WorldWideScience

Sample records for barley phloem sap

  1. A phloem-sap feeder mixes phloem and xylem sap to regulate osmotic potential.

    Science.gov (United States)

    Pompon, Julien; Quiring, Dan; Goyer, Claudia; Giordanengo, Philippe; Pelletier, Yvan

    2011-09-01

    Phloem-sap feeders (Hemiptera) occasionally consume the dilute sap of xylem, a behaviour that has previously been associated with replenishing water balance following dehydration. However, a recent study reported that non-dehydrated aphids ingested xylem sap. Here, we tested the hypothesis that the consumption of xylem sap, which has a low osmolality, is a general response to osmotic stresses other than dehydration. Alate aphids were subjected to different treatments and subsequently transferred onto a plant, where electrical penetration graph (EPG) was used to estimate durations of passive phloem sap consumption and active sucking of xylem sap. The proportion of time aphids fed on xylem sap (i.e., time spent feeding on xylem sap/total time spent feeding on phloem plus xylem sap) was used as a proxy of the solute concentration of the uptake. The proportion of time alate aphids fed on xylem sap increased: (1) with the time spent imbibing an artificial diet containing a solution of sucrose, which is highly concentrated in phloem sap and is mainly responsible for the high osmotic potential of phloem sap; (2) with the osmotic potential of the artificial diet, when osmotic potential excess was not related to sucrose concentration; and (3) when aphids were deprived of primary symbionts, a condition previously shown to lead to a higher haemolymph osmotic potential. All our results converge to support the hypothesis that xylem sap consumption contributes to the regulation of the osmotic potential in phloem-sap feeders.

  2. Protein extraction from xylem and phloem sap.

    Science.gov (United States)

    Kehr, Julia; Rep, Martijn

    2007-01-01

    It is well known that phloem and xylem vessels transport small nutrient molecules over long distances in higher plants. The finding that proteins also occur in both transport fluids was unexpected, and the function of most of these proteins is not yet well understood. This chapter outlines how proteins can be obtained and purified from xylem and phloem saps to perform subsequent proteomic analyses.

  3. Plant fluid proteomics: Delving into the xylem sap, phloem sap and apoplastic fluid proteomes

    Science.gov (United States)

    The phloem sap, xylem sap and apoplastic fluid play key roles in long and short distance transport of signals and nutrients, and act as a barrier against local and systemic pathogen infection. Among other components, these plant fluids contain proteins which are likely to be important players in the...

  4. Collection and chemical composition of phloem sap from Citrus sinensis L. Osbeck (sweet orange).

    Science.gov (United States)

    Hijaz, Faraj; Killiny, Nabil

    2014-01-01

    Through utilizing the nutrient-rich phloem sap, sap feeding insects such as psyllids, leafhoppers, and aphids can transmit many phloem-restricted pathogens. On the other hand, multiplication of phloem-limited, uncultivated bacteria such as Candidatus Liberibacter asiaticus (CLas) inside the phloem of citrus indicates that the sap contains all the essential nutrients needed for the pathogen growth. The phloem sap composition of many plants has been studied; however, to our knowledge, there is no available data about citrus phloem sap. In this study, we identified and quantified the chemical components of phloem sap from pineapple sweet orange. Two approaches (EDTA enhanced exudation and centrifugation) were used to collect phloem sap. The collected sap was derivatized with methyl chloroformate (MCF), N-methyl-N- [tert-butyl dimethylsilyl]-trifluroacetamide (MTBSTFA), or trimethylsilyl (TMS) and analyzed with GC-MS revealing 20 amino acids and 8 sugars. Proline, the most abundant amino acid, composed more than 60% of the total amino acids. Tryptophan, tyrosine, leucine, isoleucine, and valine, which are considered essential for phloem sap-sucking insects, were also detected. Sucrose, glucose, fructose, and inositol were the most predominant sugars. In addition, seven organic acids including succinic, fumaric, malic, maleic, threonic, citric, and quinic were detected. All compounds detected in the EDTA-enhanced exudate were also detected in the pure phloem sap using centrifugation. The centrifugation technique allowed estimating the concentration of metabolites. This information expands our knowledge about the nutrition requirement for citrus phloem-limited bacterial pathogen and their vectors, and can help define suitable artificial media to culture them.

  5. Plant fluid proteomics: Delving into the xylem sap, phloem sap and apoplastic fluid proteomes.

    Science.gov (United States)

    Rodríguez-Celma, Jorge; Ceballos-Laita, Laura; Grusak, Michael A; Abadía, Javier; López-Millán, Ana-Flor

    2016-08-01

    The phloem sap, xylem sap and apoplastic fluid play key roles in long and short distance transport of signals and nutrients, and act as a barrier against local and systemic pathogen infection. Among other components, these plant fluids contain proteins which are likely to be important players in their functionalities. However, detailed information about their proteomes is only starting to arise due to the difficulties inherent to the collection methods. This review compiles the proteomic information available to date in these three plant fluids, and compares the proteomes obtained in different plant species in order to shed light into conserved functions in each plant fluid. Inter-species comparisons indicate that all these fluids contain the protein machinery for self-maintenance and defense, including proteins related to cell wall metabolism, pathogen defense, proteolysis, and redox response. These analyses also revealed that proteins may play more relevant roles in signaling in the phloem sap and apoplastic fluid than in the xylem sap. A comparison of the proteomes of the three fluids indicates that although functional categories are somewhat similar, proteins involved are likely to be fluid-specific, except for a small group of proteins present in the three fluids, which may have a universal role, especially in cell wall maintenance and defense. This article is part of a Special Issue entitled: Plant Proteomics--a bridge between fundamental processes and crop production, edited by Dr. Hans-Peter Mock. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Occurrence of free fatty acids in the phloem sap of different citrus varieties.

    Science.gov (United States)

    Valim, Maria Filomena; Killiny, Nabil

    2017-06-03

    Candidatus Liberibacter asiaticus is a phloem restricted bacterium that causes citrus greening disease or huanglongbing (HLB), a major treat to commercial citrus production in Florida. It is transmitted by the Asian citrus psyllid, a phloem sap-feeding insect. Studies conducted on the composition of citrus phloem sap revealed the presence amino acids, organic acids and sugars and of low amounts of free fatty acids. In the present study, the phloem sap of 12 citrus varieties with different degrees of tolerance to HLB were extracted with ethyl acetate and analyzed by GC-MS after derivatization with boron trifluoride, a fatty acid-specific reagent. Nine free fatty acids were detected in all varieties. Of the 9 fatty acids detected, only capric acid was significantly different among varieties.

  7. Genetic variability of the phloem sap metabolite content of maize (Zea mays L.) during the kernel-filling period.

    Science.gov (United States)

    Yesbergenova-Cuny, Zhazira; Dinant, Sylvie; Martin-Magniette, Marie-Laure; Quilleré, Isabelle; Armengaud, Patrick; Monfalet, Priscilla; Lea, Peter J; Hirel, Bertrand

    2016-11-01

    Using a metabolomic approach, we have quantified the metabolite composition of the phloem sap exudate of seventeen European and American lines of maize that had been previously classified into five main groups on the basis of molecular marker polymorphisms. In addition to sucrose, glutamate and aspartate, which are abundant in the phloem sap of many plant species, large quantities of aconitate and alanine were also found in the phloem sap exudates of maize. Genetic variability of the phloem sap composition was observed in the different maize lines, although there was no obvious relationship between the phloem sap composition and the five previously classified groups. However, following hierarchical clustering analysis there was a clear relationship between two of the subclusters of lines defined on the basis of the composition of the phloem sap exudate and the earliness of silking date. A comparison between the metabolite contents of the ear leaves and the phloem sap exudates of each genotype, revealed that the relative content of most of the carbon- and nitrogen-containing metabolites was similar. Correlation studies performed between the metabolite content of the phloem sap exudates and yield-related traits also revealed that for some carbohydrates such as arabitol and sucrose there was a negative or positive correlation with kernel yield and kernel weight respectively. A posititive correlation was also found between kernel number and soluble histidine. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  8. Effects of Fe deficiency on the protein profile of Brassica napus phloem sap.

    Science.gov (United States)

    Gutierrez-Carbonell, Elain; Lattanzio, Giuseppe; Albacete, Alfonso; Rios, Juan José; Kehr, Julia; Abadía, Anunciación; Grusak, Michael A; Abadía, Javier; López-Millán, Ana Flor

    2015-11-01

    The aim of this work was to study the effect of Fe deficiency on the protein profile of phloem sap exudates from Brassica napus using 2DE (IEF-SDS-PAGE). The experiment was repeated thrice and two technical replicates per treatment were done. Phloem sap purity was assessed by measuring sugar concentrations. Two hundred sixty-three spots were consistently detected and 15.6% (41) of them showed significant changes in relative abundance (22 decreasing and 19 increasing) as a result of Fe deficiency. Among them, 85% (35 spots), were unambiguously identified. Functional categories containing the largest number of protein species showing changes as a consequence of Fe deficiency were signaling and regulation (32%), and stress and redox homeostasis (17%). The Phloem sap showed a higher oxidative stress and significant changes in the hormonal profile as a result of Fe deficiency. Results indicate that Fe deficiency elicits major changes in signaling pathways involving Ca and hormones, which are generally associated with flowering and developmental processes, causes an alteration in ROS homeostasis processes, and induces decreases in the abundances of proteins involved in sieve element repair, suggesting that Fe-deficient plants may have an impaired capacity to heal sieve elements upon injury.

  9. Evolutionary conservation of candidate osmoregulation genes in plant phloem sap-feeding insects.

    Science.gov (United States)

    Jing, X; White, T A; Luan, J; Jiao, C; Fei, Z; Douglas, A E

    2016-06-01

    The high osmotic pressure generated by sugars in plant phloem sap is reduced in phloem-feeding aphids by sugar transformations and facilitated water flux in the gut. The genes mediating these osmoregulatory functions have been identified and validated empirically in the pea aphid Acyrthosiphon pisum: sucrase 1 (SUC1), a sucrase in glycoside hydrolase family 13 (GH13), and aquaporin 1 (AQP1), a member of the Drosophila integral protein (DRIP) family of aquaporins. Here, we describe molecular analysis of GH13 and AQP genes in phloem-feeding representatives of the four phloem-feeding groups: aphids (Myzus persicae), coccids (Planococcus citri), psyllids (Diaphorina citri, Bactericera cockerelli) and whiteflies (Bemisia tabaci MEAM1 and MED). A single candidate GH13-SUC gene and DRIP-AQP gene were identified in the genome/transcriptome of most insects tested by the criteria of sequence motif and gene expression in the gut. Exceptionally, the psyllid Ba. cockerelli transcriptome included a gut-expressed Pyrocoelia rufa integral protein (PRIP)-AQP, but has no DRIP-AQP transcripts, suggesting that PRIP-AQP is recruited for osmoregulatory function in this insect. This study indicates that phylogenetically related SUC and AQP genes may generally mediate osmoregulatory functions in these diverse phloem-feeding insects, and provides candidate genes for empirical validation and development as targets for osmotic disruption of pest species. © 2016 The Authors. Insect Molecular Biology published by John Wiley & Sons Ltd on behalf of The Royal Entomological Society.

  10. The amino acid distribution in rachis xylem sap and phloem exudate of Vitis vinifera 'Cabernet Sauvignon' bunches.

    Science.gov (United States)

    Gourieroux, Aude M; Holzapfel, Bruno P; Scollary, Geoffrey R; McCully, Margaret E; Canny, Martin J; Rogiers, Suzy Y

    2016-08-01

    Amino acids are essential to grape berry and seed development and they are transferred to the reproductive structures through the phloem and xylem from various locations within the plant. The diurnal and seasonal dynamics of xylem and phloem amino acid composition in the leaf petiole and bunch rachis of field-grown Cabernet Sauvignon are described to better understand the critical periods for amino acid import into the berry. Xylem sap was extracted by the centrifugation of excised leaf petioles and rachises, while phloem exudate was collected by immersing these structures in an ethylenediaminetetraacetic acid (EDTA) buffer. Glutamine and glutamic acid were the predominant amino acids in the xylem sap of both grapevine rachises and petioles, while arginine and glycine were the principal amino acids of the phloem exudate. The amino acid concentrations within the xylem sap and phloem exudate derived from these structures were greatest during anthesis and fruit set, and a second peak occurred within the rachis phloem at the onset of ripening. The concentrations of the amino acids within the phloem and xylem sap of the rachis were highest just prior to or after midnight while the flow of sugar through the rachis phloem was greatest during the early afternoon. Sugar exudation rates from the rachis was greater than that of the petiole phloem between anthesis and berry maturity. In summary, amino acid and sugar delivery through the vasculature to grape berries fluctuates over the course of the day as well as through the season and is not necessarily related to levels near the source. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  11. Comparison of sugars, iridoid glycosides and amino acids in nectar and phloem sap of Maurandya barclayana, Lophospermum erubescens, and Brassica napus.

    Science.gov (United States)

    Lohaus, Gertrud; Schwerdtfeger, Michael

    2014-01-01

    Floral nectar contains sugars and amino acids to attract pollinators. In addition, nectar also contains different secondary compounds, but little is understood about their origin or function. Does nectar composition reflect phloem composition, or is nectar synthesized and/or modified in nectaries? Studies where both, the nectar as well as the phloem sap taken from the same plant species were analyzed in parallel are rare. Therefore, phloem sap and nectar from different plant species (Maurandya barclayana, Lophospermum erubescens, and Brassica napus) were compared. Nectar was collected with microcapillary tubes and phloem sap with the laser-aphid-stylet technique. The nectar of all three plant species contained high amounts of sugars with different percentages of glucose, fructose, and sucrose, whereas phloem sap sugars consisted almost exclusively of sucrose. One possible reason for this could be the activity of invertases in the nectaries. The total concentration of amino acids was much lower in nectars than in phloem sap, indicating selective retention of nitrogenous solutes during nectar formation. Nectar amino acid concentrations were negatively correlated with the nectar volumes per flower of the different plant species. Both members of the tribe Antirrhineae (Plantaginaceae) M. barclayana and L. erubescens synthesized the iridoid glycoside antirrhinoside. High amounts of antirrhinoside were found in the phloem sap and lower amounts in the nectar of both plant species. The parallel analyses of nectar and phloem sap have shown that all metabolites which were found in nectar were also detectable in phloem sap with the exception of hexoses. Otherwise, the composition of both aqueous solutions was not the same. The concentration of several metabolites was lower in nectar than in phloem sap indicating selective retention of some metabolites. Furthermore, the existence of antirrhinoside in nectar could be based on passive secretion from the phloem.

  12. Mixed xylem and phloem sap ingestion in sheath-feeders as normal dietary behavior: Evidence from the leafhopper Scaphoideus titanus.

    Science.gov (United States)

    Chuche, Julien; Sauvion, Nicolas; Thiéry, Denis

    2017-10-01

    In phytophagous piercing-sucking insects, salivary sheath-feeding species are often described as xylem- or phloem-sap feeding specialists. Because these two food sources have very different characteristics, two feeding tactics are often associated with this supposed specialization. Studying the feeding behavior of insects provides substantial information on their biology, ecology, and evolution. Furthermore, study of feeding behavior is of primary importance to elucidate the transmission ability of insects that act as vectors of plant pathogens. In this study, we compared the durations of ingestion performed in xylem versus phloem by a leafhopper species, Scaphoideus titanus Ball, 1932. This was done by characterizing and statistically analyzing electrical signals recorded using the electropenetrography technique, derived from the feeding behaviors of males and females. We identified three groups of S. titanus based on their feeding behavior: 1) a group that reached the phloem quickly and probed for a longer time in phloem tissue than the other groups, 2) a group that reached the xylem quickly and probed for a longer time in xylem tissue than the other groups, and 3) a group where individuals did not ingest much sap. In addition, the numbers and durations of waveforms representing ingestion of xylem and phloem saps differed significantly depending on the sex of the leafhopper, indicating that the two sexes exhibit different feeding behaviors. Males had longer phloem ingestion events than did females, which indicates that males are greater phloem feeders than females. These differences are discussed, specifically in relation to hypotheses about evolution of sap feeding and phytoplasma transmission from plant to plant. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. 0.7 and 3 T MRI and sap flow in intact trees: xylem and phloem in action

    NARCIS (Netherlands)

    Homan, N.; Windt, C.W.; Vergeldt, F.J.; Gerkema, E.; As, van H.

    2007-01-01

    Dedicated magnetic resonance imaging (MRI) hardware is described that allows imaging of sap flow in intact trees with a maximal trunk diameter of 4 cm and height of several meters. This setup is used to investigate xylem and phloem flow in an intact tree quantitatively. Due to the fragile gradients

  14. 0.7 and 3 T MRI and sap flow in intact trees: xylem and phloem in action

    NARCIS (Netherlands)

    Homan, N.; Windt, C.W.; Vergeldt, F.J.; Gerkema, E.; As, van H.

    2007-01-01

    Dedicated magnetic resonance imaging (MRI) hardware is described that allows imaging of sap flow in intact trees with a maximal trunk diameter of 4 cm and height of several meters. This setup is used to investigate xylem and phloem flow in an intact tree quantitatively. Due to the fragile gradients

  15. Nucleotides, micro- and macro-nutrients, limonoids, flavonoids, and hydroxycinnamates composition in the phloem sap of sweet orange.

    Science.gov (United States)

    Hijaz, Faraj; Manthey, John A; Van der Merwe, Deon; Killiny, Nabil

    2016-06-02

    Currently, the global citrus production is declining due to the spread of Huanglongbing (HLB). HLB, otherwise known as citrus greening, is caused by Candidatus Liberibacter asiaticus (CLas) and is transmitted by the Asian citrus psyllids (ACP), Diaphorina citri Kuwayama. ACP transmits CLas bacterium while feeding on the citrus phloem sap. Multiplication of CLas in the phloem of citrus indicates that the sap contains all the essential nutrients needed for CLas. In this study, we investigated the micro- and macro-nutrients, nucleotides, and others secondary metabolites of phloem sap from pineapple sweet orange. The micro- and macro-nutrients were analyzed using inductively coupled plasma-mass spectroscopy (ICP-MS) and inductively coupled plasma-optical emission spectroscopy (ICP-OES). Nucleotides and other secondary metabolites analysis was accomplished by reversed phase HPLC coupled with UV, fluorescence detection, or negative mode electrospray ionization mass spectrometry (ESI-MS). Calcium (89 mM) was the highest element followed by potassium (38.8 mM) and phosphorous (24 mM). Magnesium and sulfur were also abundant and their concentrations were 15 and 9 mM, respectively. The rest of the elements were found in low amounts (sap.

  16. Chronological Sequence of Leaf Phenology, Xylem and Phloem Formation and Sap Flow of Quercus pubescens from Abandoned Karst Grasslands.

    Science.gov (United States)

    Lavrič, Martina; Eler, Klemen; Ferlan, Mitja; Vodnik, Dominik; Gričar, Jožica

    2017-01-01

    Intra-annual variations in leaf development, radial growth, including the phloem part, and sap flow have rarely been studied in deciduous trees from drought-prone environments. In order to understand better the chronological order and temporal course of these processes, we monitored leaf phenology, xylem and phloem formation and sap flow in Quercus pubescens from abandoned karst grasslands in Slovenia during the growing season of 2014. We found that the initial earlywood vessel formation started before bud opening at the beginning of April. Buds started to open in the second half of April and full leaf unfolding occurred by the end of May. LAI values increased correspondingly with leaf development. About 28% of xylem and 22% of phloem annual increment were formed by the time of bud break. Initial earlywood vessels were fully lignified and ready for water transport, indicating that they are essential to provide hydraulic conductivity for axial water flow during leaf development. Sap flow became active and increasing contemporarily with leaf development and LAI values. Similar early spring patterns of xylem sap flow and LAI denoted that water transport in oaks broadly followed canopy leaf area development. In the initial 3 weeks of radial growth, phloem growth preceded that of xylem, indicating its priority over xylem at the beginning of the growing season. This may be related to the fact that after bud break, the developing foliage is a very large sink for carbohydrates but, at the same time, represents a small transpirational area. Whether the interdependence of the chronological sequence of the studied processes is fixed in Q. pubescens needs to be confirmed with more data and several years of analyses, although the 'correct sequence' of processes is essential for synchronized plant performance and response to environmental stress.

  17. CAPILLARY ELECTROPHORETIC ANALYSIS OF LOW-MOLECULAR-MASS OF CA SPECIES IN PHLOEM SAP OF Ricinus communis L.

    OpenAIRE

    Fitri, Noor; Thiele, Björn; Günther, Klaus; Buchari, Buchari

    2010-01-01

    A capillary electrophoretic (CE) analysis with ultra-violet (UV) detection was performed for further separation of low-molecular-mass (LMM) calcium species in phloem sap of Ricinus communis L. Two different background electrolytes (BGE) were used for the separation; these are (1) hydrogen phosphate/dihydrogen phosphate buffer containing cetyltrimethylammonium bromide (CTAB) as an electro-osmotic flow (EOF) modifier, and (2) boric acid buffer containing CTAB. Various parameters affecting the a...

  18. Chronological Sequence of Leaf Phenology, Xylem and Phloem Formation and Sap Flow of Quercus pubescens from Abandoned Karst Grasslands

    Science.gov (United States)

    Lavrič, Martina; Eler, Klemen; Ferlan, Mitja; Vodnik, Dominik; Gričar, Jožica

    2017-01-01

    Intra-annual variations in leaf development, radial growth, including the phloem part, and sap flow have rarely been studied in deciduous trees from drought-prone environments. In order to understand better the chronological order and temporal course of these processes, we monitored leaf phenology, xylem and phloem formation and sap flow in Quercus pubescens from abandoned karst grasslands in Slovenia during the growing season of 2014. We found that the initial earlywood vessel formation started before bud opening at the beginning of April. Buds started to open in the second half of April and full leaf unfolding occurred by the end of May. LAI values increased correspondingly with leaf development. About 28% of xylem and 22% of phloem annual increment were formed by the time of bud break. Initial earlywood vessels were fully lignified and ready for water transport, indicating that they are essential to provide hydraulic conductivity for axial water flow during leaf development. Sap flow became active and increasing contemporarily with leaf development and LAI values. Similar early spring patterns of xylem sap flow and LAI denoted that water transport in oaks broadly followed canopy leaf area development. In the initial 3 weeks of radial growth, phloem growth preceded that of xylem, indicating its priority over xylem at the beginning of the growing season. This may be related to the fact that after bud break, the developing foliage is a very large sink for carbohydrates but, at the same time, represents a small transpirational area. Whether the interdependence of the chronological sequence of the studied processes is fixed in Q. pubescens needs to be confirmed with more data and several years of analyses, although the ‘correct sequence’ of processes is essential for synchronized plant performance and response to environmental stress. PMID:28321232

  19. CAPILLARY ELECTROPHORETIC ANALYSIS OF LOW-MOLECULAR-MASS OF CA SPECIES IN PHLOEM SAP OF Ricinus communis L.

    Directory of Open Access Journals (Sweden)

    Noor Fitri

    2010-06-01

    Full Text Available A capillary electrophoretic (CE analysis with ultra-violet (UV detection was performed for further separation of low-molecular-mass (LMM calcium species in phloem sap of Ricinus communis L. Two different background electrolytes (BGE were used for the separation; these are (1 hydrogen phosphate/dihydrogen phosphate buffer containing cetyltrimethylammonium bromide (CTAB as an electro-osmotic flow (EOF modifier, and (2 boric acid buffer containing CTAB. Various parameters affecting the analysis, including the composition and pH of the BGE were systematically studied. The sensitivity, resolution, baseline noise, migration time of the species peaks, and reproducibility of the method were evaluated under optimised condition. At least 13 UV-active species were optimally separated within about ten minutes. The optimised measurement condition was also achieved using 10 mM hydrogen phosphate/10 mM dihydrogen phosphate containing 0.5 mM CTAB at pH 8.0 as BGE, and by applying voltage of ‑20 kV and temperature of 14°C. Evidently, the analytical method was successfully used for the separation of LMM calcium species in phloem sap of R. communis L.   Keywords: capillary electrophoresis, calcium species, phloem sap, Ricinus communis

  20. A noninvasive optical system for the measurement of xylem and phloem sap flow in woody plants of small stem size.

    Science.gov (United States)

    Helfter, Carole; Shephard, Jonathon D; Martinez-Vilalta, Jordi; Mencuccini, Maurizio; Hand, Duncan P

    2007-02-01

    Over the past 70 years, heat has been widely used as a tracer for estimating the flow of water in woody and herbaceous plants. However, most commercially available techniques for monitoring whole plant water use are invasive and the measurements are potentially flawed because of wounding of the xylem tissue. The study of photosynthate transport in the phloem remains in its infancy, and little information about phloem transport rates is available owing to the fragility of the vascular tissue. The aim of our study was to develop a compact, stand-alone non-invasive system allowing for direct detection of phloem and xylem sap movement. The proposed method uses a heat pulse as a tracer for sap flow. Heat is applied to the surface of the stem with a near-infrared laser source, and heat propagation is monitored externally by means of an infrared camera. Heat pulse velocities are determined from the thermometric data and related to the more useful quantity, mass flow rate. Simulation experiments on the xylem tissue of severed silver birch (Betula pendula Roth.) branch segments were performed to assess the feasibility of the proposed approach, highlight the characteristics of the technique and outline calibration strategies. Good agreement between imposed and measured flow rates was achieved leading to experimentation with live silver birch and oak (Quercus robur L.) saplings. It was demonstrated that water flow through xylem vessels can be monitored non-invasively on an intact stem with satisfactory accuracy despite simultaneous sugar transport in the phloem. In addition, it was demonstrated that the technique allows for unequivocal detection of phloem flow velocities.

  1. Nano scale proteomics revealed the presence of regulatory proteins including three FT-Like proteins in phloem and xylem saps from rice.

    Science.gov (United States)

    Aki, Toshihiko; Shigyo, Mikao; Nakano, Ryouhei; Yoneyama, Tadakatsu; Yanagisawa, Shuichi

    2008-05-01

    The main physiological roles of phloem and xylem in higher plants involve the transport of water, nutrients and metabolites. They are also involved, however, in whole plant events including stress responses and long-distance signaling. Phloem and xylem saps therefore include a variety of proteins. In this study, we have performed a shotgun analysis of the proteome of phloem and xylem saps from rice, taking advantage of the complete and available genomic information for this plant. Xylem sap was prepared using the root pressure method, whereas phloem sap was prepared with a unique method with the assistance of planthoppers to ensure the robustness of the detected proteins. The technical difficulties caused by the very limited availability of rice samples were overcome by the use of nano-flow liquid chromatography linked to a mass spectrometer. We identified 118 different proteins and eight different peptides in xylem sap, and 107 different proteins and five different peptides in phloem sap. Signal transduction proteins, putative transcription factors and stress response factors as well as metabolic enzymes were identified in these saps. Interestingly, we found the presence of three TERMINAL FLOWER 1/FLOWERING LOCUS T (FT)-like proteins in phloem sap. The detected FT-like proteins were not rice Hd3a (OsFTL2) itself that acted as a non-cell-autonomous signal for flowering control, but they were members of distinct subfamilies of the FT family with differential expression patterns. These results imply that proteomics on a nano scale is a potent tool for investigation of biological processes in plants.

  2. Phloem sap proteome studied by iTRAQ provides integrated insight into salinity response mechanisms in cucumber plants.

    Science.gov (United States)

    Fan, Huaifu; Xu, Yanli; Du, Changxia; Wu, Xue

    2015-07-01

    Cucumber is an economically important crop as well as a model system for plant vascular biology. Salinity is one of the major environmental factors limiting plant growth. Here, we used an iTRAQ-based quantitative proteomics approach for comparative analysis of protein abundances in cucumber phloem sap in response to salt. A total of 745 distinct proteins were identified and 111 proteins were differentially expressed upon salinity in sensitive and tolerant cultivars, of which 69 and 65 proteins changed significantly in sensitive and tolerant cultivars, respectively. A bioinformatics analysis indicated that cucumber phloem employed a combination of induced metabolism, protein turnover, common stress response, energy and transport, signal transduction and regulation of transcription, and development proteins as protection mechanisms against salinity. The proteins that were mapped to the carbon fixation pathway decreased in abundance in sensitive cultivars and had no change in tolerant cultivars under salt stress, suggesting that this pathway may promote salt tolerance by stabilizing carbon fixation and maintaining the essential energy and carbohydrates in tolerant cultivars. This study leads to a better understanding of the salinity mechanism in cucumber phloem and provides a list of potential gene targets for the further engineering of salt tolerance in plants.

  3. Concentrations of metals and potential metal-binding compounds and speciation of Cd, Zn and Cu in phloem and xylem saps from castor bean plants (Ricinus communis) treated with four levels of cadmium.

    Science.gov (United States)

    Hazama, Kenji; Nagata, Shinji; Fujimori, Tamaki; Yanagisawa, Shuichi; Yoneyama, Tadakatsu

    2015-06-01

    We examined the concentrations of metals (Cd, Zn, Cu, Fe and Mn) and potential metal-binding compounds [nicotianamine (NA), thiol compounds and citrate] in xylem and phloem saps from 4-week-old castor bean plants (Ricinus communis) treated with 0 (control), 0.1, 1.0, and 10 μM Cd for 3 weeks. Treatment with 0.1 and 1 μM Cd produced no visible damage, while 10 μM Cd retarded growth. Cadmium concentrations in both saps were higher than those in the culture solution at 0.1 μM, similar at 1.0 μM and lower at 10 μM. Cd at 10 μM reduced Cu and Fe concentrations in both saps. NA concentrations measured by capillary electrophoresis-mass spectrometry (MS) in xylem sap (20 μM) were higher than the Cu concentrations, and those in phloem sap (150 μM) were higher than those of Zn, Fe and Cu combined. Reduced glutathione concentrations differed in xylem and phloem saps (1-2 and 30-150 μM, respectively), but oxidized glutathione concentrations were similar. Phloem sap phytochelatin 2 concentration increased from 0.8 μM in controls to 8 μM in 10 μM Cd. Free citrate was 2-4 μM in xylem sap and 70-100 μM in phloem sap. Total bound forms of Cd in phloem and xylem saps from 1 μM Cd-treated plants were 54 and 8%, respectively. Treatment of phloem sap with proteinaseK reduced high-molecular compounds while increasing fractions of low-molecular Cd-thiol complexes. Zinc-NA, Fe-NA and Cu-NA were identified in the phloem sap fraction of control plants by electrospray ionization time-of-flight MS, and the xylem sap contained Cu-NA.

  4. Experimental evidence for diel δ15N-patterns in different tissues, xylem and phloem saps of castor bean (Ricinus communis L.).

    Science.gov (United States)

    Peuke, A D; Gessler, A; Tcherkez, G

    2013-12-01

    Nitrogen isotope signatures in plants might give insights in the metabolism and allocation of nitrogen. To obtain a deeper understanding of the modifications of the nitrogen isotope signatures, we determined δ(15)N in transport saps and in different fractions of leaves, axes and roots during a diel course along the plant axis. The most significant diel variations were observed in xylem and phloem saps where δ(15)N was significantly higher during the day compared with during the night. However in xylem saps, this was observed only in the canopy, but not at the hypocotyl positions. In the canopy, δ(15)N was correlated fairly well between phloem and xylem saps. These variations in δ(15)N in transport saps can be attributed to nitrate reduction in leaves during the photoperiod as well as to (15)N-enriched glutamine acting as transport form of N. δ(15)N of the water soluble fraction of roots and leaves partially affected δ(15)N of phloem and xylems saps. δ(15)N patterns are likely the result of a complex set of interactions and N-fluxes between plant organs. Furthermore, the natural nitrogen isotope abundance in plant tissue is not constant during the diel course - a fact that needs to be taken into account when sampling for isotopic studies.

  5. Identification of high levels of phytochelatins, glutathione and cadmium in the phloem sap of Brassica napus. A role for thiol-peptides in the long-distance transport of cadmium and the effect of cadmium on iron translocation.

    Science.gov (United States)

    Mendoza-Cózatl, David G; Butko, Emerald; Springer, Franziska; Torpey, Justin W; Komives, Elizabeth A; Kehr, Julia; Schroeder, Julian I

    2008-04-01

    Phytochelatins (PCs) are glutathione-derived peptides that function in heavy metal detoxification in plants and certain fungi. Recent research in Arabidopsis has shown that PCs undergo long-distance transport between roots and shoots. However, it remains unknown which tissues or vascular systems, xylem or phloem, mediate PC translocation and whether PC transport contributes to physiologically relevant long-distance transport of cadmium (Cd) between shoots and roots. To address these questions, xylem and phloem sap were obtained from Brassica napus to quantitatively analyze which thiol species are present in response to Cd exposure. High levels of PCs were identified in the phloem sap within 24 h of Cd exposure using combined mass spectrometry and fluorescence HPLC analyses. Unexpectedly, the concentration of Cd was more than four-fold higher in phloem sap compared to xylem sap. Cadmium exposure dramatically decreased iron levels in xylem and phloem sap whereas other essential heavy metals such as zinc and manganese remained unchanged. Data suggest that Cd inhibits vascular loading of iron but not nicotianamine. The high ratios [PCs]/[Cd] and [glutathione]/[Cd] in the phloem sap suggest that PCs and glutathione (GSH) can function as long-distance carriers of Cd. In contrast, only traces of PCs were detected in xylem sap. Our results suggest that, in addition to directional xylem Cd transport, the phloem is a major vascular system for long-distance source to sink transport of Cd as PC-Cd and glutathione-Cd complexes.

  6. The plant hopper Issus coleoptratus can detoxify phloem sap saponins including the degradation of the terpene core

    Directory of Open Access Journals (Sweden)

    Markus Himmelsbach

    2016-03-01

    Full Text Available Issus coleoptratus is a small plant hopper which mainly feeds on the phloem sap from ivy. Although all parts of ivy are poisonous as the plant contains saponins, especially hederasaponins, I. coleoptratus can cope with the poison. In contrast to other animals like the stick insect Carausius morosus which accumulates saponins in its body, I. coleoptratus can degrade and disintegrate not only the saponins but even the genines, i.e. the triterpene core of the substances. This is perhaps made possible by a specialised midgut and/or the salivary glands. When the glands and the gut are dissected and added to saponins in solution, the saponins, including the genines, are degraded ex vivo.

  7. The plant hopper Issus coleoptratus can detoxify phloem sap saponins including the degradation of the terpene core.

    Science.gov (United States)

    Himmelsbach, Markus; Weth, Agnes; Böhme, Christine; Schwarz, Martin; Bräunig, Peter; Baumgartner, Werner

    2016-02-10

    Issus coleoptratus is a small plant hopper which mainly feeds on the phloem sap from ivy. Although all parts of ivy are poisonous as the plant contains saponins, especially hederasaponins, I. coleoptratus can cope with the poison. In contrast to other animals like the stick insect Carausius morosus which accumulates saponins in its body, I. coleoptratus can degrade and disintegrate not only the saponins but even the genines, i.e. the triterpene core of the substances. This is perhaps made possible by a specialised midgut and/or the salivary glands. When the glands and the gut are dissected and added to saponins in solution, the saponins, including the genines, are degraded ex vivo.

  8. "Phloem sap analysis of Schleichera oleosa (Lour) Oken, Butea monosperma (Lam) Taub. and Ziziphus mauritiana (Lam) and hemolymph of Kerria lacca (Kerr) using HPLC and tandem mass spectrometry".

    Science.gov (United States)

    Vashishtha, Amit; Rathi, Brijesh; Kaushik, Sandeep; Sharma, K K; Lakhanpaul, Suman

    2013-10-01

    Females of lac insects especially of Kerria lacca (Kerr) secret a resin known as lac for their own protection, which has tremendous applications. Lac insect completes its lifecycle on several host taxa where it exclusively feeds on phloem sap but Schleichera oleosa (Lour.) Oken, Butea monosperma (Lam.) and Ziziphus mauritiana (Lam.) are its major hosts. Analysis of phloem sap constituents as well as hemolymph of lac insect is important because it ultimately gets converted into lac by insect intervention. Main phloem sap constituent's viz. sugars and free amino acids and hemolymph of lac insect were analyzed using HPLC and tandem mass spectrometry, respectively. The results were transformed to relative percentage of the total sugars and free amino acids analyzed in each sample for comparison among lac insect hemolymph and the phloem sap of the three different host taxa. Sucrose (58.9 ± 3.6-85.6 ± 0.9) and trehalose (62.3 ± 0.4) were the predominant sugars in phloem sap of three taxa and hemolymph of lac insect, respectively. Glutamic acid (33.1 ± 1.4-39.8 ± 1.4) was found to be main amino acid among the phloem sap of three taxa while tyrosine (61 ± 2.6) was the major amino acid in hemolymph of lac insect. The relative percentage of non-essential amino acids (60.8 %-69.9 %) was found to be more in all the three host taxa while essential amino acids (30.1 %-35.4 %) were present at a lower relative percentage. In contrast to this, the relative percentage of essential amino acids (81.9 %) was observed to be higher as compared to non-essential amino acids (17.7 %) in lac insect hemolymph. These results led to the detection of lac insect's endosymbionts. Moreover, this study revealed a clue regarding the importance of development of a synthetic diet for this insect so that a precise pathway of lac biosynthesis could be investigated for thorough understanding.

  9. Can sucrose content in the phloem sap reaching field pea seeds (Pisum sativum L.) be an accurate indicator of seed growth potential?

    Science.gov (United States)

    Munier-Jolain, Nathalie; Salon, Christophe

    2003-11-01

    The composition of the translocates reaching the seeds of pea plants having various nitrogen (N) nutrition regimes was investigated under field situations. Sucrose flow in the phloem sap increased with the node number, but was not significantly different between N nutrition levels. Because N deficiency reduced the number of flowering nodes and the number of seeds per pod, the sucrose flow bleeding from cut peduncles was divided by the number of seeds to give the amount of assimilates available per seed. The sucrose concentration in phloem sap supplied to seeds at the upper nodes was higher than that at the lower nodes. The flow of sucrose delivered to the seeds during the cell division period was correlated with seed growth potential. Seeds from the more N-stressed plants had both the highest seed growth rate and received a higher sucrose flux per seed during the cell division period. As seed growth rate is highly correlated with the number of cotyledonary cells produced during the cell division period, sucrose flow in phloem sap is proposed to be an important determinant of mitotic activity in seed embryos. The carbon (C)/N ratio of the flow of translocates towards seeds was higher under conditions of N-deficiency than with optimal N nutrition, indicating that N flux towards seeds, in itself, is not the main determinant of seed growth potential.

  10. Wounding, insect chewing and phloem sap feeding differentially alter the leaf proteome of potato, Solanum tuberosum L.

    Directory of Open Access Journals (Sweden)

    Duceppe Marc-Olivier

    2012-12-01

    Full Text Available Abstract Background Various factors shape the response of plants to herbivorous insects, including wounding patterns, specific chemical effectors and feeding habits of the attacking herbivore. Here we performed a comparative proteomic analysis of the plant's response to wounding and herbivory, using as a model potato plants (Solanum tuberosum L. subjected to mechanical wounding, defoliation by the Colorado potato beetle Leptinotarsa decemlineata Say, or phloem sap feeding by the potato aphid Macrosiphum euphorbiae Thomas. Results Out of ~500 leaf proteins monitored by two-dimensional gel electrophoresis (2-DE, 31 were up- or downregulated by at least one stress treatment compared to healthy control plants. Of these proteins, 29 were regulated by beetle chewing, 8 by wounding and 8 by aphid feeding. Some proteins were up- or downregulated by two different treatments, while others showed diverging expression patterns in response to different treatments. A number of modulated proteins identified by mass spectrometry were typical defense proteins, including wound-inducible protease inhibitors and pathogenesis-related proteins. Proteins involved in photosynthesis were also modulated, notably by potato beetle feeding inducing a strong decrease of some photosystem I proteins. Quantitative RT PCR assays were performed with nucleotide primers for photosynthesis-related proteins to assess the impact of wounding and herbivory at the gene level. Whereas different, sometimes divergent, responses were observed at the proteome level in response to wounding and potato beetle feeding, downregulating effects were systematically observed for both treatments at the transcriptional level. Conclusions These observations illustrate the differential impacts of wounding and insect herbivory on defense- and photosynthesis-related components of the potato leaf proteome, likely associated with the perception of distinct physical and chemical cues in planta.

  11. SAP

    DEFF Research Database (Denmark)

    Petersen, Bent; Nikerle-Uhthoff, Dominique; Schwaerzler, Helen

    2014-01-01

    In late 2011, SAP, the German leader in the enterprise software industry, announced a major investment plan for expanding in China and also acquired a leading American firm in cloud-based human capital management software. At first glance, these investments seemed rather unconnected. A closer loo...... strategies? Compared to its key competitors — Microsoft, IBM and Oracle — how was it aligning its innovation strategy with its sourcing strategy?...

  12. Metabolomic comparative analysis of the phloem sap of curry leaf tree (Bergera koenegii), orange jasmine (Murraya paniculata), and Valencia sweet orange (Citrus sinensis) supports their differential responses to Huanglongbing.

