andrzej

    2014-06-17

    The proteome of zygotic embryos of Acer platanoides L. was analyzed via high-resolution 2D-SDS-PAGE and MS/MS in order to: (1) identify significant physiological processes associated with embryo development; and (2) identify changes in the proteome of the embryo associated with the acquisition of seed dormancy. Seventeen spots were identified as associated with morphogenesis at 10 to 13 weeks after flowering (WAF). Thirty-three spots were associated with maturation of the embryo at 14 to 22 WAF. The greatest changes in protein abundance occurred at 22 WAF, when seeds become fully mature. Overall, the stage of morphogenesis was characterized by changes in the abundance of proteins (tubulins and actin) associated with the growth and development of the embryo. Enzymes related to energy supply were especially elevated, most likely due to the energy demand associated with rapid growth and cell division. The stage of maturation is crucial to the establishment of seed dormancy and is associated with a higher abundance of proteins involved in genetic information processing, energy and carbon metabolism and cellular and antioxidant processes. Results indicated that a glycine-rich RNA-binding protein and proteasome proteins may be directly involved in dormancy acquisition control, and future studies are warranted to verify this association.

  15. Deep proteome analysis of gerontoplasts from the inner integument of developing seeds of Jatropha curcas.

    Science.gov (United States)

    Shah, Mohibullah; Soares, Emanoella L; Lima, Magda L B; Pinheiro, Camila B; Soares, Arlete A; Domont, Gilberto B; Nogueira, Fabio C S; Campos, Francisco A P

    2016-06-30

    The inner integument of Jatropha curcas seeds is a non-photosynthetic tissue that acts primarily as a conduit for the delivery of nutrients to the embryo and endosperm. In this study we performed a histological and transmission electron microscopy analysis of the inner integument in stages prior to fertilization to 25days after pollination, to establish the structural changes associated with the plastid to gerontoplast transition. This study showed that plastids are subjected to progressive changes, which include the dismantling of the internal membrane system, matrix degradation and the formation of stromule-derived vesicles. A proteome analysis of gerontoplasts isolated from the inner integument at 25days after pollination, resulted in the identification of 1923 proteins, which were involved in a myriad of metabolic functions, such as synthesis of amino acids and fatty acids. Among the identified proteins, were also a number of hydrolases (peptidases, lipases and carbohydrases), which presumably are involved in the ordered dismantling of this organelle to provide additional sources of nutrients for the growing embryo and endosperm. The dataset we provide here may provide a foundation for the study of the proteome changes associated with the plastid to gerontoplast transition in non-photosynthetic tissues. We describe ultrastructural features of gerontoplasts isolated from the inner integument of developing seeds of Jatropha curcas, together with a deep proteome analysis of these gerontoplasts. This article explores a new aspect of the biology of plastids, namely the ultrastructural and proteome changes associated with the transition plastid to gerontoplast in a non-photosynthetic tissue. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Environmental Effects of Nanoceria on Seed Production of Common Bean (Phaseolus vulgaris): A Proteomic Analysis.

    Science.gov (United States)

    Majumdar, Sanghamitra; Almeida, Igor C; Arigi, Emma A; Choi, Hyungwon; VerBerkmoes, Nathan C; Trujillo-Reyes, Jesica; Flores-Margez, Juan P; White, Jason C; Peralta-Videa, Jose R; Gardea-Torresdey, Jorge L

    2015-11-17

    The rapidly growing literature on the response of edible plants to nanoceria has provided evidence of its uptake and bioaccumulation, which delineates a possible route of entry into the food chain. However, little is known about how the residing organic matter in soil may affect the bioavailability and resulting impacts of nanoceria on plants. Here, we examined the effect of nanoceria exposure (62.5-500 mg/kg) on kidney bean (Phaseolus vulgaris) productivity and seed quality as a function of soil organic matter content. Cerium accumulation in the seeds produced from plants in organic matter enriched soil showed a dose-dependent increase, unlike in low organic matter soil treatments. Seeds obtained upon nanoceria exposure in soils with higher organic matter were more susceptible to changes in nutrient quality. A quantitative proteomic analysis of the seeds produced upon nanoceria exposure provided evidence for upregulation of stress-related proteins at 62.5 and 125 mg/kg nanoceria treatments. Although the plants did not exhibit overt toxicity, the major seed proteins primarily associated with nutrient storage (phaseolin) and carbohydrate metabolism (lectins) were significantly down-regulated in a dose dependent manner upon nanoceria exposure. This study thus suggests that nanoceria exposures may negatively affect the nutritional quality of kidney beans at the cellular and molecular level. More confirmatory studies with nanoceria along different species using alternative and orthogonal "omic" tools are currently under active investigation, which will enable the identification of biomarkers of exposure and susceptibility.

  17. Proteomic analysis of oil bodies in mature Jatropha curcas seeds with different lipid content.

    Science.gov (United States)

    Liu, Hui; Wang, Cuiping; Chen, Fan; Shen, Shihua

    2015-01-15

    To reveal the difference among three mature Jatropha curcas seeds (JcVH, variant with high lipid content; JcW, wild type and JcVL, variant with low lipid content) with different lipid content, comparative proteomics was employed to profile the changes of oil body (OB) associated protein species by using gels-based proteomic technique. Eighty-three protein species were successfully identified through LTQ-ES-MS/MS from mature JcW seeds purified OBs. Two-dimensional electrophoresis analysis of J. curcas OB associated protein species revealed they had essential interactions with other organelles and demonstrated that oleosin and caleosin were the most abundant OB structural protein species. Twenty-eight OB associated protein species showed significant difference among JcVH, JcW and JcVL according to statistical analysis. Complementary transient expression analysis revealed that calcium ion binding protein (CalBP) and glycine-rich RNA binding protein (GRP) were well targeted in OBs apart from the oleosins. This study demonstrated that ratio of lipid content to caleosins abundance was involved in the regulation of OB size, and the mutant induced by ethylmethylsulfone treatment might be related to the caleosin like protein species. These findings are important for biotechnological improvement with the aim to alter the lipid content in J. curcas seeds. The economic value of Jatropha curcas largely depends on the lipid content in seeds which are mainly stored in the special organelle called oil bodies (OBs). In consideration of the biological importance and applications of J. curcas OB in seeds, it is necessary to further explore the components and functions of J. curcas OBs. Although a previous study concerning the J. curcas OB proteome revealed oleosins were the major OB protein component and additional protein species were similar to those in other oil seed plants, these identified OB associated protein species were corresponding to the protein bands instead of protein

  18. microRNAs participate in gene expression regulation and phytohormone cross-talk in barley embryo during seed development and germination.

    Science.gov (United States)

    Bai, Bin; Shi, Bo; Hou, Ning; Cao, Yanli; Meng, Yijun; Bian, Hongwu; Zhu, Muyuan; Han, Ning

    2017-09-06

    Small RNA and degradome sequencing have identified a large number of miRNA-target pairs in plant seeds. However, detailed spatial and temporal studies of miRNA-mediated regulation, which can reflect links between seed development and germination are still lacking. In this study, we extended our investigation on miRNAs-involved gene regulation by a combined analysis of seed maturation and germination in barley. Through bioinformatics analysis of small RNA sequencing data, a total of 1324 known miRNA families and 448 novel miRNA candidates were identified. Of those, 16 known miRNAs with 40 target genes, and three novel miRNAs with four target genes were confirmed based on degradome sequencing data. Conserved miRNA families such as miR156, miR168, miR166, miR167, and miR894 were highly expressed in embryos of developing and germinating seeds. A barley-specific miRNA, miR5071, which was predicted to target an OsMLA10-like gene, accumulated at a high level, suggesting its involvement in defence response during these two developmental stages. Based on target prediction and Kyoto Encyclopedia of Genes and Genomes analysis of putative targets, nine highly expressed miRNAs were found to be related to phytohormone signalling and hormone cross-talk. Northern blot and qRT-PCR analysis showed that these miRNAs displayed differential expression patterns during seed development and germination, indicating their different roles in hormone signalling pathways. In addition, we showed that miR393 affected seed development through targeting two genes encoding the auxin receptors TIR1/AFBs in barley, as over-expression of miR393 led to an increased length-width ratio of seeds, whereas target mimic (MIM393)-mediated inhibition of its activity decreased the 1000-grain weight of seeds. Furthermore, the expression of auxin-responsive genes, abscisic acid- and gibberellic acid-related genes was altered in miR393 misexpression lines during germination and early seedling growth. Our work

  19. cDNA, amino acid carbohydrate sequence of barley seed-specific peroxidase BP 1

    DEFF Research Database (Denmark)

    Johansson, A.; Rasmussen, Søren Kjærsgård; Harthill, J.E.

    1992-01-01

    of 69% in the translated region, a 90% G or C preference in the wobble position of the codons and a typical signal peptide sequence. N-terminal amino acid sequencing and sequence analysis of tryptic peptides verified 98% of the sequence of the mature BP 1 which contains 309 amino acid residues. BP 1...... biological role of this enzyme. The barley peroxidase is processed at the C-terminus and might be targeted to the vacuole. The single site of glycosylation is located near the C-terminus in the N-glycosylation sequon -Asn-Cys-Ser- in which Cys forms part of a disulphide bridge. The major glycan is a typical...

  20. Immature Seed Endosperm and Embryo Proteomics of the Lotus (Nelumbo NuciferaGaertn.) by One-Dimensional Gel-Based Tandem Mass Spectrometry and a Comparison with the Mature Endosperm Proteome.

    Science.gov (United States)

    Moro, Carlo F; Fukao, Yoichiro; Shibato, Junko; Rakwal, Randeep; Agrawal, Ganesh Kumar; Shioda, Seiji; Kouzuma, Yoshiaki; Yonekura, Masami

    2015-08-14

    Lotus ( Nelumbo nucifera Gaertn.) seed proteome has been the focus of our studies, and we have recently established the first proteome dataset for its mature seed endosperm. The current study unravels the immature endosperm, as well as the embryo proteome, to provide a comprehensive dataset of the lotus seed proteins and a comparison between the mature and immature endosperm tissues across the seed's development. One-dimensional gel electrophoresis (SDS-PAGE) linked with tandem mass spectrometry provided a protein inventory of the immature endosperm (122 non-redundant proteins) and embryo (141 non-redundant proteins) tissues. Comparing with the previous mature endosperm dataset (66 non-redundant proteins), a total of 206 non-redundant proteins were identified across all three tissues of the lotus seed. Results revealed some significant differences in proteome composition between the three lotus seed tissues, most notably between the mature endosperm and its immature developmental stage shifting the proteins from nutrient production to nutrient storage.

  1. Genome-wide association mapping and biochemical markers reveal that seed ageing and longevity are intricately affected by genetic background and developmental and environmental conditions in barley.

    Science.gov (United States)

    Nagel, Manuela; Kranner, Ilse; Neumann, Kerstin; Rolletschek, Hardy; Seal, Charlotte E; Colville, Louise; Fernández-Marín, Beatriz; Börner, Andreas

    2015-06-01

    Globally, over 7.4 million accessions of crop seeds are stored in gene banks, and conservation of genotypic variation is pivotal for breeding. We combined genetic and biochemical approaches to obtain a broad overview of factors that influence seed storability and ageing in barley (Hordeum vulgare). Seeds from a germplasm collection of 175 genotypes from four continents grown in field plots with different nutrient supply were subjected to two artificial ageing regimes. Genome-wide association mapping revealed 107 marker trait associations, and hence, genotypic effects on seed ageing. Abiotic and biotic stresses were found to affect seed longevity. To address aspects of abiotic, including oxidative, stress, two major antioxidant groups were analysed. No correlation was found between seed deterioration and the lipid-soluble tocochromanols, nor with oil, starch and protein contents. Conversely, the water-soluble glutathione and related thiols were converted to disulphides, indicating a strong shift towards more oxidizing intracellular conditions, in seeds subjected to long-term dry storage at two temperatures or to two artificial ageing treatments. The data suggest that intracellular pH and (bio)chemical processes leading to seed deterioration were influenced by the type of ageing or storage. Moreover, seed response to ageing or storage treatment appears to be significantly influenced by both maternal environment and genetic background. © 2014 John Wiley & Sons Ltd.

  2. Isotope labeling-based quantitative proteomics of developing seeds of castor oil seed (Ricinus communis L.)

    DEFF Research Database (Denmark)

    Nogueira, Fábio C S; Palmisano, Giuseppe; Schwämmle, Veit

    2013-01-01

    In this study, we used a mass spectrometry-based quantification approach employing isotopic (ICPL) and isobaric (iTRAQ) labeling to investigate the pattern of protein deposition during castor oil seed (Ricinus communis L.) development, including that of proteins involved in fatty acid metabolism...... give important insights into certain aspects of the biology of castor oil seed development such as carbon flow, anabolism, and catabolism of fatty acid and the pattern of deposition of SSPs, toxins, and allergens such as ricin and 2S albumins. We also found, for the first time, some genes of SSP...... could be mapped to extant castor gene models, considerably expanding the number of proteins so far identified from developing castor seeds. Cluster validation and statistical analysis resulted in 975 protein trend patterns and the relative abundance of 618 proteins. The results presented in this work...

  3. Proteomic analysis of lettuce seed germination and thermoinhibition by sampling of individual seeds at germination and removal of storage proteins by polyethylene glycol fractionation

    DEFF Research Database (Denmark)

    Wang, Wei-Qing; Song, Bin-Yan; Deng, Zhi-Jun

    2015-01-01

    Germination and thermoinhibition in lettuce (Lactuca sativa ‘Jianyexianfeng No. 1’) seeds were investigated by a proteomic comparison among dry seeds, g1erminated seeds at 15°C, at 15°C after imbibition at 25°C for 48 h, or at 25°C in KNO3 (all sampled individually at germination), and ungerminated......-dimensional gels. A total of 108 protein spots were identified to change more than 2-fold (P , 0.05) in abundance in at least one germination treatment. Nineteen proteins increasing and one protein decreasing in abundance during germination had higher abundance in germinated 15°C, 15°C after imbibition at 25°C...... to lettuce seed germination and thermoinhibition. Accumulation of three proteins and expression of five genes participating in the mevalonate (MVA) pathway of isoprenoid biosynthesis correlated positively with seed germinability. Inhibition of this pathway by lovastatin delayed seed germination and increased...

  4. The Red Queen and the seed bank: pathogen resistance of ex situ and in situ conserved barley.

    Science.gov (United States)

    Jensen, Helen R; Dreiseitl, Antonín; Sadiki, Mohammed; Schoen, Daniel J

    2012-06-01

    Plant geneticists have proposed that the dynamic conservation of crop plants in farm environments (in situ conservation) is complementary to static conservation in seed banks (ex situ conservation) because it may help to ensure adaptation to changing conditions. Here, we test whether collections of a traditional variety of Moroccan barley (Hordeum vulgare ssp. vulgare) conserved ex situ showed differences in qualitative and quantitative resistance to the endemic fungal pathogen, Blumeria graminis f.sp. hordei, compared to collections that were continuously cultivated in situ. In detached-leaf assays for qualitative resistance, there were some significant differences between in situ and ex situ conserved collections from the same localities. Some ex situ conserved collections showed lower resistance levels, while others showed higher resistance levels than their in situ conserved counterparts. In field trials for quantitative resistance, similar results were observed, with the highest resistance observed in situ. Overall, this study identifies some cases where the Red Queen appears to drive the evolution of increased resistance in situ. However, in situ conservation does not always result in improved adaptation to pathogen virulence, suggesting a more complex evolutionary scenario, consistent with several published examples of plant-pathogen co-evolution in wild systems.

  5. Protection against post-irradiation oxygen-dependent damage in barley seeds by catalase and hydrogen peroxide: probable radiation chemistry

    International Nuclear Information System (INIS)

    Singh, S.P.; Kesavan, P.C.

    1990-01-01

    Influence of varying concentration of catalase and H 2 O 2 administered individually and in combination treatment during post-hydration on the oxygen-dependent and -independent pathways of damage was assessed in dry barley seeds irradiated in vacuo with 350 Gy of 60 Co gammarays. Both catalase (100 to 500 units/ml) and H 2 O 2 (0.001 to 0.1 mM) afforded significant radioprotection against the post-irradiation O 2 -dependent damage. However, a combination treatment (300 units/ml of catalase and 0.01 mM of H 2 O 2 ) afforded significantl y more protection than either of the additives individually. None of the concentrations of catalase exerted any effect on the O 2 -independent pathway, whereas H 2 O 2 at higher concentrations (1 and 10 mM) significantly potentiated both the O 2 -dependent as well as the -independent components of radiation damage. These observations are better explicable in terms of radiation chemistry. (author). 16 refs., 3 tabs

  6. 26 kDa endochitinase from barley seeds: an interaction of the ionizable side chains essential for catalysis

    DEFF Research Database (Denmark)

    Ohnishi, Tsuneo; Juffer, André H; Tamoi, Masahiro

    2005-01-01

    To explore the structure essential for the catalysis in 26 kDa endochitinase from barley seeds, we calculated theoretical pKa values of the ionizable groups based on the crystal structure, and then the roles of ionizable side chains located near the catalytic residue were examined by site......-directed mutagenesis. The pKa value calculated for Arg215, which is located at the bottom of the catalytic cleft, is abnormally high (>20.0), indicating that the guanidyl group may interact strongly with nearby charges. No enzymatic activity was found in the Arg215-mutated chitinase (R215A) produced by the Escherichia...... coli expression system. The transition temperature of thermal unfolding (T(m)) of R215A was lower than that of the wild type protein by about 6.2 degrees C. In the crystal structure, the Arg215 side chain is in close proximity to the Glu203 side chain, whose theoretical pKa value was found...

  7. Integrated transcriptomics and proteomics analysis of storage protein composition in developing barley grain to improve nutritional profile

    DEFF Research Database (Denmark)

    Kaczmarczyk, Agnieszka Ewa; Dionisio, Giuseppe; Renaut, Jenny

    2012-01-01

    The aim of the study was to understand the molecular and biochemical mechanisms underpinning the effect of nitrogen (N) on barley (Hordeum vulgare) storage protein production (hordeins) during grain filling. Using a combination of advanced biochemistry methods, we could comprehensively describe c...

  8. HPLC bottom-up MS-based proteomics for mapping of specific proteins in several European spring barley varieties

    Czech Academy of Sciences Publication Activity Database

    Flodrová, Dana; Benkovská, Dagmar; Laštovičková, Markéta; Bobálová, Janette

    2015-01-01

    Roč. 73, č. 1 (2015), s. 71-77 ISSN 0361-0470 R&D Projects: GA ČR(CZ) GPP503/12/P395 Institutional support: RVO:68081715 Keywords : barley * gel electrophoresis * MALDI - TOF / TOF MS * protein profile * RP liquid chromatography Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 0.492, year: 2015

  9. HPLC bottom-up MS-based proteomics for mapping of specific proteins in several European spring barley varieties

    Czech Academy of Sciences Publication Activity Database

    Flodrová, Dana; Benkovská, Dagmar; Laštovičková, Markéta; Bobálová, Janette

    2015-01-01

    Roč. 73, č. 1 (2015), s. 71-77 ISSN 0361-0470 R&D Projects: GA ČR(CZ) GPP503/12/P395 Institutional support: RVO:68081715 Keywords : barley * gel electrophoresis * MALDI-TOF/TOF MS * protein profile * RP liquid chromatography Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 0.492, year: 2015

  10. A combined proteome and transcriptome analysis of developing Medicago truncatula seeds: evidence for metabolic specialization of maternal and filial tissues

    OpenAIRE

    Gallardo, Karine; Firnhaber, Christian; Zuber, Helene; Héricher, Delphine; Belghazi, Maya; Henry, Celine; Küster, Helge; Thompson, Richard

    2007-01-01

    A comparative study of proteome and transcriptome changes during Medicago truncatula (cultivar Jemalong) seed development has been carried out. Transcript and protein profiles were parallel across the time course for 50% of the comparisons made, but divergent patterns were also observed, indicative of post-transcriptional events. These data, combined with the analysis of transcript and protein distribution in the isolated seed coat, endosperm, and embryo, demonstrated the major contribution m...

  11. Cy5 maleimide labelling for sensitive detection of free thiols in native protein extracts: identification of seed proteins targeted by barley thioredoxin h isoforms

    DEFF Research Database (Denmark)

    Maeda, K.; Finnie, Christine; Svensson, Birte

    2004-01-01

    Barley thioredoxin h isoforms HvTrxh1 and HvTrxh2 differ in temporal and spatial distribution and in kinetic properties. Target proteins of HvTrxh1 and HvTrxh2 were identified in mature seeds and in seeds after 72 h of germination. Improvement of the established method for identification of thior......Barley thioredoxin h isoforms HvTrxh1 and HvTrxh2 differ in temporal and spatial distribution and in kinetic properties. Target proteins of HvTrxh1 and HvTrxh2 were identified in mature seeds and in seeds after 72 h of germination. Improvement of the established method for identification...... of thioredoxin-targeted proteins based on two-dimensional electrophoresis and fluorescence labelling of thiol groups was achieved by application of a highly sensitive Cy5 maleimide dye and large-format two-dimensional gels, resulting in a 10-fold increase in the observed number of labelled protein spots...

  12. The effects of gamma irradiation on the leaching of reducing sugars, inorganic phosphate and enzymes from barley seeds during germination in water

    International Nuclear Information System (INIS)

    Kurobane, I.; Yamaguchi, H.; Sander, C.; Nilan, R.A.

    1979-01-01

    Gamma irradiation enhanced the leaching of reducing sugars from barley seeds into the water in which the seeds were shaken. Treatments prior to shaking in water, such as overnight soaking in water at 5 0 C and subsequent germination in Petri dishes for 1 or 2 days at 20 0 C, showed pronounced effects on the leaching. The highest effect, which was obtained at 500 krad irradiation, was four times higher than that of the non-irradiated control. Gamma irradiation also stimulated the leaching of inorganic phosphate and slightly that of amylases from barley seeds. When seeds from which the embryos has been removed were shaken into water, no stimulating effect on the leaching of sugars was noted. These results, combined with the irradiation effect on the embryo, suggest that the stimulated leaching of reducing sugars is due to the extreme difference in sensitivity to gamma irradiation between the production of reducing sugars in the endosperm and the development and growth of the embryo. (author)

  13. Dynamic Proteomics Emphasizes the Importance of Selective mRNA Translation and Protein Turnover during Arabidopsis Seed Germination*

    Science.gov (United States)

    Galland, Marc; Huguet, Romain; Arc, Erwann; Cueff, Gwendal; Job, Dominique; Rajjou, Loïc

    2014-01-01

    During seed germination, the transition from a quiescent metabolic state in a dry mature seed to a proliferative metabolic state in a vigorous seedling is crucial for plant propagation as well as for optimizing crop yield. This work provides a detailed description of the dynamics of protein synthesis during the time course of germination, demonstrating that mRNA translation is both sequential and selective during this process. The complete inhibition of the germination process in the presence of the translation inhibitor cycloheximide established that mRNA translation is critical for Arabidopsis seed germination. However, the dynamics of protein turnover and the selectivity of protein synthesis (mRNA translation) during Arabidopsis seed germination have not been addressed yet. Based on our detailed knowledge of the Arabidopsis seed proteome, we have deepened our understanding of seed mRNA translation during germination by combining two-dimensional gel-based proteomics with dynamic radiolabeled proteomics using a radiolabeled amino acid precursor, namely [35S]-methionine, in order to highlight de novo protein synthesis, stability, and turnover. Our data confirm that during early imbibition, the Arabidopsis translatome keeps reflecting an embryonic maturation program until a certain developmental checkpoint. Furthermore, by dividing the seed germination time lapse into discrete time windows, we highlight precise and specific patterns of protein synthesis. These data refine and deepen our knowledge of the three classical phases of seed germination based on seed water uptake during imbibition and reveal that selective mRNA translation is a key feature of seed germination. Beyond the quantitative control of translational activity, both the selectivity of mRNA translation and protein turnover appear as specific regulatory systems, critical for timing the molecular events leading to successful germination and seedling establishment. PMID:24198433

  14. Barley Seed Germination/Root Elongation Toxicity Test For Evaluation Of Sludge Pre-Treatment

    DEFF Research Database (Denmark)

    Eriksson, Eva; Kusk, Kresten Ole; Barrett Sørensen, Mie

    Application of sludge from wastewater treatment plants (WWTPs) on agricultural land is an approach for nutrient recycling that rise challenges due to recalcitrant and harmful pollutants. In this study we assessed the feasibility of a seed germination test to evaluate sludge ecotoxicity and compared......-treatments. Glyphosate and eco-labelled soil were used as references. Inhibition of germination of seeds exposed to the glyphosate and sludge was registered and thus germination was successfully applied for sludge ecotoxicity assessment, and using the root elongation as the end-point was both faster and more precise...... than the sprout elongation. In comparison of pre-treated raw samples and pre-treaded and subsequently digested sludge the effects of the pre-treatments were limited and hence, the anaerobic digestion in it-self gave the foremost detoxification....

  15. Identification of thioredoxin h-reducible disulphides in proteornes by differential labelling of cysteines: Insight into recognition and regulation of proteins in barley seeds by thioredoxin h

    DEFF Research Database (Denmark)

    Maeda, Kenji; Finnie, Christine; Svensson, Birte

    2005-01-01

    , thioredoxin h-reducible disulphide bonds in individual target proteins are identified using a novel strategy based on differential alkylation of cysteine thiol groups by iodoacetamide and 4-vinylpyridine. This method enables the accessible cysteine side chains in the thiol form (carbamidomethylated...... alpha-amylase/subtilisin inhibitor (BASI) by barley thioredoxin h isoform 1 was analysed. Furthermore, the method was coupled with two-dimensional electrophoresis for convenient thioredoxin h-reducible disulphide identification in barley seed extracts without the need for protein purification...... or production of recombinant proteins. Mass shifts of 15 peptides, induced by treatment with thioredoxin h and differential alkylation, identified specific reduction of nine disulphides in BASI, four alpha-amylase/trypsin inhibitors and a protein of unknown function. Two specific disulphides, located...

  16. Identification of thioredoxin h-reducible disulphides in proteornes by differential labelling of cysteines: Insight into recognition and regulation of proteins in barley seeds by thioredoxin h

    DEFF Research Database (Denmark)

    Maeda, Kenji; Finnie, Christine; Svensson, Birte

    2005-01-01

    alpha-amylase/subtilisin inhibitor (BASI) by barley thioredoxin h isoform 1 was analysed. Furthermore, the method was coupled with two-dimensional electrophoresis for convenient thioredoxin h-reducible disulphide identification in barley seed extracts without the need for protein purification...... or production of recombinant proteins. Mass shifts of 15 peptides, induced by treatment with thioredoxin h and differential alkylation, identified specific reduction of nine disulphides in BASI, four alpha-amylase/trypsin inhibitors and a protein of unknown function. Two specific disulphides, located...... structurally close to the alpha-amylase binding surfaces of BASI and alpha-amylase inhibitor BMAI-1 were demonstrated to be reduced to a particularly high extent. For the first time, specificity of thioredoxin h for particular disulphide bonds is demonstrated, providing a basis to study structural aspects...

  17. 26kDa endochitinase from barley seeds: real-time monitoring of the enzymatic reaction and substrate binding experiments using electrospray ionization mass spectrometry

    DEFF Research Database (Denmark)

    Dennhart, Nicole; Weigang, Linda M M; Fujiwara, Maho

    2009-01-01

    A 26 kDa endochitinase from barley seeds was enzymatically characterized exclusively by electrospray ionization mass spectrometry (ESI-MS). At first, oligosaccharide hydrolysis catalyzed by the barley chitinase was monitored in real-time by ESI-MS. The reaction time-course obtained by ESI......-MS monitoring was found to be consistent with the data obtained earlier by HPLC, and the quantitative profile was successfully simulated by kinetic modeling of the enzymatic hydrolysis. It is obvious that the real-time monitoring method by ESI-MS allows a faster and cheaper determination of the chitinase...... of the enzymatic activity in E67Q is definitely caused by a point mutation of Glu67 but not due to partial unfolding of the mutated enzyme. Finally, association constants of enzyme-oligosaccharide complexes were calculated from Scatchard plots obtained by mass spectra. The binding free energy values obtained for E...

  18. 2015 nationwide survey revealed Barley stripe mosaic virus in Korean barley fields

    Science.gov (United States)

    A seed-transmitted virus has consistently caused significant economic damage to barley crops in Korea in recent years, and may be increasing because many farmers save seed for replanting. Because some barley seed is imported, there is the potential for introduction of new seed-transmitted viruses, c...

  19. Proteomic analysis of embryonic proteins synthesized from long-lived mRNAs during germination of rice seeds.

    Science.gov (United States)

    Sano, Naoto; Permana, Hadian; Kumada, Ryota; Shinozaki, Yoshihito; Tanabata, Takanari; Yamada, Tetsuya; Hirasawa, Tadashi; Kanekatsu, Motoki

    2012-04-01

    Dry seeds contain translatable, long-lived mRNAs that are stored during seed maturation. Early studies using transcriptional inhibitors supported the view that protein synthesis during the initial phase of germination occurs on long-lived mRNA templates. Rice seeds were treated with the transcriptional inhibitor actinomycin D (Act D), and the embryonic proteins translated from long-lived mRNAs during germination were identified using a proteomic analysis. De novo transcription was not required for germination of rice seeds, since >80% of seeds germinated when transcription was prevented by treatment with Act D. In contrast, germination was completely inhibited in the presence of cycloheximide, an inhibitor of translation. Thus, de novo protein synthesis is necessary for germination of rice seeds. The proteomic analysis revealed that 20 proteins are up-regulated during germination, even after Act D treatment. Many of the up-regulated proteins are involved in carbohydrate metabolism and cytoskeleton formation. These results indicate that some of the germination-specific proteins involved in energy production and maintenance of cell structure in rice seeds are synthesized from long-lived mRNAs. The timing of translation of eight up-regulated proteins was clearly later than that of the other up-regulated proteins under conditions in which transcription was inhibited by Act D, suggesting that translation of long-lived mRNAs in rice seeds is regulated according to the germination phase.

  20. Proteomic analysis of lettuce seed germination and thermoinhibition by sampling of individual seeds at germination and removal of storage proteins by polyethylene glycol fractionation.

    Science.gov (United States)

    Wang, Wei-Qing; Song, Bin-Yan; Deng, Zhi-Jun; Wang, Yue; Liu, Shu-Jun; Møller, Ian Max; Song, Song-Quan

    2015-04-01

    Germination and thermoinhibition in lettuce (Lactuca sativa 'Jianyexianfeng No. 1') seeds were investigated by a proteomic comparison among dry seeds, germinated seeds at 15°C, at 15°C after imbibition at 25°C for 48 h, or at 25°C in KNO3 (all sampled individually at germination), and ungerminated seeds at 25°C, a thermoinhibitory temperature. Before two-dimensional gel electrophoresis analysis, storage proteins (greater than 50% of total extractable protein) were removed by polyethylene glycol precipitation, which significantly improved the detection of less abundant proteins on two-dimensional gels. A total of 108 protein spots were identified to change more than 2-fold (Pseeds than in ungerminated 25°C seeds. Gene expression of 12 of those proteins correlated well with the protein accumulation. Methionine metabolism, ethylene production, lipid mobilization, cell elongation, and detoxification of aldehydes were revealed to be potentially related to lettuce seed germination and thermoinhibition. Accumulation of three proteins and expression of five genes participating in the mevalonate (MVA) pathway of isoprenoid biosynthesis correlated positively with seed germinability. Inhibition of this pathway by lovastatin delayed seed germination and increased the sensitivity of germination to abscisic acid. MVA pathway-derived products, cytokinins, partially reversed the lovastatin inhibition of germination and released seed thermoinhibition at 25°C. We conclude that the MVA pathway for isoprenoid biosynthesis is involved in lettuce seed germination and thermoinhibition. © 2015 American Society of Plant Biologists. All Rights Reserved.

  1. Deciphering Mineral Homeostasis in Barley Seed Transfer Cells at Transcriptional Level.

    Directory of Open Access Journals (Sweden)

    Behrooz Darbani

    Full Text Available In addition to the micronutrient inadequacy of staple crops for optimal human nutrition, a global downtrend in crop-quality has emerged from intensive breeding for yield. This trend will be aggravated by elevated levels of the greenhouse gas carbon dioxide. Therefore, crop biofortification is inevitable to ensure a sustainable supply of minerals to the large part of human population who is dietary dependent on staple crops. This requires a thorough understanding of plant-mineral interactions due to the complexity of mineral homeostasis. Employing RNA sequencing, we here communicate transfer cell specific effects of excess iron and zinc during grain filling in our model crop plant barley. Responding to alterations in mineral contents, we found a long range of different genes and transcripts. Among them, it is worth to highlight the auxin and ethylene signaling factors Arfs, Abcbs, Cand1, Hps4, Hac1, Ecr1, and Ctr1, diurnal fluctuation components Sdg2, Imb1, Lip1, and PhyC, retroelements, sulfur homeostasis components Amp1, Hmt3, Eil3, and Vip1, mineral trafficking components Med16, Cnnm4, Aha2, Clpc1, and Pcbps, and vacuole organization factors Ymr155W, RabG3F, Vps4, and Cbl3. Our analysis introduces new interactors and signifies a broad spectrum of regulatory levels from chromatin remodeling to intracellular protein sorting mechanisms active in the plant mineral homeostasis. The results highlight the importance of storage proteins in metal ion toxicity-resistance and chelation. Interestingly, the protein sorting and recycling factors Exoc7, Cdc1, Sec23A, and Rab11A contributed to the response as well as the polar distributors of metal-transporters ensuring the directional flow of minerals. Alternative isoform switching was found important for plant adaptation and occurred among transcripts coding for identical proteins as well as transcripts coding for protein isoforms. We also identified differences in the alternative-isoform preference between

  2. Deciphering Mineral Homeostasis in Barley Seed Transfer Cells at Transcriptional Level.

    Science.gov (United States)

    Darbani, Behrooz; Noeparvar, Shahin; Borg, Søren

    2015-01-01

    In addition to the micronutrient inadequacy of staple crops for optimal human nutrition, a global downtrend in crop-quality has emerged from intensive breeding for yield. This trend will be aggravated by elevated levels of the greenhouse gas carbon dioxide. Therefore, crop biofortification is inevitable to ensure a sustainable supply of minerals to the large part of human population who is dietary dependent on staple crops. This requires a thorough understanding of plant-mineral interactions due to the complexity of mineral homeostasis. Employing RNA sequencing, we here communicate transfer cell specific effects of excess iron and zinc during grain filling in our model crop plant barley. Responding to alterations in mineral contents, we found a long range of different genes and transcripts. Among them, it is worth to highlight the auxin and ethylene signaling factors Arfs, Abcbs, Cand1, Hps4, Hac1, Ecr1, and Ctr1, diurnal fluctuation components Sdg2, Imb1, Lip1, and PhyC, retroelements, sulfur homeostasis components Amp1, Hmt3, Eil3, and Vip1, mineral trafficking components Med16, Cnnm4, Aha2, Clpc1, and Pcbps, and vacuole organization factors Ymr155W, RabG3F, Vps4, and Cbl3. Our analysis introduces new interactors and signifies a broad spectrum of regulatory levels from chromatin remodeling to intracellular protein sorting mechanisms active in the plant mineral homeostasis. The results highlight the importance of storage proteins in metal ion toxicity-resistance and chelation. Interestingly, the protein sorting and recycling factors Exoc7, Cdc1, Sec23A, and Rab11A contributed to the response as well as the polar distributors of metal-transporters ensuring the directional flow of minerals. Alternative isoform switching was found important for plant adaptation and occurred among transcripts coding for identical proteins as well as transcripts coding for protein isoforms. We also identified differences in the alternative-isoform preference between the treatments

  3. ITRAQ-Based Proteomic Analysis of the Metabolic Mechanisms Behind Lipid Accumulation and Degradation during Peanut Seed Development and Postgermination.

    Science.gov (United States)

    Wang, Yun; Ma, Xingli; Zhang, Xingguo; He, Xiaoyan; Li, Hemin; Cui, Dangqun; Yin, Dongmei

    2016-12-02

    Peanut seeds have a high oil content making them an important oil crop. During development and germination, seeds undergo complex dynamic and physiological changes. Changes in lipid metabolism and underlying mechanisms during seed development have been studied extensively by DNA and RNA sequencing; however, there are few studies on dynamic changes of proteomics during peanut seed development and germination. In this study, proteomic analyses were carried out 20, 40, 60, and 80 days after pollination and 5, 10, 20, and 30 days after germination using isobaric tags for relative and absolute quantitation (iTRAQ) technology to determine the protein profiles of lipid dynamics during peanut seed development and postgermination. A total of 5712 of 8505 proteins were identified, quantified, and divided into 23 functional groups, the largest of which was metabolism-related. Further analyses of the proteins and their pathways revealed initiation of fatty acid accumulation at early stages after flowering, while lipid degradation occurred largely through the lipoxygenase-dependent pathway. Protein expression patterns related to lipid accumulation and degradation were also verified at transcript levels using quantitative real-time polymerase chain reaction. The proteome profiles determined here will significantly enrich our understanding of the process of lipid accumulation and degradation and the dynamic changes in metabolic networks during peanut development.

  4. Proteomic and Physiological Analysis of the Response of Oat (Avena sativa) Seeds to Heat Stress under Different Moisture Conditions.

    Science.gov (United States)

    Chen, Lingling; Chen, Quanzhu; Kong, Lingqi; Xia, Fangshan; Yan, Huifang; Zhu, Yanqiao; Mao, Peisheng

    2016-01-01

    Seeds lose their viability when they are exposed to high temperature and moisture content (MC) during storage. The expression and metabolism of proteins plays a critical role in seed resistance to heat stress. However, the proteome response to heat stress in oat (Avena sativa) seeds during storage has not been revealed. To understand mechanisms of heat stress acclimation and tolerance in oat seeds, an integrated physiological and comparative proteomic analysis was performed on oat seeds with different MC during heat stress. Oat seeds with 10% and 16% MC were subjected to high temperatures (35, 45, and 50°C) for 24 and 2 days, respectively, and changes in physiological and biochemical characteristics were analyzed. The results showed that seed vigor decreased significantly with temperature increase from 35 to 50°C. Also, the proline content in 10% MC seeds decreased significantly (p heat treatment from 35 to 50°C. There were no significant differences in malondialdehyde content in 10% MC seeds with temperature from 35 to 50°C, but a significant (p heat shock proteins and two ATP synthases, have important roles in the mobilization of carbohydrates and energy, and in the balance between synthesis and degradation of other proteins during seed deterioration. The up-regulation of argininosuccinate synthase participated in proline biosynthesis at 16% MC, which is important for maintaining reactive oxygen species homeostasis for the resistance of heat stress. In summary, heat-responsive protein species and mitochondrial respiratory metabolism were sensitive to high temperature and MC treatment. These studies provide a new insight into acclimation and tolerance to heat stress in oat seeds.

  5. Phytotoxicity of Chitosan and SiO2 Nanoparticles to Seed Germination of Wheat (Triticum aestivum L. and Barley (Hordeum vulgare L. Plants

    Directory of Open Access Journals (Sweden)

    Faride BEHBOUDI

    2017-06-01

    Full Text Available Plants such as wheat and barley that are strategically important crops need to be considered to develop a comprehensive toxicity profile for nanoparticles (NPs. The present study was aimed to investigate the effects of chitosan and SiO2 NPs on wheat and barley plants. Two factorial experiments (seeds priming and direct exposure were performed based on a completely randomized design in four replications. Results showed that the seeds priming with the NPs had not significant effect on germination parameters such as Germination Percentage (GP, Germination Rate (GR, Germination Value (GV, Mean Germination Time (MGT, Pick Value (PV and Mean Daily Germination (MDG. In contrast, exposure of the seeds to the NPs had significant effects on these parameters. In both experiments, treatments had significant effects on shoot, seedling, root length, fresh and dry weight, as well as vigor indexes as compared to the control. In most traits, the best concentration of NPs was 30 ppm, whereas applications of the NPs with 90 ppm displayed adverse effects on majority of the studied traits. According to these results, selectivity in applications of NPs with suitable concentration and method is essential for different plant species.

  6. Evidence for a slow-turnover form of the Ca2+-independent phosphoenolpyruvate carboxylase kinase in the aleurone-endosperm tissue of germinating barley seeds

    Science.gov (United States)

    Osuna; Pierre; Gonzalez; Alvarez; Cejudo; Echevarria; Vidal

    1999-02-01

    Phosphoenolpyruvate carboxylase (PEPC) activity was detected in aleurone-endosperm extracts of barley (Hordeum vulgare) seeds during germination, and specific anti-sorghum (Sorghum bicolor) C4 PEPC polyclonal antibodies immunodecorated constitutive 103-kD and inducible 108-kD PEPC polypeptides in western analysis. The 103- and 108-kD polypeptides were radiolabeled in situ after imbibition for up to 1.5 d in 32P-labeled inorganic phosphate. In vitro phosphorylation by a Ca2+-independent PEPC protein kinase (PK) in crude extracts enhanced the enzyme's velocity and decreased its sensitivity to L-malate at suboptimal pH and [PEP]. Isolated aleurone cell protoplasts contained both phosphorylated PEPC and a Ca2+-independent PEPC-PK that was partially purified by affinity chromatography on blue dextran-agarose. This PK activity was present in dry seeds, and PEPC phosphorylation in situ during imbibition was not affected by the cytosolic protein-synthesis inhibitor cycloheximide, by weak acids, or by various pharmacological reagents that had proven to be effective blockers of the light signal transduction chain and PEPC phosphorylation in C4 mesophyll protoplasts. These collective data support the hypothesis that this Ca2+-independent PEPC-PK was formed during maturation of barley seeds and that its presumed underlying signaling elements were no longer operative during germination.

  7. Quantitative Proteomic Analysis of Wheat Seeds during Artificial Ageing and Priming Using the Isobaric Tandem Mass Tag Labeling.

    Directory of Open Access Journals (Sweden)

    Yangyong Lv

    Full Text Available Wheat (Triticum aestivum L. is an important crop worldwide. The physiological deterioration of seeds during storage and seed priming is closely associated with germination, and thus contributes to plant growth and subsequent grain yields. In this study, wheat seeds during different stages of artificial ageing (45°C; 50% relative humidity; 98%, 50%, 20%, and 1% Germination rates and priming (hydro-priming treatment were subjected to proteomics analysis through a proteomic approach based on the isobaric tandem mass tag labeling. A total of 162 differentially expressed proteins (DEPs mainly involved in metabolism, energy supply, and defense/stress responses, were identified during artificial ageing and thus validated previous physiological and biochemical studies. These DEPs indicated that the inability to protect against ageing leads to the incremental decomposition of the stored substance, impairment of metabolism and energy supply, and ultimately resulted in seed deterioration. Kyoto Encyclopedia of Genes and Genomes (KEGG analysis revealed that the up-regulated proteins involved in seed ageing were mainly enriched in ribosome, whereas the down-regulated proteins were mainly accumulated in energy supply (starch and sucrose metabolism and stress defense (ascorbate and aldarate metabolism. Proteins, including hemoglobin 1, oleosin, agglutinin, and non-specific lipid-transfer proteins, were first identified in aged seeds and might be regarded as new markers of seed deterioration. Of the identified proteins, 531 DEPs were recognized during seed priming compared with unprimed seeds. In contrast to the up-regulated DEPs in seed ageing, several up-regulated DEPs in priming were involved in energy supply (tricarboxylic acid cycle, glycolysis, and fatty acid oxidation, anabolism (amino acids, and fatty acid synthesis, and cell growth/division. KEGG and protein-protein interaction analysis indicated that the up-regulated proteins in seed priming were

  8. Proteomic and Epigenetic Analysis of Rice after Seed Spaceflight and Ground-Base Ion Radiations

    Science.gov (United States)

    Wang, Wei; Sun, Yeqing; Peng, Yuming; Zhao, Qian; Wen, Bin; Yang, Jun

    Highly ionizing radiation (HZE) in space is considered as main factor causing biological effects to plant seeds. In previous work, we compared the proteomic profiles of rice plants growing after seed spaceflights to ground controls by two-dimensional difference gel electrophoresis (2-D DIGE) with mass spectrometry and found that the protein expression profiles were changed and differentially expressed proteins participated in most of the biological processes of rice. To further evaluate the dosage effects of space radiation and compare between low- and high-dose ion effects, we carried out three independent ground-base ionizing radiation experiments with different cumulative doses (low-dose range: 2~1000mGy, high-dose range: 2000~20000mGy) to rice seeds and performed proteomic analysis of seedlings. We found that protein expression profiles showed obvious boundaries between low- and high-dose radiation groups. Rates of differentially expressed proteins presented a dose-dependent effect, it reached the highest value at 2000mGy dosage point in all three radiation experiments coincidently; while proteins responded to low-dose radiations preferred to change their expressions at the minimum dosage (2mGy). Proteins participating in rice biological processes also responded differently between low- and high-dose radiations: proteins involved in energy metabolism and photosynthesis tended to be regulated after low-dose radiations while stress responding, protein folding and cell redox homeostasis related proteins preferred to change their expressions after high-dose radiations. By comparing the proteomic profiles between ground-base radiations and spaceflights, it was worth noting that ground-base low-dose ion radiation effects shared similar biological effects as space environment. In addition, we discovered that protein nucleoside diphosphate kinase 1 (NDPK1) showed obvious increased regulation after spaceflights and ion radiations. NDPK1 catalyzes nucleotide metabolism

  9. Proteome analysis of Norway maple (Acer platanoides L. seeds dormancy breaking and germination: influence of abscisic and gibberellic acids

    Directory of Open Access Journals (Sweden)

    Pawłowski Tomasz A

    2009-05-01

    Full Text Available Abstract Background Seed dormancy is controlled by the physiological or structural properties of a seed and the external conditions. It is induced as part of the genetic program of seed development and maturation. Seeds with deep physiological embryo dormancy can be stimulated to germinate by a variety of treatments including cold stratification. Hormonal imbalance between germination inhibitors (e.g. abscisic acid and growth promoters (e.g. gibberellins is the main cause of seed dormancy breaking. Differences in the status of hormones would affect expression of genes required for germination. Proteomics offers the opportunity to examine simultaneous changes and to classify temporal patterns of protein accumulation occurring during seed dormancy breaking and germination. Analysis of the functions of the identified proteins and the related metabolic pathways, in conjunction with the plant hormones implicated in seed dormancy breaking, would expand our knowledge about this process. Results A proteomic approach was used to analyse the mechanism of dormancy breaking in Norway maple seeds caused by cold stratification, and the participation of the abscisic (ABA and gibberellic (GA acids. Forty-four proteins showing significant changes were identified by mass spectrometry. Of these, eight spots were identified as water-responsive, 18 spots were ABA- and nine GA-responsive and nine spots were regulated by both hormones. The classification of proteins showed that most of the proteins associated with dormancy breaking in water were involved in protein destination. Most of the ABA- and GA-responsive proteins were involved in protein destination and energy metabolism. Conclusion In this study, ABA was found to mostly down-regulate proteins whereas GA up-regulated proteins abundance. Most of the changes were observed at the end of stratification in the germinated seeds. This is the most active period of dormancy breaking when seeds pass from the quiescent

  10. Comparative proteome analysis of embryo and endosperm reveals central differential expression proteins involved in wheat seed germination.

    Science.gov (United States)

    He, Miao; Zhu, Chong; Dong, Kun; Zhang, Ting; Cheng, Zhiwei; Li, Jiarui; Yan, Yueming

    2015-04-08

    Wheat seeds provide a staple food and an important protein source for the world's population. Seed germination is vital to wheat growth and development and directly affects grain yield and quality. In this study, we performed the first comparative proteomic analysis of wheat embryo and endosperm during seed germination. The proteomic changes in embryo and endosperm during the four different seed germination stages of elite Chinese bread wheat cultivar Zhengmai 9023 were first investigated. In total, 74 and 34 differentially expressed protein (DEP) spots representing 63 and 26 unique proteins were identified in embryo and endosperm, respectively. Eight common DEP were present in both tissues, and 55 and 18 DEP were specific to embryo and endosperm, respectively. These identified DEP spots could be sorted into 13 functional groups, in which the main group was involved in different metabolism pathways, particularly in the reserves necessary for mobilization in preparation for seed germination. The DEPs from the embryo were mainly related to carbohydrate metabolism, proteometabolism, amino acid metabolism, nucleic acid metabolism, and stress-related proteins, whereas those from the endosperm were mainly involved in protein storage, carbohydrate metabolism, inhibitors, stress response, and protein synthesis. During seed germination, both embryo and endosperm had a basic pattern of oxygen consumption, so the proteins related to respiration and energy metabolism were up-regulated or down-regulated along with respiration of wheat seeds. When germination was complete, most storage proteins from the endosperm began to be mobilized, but only a small amount was degraded during germination. Transcription expression of six representative DEP genes at the mRNA level was consistent with their protein expression changes. Wheat seed germination is a complex process with imbibition, stirring, and germination stages, which involve a series of physiological, morphological, and

  11. Leaf proteomic analysis of three rice heritable mutants after seed space flight

    Science.gov (United States)

    Wang, W.; Gu, D. P.; Zheng, Q.; Sun, Y. Q.

    2008-09-01

    To explore the proteomic changes of heritable variant rice plants induced by space environment, three mutants were selected after seed space flight by comparing the phenotypes with their on-ground controls. R955 grew more tillers and became dwarf, 971-5 acquired higher grain yield and better stress resistance, 974-5 matured earlier. Leaf proteins were extracted during the tiller development and analyzed by two-dimensional polyacrylamide gel electrophoresis (2-D PAGE). More than 300 proteins were detected as reproducible Coomassie Brilliant Blue stained spots with p I values from around 4.0 to 7.0. Five proteins that changed significantly over the controls were identified by matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF MS). The main functions of these proteins were photosynthesis, stress defense and metabolism including RuBisCO activase, glycine rich RNA binding protein, peroxidase, triosephosphate isomerase and phosphoenolpyruvate carboxylase, which might be probably associated with the altered phenotypes. Quantitative analyses were also applied: less total protein spots and more down-regulated protein spots were detected in the mutants, indicating there might be a major loss of protein in heritable variant rice plants after seed space flight. These results may provide new insights to understand the biological effects of space environment to rice.

  12. Proteomic profile of the nucellus of castor bean (Ricinus communis L.) seeds during development.

    Science.gov (United States)

    Nogueira, Fábio C S; Palmisano, Giuseppe; Soares, Emanoella L; Shah, Mohibullah; Soares, Arlete A; Roepstorff, Peter; Campos, Francisco A P; Domont, Gilberto B

    2012-03-16

    In this study, we performed a proteomic analysis of nucellus from two developmental stages of Ricinus communis seeds by a GeLC-MS/MS approach, using of a high resolution orbitrap mass spectrometer, which resulted in the identification of a total of 766 proteins that were grouped into 553 protein groups. The distribution of the identified proteins in stages III and IV into different Gene Ontology categories was similar, with a remarkable abundance of proteins associated with the protein synthesis machinery of cells, as well as several classes of proteins involved in protein degradation, particularly of peptidases associated with programmed cell death. Consistent with the role of the nucellus in mediating nutrient transfer from maternal tissues to the endosperm and embryo, a significant proportion of the identified proteins are related to amino acid metabolism, but none of the identified proteins are known to have a role as storage proteins. Moreover for the first time, ricin isoforms were identified in tissues other than seed endosperm. Results are discussed in the context of the spatial and temporal distribution of the identified proteins within the nucellar cell layers. Copyright © 2012 Elsevier B.V. All rights reserved.

  13. Proteomic Analysis of Lettuce Seed Germination and Thermoinhibition by Sampling of Individual Seeds at Germination and Removal of Storage Proteins by Polyethylene Glycol Fractionation1

    Science.gov (United States)

    Song, Bin-Yan; Deng, Zhi-Jun; Wang, Yue; Liu, Shu-Jun; Møller, Ian Max; Song, Song-Quan

    2015-01-01

    Germination and thermoinhibition in lettuce (Lactuca sativa ‘Jianyexianfeng No. 1’) seeds were investigated by a proteomic comparison among dry seeds, germinated seeds at 15°C, at 15°C after imbibition at 25°C for 48 h, or at 25°C in KNO3 (all sampled individually at germination), and ungerminated seeds at 25°C, a thermoinhibitory temperature. Before two-dimensional gel electrophoresis analysis, storage proteins (greater than 50% of total extractable protein) were removed by polyethylene glycol precipitation, which significantly improved the detection of less abundant proteins on two-dimensional gels. A total of 108 protein spots were identified to change more than 2-fold (P germination treatment. Nineteen proteins increasing and one protein decreasing in abundance during germination had higher abundance in germinated 15°C, 15°C after imbibition at 25°C for 48 h, and 25°C in KNO3 seeds than in ungerminated 25°C seeds. Gene expression of 12 of those proteins correlated well with the protein accumulation. Methionine metabolism, ethylene production, lipid mobilization, cell elongation, and detoxification of aldehydes were revealed to be potentially related to lettuce seed germination and thermoinhibition. Accumulation of three proteins and expression of five genes participating in the mevalonate (MVA) pathway of isoprenoid biosynthesis correlated positively with seed germinability. Inhibition of this pathway by lovastatin delayed seed germination and increased the sensitivity of germination to abscisic acid. MVA pathway-derived products, cytokinins, partially reversed the lovastatin inhibition of germination and released seed thermoinhibition at 25°C. We conclude that the MVA pathway for isoprenoid biosynthesis is involved in lettuce seed germination and thermoinhibition. PMID:25736209

  14. [The influence of root excretions of germinating barley seed (Hordeum vulgare L.) on qualitative and quantitative composition of soil organic components].

    Science.gov (United States)

    Volkov, O I

    2010-01-01

    The data from scientific publications on excretory activity of herbs root endings were analyzed, along with the data on the role of polyvalent metals cations in stabilization of humus substances (HS) of soil organic mineral complex. On the base of the analysis a working hypothesis was proposed considering root endings influence on fractional composition of soil organic components. To detect the changes taking place in soil HS, the chromatographic fractionation method was chosen. The soil aggregates stuck to root endings of germinating barley seed were washed off, and the washouts were used as the samples for the analysis. The soil from the weighed portion was dissolved directly with extenuating concentrations of LiCl and Li2SO4 alkaline solution. The fractionation was carried out in a chromatographic column. Some changes were detected in optical density of chernozem and dark-grey forest soil leached out after 1-2 days of barley seeds germination. Besides, the experiment showed that the content of organic carbon in HS changes as well.

  15. Haplotyping, linkage mapping and expression analysis of barley genes regulated by terminal drought stress influencing seed quality

    Directory of Open Access Journals (Sweden)

    Wobus Ulrich

    2011-01-01

    Full Text Available Abstract Background The increasingly narrow genetic background characteristic of modern crop germplasm presents a challenge for the breeding of cultivars that require adaptation to the anticipated change in climate. Thus, high priority research aims at the identification of relevant allelic variation present both in the crop itself as well as in its progenitors. This study is based on the characterization of genetic variation in barley, with a view to enhancing its response to terminal drought stress. Results The expression patterns of drought regulated genes were monitored during plant ontogeny, mapped and the location of these genes was incorporated into a comprehensive barley SNP linkage map. Haplotypes within a set of 17 starch biosynthesis/degradation genes were defined, and a particularly high level of haplotype variation was uncovered in the genes encoding sucrose synthase (types I and II and starch synthase. The ability of a panel of 50 barley accessions to maintain grain starch content under terminal drought conditions was explored. Conclusion The linkage/expression map is an informative resource in the context of characterizing the response of barley to drought stress. The high level of haplotype variation among starch biosynthesis/degradation genes in the progenitors of cultivated barley shows that domestication and breeding have greatly eroded their allelic diversity in current elite cultivars. Prospective association analysis based on core drought-regulated genes may simplify the process of identifying favourable alleles, and help to understand the genetic basis of the response to terminal drought.

  16. A chemometric evaluation of the underlying physical and chemical patterns that support near infrared spectroscopy of barley seeds as a tool for explorative classification of endosperm genes and gene combinations

    DEFF Research Database (Denmark)

    Jacobsen, Susanne; Søndergaard, Ib; Møller, Birthe

    2005-01-01

    revealing pleiotropic gene effects in expression timing that supporting the gene classification. To verify that NIR spectroscopy data represents a physio-chemical fingerprint of the barley seed, physical and chemical spectral components were partially separated by Multiple Scatter Correction......, pleiotropic classification patterns from NIR and chemical data were demonstrated in PCAs and by visual inspection of NIR spectra. Thus PCA classification of NIR-data gives the classical genetic concept, 'pleiotropy', a new operational definition as a fingerprint from a spectroscopic representation...... of the phenome carrying genetic, physical and chemical information. It is concluded that barley seed phenotyping by NIR and chemometrics is a new, reliable tool for characterising the pleiotropic effects of mutant gene combinations and other genotypes in selecting barley for quality in plant breeding. (c) 2005...

  17. Proteome analysis of dormancy-released seeds of Fraxinus mandshurica Rupr. in response to re-dehydration under different conditions.

    Science.gov (United States)

    Zhang, Peng; Liu, Di; Shen, Hailong; Li, Yuhua; Nie, Yuzhe

    2015-03-02

    Desiccation tolerance is the ability of orthodox seeds to achieve equilibrium with atmospheric relative humidity and to survive in this state. Understanding how orthodox seeds respond to dehydration is important for improving quality and long-term storage of seeds under low temperature and drought stress conditions. Long-term storage of seeds is an artificial situation, because in most natural situations a seed that has been shed may not remain in a desiccated state for very long, and if dormant it may undergo repeated cycles of hydration. Different types of seeds are differentially sensitive to desiccation and this directly affects long-term storage. For these reasons, many researchers are investigating loss of desiccation tolerance during orthodox seed development to understand how it is acquired. In this study, the orthodox seed proteome response of Fraxinus mandshurica Rupr. to dehydration (to a relative water content of 10%, which mimics seed dehydration) was investigated under four different conditions viz. 20 °C; 20 °C with silica gel; 1 °C; and 1 °C after pretreatment with Ca2+. Proteins from seeds dehydrated under different conditions were extracted and separated by two-dimensional difference gel electrophoresis (2D-DIGE). A total of 2919 protein spots were detected, and high-resolution 2D-DIGE indicated there were 27 differentially expressed. Seven of these were identified using MALDI TOF/TOF mass spectrometry. Inferences from bioinformatics annotations of these proteins established the possible involvement of detoxifying enzymes, transport proteins, and nucleotide metabolism enzymes in response to dehydration. Of the seven differentially abundant proteins, the amounts of six were down-regulated and one was up-regulated. Also, a putative acyl-coenzyme A oxidase of the glyoxylate cycle increased in abundance. In particular, the presence of kinesin-1, a protein important for regulation and cargo interaction, was up-regulated in seeds exposed to low

  18. Can a genetic correlation with seed mass constrain adaptive evolution of seedling desiccation tolerance in wild barley?

    NARCIS (Netherlands)

    Verhoeven, K.J.F.; Biere, A.; Nevo, E.; Van Damme, J.M.M.

    2004-01-01

    Very young seedlings of wild barley Hordeum spontaneum have the ability to survive extended periods of severe drought. This desiccation tolerance is considered an adaptation to the rain-limited and unpredictable habitats that the species occupies. Genetic variation has been observed for this trait,

  19. A redox-dependent dimerization switch regulates activity and tolerance for reactive oxygen species of barley seed glutathione peroxidase

    DEFF Research Database (Denmark)

    Navrot, Nicolas; Skjoldager, Nicklas; Bunkenborg, Jakob

    2015-01-01

    Monomeric and dimeric forms of recombinant barley (Hordeum vulgare subsp. vulgare) glutathione peroxidase 2 (HvGpx2) are demonstrated to display distinctly different functional properties in vitro. Monomeric HvGpx2 thus has five fold higher catalytic efficiency than the dimer towards tert-butyl h...

  20. Proteome-Level Analysis of Metabolism- and Stress-Related Proteins during Seed Dormancy and Germination in Gnetum parvifolium.

    Science.gov (United States)

    Chang, Ermei; Deng, Nan; Zhang, Jin; Liu, Jianfeng; Chen, Lanzhen; Zhao, Xiulian; Abbas, M; Jiang, Zeping; Shi, Shengqing

    2018-03-21

    Gnetum parvifolium is a rich source of materials for traditional medicines, food, and oil, but little is known about the mechanism underlying its seed dormancy and germination. In this study, we analyzed the proteome-level changes in its seeds during germination using isobaric tags for relative and absolute quantitation. In total, 1,040 differentially expressed proteins were identified, and cluster analysis revealed the distinct time points during which signal transduction and oxidation-reduction activity changed. Gene Ontology analysis showed that "carbohydrate metabolic process" and "response to oxidative stress" were the main enriched terms. Proteins associated with starch degradation and antioxidant enzymes were important for dormancy-release, while proteins associated with energy metabolism and protein synthesis were up-regulated during germination. Moreover, protein-interaction networks were mainly associated with heat-shock proteins. Furthermore, in accord with changes in the energy metabolism- and antioxidant-related proteins, indole-3-acetic acid, Peroxidase, and soluble sugar content increased, and the starch content decreased in almost all six stages of dormancy and germination analyzed (S1-S6). The activity of superoxide dismutase, abscisic acid, and malondialdehyde content increased in the dormancy stages (S1-S3) and then decreased in the germination stages (S4-S6). Our results provide new insights into G. parvifolium seed dormancy and germination at the proteome and physiological levels, with implications for improving seed propagation.

  1. Comparative proteomic analysis of rice after seed ground simulated radiation and spaceflight explains the radiation effects of space environment

    Science.gov (United States)

    Wang, Wei; Shi, Jinming; Liang, Shujian; Lei, Huang; Shenyi, Zhang; Sun, Yeqing

    In previous work, we compared the proteomic profiles of rice plants growing after seed space-flights with ground controls by two-dimensional difference gel electrophoresis (2-D DIGE) and found that the protein expression profiles were changed after seed space environment exposures. Spaceflight represents a complex environmental condition in which several interacting factors such as cosmic radiation, microgravity and space magnetic fields are involved. Rice seed is in the process of dormant of plant development, showing high resistance against stresses, so the highly ionizing radiation (HZE) in space is considered as main factor causing biological effects to seeds. To further investigate the radiation effects of space environment, we performed on-ground simulated HZE particle radiation and compared between the proteomes of seed irra-diated plants and seed spaceflight (20th recoverable satellite) plants from the same rice variety. Space ionization shows low-dose but high energy particle effects, for searching the particle effects, ground radiations with the same low-dose (2mGy) but different liner energy transfer (LET) values (13.3KeV/µm-C, 30KeV/µm-C, 31KeV/µm-Ne, 62.2KeV/µm-C, 500Kev/µm-Fe) were performed; using 2-D DIGE coupled with clustering and principle component analysis (PCA) for data process and comparison, we found that the holistic protein expression patterns of plants irradiated by LET-62.2KeV/µm carbon particles were most similar to spaceflight. In addition, although space environment presents a low-dose radiation (0.177 mGy/day on the satellite), the equivalent simulated radiation dose effects should still be evaluated: radiations of LET-62.2KeV/µm carbon particles with different cumulative doses (2mGy, 20mGy, 200mGy, 2000mGy) were further carried out and resulted that the 2mGy radiation still shared most similar proteomic profiles with spaceflight, confirming the low-dose effects of space radiation. Therefore, in the protein expression level

  2. Characterization of the Microchemical Structure of Seed Endosperm within a Cellular Dimension among Six Barley Varieties with Distinct Degradation Kinetics, Using Ultraspatially Resolved Synchrotron-Based Infrared Synchrotron-Based Infrared

    Energy Technology Data Exchange (ETDEWEB)

    Liu, N.; Yu, P

    2010-01-01

    Barley varieties have similar chemical composition but exhibit different rumen degradation kinetics and nutrient availability. These biological differences may be related to molecular, structural, and chemical makeup among the seed endosperm tissue. No detailed study was carried out. The objectives of this study were: (1) to use a molecular spectroscopy technique, synchrotron-based Fourier transform infrared microspectroscopy (SFTIRM), to determine the microchemical-structural features in seed endosperm tissue of six developed barley varieties; (2) to study the relationship among molecular-structural characteristics, degradation kinetics, and nutrient availability in six genotypes of barley. The results showed that inherent microchemical-structural differences in the endosperm among the six barley varieties were detected by the synchrotron-based analytical technique, SFTIRM, with the univariate molecular spectral analysis. The SFTIRM spectral profiles differed (P < 0.05) among the barley samples in terms of the peak ratio and peak area and height intensities of amides I (ca. 1650 cm{sup -1}) and II (ca. 1550 cm{sup -1}), cellulosic compounds (ca. 1240 cm{sup -1}), CHO component peaks (the first peak at the region ca. 1184-1132 cm{sup -1}, the second peak at ca. 1132-1066 cm{sup -1}, and the third peak at ca. 1066-950 cm{sup -1}). With the SFTIRM technique, the structural characteristics of the cereal seeds were illuminated among different cultivars at an ultraspatial resolution. The structural differences of barley seeds may be one reason for the various digestive behaviors and nutritive values in ruminants. The results show weak correlations between the functional groups spectral data (peak area, height intensities, and ratios) and rumen biodegradation kinetics (rate and extent of nutrient degradation). Weak correlations may indicate that limited variations of these six barley varieties might not be sufficient to interpret the relationship between spectroscopic

  3. Crystal structure of an essential enzyme in seed starch degradation - barley limit dextrinase in complex with cyclodextrins

    DEFF Research Database (Denmark)

    Vester-Christensen, Malene Bech; Abou Hachem, Maher; Svensson, Birte

    2010-01-01

    Barley limit dextrinase [Hordeum vulgare limit dextrinase (HvLD)] catalyzes the hydrolysis of α-1,6 glucosidic linkages in limit dextrins. This activity plays a role in starch degradation during germination and presumably in starch biosynthesis during grain filling. The crystal structures of Hv...... provide new insight into cation sites and the concerted action of the battery of hydrolytic enzymes in starch degradation....

  4. Barley growth and plant mineral content of plant grown from seeds irradiated by low doses of gamma irradiated and cultured on salt media

    International Nuclear Information System (INIS)

    Charbaji, T.; Arabi, M.I.; Jawhar, M.

    2000-02-01

    Seeds of two barley White Arabi (WA) Pakistani PK30163 (PK) were irradiated with three doses 0,15 and 20 Gy of gamma irradiation. Then they were cultured on (Coic-Lesaint) nutrient media containing several concentrations of NaCl (0, 10, 50, and 100 mmol). The irradiation doses did not affect the shoot growth of plants, whereas the combination between 15 Gy and 50 and 100 mmol NaCl decreased significantly the root growth. Doses of 0 and 20 Gy and 10 mmol NaCl had a positive effect on WA variety wet weight. The 20 Gy and 10 and 50 mmol NaCl significantly reduced the wet weight of PK variety. Dry weight of WA variety was decreased, when the seeds were irradiated by 15 Gy and cultured on media containing 10 and 50 mmol NaCl. WA and PK content of Ca ++ increased when weeds were irradiated by 15 Gy (WA) and 20 Gy (PK) and grown on media containing 10 mmol NaCl. The content of Mg ++ and K ++ of 2 varieties were increased, when seeds were cultured on media containing 10 mmol NaCl. Positive relationship was noticed between Na + and Cl - contents and NaCl concentrations in the media. The NaCl concentrations correlated with the irradiation, negatively effected the total N % of the WA variety, whereas in the absence of irradiation, 10 and 50 mmol NaCl had a positive effect on the total N % of PK variety. Similar effects were produced for the last variety with the dose of 15 Gy and NaCl concentrations in the media. Concentration of 100 mmol NaCl positively affect PO4 -- of unirradiated WA variety, but PO -- of all plants of PK variety was increased with 10 and 50 mmol NaCl. The content of SO4 -- of 2 varieties was increased, when the seeds were exposed to the irradiation of 15 and 20 Gy and cultured on a media containing 10 and 50 mmol NaCl. The ratio of Na/Cl, was generally different from 1 and the Cl - content was higher than Na + content, in seedlings of both barley varieties. (author)

  5. Comparative proteomics reveals a role for seed storage protein AmA1 in cellular growth, development, and nutrient accumulation.

    Science.gov (United States)

    Agrawal, Lalit; Narula, Kanika; Basu, Swaraj; Shekhar, Shubhendu; Ghosh, Sudip; Datta, Asis; Chakraborty, Niranjan; Chakraborty, Subhra

    2013-11-01

    Seed storage proteins are known to be utilized as carbon and nitrogen source for growing seedlings and thus are considered as potential candidates for nutritional improvement. However, their precise function remains unknown. We have earlier shown that ectopic expression of a seed storage protein, AmA1, leads to increase in protein besides high tuber yield in potato. To elucidate the AmA1-regulated molecular mechanism affecting increased protein synthesis, reserve accumulation, and enhanced growth, a comparative proteomics approach has been applied to tuber life-cycle between wild-type and AmA1 potato. The differential display of proteomes revealed 150 AmA1-responsive protein spots (ARPs) that change their intensities more than 2.5-fold. The LC-ESI-MS/MS analyses led to the identification of 80 ARPs presumably associated with cell differentiation, regulating diverse functions, viz., protein biogenesis and storage, bioenergy and metabolism, and cell signaling. Metabolome study indicated up-regulation of amino acids paralleling the proteomics analysis. To validate this, we focused our attention on anatomical study that showed differences in cell size in the cortex, premedullary zone and pith of the tuber, coinciding with AmA1 expression and localization. Further, we interrogated the proteome data using one-way analysis of variance, cluster, and partial correlation analysis that identified two significant protein modules and six small correlation groups centered around isoforms of cysteine protease inhibitor, actin, heat shock cognate protein 83 and 14-3-3, pointing toward AmA1-regulated overlapping processes of protein enhancement and cell growth perhaps through a common mechanism of function. A model network was constructed using the protein data sets, which aim to show how target proteins might work in coordinated fashion and attribute to increased protein synthesis and storage reserve accumulation in AmA1 tubers on one hand and organ development on the other.

  6. Enrichment and identification of integral membrane proteins from barley aleurone layers by reversed-phase chromatography, SDS-PAGE and LC-MS/MS

    DEFF Research Database (Denmark)

    Hynek, Radovan; Svensson, Birte; Nørregaard Jensen, Ole

    2006-01-01

    was developed, comprising batch reversed-phase chromatography with stepwise elution of hydrophobic proteins by 2-propanol. Proteins in the most hydrophobic fraction were separated by SDS-PAGE and identified by LC-MS/MS and barley EST sequence database search. The method was efficient for enrichment of integral......+-ATPase, two proteins possibly involved in ion-channel regulation and two proteins of unknown function. This represents the first analysis of membrane proteins involved in seed germination, using a proteomics approach....

  7. Immature Seed Endosperm and Embryo Proteomics of the Lotus (Nelumbo Nucifera Gaertn. by One-Dimensional Gel-Based Tandem Mass Spectrometry and a Comparison with the Mature Endosperm Proteome

    Directory of Open Access Journals (Sweden)

    Carlo F. Moro

    2015-08-01

    Full Text Available Lotus (Nelumbo nucifera Gaertn. seed proteome has been the focus of our studies, and we have recently established the first proteome dataset for its mature seed endosperm. The current study unravels the immature endosperm, as well as the embryo proteome, to provide a comprehensive dataset of the lotus seed proteins and a comparison between the mature and immature endosperm tissues across the seed’s development. One-dimensional gel electrophoresis (SDS-PAGE linked with tandem mass spectrometry provided a protein inventory of the immature endosperm (122 non-redundant proteins and embryo (141 non-redundant proteins tissues. Comparing with the previous mature endosperm dataset (66 non-redundant proteins, a total of 206 non-redundant proteins were identified across all three tissues of the lotus seed. Results revealed some significant differences in proteome composition between the three lotus seed tissues, most notably between the mature endosperm and its immature developmental stage shifting the proteins from nutrient production to nutrient storage.

  8. Characterization of the Entire Cystatin Gene Family in Barley and Their Target Cathepsin L-Like Cysteine-Proteases, Partners in the Hordein Mobilization during Seed Germination1[W

    Science.gov (United States)

    Martinez, Manuel; Cambra, Ines; Carrillo, Laura; Diaz-Mendoza, Mercedes; Diaz, Isabel

    2009-01-01

    Plant cystatins are inhibitors of cysteine-proteases of the papain C1A and legumain C13 families. Cystatin data from multiple plant species have suggested that these inhibitors act as defense proteins against pests and pathogens and as regulators of protein turnover. In this study, we characterize the entire cystatin gene family from barley (Hordeum vulgare), which contain 13 nonredundant genes, and identify and characterize their target enzymes, the barley cathepsin L-like proteases. Cystatins and proteases were expressed and purified from Escherichia coli cultures. Each cystatin was found to have different inhibitory capability against barley cysteine-proteases in in vitro inhibitory assays using specific substrates. Real-time reverse transcription-polymerase chain reaction revealed that inhibitors and enzymes present a wide variation in their messenger RNA expression patterns. Their transcripts were mainly detected in developing and germinating seeds, and some of them were also expressed in leaves and roots. Subcellular localization of cystatins and cathepsin L-like proteases fused to green fluorescent protein demonstrated the presence of both protein families throughout the endoplasmic reticulum and the Golgi complex. Proteases and cystatins not only colocalized but also interacted in vivo in the plant cell, as revealed by bimolecular fluorescence complementation. The functional relationship between cystatins and cathepsin L-like proteases was inferred from their common implication as counterparts of mobilization of storage proteins upon barley seed germination. The opposite pattern of transcription expression in gibberellin-treated aleurones presented by inhibitors and enzymes allowed proteases to specifically degrade B, C, and D hordeins stored in the endosperm of barley seeds. PMID:19759340

  9. Comparative Lipidomics and Proteomics of Lipid Droplets in the Mesocarp and Seed Tissues of Chinese Tallow (Triadica sebifera

    Directory of Open Access Journals (Sweden)

    Yao Zhi

    2017-08-01

    Full Text Available Lipid droplets (LDs are composed of a monolayer of phospholipids (PLs, surrounding a core of non-polar lipids that consist mostly of triacylglycerols (TAGs and to a lesser extent diacylglycerols. In this study, lipidome analysis illustrated striking differences in non-polar lipids and PL species between LDs derived from Triadica sebifera seed kernels and mesocarp. In mesocarp LDs, the most abundant species of TAG contained one C18:1 and two C16:0 and fatty acids, while TAGs containing three C18 fatty acids with higher level of unsaturation were dominant in the seed kernel LDs. This reflects the distinct differences in fatty acid composition of mesocarp (palmitate-rich and seed-derived oil (α-linoleneate-rich in T. sebifera. Major PLs in seed LDs were found to be rich in polyunsaturated fatty acids, in contrast to those with relatively shorter carbon chain and lower level of unsaturation in mesocarp LDs. The LD proteome analysis in T. sebifera identified 207 proteins from mesocarp, and 54 proteins from seed kernel, which belong to various functional classes including lipid metabolism, transcription and translation, trafficking and transport, cytoskeleton, chaperones, and signal transduction. Oleosin and lipid droplets associated proteins (LDAP were found to be the predominant proteins associated with LDs in seed and mesocarp tissues, respectively. We also show that LDs appear to be in close proximity to a number of organelles including the endoplasmic reticulum, mitochondria, peroxisomes, and Golgi apparatus. This comparative study between seed and mesocarp LDs may shed some light on the structure of plant LDs and improve our understanding of their functionality and cellular metabolic networks in oleaginous plant tissues.

  10. Comparative Lipidomics and Proteomics of Lipid Droplets in the Mesocarp and Seed Tissues of Chinese Tallow (Triadica sebifera).

    Science.gov (United States)

    Zhi, Yao; Taylor, Matthew C; Campbell, Peter M; Warden, Andrew C; Shrestha, Pushkar; El Tahchy, Anna; Rolland, Vivien; Vanhercke, Thomas; Petrie, James R; White, Rosemary G; Chen, Wenli; Singh, Surinder P; Liu, Qing

    2017-01-01

    Lipid droplets (LDs) are composed of a monolayer of phospholipids (PLs), surrounding a core of non-polar lipids that consist mostly of triacylglycerols (TAGs) and to a lesser extent diacylglycerols. In this study, lipidome analysis illustrated striking differences in non-polar lipids and PL species between LDs derived from Triadica sebifera seed kernels and mesocarp. In mesocarp LDs, the most abundant species of TAG contained one C18:1 and two C16:0 and fatty acids, while TAGs containing three C18 fatty acids with higher level of unsaturation were dominant in the seed kernel LDs. This reflects the distinct differences in fatty acid composition of mesocarp (palmitate-rich) and seed-derived oil (α-linoleneate-rich) in T. sebifera . Major PLs in seed LDs were found to be rich in polyunsaturated fatty acids, in contrast to those with relatively shorter carbon chain and lower level of unsaturation in mesocarp LDs. The LD proteome analysis in T. sebifera identified 207 proteins from mesocarp, and 54 proteins from seed kernel, which belong to various functional classes including lipid metabolism, transcription and translation, trafficking and transport, cytoskeleton, chaperones, and signal transduction. Oleosin and lipid droplets associated proteins (LDAP) were found to be the predominant proteins associated with LDs in seed and mesocarp tissues, respectively. We also show that LDs appear to be in close proximity to a number of organelles including the endoplasmic reticulum, mitochondria, peroxisomes, and Golgi apparatus. This comparative study between seed and mesocarp LDs may shed some light on the structure of plant LDs and improve our understanding of their functionality and cellular metabolic networks in oleaginous plant tissues.

  11. Characterization of storage proteins in wild (Glycine soja) and cultivated (Glycine max) soybean seeds using proteomic analysis.

    Science.gov (United States)

    Natarajan, Savithiry S; Xu, Chenping; Bae, Hanhong; Caperna, Thomas J; Garrett, Wesley M

    2006-04-19

    A combined proteomic approach was applied for the separation, identification, and comparison of two major storage proteins, beta-conglycinin and glycinin, in wild (Glycine soja) and cultivated (Glycine max) soybean seeds. Two-dimensional polyacrylamide gel electrophoresis (2D-PAGE) with three different immobilized pH gradient (IPG) strips was an effective method to separate a large number of abundant and less-abundant storage proteins. Most of the subunits of beta-conglycinin were well-separated in the pH range 3.0-10.0, while acidic and basic glycinin polypeptides were well-separated in pH ranges 4.0-7.0 and 6.0-11.0, respectively. Although the overall distribution pattern of the protein spots was similar in both genotypes using pH 3.0-10.0, variations in number and intensity of protein spots were better resolved using a combination of pH 4.0-7.0 and pH 6.0-11.0. The total number of storage protein spots detected in wild and cultivated genotypes was approximately 44 and 34, respectively. This is the first study reporting the comparison of protein profiles of wild and cultivated genotypes of soybean seeds using proteomic tools.

  12. Proteomic analysis reveals differential accumulation of small heat shock proteins and late embryogenesis abundant proteins between ABA-deficient mutant vp5 seeds and wild-type Vp5 seeds in maize

    Directory of Open Access Journals (Sweden)

    Xiaolin eWu

    2015-01-01

    Full Text Available ABA is a major plant hormone that plays important roles during many phases of plant life cycle, including seed development, maturity and dormancy, and especially the acquisition of desiccation tolerance. Understanding of the molecular basis of ABA-mediated plant response to stress is of interest not only in basic research on plant adaptation but also in applied research on plant productivity. Maize mutant viviparous-5 (vp5, deficient in ABA biosynthesis in seeds, is a useful material for studying ABA-mediated response in maize. Due to carotenoid deficiency, vp5 endosperm is white, compared to yellow Vp5 endosperm. However, the background difference at proteome level between vp5 and Vp5 seeds is unclear. This study aimed to characterize proteome alterations of maize vp5 seeds and to identify ABA-dependent proteins during seed maturation. We compared the embryo and endosperm proteomes of vp5 and Vp5 seeds by gel-based proteomics. Up to 46 protein spots, most in embryos, were found to be differentially accumulated between vp5 and Vp5. The identified proteins included small heat shock proteins (sHSPs, late embryogenesis abundant (LEA proteins, stress proteins, storage proteins and enzymes among others. However, EMB564, the most abundant LEA protein in maize embryo, accumulated in comparable levels between vp5 and Vp5 embryos, which contrasted to previously characterized, greatly lowered expression of emb564 mRNA in vp5 embryos. Moreover, LEA proteins and sHSPs displayed differential accumulations in vp5 embryos: six out of eight identified LEA proteins decreased while nine sHSPs increased in abundance. Finally, we discussed the possible causes of global proteome alterations, especially the observed differential accumulation of identified LEA proteins and sHSPs in vp5 embryos. The data derived from this study provides new insight into ABA-dependent proteins and ABA-mediated response during maize seed maturation.

  13. Identification of changes in wheat (Triticum aestivum L. seeds proteome in response to anti-trx s gene.

    Directory of Open Access Journals (Sweden)

    Hongxiang Guo

    Full Text Available BACKGROUND: Thioredoxin h (trx h is closely related to germination of cereal seeds. The cDNA sequences of the thioredoxin s (trx s gene from Phalaris coerulescens and the thioredoxin h (trx h gene from wheat are highly homologous, and their expression products have similar biological functions. Transgenic wheat had been formed after the antisense trx s was transferred into wheat, and it had been certified that the expression of trx h decreased in transgenic wheat, and transgenic wheat has high resistance to pre-harvest sprouting. METHODOLOGY/PRINCIPAL FINDINGS: Through analyzing the differential proteome of wheat seeds between transgenic wheat and wild type wheat, the mechanism of transgenic wheat seeds having high resistance to pre-harvest sprouting was studied in the present work. There were 36 differential proteins which had been identified by matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF-MS. All these differential proteins are involved in regulation of carbohydrates, esters, nucleic acid, proteins and energy metabolism, and biological stress. The quantitative real time PCR results of some differential proteins, such as trx h, heat shock protein 70, α-amylase, β-amylase, glucose-6-phosphate isomerase, 14-3-3 protein, S3-RNase, glyceraldehyde-3-phosphate dehydrogenase, and WRKY transcription factor 6, represented good correlation between transcripts and proteins. The biological functions of many differential proteins are consistent with the proposed role of trx h in wheat seeds. CONCLUSIONS/SIGNIFICANCE: A possible model for the role of trx h in wheat seeds germination was proposed in this paper. These results will not only play an important role in clarifying the mechanism that transgenic wheat has high resistance to pre-harvest sprouting, but also provide further evidence for the role of trx h in germination of wheat seeds.

  14. The Proteome of Seed Development in the Model Legume Lotus japonicus

    DEFF Research Database (Denmark)

    Dam, Svend; Laursen, Brian S.; Ornfelt, Jane H.

    2009-01-01

    We have characterized the development of seeds in the model legume Lotus japonicus. Like soybean (Glycine max) and pea (Pisum sativum), Lotus develops straight seed pods and each pod contains approximately 20 seeds that reach maturity within 40 days. Histological sections show the characteristic...... three developmental phases of legume seeds and the presence of embryo, endosperm, and seed coat in desiccated seeds. Furthermore, protein, oil, starch, phytic acid, and ash contents were determined, and this indicates that the composition of mature Lotus seed is more similar to soybean than to pea......, and two convicilins, LCP1 and LCP2, were identified by matrix-assisted laser desorption ionization quadrupole/time-of-flight mass spectrometry. For two distinct developmental phases, seed filling and desiccation, a gel-based liquid chromatography-mass spectrometry approach was used, and 665 and 181 unique...

  15. [ Ustilago nuda (Jensen) Rostrup] of Barley ( Hordeum vulgare L.)

    African Journals Online (AJOL)

    Importance of loose Smut [ Ustilago nuda (Jensen) Rostrup] of Barley ( Hordeum vulgare L.) in western Amhara Region, Ethiopia. ... with selected fungicides need to be promoted to tackle loose smut and to sustain barley production. Keywords: Barley; Hordeum vulgare; Loose Smut; Seed Treatment; Ustilago nuda ...

  16. Comparative analysis of the heat stable proteome of radicles of Medicago truncatula seeds during germination identifies late embryogenesis abundant proteins associated with desiccation tolerance

    NARCIS (Netherlands)

    Boudet, J.; Buitink, J.; Hoekstra, F.A.; Rogniaux, H.; Larré, C.; Satour, P.; Leprince, O.

    2006-01-01

    A proteomic analysis was performed on the heat stable protein fraction of imbibed radicles of Medicago truncatula seeds to investigate whether proteins can be identified that are specifically linked to desiccation tolerance (DT). Radicles were compared before and after emergence (2.8 mm long) in

  17. Proteomics offers insight to the mechanism behind Pisum sativum L. response to pea seed-borne mosaic virus (PSbMV)

    Czech Academy of Sciences Publication Activity Database

    Černá, H.; Černý, M.; Habanová, H.; Šafářová, D.; Abushamsiya, K.; Navrátil, M.; Brzobohatý, Břetislav

    2017-01-01

    Roč. 153, FEB2017 (2017), s. 78-88 ISSN 1874-3919 Institutional support: RVO:68081707 Keywords : Proteome * Pea seed-borne mosaic virus PSbMV * Potyvirus Subject RIV: CE - Biochemistry OBOR OECD: Biochemistry and molecular biology Impact factor: 3.914, year: 2016

  18. Development of maternal seed tissue in barley is mediated by regulated cell expansion and cell disintegration and coordinated with endosperm growth.

    Science.gov (United States)

    Radchuk, Volodymyr; Weier, Diana; Radchuk, Ruslana; Weschke, Winfriede; Weber, Hans

    2011-01-01

    After fertilization, filial grain organs are surrounded by the maternal nucellus embedded within the integuments and pericarp. Rapid early endosperm growth must be coordinated with maternal tissue development. Parameters of maternal tissue growth and development were analysed during early endosperm formation. In the pericarp, cell proliferation is accomplished around the time of fertilization, followed by cell elongation predominantly in longitudinal directions. The rapid cell expansion coincides with endosperm cellularization. Distribution of TUNEL (terminal deoxynucleotidyl transferase-mediated dUTP nick end labelling)-positive nuclei reveals distinct patterns starting in the nucellus at anthesis and followed later by the inner cell rows of the pericarp, then spreading to the whole pericarp. The pattern suggests timely and spatially regulated programmed cell death (PCD) processes in maternal seed tissues. When the endosperm is coenocytic, PCD events are only observed within the nucellus. Thereby, remobilization of nucellar storage compounds by PCD could nourish the early developing endosperm when functional interconnections are absent between maternal and filial seed organs. Specific proteases promote PCD events. Characterization of the barley vacuolar processing enzyme (VPE) gene family identified seven gene members specifically expressed in the developing grain. HvVPE2a (known as nucellain) together with closely similar HvVPE2b and HvVPE2d might be involved in nucellar PCD. HvVPE4 is strongly cell specific for pericarp parenchyma. Correlative evidence suggests that HvVPE4 plays a role in PCD events in the pericarp. Possible functions of PCD in the maternal tissues imply a potential nutritive role or the relief of a physical restraint for endosperm growth. PCD could also activate post-phloem transport functions.

  19. Comparative proteomic analysis of alfalfa revealed new salt and drought stress-related factors involved in seed germination.

    Science.gov (United States)

    Ma, Qiaoli; Kang, Junmei; Long, Ruicai; Zhang, Tiejun; Xiong, Junbo; Zhang, Kun; Wang, Tenghua; Yang, Qingchuan; Sun, Yan

    2017-07-01

    Salinity and drought are two major environmental factors that limit the growth and yield of many forage crops in semi-arid and arid regions. Alfalfa (Medicago sativa L.) is one of the most important forage crops in many countries. We aim to investigate the molecular mechanisms of alfalfa in response to salt and drought stresses in this study. Physiological and proteomic analyses were applied to examine the Zhongmu NO.3 alfalfa seed germination stage with 200 mM NaCl and 180 g·L -1 polyethylene glycol (PEG) treatments. The germination ability of the seed and the accumulation of osmotic solutes were quite different between the NaCl and PEG treatments. More than 800 protein spots were detected by proteomics technology on two-dimensional electrophoresis (2-DE) gels. The abundance of twenty-eight proteins were decreased or increased after salt and drought stress. Seventeen of these proteins were identified and classified into six functional categories through mass spectrometry (MS). The six groups involved in salt- and PEG-mediated stress included defense response, energy metabolism, protein synthesis and degradation, oxidative stress, carbohydrate metabolism-associated proteins, and unknown proteins. We discovered that some proteins related to carbohydrate metabolism and energy production increased in abundance under salt- and PEG-mediated drought stress. This demonstrates a common mechanism of energy consumption during abiotic stresses. Further study of these proteins with unknown function will provide insights into the molecular mechanisms of abiotic stress and the discovery of new candidate markers.

  20. Regulation of cell cycle activity in the embryo of barley seeds during germination as related to grain hydration.

    Science.gov (United States)

    Gendreau, Emmanuel; Romaniello, Sébastien; Barad, Sophie; Leymarie, Juliette; Benech-Arnold, Roberto; Corbineau, Françoise

    2008-01-01

    Various studies indicate that cell division is a post-germination phenomenon, with radicle protrusion occurring by cell elongation, while others demonstrate that induction of the cell cycle occurs in osmo-conditioned seeds prior to radicle growth. The aim of the present work was to investigate the occurrence of the cell cycle during germination as related to grain hydration, using: (i) a flow cytometry technique to estimate the percentage of cell nuclei in G(1) and G(2) phases of the cell cycle; and (ii) reverse transcription-PCR (RT-PCR) in order to characterize the expression of the genes encoding cyclin-dependent kinases (CDKA1, CDKB1, and CDKD1) and cyclins (CYCA3, CYCB1, and CYCD4), the main genes involved in the cell cycle and its regulation. Radicle tips of embryos were isolated from seeds placed for various times on water at 30 degrees C and from grains partially hydrated at moisture contents ranging from 11% to 51% fresh weight (FW), which prevent radicle elongation. Abscisic acid (ABA) contents of the embryos during seed germination at 30 degrees C and after 48 h of partial hydration were also measured. In dry embryos, cells are mostly arrested in the G(1) phase of the cell cycle (82%), the remaining cells being in the G(2) phase, and the ABA content of the embryo was 432.7 ng g(-1) dry weight (DW). Seed imbibition was associated with a sharp decrease in ABA content as early as 5 h, while the cell cycle reactivation was a late process taking place approximately 4-6 h prior to radicle protrusion. Hydration of seeds resulted in a decrease in embryo ABA content, but it remained at a high level (207-273 ng g(-1) DW) even after 48 h at 0.41-0.51 g H2O g(-1) FW. The cell population of the radicle tips in the G(2) phase of the cell cycle, i.e. 4C nuclei, increased from 9% up to 34% at a moisture content of 51% FW. In dry seeds, CDKA1 and CDKD1 mRNAs were present at low levels, but transcripts of CDKB1, CYCA3, CYCB1, and CYCD4 were not detected. Radicle

  1. Establishment of the Optimal Conditions for Two–Dimensional Gel Electrophoresis of Papaya Seed Proteome

    OpenAIRE

    Roan, Su–Feng; Hsiung, Tung–Chuan; Yang, Kai–Yun; Liu, Wei–Ting; Chang, Ing–Feng; Wu, Chun–Ta; Wakana, Akira; 若菜, 章

    2013-01-01

    Papaya seeds are considered as a recalcitrant material for protein preparation in two-dimensional gel electrophoresis (2-DE) because of abundance of interfering compounds. We examined two protein extraction methods, the classical trichloroacetic acid (TCA)

  2. Use of Barley for the Purification of Aquaculture Wastewater in a Hydroponics System

    OpenAIRE

    A. M. Snow; Abdel E. Ghaly

    2008-01-01

    Barley was examined for its ability to remove nutrients from aquaculture wastewater. The effects of seed sterilization using ethanol and bleach and seed density on germination and plant growth were investigated. Surface sterilization of barley seeds had a negative impact on germination. Increasing the ethanol concentration and/or the bleach concentration reduced the germination percentage. Barley seeds were first germinated in water in the hydroponics system. The seedlings then received waste...

  3. Uptake of [14C]triadimenol via grain and root after seed treatment of winter barley with a flowable seed dressing: Influence of soil moisture and sowing date on the distribution of radioactivity and active ingredient content in plant and soil

    International Nuclear Information System (INIS)

    Schneider, M.

    1988-12-01

    Winter barley seed of the 'Vogelsander Gold' variety was shown in a total of 7 lysimeters after seed treatment with [benzene ring-U- 14 C]triadimenol in the formulation as [ 14 C]Baytan 075 FS and [ 14 C]Baytan 25 DS at an early (September) and a late date (October). After both dates of sowing, the FS-treated winter barley developed under 3 different soil moisture conditions. The radioactivity and active ingredient contents in plants and soil were recorded until tillering as a function of low, high and natural precipitation after sowing. Details on the uptake of radioactivity via grain and roots were quantitatively and qualitatively studied in two further lysimeters, a pot experiment as well as experiments in the growth chamber. The results are presented and discussed in detail. (orig./MG) [de

  4. Rhizobium Impacts on Seed Productivity, Quality, and Protection of Pisum sativum upon Disease Stress Caused by Didymella pinodes: Phenotypic, Proteomic, and Metabolomic Traits

    Science.gov (United States)

    Ranjbar Sistani, Nima; Kaul, Hans-Peter; Desalegn, Getinet; Wienkoop, Stefanie

    2017-01-01

    In field peas, ascochyta blight is one of the most common fungal diseases caused by Didymella pinodes. Despite the high diversity of pea cultivars, only little resistance has been developed until to date, still leading to significant losses in grain yield. Rhizobia as plant growth promoting endosymbionts are the main partners for establishment of symbiosis with pea plants. The key role of Rhizobium as an effective nitrogen source for legumes seed quality and quantity improvement is in line with sustainable agriculture and food security programs. Besides these growth promoting effects, Rhizobium symbiosis has been shown to have a priming impact on the plants immune system that enhances resistance against environmental perturbations. This is the first integrative study that investigates the effect of Rhizobium leguminosarum bv. viceae (Rlv) on phenotypic seed quality, quantity and fungal disease in pot grown pea (Pisum sativum) cultivars with two different resistance levels against D. pinodes through metabolomics and proteomics analyses. In addition, the pathogen effects on seed quantity components and quality are assessed at morphological and molecular level. Rhizobium inoculation decreased disease severity by significant reduction of seed infection level. Rhizobium symbiont enhanced yield through increased seed fresh and dry weights based on better seed filling. Rhizobium inoculation also induced changes in seed proteome and metabolome involved in enhanced P. sativum resistance level against D. pinodes. Besides increased redox and cell wall adjustments light is shed on the role of late embryogenesis abundant proteins and metabolites such as the seed triterpenoid Soyasapogenol. The results of this study open new insights into the significance of symbiotic Rhizobium interactions for crop yield, health and seed quality enhancement and reveal new metabolite candidates involved in pathogen resistance. PMID:29204150

  5. The analysis of proteome changes in sunflower seeds induced by N ...

    Indian Academy of Sciences (India)

    Madhu

    2.1 Sunflower seeds and ion implantation treatment. Homozygous ... calculated using ExPASy tools (http://www.expasy.ch). Dong Guijun ... ret (data not shown). In the meantime, we employed 2-DE and MALDI-TOF MS and discovered that two proteins changed obviously, which might possibly correlate with the sunflower ...

  6. Proteomic Comparison between Maturation Drying and Prematurely Imposed Drying of Zea mays Seeds Reveals a Potential Role of Maturation Drying in Preparing Proteins for Seed Germination, Seedling Vigor, and Pathogen Resistance

    DEFF Research Database (Denmark)

    Wang, Wei-Qing; Ye, Jian-Qing; Rogowska-Wrzesinska, Adelina

    2014-01-01

    We have studied the role(s) of maturation drying in the acquisition of germinability, seedling vigor and pathogen resistance by comparing the proteome changes in maize embryo and endosperm during mature and prematurely imposed drying. Prematurely imposed dried seeds at 40 days after pollination...... (DAP) germinated almost as well as mature seeds (at 65 DAP), but their seedling growth was slower and they were seriously infected by fungi. A total of 80 and 114 proteins were identified to change at least two-fold (p...

  7. Effect of Aluminum Treatment on Proteomes of Radicles of Seeds Derived from Al-Treated Tomato Plants.

    Science.gov (United States)

    Okekeogbu, Ikenna; Ye, Zhujia; Sangireddy, Sasikiran Reddy; Li, Hui; Bhatti, Sarabjit; Hui, Dafeng; Zhou, Suping; Howe, Kevin J; Fish, Tara; Yang, Yong; Thannhauser, Theodore W

    2014-03-28

    Aluminum (Al) toxicity is a major constraint to plant growth and crop yield in acid soils. Tomato cultivars are especially susceptible to excessive Al 3+ accumulated in the root zone. In this study, tomato plants were grown in a hydroponic culture system supplemented with 50 µM AlK(SO₄)₂. Seeds harvested from Al-treated plants contained a significantly higher Al content than those grown in the control hydroponic solution. In this study, these Al-enriched tomato seeds (harvested from Al-treated tomato plants) were germinated in 50 µM AlK(SO₄)₂ solution in a homopiperazine-1,4-bis(2-ethanesulfonic acid) buffer (pH 4.0), and the control solution which contained the buffer only. Proteomes of radicles were analyzed quantitatively by mass spectrometry employing isobaric tags for relative and absolute quantitation (iTRAQ ® ). The proteins identified were assigned to molecular functional groups and cellular metabolic pathways using MapMan. Among the proteins whose abundance levels changed significantly were: a number of transcription factors; proteins regulating gene silencing and programmed cell death; proteins in primary and secondary signaling pathways, including phytohormone signaling and proteins for enhancing tolerance to abiotic and biotic stress. Among the metabolic pathways, enzymes in glycolysis and fermentation and sucrolytic pathways were repressed. Secondary metabolic pathways including the mevalonate pathway and lignin biosynthesis were induced. Biological reactions in mitochondria seem to be induced due to an increase in the abundance level of mitochondrial ribosomes and enzymes in the TCA cycle, electron transport chains and ATP synthesis.

  8. Effect of Aluminum Treatment on Proteomes of Radicles of Seeds Derived from Al-Treated Tomato Plants

    Directory of Open Access Journals (Sweden)

    Ikenna Okekeogbu

    2014-03-01

    Full Text Available Aluminum (Al toxicity is a major constraint to plant growth and crop yield in acid soils. Tomato cultivars are especially susceptible to excessive Al3+ accumulated in the root zone. In this study, tomato plants were grown in a hydroponic culture system supplemented with 50 µM AlK(SO42. Seeds harvested from Al-treated plants contained a significantly higher Al content than those grown in the control hydroponic solution. In this study, these Al-enriched tomato seeds (harvested from Al-treated tomato plants were germinated in 50 µM AlK(SO42 solution in a homopiperazine-1,4-bis(2-ethanesulfonic acid buffer (pH 4.0, and the control solution which contained the buffer only. Proteomes of radicles were analyzed quantitatively by mass spectrometry employing isobaric tags for relative and absolute quantitation (iTRAQ®. The proteins identified were assigned to molecular functional groups and cellular metabolic pathways using MapMan. Among the proteins whose abundance levels changed significantly were: a number of transcription factors; proteins regulating gene silencing and programmed cell death; proteins in primary and secondary signaling pathways, including phytohormone signaling and proteins for enhancing tolerance to abiotic and biotic stress. Among the metabolic pathways, enzymes in glycolysis and fermentation and sucrolytic pathways were repressed. Secondary metabolic pathways including the mevalonate pathway and lignin biosynthesis were induced. Biological reactions in mitochondria seem to be induced due to an increase in the abundance level of mitochondrial ribosomes and enzymes in the TCA cycle, electron transport chains and ATP synthesis.

  9. Comparative Biochemical and Proteomic Analyses of Soybean Seed Cultivars Differing in Protein and Oil Content.

    Science.gov (United States)

    Min, Chul Woo; Gupta, Ravi; Kim, So Wun; Lee, So Eui; Kim, Yong Chul; Bae, Dong Won; Han, Won Young; Lee, Byong Won; Ko, Jong Min; Agrawal, Ganesh Kumar; Rakwal, Randeep; Kim, Sun Tae

    2015-08-19

    This study develops differential protein profiles of soybean (Glycine max) seeds (cv. Saedanbaek and Daewon) varying in protein (47.9 and 39.2%) and oil (16.3 and 19.7%) content using protamine sulfate (PS) precipitation method coupled with a 2D gel electrophoresis (2DGE) approach. Of 71 detected differential spots between Daewon and Saedanbaek, 48 were successfully identified by MALDI-TOF/TOF. Gene ontology analysis revealed that up-regulated proteins in Saedanbaek were largely associated with nutrient reservoir activity (42.6%), which included mainly seed-storage proteins (SSPs; subunits of glycinin and β-conglycinin). Similar results were also obtained in two cultivars of wild soybean (G. soja cv. WS22 and WS15) differing in protein content. Western blots confirmed higher accumulation of SSPs in protein-rich Saedanbaek. Findings presented and discussed in this study highlight a possible involvement of the urea cycle for increased accumulation of SSPs and hence the higher protein content in soybean seeds.

  10. The Swedish mutant barley collection

    International Nuclear Information System (INIS)

    1989-01-01

    Full text: The Swedish mutation research programme in barley began about 50 years ago and has mainly been carried out at Svaloev in co-operation with the institute of Genetics at the University of Lund. The collection has been produced from different Swedish high-yielding spring barley varieties, using the following mutagens: X-rays, neutrons, several organic chemical compounds such as ethyleneimine, several sulfonate derivatives and the inorganic chemical mutagen sodium azide. Nearly 10,000 barley mutants are stored in the Nordic Gene Bank and documented in databases developed by Udda Lundquist, Svaloev AB. The collection consists of the following nine categories with 94 different types of mutants: 1. Mutants with changes in the spike and spikelets; 2. Changes in culm length and culm composition; 3. Changes in growth types; 4. Physiological mutants; 5. Changes in awns; 6. Changes in seed size and shape; 7. Changes in leaf blades; 8. Changes in anthocyanin and colour; 9. Resistance to barley powdery mildew. Barley is one of the most thoroughly investigated crops in terms of induction of mutations and mutation genetics. So far, about half of the mutants stored at the Nordic Gene Bank, have been analysed genetically; They constitute, however, only a minority of the 94 different mutant types. The genetic analyses have given valuable insights into the mutation process but also into the genetic architecture of various characters. A number of mutants of two-row barley have been registered and commercially released. One of the earliest released, Mari, an early maturing, daylength neutral, straw stiff mutant, is still grown in Iceland. The Swedish mutation material has been used in Sweden, but also in other countries, such as Denmark, Germany, and USA, for various studies providing a better understanding of the barley genome. The collection will be immensely valuable for future molecular genetical analyses of clone mutant genes. (author)

  11. Temporal profiling of the heat-stable proteome during late maturation of Medicago truncatula seeds identifies a restricted subset of late embryogenesis abundant proteins associated with longevity.

    Science.gov (United States)

    Chatelain, Emilie; Hundertmark, Michaela; Leprince, Olivier; Le Gall, Sophie; Satour, Pascale; Deligny-Penninck, Stéphanie; Rogniaux, Hélène; Buitink, Julia

    2012-08-01

    Developing seeds accumulate late embryogenesis abundant (LEA) proteins, a family of intrinsically disordered and hydrophilic proteins that confer cellular protection upon stress. Many different LEA proteins exist in seeds, but their relative contribution to seed desiccation tolerance or longevity (duration of survival) is not yet investigated. To address this, a reference map of LEA proteins was established by proteomics on a hydrophilic protein fraction from mature Medicago truncatula seeds and identified 35 polypeptides encoded by 16 LEA genes. Spatial and temporal expression profiles of the LEA polypeptides were obtained during the long maturation phase during which desiccation tolerance and longevity are sequentially acquired until pod abscission and final maturation drying occurs. Five LEA polypeptides, representing 6% of the total LEA intensity, accumulated upon acquisition of desiccation tolerance. The gradual 30-fold increase in longevity correlated with the accumulation of four LEA polypeptides, representing 35% of LEA in mature seeds, and with two chaperone-related polypeptides. The majority of LEA polypeptides increased around pod abscission during final maturation drying. The differential accumulation profiles of the LEA polypeptides suggest different roles in seed physiology, with a small subset of LEA and other proteins with chaperone-like functions correlating with desiccation tolerance and longevity. © 2012 Blackwell Publishing Ltd.

  12. Proteomic comparison between maturation drying and prematurely imposed drying of Zea mays seeds reveals a potential role of maturation drying in preparing proteins for seed germination, seedling vigor, and pathogen resistance.

    Science.gov (United States)

    Wang, Wei-Qing; Ye, Jian-Qing; Rogowska-Wrzesinska, Adelina; Wojdyla, Katarzyna I; Jensen, Ole Nørregaard; Møller, Ian Max; Song, Song-Quan

    2014-02-07

    We have studied the role(s) of maturation drying in the acquisition of germinability, seedling vigor and pathogen resistance by comparing the proteome changes in maize embryo and endosperm during mature and prematurely imposed drying. Prematurely imposed dried seeds at 40 days after pollination (DAP) germinated almost as well as mature seeds (at 65 DAP), but their seedling growth was slower and they were seriously infected by fungi. A total of 80 and 114 proteins were identified to change at least two-fold (p may contribute to the acquisition of seed germinability. However, a relatively large number of proteins changed in the embryo (47 spots) and endosperm (76 spots) specifically during maturation drying. Among these proteins, storage proteins in the embryo and defense proteins in the endosperm may be particularly important for seedling vigor and resistance to fungal infection, respectively.