    Science.gov (United States)

    Killiny, Nabil

    2016-11-01

    Orange jasmine, Murraya paniculata and curry leaf tree, Bergera koenegii are alternative hosts for Diaphorina citri, the vector of Candidatus Liberibacter asiaticus (CLas), the pathogen of huanglongbing (HLB) in citrus. D. citri feeds on the phloem sap where CLas grows. It has been shown that orange jasmine was a better host than curry leaf tree to D. citri. In addition, CLas can infect orange jasmine but not curry leaf tree. Here, we compared the phloem sap composition of these 2 plants to the main host, Valencia sweet orange, Citrus sinensis. Phloem sap was analyzed by gas chromatography-mass spectrometry after trimethylsilyl derivatization. Orange jasmine was the highest in proteinogenic, non-proteinogenic amino acids, organic acids, as well as total metabolites. Valencia was the highest in mono- and disaccharides, and sugar alcohols. Curry leaf tree was the lowest in most of the metabolites as well as total metabolites. Interestingly, malic acid was high in Valencia and orange jasmine but was not detected in the curry leaf. On the other hand, tartaric acid which can prevent the formation of malic acid in Krebs cycle was high in curry leaf. The nutrient inadequacy of the phloem sap in curry leaf tree, especially the amino acids could be the reason behind the longer life cycle and the low survival of D. citri and the limitation of CLas growth on this host. Information obtained from this study may help in cultivation of CLas and development of artificial diet for rearing of D. citri.

  13. Experimental evidence for diel variations of the carbon isotope composition in leaf, stem and phloem sap organic matter in Ricinus communis.

    Science.gov (United States)

    Gessler, Arthur; Tcherkez, Guillaume; Peuke, Andreas D; Ghashghaie, Jaleh; Farquhar, Graham D

    2008-07-01

    Carbon isotope fractionation in metabolic processes following carboxylation of ribulose-1,5-bisphosphate (RuBP) is not as well described as the discrimination during photosynthetic CO(2) fixation. However, post-carboxylation fractionation can influence the diel variation of delta(13)C of leaf-exported organic matter and can cause inter-organ differences in delta(13)C. To obtain a more mechanistic understanding of post-carboxylation modification of the isotopic signal as governed by physiological and environmental controls, we combined the modelling approach of Tcherkez et al., which describes the isotopic fractionation in primary metabolism with the experimental determination of delta(13)C in leaf and phloem sap and root carbon pools during a full diel course. There was a strong diel variation of leaf water-soluble organic matter and phloem sap sugars with relatively (13)C depleted carbon produced and exported during the day and enriched carbon during the night. The isotopic modelling approach reproduces the experimentally determined day-night differences in delta(13)C of leaf-exported carbon in Ricinus communis. These findings support the idea that patterns of transitory starch accumulation and remobilization govern the diel rhythm of delta(13)C in organic matter exported by leaves. Integrated over the whole 24 h day, leaf-exported carbon was enriched in (13)C as compared with the primary assimilates. This may contribute to the well-known--yet poorly explained--relative (13)C depletion of autotrophic organs compared with other plant parts. We thus emphasize the need to consider post-carboxylation fractionations for studies that use delta(13)C for assessing environmental effects like water availability on ratio of mole fractions of CO(2) inside and outside the leaf (e.g. tree ring studies), or for partitioning of CO(2) fluxes at the ecosystem level.

  14. (52)Fe translocation in barley as monitored by a positron-emitting tracer imaging system (PETIS): evidence for the direct translocation of Fe from roots to young leaves via phloem.

    Science.gov (United States)

    Tsukamoto, Takashi; Nakanishi, Hiromi; Uchida, Hiroshi; Watanabe, Satoshi; Matsuhashi, Shinpei; Mori, Satoshi; Nishizawa, Naoko K

    2009-01-01

    The real-time translocation of iron (Fe) in barley (Hordeum vulgare L. cv. Ehimehadaka no. 1) was visualized using the positron-emitting tracer (52)Fe and a positron-emitting tracer imaging system (PETIS). PETIS allowed us to monitor Fe translocation in barley non-destructively under various conditions. In all cases, (52)Fe first accumulated at the basal part of the shoot, suggesting that this region may play an important role in Fe distribution in graminaceous plants. Fe-deficient barley showed greater translocation of (52)Fe from roots to shoots than did Fe-sufficient barley, demonstrating that Fe deficiency causes enhanced (52)Fe uptake and translocation to shoots. In the dark, translocation of (52)Fe to the youngest leaf was equivalent to or higher than that under the light condition, while the translocation of (52)Fe to the older leaves was decreased, in both Fe-deficient and Fe-sufficient barley. This suggests the possibility that the mechanism and/or pathway of Fe translocation to the youngest leaf may be different from that to the older leaves. When phloem transport in the leaf was blocked by steam treatment, (52)Fe translocation from the roots to older leaves was not affected, while (52)Fe translocation to the youngest leaf was reduced, indicating that Fe is translocated to the youngest leaf via phloem in addition to xylem. We propose a novel model in which root-absorbed Fe is translocated from the basal part of the shoots and/or roots to the youngest leaf via phloem in graminaceous plants.

  15. Citrus tristeza virus-based RNAi in citrus plants induces gene silencing in Diaphorina citri, a phloem-sap sucking insect vector of citrus greening disease (Huanglongbing).

    Science.gov (United States)

    Hajeri, Subhas; Killiny, Nabil; El-Mohtar, Choaa; Dawson, William O; Gowda, Siddarame

    2014-04-20

    A transient expression vector based on Citrus tristeza virus (CTV) is unusually stable. Because of its stability it is being considered for use in the field to control Huanglongbing (HLB), which is caused by Candidatus Liberibacter asiaticus (CLas) and vectored by Asian citrus psyllid, Diaphorina citri. In the absence of effective control strategies for CLas, emphasis has been on control of D. citri. Coincident cohabitation in phloem tissue by CLas, D. citri and CTV was exploited to develop a novel method to mitigate HLB through RNA interference (RNAi). Since CTV has three RNA silencing suppressors, it was not known if CTV-based vector could induce RNAi in citrus. Yet, expression of sequences targeting citrus phytoene desaturase gene by CTV-RNAi resulted in photo-bleaching phenotype. CTV-RNAi vector, engineered with truncated abnormal wing disc (Awd) gene of D. citri, induced altered Awd expression when silencing triggers ingested by feeding D. citri nymphs. Decreased Awd in nymphs resulted in malformed-wing phenotype in adults and increased adult mortality. This impaired ability of D. citri to fly would potentially limit the successful vectoring of CLas bacteria between citrus trees in the grove. CTV-RNAi vector would be relevant for fast-track screening of candidate sequences for RNAi-mediated pest control. Copyright © 2014. Published by Elsevier B.V.

  16. Modeling the hydrodynamics of phloem sieve plates

    Directory of Open Access Journals (Sweden)

    Kaare Hartvig Jensen

    2012-07-01

    Full Text Available Sieve plates have an enormous impact on the efficiency of the phloem vascular system of plants, responsible for the distribution of photosynthetic products. These thin plates, which separate neighboring phloem cells, are perforated by a large number of tiny sieve pores and are believed to play a crucial role in protecting the phloem sap from intruding animals by blocking flow when the phloem cell is damaged. The resistance to the flow of viscous sap in the phloem vascular system is strongly affected by the presence of the sieve plates, but the hydrodynamics of the flow through them remains poorly understood. We propose a theoretical model for quantifying the effect of sieve plates on the phloem in the plant, thus unifying and improving previous work in the field. Numerical simulations of the flow in real and idealized phloem channels verify our model, and anatomical data from 19 plant species are investigated. We find that the sieve plate resistance is correlated to the cell lumen resistance, and that the sieve plate and the lumen contribute almost equally to the total hydraulic resistance of the phloem translocation pathway.

  17. The origin and composition of cucurbit "phloem" exudate.

    Science.gov (United States)

    Zhang, Cankui; Yu, Xiyan; Ayre, Brian G; Turgeon, Robert

    2012-04-01

    Cucurbits exude profusely when stems or petioles are cut. We conducted studies on pumpkin (Cucurbita maxima) and cucumber (Cucumis sativus) to determine the origin and composition of the exudate. Morphometric analysis indicated that the exudate is too voluminous to derive exclusively from the phloem. Cold, which inhibits phloem transport, did not interfere with exudation. However, ice water applied to the roots, which reduces root pressure, rapidly diminished exudation rate. Sap was seen by microscopic examination to flow primarily from the fascicular phloem in cucumber, and several other cucurbit species, but primarily from the extrafascicular phloem in pumpkin. Following exposure of leaves to 14CO2, radiolabeled stachyose and other sugars were detected in the exudate in proportions expected of authentic phloem sap. Most of this radiolabel was released during the first 20 s. Sugars in exudate were dilute. The sugar composition of exudate from extrafascicular phloem near the edge of the stem differed from that of other sources in that it was high in hexose and low in stachyose. We conclude that sap is released from cucurbit phloem upon wounding but contributes negligibly to total exudate volume. The sap is diluted by water from cut cells, the apoplast, and the xylem. Small amounts of dilute, mobile sap from sieve elements can be obtained, although there is evidence that it is contaminated by the contents of other cell types. The function of P-proteins may be to prevent water loss from the xylem as well as nutrient loss from the phloem.

  18. Plant phloem sterol content: forms, putative functions, and implications for phloem-feeding insects

    Directory of Open Access Journals (Sweden)

    Spencer eBehmer

    2013-09-01

    Full Text Available All eukaryotes contain sterols, which serve as structural components in cell membranes, and as precursors for important hormones. Plant vegetative tissues are known to contain mixtures of sterols, but very little is known about the sterol composition of phloem. Plants are food for many animals, but plant-feeding arthropods (including phloem-feeding insets are unique among animals in that they have lost the ability to synthesize sterols, and must therefore acquire these essential nutrients from their food, or via endosymbionts. Our paper starts by providing a very brief overview of variation in plant sterol content, and how different sterols can affect insect herbivores, including those specializing on phloem. We then describe an experiment, where we bulk collected phloem sap exudate from bean and tobacco, and analyzed its sterol content. This approach revealed two significant observations concerning phloem sterols. First, the phloem exudate from each plant was found to contain sterols in three different fractions – free sterols, sterols conjugated to lipids (acylated, and sterols conjugated to carbohydrates (glycosylated. Second, for both plants, cholesterol was identified as the dominant sterol in each phloem exudate fraction; the remaining sterol in the fraction was a mixture of common phytosterols. We discuss our phloem exudate sterol profiles in a plant physiology/biochemistry context, and how it relates to the nutritional physiology/ecology of phloem-feeding insects. We close by proposing important next steps that will advance our knowledge concerning plant phloem sterol biology, and how phloem-sterol content might affect phloem-feeding insects.

  19. Transcriptional analysis of phloem-associated cells of potato.

    Science.gov (United States)

    Lin, Tian; Lashbrook, Coralie C; Cho, Sung Ki; Butler, Nathaniel M; Sharma, Pooja; Muppirala, Usha; Severin, Andrew J; Hannapel, David J

    2015-09-03

    Numerous signal molecules, including proteins and mRNAs, are transported through the architecture of plants via the vascular system. As the connection between leaves and other organs, the petiole and stem are especially important in their transport function, which is carried out by the phloem and xylem, especially by the sieve elements in the phloem system. The phloem is an important conduit for transporting photosynthate and signal molecules like metabolites, proteins, small RNAs, and full-length mRNAs. Phloem sap has been used as an unadulterated source to profile phloem proteins and RNAs, but unfortunately, pure phloem sap cannot be obtained in most plant species. Here we make use of laser capture microdissection (LCM) and RNA-seq for an in-depth transcriptional profile of phloem-associated cells of both petioles and stems of potato. To expedite our analysis, we have taken advantage of the potato genome that has recently been fully sequenced and annotated. Out of the 27 k transcripts assembled that we identified, approximately 15 k were present in phloem-associated cells of petiole and stem with greater than ten reads. Among these genes, roughly 10 k are affected by photoperiod. Several RNAs from this day length-regulated group are also abundant in phloem cells of petioles and encode for proteins involved in signaling or transcriptional control. Approximately 22 % of the transcripts in phloem cells contained at least one binding motif for Pumilio, Nova, or polypyrimidine tract-binding proteins in their downstream sequences. Highlighting the predominance of binding processes identified in the gene ontology analysis of active genes from phloem cells, 78 % of the 464 RNA-binding proteins present in the potato genome were detected in our phloem transcriptome. As a reasonable alternative when phloem sap collection is not possible, LCM can be used to isolate RNA from specific cell types, and along with RNA-seq, provides practical access to expression profiles of

  20. Phloem transport in trees

    Science.gov (United States)

    Michael G. Ryan; Shinichi. Asao

    2014-01-01

    Phloem is like an enigmatic central banker: we know how important phloem is to plant function, but very little about how phloem functions as part of a whole-plant economy. Phloem transports carbohydrates, produced by photosynthesis and hydrolysis of reserve compounds, to sink tissues for growth, respiration and storage. At photosynthetic tissues, carbohydrates are...

  1. Phloem flow and sugar transport in Ricinus communis L. is inhibited under anoxic conditions of shoot or roots.

    Science.gov (United States)

    Peuke, Andreas D; Gessler, Arthur; Trumbore, Susan; Windt, Carel W; Homan, Natalia; Gerkema, Edo; VAN As, Henk

    2015-03-01

    Anoxic conditions should hamper the transport of sugar in the phloem, as this is an active process. The canopy is a carbohydrate source and the roots are carbohydrate sinks. By fumigating the shoot with N2 or flooding the rhizosphere, anoxic conditions in the source or sink, respectively, were induced. Volume flow, velocity, conducting area and stationary water of the phloem were assessed by non-invasive magnetic resonance imaging (MRI) flowmetry. Carbohydrates and δ(13) C in leaves, roots and phloem saps were determined. Following flooding, volume flow and conducting area of the phloem declined and sugar concentrations in leaves and in phloem saps slightly increased. Oligosaccharides appeared in phloem saps and after 3 d, carbon transport was reduced to 77%. Additionally, the xylem flow declined and showed finally no daily rhythm. Anoxia of the shoot resulted within minutes in a reduction of volume flow, conductive area and sucrose in the phloem sap decreased. Sugar transport dropped to below 40% by the end of the N2 treatment. However, volume flow and phloem sap sugar tended to recover during the N2 treatment. Both anoxia treatments hampered sugar transport. The flow velocity remained about constant, although phloem sap sugar concentration changed during treatments. Apparently, stored starch was remobilized under anoxia. © 2014 John Wiley & Sons Ltd.

  2. Phloem transport and drought.

    Science.gov (United States)

    Sevanto, Sanna

    2014-04-01

    Drought challenges plant water uptake and the vascular system. In the xylem it causes embolism that impairs water transport from the soil to the leaves and, if uncontrolled, may even lead to plant mortality via hydraulic failure. What happens in the phloem, however, is less clear because measuring phloem transport is still a significant challenge to plant science. In all vascular plants, phloem and xylem tissues are located next to each other, and there is clear evidence that these tissues exchange water. Therefore, drought should also lead to water shortage in the phloem. In this review, theories used in phloem transport models have been applied to drought conditions, with the goal of shedding light on how phloem transport failure might occur. The review revealed that phloem failure could occur either because of viscosity build-up at the source sites or by a failure to maintain phloem water status and cell turgor. Which one of these dominates depends on the hydraulic permeability of phloem conduit walls. Impermeable walls will lead to viscosity build-up affecting flow rates, while permeable walls make the plant more susceptible to phloem turgor failure. Current empirical evidence suggests that phloem failure resulting from phloem turgor collapse is the more likely mechanism at least in relatively isohydric plants.

  3. Aphid-plant interactions at phloem level, a behavioural study.

    NARCIS (Netherlands)

    Prado, E.C.

    1997-01-01

    Aphid-plant interactions occurring during plant penetration, or probing, have determined the evolution of these insects as well as the abilities of plants to survive huge densities of these insects. For aphids, as phloem sap feeders, the interactions at sieve element level must be of special importa

  4. Arsenic speciation in phloem and xylem exudates of castor bean.

    Science.gov (United States)

    Ye, Wen-Ling; Wood, B Alan; Stroud, Jacqueline L; Andralojc, P John; Raab, Andrea; McGrath, Steve P; Feldmann, Jörg; Zhao, Fang-Jie

    2010-11-01

    How arsenic (As) is transported in phloem remains unknown. To help answer this question, we quantified the chemical species of As in phloem and xylem exudates of castor bean (Ricinus communis) exposed to arsenate [As(V)], arsenite [As(III)], monomethylarsonic acid [MMA(V)], or dimethylarsinic acid. In the As(V)- and As(III)-exposed plants, As(V) was the main species in xylem exudate (55%-83%) whereas As(III) predominated in phloem exudate (70%-94%). The ratio of As concentrations in phloem to xylem exudate varied from 0.7 to 3.9. Analyses of phloem exudate using high-resolution inductively coupled plasma-mass spectrometry and accurate mass electrospray mass spectrometry coupled to high-performance liquid chromatography identified high concentrations of reduced and oxidized glutathione and some oxidized phytochelatin, but no As(III)-thiol complexes. It is thought that As(III)-thiol complexes would not be stable in the alkaline conditions of phloem sap. Small concentrations of oxidized glutathione and oxidized phytochelatin were found in xylem exudate, where there was also no evidence of As(III)-thiol complexes. MMA(V) was partially reduced to MMA(III) in roots, but only MMA(V) was found in xylem and phloem exudate. Despite the smallest uptake among the four As species supplied to plants, dimethylarsinic acid was most efficiently transported in both xylem and phloem, and its phloem concentration was 3.2 times that in xylem. Our results show that free inorganic As, mainly As(III), was transported in the phloem of castor bean exposed to either As(V) or As(III), and that methylated As species were more mobile than inorganic As in the phloem.

  5. The impacts of water stress on phloem transport in Douglas-fir trees.

    Science.gov (United States)

    Woodruff, David R

    2014-01-01

    Despite the critical role that phloem plays in a number of plant functional processes and the potential impact of water stress on phloem structural and phloem sap compositional characteristics, little research has been done to examine how water stress influences phloem transport. The objectives of this study were to develop a more accurate understanding of how water stress affects phloem transport in trees, both in terms of the short-term impacts of water stress on phloem sap composition and the longer-term impacts on sieve cell anatomical characteristics. Phloem sieve cell conductivity (kp) was evaluated along a gradient of tree height and xylem water potential in Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) trees in order to evaluate the influence of water stress on phloem transport capacity. The Hagen-Poiseuille equation was used with measurements of sieve cell anatomical characteristics, water content of phloem sap, non-structural carbohydrate content of phloem sap and shoot water potential (Ψl) to evaluate impacts of water stress on kp. Based on regression analysis, for each 1 MPa decrease in mean midday Ψl, sieve cell lumen radius decreased by 2.63 µm MPa(-1). Although there was no significant trend in sucrose content with decreasing Ψl, glucose and fructose content increased significantly with water stress and sieve cell relative water content decreased by 13.5% MPa(-1), leading to a significant increase in sugar molar concentration of 0.46 mol l(-1) MPa(-1) and a significant increase in viscosity of 0.27 mPa s MPa(-1). Modeled kp was significantly influenced both by trends in viscosity as well as by water stress-related trends in sieve cell anatomy.

  6. Universality of phloem transport in seed plants.

    Science.gov (United States)

    Jensen, Kåre Hartvig; Liesche, Johannes; Bohr, Tomas; Schulz, Alexander

    2012-06-01

    Since Münch in the 1920s proposed that sugar transport in the phloem vascular system is driven by osmotic pressure gradients, his hypothesis has been strongly supported by evidence from herbaceous angiosperms. Experimental constraints made it difficult to test this proposal in large trees, where the distance between source and sink might prove incompatible with the hypothesis. Recently, the theoretical optimization of the Münch mechanism was shown to lead to surprisingly simple predictions for the dimensions of the phloem sieve elements in relation to that of fast growing angiosperms. These results can be obtained in a very transparent way using a simple coupled resistor model. To test the universality of the Münch mechanism, we compiled anatomical data for 32 angiosperm and 38 gymnosperm trees with heights spanning 0.1-50 m. The species studied showed a remarkable correlation with the scaling predictions. The compiled data allowed calculating stem sieve element conductivity and predicting phloem sap flow velocity. The central finding of this work is that all vascular plants seem to have evolved efficient osmotic pumping units, despite their huge disparity in size and morphology. This contribution extends the physical understanding of phloem transport, and will facilitate detailed comparison between theory and field experiments.

  7. Phloem small RNAs, nutrient stress responses, and systemic mobility

    Directory of Open Access Journals (Sweden)

    Kehr Julia

    2010-04-01

    Full Text Available Abstract Background Nutrient availabilities and needs have to be tightly coordinated between organs to ensure a balance between uptake and consumption for metabolism, growth, and defense reactions. Since plants often have to grow in environments with sub-optimal nutrient availability, a fine tuning is vital. To achieve this, information has to flow cell-to-cell and over long-distance via xylem and phloem. Recently, specific miRNAs emerged as a new type of regulating molecules during stress and nutrient deficiency responses, and miR399 was suggested to be a phloem-mobile long-distance signal involved in the phosphate starvation response. Results We used miRNA microarrays containing all known plant miRNAs and a set of unknown small (s RNAs earlier cloned from Brassica phloem sap 1, to comprehensively analyze the phloem response to nutrient deficiency by removing sulfate, copper or iron, respectively, from the growth medium. We show that phloem sap contains a specific set of sRNAs that is distinct from leaves and roots, and that the phloem also responds specifically to stress. Upon S and Cu deficiencies phloem sap reacts with an increase of the same miRNAs that were earlier characterized in other tissues, while no clear positive response to -Fe was observed. However, -Fe led to a reduction of Cu- and P-responsive miRNAs. We further demonstrate that under nutrient starvation miR399 and miR395 can be translocated through graft unions from wild type scions to rootstocks of the miRNA processing hen1-1 mutant. In contrast, miR171 was not transported. Translocation of miR395 led to a down-regulation of one of its targets in rootstocks, suggesting that this transport is of functional relevance, and that miR395, in addition to the well characterized miR399, could potentially act as a long-distance information transmitter. Conclusions Phloem sap contains a specific set of sRNAs, of which some specifically accumulate in response to nutrient deprivation. From

  8. Effects of cold-girdling on flows in the transport phloem in Ricinus communis: is mass flow ihibited?

    NARCIS (Netherlands)

    Peuke, A.D.; Windt, C.W.; As, van H.

    2006-01-01

    The effects of cold girdling of the transport phloem at the hypocotyl of Ricinus communis on solute and water transport were investigated. Effects on the chemical composition of saps of phloem and xylem as well as of stem tissue were studied by conventional techniques and the water flow in the phloe

  9. Effects of cold-girdling on flows in the transport phloem in Ricinus communis: is mass flow ihibited?

    NARCIS (Netherlands)

    Peuke, A.D.; Windt, C.W.; As, van H.

    2006-01-01

    The effects of cold girdling of the transport phloem at the hypocotyl of Ricinus communis on solute and water transport were investigated. Effects on the chemical composition of saps of phloem and xylem as well as of stem tissue were studied by conventional techniques and the water flow in the

  10. Phloem Transport of Fructans in the Crassulacean Acid Metabolism Species Agave deserti1

    Science.gov (United States)

    Wang, Ning; Nobel, Park S.

    1998-01-01

    Four oligofructans (neokestose, 1-kestose, nystose, and an un-identified pentofructan) occurred in the vascular tissues and phloem sap of mature leaves of Agave deserti. Fructosyltransferases (responsible for fructan biosynthesis) also occurred in the vascular tissues. In contrast, oligofructans and fructosyltransferases were virtually absent from the chlorenchyma, suggesting that fructan biosynthesis was restricted to the vascular tissues. On a molar basis, these oligofructans accounted for 46% of the total soluble sugars in the vascular tissues (sucrose [Suc] for 26%) and for 19% in the phloem sap (fructose for 24% and Suc for 53%). The Suc concentration was 1.8 times higher in the cytosol of the chlorenchyma cells than in the phloem sap; the nystose concentration was 4.9 times higher and that of pentofructan was 3.2 times higher in the vascular tissues than in the phloem sap. To our knowledge, these results provide the first evidence that oligofructans are synthesized and transported in the phloem of higher plants. The polymer-trapping mechanism proposed for dicotyledonous C3 species may also be valid for oligofructan transport in monocotyledonous species, such as A. deserti, which may use a symplastic pathway for phloem loading of photosynthates in its mature leaves. PMID:9490769

  11. Phloem Transport of Fructans in the Crassulacean Acid Metabolism Species Agave deserti

    Science.gov (United States)

    Wang; Nobel

    1998-02-01

    Four oligofructans (neokestose, 1-kestose, nystose, and an un-identified pentofructan) occurred in the vascular tissues and phloem sap of mature leaves of Agave deserti. Fructosyltransferases (responsible for fructan biosynthesis) also occurred in the vascular tissues. In contrast, oligofructans and fructosyltransferases were virtually absent from the chlorenchyma, suggesting that fructan biosynthesis was restricted to the vascular tissues. On a molar basis, these oligofructans accounted for 46% of the total soluble sugars in the vascular tissues (sucrose [Suc] for 26%) and for 19% in the phloem sap (fructose for 24% and Suc for 53%). The Suc concentration was 1.8 times higher in the cytosol of the chlorenchyma cells than in the phloem sap; the nystose concentration was 4.9 times higher and that of pentofructan was 3.2 times higher in the vascular tissues than in the phloem sap. To our knowledge, these results provide the first evidence that oligofructans are synthesized and transported in the phloem of higher plants. The polymer-trapping mechanism proposed for dicotyledonous C3 species may also be valid for oligofructan transport in monocotyledonous species, such as A. deserti, which may use a symplastic pathway for phloem loading of photosynthates in its mature leaves.

  12. Discharge of surplus phloem water may be required for normal grape ripening

    OpenAIRE

    Zhang, Yun; Keller, Markus

    2017-01-01

    Abstract At the onset of ripening, some fleshy fruits shift the dominant water import pathway from the xylem to the phloem, but the cause for the decline in xylem inflow remains obscure. This study found that xylem-mobile dye movement into grape berries decreased despite transient increases in berry growth and transpiration during early ripening, whereas outward dye movement continued unless the roots were pressurized. Modeling berry vascular flows using measurements of pedicel phloem sap sug...

  13. Discharge of surplus phloem water may be required for normal grape ripening.

    Science.gov (United States)

    Zhang, Yun; Keller, Markus

    2017-01-01

    At the onset of ripening, some fleshy fruits shift the dominant water import pathway from the xylem to the phloem, but the cause for the decline in xylem inflow remains obscure. This study found that xylem-mobile dye movement into grape berries decreased despite transient increases in berry growth and transpiration during early ripening, whereas outward dye movement continued unless the roots were pressurized. Modeling berry vascular flows using measurements of pedicel phloem sap sugar concentration, berry growth, solute accumulation, and transpiration showed that a fraction of phloem-derived water was used for berry growth and transpiration; the surplus was recirculated via the xylem. Changing phloem sap sugar concentration to a much higher published value led to model simulations predicting xylem inflow or backflow depending on the developmental stage and genotype. Mathematically preventing net xylem flow resulted in large variations in phloem sap sugar concentration in pedicels serving neighboring berries on the same fruit cluster. Moreover, restricting water discharge via the xylem and/or across the skin impaired berry solute accumulation and color change. Collectively, these results indicate that discharge of surplus phloem water via berry transpiration and/or xylem backflow may be necessary to facilitate normal grape ripening. © The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  14. Phloem loading in two Scrophulariaceae species. What can drive symplastic flow via plasmodesmata?

    Science.gov (United States)

    Voitsekhovskaja, Olga V; Koroleva, Olga A; Batashev, Denis R; Knop, Christian; Tomos, A Deri; Gamalei, Yuri V; Heldt, Hans-Walter; Lohaus, Gertrud

    2006-01-01

    To determine the driving forces for symplastic sugar flux between mesophyll and phloem, gradients of sugar concentrations and osmotic pressure were studied in leaf tissues of two Scrophulariaceae species, Alonsoa meridionalis and Asarina barclaiana. A. meridionalis has a typical symplastic configuration of minor-vein phloem, i.e. intermediary companion cells with highly developed plasmodesmal connections to bundle-sheath cells. In A. barclaiana, two types of companion cells, modified intermediary cells and transfer cells, were found in minor-vein phloem, giving this species the potential to have a complex phloem-loading mode. We identified all phloem-transported carbohydrates in both species and analyzed the levels of carbohydrates in chloroplasts, vacuoles, and cytoplasm of mesophyll cells by nonaqueous fractionation. Osmotic pressure was measured in single epidermal and mesophyll cells and in whole leaves and compared with calculated values for phloem sap. In A. meridionalis, a 2-fold concentration gradient for sucrose between mesophyll and phloem was found. In A. barclaiana, the major transported carbohydrates, sucrose and antirrhinoside, were present in the phloem in 22- and 6-fold higher concentrations, respectively, than in the cytoplasm of mesophyll cells. The data show that diffusion of sugars along their concentration gradients is unlikely to be the major mechanism for symplastic phloem loading if this were to occur in these species. We conclude that in both A. meridionalis and A. barclaiana, apoplastic phloem loading is an indispensable mechanism and that symplastic entrance of solutes into the phloem may occur by mass flow. The conditions favoring symplastic mass flow into the phloem are discussed.

  15. Phloem Loading in Two Scrophulariaceae Species. What Can Drive Symplastic Flow via Plasmodesmata?1

    Science.gov (United States)

    Voitsekhovskaja, Olga V.; Koroleva, Olga A.; Batashev, Denis R.; Knop, Christian; Tomos, A. Deri; Gamalei, Yuri V.; Heldt, Hans-Walter; Lohaus, Gertrud

    2006-01-01

    To determine the driving forces for symplastic sugar flux between mesophyll and phloem, gradients of sugar concentrations and osmotic pressure were studied in leaf tissues of two Scrophulariaceae species, Alonsoa meridionalis and Asarina barclaiana. A. meridionalis has a typical symplastic configuration of minor-vein phloem, i.e. intermediary companion cells with highly developed plasmodesmal connections to bundle-sheath cells. In A. barclaiana, two types of companion cells, modified intermediary cells and transfer cells, were found in minor-vein phloem, giving this species the potential to have a complex phloem-loading mode. We identified all phloem-transported carbohydrates in both species and analyzed the levels of carbohydrates in chloroplasts, vacuoles, and cytoplasm of mesophyll cells by nonaqueous fractionation. Osmotic pressure was measured in single epidermal and mesophyll cells and in whole leaves and compared with calculated values for phloem sap. In A. meridionalis, a 2-fold concentration gradient for sucrose between mesophyll and phloem was found. In A. barclaiana, the major transported carbohydrates, sucrose and antirrhinoside, were present in the phloem in 22- and 6-fold higher concentrations, respectively, than in the cytoplasm of mesophyll cells. The data show that diffusion of sugars along their concentration gradients is unlikely to be the major mechanism for symplastic phloem loading if this were to occur in these species. We conclude that in both A. meridionalis and A. barclaiana, apoplastic phloem loading is an indispensable mechanism and that symplastic entrance of solutes into the phloem may occur by mass flow. The conditions favoring symplastic mass flow into the phloem are discussed. PMID:16377750

  16. Intact plant magnetic resonance imaging to study dynamics in long-distance sap flow and flow-conducting surface area

    NARCIS (Netherlands)

    Scheenen, T.W.J.; Vergeldt, F.J.; Heemskerk, A.M.; As, van H.

    2007-01-01

    Due to the fragile pressure gradients present in the xylem and phloem, methods to study sap flow must be minimally invasive. Magnetic resonance imaging (MRI) meets this condition. A dedicated MRI method to study sap flow has been applied to quantify long-distance xylem flow and hydraulics in an

  17. Phloem mobility and translocation of fluorescent conjugate containing glucose and NBD in castor bean (Ricinus communis).

    Science.gov (United States)

    Lei, Zhiwei; Wang, Jie; Mao, Genlin; Wen, Yingjie; Xu, Hanhong

    2014-03-05

    Phloem mobility is an important factor for long-distance transport of systemic pesticides in plants. Our previous study revealed that a fluorescent glucose-insecticide conjugate, N-{3-cyano-1-[2,6-dichloro-4-(trifluoromethyl)phenyl]-4-iodo-1H-pyrazol-5-yl}-N-{[1-(β-D-glucopyranosyl)-1H-1,2,3-triazole-4-yl]methyl}-N-{[1-((N-(7-nitrobenz-2-oxa-1,3-diazole-4-amine))-propyl)-1H-1,2,3-triazole-4-yl]methyl}amine (IPGN), can be transported in tobacco cells. Several studies have also indicated that glucose moieties can guide the conjugates into plant cells. In this study, we investigated the phloem mobility of IPGN within castor bean seedlings. Cotyledon uptake experiment results show that IPGN could enter the phloem of the mid-veins of cotyledons. The results of further quantitative analysis show that IPGN was present in small amounts in the phloem sap despite the inconsistencies of physicochemical properties with diffusion through the plasma membrane. Its concentration in the phloem sap (about 370nM at 5h) was much lower than that in the incubation medium (100μM), which suggests that IPGN exhibited weak phloem mobility. After the leaves of Ricinus plantlets were treated with IPGN, green fluorescence could be observed in the phloem of the petioles, bud apical nodes, bud mid-veins, and mid-veins of the untreated leaves. The localization of the fluorescent conjugate at various levels of Ricinus plantlets indicates that it was translocated at a distance to sink organs via sieve tubes. The results proved that introducing a glucose group is a feasible approach to modify non-phloem-mobile pesticides and produce phloem-mobile pesticides. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Does Don Fisher's high-pressure manifold model account for phloem transport and resource partitioning?

    Science.gov (United States)

    Patrick, John W

    2013-01-01

    The pressure flow model of phloem transport envisaged by Münch (1930) has gained wide acceptance. Recently, however, the model has been questioned on structural and physiological grounds. For instance, sub-structures of sieve elements may reduce their hydraulic conductances to levels that impede flow rates of phloem sap and observed magnitudes of pressure gradients to drive flow along sieve tubes could be inadequate in tall trees. A variant of the Münch pressure flow model, the high-pressure manifold model of phloem transport introduced by Donald Fisher may serve to reconcile at least some of these questions. To this end, key predicted features of the high-pressure manifold model of phloem transport are evaluated against current knowledge of the physiology of phloem transport. These features include: (1) An absence of significant gradients in axial hydrostatic pressure in sieve elements from collection to release phloem accompanied by transport properties of sieve elements that underpin this outcome; (2) Symplasmic pathways of phloem unloading into sink organs impose a major constraint over bulk flow rates of resources translocated through the source-path-sink system; (3) Hydraulic conductances of plasmodesmata, linking sieve elements with surrounding phloem parenchyma cells, are sufficient to support and also regulate bulk flow rates exiting from sieve elements of release phloem. The review identifies strong circumstantial evidence that resource transport through the source-path-sink system is consistent with the high-pressure manifold model of phloem transport. The analysis then moves to exploring mechanisms that may link demand for resources, by cells of meristematic and expansion/storage sinks, with plasmodesmal conductances of release phloem. The review concludes with a brief discussion of how these mechanisms may offer novel opportunities to enhance crop biomass yields.

  19. Arsenic Speciation in Phloem and Xylem Exudates of Castor Bean[C][W

    Science.gov (United States)

    Ye, Wen-Ling; Wood, B. Alan; Stroud, Jacqueline L.; Andralojc, P. John; Raab, Andrea; McGrath, Steve P.; Feldmann, Jörg; Zhao, Fang-Jie

    2010-01-01

    How arsenic (As) is transported in phloem remains unknown. To help answer this question, we quantified the chemical species of As in phloem and xylem exudates of castor bean (Ricinus communis) exposed to arsenate [As(V)], arsenite [As(III)], monomethylarsonic acid [MMA(V)], or dimethylarsinic acid. In the As(V)- and As(III)-exposed plants, As(V) was the main species in xylem exudate (55%–83%) whereas As(III) predominated in phloem exudate (70%–94%). The ratio of As concentrations in phloem to xylem exudate varied from 0.7 to 3.9. Analyses of phloem exudate using high-resolution inductively coupled plasma-mass spectrometry and accurate mass electrospray mass spectrometry coupled to high-performance liquid chromatography identified high concentrations of reduced and oxidized glutathione and some oxidized phytochelatin, but no As(III)-thiol complexes. It is thought that As(III)-thiol complexes would not be stable in the alkaline conditions of phloem sap. Small concentrations of oxidized glutathione and oxidized phytochelatin were found in xylem exudate, where there was also no evidence of As(III)-thiol complexes. MMA(V) was partially reduced to MMA(III) in roots, but only MMA(V) was found in xylem and phloem exudate. Despite the smallest uptake among the four As species supplied to plants, dimethylarsinic acid was most efficiently transported in both xylem and phloem, and its phloem concentration was 3.2 times that in xylem. Our results show that free inorganic As, mainly As(III), was transported in the phloem of castor bean exposed to either As(V) or As(III), and that methylated As species were more mobile than inorganic As in the phloem. PMID:20870777

  20. Secondary metabolites from the phloem of Piper solmsianum (Piperaceae) in the honeydew of Edessa meditabunda.

    Science.gov (United States)

    Ramos, Clécio S; Kato, Massuo J

    2012-01-01

    The phytochemistry of species of the genus Piper has been studied extensively, including Piper solmsianum. However, no studies have addressed the phytochemistry of the sap content of Piper species. To evaluate the transferring of secondary compounds from the saps of P. solmsianum to the honeydew of Edessa meditabunda. The honeydew of E. meditabunda and saps of P. solmsianum were analysed by GC-MS, (1) H-NMR and LC-MS. The lignan (-)-grandisin and the phenylpropanoid (E)-isoelemicin were detected in both saps of P. solmsianum and honeydew of E. meditabunda. Analysis of honeydew secreted by the sap-sucking insect E. meditabunda indicated that (-)-grandisin and (E)-isoelemicin are absorbed from the phloem of Piper solmsianum. Copyright © 2012 John Wiley & Sons, Ltd.

  1. Assimilate transport in phloem sets conditions for leaf gas exchange.

    Science.gov (United States)

    Nikinmaa, Eero; Hölttä, Teemu; Hari, Pertti; Kolari, Pasi; Mäkelä, Annikki; Sevanto, Sanna; Vesala, Timo

    2013-03-01

    Carbon uptake and transpiration in plant leaves occurs through stomata that open and close. Stomatal action is usually considered a response to environmental driving factors. Here we show that leaf gas exchange is more strongly related to whole tree level transport of assimilates than previously thought, and that transport of assimilates is a restriction of stomatal opening comparable with hydraulic limitation. Assimilate transport in the phloem requires that osmotic pressure at phloem loading sites in leaves exceeds the drop in hydrostatic pressure that is due to transpiration. Assimilate transport thus competes with transpiration for water. Excess sugar loading, however, may block the assimilate transport because of viscosity build-up in phloem sap. Therefore, for given conditions, there is a stomatal opening that maximizes phloem transport if we assume that sugar loading is proportional to photosynthetic rate. Here we show that such opening produces the observed behaviour of leaf gas exchange. Our approach connects stomatal regulation directly with sink activity, plant structure and soil water availability as they all influence assimilate transport. It produces similar behaviour as the optimal stomatal control approach, but does not require determination of marginal cost of water parameter.

  2. Immunolocalization of solanaceous SUT1 proteins in companion cells and xylem parenchyma: new perspectives for phloem loading and transport.

    Science.gov (United States)

    Schmitt, Bianca; Stadler, Ruth; Sauer, Norbert

    2008-09-01

    Leaf sucrose (Suc) transporters are essential for phloem loading and long-distance partitioning of assimilates in plants that load their phloem from the apoplast. Suc loading into the phloem is indispensable for the generation of the osmotic potential difference that drives phloem bulk flow and is central for the long-distance movement of phloem sap compounds, including hormones and signaling molecules. In previous analyses, solanaceous SUT1 Suc transporters from tobacco (Nicotiana tabacum), potato (Solanum tuberosum), and tomato (Solanum lycopersicum) were immunolocalized in plasma membranes of enucleate sieve elements. Here, we present data that identify solanaceous SUT1 proteins with high specificity in phloem companion cells. Moreover, comparisons of SUT1 localization in the abaxial and adaxial phloem revealed higher levels of SUT1 protein in the abaxial phloem of all three solanaceous species, suggesting different physiological roles for these two types of phloem. Finally, SUT1 proteins were identified in files of xylem parenchyma cells, mainly in the bicollateral veins. Together, our data provide new insight into the role of SUT1 proteins in solanaceous species.

  3. Interaction of xylem and phloem during exudation and wound occlusion in Cucurbita maxima.

    Science.gov (United States)

    Zimmermann, Matthias R; Hafke, Jens B; van Bel, Aart J E; Furch, Alexandra C U

    2013-01-01

    Collection of cucurbit exudates from cut petioles has been a powerful tool for gaining knowledge on phloem sap composition without full notion of the complex exudation mechanism. Only few publications explicitly mentioned that exudates were collected from the basal side of the cut, which exudes more copiously than the apical side. This is surprising since only exudation from the apical side is supposedly driven by phloem pressure gradients. Composition of carbohydrates and pH values at both wounding sides are equal, whereas protein concentration is higher at the basal side. Apparently, exudation is far more complex than just the delivery of phloem sap. Xylem involvement is indicated by lower protein concentrations after elimination of root pressure. Moreover, dye was sucked into xylem vessels owing to relaxation of negative pressure after cutting. The lateral water efflux from the vessels increases turgor of surrounding cells including sieve elements. Simultaneously, detached parietal proteins (PP1/PP2) induce occlusion of sieve plates and cover wound surface. If root pressure is strong enough, pure xylem sap can be collected after removal of the occlusion plug at the wound surface. The present findings provide a mechanism of sap exudation in Cucurbita maxima, in which the contribution of xylem water is integrated. © 2012 Blackwell Publishing Ltd.

  4. Evidence for functional heterogeneity of sieve element-companion cell complexes in minor vein phloem of Alonsoa meridionalis.

    Science.gov (United States)

    Voitsekhovskaja, Olga V; Rudashevskaya, Elena L; Demchenko, Kirill N; Pakhomova, Marina V; Batashev, Denis R; Gamalei, Yuri V; Lohaus, Gertrud; Pawlowski, Katharina

    2009-01-01

    Two modes of phloem loading have been proposed, apoplastic and symplastic, depending on the structure of sieve element-companion cell complexes (SE-CCCs) in minor vein phloem. Species are usually classified as either apoplastic or symplastic loaders although the cytology of SE-CCCs in minor veins of the majority of plants indicates that both mechanisms can be simultaneously involved in phloem loading. The functions of structurally different SE-CCCs in minor veins of the stachyose-translocating plant Alonsoa meridionalis were examined. A stachyose synthase gene, AmSTS1, was expressed in intermediary cells but not in the ordinary companion cell of the same vein. In contrast, sucrose transporter AmSUT1 protein was present in ordinary companion cells but not in the neighbouring intermediary cells. These data reveal the principles of phloem sap formation in A. meridionalis and, probably, in many other dicots. The two types of SE-CCCs within one and the same minor vein load different carbohydrates, using contrasting mechanisms for their delivery into the phloem. Lateral sieve pores in the minor vein phloem lead to mixing of the carbohydrates soon after loading. While symplastic and apoplastic pathways can function simultaneously during phloem loading, they are separated at the level of different SE-CCCs combined in phloem endings.

  5. Does Don Fisher’s high-pressure manifold model account for phloem transport and resource partitioning?

    Directory of Open Access Journals (Sweden)

    John William Patrick

    2013-06-01

    Full Text Available The pressure flow model of phloem transport envisaged by Münch (1930 has gained wide acceptance. Recently, however, the model has been questioned on structural and physiological grounds. For instance, sub-structures of sieve elements may reduce their hydraulic conductances to levels that impede flow rates of phloem sap and observed magnitudes of pressure gradients to drive flow along sieve tubes could be inadequate in tall trees. A variant of the Münch pressure flow model, the high-pressure manifold model of phloem transport introduced by Donald Fisher may serve to reconcile at least some of these questions. To this end, key predicted features of the high-pressure manifold model of phloem transport are evaluated against current knowledge of the physiology of phloem transport. These features include: (1 An absence of significant gradients in axial hydrostatic pressure in sieve elements from collection to release phloem accompanied by transport properties of sieve elements that underpin this outcome; (2 Symplasmic pathways of phloem unloading into sink organs impose a major constraint over bulk flow rates of resources translocated through the source-path-sink system; (3 Hydraulic conductances of plasmodesmata, linking sieve elements with surrounding phloem parenchyma cells, are sufficient to support and also regulate bulk flow rates exiting from sieve elements of release phloem. The review identifies strong circumstantial evidence that resource transport through the source-path-sink system is consistent with the high-pressure manifold model of phloem transport. The analysis then moves to exploring mechanisms that may link demand for resources, by cells of meristematic and expansion/storage sinks, with plasmodesmatal conductances of release phloem. The review concludes with a brief discussion of how these mechanisms may offer novel opportunities to enhance crop biomass yields.

  6. Sugar demand of ripening grape berries leads to recycling of surplus phloem water via the xylem.

    Science.gov (United States)

    Keller, Markus; Zhang, Yun; Shrestha, Pradeep M; Biondi, Marco; Bondada, Bhaskar R

    2015-06-01

    We tested the common assumption that fleshy fruits become dependent on phloem water supply because xylem inflow declines at the onset of ripening. Using two distinct grape genotypes exposed to drought stress, we found that a sink-driven rise in phloem inflow at the beginning of ripening was sufficient to reverse drought-induced berry shrinkage. Rewatering accelerated berry growth and sugar accumulation concurrently with leaf photosynthetic recovery. Interrupting phloem flow through the peduncle prevented the increase in berry growth after rewatering, but interrupting xylem flow did not. Nevertheless, xylem flow in ripening berries, but not berry size, remained responsive to root or shoot pressurization. A mass balance analysis on ripening berries sampled in the field suggested that phloem water inflow may exceed growth and transpiration water demands. Collecting apoplastic sap from ripening berries showed that osmotic pressure increased at distinct rates in berry vacuoles and apoplast. Our results indicate that the decrease in xylem inflow at the onset of ripening may be a consequence of the sink-driven increase in phloem inflow. We propose a conceptual model in which surplus phloem water bypasses the fruit cells and partly evaporates from the berry surface and partly moves apoplastically to the xylem for outflow. © 2014 John Wiley & Sons Ltd.

  7. Phloem transport in Ricinus: Its dependence on the water balance of the tissues.

    Science.gov (United States)

    Hall, S M; Milburn, J A

    1973-03-01

    Phloem exudation from Ricinus has been examined in plants subjected to changes in water balance induced by a number of means. The results have provided a clear demonstration that the phloem system can operate osmotically. When the availability of water in the xylem is reduced by withholding water, the rate of exudation decreases sharply and this is accompanied by a rise in the sap concentration. On removing the water stress, the rate increases rapidly with a corresponding fall in sap concentration.Small variations in water availability do not give significant results and may be buffered by responses from the plant itself. This could also explain the insignificant changes in sap composition during exudation previously reported, where exudation rate, which should bear some relation to sieve tube turgor pressure, seems independent of sap concentration. Fluctuations in exudation rate are large in comparison with the changes in sap concentration when severe water stresses are applied. This result, coupled with the observation that exudation will occur from plants under considerable water stress suggests the operation of a "sugar pump" capable of maintaining a high turgor pressure at the source against a considerable water potential gradient. The main "pump" is probably located in the leaves.Thus interpreted, the results seem to accord with the Münch pressure flow hypothesis in all significant aspects.

  8. On SAP-rings

    OpenAIRE

    Zhixiang, Wu

    2006-01-01

    The rings whose simple right modules are absolutely pure are called right $SAP$-rings. We give a new characterization of right $SAP$ rings, right $V$ rings, and von Neumann regular rings. We also obtain a new decomposition theory of right selfinjective von Neumann regular rings. The relationships between $SAP$-rings, $V$-rings, and von Neumann regular rings are explored. Some recent results obtained by Faith are generalized and the results of Wu-Xia are strengthened.

  9. Diurnal changes in assimilate concentrations and fluxes in the phloem of castor bean (Ricinus communis L.) and tansy (Tanacetum vulgare L.).

    Science.gov (United States)

    Kallarackal, Jose; Bauer, Susanne N; Nowak, Heike; Hajirezaei, Mohammad-Reza; Komor, Ewald

    2012-07-01

    Reports about diurnal changes of assimilates in phloem sap are controversial. We determined the diurnal changes of sucrose and amino acid concentrations and fluxes in exudates from cut aphid stylets on tansy leaves (Tanacetum vulgare), and sucrose, amino acid and K(+) concentrations and fluxes in bleeding sap of castor bean pedicel (Ricinus communis). Approximately half of the tansy sieve tubes exhibited a diurnal cycle of sucrose concentrations and fluxes in phloem sap. Data from many tansy plants indicated an increased sucrose flux in the phloem during daytime in case of low N-nutrition, not at high N-nutrition. The sucrose concentration in phloem sap of young Ricinus plants changed marginally between day and night, whereas the sucrose flux increased 1.5-fold during daytime (but not in old Ricinus plants). The amino acid concentrations and fluxes in tansy sieve tubes exhibited a similar diurnal cycle as the sucrose concentrations and fluxes, including their dependence on N-nutrition. The amino acid fluxes, but not the concentrations, in phloem sap of Ricinus were higher at daytime. The sucrose/amino acid ratio showed no diurnal cycle neither in tansy nor in Ricinus. The K(+)-concentrations in phloem sap of Ricinus, but not the K(+) fluxes, decreased slightly during daytime and the sucrose/K(+)-ratio increased. In conclusion, a diurnal cycle was observed in sucrose, amino acid and K(+) fluxes, but not necessarily in concentrations of these assimilates. Because of the large variations between different sieve tubes and different plants, the nutrient delivery to sink tissues is not homeostatic over time.

  10. Characterization, localization, and seasonal changes of the sucrose transporter FeSUT1 in the phloem of Fraxinus excelsior.

    Science.gov (United States)

    Öner-Sieben, Soner; Rappl, Christine; Sauer, Norbert; Stadler, Ruth; Lohaus, Gertrud

    2015-08-01

    Trees are generally assumed to be symplastic phloem loaders. A typical feature for most wooden species is an open minor vein structure with symplastic connections between mesophyll cells and phloem cells, which allow sucrose to move cell-to-cell through the plasmodesmata into the phloem. Fraxinus excelsior (Oleaceae) also translocates raffinose family oligosaccharides in addition to sucrose. Sucrose concentration was recently shown to be higher in the phloem sap than in the mesophyll cells. This suggests the involvement of apoplastic steps and the activity of sucrose transporters in addition to symplastic phloem-loading processes. In this study, the sucrose transporter FeSUT1 from F. excelsior was analysed. Heterologous expression in baker's yeast showed that FeSUT1 mediates the uptake of sucrose. Immunohistochemical analyses revealed that FeSUT1 was exclusively located in phloem cells of minor veins and in the transport phloem of F. excelsior. Further characterization identified these cells as sieve elements and possibly ordinary companion cells but not as intermediary cells. The localization and expression pattern point towards functions of FeSUT1 in phloem loading of sucrose as well as in sucrose retrieval. FeSUT1 is most likely responsible for the observed sucrose gradient between mesophyll and phloem. The elevated expression level of FeSUT1 indicated an increased apoplastic carbon export activity from the leaves during spring and late autumn. It is hypothesized that the importance of apoplastic loading is high under low-sucrose conditions and that the availability of two different phloem-loading mechanisms confers advantages for temperate woody species like F. excelsior.

  11. Association between photosynthesis and contrasting features of minor veins in leaves of summer annuals loading phloem via symplastic versus apoplastic routes.

    Science.gov (United States)

    Muller, Onno; Cohu, Christopher M; Stewart, Jared J; Protheroe, Johanna A; Demmig-Adams, Barbara; Adams, William W

    2014-09-01

    Foliar vascular anatomy and photosynthesis were evaluated for a number of summer annual species that either load sugars into the phloem via a symplastic route (Cucumis sativus L. cv. Straight Eight; Cucurbita pepo L. cv. Italian Zucchini Romanesco; Citrullus lanatus L. cv. Faerie Hybrid; Cucurbita pepo L. cv. Autumn Gold) or an apoplastic route (Nicotiana tabacum L.; Solanum lycopersicum L. cv. Brandywine; Gossypium hirsutum L.; Helianthus annuus L. cv. Soraya), as well as winter annual apoplastic loaders (Spinacia oleracea L. cv. Giant Nobel; Arabidopsis thaliana (L.) Heynhold Col-0, Swedish and Italian ecotypes). For all summer annuals, minor vein cross-sectional xylem area and tracheid number as well as the ratio of phloem loading cells to phloem sieve elements, each when normalized for foliar vein density (VD), was correlated with photosynthesis. These links presumably reflect (1) the xylem's role in providing water to meet foliar transpirational demand supporting photosynthesis and (2) the importance of the driving force of phloem loading as well as the cross-sectional area for phloem sap flux to match foliar photosynthate production. While photosynthesis correlated with the product of VD and cross-sectional phloem cell area among symplastic loaders, photosynthesis correlated with the product of VD and phloem cell number per vein among summer annual apoplastic loaders. Phloem cell size has thus apparently been a target of selection among symplastic loaders (where loading depends on enzyme concentration within loading cells) versus phloem cell number among apoplastic loaders (where loading depends on membrane transporter numbers).

  12. Barley germination

    DEFF Research Database (Denmark)

    Daneri-Castro, Sergio N.; Svensson, Birte; Roberts, Thomas H.

    2016-01-01

    conditions continue to be key to discovering the roles of individual protein forms and posttranslational modifications, such as glycosylation. Activity-based proteomics, particularly in combination with new gene editing technologies, has great potential to elucidate the network of enzymes in barley...

  13. Xylem sap proteomics.

    Science.gov (United States)

    de Bernonville, Thomas Dugé; Albenne, Cécile; Arlat, Matthieu; Hoffmann, Laurent; Lauber, Emmanuelle; Jamet, Elisabeth

    2014-01-01

    Proteomic analysis of xylem sap has recently become a major field of interest to understand several biological questions related to plant development and responses to environmental clues. The xylem sap appears as a dynamic fluid undergoing changes in its proteome upon abiotic and biotic stresses. Unlike cell compartments which are amenable to purification in sufficient amount prior to proteomic analysis, the xylem sap has to be collected in particular conditions to avoid contamination by intracellular proteins and to obtain enough material. A model plant like Arabidopsis thaliana is not suitable for such an analysis because efficient harvesting of xylem sap is difficult. The analysis of the xylem sap proteome also requires specific procedures to concentrate proteins and to focus on proteins predicted to be secreted. Indeed, xylem sap proteins appear to be synthesized and secreted in the root stele or to originate from dying differentiated xylem cells. This chapter describes protocols to collect xylem sap from Brassica species and to prepare total and N-glycoprotein extracts for identification of proteins by mass spectrometry analyses and bioinformatics.

  14. In vivo quantification of cell coupling in plants with different phloem-loading strategies.

    Science.gov (United States)

    Liesche, Johannes; Schulz, Alexander

    2012-05-01

    Uptake of photoassimilates into the leaf phloem is the key step in carbon partitioning and phloem transport. Symplasmic and apoplasmic loading strategies have been defined in different plant taxa based on the abundance of plasmodesmata between mesophyll and phloem. For apoplasmic loading to occur, an absence of plasmodesmata is a sufficient but not a necessary criterion, as passage of molecules through plasmodesmata might well be blocked or restricted. Here, we present a noninvasive, whole-plant approach to test symplasmic coupling and quantify the intercellular flux of small molecules using photoactivation microscopy. Quantification of coupling between all cells along the prephloem pathways of the apoplasmic loader Vicia faba and Nicotiana tabacum showed, to our knowledge for the first time in vivo, that small solutes like sucrose can diffuse through plasmodesmata up to the phloem sieve element companion cell complex (SECCC). As expected, the SECCC was found to be symplasmically isolated for small solutes. In contrast, the prephloem pathway of the symplasmic loader Cucurbita maxima was found to be well coupled with the SECCC. Phloem loading in gymnosperms is not well understood, due to a profoundly different leaf anatomy and a scarcity of molecular data compared with angiosperms. A cell-coupling analysis for Pinus sylvestris showed high symplasmic coupling along the entire prephloem pathway, comprising at least seven cell border interfaces between mesophyll and sieve elements. Cell coupling together with measurements of leaf sap osmolality indicate a passive symplasmic loading type. Similarities and differences of this loading type with that of angiosperm trees are discussed.

  15. Correlations in concentrations, xylem and phloem flows, and partitioning of elements and ions in intact plants. A summary and statistical re-evaluation of modelling experiments in Ricinus communis.

    Science.gov (United States)

    Peuke, Andreas D

    2010-03-01

    Within the last two decades, a series of papers have dealt with the effects of nutrition and nutrient deficiency, as well as salt stress, on the long-distance transport and partitioning of nutrients in castor bean. Flows in xylem and phloem were modelled according to an empirically-based modelling technique that permits additional quantification of the uptake and incorporation into plant organs. In the present paper these data were statistically re-evaluated, and new correlations are presented. Numerous relationships between different compartments and transport processes for single elements, but also between elements, were detected. These correlations revealed different selectivities for ions in bulk net transport. Generally, increasing chemical concentration gradients for mineral nutrients from the rhizosphere to the root and from the xylem to leaf tissue were observed, while such gradients decreased from root tissue to the xylem and from leaves to the phloem. These studies showed that, for the partitioning of nutrients within a plant, the correlated interactions of uptake, xylem and phloem flow, as well as loading and unloading of solutes from transport systems, are of central importance. For essential nutrients, tight correlations between uptake, xylem and phloem flow, and the resulting partitioning of elements, were observed, which allows the stating of general models. For non-essential ions like Na(+) or Cl(-), a statistically significant dependence of xylem transport on uptake was not detected. The central role of the phloem for adjusting, but also signalling, of nutrition status is discussed, since strong correlations between leaf nutrient concentrations and those in phloem saps were observed. In addition, negative correlations between phloem sap sugar concentration and net-photosynthesis, growth, and uptake of nutrients were demonstrated. The question remains whether this is only a consequence of an insufficient use of carbohydrates in plants or a

  16. Aplikace SAP HANA

    OpenAIRE

    2014-01-01

    The work is dedicated to analysis of data using ICT. It is clear that the classical way of dealing with the data is not satisfactory. Therefore, the new number of tools that changing the view of working with data has occured. An example is the SAP system HANA. The main aim of this thesis is to introduce SAP HANA platform as a tool for analytical processing of large amounts of data (especially in wide area-based marketing and customer relationship management) on the example SAP Customer Engage...

  17. Phloem long-distance delivery of FLOWERING LOCUS T (FT) to the apex.

    Science.gov (United States)

    Yoo, Soo-Cheul; Chen, Cheng; Rojas, Maria; Daimon, Yasufumi; Ham, Byung-Kook; Araki, Takashi; Lucas, William J

    2013-08-01

    Cucurbita moschata FLOWERING LOCUS T-LIKE 2 (hereafter FTL2) and Arabidopsis thaliana (Arabidopsis) FLOWERING LOCUS T (FT), components of the plant florigenic signaling system, move long-distance through the phloem from source leaves to the vegetative apex where they mediate floral induction. The mechanisms involved in long-distance trafficking of FT/FTL2 remain to be elucidated. In this study, we identified the critical motifs on both FT and FTL2 required for cell-to-cell trafficking through mutant analyses using a zucchini yellow mosaic virus expression vector. Western blot analysis, performed on phloem sap collected from just beneath the vegetative apex of C. moschata plants, established that all mutant proteins tested retained the ability to enter the phloem translocation stream. However, immunolocalization studies revealed that a number of these FTL2/FT mutants were defective in the post-phloem zone, suggesting that a regulation mechanism for FT trafficking exists in the post-phloem unloading step. The selective movements of FT/FTL2 were further observed by microinjection and trichome rescue studies, which revealed that FT/FTL2 has the ability to dilate plasmodesmata microchannels during the process of cell-to-cell trafficking, and various mutants were compromised in their capacity to traffic through plasmodesmata. Based on these findings, a model is presented to account for the mechanism by which FT/FTL2 enters the phloem translocation stream and subsequently exits the phloem and enters the apical tissue, where it initiates the vegetative to floral transition.

  18. SAP Sector Develops Rapidly

    Institute of Scientific and Technical Information of China (English)

    Zheng Chengwang

    2007-01-01

    @@ Stable demand growth internationally Super absorbent polymers (SAP) feature high water absorption, high water retention, rapid water absorption, great expanding power,strong thickening, strong anchoring and excellent elasticity.

  19. SAP HANA cookbook

    CERN Document Server

    Chandrasekhar

    2013-01-01

    An easy-to-understand guide, covering topics using practical scenarios and live examples, and answering all possible questions.If you are a solution architect, developer, modeler, sales leader, business transformation managers, directors, COO, or CIO; this book is perfect for you.If you are interested in other technologies and want to jump-start into SAP, this book gives you the chance to learn SAP HANA. Basic knowledge of RDBMS concepts enough is to get you started.

  20. Distinct changes in soybean xylem sap proteome in response to pathogenic and symbiotic microbe interactions

    Directory of Open Access Journals (Sweden)

    Cho Un-Haing

    2009-09-01

    Full Text Available Abstract Background Plant systemic signaling characterized by the long distance transport of molecules across plant organs involves the xylem and phloem conduits. Root-microbe interactions generate systemic signals that are transported to aerial organs via the xylem sap. We analyzed the xylem sap proteome of soybean seedlings in response to pathogenic and symbiotic interactions to identify systemic signaling proteins and other differentially expressed proteins. Results We observed the increase of a serine protease and peroxidase in the xylem sap in response to Phytophthora sojae elicitor treatment. The high molecular weight fraction of soybean xylem sap was found to promote the growth of Neurospora crassa in vitro at lower concentrations and inhibit growth at higher concentrations. Sap from soybean plants treated with a P. sojae elicitor had a significantly higher inhibitory effect than sap from control soybean plants. When soybean seedlings were inoculated with the symbiont Bradyrhizobium japonicum, the abundance of a xyloglucan transendoglycosyl transferase protein increased in the xylem sap. However, RNAi-mediated silencing of the corresponding gene did not significantly affect nodulation in soybean hairy root composite plants. Conclusion Our study identified a number of sap proteins from soybean that are differentially induced in response to B. japonicum and P. sojae elicitor treatments and a majority of them were secreted proteins.

  1. Brewing with fractionated barley

    OpenAIRE

    Donkelaar, van, CC René

    2016-01-01

    Brewing with fractionated barley Beer is a globally consumed beverage, which is produced from malted barley, water, hops and yeast. In recent years, the use of unmalted barley and exogenous enzymes have become more popular because they enable simpler processing and reduced environmental impact. Raw barley, however, contains less endogenous enzymes and more undesired components for the use of beer brewing, compared to malted barley.  The overall aim of this thesis is to investigate how ba...

  2. Modeling the hydrodynamics of Phloem sieve plates

    DEFF Research Database (Denmark)

    Jensen, Kaare Hartvig; Mullendore, Daniel Leroy; Holbrook, Noel Michele;

    2012-01-01

    Sieve plates have an enormous impact on the efficiency of the phloem vascular system of plants, responsible for the distribution of photosynthetic products. These thin plates, which separate neighboring phloem cells, are perforated by a large number of tiny sieve pores and are believed to play...... are investigated. We find that the sieve plate resistance is correlated to the cell lumen resistance, and that the sieve plate and the lumen contribute almost equally to the total hydraulic resistance of the phloem translocation pathway....

  3. Software development on the SAP HANA platform

    CERN Document Server

    Walker, Mark

    2013-01-01

    Software Development on the SAP HANA Platform is a general tutorial guide to SAP HANA.This book is written for beginners to the SAP HANA platform. No knowledge of SAP HANA is necessary to start using this book.

  4. Phloem-Mobile Aux/IAA Transcripts Target to the Root Tip and Modify Root Architecture

    Institute of Scientific and Technical Information of China (English)

    Michitaka Notaguchi; Shmuel Wolf; William J. Lucas

    2012-01-01

    In plants,the phloem is the component of the vascular system that delivers nutrients and transmits signals from mature leaves to developing sink tissues.Recent studies have identified proteins,mRNA,and small RNA within the phloem sap of several plant species.It is now of considerable interest to elucidate the biological functions of these potential long-distance signal agents,to further our understanding of how plants coordinate their developmental programs at the whole-plant level.In this study,we developed a strategy for the functional analysis of phloem-mobile mRNA by focusing on IAA transcripts,whose mobility has previously been reported in melon (Cucumis melo cv.Hale's Best Jumbo).Indoleacetic acid (IAA) proteins are key transcriptional regulators of auxin signaling,and are involved in a broad range of developmental processes including root development.We used a combination of vasculature-enriched sampling and hetero-grafting techniques to identify IAA18 and IAA28 as phloemmobile transcripts in the model plant Arabidopsis thaliana.Micro-grafting experiments were used to confirm that these IAA transcripts,which are generated in vascular tissues of mature leaves,are then transported into the root system where they negatively regulate lateral root formation.Based on these findings,we present a model in which auxin distribution,in combination with phloem-mobile AuxIIAA transcripts,can determine the sites of auxin action.

  5. 7 CFR 1437.107 - Maple sap.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 10 2010-01-01 2010-01-01 false Maple sap. 1437.107 Section 1437.107 Agriculture... Yield Coverage Using Actual Production History § 1437.107 Maple sap. (a) NAP assistance for maple sap is limited to maple sap produced on private property for sale as sap or syrup. Eligible maple sap must be...

  6. From Sap to Syrup

    Science.gov (United States)

    Bjork, Janna

    2005-01-01

    Warm days, cold nights, melting snow-signs winter is waning and spring is nearing. Though winter may just be getting started in some areas, it's always fun to appreciate the good things about winter, including the special time at the end of winter in New England known as "sugaring time." The sap starts flowing in the sugar maples, and the process…

  7. From Sap to Syrup

    Science.gov (United States)

    Bjork, Janna

    2005-01-01

    Warm days, cold nights, melting snow-signs winter is waning and spring is nearing. Though winter may just be getting started in some areas, it's always fun to appreciate the good things about winter, including the special time at the end of winter in New England known as "sugaring time." The sap starts flowing in the sugar maples, and…

  8. Efficient xylem transport and phloem remobilization of Zn in the hyperaccumulator plant species Sedum alfredii.

    Science.gov (United States)

    Lu, Lingli; Tian, Shengke; Zhang, Jie; Yang, Xiaoe; Labavitch, John M; Webb, Samuel M; Latimer, Matthew; Brown, Patrick H

    2013-05-01

    Sedum alfredii is one of a few species known to hyperaccumulate zinc (Zn) and cadmium (Cd). Xylem transport and phloem remobilization of Zn in hyperaccumulating (HP) and nonhyperaccumulating (NHP) populations of S. alfredii were compared. Micro-X-ray fluorescence (μ-XRF) images of Zn in the roots of the two S. alfredii populations suggested an efficient xylem loading of Zn in HP S. alfredii, confirmed by the seven-fold higher Zn concentrations detected in the xylem sap collected from HP, when compared with NHP, populations. Zn was predominantly transported as aqueous Zn (> 55.9%), with the remaining proportion (36.7-42.3%) associated with the predominant organic acid, citric acid, in the xylem sap of HP S. alfredii. The stable isotope (68)Zn was used to trace Zn remobilization from mature leaves to new growing leaves for both populations. Remobilization of (68)Zn was seven-fold higher in HP than in NHP S. alfredii. Subsequent analysis by μ-XRF, combined with LA-ICPMS (laser ablation-inductively coupled plasma mass spectrometry), confirmed the enhanced ability of HP S. alfredii to remobilize Zn and to preferentially distribute the metal to mesophyll cells surrounding phloem in the new leaves. The results suggest that Zn hyperaccumulation by HP S. alfredii is largely associated with enhanced xylem transport and phloem remobilization of the metal. To our knowledge, this report is the first to reveal enhanced remobilization of metal by phloem transport in hyperaccumulators. © 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.

  9. Lost in Transit: Long-Distance Trafficking and Phloem Unloading of Protein Signals in Arabidopsis Homografts[OPEN

    Science.gov (United States)

    Gustin, Marie-Paule; Molnar, Attila; Oparka, Karl J.

    2016-01-01

    In addition to moving sugars and nutrients, the phloem transports many macromolecules. While grafting and aphid stylectomy experiments have identified many macromolecules that move in the phloem, the functional significance of phloem transport of these remains unclear. To gain insight into protein trafficking, we micrografted Arabidopsis thaliana scions expressing GFP-tagged chloroplast transit peptides under the 35S promoter onto nontransgenic rootstocks. We found that plastids in the root tip became fluorescent 10 d after grafting. We obtained identical results with the companion cell-specific promoter SUC2 and with signals that target proteins to peroxisomes, actin, and the nucleus. We were unable to detect the respective mRNAs in the rootstock, indicating extensive movement of proteins in the phloem. Outward movement from the root protophloem was restricted to the pericycle-endodermis boundary, identifying plasmodesmata at this interface as control points in the exchange of macromolecules between stele and cortex. Intriguingly, signals directing proteins to the endoplasmic reticulum and Golgi apparatus from membrane-bound ribosomes were not translocated to the root. It appears that many organelle-targeting sequences are insufficient to prevent the loss of their proteins into the translocation stream. Thus, nonspecific loss of proteins from companion cells to sieve elements may explain the plethora of macromolecules identified in phloem sap. PMID:27600534

  10. Brewing with fractionated barley

    NARCIS (Netherlands)

    Donkelaar, van L.H.G.

    2016-01-01

    Brewing with fractionated barley Beer is a globally consumed beverage, which is produced from malted barley, water, hops and yeast. In recent years, the use of unmalted barley and exogenous enzymes have become more popular because they enable simpler processing and reduced environmental impact. Raw

  11. Brewing with fractionated barley

    NARCIS (Netherlands)

    Donkelaar, van L.H.G.

    2016-01-01

    Brewing with fractionated barley Beer is a globally consumed beverage, which is produced from malted barley, water, hops and yeast. In recent years, the use of unmalted barley and exogenous enzymes have become more popular because they enable simpler processing and reduced environmental impact. Raw

  12. Effects of the hydraulic coupling between xylem and phloem on diurnal phloem diameter variation.

    Science.gov (United States)

    Sevanto, Sanna; Hölttä, Teemu; Holbrook, N Michele

    2011-04-01

    Measurements of diurnal diameter variations of the xylem and phloem are a promising tool for studying plant hydraulics and xylem-phloem interactions in field conditions. However, both the theoretical framework and the experimental verification needed to interpret phloem diameter data are incomplete. In this study, we analytically evaluate the effects of changing the radial conductance between the xylem and the phloem on phloem diameter variations and test the theory using simple manipulation experiments. Our results show that phloem diameter variations are mainly caused by changes in the radial flow rate of water between the xylem and the phloem. Reducing the hydraulic conductance between these tissues decreases the amplitude of phloem diameter variation and increases the time lag between xylem and phloem diameter variation in a predictable manner. Variation in the amplitude and timing of diameter variations that cannot be explained by changes in the hydraulic conductance, could be related to changes in the osmotic concentration in the phloem. © 2011 Blackwell Publishing Ltd.

  13. Effects of Acetylcholine, Cytochalasin B and Amiprophos methyl on Phloem Transport in Radish (Raphanus sativas)

    Institute of Scientific and Technical Information of China (English)

    Chong-Jun Yang; Zhi-Xi Zhai; Yu-Hai Guo; Peng Gao

    2007-01-01

    We investigated the role of the "sieve tube-companion cell complex" lining the tube periphery, particularly the microfilament and microtubule, in assisting the pushing of phloem sap flow. We made a simple phloem transport system with a living radish plant, in which the conducting channel was exposed for local treatment with chemicals that are effective in modulating protoplasmic movement (acetylcholine, (ACh) a neurotransmitter in animals and insects; cytochalasin B, (CB) a specific inhibitor of many cellular responses that are mediated by microfilament systems and amiprophos-methyl, (APM) a specific inhibitor of many cellular responses that are mediated by microtubule systems). Their effects on phloem transport were estimated by two experimental devices: (i) a comparison of changes in the amount of assimilates in terms of carbohydrates and 14C-labeled photosynthetic production that is left in the leaf blade of treated plants; and (ii) distribution patterns of 14C-labeled leaf assimilates in the phloem transport system. The results indicate that CB and APM markedly inhibited the transfer of photosynthetic product from leaf to root via the leaf vein, while ACh enhanced the transfer of photosynthetic product in low concentrations (5.0×10-4 mol/L) but inhibited it in higher concentrations (2.0×10-3 mol/L) from leaf to root via the leaf vein. Autoradiograph imaging clearly reveals that ACh treatment is more effective than the control, and both CB and APM treatments effectively inhibit the passage of radioactive assimilates. All of the results support the postulation that the peripheral protoplasm in the sieve tube serves not only as a passive semi-permeable membrane, but is also directly involved in phloem transport.

  14. Modeling the hydrodynamics of Phloem sieve plates

    DEFF Research Database (Denmark)

    Jensen, Kaare Hartvig; Mullendore, Daniel Leroy; Holbrook, Noel Michele

    2012-01-01

    understood. We propose a theoretical model for quantifying the effect of sieve plates on the phloem in the plant, thus unifying and improving previous work in the field. Numerical simulations of the flow in real and idealized phloem channels verify our model, and anatomical data from 19 plant species...... are investigated. We find that the sieve plate resistance is correlated to the cell lumen resistance, and that the sieve plate and the lumen contribute almost equally to the total hydraulic resistance of the phloem translocation pathway....

  15. Bioactive phytochemicals in barley

    Directory of Open Access Journals (Sweden)

    Emmanuel Idehen

    2017-01-01

    Full Text Available Epidemiological studies have consistently shown that regular consumption of whole grain barley reduces the risk of developing chronic diseases. The presence of barley fiber, especially β-glucan in whole grain barley, has been largely credited for these health benefits. However, it is now widely believed that the actions of the fiber component alone do not explain the observed health benefits associated with the consumption of whole grain barley. Whole grain barley also contains phytochemicals including phenolic acids, flavonoids, lignans, tocols, phytosterols, and folate. These phytochemicals exhibit strong antioxidant, antiproliferative, and cholesterol lowering abilities, which are potentially useful in lowering the risk of certain diseases. Therefore, the high concentration of phytochemicals in barley may be largely responsible for its health benefits. This paper reviews available information regarding barley phytochemicals and their potential to combat common nutrition-related diseases including cancer, cardiovascular disease, diabetes, and obesity.

  16. Dissection of phloem transport in cucurbitaceae by metabolomic analysis

    OpenAIRE

    Zhang, Baichen

    2006-01-01

    This thesis aimed to investigate several fundamental and perplexing questions relating to the phloem loading and transport mechanisms of Cucurbita maxima, by combining metabolomic analysis with cell biological techniques. This putative symplastic loading species has long been used for experiments on phloem anatomy, phloem biochemistry, phloem transport physiology and phloem signalling. Symplastic loading species have been proposed to use a polymer trapping mechanism to accumulate RFO (raffino...

  17. Phloem-specific expression of a melon Aux/IAA in tomato plants alters auxin sensitivity and plant development

    Directory of Open Access Journals (Sweden)

    Guy eGolan

    2013-08-01

    Full Text Available Phloem sap contains a large repertoire of macromolecules in addition to sugars, amino acids, growth substances and ions. The transcription profile of melon phloem sap contains over 1,000 mRNA molecules, most of them associated with signal transduction, transcriptional control, and stress and defense responses. Heterografting experiments have established the long-distance trafficking of numerous mRNA molecules. Interestingly, several trafficking transcripts are involved in the auxin response, including two molecules coding for auxin/indole acetic acid (Aux/IAA. To further explore the biological role of the melon Aux/IAA transcript CmF-308 in the vascular tissue, a cassette containing the coding sequence of this gene under a phloem-specific promoter was introduced into tomato plants. The number of lateral roots was significantly higher in transgenic plants expressing CmF-308 under the AtSUC2 promoter than in controls. A similar effect on root development was obtained after transient expression of CmF-308 in source leaves of N. benthamiana plants. An auxin-response assay showed that CmF-308-transgenic roots are more sensitive to auxin than control roots. In addition to the altered root development, phloem-specific expression of CmF-308 resulted in shorter plants, a higher number of lateral shoots and delayed flowering, a phenotype resembling reduced apical dominance. In contrast to the root response, cotyledons of the transgenic plants were less sensitive to auxin than control cotyledons. The reduced auxin sensitivity in the shoot tissue was confirmed by lower relative expression of several Aux/IAA genes in leaves and an increase in the relative expression of a cytokinin-response regulator, TRR8/9b. The accumulated data suggest that expression of Aux/IAA in the phloem modifies auxin sensitivity in a tissue-specific manner, thereby altering plant development.

  18. Measuring Complexity of SAP Systems

    Directory of Open Access Journals (Sweden)

    Ilja Holub

    2016-10-01

    Full Text Available The paper discusses the reasons of complexity rise in ERP system SAP R/3. It proposes a method for measuring complexity of SAP. Based on this method, the computer program in ABAP for measuring complexity of particular SAP implementation is proposed as a tool for keeping ERP complexity under control. The main principle of the measurement method is counting the number of items or relations in the system. The proposed computer program is based on counting of records in organization tables in SAP.

  19. Linking phloem function to structure: analysis with a coupled xylem-phloem transport model.

    Science.gov (United States)

    Hölttä, T; Mencuccini, M; Nikinmaa, E

    2009-07-21

    We carried out a theoretical analysis of phloem transport based on Münch hypothesis by developing a coupled xylem-phloem transport model. Results showed that the maximum sugar transport rate of the phloem was limited by solution viscosity and that transport requirements were strongly affected by prevailing xylem water potential. The minimum number of xylem and phloem conduits required to sustain transpiration and assimilation, respectively, were calculated. At its maximum sugar transport rate, the phloem functioned with a high turgor pressure difference between the sugar sources and sinks but the turgor pressure difference was reduced if additional parallel conduits were added or solute relays were introduced. Solute relays were shown to decrease the number of parallel sieve tubes needed for phloem transport, leading to a more uniform turgor pressure and allowing faster information transmission within the phloem. Because xylem water potential affected both xylem and phloem transport, the conductance of the two systems was found to be coupled such that large structural investments in the xylem reduced the need for investment in the phloem and vice versa.

  20. Phloem loading through plasmodesmata: a biophysical analysis

    CERN Document Server

    Comtet, Jean; Stroock, Abraham D

    2016-01-01

    In many species, sucrose en route out of the leaf migrates from photosynthetically active mesophyll cells into the phloem down its concentration gradient via plasmodesmata, i.e., symplastically. In some of these plants the process is entirely passive, but in others phloem sucrose is actively converted into larger sugars, raffinose and stachyose, and segregated (trapped), thus raising total phloem sugar concentration to a level higher than in the mesophyll. Questions remain regarding the mechanisms and selective advantages conferred by both of these symplastic loading processes. Here we present an integrated model - including local and global transport and the kinetics of oligomerization - for passive and active symplastic loading. We also propose a physical model of transport through the plasmodesmata. With these models, we predict that: 1) relative to passive loading, oligomerization of sucrose in the phloem, even in the absence of segregation, lowers the sugar content in the leaf required to achieve a given...

  1. SAP SE: Autism at Work

    DEFF Research Database (Denmark)

    Pisano, Gary P.; Austin, Robert D.

    2016-01-01

    This case describes SAP's 'Autism at Work' program, which integrates people with autism into the company's workforce. The company has a stated objective of making 1% o its workforce people with autism by 2020. SAP's rationale for the program is based on the belief that 'neurodiversity' contributes...

  2. Mechanical behaviour analyses of sap ascent in vascular plants

    Science.gov (United States)

    Perez-Diaz, Jose-Luis; Garcia-Prada, Juan-Carlos; Romera-Juarez, Fernando

    2010-01-01

    A pure mechanical anisotropic model of a tree trunk has been developed based on the 3D finite element method. It simulates the microscopic structure of vessels in the trunk of a European beech (Fagus sylvatica) in order to study and analyse its mechanical behaviour with different configurations of pressures in the conduits of xylem and phloem. The dependence of the strains at the inner bark was studied when sap pressure changed. The comparison with previously published experimental data leads to the conclusion that a great tensile stress—or ‘negative pressure’—must exist in the water column in order to achieve the measured strains if only the mechanical point of view is taken into account. Moreover, the model can help to design experiments where qualitatively knowing the strains and the purely mechanical behaviour of the tree is required. PMID:21886343

  3. Potassium nutrition and water availability affect phloem transport of photosynthetic carbon in eucalypt trees

    Science.gov (United States)

    Epron, Daniel; Cabral, Osvaldo; Laclau, Jean-Paul; Dannoura, Masako; Packer, Ana Paula; Plain, Caroline; Battie-Laclau, Patricia; Moreira, Marcelo; Trivelin, Paulo; Bouillet, Jean-Pierre; Gérant, Dominique; Nouvellon, Yann

    2015-04-01

    Potassium fertilisation strongly affects growth and carbon partitioning of eucalypt on tropical soil that are strongly weathered. In addition, potassium fertilization could be of great interest in mitigating the adverse consequences of drought in planted forests, as foliar K concentrations influence osmotic adjustment, stomatal regulation and phloem loading. Phloem is the main pathway for transferring photosynthate from source leaves to sink organs, thus controlling growth partitioning among the different tree compartments. But little is known about the effect of potassium nutrition on phloem transport of photosynthetic carbon and on the interaction between K nutrition and water availability. In situ 13C pulse labelling was conducted on tropical eucalypt trees (Eucalyptus grandis L.) grown in a trial plantation with plots in which 37% of throughfall were excluded (about 500 mm/yr) using home-made transparent gutters (-W) or not (+W) and plots that received 0.45 mol K m-2 applied as KCl three months after planting (+K) or not (-K). Three trees were labelled in each of the four treatments (+K+W, +K-W, -K+W and -K-W). Trees were labelled for one hour by injecting pure 13CO2 in a 27 m3 whole crown chamber. We estimated the velocity of carbon transfer in the trunk by comparing time lags between the uptake of 13CO2 and its recovery in trunk CO2 efflux recorded by off axis integrated cavity output spectroscopy (Los Gatos Research) in two chambers per tree, one just under the crown and one at the base of the trunk. We analyzed the dynamics of the label recovered in the foliage and in the phloem sap by analysing carbon isotope composition of bulk leaf organic matter and phloem extracts using an isotope ratio mass spectrometer. The velocity of carbon transfer in the trunk and the initial rate 13C disappearance from the foliage were much higher in +K trees than in -K trees with no significant effect of rainfall. The volumetric flow of phloem, roughly estimated by multiplying

  4. Modeling Phloem Temperatures Relative to Mountain Pine Beetle Phenology

    OpenAIRE

    Lewis, Matthew Jared

    2011-01-01

    We explore a variety of methods to estimate phloem temperatures from ambient air temperatures suitable for the mountain pine beetle, Dendroctonus ponderosae. A model's ability to induce the same phenology generated from observed phloem temperatures measures its effectiveness rather than a simple reconstruction of phloem temperatures. From a model's phenology results we are able to ascertain whether the model produces a similar amount of developmental energy exhibited by observed phloem temper...