  13. Proteomic profile of the nucellus of castor bean (Ricinus communis L.) seeds during development

    DEFF Research Database (Denmark)

    Nogueira, Fábio C S; Palmisano, Giuseppe; Soares, Emanoella L

    2012-01-01

    groups. The distribution of the identified proteins in stages III and IV into different Gene Ontology categories was similar, with a remarkable abundance of proteins associated with the protein synthesis machinery of cells, as well as several classes of proteins involved in protein degradation......, particularly of peptidases associated with programmed cell death. Consistent with the role of the nucellus in mediating nutrient transfer from maternal tissues to the endosperm and embryo, a significant proportion of the identified proteins are related to amino acid metabolism, but none of the identified...... proteins are known to have a role as storage proteins. Moreover for the first time, ricin isoforms were identified in tissues other than seed endosperm. Results are discussed in the context of the spatial and temporal distribution of the identified proteins within the nucellar cell layers....

  14. BARLEY BALANCE SHEET IN ROMANIA

    OpenAIRE

    Dragoş Mihai MEDELETE; Radu Lucian PÂNZARU

    2013-01-01

    Barley is one of the most important cereal grown in Romania, after corn and wheat. This is based, at least on considerations of cultivated area (413.4 thousand ha - average 2007-2009), but also because of the multiple uses it may have (Food, feed, industrial raw materials, etc.). Presentation of food balance we consider interesting in terms of supply and demand components: production, imports, stocks, exports, seeds, feed consumption, industrial raw materials, food and other useslosses. On th...

  15. Proteomic analysis of elicitation of downy mildew disease resistance in pearl millet by seed priming with β-aminobutyric acid and Pseudomonas fluorescens.

    Science.gov (United States)

    Anup, Chandra Pal; Melvin, Prasad; Shilpa, Nataraj; Gandhi, Mayuri Nalin; Jadhav, Manali; Ali, Hussain; Kini, Kukkundoor Ramachandra

    2015-04-29

    Downy mildew is one of the severe diseases of pearl millet, globally affecting its commercial production. Priming of seeds of a susceptible cultivar of pearl millet with β-aminobutyric acid (BABA) and Pseudomonas fluorescens has reduced the downy mildew disease incidence level under field studies. In the current study, proteomic approach was used to elucidate the poorly studied resistance mechanism in these elicitor primed pearl millet seeds in response to Sclerospora graminicola infection. 2DE-MS/MS based proteomic approach revealed that majority of the 63 differentially accumulated (p≤0.05) proteins associated with energy and metabolism followed by stress and defense category. Multivariate statistics disclosed that infection caused by the pathogen rather than elicitor treatment had a major influence on the dynamics of protein abundance. Mechanism of priming mediated by BABA and P. fluorescens were different from each other as evident by the protein abundance profile of hierarchical clustering analysis. Over-representation of proteins pertaining to glucose metabolism suggests that seed priming ensures plant protection against disease without compromising its normal growth and development. In addition the study forms a basis for future investigation by functional analysis of these differentially accumulated proteins to further unravel the resistance mechanism of elicitor primed plant against the S. graminicola. The study is based on the comparative proteomic analysis between BABA and P. fluorescens mediated resistance in pearl millet, in response to downy mildew causing biotroph - S. graminicola. To our knowledge, this article is the first to report on seedling proteome of pearl millet whose genome is not yet sequenced. In addition, the study also provides clue for the plausible antagonistic cross-talk that might exist between jasmonic acid signaling and salicylic acid signaling in SAR and ISR mediated resistance by BABA and P. fluorescens against the downy

  16. Barley metallothioneins

    DEFF Research Database (Denmark)

    Hegelund, Josefine Nymark; Schiller, Michaela; Kichey, Thomas

    2012-01-01

    and cadmium (Cd) in MT4, which was not the case for MT3. When complementary DNAs from barley MTs were expressed in Cu- or Cd-sensitive yeast mutants, MT3 provided a much stronger complementation than did MT4. We conclude that MT3 may play a housekeeping role in metal homeostasis, while MT4 may function in Zn...... storage in developing and mature grains. The localization of MT4 and its discrimination against Cd make it an ideal candidate for future biofortification strategies directed toward increasing food and feed Zn concentrations....

  17. Genomic Prediction in Barley

    DEFF Research Database (Denmark)

    Edriss, Vahid; Cericola, Fabio; Jensen, Jens D

    2015-01-01

    Genomic prediction uses markers (SNPs) across the whole genome to predict individual breeding values at an early growth stage potentially before large scale phenotyping. One of the applications of genomic prediction in plant breeding is to identify the best individual candidate lines to contribute...... to next generation. The main goal of this study was to see the potential of using genomic prediction in a commercial Barley breeding program. The data used in this study was from Nordic Seed company which is located in Denmark. Around 350 advanced lines were genotyped with 9K Barely chip from Illumina....... Traits used in this study were grain yield, plant height and heading date. Heading date is number days it takes after 1st June for plant to head. Heritabilities were 0.33, 0.44 and 0.48 for yield, height and heading, respectively for the average of nine plots. The GBLUP model was used for genomic...

  18. Proteomic Analysis Reveals Different Involvement of Embryo and Endosperm Proteins during Aging of Yliangyou 2 Hybrid Rice Seeds

    Science.gov (United States)

    Zhang, Ying-Xue; Xu, Heng-Heng; Liu, Shu-Jun; Li, Ni; Wang, Wei-Qing; Møller, Ian M.; Song, Song-Quan

    2016-01-01

    Seed aging is a process that results in a delayed germination, a decreased germination percentage, and finally a total loss of seed viability. However, the mechanism of seed aging is poorly understood. In the present study, Yliangyou 2 hybrid rice (Oryza sativa L.) seeds were artificially aged at 100% relative humidity and 40°C, and the effect of artificial aging on germination, germination time course and the change in protein profiles of embryo and endosperm was studied to understand the molecular mechanism behind seed aging. With an increasing duration of artificial aging, the germination percentage and germination rate of hybrid rice seeds decreased. By comparing the protein profiles from the seeds aged for 0, 10 and 25 days, a total of 91 and 100 protein spots were found to show a significant change of more than 2-fold (P rice seeds during artificial aging is caused by the development of hypoxic conditions in the embryos followed by ethanol accumulation. PMID:27708655

  19. Differential Synthesis in Vitro of Barley Aleurone and Starchy Endosperm Proteins

    DEFF Research Database (Denmark)

    Mundy, John; Hejgaard, Jørn; Hansen, Annette

    1986-01-01

    To widen the selection of proteins for gene expression studies in barley seeds, experiments were performed to identify proteins whose synthesis is differentially regulated in developing and germinating seed tissues. The in vitro synthesis of nine distinct barley proteins was compared using mRNAs ...

  20. Barley callus

    DEFF Research Database (Denmark)

    Carciofi, Massimiliano; Blennow, Per Gunnar Andreas; Nielsen, Morten M.

    2012-01-01

    Background Starch is the most important source of calories for human nutrition and the majority of it is produced by cereal farming. Starch is also used as a renewable raw material in a range of industrial sectors. It can be chemically modified to introduce new physicochemical properties...... genes in planta. Results We explored the possibility to use transgenic barley callus generated from immature embryo for a fast test of transgenic modification strategies of starch biosynthesis. We found that this callus contains 4 % (w/w dw) starch granules, which we could modify by generating fully...... suggest that this method can be used as a time-efficient model system for fast screening of candidate genes for the generation of modified starch or new types of carbohydrate polymers....

  1. Thionin antifungal peptide synthesis in transgenic barley

    Science.gov (United States)

    In seeds and vegetative organs of barley and other cereals, thionins are processed into peptides with pronounced anti-microbial properties. In vitro studies demonstrated the toxicity of a- and ß-hordothionins (HTHs) to the fungal pathogen Fusarium graminearum. Increasing the expression of thionin g...

  2. Effect of Supplemental Dietary Fat and Processed Barley Grain on Performance of Lactating Dairy Cow

    Directory of Open Access Journals (Sweden)

    Y.A Alijoo

    2012-02-01

    Full Text Available The effect of barley grain processing and source of supplemental fat on performance of lactating dairy cows were studied in a replicated 4 × 4 Latin square design with 21-d periods and a 2 × 2 factorial arrangement. Eight Holstein cows with mean body weight (BW of 572 ± 71 kg and 45 ± 10 days in milk were allocated to 4 dietary treatments including 1 ground barley with cottonseed 2 pelleted barley with cottonseed 3 ground barley with canola seed 4 pelleted barley with canola seed. The nitrogen intake and fecal N were higher in cows fed ground barley in comparison with those fed pelleted barley. Source of supplemental fat or barley processing had no effect on milk fat and milk protein contents. Milk SNF yield was higher in cows fed canola as supplemental fat source and ground barley (P < 0.05. Milk yield was affected by method of barley grain processing and was 0.64 to 1.9 kg/d higher in cows fed ground barley compared with those fed pelleted barley (P = 0.04. Plasma concentrations of glucose, NEFA, BHBA, cholesterol, triglycerides and blood urea nitrogen were similar in all treatments. Dry matter intake was affected by barley grain processing. The cows fed ground barley consuming 1.15 to 2.18 kg/d more DM compared with those fed pelleted barley (P = 0.04.Total tract digestibilities of DM, crude fat, ADF, NDF and OM were not affected by the barley grain processing as well as source of oilseed. The results indicated that interactions between barley grain processing and source of supplemental dietary fat can improve the performance of lactating dairy cows, However, more detailed studies are required

  3. Two-dimensional gel electrophoresis pattern (pH 6-11) and identification of water-soluble barley seed and malt proteins by mass spectrometry

    DEFF Research Database (Denmark)

    Bak-Jensen, K.S.; Laugesen, S.; Roepstorff, P.

    2004-01-01

    gradient gels in a horizontal SDS-PAGE system. Silver staining of gels visualized around 380 (seed) and 500 (malt) spots. Thirty-seven different proteins from seeds were identified in 60 spots, among these 46 were visualized also in the malt 2-D pattern. Proteins were identified by peptide mass...

  4. Brewing with fractionated barley

    NARCIS (Netherlands)

    Donkelaar, van L.H.G.

    2016-01-01

    Brewing with fractionated barley

    Beer is a globally consumed beverage, which is produced from malted barley, water, hops and yeast. In recent years, the use of unmalted barley and exogenous enzymes have become more popular because they enable simpler processing and reduced environmental

  5. Brewing with fractionated barley

    NARCIS (Netherlands)

    Donkelaar, van L.H.G.

    2016-01-01

    Brewing with fractionated barley Beer is a globally consumed beverage, which is produced from malted barley, water, hops and yeast. In recent years, the use of unmalted barley and exogenous enzymes have become more popular because they enable simpler processing and reduced environmental impact. Raw

  6. BARLEY BALANCE SHEET IN ROMANIA

    Directory of Open Access Journals (Sweden)

    Dragoş Mihai MEDELETE

    2013-01-01

    Full Text Available Barley is one of the most important cereal grown in Romania, after corn and wheat. This is based, at least on considerations of cultivated area (413.4 thousand ha - average 2007-2009, but also because of the multiple uses it may have (Food, feed, industrial raw materials, etc.. Presentation of food balance we consider interesting in terms of supply and demand components: production, imports, stocks, exports, seeds, feed consumption, industrial raw materials, food and other useslosses. On the basis of total volume of supply and demand we could determine the balance sheet at nationa level for the product.

  7. Bioactive phytochemicals in barley.

    Science.gov (United States)

    Idehen, Emmanuel; Tang, Yao; Sang, Shengmin

    2017-01-01

    Epidemiological studies have consistently shown that regular consumption of whole grain barley reduces the risk of developing chronic diseases. The presence of barley fiber, especially β-glucan in whole grain barley, has been largely credited for these health benefits. However, it is now widely believed that the actions of the fiber component alone do not explain the observed health benefits associated with the consumption of whole grain barley. Whole grain barley also contains phytochemicals including phenolic acids, flavonoids, lignans, tocols, phytosterols, and folate. These phytochemicals exhibit strong antioxidant, antiproliferative, and cholesterol lowering abilities, which are potentially useful in lowering the risk of certain diseases. Therefore, the high concentration of phytochemicals in barley may be largely responsible for its health benefits. This paper reviews available information regarding barley phytochemicals and their potential to combat common nutrition-related diseases including cancer, cardiovascular disease, diabetes, and obesity. Copyright © 2016. Published by Elsevier B.V.

  8. The Mutation Frequency in Different Spike Categories in Barley

    DEFF Research Database (Denmark)

    Frydenberg, O.; Doll, Hans; Sandfær, J.

    1964-01-01

    After gamma irradiation of barley seeds, a comparison has been made between the chlorophyll-mutant frequencies in X1 spikes that had multicellular bud meristems in the seeds at the time of treatment (denoted as pre-formed spikes) and X1 spikes having no recognizable meristems at the time...

  9. New insight into quinoa seed quality under salinity: changes in proteomic and amino acid profiles, phenolic content, and antioxidant activity of protein extracts

    Directory of Open Access Journals (Sweden)

    Iris eAloisi

    2016-05-01

    . VR had the highest TPC and AA under non-saline conditions. Salinity increased TPC in all three landraces, with the strongest increase occurring in R49, and enhanced radical scavenging capacity in R49 and VR. Overall, results show that salinity deeply altered the seed proteome and amino acid profiles and, in general, increased the concentration of bioactive molecules and AA of protein extracts in a genotype-dependent

  10. New Insight into Quinoa Seed Quality under Salinity: Changes in Proteomic and Amino Acid Profiles, Phenolic Content, and Antioxidant Activity of Protein Extracts

    Science.gov (United States)

    Aloisi, Iris; Parrotta, Luigi; Ruiz, Karina B.; Landi, Claudia; Bini, Luca; Cai, Giampiero; Biondi, Stefania; Del Duca, Stefano

    2016-01-01

    highest TPC and AA under non-saline conditions. Salinity increased TPC in all three landraces, with the strongest increase occurring in R49, and enhanced radical scavenging capacity in R49 and VR. Overall, results show that salinity deeply altered the seed proteome and amino acid profiles and, in general, increased the concentration of bioactive molecules and AA of protein extracts in a genotype-dependent manner. PMID:27242857

  11. Allelopathic effects of barley straw on germination and seedling growth of corn, sugar beet and sunflower

    Directory of Open Access Journals (Sweden)

    mohamad taghi naseri poor yazdi

    2009-06-01

    Full Text Available Allelopathic effects of barley straw and root on germination and growth of maize, sugar beet, and sunflower were investigated under glasshouse and laboratory experiments in Faculty of Agriculture, Ferdowsi University of Mashhad in 2006. The glasshouse experiment was designed based on randomized complete block design with three replications, treatments included: 0, 200, 400, 600 g/m² of grounded barley straw and also 0 and 50 g/m2 barley root. A laboratory experiment was carried out in order to study the effect of different concentrations of barley water extracts on germination and seedling characteristics of corn, sugar beet and sunflower. Treatments in laboratory trial included 0, 33, 50 and 100 percent of barley extracts. Results showed that leaf area of corn was significantly affected by barley straw treatments. Shoot dry matter and seed weight per plant in corn , leaf and tuber weight in sugar beet and leaf , stem weights , plant per plant in corn , leaf and tuber weight in sugar beet and leaf, stem weights, plant height, head diameter, head weight and seed weight in sunflower were significantly higher in treatment of 50g/m² barley roots. Crop seed germination decreased with increasing the amount of barley straw. The best germination response to barley extract was observed in corn. Maize radicle weight was significantly decreased with increasing concentration of barley water extract.

  12. Effect of varying concentrations of caffeine and ascorbic acid on the radiosensitivity of barley seed irradiated in oxygenated or oxygen-free hydration medium at 25 and 3700C

    International Nuclear Information System (INIS)

    Afzal, S.M.J.; Kesavan, P.C.

    1977-01-01

    The modification of radiosensitivity of barley seed with 1.75 x 10 -3 M and 3.8 x 10 -3 M concentrations of caffeine and ascorbic acid during irradiation in oxygenated and oxygen-free hydration medium was studied at 25 and 37 0 C, respectively. Both concentrations of caffeine and ascorbic acid afforded protection against oxic radiation damage which was maximal at 25 0 C. Caffeine effectively potentiated the anoxic component of damage but ascorbic acid had no influence at all. At 25 0 C there was no concentration-dependent effect of caffeine or ascorbic acid. At 37 0 C, there was no effect, whatsoever, of either concentration of ascorbic acid, whereas caffeine dramatically potentiated the radiation damage under both oxygenated and oxygen-free conditions, and the magnitude of potentiation was concentration-dependent. The possible reactivity of caffeine and ascorbic acid towards the precursors of oxygen-dependent and -independent components of damage in determining the mode and magnitudes of modification is discussed briefly. (author)

  13. Barley peroxidase isozymes. Expression and post-translational modification in mature seeds as identified by two-dimensional gel electrophoresis and mass spectrometry

    DEFF Research Database (Denmark)

    Laugesen, Sabrina; Bak-Jensen, Kristian Sass; Hägglund, Per

    2007-01-01

    spectrometric analysis. Distinct peroxidase spot patterns divided the 16 cultivars tested into two groups. The distribution of the three isozymes in different seed tissues (endosperm, embryo, and aleurone layer) suggested the peroxidases to play individual albeit partially overlapping roles during germination...

  14. Advances in the use of mutation induction for genetic improvement of barley and native grains in Peru

    International Nuclear Information System (INIS)

    Romero Loli, M.; Luz Gomez, P.; Jorge Jimenez, D.; Agripina Roldan, Ch.

    2001-01-01

    Barley seeds of two varieties were treated with several doses of gamma rays and sodium azide. Seeds of a quinoa (Chenopodium) variety were treated with three doses of gamma rays. Yield trials were conducted also for doubled haploid lines of barley derived from earlier mutagenic treatments. Some promising new barley mutant lines were identified in the yield trials. The results from the Chenopodium trials facilitate the determination of the optimum dose of gamma rays for the PRQ-22 variety. (author)

  15. Proteomics Core

    Data.gov (United States)

    Federal Laboratory Consortium — Proteomics Core is the central resource for mass spectrometry based proteomics within the NHLBI. The Core staff help collaborators design proteomics experiments in a...

  16. Effect of aluminum treatment on proteomes of radicles of seeds derived from Al-treated tomato plants

    Science.gov (United States)

    Aluminum (Al) toxicity is a major constraint to plant growth and crop yield in acid soils. Tomato cultivars are especially susceptible to excessive A1 3+ accumulated in the root zone. In this study, tomato plants were grown in a hydroponic culture system supplemented with 50 uM AlK(SO4)2. Seeds harv...

  17. Thioredoxin reductase from barley: Structure, recognition of thioredoxin, protein engineering and catalytic mechanism

    DEFF Research Database (Denmark)

    Kirkensgaard, Kristine Groth

    from barley and E. coli Finally, the expression levels of HvNTR1, HvNTR2, HvTrxh1, HvTrxh2 and α‐amylase during imbibition was examined in different tissues of barley seeds by Q‐PCR and micro‐ array data analysis. The effects of the plant hormone gibberellic acid, dormancy/after‐ ripening, light...

  18. Proteomic analysis of oil body membrane proteins accompanying the onset of desiccation phase during sunflower seed development

    Science.gov (United States)

    Thakur, Anita; Bhatla, Satish C

    2015-01-01

    A noteworthy metabolic signature accompanying oil body (OB) biogenesis during oilseed development is associated with the modulation of the oil body membranes proteins. Present work focuses on 2-dimensional polyacrylamide gel electrophoresis (2-D PAGE)-based analysis of the temporal changes in the OB membrane proteins analyzed by LC-MS/MS accompanying the onset of desiccation (20–30 d after anthesis; DAA) in the developing seeds of sunflower (Helianthus annuus L.). Protein spots unique to 20–30 DAA stages were picked up from 2-D gels for identification and the identified proteins were categorized into 7 functional classes. These include proteins involved in energy metabolism, reactive oxygen scavenging, proteolysis and protein turnover, signaling, oleosin and oil body biogenesis-associated proteins, desiccation and cytoskeleton. At 30 DAA stage, exclusive expressions of enzymes belonging to energy metabolism, desiccation and cytoskeleton were evident which indicated an increase in the metabolic and enzymatic activity in the cells at this stage of seed development (seed filling). Increased expression of cruciferina-like protein and dehydrin at 30 DAA stage marks the onset of desiccation. The data has been analyzed and discussed to highlight desiccation stage-associated metabolic events during oilseed development. PMID:26786011

  19. Winter barley mutants created in the Ukraine

    International Nuclear Information System (INIS)

    Zayats, O.M.

    2001-01-01

    Full text: Increasing fodder and protein production is one of the objectives of the development of agriculture in Ukraine. Higher productivity of fodder crops, due to new highly productive varieties, is the means to meet this aim. Winter barley is an important crop for fodder purposes. The climate of the Ukraine is favourable for growing this crop. The areas used for the growth of winter barley are however, small (500,000-550,000 ha) and there is a shortage of good quality varieties. The main aim of the work was therefore to create new varieties of highly productive winter barley, of good quality. The new varieties and mutation lines of winter barley were created under the influence of water solutions of N-nitroso-N-methylurea (NMH - 0,012, 0,005%), N-nitroso-N-ethylurea (NEH - 0,05; 0.025; 0,012%) ethyleneimine (EI - 0,02; 0,01; 0,005%) on winter barley seeds of the varieties of local and foreign selections. On the basis of many years of investigations (1984-94) the following mutations were described: hard-grained, winter-hardiness, earliness, middle-maturity, late-maturity, wide and large leaves, narrow leaves, multinodal, great number of leaves, great number of flowers, strong stem (lodging resistant), tallness, semi-dwarfness, dwarfness, and high productivity. Particularly valuable are mutants with high productivity of green bulk. Their potential yield is 70 t/ha. As a result of the work two varieties of winter barley 'Shyrokolysty' and 'Kormovy' were released into the State register of plant varieties of the Ukraine. The other valuable mutant genotypes are used in cross breeding programmes. (author)

  20. A role for seed storage proteins in Arabidopsis seed longevity

    NARCIS (Netherlands)

    Nguyen, T.P.; Cueff, G.; Hegedus, D.D.; Rajjou, L.; Bentsink, L.

    2015-01-01

    Proteomics approaches have been a useful tool for determining the biological roles and functions of individual proteins and identifying the molecular mechanisms that govern seed germination, vigour and viability in response to ageing. In this work the dry seed proteome of four Arabidopsis thaliana

  1. Physiological and molecular changes in barley and wheat under salinity.

    Science.gov (United States)

    Temel, Aslihan; Gozukirmizi, Nermin

    2015-03-01

    In this study, it was aimed to compare salinity-induced changes in barley (Hordeum vulgare L. cv. Bornova-92) and bread wheat (Triticum aestivum L. cv. Gerek-79). Seeds were germinated under saline conditions (0, 50, 100, 250, and 500 mM NaCl) for 2 days and recovered under non-saline conditions for 2 days. At the end of the salt treatment, germination, water content (WC), total soluble protein content, and catalase (CAT, EC 1.11.1.6) activity were affected in both species, while superoxide dismutase (SOD, EC 1.15.1.1) activity was affected in barley. Salinity affected WC, protein content, and CAT activity in both species, while it affected germination in barley and affected fresh weight and SOD activity in wheat after recovery. Physiological responses of both species were correlated. Expression of α-tubulin, Atls1, and Lls1 genes was down-regulated in barley after 250 mM NaCl treatment. HVA1 gene was highly (more than 50-fold) stimulated by salinity in barley. However, α-tubulin and Atls1 genes were down-regulated, and Lls1 gene was up-regulated in wheat after recovery from 250-mM NaCl treatment. Increase in HVA1 expression was not significant in wheat. The expression profiles of barley and wheat under salinity are different, and barley tended to regulate gene expression faster than wheat.

  2. Comparing the effect of visceral fat and barley seed ash (hordeum vulgare L) with silversulfadiazine on burn wound healing in rats.

    Science.gov (United States)

    Azadi, Mohammad; Foruozandeh, Hossein; Karami, Leila; Khodayar, Mohammad Javad; Rashidi Nooshabadi, Mohamadreza; Kalantar, Mojtaba; Gudarzi, Mehdi; Pirouzi, Aliyar

    2015-02-01

    Skin burn is one of the most common complications and remains a major public health issue worldwide. This experiment was conducted to study the effects of traditional medicine (Visceral Fat and Barely Seed Ash) compared with silversulfadiazine (SSD) cream on healing burn wounds in rats. Sixty adult male Wistar rats were randomly divided into four groups of equal numbers; each group consisted of 15 animals. After sedation, type II of skin burn with 1.5 cm diameter circle was created on the back of rats with a heated metal in boiling water. Group one was not treated and considered as control. The burned areas in the second, third and fourth groups were applied twice a day with normal saline, SSD cream and traditional preparation, respectively. Percentage of the burn wound concentration and histopathological examinations were used as parameters of our study on days 4, 9and 14. Obtained data were compared between the groups and days. SSD cream and traditional preparation had better effects on burnt wound healing compared with control group. Furthermore, on the final day of study, the average percentage of wound concentration in traditional medicine group was significantly greater than other groups (P < 0.05). This finding was supported and confirmed by histological examination as well. Traditional preparation significantly decreased inflammation and accelerated wound healing in treated rats. Furthermore, the findings of this study can be applied clinically in the future.

  3. Breeding of proanthocyanidin free malting barley

    International Nuclear Information System (INIS)

    Andersen, Anna Maria

    1990-01-01

    Full text: Haze formation in stored beer is due to colloidal precipitation of proteins with polyphenols of which proanthocyanidins are the most important group. 70-80% of proanthocyanidin in beer are from barley malt. Today breweries attain haze stability by using enzymes, additives or adsorbents. A better solution would be to remove proanthocyanidins. Carlsberg Plant Breeding uses induced mutations to breed proanthocyanidin-free malting barley. After mutagen treatment with sodium azide M1 seeds are planted in the field and M2 seeds are harvested in bulk. A single seed, non-destructive method has been developed to identify mutant kernels lacking proanthocyanidins in the testa. The method involves the inclusion of M2 seeds - 50 at a time - in semisolid clay blocks, whereafter a small part of the endosperm, testa and pericarp are exposed by sanding the seeds. The clay block is then placed in a vanillin-HCI solution so that the uncovered tissues can react with the solution. A red colour will develop in the testa of normal seeds, whereas the testa layers of proanthocyanid-free seeds remain colourless. So far, more than 600 mutants have been induced in over 100 barley varieties, spring as well as winter-types, from barley producing areas around the world. The mutants can be assigned to at least 7 loci, all of which can block the biosynthetic pathway for the proanthocyanidins. Mutants in the ant-18 and ant-19 loci show poor kernel development. Only a few mutants are known in the ant-12, ant-22 and ant-25 loci. Breeding work is focussed on mutants belonging to the ant-13 and ant-17 loci. Whereas the malting quality of ant-17 lines suffer from apparent abnormal enzyme development in the aleurone layer, this defect does not exist in ant-13 lines. Brewing trials with proanthocyanidin-free malt have shown excellent haze stability without changes in beer flavour. Breeding work based on the ant-13 lines led to disease resistant lines with good malting quality, while grain yield

  4. Evaluation of barley (Hordeum vulgare L. and faba bean (Vicia faba L. yield in different density and mixture intercropping via competition indices

    Directory of Open Access Journals (Sweden)

    F Eslami Khalili

    2016-05-01

    Full Text Available In order to study the intercropping of barley (Hordeum vulgare L. and faba bean (Vicia faba L. an experiment was conducted as factorial based on randomized complete block design with two factors and three replications at Sari Agricultural Science and Natural Resources University during 2009. The first factor was two seed ratios include D1: 75 and 150 kg.ha-1 of faba bean and barley, respectively (optimum seed ratio and D2: 100 and 200 kg.ha-1 of faba bean and barley, respectively (high seed ratio and the second factor consisted of different planting ratio, P1: sole cropping of faba bean, P2: 50% faba bean + 50 % barley, P3: 75% faba bean + 25% barley, P4: 25% faba bean + 75% barley, P5: sole cropping of barley. Land equivalent ratio (LER indicated that intercropping of 25% faba bean + 75% barley was better than 50% faba bean + 50% barley. According to significant interaction effects of density and intercropping ratio in terms of seed yield and some competitive indices for both crop species, the highest barley and faba bean yield (3306.66 and 4884.56 kg.ha-1, respectively were observed in sole cropping with high density. In this experiment, the 75 % faba bean + 25 % mixture with high density was recorded highest intercropping yield, barley aggressivity value and 27% yield increases of barley in mix-proportion compared to sole crops. Also, the most of faba bean aggressivity value and faba bean yield increases in mix-proportion compared to sole crop were obtained when 25% faba bean + 75% barley mixture with optimum density was used. Furthermore the 75% faba bean + 25% barley treatment plus optimum seed ratio had highest system productivity index.

  5. Genetic variability in barley (Hordeum vulgare L.) landraces from ...

    African Journals Online (AJOL)

    Data on 44 barley landraces comprising collections and farmers' cultivars from north Shewa, Ethiopia were studied for variability in morphological characters and Sodium Dodecyl Sulphate Polyacrylamide Gel Electophoresis (SDS-PAGE) of seed storage proteins. The phenotypic frequencies of morphological characters ...

  6. Barley breeding for quality improvement in Tunisia | Medimagh ...

    African Journals Online (AJOL)

    This study was initiated to assess the effectiveness of three selection procedures applied in the early segregating generations of barley crosses for quality traits. The selection procedures were pedigree selection (PS), bulk selection (BS) and single seed descent selection (SSD). Selection was operated in F2's crosses.

  7. Induction by chromium ions of chitinases and polyamines in barley (Hordeum vulgare L.) and rape (Brassica napus L. ssp. oleifera)

    DEFF Research Database (Denmark)

    Jacobsen, S.; Hauschild, M.Z.; Rasmussen, U.

    1992-01-01

    Barley and rape seedlings were grown in hydroponic culture with increasing concentrations of CrO3 (Cr(VI)) or CrCl3 (Cr(III)). The chitinase activity and the concentrations of putrescine, spennidine and spermine were determined in the third leaf of barley seed-lings and in the second leaf of rape...

  8. Uptake and distribution of 232U in peas and barley

    International Nuclear Information System (INIS)

    Schreckhise, R.G.; Cline, J.F.

    1980-01-01

    The uptake of 232 U from soil and its distribution in peas and barley were examined under conditions which isolated root uptake from deposition on aboveground plant parts. Aboveground plant parts were harvested at maturity and analyzed for 232 U content by alpha-energy-analysis. The ratio of concentration (CR) of 232 U in the dry barley seeds to dry soil was 1.6 x 10 -4 while the CR values of the stem/leaf to dry soil fraction was 3.6 x 10 -3 . The Cr values for the pea seed, stem/pod and leaf components were 5.4 x 10 -4 , 3.3 x 10 -3 and 1.7 x 10 -2 , respectively. This indicates that the CR values used in certain radiological dose-assessment models may be high by about a factor of 100 when evaluating the consumption of seeds of legumes or cereal grains by man. (author)

  9. Comparative Germination of Barley Seeds (Hordeum Vulgare ...

    African Journals Online (AJOL)

    Where-as the rate of germination for the solutions of NaOH and NaHCO3 remained the same as that of the water. The influence in length of rootlets was also examined as a function of the nature of the soaking solutions. Sharp increase in the length was observed in case of Mg (OH)2 and KOH while in NaOH, Ca(OH)2 and ...

  10. Replication of DNA during barley endosperm development

    DEFF Research Database (Denmark)

    Giese, H.

    1992-01-01

    The incorporation of [6-H-3]-thymidine into DNA of developing barley end sperm was examined by autoradiography of cross sections of seeds and DNA analysis. The majority of nuclear divisions took place in the very young endosperm, but as late as 25 days after anthesis there was evidence for DNA...... replication. The DNA content of the endosperm increases during development and in response to nitrogen application in parallel to the storage protein synthesis profile. The hordein genes were hypersensitive to DNase I treatment throughout development....

  11. Linkage mapping of putative regulator genes of barley grain development characterized by expression profiling

    Directory of Open Access Journals (Sweden)

    Wobus Ulrich

    2009-01-01

    Full Text Available Abstract Background Barley (Hordeum vulgare L. seed development is a highly regulated process with fine-tuned interaction of various tissues controlling distinct physiological events during prestorage, storage and dessication phase. As potential regulators involved within this process we studied 172 transcription factors and 204 kinases for their expression behaviour and anchored a subset of them to the barley linkage map to promote marker-assisted studies on barley grains. Results By a hierachical clustering of the expression profiles of 376 potential regulatory genes expressed in 37 different tissues, we found 50 regulators preferentially expressed in one of the three grain tissue fractions pericarp, endosperm and embryo during seed development. In addition, 27 regulators found to be expressed during both seed development and germination and 32 additional regulators are characteristically expressed in multiple tissues undergoing cell differentiation events during barley plant ontogeny. Another 96 regulators were, beside in the developing seed, ubiquitously expressed among all tissues of germinating seedlings as well as in reproductive tissues. SNP-marker development for those regulators resulted in anchoring 61 markers on the genetic linkage map of barley and the chromosomal assignment of another 12 loci by using wheat-barley addition lines. The SNP frequency ranged from 0.5 to 1.0 SNP/kb in the parents of the various mapping populations and was 2.3 SNP/kb over all eight lines tested. Exploration of macrosynteny to rice revealed that the chromosomal orders of the mapped putative regulatory factors were predominantly conserved during evolution. Conclusion We identified expression patterns of major transcription factors and signaling related genes expressed during barley ontogeny and further assigned possible functions based on likely orthologs functionally well characterized in model plant species. The combined linkage map and reference

  12. Biochemistry, Structure and Function of Non-Wheat Proteins: Case Study of Barley ß-Amylase

    Science.gov (United States)

    The importance of a protein is not always evident and may be due to its multifunctional nature. ß-Amylase in seeds of barley (Hordeum vulgare L.) constitutes approximately 2% of the total protein in mature seeds and is assumed to be important when storage proteins are mobilized to support protein s...

  13. Radiosensitivity study of cultured barley (hordeum vulgare)

    International Nuclear Information System (INIS)

    Wang Cailian; Shen Mei; Xu Gang; Zhao Kongnan; Chen Qiufang

    1991-07-01

    For studying the radioactivity, forty seven varieties of dormant barley seeds were irradiated with various doses (0 ∼ 400 Gy) of 137 Cs γ-rays. The results showed that the dose-effects relations of seedling growth inhibition could be fitted by an equation of F(D) = 1 - (1 - e -a 1 D ) N , and the dose-effects of cell-nucleus, the frequency of root tip cell with chromosome aberations and peroxidase isoenzyme band could be expressed by a linear regression equation Y = A + B · X. The radioactivity of naked barley was much higher than of covered barley. According to different radiosensitivities the varieties studied could be divided into five types i.e. extreme resistant, resistant, intermediate, sensitive, and extreme sensitive. The results also showed that there was close relationship between the DNA content of cell-nucleus, peroxidase isoenzyme zymogram and radioactivity. The radiosensitivty was proportional to the DNA content. The volume of cell-nucleus varied inversly as D 50 of nucleus volume and no obvious correlation with the D 50 of seedling growth inhibition

  14. Identification Of Barley Grain Mycoflora By Next Generation Sequencing And Videometer Multispectral Imaging

    DEFF Research Database (Denmark)

    Jørgensen, Johannes Ravn; Carstensen, Jens Michael; Søren, Knudsen

    Seeds of Barley (Hordeum vulgare) are infected by a high number of fungi, including pathogens such as Fusarium graminearum, F. culmorum, F. poae, F. avenaceum and Pyrenophora teres. Fusarium spp. is a widely distributed fungus causing yield reduction in a range of agricultural crops and many...... species in the genus produce mycotoxins responsible for serious quality deterioration. In malting barley, Fusarium also has a negative effect by causing gushing in beer. A number of barley seeds (app. 200) assumed to be infected by fungal from different origins and years of cultivation were tested by NGS...... sequencing the ITS (Internal Transcribed Spacer) region from total DNA. Approximately 2-4000 sequences were obtained from each seed and these were subsequently identified to species level in order to give an exact identification of fungal genera on each seed. The main fungal genera identified were Fusarium...

  15. Construction of barley consensus map showing chromosomal ...

    African Journals Online (AJOL)

    In the past, it has been difficult to accurately determine the location of many types of barley molecular markers due to the lack of commonality between international barley linkage maps. In this study, a consensus map of barley was constructed from five different maps (OWB, VxHs, KxM, barley consensus 2 and barley ...

  16. Microgeographic Edaphic Differentiation in Hordein Polymorphisms of Wild Barley

    DEFF Research Database (Denmark)

    Nevo, E.; Beiles, A.; Storch, N.

    1983-01-01

    Genetic diversity in the storage protein hordein encoded by two loci, Horl and Hor2, was analyzed electrophoretically in seeds from 123 individual plants of wild barley, Hordeum spontaneum, the progenitor of cultivated barley. The test was conducted in two topographically different 100 meter...... transects in Israel, each equally divided into basalt and terra rossa soil types. Altogether 15 Horl and 16 Hor2 phenotypes were detected; 7 phenotypes in Horl and 5 in Hor2 were common. Significant differentiation of both Horl and Hor2 phenotypes and their associations was found with soil type...... and topography. Likewise, significant correlations were found between hordein phenotypes and allozyme types detected in a previous study. Our results suggest that at least part of the hordein polymorphisms in wild barley is adaptive and selected by soil and topographic differences over very short distances....

  17. Identification of Thioredoxin Disulfide Targets Using a Quantitative Proteomics Approach Based on Isotope-Coded Affinity Tags

    DEFF Research Database (Denmark)

    Hägglund, Per; Bunkenborg, Jakob; Maeda, Kenji

    2008-01-01

    Thioredoxin (Trx) is a ubiquitous protein disulfide reductase involved in a wide range of cellular redox processes. A large number of putative target proteins have been identified using proteomics approaches, but insight into target specificity at the molecular level is lacking since the reactivity......, protein extract of embryos from germinated barley seeds was treated +/- Trx, and thiols released from target protein disulfides were irreversibly blocked with iodoacetamide. The remaining cysteine residues in the Trx-treated and the control (-Trx) samples were then chemically reduced and labeled...... with the "light" (C-12) and "heavy" (C-13) ICAT reagent, respectively. The extent of Trx-mediated reduction was thus quantified for individual cysteine residues based on ratios of tryptic peptides labeled with the two ICAT reagents as measured by liquid chromatography coupled with mass spectrometry (LC...

  18. A role for seed storage proteins in Arabidopsis seed longevity.

    Science.gov (United States)

    Nguyen, Thu-Phuong; Cueff, Gwendal; Hegedus, Dwayne D; Rajjou, Loïc; Bentsink, Leónie

    2015-10-01

    Proteomics approaches have been a useful tool for determining the biological roles and functions of individual proteins and identifying the molecular mechanisms that govern seed germination, vigour and viability in response to ageing. In this work the dry seed proteome of four Arabidopsis thaliana genotypes, that carry introgression fragments at the position of seed longevity quantitative trait loci and as a result display different levels of seed longevity, was investigated. Seeds at two physiological states, after-ripened seeds that had the full germination ability and aged (stored) seeds of which the germination ability was severely reduced, were compared. Aged dry seed proteomes were markedly different from the after-ripened and reflected the seed longevity level of the four genotypes, despite the fact that dry seeds are metabolically quiescent. Results confirmed the role of antioxidant systems, notably vitamin E, and indicated that protection and maintenance of the translation machinery and energy pathways are essential for seed longevity. Moreover, a new role for seed storage proteins (SSPs) was identified in dry seeds during ageing. Cruciferins (CRUs) are the most abundant SSPs in Arabidopsis and seeds of a triple mutant for three CRU isoforms (crua crub cruc) were more sensitive to artificial ageing and their seed proteins were highly oxidized compared with wild-type seeds. These results confirm that oxidation is involved in seed deterioration and that SSPs buffer the seed from oxidative stress, thus protecting important proteins required for seed germination and seedling formation. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  19. Efeitos da cultura da cevada e de períodos de controle sobre o crescimento e produção de sementes de Raphanus sativus L. Effects of the culture of the Barley and of periods of control on the seed production and growth of Raphanus sativus L.

    Directory of Open Access Journals (Sweden)

    José Roberto Pinto de Souza

    1997-01-01

    Full Text Available Este experimento teve por objetivo avaliar os efeitos da cultura da cevada e de períodos de controle das plantas daninhas sobre o crescimento e produção de sementes de Raphanus sativus. Foram considerados dois tratamentos testemunha sem controle das plantas daninhas, com e sem a cultura. Nos oito demais tratamentos, a cultura esteve sempre presente, controlando-se as plantas daninhas até 10, 20, 30, 40, 50, 60, 80 e 100 dias após a emergência da cevada. A comunidade infestante da área era composta quase exclusivamente por R. .sativus. Avaliou-se o número de plantas, acúmulos de matéria seca, número médio de frutos e sementes de nabiça por planta e por unidade de área ; foram ainda avaliados o número médio de sementes por fruto, peso médio de 1.000 sementes e a contribuição das sementes na composição da matéria se catota. A análise dos resultados evidenciou que a espécie Raphanus sativus apresenta elevado potencial reprodutivo, sendo possível concluir pela ineficiência de programas de controle de curta duração, em termos de redução do banco de sementes. A presença da cultura da cevada reduziu tanto o crescimento quanto o número de sementes produzidas pela nabiça (R. sativus. Na ausência da cultura e de práticas de controle foram produzidas 5.074 sementes/m, a partir de 125 plantas/m ainda presentes na colheita da cultura.The objective of this research was to evaluate the effects of barley and weed control periods on the seed production and growth of Raphanus sativus, the major weed in the experimental area. The experiment was carried out in Botucatu, SP, Brazil. Two checks, with and without the crop, were kept weedy from seeding to harvest. In other eight treatments the crop was kept weed free up to 10, 20, 30, 40, 50, 60, 80 and 100 days after emergence. It were evaluated the number of plants, the dry matter accumulation and the number of fruits and seeds per plant and per m2, the weight of 1.000 seeds and the

  20. Proteomic analysis of embryonic axis of Pisum sativum seeds during germination and identification of proteins associated with loss of desiccation tolerance

    DEFF Research Database (Denmark)

    Wang, Wei-Qing; Møller, Ian Max; Song, Song-Quan

    2012-01-01

    these seeds to identify the candidate proteins associated with the loss of desiccation tolerance and found a total of seven proteins – tubulin alpha-1 chain, seed biotin-containing protein SBP65, P54 protein, vicilin, vicilin-like antimicrobial peptides 2–3, convicilin and TCP-1/cpn60 chaperonin family...

  1. Gel-based and gel-free proteome data associated with controlled deterioration treatment ofGlycine maxseeds.

    Science.gov (United States)

    Min, Cheol Woo; Lee, Seo Hyun; Cheon, Ye Eun; Han, Won Young; Ko, Jong Min; Kang, Hang Won; Kim, Yong Chul; Agrawal, Ganesh Kumar; Rakwal, Randeep; Gupta, Ravi; Kim, Sun Tae

    2017-12-01

    Data presented here are associated with the article: "In-depth proteomic analysis of soybean ( Glycine max ) seeds during controlled deterioration treatment (CDT) reveals a shift in seed metabolism" (Min et al., 2017) [1]. Seed deterioration is one of the major problems, affecting the seed quality, viability, and vigor in a negative manner. Here, we display the gel-based and gel-free proteomic data, associated with the CDT in soybean seeds. The present data was obtained from 2-DE, shotgun proteomic analysis (label-free quantitative proteomic analysis) using Q-Exactive, and gene ontology analysis associated with CDT in soybean seeds (Min et al., 2017) [1].

  2. Effect of pH and Recombinant Barley (Hordeum vulgare L.) Endoprotease B2 on Degradation of Proteins in Soaked Barley

    DEFF Research Database (Denmark)

    Christensen, Jesper Bjerg; Dionisio, Giuseppe; Poulsen, Hanne Damgaard

    2014-01-01

    .3. Solubilized and degraded proteins evaluated by biuret, SDS-PAGE, and differential proteomics revealed that pH 4.3 had the greatest impact on both solubilization and degradation. In order to boost proteolysis, the recombinant barley endoprotease B2 (rec-HvEP-B2) was included after 8 h using the pH 4.3 regime....... Proteolysis evaluated by SDS-PAGE and differential proteomics confirmed a powerful effect of adding rec-HvEP-B2 to the soaked barley, regardless of the genotype. Our study addresses the use of rec-HvEP-B2 as an effective feed enzyme protease. HvEP-B2 has the potential to increase the digestibility of protein...

  3. Proteomics dataset

    DEFF Research Database (Denmark)

    Bennike, Tue Bjerg; Carlsen, Thomas Gelsing; Ellingsen, Torkell

    2017-01-01

    The datasets presented in this article are related to the research articles entitled “Neutrophil Extracellular Traps in Ulcerative Colitis: A Proteome Analysis of Intestinal Biopsies” (Bennike et al., 2015 [1]), and “Proteome Analysis of Rheumatoid Arthritis Gut Mucosa” (Bennike et al., 2017 [2])...... been deposited to the ProteomeXchange Consortium via the PRIDE partner repository with the dataset identifiers PXD001608 for ulcerative colitis and control samples, and PXD003082 for rheumatoid arthritis samples....

  4. Diversity for seedling vigor in wild barley (hordeum vulgare L. subs. simpatina) germplasm

    International Nuclear Information System (INIS)

    Tyagi, K.; Park, M.R.; Lee, H.J.; Lee, C.A.; Rehman, S.; Steffenson, B.; Lee, K.J.; Yun, S.J.

    2011-01-01

    Seedling vigor is important for improving stand establishment of barley crops, particularly in arid regions and areas where the soil temperature is low at sowing time. Three hundred and fifteen wild barley accessions from the Wild Barley Diversity Collection (WBDC) were evaluated for nine seedling vigor traits in a poly house and growth chamber under hydroponic conditions. The accessions exhibited significant differences for all traits investigated. Traits showing greatest phenotypic variation were seedling visual score, plant height, shoot fresh weight, shoot dry weight and shoot length. Seed weight exhibited the least variation. Seed weight was significantly correlated with visual seedling score and shoot and seedling fresh and dry weight. Correlation analysis showed that the visual seedling score was a reliable method for estimating seedling vigor in wild barley. The first three principal components (PC) explained 82.3% of the variation present in the WBDC with PC1(54.0%) associated with shoot fresh weight, shoot dry weight, seedling dry weight, seedling fresh weight, shoot length and seedling length. Accessions from the southwest portion of the Fertile Crescent, like WBDC020 (Turkey), WBDC238 (Jordan) and WBDC244 (Jordan) exhibited the highest positive values for most of the plant vigor traits investigated. These wild barley accessions likely carry alleles that will be useful for the improvement of plant vigor traits in cultivated barley. (author)

  5. Heterogeneity of Powdery Mildew Resistance Revealed in Accessions of the ICARDA Wild Barley Collection

    Science.gov (United States)

    Dreiseitl, Antonin

    2017-01-01

    The primary genepool of barley comprises two subspecies – wild barley (Hordeum vulgare subsp. spontaneum) and cultivated barley H. vulgare. subsp. vulgare. The former originated 5.5 million years ago in southwest Asia and is the immediate ancestor of cultivated barley, which arose around 10,000 years ago. In this study, the specific resistance of a set of 146 wild barley accessions, maintained by the International Center for Agriculture Research in the Dry Areas (ICARDA), to 32 isolates of barley powdery mildew caused by Blumeria graminis f. sp. hordei was evaluated. The set comprised 146 heterogeneous accessions of a previously tested collection. Seed was obtained by single seed descent and each accession was usually represented by five single plant progenies. In total, 687 plant progenies were tested. There were 211 phenotypes of resistance among the accessions, 87 of which were found in single plants, while 202 plants contained the eight most common phenotypes. The most frequent phenotype was found in 56 plants that were susceptible to all pathogen isolates, whereas the second most frequent phenotype, which occurred in 46 plants, was resistant to all isolates. The broad resistance diversity that was revealed is of practical importance and is an aid to determining the extent and role of resistance in natural ecosystems. PMID:28261253

  6. Significance of seed-borne Ascochyta on pea and test of management strategies

    OpenAIRE

    Wolffhechel, H.; Bødker, L.; Nielsen, G.C.

    2005-01-01

    Large amounts of Danish pea seeds are rejected each year due to high levels of Ascochyta infections. Selection of less susceptible pea varieties may reduce seed infections, while intercropping with barley only gives a small reduction. Increasing seeding rates has no effect. Short pea varieties generally seem to be more susceptible to seed infection by Ascochyta than taller varieties.

  7. Genome-wide association studies with proteomics data reveal genes important for synthesis, transport and packaging of globulins in legume seeds.

    Science.gov (United States)

    Le Signor, Christine; Aimé, Delphine; Bordat, Amandine; Belghazi, Maya; Labas, Valérie; Gouzy, Jérôme; Young, Nevin D; Prosperi, Jean-Marie; Leprince, Olivier; Thompson, Richard D; Buitink, Julia; Burstin, Judith; Gallardo, Karine

    2017-06-01

    Improving nutritional seed quality is an important challenge in grain legume breeding. However, the genes controlling the differential accumulation of globulins, which are major contributors to seed nutritional value in legumes, remain largely unknown. We combined a search for protein quantity loci with genome-wide association studies on the abundance of 7S and 11S globulins in seeds of the model legume species Medicago truncatula. Identified genomic regions and genes carrying polymorphisms linked to globulin variations were then cross-compared with pea (Pisum sativum), leading to the identification of candidate genes for the regulation of globulin abundance in this crop. Key candidates identified include genes involved in transcription, chromatin remodeling, post-translational modifications, transport and targeting of proteins to storage vacuoles. Inference of a gene coexpression network of 12 candidate transcription factors and globulin genes revealed the transcription factor ABA-insensitive 5 (ABI5) as a highly connected hub. Characterization of loss-of-function abi5 mutants in pea uncovered a role for ABI5 in controlling the relative abundance of vicilin, a sulfur-poor 7S globulin, in pea seeds. This demonstrates the feasibility of using genome-wide association studies in M. truncatula to reveal genes that can be modulated to improve seed nutritional value. © 2017 INRA. New Phytologist © 2017 New Phytologist Trust.

  8. Differential labelling of cysteines for simultaneous identification of thioredoxin h-reducible disulphides in native protein extracts: insight into recognition and regulation of proteins in barley seeds by thioredoxin h

    DEFF Research Database (Denmark)

    Maeda, Kenji; Finnie, Christine; Svensson, Birte

    2005-01-01

    . Mass shifts of 15 peptides, induced by treatment with thioredoxin h and differential alkylation, identified specific reduction of nine disulphides in BASI, four a-amylase/trypsin inhibitors and a protein of unknown function. Two specific disulphides, located structurally close to the alpha-amylase...... binding surfaces of BASI and alpha-amylase inhibitor BMAI-1 were demonstrated to be reduced to a particularly high extent. For the first time, specificity of thioredoxin h for particular disulphide bonds is demonstrated, providing a basis to study structural aspects of the recognition mechanism......) to be distinguished from those inaccessible or disulphide bound form (pyridylethylated) according to the mass difference in the peptide mass maps obtained by matrixassistend laser desorption/ionisation-time of flight mass spectrometry. Using this approach, in vitro reduction of disulphides in recombinant barley a-amylase...

  9. Reclamation of Sodic-Saline Soils. Barley Crop Response

    Directory of Open Access Journals (Sweden)

    Giovanna Cucci

    2008-12-01

    Full Text Available The research was aimed at assessing the salinity and sodicity effects of two soil types submitted to correction on barley crop. The two soils, contained in cylindrical pots (0.40 m in size and 0.60 m h supplied with a bottom valve for the collection of drainage water and located under shed to prevent the leaching action of rainfall, were clay-textured and saline and sodic-saline at barley seeding, as they had been cultivated for 4 consecutive years with different herbaceous species irrigated with 9 types of brackish water. In 2002-2003 the 2 salinized and sodium-affected soils (ECe and ESP ranging respectively from 5.84-20.27 dSm-1 to 2.83-11.19%, submitted to correction, were cultivated with barley cv Micuccio, and irrigated with fresh water (ECw = 0.5 dS m-1 and SAR = 0.45 whenever 30% of the maximum soil available moisture was lost by evapotranspiration. Barley was shown to be a salt-tolerant species and did not experience any salt stress when grown in soils with an initial ECe up to 11 dS m-1. When it was grown in more saline soils (initial ECe of about 20 dS m-1, despite the correction, it showed a reduction in shoot biomass and kernel yield by 26% and 36% respectively, as compared to less saline soils.