  5. Evidence of phloem boron transport in response to interrupted boron supply in white lupin (Lupinus albus L. cv. Kiev Mutant) at the reproductive stage.

    Science.gov (United States)

    Huang, Longbin; Bell, Richard W; Dell, Bernard

    2008-01-01

    The present study investigates whether previously acquired boron (B) in mature leaves in white lupin can be retranslocated into the rapidly growing young reproductive organs, in response to short-term (3 d) interrupted B supply. In a preliminary experiment with white lupin in soil culture, B concentrations in phloem exudates remained at 300-500 microM, which were substantially higher than those in the xylem sap (10-30 microM). The high ratios of B concentrations in phloem exudates to those in the xylem sap were close to values published for potassium in lupin plants. To differentiate 'old' B in the shoot from 'new' B in the root, an experiment was carried out in which the plants were first supplied with 20 microM (11)B (99.34% by weight) in nutrient solution for 48 d after germination (DAG) until early flowering and then transferred into either 0.2 microM or 20 microM (10)B (99.47% by weight) for 3 d. Regardless of the (10)B treatments, significant levels of (11)B were found in the phloem exudates (200-300 microM in 20 microM (10)B and 430 microM in 0.2 microM (10)B treatment) and xylem sap over the three days even without (11)B supply to the root. In response to the 0.2 microM (10)B treatment, the translocation of previously acquired (11)B in the young (the uppermost three leaves), matured, and old leaves was enhanced, coinciding with the rise of (11)B in the xylem sap (to >15 microM) and phloem exudates (430 microM). The evidence supports the hypothesis that previously acquired B in the shoot was recirculated to the root via the phloem, transferred into the xylem in the root, and transported in the xylem to the shoot. In addition, some previously acquired (11)B in the leaves may have been translocated into the rapidly growing inflorescence. Phloem B transport resulted in the continued net increment of (11)B in the flowers over 3 d without (11)B supply. However, it is still uncertain whether the amount of B available for recirculation is adequate to support

  6. Response pattern of amino compounds in phloem and xylem of trees to soil drought depends on drought intensity and root symbiosis.

    Science.gov (United States)

    Liu, X-P; Gong, C-M; Fan, Y-Y; Eiblmeier, M; Zhao, Z; Han, G; Rennenberg, H

    2013-01-01

    This study aimed to identify drought-mediated differences in amino nitrogen (N) composition and content of xylem and phloem in trees having different symbiotic N(2)-fixing bacteria. Under controlled water availability, 1-year-old seedlings of Robinia pseudoacacia (nodules with Rhizobium), Hippophae rhamnoides (symbiosis with Frankia) and Buddleja alternifolia (no such root symbiosis) were exposed to control, medium drought and severe drought, corresponding soil water content of 70-75%, 45-50% and 30-35% of field capacity, respectively. Composition and content of amino compounds in xylem sap and phloem exudates were analysed as a measure of N nutrition. Drought strongly reduced biomass accumulation in all species, but amino N content in xylem and phloem remained unaffected only in R. pseudoacacia. In H. rhamnoides and B. alternifolia, amino N in phloem remained constant, but increased in xylem of both species in response to drought. There were differences in composition of amino compounds in xylem and phloem of the three species in response to drought. Proline concentrations in long-distance transport pathways of all three species were very low, below the limit of detection in phloem of H. rhamnoides and in phloem and xylem of B. alternifolia. Apparently, drought-mediated changes in N composition were much more connected with species-specific changes in C:N ratios. Irrespective of soil water content, the two species with root symbioses did not show similar features for the different types of symbiosis, neither in N composition nor in N content. There was no immediate correlation between symbiotic N fixation and drought-mediated changes in amino N in the transport pathways. © 2012 German Botanical Society and The Royal Botanical Society of the Netherlands.

  7. Effects of sap-feeding insect herbivores on growth and reproduction of woody plants: a meta-analysis of experimental studies.

    Science.gov (United States)

    Zvereva, Elena L; Lanta, Vojtech; Kozlov, Mikhail V

    2010-08-01

    The majority of generalisations concerning plant responses to herbivory are based on studies of natural or simulated defoliation. However, effects caused by insects feeding on plant sap are likely to differ from the effects of folivory. We assessed the general patterns and sources of variation in the effects of sap feeding on growth, photosynthesis, and reproduction of woody plants through a meta-analysis of 272 effect sizes calculated from 52 papers. Sap-feeders significantly reduced growth (-29%), reproduction (-17%), and photosynthesis (-27%); seedlings suffered more than saplings and mature trees. Deciduous and evergreen woody plants did not differ in their abilities to tolerate damage imposed by sap-feeders. Different plant parts, in particular below- and above-ground organs, responded similarly to damage, indicating that sap-feeders did not change the resource allocation in plants. The strongest effects were caused by mesophyll and phloem feeders, and the weakest by xylem feeders. Generalist sap-feeders reduced plant performance to a greater extent than did specialists. Methodology substantially influenced the outcomes of the primary studies; experiments conducted in greenhouses yielded stronger negative effects than field experiments; shorter (<12 months) experiments showed bigger growth reduction in response to sap feeding than longer experiments; natural levels of herbivory caused weaker effects than infestation of experimental plants by sap-feeders. Studies conducted at higher temperatures yielded stronger detrimental effects of sap-feeders on their hosts. We conclude that sap-feeders impose a more severe overall negative impact on plant performance than do defoliators, mostly due to the lower abilities of woody plants to compensate for sap-feeders' damage in terms of both growth and photosynthesis.

  8. Harpin-induced expression and transgenic overexpression of the phloem protein gene AtPP2-A1 in Arabidopsis repress phloem feeding of the green peach aphid Myzus persicae

    Directory of Open Access Journals (Sweden)

    Sun Weiwei

    2011-01-01

    Full Text Available Abstract Background Treatment of plants with HrpNEa, a protein of harpin group produced by Gram-negative plant pathogenic bacteria, induces plant resistance to insect herbivores, including the green peach aphid Myzus persicae, a generalist phloem-feeding insect. Under attacks by phloem-feeding insects, plants defend themselves using the phloem-based defense mechanism, which is supposed to involve the phloem protein 2 (PP2, one of the most abundant proteins in the phloem sap. The purpose of this study was to obtain genetic evidence for the function of the Arabidopsis thaliana (Arabidopsis PP2-encoding gene AtPP2-A1 in resistance to M. persicae when the plant was treated with HrpNEa and after the plant was transformed with AtPP2-A1. Results The electrical penetration graph technique was used to visualize the phloem-feeding activities of apterous agamic M. persicae females on leaves of Arabidopsis plants treated with HrpNEa and an inactive protein control, respectively. A repression of phloem feeding was induced by HrpNEa in wild-type (WT Arabidopsis but not in atpp2-a1/E/142, the plant mutant that had a defect in the AtPP2-A1 gene, the most HrpNEa-responsive of 30 AtPP2 genes. In WT rather than atpp2-a1/E/142, the deterrent effect of HrpNEa treatment on the phloem-feeding activity accompanied an enhancement of AtPP2-A1 expression. In PP2OETAt (AtPP2-A1-overexpression transgenic Arabidopsis thaliana plants, abundant amounts of the AtPP2-A1 gene transcript were detected in different organs, including leaves, stems, calyces, and petals. All these organs had a deterrent effect on the phloem-feeding activity compared with the same organs of the transgenic control plant. When a large-scale aphid population was monitored for 24 hours, there was a significant decrease in the number of aphids that colonized leaves of HrpNEa-treated WT and PP2OETAt plants, respectively, compared with control plants. Conclusions The repression in phloem-feeding activities of

  9. Wireless sap flow measurement system

    Science.gov (United States)

    Kuo, C.; Davis, T. W.; Tseng, C.; Cheng, C.; Liang, X.; Yu, P.

    2010-12-01

    This study exhibits a measurement system for wireless sensor networks to measure sap flow in multiple locations simultaneously. Transpiration is a major component of the land-surface system because it is indicative of the water movement between the soil and the air. Sap flow can be used to approximate transpiration. In forests, transpiration cannot be represented by the sap flow from a single tree. Multi-location sap flow measurements are required to show the heterogeneity caused by different trees or soil conditions. Traditional multi-location measurements require manpower and capital for data collection and instrument maintenance. Fortunately, multi-location measurements can be achieved by using the new technology of wireless sensor networks. With multi-hop communication protocol, data can be forwarded to the base station via multiple sensor nodes. This communication protocol can provide reliable data collection with the least power consumption. This study encountered two major problems. The first problem was signal amplification. The Crossbow IRIS mote was selected as the sensor node that receives the temperature data of the sap flow probe (thermocouple) through a MDA300 data acquisition board. However, the wireless sensor node could not directly receive any data from the thermocouples since the least significant bit value of the MDA300, 0.6 mV, is much higher than the voltage signal generated. Thus, the signal from the thermocouple must be amplified to exceed this threshold. The second problem is power management. A specific heat differential is required for the thermal dissipation method of measuring sap flow. Thus, an adjustable DC power supply is necessary for calibrating the heater's temperature settings. A circuit was designed to combine the signal amplifier and power regulator. The regulator has been designed to also provide power to the IRIS mote to extend battery life. This design enables wireless sap flow measurements in the forest. With the

  10. Auditing and GRC automation in SAP

    CERN Document Server

    Chuprunov, Maxim

    2013-01-01

    Going beyond current literature, this book extends internal controls to efficiency and profitability. Offers an audit guide for an SAP ERP system, covers risks and control descriptions, and shows how to automate compliance management based on SAP GRC.

  11. Universality of phloem transport in seed plants

    DEFF Research Database (Denmark)

    Jensen, Kåre Hartvig; Liesche, Johannes; Bohr, Tomas

    2012-01-01

    Since Münch in the 1920s proposed that sugar transport in the phloem vascular system is driven by osmotic pressure gradients, his hypothesis has been strongly supported by evidence from herbaceous angiosperms. Experimental constraints made it difficult to test this proposal in large trees, where...... the distance between source and sink might prove incompatible with the hypothesis. Recently, the theoretical optimization of the Münch mechanism was shown to lead to surprisingly simple predictions for the dimensions of the phloem sieve elements in relation to that of fast growing angiosperms. These results...... can be obtained in a very transparent way using a simple coupled resistor model. To test the universality of the Münch mechanism, we compiled anatomical data for 32 angiosperm and 38 gymnosperm trees with heights spanning 0.1–50 m. The species studied showed a remarkable correlation with the scaling...

  12. Transcriptomic signatures of ash (Fraxinus spp. phloem.

    Directory of Open Access Journals (Sweden)

    Xiaodong Bai

    Full Text Available BACKGROUND: Ash (Fraxinus spp. is a dominant tree species throughout urban and forested landscapes of North America (NA. The rapid invasion of NA by emerald ash borer (Agrilus planipennis, a wood-boring beetle endemic to Eastern Asia, has resulted in the death of millions of ash trees and threatens billions more. Larvae feed primarily on phloem tissue, which girdles and kills the tree. While NA ash species including black (F. nigra, green (F. pennsylvannica and white (F. americana are highly susceptible, the Asian species Manchurian ash (F. mandshurica is resistant to A. planipennis perhaps due to their co-evolutionary history. Little is known about the molecular genetics of ash. Hence, we undertook a functional genomics approach to identify the repertoire of genes expressed in ash phloem. METHODOLOGY AND PRINCIPAL FINDINGS: Using 454 pyrosequencing we obtained 58,673 high quality ash sequences from pooled phloem samples of green, white, black, blue and Manchurian ash. Intriguingly, 45% of the deduced proteins were not significantly similar to any sequences in the GenBank non-redundant database. KEGG analysis of the ash sequences revealed a high occurrence of defense related genes. Expression analysis of early regulators potentially involved in plant defense (i.e. transcription factors, calcium dependent protein kinases and a lipoxygenase 3 revealed higher mRNA levels in resistant ash compared to susceptible ash species. Lastly, we predicted a total of 1,272 single nucleotide polymorphisms and 980 microsatellite loci, among which seven microsatellite loci showed polymorphism between different ash species. CONCLUSIONS AND SIGNIFICANCE: The current transcriptomic data provide an invaluable resource for understanding the genetic make-up of ash phloem, the target tissue of A. planipennis. These data along with future functional studies could lead to the identification/characterization of defense genes involved in resistance of ash to A. planipennis

  13. Tree Hydraulics: How Sap Rises

    Science.gov (United States)

    Denny, Mark

    2012-01-01

    Trees transport water from roots to crown--a height that can exceed 100 m. The physics of tree hydraulics can be conveyed with simple fluid dynamics based upon the Hagen-Poiseuille equation and Murray's law. Here the conduit structure is modelled as conical pipes and as branching pipes. The force required to lift sap is generated mostly by…

  14. Tree Hydraulics: How Sap Rises

    Science.gov (United States)

    Denny, Mark

    2012-01-01

    Trees transport water from roots to crown--a height that can exceed 100 m. The physics of tree hydraulics can be conveyed with simple fluid dynamics based upon the Hagen-Poiseuille equation and Murray's law. Here the conduit structure is modelled as conical pipes and as branching pipes. The force required to lift sap is generated mostly by…

  15. Barley peroxidase isozymes

    Science.gov (United States)

    Laugesen, Sabrina; Bak-Jensen, Kristian Sass; Hägglund, Per; Henriksen, Anette; Finnie, Christine; Svensson, Birte; Roepstorff, Peter

    2007-12-01

    Thirteen peroxidase spots on two-dimensional gels were identified by comprehensive proteome analysis of the barley seed. Mass spectrometry tracked multiple forms of three different peroxidase isozymes: barley seed peroxidase 1, barley seed-specific peroxidase BP1 and a not previously identified putative barley peroxidase. The presence of multiple spots for each of the isozymes reflected variations in post-translational glycosylation and protein truncation. Complete sequence coverage was achieved by using a series of proteases and chromatographic resins for sample preparation prior to mass spectrometric analysis. Distinct peroxidase spot patterns divided the 16 cultivars tested into two groups. The distribution of the three isozymes in different seed tissues (endosperm, embryo, and aleurone layer) suggested the peroxidases to play individual albeit partially overlapping roles during germination. In summary, a subset of three peroxidase isozymes was found to occur in the seed, whereas products of four other barley peroxidase genes were not detected. The present analysis documents the selective expression profiles and post-translational modifications of isozymes from a large plant gene family.

  16. 11C-imaging: methyl jasmonate moves in both phloem and xylem, promotes transport of jasmonate, and of photoassimilate even after proton transport is decoupled.

    Science.gov (United States)

    Thorpe, Michael R; Ferrieri, Abigail P; Herth, Matthias M; Ferrieri, Richard A

    2007-07-01

    The long-distance transport and actions of the phytohormone methyl jasmonate (MeJA) were investigated by using the short-lived positron-emitting isotope 11C to label both MeJA and photoassimilate, and compare their transport properties in the same tobacco plants (Nicotiana tabacum L.). There was strong evidence that MeJA moves in both phloem and xylem pathways, because MeJA was exported from the labeled region of a mature leaf in the direction of phloem flow, but it also moved into other parts of the same leaf and other mature leaves against the direction of phloem flow. This suggests that MeJA enters the phloem and moves in sieve tube sap along with photoassimilate, but that vigorous exchange between phloem and xylem allows movement in xylem to regions which are sources of photoassimilate. This exchange may be enhanced by the volatility of MeJA, which moved readily between non-orthostichous vascular pathways, unlike reports for jasmonic acid (which is not volatile). The phloem loading of MeJA was found to be inhibited by parachloromercuribenzenesulfonic acid (PCMBS) (a thiol reagent known to inhibit membrane transporters), and by protonophores carbonyl cyanide 3-chlorophenylhydrazone (CCCP) and 2,4-dinitrophenol (DNP) suggesting proton co-transport. MeJA was found to promote both its own transport and that of recent photoassimilate within 60 min. Furthermore, we found that MeJA can counter the inhibitory effect of the uncoupling agent, CCCP, on sugar transport, suggesting that MeJA affects the plasma membrane proton gradient. We also found that MeJA's action may extend to the sucrose transporter, since MeJA countered the inhibitory effects of the sulfhydryl reagent, PCMBS, on the transport of photoassimilate.

  17. Most water in the tomato truss is imported through the xylem, not the phloem: a nuclear magnetic resonance flow imaging study.

    Science.gov (United States)

    Windt, Carel W; Gerkema, Edo; Van As, Henk

    2009-10-01

    In this study, we demonstrate nuclear magnetic resonance flow imaging of xylem and phloem transport toward a developing tomato (Solanum lycopersicum) truss. During an 8-week period of growth, we measured phloem and xylem fluxes in the truss stalk, aiming to distinguish the contributions of the two transport tissues and draw up a balance between influx and efflux. It is commonly estimated that about 90% of the water reaches the fruit by the phloem and the remaining 10% by the xylem. The xylem is thought to become dysfunctional at an early stage of fruit development. However, our results do not corroborate these findings. On the contrary, we found that xylem transport into the truss remained functional throughout the 8 weeks of growth. During that time, at least 75% of the net influx into the fruit occurred through the external xylem and about 25% via the perimedullary region, which contains both phloem and xylem. About one-half of the net influx was lost due to evaporation. Halfway through truss development, a xylem backflow appeared. As the truss matured, the percentage of xylem water that circulated into the truss and out again increased in comparison with the net uptake, but no net loss of water from the truss was observed. The circulation of xylem water continued even after the fruits and pedicels were removed. This indicates that neither of them was involved in generating or conducting the circulation of sap. Only when the main axis of the peduncle was cut back did the circulation stop.

  18. Accumulation, selection and covariation of amino acids in sieve tube sap of tansy (Tanacetum vulgare) and castor bean (Ricinus communis): evidence for the function of a basic amino acid transporter and the absence of a γ-amino butyric acid transporter.

    Science.gov (United States)

    Bauer, Susanne N; Nowak, Heike; Keller, Frank; Kallarackal, Jose; Hajirezaei, Mohamad-Reza; Komor, Ewald

    2014-09-01

    Sieve tube sap was obtained from Tanacetum by aphid stylectomy and from Ricinus after apical bud decapitation. The amino acids in sieve tube sap were analyzed and compared with those from leaves. Arginine and lysine accumulated in the sieve tube sap of Tanacetum more than 10-fold compared to the leaf extracts and they were, together with asparagine and serine, preferably selected into the sieve tube sap, whereas glycine, methionine/tryptophan and γ-amino butyric acid were partially or completely excluded. The two basic amino acids also showed a close covariation in sieve tube sap. The acidic amino acids also grouped together, but antagonistic to the other amino acids. The accumulation ratios between sieve tube sap and leaf extracts were smaller in Ricinus than in Tanacetum. Arginine, histidine, lysine and glutamine were enriched and preferentially loaded into the phloem, together with isoleucine and valine. In contrast, glycine and methionine/tryptophan were partially and γ-amino butyric acid almost completely excluded from sieve tube sap. The covariation analysis grouped arginine together with several neutral amino acids. The acidic amino acids were loaded under competition with neutral amino acids. It is concluded from comparison with the substrate specificities of already characterized plant amino acid transporters, that an AtCAT1-like transporter functions in phloem loading of basic amino acids, whereas a transporter like AtGAT1 is absent in phloem. Although Tanacetum and Ricinus have different minor vein architecture, their phloem loading specificities for amino acids are relatively similar. © 2014 Scandinavian Plant Physiology Society.

  19. Projecte d'integració entre SAP GH - SAP MM - Kàrdex

    OpenAIRE

    Perea Núñez, Yolanda

    2012-01-01

    Projecte d'integració entre dos sistemes SAP (gestió hospitalària i gestió de materials) amb un altre sistema aliè a SAP, el sistema de magatzem de medicaments Kàrdex, mitjançant comunicacions via SAP Process Integration. Proyecto de integración entre dos sistemas SAP (gestión hospitalaria y gestión de materiales) con otro sistema ajeno a SAP, el sistema de almacén de medicamentos Kardex, mediante comunicaciones vía SAP Process Integration.

  20. Projecte d'integració entre SAP GH - SAP MM - Kàrdex

    OpenAIRE

    Perea Núñez, Yolanda

    2012-01-01

    Projecte d'integració entre dos sistemes SAP (gestió hospitalària i gestió de materials) amb un altre sistema aliè a SAP, el sistema de magatzem de medicaments Kàrdex, mitjançant comunicacions via SAP Process Integration. Proyecto de integración entre dos sistemas SAP (gestión hospitalaria y gestión de materiales) con otro sistema ajeno a SAP, el sistema de almacén de medicamentos Kardex, mediante comunicaciones vía SAP Process Integration.

  1. Malting barley BRS Borema

    Directory of Open Access Journals (Sweden)

    Euclydes Minella

    2006-01-01

    Full Text Available BRS Borema is an early maturing, two-rowed spring barley registered in 2003 for commercial production inSouthern Brazil, bred by Embrapa Trigo. It combines good yield potential with superior malting quality and a reasonable levelof disease (net blotch, powdery mildew, leaf rust resistance. It is well-adapted to all major production regions of maltingbarley in Brazil.

  2. Diffusion and bulk flow in phloem loading

    DEFF Research Database (Denmark)

    Dölger, Julia; Rademaker, Hanna; Liesche, Johannes

    2014-01-01

    loading mechanism, active symplasmic loading, also called the polymer trap mechanism, where sucrose is transformed into heavier sugars, such as raffinose and stachyose, in the intermediary-type companion cells bordering the sieve elements in the minor veins of the phloem. Keeping the heavier sugars from......%-20% to the sucrose flux into the intermediary cells, while the main part is transported by diffusion. On the other hand, the subsequent sugar translocation into the sieve elements would very likely be carried predominantly by bulk water flow through the plasmodesmata. Thus, in contrast to apoplasmic loaders, all...

  3. Disruption of each of the secreted aspartyl proteinase genes SAP1, SAP2, and SAP3 of Candida albicans attenuates virulence.

    OpenAIRE

    Hube, B.; Sanglard, D.; Odds, F C; Hess, D; Monod, M.; Schäfer, W.; Brown, A. J.; Gow, N A

    1997-01-01

    Secreted aspartyl proteinases (Saps), encoded by a gene family with at least nine members (SAP1 to SAP9), are one of the most discussed virulence factors produced by the human pathogen Candida albicans. In order to study the role of each Sap isoenzyme in pathogenicity, we have constructed strains which harbor mutations at selected SAP genes. SAP1, SAP2, and SAP3, which are regulated differentially in vitro, were mutated by targeted gene disruption. The growth rates of all homozygous null muta...

  4. Disruption of each of the secreted aspartyl proteinase genes SAP1, SAP2, and SAP3 of Candida albicans attenuates virulence.

    OpenAIRE

    Hube, B.; Sanglard, D; Odds, F C; Hess, D; Monod, M; Schäfer, W.; Brown, A J; Gow, N A

    1997-01-01

    Secreted aspartyl proteinases (Saps), encoded by a gene family with at least nine members (SAP1 to SAP9), are one of the most discussed virulence factors produced by the human pathogen Candida albicans. In order to study the role of each Sap isoenzyme in pathogenicity, we have constructed strains which harbor mutations at selected SAP genes. SAP1, SAP2, and SAP3, which are regulated differentially in vitro, were mutated by targeted gene disruption. The growth rates of all homozygous null muta...

  5. Integrating Adobe Interactive Forms in SAP Netweaver

    OpenAIRE

    Atagana, Rex Ogheneakpobo

    2013-01-01

    Systems, Applications and Products in Data Processing (SAP), the leader in Enterprise Resource Planning Software (ERP) as a strategy is moving its technology into Virtualization. In light of that, this project utilized SAP Netweaver VMware edition which is licensed for developers to illustrate the integration of Adobe interactive forms. SAP as a practice has installation notes for every solution, but they are not uniformly released. Thus technical consultants encounters compatibility chal...

  6. In situ 13CO2 pulse labelling of field-grown eucalypt trees revealed the effects of potassium nutrition and throughfall exclusion on phloem transport of photosynthetic carbon.

    Science.gov (United States)

    Epron, Daniel; Cabral, Osvaldo Machado Rodrigues; Laclau, Jean-Paul; Dannoura, Masako; Packer, Ana Paula; Plain, Caroline; Battie-Laclau, Patricia; Moreira, Marcelo Zacharias; Trivelin, Paulo Cesar Ocheuze; Bouillet, Jean-Pierre; Gérant, Dominique; Nouvellon, Yann

    2016-01-01

    Potassium (K) is an important limiting factor of tree growth, but little is known of the effects of K supply on the long-distance transport of photosynthetic carbon (C) in the phloem and of the interaction between K fertilization and drought. We pulse-labelled 2-year-old Eucalyptus grandis L. trees grown in a field trial combining K fertilization (+K and -K) and throughfall exclusion (+W and -W), and we estimated the velocity of C transfer by comparing time lags between the uptake of (13)CO2 and its recovery in trunk CO2 efflux recorded at different heights. We also analysed the dynamics of the labelled photosynthates recovered in the foliage and in the phloem sap (inner bark extract). The mean residence time of labelled C in the foliage was short (21-31 h). The time series of (13)C in excess in the foliage was affected by the level of fertilization, whereas the effect of throughfall exclusion was not significant. The velocity of C transfer in the trunk (0.20-0.82 m h(-1)) was twice as high in +K trees than in -K trees, with no significant effect of throughfall exclusion except for one +K -W tree labelled in the middle of the drought season that was exposed to a more pronounced water stress (midday leaf water potential of -2.2 MPa). Our results suggest that besides reductions in photosynthetic C supply and in C demand by sink organs, the lower velocity under K deficiency is due to a lower cross-sectional area of the sieve tubes, whereas an increase in phloem sap viscosity is more likely limiting phloem transport under drought. In all treatments, 10 times less (13)C was recovered in inner bark extracts at the bottom of the trunk when compared with the base of the crown, suggesting that a large part of the labelled assimilates has been exported out of the phloem and replaced by unlabelled C. This supports the 'leakage-retrieval mechanism' that may play a role in maintaining the pressure gradient between source and sink organs required to sustain high

  7. HEALTH BENEFITS OF BARLEY

    Directory of Open Access Journals (Sweden)

    Akula Annapurna

    2013-09-01

    Full Text Available Prevalence of lifestyle diseases is increasing day by day. Mostly the younger generation do not have much awareness about healthy nutritional supplements. One such important cereal grain not used mostly by youngsters is barley It is a good old grain with so many health benefits like weight reduction, decreasing blood pressure, blood cholesterol, blood glucose in Type 2 diabetes and preventing colon cancer. It is easily available and cheap grain. It contains both soluble and insoluble fiber, protein, vitamins B and E, minerals selenium, magnesium and iron, copper, flavonoids and anthocynins. Barley contains soluble fiber, beta glucan binds to bile acids in the intestines and thereby decreasing plasma cholesterol levels. Absorbed soluble fiber decreases cholesterol synthesis by liver and cleansing blood vessels. Insoluble fiber provides bulkiness in the intestines, thereby satiety. decreased appetite. It promotes intestinal movements relieving constipation, cleansing colonic harmful bacteria and reduced incidence of colonic cancer. It is a good source of niacin ,reducing LDL levels and increasing HDL levels. Selenium and vitamin E providing beneficial antioxidant effects. Magnesium, a cofactor for many carbohydrate metabolism enzymes and high fiber content contributes for its blood glucose reducing effect in Type 2 diabetes. It is having good diuretic activity and is useful in urinary tract infections. Barley contains gluten, contraindicated in celiac disease.

  8. Architecture of SAP ERP understand how successful software works

    CERN Document Server

    Boeder, Jochen

    2014-01-01

    This book - compiled by software architects from SAP - is a must for consultants, developers, IT managers, and students working with SAP ERP, but also users who want to know the world behind their SAP user interface.

  9. Synthesis of glucose-fipronil conjugate and its phloem mobility.

    Science.gov (United States)

    Yang, Wen; Wu, Han-Xiang; Xu, Han-Hong; Hu, An-Long; Lu, Meng-Ling

    2011-12-14

    Phloem-mobile insecticides are preferred to achieve economically useful activity. However, only a few phloem-mobile synthetic insecticides are available. One approach to converting nonmobile insecticides into phloem-mobile types is introducing sugar to the parent compound. To test whether the addition of a glucose group to a non-phloem-mobile insecticide enables conversion into phloem-mobile, N-[3-cyano-1-[2,6-dichloro-4-(trifluoromethyl)phenyl]-4-[(trifluoromethyl)sulfinyl]-1H-pyrazol-5-yl]-1-(β-D-glucopyranosyl)-1H-1,2,3-triazole-4-methanamine (GTF) was prepared through click chemistry. A phloem-mobility test in Ricinus communis L. seedlings confirmed that GTF was mobile in the sieve tubes. Although GTF exhibited lower insecticidal activity against the third-instar larvae of Pzlutella xylostella than fipronil did, it can be reconverted into fipronil in adult plants of castor bean, thereby offsetting the decrease of insecticidal activity. Therefore, the presence of a glucose core confers phloem mobility to fipronil.

  10. Stem compression reversibly reduces phloem transport in Pinus sylvestris trees.

    Science.gov (United States)

    Henriksson, Nils; Tarvainen, Lasse; Lim, Hyungwoo; Tor-Ngern, Pantana; Palmroth, Sari; Oren, Ram; Marshall, John; Näsholm, Torgny

    2015-10-01

    Manipulating tree belowground carbon (C) transport enables investigation of the ecological and physiological roles of tree roots and their associated mycorrhizal fungi, as well as a range of other soil organisms and processes. Girdling remains the most reliable method for manipulating this flux and it has been used in numerous studies. However, girdling is destructive and irreversible. Belowground C transport is mediated by phloem tissue, pressurized through the high osmotic potential resulting from its high content of soluble sugars. We speculated that phloem transport may be reversibly blocked through the application of an external pressure on tree stems. Thus, we here introduce a technique based on compression of the phloem, which interrupts belowground flow of assimilates, but allows trees to recover when the external pressure is removed. Metal clamps were wrapped around the stems and tightened to achieve a pressure theoretically sufficient to collapse the phloem tissue, thereby aiming to block transport. The compression's performance was tested in two field experiments: a (13)C canopy labelling study conducted on small Scots pine (Pinus sylvestris L.) trees [2-3 m tall, 3-7 cm diameter at breast height (DBH)] and a larger study involving mature pines (∼15 m tall, 15-25 cm DBH) where stem respiration, phloem and root carbohydrate contents, and soil CO2 efflux were measured. The compression's effectiveness was demonstrated by the successful blockage of (13)C transport. Stem compression doubled stem respiration above treatment, reduced soil CO2 efflux by 34% and reduced phloem sucrose content by 50% compared with control trees. Stem respiration and soil CO2 efflux returned to normal within 3 weeks after pressure release, and (13)C labelling revealed recovery of phloem function the following year. Thus, we show that belowground phloem C transport can be reduced by compression, and we also demonstrate that trees recover after treatment, resuming C

  11. [Seasonal development of phloem in Siberian larch stems].

    Science.gov (United States)

    Antonova, G F; Stasova, V V

    2008-01-01

    The seasonal development of phloem in the stems of Siberian larch (Larix sibirica Ldb.) was studied over two seasons on 50-60-year-old trees growing in a natural stand in the Siberian forest-steppe zone. Trees at the age of 20-25 years were used to study metabolites in differentiating and mature phloem elements, cambial zone, and radially growing xylem cells in the period of early and late wood formation. The development of the current-year phloem in the stems of 50-60-year-old trees started, depending on climatic conditions, in the second-third decades of May, 10-20 days before the xylem formation, and ended together with the shoot growth cessation in late July. Monitoring of the seasonal activity of cambium producing phloem sieve cells and the duration of their differentiation compared to the xylem derivatives in the cambium demonstrated that the top production of phloem and xylem cells could coincide or not coincide during the season, while their differentiation activity was always in antiphase. Sieve cells in the early phloem are separated from those in the late phloem by a layer of tannin-containing cells, which are formed in the period when late xylem formation starts. The starch content in the structural elements of phloem depends on the state of annual xylem layer development. The content of low molecular weight carbohydrates, amino acids, organic acids, and phenols in phloem cells, cambial zone, and xylem derivatives of the cambium depends on the cell type and developmental stage as well as on the type of forming wood (early or late) differing by the cell wall parameters and, hence, by the requirement for assimilates. Significant differences in the dynamics of substances per dry weight and cell were observed during cell development.

  12. Feeding response of Ips paraconfusus to phloem and phloem metabolites of Heterobasidion annosum-inoculated ponderosa pine, Pinus ponderosa.

    Science.gov (United States)

    McNee, William R; Bonello, Pierluigi; Storer, Andrew J; Wood, David L; Gordon, Thomas R

    2003-05-01

    In studies of feeding by the bark beetle, Ips paraconfusus, two pine stilbenes (pinosylvin and pinosylvin methyl ether), ferulic acid glucoside, and enantiomers of the four most common sugars present in ponderosa pine phloem (sucrose, glucose, fructose, and raffinose) did not stimulate or reduce male feeding when assayed on wet alpha-cellulose with or without stimulatory phloem extractives present. When allowed to feed on wet alpha-cellulose containing sequential extracts (hexane, methanol, and water) of ponderosa pine phloem, methanol and water extractives stimulated feeding, but hexane extractives did not. Males confined in wet alpha-cellulose containing aqueous or organic extracts of culture broths derived from phloem tissue and containing the root pathogen. Heterobasidion annosum, ingested less substrate than beetles confined to control preparations. In an assay using logs from uninoculated ponderosa pines, the mean lengths of phloem in the digestive tracts increased as time spent feeding increased. Males confined to the phloem of basal logs cut from ponderosa pines artificially inoculated with H. annosum ingested significantly less phloem than beetles in logs cut from trees that were (combined) mock-inoculated or uninoculated and did not contain the pathogen. However, individual pathogen-containing treatments were not significantly different from uninoculated controls. It was concluded that altered feeding rates are not a major factor which may explain why diseased ponderosa pines are colonized by I. paraconfusus.

  13. Genomic Prediction in Barley

    DEFF Research Database (Denmark)

    Edriss, Vahid; Cericola, Fabio; Jensen, Jens D

    2015-01-01

    Genomic prediction uses markers (SNPs) across the whole genome to predict individual breeding values at an early growth stage potentially before large scale phenotyping. One of the applications of genomic prediction in plant breeding is to identify the best individual candidate lines to contribute...... to next generation. The main goal of this study was to see the potential of using genomic prediction in a commercial Barley breeding program. The data used in this study was from Nordic Seed company which is located in Denmark. Around 350 advanced lines were genotyped with 9K Barely chip from Illumina...

  14. AmSUT1, a sucrose transporter in collection and transport phloem of the putative symplastic phloem loader Alonsoa meridionalis.

    Science.gov (United States)

    Knop, Christian; Stadler, Ruth; Sauer, Norbert; Lohaus, Gertrud

    2004-01-01

    A sucrose (Suc) transporter cDNA has been cloned from Alonsoa meridionalis, a member of the Scrophulariaceae. This plant species has an open minor vein configuration and translocates mainly raffinose and stachyose in addition to Suc in the phloem (C. Knop, O. Voitsekhovskaja, G. Lohaus [2001] Planta 213: 80-91). These are typical properties of symplastic phloem loaders. For functional characterization, AmSUT1 cDNA was expressed in bakers' yeast (Saccharomyces cerevisiae). Substrate and inhibitor specificities, energy dependence, and Km value of the protein agree well with the properties measured for other Suc transporters of apoplastic phloem loaders. A polyclonal antiserum against the 17 N-terminal amino acids of the A. meridionalis Suc transporter AmSUT1 was used to determine the cellular localization of the AmSUT1 protein. Using fluorescence labeling on sections from A. meridionalis leaves and stems, AmSUT1 was localized exclusively in phloem cells. Further histological characterization identified these cells as companion cells and sieve elements. p-Chloromercuribenzenesulfonic acid affected the sugar exudation of cut leaves in such a way that the exudation rates of Suc and hexoses decreased, whereas those of raffinose and stachyose increased. The data presented indicate that phloem loading of Suc and retrieval of Suc in A. meridionalis are at least partly mediated by the activity of AmSUT1 in addition to symplastic phloem loading.

  15. 46 CFR 16.203 - Employer, MRO, and SAP responsibilities.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Employer, MRO, and SAP responsibilities. 16.203 Section... CHEMICAL TESTING Required Chemical Testing § 16.203 Employer, MRO, and SAP responsibilities. (a) Employers...) Substance Abuse Professional (SAP). Individuals performing SAP functions must meet the training requirements...

  16. CT measurements of SAP voids in concrete

    DEFF Research Database (Denmark)

    Laustsen, Sara; Bentz, Dale P.; Hasholt, Marianne Tange

    2010-01-01

    X-ray computed tomography (CT) scanning is used to determine the SAP void distribution in hardened concrete. Three different approaches are used to analyse a binary data set created from CT measurement. One approach classifies a cluster of connected, empty voxels (volumetric pixel of a 3D image......) as one void, whereas the other two approaches are able to classify a cluster of connected, empty voxels as a number of individual voids. Superabsorbent polymers (SAP) have been used to incorporate air into concrete. An advantage of using SAP is that it enables control of the amount and size...... of the created air voids. The results indicate the presence of void clusters. To identify the individual voids, special computational approaches are needed. The addition of SAP results in a dominant peak in two of the three air void distributions. Based on the position (void diameter) of the peak, it is possible...

  17. CT measurements of SAP voids in concrete

    DEFF Research Database (Denmark)

    Laustsen, Sara; Bentz, Dale P.; Hasholt, Marianne Tange;

    2010-01-01

    X-ray computed tomography (CT) scanning is used to determine the SAP void distribution in hardened concrete. Three different approaches are used to analyse a binary data set created from CT measurement. One approach classifies a cluster of connected, empty voxels (volumetric pixel of a 3D image......) as one void, whereas the other two approaches are able to classify a cluster of connected, empty voxels as a number of individual voids. Superabsorbent polymers (SAP) have been used to incorporate air into concrete. An advantage of using SAP is that it enables control of the amount and size...... of the created air voids. The results indicate the presence of void clusters. To identify the individual voids, special computational approaches are needed. The addition of SAP results in a dominant peak in two of the three air void distributions. Based on the position (void diameter) of the peak, it is possible...

  18. Nye integrerede ledelsesinformationssystemer SAP/R3

    DEFF Research Database (Denmark)

    Nielsen, Steen

    1998-01-01

    Artiklen beskriver og analyserer hovedindholdet i SAP/R3's controlling modul, speciel med sigte på hvilke forudsætninger systemet bygger på, dels med reference til den danske lønsomheds- og kapacitetsmodel.......Artiklen beskriver og analyserer hovedindholdet i SAP/R3's controlling modul, speciel med sigte på hvilke forudsætninger systemet bygger på, dels med reference til den danske lønsomheds- og kapacitetsmodel....

  19. Nye integrerede ledelsesinformationssystemer SAP/R3

    DEFF Research Database (Denmark)

    Nielsen, Steen

    1998-01-01

    Artiklen beskriver og analyserer hovedindholdet i SAP/R3's controlling modul, speciel med sigte på hvilke forudsætninger systemet bygger på, dels med reference til den danske lønsomheds- og kapacitetsmodel.......Artiklen beskriver og analyserer hovedindholdet i SAP/R3's controlling modul, speciel med sigte på hvilke forudsætninger systemet bygger på, dels med reference til den danske lønsomheds- og kapacitetsmodel....

  20. Barley Transformation Using Biolistic Techniques

    Science.gov (United States)

    Harwood, Wendy A.; Smedley, Mark A.

    Microprojectile bombardment or biolistic techniques have been widely used for cereal transformation. These methods rely on the acceleration of gold particles, coated with plasmid DNA, into plant cells as a method of directly introducing the DNA. The first report of the generation of fertile, transgenic barley plants used biolistic techniques. However, more recently Agrobacterium-mediated transformation has been adopted as the method of choice for most cereals including barley. Biolistic procedures are still important for some barley transformation applications and also provide transient test systems for the rapid checking of constructs. This chapter describes methods for the transformation of barley using biolistic procedures and also highlights the use of the technology in transient assays.

  1. Making a friend from a foe: expressing a GroEL gene from the whitefly Bemisia tabaci in the phloem of tomato plants confers resistance to tomato yellow leaf curl virus.

    Science.gov (United States)

    Akad, F; Eybishtz, A; Edelbaum, D; Gorovits, R; Dar-Issa, O; Iraki, N; Czosnek, H

    2007-01-01

    Some (perhaps all) plant viruses transmitted in a circulative manner by their insect vectors avoid destruction in the haemolymph by interacting with GroEL homologues, ensuring transmission. We have previously shown that the phloem-limited begomovirus tomato yellow leaf curl virus (TYLCV) interacts in vivo and in vitro with GroEL produced by the whitefly vector Bemisia tabaci. In this study, we have exploited this phenomenon to generate transgenic tomato plants expressing the whitefly GroEL in their phloem. We postulated that following inoculation, TYLCV particles will be trapped by GroEL in the plant phloem, thereby inhibiting virus replication and movement, thereby rendering the plants resistant. A whitefly GroEL gene was cloned in an Agrobacterium vector under the control of an Arabidopsis phloem-specific promoter, which was used to transform two tomato genotypes. During three consecutive generations, plants expressing GroEL exhibited mild or no disease symptoms upon whitefly-mediated inoculation of TYLCV. In vitro assays indicated that the sap of resistant plants contained GroEL-TYLCV complexes. Infected resistant plants served as virus source for whitefly-mediated transmission as effectively as infected non-transgenic tomato. Non-transgenic susceptible tomato plants grafted on resistant GroEL-transgenic scions remained susceptible, although GroEL translocated into the grafted plant and GroEL-TYLCV complexes were detected in the grafted tissues.

  2. Symplasmic transport and phloem loading in gymnosperm leaves.

    Science.gov (United States)

    Liesche, Johannes; Martens, Helle Juel; Schulz, Alexander

    2011-01-01

    Despite more than 130 years of research, phloem loading is far from being understood in gymnosperms. In part this is due to the special architecture of their leaves. They differ from angiosperm leaves among others by having a transfusion tissue between bundle sheath and the axial vascular elements. This article reviews the somewhat inaccessible and/or neglected literature and identifies the key points for pre-phloem transport and loading of photoassimilates. The pre-phloem pathway of assimilates is structurally characterized by a high number of plasmodesmata between all cell types starting in the mesophyll and continuing via bundle sheath, transfusion parenchyma, Strasburger cells up to the sieve elements. Occurrence of median cavities and branching indicates that primary plasmodesmata get secondarily modified and multiplied during expansion growth. Only functional tests can elucidate whether this symplasmic pathway is indeed continuous for assimilates, and if phloem loading in gymnosperms is comparable with the symplasmic loading mode in many angiosperm trees. In contrast to angiosperms, the bundle sheath has properties of an endodermis and is equipped with Casparian strips or other wall modifications that form a domain border for any apoplasmic transport. It constitutes a key point of control for nutrient transport, where the opposing flow of mineral nutrients and photoassimilates has to be accommodated in each single cell, bringing to mind the principle of a revolving door. The review lists a number of experiments needed to elucidate the mode of phloem loading in gymnosperms.

  3. Cocksfoot mottle sobemovirus establishes infection through the phloem.

    Science.gov (United States)

    Otsus, Maarja; Uffert, Gabriela; Sõmera, Merike; Paves, Heiti; Olspert, Allan; Islamov, Bulat; Truve, Erkki

    2012-06-01

    Cocksfoot mottle virus (CfMV) localization in oat plants was analyzed during three weeks post infection by immunohistochemical staining to follow its spread through different tissues. In early stages of infection, the virus was first detectable in phloem parenchyma and bundle sheath cells of inoculated leaves. Bundle sheath and phloem parenchyma were also the cell types where the virus was first detected in stems and systemic leaves of infected plants. In later stages of infection, CfMV spread also into the mesophyll surrounding vascular bundles and was seldom detected in xylem parenchyma of inoculated leaves. In systemic leaves, CfMV was not detected from xylem. Moreover, sometimes it was found from phloem only. In straw and roots, CfMV was detected both from phloem and xylem. According to our observations, CfMV predominantly moves through phloem, which makes the systemic movement of CfMV different from that of another monocot-infecting sobemovirus, Rice yellow mottle virus (RYMV). Copyright © 2012 Elsevier B.V. All rights reserved.

  4. Foliar phloem infrastructure in support of photosynthesis

    Directory of Open Access Journals (Sweden)

    William Walter Adams

    2013-06-01

    Full Text Available Acclimatory adjustments of foliar minor loading veins in response to growth at different temperatures and light intensities are evaluated. These adjustments are related to their role in providing infrastructure for the export of photosynthetic products as a prerequisite for full acclimation of photosynthesis to the respective environmental conditions. Among winter-active apoplastic loaders, higher photosynthesis rates were associated with greater numbers of sieve elements per minor vein as well as an increased apparent total membrane area of cells involved in phloem loading (greater numbers of cells and/or greater cell wall invaginations. Among summer-active apoplastic loaders, higher photosynthesis rates were associated with increased vein density and, possibly, a greater number of sieve elements and companion cells per minor vein. Among symplastic loaders, minor loading vein architecture (number per vein and arrangement of cells was apparently constrained, but higher photosynthesis rates were associated with higher foliar vein densities and larger intermediary cells (presumably providing a greater volume for enzymes involved in active raffinose sugar synthesis. Winter-active apoplastic loaders thus apparently place emphasis on adjustments of cell membrane area (presumably available for transport proteins active in loading of minor veins, while symplastic loaders apparently place emphasis on increasing the volume of cells in which their active loading step takes place. Presumably to accommodate a greater flux of photosynthate through the foliar veins, winter-active apoplastic loaders also have a higher number of sieve elements per minor loading vein, whereas symplastic loaders and summer-active apoplastic loaders have a higher total number of veins per leaf area. These latter adjustments in the vasculature (during leaf development may also apply to the xylem (via greater numbers of tracheids per vein and/or greater vein density per leaf area

  5. Functional proteomics of barley and barley chloroplasts – strategies, methods and perspectives

    DEFF Research Database (Denmark)

    Petersen, Jørgen; Rogowska-Wrzesinska, Adelina; Jensen, Ole Nørregaard

    2013-01-01

    tolerance, micronutrient utilization, and photosynthesis in barley. In the present review we present the current state of proteomics research for investigations of barley chloroplasts, i.e., the organelle that contain the photosynthetic apparatus in the plant. We describe several different proteomics...... strategies and discuss their applications in characterization of the barley chloroplast as well as future perspectives for functional proteomics in barley research....

  6. Seasonal dynamics of phloem formation in Silver fir and Norway spruce as affected by drought

    OpenAIRE

    Gričar, Jožica; Čufar, Katarina

    2015-01-01

    The dynamics of phloem growth ring formation in silver fir (Abies alba Mill.) and Norway spruce (Picea abies Karst.) at different sites in Slovenia during the droughty growing season of 2003 was studied. We also determined the timing of cambial activity, xylem and phloem formation, and counted the number of cells in the completed phloem and xylem growth rings. Light microscopy of cross-sections revealed that cambial activity started on the phloem and xylem side simultaneously at all 3 plots. ...

  7. Analysis list: SAP30 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available SAP30 Blood,Pluripotent stem cell + hg19 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/target/SAP...30.1.tsv http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/target/SAP30.5.tsv http://dbarchive....biosciencedbc.jp/kyushu-u/hg19/target/SAP30.10.tsv http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/colo/SAP...30.Blood.tsv,http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/colo/SAP30.Pluripote

  8. (BOREAS) BOREAS TE-7 Sap Flow Data

    Science.gov (United States)

    Hall, Forrest G. (Editor); Papagno, Andrea (Editor); Hogg, E. H.; Hurdle, P. A.

    2000-01-01

    The BOREAS TE-7 team collected data sets in support of its efforts to characterize and interpret information on the sap flow of boreal vegetation. The heat pulse method was used to monitor sap flow and to estimate rates of transpiration from aspen, black spruce, and mixed wood forests at the SSAOA, MIX, SSA-OBS. and Batoche sites in Saskatchewan, Canada. Measurements were made at the various sites from May to October 1994, May to October 1995, and April to October 1996. A scaling procedure was used to estimate canopy transpiration rates from the sap flow measurements. The data were stored in tabular ASCII files. Analyses to date show a tendency for sap flow in aspen to remain remarkably constant over a wide range of environmental conditions VPD from 1.0 to 4.8 kPa and solar radiation less than 400 W/sq m). For forests with high aerodynamic conductance, the results would indicate an inverse relationship between stomatal conductance and VPD, for VPD greater than 1 kPa. A possible interpretation is that stomata are operating to maintain leaf water potentials above a critical minimum value, which in turn places a maximum value on the rate of sap flow that can be sustained by the tree. The data files are available on a CD-ROM (see document number 20010000884), or from the Oak Ridge National Laboratory (ORNL) Distrobuted Activity Archive Center (DAAC).

  9. CO-FERMENTATION OF KOCHO WITH BARLEY

    African Journals Online (AJOL)

    improved protein content in which kocho and barley flour were fermented for 96 hrs with barley flour. ... involving co-fermentation of kocho and barley flour for the production of nutritionally improved ..... chickpeas. J. Food Sci. 44:234-236.

  10. Proteolytic processing of CmPP36, a protein from the cytochrome b(5) reductase family, is required for entry into the phloem translocation pathway.

    Science.gov (United States)

    Xoconostle-Cázares, B; Ruiz-Medrano, R; Lucas, W J

    2000-12-01

    Cucurbita maxima (pumpkin) phloem sap contains a 31 kDa protein that cross-reacts with antibodies directed against the red clover necrotic mosaic virus movement protein (RCNMV MP). Microsequence data from phloem-purified 31 kDa protein were used to isolate a complementary DNA: the open reading frame encodes a 36 kDa protein belonging to the cytochrome b(5) reductase (Cb5R) family; the gene was termed CmPP36. Western analyses established that CmPP36, RCNMV MP and CmPP16 (Xoconostle-Cázares et al., 1999, Science 283, 94-98) are immunologically related, probably due to a common epitope, represented by the NADH(+)-binding domain of CmPP36. An N-terminal 5 kDa membrane-targeting domain is cleaved to produce the 31 kDa Delta N-CmPP36 detected in the phloem sap. Microinjection experiments established that Delta N-CmPP36, but not CmPP36, is able to interact with plasmodesmata to mediate its cell-to-cell transport. Thus, intercellular movement of CmPP36 requires proteolytic processing in the companion cell to produce a soluble, movement-competent, protein. In contrast to RCNMV and CmPP16, Delta N-CmPP36 interacts with but does not mediate the trafficking of RNA. Northern and in situ RT-PCR studies established that CmPP36 mRNA is present in all plant organs, being highly abundant within vascular tissues. In roots of hydroponically grown pumpkin plants, CmPP36 mRNA levels respond to changes in available iron in the culture solution. Finally, enzymatic assays established that both CmPP36 and Delta N-CmPP36 could reduce Fe(3+)-citrate and Fe(3+)-EDTA in the presence of NADH(+). These findings are discussed in terms of the possible roles played by CmPP36 in phloem function.

  11. Cytology of the minor-vein phloem in 320 species from the subclass Asteridae suggests a high diversity of phloem-loading modes

    OpenAIRE

    Batashev, Denis R.; Pakhomova, Marina V.; Razumovskaya, Anna V.; Voitsekhovskaja, Olga V.; Gamalei, Yuri V.

    2013-01-01

    The discovery of abundant plasmodesmata at the bundle sheath/phloem interface in Oleaceae (Gamalei, 1974) and Cucurbitaceae (Turgeon et al., 1975) opened the questions whether these plasmodesmata are functional in phloem loading and how widespread is symplasmic loading. Analysis of over 800 dicot species allowed the definition of ‘open’ and ‘closed’ types of the minor vein phloem depending on the abundance of plasmodesmata between companion cells and bundle sheath (Gamalei, 1989; 1990). These...

  12. Cytology of the minor-vein phloem in 320 species from the subclass Asteridae suggests a high diversity of phloem-loading modes †

    OpenAIRE

    Batashev, Denis R.; Pakhomova, Marina V.; Razumovskaya, Anna V.; Voitsekhovskaja, Olga V.; Gamalei, Yuri V.

    2013-01-01

    The discovery of abundant plasmodesmata at the bundle sheath/phloem interface in Oleaceae (Gamalei, 1974) and Cucurbitaceae (Turgeon et al., 1975) raised the questions as to whether these plasmodesmata are functional in phloem loading and how widespread symplasmic loading would be. Analysis of over 800 dicot species allowed the definition of “open” and “closed” types of the minor vein phloem depending on the abundance of plasmodesmata between companion cells and bundle sheath (Gamalei, 1989, ...

  13. Comparison of phloem and xylem hydraulic architecture in Picea abies stems.

    Science.gov (United States)

    Jyske, Tuula; Hölttä, Teemu

    2015-01-01

    The hydraulic properties of xylem and phloem differ but the magnitude and functional consequences of the differences are not well understood. Phloem and xylem functional areas, hydraulic conduit diameters and conduit frequency along the stems of Picea abies trees were measured and expressed as allometric functions of stem diameter and distance from stem apex. Conductivities of phloem and xylem were estimated from these scaling relations. Compared with xylem, phloem conduits were smaller and occupied a slightly larger fraction of conducting tissue area. Ten times more xylem than phloem was annually produced along the stem. Scaling of the conduit diameters and cross-sectional areas with stem diameter were very similar in phloem and xylem. Phloem and xylem conduits scaled also similarly with distance from stem apex; widening downwards from the tree top, and reaching a plateau near the base of the living crown. Phloem conductivity was estimated to scale similarly to the conductivity of the outermost xylem ring, with the ratio of phloem to xylem conductivity being c. 2%. However, xylem conductivity was estimated to increase more than phloem conductivity with increasing tree dimensions as a result of accumulation of xylem sapwood. Phloem partly compensated for its smaller conducting area and narrower conduits by having a slightly higher conduit frequency. © 2014 The Authors. New Phytologist © 2014 New Phytologist Trust.

  14. 21 CFR 133.186 - Sap sago cheese.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Sap sago cheese. 133.186 Section 133.186 Food and... Products § 133.186 Sap sago cheese. (a) Description. (1) Sap sago cheese is the food prepared by the... method described in § 133.5. Sap sago cheese is not less than 5 months old. (2) One or more of the dairy...

  15. SAP ERP financial accounting and controlling configuration and use management

    CERN Document Server

    Okungbowa, Andrew

    2015-01-01

    SAP ERP modules are notoriously hard to configure and use effectively without a lot of practice and experience. But as SAP ERP Financial Accounting and Controlling: Configuration and Use Management shows, it doesn't have to be so difficult. The book takes a systematic approach that leads SAP Financial Accounting and Controlling (FICO) users step by step through configuring and using all the program's facets. This approach makes configuration complexities manageable. The book's author-SAP expert, trainer, and accountant Andrew Okun

  16. Synthesis of a series of monosaccharide-fipronil conjugates and their phloem mobility.

    Science.gov (United States)

    Yuan, Jian-Guo; Wu, Han-Xiang; Lu, Meng-Ling; Song, Gao-Peng; Xu, Han-Hong

    2013-05-08

    To test the effect of adding different monosaccharide groups to a non-phloem-mobile insecticide on the phloem mobility of the insecticide, a series of conjugates of different monosaccharides and fipronil were synthesized using the trichloroacetimidate method. Phloem mobility tests in castor bean ( Ricinus communis L.) seedlings indicated that the phloem mobility of these conjugates varied markedly. L-Rhamnose-fipronil and D-fucose-fipronil displayed the highest phloem mobility among all of the tested conjugates. Conjugating hexose, pentose, or deoxysugar to fipronil through an O-glycosidic linkage can confer phloem mobility to fipronil in R. communis L. effectively, while the -OH orientation of the monosaccharide substantially affected the phloem mobility of the conjugates.

  17. Alanine aminotransferase controls seed dormancy in barley

    Science.gov (United States)

    Sato, Kazuhiro; Yamane, Miki; Yamaji, Nami; Kanamori, Hiroyuki; Tagiri, Akemi; Schwerdt, Julian G.; Fincher, Geoffrey B.; Matsumoto, Takashi; Takeda, Kazuyoshi; Komatsuda, Takao

    2016-01-01

    Dormancy allows wild barley grains to survive dry summers in the Near East. After domestication, barley was selected for shorter dormancy periods. Here we isolate the major seed dormancy gene qsd1 from wild barley, which encodes an alanine aminotransferase (AlaAT). The seed dormancy gene is expressed specifically in the embryo. The AlaAT isoenzymes encoded by the long and short dormancy alleles differ in a single amino acid residue. The reduced dormancy allele Qsd1 evolved from barleys that were first domesticated in the southern Levant and had the long dormancy qsd1 allele that can be traced back to wild barleys. The reduced dormancy mutation likely contributed to the enhanced performance of barley in industrial applications such as beer and whisky production, which involve controlled germination. In contrast, the long dormancy allele might be used to control pre-harvest sprouting in higher rainfall areas to enhance global adaptation of barley. PMID:27188711

  18. 49 CFR 655.52 - Substance abuse professional (SAP).

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 7 2010-10-01 2010-10-01 false Substance abuse professional (SAP). 655.52 Section 655.52 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL TRANSIT... OPERATIONS Drug and Alcohol Testing Procedures § 655.52 Substance abuse professional (SAP). The SAP must...

  19. SAP GUI PM系统的GuiXT优化%Optimization of the SAP GUI PM module

    Institute of Scientific and Technical Information of China (English)

    兰祎天

    2012-01-01

    GuiXT is a software client-server-based tool which provides user interface customization solution for SAP applications.With experience in the use of SAP PM Module,the author of this article optimized the established program and showed%GuiXT是一个基于用户端-服务端的工具软件,其针对SAP应用提供用户界面定制化解决方案。作者结合SAP PM模块使用经验,利用仪化SAP系统自带的GuiXT程序对既定程序做出改进,通过应用案例,对SAP GUI程序操作进行了优化介绍。

  20. Euphorbia grandicornis Sap Keratouveitis: A Case Report

    Directory of Open Access Journals (Sweden)

    María Gómez-Valcárcel

    2016-02-01

    Full Text Available Purpose: To describe a case of keratouveitis caused by Euphorbia grandicornis sap, that resolved with topic steroids. Methods: We report a case presentation of a patient with keratouveitis. Results: A 70-year-old woman suffered from accidental ocular contact with E. grandicornis sap in her left eye. Two hours after the contact, she attended the clinic due to conjunctival hyperemia and pain. Best-corrected visual acuity (BCVA was 20/25. The toxic conjunctivitis was treated with topical lubricant and steroid. After 24 h, she presented blurred vision. BCVA was 20/80. Toxic keratouveitis was diagnosed. Topical treatment with 1% cyclopentolate t.i.d., 5% sodium chloride, 1.14% dexamethasone phosphate each hour, and 4% sodium hyaluronate each hour was continued. Complete resolution was obtained 1 week later. Euphorbia sap content analysis was performed using dissolvent extraction spectrophotometry. Its contents included flavonoids, alkaloids, phenols and sesquiterpene lactones. Conclusion: Corneal exposure to E. grandicornis sap is a cause of nonvisually threatening keratouveitis when adequately treated with corticosteroids.

  1. Surface Absorption Polarization Sensors (SAPS), Final Technical Report, Laser Probing of Immobilized SAPS Actuators Component

    Energy Technology Data Exchange (ETDEWEB)

    Joseph I. Cline

    2010-04-22

    A novel hypothesized detection scheme for the detection of chemical agents was proposed: SAPS ``Surface-Adsorbed Polarization Sensors''. In this technique a thin layer of molecular rotors is adsorbed to a surface. The rotors can be energized by light absorption, but are otherwise locked in position or alternatively rotate slowly. Using polarized light, the adsorbed rotors are turned as an ensemble. Chemical agent (analyte) binding that alters the rotary efficiency would be detected by sensitive polarized absorption techniques. The mechanism of the SAPS detection can be mechanical, chemical, or photochemical: only a change in rotary efficiency is required. To achieve the goal of SAPS detection, new spectroscopic technique, polarized Normal Incidence Cavity Ringdown Spectroscopy (polarized NICRDS), was developed. The technique employs very sensitive and general Cavity Ringdown absorption spectroscopy along with the ability to perform polarized absorption measurements. Polarized absorption offers the ability to measure the angular position of molecular chromophores. In the new experiments a thin layer of SAPS sensors (roughly corresponding to a monolayer coverage on a surface) immobilized in PMMA. The PMMA layer is less than 100~nm thick and is spin-coated onto a flat fused-silica substrate. The new technique was applied to study the photoisomerization-driven rotary motion of a family of SAPS actuators based on a family of substituted dibenzofulvene rotors based upon 9-(2,2,2- triphenylethylidene)fluorene. By varying the substitution to include moieties such as nitro, amino, and cyano the absorption spectrum and the quantum efficiency of photoisomerization can be varied. This SAPS effect was readily detected by polarized NICRDS. The amino substituted SAPS actuator binds H+ to form an ammonium species which was shown to have a much larger quantum efficiency for photoisomerization. A thin layer of immobilized amino actuators were then shown by polarized NICRDS

  2. Measurement and modelling of sap flow in maize plants

    Science.gov (United States)

    Heinlein, Florian; Biernath, Christian; Hoffmann, Peter; Klein, Christian; Thieme, Christoph; Priesack, Eckart

    2014-05-01

    Climate change as well as the changing composition of the atmosphere will have an impact on future yield of agricultural plants. In order to better estimate these impacts new, mechanistic plant growth models are needed. These models should be able to dynamically reproduce the plants' reactions to modified climate state variables like temperature, atmospheric CO2-concentration and water availability. In particular, to better describe the crop response to more strongly changing water availability the simulation of plant-internal water and solute transport processes in xylem and phloem needs to be improved. Our existing water transport model consists of two coupled 1-D Richards equations to calculate water transport in the soil and in the plants. This model has already been successfully applied to single Fagus sylvatica L. trees. At present it is adapted to agricultural plants such as maize. To simulate the water transport within the plants a representation of the flow paths, i.e. the plant architecture, is required. Aboveground plant structures are obtained from terrestrial laser scan (TLS) measurements at different development stages. These TLSs have been executed at the lysimeter facilities of Helmholtz Zentrum München and at the TERENO (Terrestrial Environmental Observatories) research farm Scheyern. Additionally, an L-system model is used to simulate aboveground and belowground plant architectures. In a further step, the quality of the explicit water flow model has to be tested using measurements. The Heat-Ratio-Method has been employed to directly measure sap flow in larger maize plants during a two-months-period in summer 2013 with a resolution of 10 minutes and thus, the plants' transpiration can be assessed. Water losses from the soil are determined by measuring the weight of lysimeters. From this evapotranspiration can be calculated. Transpiration and evapotranspiration are also simulated by application of the modelling system Expert-N. This framework

  3. A roadmap for zinc transport into the developing barley grain. Gene expression profiling using laser microdissection

    DEFF Research Database (Denmark)

    Borg, Søren; Tauris, Birgitte

    2011-01-01

    Nutrients destined for the developing cereal grain encounter several restricting barriers on their path towards their final storage sites in the grain. In order to identify transporters and chelating agents that may be involved in transport and deposition of zinc in the barley grain, expression...... profiles have been generated of four different tissue types: the transfer cells, the aleurone layer, the endosperm, and the embryo. Cells from these tissues were isolated with the 'laser capture microdissection' technology and the extracted RNA was subjected to three rounds of T7-based amplification...... were taken into account. On the basis of the expression levels of a number of metal homeostasis genes, a working model is proposed for the translocation of zinc from the phloem to the storage sites in the developing grain....

  4. Analysis of Genetic diversity and reltionships in local Tunisian barley ...

    African Journals Online (AJOL)

    Yomi

    Key words: Barley, RAPD markers, SSR markers, genetic diversity. INTRODUCTION. Barley ... surveyed by each kind of marker, their distribution ..... that belong to the Center. ..... tagged-site facilitated PCR for barley genome mapping. Theor.

  5. Coupling of water and carbon transport in trees: -Could water limitations of phloem transport speed up carbon starvation and tree mortality?

    Science.gov (United States)

    Sevanto, S.; McDowell, N. G.; Dickman, L. T.; Pangle, R.; Pockman, W.

    2011-12-01

    Understanding the mechanisms behind tree mortality is increasingly important because climate change appears to be increasing drought severity and duration worldwide, with concomitant increases in mortality. Carbon starvation is one of the mechanisms suggested to be responsible for mortality, especially for species that close stomata at low xylem water tensions. Such plants would be under negative carbon balance during drought. Carbohydrate transport in plants relies on the availability of apoplastic water and therefore, shortage of water could lead to inability to distribute sugars and speed up carbon starvation even if carbohydrate reserves existed. To test these ideas we conducted a greenhouse study where pinon pine (Pinus edulis) trees were killed using two treatments: water limitation (complete drought) and carbon limitation (complete darkness). We collected tissue samples for non-structural carbohydrate content analysis weekly and monitored changes in xylem and phloem water potentials using stem diameter variation measurements. To follow changes in the physiological status of the trees we measured shoot gas exchange, leaf water potential and sap flow rate. Carbon-limited trees continued respiring at relatively high rates and maintained both xylem and phloem transport despite rapidly diminishing carbohydrate pools. Water-limited trees, on the other hand, exhibited reduced respiration and xylem and phloem transport rates as soon as drought inhibited stomatal opening; even before any significant drop in leaf water potential. This suggests that respirationmetabolic rate is strongly controlled by soil water availability, and instead of speeding up mortality, reduced carbohydrate transport and utilization rate may be a valuable strategy to enhance tree survival during long droughts.

  6. Phloem-mobile signals affecting flowers: applications for crop breeding.

    Science.gov (United States)

    McGarry, Roisin C; Kragler, Friedrich

    2013-04-01

    Transport of endogenous macromolecules within and between tissues serves as a signaling pathway to regulate numerous aspects of plant growth. The florigenic FT gene product moves via the phloem from leaves to apical tissues and induces the flowering program in meristems. Similarly, short interfering RNA (siRNA) signals produced in source or sink tissues move cell-to-cell and long distance via the phloem to apical tissues. Recent advances in identifying these mobile signals regulating flowering or the epigenetic status of targeted tissues can be applicable to crop-breeding programs. In this review, we address the identity of florigen, the mechanism of allocation, and how virus-induced flowering and grafting of transgenes producing siRNA signals affecting meiosis can produce transgene-free progenies useful for agriculture.

  7. Anatomical Features of the Scots Pine Stem Phloem After Forest FireAnatomical Features of the Scots Pine Stem Phloem After Forest Fire

    Directory of Open Access Journals (Sweden)

    V. V. Stasova

    2015-02-01

    Full Text Available The aim of this work was to study changes in anatomical structure of phloem tissue in pine (Pinus sylvestris L. stems influenced by creeping forest fires of various rates. The experiments were carried out in the Lower Angara river region of the Angara provenance, Krasnoyarsk Krai, Central Siberia. The trees with green crowns and different fire damaged butts were chosen as models. Control (undamaged trees were taken from stands adjacent to experimental plots. The changes of inner bark thickness, number of phloem annual layers between cambium and periderm and number of cells in conductive phloem were found in the stem side opposite to fire scars. The structure fluctuations of phloem tissue were detected: disturbances of sieve cell arrangement, phloem ray enlargements, resin canal overgrowth and formation of great resin ducts. The lignin accumulation was observed in inner bark and a large amount of callusing was detected between conductive and nonconductive phloem. Over the course of time, repairing of tissues occurred and the normal inner bark structure and chemistry (without lignin were restored. The creeping fire of low intensity caused the maximal changes of phloem quantitative characteristics in trees with bark charring and these tendencies were stored after eight years. After creeping fire of high intensity the tendency for phloem thickening in trees with one fire scar and to thinning in strongly damaged trees were revealed. Also tendencies to decrease of the number of phloem annual layers, number of sieve cells in conductive phloem and ray frequency with increasing of stem injury degree were observed, besides axial parenchyma percentage trended to increase. Eight years after fire these tendencies were often not visible.

  8. Spread the news: systemic dissemination and local impact of Ca²⁺ signals along the phloem pathway.

    Science.gov (United States)

    van Bel, Aart J E; Furch, Alexandra C U; Will, Torsten; Buxa, Stefanie V; Musetti, Rita; Hafke, Jens B

    2014-04-01

    We explored the idea of whether electropotential waves (EPWs) primarily act as vehicles for systemic spread of Ca(2+) signals. EPW-associated Ca(2+) influx may trigger generation and amplification of countless long-distance signals along the phloem pathway given the fact that gating of Ca(2+)-permeable channels is a universal response to biotic and abiotic challenges. Despite fundamental differences, both action and variation potentials are associated with a sudden Ca(2+) influx. Both EPWs probably disperse in the lateral direction, which could be of essential functional significance. A vast set of Ca(2+)-permeable channels, some of which have been localized, is required for Ca(2+)-modulated events in sieve elements. There, Ca(2+)-permeable channels are clustered and create so-called Ca(2+) hotspots, which play a pivotal role in sieve element occlusion. Occlusion mechanisms play a central part in the interaction between plants and phytopathogens (e.g. aphids or phytoplasmas) and in transient re-organization of the vascular symplasm. It is argued that Ca(2+)-triggered systemic signalling occurs in partly overlapping waves. The forefront of EPWs may be accompanied by a burst of free Ca(2+) ions and Ca(2+)-binding proteins in the sieve tube sap, with a far-reaching impact on target cells. Lateral dispersion of EPWs may induce diverse Ca(2+) influx and handling patterns (Ca(2+) signatures) in various cell types lining the sieve tubes. As a result, a variety of cascades may trigger the fabrication of signals such as phytohormones, proteins, or RNA species released into the sap stream after product-related lag times. Moreover, transient reorganization of the vascular symplasm could modify cascades in disjunct vascular cells.

  9. Keratouveitis caused by Euphorbia plant sap

    Directory of Open Access Journals (Sweden)

    Basak Samar

    2009-01-01

    Full Text Available The milky sap or latex of Euphorbia plant is highly toxic and an irritant to the skin and eye. This report illustrates the spectrum of ocular inflammation caused by accidental inoculation of latex of Euphorbia plant. Three patients presented with accidental ocular exposure to the milky sap of Euphorbia species of recent onset. The initial symptoms in all cases were severe burning sensation with blurring of vision. Visual acuity reduced from 20/60 to counting fingers. Clinical findings varied from kerato-conjunctivitis, mild to severe corneal edema, epithelial defects, anterior uveitis and secondary elevated intraocular pressure. All symptoms and signs had resolved by 10-14 days with active supportive medication. People who handle Euphorbia plants should wear eye protection. It is always advisable to ask the patient to bring a sample of the plant for identification.

  10. OCTOPUS, a polarly localised membrane-associated protein, regulates phloem differentiation entry in Arabidopsis thaliana.

    Science.gov (United States)

    Truernit, Elisabeth; Bauby, Hélène; Belcram, Katia; Barthélémy, Julien; Palauqui, Jean-Christophe

    2012-04-01

    Vascular development is embedded into the developmental context of plant organ differentiation and can be divided into the consecutive phases of vascular patterning and differentiation of specific vascular cell types (phloem and xylem). To date, only very few genetic determinants of phloem development are known. Here, we identify OCTOPUS (OPS) as a potentiator of phloem differentiation. OPS is a polarly localised membrane-associated protein that is initially expressed in provascular cells, and upon vascular cell type specification becomes restricted to the phloem cell lineage. OPS mutants display a reduction of cotyledon vascular pattern complexity and discontinuous phloem differentiation, whereas OPS overexpressers show accelerated progress of cotyledon vascular patterning and phloem differentiation. We propose that OPS participates in vascular differentiation by interpreting longitudinal signals that lead to the transformation of vascular initials into differentiating protophloem cells.

  11. Allocation, stress tolerance and carbon transport in plants: how does phloem physiology affect plant ecology?

    Science.gov (United States)

    Savage, Jessica A; Clearwater, Michael J; Haines, Dustin F; Klein, Tamir; Mencuccini, Maurizio; Sevanto, Sanna; Turgeon, Robert; Zhang, Cankui

    2016-04-01

    Despite the crucial role of carbon transport in whole plant physiology and its impact on plant-environment interactions and ecosystem function, relatively little research has tried to examine how phloem physiology impacts plant ecology. In this review, we highlight several areas of active research where inquiry into phloem physiology has increased our understanding of whole plant function and ecological processes. We consider how xylem-phloem interactions impact plant drought tolerance and reproduction, how phloem transport influences carbon allocation in trees and carbon cycling in ecosystems and how phloem function mediates plant relations with insects, pests, microbes and symbiotes. We argue that in spite of challenges that exist in studying phloem physiology, it is critical that we consider the role of this dynamic vascular system when examining the relationship between plants and their biotic and abiotic environment.

  12. Mathematical Modelling of Bridges with SAP2000

    OpenAIRE

    Maraž, Miha

    2006-01-01

    The present work describes a relatively new programme module, which is enhanced in the recently released versions of SAP2000 software. The new module, called Bridge Modeler, is intended for simple, parametric mathematical modelling of bridges. The modelling procedure is explained on a test case through the steps of a user-friendly Bridge Wizard. For each step, we described the basic principles and the application possibilities as well as some limitations. We also explained two types of analys...

  13. Sap flow and sugar transport in plants

    Science.gov (United States)

    Jensen, K. H.; Berg-Sørensen, K.; Bruus, H.; Holbrook, N. M.; Liesche, J.; Schulz, A.; Zwieniecki, M. A.; Bohr, T.

    2016-07-01

    Green plants are Earth's primary solar energy collectors. They harvest the energy of the Sun by converting light energy into chemical energy stored in the bonds of sugar molecules. A multitude of carefully orchestrated transport processes are needed to move water and minerals from the soil to sites of photosynthesis and to distribute energy-rich sugars throughout the plant body to support metabolism and growth. The long-distance transport happens in the plants' vascular system, where water and solutes are moved along the entire length of the plant. In this review, the current understanding of the mechanism and the quantitative description of these flows are discussed, connecting theory and experiments as far as possible. The article begins with an overview of low-Reynolds-number transport processes, followed by an introduction to the anatomy and physiology of vascular transport in the phloem and xylem. Next, sugar transport in the phloem is explored with attention given to experimental results as well as the fluid mechanics of osmotically driven flows. Then water transport in the xylem is discussed with a focus on embolism dynamics, conduit optimization, and couplings between water and sugar transport. Finally, remarks are given on some of the open questions of this research field.

  14. Dynamics of Subauroral Polarization Stream (SAPS) Structures

    Science.gov (United States)

    Sazykin, S. Y.; Coster, A. J.; Huba, J.; Ridley, A. J.; Erickson, P. J.; Foster, J. C.; Baker, J. B. H.; Wolf, R.

    2015-12-01

    The Subauroral Polarization Stream (SAPS) flow structures are narrow ionospheric channels of fast (in excess of 100 m/s) westward drift just outside the equatorward edge of the diffuse aurora in the dusk-to-midnight local time sector. Other terms for this phenomenon include subauroral Ion Drift (SAID) events and Polarization Jets. SAPS structures represent a striking departure from the commonly-used two-cell convection pattern. They are thought to arise from the displacement of the downward region-2 Birkeland currents on the dusk side equatorward of the low-latitude boundary of the auroral oval during times of changing high-latitude convection. In this paper, we will use several event simulations with the SAMI3-RCM numerical model (a self-consistent ionosphere-inner magnetosphere model) and RCM-GITM (a self-consistent model of the ionosphere-thermosphere-inner magnetosphere) to analyze the relative roles of changes in the IMF Bz component, ionospheric electron density depletions, and thermospheric modifications in controlling the dynamics of SAPS. Simulation results will be compared to multi-instrument ionospheric observations.

  15. Roles of Hydroxynitrile Glucosides in Barley

    DEFF Research Database (Denmark)

    Roelsgaard, Pernille Sølvhøj

    , the defense capability of these compounds requires the activity of a specific β-glucosidase, and this β-glucosidase is not found in barley leaf tissue. Therefore, the role of hydroxynitrile glucosides in barley leaves is unclear. In contrast to acting as defense compounds, it has been suggested......) has been reported in the literature. In this thesis, the role of hydroxynitrile glucosides in the interaction between barley and Bgh is investigated. It is shown that the hydroxynitrile glucoside levels increase over time in barley leaves upon Bgh infection. In addition, isolation of fungal hyphae...

  16. Intersection of transfer cells with phloem biology – broad evolutionary trends, function and induction

    Directory of Open Access Journals (Sweden)

    Felicity eAndriunas

    2013-07-01

    Full Text Available Transfer cells (TCs are ubiquitous throughout the plant kingdom. Their unique ingrowth wall labyrinths, supporting a plasma membrane enriched in transporter proteins, provides these cells with an enhanced membrane transport capacity for resources. In certain plant species, TCs have been shown to function to facilitate phloem loading and/or unloading at cellular sites of intense resource exchange between symplasmic/apoplasmic compartments. Within the phloem, the key cellular locations of TCs are leaf minor veins of collection phloem and stem nodes of transport phloem. In these locations, companion and phloem parenchyma cells trans-differentiate to a TC morphology consistent with facilitating loading and re-distribution of resources respectively. At a species level, occurrence of TCs is significantly higher in transport than in collection phloem. TCs are absent from release phloem but occur within post-sieve element unloading pathways and particularly at interfaces between generations of developing Angiosperm seeds. Experimental accessibility of seed TCs has provided opportunities to investigate their inductive signaling, regulation of ingrowth wall formation and membrane transport function. This review uses this information base to explore current knowledge of phloem transport function and inductive signaling for phloem-associated TCs. The functional role of collection phloem and seed TCs is supported by definitive evidence, but no such information is available for stem node TCs that present an almost intractable experimental challenge. There is an emerging understanding of inductive signals and signaling pathways responsible for initiating trans-differentiation to a TC morphology in developing seeds. However, scant information is available to comment on a potential role for inductive signals that induce seed TCs, in regulating induction of phloem-associated TCs. Biotic phloem invaders have been used as a model to speculate on involvement of

  17. Enumeration of fungi in barley

    CSIR Research Space (South Africa)

    Rabie, CJ

    1997-04-01

    Full Text Available et al., 1975), and affect the resultant beer by causing off-flavours and colours and, in some instances, gushing (Haikara, 1983; Vaag, 1985). Under cer- tain circumstances some fungal species and/or their products may... samples Dominant spccics Kernels inl?cctcd,? (?j6) Table I Fungi isolated from baa-ley kernels As high levels of infection in barley are detri- mental to good quality malt and beer. it is impor- tant to quantify fungal...

  18. Maximum sustainable xylem sap tensions in Rhododendron and other species.

    Science.gov (United States)

    Crombie, D S; Milburn, J A; Hipkins, M F

    1985-01-01

    The acoustic technique was used in conjunction with the pressure chamber to determine the tensions causing cavitation of xylem sap in leaves of five woody angiosperms (Acer pseudoplatanus L., Alnus glutinosa L. Gaertn., Eucalyptus globulus Labill., Fraxinus excelsior L. and Rhododendron ponticum L.) and three species of herbs (Lycopersicum esculentum Mill., Plantago major L. and Ricinus communis L.). The results showed leaves of most species to suffer considerably from cavitation at sap tensions of 1.6-3 MPa. Two of the herbs, Lycopersicum and Ricinus, cavitated extensively at sap tensions below 1 MPa. Additional evidence is presented that clicks, detected by acoustic amplification, are caused by cavitation of sap in the xylem conduits. A rapid method is suggested for the determination of sap tensions in cavitating leaves and which is suitable for surveys of the critical sap tension in a large number of species.

  19. 49 CFR 40.311 - What are the requirements concerning SAP reports?

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 1 2010-10-01 2010-10-01 false What are the requirements concerning SAP reports... Process § 40.311 What are the requirements concerning SAP reports? (a) As the SAP conducting the required... ensure that you receive SAP written reports directly from the SAP performing the evaluation and that no...

  20. Role of NuSAP in Prostate Tumor Progression

    Science.gov (United States)

    2013-06-01

    of NuSAP in promoting proliferation and invasion in Prostate Cancer and identify genes that upregulate NuSAP expression. Nucleolar and spindle ...extensive bundling and stabilization of spindle microtubules against depolymerization and cross-link large numbers of microtubules into aster-like...mitotic stage observed in cells where NuSAP was knocked down compared to over expressed cells which were found similar to control. Error bars: SD

  1. Barley yellow dwarf virus infection and elevated CO2 alter the antioxidants ascorbate and glutathione in wheat.

    Science.gov (United States)

    Vandegeer, Rebecca K; Powell, Kevin S; Tausz, Michael

    2016-05-20

    Plant antioxidants ascorbate and glutathione play an important role in regulating potentially harmful reactive oxygen species produced in response to virus infection. Barley yellow dwarf virus is a widespread viral pathogen that systemically infects cereal crops including wheat, barley and oats. In addition, rising atmospheric CO2 will alter plant growth and metabolism, including many potential but not well understood effects on plant-virus interactions. In order to better understand the wheat-BYDV interaction and any potential changes under elevated CO2, the total concentration and oxidised fraction of ascorbate and glutathione was measured in leaves of a susceptible wheat cultivar (Triticum aestivum L. 'Yitpi') infected with Barley yellow dwarf virus-PAV (Padi Avenae virus) and grown under elevated CO2 in controlled environment chambers. Virus infection decreased total leaf ascorbate and glutathione concentrations and increased the fraction of oxidised ascorbate (dehydroascorbate). Elevated CO2 decreased the fraction of oxidised ascorbate. In this work, we demonstrate that systemic infection by a phloem-restricted virus weakens the antioxidant pools of ascorbate and glutathione. In addition, elevated CO2 may decrease oxidative stress, for example, from virus infection, but there was no direct evidence for an interactive effect between treatments.