  10. Barley yellow dwarf virus

    Science.gov (United States)

    Paulmann, Maria K; Kunert, Grit; Zimmermann, Matthias R; Theis, Nina; Ludwig, Anatoli; Meichsner, Doreen; Oelmüller, Ralf; Gershenzon, Jonathan; Habekuss, Antje; Ordon, Frank; Furch, Alexandra C U; Will, Torsten

    2018-01-01

    Barley yellow dwarf virus (BYDV) is a phloem limited virus that is persistently transmitted by aphids. Due to huge yield losses in agriculture, the virus is of high economic relevance. Since the control of the virus itself is not possible, tolerant barley genotypes are considered as the most effective approach to avoid yield losses. Although several genes and quantitative trait loci are known and used in barley breeding for virus tolerance, little is known about molecular and physiological backgrounds of this trait. Therefore, we compared the anatomy and early defense responses of a virus susceptible to those of a virus-tolerant cultivar. One of the very early defense responses is the transmission of electrophysiological reactions. Electrophysiological reactions to BYDV infection might differ between susceptible and tolerant cultivars, since BYDV causes disintegration of sieve elements in susceptible cultivars. The structure of vascular bundles, xylem vessels and sieve elements was examined using microscopy. All three were significantly decreased in size in infected susceptible plants where the virus causes disintegration of sieve elements. This could be associated with an uncontrolled ion exchange between the sieve-element lumen and apoplast. Further, a reduced electrophysiological isolation would negatively affect the propagation of electrophysiological reactions. To test the influence of BYDV infection on electrophysiological reactions, electropotential waves (EPWs) induced by leaf-tip burning were recorded using aphids as bioelectrodes. EPWs in infected susceptible plants disappeared already after 10 cm in contrast to those in healthy susceptible or infected tolerant or healthy tolerant plants. Another early plant defense reaction is an increase in reactive oxygen species (ROS). Using a fluorescent dye, we found a significant increase in ROS content in infected susceptible plants but not in infected tolerant plants. Similar results were found for the

  11. Assessment of genetic diversity among barley cultivars and breeding lines adapted to the US Pacific Northwest, and its implications in breeding barley for imidazolinone-resistance.

    Directory of Open Access Journals (Sweden)

    Sachin Rustgi

    Full Text Available Extensive application of imidazolinone (IMI herbicides had a significant impact on barley productivity contributing to a continuous decline in its acreage over the last two decades. A possible solution to this problem is to transfer IMI-resistance from a recently characterized mutation in the 'Bob' barley AHAS (acetohydroxy acid synthase gene to other food, feed and malting barley cultivars. We focused our efforts on transferring IMI-resistance to barley varieties adapted to the US Pacific Northwest (PNW, since it comprises ∼23% (335,000 ha of the US agricultural land under barley production. To effectively breed for IMI-resistance, we studied the genetic diversity among 13 two-rowed spring barley cultivars/breeding-lines from the PNW using 61 microsatellite markers, and selected six barley genotypes that showed medium to high genetic dissimilarity with the 'Bob' AHAS mutant. The six selected genotypes were used to make 29-53 crosses with the AHAS mutant and a range of 358-471 F1 seeds were obtained. To make informed selection for the recovery of the recipient parent genome, the genetic location of the AHAS gene was determined and its genetic nature assessed. Large F2 populations ranging in size from 2158-2846 individuals were evaluated for herbicide resistance and seedling vigor. Based on the results, F3 lines from the six most vigorous F2 genotypes per cross combination were evaluated for their genetic background. A range of 20%-90% recovery of the recipient parent genome for the carrier chromosome was observed. An effort was made to determine the critical dose of herbicide to distinguish between heterozygotes and homozygotes for the mutant allele. Results suggested that the mutant can survive up to the 10× field recommended dose of herbicide, and the 8× and 10× herbicide doses can distinguish between the two AHAS mutant genotypes. Finally, implications of this research in sustaining barley productivity in the PNW are discussed.

  12. Barley Transformation Using Biolistic Techniques

    Science.gov (United States)

    Harwood, Wendy A.; Smedley, Mark A.

    Microprojectile bombardment or biolistic techniques have been widely used for cereal transformation. These methods rely on the acceleration of gold particles, coated with plasmid DNA, into plant cells as a method of directly introducing the DNA. The first report of the generation of fertile, transgenic barley plants used biolistic techniques. However, more recently Agrobacterium-mediated transformation has been adopted as the method of choice for most cereals including barley. Biolistic procedures are still important for some barley transformation applications and also provide transient test systems for the rapid checking of constructs. This chapter describes methods for the transformation of barley using biolistic procedures and also highlights the use of the technology in transient assays.

  13. A functional genomics approach to understand the control and regulation of storage protein biosynthesis in barley grain

    DEFF Research Database (Denmark)

    Vincze, É; Hansen, M; Bowra, S

    2008-01-01

    The aim of the study was to obtain an insight into amino acid and storage protein metabolism in the developing barley grain at the molecular level. Our strategy was to analyse the transcriptome of relevant pathways in developing grains of field grown barley using a grain specific microarray assem...... pathways in the barley grain. The study described here could provide a strong complement to existing knowledge assisting further  understanding of seed development and thereby provide a foundation for plant breeding towards storage protein with improved nutritional quality....

  14. Kinetic and thermodynamic properties of two barley thioredoxin h isozymes, HvTrxh1 and HvTrxh2

    DEFF Research Database (Denmark)

    Maeda, Kenji; Hägglund, Per; Björnberg, Olof

    2010-01-01

    Barley thioredoxin h isozymes 1 (HvTrxh1) and barley thioredoxin h isozymes 2 (HvTrxh2) show distinct spatiotemporal distribution in germinating seeds. Using a novel approach involving measurement of bidirectional electron transfer rates between Escherichia coli thioredoxin, which exhibits redox......-dependent fluorescence, and the barley isozymes, reaction kinetics and thermodynamic properties were readily determined. The reaction constants were 60% higher for HvTrxh1 than HvTrxh2, while their redox potentials were very similar. The primary nucleophile, Cys(N), of the active site Trp-Cys(N)-Gly-Pro-Cys...

  15. Teor de proteínas nos grãos em resposta à aplicação de nitrogênio em diferentes estádios de desenvolvimento da cevada Protein content in barley seeds affected by nitrogen application in different growth stages

    Directory of Open Access Journals (Sweden)

    Anderson Fernando Wamser

    2007-12-01

    Full Text Available O presente trabalho teve como objetivo avaliar o teor de proteínas em grãos de cevada em resposta à aplicação de N em estádios de desenvolvimento da cultura. Os experimentos foram conduzidos em Eldorado do Sul e Encruzilhada do Sul, no ano de 2000, e em Victor Graeff, nos anos de 2000 e 2001, em delineamento experimental em blocos casualizados com quatro repetições. Os estádios de aplicação de N foram na emergência das plântulas; na emissão da 2ª ou 3ª folha; da 4ª ou 5ª folha; 6ª ou 7ª folha; 8ª ou 9ª folha; e no emborrachamento. As doses de N foram de 30 ou 40kg ha-1 e 60 ou 80kg ha-1, para a menor e maior dose, respectivamente. As determinações realizadas foram teor de proteínas nos grãos e número de grãos metro-2. Para os experimentos realizados em 2000, a aplicação de nitrogênio até o início do alongamento dos entrenós (emissão da 7ª folha manteve o teor de proteínas no grão abaixo dos 12%, mesmo para a maior dose de N. Os teores de proteínas no grão em Victor Graeff, no ano de 2001, ficaram acima do limite máximo de 12% com a aplicação da maior dose de N já em estádios iniciais de desenvolvimento da cultura, devido ao maior teor de matéria orgânica no solo em relação aos outros locais.This study was was aimed at evaluating the protein content in barley seeds affected by nitrogen application in different growth stages. Experiments were carried out in Eldorado do Sul and Encruzilhada do Sul, in 2000, and Victor Graeff, in 2000 and 2001, on a randomized blocks scheme with four repetitions. The growth stages of N application were in emergency of seedlings; emission of 2nd or 3rd leaf; 4th or 5th leaf; 6th or 7th leaf; 8th or 9th leaf; and in boot stage. The N rates were 30 or 40kg ha-1 and 60 or 80kg ha-1, for smallest and largest N rate, respectively. The protein content in barley seeds and the number of grains area-1 were determined. In the experiments carried out in 2000 the nitrogen

  16. Barley (Hordeum vulgare L.) cysteine proteases: heterologous expression, purification and characterization

    DEFF Research Database (Denmark)

    Rosenkilde, Anne Lind; Dionisio, Giuseppe; Holm, Preben Bach

    2011-01-01

    the supernatant were performed by Ni2+-affininty chromatography. The purified fractions were analyzed via SDS-PAGE, western blotting for confirming the presence of HvEPB2 and via activity assaying. Incubation of purified HvEPB2 with Osborne fractionated barley seed storage proteins for 12 hrs revealed after SDS-PAGE...

  17. Effect of gamma irradiation (60CO) on quatitative characters of barley (Hordeum vulgare)

    International Nuclear Information System (INIS)

    Santana, T.C.; Gonzalez, F.C.

    1984-01-01

    Seeds od f a barley line were irradiated with doses ranging from O to 64 Kr of gamma radiation for three consecutive generations (R1,R2 and R3). From these, several mutant generations were obtained in the field, planting at a commercial density and without selection. (M.A.C.) [pt

  18. Abscisic acid and 14-3-3 proteins control K+ channel activity in barley embryonic root

    NARCIS (Netherlands)

    van den Wijngaard, P.W.J.; Sinnige, M.P.; Roobeek, I.; Reumer, C.G.; Mol, J.N.M.; Wang, M.; de Boer, A.H.; Schoonheim, P.J.

    2005-01-01

    Germination of seeds proceeds in general in two phases, an initial imbibition phase and a subsequent growth phase. In grasses like barley, the latter phase is evident as the emergence of the embryonic root (radicle). The hormone abscisic acid (ABA) inhibits germination because it prevents the embryo

  19. Inactivation of barley limit dextrinase inhibitor by thioredoxin-catalysed disulfide reduction

    DEFF Research Database (Denmark)

    Jensen, Johanne Mørch; Hägglund, Per; Christensen, Hans Erik Mølager

    2012-01-01

    Barley limit dextrinase (LD) that catalyses hydrolysis of α-1,6 glucosidic linkages in starch-derived dextrins is inhibited by limit dextrinase inhibitor (LDI) found in mature seeds. LDI belongs to the chloroform/methanol soluble protein family (CM-protein family) and has four disulfide bridges...

  20. Proteomic survey of metabolic pathways in rice.

    Science.gov (United States)

    Koller, Antonius; Washburn, Michael P; Lange, B Markus; Andon, Nancy L; Deciu, Cosmin; Haynes, Paul A; Hays, Lara; Schieltz, David; Ulaszek, Ryan; Wei, Jing; Wolters, Dirk; Yates, John R

    2002-09-03

    A systematic proteomic analysis of rice (Oryza sativa) leaf, root, and seed tissue using two independent technologies, two-dimensional gel electrophoresis followed by tandem mass spectrometry and multidimensional protein identification technology, allowed the detection and identification of 2,528 unique proteins, which represents the most comprehensive proteome exploration to date. A comparative display of the expression patterns indicated that enzymes involved in central metabolic pathways are present in all tissues, whereas metabolic specialization is reflected in the occurrence of a tissue-specific enzyme complement. For example, tissue-specific and subcellular compartment-specific isoforms of ADP-glucose pyrophosphorylase were detected, thus providing proteomic confirmation of the presence of distinct regulatory mechanisms involved in the biosynthesis and breakdown of separate starch pools in different tissues. In addition, several previously characterized allergenic proteins were identified in the seed sample, indicating the potential of proteomic approaches to survey food samples with regard to the occurrence of allergens.

  1. Breeding cultivars of barley and mustard containing biochemical mutants

    International Nuclear Information System (INIS)

    Oram, R.N.

    1990-01-01

    Full text: The inactivation of dominant and co-dominant alleles is becoming increasingly important in changing the composition of seed carbohydrates, protein, oil, fibre and secondary products to suit modern food and feed technologies. In barley, breeding lines adapted to south-eastern Australian conditions have been developed containing a waxy endosperm from the Japanese variety 'Sumire Mochi', the high lysine gene lys from cv. 'Hiproly' of Ethiopia, and the induced high lysine mutant gene lys 3a from 'Risoe 1508'. The improved mutant lines yield 12-34% less than the highest yielding feed barley. The lys and lys 3a alleles suppress the formation of prolamins, the waxy allele inhibits the formation of amylose. It seems difficult to modify the background genotype to fully compensate for the reduction of major storage carbohydrate or protein compounds. However, waxy barleys have uses in some human foods and a premium can be paid to producers. The grain of the provisionally-patented waxy cultivar Wasiro is suitable for pearling. It contains 5% β-glucan (soluble fibre) and therefore should be as effective as oat bran for reducing blood cholesterol. In Indian mustard (Brassica juncea), three cultivars differing in date of maturity, each containing the spontaneous mutant alleles for low erucic acid levels in the seed oil, have been developed to produce a high quality, mildly flavoured cooking/salad oil. The concentration of glucosinolates in the seed meal must be reduced to make it palatable and non-toxic to pigs and poultry. Three B. juncea lines were treated in up to four successive generations with gamma rays or EMS. 60,000 seed samples were analysed in subsequent generations. Two induced mutants with reduced glucosinolate concentrations are now available besides 4 naturally-occurring sources with only little reduced yields. Recombination may give a high-yielding low erucic acid and low glucosinolate variety of B. juncea. (author)

  2. Proteomics dataset

    DEFF Research Database (Denmark)

    Bennike, Tue Bjerg; Carlsen, Thomas Gelsing; Ellingsen, Torkell

    2017-01-01

    The datasets presented in this article are related to the research articles entitled “Neutrophil Extracellular Traps in Ulcerative Colitis: A Proteome Analysis of Intestinal Biopsies” (Bennike et al., 2015 [1]), and “Proteome Analysis of Rheumatoid Arthritis Gut Mucosa” (Bennike et al., 2017 [2...... conducted the sample preparation and liquid chromatography mass spectrometry (LC-MS/MS) analysis of all samples in one batch, enabling label-free comparison between all biopsies. The datasets are made publicly available to enable critical or extended analyses. The proteomics data and search results, have...... been deposited to the ProteomeXchange Consortium via the PRIDE partner repository with the dataset identifiers PXD001608 for ulcerative colitis and control samples, and PXD003082 for rheumatoid arthritis samples....

  3. Clinical proteomics

    DEFF Research Database (Denmark)

    Albrethsen, Jakob; Frederiksen, Hanne; Johannsen, Trine Holm

    2018-01-01

    )-platforms already implemented in many clinical laboratories for routine quantitation of small molecules (i.e. uHPLC coupled to triple-quadrupole MS). Progress in targeted proteomics of circulating insulin-like growth factor 1 (IGF-I) have provided valuable insights about tryptic peptides, transitions, internal......Clinical proteomics aims to deliver cost-effective multiplexing of potentially hundreds of diagnostic proteins, including distinct protein isoforms. The analytical strategy known as targeted proteomics is particularly promising because it is compatible with robust mass spectrometry (MS...... standards and calibrants. The present challenge is to examine if targeted proteomics of IGF-I can truly measure up to the routine performance that must be expected from a clinical testing platform....

  4. Aminopeptidases of Germinated and Non-Germinated Barley

    Directory of Open Access Journals (Sweden)

    Bojana Vukelić

    2009-01-01

    Full Text Available In processes of barley plant development, various endo- and exopeptidases are involved. To determine the type and number of aminopeptidases that could participate in barley seed germination and tissue growth, their activities in extracts of non-germinated and germinated barley (Hordeum vulgare L. cv. Angora grains and young tissues have been examined, and some of their properties determined. Aminopeptidases (AP hydrolysing 2-naphthylamides of various amino acids were present in dry and germinated grains, roots, seedlings and leaves, showing preferences for amino acids phenylalanine (Phe, arginine (Arg, leucine (Leu and methionine (Met, and lower activity towards alanine (Ala, proline (Pro, glycine (Gly and histidine (His. Levels and ratios of AP activities changed during germination and tissue development, indicating that APs of different specificities are required at different stages of germination and in young tissues. Thus, the increase of all aminopeptidase activities during the first 24 hours of germination and subsequent decrease show significant involvement in seed primary metabolism restoration. The activities of Arg- and HisAP are equally important in green malt. Seedlings and leaves have pronounced substrate specificity for Phe, Leu, Ala and Pro, while roots have the lowest AP specific activities. From the activities and determined properties, the presence of at least six aminopeptidases optimally active at pH=7.4–8.2 could be discerned in dry and germinated grains, and young tissues of Angora barley. Two aminopeptidases are most probably of broad substrate specificity, three show narrow preference with dominating Leu, Phe, or Pro/His, while one is specific for Arg.

  5. Proteomes: A New Proteomic Journal

    Directory of Open Access Journals (Sweden)

    Jacek R. Wiśniewski

    2012-10-01

    Full Text Available In the early years of proteomics, mass spectrometry served only as a technique in protein chemistry facilitating the characterization of purified proteins and mapping their posttranslational modifications (PTMs. A bit later this technique almost completely replaced Edman degradation and amino acid analysis. The continuous development of the mass spectrometry techniques created a huge analytical potential allowing the study of nearly complete proteomes in single experiments. This evolution distanced proteomics from protein chemistry and placed it in a novel position. Its capability to identify and quantify in parallel thousands of proteins and their modifications at minute sample amount requirements is one of the most fascinating technological advances in biology today.

  6. Transcriptional regulatory programs underlying barley germination and regulatory functions of Gibberellin and abscisic acid

    Science.gov (United States)

    2011-01-01

    Background Seed germination is a complex multi-stage developmental process, and mainly accomplished through concerted activities of many gene products and biological pathways that are often subjected to strict developmental regulation. Gibberellins (GA) and abscisic acid (ABA) are two key phytohormones regulating seed germination and seedling growth. However, transcriptional regulatory networks underlying seed germination and its associated biological pathways are largely unknown. Results The studies examined transcriptomes of barley representing six distinct and well characterized germination stages and revealed that the transcriptional regulatory program underlying barley germination was composed of early, late, and post-germination phases. Each phase was accompanied with transcriptional up-regulation of distinct biological pathways. Cell wall synthesis and regulatory components including transcription factors, signaling and post-translational modification components were specifically and transiently up-regulated in early germination phase while histone families and many metabolic pathways were up-regulated in late germination phase. Photosynthesis and seed reserve mobilization pathways were up-regulated in post-germination phase. However, stress related pathways and seed storage proteins were suppressed through the entire course of germination. A set of genes were transiently up-regulated within three hours of imbibition, and might play roles in initiating biological pathways involved in seed germination. However, highly abundant transcripts in dry barley and Arabidopsis seeds were significantly conserved. Comparison with transcriptomes of barley aleurone in response to GA and ABA identified three sets of germination responsive genes that were regulated coordinately by GA, antagonistically by ABA, and coordinately by GA but antagonistically by ABA. Major CHO metabolism, cell wall degradation and protein degradation pathways were up-regulated by both GA and seed

  7. Allelopathic effect of ryegrass (lolium persicum) and wild mustard (sinapis arvensis) on barley

    International Nuclear Information System (INIS)

    Baziar, M.R.; Farahvash, F.; Mirshekari, B.; Rashidi, V.

    2014-01-01

    Most crop plants and weeds have allelopathic effects and analysis of these effects on plants in crop alteration and successive planting is very important. In this research the allelopathic ability of different parts and concentrations of two weeds, Lolium Persicum (Ryegrass) and Sinapis arvensis (wild mustered), on growth characteristics of two barley varieties was studied in the greenhouse using a completely randomized design with four replications. Test factors consisted of two barley varieties (Valfajr and Rehane), three weed organs (root, stalk, leaf) and four concentrations of extracts of weed organs (25, 50, 75 and control or distilled water). After the preparation of extracts of different weed organs with different concentrations, their effect on growth characteristics of barley plant was evaluated. Finally, seedling length, rootlet length caulicle length, wet weight of seedling, dry weight of seedling were measured. Also, the above two seeds had significant effects on the two strains of barley and could influence growth characteristics of barley. Based on the results of present study, one can argue that Ryegrass (Lolium Persicum) and wild mustard (Sinapis arvensis) can strongly affect germination, growth and performance of barley through production of chemical materials with allelopathic properties, leading unfavorable growth and product yield. (author)

  8. Expression of stress/defense-related genes in barley grown under space environment

    Science.gov (United States)

    Sugimoto, Manabu; Shagimardanova, Elena; Gusev, Oleg; Bingham, Gail; Levinskikh, Margarita; Sychev, Vladimir

    Plants are exposed to the extreme environment in space, especially space radiation is suspected to induce oxidative stress by generating high-energy free radicals and microgravity would enhance the effect of space radiation, however, current understandings of plant growth and responses on this synergistic effect of radiation and microgravity is limited to a few experiments. In this study, expression of stress/defense-related genes in barley grown under space environment was analyzed by RT-PCR and DNA microarray experiments to understand plant responses and adaptation to space environment and to develop the space stress-tolerant plants. The seeds of barley, Hordeum vulgare L. cv. Haruna nijo, kept in the international space station (ISS) over 4 months, were germinated after 3 days of irrigation in LADA plant growth chamber onboard Russian segment of ISS and the final germination ratio was over 90 %. The height of plants was about 50 to 60 cm and flag leaf has been opened after 26 days of irrigation under 24 hr lighting, showing the similar growth to ground-grown barley. Expression levels of stress/defense-related genes in space-grown barley were compared to those in ground-grown barley by semi-quantitative RT-PCR. In 17 stress/defense-related genes that are up-regulated by oxidative stress or other abiotic stress, only catalase, pathogenesis-related protein 13, chalcone synthase, and phenylalanine ammonia-lyase genes were increased in space-grown barley. DNA microarrya analysis with the GeneChip Barley Genome Array showed the similar expression profiles of the stress/defense-related genes to those by RT-PCR experiment, suggesting that the barley germinated and grown in LADA onboard ISS is not damaged by space environment, especially oxidative stress induced by space radiation and microgravity.

  9. Analysis of early events in the interaction between Fusarium graminearum and the susceptible barley (Hordeum vulgare) cultivar Scarlett

    DEFF Research Database (Denmark)

    Yang, Fen; Jensen, J.D.; Svensson, Birte

    2010-01-01

    A proteomic analysis was conducted to map the events during the initial stages of the interaction between the fungal pathogen Fusarium graminearum and the susceptible barley cultivar Scarlett. Quantification of fungal DNA demonstrated a sharp increase in fungal biomass in barley spikelets at 3 days...... function was identified. Quantitative real-time RT-PCR analysis of selected genes showed a correlation between high gene expression and detection of the corresponding proteins. Fungal genes encoding alkaline protease and endothiapepsin were expressed during 1-3 days after inoculation, making them...

  10. Development of endosperm transfer cells in barley

    Directory of Open Access Journals (Sweden)

    Johannes eThiel

    2014-03-01

    Full Text Available Endosperm transfer cells (ETCs are positioned at the intersection of maternal and filial tissues in seeds of cereals and represent a bottleneck for apoplasmic transport of assimilates into the endosperm. Endosperm cellularization starts at the maternal-filial boundary and generates the highly specialized ETCs. During differentiation barley ETCs develop characteristic flange-like wall ingrowths to facilitate effective nutrient transfer. A comprehensive morphological analysis depicted distinct developmental time points in establishment of transfer cell morphology and revealed intracellular changes possibly associated with cell wall metabolism. Embedded inside the grain, ETCs are barely accessible by manual preparation. To get tissue-specific information about ETC specification and differentiation, laser microdissection(LM-based methods were used for transcript and metabolite profiling. Transcriptome analysis of ETCs at different developmental stages by microarrays indicated activated gene expression programs related to control of cell proliferation and cell shape, cell wall and carbohydrate metabolism reflecting the morphological changes during early ETC development. Transporter genes reveal distinct expression patterns suggesting a switch from active to passive modes of nutrient uptake with the onset of grain filling. Tissue-specific RNA-seq of the differentiating ETC region from the syncytial stage until functionality in nutrient transfer identified a high number of novel transcripts putatively involved in ETC differentiation. An essential role for two-component signaling (TCS pathways in transfer cell development of barley emerged from this analysis. Correlative data provide evidence for ABA and ethylene influences on ETC differentiation and hint at a crosstalk between hormone signal transduction and TCS phosphorelays. Collectively, the data expose a comprehensive view on ETC development, associated pathways and identified candidate genes for

  11. Oligosaccharide and Substrate Binding in the Starch Debranching Enzyme Barley Limit Dextrinase

    DEFF Research Database (Denmark)

    Møller, Marie Sofie; Windahl, Michael Skovbo; Sim, Lyann

    2015-01-01

    Complete hydrolytic degradation of starch requires hydrolysis of both the α-1,4- and α-1,6-glucosidic bonds in amylopectin. Limit dextrinase (LD) is the only endogenous barley enzyme capable of hydrolyzing the α-1,6-glucosidic bond during seed germination, and impaired LD activity inevitably...... reduces the maltose and glucose yields from starch degradation. Crystal structures of barley LD and active-site mutants with natural substrates, products and substrate analogues were sought to better understand the facets of LD-substrate interactions that αconfine high activity of LD to branched...... starch synthesis....

  12. Differential Synthesis in Vitro of Barley Aleurone and Starchy Endosperm Proteins

    DEFF Research Database (Denmark)

    Mundy, John; Hejgaard, Jørn; Hansen, Annette

    1986-01-01

    RNAs from isolated endosperm and aleurone tissues (developing and mature grain) and from cultured (germinating) aleurone layers treated with abscisic acid (ABA) and GA(3). B and C hordein polypeptides and the salt-soluble proteins beta-amylase, protein Z, protein C, the chymotrypsin inhibitors (CI-1 and 2......, expression of genes encoding ASI, PSI, protein C, and PAPI is tissue and stage-specific during seed development. Only ASI, CI-1, and PAPI were synthesized in significant amounts with mRNA from cultured aleurone layers. The levels of synthesis of PAPI and CI-1 were independent of hormone treatment......To widen the selection of proteins for gene expression studies in barley seeds, experiments were performed to identify proteins whose synthesis is differentially regulated in developing and germinating seed tissues. The in vitro synthesis of nine distinct barley proteins was compared using m...

  13. Salt Stress and Homobrassinosteroid Interactions during Germination in Barley Roots

    OpenAIRE

    Sevgi MARAKLI; Aslihan TEMEL; Nermin GOZUKIRMIZI

    2014-01-01

    Potential alleviation effects of Homobrassinosteroid (HBR) (0.5 and 1 µM HBR) on root germination, cell division and antioxidant system enzymes (superoxide dismutase and catalase) of barley (Hordeum vulgare L. cv. ‘Hilal’) roots grown under different salt concentrations (150 mM and 250 mM) were investigated during 48 and 72 h at dark with their controls. Salt applications decreased primary root lengths, seminal root lengths, number of roots from one seed, mitotic activity and induced mitotic ...

  14. Mixed cropping of annual feed legumes with barley improves feed quantity and crude protein content under dry-land conditions

    Directory of Open Access Journals (Sweden)

    Khoshnood Alizadeh

    2013-01-01

    Full Text Available The objective of this research is to determine a suitable mixture of annual feed legumes and barley as a winter crop under dry-land conditions. Seeds of Hungarian vetch (cv. 2670, smooth vetch (cv. Maragheh, and local varieties of grass pea and field pea were mixed with barley (cv. Abidar in a 1:1 ratio and were tested, along with related monoculture. All legumes in the mixture survived winter while legumes alone, except Hungarian vetch, did not survive in the cold areas. The maximum fresh and dry forage yields (56 and 15 ton ha-1 respectively were obtained from a mixture of smooth vetch and barley in provinces with mild winter and more than 400 mm of rainfall. The mixture of barley and smooth vetch resulted in the highest mean crude protein content (17%. Autumn seeding of smooth vetch and barley in a 1:1 ratio produced more than 2 ton ha-1 of dry biomass with good quality in all studied areas and thus could serve as an alternative cropping system after wheat/barley in cold and semi-cold dry land.

  15. Proteomic analysis of barley cell nuclei purified by flow sorting

    Czech Academy of Sciences Publication Activity Database

    Petrovská, Beáta; Jeřábková, Hana; Chamrád, I.; Vrána, Jan; Lenobel, R.; Uřinovská, J.; Šebela, M.; Doležel, Jaroslav

    2014-01-01

    Roč. 143, 1-3 (2014), s. 78-86 ISSN 1424-8581 R&D Projects: GA ČR GBP501/12/G090; GA ČR(CZ) GA14-28443S; GA MŠk(CZ) LO1204 Institutional support: RVO:61389030 Keywords : Cell cycle * Chromatin * Flow cytometry Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 1.561, year: 2014 http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=MEDLINE&DestLinkType=FullRecord&UT=25059295

  16. Application of proteomics to hordein screening in the malting process

    Czech Academy of Sciences Publication Activity Database

    Flodrová, Dana; Šalplachta, Jiří; Benkovská, Dagmar; Bobálová, Janette

    2012-01-01

    Roč. 18, č. 3 (2012), s. 323-332 ISSN 1469-0667 R&D Projects: GA MŠk 1M0570; GA MŠk(CZ) EE2.3.20.0182; GA ČR(CZ) GPP503/12/P395 Institutional research plan: CEZ:AV0Z40310501 Keywords : barley * hordein * proteomics * mass spectrometry Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 1.259, year: 2012

  17. Androgenic switch in barley microspores

    NARCIS (Netherlands)

    de Faria Maraschin, Simone

    2005-01-01

    Barley androgenesis represents an attractive system to study stress-induced cell differentiation and is a valuable tool for efficient plant breeding. The switch from the pollen developmental pathway towards an androgenic route involves several well-described morphological changes. However, little is

  18. Evaluation of the Effect of Two Volatile Organic Compounds on Barley Pathogens

    Directory of Open Access Journals (Sweden)

    Amine Kaddes

    2016-08-01

    Full Text Available This study aimed to determine the effect of Volatile Organic Compounds (VOCs on some pathogens, these VOCs were emitted during interactions of barley with Fusarium culmorum Schltdl and/or Cochliobolus sativus Shoemaker, two common root rot pathogens. Our work shows that two organic esters: methyl propanoate (MP and methyl prop-2-enoate (MA significantly reduced the development of fungi in vitro. Additional tests showed that the esters significantly inhibited spore germination of these pathogens. The activity of these VOCs on a wide range of fungal and bacterial pathogens was also tested in vitro and showed inhibitory action. The effect of the VOCs on infected barley seeds also showed plantlets growing without disease symptoms. MA and MP seem to have potential value as alternative plant protection compounds against barley bioagressors.

  19. Mutations in Barley Row Type Genes Have Pleiotropic Effects on Shoot Branching.

    Directory of Open Access Journals (Sweden)

    Corinna Brit Liller

    Full Text Available Cereal crop yield is determined by different yield components such as seed weight, seed number per spike and the tiller number and spikes. Negative correlations between these traits are often attributed to resource limitation. However, recent evidence suggests that the same genes or regulatory modules can regulate both inflorescence branching and tillering. It is therefore important to explore the role of genetic correlations between different yield components in small grain cereals. In this work, we studied pleiotropic effects of row type genes on seed size, seed number per spike, thousand grain weight, and tillering in barley to better understand the genetic correlations between individual yield components. Allelic mutants of nine different row type loci (36 mutants, in the original spring barley varieties Barke, Bonus and Foma and introgressed in the spring barley cultivar Bowman, were phenotyped under greenhouse and outdoor conditions. We identified two main mutant groups characterized by their relationships between seed and tillering parameters. The first group comprises all mutants with an increased number of seeds and significant change in tiller number at early development (group 1a or reduced tillering only at full maturity (group 1b. Mutants in the second group are characterized by a reduction in seeds per spike and tiller number, thus exhibiting positive correlations between seed and tiller number. Reduced tillering at full maturity (group 1b is likely due to resource limitations. In contrast, altered tillering at early development (groups 1a and 2 suggests that the same genes or regulatory modules affect inflorescence and shoot branching. Understanding the genetic bases of the trade-offs between these traits is important for the genetic manipulation of individual yield components.

  20. THE STIMULATING EFFECT OF LASER RED LIGHT, FAR RED LIGHT AND SODIUM CARBONATE AT THE INITIAL STAGES OF BARLEY ONTOGENESIS

    Directory of Open Access Journals (Sweden)

    G. P. Dudin

    2014-01-01

    Full Text Available Summary. Modern ecological state of the environment and human unhealthy diet cause many diseases. A healthy diet is the one that contains adequate amounts of proteins, fats, carbohydrates, vitamins, macronutrients and micronutrients. Photosynthesis i. e. the process by which plants produce organic compounds from carbon dioxide and water, is the source of life, the source of evolution and proliferation of life forms on the Earth. Thus, the juice made from sprouted barley provides physiologically active chlorophyll, macronutrients and micronutrients, vitamins А, В2 , В3 , В5 , В6 , В8 , Е and К. It is well known that light from a red laser with a wavelength of 638.2 nm has a stimulating action on the germination energy, germination ability and productivity of seeds, and on the crop yields. Therefore, this research is of primary importance today. The research result produced a sharp decline in plant vigor and germinating capacity of barley when soaking in 1n sodium carbonate solution, as well as changes in the ratio of potassium-sodium balance in plants. Thus at lower concentrations of sodium carbonate and 0.1 n sodium increasing of pigment content in barley is observed on the seventh day. The red laser light has a similar stimulating action: the chlorophyll content of barley plants increased after the red laser treatment of barley seeds. However, the chlorophyll contents were depressed when the seeds were exposed to far red light with wavelengths of 754±10 nm. Using these factors, one can manage the content of chlorophyll and sodium-potassium balance in the initial stages of barley ontogenesis in the technology of barley juice or the powder for a healthy and proper human diet.

  1. Analysis of Seed Sorting Process by Estimation of Seed Motion Trajectories

    DEFF Research Database (Denmark)

    Buus, Ole Thomsen; Jørgensen, Johannes Ravn; Carstensen, Jens Michael

    2011-01-01

    cylinder in action, sorting a batch of barley with both whole and broken kernels. The motion trajectories and angle of escape for each seed in each frame were estimated. Motion trajectories and frequency distributions for the angle of escape are shown for different velocities and pocket sizes. A possible...

  2. Recent advances in proteomics of cereals.

    Science.gov (United States)

    Bansal, Monika; Sharma, Madhu; Kanwar, Priyanka; Goyal, Aakash

    Cereals contribute a major part of human nutrition and are considered as an integral source of energy for human diets. With genomic databases already available in cereals such as rice, wheat, barley, and maize, the focus has now moved to proteome analysis. Proteomics studies involve the development of appropriate databases based on developing suitable separation and purification protocols, identification of protein functions, and can confirm their functional networks based on already available data from other sources. Tremendous progress has been made in the past decade in generating huge data-sets for covering interactions among proteins, protein composition of various organs and organelles, quantitative and qualitative analysis of proteins, and to characterize their modulation during plant development, biotic, and abiotic stresses. Proteomics platforms have been used to identify and improve our understanding of various metabolic pathways. This article gives a brief review of efforts made by different research groups on comparative descriptive and functional analysis of proteomics applications achieved in the cereal science so far.

  3. Resistance of barley landraces and wild barley populations to powdery mildew in Jordan

    Directory of Open Access Journals (Sweden)

    Adel Abdel-Ghani

    2008-10-01

    Full Text Available Eleven barley (Hordeum vulgare L. landraces and 12 wild barley (H. spontaneum populations, collected from diverse eco-geographical regions of Jordan, were screened for resistance to powdery mildew. The average powdery mildew disease score (based on a 0 to 4 severity scale was <1 in all tested barley landraces. Disease scores in wild barley populations ranged from 1.2 to 3.8. Most barley landraces of all tested lines were highly resistant to powdery mildew. The percentage of wild barley lines exhibiting high resistance was 19%, while 45% of the lines were moderately resistant and 36% susceptible to powdery mildew. There was no significant correlation between weather variables (precipitation, temperature and altitude and the disease scores of either the barley landraces or the wild barley populations. However, resistance in wild barley was more common in humid districts and at higher altitudes. Both barley landrace and wild barley accessions could serve as potential donors for powdery mildew resistance genes to be transferred to barley varieties improved by plant breeding.

  4. Immobilisation of barley aleurone layers enables parallelisation of assays and analysis of transient gene expression in single cells

    DEFF Research Database (Denmark)

    Zor, Kinga; Mark, Christina; Heiskanen, Arto

    2017-01-01

    The barley aleurone layer is an established model system for studying phytohormone signalling, enzyme secretion and programmed cell death during seed germination. Most analyses performed on the aleurone layer are end-point assays based on cell extracts, meaning each sample is only analysed at a s...

  5. Phenotypic, physiological and malt quality analyses of US barley varieties subjected to short periods of heat and drought stress

    Science.gov (United States)

    Drought and heat are major abiotic stresses that significantly reduce crop yield and seed quality. In this study, we examined the impact of heat, drought and combined effect of heat and drought stress imposed during the grain filling stage in 18 US spring barley varieties. These impacts were assesse...

  6. Evaluating Yield and Drought Stress Indices under End Season Drought Stress in Promising Genotypes of Barley

    Directory of Open Access Journals (Sweden)

    H. Tajalli

    2012-08-01

    Full Text Available To study the effects of end season drought stress on yield, yield components and drought stress indices in barley, a split plot experiment arranged in randomized complete block design with three replications was conducted at the Agricultural Research Center of Birjand in 2008-2009 crop years. Drought stress, in 2 levels, consists of control (complete irrigation and stopping irrigation at the 50% of heading stage, and 20 promising genotypes of barley were the treatments of the experiment. Results revealed that stopping irrigation lead to declining of 14.64 and 8.12 percent of seed and forage yields against control condition, respectively. Using stress susceptibility index (SSI indicated that genotypes 2, 3, 7, 9, 10 and 15; using STI and GMP indices, genotypes 5, 8, 18 and 20 using MP, genotypes 8, 18 and 20, and TOL, genotypes 2, 3, 7, 9, and 10, were the most drought tolerant genotypes. Correlation between seed yield and stress evaluation indices showed that MP, GMP and STI are the best indices to be used in selection and introducing drought tolerant genotypes of barley. Considering all indices, and given that the best genotypes are those with high yield under normal condition and minimum yield reduction under drought stress, No. 18 and 20 could be introduced as the most tolerant barley genotypes to drought.

  7. Selected aspects of tiny vetch [Vicia hirsuta (L. Gray S.F.] seed ecology: generative reproduction and effects of seed maturity and seed storage on seed germination

    Directory of Open Access Journals (Sweden)

    Magdalena Kucewicz

    2012-12-01

    Full Text Available Vicia hirsuta (L. Gray S.F. (tiny vetch is a common and persistent segetal weed. Tiny vetch seeds and pods reach different stages of maturity during the crop harvest season. Some seeds that mature before cereal harvest are shed in the field and deposited in the soil seed bank, while others become incorporated into seed material. The objective of this study was to describe selected aspects of tiny vetch seed ecology: to determine the rate of individual reproduction of vetch plants growing in winter and spring grain crops and to evaluate the germination of seeds at different stages of maturity, subject to storage conditions. The seeds and pods of V. hirsuta were sorted according to their development stages at harvest and divided into two groups. The first group was stored under laboratory conditions for two months. In the autumn of the same year, the seeds were subjected to germination tests. The remaining seeds were stored in a storeroom, and were planted in soil in the spring. The germination rate was evaluated after 8 months of storage. Potential productivity (developed pods and flowers, fruit buds was higher in plants fruiting in winter wheat than in spring barley. Vetch plants produced around 17-26% more pods (including cracked, mature, greenish-brown and green pods and around 25% less buds in winter wheat than in spring barley. Immature seeds were characterized by the highest germination capacity. Following storage under laboratory conditions and stratification in soil, mature seeds germinated at a rate of several percent. After storage in a storeroom, seeds at all three development stages broke dormancy at a rate of 72- 75%. The high germination power of tiny vetch seeds stored in a storeroom indicates that this plant can be classified as an obligatory speirochoric weed species.

  8. Multi-method research strategy for understanding changes in storage protein composition in developing barley grain to improve nutritional profile

    DEFF Research Database (Denmark)

    Kaczmarczyk, Agnieszka Ewa

    Barley (Hordeum vulgare L.) is cultivated in a range of diverse environments and is widely utilised as feed for animal and as malt in brewing. Nitrogen (N) is a key macronutrient whch directly increases plant growth and is used as a fertiliser to meet the demands for higher yield. However...... regimes. To reach the objective, integrated transcriptomics and proteomics analysis complemented with AAs profiling have been undertaken....

  9. Isozyme differences in barley mutants

    International Nuclear Information System (INIS)

    AI-Jibouri, A.A.M.; Dham, K.M.

    1990-01-01

    Full text: Thirty mutants (M 11 ) of barley (Hordeum vulgare L.) induced by physical and chemical mutagens were analysed for isozyme composition using polyacrylamide gel electrophoresis. Results show that these mutants were different in the isozymes leucine aminopeptidase, esterase and peroxidase. The differences included the number of forms of each enzyme, relative mobility value and their intensity on the gel. Glutamate oxaloacetate transaminase isozyme was found in six molecular forms and these forms were similar in all mutants. (author)

  10. Secretomics identifies Fusarium graminearum proteins involved in the interaction with barley and wheat

    DEFF Research Database (Denmark)

    Yang, Fen; Jensen, Jens D.; Svensson, Birte

    2012-01-01

    or wheat flour as the sole nutrient source to mimic the host–pathogen interaction. A gel‐based proteomics approach was employed to identify the proteins secreted into the culture medium. Sixty‐nine unique fungal proteins were identified in 154 protein spots, including enzymes involved in the degradation......Fusarium graminearum is a phytopathogenic fungus primarily infecting small grain cereals, including barley and wheat. Secreted enzymes play important roles in the pathogenicity of many fungi. In order to access the secretome of F. graminearum, the fungus was grown in liquid culture with barley...... of cell walls, starch and proteins. Of these proteins, 35% had not been identified in previous in planta or in vitro studies, 70% were predicted to contain signal peptides and a further 16% may be secreted in a nonclassical manner. Proteins identified in the 72 spots showing differential appearance...

  11. Roles of Hydroxynitrile Glucosides in Barley

    DEFF Research Database (Denmark)

    Roelsgaard, Pernille Sølvhøj

    that hydroxynitrile glucosides can act as carbohydrate and nitrogen storage compounds and as reactive oxygen species (ROS) quenching compounds. A positive correlation between the hydroxynitrile glucoside content in barley and susceptibility toward the barley powdery mildew fungus (Blumeria graminis f.sp. hordei, Bgh...

  12. Associated field mycobiota on malting barley

    DEFF Research Database (Denmark)

    Andersen, Birgitte; Thrane, Ulf; Svendsen, Anne

    1996-01-01

    in the composition of field mycobiota compared with the pesticide-free barley. The determining factor on the mycobiota was the location. The dominant species on barley was Alternaria infectoria Simmons. The most frequent Fusarium species detected were F. tricinctum (Corda) Sacc. and F. avenaceum (Fr.) Sacc. Results...... implied an interaction between Alternaria and Fusarium on the surface of the kernels....

  13. Molecular characterization of two lipoxygenases from barley

    NARCIS (Netherlands)

    Mechelen, J.R. van; Schuurink, R.C.; Smits, M.; Graner, A.; Douma, A.C.; Sedee, N.J.A.; Schmitt, N.F.; Valk, B.E.

    1999-01-01

    Two full-length lipoxygenase cDNA sequences (LoxB and LoxC) from barley (Hordeum distichum cv. L. Triumph) are described. The cDNAs share high homology with the barley LoxA cDNA. Southern blotting experiments indicate single copy numbers of the three lipoxygenase genes. RFLP mapping revealed the

  14. COMPARISON OF THE FROST RESISTANCE OF BARLEY ...

    African Journals Online (AJOL)

    Preferred Customer

    immediate recovery of the photosynthetic quantum yield after freezing. Landraces which showed the highest cold tolerance were found to acclimatize best. Key words/phrases: Barley, chlorophyll fluorescence, cold acclimation, Ethiopia, frost tolerance. INTRODUCTION. Barley (Hordeum vulgare L.) is a traditional crop.

  15. Fungal growth during malting of barley

    Directory of Open Access Journals (Sweden)

    Kocić-Tanackov Sunčica D.

    2005-01-01

    Full Text Available Fungi were isolated and identified in two samples of winter two-row barley (SSK3 and SSK6 harvested in 2003, Kragujevac location, during micromalting. Fungi were isolated and identified in barley before the micromalting, after the 1st, 2nd and 3rd day of steeping, the first day and after the germination after kilning and after malt degermination. The total fungi count was followed in both barley samples, during the mentioned phases. The total count of fungi was also determined in the steeping water, and the isolation and identification was performed after the steeping process. Change of the total count of fungi during barley micromalting was exponentional. During barley micromalting nine fungi genera were isolated: Phoma, Alternaria, Fusarium aspergillus, Cladosporium, Geotrichum, Scopulariopsis, Aureobasidium and Mucor. The most frequent genera were: Phoma, Alternaria and Fusarium. In water for steeping, five genera were identified: Geotrichum, Fusarium, Phoma Cladosporium and Mucor. The most frequent genera was Phoma.

  16. Determination of Local Barley (Hordeum Vulgare) Crop Coefficient ...

    African Journals Online (AJOL)

    Bheema

    , 0.88 and. 0.68 kg m. -3 ... irrigated barley fields. This could be due to lack of information on water requirement of local barley. General crop coefficient values for various crops including for barley are available in ..... Soil salinity and barley.

  17. Olive mill waste water spreading in southern Tunisia: effects on a barley crop: (Hordeum Vulgare. L

    Directory of Open Access Journals (Sweden)

    Raja Dakhli

    2017-06-01

    Full Text Available This study is designed to assess the impact of different concentrations of Olive Mill Waste Water (OMWW on the phenological behavior of a local barley variety (Arthaoui: Hordem vulgare L. during three consecutive crop years. For developing this work, a complete randomized block design was installed with four amounts of OMWW equivalent to 0 m³/ha (T0, 15 m³/ha (T1, 30 m³/ha (T2 and 45 m³/ha (T3, a local barley variety (Arthaoui and 3 replications. The results showed a highly significant reduction as well as of the tiller and ears number compared to the control according to the increase of OMWW concentration especially for the highest amounts either T2 and T3 respectively 30 m³/ha and 45 m³/ha. This reduction was although observed but it was less accentuated for the treatment with an amount of 15 m³/ha compared to the other rates. In addition, barley yield components were negatively affected by “OMWW” in particular yields plots that received higher doses as 30 m³/ha and 45 m³/ ha. Obviously, the straw and seed yield are catastrophically affected with relatively different degrees depending on the dose applied but also on the cumulative effect of successive applications during the three years of study. Indeed, richness of these effluents on salts especially in sodium and chlorides, on polyphenols and other compounds with variable toxicity is causing physiological disturbances that are negatively reflected at different phenological stages of barley as tillering, stem elongation and heading giving the catastrophic results in terms of seed yield. Keywords: OMWW, Barley, tiller number, ear number.

  18. Bulk carbohydrate grain filling of barley ß-glucan mutants studied by 1H HR MAS NMR

    DEFF Research Database (Denmark)

    Seefeldt, Helene Fast; Larsen, Flemming Hofmann; Viereck, Nanna

    2008-01-01

    ) during grain filling. For the first time, 1H HR MAS NMR spectra of flour from immature barley seeds are analyzed. Spectral assignments are made using two-dimensional (2D) NMR methods. Both α- and β-glucan biosynthesis were characterized by inspection of the spectra as well as by calibration......Temporal and genotypic differences in bulk carbohydrate accumulation in three barley genotypes differing in the content of mixed linkage β-(1→3),(1→4)-D-glucan (β-glucan) and starch were investigated using proton high-resolution, magic angle spinning, nuclear magnetic resonance (1H HR MAS NMR...

  19. Structure, function and protein engineering in starch debranching enzyme systems. Barley limit dextrinase and its endogenous inhibitor

    DEFF Research Database (Denmark)

    Møller, Marie Sofie

    Starch is the most abundant storage carbohydrate in cereal grains. It is composed primarily of amylopectin, a polymer of glucose in which α-1,4-linked glucan chains are branched with α-1,6-bonds. Enzymatic degradation of starch in germinating barley seeds involves an initial solubilisation, mainly...... by α-amylase, followed by hydrolysis of the resulting dextrins to oligosaccharides and glucose by the concerted action of α- and β-amylase, limit dextrinase (LD), and α-glucosidase. Only LD is able to hydrolyse α-1,6-linkages in limit dextrins. Since LD is the sole debranching enzyme in the germinating...... seed, it has a key role in malting and brewing. But an endogenous inhibitor, limit dextrinase inhibitor (LDI), is present in barley seeds. It specifically inhibits LD, and thereby suppresses the degradation of branched limit dextrins to fermentable sugars. The knowledge about this enzyme:inhibitor pair...

  20. Thiamine treatments alleviate aphid infestations in barley and pea.

    Science.gov (United States)

    Hamada, Afaf M; Jonsson, Lisbeth M V

    2013-10-01

    Treatment of plants with thiamine (Vitamin B1) has before been shown to activate plant defence against microorganisms. Here, we have studied the effects of thiamine treatments of plants on aphid reproduction and behaviour. The work was mainly carried out with bird cherry-oat aphid (Rhopalosiphum padi L.) on barley (Hordeum vulgare L.). Aphid population growth and aphid acceptance on plants grown from seeds soaked in a 150μM thiamine solution were reduced to ca. 60% of that on control plants. R. padi life span and the total number of offspring were reduced on barley plants treated with thiamine. Healthy aphids and aphids infected with the R. padi virus were similarly affected. Spraying or addition of thiamine at 150μM to nutrient solutions likewise resulted in reduced aphid population growth to ca. 60%, as did plant exposure to thiamine odour at 4mM. Thiamine treatments resulted in reduced aphid population growth also when tested with grain aphid (Sitobion avenae F.) on barley and pea aphid (Acyrthosiphon pisum H.) on pea (Pisum sativum L.). There was no direct effect of thiamine on aphid reproduction or thiamine odour on aphid behaviour, as evaluated using artificial diets and by olfactometer tests, respectively. Two gene sequences regulated by salicylic acid showed higher transcript abundance and one gene sequence regulated by methyl jasmonate showed lower transcript abundance in thiamine-treated plants but not in control plants after aphid infestation. These results suggest that the aphid antibiosis and antixenosis effects may be related to priming of defence, but more studies are needed to explain the effects against aphids. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Barley as a green factory for the production of functional Flt3 ligand.

    Science.gov (United States)

    Erlendsson, Lýdur S; Muench, Marcus O; Hellman, Ulf; Hrafnkelsdóttir, Soffía M; Jonsson, Anders; Balmer, Yves; Mäntylä, Einar; Orvar, Björn L

    2010-02-01

    Biologically active recombinant human Flt3 ligand was expressed and isolated from transgenic barley seeds. Its expression is controlled by a tissue specific promoter that confines accumulation of the recombinant protein to the endosperm tissue of the seed. The recombinant Flt3 ligand variant expressed in the seeds contains an HQ-tag for affinity purification on immobilized metal ion affinity chromatography (IMAC) resin. The tagged protein was purified from seed extracts to near homogeneity using sequential chromatography on IMAC affinity resin and cation exchange resin. We also show that the recombinant Flt3 ligand protein undergoes posttranslational modifications: it is a glycoprotein containing alpha-1,3-fucose and alpha-1,2-xylose. The HQ-tagged Flt3 ligand variant exhibits comparable biological activity to commercial Flt3 ligand. This is the first report showing expression and accumulation of recombinant human growth factor in barley seeds with a yield of active protein similar to a bacterial expression system. The present results demonstrate that plant molecular farming is a viable approach for the bioproduction of human-derived growth factors.

  2. Resistance to Barley Leaf Stripe

    DEFF Research Database (Denmark)

    Nørgaard Knudsen, J. C.

    1986-01-01

    in well adapted Northwest European spring cultivars. Virulence matching two hitherto not overcome resistances was demonstrated. Differences in apparent race nonspecific or partial resistance were also present, changing the percentage of infected plants of susceptible genotypes from about 20 to 44 per cent.......Ten barley [Hordeum vulgare] genotypes were inoculated with twelve isolates of Pyrenophora graminea of diverse European and North African origin. Race specific resistance occurred. Four, possibly five, genetically different sources of race-specific resistance were found, three of them occurring...

  3. Esterase Isoenzyme Variants in Barley

    DEFF Research Database (Denmark)

    Hvid, S.; Nielsen, G.

    1977-01-01

    Gene symbols are proposed for 27 esterase isoenzyme alleles representing 10 loci in barley. Two new esterase loci, Est 9 and Est 10, each with an active and a silent allele, and three new alleles in previously described loci were found. A few chemical and physical characteristics of the different...... esterase isoenzyme systems were studied. The heat inactivation temperature differed for the isoenzymes coded by most of the loci, whereas the substrate and inhibitor specificity of the isoenzymes was less distinct. A possible relationship between some of the systems is discussed....

  4. Enumeration of fungi in barley

    CSIR Research Space (South Africa)

    Rabie

    1997-04-01

    Full Text Available stream_source_info rabie_1997.pdf.txt stream_content_type text/plain stream_size 26510 Content-Encoding ISO-8859-1 stream_name rabie_1997.pdf.txt Content-Type text/plain; charset=ISO-8859-1 hmatiod Journal of...FoodMiaubiology ELSEVIER International Journal of Food Microbiology 35 (1997) Il7- 127 Enumeration of fungi in barley C.J. Rabie*, A. Liibben, G.J. Marais, H. Jansen van Vuuren CSIR Food Scienw and Technology, P.0 Bos 395. Prrroria 0001...

  5. Barley grain for ruminants: A global treasure or tragedy

    OpenAIRE

    Nikkhah Akbar

    2012-01-01

    Abstract Barley grain (Hordeum vulgare L.) is characterized by a thick fibrous coat, a high level of ß-glucans and simply-arranged starch granules. World production of barley is about 30 % of that of corn. In comparison with corn, barley has more protein, methionine, lysine, cysteine and tryptophan. For ruminants, barley is the third most readily degradable cereal behind oats and wheat. Due to its more rapid starch fermentation rate compared with corn, barley also provides a more synchronous ...

  6. Seed quality in informal seed systems

    NARCIS (Netherlands)

    Biemond, P.C.

    2013-01-01

    Keywords:     informal seed systems, seed recycling, seed quality, germination, seed pathology, seed health, seed-borne diseases, mycotoxigenic fungi, Fusarium verticillioides, mycotoxins, Vigna unguiculata, Zea mays, Nigeria.   Seed is a crucial input for agricultural

  7. Energy consumption in barley and turnip rape cultivation for bioethanol and biodiesel (RME) production

    Energy Technology Data Exchange (ETDEWEB)

    Mikkola, Hannu; Ahokas, Jukka [University of Helsinki, Faculty of Agriculture and Forestry, Department of Agricultural Sciences, FIN-00014 Helsingin yliopisto (Finland); Pahkala, Katri [MTT, Agrifood Research Finland, Crop Science and Technology, FIN-31600 Jokioinen (Finland)

    2011-01-15

    The energy consumption for six spring barley (Hordeum vulgare L.) production chains and five spring turnip rape (Brassica rapa ssp. oleifera (DC) Metsg.) production chains were compared with each other and in relation to the energy content of the seed yield. Two cultivation intensities, standard and intensive production, were used for barley. Fertiliser production and grain drying were the most energy consuming phases of the chains. The production of nitrogen fertiliser alone accounted for 1/3-1/2 of the total energy consumption of the production chains. If barley were direct drilled and the yield stored in airtight silos, instead of drying, the energy consumption would decrease by 30-34%. Use of wood-chips instead of oil for grain drying would decrease the use of fossil fuel to the same extent. The input-output ratios for the intensive barley production chains were 0.18-0.25. They were somewhat lower than the ratios for the standard production intensity. The intensive production was more energy efficient despite higher input rates. The input-output ratios for turnip rape production were 0.32-0.34. The energy consumption for manufacturing, repair and maintenance of machines and buildings requires more research because it is a significant factor but the data available are largely old and few studies have been conducted. (author)

  8. Population genetic structure in a social landscape: barley in a traditional Ethiopian agricultural system.

    Science.gov (United States)

    Samberg, Leah H; Fishman, Lila; Allendorf, Fred W

    2013-12-01

    Conservation strategies are increasingly driven by our understanding of the processes and patterns of gene flow across complex landscapes. The expansion of population genetic approaches into traditional agricultural systems requires understanding how social factors contribute to that landscape, and thus to gene flow. This study incorporates extensive farmer interviews and population genetic analysis of barley landraces (Hordeum vulgare) to build a holistic picture of farmer-mediated geneflow in an ancient, traditional agricultural system in the highlands of Ethiopia. We analyze barley samples at 14 microsatellite loci across sites at varying elevations and locations across a contiguous mountain range, and across farmer-identified barley types and management strategies. Genetic structure is analyzed using population-based and individual-based methods, including measures of population differentiation and genetic distance, multivariate Principal Coordinate Analysis, and Bayesian assignment tests. Phenotypic analysis links genetic patterns to traits identified by farmers. We find that differential farmer management strategies lead to markedly different patterns of population structure across elevation classes and barley types. The extent to which farmer seed management appears as a stronger determinant of spatial structure than the physical landscape highlights the need for incorporation of social, landscape, and genetic data for the design of conservation strategies in human-influenced landscapes.

  9. Phytotoxic effects of argan shell biochar on salad and barley germination

    Directory of Open Access Journals (Sweden)

    Laila Bouqbis

    2017-08-01

    Full Text Available Biochar produced from argan shells can be contaminated by toxic substances accumulated during the pyrolysis process. To determine the potential impact of toxic substances and salt stress, this study focused on the effect argan shell biochar had on the germination of salad (0%, 0.5%, 1%, 2%, 4% or 8% biochar dry weight in a sand-biochar mixture and barley seeds (0%, 1%, 2.5%, 5% or 10% biochar dry weight in a peat-biochar mixture. No negative salt stress effect of argan biochar on the germination of salad was observed nor on the germination rate and fresh weight of seedlings. Additionally, biochar application increased the germination rate and the fresh biomass weight in all of the treatments. No significant difference was observed from the control with the barley germination rate, fresh and dry weights of barley seedlings, water content and water use efficiency of different mixtures (peat-biochar. Thus, for both the salad and barley germination tests, no negative effects of biochar produced from argan shells were identified, providing a preliminary indication that it could be safely used for agriculture.

  10. Molecular physiology of seeds

    International Nuclear Information System (INIS)

    Hajduch, M.

    2014-05-01

    Plant development is well described. However, full understanding of the regulation of processes associated with plant development is still missing. Present Dr.Sc. thesis advances our understanding of the regulation of plant development by quantitative proteomics analyses of seed development of soybean, canola, castor, flax, and model plant arabidopsis in control and environmentally challenged environments. The analysis of greenhouse-grown soybean, canola, castor, and arabidospis provided complex characterization of metabolic processes during seed development, for instance, of carbon assimilation into fatty acids. Furthermore, the analyses of soybean and flax grown in Chernobyl area provided in-depth characterization of seed development in radio-contaminated environment. Soybean and flax were altered by radio-contaminated environment in different way. However, these alterations resulted into modifications in seed oil content. Further analyses showed that soybean and flax possess alterations of carbon metabolism in cytoplasm and plastids along with increased activity of photosynthetic apparatus. Our present experiments are focused on further characterization of molecular bases that might be responsible for alterations of seed oil content in Chernobyl grown plants. (author)

  11. Influence of forecrop and chemical seed treatment on the occurrence of take-all (Gaeumannomyces graminis var. tritici on winter wheat

    Directory of Open Access Journals (Sweden)

    Zbigniew Weber

    2013-12-01

    Full Text Available The work was done in years 1998/1999 - 2000/2001 on plantations and field plot experiments. Aim of the work was evaluation of take-all occurrence on winter wheat in milk-wax growth stage in dependence on forecrop (oilseed rape, wheat or barley as well as seed treatment with Latitude 125 FS when wheat was planted on fields after wheat or barley. Percentage of infected plants when seeds were not treated with Latitude 125 FS varied from 82-100 on fields after wheat or barley, and 54-69 on fields after oilseed rape. In treatments with wheat grown after wheat or barley the percentage of infected plants amounted 20-100 when seeds were not treated with Latitude 125 FS and 13-86 when seeds were treated with Latitude 125 FS. Mean degree of infection was low when percentage of infected plants was low and high when percentage of infected plants was high.

  12. Cyclitols in maturing grains of wheat, triticale and barley

    Directory of Open Access Journals (Sweden)

    Lesław B. Lahuta

    2011-01-01

    Full Text Available In the present study, the feeding of stem-flag leaf-ear explants of wheat, triticale and barley with d-chiro-inositol and d-pinitol was used for modification of the composition of soluble carbohydrates in grains without genetic transformation of plants. Maturing grains indicated ability to uptake exogenously applied cyclitols, not occurring naturally in cereal plants, and synthesized their a-d-galactosides. The pattern of changes in soluble carbohydrates during grain maturation and germination was not disturbed by the uptake and accumulation of cyclitols. Both, d-chiro-inositol and d-pinitol as well as their a-d-galactosides can be an additional pool of soluble carbohydrates accumulated by maturing grains, without decreasing seeds viability. This is the first report indicating the possibility of introduction of cyclitols with potentially human health benefits properties into cereal grains.

  13. Effects of Nitrogen and Different Intercropping Arrangements of Barley (Hordeum vulgare L. and Pea (Pisum sativum L. on Forage Yield and Competitive Indices

    Directory of Open Access Journals (Sweden)

    Ali Nakhzari Moghaddam

    2016-07-01

    Full Text Available Introduction Intercropping, the agricultural practice of cultivating two or more crops in the same space at the same time, is an old and commonly used cropping practice which aims to match efficiently crop demands to the available growth resources (Agegnehu et al., 2006; Dhima et al., 2007. Intercropping of chickpea with linseed reduced the chickpea yield by 60.3%, although linseed occupied only 33% of the total area. The loss of chickpea yield was compensated by the additional yield of linseed, and thus the system productivity of chickpea + linseed intercropping was increased by 43.4% compared with sole chickpea (Ahlawat & Gangaiah, 2010. The objectives of the present study were to study the competition indices of barley and pea intercropping and effects of nitrogen and different intercropping arrangements on forage yield. Materials and methods In order to evaluate effects of nitrogen and different intercropping arrangements of barley and pea on yield and competitive indices, an experiment was conducted as factorial based on Randomized Complete Block Design with three replications on farm research on Gonbad Kavous University (37°26’N, 55°21’E, and 45m above sea level in 2011-2012. Different intercropping arrangement levels were a sole crop of barley, intercropping of one line barley and one line pea, intercropping of two lines of barley and two lines of pea, intercropping of three lines of barley and three lines of pea and sole crop of pea and nitrogen consumption was in four levels of none application of nitrogen and application of 25, 50 and 75 kg.ha-1. Seed planting was done during the first week of December 2011. Sowing was performed manually by planting twice more seeds of pea than the expected plant density. Sole barley (cv. Sahra planted at the rate of 160 kg.ha-1 and sole pea (cv. Sungro planted at the rate of 500000 plants.ha-1. Row spacing was 20 cm. The experimental plots for a sole crop of barley, a sole crop of pea and one

  14. Mining the granule proteome

    DEFF Research Database (Denmark)

    Albrethsen, Jakob; Goetze, Jens P; Johnsen, Anders H

    2015-01-01

    Proteomics of secretory granules is an emerging strategy for identifying secreted proteins, including potentially novel candidate biomarkers and peptide hormones. In addition, proteomics can provide information about the abundance, localization and structure (post-translational modification) of g...

  15. Roles of Hydroxynitrile Glucosides in Barley

    DEFF Research Database (Denmark)

    Roelsgaard, Pernille Sølvhøj

    Plants produce an impressive variety of bioactive natural products involved in defense, insect attraction and signaling. These compounds enable the plant to defend itself, communicate with the surroundings and survive in an environment with constant challenges and attackers. This study has focused...... that hydroxynitrile glucosides can act as carbohydrate and nitrogen storage compounds and as reactive oxygen species (ROS) quenching compounds. A positive correlation between the hydroxynitrile glucoside content in barley and susceptibility toward the barley powdery mildew fungus (Blumeria graminis f.sp. hordei, Bgh...... to regulate defense related genes in maize. Barley plants that are gene-silenced in the first step of hydroxynitrile glucoside biosynthesis have been generated to further investigate these results. It appears that hydroxynitrile glucosides in barley have a dual role; up to a certain level Bgh profits from...

  16. SPRING BARLEY BREEDING FOR MALTING QUALITY

    Directory of Open Access Journals (Sweden)

    Alžbeta Žofajová

    2010-05-01

    Full Text Available The aim of this contribution is to illustrate the results of spring barley breeding for malting quality and point out an important position of variety in production of  qualitative  raw material for maltinq and beer  industry as well as the system of evaluation the qualitative parameters of breeding materials and adaptation of barley breeding programms to the  new requirements of  malting and beer industry. As an example of the results obtained most recently description is made of the Ezer, Levan, Donaris, Sladar spring barley varieties with very good malting quality and effective resistance to  powdery mildew.  Cultivation of these varieties  and malting barley production with  reduced use  of pesticidies is environmentally friedly alternative. doi:10.5219/50

  17. Seed storage at elevated partial pressure of oxygen, a fast method for analysing seed ageing under dry conditions.

    Science.gov (United States)

    Groot, S P C; Surki, A A; de Vos, R C H; Kodde, J

    2012-11-01

    Despite differences in physiology between dry and relative moist seeds, seed ageing tests most often use a temperature and seed moisture level that are higher than during dry storage used in commercial practice and gene banks. This study aimed to test whether seed ageing under dry conditions can be accelerated by storing under high-pressure oxygen. methods: Dry barley (Hordeum vulgare), cabbage (Brassica oleracea), lettuce (Lactuca sativa) and soybean (Glycine max) seeds were stored between 2 and 7 weeks in steel tanks under 18 MPa partial pressure of oxygen. Storage under high-pressure nitrogen gas or under ambient air pressure served as controls. The method was compared with storage at 45 °C after equilibration at 85 % relative humidity and long-term storage at the laboratory bench. Germination behaviour, seedling morphology and tocopherol levels were assessed. The ageing of the dry seeds was indeed accelerated by storing under high-pressure oxygen. The morphological ageing symptoms of the stored seeds resembled those observed after ageing under long-term dry storage conditions. Barley appeared more tolerant of this storage treatment compared with lettuce and soybean. Less-mature harvested cabbage seeds were more sensitive, as was the case for primed compared with non-primed lettuce seeds. Under high-pressure oxygen storage the tocopherol levels of dry seeds decreased, in a linear way with the decline in seed germination, but remained unchanged in seeds deteriorated during storage at 45 °C after equilibration at 85 % RH. Seed storage under high-pressure oxygen offers a novel and relatively fast method to study the physiology and biochemistry of seed ageing at different seed moisture levels and temperatures, including those that are representative of the dry storage conditions as used in gene banks and commercial practice.

  18. Seed storage at elevated partial pressure of oxygen, a fast method for analysing seed ageing under dry conditions

    Science.gov (United States)

    Groot, S. P. C.; Surki, A. A.; de Vos, R. C. H.; Kodde, J.

    2012-01-01

    Background and Aims Despite differences in physiology between dry and relative moist seeds, seed ageing tests most often use a temperature and seed moisture level that are higher than during dry storage used in commercial practice and gene banks. This study aimed to test whether seed ageing under dry conditions can be accelerated by storing under high-pressure oxygen. Methods Dry barley (Hordeum vulgare), cabbage (Brassica oleracea), lettuce (Lactuca sativa) and soybean (Glycine max) seeds were stored between 2 and 7 weeks in steel tanks under 18 MPa partial pressure of oxygen. Storage under high-pressure nitrogen gas or under ambient air pressure served as controls. The method was compared with storage at 45 °C after equilibration at 85 % relative humidity and long-term storage at the laboratory bench. Germination behaviour, seedling morphology and tocopherol levels were assessed. Key Results The ageing of the dry seeds was indeed accelerated by storing under high-pressure oxygen. The morphological ageing symptoms of the stored seeds resembled those observed after ageing under long-term dry storage conditions. Barley appeared more tolerant of this storage treatment compared with lettuce and soybean. Less-mature harvested cabbage seeds were more sensitive, as was the case for primed compared with non-primed lettuce seeds. Under high-pressure oxygen storage the tocopherol levels of dry seeds decreased, in a linear way with the decline in seed germination, but remained unchanged in seeds deteriorated during storage at 45 °C after equilibration at 85 % RH. Conclusions Seed storage under high-pressure oxygen offers a novel and relatively fast method to study the physiology and biochemistry of seed ageing at different seed moisture levels and temperatures, including those that are representative of the dry storage conditions as used in gene banks and commercial practice. PMID:22967856

  19. UNcleProt (Universal Nuclear Protein database of barley): The first nuclear protein database that distinguishes proteins from different phases of the cell cycle

    Czech Academy of Sciences Publication Activity Database

    Blavet, Nicolas; Uřinovská, J.; Jeřábková, Hana; Chamrád, I.; Vrána, Jan; Lenobel, R.; Beinhauer, D.; Šebela, M.; Doležel, Jaroslav; Petrovská, Beáta

    2017-01-01

    Roč. 8, č. 1 (2017), s. 70-80 ISSN 1949-1034 R&D Projects: GA ČR(CZ) GA14-28443S; GA MŠk(CZ) LO1204 Institutional support: RVO:61389030 Keywords : cicer-arietinum l. * rice oryza-sativa * chromatin-associated proteins * proteomic analysis * mitotic chromosomes * dehydration * localization * chickpea * network * phosphoproteome * barley * cell cycle * database * flow-cytometry * localization * mass spectrometry * nuclear proteome * nucleus Subject RIV: CE - Biochemistry OBOR OECD: Cell biology Impact factor: 2.387, year: 2016

  20. Fusarium graminearum and Its Interactions with Cereal Heads: Studies in the Proteomics Era

    DEFF Research Database (Denmark)

    Yang, Fen; Jacobsen, Susanne; Jørgensen, Hans J L

    2013-01-01

    The ascomycete fungal pathogen (teleomorph stage: ) is the causal agent of head blight in wheat and barley. This disease leads to significant losses of crop yield, and especially quality through the contamination by diverse fungal mycotoxins, which constitute a significant threat to the health...... of humans and animals. In recent years, high-throughput proteomics, aiming at identifying a broad spectrum of proteins with a potential role in the pathogenicity and host resistance, has become a very useful tool in plant-fungus interaction research. In this review, we describe the progress in proteomics...

  1. Functional Analysis of Barley Powdery Mildew Effector Candidates and Identification of their Barley Targets

    DEFF Research Database (Denmark)

    Ahmed, Ali Abdurehim

    The genome of barley powdery mildew fungus (Blumeria graminis f. sp. hordei, Bgh) encodes around 500 Candidate Secreted Effector Proteins (CSEPs), which are believed to be delivered to the barley cells either to interfere with plant defence and/or promote nutrient uptake. So far, little is known...

  2. Environmental impacts of barley cultivation under current and future climatic conditions

    DEFF Research Database (Denmark)

    Dijkman, Teunis Johannes; Birkved, Morten; Saxe, Henrik

    2017-01-01

    The purpose of this work is to compare the environmental impacts of spring barley cultivation in Denmark under current (year 2010) and future (year 2050) climatic conditions. Therefore, a Life Cycle Assessment was carried out for the production of 1 kg of spring barley in Denmark, at farm gate...... for the increased impacts. This finding was confirmed by the sensitivity analysis. Because this study focused solely on the impacts of climate change, technological improvements and political measures to reduce impacts in the 2050 scenario are not taken into account. Options to mitigate the environmental impacts....... Both under 2010 and 2050 climatic conditions, four subscenarios were modelled, based on a combination of two soil types and two climates. Included in the assessment were seed production, soil preparation, fertilization, pesticide application, and harvest. When processes in the life cycle resulted in co...

  3. [Proteomics and transfusion medicine].

    Science.gov (United States)

    Lion, N; Prudent, M; Crettaz, D; Tissot, J-D

    2011-04-01

    The term "proteomics" covers tools and techniques that are used to analyze and characterize complex mixtures of proteins from various biological samples. In this short review, a typical proteomic approach, related to the study of particular and illustrative situation related to transfusion medicine is reported. This "case report" will allow the reader to be familiar with a practical proteomic approach of a real situation, and will permit to describe the tools that are usually used in proteomic labs, and, in a second part, to present various proteomic applications in transfusion medicine. Copyright © 2011 Elsevier Masson SAS. All rights reserved.

  4. Multielement analysis of pakistani barley (hordeum vulgare l) varieties by flame atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Shar, G.Q.; Shar, L.A.; Kazi, T. G.; Arain, M. B.

    2007-01-01

    Barley (Hordeum Vulgare L.) is widely known due to its nutritional potential, in Pakistan it is only grown at a few agricultural experimental stations. There is no published data about the chemical composition of Pakistani barley varieties; however, research laboratories have studied their agronomical characteristics. The mineral concentration of five Pakistani barley varieties and their soil were studied, namely Sadabahar, Bajawar -2000, Frontier-87, Sonober-96, Soorab-96 and the soil of two agricultural plots, namely Wheat Research Institute Faisalabad and National Agriculture Research Centre Islamabad. The analysis included: 15 macro and micronutrients and they varied in concentration from 0.22-8285.1 mg kg-1 in barley seed and soil concentration in both of above plots varies from 1.63-14719.8 mg kg-1. Among all the varieties; Sadabahar showed the highest Mg, Zn and Cr content (2686.6, 39.19, 1.22 mg kg-1) respectively. Bajawar -2000, showed the highest Na, K, Ca, Fe, and Ni content (1768.0, 8285.1, 891.0, 937.02, and 4.56 mg kg-1) respectively. Frontier-87 showed the highest Ba content (18.58 mg kg-1), Sonober-96 showed the highest Co, Pb and Cd content (4.41, 1.45, 0.29 mg kg-1), Sorab-96 showed the highest Al content 39.50 mg/kg. Since all varieties were grown under two environmental conditions i.e. Wheat Research Institute, Faisalabad and National Agriculture Research Centre Islamabad. These results may be useful in the food industry for the selection of hull barley varieties for human consumption and to produce substantially mineral contents. (author)

  5. Water mobility in the endosperm of high beta-glucan barley mutants as studied by nuclear magnetic resonance imaging

    DEFF Research Database (Denmark)

    Seefeldt, Helene Fast; van den Berg, Frans W.J.; Köckenberger, Walter

    2007-01-01

    1H NMR imaging (MRI) was used as a noninvasive technique to study water distribution and mobility in hydrated barley (Hordeum vulgare L.) seeds of accessions with varying content of beta glucan (BG), a highly hygroscopic cell wall component. High contents of BG in barley are unfavorable in malting...... where it leads to clotting of filters and hazing of beer as well as in animal feed where it hinders the rapid uptake of energy. However, a high content of BG has a positive nutritional effect, as it lowers the cholesterol and the glycaemic index. It was studied whether water distribution and mobility...... were related to content and location of BG. Water mobility was investigated by following the rate and mode of desiccation in hydrated single seeds. In order to determine the different water components, a multispin echo experiment was set up to reveal the T2 transverse relaxation rates of water within...

  6. Establishment techniques in under-sown perennial ryegrass for seed production

    DEFF Research Database (Denmark)

    Deleuran, Lise C; Boelt, Birte

    2009-01-01

    Establishment methods have proven to be of major importance for grass-seed production. The objective of this research was to test the effect of different sowing techniques on plant establishment and the subsequent seed yield. Perennial ryegrass (Lolium perenne L.) is used as the model grass due...... to its large importance in Danish agriculture. In a three-year trial six different methods of under-sowing of perennial ryegrass in a spring barley cover crop were employed. Perennial ryegrass was either sown directly at different depths within the spring barley (Hordeum vulgare L.) rows or placed 2, 6......, or 12 cm from the spring barley rows. Results of dry-matter yield indicate that the best establishment of the grass occurred when placing the grass 6 or 12 cm from the cover-crop row, and this is of importance in less vigorous grasses. Overall, no seed-yield difference has been observed for perennial...

  7. Biochemical composition and nutritional evaluation of barley rihane ...

    African Journals Online (AJOL)

    glucan; bioactive compounds; functional food. Abbreviations: BR, Barley Rihane; LDL, low density lipoprotein; HDL, high density lipoprotein; AOM, azoxymethane; TBV, Tunisian barley varieties; TGW, thousand grain weight; SW, weight specific; TDF ...

  8. comparison of the frost resistance of barley (hordeum vulgare l.)

    African Journals Online (AJOL)

    Barley is the most important crop in the highlands of Ethiopia at altitudes above 2600 m, where its productivity is limited by cold stress. We studied 25 Ethiopian barley landraces in order to identify cold tolerant types and to describe characteristics and acclimation potentials of these landraces to cold stress. Barley plants ...

  9. Amylolytic strains of Lactobacillus plantarum isolated from barley ...

    African Journals Online (AJOL)

    ... naturally present in barley, and produced cell-bound and cell-free α-amylase at alkaline conditions. The two strains may be developed into starter cultures to facilitate the germination of barley and produce malt with a higher fermentable sugar content. Key words: Lactobacillus plantarum, starch hydrolysis, barley, malting ...

  10. Evaluation of Barley as Human Food

    Directory of Open Access Journals (Sweden)

    Mehmet Köten

    2013-12-01

    Full Text Available Barley, as animal feed, raw material for malting and human food, constitute an important part among cereal sources in the world. Majority of barley that produced both in Turkey and other countries of the world, is being used as animal feed. Poor baking quality, taste and appearance of barley restricted its use in human nutrition. However, recently high protein, fiber, especially β-glucan and high starch content appeal to food industry. Many scientific researches established that β-glucan, a soluble fiber, has an effect in healing coronary-hearth diseases, lowering blood cholesterol level, balancing blood sugar level, preventing obesity. Being a healthy cereal that can be used in various purposes, and an additive in many food products, barley is considered a very promising cereal, and research to increase possibilities of its use in human nutrition is being increased. In the literature, there has been researches on making noodles, bulgur, kavut (roasted cereal, breakfast cereals. In this study the researches relating to evaluation of barley, importance of which is increased every day, as human food was reviewed.

  11. Developing a Molecular Identification Assay of Old Landraces for the Genetic Authentication of Typical Agro-Food Products: The Case Study of the Barley ‘Agordino’

    Directory of Open Access Journals (Sweden)

    Gianni Barcaccia

    2017-01-01

    Full Text Available The orzo Agordino is a very old local variety of domesticated barley (Hordeum vulgare ssp. distichum L. that is native to the Agordo District, Province of Belluno, and is widespread in the Veneto Region, Italy. Seeds of this landrace are widely used for the preparation of very famous dishes of the dolomitic culinary tradition such as barley soup, bakery products and local beer. Understanding the genetic diversity and identity of the Agordino barley landrace is a key step to establish conservation and valorisation strategies of this local variety and also to provide molecular traceability tools useful to ascertain the authenticity of its derivatives. The gene pool of the Agordino barley landrace was reconstructed using 60 phenotypically representative individual plants and its genotypic relationships with commercial varieties were investigated using 21 pure lines widely cultivated in the Veneto Region. For genomic DNA analysis, following an initial screening of 14 mapped microsatellite (SSR loci, seven discriminant markers were selected on the basis of their genomic position across linkage groups and polymorphic marker alleles per locus. The genetic identity of the local barley landrace was determined by analysing all SSR markers in a single multi-locus PCR assay. Extent of genotypic variation within the Agordino barley landrace and the genotypic differentiation between the landrace individuals and the commercial varieties was determined. Then, as few as four highly informative SSR loci were selected and used to develop a molecular traceability system exploitable to verify the genetic authenticity of food products deriving from the Agordino landrace. This genetic authentication assay was validated using both DNA pools from individual Agordino barley plants and DNA samples from Agordino barley food products. On the whole, our data support the usefulness and robustness of this DNA-based diagnostic tool for the orzo Agordino identification, which

  12. Developing a Molecular Identification Assay of Old Landraces for the Genetic Authentication of Typical Agro-Food Products: The Case Study of the Barley 'Agordino'.

    Science.gov (United States)

    Palumbo, Fabio; Galla, Giulio; Barcaccia, Gianni

    2017-03-01

    The orzo Agordino is a very old local variety of domesticated barley ( Hordeum vulgare ssp. distichum L.) that is native to the Agordo District, Province of Belluno, and is widespread in the Veneto Region, Italy. Seeds of this landrace are widely used for the preparation of very famous dishes of the dolomitic culinary tradition such as barley soup, bakery products and local beer. Understanding the genetic diversity and identity of the Agordino barley landrace is a key step to establish conservation and valorisation strategies of this local variety and also to provide molecular traceability tools useful to ascertain the authenticity of its derivatives. The gene pool of the Agordino barley landrace was reconstructed using 60 phenotypically representative individual plants and its genotypic relationships with commercial varieties were investigated using 21 pure lines widely cultivated in the Veneto Region. For genomic DNA analysis, following an initial screening of 14 mapped microsatellite (SSR) loci, seven discriminant markers were selected on the basis of their genomic position across linkage groups and polymorphic marker alleles per locus. The genetic identity of the local barley landrace was determined by analysing all SSR markers in a single multi-locus PCR assay. Extent of genotypic variation within the Agordino barley landrace and the genotypic differentiation between the landrace individuals and the commercial varieties was determined. Then, as few as four highly informative SSR loci were selected and used to develop a molecular traceability system exploitable to verify the genetic authenticity of food products deriving from the Agordino landrace. This genetic authentication assay was validated using both DNA pools from individual Agordino barley plants and DNA samples from Agordino barley food products. On the whole, our data support the usefulness and robustness of this DNA-based diagnostic tool for the orzo Agordino identification, which could be rapidly

  13. Barley (Hordeum vulgare) in the Okhotsk culture (5th–10th century AD) of northern Japan and the role of cultivated plants in hunter–gatherer economies

    Science.gov (United States)

    Sergusheva, Elena A.; Müller, Stefanie; Spengler, Robert N.; Goslar, Tomasz; Kato, Hirofumi; Wagner, Mayke; Weber, Andrzej W.; Tarasov, Pavel E.

    2017-01-01

    This paper discusses archaeobotanical remains of naked barley recovered from the Okhotsk cultural layers of the Hamanaka 2 archaeological site on Rebun Island, northern Japan. Calibrated ages (68% confidence interval) of the directly dated barley remains suggest that the crop was used at the site ca. 440–890 cal yr AD. Together with the finds from the Oumu site (north-eastern Hokkaido Island), the recovered seed assemblage marks the oldest well-documented evidence for the use of barley in the Hokkaido Region. The archaeobotanical data together with the results of a detailed pollen analysis of contemporaneous sediment layers from the bottom of nearby Lake Kushu point to low-level food production, including cultivation of barley and possible management of wild plants that complemented a wide range of foods derived from hunting, fishing, and gathering. This qualifies the people of the Okhotsk culture as one element of the long-term and spatially broader Holocene hunter–gatherer cultural complex (including also Jomon, Epi-Jomon, Satsumon, and Ainu cultures) of the Japanese archipelago, which may be placed somewhere between the traditionally accepted boundaries between foraging and agriculture. To our knowledge, the archaeobotanical assemblages from the Hokkaido Okhotsk culture sites highlight the north-eastern limit of prehistoric barley dispersal. Seed morphological characteristics identify two different barley phenotypes in the Hokkaido Region. One compact type (naked barley) associated with the Okhotsk culture and a less compact type (hulled barley) associated with Early–Middle Satsumon culture sites. This supports earlier suggestions that the “Satsumon type” barley was likely propagated by the expansion of the Yayoi culture via south-western Japan, while the “Okhotsk type” spread from the continental Russian Far East region, across the Sea of Japan. After the two phenotypes were independently introduced to Hokkaido, the boundary between both barley

  14. Barley (Hordeum vulgare) in the Okhotsk culture (5th-10th century AD) of northern Japan and the role of cultivated plants in hunter-gatherer economies.

    Science.gov (United States)

    Leipe, Christian; Sergusheva, Elena A; Müller, Stefanie; Spengler, Robert N; Goslar, Tomasz; Kato, Hirofumi; Wagner, Mayke; Weber, Andrzej W; Tarasov, Pavel E

    2017-01-01

    This paper discusses archaeobotanical remains of naked barley recovered from the Okhotsk cultural layers of the Hamanaka 2 archaeological site on Rebun Island, northern Japan. Calibrated ages (68% confidence interval) of the directly dated barley remains suggest that the crop was used at the site ca. 440-890 cal yr AD. Together with the finds from the Oumu site (north-eastern Hokkaido Island), the recovered seed assemblage marks the oldest well-documented evidence for the use of barley in the Hokkaido Region. The archaeobotanical data together with the results of a detailed pollen analysis of contemporaneous sediment layers from the bottom of nearby Lake Kushu point to low-level food production, including cultivation of barley and possible management of wild plants that complemented a wide range of foods derived from hunting, fishing, and gathering. This qualifies the people of the Okhotsk culture as one element of the long-term and spatially broader Holocene hunter-gatherer cultural complex (including also Jomon, Epi-Jomon, Satsumon, and Ainu cultures) of the Japanese archipelago, which may be placed somewhere between the traditionally accepted boundaries between foraging and agriculture. To our knowledge, the archaeobotanical assemblages from the Hokkaido Okhotsk culture sites highlight the north-eastern limit of prehistoric barley dispersal. Seed morphological characteristics identify two different barley phenotypes in the Hokkaido Region. One compact type (naked barley) associated with the Okhotsk culture and a less compact type (hulled barley) associated with Early-Middle Satsumon culture sites. This supports earlier suggestions that the "Satsumon type" barley was likely propagated by the expansion of the Yayoi culture via south-western Japan, while the "Okhotsk type" spread from the continental Russian Far East region, across the Sea of Japan. After the two phenotypes were independently introduced to Hokkaido, the boundary between both barley domains possibly

  15. Barley (Hordeum vulgare in the Okhotsk culture (5th-10th century AD of northern Japan and the role of cultivated plants in hunter-gatherer economies.

    Directory of Open Access Journals (Sweden)

    Christian Leipe

    Full Text Available This paper discusses archaeobotanical remains of naked barley recovered from the Okhotsk cultural layers of the Hamanaka 2 archaeological site on Rebun Island, northern Japan. Calibrated ages (68% confidence interval of the directly dated barley remains suggest that the crop was used at the site ca. 440-890 cal yr AD. Together with the finds from the Oumu site (north-eastern Hokkaido Island, the recovered seed assemblage marks the oldest well-documented evidence for the use of barley in the Hokkaido Region. The archaeobotanical data together with the results of a detailed pollen analysis of contemporaneous sediment layers from the bottom of nearby Lake Kushu point to low-level food production, including cultivation of barley and possible management of wild plants that complemented a wide range of foods derived from hunting, fishing, and gathering. This qualifies the people of the Okhotsk culture as one element of the long-term and spatially broader Holocene hunter-gatherer cultural complex (including also Jomon, Epi-Jomon, Satsumon, and Ainu cultures of the Japanese archipelago, which may be placed somewhere between the traditionally accepted boundaries between foraging and agriculture. To our knowledge, the archaeobotanical assemblages from the Hokkaido Okhotsk culture sites highlight the north-eastern limit of prehistoric barley dispersal. Seed morphological characteristics identify two different barley phenotypes in the Hokkaido Region. One compact type (naked barley associated with the Okhotsk culture and a less compact type (hulled barley associated with Early-Middle Satsumon culture sites. This supports earlier suggestions that the "Satsumon type" barley was likely propagated by the expansion of the Yayoi culture via south-western Japan, while the "Okhotsk type" spread from the continental Russian Far East region, across the Sea of Japan. After the two phenotypes were independently introduced to Hokkaido, the boundary between both barley

  16. Immigration of the barley mildew pathogen into field plots of barley

    DEFF Research Database (Denmark)

    O'Hara, R.B.; Brown, J.K.M.

    1996-01-01

    Immigration of the barley powdery mildew pathogen (Erysiphe graminis f.sp. hordei) into field plots of the spring barley variety Tyra (carrying the resistance allele Mla1) was investigated. Spores were trapped from the top of the plot canopies, as well as from control plots of wheat with no barley...... nearby. Comparison of the frequencies of virulent and avirulent single-colony isolates showed that the amount of immigration, relative to the amount of inoculum being produced within the plot, reduced very rapidly, until it could not be detected in the middle of the growing season (mid-June)....

  17. Influence of biologically-active substances on 137Cs and heavy metals uptake by Barley plant

    International Nuclear Information System (INIS)

    Kruglov, Stanislav; Filipas, Alexander

    2007-01-01

    Available in abstract form only. Full text of publication follows: When solving the problem of contaminated agricultural lands rehabilitation, most of attention is concentrated on the effective means which allow the obtaining of ecologically safe production. The minimization of radionuclides and heavy metals (HM) content in farm products on the basis of their migration characteristics in agro-landscapes and with the regard for different factors influencing contaminants behavior in the soil-plant system is of great significance. Our investigation has shown that the effect of biologically active substances (BAS) using for seeds treatment on 137 Cs transfer to barley grown on Cd contaminated soil was dependent on their properties and dosage, characteristics of soil contamination and biological peculiarities of plants, including stage of plants development. Seeds treatment by plant growth regulator Zircon resulted in a significant increase in 137 Cs activity in harvest (40- 50%), increase in K concentration and significant reduction in Ca concentration. Increased Cd content in soil reduced 137 Cs transfer to barley plants by 30-60% (p 137 Cs uptake by roots and Cd and Pb phyto-toxicity. The experimental data do not make it possible to link the BAS effect on inhibition of 137 Cs absorption by plants directly with their influence on HM phyto-toxicity. The dependence of Concentration Ratio of 137 Cs on the Ambiol and El dose was not proportional and the most significant decrease in the radionuclide uptake by plants was reported with the use of dose showing the most pronounced stimulating effect on the barley growth and development. The pre-sowing seed treatment with Ambiol increased Pb absorption by 35-50% and, on the contrary, decreased Cd uptake by plants by 30-40%. (authors)

  18. Early maturing mutations as germplasm stocks for barley breeding

    International Nuclear Information System (INIS)

    Ukai, Yasuo

    1985-01-01

    A total of 102 early maturing mutations have been isolated after various treatments of seeds or plants with ionizing radiations or chemicals from a barley cultivar 'Chikurin Ibaraki 1' or its mutants. Fifty of them were evaluated as regards responses to internal physiological factors. The mutants were found to have a mutational alteration in vernalization and/or photoperiodic response. Earliness in a narrow sense was not noticeably changed. The original genotype is a winter and long-day type. By mutation four different degrees of change in vernalization requirement i.e. complete (V 1 ) and incomplete (V 2 ) spring habit and winter habit with reduced requirement to varying degrees (V 3 , V 4 ) have been produced. Photoperiodic response was also changed into at least three types i.e. complete (P 1 ) and incomplete (P 2 ) loss of sensitivity to short photoperiod and a slight reduction in critical daylength for heading. P 1 and P 2 type mutants were all characterized by marked earliness in heading time in field. Thirty seven mutants were located in seven separate loci. Allelism test of the mutated genes to spontaneous ones revealed that the genes carried by P 1 type mutants were all allelic to an earliness gene ea sub(k) on chromosome 5 and the gene involved in P 2 type mutants to ea 7 on chromosome 6. On the contrary, the gene commonly involved in all V 1 type mutants and one V 2 type mutant was not allelic to spring habit gene Sh 2 or Sh 3 . It seemed likely that the gene was not allelic to, either, but closely linked with sh on chromosome 4. The diversity in terms of genetic and physiological properties of the early maturing mutants arising from common ancestry emphasizes the importance of induced mutation in broadening of germplasm of barley breeding. (author)

  19. The barley Jip23b gene

    DEFF Research Database (Denmark)

    Müller-Uri, Frieder; Cameron-Mills, Verena; Mundy, John

    2002-01-01

    The barley gene (Jip23) encoding a 23,000-Da protein of unknown function was isolated and shown to be induced by jasmonate methyl ester (MeJA) in leaves. 5'upstream Jip23 sequence was isolated and fused to the beta-glucuronidase gene (GUS), and this reporter was introduced by particle bombardment...... into barley leaves. With 1.8 kb of this Jip23 sequence, GUS expression was enhanced about threefold by jasmonate treatment. This indicates that the Jip23 regulation by jasmonate occurs at the level of transcription.......The barley gene (Jip23) encoding a 23,000-Da protein of unknown function was isolated and shown to be induced by jasmonate methyl ester (MeJA) in leaves. 5'upstream Jip23 sequence was isolated and fused to the beta-glucuronidase gene (GUS), and this reporter was introduced by particle bombardment...

  20. Expression of Nudix hydrolase genes in barley under UV irradiation

    Science.gov (United States)

    Tanaka, Sayuri; Sugimoto, Manabu; Kihara, Makoto

    Seed storage and cultivation should be necessary to self-supply foods when astronauts would stay and investigate during long-term space travel and habitation in the bases on the Moon and Mars. Thought the sunlight is the most importance to plants, both as the ultimate energy source and as an environmental signal regulating growth and development, UV presenting the sunlight can damage many aspects of plant processes at the physiological and DNA level. Especially UV-C, which is eliminated by the stratospheric ozone layer, is suspected to be extremely harmful and give a deadly injury to plants in space. However, the defense mechanism against UV-C irradiation damage in plant cells has not been clear. In this study, we investigated the expression of Nudix hydrolases, which defense plants from biotic / abiotic stress, in barley under UV irradiation. The genes encoding the amino acid sequences, which show homology to those of 28 kinds of Nudix hydrolases in Arabidopsis thaliana, were identified in the barley full-length cDNA library. BLAST analysis showed 14 kinds of barley genes (HvNUDX1-14), which encode the Nudix motif sequence. A phylogenetic tree showed that HvNUDX1, HvNUDX7, HvNUDX9 and HvNUDX11 belonged to the ADP-ribose pyrophosphohydrolase, ADP-sugar pyrophosphohydrolase, NAD(P)H pyrophosphohydrolase and FAD pyrophosphohydrolase subfamilies, respectively, HvNUDX3, HvNUDX6, and HvNUDX8 belonged to the Ap _{n}A pyrophosphohydrolase subfamilies, HvNUDX5 and HvNUDX14 belonged to the coenzyme A pyrophosphohydrolase subfamilies, HvNUDX12 and HvNUDX13 belonged to the Ap _{4}A pyrophosphohydrolase subfamilies. Induction of HvNUDX genes by UV-A (340nm), UV-B (312nm), and UV-C (260nm) were analyzed by quantitative RT-PCR. The results showed that HvNUDX4 was induced by UV-A and UV-B, HvNUDX6 was induced by UV-B and UV-C, and HvNUDX7 and HvNUDX14 were induced by UV-C, significantly. Our results suggest that the response of HvNUDXs to UV irradiation is different by UV

  1. Analysis of chlorophyll mutations induced by γ-rays in barley (hordeum vulgare)

    International Nuclear Information System (INIS)

    Wang Cailian; Shen Mei; Xu Gang; Zhao Kongnan; Chen Qiufang

    1991-06-01

    Thirty varieties of dormant barley seeds were irradiated with 137 Cs γ-rays. Dose-effect relations of chlorophyll mutation frequency in M 2 seedling and differences resulting from cultured types or radiosensitive types were investigated. Experimental results show that the relations between chlorophyll mutation frequency and doses can be fitted by a linear regression equation Y = A + BX. According to analysis of covariance, there is no considerable difference in various cultured types, but the difference of five different radiosensitive types is remarkable. The sensitive and intermediate types need much lower doses than other types to induce maximum chlorophyll mutation

  2. Preparation of Barley Storage Protein, Hordein, for Analytical Sodium Dodecyl Sulfate-Polyacrylamide Gel Electrophoresis

    DEFF Research Database (Denmark)

    Doll, Hans; Andersen, Bente

    1981-01-01

    The extraction, reduction, and alkylation of barley hordein for routine electrophoresis in sodium dodecyl sulfate-polyacrylamide gels were studied to set up a simple preparation procedure giving well-resolved bands in the electrophoresis gel. Hordein was extracted from single crushed seeds or flour...... by aqueous 50% propan-2-ol containing a Tris-borate buffer, pH 8.6. The presence of the buffer facilitates the consecutive complete reduction of the extracted protein in the alcohol. Reduction and alkylation in the buffer containing propan-2-ol give sharper bands in the electrophoresis than reduction...

  3. Secretory expression of functional barley limit dextrinase by Pichia pastoris using high cell-density fermentation

    DEFF Research Database (Denmark)

    Vester-Christensen, Malene Bech; Abou Hachem, Maher; Næsted, Henrik

    2010-01-01

    Heterologous production of large multidomain proteins from higher plants is often cumbersome. Barley limit dextrinase (LD), a 98 kDa multidomain starch and alpha-limit dextrin debranching enzyme, plays a major role in starch mobilization during seed germination and is possibly involved in starch....... Kinetic constants of LD catalyzed pullulan hydrolysis were found to K-m,K-app = 0.16 +/- 0.02 mg/mL and k(cat,app) = 79 +/- 10 s(-1) by fitting the uncompetitive substrate inhibition Michaelis-Menten equation, which reflects significant substrate inhibition and/or transglycosylation. The resulting...

  4. Barley Transformation Using Agrobacterium-Mediated Techniques

    Science.gov (United States)

    Harwood, Wendy A.; Bartlett, Joanne G.; Alves, Silvia C.; Perry, Matthew; Smedley, Mark A.; Leyland, Nicola; Snape, John W.

    Methods for the transformation of barley using Agrobacterium-mediated techniques have been available for the past 10 years. Agrobacterium offers a number of advantages over biolistic-mediated techniques in terms of efficiency and the quality of the transformed plants produced. This chapter describes a simple system for the transformation of barley based on the infection of immature embryos with Agrobacterium tumefaciens followed by the selection of transgenic tissue on media containing the antibiotic hygromycin. The method can lead to the production of large numbers of fertile, independent transgenic lines. It is therefore ideal for studies of gene function in a cereal crop system.

  5. Barley grain maturation and germination: metabolic pathway and regulatory network commonalities and differences highlighted by new MapMan/PageMan profiling tools.

    Science.gov (United States)

    Sreenivasulu, Nese; Usadel, Björn; Winter, Andreas; Radchuk, Volodymyr; Scholz, Uwe; Stein, Nils; Weschke, Winfriede; Strickert, Marc; Close, Timothy J; Stitt, Mark; Graner, Andreas; Wobus, Ulrich

    2008-04-01

    Plant seeds prepare for germination already during seed maturation. We performed a detailed transcriptome analysis of barley (Hordeum vulgare) grain maturation, desiccation, and germination in two tissue fractions (starchy endosperm/aleurone and embryo/scutellum) using the Affymetrix Barley1 GeneChip. To aid data evaluation, Arabidopsis thaliana MapMan and PageMan tools were adapted to barley. The analyses allow a number of conclusions: (1) Cluster analysis revealed a smooth transition in transcription programs between late seed maturation and germination within embryo tissues, but not in the endosperm/aleurone. (2) More than 12,000 transcripts are stored in the embryo of dry barley grains, many of which are presumably activated during germination. (3) Transcriptional activation of storage reserve mobilization events occurs at an early stage of germination, well before radicle protrusion. (4) Key genes of gibberellin (GA) biosynthesis are already active during grain maturation at a time when abscisic acid peaks suggesting the formation of an endogenous store of GA in the aleurone. This GA probably acts later during germination in addition to newly synthesized GA. (5) Beside the well-known role of GA in gene activation during germination spatiotemporal expression data and cis-element searches in homologous rice promoters confirm an equally important gene-activating role of abscisic acid during this developmental period. The respective regulatory webs are linked to auxin and ethylene controlled networks. In summary, new bioinformatics PageMan and MapMan tools developed in barley have been successfully used to investigate in detail the transcriptome relationships between seed maturation and germination in an important crop plant.

  6. A role for barley CRYPTOCHROME1 in light regulation of grain dormancy and germination.

    Science.gov (United States)

    Barrero, Jose M; Downie, A Bruce; Xu, Qian; Gubler, Frank

    2014-03-01

    It is well known that abscisic acid (ABA) plays a central role in the regulation of seed dormancy and that transcriptional regulation of genes encoding ABA biosynthetic and degradation enzymes is responsible for determining ABA content. However, little is known about the upstream signaling pathways impinging on transcription to ultimately regulate ABA content or how environmental signals (e.g., light and cold) might direct such expression in grains. Our previous studies indicated that light is a key environmental signal inhibiting germination in dormant grains of barley (Hordeum vulgare), wheat (Triticum aestivum), and Brachypodium distachyon and that this effect attenuates as after-ripening progresses further. We found that the blue component of the light spectrum inhibits completion of germination in barley by inducing the expression of the ABA biosynthetic gene 9-cis-epoxycarotenoid dioxygenase and dampening expression of ABA 8'-hydroxylase, thus increasing ABA content in the grain. We have now created barley transgenic lines downregulating the genes encoding the blue light receptors CRYTOCHROME (CRY1) and CRY2. Our results demonstrate that CRY1 is the key receptor perceiving and transducing the blue light signal in dormant grains.

  7. Seed quality in informal seed systems

    OpenAIRE

    Biemond, P.C.

    2013-01-01

    Keywords:     informal seed systems, seed recycling, seed quality, germination, seed pathology, seed health, seed-borne diseases, mycotoxigenic fungi, Fusarium verticillioides, mycotoxins, Vigna unguiculata, Zea mays, Nigeria.   Seed is a crucial input for agricultural production. Approximately 80% of the smallholder farmers in Africa depend for their seed on the informal seed system, consisting of farmers involved in selection, production and dissemination of seed. The la...

  8. Endoproteolytic activity assay in malting barley

    Directory of Open Access Journals (Sweden)

    Blanca Gómez Guerrero

    2013-12-01

    Full Text Available Hydrolysis of barley proteins into peptides and amino acids is one of the most important processes during barley germination.The degradation of the endosperm stored proteins facilitates water and enzyme movements, enhances modification, liberates starch granules and increases soluble amino nitrogen. Protease activity is the result of the activities of a mixture of exo- and endo-proteases. The barley proteins are initially solubilized by endo-proteases and the further by exo-proteases. Four classes of endo-proteases have been described: serine-proteases, cysteine-proteases, aspartic-proteases and metallo-proteases. The objective of this work was to develop a rapid and colorimetric enzymatic assay to determine the endo-proteolytic activity of the four endo-protease classes using two different substrates: azo-gelatin and azo-casein. Optimum conditions for the assays such as: pH,reaction time and temperature and absorbance scale were determined. Azo-gelatin presented several difficulties in standardizing an “in solution” assay. On the other hand, azo-casein allowed standardization of the assay for the four enzyme classes to produce consistent results. The endo-proteoteolytic method developed was applied to determine the endo-protease activity in barley, malt and wort.

  9. The Localization of Eceriferum Loci in Barley

    DEFF Research Database (Denmark)

    Søgaard, Bodil

    1974-01-01

    Three different 3-point tests have been made for gene distances on chromosome 1 in barley (Hordeum vulgare L.). In all cases eceriferum, cer-f9, and albina, ac2, were examined with erectoides as the third gene. The erectoides, ert, genes are ert-a23, ert-d33 and ert-m40, respectively. The analyses...

  10. Cisgenic Barley with Improved Phytase Activity

    DEFF Research Database (Denmark)

    Holme, Inger; Dionisio, Giuseppe; Brinch-Pedersen, Henrik

    2010-01-01

    barley lambda library has been used to isolate the genomic clone of this phytase including 2.3 kb of the promoter region and 600 bp of the terminator region. The clone has been inserted into a cisgenic Agrobacterium vector where both the gene of interest and the selection gene are flanked by their own T...

  11. Barley Breeding for Quality Improvement in Tunisia

    African Journals Online (AJOL)

    TOSHIBA

    2012-11-06

    Deghais, 1991; El Felah, 1998). The consistent difficulties observed in the ... Atlas 46 (As46), improved material Arrivat (Avt) and Athenaïs. (Aths). It's now a widely grown variety (more than 40% of total barley cultivated areas in ...

  12. Inhibition of barley grain germination by light

    NARCIS (Netherlands)

    Roth-Bejerano, N.; Meulen, R.M. van der; Wang, M.

    1996-01-01

    Intact grains of barley (Hordeum distichum cv. Triumph) germinated rapidly in the dark or when exposed to brief daily light breaks in the temperature range 15-25°C, although germination proceeded less rapidly at low temperatures. Prolonged illumination (16 h/day) or continuous light inhibited

  13. Fusarium graminearum and Its Interactions with Cereal Heads: Studies in the Proteomics Era

    DEFF Research Database (Denmark)

    Yang, Fen; Jacobsen, Susanne; Jørgensen, Hans J L

    2013-01-01

    The ascomycete fungal pathogen (teleomorph stage: ) is the causal agent of head blight in wheat and barley. This disease leads to significant losses of crop yield, and especially quality through the contamination by diverse fungal mycotoxins, which constitute a significant threat to the health of...... applications toward a better understanding of pathogenesis, virulence, and host defense mechanisms. The contribution of proteomics to the development of crop protection strategies against this pathogen is also discussed briefly....... of humans and animals. In recent years, high-throughput proteomics, aiming at identifying a broad spectrum of proteins with a potential role in the pathogenicity and host resistance, has become a very useful tool in plant-fungus interaction research. In this review, we describe the progress in proteomics...