  2. Faculty perceptions of the integration of SAP in academic programs

    Directory of Open Access Journals (Sweden)

    Sam Khoury

    2012-08-01

    Full Text Available In order to prepare students for the workforce, academic programs incorporate a variety of tools that students are likely to use in their future careers. One of these tools employed by business and technology programs is the integration of live software applications such as SAP through the SAP University Alliance (SAP UA program. Since the SAP UA program has been around for only about 10 years and the available literature on the topic is limited, research is needed to determine the strengths and weaknesses of the SAP UA program. A collaborative study of SAP UA faculty perceptions of their SAP UAs was conducted in the fall of 2011. Of the faculty invited to participate in the study, 31% completed the online survey. The results indicate that most faculty experienced difficulty implementing SAP into their programs and report that a need exists for more standardized curriculum and training, while a large percentage indicated that they are receiving the support they need from their schools and SAP.

  3. SAP 系统接口技术分析

    Institute of Scientific and Technical Information of China (English)

    盖广仓

    2012-01-01

    SAP 项目实施过程中,经常会碰到与其他系统的集成问题,在 SAP 项目范围之外,企业中还有大量的遗留系统、非 SAP 系统、外部系统,SAP 并不能满足企业所有的功能需求,需要同安全与访问控制等系统相互协作,共同来实现这些系统之间的数据交互,从而确保 SAP 投入使用后,与相关系统的接口也可用。SAP 项目实施过程中的定制操作,不会改变 SAP 系统本身,但通过 ABAP/4 开发平台则可以对 SAP 系统进行扩展,也就是通过 ABAP 开发,SAP 可以与其他 R/3 系统或者非 R/3 系统集成。

  4. Issues surrounding health claims for barley.

    Science.gov (United States)

    Ames, Nancy P; Rhymer, Camille R

    2008-06-01

    Government-approved health claims support dietary intervention as a safe and practical approach to improving consumer health and provide industry with regulatory guidelines for food product labels. Claims already allowed in the United States, United Kingdom, Sweden, and The Netherlands for reducing cholesterol through consumption of oat or barley soluble fiber provide a basis for review, but each country may have different criteria for assessing clinical evidence for a physiological effect. For example, the FDA-approved barley health claim was based on a petition that included 39 animal model studies and 11 human clinical trials. Since then, more studies have been published, but with few exceptions, clinical data continue to demonstrate that the consumption of barley products is effective for lowering total and LDL cholesterol. More research is needed to fully understand the mechanism of cholesterol reduction and the role of beta-glucan molecular weight, viscosity, and solubility. In an assessment of the physiological efficacy of a dietary intervention, consideration should also be given to the potential impact of physical and thermal food-processing treatments and genotypic variation in the barley source. New barley cultivars have been generated specifically for food use, possessing increased beta-glucan, desirable starch composition profiles, and improved milling/processing traits. These advances in barley production, coupled with the establishment of a government-regulated health claim for barley beta-glucan, will stimulate new processing opportunities for barley foods and provide consumers with reliable, healthy food choices.

  5. Molecular characterization of two lipoxygenases from barley

    NARCIS (Netherlands)

    Mechelen, J.R. van; Schuurink, R.C.; Smits, M.; Graner, A.; Douma, A.C.; Sedee, N.J.A.; Schmitt, N.F.; Valk, B.E.

    1999-01-01

    Two full-length lipoxygenase cDNA sequences (LoxB and LoxC) from barley (Hordeum distichum cv. L. Triumph) are described. The cDNAs share high homology with the barley LoxA cDNA. Southern blotting experiments indicate single copy numbers of the three lipoxygenase genes. RFLP mapping revealed the pre

  6. Sap flow and sugar transport in plants

    DEFF Research Database (Denmark)

    Jensen, Kaare Hartvig; Berg-Sørensen, Kirstine; Bruus, Henrik

    2016-01-01

    Green plants are Earth’s primary solar energy collectors. They harvest the energy of the Sun by converting light energy into chemical energy stored in the bonds of sugar molecules. A multitude of carefully orchestrated transport processes are needed to move water and minerals from the soil to sites...... of photosynthesis and to distribute energy-rich sugars throughout the plant body to support metabolism and growth. The long-distance transport happens in the plants’ vascular system, where water and solutes are moved along the entire length of the plant. In this review, the current understanding of the mechanism...... and the quantitative description of these flows are discussed, connecting theory and experiments as far as possible. The article begins with an overview of low-Reynolds-number transport processes, followed by an introduction to the anatomy and physiology of vascular transport in the phloem and xylem. Next, sugar...

  7. 49 CFR 40.295 - May employees or employers seek a second SAP evaluation if they disagree with the first SAP's...

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 1 2010-10-01 2010-10-01 false May employees or employers seek a second SAP evaluation if they disagree with the first SAP's recommendations? 40.295 Section 40.295 Transportation Office... seek a second SAP evaluation if they disagree with the first SAP's recommendations? (a) As an employee...

  8. Phloem Ultrastructure and Pressure Flow: Sieve-Element-Occlusion-Related Agglomerations Do Not Affect Translocation

    DEFF Research Database (Denmark)

    Froelich, Daniel R.; Mullendore, Daniel L.; Jensen, Kåre Hartvig;

    2011-01-01

    to a discussion about the mode of phloem transport. At present, it is generally agreed that P protein agglomerations are preparation artifacts due to injury, the lumen of sieve tubes is free of obstructions, and phloem flow is driven by an osmotically generated pressure differential according to Münch’s classical...

  9. Testing the Münch hypothesis of long distance phloem transport in plants

    DEFF Research Database (Denmark)

    Knoblauch, Michael; Knoblauch, Jan; Mullendore, Daniel L.

    2016-01-01

    Long distance transport in plants occurs in sieve tubes of the phloem. The pressure flow hypothesis introduced by Ernst Münch in 1930 describes a mechanism of osmotically generated pressure differentials that are supposed to drive the movement of sugars and other solutes in the phloem...

  10. Phloem Ultrastructure and Pressure Flow: Sieve-Element-Occlusion-Related Agglomerations Do Not Affect Translocation

    DEFF Research Database (Denmark)

    Froelich, Daniel R.; Mullendore, Daniel L.; Jensen, Kåre Hartvig

    2011-01-01

    to a discussion about the mode of phloem transport. At present, it is generally agreed that P protein agglomerations are preparation artifacts due to injury, the lumen of sieve tubes is free of obstructions, and phloem flow is driven by an osmotically generated pressure differential according to Münch’s classical...

  11. Theoretical and experimental determination of phloem translocation speeds in gymnosperm and angiosperm trees

    DEFF Research Database (Denmark)

    Liesche, Johannes; Jensen, K.; Minchin, P.

    2013-01-01

    In trees, carbohydrates produced in photosynthesizing leaves are transported to roots and other sink organs over distances of up to 100 m inside a specialized transport tissue, the phloem. Carbohydrate translocation in the phloem is a fundamental aspect of tree physiology with relevance for tree ...

  12. SAP deficiency mitigated atherosclerotic lesions in ApoE(-/-) mice.

    Science.gov (United States)

    Zheng, Lingyun; Wu, Teng; Zeng, Cuiling; Li, Xiangli; Li, Xiaoqiang; Wen, Dingwen; Ji, Tianxing; Lan, Tian; Xing, Liying; Li, Jiangchao; He, Xiaodong; Wang, Lijing

    2016-01-01

    Serum amyloid P conpoent (SAP), a member of the pentraxin family, interact with pathogens and cell debris to promote their removal by macrophages and neutrophils and is co-localized with atherosclerotic plaques in patients. However, the exact mechanism of SAP in atherogenesis is still unclear. We investigated whether SAP influence macrophage recruitment and foam cell formation and ultimately affect atherosclerotic progression. we generated apoE(-/-); SAP(-/-) (DKO) mice and fed them western diet for 4 and 8 weeks to characterize atherosclerosis development. SAP deficiency effectively reduced plaque size both in the aorta (p = 0.0006 for 4 wks; p = 0.0001 for 8 wks) and the aortic root (p = 0.0061 for 4 wks; p = 0.0079 for 8wks) compared with apoE(-/-) mice. Meanwhile, SAP deficiency inhibited oxLDL-induced foam cell formation (p = 0.0004) compared with apoE(-/-) mice and SAP treatment increases oxLDL-induced foam cell formation (p = 0.002) in RAW cells. Besides, SAP deficiency reduced macrophages recruitment (p = 0.035) in vivo and in vitro (p = 0.026). Furthermore, SAP treatment enhanced CD36 (p = 0.007) and FcγRI (p = 0.031) expression induced by oxLDL through upregulating JNK and p38 MAPK phosphorylation whereas specific JNK1/2 inhibitor reduced CD36 (p = 0.0005) and FcγRI (P = 0.0007) expression in RAW cell. SAP deficiency also significantly decreased the expression of M1 and M2 macrophage markers and inflammatory cytokines in oxLDL-induced macrophages. SAP deficiency mitigated foam cell formation and atherosclerotic development in apoE(-/-) mice, due to reduction in macrophages recruitment, polarization and pro-inflammatory cytokines and inhibition the CD36/FcγR-dependent signaling pathway. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  13. Calcium homeostasis in barley aleurone

    Energy Technology Data Exchange (ETDEWEB)

    Jones, R.L.

    1990-02-21

    Under the auspices of the Department of Energy we investigated calcium homeostasis in aleurone cells of barley. This investigation was initiated to explore the role played by extracellular Ca{sup 2+} in gibberellic acid (GA)-induced synthesis and secretion of hydrolases in the aleurone layer. We have focused our attention on four topics that relate to the role of Ca{sup 2+} in regulating the synthesis of {alpha}-amylase. First, we determined the stoichiometry of Ca{sup 2+} binding to the two principal classes of barley {alpha}-amylase and examined some of the biochemical and physical properties of the native and Ca{sup 2+}-depleted forms of the enzyme. Second, since {alpha}-amylase is a Ca{sup 2+} containing metalloenzyme that binds one atom of Ca{sup 2+} per molecule, we developed methods to determine the concentration of Ca{sup 2+} in the cytosol of the aleurone cell. We developed a technique for introducing Ca{sup 2+}-sensitive dyes into aleurone protoplasts that allows the measurement of Ca{sup 2+} in both cytosol and endoplasmic reticulum (ER). Third, because the results of our Ca{sup 2+} measurements showed higher levels of Ca{sup 2+} in the ER than in the cytosol, we examined Ca{sup 2+} transport into the ER of control and GA-treated aleurone tissue. And fourth, we applied the technique of patch-clamping to the barley aleurone protoplast to examine ion transport at the plasma membrane. Our results with the patch-clamp technique established the presence of K{sup +} channels in the plasma membrane of the aleurone protoplast, and they showed that this cell is ideally suited for the application of this methodology for studying ion transport. 34 refs.

  14. Resistance to Barley Leaf Stripe

    DEFF Research Database (Denmark)

    Nørgaard Knudsen, J. C.

    1986-01-01

    in well adapted Northwest European spring cultivars. Virulence matching two hitherto not overcome resistances was demonstrated. Differences in apparent race nonspecific or partial resistance were also present, changing the percentage of infected plants of susceptible genotypes from about 20 to 44 per cent.......Ten barley [Hordeum vulgare] genotypes were inoculated with twelve isolates of Pyrenophora graminea of diverse European and North African origin. Race specific resistance occurred. Four, possibly five, genetically different sources of race-specific resistance were found, three of them occurring...

  15. Cytology of the minor-vein phloem in 320 species from the subclass Asteridae suggests a high diversity of phloem-loading modes

    Directory of Open Access Journals (Sweden)

    Denis R. Batashev

    2013-08-01

    Full Text Available The discovery of abundant plasmodesmata at the bundle sheath/phloem interface in Oleaceae (Gamalei, 1974 and Cucurbitaceae (Turgeon et al., 1975 opened the questions whether these plasmodesmata are functional in phloem loading and how widespread is symplasmic loading. Analysis of over 800 dicot species allowed the definition of ‘open’ and ‘closed’ types of the minor vein phloem depending on the abundance of plasmodesmata between companion cells and bundle sheath (Gamalei, 1989; 1990. These types corresponded to potential symplasmic and apoplasmic phloem loaders, respectively; however, this definition covered a spectrum of diverse structures of phloem endings. Here, a review of detailed cytological analyses of minor veins in 320 species from the subclass Asteridae is presented, including data on several cell types and their combinations which have not been reported previously. The percentage of Asteridae species with ‘open’ minor vein cytology which also contain sieve-element-companion cell complexes with ‘closed’ cytology, i.e. that show specialization for both symplasmic and apoplasmic phloem loading, was determined. Along with recent data confirming the dissimilar functional specialization of structurally different parts of minor vein phloem in the stachyose-translocating species Alonsoa meridionalis (Voitsekhovskaja et al., 2009, these findings suggest that apoplasmic loading is indispensable in a large group of species previously classified as putative symplasmic loaders. Altogether, this study provides formal classifications of companion cells and of minor veins, respectively, in 24 families of the Asteridae based on their structural features, opening the way to a close investigation of the relationship between structure and function in phloem loading.

  16. Cytology of the minor-vein phloem in 320 species from the subclass Asteridae suggests a high diversity of phloem-loading modes†

    Science.gov (United States)

    Batashev, Denis R.; Pakhomova, Marina V.; Razumovskaya, Anna V.; Voitsekhovskaja, Olga V.; Gamalei, Yuri V.

    2013-01-01

    The discovery of abundant plasmodesmata at the bundle sheath/phloem interface in Oleaceae (Gamalei, 1974) and Cucurbitaceae (Turgeon et al., 1975) raised the questions as to whether these plasmodesmata are functional in phloem loading and how widespread symplasmic loading would be. Analysis of over 800 dicot species allowed the definition of “open” and “closed” types of the minor vein phloem depending on the abundance of plasmodesmata between companion cells and bundle sheath (Gamalei, 1989, 1990). These types corresponded to potential symplasmic and apoplasmic phloem loaders, respectively; however, this definition covered a spectrum of diverse structures of phloem endings. Here, a review of detailed cytological analyses of minor veins in 320 species from the subclass Asteridae is presented, including data on companion cell types and their combinations which have not been reported previously. The percentage of Asteridae species with “open” minor vein cytology which also contain sieve-element-companion cell complexes with “closed” cytology, i.e., that show specialization for both symplasmic and apoplasmic phloem loading, was determined. Along with recent data confirming the dissimilar functional specialization of structurally different parts of minor vein phloem in the stachyose-translocating species Alonsoa meridionalis (Voitsekhovskaja et al., 2009), these findings suggest that apoplasmic loading is indispensable in a large group of species previously classified as putative symplasmic loaders. Altogether, this study provides formal classifications of companion cells and of minor veins, respectively, in 24 families of the Asteridae based on their structural features, opening the way to a close investigation of the relationship between structure and function in phloem loading. PMID:23970890

  17. Cytology of the minor-vein phloem in 320 species from the subclass Asteridae suggests a high diversity of phloem-loading modes.

    Science.gov (United States)

    Batashev, Denis R; Pakhomova, Marina V; Razumovskaya, Anna V; Voitsekhovskaja, Olga V; Gamalei, Yuri V

    2013-01-01

    The discovery of abundant plasmodesmata at the bundle sheath/phloem interface in Oleaceae (Gamalei, 1974) and Cucurbitaceae (Turgeon et al., 1975) raised the questions as to whether these plasmodesmata are functional in phloem loading and how widespread symplasmic loading would be. Analysis of over 800 dicot species allowed the definition of "open" and "closed" types of the minor vein phloem depending on the abundance of plasmodesmata between companion cells and bundle sheath (Gamalei, 1989, 1990). These types corresponded to potential symplasmic and apoplasmic phloem loaders, respectively; however, this definition covered a spectrum of diverse structures of phloem endings. Here, a review of detailed cytological analyses of minor veins in 320 species from the subclass Asteridae is presented, including data on companion cell types and their combinations which have not been reported previously. The percentage of Asteridae species with "open" minor vein cytology which also contain sieve-element-companion cell complexes with "closed" cytology, i.e., that show specialization for both symplasmic and apoplasmic phloem loading, was determined. Along with recent data confirming the dissimilar functional specialization of structurally different parts of minor vein phloem in the stachyose-translocating species Alonsoa meridionalis (Voitsekhovskaja et al., 2009), these findings suggest that apoplasmic loading is indispensable in a large group of species previously classified as putative symplasmic loaders. Altogether, this study provides formal classifications of companion cells and of minor veins, respectively, in 24 families of the Asteridae based on their structural features, opening the way to a close investigation of the relationship between structure and function in phloem loading.

  18. Phloem RNA-binding proteins as potential components of the long-distance RNA transport system.

    Directory of Open Access Journals (Sweden)

    VICENTE ePALLAS

    2013-05-01

    Full Text Available RNA-binding proteins (RBPs govern a myriad of different essential processes in eukaryotic cells. Recent evidence reveals that apart from playing critical roles in RNA metabolism and RNA transport, RBPs perform a key function in plant adaption to various environmental conditions. Long distance RNA transport occurs in land plants through the phloem, a conducting tissue that integrates the wide range of signalling pathways required to regulate plant development and response to stress processes. The macromolecules in the phloem pathway vary greatly and include defence proteins, transcription factors, chaperones acting in long distance trafficking, and RNAs (mRNAs, siRNAs and miRNAs. How these RNA molecules translocate through the phloem is not well understood, but recent evidence indicates the presence of translocatable RNA-binding proteins in the phloem, which act as potential components of long distance RNA transport system. This review updates our knowledge on the characteristics and functions of RBPs present in the phloem.

  19. Glucose positions affect the phloem mobility of glucose-fipronil conjugates.

    Science.gov (United States)

    Lei, Zhiwei; Wang, Jie; Mao, Genlin; Wen, Yingjie; Tian, Yuxin; Wu, Huawei; Li, Yufeng; Xu, Hanhong

    2014-07-02

    In our previous work, a glucose-fipronil (GTF) conjugate at the C-1 position was synthesized via click chemistry and a glucose moiety converted a non-phloem-mobile insecticide fipronil into a moderately phloem-mobile insecticide. In the present paper, fipronil was introduced into the C-2, C-3, C-4, and C-6 positions of glucose via click chemistry to obtain four new conjugates and to evaluate the effects of the different glucose isomers on phloem mobility. The phloem mobility of the four new synthetic conjugates and GTF was tested using the Ricinus seedling system. The results confirmed that conjugation of glucose at different positions has a significant influence on the phloem mobility of GTF conjugates.

  20. AmSUT1, a Sucrose Transporter in Collection and Transport Phloem of the Putative Symplastic Phloem Loader Alonsoa meridionalis1

    Science.gov (United States)

    Knop, Christian; Stadler, Ruth; Sauer, Norbert; Lohaus, Gertrud

    2004-01-01

    A sucrose (Suc) transporter cDNA has been cloned from Alonsoa meridionalis, a member of the Scrophulariaceae. This plant species has an open minor vein configuration and translocates mainly raffinose and stachyose in addition to Suc in the phloem (C. Knop, O. Voitsekhovskaja, G. Lohaus [2001] Planta 213: 80–91). These are typical properties of symplastic phloem loaders. For functional characterization, AmSUT1 cDNA was expressed in bakers' yeast (Saccharomyces cerevisiae). Substrate and inhibitor specificities, energy dependence, and Km value of the protein agree well with the properties measured for other Suc transporters of apoplastic phloem loaders. A polyclonal antiserum against the 17 N-terminal amino acids of the A. meridionalis Suc transporter AmSUT1 was used to determine the cellular localization of the AmSUT1 protein. Using fluorescence labeling on sections from A. meridionalis leaves and stems, AmSUT1 was localized exclusively in phloem cells. Further histological characterization identified these cells as companion cells and sieve elements. p-Chloromercuribenzenesulfonic acid affected the sugar exudation of cut leaves in such a way that the exudation rates of Suc and hexoses decreased, whereas those of raffinose and stachyose increased. The data presented indicate that phloem loading of Suc and retrieval of Suc in A. meridionalis are at least partly mediated by the activity of AmSUT1 in addition to symplastic phloem loading. PMID:14730068

  1. Stem sap flow in plants under low gravity conditions

    Science.gov (United States)

    Tokuda, Ayako; Hirai, Hiroaki; Kitaya, Yoshiaki

    2016-07-01

    A study was conducted to obtain a fundamental knowledge for plant functions in bio-regenerative life support systems in space. Stem sap flow in plants is important indicators for water transport from roots to atmosphere through leaves. In this study, stem sap flow in sweetpotato was assessed at gravity levels from 0.01 to 2 g for about 20 seconds each during parabolic airplane flights. Stem sap flow was monitored with a heat balance method in which heat generated with a tiny heater installed in the stem was transferred upstream and downstream by conduction and upstream by convection with the sap flow through xylems of the vascular tissue. Thermal images of stem surfaces near heated points were captured using infrared thermography and the internal heat convection corresponding to the sap flow was analyzed. In results, the sap flow in stems was suppressed more at lower gravity levels without forced air circulation. No suppression of the stem sap flow was observed with forced air circulation. Suppressed sap flow in stems would be caused by suppression of transpiration in leaves and would cause restriction of water and nutrient uptake in roots. The forced air movement is essential to culture healthy plants at a high growth rate under low gravity conditions in space.

  2. Antidiarrhoeal Activity of Musa paradisiaca Sap in Wistar Rats.

    Science.gov (United States)

    Yakubu, Musa T; Nurudeen, Quadri O; Salimon, Saoban S; Yakubu, Monsurat O; Jimoh, Rukayat O; Nafiu, Mikhail O; Akanji, Musbau A; Oladiji, Adenike T; Williams, Felicia E

    2015-01-01

    The folkloric claim of Musa paradisiaca sap in the management of diarrhoea is yet to be substantiated or refuted with scientific data. Therefore, the aim of the current study was to screen the sap of M. paradisiaca for both its secondary metabolites and antidiarrhoeal activity at 0.25, 0.50, and 1.00 mL in rats. Secondary metabolites were screened using standard methods while the antidiarrhoeal activity was done by adopting the castor oil-induced diarrhoeal, castor oil-induced enteropooling, and gastrointestinal motility models. The sap contained flavonoids, phenolics, saponins, alkaloids, tannins, and steroids while cardiac glycosides, anthraquinones, triterpenes, cardenolides, and dienolides were not detected. In the castor oil-induced diarrhoeal model, the sap significantly (P sap were accompanied by increase in inhibition of intestinal fluid content in the enteropooling model. The sap decreased the charcoal meal transit in the gastrointestinal motility model. In all the models, the 1.00 mL of the sap produced changes that compared well with the reference drugs. Overall, the antidiarrhoeal activity of Musa paradisiaca sap attributed to the presence of alkaloids, phenolics, flavonoids, and/or saponins which may involve, among others, enhancing fluid and electrolyte absorption through de novo synthesis of the sodium potassium ATPase and/or reduced nitric oxide levels.

  3. Structural and binding studies of SAP-1 protein with heparin.

    Science.gov (United States)

    Yadav, Vikash K; Mandal, Rahul S; Puniya, Bhanwar L; Kumar, Rahul; Dey, Sharmistha; Singh, Sarman; Yadav, Savita

    2015-03-01

    SAP-1 is a low molecular weight cysteine protease inhibitor (CPI) which belongs to type-2 cystatins family. SAP-1 protein purified from human seminal plasma (HuSP) has been shown to inhibit cysteine and serine proteases and exhibit interesting biological properties, including high temperature and pH stability. Heparin is a naturally occurring glycosaminoglycan (with varied chain length) which interacts with a number of proteins and regulates multiple steps in different biological processes. As an anticoagulant, heparin enhances inhibition of thrombin by the serpin antithrombin III. Therefore, we have employed surface plasmon resonance (SPR) to improve our understanding of the binding interaction between heparin and SAP-1 (protease inhibitor). SPR data suggest that SAP-1 binds to heparin with a significant affinity (KD = 158 nm). SPR solution competition studies using heparin oligosaccharides showed that the binding of SAP-1 to heparin is dependent on chain length. Large oligosaccharides show strong binding affinity for SAP-1. Further to get insight into the structural aspect of interactions between SAP-1 and heparin, we used modelled structure of the SAP-1 and docked with heparin and heparin-derived polysaccharides. The results suggest that a positively charged residue lysine plays important role in these interactions. Such information should improve our understanding of how heparin, present in the reproductive tract, regulates cystatins activity. © 2014 John Wiley & Sons A/S.

  4. The xylem and phloem transcriptomes from secondary tissues of the Arabidopsis root-hypocotyl.

    Science.gov (United States)

    Zhao, Chengsong; Craig, Johanna C; Petzold, H Earl; Dickerman, Allan W; Beers, Eric P

    2005-06-01

    The growth of secondary xylem and phloem depends on the division of cells in the vascular cambium and results in an increase in the diameter of the root and stem. Very little is known about the genetic mechanisms that control cambial activity and the differentiation of secondary xylem and phloem cell types. To begin to identify new genes required for vascular cell differentiation and function, we performed genome-wide expression profiling of xylem and phloem-cambium isolated from the root-hypocotyl of Arabidopsis (Arabidopsis thaliana). Gene expression in the remaining nonvascular tissue was also profiled. From these transcript profiles, we assembled three sets of genes with expression significantly biased toward xylem, phloem-cambium, or nonvascular tissue. We also assembled three two-tissue sets of genes with expression significantly biased toward xylem/phloem-cambium, xylem/nonvascular, or phloem-cambium/nonvascular tissues. Localizations predicted by transcript profiles were supported by results from promoter-reporter and reverse transcription-polymerase chain reaction experiments with nine xylem- or phloem-cambium-biased genes. An analysis of the members of the phloem-cambium gene set suggested that some genes involved in regulating primary meristems are also regulators of the cambium. Secondary phloem was implicated in the synthesis of auxin, glucosinolates, cytokinin, and gibberellic acid. Transcript profiles also supported the importance of class III HD ZIP and KANADI transcription factors as regulators of radial patterning during secondary growth, and identified several members of the G2-like, NAC, AP2, MADS, and MYB transcription factor families that may play roles as regulators of xylem or phloem cell differentiation and activity.

  5. Scaling of xylem and phloem transport capacity and resource usage with tree size.

    Science.gov (United States)

    Hölttä, Teemu; Kurppa, Miika; Nikinmaa, Eero

    2013-01-01

    Xylem and phloem need to maintain steady transport rates of water and carbohydrates to match the exchange rates of these compounds at the leaves. A major proportion of the carbon and nitrogen assimilated by a tree is allocated to the construction and maintenance of the xylem and phloem long distance transport tissues. This proportion can be expected to increase with increasing tree size due to the growing transport distances between the assimilating tissues, i.e., leaves and fine roots, at the expense of their growth. We formulated whole tree level scaling relations to estimate how xylem and phloem volume, nitrogen content and hydraulic conductance scale with tree size, and how these properties are distributed along a tree height. Xylem and phloem thicknesses and nitrogen contents were measured within varying positions in four tree species from Southern Finland. Phloem volume, nitrogen amount and hydraulic conductance were found to be concentrated toward the branch and stem apices, in contrast to the xylem where these properties were more concentrated toward the tree base. All of the species under study demonstrated very similar trends. Total nitrogen amount allocated to xylem and phloem was predicted to be comparable to the nitrogen amount allocated to the leaves in small and medium size trees, and to increase significantly above the nitrogen content of the leaves in larger trees. Total volume, hydraulic conductance and nitrogen content of the xylem were predicted to increase faster than that of the phloem with increasing tree height in small trees (xylem sapwood turnover to heartwood, if present, would maintain phloem conductance at the same level with xylem conductance with further increases in tree height. Further simulations with a previously published xylem-phloem transport model demonstrated that the Münch pressure flow hypothesis could explain phloem transport with increasing tree height even for the tallest trees.

  6. The Application System Integration Based on Middleware SAP Business Connector%基于中间件平台SAP Business Connector的应用系统集成

    Institute of Scientific and Technical Information of China (English)

    佘春子

    2007-01-01

    文中介绍SAP BC(SAP Business Connector)基本概念和其最新技术SAP XI(SAP Exchange Infrastructure),其次概述SAP BC技术架构,最后提出基于SAPBC平台的应用系统集成方案:基于该方案并实现了E-comlIlerce-采购交互商务系统.

  7. Cisgenic barley for animal feed

    DEFF Research Database (Denmark)

    Holme, Inger; Dionisio, Giuseppe; Brinch-Pedersen, Henrik

    2011-01-01

    for Cisgenesis. Recently, Dionisio et al. (2011) have cloned and characterized phytases belonging to the purple acid phosphatases (PAPs) in barley. We have isolated the genomic PAP-clone of the isoform expressed during grain filling including 2.3 kb of the promoter region and 600 bp of the terminator region...... using a genomic barley lambda library. The clone has been inserted into a Cisgenic Agrobacterium vector where both the gene of interest and the selection gene are flanked by their own T-DNA borders in order to promote integration of the two genes at unlinked places in the plant genome. T0-plants show...... increases in the phytase activity of mature seeds from 1350 in wild type to 7500 FTU/kg in T0-plants. We have identified two Cisgenic T1-lines without selection gene and vector backbone but with one additional genomic clone of the phytase gene. Lines homozygous for the additional cisgene show 2-3 fold...

  8. Assessing the ERP-SAP implementation strategy from cultural perspectives

    Science.gov (United States)

    Wang, Gunawan; Syaiful, Bakhri; Sfenrianto; Nurul, Fajar Ahmad

    2017-09-01

    Implementing ERP-SAP projects in Indonesian large enterprises frequently create headaches for the consultants, since there are always be a large gap between the outcomes of the SAP with the expected results. Indonesian enterprises have experience with a huge amount of investments and ended up with minor benefits. Despite its unprecedented benefits, the SAP strategy is still considered as a mandatory enterprise system for every enterprise to compete in the marketplaces. The article examines the SAP implementation from cultural perspectives to present new horizon that commonly ignored by major Indonesian enterprises. The article applies the multiple case studies with three large Indonesia enterprises, such as KS, the largest steel producer; GEM, a subsidiary of conglomerate enterprise operates in the mining industry, and HS, a subsidiary of the largest retailer in Asia with more than 700 stores in Indonesia. The outcome of the article is expected to provide a comprehensive analysis from cultural perspectives regarding to common problems faced by SAP consultants.

  9. SAPS onset timing during substorms and the westward traveling surge

    Science.gov (United States)

    Mishin, Evgeny, V.

    2016-07-01

    We present multispacecraft observations in the magnetosphere and conjugate ionosphere of the onset time of subauroral polarization streams (SAPS) and tens of keV ring current injections on the duskside in three individual substorms. This is probably the first unequivocal determination of the substorm SAPS onset timing. The time lag between the SAPS and substorm onsets is much shorter than the gradient-curvature drift time of ˜10 keV ions in the plasmasphere. It seemingly depends on the propagation time of substorm-injected plasma from the dipolarization onset region to the plasmasphere, as well as on the SAPS position. These observations suggest that fast onset SAPS and ring current injections are causally related to the two-loop system of the westward traveling surge.

  10. Dissection of SAP-dependent and SAP-independent SLAM family signaling in NKT cell development and humoral immunity.

    Science.gov (United States)

    Chen, Shasha; Cai, Chenxu; Li, Zehua; Liu, Guangao; Wang, Yuande; Blonska, Marzenna; Li, Dan; Du, Juan; Lin, Xin; Yang, Meixiang; Dong, Zhongjun

    2017-02-01

    Signaling lymphocytic activation molecule (SLAM)-associated protein (SAP) mutations in X-linked lymphoproliferative disease (XLP) lead to defective NKT cell development and impaired humoral immunity. Because of the redundancy of SLAM family receptors (SFRs) and the complexity of SAP actions, how SFRs and SAP mediate these processes remains elusive. Here, we examined NKT cell development and humoral immunity in mice completely deficient in SFR. We found that SFR deficiency severely impaired NKT cell development. In contrast to SAP deficiency, SFR deficiency caused no apparent defect in follicular helper T (TFH) cell differentiation. Intriguingly, the deletion of SFRs completely rescued the severe defect in TFH cell generation caused by SAP deficiency, whereas SFR deletion had a minimal effect on the defective NKT cell development in SAP-deficient mice. These findings suggest that SAP-dependent activating SFR signaling is essential for NKT cell selection; however, SFR signaling is inhibitory in SAP-deficient TFH cells. Thus, our current study revises our understanding of the mechanisms underlying T cell defects in patients with XLP. © 2017 Chen et al.

  11. Ada Apa Dengan SAP (AADS Akrual?

    Directory of Open Access Journals (Sweden)

    Eka Findi Tresnawati

    2013-08-01

    Full Text Available This article provides anoverview regarding SAP accrual-based and its problems. It compares information content of PP 24/2005’s cash toward accrual and PP 71/2010’s accrual-based toshow the urgency of accrual-based financial reporting requirements. The analysis borrows Abeysekara’s accounting imperialism. Discussion also involves empirical evidence and evaluation of accrual-based implementation probability in Sumenep Regency. Findings show that accrual-based information is not an urgent need and tends to be difficult to be implemented. Reflecting the evidence in Sumenep, local governments are faced with the need of human resources, the question of the use-fulness of accrual information, and technical difficulties on implementation.

  12. A roadmap for zinc trafficking in the developing barley grain based on laser capture microdissection and gene expression profiling

    DEFF Research Database (Denmark)

    Tauris, Birgitte; Borg, Søren; Gregersen, Per L;

    2009-01-01

    Nutrients destined for the developing cereal grain encounter several restricting barriers on their path towards their final storage sites in the grain. In order to identify transporters and chelating agents that may be involved in transport and deposition of zinc in the barley grain, expression...... profiles have been generated of four different tissue types: the transfer cells, the aleurone layer, the endosperm, and the embryo. Cells from these tissues were isolated with the ‘laser capture microdissection' technology and the extracted RNA was subjected to three rounds of T7-based amplification...... were taken into account. On the basis of the expression levels of a number of metal homeostasis genes, a working model is proposed for the translocation of zinc from the phloem to the storage sites in the developing grain....

  13. Plasticity in variation of xylem and phloem cell characteristics of Norway spruce under different local conditions

    Directory of Open Access Journals (Sweden)

    Jozica eGricar

    2015-09-01

    Full Text Available There is limited information on intra-annual plasticity of secondary tissues of tree species growing under different environmental conditions. To increase the knowledge about the plasticity of secondary growth, which allows trees to adapt to specific local climatic regimes, we examined climate–radial growth relationships of Norway spruce (Picea abies (L. H. Karst. from three contrasting locations in the temperate climatic zone by analyzing tree-ring widths for the period 1932–2010, and cell characteristics in xylem and phloem increments formed in the years 2009–2011. Variation in the structure of xylem and phloem increments clearly shows that plasticity in seasonal dynamics of cambial cell production and cell differentiation exists on xylem and phloem sides. Anatomical characteristics of xylem and phloem cells are predominantly site-specific characteristics, because they varied among sites but were fairly uniform among years in trees from the same site. Xylem and phloem tissues formed in the first part of the growing season seemed to be more stable in structure, indicating their priority over latewood and late phloem for tree performance. Long-term climate and radial growth analyses revealed that growth was in general less dependent on precipitation than on temperature; however, growth sensitivity to local conditions differed among the sites. Only partial dependence of radial growth of spruce on climatic factors on the selected sites confirms its strategy to adapt the structure of wood and phloem increments to function optimally in local conditions.

  14. The C terminus of the polerovirus p5 readthrough domain limits virus infection to the phloem.

    Science.gov (United States)

    Peter, Kari A; Gildow, Frederick; Palukaitis, Peter; Gray, Stewart M

    2009-06-01

    Poleroviruses are restricted to vascular phloem tissues from which they are transmitted by their aphid vectors and are not transmissible mechanically. Phloem limitation has been attributed to the absence of virus proteins either facilitating movement or counteracting plant defense. The polerovirus capsid is composed of two forms of coat protein, the major P3 protein and the minor P3/P5 protein, a translational readthrough of P3. P3/P5 is required for insect transmission and acts in trans to facilitate long-distance virus movement in phloem tissue. Specific potato leafroll virus mutants lacking part or all of the P5 domain moved into and infected nonvascular mesophyll tissue when the source-sink relationship of the plant (Solanum sarrachoides) was altered by pruning, with the progeny virus now being transmissible mechanically. However, in a period of months, a phloem-specific distribution of the virus was reestablished in the absence of aphid transmission. Virus from the new phloem-limited infection showed compensatory mutations that would be expected to restore the production of full-length P3/P5 as well as the loss of mechanical transmissibility. The data support our hypothesis that phloem limitation in poleroviruses presumably does not result from a deficiency in the repertoire of virus genes but rather results from P3/P5 accumulation under selection in the infected plant, with the colateral effect of facilitating transmission by phloem-feeding aphid vectors.

  15. Seasonal dynamics of mobile carbohydrate pools in phloem and xylem of two alpine timberline conifers.

    Science.gov (United States)

    Gruber, A; Pirkebner, D; Oberhuber, W

    2013-10-01

    Recent studies on non-structural carbohydrate (NSC) reserves in trees focused on xylem NSC reserves, while still little is known about changes in phloem carbohydrate pools, where NSC charging might be significantly different. To gain insight on NSC dynamics in xylem and phloem, we monitored NSC concentrations in stems and roots of Pinus cembra (L.) and Larix decidua (Mill.) growing at the alpine timberline throughout 2011. Species-specific differences affected tree phenology and carbon allocation during the course of the year. After a delayed start in spring, NSC concentrations in L. decidua were significantly higher in all sampled tissues from August until the end of growing season. In both species, NSC concentrations were five to seven times higher in phloem than that in xylem. However, significant correlations between xylem and phloem starch content found for both species indicate a close linkage between long-term carbon reserves in both tissues. In L. decidua also, free sugar concentrations in xylem and phloem were significantly correlated throughout the year, while a lack of correlation between xylem and phloem free sugar pools in P. cembra indicate a decline of phloem soluble carbohydrate pools during periods of high sink demand.

  16. Plasticity in variation of xylem and phloem cell characteristics of Norway spruce under different local conditions.

    Science.gov (United States)

    Gričar, Jožica; Prislan, Peter; de Luis, Martin; Gryc, Vladimír; Hacurová, Jana; Vavrčík, Hanuš; Čufar, Katarina

    2015-01-01

    There is limited information on intra-annual plasticity of secondary tissues of tree species growing under different environmental conditions. To increase the knowledge about the plasticity of secondary growth, which allows trees to adapt to specific local climatic regimes, we examined climate-radial growth relationships of Norway spruce [Picea abies (L.) H. Karst.] from three contrasting locations in the temperate climatic zone by analyzing tree-ring widths for the period 1932-2010, and cell characteristics in xylem and phloem increments formed in the years 2009-2011. Variation in the structure of xylem and phloem increments clearly shows that plasticity in seasonal dynamics of cambial cell production and cell differentiation exists on xylem and phloem sides. Anatomical characteristics of xylem and phloem cells are predominantly site-specific characteristics, because they varied among sites but were fairly uniform among years in trees from the same site. Xylem and phloem tissues formed in the first part of the growing season seemed to be more stable in structure, indicating their priority over latewood and late phloem for tree performance. Long-term climate and radial growth analyses revealed that growth was in general less dependent on precipitation than on temperature; however, growth sensitivity to local conditions differed among the sites. Only partial dependence of radial growth of spruce on climatic factors on the selected sites confirms its strategy to adapt the structure of wood and phloem increments to function optimally in local conditions.

  17. Xylem and phloem phenology in co-occurring conifers exposed to drought.

    Science.gov (United States)

    Swidrak, Irene; Gruber, Andreas; Oberhuber, Walter

    2014-01-01

    Variability in xylem and phloem phenology among years and species is caused by contrasting temperatures prevailing at the start of the growing season and species-specific sensitivity to drought. The focus of this study was to determine temporal dynamics of xylem and phloem formation in co-occurring deciduous and evergreen coniferous species in a dry inner Alpine environment (750 m a.s.l., Tyrol, Austria). By repeated micro-sampling of the stem, timing of key phenological dates of xylem and phloem formation was compared among mature Pinus sylvestris, Larix decidua and Picea abies during two consecutive years. Xylem formation in P. sylvestris started in mid and late April 2011 and 2012, respectively, and in both years about 2 week later in P. abies and L. decidua. Phloem formation preceded xylem formation on average by 3 week in P. sylvestris, and c. 5 week in P. abies and L. decidua. Based on modeled cell number increase, tracheid production peaked between early through late May 2011 and late May through mid-June 2012. Phloem formation culminated between late April and mid-May in 2011 and in late May 2012. Production of xylem and phloem cells continued for about 4 and 5-6 months, respectively. High variability in xylem increment among years and species is related to exogenous control by climatic factors and species-specific sensitivity to drought, respectively. On the other hand, production of phloem cells was quite homogenous and showed asymptotic decrease with respect to xylem cells indicating endogenous control. Results indicate that onset and culmination of xylem and phloem formation are controlled by early spring temperature, whereby strikingly advanced production of phloem compared to xylem cells suggests lower temperature requirement for initiation of the former.