  14. Infection of barley with the parasitic fungus Blumeria graminis f.sp. hordei results in the induction of HvADH1 and HvADH2.

    Science.gov (United States)

    Proels, Reinhard K; Westermeier, Wolfgang; Hückelhoven, Ralph

    2011-10-01

    Besides the established functions of alcohol dehydrogenase (ADH) in the flooding response and in seed and pollen metabolism there is increasing evidence for a role of the fermentative pathway in biotic interactions. We have recently shown that barley ADH may be involved in susceptibility to the parasitic fungus Blumeria graminis f.sp. hordei (Bgh). Here, the transcriptional regulation of the barley ADH genes HvADH1 and HvADH2 after challenge of susceptible barley leaves with Bgh is addressed. Bgh infection results in an induction of HvADH1 and HvADH2, whereas HvADH3 expression was not detectable in leaves. With the use of native polyacrylamide gels the iso-enzyme composition with and without challenge by Bgh was analyzed, showing an activation of HvADH1 and HvADH2 in Bgh treated leaves.

  15. Lipid and sugar profiles of various barley cultivars (Hordeum vulgare

    Directory of Open Access Journals (Sweden)

    Pastor Kristian A.

    2015-01-01

    Full Text Available The lipid components and soluble sugars in flour samples of different cultivars of barley (Hordeum vulgare, involving winter malting barley, winter forage barley, spring barley, and hulless barley, were identified. Fatty acids were extracted from flour samples with n-hexane, and derivatized into volatile methyl esters, using TMSH (trimethylsulfonium hydroxide in methanol. Soluble sugars were extracted from defatted and dried samples of barley flour with 96% ethanol, and further derivatized into the corresponding trimethylsilyl (TMS oximes, using hydroxylamine hydrochloride solution and BSTFA (N,O-bis-(trimethylsilyl-trifluoroacetamide. The hexane and alcoholic extracts of barley cultivars were analyzed by GC-MS system. Lipid and sugar compositions were very similar in all barley cultivars. Therefore, multivariate analysis was applied to numerical values of automatically integrated areas of the identified fatty acid methyl esters and TMS oximes of soluble sugars. The application of hierarchical cluster analysis showed a great similarity between the investigated flour samples of barley cultivars, according to their fatty acid content (0.96. Also, significant, but somewhat less similarity was observed regarding the content of soluble sugars (0.70. These preliminary results indicate the possibility of distinguishing flour made of barley, regardless of the variety, from flours made of other cereal species, just by the analysis of the contents of fatty acids and soluble sugars.[Projekat Ministarstva nauke Republike Srbije, br. TR 31066

  16. Seed quality in informal seed systems

    NARCIS (Netherlands)

    Biemond, P.C.

    2013-01-01

    Keywords: informal seed systems, seed recycling, seed quality, germination, seed pathology, seed health, seed-borne diseases, mycotoxigenic fungi, Fusarium verticillioides, mycotoxins, Vigna unguiculata, Zea mays, Nigeria.

    Seed is a crucial input for agricultural production.

  17. Identification Of Barley Grain Mycoflora By Next Generation Sequencing And Videometer Multispectral Imaging

    DEFF Research Database (Denmark)

    Jørgensen, Johannes Ravn; Carstensen, Jens Michael; Søren, Knudsen

    , Pyrenophora, Epicoccum, Didymella, Alternaria, Bipolaris and Microdochium. The fungal composition and quantities on each seed varied significantly. Some were infected mainly by a single fungus and some were infected by multiple fungi. All seeds were prior to this evaluated by multispectral imaging...... on the dorsal and ventral sides by the VideometerLab multispectral imaging system (Videometer A/S, Hørsholm, Denmark). This system is an instrument equipped with 19 different light emitting diodes at wavelengths ranging from 375 to 970nm (ultraviolet, visual and lower wavelength of the near-infrared region...... for fungal contamination of barley on the fungal species level was investigated by comparing results from the next generation sequencing and multispectral imaging....

  18. Identification of two key genes controlling chill haze stability of beer in barley (Hordeum vulgare L).

    Science.gov (United States)

    Ye, Lingzhen; Huang, Yuqing; Dai, Fei; Ning, Huajiang; Li, Chengdao; Zhou, Meixue; Zhang, Guoping

    2015-06-11

    In bright beer, haze formation is a serious quality problem, degrading beer quality and reducing its shelf life. The quality of barley (Hordeum vulgare L) malt, as the main raw material for beer brewing, largely affects the colloidal stability of beer. In this study, the genetic mechanism of the factors affecting beer haze stability in barley was studied. Quantitative trait loci (QTL) analysis of alcohol chill haze (ACH) in beer was carried out using a Franklin/Yerong double haploid (DH) population. One QTL, named as qACH, was detected for ACH, and it was located on the position of about 108 cM in chromosome 4H and can explain about 20 % of the phenotypic variation. Two key haze active proteins, BATI-CMb and BATI-CMd were identified by proteomics analysis. Bioinformatics analysis showed that BATI-CMb and BATI-CMd had the same position as qACH in the chromosome. It may be deduced that BATI-CMb and BATI-CMd are candidate genes for qACH, controlling colloidal stability of beer. Polymorphism comparison between Yerong and Franklin in the nucleotide and amino acid sequence of BATI-CMb and BATI-CMd detected the corresponding gene specific markers, which could be used in marker-assisted selection for malt barley breeding. We identified a novel QTL, qACH controlling chill haze of beer, and two key haze active proteins, BATI-CMb and BATI-CMd. And further analysis showed that BATI-CMb and BATI-CMd might be the candidate genes associated with beer chill haze.

  19. ProteomicsDB.

    Science.gov (United States)

    Schmidt, Tobias; Samaras, Patroklos; Frejno, Martin; Gessulat, Siegfried; Barnert, Maximilian; Kienegger, Harald; Krcmar, Helmut; Schlegl, Judith; Ehrlich, Hans-Christian; Aiche, Stephan; Kuster, Bernhard; Wilhelm, Mathias

    2018-01-04

    ProteomicsDB (https://www.ProteomicsDB.org) is a protein-centric in-memory database for the exploration of large collections of quantitative mass spectrometry-based proteomics data. ProteomicsDB was first released in 2014 to enable the interactive exploration of the first draft of the human proteome. To date, it contains quantitative data from 78 projects totalling over 19k LC-MS/MS experiments. A standardized analysis pipeline enables comparisons between multiple datasets to facilitate the exploration of protein expression across hundreds of tissues, body fluids and cell lines. We recently extended the data model to enable the storage and integrated visualization of other quantitative omics data. This includes transcriptomics data from e.g. NCBI GEO, protein-protein interaction information from STRING, functional annotations from KEGG, drug-sensitivity/selectivity data from several public sources and reference mass spectra from the ProteomeTools project. The extended functionality transforms ProteomicsDB into a multi-purpose resource connecting quantification and meta-data for each protein. The rich user interface helps researchers to navigate all data sources in either a protein-centric or multi-protein-centric manner. Several options are available to download data manually, while our application programming interface enables accessing quantitative data systematically. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  20. The Effect of Trichoderma harzianum and Cadmium on Tolerance Index and Yield of Barley (Hordeum vulgare L.

    Directory of Open Access Journals (Sweden)

    F. Taghavi Ghasemkheyli

    2015-01-01

    Full Text Available To investigate the effect of Trichoderma harzianum, as a bioabsorbant to ameliorate the harmful effects of cadmium (Cd on growth and yield of barley (Hordeum vulgare L. variety ‘Sahra’, a factorial pot experiment based on completely randomized design with three replicates was conducted. Trichoderma harzianum withtwo levels (with and without inoculation and cadmium nitrate with four levels (0, 50, 100 and 150 mg.L-1 were the treatments. Results of ANOVA revealed that there was a significant interaction between Trichoderma and cadmium nitrate in terms of biological yield, straw yield, harvest index, spike number per plant and seed number per spike. Mean comparisons showed that Trichoderma inoculation at all Cd levels significantly improved both biological and straw yields. Trichoderma at 50 and 100 mg.L-1 of Cd also increased the spike number per plant (up to 120 and 66%, respectively significantly. Increasing Cd levels decreased seed yield (19%, 1000 seed weight (18%, partitioning coefficient (57% and tolerance index (23% significantly. Inoculation of Trichoderma into growth medium had a significant effect on seed yield and tolerance index (up to 17 and 22%, respectively. In conclusion, Trichoderma harzianum inoculation at lower concentrations of Cd (50 and 100 mg.L-1 could be effective to improve growth parameters of barley plant.

  1. Protective effect and economic impact of insecticide application methods on barley

    Directory of Open Access Journals (Sweden)

    Alfred Stoetzer

    2014-03-01

    Full Text Available The objective of this work was to evaluate the protective effect of different forms of insecticide application on the transmission of yellow dwarf disease in barley cultivars, as well as to determine the production costs and the net profit of these managements. The experiments were carried out during 2011 and 2012 growing seasons, using the following managements at main plots: T1, seed treatment with insecticide (ST + insecticide on shoots at 15-day interval; T2, just ST; T3, insecticide applied on shoots, when aphid control level (CL was reached; T4, without insecticide; and T5, ST + insecticide on shoots when CL was reached. Different barley cultivars - BRS Cauê, BRS Brau and MN 6021 - were arranged in the subplots. Insecticides lambda cyhalothrin (pyrethroid and thiamethoxam (neonicotinoid were used. There were differences on yellow dwarf disease index in both seasons for the different treatments, while damage to grain yield was influenced by year and aphid population. Production costs and net profit were different among treatments. Seed treatment with insecticide is sufficient to reduce the transmission of yellow dwarf disease in years with low aphid population pressure, while in years with larger populations, the application of insecticide on shoots is also required.

  2. Distribution Frequency and Incidence of Seed-borne Pathogens of Some Cereals and Industrial Crops in Serbia

    Directory of Open Access Journals (Sweden)

    Jelena Lević

    2012-01-01

    Full Text Available A total of 41 species of fungi were isolated from seed samples of barley, maize, soybean,and sunflower collected at different locations in Serbia. The majority of detected speciesoccurred on barley (35 of 41 species or 87.8% comparing to soybean (17 of 41 species or41.5%, sunflower (16 of 41 species or 39.0% and maize (15 of 41 species or 36.9%. Speciesbelonging to genera Alternaria, Chaetomium, Epicoccum, Fusarium, Penicillium and Rhizopuswere present on seeds of all four plant species. Alternaria species were dominant on soybean,barley and sunflower seeds (85.7%, 84.7% and 76.9%. F. verticillioides and Penicilliumspp. were mainly isolated from maize seeds (100 and 92.3% respectively, while other specieswere isolated up to 38.5% (Chaetomium spp. and Rhizopus spp.. F. graminearum, F. proliferatum,F. poae and F. sporotrichioides were the most common Fusarium species isolatedfrom barley (51.1-93.3%, while on the soybean seeds F. oxysporum (71.4%, F. semitectum(57.1% and F. sporotrichioides (57.1% were prevalent. Frequency of Fusarium species onsunflower seeds varied from 7% (F. equiseti, F. graminearum, F. proliferatum and F. subglutinansto 15.4% (F. verticillioides. Statistically significant negative correlation (r = –0.678* wasdetermined for the incidence of F. graminearum and Alternaria spp., as well as, Fusarium spp.and Alternaria spp. (r = –0.614*, on barley seeds. The obtained results revealed that seedbornepathogens were present in most seed samples of important cereals and industrialcrops grown under different agroecological conditions in Serbia. Some of the identifiedfungi are potential producers of mycotoxins, thus their presence is important in termsof reduced food safety for humans and animals. Therefore, an early and accurate diagnosisand pathogen surveillance will provide time for the development and the applicationof disease strategies.

  3. Structure and evolution of barley powdery mildew effector candidates

    Directory of Open Access Journals (Sweden)

    Pedersen Carsten

    2012-12-01

    Full Text Available Abstract Background Protein effectors of pathogenicity are instrumental in modulating host immunity and disease resistance. The powdery mildew pathogen of grasses Blumeria graminis causes one of the most important diseases of cereal crops. B. graminis is an obligate biotrophic pathogen and as such has an absolute requirement to suppress or avoid host immunity if it is to survive and cause disease. Results Here we characterise a superfamily predicted to be the full complement of Candidates for Secreted Effector Proteins (CSEPs in the fungal barley powdery mildew parasite B. graminis f.sp. hordei. The 491 genes encoding these proteins constitute over 7% of this pathogen’s annotated genes and most were grouped into 72 families of up to 59 members. They were predominantly expressed in the intracellular feeding structures called haustoria, and proteins specifically associated with the haustoria were identified by large-scale mass spectrometry-based proteomics. There are two major types of effector families: one comprises shorter proteins (100–150 amino acids, with a high relative expression level in the haustoria and evidence of extensive diversifying selection between paralogs; the second type consists of longer proteins (300–400 amino acids, with lower levels of differential expression and evidence of purifying selection between paralogs. An analysis of the predicted protein structures underscores their overall similarity to known fungal effectors, but also highlights unexpected structural affinities to ribonucleases throughout the entire effector super-family. Candidate effector genes belonging to the same family are loosely clustered in the genome and are associated with repetitive DNA derived from retro-transposons. Conclusions We employed the full complement of genomic, transcriptomic and proteomic analyses as well as structural prediction methods to identify and characterize the members of the CSEPs superfamily in B. graminis f

  4. Structure and evolution of barley powdery mildew effector candidates

    Science.gov (United States)

    2012-01-01

    Background Protein effectors of pathogenicity are instrumental in modulating host immunity and disease resistance. The powdery mildew pathogen of grasses Blumeria graminis causes one of the most important diseases of cereal crops. B. graminis is an obligate biotrophic pathogen and as such has an absolute requirement to suppress or avoid host immunity if it is to survive and cause disease. Results Here we characterise a superfamily predicted to be the full complement of Candidates for Secreted Effector Proteins (CSEPs) in the fungal barley powdery mildew parasite B. graminis f.sp. hordei. The 491 genes encoding these proteins constitute over 7% of this pathogen’s annotated genes and most were grouped into 72 families of up to 59 members. They were predominantly expressed in the intracellular feeding structures called haustoria, and proteins specifically associated with the haustoria were identified by large-scale mass spectrometry-based proteomics. There are two major types of effector families: one comprises shorter proteins (100–150 amino acids), with a high relative expression level in the haustoria and evidence of extensive diversifying selection between paralogs; the second type consists of longer proteins (300–400 amino acids), with lower levels of differential expression and evidence of purifying selection between paralogs. An analysis of the predicted protein structures underscores their overall similarity to known fungal effectors, but also highlights unexpected structural affinities to ribonucleases throughout the entire effector super-family. Candidate effector genes belonging to the same family are loosely clustered in the genome and are associated with repetitive DNA derived from retro-transposons. Conclusions We employed the full complement of genomic, transcriptomic and proteomic analyses as well as structural prediction methods to identify and characterize the members of the CSEPs superfamily in B. graminis f.sp. hordei. Based on relative

  5. Barley grain for ruminants: A global treasure or tragedy.

    Science.gov (United States)

    Nikkhah, Akbar

    2012-07-09

    Barley grain (Hordeum vulgare L.) is characterized by a thick fibrous coat, a high level of ß-glucans and simply-arranged starch granules. World production of barley is about 30 % of that of corn. In comparison with corn, barley has more protein, methionine, lysine, cysteine and tryptophan. For ruminants, barley is the third most readily degradable cereal behind oats and wheat. Due to its more rapid starch fermentation rate compared with corn, barley also provides a more synchronous release of energy and nitrogen, thereby improving microbial nutrient assimilation. As a result, feeding barley can reduce the need for feeding protected protein sources. However, this benefit is only realized if rumen acidity is maintained within an optimal range (e.g., > 5.8 to 6.0); below this range, microbial maintenance requirements and wastage increase. With a low pH, microbial endotoxines cause pro-inflammatory responses that can weaken immunity and shorten animal longevity. Thus, mismanagement in barley processing and feeding may make a tragedy from this treasure or pearl of cereal grains. Steam-rolling of barley may improve feed efficiency and post-rumen starch digestion. However, it is doubtful if such processing can improve milk production and feed intake. Due to the need to process barley less extensively than other cereals (as long as the pericarp is broken), consistent and global standards for feeding and processing barley could be feasibly established. In high-starch diets, barley feeding reduces the need for capacious small intestinal starch assimilation, subsequently reducing hindgut starch use and fecal nutrient loss. With its nutritional exclusivities underlined, barley use will be a factual art that can either matchlessly profit or harm rumen microbes, cattle production, farm economics and the environment.

  6. Barley grain for ruminants: A global treasure or tragedy

    Directory of Open Access Journals (Sweden)

    Nikkhah Akbar

    2012-07-01

    Full Text Available Abstract Barley grain (Hordeum vulgare L. is characterized by a thick fibrous coat, a high level of ß-glucans and simply-arranged starch granules. World production of barley is about 30 % of that of corn. In comparison with corn, barley has more protein, methionine, lysine, cysteine and tryptophan. For ruminants, barley is the third most readily degradable cereal behind oats and wheat. Due to its more rapid starch fermentation rate compared with corn, barley also provides a more synchronous release of energy and nitrogen, thereby improving microbial nutrient assimilation. As a result, feeding barley can reduce the need for feeding protected protein sources. However, this benefit is only realized if rumen acidity is maintained within an optimal range (e.g., > 5.8 to 6.0; below this range, microbial maintenance requirements and wastage increase. With a low pH, microbial endotoxines cause pro-inflammatory responses that can weaken immunity and shorten animal longevity. Thus, mismanagement in barley processing and feeding may make a tragedy from this treasure or pearl of cereal grains. Steam-rolling of barley may improve feed efficiency and post-rumen starch digestion. However, it is doubtful if such processing can improve milk production and feed intake. Due to the need to process barley less extensively than other cereals (as long as the pericarp is broken, consistent and global standards for feeding and processing barley could be feasibly established. In high-starch diets, barley feeding reduces the need for capacious small intestinal starch assimilation, subsequently reducing hindgut starch use and fecal nutrient loss. With its nutritional exclusivities underlined, barley use will be a factual art that can either matchlessly profit or harm rumen microbes, cattle production, farm economics and the environment.

  7. Evaluation of fermented whole crop wheat and barley feeding on ...

    African Journals Online (AJOL)

    Evaluation of fermented whole crop wheat and barley feeding on growth performance, nutrient digestibility, faecal volatile fatty acid emission, blood constituents, and faecal microbiota in growing pigs.

  8. Implementation of biochemical screening to improve baking quality of barley

    DEFF Research Database (Denmark)

    Vincze, Éva; Dionisio, Giuseppe; Aaslo, Per

    2011-01-01

    Barley (Hordeum vulgare) has the potential to offer considerable human nutritional benefits, especially as supplement to wheat-based breads. Under current commercial baking conditions it is not possible to introduce more that 20% barley flour to the wheat bread without negative impact on the phys......Barley (Hordeum vulgare) has the potential to offer considerable human nutritional benefits, especially as supplement to wheat-based breads. Under current commercial baking conditions it is not possible to introduce more that 20% barley flour to the wheat bread without negative impact...... on the physical chemical properties of the bread products due to the poor baking properties of barley flour. As a consequence, the nutritional advantages of barley are not fully exploited. The inferior leavening and baking properties of barley can, in part, be attributed to the physical properties of the storage...... proteins. Changing the storage protein composition can lessen this problem. Our working hypothesis was that exploiting the substantial genetic variation within the gene pool for storage proteins could enable improving the baking qualities of barley flour. We characterised forty-nine barley cultivars...

  9. The barley anion channel, HvALMT1, has multiple roles in guard cell physiology and grain metabolism.

    Science.gov (United States)

    Xu, Muyun; Gruber, Benjamin D; Delhaize, Emmanuel; White, Rosemary G; James, Richard A; You, Jiangfeng; Yang, Zhenming; Ryan, Peter R

    2015-01-01

    The barley (Hordeum vulgare) gene HvALMT1 encodes an anion channel in guard cells and in certain root tissues indicating that it may perform multiple roles. The protein localizes to the plasma membrane and facilitates malate efflux from cells when constitutively expressed in barley plants and Xenopus oocytes. This study investigated the function of HvALMT1 further by identifying its tissue-specific expression and by generating and characterizing RNAi lines with reduced HvALMT1 expression. We show that transgenic plants with 18-30% of wild-type HvALMT1 expression had impaired guard cell function. They maintained higher stomatal conductance in low light intensity and lost water more rapidly from excised leaves than the null segregant control plants. Tissue-specific expression of HvALMT1 was investigated in developing grain and during germination using transgenic barley lines expressing the green fluorescent protein (GFP) with the HvALMT1 promoter. We found that HvALMT1 is expressed in the nucellar projection, the aleurone layer and the scutellum of developing barley grain. Malate release measured from isolated aleurone layers prepared from imbibed grain was significantly lower in the RNAi barley plants compared with control plants. These data provide molecular and physiological evidence that HvALMT1 functions in guard cells, in grain development and during germination. We propose that HvALMT1 releases malate and perhaps other anions from guard cells to promote stomatal closure. The likely roles of HvALMT1 during seed development and grain germination are also discussed. © 2014 Scandinavian Plant Physiology Society.

  10. Silencing of soybean seed storage proteins results in a rebalanced protein composition preserving seed protein content without major collateral changes in the metabolome and transcriptome.

    Science.gov (United States)

    Schmidt, Monica A; Barbazuk, W Brad; Sandford, Michael; May, Greg; Song, Zhihong; Zhou, Wenxu; Nikolau, Basil J; Herman, Eliot M

    2011-05-01

    The ontogeny of seed structure and the accumulation of seed storage substances is the result of a determinant genetic program. Using RNA interference, the synthesis of soybean (Glycine max) glycinin and conglycinin storage proteins has been suppressed. The storage protein knockdown (SP-) seeds are overtly identical to the wild type, maturing to similar size and weight, and in developmental ontogeny. The SP- seeds rebalance the proteome, maintaining wild-type levels of protein and storage triglycerides. The SP- soybeans were evaluated with systems biology techniques of proteomics, metabolomics, and transcriptomics using both microarray and next-generation sequencing transcript sequencing (RNA-Seq). Proteomic analysis shows that rebalancing of protein content largely results from the selective increase in the accumulation of only a few proteins. The rebalancing of protein composition occurs with small alterations to the seed's transcriptome and metabolome. The selectivity of the rebalancing was further tested by introgressing into the SP- line a green fluorescent protein (GFP) glycinin allele mimic and quantifying the resulting accumulation of GFP. The GFP accumulation was similar to the parental GFP-expressing line, showing that the GFP glycinin gene mimic does not participate in proteome rebalancing. The results show that soybeans make large adjustments to the proteome during seed filling and compensate for the shortage of major proteins with the increased selective accumulation of other proteins that maintains a normal protein content.

  11. Robotic seeding

    DEFF Research Database (Denmark)

    Pedersen, Søren Marcus; Fountas, Spyros; Sørensen, Claus Aage Grøn

    2017-01-01

    Agricultural robotics has received attention for approximately 20 years, but today there are only a few examples of the application of robots in agricultural practice. The lack of uptake may be (at least partly) because in many cases there is either no compelling economic benefit......, or there is a benefit but it is not recognized. The aim of this chapter is to quantify the economic benefits from the application of agricultural robots under a specific condition where such a benefit is assumed to exist, namely the case of early seeding and re-seeding in sugar beet. With some predefined assumptions...... with regard to speed, capacity and seed mapping, we found that among these two technical systems both early seeding with a small robot and re-seeding using a robot for a smaller part of the field appear to be financially viable solutions in sugar beet production....

  12. PROTEOMICS in aquaculture

    DEFF Research Database (Denmark)

    Rodrigues, Pedro M.; Silva, Tomé S.; Dias, Jorge

    2012-01-01

    Over the last forty years global aquaculture presented a growth rate of 6.9% per annum with an amazing production of 52.5million tonnes in 2008, and a contribution of 43% of aquatic animal food for human consumption. In order to meet the world's health requirements of fish protein, a continuous...... of proteomics in seafood biology research. Proteomics, as a powerful comparative tool, has therefore been increasingly used over the last decade to address different questions in aquaculture, regarding welfare, nutrition, health, quality, and safety. In this paper we will give an overview of these biological...... questions and the role of proteomics in their investigation, outlining the advantages, disadvantages and future challenges. A brief description of the proteomics technical approaches will be presented. Special focus will be on the latest trends related to the aquaculture production of fish with defined...

  13. The Barley Chromosome 5 Linkage Map

    DEFF Research Database (Denmark)

    Jensen, J.; Jørgensen, Jørgen Helms

    1975-01-01

    The literature is surveyed for data on recombination between loci on chromosome 5 of barley; 13 loci fall into the category “mapped” loci, more than 20 into the category “associated” loci and nine into the category “loci once suggested to be on chromosome 5”. A procedure was developed for estimat......The literature is surveyed for data on recombination between loci on chromosome 5 of barley; 13 loci fall into the category “mapped” loci, more than 20 into the category “associated” loci and nine into the category “loci once suggested to be on chromosome 5”. A procedure was developed...... data are utilized jointly, and (3) omission of inconsistent data and determination of the most likely order of the loci. This procedure was applied to the 42 recombination percentages available for the 13 “mapped” loci. Due to inconsistencies 14 of the recombination percentages and, therefore, two...

  14. Cisgenic barley with improved phytase activity

    DEFF Research Database (Denmark)

    Holme, Inger; Dionisio, Giuseppe; Brinch-Pedersen, Henrik

    2010-01-01

    copies of the genomic phytase gene and the selection gene to identify segregation between the two genes. Presently, we have identified two cisgenic T1 plants without vector backbone and selection gene but with an extra copy of the genomic phytase gene....... are accordingly very similar to those generated by conventional breeding. The cisgenesis concept allows for the introduction of extra gene copies of a particular gene to accentuate the trait. We are using a barley purple acid phosphatase expressed during grain filling as candidate gene for cisgenesis. A genomic...... barley lambda library has been used to isolate the genomic clone of this phytase including 2.3 kb of the promoter region and 600 bp of the terminator region. The clone has been inserted into a cisgenic Agrobacterium vector where both the gene of interest and the selection gene are flanked by their own T...

  15. Biosorption of nickel with barley straw.

    Science.gov (United States)

    Thevannan, Ayyasamy; Mungroo, Rubeena; Niu, Catherine Hui

    2010-03-01

    Wastewater containing nickel sulphate generated from a nickel plating industry is of great concern. In the present work, biosorption of nickel by barley straw from nickel sulphate solution was investigated. Nickel uptake at room temperature (23+/-0.5 degrees C) was very sensitive to solution pH, showing a better uptake value at a pH of 4.85+/-0.10 among the tested values. The nickel biosorption isotherm fitted well the Langmuir equation. When the ionic strength (IS) of the solution was increased from less than 0.02-0.6M, nickel uptake was reduced to 12% of that obtained at IS of less than 0.02 M. Barley straw showed a higher nickel uptake (0.61 mmol/g) than acid washed crab shells (0.04 mmol/g), demonstrating its potential as an adsorbent for removal of nickel. Copyright (c) 2009 Elsevier Ltd. All rights reserved.

  16. Arbuscular mycorrhizal symbiosis affects the grain proteome of Zea mays: a field study.

    Science.gov (United States)

    Bona, Elisa; Scarafoni, Alessio; Marsano, Francesco; Boatti, Lara; Copetta, Andrea; Massa, Nadia; Gamalero, Elisa; D'Agostino, Giovanni; Cesaro, Patrizia; Cavaletto, Maria; Berta, Graziella

    2016-05-24

    Maize is one of the most important crops worldwide and is strongly dependent on arbuscular mycorrhiza (AM) fungi, organisms that form a mutualistic association with land plants. In maize, AM symbiosis enhances spike dry weight, spike length, spike circumference, and the dry weight and dimensions of the grain. Notwithstanding its ubiquitous nature, the detailed relationship between AM fungal colonization and plant development is not completely understood. To facilitate a better understanding of the effects of AM fungi on plants, the work reported here assessed the effects of a consortium of AM fungi on the kernel proteome of maize, cultivated in open-field conditions. To our knowledge, this is the first report of the modulation of a plant seed proteome following AM fungal inoculation in the field. Here, it was found that AM fungi modify the maize seed proteome by up-regulating enzymes involved in energetic metabolism, embryo development, nucleotide metabolism, seed storage and stress responses.

  17. Effects of proteome rebalancing and sulfur nutrition on the accumulation of methionine rich d-zein in transgenic soybeans

    Science.gov (United States)

    Expression of heterologous methionine-rich proteins to increase the overall sulfur amino acid content of soybean seeds has been only marginally successful, presumably due to low accumulation of transgenes in soybeans. Proteome rebalancing of seed proteins has been shown to promote the accumulation o...

  18. Enhancement of methane production from barley waste

    OpenAIRE

    Neves, L.; Ribeiro, R.; Oliveira, Rosário; Alves, M. M.

    2006-01-01

    Two different approaches were attempted to try and enhance methane production from an industrial waste composed of 100% barley, which results from production of instant coffee substitutes. In previous work, this waste was co-digested with an excess of activated sludge produced in the wastewater treatment plant located in same industrial unit, resulting in a very poor methane yield (25LCH4(STP)/ kgVSinitial), and low reductions in total solids (31%) and in volatile solids (40%). Wh...

  19. Barley: From Brittle to Stable Harvest.

    Science.gov (United States)

    Haberer, Georg; Mayer, Klaus F X

    2015-07-30

    Selection and domestication of plants with genes that prevent grains from shattering in cereals was essential for human civilization's transition to agriculture-based societies. In this issue, Pourkheirandish et al. show that domestication of barley required evolution of a molecular system distinct from other grains, such as rice and maize, and reveal that present-day cultivars derive from two ancient domestication centers. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Radiation induced early maturing mutants in barley

    International Nuclear Information System (INIS)

    Kumar, R.; Chauhan, S.V.S.; Sharma, R.P.

    1978-01-01

    In M 2 generation, two early maturing plants were screened from a single spike progeny of a plant obtained from 20 kR of gamma-ray irradiation of a six-rowed barley (Hordeum vulgare L. var. Jyoti). Their true breeding nature was confirmed in M 3 generation. These mutants flower and mature 38 and 22 days earlier than those of control. (auth.)

  1. Bacterial membrane proteomics.

    Science.gov (United States)

    Poetsch, Ansgar; Wolters, Dirk

    2008-10-01

    About one quarter to one third of all bacterial genes encode proteins of the inner or outer bacterial membrane. These proteins perform essential physiological functions, such as the import or export of metabolites, the homeostasis of metal ions, the extrusion of toxic substances or antibiotics, and the generation or conversion of energy. The last years have witnessed completion of a plethora of whole-genome sequences of bacteria important for biotechnology or medicine, which is the foundation for proteome and other functional genome analyses. In this review, we discuss the challenges in membrane proteome analysis, starting from sample preparation and leading to MS-data analysis and quantification. The current state of available proteomics technologies as well as their advantages and disadvantages will be described with a focus on shotgun proteomics. Then, we will briefly introduce the most abundant proteins and protein families present in bacterial membranes before bacterial membrane proteomics studies of the last years will be presented. It will be shown how these works enlarged our knowledge about the physiological adaptations that take place in bacteria during fine chemical production, bioremediation, protein overexpression, and during infections. Furthermore, several examples from literature demonstrate the suitability of membrane proteomics for the identification of antigens and different pathogenic strains, as well as the elucidation of membrane protein structure and function.

  2. Nanoscaled Proteomic Analysis

    Science.gov (United States)

    Xu, Yan; Jia, Lee

    2013-09-01

    Global proteomics research is currently hampered by the extremely complexity of the proteome and the absence of techniques like the polymerase chain reaction in genomics which enables multiplication of a single protein molecule. Since all the existing analytical technologies cannot overcome the detection limit and the dynamic concentration barrier, development of improved analytical technologies at nanoscale, ideally those that could recognize single protein molecule in the presence of high abundant of others, is a high priority for proteomics. In this chapter, we will show the state-of-the-art of nanoproteomics, i.e., the application of nanotechnologies to proteomics. Various nanomaterials including carbon nanomaterials, magnetic nanoparticles, silica nanoparticles, polymer and copolymer nanoparticles, metal and metal oxide nanoparticles have been used to improve sensitivity, specificity, and repeatability of proteomic analysis especially when the multidimensional separation system coupled with MALDI-TOF-MS is used. Among them, gold nanoparticles (GNPs) and carbon nanotubes (CNTs) are the two most important nanomaterials: while GNPs are frequently utilized for enzyme immobilization, high throughput bioassay, selection of target-peptides and target-protein, CNTs including single-walled carbon nanotubes (SWCNTs) and mutiple-walled carbon nanotubes (MWCNTs) have wide applications to electronic sensor, sensitive immunodetection, nanobiocatalysis, affinity probes, MALDI matrices, protein digestion, peptides enrichment and analysis. In perspectives, a deep understanding of the structures and property of nanomaterials and interdisciplinary applications of nanotechnology to proteomics will certainly be revolutionary and intellectually rewarding.

  3. Purification of barley dimeric α-amylase inhibitor-1 (BDAI-1) and avenin-like protein-a (ALP) from beer and their impact on beer foam stability.

    Science.gov (United States)

    Iimure, Takashi; Kihara, Makoto; Sato, Kazuhiro; Ogushi, Kensuke

    2015-04-01

    Foam stability is a key factor of beer quality for consumers and brewers. Recent beer proteome analyses have suggested that barley dimeric α-amylase inhibitor-1 (BDAI-1) and avenin-like protein-a (ALP) derived from barley are important for beer foam stability. In this study, BDAI-1 and ALP were purified from a Japanese commercial beer sample using salt precipitation and column chromatography. The purification level was verified using two-dimensional gel electrophoresis, mass spectrometry, and database searches. Purified BDAI-1 and ALP were added to a beer sample to compare the foam stability to that of a control beer sample. As a result, beer foam stability was significantly improved by BDAI-1 but not by ALP, thereby suggesting that BDAI-1 affects beer foam stability whereas ALP does not. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Seed regulations and local seed systems

    NARCIS (Netherlands)

    Louwaars, N.

    2000-01-01

    Seed regulations have been introduced in most countries based on the development of formal seed production. Concerns about seed quality and about the varietal identity of the seeds have commonly led to seed laws. However, formal regulations are often inappropriate for informal seed systems, which

  5. Interaction of factors modifying the radiosensitivity of dormant seeds

    International Nuclear Information System (INIS)

    Atayan, R.R.

    1987-01-01

    A review is presented on modification of radiation-induced effects in dormant plant seeds. Possible sources of discrepancy of data in the earlier literature are analysed. Approaches to the correct experimental study of mechanisms of interaction of environmental factors (water content, temperature, storage conditions) in the modification of radiobiological reactions are discussed. Progress in the radiation biology of plant seeds, achieved by precise control of experimental conditions, is considered. Plant genera used were barley, rice, maize, wheat, lupins, cotton, oats, pine, pea, crepis, brassica, lactuca, lycopersicon, trifohum, festuca, hibiscus. (author)

  6. Barley yellow dwarf virus in barley crops in Tunisia: prevalence and molecular characterization

    OpenAIRE

    Asma NAJAR; Imen HAMDI; Arvind VARSANI

    2017-01-01

    A field survey was conducted in Tunisia in the North-Eastern regions (Bizerte, CapBon and Zaghouan), the North-Western region (Kef) and the Central-Eastern region (Kairouan) during the 2011/2012 growing season, in order to determine the incidence and the geographic distribution of Barley yellow dwarf virus (BYDVs) in barley fields. Tissue blot immunoassays (TBIA) showed that BYDV was most common in Zaghouan (incidence 14%), Cap Bon (14%) and Bizerte (35%), in randomly collected samples from t...

  7. WORLD MALT AND MALTING BARLEY: COMPETITION, MARKETING, AND TRADE

    OpenAIRE

    Satyanarayana, Vidyashankara; Wilson, William W.; Johnson, D. Demcey; Dooley, Frank J.

    1996-01-01

    Recent trends in production marketing, trade, and policies affecting world malting barley and malt sector are examined. A spatial equilibrium model of production and trade is used to assess the effects of alternative levels of supply, demand, and policy variables on composition and direction of malting barley and malt trade flows.

  8. Evaluation of genetic diversity in barley (Hordeum vulgare L.) from ...

    African Journals Online (AJOL)

    User

    2015-06-03

    Jun 3, 2015 ... Akdeniz H, Keskin B, Yılmaz I, Oral E (2004). A Research on yield and yield components of some barley cultivars. J. Agric. Sci. 14:119-125. Alemayehu F, Parlevliet JE (1997). Variation between and within. Ethiopian barley landraces Euphytica 94:183-189. Asfaw Z (1988). Variation in the morphology of the ...

  9. Lysine metabolism in antisense C-hordein barley grains

    DEFF Research Database (Denmark)

    Schmidt, Daiana; Rizzi, Vanessa; Gaziola, Salete A

    2015-01-01

    The grain proteins of barley are deficient in lysine and threonine due to their low concentrations in the major storage protein class, the hordeins, especially in the C-hordein subgroup. Previously produced antisense C-hordein transgenic barley lines have an improved amino acid composition, with ...

  10. Combining unmalted barley and pearling gives good quality brewing

    NARCIS (Netherlands)

    Donkelaar, van Laura H.G.; Hageman, Jos A.; Oguz, Serhat; Noordman, Tom R.; Boom, Remko M.; Goot, van der Atze Jan

    2016-01-01

    Brewing with unmalted barley can reduce the use of raw materials, thereby increasing the efficiency of the brewing process. However, unmalted barley contains several undesired components for brewing and has a low enzymatic activity. Pearling, an abrasive milling method, has been proposed as a

  11. Molecular characterization of barley ( Hordeum vulgare L.) genome ...

    African Journals Online (AJOL)

    The present work aimed to select drought tolerant barley (Hordeum vulgare L.) cultivars through identification of stress genes responsible for drought tolerance. Several barley genotypes were tested for drought resistance using specific molecular markers, nine out of all the genotypes were chosen for this study; five out of ...

  12. (GPx) activity in young barley seedlings enriched with selenium

    African Journals Online (AJOL)

    AJB_YOMI

    2011-09-21

    Sep 21, 2011 ... E-mail: guzx@njau.edu.cn. Tel/Fax: +86. 25 84396293. have been used for animal feeds and beer malts. Recently, young barley seedlings have been used as food material for people in Asian countries such as China,. Japan, and Korea. Young barley seedlings are rich in dietary fiber, chlorophyll, carotene ...

  13. Comparison of stability statistics for yield in barley ( Hordeum ...

    African Journals Online (AJOL)

    The objectives of this study were to assess interrelationship among these measures and to identify high-yield and stable barley (Hordeum vulgare L.) cultivars in 11 environments during 2001 - 2003 in the central Black Sea region of Turkey. Significant differences were observed among barley cultivars for grain yield, ...

  14. Revisit to Ethiopian traditional barley-based food

    Directory of Open Access Journals (Sweden)

    Jemal Mohammed

    2016-06-01

    Full Text Available Barley is the number one food crop in the highland parts of North Eastern Ethiopia produced by subsistence farmers grown as landraces. Barley producers in Ethiopia have given it the name gebs ye ehil nigus, which means barley is the king of crops, due to its suitability for preparing many of the known Ethiopians traditional dishes. Various barley foods and drinks play an important role in the socioeconomic and cultural life of Ethiopians, but detailed descriptions related to their preparation and their socioeconomic and cultural roles are not well-recorded and documented like most of the Ethiopian cultural foods. Foods such as ingera, kita, dabo, kolo, genfo, beso, chuko, shamet, tihlo, kinch, and shorba are the most commonly known traditional Ethiopian barley-based foods. These products are prepared from either roasted whole grain, raw and roasted-milled grain, or cracked grain as main, side, ceremonial, and recuperating dishes. The various barley-based traditional foods have perceived qualities and health benefits by the consumers. For example, genfo is served to breast-feeding mothers with the belief that it enhances breast milk production and serves as a good substitute for breast milk. Beso is claimed to be a remedy for gastritis, while genfo and kinche are used to heal broken bones and fractures. Considering the Western consumers' trend on functional foods and health benefits of barley, Ethiopian traditional barley-based foods are worth studying as functional foods, which can be appealing to Western consumers.

  15. Barley metallothioneins differ in ontogenetic pattern and response to metals

    DEFF Research Database (Denmark)

    Schiller, Michaela; Hegelund, Josefine Nymark; Pedas, Pai

    2014-01-01

    The barley genome encodes a family of 10 metallothioneins (MTs) that have not previously been subject to extensive gene expression profiling. We show here that expression of MT1a, MT2b1, MT2b2 and MT3 in barley leaves increased more than 50-fold during the first 10 d after germination. Concurrent...

  16. stability analysis of food barley genotypes in northern ethiopia

    African Journals Online (AJOL)

    ACSS

    Barley (Hordeum vulgare L.) is one of the founder crops of the old world agriculture and was one of the first domesticated cereals. The objective of this study was to estimate the magnitude of genotype x environment interaction and stability for barley grain yield and yield related traits in the growing areas of Tigray. Eight.

  17. Proteomics - new analytical approaches

    International Nuclear Information System (INIS)

    Hancock, W.S.

    2001-01-01

    Full text: Recent developments in the sequencing of the human genome have indicated that the number of coding gene sequences may be as few as 30,000. It is clear, however, that the complexity of the human species is dependent on the much greater diversity of the corresponding protein complement. Estimates of the diversity (discrete protein species) of the human proteome range from 200,000 to 300,000 at the lower end to 2,000,000 to 3,000,000 at the high end. In addition, proteomics (the study of the protein complement to the genome) has been subdivided into two main approaches. Global proteomics refers to a high throughput examination of the full protein set present in a cell under a given environmental condition. Focused proteomics refers to a more detailed study of a restricted set of proteins that are related to a specified biochemical pathway or subcellular structure. While many of the advances in proteomics will be based on the sequencing of the human genome, de novo characterization of protein microheterogeneity (glycosylation, phosphorylation and sulfation as well as the incorporation of lipid components) will be required in disease studies. To characterize these modifications it is necessary to digest the protein mixture with an enzyme to produce the corresponding mixture of peptides. In a process analogous to sequencing of the genome, shot-gun sequencing of the proteome is based on the characterization of the key fragments produced by such a digest. Thus, a glycopeptide and hence a specific glycosylation motif will be identified by a unique mass and then a diagnostic MS/MS spectrum. Mass spectrometry will be the preferred detector in these applications because of the unparalleled information content provided by one or more dimensions of mass measurement. In addition, highly efficient separation processes are an absolute requirement for advanced proteomic studies. For example, a combination of the orthogonal approaches, HPLC and HPCE, can be very powerful

  18. Proteomic Assessment of Poultry Spermatozoa

    Science.gov (United States)

    Fully characterizing the protein composition of spermatozoa is the first step in utilizing proteomics to delineate the function of sperm proteins. To date, sperm proteome maps have been partially developed for the human, mouse, rat, bull and several invertebrates. Here we report the first proteomic...

  19. Silencing of Soybean Seed Storage Proteins Results in a Rebalanced Protein Composition Preserving Seed Protein Content without Major Collateral Changes in the Metabolome and Transcriptome[W][OA

    Science.gov (United States)

    Schmidt, Monica A.; Barbazuk, W. Brad; Sandford, Michael; May, Greg; Song, Zhihong; Zhou, Wenxu; Nikolau, Basil J.; Herman, Eliot M.

    2011-01-01

    The ontogeny of seed structure and the accumulation of seed storage substances is the result of a determinant genetic program. Using RNA interference, the synthesis of soybean (Glycine max) glycinin and conglycinin storage proteins has been suppressed. The storage protein knockdown (SP−) seeds are overtly identical to the wild type, maturing to similar size and weight, and in developmental ontogeny. The SP− seeds rebalance the proteome, maintaining wild-type levels of protein and storage triglycerides. The SP− soybeans were evaluated with systems biology techniques of proteomics, metabolomics, and transcriptomics using both microarray and next-generation sequencing transcript sequencing (RNA-Seq). Proteomic analysis shows that rebalancing of protein content largely results from the selective increase in the accumulation of only a few proteins. The rebalancing of protein composition occurs with small alterations to the seed’s transcriptome and metabolome. The selectivity of the rebalancing was further tested by introgressing into the SP− line a green fluorescent protein (GFP) glycinin allele mimic and quantifying the resulting accumulation of GFP. The GFP accumulation was similar to the parental GFP-expressing line, showing that the GFP glycinin gene mimic does not participate in proteome rebalancing. The results show that soybeans make large adjustments to the proteome during seed filling and compensate for the shortage of major proteins with the increased selective accumulation of other proteins that maintains a normal protein content. PMID:21398260

  20. Effect of partial resistance to barley leaf rust, Puccinia hordei, on the yield of three barley cultivars

    NARCIS (Netherlands)

    Ochoa, J.; Parlevliet, J.E.

    2007-01-01

    Three barley cultivars, Shyri, Clipper and Terán, with different levels of partial resistance to barley leaf rust, caused by Puccinia hordei, were exposed to six levels of the pathogen. These levels were obtained by 5, 4, 3, 2, 1 and 0 fungicide (Propiconazol) applications respectively and occurred

  1. Genetic diversity, taxonomy and legumins implications of seed ...

    African Journals Online (AJOL)

    Proteomic evidences can be pivotal to the discovery of new plant proteins and plant relationships, due to the diversity of form it can reveal. Seed storage protein profiles of 20 Fabaceae species: 4 grainlegumes and 16 non-pulses; of 16 genera and 10 tribes were analysed by sodium dodecyl sulphate polyacrylamide gel ...

  2. Establishing Substantial Equivalence: Proteomics

    Science.gov (United States)

    Lovegrove, Alison; Salt, Louise; Shewry, Peter R.

    Wheat is a major crop in world agriculture and is consumed after processing into a range of food products. It is therefore of great importance to determine the consequences (intended and unintended) of transgenesis in wheat and whether genetically modified lines are substantially equivalent to those produced by conventional plant breeding. Proteomic analysis is one of several approaches which can be used to address these questions. Two-dimensional PAGE (2D PAGE) remains the most widely available method for proteomic analysis, but is notoriously difficult to reproduce between laboratories. We therefore describe methods which have been developed as standard operating procedures in our laboratory to ensure the reproducibility of proteomic analyses of wheat using 2D PAGE analysis of grain proteins.

  3. Proteomics in uveal melanoma.

    LENUS (Irish Health Repository)

    Ramasamy, Pathma

    2014-01-01

    Uveal melanoma is the most common primary intraocular malignancy in adults, with an incidence of 5-7 per million per year. It is associated with the development of metastasis in about 50% of cases, and 40% of patients with uveal melanoma die of metastatic disease despite successful treatment of the primary tumour. The survival rates at 5, 10 and 15 years are 65%, 50% and 45% respectively. Unlike progress made in many other areas of cancer, uveal melanoma is still poorly understood and survival rates have remained similar over the past 25 years. Recently, advances made in molecular genetics have improved our understanding of this disease and stratification of patients into low risk and high risk for developing metastasis. However, only a limited number of studies have been performed using proteomic methods. This review will give an overview of various proteomic technologies currently employed in life sciences research, and discuss proteomic studies of uveal melanoma.

  4. Cultivate In Vitro Of Anthers Of Barley (Hordeum Vulgare L.) Vars. UNAGRO V-PM6 And DISSA

    International Nuclear Information System (INIS)

    Marquinez Casas, Xavier

    1994-01-01

    The barley is a autonomous cereal originated of the wild subspecies H. vulgare L. Only at the end of last century it acquired commercial importance with the establishment of the industry brewer (Chaparro and Moreno 1894); at the moment its national production is far from supplying the demand of the market. The Andean area is the most appropriate region for its cultivation in Colombia, mainly between 1800 and 3200 meters on the level of the sea, in the Boyaca, Cundinamarca and Narino departments. Their production is dedicated in a 80 at 85 for the industry brewer and malt industry and of the 15 at 20 for seeds, human food and animal

  5. Genomic Prediction of Barley Hybrid Performance

    Directory of Open Access Journals (Sweden)

    Norman Philipp

    2016-07-01

    Full Text Available Hybrid breeding in barley ( L. offers great opportunities to accelerate the rate of genetic improvement and to boost yield stability. A crucial requirement consists of the efficient selection of superior hybrid combinations. We used comprehensive phenotypic and genomic data from a commercial breeding program with the goal of examining the potential to predict the hybrid performances. The phenotypic data were comprised of replicated grain yield trials for 385 two-way and 408 three-way hybrids evaluated in up to 47 environments. The parental lines were genotyped using a 3k single nucleotide polymorphism (SNP array based on an Illumina Infinium assay. We implemented ridge regression best linear unbiased prediction modeling for additive and dominance effects and evaluated the prediction ability using five-fold cross validations. The prediction ability of hybrid performances based on general combining ability (GCA effects was moderate, amounting to 0.56 and 0.48 for two- and three-way hybrids, respectively. The potential of GCA-based hybrid prediction requires that both parental components have been evaluated in a hybrid background. This is not necessary for genomic prediction for which we also observed moderate cross-validated prediction abilities of 0.51 and 0.58 for two- and three-way hybrids, respectively. This exemplifies the potential of genomic prediction in hybrid barley. Interestingly, prediction ability using the two-way hybrids as training population and the three-way hybrids as test population or vice versa was low, presumably, because of the different genetic makeup of the parental source populations. Consequently, further research is needed to optimize genomic prediction approaches combining different source populations in barley.

  6. The adsorption of α-amylase on barley proteins affects the in vitro digestion of starch in barley flour.

    Science.gov (United States)

    Yu, Wenwen; Zou, Wei; Dhital, Sushil; Wu, Peng; Gidley, Michael J; Fox, Glen P; Gilbert, Robert G

    2018-02-15

    The conversion of barley starch to sugars is a complex enzymic process. Most previous work concerned the biotechnical aspect of in situ barley enzymes. However, the interactions among the macromolecular substrates and their effects on enzymic catalysis has been little examined. Here, we explore the mechanisms whereby interactions of protein and starch in barley flour affect the kinetics of enzymatic hydrolysis of starch in an in vitro system, using digestion rate data and structural analysis by confocal microscopy. The degradation kinetics of both uncooked barley flour and of purified starches are found to be two-step sequential processes. Barley proteins, especially the water-soluble component, are found to retard the digestion of starch degraded by α-amylase: the enzyme binds with water-insoluble protein and with starch granules, leading to reduced starch hydrolysis. These findings are of potential industrial value in both the brewing and food industries. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Transglycosylation by barley α-amylase 1

    DEFF Research Database (Denmark)

    Mótyán, János A.; Fazekas, Erika; Mori, Haruhide

    2011-01-01

    The transglycosylation activity of barley α-amylase 1 (AMY1) and active site AMY1 subsite mutant enzymes was investigated. We report here the transferase ability of the V47A, V47F, V47D and S48Y single mutants and V47K/S48G and V47G/S48D double mutant AMY1 enzymes in which the replaced amino acid...... DP 2, DP 3 and DP 5 were successfully applied to detect activity of Bacillus stearothermophilus maltogenic α-amylase, human salivary α-amylase and Bacillus licheniformis α-amylase, respectively in a fast and simple fluorometric assay....

  8. EPR in characterization of seeds paramagnetic species

    Energy Technology Data Exchange (ETDEWEB)

    Luiz, A.P.C.; Mauro, M.F.F.L.; Portugal, K.O.; Barbana, V.M.; Guedes, C.L.B.; Mauro, E. di; Carneiro, C.E.A.; Zaia, D.A.M.; Prete, C.E.C. [Universidade Estadual de Londrina (UEL), PR (Brazil)

    2011-07-01

    Full text. In Brazil, since 1970s, renewable fuel programs has been developed in order to replace petroleum. Today a program that has been discussed is the bio diesel, which intend to replace diesel fuel, fossil oil, to bio diesel, renewal fuel. As seeds are the basis for production of oil and consequently processed into bio diesel, the goal of this work is to characterize and compare paramagnetic species present in the seeds by Electron Paramagnetic Resonance (EPR). Samples used in this study were seeds of sorghum, barley, corn, peanuts, soy beans, cotton, wheat, oats, mustard, rice, sunflower and turnip. Some paramagnetic species present in soil was also investigated as goethite (FeOOH), hematite (Fe{sub 2}O{sub 3}), magnetite (Fe{sub 3}O{sub 4}), and ferrihydrite (Fe{sub 5}HO{sub 8} {center_dot} 4H{sub 2}O), since, these species present in appreciable quantities in the soil can be present in the seeds and analyzed for comparison. The characterization of these species is essential to understand the EPR seeds spectra. Each sample is placed in a thin quartz tube 4 mm in diameter, and it is inserted into the cavity of the spectrometer at room temperature, at low temperature (77 K) and variable temperature using liquid nitrogen flow and hot flow through a compressor air. It was used as standard Mg O:Mn{sup 2+}, which is also inserted into the cavity. Shortly after the potency is regulated, frequency, amplitude and sweep the field. The spectroscopic analysis by EPR X-band ({approx} 9:5GHz), were performed at the Fluorescence and Electron Paramagnetic Resonance Laboratory, Exact Sciences Center, State University of Londrina, Parana state, Brazil, through an EPR spectrometer JEOL brand (JES-PE-3X). In the EPR spectra, spectroscopic factor or g factor and line width were determined in paramagnetic species. Studies from several seeds with EPR technique detected in all of them presence of same complex of Fe{sup 3+} present in the goethite at g {approx} 2, and in the seeds

  9. EPR in characterization of seeds paramagnetic species

    International Nuclear Information System (INIS)

    Luiz, A.P.C.; Mauro, M.F.F.L.; Portugal, K.O.; Barbana, V.M.; Guedes, C.L.B.; Mauro, E. di; Carneiro, C.E.A.; Zaia, D.A.M.; Prete, C.E.C.