  18. Influence of auroral streamers on rapid evolution of SAPS flows

    Science.gov (United States)

    Gallardo-Lacourt, B.; Nishimura, T.; Lyons, L. R.; Ruohoniemi, J. M.; Donovan, E.; Angelopoulos, V.; Nishitani, N.

    2015-12-01

    An important manifestation of plasma transport in the ionosphere is Subauroral Polarization Streams or SAPS, which are strong westward flow lying just equatorward of the electron auroral oval and thus of enhanced ionospheric conductivities of the auroral oval. While SAPS are known to intensify due to substorm injections, recent studies showed that large variability of SAPS flow can occur well after substorm onset and even during non-substorm times. These SAPS enhancements have been suggested to occur in association with auroral streamers that propagate equatorward, a suggestion that would indicate that plasma sheet fast flows propagate into the inner magnetosphere and increase subauroral flows. We present auroral images from the THEMIS ground-based all-sky-imager array and 2-d line-of-sight flow observations from the SuperDARN radars that share fields of view with the imagers to investigate systematically the association between SAPS and auroral streamers. We surveyed events from December 2007 to April 2013 for which high or mid-latitude SuperDARN radars were available to measure the SAPS flows, and identified 60 events. For streamers observed near the equatorward boundary of the auroral oval, we find westward flow enhancements of ~200 m/s slightly equatorward of the streamers. A preliminary survey suggests that >90% of the streamers that reach close to the equatorward boundary lead to westward flow enhancements. We also characterize the SAPS flow channel width and timing relative to streamers reaching radar echo meridians. The strong influence of auroral streamers on rapid SAPS flow evolution suggests that transient fast earthward plasma sheet flows can lead to westward SAPS flow enhancements in the subauroral region, and that such enhancements are far more common than only during substorms because of the frequent occurrences of streamers under various geomagnetic conditions.

  19. Sapflow+: a four-needle heat-pulse sap flow sensor enabling nonempirical sap flux density and water content measurements.

    Science.gov (United States)

    Vandegehuchte, Maurits W; Steppe, Kathy

    2012-10-01

    • To our knowledge, to date, no nonempirical method exists to measure reverse, low or high sap flux density. Moreover, existing sap flow methods require destructive wood core measurements to determine sapwood water content, necessary to convert heat velocity to sap flux density, not only damaging the tree, but also neglecting seasonal variability in sapwood water content. • Here, we present a nonempirical heat-pulse-based method and coupled sensor which measure temperature changes around a linear heater in both axial and tangential directions after application of a heat pulse. By fitting the correct heat conduction-convection equation to the measured temperature profiles, the heat velocity and water content of the sapwood can be determined. • An identifiability analysis and validation tests on artificial and real stem segments of European beech (Fagus sylvatica L.) confirm the applicability of the method, leading to accurate determinations of heat velocity, water content and hence sap flux density. • The proposed method enables sap flux density measurements to be made across the entire natural occurring sap flux density range of woody plants. Moreover, the water content during low flows can be determined accurately, enabling a correct conversion from heat velocity to sap flux density without destructive core measurements. © 2012 The Authors. New Phytologist © 2012 New Phytologist Trust.

  20. Functional Analysis of Barley Powdery Mildew Effector Candidates and Identification of their Barley Targets

    DEFF Research Database (Denmark)

    Ahmed, Ali Abdurehim

    The genome of barley powdery mildew fungus (Blumeria graminis f. sp. hordei, Bgh) encodes around 500 Candidate Secreted Effector Proteins (CSEPs), which are believed to be delivered to the barley cells either to interfere with plant defence and/or promote nutrient uptake. So far, little is known...

  1. 2015 nationwide survey revealed Barley stripe mosaic virus in Korean barley fields

    Science.gov (United States)

    A seed-transmitted virus has consistently caused significant economic damage to barley crops in Korea in recent years, and may be increasing because many farmers save seed for replanting. Because some barley seed is imported, there is the potential for introduction of new seed-transmitted viruses, c...

  2. Brassinosteroids-Induced Systemic Stress Tolerance was Associated with Increased Transcripts of Several Defence-Related Genes in the Phloem in Cucumis sativus.

    Directory of Open Access Journals (Sweden)

    Pingfang Li

    Full Text Available Brassinosteroids (BRs, a group of naturally occurring plant steroidal compounds, are essential for plant growth, development and stress tolerance. Recent studies showed that BRs could induce systemic tolerance to biotic and abiotic stresses; however, the molecular mechanisms by which BRs signals lead to responses in the whole plant are largely unknown. In this study, 24-epibrassinosteroid (EBR-induced systemic tolerance in Cucumis sativus L. cv. Jinyan No. 4 was analyzed through the assessment of symptoms of photooxidative stress by chlorophyll fluorescence imaging pulse amplitude modulation. Expression of defense/stress related genes were induced in both treated local leaves and untreated systemic leaves by local EBR application. With the suppressive subtractive hybridization (SSH library using cDNA from the phloem sap of EBR-treated plants as the tester and distilled water (DW-treated plants as the driver, 14 transcripts out of 260 clones were identified. Quantitative Real Time-Polymerase Chain Reaction (RT-qPCR validated the specific up-regulation of these transcripts. Of the differentially expressed transcripts with known functions, transcripts for the selected four cDNAs, which encode an auxin-responsive protein (IAA14, a putative ankyrin-repeat protein, an F-box protein (PP2, and a major latex, pathogenesis-related (MLP-like protein, were induced in local leaves, systemic leaves and roots after foliar application of EBR onto mature leaves. Our results demonstrated that EBR-induced systemic tolerance is accompanied with increased transcript of genes in the defense response in other organs. The potential role of phloem mRNAs as signaling components in mediating BR-regulated systemic resistance is discussed.

  3. 30 CFR 285.605 - What is a Site Assessment Plan (SAP)?

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 2 2010-07-01 2010-07-01 false What is a Site Assessment Plan (SAP)? 285.605... Assessment Plan (SAP)? (a) A SAP describes the activities (e.g., installation of meteorological towers... project easement, or to test technology devices. (1) Your SAP must describe how you will conduct your...

  4. 30 CFR 285.614 - When may I begin conducting activities under my approved SAP?

    Science.gov (United States)

    2010-07-01

    ... approved SAP? 285.614 Section 285.614 Mineral Resources MINERALS MANAGEMENT SERVICE, DEPARTMENT OF THE... Plans and Information Requirements Activities Under An Approved Sap § 285.614 When may I begin conducting activities under my approved SAP? (a) You may begin conducting the activities approved in your SAP...

  5. Potencials of sap flow evaluation by means of acoustic emission measurements

    Directory of Open Access Journals (Sweden)

    Michal Černý

    2011-01-01

    Full Text Available The work deals with measurement techniques of water conducting system in the trees. Water conducting system (including xylem and phloem indicates its importance for related physiological processes. There are still problems how to measure its functioning (which variables and how, especially in the open field (e.g., forests and orchards in order to get maximum information about it. Simple band dendrometers measuring seasonal dynamics of stem growth have been already applied for many years, being gradually replaced by their more sophisticated electronic versions most recently. The sap flow is a suitable variable, because it links roots and crowns and provide information about transporting the largest amount of mass in plants, which can be decisive for their behavior. Following pioneering work in the last century (Huber, 1932, many types of sap flow measurement methods based on a variety of principles (e.g., thermodynamic, electric, magneto-hydrodynamic, nuclear magnetic resonance, etc. have been described. Only a few of these, particularly those based on thermodynamics, have been widely used in field-grown trees. E.g., heat pulse velocity system developed by Green (1998 and Cohen et al. (1981. Heat ratio method also works with pulses, but interpreted the data in more sophisticated way (Burgess, 2001. Widely used is a simple heat-dissipation method (Granier, 1985. Direct electric heating and internal sensing of temperature was applied in the trunk heat balance method (Čermák et al., 1973, 1976, 1982, 2004; Kučera et al., 1977; Tatarinov et al., 2005. The heat field deformation method is based on measurement of the deformation of the heat field around a needle-like linear heater (Nadezhdina et al., 1998, 2002, 2006; Čermák et al., 2004.Another important variable is water potential, which could be measured in the past only periodically on selected pieces of plant material using pressure (Scholander bomb, but most recently also continuous

  6. The installations maintenance control using SAP R/3; O controle de manutencao de instalacoes utilizando o SAP R/3

    Energy Technology Data Exchange (ETDEWEB)

    Ribeiro, Robison Tirre; Pereira, Paulo Manoel Borges; Jorge, Kemal Vieira [Transportadora Brasileira Gasoduto Bolivia Brasil S.A., Rio de Janeiro, RJ (Brazil)

    2004-07-01

    TBG (Transportadora Brasileira Gasoduto Bolivia Brasil S.A.) began their operations in 1999 and since the beginning the SAP R/3 PM module (Plant Maintenance) is used for the control of the maintenance activities and to manager the Master Maintenance and Inspection Plans. On these five years, a series of reports and SAP functionalities were developed or configured to adapt the system R/3 to the needs of TBG maintenance. Now, the whole management and control of the surface facilities maintenance (compression station, city gate, measurement station, etc) is accomplished by SAP R/3 system. (author)

  7. Sap flow sensors: construction, quality control and comparison.

    Science.gov (United States)

    Davis, Tyler W; Kuo, Chen-Min; Liang, Xu; Yu, Pao-Shan

    2012-01-01

    This work provides a design for two types of sensors, based on the thermal dissipation and heat ratio methods of sap flow calculation, for moderate to large scale deployments for the purpose of monitoring tree transpiration. These designs include a procedure for making these sensors, a quality control method for the final products, and a complete list of components with vendors and pricing information. Both sensor designs were field tested alongside a commercial sap flow sensor to assess their performance and show the importance for quality controlling the sensor outputs. Results show that for roughly 2% of the cost of commercial sensors, self-made sap flow sensors can provide acceptable estimates of the sap flow measurements compared to the commercial sensors.

  8. Characterization of methacrylated alginate and acrylic monomers as versatile SAPs.

    Science.gov (United States)

    Mignon, Arn; Vermeulen, Jolien; Graulus, Geert-Jan; Martins, José; Dubruel, Peter; De Belie, Nele; Van Vlierberghe, Sandra

    2017-07-15

    Superabsorbent polymers (SAPs) based on polysaccharides, especially alginate, could offer a valuable solution in a plethora of applications going from drug delivery to self-healing concrete. This has already been proven with both calcium alginate and methacrylated alginate combined with acrylic acid. In this manuscript, the effect of varying the degree of methacrylation and use of a combination of acrylic acid and acrylamide is investigated to explore the effects on the relevant SAP characteristics. The materials showed high gel fractions and a strong swelling capacity up to 630gwater/gSAP, especially for superabsorbent polymers with a low degree of substitution. The SAPs also showed only a limited hydrolysis in aqueous and cement filtrate solutions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Slower phloem transport in gymnosperm trees can be attributed to higher sieve element resistance

    DEFF Research Database (Denmark)

    Liesche, Johannes; Windt, Carel; Bohr, Tomas;

    2015-01-01

    In trees, carbohydrates produced in photosynthesizing leaves are transported to roots and other sink organs over distances of up to 100 m inside a specialized transport tissue, the phloem. Angiosperm and gymnosperm trees have a fundamentally different phloem anatomy with respect to cell size, shape...... and connectivity. Whether these differences have an effect on the physiology of carbohydrate transport, however, is not clear. A meta-analysis of the experimental data on phloem transport speed in trees yielded average speeds of 56 cm h−1 for angiosperm trees and 22 cm h−1 for gymnosperm trees. Similar values...... resulted from theoretical modeling using a simple transport resistance model. Analysis of the model parameters clearly identified sieve element (SE) anatomy as the main factor for the significantly slower carbohydrate transport speed inside the phloem in gymnosperm compared with angiosperm trees. In order...

  10. OCTOPUS Negatively Regulates BIN2 to Control Phloem Differentiation in Arabidopsis thaliana

    National Research Council Canada - National Science Library

    Anne, Pauline; Azzopardi, Marianne; Gissot, Lionel; Beaubiat, Sébastien; Hématy, Kian; Palauqui, Jean-Christophe

    2015-01-01

    ...]. Among them, OCTOPUS (OPS) protein was previously identified as a polarly localized plasma membrane-associated protein of unknown biochemical function whose broad provascular expression becomes restricted to the phloem upon differentiation [2...

  11. Comparative phloem Mobility of nickel in nonsenescent plants. [Pisum sativa L. ; Pelargonium zonale L

    Energy Technology Data Exchange (ETDEWEB)

    Neumann, P.M.; Chamel, A.

    1986-06-01

    /sup 63/Ni was applied to nonsenescent source leaves and found to be transported to sink tissues in pea (Pisum saativum L.) and geranium plants (Pelargonium zonale L.). The comparative mobilities (percent tracer transported out of source leaf division % /sup 86/Rb transported) for /sup 63/Ni in peas was 2.12 and in geranium 0.25. The value for the phloem mobile /sup 86/Rb was 1.00. By contrast, the comparative mobility of /sup 45/Ca, which is relatively immobile in the phloem, was low (0.05 in peas, 0.00 in geranium). Interruption of the phloem pathway between source and sink leaves by steam girdling almost completely inhibited /sup 63/Ni accumulation in the sink leaves of both species. The authors conclude that Ni is transported from nonsenescent source leaves to sink tissues via the phloem of leguminous and nonleguminous plants.

  12. Can plant phloem properties affect the link between ecosystem assimilation and respiration?

    Science.gov (United States)

    Mencuccini, M.; Hölttä, T.; Sevanto, S.; Nikinmaa, E.

    2012-04-01

    Phloem transport of carbohydrates in plants under field conditions is currently not well understood. This is largely the result of the lack of techniques suitable for measuring phloem physiological properties continuously under field conditions. This lack of knowledge is currently hampering our efforts to link ecosystem-level processes of carbon fixation, allocation and use, especially belowground. On theoretical grounds, the properties of the transport pathway from canopy to roots must be important in affecting the link between carbon assimilation and respiration, but it is unclear whether their effect is partially or entirely masked by processes occurring in other parts of the ecosystem. One can also predict the characteristic time scales over which these effects should occur and, as consequence, predict whether the transfer of turgor and osmotic signals from the site of carbon assimilation to the sites of carbon use are likely to control respiration. We will present two sources of evidence suggesting that the properties of the phloem transport system may affect processes that are dependent on the supply of carbon substrate, such as root or soil respiration. Firstly, we will summarize the results of a literature survey on soil and ecosystem respiration where the speed of transfer of photosynthetic sugars from the plant canopy to the soil surface was determined. Estimates of the transfer speed could be grouped according to whether the study employed isotopic or canopy soil flux-based techniques. These two groups provided very different estimates of transfer times likely because transport of sucrose molecules, and pressure-concentration waves, in phloem differed. Secondly, we will argue that simultaneous measurements of bark and xylem diameters provide a novel tool to determine the continuous variations of phloem turgor in vivo in the field. We will present a model that interprets these changes in xylem and live bark diameters and present data testing the model

  13. Sap-Sugar Content of Grafted Sugar Maple Trees

    Science.gov (United States)

    Maurice E. Jr. Demeritt; Maurice E. Jr. Demeritt

    1985-01-01

    In March and April 1983, 289 and 196 young grafted sugar maple trees were tapped and evaluated for sap-sugar content. In April, sap was collected from taps both above and below the graft union. Diameter of all tapped trees at 18 inches above the ground was measured. Analysis of the data revealed that: (1) trees selected for high sugar yield cannot be reproduced by...

  14. Antidiarrhoeal Activity of Musa paradisiaca Sap in Wistar Rats

    Directory of Open Access Journals (Sweden)

    Musa T. Yakubu

    2015-01-01

    Full Text Available The folkloric claim of Musa paradisiaca sap in the management of diarrhoea is yet to be substantiated or refuted with scientific data. Therefore, the aim of the current study was to screen the sap of M. paradisiaca for both its secondary metabolites and antidiarrhoeal activity at 0.25, 0.50, and 1.00 mL in rats. Secondary metabolites were screened using standard methods while the antidiarrhoeal activity was done by adopting the castor oil-induced diarrhoeal, castor oil-induced enteropooling, and gastrointestinal motility models. The sap contained flavonoids, phenolics, saponins, alkaloids, tannins, and steroids while cardiac glycosides, anthraquinones, triterpenes, cardenolides, and dienolides were not detected. In the castor oil-induced diarrhoeal model, the sap significantly (P<0.05 prolonged the onset time of diarrhoea, decreased the number, fresh weight, and water content of feaces, and increased the inhibition of defecations. Na+-K+-ATPase activity in the small intestine increased significantly whereas nitric oxide content decreased. The decreases in the masses and volumes of intestinal fluid by the sap were accompanied by increase in inhibition of intestinal fluid content in the enteropooling model. The sap decreased the charcoal meal transit in the gastrointestinal motility model. In all the models, the 1.00 mL of the sap produced changes that compared well with the reference drugs. Overall, the antidiarrhoeal activity of Musa paradisiaca sap attributed to the presence of alkaloids, phenolics, flavonoids, and/or saponins which may involve, among others, enhancing fluid and electrolyte absorption through de novo synthesis of the sodium potassium ATPase and/or reduced nitric oxide levels.

  15. New aspects of phloem-mediated long-distance lipid signaling in plants

    Directory of Open Access Journals (Sweden)

    Urs Florian Benning

    2012-03-01

    Full Text Available Plants are sessile and cannot move to appropriate hiding places or feeding grounds to escape adverse conditions. As a consequence, they evolved mechanisms to detect changes in their environment, communicate these to different organs, and adjust development accordingly. These adaptations include two long-distance transport systems which are essential in plants: the xylem and the phloem. The phloem serves as a major trafficking pathway for assimilates, viruses, RNA, plant hormones, metabolites, and proteins with functions ranging from synthesis to metabolism to signaling. The study of signaling compounds within the phloem is essential for our understanding of plant communication of environmental cues. Determining the nature of signals and the mechanisms by which they are communicated through the phloem will lead to a more complete understanding of plant development and plant responses to stress. In our analysis of Arabidopsis phloem exudates, we had identified several lipid-binding proteins as well as fatty acids and lipids. The latter are not typically expected in the aqueous environment of sieve elements. Hence, lipid transport in the phloem has been given little attention until now. Long-distance transport of hydrophobic compounds in an aqueous system is not without precedence in biological systems: a variety of lipids is found in human blood and are often bound to proteins. Some lipid-protein complexes are transported to other tissues for storage, use, modification, or degradation, others serve as messengers and modulate transcription factor activity. By simple analogy it raises the possibility that lipids and the respective lipid-binding proteins in the phloem serve similar functions in plants and play an important role in stress and developmental signaling. Here, we introduce the lipid-binding proteins and the lipids we found in the phloem and discuss the possibility that they may play an important role in developmental and stress signaling.

  16. Seasonal dynamics of mobile carbohydrate pools in phloem and xylem of two alpine timberline conifers

    OpenAIRE

    Gruber, A.; PIRKEBNER, D.; Oberhuber, W.

    2013-01-01

    Recent studies on non-structural carbohydrate (NSC) reserves in trees focused on xylem NSC reserves, while still little is known about changes in phloem carbohydrate pools, where NSC charging might be significantly different. To gain insight on NSC dynamics in xylem and phloem, we monitored NSC concentrations in stems and roots of Pinus cembra and Larix decidua growing at the alpine timberline throughout 2011. Species-specific differences affected tree phenology and carbon allocation in the c...

  17. Scaling of xylem and phloem transport capacity and resource usage with tree size

    OpenAIRE

    Hölttä, Teemu; Kurppa, Miika; Nikinmaa, Eero

    2013-01-01

    Xylem and phloem need to maintain steady transport rates of water and carbohydrates to match the exchange rates of these compounds at the leaves. A major proportion of the carbon and nitrogen assimilated by a tree is allocated to the construction and maintenance of the xylem and phloem long distance transport tissues. This proportion can be expected to increase with increasing tree size due to the growing transport distances between the assimilating tissues, i.e., leaves and fine roots, at th...

  18. Electrical signalling along the phloem and its physiological responses in the maize leaf

    Directory of Open Access Journals (Sweden)

    Joerg eFromm

    2013-07-01

    Full Text Available To elucidate the role of electrical signalling in the phloem of maize the tips of attached leaves were stimulated by chilling and wounding. Two different signals were detected in the phloem at the middle of the leaf using the aphid stylet technique: (i action potentials (AP arose in the phloem after chilling; and (ii variation potentials (VP were evoked after wounding the leaf tip. Combined electric potential and gas exchange measurements showed that while the wound-induced VP moved rapidly towards the middle of the leaf to induce a reduction in both the net-CO2 uptake rate and the stomatal conductance, there was no response in the gas exchange to the cold-induced AP. To determine if electrical signalling had any impact on assimilate transport the middle of the leaf was exposed to 14CO2. Autoradiography of labelled assimilates provided evidence that phloem and intercellular transport of assimilates from mesophyll to bundle sheath cells was strongly reduced while the cold-induced AP moved through. In contrast, wound-induced VP did not inhibit assimilate translocation but did reduce the amount of the labelled assimilate in phloem and bundle sheath cells. Biochemical analysis revealed that callose content increased significantly in chilled leaves while starch increased in chilled but decreased in wounded leaves. The results led to the conclusion that different stimulation types incite characteristic phloem-transmitted electrical signals, each with a specific influence on gas exchange and assimilate transport.

  19. Sucrose efflux mediated by SWEET proteins as a key step for phloem transport.

    Science.gov (United States)

    Chen, Li-Qing; Qu, Xiao-Qing; Hou, Bi-Huei; Sosso, Davide; Osorio, Sonia; Fernie, Alisdair R; Frommer, Wolf B

    2012-01-13

    Plants transport fixed carbon predominantly as sucrose, which is produced in mesophyll cells and imported into phloem cells for translocation throughout the plant. It is not known how sucrose migrates from sites of synthesis in the mesophyll to the phloem, or which cells mediate efflux into the apoplasm as a prerequisite for phloem loading by the SUT sucrose-H(+) (proton) cotransporters. Using optical sucrose sensors, we identified a subfamily of SWEET sucrose efflux transporters. AtSWEET11 and 12 localize to the plasma membrane of the phloem. Mutant plants carrying insertions in AtSWEET11 and 12 are defective in phloem loading, thus revealing a two-step mechanism of SWEET-mediated export from parenchyma cells feeding H(+)-coupled import into the sieve element-companion cell complex. We discuss how restriction of intercellular transport to the interface of adjacent phloem cells may be an effective mechanism to limit the availability of photosynthetic carbon in the leaf apoplasm in order to prevent pathogen infections.

  20. Scaling of phloem structure and optimality of photoassimilate transport in conifer needles.

    Science.gov (United States)

    Ronellenfitsch, Henrik; Liesche, Johannes; Jensen, Kaare H; Holbrook, N Michele; Schulz, Alexander; Katifori, Eleni

    2015-02-22

    The phloem vascular system facilitates transport of energy-rich sugar and signalling molecules in plants, thus permitting long-range communication within the organism and growth of non-photosynthesizing organs such as roots and fruits. The flow is driven by osmotic pressure, generated by differences in sugar concentration between distal parts of the plant. The phloem is an intricate distribution system, and many questions about its regulation and structural diversity remain unanswered. Here, we investigate the phloem structure in the simplest possible geometry: a linear leaf, found, for example, in the needles of conifer trees. We measure the phloem structure in four tree species representing a diverse set of habitats and needle sizes, from 1 (Picea omorika) to 35 cm (Pinus palustris). We show that the phloem shares common traits across these four species and find that the size of its conductive elements obeys a power law. We present a minimal model that accounts for these common traits and takes into account the transport strategy and natural constraints. This minimal model predicts a power law phloem distribution consistent with transport energy minimization, suggesting that energetics are more important than translocation speed at the leaf level.

  1. [Investigation on correlation between ratio of xylem to phloem of Radix Isatidis and efficacy, chemical composition].

    Science.gov (United States)

    Yan, Dan; Han, Yu-mei; Luo, Jiao-yang; Yan, Yan; Zhang, Ping; Zhang, Shao-feng; Xiao, Xiao-he

    2011-01-01

    Explore contribution of ratio of xylem to phloem(RXP) to evaluate the quality of Radix Isatidis. Antivirus activity and chemical compositions of xylem, phloem and Radix Isatidis of different RXP were determined by RBC agglutination test and unique chromatogram. Meanwhile, correlation between RXP and bioactivity,components was investigated. the activity of medical material of Radix Isatidis whose RXP was 1:2 or 1:1 is equal to that of phloem sample, while is stronger than that of cylem sample. There was a good consistency among the chemical figureprints of three samples (Radix Isatidis, xylem and phloem). When the RXP was 2:1, the medical material of Radix Isatidi and its xylem had the same activity. But the activity of phloem was not obvious. Their consistency of chemical fingerprint was bad, and the activity of Radix Isatidis which had RXP of 1:2 or 1:1 was better than that formed by xylem and phloem of 2:1. The Radix Isatidis of RXP of 1:2 or 1:1 had less similarity of chemical figureprint with that having RXP of 2:1. The quality of Radix Isatidis made up by the various RXP had significant difference. Radix Isatidis whose RXP is less than 1:1 had good quality and better activity. As a characteristic parameter of biologic morpha, the RXP can be applied to identifying the quality of Radix Isatidis, and also provided a reference to evaluation of other medical material of roots.

  2. Arabidopsis Nitrate Transporter NRT1.9 Is Important in Phloem Nitrate Transport[W][OA

    Science.gov (United States)

    Wang, Ya-Yun; Tsay, Yi-Fang

    2011-01-01

    This study of the Arabidopsis thaliana nitrate transporter NRT1.9 reveals an important function for a NRT1 family member in phloem nitrate transport. Functional analysis in Xenopus laevis oocytes showed that NRT1.9 is a low-affinity nitrate transporter. Green fluorescent protein and β-glucuronidase reporter analyses indicated that NRT1.9 is a plasma membrane transporter expressed in the companion cells of root phloem. In nrt1.9 mutants, nitrate content in root phloem exudates was decreased, and downward nitrate transport was reduced, suggesting that NRT1.9 may facilitate loading of nitrate into the root phloem and enhance downward nitrate transport in roots. Under high nitrate conditions, the nrt1.9 mutant showed enhanced root-to-shoot nitrate transport and plant growth. We conclude that phloem nitrate transport is facilitated by expression of NRT1.9 in root companion cells. In addition, enhanced root-to-shoot xylem transport of nitrate in nrt1.9 mutants points to a negative correlation between xylem and phloem nitrate transport. PMID:21571952

  3. Arabidopsis nitrate transporter NRT1.9 is important in phloem nitrate transport.

    Science.gov (United States)

    Wang, Ya-Yun; Tsay, Yi-Fang

    2011-05-01

    This study of the Arabidopsis thaliana nitrate transporter NRT1.9 reveals an important function for a NRT1 family member in phloem nitrate transport. Functional analysis in Xenopus laevis oocytes showed that NRT1.9 is a low-affinity nitrate transporter. Green fluorescent protein and β-glucuronidase reporter analyses indicated that NRT1.9 is a plasma membrane transporter expressed in the companion cells of root phloem. In nrt1.9 mutants, nitrate content in root phloem exudates was decreased, and downward nitrate transport was reduced, suggesting that NRT1.9 may facilitate loading of nitrate into the root phloem and enhance downward nitrate transport in roots. Under high nitrate conditions, the nrt1.9 mutant showed enhanced root-to-shoot nitrate transport and plant growth. We conclude that phloem nitrate transport is facilitated by expression of NRT1.9 in root companion cells. In addition, enhanced root-to-shoot xylem transport of nitrate in nrt1.9 mutants points to a negative correlation between xylem and phloem nitrate transport.

  4. Triple Hybridization with Cultivated Barley (Hordeum vulgare L.)

    DEFF Research Database (Denmark)

    Bothmer, R. von; Claesson, L.; Flink, J.;

    1989-01-01

    represented species closely or distantly related to H. jubatum and H. lechleri. In trispecific crosses with diploid barley, the seed set was 5.7%. Crosses with tetraploid barley were highly unsuccessful (0.2% seed set). Three lines of diploid barley were used in the crosses, i.e. 'Gull', 'Golden Promise...

  5. Effects of n-butanol on barley microspore embryogenesis

    DEFF Research Database (Denmark)

    Castillo, Ana Maria; Nielsen, Nanna; Jensen, Anni

    2014-01-01

    Doubled haploid (DH) production is an efficient tool in barley breeding, but efficiency of DH methods is not consistent. Hence, the aim of this study was to study the effect of n-butanol application on DH barley plant production efficiency. Five elite cultivars of barley and thirteen breeding cro...

  6. MS Based Imaging of Barley Seed Development

    Institute of Scientific and Technical Information of China (English)

    Manuela Peukert; Andrea Matros; Hans-Peter Mock

    2012-01-01

    Spatially resolved analysis of metabolites and proteins is essential to model compartmentalized cellular processes in plants.Within recent years,tremendous progress has been made in MS based imaging (MSI) techniques,mostly MALDI MSI.The technology has been pioneered and is now widely applied in medicinal and pharmacological studies,and in recent years found its way into plant science (Kaspar et al.,2011; Peukert etal.,2012).We are interested in the elucidation of spatially resolved metabolic networks related to barley grain development.An understanding of developmentally and ecologically regulated processes affecting agronomical traits such as final grain weight,seed quality and stress tolerance is of outmost importance,as barley provides one of the staple foods.Barley also serves as a model plant for other cereals such as wheat.The presentation will introduce an untargeted MALDI MSI approach to the analysis of me-tabolite patterns during barley grain development.We analyzed longitudinal and cross sections from developing barley grains (3,7,10 and 14 days after pollination).In the presentation we will address spatial resolution,sensitivity and identification of unknown compounds will also be discussed.A major task is to connect the metabolite patterns to distinct cellular and physiological events.As an example,particular metabolite distributions indicative for nutrient transport into the developing endosperm will be shown.

  7. Evaluation of Barley as Human Food

    Directory of Open Access Journals (Sweden)

    Mehmet Köten

    2013-12-01

    Full Text Available Barley, as animal feed, raw material for malting and human food, constitute an important part among cereal sources in the world. Majority of barley that produced both in Turkey and other countries of the world, is being used as animal feed. Poor baking quality, taste and appearance of barley restricted its use in human nutrition. However, recently high protein, fiber, especially β-glucan and high starch content appeal to food industry. Many scientific researches established that β-glucan, a soluble fiber, has an effect in healing coronary-hearth diseases, lowering blood cholesterol level, balancing blood sugar level, preventing obesity. Being a healthy cereal that can be used in various purposes, and an additive in many food products, barley is considered a very promising cereal, and research to increase possibilities of its use in human nutrition is being increased. In the literature, there has been researches on making noodles, bulgur, kavut (roasted cereal, breakfast cereals. In this study the researches relating to evaluation of barley, importance of which is increased every day, as human food was reviewed.

  8. 49 CFR 40.299 - What is the SAP's role and what are the limits on a SAP's discretion in referring employees for...

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 1 2010-10-01 2010-10-01 false What is the SAP's role and what are the limits on a SAP's discretion in referring employees for education and treatment? 40.299 Section 40.299... TESTING PROGRAMS Substance Abuse Professionals and the Return-to-Duty Process § 40.299 What is the SAP's...

  9. Immigration of the barley mildew pathogen into field plots of barley

    DEFF Research Database (Denmark)

    O'Hara, R.B.; Brown, J.K.M.

    1996-01-01

    Immigration of the barley powdery mildew pathogen (Erysiphe graminis f.sp. hordei) into field plots of the spring barley variety Tyra (carrying the resistance allele Mla1) was investigated. Spores were trapped from the top of the plot canopies, as well as from control plots of wheat with no barley...... nearby. Comparison of the frequencies of virulent and avirulent single-colony isolates showed that the amount of immigration, relative to the amount of inoculum being produced within the plot, reduced very rapidly, until it could not be detected in the middle of the growing season (mid-June)....

  10. Real-time measurement of phloem turgor pressure in Hevea brasiliensis with a modified cell pressure probe

    OpenAIRE

    An, Feng; Cahill, David; Rookes, James; Lin, Weifu; Kong, Lingxue

    2014-01-01

    Background Although the pressure flow theory is widely accepted for the transport of photoassimilates in phloem sieve elements, it still requires strong experimental validation. One reason for that is the lack of a precise method for measuring the real-time phloem turgor pressure from the sink tissues, especially in tree trunks. Results Taking the merits of Hevea brasiliensis, a novel phloem turgor pressure probe based on the state of the art cell pressure probe was developed. Our field measu...

  11. Inner strategies of coping with operational work amongst SAPS officers

    Directory of Open Access Journals (Sweden)

    Masefako A. Gumani

    2013-03-01

    Full Text Available Orientation: Identification of the inner coping strategies used by South African Police Service (SAPS officers who do operational work is something the SAPS should consider to ensure the officers’ management of trauma and efficiency at work.Research purpose: The objective of this study was to describe inner coping strategies used by officers in the Vhembe district (South Africa to reconstruct stressful and traumatic experiences at work.Motivation for the study: Most studies on coping amongst SAPS officers focus on organisational stress and not on the impact of the officers’ operational work.Research design, approach and method: An exploratory design was used and 20 SAPS officers were selected through purposive sampling. In-depth face-to-face and telephone interviews, as well as diaries were used to collect data, which were analysed using content thematic data analysis.Main findings: The results showed that the main categories of coping strategies that led to management of the impact of operational work amongst the selected sample were centred around problem-focused and emotion-focused strategies, with some use of reappraisal and minimal use of avoidance. Considering the context of the officers’ work, the list of dimensions of inner coping strategies amongst SAPS officers should be extended.Practical/managerial implications: Intervention programmes designed for the SAPS, including critical incident stress debriefing, should take the operational officers’ inner strategies into account to improve the management of the impact of their work.Contribution/value-add: This study contributes to the body of knowledge on the inner coping strategies amongst SAPS officers, with special reference to operational work in a specific setting.

  12. Pigmentiphaga aceris sp. nov., isolated from tree sap.

    Science.gov (United States)

    Lee, Soon Dong

    2017-09-01

    Two Gram-stain-negative bacterial strains, SAP-32T and SAP-36, were isolated from sap drawn from the Acer pictum from Mount Halla in Jeju, Republic of Korea. The organisms were strictly aerobic, non-sporulating, motile rods and showed growth at 10-30 °C, pH 7-8 and with 0-2 % NaCl. The major isoprenoid quinone was Q-8. The predominant fatty acids were C16 : 0, cyclo-C17 : 0, summed feature 3 and C18 : 0. The polar lipids contained phosphatidylcholine, phosphatidylethanolamine, phosphatidylglycerol, an unknown aminophosphoglycolipid, an unknown glycolipid, an unknown phospholipid and two unknown lipids. The DNA G+C content was 64.4 mol%. The results of phylogenetic analyses based on 16S rRNA gene sequences indicated that SAP-32T and SAP-36 formed a distinct cluster with members of the genus Pigmentiphaga within the family Alcaligenaceae. Both strains showed 16S rRNA gene sequence similarity of 100 % to each other. The closest relatives of the isolates were Pigmentiphaga daeguensis (97.08 % sequence similarity), Pigmentiphaga kullae (97.01 %) and Pigmentiphaga litoralis (96.73 %). On the basis of data from phenotypic, chemotaxonomic and phylogenetic analyses, SAP-32T (=KCTC 52619T=DSM 104039T) and SAP-36 (=KCTC 52620=DSM 104072) represent members of a novel species of the genus Pigmentiphaga, for which the name Pigmentiphaga aceris sp. nov. is proposed.

  13. A Novel Putrescine Exporter SapBCDF of Escherichia coli.

    Science.gov (United States)

    Sugiyama, Yuta; Nakamura, Atsuo; Matsumoto, Mitsuharu; Kanbe, Ayaka; Sakanaka, Mikiyasu; Higashi, Kyohei; Igarashi, Kazuei; Katayama, Takane; Suzuki, Hideyuki; Kurihara, Shin

    2016-12-16

    Recent research has suggested that polyamines (putrescine, spermidine, and spermine) in the intestinal tract impact the health of animals either negatively or positively. The concentration of polyamines in the intestinal tract results from the balance of uptake and export of the intestinal bacteria. However, the mechanism of polyamine export from bacterial cells to the intestinal lumen is still unclear. In Escherichia coli, PotE was previously identified as a transporter responsible for putrescine excretion in an acidic growth environment. We observed putrescine concentration in the culture supernatant was increased from 0 to 50 μm during growth of E. coli under neutral conditions. Screening for the unidentified putrescine exporter was performed using a gene knock-out collection of E. coli, and deletion of sapBCDF significantly decreased putrescine levels in the culture supernatant. Complementation of the deletion mutant with the sapBCDF genes restored putrescine levels in the culture supernatant. Additionally, the ΔsapBCDF strain did not facilitate uptake of putrescine from the culture supernatant. Quantification of stable isotope-labeled putrescine derived from stable isotope-labeled arginine supplemented in the medium revealed that SapBCDF exported putrescine from E. coli cells to the culture supernatant. It was previously reported that SapABCDF of Salmonella enterica sv. typhimurium and Haemophilus influenzae conferred resistance toantimicrobial peptides; however, the E. coli ΔsapBCDF strain did not affect resistance to antimicrobial peptide LL-37. These results strongly suggest that the natural function of the SapBCDF proteins is the export of putrescine.

  14. Arabidopsis AtNaKR1 is a phloem mobile metal-binding protein necessary for phloem function and root meristem maintenance

    Science.gov (United States)

    The SODIUM POTASSIUM ROOT DEFECTIVE 1 (NaKR1) encodes a soluble metal binding protein that is specifically expressed in companion cells of the phloem. The nakr1-1 mutant phenotype includes high Na+, K+, and Rb+ accumulation in leaves, short roots, and late flowering. Starch accumulation in the leave...

  15. Barley seed proteomics from spots to structures

    DEFF Research Database (Denmark)

    Finnie, Christine; Svensson, Birte

    2009-01-01

    with information from rice and other cereals facilitate identification of barley proteins. Several hundred barley seed proteins are identified and lower abundance proteins including membrane proteins are now being analysed. In the present review we focus on variation in protein profiles of seed tissues during...... forms on 2D-gels. Specific protein families, including peroxidases and alpha-amylases have been subjected to in-depth analysis resulting in characterisation of different isozymes, post-translational. modifications and processing. A functional proteomics study focusing on the seed thioredoxin system has...

  16. OpenGGCM-RCM modeling of SAPS events

    Science.gov (United States)

    Raeder, J.; Cramer, W. D.; Jensen, J. B.; Toffoletto, F. R.; Sazykin, S. Y.; Vo, H. B.

    2015-12-01

    Sub-Auroral Polarization Streams (SAPS), also known as Sub-Auroral Ion Drifts (SAIDs), are fast westward flows in the ionosphere that occur at latitudes lower than auroral precipitation, and well separated from the high-latitude convection pattern. Although SAPS were first observed in the ionosphere, they can also be seen in the magnetosphere and are believed to be driven by a combination of region-2 currents and low ionospheric conductance. SAPS are thus governed both by magnetosphere and ionosphere processes and require self-consistently coupled models of the outer magnetosphere, the inner magnetosphere and the ring current, and the ionosphere-thermosphere system. Here, we present first results from the OpenGGCM-RCM coupled model, which includes all of the required physical processes and feedbacks. In particular, the ionospheric conductance is computed self-consistently from both magnetosphere electron precipitation, solar ionization, and ionospheric chemistry within the fully dynamical CTIM sub model of OpenGGCM. Furthermore, CTIM includes the recombination feedback of streaming ions. We focus on the GEM-CEDAR storm events of 2013-03-17, 2011-04-27, 2012-05-07, and 2012-09-02. We show that the coupled model produces SAPS that compare well with data in terms of location, extent, and magnitude. By modifying the conductances in the code we evaluate the potential positive feedback process of the ionospheric conductance on SAPS.

  17. Arsenic speciation in xylem sap of cucumber (Cucumis sativus L.)

    Energy Technology Data Exchange (ETDEWEB)

    Mihucz, Victor G. [Joint Research Group of Environmental Chemistry of the Hungarian Academy of Sciences and L. Eoetvoes University, Budapest (Hungary); Hungarian Satellite Centre of Trace Elements Institute to UNESCO, Budapest (Hungary); Tatar, Eniko [Hungarian Satellite Centre of Trace Elements Institute to UNESCO, Budapest (Hungary); L. Eoetvoes University, Department of Inorganic and Analytical Chemistry, Budapest (Hungary); Virag, Istvan [L. Eoetvoes University, Department of Inorganic and Analytical Chemistry, Budapest (Hungary); Cseh, Edit; Fodor, Ferenc [L. Eoetvoes University, Department of Plant Physiology, Budapest (Hungary); Zaray, Gyula [Joint Research Group of Environmental Chemistry of the Hungarian Academy of Sciences and L. Eoetvoes University, Budapest (Hungary); Hungarian Satellite Centre of Trace Elements Institute to UNESCO, Budapest (Hungary); L. Eoetvoes University, Department of Inorganic and Analytical Chemistry, Budapest (Hungary)

    2005-10-01

    Flow injection analysis (FIA) and high-performance liquid chromatography double-focusing sector field inductively coupled plasma mass spectrometry (HPLC-DF-ICP-MS) were used for total arsenic determination and arsenic speciation of xylem sap of cucumber plants (Cucumis sativus L.) grown in hydroponics containing 2 {mu}mol dm{sup -3} arsenate or arsenite, respectively. Arsenite [As(III)], arsenate [As(V)] and dimethylarsinic acid (DMA) were identified in the sap of the plants. Arsenite was the predominant arsenic species in the xylem saps regardless of the type of arsenic treatment, and the following concentration order was determined: As(III) > As(V) > DMA. The amount of total As, calculated taking into consideration the mass of xylem sap collected, was almost equal for both treatments. Arsenite was taken up more easily by cucumber than arsenate. Partial oxidation of arsenite to arsenate (<10% in 48 h) was observed in the case of arsenite-containing nutrient solutions, which may explain the detection of arsenate in the saps of plants treated with arsenite. (orig.)