    2011-01-01

    Full text. In Brazil, since 1970s, renewable fuel programs has been developed in order to replace petroleum. Today a program that has been discussed is the bio diesel, which intend to replace diesel fuel, fossil oil, to bio diesel, renewal fuel. As seeds are the basis for production of oil and consequently processed into bio diesel, the goal of this work is to characterize and compare paramagnetic species present in the seeds by Electron Paramagnetic Resonance (EPR). Samples used in this study were seeds of sorghum, barley, corn, peanuts, soy beans, cotton, wheat, oats, mustard, rice, sunflower and turnip. Some paramagnetic species present in soil was also investigated as goethite (FeOOH), hematite (Fe 2 O 3 ), magnetite (Fe 3 O 4 ), and ferrihydrite (Fe 5 HO 8 · 4H 2 O), since, these species present in appreciable quantities in the soil can be present in the seeds and analyzed for comparison. The characterization of these species is essential to understand the EPR seeds spectra. Each sample is placed in a thin quartz tube 4 mm in diameter, and it is inserted into the cavity of the spectrometer at room temperature, at low temperature (77 K) and variable temperature using liquid nitrogen flow and hot flow through a compressor air. It was used as standard Mg O:Mn 2+ , which is also inserted into the cavity. Shortly after the potency is regulated, frequency, amplitude and sweep the field. The spectroscopic analysis by EPR X-band (∼ 9:5GHz), were performed at the Fluorescence and Electron Paramagnetic Resonance Laboratory, Exact Sciences Center, State University of Londrina, Parana state, Brazil, through an EPR spectrometer JEOL brand (JES-PE-3X). In the EPR spectra, spectroscopic factor or g factor and line width were determined in paramagnetic species. Studies from several seeds with EPR technique detected in all of them presence of same complex of Fe 3+ present in the goethite at g ∼ 2, and in the seeds exist free radicals at g = 2:004, at room temperature

  10. The Importance of Barley Varieties in terms of Production, Marketing and Processing

    Directory of Open Access Journals (Sweden)

    Rahmi Taşcı

    2017-08-01

    Full Text Available In this study, it is aimed to investigate the criteria affecting the marketing of barley in the stages of barley production, marketing and processing in Konya province. In the study; survey results were used which get from mixed feed (37 items and malt factory (1 item, traders (50 items purchasing and selling barley, and agricultural enterprises (107 items including barley production in agricultural activities operating in Konya province. It was determined that barley varieties were not an important criterion in the selling price, while the hectoliter and other plant species do not mix into barley are the main criteria considered by agricultural enterprises to affect the sale of barley. The most important criteria that traders keep in mind when buying barley is hectoliter of barley, which is followed by moisture, colour and foreign matter confusion rate of barley. The most important criteria that factories take into consideration when purchasing barley is determined as the moisture content of the barley, followed by the hectoliter of barley and the rate of foreign matter contamination. For the malt industry; Barley variety is a very important factor in the purchase criteria, followed by barley humidity and colour.

  11. Studies on induced partially resistant mutants of barley against powdery mildew

    International Nuclear Information System (INIS)

    Roebbelen, G.; Abdel-Hafez, A.G.; Reinhold, M.; Kwon, H.J.; Neuhaus-Steinmetz, J.P.; Heun, M.

    1983-01-01

    After mutagenic seed treatment of three partially resistant cultivars of spring barley with EMS and NaN 3 , 45 mutants in a first and 16 in a second experiment were selected in the M 2 -M 4 generations. The screening was done alternatively under natural infection in the field or controlled infection with a single pathotype in the greenhouse. These mutants exhibited a higher resistance and a higher susceptibility, respectively, than the initial cultivars Asse, Bomi and Vada. Some mutants expressed their altered resistance behaviour particularly during certain stages of development. High-level resistance was conditioned by mutation in the ml-o locus in three cases. For several Bomi mutants pathotype specificity with and without reversed ranking was proven as well as pathotype non-specificity in comparison with the reaction of the original cultivar. In 14 cases studied the inheritance of the involved mutants was monogenic recessive. The laevigatum locus responsible for the intermediate mildew resistance of Bomi was not affected by the mutations. Detection of groups of allelic mutants showed that there are at least two regions in the barley genome in which mutations for mildew resistance can occur rather frequently. In total, the past ten years of this mutation research have given convincing evidence that the strategies of mutant screening applied have yielded promising new material both for breeding and for progress in basic understanding of host-pathogen interactions. (author)

  12. Some Root Traits of Barley (Hordeum vulgare L. as Affected by Mycorrhizal Symbiosis under Drought Stress

    Directory of Open Access Journals (Sweden)

    R. Bayani

    2016-05-01

    Full Text Available The effect of drought stress and mycorrhizal symbiosis on the colonization, root and leaf phosphorous content, root and leaf phosphatase activity, root volume and area as well as shoot dry weight of a variety of hulless barley were evaluated using a completely randomized experimental design (CRD with 3 replications. Treatments were three levels of drought stress of 30, 60 and 90% field capacity and two levels of mycorrhizal with and without inoculation. According to the results, the highest value of leaf phosphorous (1.54 mg/g was observed at mycorrhizal symbiosis against severe drought treatment. Root phosphatase activity was highest (297.9 OD min -1 FW-1 at severe drought stress with mycorrhizal symbiosis which in comparison with mild stress in the presence of mycorrhiza showed 16.6 fold increasing. The control and non-mycorrhizal symbiosis treatments had highest root dry weight (0.091 g. The lowest root volume (0.016 cm2 observed at mycorrhizal symbiosis × severe drought treatment. Generally, Inoculation of barley seed with mycorrhiza at severe water stress could transport more phosphorous to shoot, especially leaf via inducing of leaf and root phosphatase activity. Also, in addition to supply of nutrient sources especially phosphorous for plant, mycorrhizal symbiosis could play an important role in withstanding water stress in plant via increasing of root dry weight and area.

  13. Lack of Globulin Synthesis during Seed Development Alters Accumulation of Seed Storage Proteins in Rice.

    Science.gov (United States)

    Lee, Hye-Jung; Jo, Yeong-Min; Lee, Jong-Yeol; Lim, Sun-Hyung; Kim, Young-Mi

    2015-06-30

    The major seed storage proteins (SSPs) in rice seeds have been classified into three types, glutelins, prolamins, and globulin, and the proportion of each SSP varies. It has been shown in rice mutants that when either glutelins or prolamins are defective, the expression of another type of SSP is promoted to counterbalance the deficit. However, we observed reduced abundances of glutelins and prolamins in dry seeds of a globulin-deficient rice mutant (Glb-RNAi), which was generated with RNA interference (RNAi)-induced suppression of globulin expression. The expression of the prolamin and glutelin subfamily genes was reduced in the immature seeds of Glb-RNAi lines compared with those in wild type. A proteomic analysis of Glb-RNAi seeds showed that the reductions in glutelin and prolamin were conserved at the protein level. The decreased pattern in glutelin was also significant in the presence of a reductant, suggesting that the polymerization of the glutelin proteins via intramolecular disulfide bonds could be interrupted in Glb-RNAi seeds. We also observed aberrant and loosely packed structures in the storage organelles of Glb-RNAi seeds, which may be attributable to the reductions in SSPs. In this study, we evaluated the role of rice globulin in seed development, showing that a deficiency in globulin could comprehensively reduce the expression of other SSPs.

  14. Identification of embryo proteins associated with seed germination and seedling establishment in germinating rice seeds.

    Science.gov (United States)

    Liu, Shu-Jun; Xu, Heng-Heng; Wang, Wei-Qing; Li, Ni; Wang, Wei-Ping; Lu, Zhuang; Møller, Ian Max; Song, Song-Quan

    2016-06-01

    Seed germination is a critical phase in the plant life cycle, but the mechanism of seed germination is still poorly understood. In the present study, rice (Oryza sativa L. cv. Peiai 64S) seeds were sampled individually when they reached different germination stages, quiescent, germinated sensu stricto, germinated completely and seedling, and were used to study the changes in the embryo proteome. A total of 88 protein spots showed a significant change in abundance during germination in water, and the results showed an activation of metabolic processes. Cell division, cell wall synthesis, and secondary metabolism were activated at late seed germination and during preparation for subsequent seedling establishment. Cycloheximide (CHX) at 70μM inhibited seedling establishment without an apparent negative effect on seed germination, while CHX at 500μM completely blocked seed germination. We used this observation to identify the potentially important proteins involved in seed germination (coleoptile protrusion) and seedling establishment (coleoptile and radicle protrusion). Twenty-six protein spots, mainly associated with sugar/polysaccharide metabolism and energy production, showed a significant difference in abundance during seed germination. Forty-nine protein spots, mainly involved in cell wall biosynthesis, proteolysis as well as cell defense and rescue, were required for seedling establishment. The results help improve our understanding of the key events (proteins) involved in germination and seedling development. Copyright © 2016 Elsevier GmbH. All rights reserved.

  15. Lack of Globulin Synthesis during Seed Development Alters Accumulation of Seed Storage Proteins in Rice

    Directory of Open Access Journals (Sweden)

    Hye-Jung Lee

    2015-06-01

    Full Text Available The major seed storage proteins (SSPs in rice seeds have been classified into three types, glutelins, prolamins, and globulin, and the proportion of each SSP varies. It has been shown in rice mutants that when either glutelins or prolamins are defective, the expression of another type of SSP is promoted to counterbalance the deficit. However, we observed reduced abundances of glutelins and prolamins in dry seeds of a globulin-deficient rice mutant (Glb-RNAi, which was generated with RNA interference (RNAi-induced suppression of globulin expression. The expression of the prolamin and glutelin subfamily genes was reduced in the immature seeds of Glb-RNAi lines compared with those in wild type. A proteomic analysis of Glb-RNAi seeds showed that the reductions in glutelin and prolamin were conserved at the protein level. The decreased pattern in glutelin was also significant in the presence of a reductant, suggesting that the polymerization of the glutelin proteins via intramolecular disulfide bonds could be interrupted in Glb-RNAi seeds. We also observed aberrant and loosely packed structures in the storage organelles of Glb-RNAi seeds, which may be attributable to the reductions in SSPs. In this study, we evaluated the role of rice globulin in seed development, showing that a deficiency in globulin could comprehensively reduce the expression of other SSPs.

  16. Influence of Temperature on the Extractibility of Polysaccharides in Barley

    Directory of Open Access Journals (Sweden)

    Rodica Căpriţă

    2011-10-01

    Full Text Available Barley contains substantial amounts of both soluble and insoluble non-starch polysaccharides (NSP. The main watersoluble NSP in barley are highly viscous β-glucans. Monogastric animals, including humans and birds, cannotsynthesize β-glucanase, and the amount of β-glucanase derived from barley grain and bacteria in the gastrointestinaltract is insufficient to completely hydrolyze β-glucans. In the present investigation, we have studied the influence oftemperature and heating time on the extractibility of soluble polysaccharides in barley. Heating the barley samples at60°C and 80°C before extraction has the effect of lowering the soluble fraction of the polysaccharides. The dynamicviscosity values of water extracts from barley decreased up to 21.68% when heating at 60ºC for 15 minutes, and upto 25.30% when heating at 80ºC for 15 minutes, when the determinations were made immediately after extractseparation. Heating the barley samples for 15 minutes at 80°C deactivates the endogenous hydrolytic enzymes.

  17. Quantitative Trait Loci and Maternal Effects Affecting the Strong Grain Dormancy of Wild Barley (Hordeum vulgare ssp. spontaneum

    Directory of Open Access Journals (Sweden)

    Shingo Nakamura

    2017-10-01

    Full Text Available Wild barley (Hordeum vulgare ssp. spontaneum has strong grain dormancy, a trait that may enhance its survival in non-cultivated environments; by contrast, cultivated barley (Hordeum vulgare ssp. vulgare has weaker dormancy, allowing uniform germination in cultivation. Malting barley cultivars have been bred for especially weak dormancy to optimize their use in malt production. Here, we analyzed the genetic mechanism of this difference in seed dormancy, using recombinant inbred lines (RILs derived from a cross between the wild barley accession ‘H602’ and the malting barley cultivar ‘Kanto Nakate Gold (KNG’. Grains of H602 and KNG harvested at physiological maturity and dried at 30°C for 7 days had germination of approximately 0 and 100%, respectively. Analysis of quantitative trait loci (QTL affecting grain dormancy identified the well-known major dormancy QTL SD1 and SD2 (located near the centromeric region and at the distal end of the long arm of chromosome 5H, respectively, and QTL at the end of the long arm of chromosome 4H and in the middle of the long arm of chromosome 5H. We designated these four QTL Qsd1-OK, Qsd2-OK, Qsdw-4H, and Qsdw-5H, and they explained approximately 6, 38, 3, and 13% of the total phenotypic variation, respectively. RILs carrying H602 alleles showed increased dormancy levels for all QTL. The QTL acted additively and did not show epistasis or QTL–environment interactions. Comparison of QTL locations indicated that all QTL except Qsdw-5H are likely the same as the QTL previously detected in the doubled haploid population from a cross between the malting cultivar ‘Haruna Nijo’ and ‘H602.’ We further examined Qsd2-OK and Qsdw-5H by analyzing the segregation of phenotypes and genotypes of F2 progenies derived from crosses between RILs carrying specific segments of chromosome 5H from H602 in the KNG background. This analysis confirmed that the two genomic regions corresponding to these QTL are involved in

  18. Quantitative Trait Loci and Maternal Effects Affecting the Strong Grain Dormancy of Wild Barley (Hordeum vulgaressp.spontaneum).

    Science.gov (United States)

    Nakamura, Shingo; Pourkheirandish, Mohammad; Morishige, Hiromi; Sameri, Mohammad; Sato, Kazuhiro; Komatsuda, Takao

    2017-01-01

    Wild barley ( Hordeum vulgare ssp. spontaneum ) has strong grain dormancy, a trait that may enhance its survival in non-cultivated environments; by contrast, cultivated barley ( Hordeum vulgare ssp. vulgare ) has weaker dormancy, allowing uniform germination in cultivation. Malting barley cultivars have been bred for especially weak dormancy to optimize their use in malt production. Here, we analyzed the genetic mechanism of this difference in seed dormancy, using recombinant inbred lines (RILs) derived from a cross between the wild barley accession 'H602' and the malting barley cultivar 'Kanto Nakate Gold (KNG)'. Grains of H602 and KNG harvested at physiological maturity and dried at 30°C for 7 days had germination of approximately 0 and 100%, respectively. Analysis of quantitative trait loci (QTL) affecting grain dormancy identified the well-known major dormancy QTL SD1 and SD2 (located near the centromeric region and at the distal end of the long arm of chromosome 5H, respectively), and QTL at the end of the long arm of chromosome 4H and in the middle of the long arm of chromosome 5H. We designated these four QTL Qsd1-OK , Qsd2-OK , Qsdw-4H , and Qsdw-5H , and they explained approximately 6, 38, 3, and 13% of the total phenotypic variation, respectively. RILs carrying H602 alleles showed increased dormancy levels for all QTL. The QTL acted additively and did not show epistasis or QTL-environment interactions. Comparison of QTL locations indicated that all QTL except Qsdw-5H are likely the same as the QTL previously detected in the doubled haploid population from a cross between the malting cultivar 'Haruna Nijo' and 'H602.' We further examined Qsd2-OK and Qsdw-5H by analyzing the segregation of phenotypes and genotypes of F 2 progenies derived from crosses between RILs carrying specific segments of chromosome 5H from H602 in the KNG background. This analysis confirmed that the two genomic regions corresponding to these QTL are involved in the regulation of

  19. Xylem sap proteomics.

    Science.gov (United States)

    de Bernonville, Thomas Dugé; Albenne, Cécile; Arlat, Matthieu; Hoffmann, Laurent; Lauber, Emmanuelle; Jamet, Elisabeth

    2014-01-01

    Proteomic analysis of xylem sap has recently become a major field of interest to understand several biological questions related to plant development and responses to environmental clues. The xylem sap appears as a dynamic fluid undergoing changes in its proteome upon abiotic and biotic stresses. Unlike cell compartments which are amenable to purification in sufficient amount prior to proteomic analysis, the xylem sap has to be collected in particular conditions to avoid contamination by intracellular proteins and to obtain enough material. A model plant like Arabidopsis thaliana is not suitable for such an analysis because efficient harvesting of xylem sap is difficult. The analysis of the xylem sap proteome also requires specific procedures to concentrate proteins and to focus on proteins predicted to be secreted. Indeed, xylem sap proteins appear to be synthesized and secreted in the root stele or to originate from dying differentiated xylem cells. This chapter describes protocols to collect xylem sap from Brassica species and to prepare total and N-glycoprotein extracts for identification of proteins by mass spectrometry analyses and bioinformatics.

  20. Proteomic approach to nanotoxicity.

    Science.gov (United States)

    Matysiak, Magdalena; Kapka-Skrzypczak, Lucyna; Brzóska, Kamil; Gutleb, Arno C; Kruszewski, Marcin

    2016-03-30

    In recent years a large number of engineered nanomaterials (NMs) have been developed with promising technical benefits for consumers and medical appliances. In addition to already known potentially advantageous biological properties (antibiotic, antifungal and antiviral activity) of NMs, many new medical applications of NMs are foreseen, such as drug carriers, contrast agents, radiopharmaceuticals and many others. However, there is increasing concern about potential environmental and health effects due to NMs exposure. An increasing body of evidence suggests that NMs may trigger undesirable hazardous interactions with biological systems with potential to generate harmful effects. In this review we summarized a current state of knowledge on the proteomics approaches to nanotoxicity, including protein corona formation, in vitro and in vivo effects of exposure to NMs on proteome of different classes of organisms, from bacteria and plants to mammals. The effects of NMs on the proteome of environmentally relevant organisms are also described. Despite the benefit that development of nanotechnology may bring to the society, there are still major gaps of knowledge on the influence of nanomaterials on human health and the environment. Thus, it seems necessary to conduct further interdisciplinary research to fill the knowledge gaps in NM toxicity, using more holistic approaches than offered by conventional biological techniques. “OMICS” techniques will certainly help researchers in this field. In this paper we summarized the current stage of knowledge of the effects of nanoparticles on the proteome of different organisms, including those commonly used as an environmentally relevant indicator organisms.

  1. Arabidopsis peroxisome proteomics

    Directory of Open Access Journals (Sweden)

    John D. Bussell

    2013-04-01

    Full Text Available The analytical depth of investigation of the peroxisomal proteome of the model plant Arabidopsis thaliana has not yet reached that of other major cellular organelles such as chloroplasts or mitochondria. This is primarily due to the difficulties associated with isolating and obtaining purified samples of peroxisomes from Arabidopsis. So far only a handful of research groups have been successful in obtaining such fractions. To make things worse, enriched peroxisome fractions frequently suffer from significant organellar contamination, lowering confidence in localization assignment of the identified proteins. As with other cellular compartments, identification of peroxisomal proteins forms the basis for investigations of the dynamics of the peroxisomal proteome. It is therefore not surprising that, in terms of functional analyses by proteomic means, there remains a considerable gap between peroxisomes and chloroplasts or mitochondria. Alternative strategies are needed to overcome the obstacle of hard-to-obtain organellar fractions. This will help to close the knowledge gap between peroxisomes and other organelles and provide a full picture of the physiological pathways shared between organelles. In this review we briefly summarize the status quo and discuss some of the methodological alternatives to classic organelle proteomic approaches.

  2. Sperm Surface Proteomics 2

    NARCIS (Netherlands)

    Brewis, I.A.; Gadella, B.M.|info:eu-repo/dai/nl/115389873

    2017-01-01

    This contribution will focus exclusively on the total (global) protein composition (the proteome) of the sperm surface. Immune responses directed towards sperm surface proteins may cause infertility since functionally intact sperm are under immune attack. The immune attack can be achieved directly

  3. Genomes to Proteomes

    Energy Technology Data Exchange (ETDEWEB)

    Panisko, Ellen A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Grigoriev, Igor [USDOE Joint Genome Inst., Walnut Creek, CA (United States); Daly, Don S. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Webb-Robertson, Bobbie-Jo [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Baker, Scott E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2009-03-01

    Biologists are awash with genomic sequence data. In large part, this is due to the rapid acceleration in the generation of DNA sequence that occurred as public and private research institutes raced to sequence the human genome. In parallel with the large human genome effort, mostly smaller genomes of other important model organisms were sequenced. Projects following on these initial efforts have made use of technological advances and the DNA sequencing infrastructure that was built for the human and other organism genome projects. As a result, the genome sequences of many organisms are available in high quality draft form. While in many ways this is good news, there are limitations to the biological insights that can be gleaned from DNA sequences alone; genome sequences offer only a bird's eye view of the biological processes endemic to an organism or community. Fortunately, the genome sequences now being produced at such a high rate can serve as the foundation for other global experimental platforms such as proteomics. Proteomic methods offer a snapshot of the proteins present at a point in time for a given biological sample. Current global proteomics methods combine enzymatic digestion, separations, mass spectrometry and database searching for peptide identification. One key aspect of proteomics is the prediction of peptide sequences from mass spectrometry data. Global proteomic analysis uses computational matching of experimental mass spectra with predicted spectra based on databases of gene models that are often generated computationally. Thus, the quality of gene models predicted from a genome sequence is crucial in the generation of high quality peptide identifications. Once peptides are identified they can be assigned to their parent protein. Proteins identified as expressed in a given experiment are most useful when compared to other expressed proteins in a larger biological context or biochemical pathway. In this chapter we will discuss the automatic

  4. Forage Yield and Quality Performance of Rabi Cereals Sown Alone and In Blended Population of Variable Seed Ratios

    International Nuclear Information System (INIS)

    Tahir, M.; Zafar, N.

    2016-01-01

    Fodder crops are the main source of animal feed in Pakistan. However, the yield per acre is still far below than optimum production level of the livestock. From this perspective, a field trial was conducted using seeds of three cereal crops wheat, oat and barley sown alone and blended together at different seed proportions (100 percent: 0 percent, 75 percent + 25 percent, 50 percent + 50 percent and 25 percent + 75 percent) at the Agronomic Research Area, Department of Agronomy, University of Agriculture, Faisalabad, during 2013-14. The results showed that the crop mixtures and their variable seed ratios showed significant effects on fodder yield and quality traits. The maximum number of tillers, number of leaves plant/sup -1/, leaf area, crop growth rate, fresh weight plant/sup -1/, dry weight plant/sup -1/, green forage yield and dry matter yield were obtained in plots where barley was sown alone at 100 percent seed ratio. The highest crude fiber and total ash percentage was observed in plots where oat was sown alone at 100 percent seed ratio and crude protein percentage was highest when oat was blended together with barley at 75 percent + 25 percent seed ratios. (author)

  5. Oligosaccharide binding to barley alpha-amylase 1

    DEFF Research Database (Denmark)

    Robert, X.; Haser, R.; Mori, H.

    2005-01-01

    Enzymatic subsite mapping earlier predicted 10 binding subsites in the active site substrate binding cleft of barley alpha-amylase isozymes. The three-dimensional structures of the oligosaccharide complexes with barley alpha-amylase isozyme 1 (AMY1) described here give for the first time a thorough...... in barley alpha-amylase isozyme 2 (AMY2), and the sugar binding modes are compared between the two isozymes. The "sugar tongs" surface binding site discovered in the AMY1-thio-DP4 complex is confirmed in the present work. A site that putatively serves as an entrance for the substrate to the active site...

  6. Effects of n-butanol on barley microspore embryogenesis

    DEFF Research Database (Denmark)

    Castillo, Ana Maria; Nielsen, Nanna; Jensen, Anni

    2014-01-01

    Doubled haploid (DH) production is an efficient tool in barley breeding, but efficiency of DH methods is not consistent. Hence, the aim of this study was to study the effect of n-butanol application on DH barley plant production efficiency. Five elite cultivars of barley and thirteen breeding...... plants (from 1.7 to 3 times) in three low-responding cultivars: Albacete, Astoria and Majestic. No significant differences on microspore embryogenesis efficiency were observed in medium and high responding cultivars. The application of n-butanol treatment to isolated microspores from cold treated spikes...

  7. Molecular evidence for recent founder populations and human-mediated migration in the barley scald pathogen Rhynchosporium secalis.

    Science.gov (United States)

    Linde, C C; Zala, M; McDonald, B A

    2009-06-01

    Rhynchosporium secalis is an important pathogen of barley globally. Fourteen polymorphic microsatellites were analyzed for 1664 R. secalis isolates sampled from 37 field populations to infer their demographic history. The results falsified the hypothesis that R. secalis co-evolved with its barley host in the Middle East. Populations from Scandinavia had significantly higher allelic diversities, the greatest number of private alleles and the highest genotypic diversities. All but three of the analyzed populations had an excess of gene diversity compared to the number of alleles, consistent with a recent population bottleneck. The remaining populations had a gene diversity deficit consistent with a population expansion following a recent population bottleneck in the last +/-100 years. A coalescent analysis revealed that the effective population sizes based on theta, of the analyzed populations were small relative to their ancestral population sizes, indicating that only a fraction of the diversity present in the ancestral populations was transmitted into current populations. These findings are consistent with the hypothesis that the pathogen population on barley experienced a selection bottleneck imposed by the host and/or are founder populations. The mean estimate of migration rates was 2.2 (avg 90% confidence interval=1.3-3.1). Major migration routes were identified among populations separated by long distances, eg between South Africa and Australia, as well as among North Africa, the Middle East and California, suggesting contemporary exchange of infected barley seed. In contrast with earlier findings, most populations exhibited significant gametic disequilibrium, probably as a result of genetic drift. We conclude that the majority of R. secalis populations have experienced human-mediated migration that led to numerous and relatively recent founder events around the world.

  8. Comparison of beer quality attributes between beers brewed with 100% barley malt and 100% barley raw material.

    Science.gov (United States)

    Steiner, Elisabeth; Auer, Andrea; Becker, Thomas; Gastl, Martina

    2012-03-15

    Brewing with 100% barley using the Ondea® Pro exogenous brewing enzyme product was compared to brewing with 100% barley. The use of barley, rather than malt, in the brewing process and the consequences for selected beer quality attributes (foam formation, colloidal stability and filterability, sensory differences, protein content and composition) was considered. The quality attributes of barley, malt, kettle-full-wort, cold wort, unfiltered beer and filtered beer were assessed. A particular focus was given to monitoring changes in the barley protein composition during the brewing process and how the exogenous OndeaPro® enzymes influenced wort protein composition. All analyses were based on standard brewing methods described in ASBC, EBC or MEBAK. To monitor the protein changes two-dimensional polyacrylamide gel electrophoresis was used. It was shown that by brewing beer with 100% barley and an appropriate addition of exogenous Ondea® Pro enzymes it was possible to efficiently brew beer of a satisfactory quality. The production of beers brewed with 100% barley resulted in good process efficiency (lautering and filtration) and to a final product whose sensory quality was described as light, with little body and mouthfeel, very good foam stability and similar organoleptic qualities compared to conventional malt beer. In spite of the sensory evaluation differences could still be seen in protein content and composition. Copyright © 2011 Society of Chemical Industry.

  9. Genome-wide association study on stem rust resistance in Kazakh spring barley lines.

    Science.gov (United States)

    Turuspekov, Yerlan; Ormanbekova, Danara; Rsaliev, Aralbek; Abugalieva, Saule

    2016-01-27

    Stem rust (SR) is one of the most economically devastating barley diseases in Kazakhstan, and in some years it causes up to 50 % of yield losses. Routine conventional breeding for resistance to stem rust is almost always in progress in all Kazakhstan breeding stations. However, molecular marker based approach towards new SR resistance genes identification and relevant marker-assisted selection had never been employed in Kazakhstan yet. In this study, as a preliminary step the GWAS (genome-wide association study) mapping was applied in attempt to identify reliable SNP markers and quantitative trait loci (QTL) associated with resistance to SR. Barley collection of 92 commercial cultivars and promising lines was genotyped using a high-throughput single nucleotide polymorphism (9,000 SNP) Illumina iSelect array. 6,970 SNPs out of 9,000 total were polymorphic and scorable. 5,050 SNPs out of 6,970 passed filtering threshold and were used for association mapping (AM). All 92 accessions were phenotyped for resistance to SR by observing adult plants in artificially infected plots at the Research Institute for Biological Safety Problems in Dzhambul region of Kazakhstan. GLM analysis allowed the identification of 15 SNPs associated with the resistance at the heading time (HA) phase, and 2 SNPs at the seed's milky-waxy maturity (SM) phase. However, after application of 5 % Bonferroni multiple test correction, only 2 SNPs at the HA stage on the same position of chromosome 6H can be claimed as reliable markers for SR resistance. The MLM analysis after the Bonferroni correction did not reveal any associations in this study, although distribution lines in the quantile-quantile (QQ) plot indicates that overcorrection in the test due to both Q and K matrices usage. Obtained data suggest that genome wide genotyping of 92 spring barley accessions from Kazakhstan with 9 K Illumina SNP array was highly efficient. Linkage disequilibrium based mapping approach allowed the

  10. Effect of phytase supplementation to barley-canola meal and barley-soybean meal diets on phosphorus and calcium balance in growing pigs

    NARCIS (Netherlands)

    Sauer, W.C.; Cervantes, M.; He, J.M.M.; Schulze, H.

    2003-01-01

    Two metabolism experiments were carried out, to determine the effect of microbial phytase addition to barley-canola meal and barley-soybean meal diets on P and Ca balance in growing. pigs; In experiment 1, six barrows (29.6kg: initial LW) were fed a barley-canola meal diet, without or. with phytase

  11. Increase and improvement of protein content of cereals and legumes. Part of a coordinated programme on the use of nuclear techniques for seed protein improvement

    International Nuclear Information System (INIS)

    Hadjichristodoulou, A.

    1979-11-01

    Mutation breeding was studied on barley (variety Athenais) and Italian drurum wheat (variety Capeiti). Gamma radiation and fast neutrons were used. The intention is to use high protein lines of barley and wheat in crosses with the high-yielding varieties grown in Cyprus, in order to develop new varieties with high seed protein, without reducing grain yield. The work on forage legumes was limited to the screening of varieties of forage vetches and medics, as part of the programme on improving dryland forage crops. Tables indicate the relative performance of M 6 -lines of Attiki barley (1977-79) and of M 4 Athenais barley (1978-79). A list of 8 publications by the author, some of them jointly with A. della, is given, relating to the project

  12. Seed lipids.

    Science.gov (United States)

    Wolff, I A

    1966-12-02

    Many of the newly discovered seedoil acids have reactive or unusual functional groups or other facets of molecular structure that permit their ready differentiation from oleic, linoleic, linolenic, and the other most prevalent saturated and unsaturated long-chain fatty acids. The recognition and availability of the new acids, coupled with methods that make detection and determination easy, will help studies of lipid biosynthesis in the plant and of lipid metabolism and utilization in animals, and will stimulate more studies in depth on the fine points of seedlipid structure. Correlations of structural patterns in seed lipids of particular groups of plants with classical taxonomic categories will permit clarifications, raise needed questions concerning classifications, and accelerate research in chemotaxonomy and phylogenetics. Seed lipids are particularly well suited for establishing relationships among plants because of their great variety in structure compared to the more limited structural types of amino acids, sugars, purines, and many other plant substances. The newly characterized seed oils are potentially important industrial raw materials whenever they come from agronomically promising plant species. The molecular structures of seed triglycerides have major influence on their physical properties and therefore advances in knowledge in that sphere have practical implications. For example, the unusual characteristics of cocoa butter that make it so valuable for food and confectionery use are attributed to the specific arrangement of fatty acids it its triglycerides. The glycerides are almost all 2-oleic-1,3-disaturated acid triglycerides. The physical characteristics of lard are advantageously changed by catalytically rearranging fatty acyl groups among the glycerides initially in the fat to achieve a more nearly random distribution, followed sometimes by further fractionation to remove more saturated glycerides. Through this change of glyceride structures a

  13. Proteins Involved in Distinct Phases of Cold Hardening Process in Frost Resistant Winter Barley (Hordeum vulgare L. cv Luxor

    Directory of Open Access Journals (Sweden)

    Radovan Hynek

    2013-04-01

    Full Text Available Winter barley is an economically important cereal crop grown in higher latitudes and altitudes where low temperatures represent an important environmental constraint limiting crop productivity. In this study changes in proteome of leaves and crowns in a frost tolerant winter barley cv. Luxor in relation to short and long term periods of cold followed by a brief frost treatment were studied in order to disclose proteins responsible for the cold hardening process in distinct plant tissues. The mentioned changes have been monitored using two dimensional difference gel electrophoresis (2D-DIGE with subsequent peptide-mapping protein identification. Regarding approximately 600–700 distinct protein spots detected on 2D gels, there has been found at least a two-fold change after exposure to low temperatures in about 10% of proteins in leaves and 13% of proteins in crowns. Protein and nitrogen metabolic processes have been influenced by low temperature to a similar extent in both tissues while catabolism, carbohydrate metabolism and proteins involved in stress response have been more affected in crowns than in leaves. The range of changes in protein abundance was generally higher in leaves and chloroplast proteins were frequently affected which suggests a priority to protect photosynthetic apparatus. Overall, our data proved existence of slightly different response strategies to low temperature stress in crowns and leaves, i.e., tissues with different biological role. Moreover, there have been found several proteins with large increase in accumulation, e.g., 33 kDa oxygen evolving protein of photosystem II in leaves and “enhanced disease susceptibility 1” in crowns; these proteins might have potential to indicate an enhanced level of frost tolerance in barley.

  14. Conserved Transcriptional Regulatory Programs Underlying Rice and Barley Germination

    Science.gov (United States)

    Lin, Li; Tian, Shulan; Kaeppler, Shawn; Liu, Zongrang; An, Yong-Qiang (Charles)

    2014-01-01

    Germination is a biological process important to plant development and agricultural production. Barley and rice diverged 50 million years ago, but share a similar germination process. To gain insight into the conservation of their underlying gene regulatory programs, we compared transcriptomes of barley and rice at start, middle and end points of germination, and revealed that germination regulated barley and rice genes (BRs) diverged significantly in expression patterns and/or protein sequences. However, BRs with higher protein sequence similarity tended to have more conserved expression patterns. We identified and characterized 316 sets of conserved barley and rice genes (cBRs) with high similarity in both protein sequences and expression patterns, and provided a comprehensive depiction of the transcriptional regulatory program conserved in barley and rice germination at gene, pathway and systems levels. The cBRs encoded proteins involved in a variety of biological pathways and had a wide range of expression patterns. The cBRs encoding key regulatory components in signaling pathways often had diverse expression patterns. Early germination up-regulation of cell wall metabolic pathway and peroxidases, and late germination up-regulation of chromatin structure and remodeling pathways were conserved in both barley and rice. Protein sequence and expression pattern of a gene change quickly if it is not subjected to a functional constraint. Preserving germination-regulated expression patterns and protein sequences of those cBRs for 50 million years strongly suggests that the cBRs are functionally significant and equivalent in germination, and contribute to the ancient characteristics of germination preserved in barley and rice. The functional significance and equivalence of the cBR genes predicted here can serve as a foundation to further characterize their biological functions and facilitate bridging rice and barley germination research with greater confidence. PMID

  15. The Barley Chromosome 5 Linkage Map

    DEFF Research Database (Denmark)

    Jensen, J.; Jørgensen, Jørgen Helms

    1975-01-01

    The distances between nine loci on barley chromosome 5 have been studied in five two-point tests, three three-point tests, and one four-point test. Our previous chromosome 5 linkage map, which contained eleven loci mapped from literature data (Jensen and Jørgensen 1975), is extended with four loci......: wst5 (white streaks), necl (necrotic leaf spots), Ml-nn (powdery mildew resistance), and Pa4 (leaf rust resistance). Further, the two sections of the map are united, and the precision of the map is improved. A system for designating the positions of the loci on the linkage map is proposed. A 0......-position is fixed on the map by a locus (necl), which has a good marker gene located centrally in the linkage group. The positions of the other loci are their distances in centimorgans from the 0-position; loci in the direction of the short chromosome arm are assigned positive values and those...

  16. Weed suppression ability of spring barley varieties

    DEFF Research Database (Denmark)

    Christensen, Svend

    1995-01-01

    Three years of experiments with spring barley showed significant differences in weed suppression ability among varieties. Weed dry matter in the most suppressive variety, Ida, was 48% lower than the mean weed dry matter of all varieties, whereas it was 31% higher in the least suppressive variety......, Grit. Ranking varietal responses to weed competition in terms of grain yield loss corresponded well to ranking weed dry matter produced in crop weed mixtures. There was no correspondence between the varietal grain yields in pure stands and their competitiveness, suggesting that breeding to optimize...... interception model was developed to describe the light interception profiles of the varieties. A study of the estimated parameters showed significant correlation between weed dry matter, rate of canopy height development and the light interception profile. However, when estimates were standardized to eliminate...

  17. Organic leek seed production - securing seed quality

    DEFF Research Database (Denmark)

    Deleuran, Lise Christina; Boelt, Birte

    2011-01-01

    seeds. Tunnel production is a means of securing seed of high genetic purity and quality, and organic leek (Allium porrum L.) seed production was tested in tunnels in Denmark. The present trial focused on steckling size and in all years large stecklings had a positive effect on both seed yield...

  18. Plant redox proteomics

    DEFF Research Database (Denmark)

    Navrot, Nicolas; Finnie, Christine; Svensson, Birte

    2011-01-01

    In common with other aerobic organisms, plants are exposed to reactive oxygen species resulting in formation of post-translational modifications related to protein oxidoreduction (redox PTMs) that may inflict oxidative protein damage. Accumulating evidence also underscores the importance of redox...... PTMs in regulating enzymatic activities and controlling biological processes in plants. Notably, proteins controlling the cellular redox state, e.g. thioredoxin and glutaredoxin, appear to play dual roles to maintain oxidative stress resistance and regulate signal transduction pathways via redox PTMs....... To get a comprehensive overview of these types of redox-regulated pathways there is therefore an emerging interest to monitor changes in redox PTMs on a proteome scale. Compared to some other PTMs, e.g. protein phosphorylation, redox PTMs have received less attention in plant proteome analysis, possibly...

  19. Sperm cell proteomics.

    Science.gov (United States)

    Oliva, Rafael; de Mateo, Sara; Estanyol, Josep Maria

    2009-02-01

    The spermatozoon is an accessible cell which can be easily purified and therefore it is particularly well suited for proteomic analysis. It is also an extremely differentiated cell with very marked genetic, cellular, functional and chromatin changes as compared to other cells, and has profound implications for fertility, embryo development and heredity. The recent developments in MS have boosted the potential for identification and study of the sperm proteins. Catalogues of hundreds to thousands of spermatozoan proteins in human and in model species are becoming available setting up the basis for subsequent research, diagnostic applications and the development of specific treatments. The present article reviews the available scientific publications dealing with the composition and function of the sperm cell using an MS proteomic approach.

  20. High-throughput Agrobacterium-mediated barley transformation

    Directory of Open Access Journals (Sweden)

    Snape John W

    2008-09-01

    Full Text Available Abstract Background Plant transformation is an invaluable tool for basic plant research, as well as a useful technique for the direct improvement of commercial crops. Barley (Hordeum vulgare is the fourth most abundant cereal crop in the world. It also provides a useful model for the study of wheat, which has a larger and more complex genome. Most existing barley transformation methodologies are either complex or have low ( Results A robust, simple and reproducible barley transformation protocol has been developed that yields average transformation efficiencies of 25%. This protocol is based on the infection of immature barley embryos with Agrobacterium strain AGL1, carrying vectors from the pBract series that contain the hpt gene (conferring hygromycin resistance as a selectable marker. Results of large scale experiments utilising the luc (firefly luciferase gene as a reporter are described. The method presented here has been used to produce hundreds of independent, transgenic plant lines and we show that a large proportion of these lines contain single copies of the luc gene. Conclusion This protocol demonstrates significant improvements in both efficiency and ease of use over existing barley transformation methods. This opens up opportunities for the development of functional genomics resources in barley.

  1. seed oil

    African Journals Online (AJOL)

    Wara

    found to be 2.0 cm which is lower than that of Jatropha oil soap(5.4cm), Sesame oil soap(4.8cm), Cotton seed oil soap(4.5cm) and shea nut soap(4.2cm),t higher than that of Castor oil soap(1.6cm) and Castor glycerine soap(1.4cm). The soap was milk in colour and slightly soluble in distilled water. Keywords: Neem oil ...

  2. Proteomic screening for amyloid proteins.

    Directory of Open Access Journals (Sweden)

    Anton A Nizhnikov

    Full Text Available Despite extensive study, progress in elucidation of biological functions of amyloids and their role in pathology is largely restrained due to the lack of universal and reliable biochemical methods for their discovery. All biochemical methods developed so far allowed only identification of glutamine/asparagine-rich amyloid-forming proteins or proteins comprising amyloids that form large deposits. In this article we present a proteomic approach which may enable identification of a broad range of amyloid-forming proteins independently of specific features of their sequences or levels of expression. This approach is based on the isolation of protein fractions enriched with amyloid aggregates via sedimentation by ultracentrifugation in the presence of strong ionic detergents, such as sarkosyl or SDS. Sedimented proteins are then separated either by 2D difference gel electrophoresis or by SDS-PAGE, if they are insoluble in the buffer used for 2D difference gel electrophoresis, after which they are identified by mass-spectrometry. We validated this approach by detection of known yeast prions and mammalian proteins with established capacity for amyloid formation and also revealed yeast proteins forming detergent-insoluble aggregates in the presence of human huntingtin with expanded polyglutamine domain. Notably, with one exception, all these proteins contained glutamine/asparagine-rich stretches suggesting that their aggregates arose due to polymerization cross-seeding by human huntingtin. Importantly, though the approach was developed in a yeast model, it can easily be applied to any organism thus representing an efficient and universal tool for screening for amyloid proteins.

  3. The plant mitochondrial proteome

    DEFF Research Database (Denmark)

    Millar, A.H.; Heazlewood, J.L.; Kristensen, B.K.

    2005-01-01

    The plant mitochondrial proteome might contain as many as 2000-3000 different gene products, each of which might undergo post-translational modification. Recent studies using analytical methods, such as one-, two- and three-dimensional gel electrophoresis and one- and two-dimensional liquid...... context to be defined for them. There are indications that some of these proteins add novel activities to mitochondrial protein complexes in plants....

  4. A simple and rapid method for preparing the whole section of starchy seed to investigate the morphology and distribution of starch in different regions of seed.

    Science.gov (United States)

    Zhao, Lingxiao; Pan, Ting; Guo, Dongwei; Wei, Cunxu

    2018-01-01

    Storage starch in starchy seed influences the seed weight and texture, and determines its applications in food and nonfood industries. Starch granules from different plant sources have significantly different shapes and sizes, and even more the difference exists in the different regions of the same tissue. Therefore, it is very important to in situ investigate the morphology and distribution of starch in the whole seed. However, a simple and rapid method is deficient to prepare the whole section of starchy seed for investigating the morphology and distribution of starch in the whole seeds for a large number of samples. A simple and rapid method was established to prepare the whole section of starchy seed, especially for floury seed, in this study. The whole seeds of translucent and chalky rice, vitreous and floury maize, and normal barley and wheat were sectioned successfully using the newly established method. The iodine-stained section clearly exhibited the shapes and size of starch granules in different regions of seed. The starch granules with different morphologies and iodine-staining colors existed regionally in the seeds of high-amylose rice and maize. The sections of lotus and kidney bean seeds also showed the feasibility of this method for starchy non-cereal seeds. The simple and rapid method was proven effective for preparing the whole sections of starchy seeds. The whole section of seed could be used to investigate the morphology and distribution of starch granules in different regions of the whole seed. The method was especially suitable for large sample numbers to investigate the starch morphology in short time.

  5. Nematode assemblages in the rhizosphere of spring barley (Hordeum vulgare L.) depended on fertilisation and plant growth phase

    DEFF Research Database (Denmark)

    Madsen, Mette Vestergård

    2004-01-01

    rhizosphere; nitrogen and phosphorus fertilisation; nematode assemblages; plant parasites; barley......rhizosphere; nitrogen and phosphorus fertilisation; nematode assemblages; plant parasites; barley...

  6. Enrichment and identification of integral membrane proteins from barley aleurone layers by reversed-phase chromatography, SDS-PAGE and LC-MS/MS

    DEFF Research Database (Denmark)

    Hynek, Radovan; Svensson, Birte; Nørregaard Jensen, Ole

    2006-01-01

    was developed, comprising batch reversed-phase chromatography with stepwise elution of hydrophobic proteins by 2-propanol. Proteins in the most hydrophobic fraction were separated by SDS-PAGE and identified by LC-MS/MS and barley EST sequence database search. The method was efficient for enrichment of integral......The plasma membrane of the cereal aleurone layer is the site of perception of germination signals and release of enzymes to the starchy endosperm. Analysis of membrane proteins is challenging due to their hydrophobicity and low abundance, thus little is known about the membrane proteins involved...... in seed germination. A membrane fraction highly enriched for the plasma membrane H+-ATPase was prepared from barley aleurone layers by aqueous two-phase partitioning. Since detergent and salt washes did not efficiently remove soluble proteins from the membrane preparations, an alternative procedure...

  7. A Spectrophotometric Assay for Robust Viability Testing of Seed Batches Using 2,3,5-Triphenyl Tetrazolium Chloride: Using Hordeum vulgare L. as a Model

    Directory of Open Access Journals (Sweden)

    Laura Lopez Del Egido

    2017-05-01

    Full Text Available A comparative analysis was carried out of published methods to assess seed viability using 2,3,5-triphenyltetrazolium chloride (TTC based assays of seed batches. The tests were carried out on seeds of barley (Hordeum vulgare cv. Optic as a model. We established that 10% [w/v] trichloroacetic acid (TCA/methanol is superior to the acetone and methanol-only based methods: allowing the highest recovery of formazan and the lowest background optical density (OD readings, across seed lots comprising different ratios of viable and dead seeds. The method allowed a linear-model to accurately capture the statistically significant relationship between the quantity of formazan that could be extracted using the method we developed and the seed temperature-response, and seed viability as a function of artificially aged seed lots. Other quality control steps are defined to help ensure the assay is robust and these are reported in a Standard Operating Procedure.

  8. Productivity losses in barley attributable to ambient atmospheric pollutants in Pakistan

    Science.gov (United States)

    Wahid, A.

    The productivity responses of four barley ( Hordeum vulgare L.) cultivars (Haider-93, Haider-91, Jou-87, Jou-85) to air pollution were investigated during 2004-2005 season using open-top chambers with charcoal-filtered air (FA), unfiltered air (UFA) and unchambered field plots (AA) at a semi-urban site in Lahore, Pakistan. The 8 h daily mean O 3, NO 2 and SO 2 in UFA remained 71, 30 and 16 ppb, respectively. In UFA, seed yield was drastically reduced in all the cultivars, 13% for Haider-93, 30% for Haider-91, 34% for Jou-87 and 44% for Jou-85 compared with FA plants. This impact in UFA was due to combined effects of reductions in number of ears per plant, seeds per ear and 1000-seed weight. A mid-season harvest of 9-weeks-old plants has revealed 16-25% and 7-15% reductions in plant fresh and dry weights, respectively, in UFA compared with counterparts grown in FA. Plants grown in UFA also showed significant reductions in stomatal conductance (6-12%), transpiration rate (20-27%), net photosynthetic rate (13-21%) and photosynthetic efficiency (8-9%). Nutritional quality of seeds was, however, not altered with respect to some minerals (Ca, Mg, K, P), and protein in all treatments, except for higher starch contents found in FA than both UFA and AA treatments. The yield losses attributable to the mix of pollutants and experienced in the urban fringe of Lahore are appreciably larger than expected. Their significance more widely in Pakistan needs to be assessed as a matter of priority, as population growth rates and emission levels are both rapidly increasing in the country.

  9. HvDep1 Is a Positive Regulator of Culm Elongation and Grain Size in Barley and Impacts Yield in an Environment-Dependent Manner.

    Directory of Open Access Journals (Sweden)

    Toni Wendt

    Full Text Available Heterotrimeric G proteins are intracellular membrane-attached signal transducers involved in various cellular processes in both plants and animals. They consist of three subunits denoted as α, β and γ. The γ-subunits of the so-called AGG3 type, which comprise a transmembrane domain, are exclusively found in plants. In model species, these proteins have been shown to participate in the control of plant height, branching and seed size and could therefore impact the harvestable yield of various crop plants. Whether AGG3-type γ-subunits influence yield in temperate cereals like barley and wheat remains unknown. Using a transgenic complementation approach, we show here that the Scottish malting barley cultivar (cv. Golden Promise carries a loss-of-function mutation in HvDep1, an AGG3-type subunit encoding gene that positively regulates culm elongation and seed size in barley. Somewhat intriguingly, agronomic field data collected over a 12-year period reveals that the HvDep1 loss-of-function mutation in cv. Golden Promise has the potential to confer either a significant increase or decrease in harvestable yield depending on the environment. Our results confirm the role of AGG3-type subunit-encoding genes in shaping plant architecture, but interestingly also indicate that the impact HvDep1 has on yield in barley is both genotypically and environmentally sensitive. This may explain why widespread exploitation of variation in AGG3-type subunit-encoding genes has not occurred in temperate cereals while in rice the DEP1 locus is widely exploited to improve harvestable yield.

  10. The consequent influence of crop rotation and six-year-long spring barley monoculture on yields and weed infestation of white mustard and oats

    Directory of Open Access Journals (Sweden)

    Cezary Kwiatkowski

    2012-12-01

    Full Text Available The present study was conducted in the years 2007- 2008, after 6-year-long experiments in the cultivation of spring barley in a crop rotation system and in monoculture. The other experimental factor was the spring barley protection method. Intensive protection involved comprehensive treatment of barley (in-crop harrowing, seed dressing, application of herbicides, fungicides, a retardant and an insecticide. Extensive protection consisted only in in-crop harrowing, without the application of crop protection agents, except for seed dressing. The above mentioned factors formed the background for the study on the cultivation of white mustard and oats, as phytosanitary species, in successive years. In the test plants, no mineral fertilization and crop protection were applied. Such agricultural method enabled an objective assessment of the consequent effect of monoculture, crop rotation and crop treatments. A hypothesis was made that the cultivation of the phytosanitary plants in the stand after 6-year-long barley monoculture would allow obtaining the level of yields and weed infestation similar to those of the crop rotation treatments. It was also assumed that the cultivation of white mustard and oats would eliminate differences in plant productivity caused by the negative influence of extensive protection. It was proved that the cultivation of the phytosanitary plants eliminated the negative influence of monoculture on the level of their yields and weed infestation. However, the test plants did not compensate negative consequences of extensive protection. In spite of this, white mustard and oats effectively competed with weeds, and the number and weight of weeds in a crop canopy did not cause a dramatic decline in yields. In the test plant canopy, the following short-lived weeds were predominant: Chenopodium album, Galinsoga parviflora, Echinochloa crus-galli. The absence of herbicide application resulted in the compensation of perennial species

  11. Studies on the dormancy of cereal seeds as affected by gamma radiation

    International Nuclear Information System (INIS)

    Rana, O.P.S.; Maherchandani, N.

    1982-01-01

    Effect of gamma radiation (10 kR) was studied on the germination of freshly harvested seeds of several varieties of barley, wheat and triticale. On the basis of the germination in irradiated seeds in comparison to controls, barley varieties may be categorized into three groups: (i) those showing reduction in germination, (ii) those showing stimulation in germination and (iii) those remaining unaffected. The mean germination percentage of the controls was 50.7, 19.4 and 2.1 in group i, ii and iii varieties, respectively. After 6 weeks, varieties in group iii lost seed dormancy. The response of these varieties to irradiation then became similar to group i or ii. Wheat and triticale varieties also could be grouped in similar way. It has been suggested that germination response of seeds of these cereal varieties to relatively 'low doses' of gamma radiation depends on their innate dormancy status and germination could be stimulated by gamma radiation (10 kR) in seeds having low germination due to seed dormancy. (author)

  12. Seed Treatment. Manual 92.

    Science.gov (United States)

    Missouri Univ., Columbia. Agricultural Experiment Station.

    This training manual provides information needed to meet minimum EPA standards for certification as a commercial applicator of pesticides in the seed treatment category. The text discusses pests commonly associated with seeds; seed treatment pesticides; labels; chemicals and seed treatment equipment; requirements of federal and state seed laws;…

  13. Seed Treatment. Bulletin 760.

    Science.gov (United States)

    Lowery, Harvey C.

    This manual gives a definition of seed treatment, the types of seeds normally treated, diseases and insects commonly associated with seeds, fungicides and insecticides used, types of equipment used for seed treatment, and information on labeling and coloring of treated seed, pesticide carriers, binders, stickers, and safety precautions. (BB)

  14. Final Report: Proteomic study of brassinosteroid responses in Arabidopsis

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zhiyong [Carnegie Inst. of Washington, Argonne, IL (United States); Burlingame, Alma [Univ. of California, San Francisco, CA (United States)

    2017-11-29

    The steroid hormone brassinosteroid (BR) is a major growth-promoting phytohormone. The specific aim of the current project is to identify BR-regulated proteins and characterize their functions in various aspects of plant growth, development, and adaptation. Our research has significantly advanced our understanding of how BR signal is transduced from the receptor at the cell surface to changes of nuclear gene expression and other cellular responses such as vesicle trafficking, as well as developmental transitions such as seed germination and flowering. We have also developed effective proteomic methods for quantitative analysis of protein phosphorylation and for identification of glycosylated proteins. Through this DOE funding, we have performed several proteomic experiments and made major discoveries.

  15. Molecular characterization of barley 3H semi-dwarf genes.

    Directory of Open Access Journals (Sweden)

    Haobing Li

    Full Text Available The barley chromosome 3H accommodates many semi-dwarfing genes. To characterize these genes, the two-rowed semi-dwarf Chinese barley landrace 'TX9425' was crossed with the Australian barley variety 'Franklin' to generate a doubled haploid (DH population, and major QTLs controlling plant height have been identified in our previous study. The major QTL derived from 'TX9425' was targeted to investigate the allelism of the semi-dwarf gene uzu in barley. Twelve sets of near-isogenic lines and a large NILF2 fine mapping population segregating only for the dwarfing gene from 'TX9425' were developed. The semi-dwarfing gene in 'TX9425' was located within a 2.8 cM region close to the centromere on chromosome 3H by fine mapping. Molecular cloning and sequence analyses showed that the 'TX9425'-derived allele contained a single nucleotide substitution from A to G at position 2612 of the HvBRI1 gene. This was apparently the same mutation as that reported in six-rowed uzu barley. Markers co-segregating with the QTL were developed from the sequence of the HvBRI1 gene and were validated in the 'TX9425'/'Franklin' DH population. The other major dwarfing QTL derived from the Franklin variety was distally located on chromosome 3HL and co-segregated with the sdw1 diagnostic marker hv20ox2. A third dwarfing gene, expressed only in winter-sown trials, was identified and located on chromosome 3HS. The effects and interactions of these dwarfing genes under different growing conditions are discussed. These results improve our understanding of the genetic mechanisms controlling semi-dwarf stature in barley and provide diagnostic markers for the selection of semi-dwarfness in barley breeding programs.

  16. Strip Tillage and Early-Season Broadleaf Weed Control in Seeded Onion (Allium cepa)

    OpenAIRE

    Sarah Gegner-Kazmierczak; Harlene Hatterman-Valenti

    2016-01-01

    Field experiments were conducted in 2007 and 2008 near Oakes, North Dakota (ND), USA, to evaluate if strip tillage could be incorporated into a production system of seeded onion (Allium cepa) to eliminate the standard use of a barley (Hordeum vulgare) companion crop with conventional, full width tillage, yet support common early-season weed control programs. A split-factor design was used with tillage (conventional and strip tillage) as the main plot and herbicide treatments (bromoxynil, DCPA...

  17. HorTILLUS—A Rich and Renewable Source of Induced Mutations for Forward/Reverse Genetics and Pre-breeding Programs in Barley (Hordeum vulgare L.

    Directory of Open Access Journals (Sweden)

    Miriam E. Szurman-Zubrzycka

    2018-02-01

    Full Text Available TILLING (Targeting Induced Local Lesions IN Genomes is a strategy used for functional analysis of genes that combines the classical mutagenesis and a rapid, high-throughput identification of mutations within a gene of interest. TILLING has been initially developed as a discovery platform for functional genomics, but soon it has become a valuable tool in development of desired alleles for crop breeding, alternative to transgenic approach. Here we present the HorTILLUS (Hordeum—TILLING—University of Silesia population created for spring barley cultivar “Sebastian” after double-treatment of seeds with two chemical mutagens: sodium azide (NaN3 and N-methyl-N-nitrosourea (MNU. The population comprises more than 9,600 M2 plants from which DNA was isolated, seeds harvested, vacuum-packed, and deposited in seed bank. M3 progeny of 3,481 M2 individuals was grown in the field and phenotyped. The screening for mutations was performed for 32 genes related to different aspects of plant growth and development. For each gene fragment, 3,072–6,912 M2 plants were used for mutation identification using LI-COR sequencer. In total, 382 mutations were found in 182.2 Mb screened. The average mutation density in the HorTILLUS, estimated as 1 mutation per 477 kb, is among the highest mutation densities reported for barley. The majority of mutations were G/C to A/T transitions, however about 8% transversions were also detected. Sixty-one percent of mutations found in coding regions were missense, 37.5% silent and 1.1% nonsense. In each gene, the missense mutations with a potential effect on protein function were identified. The HorTILLUS platform is the largest of the TILLING populations reported for barley and best characterized. The population proved to be a useful tool, both in functional genomic studies and in forward selection of barley mutants with required phenotypic changes. We are constantly renewing the HorTILLUS population, which makes it a

  18. The barley grain thioredoxin system - an update

    DEFF Research Database (Denmark)

    Hägglund, Per; Björnberg, Olof; Navrot, Nicolas

    2013-01-01

    Thioredoxin (Trx) reduces disulfide bonds and play numerous important functions in plants. In cereal seeds, cytosolic h-type Trx facilitates the release of energy reserves during the germination process and is recycled by NADPH-dependent Trx reductase. This review presents a summary of the resear...

  19. Mycoflora Of Barley Hordeum Vulgare L. At Different Locations In Hail Area- Saudi Arabia

    Directory of Open Access Journals (Sweden)

    Elham S. Dawood

    2015-05-01

    Full Text Available Abstract 400 grain samples collected from barley fields in Hail area at the northern part of Saudi Arabia was used for this study. Isolation and identification of seed-borne fungi were conducted according to standard tests described by the International Seed Testing Association ISTA using YGCA medium. A total of 265 of external mycoflora and 517 of internal mycoflora were grouped into five fungal genera namely Aspergillus Alternaria Penillium Fusarium and Ulocladium spp. were isolated. Comparsion between frequencies and relative densities of external and internal mycoflora was carried out among the species of the predominant genera. Aspergillus flavus and A. niger reaveled high Fr. and RD of external mycoflora A. flavus Fr.60.9 - 40.5 RD 48.3 - 40.9and A. niger Fr. 52.7- 48.6- and RD 38.7- 41.9 as external internal mycoflora mycoflora respectively. All the species of Ulocladium and Alternaria were predominant as internal mycoflora .The most predominant species of Ulocladium and Alternaria were U. atrium Fr 89 -75.5and RD -79- 62.5 as internal external mycoflora respectively and Alternaria alternate Fr. 60 - 46.6 and RD. 55-32.3as externalinternal mycoflora respectively.

  20. Specificity and levels of nonhost resistance to nonadapted Blumeria graminis forms in barley

    NARCIS (Netherlands)

    Aghnoum, R.; Niks, R.E.

    2010-01-01

    • The genetic basis of nonhost resistance of barley to nonadapted formae speciales of Blumeria graminis is not known, as there is no barley line that is susceptible to these nonadapted formae speciales, such as the wheat powdery mildew pathogen, Blumeria graminis f.sp. tritici (Bgt). • Barley

  1. Effects of Net Blotch ( Pyrenophora teres ) on Malt Barley Yield and ...

    African Journals Online (AJOL)

    Barley (Hordeum vulgare L.) production is constrained by diseases such as net blotch caused by Pyrenophora teres Drechsl. The objectives of this study were to assess the effects of net blotch disease on malt barley yield and grain quality under natural infection. Four malt barley varieties (Beka, HB 120, HB 52 and Holker), ...

  2. Effect of Different Levels of Germinated Barley on Live Performance and Carcass Traits in Broiler Chickens

    Directory of Open Access Journals (Sweden)

    Dastar B

    2014-06-01

    Full Text Available An experiment was conducted to evaluate the effect of different levels of germinated barley (GB on live performance and carcass traits in broiler chickens. The experiment lasted for 5 weeks starting from 7 days of age and ending at 42 days of age. Chicks (Ross 308 were fed six dietary treatments including a corn–soy diet (corn diet, a barley–soy diet (barley diet, a barley diet plus enzymes (enzyme barley diet, and 3 other diets in which GB was replaced with barley at levels of 33%, 66%, and 100% in the barley diet (33% GB diet, 66% GB diet, and GB diet, respectively. Data were analyzed in a completely randomized design. Results indicated that birds fed a barley diet had significantly lower performance than those fed other diets (P. Supplementing of the barley diet with β-glucanase enzyme as well as replacing GB with barley improved the performance of broilers. Birds fed a GB diet had a significantly higher carcass yield those fed other diets (P. The lowest abdominal fat percentage was observed in birds fed a barley diet or a corn diet. Thus, it is concluded that replacing GB with barley, especially at 33% level, is more effective than supplementing barley diets with β-glucanase enzyme in improving live performance of broiler chickens.

  3. Fusarium infection and trichothecenes in barley and its comparison with wheat

    NARCIS (Netherlands)

    Janssen, E.M.; Liu, C.; Fels, van der H.J.

    2018-01-01

    Barley is a small-grain cereal that can be infected by Fusarium spp. resulting in reduced quality and safety of harvested barley (products). Barley and other small-grain cereals are commonly studied together for Fusarium infection and related mycotoxin contamination, since the infection and its

  4. Aggressiveness of powdery mildew on 'ml-o'- resistant barley

    International Nuclear Information System (INIS)

    Andersen, Lars

    1990-01-01

    The ml-o genes in barley are important sources in breeding for resistance against the barley powdery mildew fungus (Erysiphe graminis). The resistance mechanism is a rapid formation of a large callose containing cell wall apposition at the site of the pathogen's infection attempt. This reduces the chances of infection to almost nil in all epidermal cells, except in the small subsidiary cells, in which appositions are rarely formed. Small mildew colonies from infections in subsidiary cells may be seen on the otherwise resistant leaf. This is described by the infection type 0/(4). Mildew isolate HL 3 selected by SCHWARZBACH has increased aggressiveness. No ml-o-virulent isolates are known. However, ml-o-resistant varieties when grown extensively in Europe, will introduce field selection for mildew pathotypes with aggressiveness or virulence to ml-o resistance. Studies on increased aggressiveness require new methods. The material comprises two powdery mildew isolates: GE 3 without ml-o aggressiveness and the aggressive HL 3/5; and two near-isogenic barley lines in Carlsberg II: Riso 5678(R) with the recessive mutant resistance gene ml-o5 and Riso 5678(S) with the wild-type gene for susceptibility. Latent period and disease efficiency show no significant differences between the two isolates on the susceptible barley line (S) but the isolates differ from each other on the resistant barley line

  5. Identification of a phytase gene in barley (Hordeum vulgare L..

    Directory of Open Access Journals (Sweden)

    Fei Dai

    Full Text Available BACKGROUND: Endogenous phytase plays a crucial role in phytate degradation and is thus closely related to nutrient efficiency in barley products. The understanding of genetic information of phytase in barley can provide a useful tool for breeding new barley varieties with high phytase activity. METHODOLOGY/PRINCIPAL FINDINGS: Quantitative trait loci (QTL analysis for phytase activity was conducted using a doubled haploid population. Phytase protein was purified and identified by the LC-ESI MS/MS Shotgun method. Purple acid phosphatase (PAP gene was sequenced and the position was compared with the QTL controlling phytase activity. A major QTL for phytase activity was mapped to chromosome 5 H in barley. The gene controlling phytase activity in the region was named as mqPhy. The gene HvPAP a was mapped to the same position as mqPhy, supporting the colinearity between HvPAP a and mqPhy. CONCLUSIONS/SIGNIFICANCE: It is the first report on QTLs for phytase activity and the results showed that HvPAP a, which shares a same position with the QTL, is a major phytase gene in barley grains.

  6. Water uptake in barley grain: Physiology; genetics and industrial applications.

    Science.gov (United States)

    Cu, Suong; Collins, Helen M; Betts, Natalie S; March, Timothy J; Janusz, Agnieszka; Stewart, Doug C; Skadhauge, Birgitte; Eglinton, Jason; Kyriacou, Bianca; Little, Alan; Burton, Rachel A; Fincher, Geoffrey B

    2016-01-01

    Water uptake by mature barley grains initiates germination and is the first stage in the malting process. Here we have investigated the effects of starchy endosperm cell wall thickness on water uptake, together with the effects of varying amounts of the wall polysaccharide, (1,3;1,4)-β-glucan. In the latter case, we examined mutant barley lines from a mutant library and transgenic barley lines in which the (1,3;1,4)-β-glucan synthase gene, HvCslF6, was down-regulated by RNA interference. Neither cell wall thickness nor the levels of grain (1,3;1,4)-β-glucan were significantly correlated with water uptake but are likely to influence modification during malting. However, when a barley mapping population was phenotyped for rate of water uptake into grain, quantitative trait locus (QTL) analysis identified specific regions of chromosomes 4H, 5H and 7H that accounted for approximately 17%, 18% and 11%, respectively, of the phenotypic variation. These data indicate that variation in water uptake rates by elite malting cultivars of barley is genetically controlled and a number of candidate genes that might control the trait were identified under the QTL. The genomics data raise the possibility that the genetic variation in water uptake rates might be exploited by breeders for the benefit of the malting and brewing industries. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  7. 11C-methionine translocation in barley

    International Nuclear Information System (INIS)

    Nakanishi, Hiromi; Bughio, Naimatullah; Shigeta Ishioka, Noriko

    2000-01-01

    11 C-methionine was supplied to barley plants through a single leaf or via the roots and real time 11 C movement was monitored using a PETIS (positron emitting tracer imaging system). In Fe-deficient plants, 11 C-methionine was translocated from the tip of the absorbing leaf to the discrimination center' at the basal part of the shoot and then retranslocated to all the chlorotic leaves, while a negligible amount was retranslocated to the roots. In Fe-sufficient plants, methionine was translocated from the absorbing leaf to the discrimination center and then only to the newest leaf on the main shoot. A negligible amount was also retranslocated to the roots. Although, in Fe-sufficient plants, methionine translocation was observed from absorbing roots to shoots, in Fe-deficient plants, only a little amount was translocated from roots to shoots. In conclusion, methionine from the upper portion of a plant is not used as a precursor of mugineic acid under Fe-deficiency conditions. (author)

  8. The Genetic Architecture of Barley Plant Stature

    Science.gov (United States)

    Alqudah, Ahmad M.; Koppolu, Ravi; Wolde, Gizaw M.; Graner, Andreas; Schnurbusch, Thorsten

    2016-01-01

    Plant stature in temperate cereals is predominantly controlled by tillering and plant height as complex agronomic traits, representing important determinants of grain yield. This study was designed to reveal the genetic basis of tillering at five developmental stages and plant height at harvest in 218 worldwide spring barley (Hordeum vulgare L.) accessions under greenhouse conditions. The accessions were structured based on row-type classes [two- vs. six-rowed] and photoperiod response [photoperiod-sensitive (Ppd-H1) vs. reduced photoperiod sensitivity (ppd-H1)]. Phenotypic analyses of both factors revealed profound between group effects on tiller development. To further verify the row-type effect on the studied traits, Six-rowed spike 1 (vrs1) mutants and their two-rowed progenitors were examined for tiller number per plant and plant height. Here, wild-type (Vrs1) plants were significantly taller and had more tillers than mutants suggesting a negative pleiotropic effect of this row-type locus on both traits. Our genome-wide association scans further revealed highly significant associations, thereby establishing a link between the genetic control of row-type, heading time, tillering, and plant height. We further show that associations for tillering and plant height are co-localized with chromosomal segments harboring known plant stature-related phytohormone and sugar-related genes. This work demonstrates the feasibility of the GWAS approach for identifying putative candidate genes for improving plant architecture. PMID:27446200

  9. Chemical weed control in barley (hordeum vulgare)

    International Nuclear Information System (INIS)

    Sarwar, M.; Hassan, S.W.; Abid, A.A.

    2008-01-01

    Effect of two different pre-emergence herbicides i.e. Terbutryn (lgron-500FW) A, 1.01.25 kg a.t. ha/sup -1/ and Flurochloridone (Racer-25 CS) a 0.31, 0.37, 0.44, 0.50 and 0.56 Kg a.i. ha/sup -1/ on weeds and yield of barley wad studied under field conditions hb/sup -1/. All the herbicides significantly reduce the dry weight of weed Maximum reduction (70%) was observed in terbutryn a 1.0 Kg a.i. ha/sup -1/ Growth and yield parameters like number of spike lets per spike. Number of grams per spike. 1000-grain weight. Biological yield. Grain yield straw yield and harvest index showed significant response to various herbicides doses under study. Application of Flurochloridone (Racer-25 (CS) a 0.44 kg a.i. ha/sup -1/ and Terbutryn (lgran-500 FW) a 1.0 kg a.i). The data further revealed that in general all herbicide application treatments exhibited superior performance in respect of growth and yield over control. (author)

  10. Barley yellow dwarf virus in barley crops in Tunisia: prevalence and molecular characterization

    Directory of Open Access Journals (Sweden)

    Asma NAJAR

    2017-05-01

    Full Text Available A field survey was conducted in Tunisia in the North-Eastern regions (Bizerte, CapBon and Zaghouan, the North-Western region (Kef and the Central-Eastern region (Kairouan during the 2011/2012 growing season, in order to determine the incidence and the geographic distribution of Barley yellow dwarf virus (BYDVs in barley fields. Tissue blot immunoassays (TBIA showed that BYDV was most common in Zaghouan (incidence 14%, Cap Bon (14% and Bizerte (35%, in randomly collected samples from these three locations.Among the different BYDVs identified, BYDV-PAV (64% was the most common followed by BYDV-MAV (16% and CYDV-RPV (3%. The coat protein gene sequences of six isolates collected from different regions shared >98% pairwise similarity. In comparisons with other BYDV sequences from around the world, the Tunisian sequences shared greatest homology with isolates 109 and ASL1 from the United States of America and Germany (≈97%, and <90% with all other isolate sequences available in public databases.

  11. Proteomics of Maize Root Development.

    Science.gov (United States)

    Hochholdinger, Frank; Marcon, Caroline; Baldauf, Jutta A; Yu, Peng; Frey, Felix P

    2018-01-01

    Maize forms a complex root system with structurally and functionally diverse root types that are formed at different developmental stages to extract water and mineral nutrients from soil. In recent years proteomics has been intensively applied to identify proteins involved in shaping the three-dimensional architecture and regulating the function of the maize root system. With the help of developmental mutants, proteomic changes during the initiation and emergence of shoot-borne, lateral and seminal roots have been examined. Furthermore, root hairs were surveyed to understand the proteomic changes during the elongation of these single cell type structures. In addition, primary roots have been used to study developmental changes of the proteome but also to investigate the proteomes of distinct tissues such as the meristematic zone, the elongation zone as well as stele and cortex of the differentiation zone. Moreover, subcellular fractions of the primary root including cell walls, plasma membranes and secreted mucilage have been analyzed. Finally, the superior vigor of hybrid seedling roots compared to their parental inbred lines was studied on the proteome level. In summary, these studies provide novel insights into the complex proteomic interactions of the elaborate maize root system during development.

  12. Proteomics of Maize Root Development

    Directory of Open Access Journals (Sweden)

    Frank Hochholdinger

    2018-03-01

    Full Text Available Maize forms a complex root system with structurally and functionally diverse root types that are formed at different developmental stages to extract water and mineral nutrients from soil. In recent years proteomics has been intensively applied to identify proteins involved in shaping the three-dimensional architecture and regulating the function of the maize root system. With the help of developmental mutants, proteomic changes during the initiation and emergence of shoot-borne, lateral and seminal roots have been examined. Furthermore, root hairs were surveyed to understand the proteomic changes during the elongation of these single cell type structures. In addition, primary roots have been used to study developmental changes of the proteome but also to investigate the proteomes of distinct tissues such as the meristematic zone, the elongation zone as well as stele and cortex of the differentiation zone. Moreover, subcellular fractions of the primary root including cell walls, plasma membranes and secreted mucilage have been analyzed. Finally, the superior vigor of hybrid seedling roots compared to their parental inbred lines was studied on the proteome level. In summary, these studies provide novel insights into the complex proteomic interactions of the elaborate maize root system during development.

  13. Proteomic Signatures of Thymomas

    Science.gov (United States)

    Shilo, Konstantin; Hitchcock, Charles L.; Freitas, Michael A.

    2016-01-01

    Based on the histological features and outcome, the current WHO classification separates thymomas into A, AB, B1, B2 and B3 subtypes. It is hypothesized that the type A thymomas are derived from the thymic medulla while the type B thymomas are derived from the cortex. Due to occasional histological overlap between the tumor subtypes creating difficulties in their separation, the aim of this study was to provide their proteomic characterization and identify potential immunohistochemical markers aiding in tissue diagnosis. Pair-wise comparison of neoplastic and normal thymus by liquid chromatography tandem mass spectrometry (LC-MS/MS) of formalin fixed paraffin embedded tissue revealed 61 proteins differentially expressed in thymomas compared to normal tissue. Hierarchical clustering showed distinct segregation of subtypes AB, B1 and B2 from that of A and B3. Most notably, desmoyokin, a protein that is encoded by the AHNAK gene, was associated with type A thymomas and medulla of normal thymus, by LC-MS/MS and immunohistochemistry. In this global proteomic characterization of the thymoma, several proteins unique to different thymic compartments and thymoma subtypes were identified. Among differentially expressed proteins, desmoyokin is a marker specific for thymic medulla and is potentially promising immunohistochemical marker in separation of type A and B3 thymomas. PMID:27832160

  14. Proteomic Signatures of Thymomas.

    Directory of Open Access Journals (Sweden)

    Linan Wang

    Full Text Available Based on the histological features and outcome, the current WHO classification separates thymomas into A, AB, B1, B2 and B3 subtypes. It is hypothesized that the type A thymomas are derived from the thymic medulla while the type B thymomas are derived from the cortex. Due to occasional histological overlap between the tumor subtypes creating difficulties in their separation, the aim of this study was to provide their proteomic characterization and identify potential immunohistochemical markers aiding in tissue diagnosis. Pair-wise comparison of neoplastic and normal thymus by liquid chromatography tandem mass spectrometry (LC-MS/MS of formalin fixed paraffin embedded tissue revealed 61 proteins differentially expressed in thymomas compared to normal tissue. Hierarchical clustering showed distinct segregation of subtypes AB, B1 and B2 from that of A and B3. Most notably, desmoyokin, a protein that is encoded by the AHNAK gene, was associated with type A thymomas and medulla of normal thymus, by LC-MS/MS and immunohistochemistry. In this global proteomic characterization of the thymoma, several proteins unique to different thymic compartments and thymoma subtypes were identified. Among differentially expressed proteins, desmoyokin is a marker specific for thymic medulla and is potentially promising immunohistochemical marker in separation of type A and B3 thymomas.

  15. A Substantial Fraction of Barley (Hordeum vulgare L. Low Phytic Acid Mutations Have Little or No Effect on Yield across Diverse Production Environments

    Directory of Open Access Journals (Sweden)

    Victor Raboy

    2015-04-01

    Full Text Available The potential benefits of the low phytic acid (lpa seed trait for human and animal nutrition, and for phosphorus management in non-ruminant animal production, are well documented. However, in many cases the lpa trait is associated with impaired seed or plant performance, resulting in reduced yield. This has given rise to the perception that the lpa trait is tightly correlated with reduced yield in diverse crop species. Here we report a powerful test of this correlation. We measured grain yield in lines homozygous for each of six barley (Hordeum vulgare L. lpa mutations that greatly differ in their seed phytic acid levels. Performance comparisons were between sibling wild-type and mutant lines obtained following backcrossing, and across two years in five Idaho (USA locations that greatly differ in crop yield potential. We found that one lpa mutation (Hvlpa1-1 had no detectable effect on yield and a second (Hvlpa4-1 resulted in yield losses of only 3.5%, across all locations. When comparing yields in three relatively non-stressful production environments, at least three lpa mutations (Hvlpa1-1, Hvlpa3-1, and Hvlpa4-1 typically had yields similar to or within 5% of the wild-type sibling isoline. Therefore in the case of barley, lpa mutations can be readily identified that when simply incorporated into a cultivar result in adequately performing lines, even with no additional breeding for performance within the lpa line. In conclusion, while some barley lpa mutations do impact field performance, a substantial fraction appears to have little or no effect on yield.

  16. Induction of secondary dormancy by hypoxia in barley grains and its hormonal regulation

    Science.gov (United States)

    Hoang, Hai Ha; Bailly, Christophe; Corbineau, Françoise; Leymarie, Juliette

    2013-01-01

    In barley, primary dormant grains did not germinate at 30 °C in air and at 15 °C in an atmosphere containing less than 10% O2, while they germinated easily at 15 °C in air. O2 tension in embryos measured with microsensors was 15.8% at 15 °C but only 0.3% at 30 °C. Incubation of grains at 30 °C is known to induce secondary dormancy in barley, and it was shown here that secondary dormancy was also induced by a 3 d treatment in O2 tensions lower than 10% at 15 °C. After such treatments, the grains lost their ability to germinate subsequently at 15 °C in air. During seed treatment in 5% O2, embryo abscisic acid (ABA) content decreased more slowly than in air and was not altered after transfer into air. Hypoxia did not alter the expression of ABA metabolism genes after 1 d, and induction of HvNCED2 occurred only after 3 d in hypoxia. Embryo sensitivity to ABA was similar in both primary and hypoxia-induced secondary dormant grains. Gibberellic acid (GA) metabolism genes were highly regulated and regulated earlier by the hypoxia treatment, with major changes in HvGA2ox3, HvGA3ox2 and HvGA20ox1 expression after 1 d, resulting in reduced GA signalling. Although a high temperature has an indirect effect on O2 availability, the data showed that it did not affect expression of prolyl-4-hydroxylases and that induction of secondary dormancy by hypoxia at 15 °C or by high temperature in air involved separate signalling pathways. Induction by hypoxia at 15 °C appears to be more regulated by GA and less by ABA than the induction by high temperature. PMID:23519728

  17. Barley (Hordeum vulgare L. yield with normal and coated urea in Pintag, Quito, Ecuador.

    Directory of Open Access Journals (Sweden)

    Andrea C. Lema-Aguirre

    2016-12-01

    Full Text Available The objective of this investigation was to evaluate the response of barley production to nitrogenized fertilization (NF and its impact on the protein content of the grain and the availability of nutrients on the soil. The study was carried out in two sites in Hacienda Valencia, in Pintag, Quito, Ecuador, between March 2014 and February 2015. A variety of INIAP Cañicapa 2003 was used, and the NF was done with normal urea and polymerized (urea + tiophosphate of N-nbutiltriamida. An experimental design of randomized full blocks in four repetitions of divided lots [the urea (normal and polymerized was used in the main lot and the NF (0, 30, 60, 90, 120, y 150 kg N/ha in the sub-lot]. 110 kg/ha of seed was used; 50% of the NF was applied three weeks after planting (broadcast and 50% eight weeks after. The type of urea did not affect the production (p>0,10, although the average was different between two sites (4,33 y 2,08 t/ha for sites 1 and 2, respectively. Excess of rain could have limit the effect on the urea type. On average a cuadratic response to NF was obtined, with an optimum dose of N (DON of 90 kg N/ha and a production of 3,41 t/ ha. This DON was similar to the dose of N recomended for barley in Ecuador. The NF augmented the protein content up to 14,50% (p<0,01 and acidi ed the ground, because the urea nitri cation produces H+.

  18. Improvement of quinoa and barley through induced mutations and biotechnology

    International Nuclear Information System (INIS)

    Siles, A.Z.; Miranda, L.S.

    2001-01-01

    The main cropping problems in the Bolivian highlands are the long growing period of barley, high degree of environmental influence on the performance of quinoa, and low soil moisture at sowing time, leading to low germination rate and poor stands, and frost or chilling damages. The program aimed to establish protocols for induction of mutations with X rays and chemical mutagens (NaN 3 , MNH, EMS) in quinoa, barley, native forage species and forest plants and to obtain mutant lines, especially in barley and quinoa; and to establish callus regeneration in quinoa and micropropagation of kenua (Polilepis). The project is still in its study stages, hence further evaluations are needed before firm conclusions are drawn. (author)

  19. Characterization of the porcine synovial fluid proteome and a comparison to the plasma proteome

    Directory of Open Access Journals (Sweden)

    Tue Bjerg Bennike

    2015-12-01

    In addition, we analyzed the proteome of human plasma, and compared the proteomes to the obtained porcine synovial fluid proteome. The proteome of the two body fluids were found highly similar, underlining the detected plasma derived nature of many synovial fluid components. The healthy porcine synovial fluid proteomics data, human rheumatoid arthritis synovial fluid proteomics data used in the method optimization, human plasma proteomics data, and search results, have been deposited to the ProteomeXchange Consortium via the PRIDE partner repository with the dataset identifier PXD000935.

  20. Gel-free proteomics reveal potential biomarkers of priming-induced salt tolerance in durum wheat.

    Science.gov (United States)

    Fercha, Azzedine; Capriotti, Anna Laura; Caruso, Giuseppe; Cavaliere, Chiara; Gherroucha, Hocine; Samperi, Roberto; Stampachiacchiere, Serena; Lagana, Aldo

    2013-10-08

    Seed priming has been successfully demonstrated to be an efficient method to improve crop productivity under stressful conditions. As a first step toward better understanding of the mechanisms underlying the priming-induced salt stress tolerance in durum wheat, and to overcome the limitations of the gel-based approach, a comparative gel-free proteomic analysis was conducted with durum wheat seed samples of varying vigor as generated by hydro- and ascorbate-priming treatments. Results indicate that hydro-priming was accompanied by significant changes of 72 proteins, most of which are involved in proteolysis, protein synthesis, metabolism and disease/defense response. Ascorbate-priming was, however, accompanied by significant changes of 83 proteins, which are mainly involved in protein metabolism, antioxidant protection, repair processes and, interestingly, in methionine-related metabolism. The present study provides new information for understanding how 'priming-memory' invokes seed stress tolerance. The current work describes the first study in which gel-free shotgun proteomics were used to investigate the metabolic seed protein fraction in durum wheat. A combined approach of protein fractionation, hydrogel nanoparticle enrichment technique, and gel-free shotgun proteomic analysis allowed us to identify over 380 proteins exhibiting greater molecular weight diversity (ranging from 7 to 258kDa). Accordingly, we propose that this approach could be useful to acquire a wider perspective and a better understanding of the seed proteome. In the present work, we employed this method to investigate the potential biomarkers of priming-induced salt tolerance in durum wheat. In this way, we identified several previously unrecognized proteins which were never been reported before, particularly for the ascorbate-priming treatment. These findings could provide new avenues for improving crop productivity, particularly under unfavorable environmental conditions. © 2013.

  1. High-Throughput Phenotyping of Wheat and Barley Plants Grown in Single or Few Rows in Small Plots Using Active and Passive Spectral Proximal Sensing

    OpenAIRE

    Barmeier, Gero;Schmidhalter, Urs

    2017-01-01

    In the early stages of plant breeding, breeders evaluate a large number of varieties. Due to limited availability of seeds and space, plot sizes may range from one to four rows. Spectral proximal sensors can be used in place of labour-intensive methods to estimate specific plant traits. The aim of this study was to test the performance of active and passive sensing to assess single and multiple rows in a breeding nursery. A field trial with single cultivars of winter barley and winter wheat w...

  2. INVITRO DIGESTIBILITY OF PROTEIN FROM BARLEY AND OTHER CEREALS

    DEFF Research Database (Denmark)

    Buchmann, N. B.

    1979-01-01

    An in vitro method for measuring barley protein digestibility is presented. Samples were first incubated with pepsin in HCl; pancreatin was then added concomitantly with a bacteriostatic borate buffer. After TCA-precipitation, soluble nitrogen was measured. The digestion was unaffected by accumul......An in vitro method for measuring barley protein digestibility is presented. Samples were first incubated with pepsin in HCl; pancreatin was then added concomitantly with a bacteriostatic borate buffer. After TCA-precipitation, soluble nitrogen was measured. The digestion was unaffected...

  3. Identification and characterization of barley RNA-directed RNA polymerases

    DEFF Research Database (Denmark)

    Madsen, Christian Toft; Stephens, Jennifer; Hornyik, Csaba

    2009-01-01

    in dicot species. In this report, we identi!ed and characterized HvRDR1, HvRDR2 and HvRDR6 genes in the monocot plant barley (Hordeum vulgare). We analysed their expression under various biotic and abiotic stresses including fungal and viral infections, salicylic acid treatment as well as during plant...... development. The different classes and subclasses of barley RDRs displayed contrasting expression patterns during pathogen challenge and development suggesting their involvement in speci!c regulatory pathways. Their response to heat and salicylic acid treatment suggests a conserved pattern of expression...

  4. Barley starch bioengineering for high phosphate and amylose

    DEFF Research Database (Denmark)

    Blennow, Per Gunnar Andreas; Carciofi, Massimiliano; Shaik, Shahnoor Sultana

    2011-01-01

    Starch is a biological polymer that can be industrially produced in massive amounts in a very pure form. Cereals is the main source for starch production and any improvement of the starch fraction can have a tremendous impact in food and feed applications. Barley ranks number four among cereal...... of the three genes encoding the starch-branching enzymes SBEI, SBEIIa, and SBEIIb using a triple RNAi chimeric hairpin construct we generated a virtually amylopectin-free barley. The grains of the transgenic lines were shrunken and had a yield of around 80% of the control line. The starch granules were...

  5. Biotin Carboxyl Carrier Protein in Barley Chloroplast Membranes

    DEFF Research Database (Denmark)

    Kannangara, C. G.; Jense, C J

    1975-01-01

    Biotin localized in barley chloroplast lamellae is covalently bound to a single protein with an approximate molecular weight of 21000. It contains one mole of biotin per mole of protein and functions as a carboxyl carrier in the acetyl-CoA carboxylase reaction. The protein was obtained...... by solubilization of the lamellae in phenol/acetic acid/8 M urea. Feeding barley seedlings with [14C]-biotin revealed that the vitamin is not degraded into respiratory substrates by the plant, but is specifically incorporated into biotin carboxyl carrier protein....

  6. The experience of induction of mutation on barley in Peru

    International Nuclear Information System (INIS)

    Romero Loli, M.; Pozo Cardenas, M.; Gomez Pando, L.

    1984-01-01

    Work on induced mutation of barley was started in 1978 under the Programme of Cereal Improvement. Barley was irradiated with gamma radiation at doses of 12, 15, 18, 21, and 24 Krad. Radiation doses of 18 and 21 Krad gave the highest frequency of albino and cloroticos mutants. Induced mutation is being carried out in different parts of the country to develop mutants having early germination property. These mutants will play an important role in the late cultivation in the mountain areas of Peru

  7. Stability and inheritance of endosperm-specific expression of two transgenes in progeny from crossing independently transformed barley plants.

    Science.gov (United States)

    Choi, Hae-Woon; Yu, Xiao-Hong; Lemaux, Peggy G; Cho, Myeong-Je

    2009-08-01

    To study stability and inheritance of two different transgenes in barley, we crossed a homozygous T(8) plant, having uidA (or gus) driven by the barley endosperm-specific B(1)-hordein promoter (localized in the near centromeric region of chromosome 7H) with a second homozygous T(4) plant, having sgfp(S65T) driven by the barley endosperm-specific D-hordein promoter (localized on the subtelomeric region of chromosome 2H). Both lines stably expressed the two transgenes in the generations prior to the cross. Three independently crossed F(1) progeny were analyzed by PCR for both uidA and sgfp(S65T) in each plant and functional expression of GUS and GFP in F(2) seeds followed a 3:1 Mendelian segregation ratio and transgenes were localized by FISH to the same location as in the parental plants. FISH was used to screen F(2) plants for homozygosity of both transgenes; four homozygous plants were identified from the two crossed lines tested. FISH results showing presence of transgenes were consistent with segregation ratios of expression of both transgenes, indicating that the two transgenes were expressed without transgene silencing in homozygous progeny advanced to the F(3) and F(4) generations. Thus, even after crossing independently transformed, homozygous parental plants containing a single, stably expressed transgene, progeny were obtained that continued to express multiple transgenes through generation advance. Such stability of transgenes, following outcrossing, is an important attribute for trait modification and for gene flow studies.

  8. Soybeans grown in the Chernobyl area produce fertile seeds that have increased heavy metal resistance and modified carbon metabolism.

    Science.gov (United States)

    Klubicová, Katarína; Danchenko, Maksym; Skultety, Ludovit; Berezhna, Valentyna V; Uvackova, Lubica; Rashydov, Namik M; Hajduch, Martin

    2012-01-01

    Plants grow and reproduce in the radioactive Chernobyl area, however there has been no comprehensive characterization of these activities. Herein we report that life in this radioactive environment has led to alteration of the developing soybean seed proteome in a specific way that resulted in the production of fertile seeds with low levels of oil and β-conglycinin seed storage proteins. Soybean seeds were harvested at four, five, and six weeks after flowering, and at maturity from plants grown in either non-radioactive or radioactive plots in the Chernobyl area. The abundance of 211 proteins was determined. The results confirmed previous data indicating that alterations in the proteome include adaptation to heavy metal stress and mobilization of seed storage proteins. The results also suggest that there have been adjustments to carbon metabolism in the cytoplasm and plastids, increased activity of the tricarboxylic acid cycle, and decreased condensation of malonyl-acyl carrier protein during fatty acid biosynthesis.

  9. Soybeans Grown in the Chernobyl Area Produce Fertile Seeds that Have Increased Heavy Metal Resistance and Modified Carbon Metabolism

    Science.gov (United States)

    Klubicová, Katarína; Danchenko, Maksym; Skultety, Ludovit; Berezhna, Valentyna V.; Uvackova, Lubica; Rashydov, Namik M.; Hajduch, Martin

    2012-01-01

    Plants grow and reproduce in the radioactive Chernobyl area, however there has been no comprehensive characterization of these activities. Herein we report that life in this radioactive environment has led to alteration of the developing soybean seed proteome in a specific way that resulted in the production of fertile seeds with low levels of oil and β-conglycinin seed storage proteins. Soybean seeds were harvested at four, five, and six weeks after flowering, and at maturity from plants grown in either non-radioactive or radioactive plots in the Chernobyl area. The abundance of 211 proteins was determined. The results confirmed previous data indicating that alterations in the proteome include adaptation to heavy metal stress and mobilization of seed storage proteins. The results also suggest that there have been adjustments to carbon metabolism in the cytoplasm and plastids, increased activity of the tricarboxylic acid cycle, and decreased condensation of malonyl-acyl carrier protein during fatty acid biosynthesis. PMID:23110204

  10. Soybeans grown in the Chernobyl area produce fertile seeds that have increased heavy metal resistance and modified carbon metabolism.

    Directory of Open Access Journals (Sweden)

    Katarína Klubicová

    Full Text Available Plants grow and reproduce in the radioactive Chernobyl area, however there has been no comprehensive characterization of these activities. Herein we report that life in this radioactive environment has led to alteration of the developing soybean seed proteome in a specific way that resulted in the production of fertile seeds with low levels of oil and β-conglycinin seed storage proteins. Soybean seeds were harvested at four, five, and six weeks after flowering, and at maturity from plants grown in either non-radioactive or radioactive plots in the Chernobyl area. The abundance of 211 proteins was determined. The results confirmed previous data indicating that alterations in the proteome include adaptation to heavy metal stress and mobilization of seed storage proteins. The results also suggest that there have been adjustments to carbon metabolism in the cytoplasm and plastids, increased activity of the tricarboxylic acid cycle, and decreased condensation of malonyl-acyl carrier protein during fatty acid biosynthesis.

  11. Proteomics of early zebrafish embryos

    Directory of Open Access Journals (Sweden)

    Heisenberg Carl-Philipp

    2006-01-01

    Full Text Available Abstract Background Zebrafish (D. rerio has become a powerful and widely used model system for the analysis of vertebrate embryogenesis and organ development. While genetic methods are readily available in zebrafish, protocols for two dimensional (2D gel electrophoresis and proteomics have yet to be developed. Results As a prerequisite to carry out proteomic experiments with early zebrafish embryos, we developed a method to efficiently remove the yolk from large batches of embryos. This method enabled high resolution 2D gel electrophoresis and improved Western blotting considerably. Here, we provide detailed protocols for proteomics in zebrafish from sample preparation to mass spectrometry (MS, including a comparison of databases for MS identification of zebrafish proteins. Conclusion The provided protocols for proteomic analysis of early embryos enable research to be taken in novel directions in embryogenesis.

  12. The human proteomics initiative (HPI).

    Science.gov (United States)

    O'Donovan, C; Apweiler, R; Bairoch, A

    2001-05-01

    The availability of the human genome sequence has enabled the exploration and exploitation of the human genome and proteome to begin. Research has now focussed on the annotation of the genome and in particular of the proteome. With expert annotation extracted from the literature by biologists as the foundation, it has been possible to expand into the areas of data mining and automatic annotation. With further development and integration of pattern recognition methods and the application of alignments clustering, proteome analysis can now be provided in a meaningful way. These various approaches have been integrated to attach, extract and combine as much relevant information as possible to the proteome. This resource should be valuable to users from both research and industry.

  13. Influence of NaCl-Induced Salinity and Cd Toxicity on Respiration Activity and Cd Availability to Barley Plants in Farmyard Manure-Amended Soil

    Directory of Open Access Journals (Sweden)

    Adel R. A. Usman

    2015-01-01

    Full Text Available The objective of this study was to evaluate the Cd availability and toxicity as affected by NaCl-induced salinity and farmyard manure addition. The Cd availability and toxicity were investigated in greenhouse pot and incubation experiments were conducted on a calcareous loamy sand soil contaminated with Cd (0.5, 1.5, 3, 6, 12, and 24 mg kg−1 of soil and amended with two rates of 0.0 and 30 g farmyard manure (FYM kg−1. Barley seeds (Hordeum vulgare L. were sown in pots and irrigated with water containing different levels of salinity (0, 30, 60, and 120 mM NaCl. The results revealed that the DTPA-extractable Cd and its content in barley plant shoots tended to increase in line as Cd was applied and salt levels increased. Elevated decreases in the soil basal respiration with increased Cd applied and NaCl-induced salinity were found. However, applying FYM significantly reduced Cd availability and increased plant growth and soil respiration activity. The results clearly showed that adding farmyard manure as soil organic amendment decreased the availability of Cd to barley plants and mitigated the toxicity of both Cd and salinity to soil microbial activity.

  14. Improvement of the agronomic traits of a wheat-barley centric fusion by introgressing the 3HS.3BL translocation into a modern wheat cultivar.

    Science.gov (United States)

    Türkösi, Edina; Farkas, András; Aranyi, Nikolett Réka; Hoffmann, Borbála; Tóth, Viola; Molnár-Láng, Márta

    2014-11-01

    The 3HS.3BL spontaneous Robertsonian translocation obtained from the progenies of wheat-barley (Chinese Spring × Betzes) hybrids backcrossed with wheat line Mv9kr1 was transferred into the modern Martonvásár wheat cultivar Mv Bodri. The translocation was identified with molecular cytogenetic methods. The inheritance of the translocation was traced using genomic in situ hybridization. Fluorescence in situ hybridization using barley subtelomeric (HvT01) and centromere-specific [(AGGGAG)4] repetitive DNA probes confirmed that the complete barley chromosome arm was involved in the Robertsonian translocation. The wheat-specific repetitive DNA probes identified the presence of the whole wheat genome, except the short arm of the 3B chromosome. Genotypes homozygous for the centric fusion were selected, after which morphological analysis was performed on the plants and the yield components were measured in the field during two consecutive vegetative seasons. The introgression of the 3HS.3BL translocation into the modern wheat cultivar Mv Bodri significantly reduced the plant height due to the incorporation of the dwarfing allele RhtD1b. The presence of the 3HS.3BL translocation in the Mv9kr1 and Mv Bodri wheat background improved tillering and seeds per plant productivity in field experiments carried out in Martonvásár and Keszthely, Hungary.

  15. Effect of Chia and Teff Supplement on Dietary Fibre Content, Non‑fermented Dough and Bread Characteristics from Wheat and Wheat‑Barley Flours

    Directory of Open Access Journals (Sweden)

    Ivan Švec

    2017-01-01

    Full Text Available To elevate dietary fibre content in wheat bread, two additions of barley flour were tested (30 % and 50 %, and further 5 % or 10 % of chia or teff wholemeals. Chia elevated dietary fibre content more effectively than teff did (up to 6.41 % and 4.29 %, respectively. Non‑gluten nature of proteins in non‑traditional raw materials also affected farinograph, amylograph and mixolab proof results. Water absorption increased about 10 % in total, especially owing to teff presence in composite flour. All three alternative crops decelerated dough development and prolonged its stability, but dough softening degree depended on their combination. Higher water absorption was reflected in viscosity rise during amylograph testing. Using mixolab equipment, significantly more accurate differentiation of tested composites was reached, both in phase of dough kneading and registration of viscosity during heating and cooling. Contrary to this, any statistically verifiable difference was observed between chia or teff wholemeal variants from white of dark seeds. By variance analysis, some rheological parameters (dough softening degree, torque point C5, mixolab energy together with specific bread volume were identified as principal for samples distinguishing. In terms of flour and bread quality, barley flour portion had a prevailing effect for chia tri‑composites. Reversely, quality of flour blends containing teff was dependent on both barley flour and teff wholemeal portion and type.

  16. Pre-sowing laser biostymulation of seeds of cultivated plants and its results in agrotechnics

    International Nuclear Information System (INIS)

    Koper, R.

    1994-01-01

    Studies carried out in University of Agriculture in Lublin made it possible to elaborate our own technology of making laser biostimulation of seeds of selected cultivated plants. The machine for laser biostimulation has been constructed. Pre-sowing laser biostimulation of seeds of some studied plants resulted in the following increase of crops: maize from 10 to 20%, spring wheat 20-30%, spring barley 20-25%, sugar beets 10-35%. Better plant seedlings, higher resistance to cold and earlier plant maturation are the additional effects of pre-sowing laser biostimulation of plants. In the case of corn the vegetation period is shortened by about 10 days. The quality of plants grown from the seeds which underwent the laser biostimulation is also higher. Initial studies proved that it is possible to diminish nitrogen fertilization when applying laser biostimulation of seeds without essential decrease in crops. (author). 8 refs, 2 figs

  17. Nitrogen application in amenity-types of Lolium perenne L. grown for seed production

    DEFF Research Database (Denmark)

    Deleuran, Lise Christina; Boelt, Birte

    1998-01-01

    Three amenity-type perennial ryegrass (Lolium perenne) cultivars Elka, Taya and Pippin were undersown in 1991-93 in spring barley at Roskilde and Rnhave, Denmark, and given 0, 30 or 60 kg N ha-1 in autumn combined with 70, 100 or 130 kg N ha-1 in spring. Seed yield did not differ among cultivars...... or locations but was significantly increased by autumn N, spring N and their interaction. The application of 30 or 60 kg N ha-1 in autumn increased seed yield, but this increase was lower than that for a single spring application, provided that the N applied in spring was 100 kg ha-1 or greater. Shoot N...... content varied considerably among years but not cultivars. Correlation analysis of N content, yield components and seed yield revealed that autumn N application resulted in an increasing N content in shoots, fertile tiller number and seed weight. However, these two components were negatively correlated...

  18. Some quality attributes of low fat ice cream substituted with hulless barley flour and barley ß-glucan

    OpenAIRE

    Abdel-Haleem, Amal M. H.; Awad, R. A.

    2015-01-01

    The purpose of this paper is to investigate some quality attributes of low fat ice cream (LFIC) substituted with hulless barley flour (HBF) and barley ß-glucan (BBG). The methodology included in this paper is based on adding HBF (1, 2, 3 and 4 %) as a partial substitution of skim milk powder (SMP) and BBG (0.40 %) as a complete substitution of carboxy methyl cellulose (CMC). All mixes and resultant ice cream samples were evaluated for their physicochemical properties as well as the sensory qu...

  19. The Succinated Proteome

    Energy Technology Data Exchange (ETDEWEB)

    Merkley, Eric D.; Metz, Thomas O.; Smith, Richard D.; Baynes, John; Frizell, Norma

    2014-03-30

    Succination is a chemical modification of cysteine in protein by the Krebs cycle intermediate, fumarate, yielding S-(2-succino)cysteine (2SC). Intracellular fumarate concentration and succination of proteins are increased by hyperpolarization of the inner mitochondrial membrane, in concert with mitochondrial, endoplasmic reticulum (ER) and oxidative stress in adipocytes grown in high glucose medium and in adipose tissue in obesity and diabetes. Increased succination of proteins is also detected in the kidney of a fumarase conditional knock-out mouse which develops renal tumors. Keap1, the gatekeeper of the antioxidant response, was identified as a major succinated protein in renal cancer cells, suggesting that succination may play a role in activation of the antioxidant response. A wide range of proteins is subject to succination, including enzymes, adipokines, cytoskeletal proteins and ER chaperones with functional cysteine residues. There is also significant overlap between succinated and glutathionylated proteins, and with proteins containing cysteine residues that are readily oxidized to the sulfenic (cysteic) acid. Succination of adipocyte proteins is inhibited by uncouplers, which discharge the mitochondrial membrane potential (Δψm) and by ER stress inhibitors. 2SC serves as a biomarker of mitochondrial stress or dysfunction in chronic diseases, such as obesity, diabetes and cancer, and recent studies suggest that succination is a mechanistic link between mitochondrial dysfunction, oxidative and ER stress, and cellular progression toward apoptosis. In this article, we review the history of the succinated proteome and the challenges associated with measuring this non-enzymatic post-translational modification of proteins by proteomics approaches.

  20. Evaluation of Some Chemical Characteristics of barley Mutants induced by Gamma Irradiation

    International Nuclear Information System (INIS)

    Abdeldaiem, M.H.; Ali, H.G.M.

    2011-01-01

    This study aims to evaluate the antioxidant activity of acetonic extract from some barley mutations (P1, P2 and P3 varieties) induced by gamma irradiation as compared with local barley variety (Hordeum vulgare L.) as control. Barley samples were obtained from Plant Breeding Unit, Plant Research Department, Nuclear Research Centre, Atomic Energy Authority, Egypt. The measurements of the antioxidant activity using a radical scavenging capacity against 2,2-diphenyl-1-picrylhydrazyl (DPPH) and ?-carotene bleaching assay were assessed in the barley acetonic extract. Furthermore, amino acids composition of barley mutant samples was determined. The results indicated that the acetonic extract of barley varieties under investigation possess marked antioxidant and anti radical capacities. The data showed that the acetonic extract of barley mutant P1 possessed the higher antioxidant activity as compared with the antioxidant activities of acetonic extract from control and other barley mutant samples. Meanwhile, the flour of barley mutations under investigation contained trace elements of iron, copper and manganese. GC and mass analyses were used to identify the active compound of extract of control and mutant barley samples. The results illustrated that the main components of the control sample of barely extract was pentane, 3 methyl (47.73%) while gamma irradiation caused noticeable change in the relative percentage of some components of acetonic extract from barley mutant samples. Moreover, the results presented that changes were disappeared, and some compounds of the acetonic extract from mutant barley samples were appeared. Furthermore, the results exhibited that barley flour supplemented with wheat flour at 30% level produced acceptable cookies. Accordingly, the phenolic constituents of barley acetonic extract induced by gamma irradiation, especially samples of P1 mutant, may have a future role as ingredients in the development of functional foods.