  18. Sap flow index as an indicator of water storage use

    Directory of Open Access Journals (Sweden)

    Nadezhdina Nadezhda

    2015-06-01

    Full Text Available Symmetrical temperature difference also known as the sap flow index (SFI forms the basis of the Heat Field Deformation sap flow measurement and is simultaneously collected whilst measuring the sap flow. SFI can also be measured by any sap flow method applying internal continuous heating through the additional installation of an axial differential thermocouple equidistantly around a heater. In earlier research on apple trees SFI was found to be an informative parameter for tree physiological studies, namely for assessing the contribution of stem water storage to daily transpiration. The studies presented in this work are based on the comparative monitoring of SFI and diameter in stems of different species (Pseudotsuga menziesii, Picea omorika, Pinus sylvestris and tree sizes. The ability of SFI to follow the patterns of daily stem water storage use was empirically confirmed by our data. Additionally, as the HFD multipointsensors can measure sap flow at several stem sapwood depths, their use allowed to analyze the use of stored water in different xylem layers through SFI records. Radial and circumferential monitoring of SFI on large cork oak trees provided insight into the relative magnitude and timing of the contribution of water stored in different sapwood layers or stem sectors to transpiration.

  19. Auditoria fiscal previdenciária em ambiente SAP

    Directory of Open Access Journals (Sweden)

    Alexandre David Viva

    2006-12-01

    Full Text Available Este trabalho busca identificar meios para efetuar auditoria fiscal nos bancos de dados do SAP - o mais adotado ERP da atualidade (Bae e Ashcroft, 2004, 1 e 5; Khan, 2005, 5. Pretende-se concentrar no método de acesso às tabelas SAP, um dos cinco métodos de acesso aos bancos de dados de ERP (Neil Raden, 2004, 10. Em um primeiro momento, é necessário o levantamento, por empresa, de uma listagem dos cabeçalhos das tabelas com as quais ela trabalha, em bancos de dados que já alcançam os terabytes (SAP, SAP NetWeaver: 50. Como o SAP é um programa multilíngüe e multiempresarial, suas tabelas são criptografadas, isto é, os nomes das tabelas e de duas colunas não guardam a menor relação com os dados que elas registram (Saphir, 2004, 1. Em um segundo momento, então, por meio do ACL, a listagem de cabeçalhos de tabelas obtida é filtrada. As tabelas que interessam ao Fisco são solicitadas à empresa de uma forma mais precisa, de modo a não sobrecarregar nem a empresa nem do Fisco. Em um terceiro momento, ainda com auxílio do ACL, as tabelas especificadas são analisadas (Primeiros Passos, 2003, 3.

  20. Universality of osmotically driven sap-flow in plants

    Science.gov (United States)

    Bohr, Tomas; Hartvig Jensen, Kåre; Berg Sørensen, Kirstine; Mørch Friis, Søren; Liesche, Johannes; Schulz, Alexander

    2011-11-01

    Since Ernst Münch in the 1920s proposed that sugar transport in the phloem vascular system of plants is driven by passive osmotic pressure gradients, it has been strongly debated whether this hypothesis can account even for long distance translocation. Recently, it was shown that theoretical optimization of the Münch mechanism leads to surprisingly simple predictions for the dimensions of the phloem sieve elements in relation to those of the plants [Jensen et. al., J. Roy. Soc. Interface 8, pp. 1155-1165 (2011)]. We show that the theoretical results are very insensitive to the details of the sugar-loading (in leaves) and unloading (in shoots or roots) and can even be obtained from a simple coupled resistor model. We have compiled anatomical data for a wide group of plants and find good agreement with theory, even for conifer trees, in which the sugar translocation is substantially slower than hardwood trees.

  1. Transgenic citrus expressing synthesized cecropin B genes in the phloem exhibits decreased susceptibility to Huanglongbing.

    Science.gov (United States)

    Zou, Xiuping; Jiang, Xueyou; Xu, Lanzhen; Lei, Tiangang; Peng, Aihong; He, Yongrui; Yao, Lixiao; Chen, Shanchun

    2017-03-01

    Expression of synthesized cecropin B genes in the citrus phloem, where Candidatus Liberibacter asiaticus resides, significantly decreased host susceptibility to Huanglongbing. Huanglongbing (HLB), associated with Candidatus Liberibacter asiaticus bacteria, is the most destructive disease of citrus worldwide. All of the commercial sweet orange cultivars lack resistance to this disease. The cationic lytic peptide cecropin B, isolated from the Chinese tasar moth (Antheraea pernyi), has been shown to effectively eliminate bacteria. In this study, we demonstrated that transgenic citrus (Citrus sinensis Osbeck) expressing the cecropin B gene specifically in the phloem had a decreased susceptibility to HLB. Three plant codon-optimized synthetic cecropin B genes, which were designed to secrete the cecropin B peptide into three specific sites, the extracellular space, the cytoplasm, and the endoplasmic reticulum, were constructed. Under the control of the selected phloem-specific promoter GRP1.8, these constructs were transferred into the citrus genome. All of the cecropin B genes were efficiently expressed in the phloem of transgenic plants. Over more than a year of evaluation, the transgenic lines exhibited reduced disease severity. Bacterial populations in transgenic lines were significantly lower than in the controls. Two lines, in which bacterial populations were significantly lower than in others, showed no visible symptoms. Thus, we demonstrated the potential application of the phloem-specific expression of an antimicrobial peptide gene to protect citrus plants from HLB.

  2. Scaling of phloem structure and optimality of photoassimilate transport in conifer needles

    CERN Document Server

    Ronellenfitsch, Henrik; Jensen, Kaare H; Holbrook, N Michele; Schulz, Alexander; Katifori, Eleni

    2014-01-01

    The phloem vascular system facilitates transport of energy-rich sugar and signaling molecules in plants, thus permitting long range communication within the organism and growth of non-photosynthesizing organs such as roots and fruits. The flow is driven by osmotic pressure, generated by differences in sugar concentration between distal parts of the plant. The phloem is an intricate distribution system, and many questions about its regulation and structural diversity remain unanswered. Here, we investigate the phloem structure in the simplest possible geometry: a linear leaf, found, for example, in the needles of conifer trees. We measure the phloem structure in four tree species representing a diverse set of habitats and needle sizes, from 1 cm (\\textit{Picea omorika}) to 35 cm (\\textit{Pinus palustris}). We show that the phloem shares common traits across these four species and find that the size of its conductive elements obeys a power law. We present a minimal model that accounts for these common traits an...

  3. Turnip mosaic virus moves systemically through both phloem and xylem as membrane-associated complexes.

    Science.gov (United States)

    Wan, Juan; Cabanillas, Daniel Garcia; Zheng, Huanquan; Laliberté, Jean-François

    2015-04-01

    Plant viruses move systemically in plants through the phloem. They move as virions or as ribonucleic protein complexes, although it is not clear what these complexes are made of. The approximately 10-kb RNA genome of Turnip mosaic virus (TuMV) encodes a membrane protein, known as 6K2, that induces endomembrane rearrangements for the formation of viral replication factories. These factories take the form of vesicles that contain viral RNA (vRNA) and viral replication proteins. In this study, we report the presence of 6K2-tagged vesicles containing vRNA and the vRNA-dependent RNA polymerase in phloem sieve elements and in xylem vessels. Transmission electron microscopy observations showed the presence in the xylem vessels of vRNA-containing vesicles that were associated with viral particles. Stem-girdling experiments, which leave xylem vessels intact but destroy the surrounding tissues, confirmed that TuMV could establish a systemic infection of the plant by going through xylem vessels. Phloem sieve elements and xylem vessels from Potato virus X-infected plants also contained lipid-associated nonencapsidated vRNA, indicating that the presence of membrane-associated ribonucleic protein complexes in the phloem and xylem may not be limited to TuMV. Collectively, these studies indicate that viral replication factories could end up in the phloem and the xylem. © 2015 American Society of Plant Biologists. All Rights Reserved.

  4. Turnip mosaic virus Moves Systemically through Both Phloem and Xylem as Membrane-Associated Complexes1

    Science.gov (United States)

    Zheng, Huanquan

    2015-01-01

    Plant viruses move systemically in plants through the phloem. They move as virions or as ribonucleic protein complexes, although it is not clear what these complexes are made of. The approximately 10-kb RNA genome of Turnip mosaic virus (TuMV) encodes a membrane protein, known as 6K2, that induces endomembrane rearrangements for the formation of viral replication factories. These factories take the form of vesicles that contain viral RNA (vRNA) and viral replication proteins. In this study, we report the presence of 6K2-tagged vesicles containing vRNA and the vRNA-dependent RNA polymerase in phloem sieve elements and in xylem vessels. Transmission electron microscopy observations showed the presence in the xylem vessels of vRNA-containing vesicles that were associated with viral particles. Stem-girdling experiments, which leave xylem vessels intact but destroy the surrounding tissues, confirmed that TuMV could establish a systemic infection of the plant by going through xylem vessels. Phloem sieve elements and xylem vessels from Potato virus X-infected plants also contained lipid-associated nonencapsidated vRNA, indicating that the presence of membrane-associated ribonucleic protein complexes in the phloem and xylem may not be limited to TuMV. Collectively, these studies indicate that viral replication factories could end up in the phloem and the xylem. PMID:25717035

  5. SAP FLOW RESPONSE OF CHERRY TREES TO WEATHER CONDITION

    Directory of Open Access Journals (Sweden)

    Á. JUHÁSZ

    2011-03-01

    Full Text Available Sap flow response of cherry trees to weather condition. Themain goal of our study is to measure water-demand of cherry trees budded ontodifferent rootstocks by sapflow equipment and to study the sap flow response to themeteorological factors. The investigations are carried out in Soroksár in Hungary at‘Rita’ sweet cherry orchard. The pattern of sapflow was analyzed in relation ofsolar radiation, vapour pressure deficit and air temperature. Between solar radiationand sap flow was found a parabolic relation, daily pattern of sapflow is in closerelation (cubic also to vapour pressure deficit. No significant relationship existedbetween sapflow and air temperature. The sapflow performance of sweet cherrytrees on different rootstocks showed typical daily characters.

  6. SLAM family receptors and SAP adaptors in immunity.

    Science.gov (United States)

    Cannons, Jennifer L; Tangye, Stuart G; Schwartzberg, Pamela L

    2011-01-01

    The signaling lymphocyte activation molecule (SLAM)-associated protein, SAP, was first identified as the protein affected in most cases of X-linked lymphoproliferative (XLP) syndrome, a rare genetic disorder characterized by abnormal responses to Epstein-Barr virus infection, lymphoproliferative syndromes, and dysgammaglobulinemia. SAP consists almost entirely of a single SH2 protein domain that interacts with the cytoplasmic tail of SLAM and related receptors, including 2B4, Ly108, CD84, Ly9, and potentially CRACC. SLAM family members are now recognized as important immunomodulatory receptors with roles in cytotoxicity, humoral immunity, autoimmunity, cell survival, lymphocyte development, and cell adhesion. In this review, we cover recent findings on the roles of SLAM family receptors and the SAP family of adaptors, with a focus on their regulation of the pathways involved in the pathogenesis of XLP and other immune disorders.

  7. The barley Jip23b gene

    DEFF Research Database (Denmark)

    Müller-Uri, Frieder; Cameron-Mills, Verena; Mundy, John

    2002-01-01

    The barley gene (Jip23) encoding a 23,000-Da protein of unknown function was isolated and shown to be induced by jasmonate methyl ester (MeJA) in leaves. 5'upstream Jip23 sequence was isolated and fused to the beta-glucuronidase gene (GUS), and this reporter was introduced by particle bombardment...

  8. Cisgenic barley with improved phytase activity

    DEFF Research Database (Denmark)

    Holme, Inger; Dionisio, Giuseppe; Brinch-Pedersen, Henrik

    2010-01-01

    are accordingly very similar to those generated by conventional breeding. The cisgenesis concept allows for the introduction of extra gene copies of a particular gene to accentuate the trait. We are using a barley purple acid phosphatase expressed during grain filling as candidate gene for cisgenesis. A genomic...

  9. Endoproteolytic activity assay in malting barley

    Directory of Open Access Journals (Sweden)

    Blanca Gómez Guerrero

    2013-12-01

    Full Text Available Hydrolysis of barley proteins into peptides and amino acids is one of the most important processes during barley germination.The degradation of the endosperm stored proteins facilitates water and enzyme movements, enhances modification, liberates starch granules and increases soluble amino nitrogen. Protease activity is the result of the activities of a mixture of exo- and endo-proteases. The barley proteins are initially solubilized by endo-proteases and the further by exo-proteases. Four classes of endo-proteases have been described: serine-proteases, cysteine-proteases, aspartic-proteases and metallo-proteases. The objective of this work was to develop a rapid and colorimetric enzymatic assay to determine the endo-proteolytic activity of the four endo-protease classes using two different substrates: azo-gelatin and azo-casein. Optimum conditions for the assays such as: pH,reaction time and temperature and absorbance scale were determined. Azo-gelatin presented several difficulties in standardizing an “in solution” assay. On the other hand, azo-casein allowed standardization of the assay for the four enzyme classes to produce consistent results. The endo-proteoteolytic method developed was applied to determine the endo-protease activity in barley, malt and wort.

  10. Adaptation of barley to harsh Mediterranean environments.

    NARCIS (Netherlands)

    Oosterom, van E.

    1993-01-01

    Research ObjectivesBarley is in Syria the dominant crop in areas receiving less than 300 mm annual precipitation. Grain yield is often below 1 ton ha -1, and is reduced by low temperatures in winter and terminal drought stress in spring. Variation i

  11. SAPFLUXNET: towards a global database of sap flow measurements.

    Science.gov (United States)

    Poyatos, Rafael; Granda, Víctor; Molowny-Horas, Roberto; Mencuccini, Maurizio; Steppe, Kathy; Martínez-Vilalta, Jordi

    2016-12-01

    Plant transpiration is the main evaporative flux from terrestrial ecosystems; it controls land surface energy balance, determines catchment hydrological responses and influences regional and global climate. Transpiration regulation by plants is a key (and still not completely understood) process that underlies vegetation drought responses and land evaporative fluxes under global change scenarios. Thermometric methods of sap flow measurement have now been widely used to quantify whole-plant and stand transpiration in forests, shrublands and orchards around the world. A large body of research has applied sap flow methods to analyse seasonal and diurnal patterns of transpiration and to quantify their responses to hydroclimatic variability, but syntheses of sap flow data at regional to global scales are extremely rare. Here we present the SAPFLUXNET initiative, aimed at building the first global database of plant-level sap flow measurements. A preliminary metadata survey launched in December 2015 showed an encouraging response by the sap flow community, with sap flow data sets from field studies representing >160 species and >120 globally distributed sites. The main goal of SAPFLUXNET is to analyse the ecological factors driving plant- and stand-level transpiration. SAPFLUXNET will open promising research avenues at an unprecedented global scope, namely: (i) exploring the spatio-temporal variability of plant transpiration and its relationship with plant and stand attributes, (ii) summarizing physiological regulation of transpiration by means of few water-use traits, usable for land surface models, (iii) improving our understanding of the coordination between gas exchange and plant-level traits (e.g., hydraulics) and (iv) analysing the ecological factors controlling stand transpiration and evapotranspiration partitioning. Finally, SAPFLUXNET can provide a benchmark to test models of physiological controls of transpiration, contributing to improve the accuracy of

  12. Sap flow measurements of lateral tree roots in agroforestry systems.

    Science.gov (United States)

    Lott, J. E.; Khan, A. A. H.; Ong, C. K.; Black, C. R.

    1996-01-01

    Successful extension of agroforestry to areas of the semi-arid tropics where deep reserves of water exist requires that the tree species be complementary to the associated crops in their use of water within the crop rooting zone. However, it is difficult to identify trees suitable for dryland agroforestry because most existing techniques for determining water uptake by roots cannot distinguish between absorption by tree and crop roots. We describe a method for measuring sap flow through lateral roots using constant temperature heat balance gauges, and the application of this method in a study of complementarity of water use in agroforestry systems containing Grevillea robusta A. Cunn. Sap flow gauges were attached to the trunks and roots of Grevillea with minimum disturbance to the soil. Thermal energy emanating from the soil adversely affected the accuracy of sap flow gauges attached to the roots, with the result that the uncorrected values were up to eightfold greater than the true water uptake determined gravimetrically. This overestimation was eliminated by using a calibration method in which nonconducting excised root segments, with sap flow gauges attached, were placed adjacent to the live roots. The power consumption and temperature differentials of the excised roots were used to correct for external sources and internal losses of heat within the paired live root. The fraction of the total sap flow through individual trees supplied by the lateral roots varied greatly between trees of similar canopy size. Excision of all lateral roots, except for one to which a heat balance gauge was attached, did not significantly increase sap flow through the intact root, suggesting that it was functioning at near maximum capacity.

  13. Potential of Jatropha multifida sap against traumatic ulcer

    Directory of Open Access Journals (Sweden)

    Basri A. Gani

    2015-09-01

    Full Text Available Background: Traumatic ulcer is a lesion in oral mucosa as a result of physical and mechanical trauma, as well as changes in salivary pH. Jatropha multifida sap can act as antimicrobial, anti-inflammatory and re-epithelialization, and can also trigger the healing process of ulcers. Purpose: Research was aimed to determine the potential of Jatropha multifida sap against traumatic ulcer base on clinical and histopathological healing process. Method: This research was conducted laboratory experimental model, with rats (Rattus norvegicus as the subject as well as Jatropha multifida sap for ulcer healing. Those subjects were divided into four groups: two treatment groups administrated with pellet and Jatropha multifida sap, one group as the positive control group administrated with 0.1% triamcinolone acetonide, and one group as the negative control group administrated with 0.9% NaCl. Ulcer manipulation was used 30% H2O2, and evaluation of ulcer healing was used clinical and histopathological approach. Result: Clinically, the healing process of ulcers in the treatment group with Jatropha multifida sap was faster than that in the positive control group with 0.1% triamcinolone acetonide, indicated with the reduction of the ulcer size until the missing of the ulcers started from the third day to the seventh one (p≤0.05. Histopathologically inflammatory cells (lymphocytes, and plasma cells declined started from the third day, and the formation of collagen and re-epithelialization then occurred. On the seventh day, the epithelial cells thickened, and the inflammatory cells infiltrated. Statistically, those groups were significant (p≤0.05. Conclusion: Jatropha multifida sap has a significant potential to cure traumatic ulcers on oral mucosa clinically and histopathologically.

  14. Comparative Statistical Study of Some SAP UI Technologies

    Science.gov (United States)

    Berdie, Adela; Osaci, Mihaela; Dan Lemle, Ludovic

    2011-09-01

    The goal of this paper is to present a comparative study on some web UI (User Interface) technologies that involve the creation of web applications on the platform SAP Net Weaver AS 7.01 of the integrated SAP (System Application Products) system. The attention will be directed mainly to the ABAP (Advanced Business Application Programing) development environment and to the Web Dynpro (WD) technologies, Floor Plan Manager (FPM) and Web Client UI. Through this study, we make an assesment regarding the decision of choosing a technology for the realisation of a project which consists of a web application.

  15. Managing the Technology Acquisition Integration Paradox at SAP

    DEFF Research Database (Denmark)

    Henningsson, Stefan; Kude, Thomas; Popp, Karl Michael

    2016-01-01

    In this paper, we report on a novel approach developed by SAP AG, the German enterprise software company, for managing the integration of acquisitions of companies to access innovative technologies and related capabilities: the Product Council approach. The value of the Product Council approach...... rests in ensuring critical speed while not compromising accuracy in the integration process. For SAP, the Product Council became a vital component in its technology acquisition capability that allows the company to retain its technological edge in the hypercompetitive software industry....

  16. Managing the Technology Acquisition Integration Paradox at SAP

    DEFF Research Database (Denmark)

    Henningsson, Stefan; Kude, Thomas; Popp, Karl Michael

    2016-01-01

    In this paper, we report on a novel approach developed by SAP AG, the German enterprise software company, for managing the integration of acquisitions of companies to access innovative technologies and related capabilities: the Product Council approach. The value of the Product Council approach...... rests in ensuring critical speed while not compromising accuracy in the integration process. For SAP, the Product Council became a vital component in its technology acquisition capability that allows the company to retain its technological edge in the hypercompetitive software industry....

  17. Transgenic barley: a prospective tool for biotechnology and agriculture.

    Science.gov (United States)

    Mrízová, Katarína; Holasková, Edita; Öz, M Tufan; Jiskrová, Eva; Frébort, Ivo; Galuszka, Petr

    2014-01-01

    Barley (Hordeum vulgare L.) is one of the founder crops of agriculture, and today it is the fourth most important cereal grain worldwide. Barley is used as malt in brewing and distilling industry, as an additive for animal feed, and as a component of various food and bread for human consumption. Progress in stable genetic transformation of barley ensures a potential for improvement of its agronomic performance or use of barley in various biotechnological and industrial applications. Recently, barley grain has been successfully used in molecular farming as a promising bioreactor adapted for production of human therapeutic proteins or animal vaccines. In addition to development of reliable transformation technologies, an extensive amount of various barley genetic resources and tools such as sequence data, microarrays, genetic maps, and databases has been generated. Current status on barley transformation technologies including gene transfer techniques, targets, and progeny stabilization, recent trials for improvement of agricultural traits and performance of barley, especially in relation to increased biotic and abiotic stress tolerance, and potential use of barley grain as a protein production platform have been reviewed in this study. Overall, barley represents a promising tool for both agricultural and biotechnological transgenic approaches, and is considered an ancient but rediscovered crop as a model industrial platform for molecular farming.

  18. Passive phloem loading and long-distance transport in a synthetic tree-on-a-chip

    DEFF Research Database (Denmark)

    Comtet, Jean; Jensen, Kaare Hartvig; Turgeon, Robert

    2017-01-01

    Vascular plants rely on differences in osmotic pressure to export sugars from regions of synthesis (mature leaves) to sugar sinks (roots, fruits). In this process, known as Münch pressure flow, the loading of sugars from photosynthetic cells to the export conduit (the phloem) is crucial, as it sets...... the pressure head necessary to power long-distance transport. Whereas most herbaceous plants use active mechanisms to increase phloem sugar concentration above that of the photosynthetic cells, in most tree species, for which transport distances are largest, loading seems, counterintuitively, to occur by means...... of passive symplastic diffusion from the mesophyll to the phloem. Here, we use a synthetic microfluidic model of a passive loader to explore the non-linear dynamics that arise during export and determine the ability of passive loading to drive long-distance transport. We first demonstrate that in our device...

  19. The phloem-sap feeding mealybug (Ferrisia virgata carries 'Candidatus Liberibacter asiaticus' populations that do not cause disease in host plants.

    Directory of Open Access Journals (Sweden)

    Marco Pitino

    Full Text Available 'Candidatus Liberibacter asiaticus' (Las is the primary causal agent of huanglongbing (HLB, the most devastating disease of citrus worldwide. There are three known insect vectors of the HLB-associated bacteria, and all are members of the Hemiptera: Diaphorina citri (Psyllidae, Trioza erytreae (Triozidae, and Cacopsylla (Psylla citrisuga (Psyllidae. In this study, we found that another hemipteran, the striped mealybug Ferrisia virgata (Cockerell (Hemiptera: Pseudococcidae, was able to acquire and retain Las bacteria. The bacterial titers were positively correlated with the feeding acquisition time on Las-infected leaf discs, with a two-weeks feeding period resulting in Ct values ranging from 23.1 to 36.1 (8.24 × 10(7 to 1.07 × 10(4 Las cells per mealybug. We further discovered that the prophage/phage populations of Las in the mealybugs were different from those of Las in psyllids based on Las prophage-specific molecular markers: infected psyllids harbored the Las populations with prophage/phage FP1 and FP2, while infected mealybugs carried the Las populations with the iFP3 being the dominant prophage/phage. As in the psyllids, Las bacteria were shown to move through the insect gut wall to the salivary glands after being ingested by the mealybug based on a time-course quantitative polymerase chain reaction (qPCR assay of the dissected digestive systems. However, Las populations transmitted by the mealybugs did not cause disease in host plants. This is the first evidence of genetic difference among Las populations harbored by different insect vectors and difference among Las populations with respect to whether or not they cause disease in host plants.

  20. The Phloem-Sap Feeding Mealybug (Ferrisia virgata) Carries ‘Candidatus Liberibacter asiaticus’ Populations That Do Not Cause Disease in Host Plants

    Science.gov (United States)

    Pitino, Marco; Hoffman, Michele T.; Zhou, Lijuan; Hall, David G.; Stocks, Ian C.; Duan, Yongping

    2014-01-01

    ‘Candidatus Liberibacter asiaticus’ (Las) is the primary causal agent of huanglongbing (HLB), the most devastating disease of citrus worldwide. There are three known insect vectors of the HLB-associated bacteria, and all are members of the Hemiptera: Diaphorina citri (Psyllidae), Trioza erytreae (Triozidae), and Cacopsylla (Psylla) citrisuga (Psyllidae). In this study, we found that another hemipteran, the striped mealybug Ferrisia virgata (Cockerell) (Hemiptera: Pseudococcidae), was able to acquire and retain Las bacteria. The bacterial titers were positively correlated with the feeding acquisition time on Las-infected leaf discs, with a two-weeks feeding period resulting in Ct values ranging from 23.1 to 36.1 (8.24×107 to 1.07×104 Las cells per mealybug). We further discovered that the prophage/phage populations of Las in the mealybugs were different from those of Las in psyllids based on Las prophage-specific molecular markers: infected psyllids harbored the Las populations with prophage/phage FP1 and FP2, while infected mealybugs carried the Las populations with the iFP3 being the dominant prophage/phage. As in the psyllids, Las bacteria were shown to move through the insect gut wall to the salivary glands after being ingested by the mealybug based on a time-course quantitative polymerase chain reaction (qPCR) assay of the dissected digestive systems. However, Las populations transmitted by the mealybugs did not cause disease in host plants. This is the first evidence of genetic difference among Las populations harbored by different insect vectors and difference among Las populations with respect to whether or not they cause disease in host plants. PMID:24465578

  1. Relationship between Fruit Soluble Solid Content and the Sucrose Concentration of the Phloem Sap at Different Leaf to Fruit Ratios in Tomato

    National Research Council Canada - National Science Library

    ジャン, ヌール エラヒ; 河鰭, 実之

    2011-01-01

    トマトでは,果実肥大成長期に固形分のかなりの割合を蓄積する.この時期における水と同化産物の果実への流入バランスは,収穫時の固形分濃度を決定する重要な要因である.この研究では,急速な肥大成長期にある果実における師部液の糖濃度と果実固形分濃度との関係を調べた.第 1 果房の開花時に,第 1...

  2. Most water in the tomato truss is imported through the xylem, not the phloem. An NMR flow imaging study

    NARCIS (Netherlands)

    Windt, C.W.; Gerkema, E.; As, van H.

    2009-01-01

    In this study, we demonstrate nuclear magnetic resonance flow imaging of xylem and phloem transport toward a developing tomato (Solanum lycopersicum) truss. During an 8-week period of growth, we measured phloem and xylem fluxes in the truss stalk, aiming to distinguish the contributions of the two

  3. A phloem-specific sucrose-H+ symporter from Plantago major L. supports the model of apoplastic phloem loading.

    Science.gov (United States)

    Gahrtz, M; Stolz, J; Sauer, N

    1994-11-01

    In this paper the cloning of a full-length cDNA clone encoding the PmSUC2 sucrose-H+ symporter from Plantago major is described. This plant allows the simple preparation of vascular bundles from the basal regions of fully developed source leaves and thus a separation of vascular and non-vascular tissue. A cDNA library was constructed from poly(A)+ RNA isolated from vascular bundles and used for the subsequent cloning of cDNAs. The respective mRNA is specifically expressed in the vascular bundles as shown on Northern blots of total RNA from vascular and non-vascular tissues. The PmSUC2 protein has 12 putative transmembrane helices and is highly homologous to other plant sucrose transporters. Substrate specificity and energy dependence of the transporter encoded by this cDNA were determined by expression in baker's yeast Saccharomyces cerevisiae. The PmSUC2 protein catalyses the transport of sucrose into transgenic yeast cells. Invertase null mutants of yeast expressing PmSUC2 accumulate sucrose more than 200-fold. This transport was sensitive to uncouplers or SH-group inhibitors. Plasma membranes from yeast cells expressing the PmSUC2 protein were purified and fused to proteoliposomes containing cytochrome-c-oxidase. In this system sucrose is accumulated only when proton motive force is generated, indicating that PmSUC2 is a sucrose-H+ symporter. The apparent molecular weight of the PmSUC2 protein is 35 kDa on 10% SDS-polyacrylamide gels. The presented data strongly support the theory of phloem loading from the apoplastic space by a sucrose-H+ symporter.

  4. 30 CFR 285.610 - What must I include in my SAP?

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 2 2010-07-01 2010-07-01 false What must I include in my SAP? 285.610 Section... Requirements Contents of the Site Assessment Plan § 285.610 What must I include in my SAP? Your SAP must... SAP, you must provide the following information: ER29AP09.115 (b) You must provide the results of...

  5. Small RNAs from Bemisia tabaci are transferred to Solanum lycopersicum phloem during feeding

    Directory of Open Access Journals (Sweden)

    Paula J.M. Van Kleeff

    2016-11-01

    Full Text Available The phloem-feeding whitefly Bemisia tabaci is a serious pest to a broad range of host plants, including many economically important crops such as tomato. These insects serve as a vector for various devastating plant viruses. It is known that whiteflies are capable of manipulating host-defense responses, potentially mediated by effector molecules in the whitefly saliva. We hypothesized that, beside putative effector proteins, small RNAs (sRNA are delivered by B. tabaci into the phloem, where they may play a role in manipulating host plant defenses. There is already evidence to suggest that sRNAs can mediate the host-pathogen dialogue. It has been shown that Botrytis cinerea, the causal agent of gray mold disease, takes advantage of the plant sRNA machinery to selectively silence host genes involved in defense signaling.Here we identified sRNAs originating from B. tabaci in the phloem of tomato plants on which they are feeding. sRNAs were isolated and sequenced from tomato phloem of whitefly-infested and control plants as well as from the nymphs themselves, control leaflets and from the infested leaflets. Using stem-loop RT-PCR, three whitefly sRNAs have been verified to be present in whitefly-infested leaflets that were also present in the whitefly-infested phloem sample. Our results show that whitefly sRNAs are indeed present in tomato tissues upon feeding, and they appear to be mobile in the phloem. Their role in the host-insect interaction can now be investigated.

  6. Lignin Composition and Structure Differs between Xylem, Phloem and Phellem in Quercus suber L.

    Science.gov (United States)

    Lourenço, Ana; Rencoret, Jorge; Chemetova, Catarina; Gominho, Jorge; Gutiérrez, Ana; del Río, José C.; Pereira, Helena

    2016-01-01

    The composition and structure of lignin in different tissues—phellem (cork), phloem and xylem (wood)—of Quercus suber was studied. Whole cell walls and their respective isolated milled lignins were analyzed by pyrolysis coupled with gas chromatography/mass spectrometry (Py-GC/MS), two-dimensional nuclear magnetic resonance spectroscopy (2D-NMR) and derivatization followed by reductive cleavage (DFRC). Different tissues presented varied p-hydroxyphenyl:guaiacyl:syringyl (H:G:S) lignin compositions. Whereas lignin from cork has a G-rich lignin (H:G:S molar ratio 2:85:13), lignin from phloem presents more S-units (H:G:S molar ratio of 1:58:41) and lignin from xylem is slightly enriched in S-lignin (H:G:S molar ratio 1:45:55). These differences were reflected in the relative abundances of the different interunit linkages. Alkyl-aryl ethers (β–O–4′) were predominant, increasing from 68% in cork, to 71% in phloem and 77% in xylem, as consequence of the enrichment in S-lignin units. Cork lignin was enriched in condensed structures such as phenylcoumarans (β-5′, 20%), dibenzodioxocins (5–5′, 5%), as corresponds to a lignin enriched in G-units. In comparison, lignin from phloem and xylem presented lower levels of condensed linkages. The lignin from cork was highly acetylated at the γ-OH of the side-chain (48% lignin acetylation), predominantly over G-units; while the lignins from phloem and xylem were barely acetylated and this occurred mainly over S-units. These results are a first time overview of the lignin structure in xylem, phloem (generated by cambium), and in cork (generated by phellogen), in agreement with literature that reports that lignin biosynthesis is flexible and cell specific. PMID:27833631

  7. Small RNAs from Bemisia tabaci Are Transferred to Solanum lycopersicum Phloem during Feeding

    Science.gov (United States)

    van Kleeff, Paula J. M.; Galland, Marc; Schuurink, Robert C.; Bleeker, Petra M.

    2016-01-01

    The phloem-feeding whitefly Bemisia tabaci is a serious pest to a broad range of host plants, including many economically important crops such as tomato. These insects serve as a vector for various devastating plant viruses. It is known that whiteflies are capable of manipulating host-defense responses, potentially mediated by effector molecules in the whitefly saliva. We hypothesized that, beside putative effector proteins, small RNAs (sRNA) are delivered by B. tabaci into the phloem, where they may play a role in manipulating host plant defenses. There is already evidence to suggest that sRNAs can mediate the host-pathogen dialogue. It has been shown that Botrytis cinerea, the causal agent of gray mold disease, takes advantage of the plant sRNA machinery to selectively silence host genes involved in defense signaling. Here we identified sRNAs originating from B. tabaci in the phloem of tomato plants on which they are feeding. sRNAs were isolated and sequenced from tomato phloem of whitefly-infested and control plants as well as from the nymphs themselves, control leaflets, and from the infested leaflets. Using stem-loop RT-PCR, three whitefly sRNAs have been verified to be present in whitefly-infested leaflets that were also present in the whitefly-infested phloem sample. Our results show that whitefly sRNAs are indeed present in tomato tissues upon feeding, and they appear to be mobile in the phloem. Their role in the host-insect interaction can now be investigated. PMID:27933079

  8. Lignin Composition and Structure Differs between Xylem, Phloem and Phellem in Quercus suber L.

    Science.gov (United States)

    Lourenço, Ana; Rencoret, Jorge; Chemetova, Catarina; Gominho, Jorge; Gutiérrez, Ana; Del Río, José C; Pereira, Helena

    2016-01-01

    The composition and structure of lignin in different tissues-phellem (cork), phloem and xylem (wood)-of Quercus suber was studied. Whole cell walls and their respective isolated milled lignins were analyzed by pyrolysis coupled with gas chromatography/mass spectrometry (Py-GC/MS), two-dimensional nuclear magnetic resonance spectroscopy (2D-NMR) and derivatization followed by reductive cleavage (DFRC). Different tissues presented varied p-hydroxyphenyl:guaiacyl:syringyl (H:G:S) lignin compositions. Whereas lignin from cork has a G-rich lignin (H:G:S molar ratio 2:85:13), lignin from phloem presents more S-units (H:G:S molar ratio of 1:58:41) and lignin from xylem is slightly enriched in S-lignin (H:G:S molar ratio 1:45:55). These differences were reflected in the relative abundances of the different interunit linkages. Alkyl-aryl ethers (β-O-4') were predominant, increasing from 68% in cork, to 71% in phloem and 77% in xylem, as consequence of the enrichment in S-lignin units. Cork lignin was enriched in condensed structures such as phenylcoumarans (β-5', 20%), dibenzodioxocins (5-5', 5%), as corresponds to a lignin enriched in G-units. In comparison, lignin from phloem and xylem presented lower levels of condensed linkages. The lignin from cork was highly acetylated at the γ-OH of the side-chain (48% lignin acetylation), predominantly over G-units; while the lignins from phloem and xylem were barely acetylated and this occurred mainly over S-units. These results are a first time overview of the lignin structure in xylem, phloem (generated by cambium), and in cork (generated by phellogen), in agreement with literature that reports that lignin biosynthesis is flexible and cell specific.

  9. Lignin composition and structure differs between xylem, phloem and phellem in Quercus suber L.

    Directory of Open Access Journals (Sweden)

    Ana Lourenço

    2016-10-01

    Full Text Available The composition and structure of lignin in different tissues - phellem (cork, phloem and xylem (wood - of Quercus suber was studied. Whole cell walls and their respective isolated milled lignins were analyzed by pyrolysis coupled with gas chromatography/mass spectrometry (Py-GC/MS, two-dimensional nuclear magnetic resonance spectroscopy (2D-NMR and derivatization followed by reductive cleavage (DFRC. Different tissues presented varied p-hydroxyphenyl:guaiacyl:syringyl (H:G:S lignin compositions. Whereas lignin from cork has a G-rich lignin (H:G:S molar ratio 2:85:13, lignin from phloem presents more S-units (H:G:S molar ratio of 1:58:41 and lignin from xylem is slightly enriched in S-lignin (H:G:S molar ratio 1:45:55. These differences were reflected in the relative abundances of the different interunit linkages. Alkyl-aryl ethers (β–O–4´ were predominant, increasing from 68% in cork, to 71% in phloem and 77% in xylem, as consequence of the enrichment in S-lignin units. Cork lignin was enriched in condensed structures such as phenylcoumarans (β-5´, 20%, dibenzodioxocins (5-5´, 5%, as corresponds to a lignin enriched in G-units. In comparison, lignin from phloem and xylem presented lower levels of condensed linkages. The lignin from cork was highly acetylated at the γ-OH of the side-chain (48% lignin acetylation, predominantly over G-units; while the lignins from phloem and xylem were barely acetylated and this occurred mainly over S-units. These results are a first time overview of the lignin structure in xylem, phloem (generated by cambium, and in cork (generated by phellogen, in agreement with literature that lignin biosynthesis is flexible and cell specific.

  10. Quo vadis, carbon? High resolution tracing of xylem and phloem carbon transport and release in trees

    Science.gov (United States)

    Ingrisch, J.; Bloemen, J.; Bahn, M.

    2016-12-01

    Carbon (C) allocation defines the flows of C between plant organs, and between storage pools and metabolic processes and is therefore considered an important determinant of ecosystem C budgets and their responses to climate change. In trees, assimilates derived from leaf photosynthesis are transported as sugars via the phloem to above- and below-ground sink tissues, where partitioning between growth, storage, and respiration occurs. At the same time, above- and below-ground respired CO2 can be dissolved in water and transported in the xylem tissue, thereby representing a transport pathway opposite to the downward transport of sugars along the phloem. So far, it is unclear to what extent these transport pathways interact, for instance by lateral transport of C, and contribute to above- and belowground respiratory fluxes to the atmosphere. We performed a combined canopy and stem infusion 13C labeling study on six year old potted oak (Quercus rubra) trees to trace C transport along the phloem and xylem, respectively, in order to investigate the role of both transport pathways in C allocation. In addition, high-resolution laser-based measurements of the isotopic composition of stem and soil CO2 efflux were used to monitor the contribution of both pathways to respiratory fluxes. Additional tissue analysis was performed to analyze the occurrence of lateral transport of C between the phloem and xylem transport pathway. Our results will permit disentangling the contribution of metabolic versus xylem and phloem transport processes to stem and soil CO2 efflux and give insight into lateral C transport between xylem and phloem in trees.

  11. Loss of Heterozygosity at an Unlinked Genomic Locus Is Responsible for the Phenotype of a Candida albicans sapsapsap6Δ Mutant ▿

    OpenAIRE

    Dunkel, Nico; Morschhäuser, Joachim

    2011-01-01

    The diploid genome of the pathogenic yeast Candida albicans exhibits a high degree of heterozygosity. Genomic alterations that result in a loss of heterozygosity at specific loci may affect phenotypes and confer a selective advantage under certain conditions. Such genomic rearrangements can also occur during the construction of C. albicans mutants and remain undetected. The SAP2 gene on chromosome R encodes a secreted aspartic protease that is induced and required for growth of C. albicans wh...

  12. Loss of Heterozygosity at an Unlinked Genomic Locus Is Responsible for the Phenotype of a Candida albicans sapsapsap6Δ Mutant ▿

    OpenAIRE

    Dunkel, Nico; Morschhäuser, Joachim

    2011-01-01

    The diploid genome of the pathogenic yeast Candida albicans exhibits a high degree of heterozygosity. Genomic alterations that result in a loss of heterozygosity at specific loci may affect phenotypes and confer a selective advantage under certain conditions. Such genomic rearrangements can also occur during the construction of C. albicans mutants and remain undetected. The SAP2 gene on chromosome R encodes a secreted aspartic protease that is induced and required for growth of C. albicans wh...

  13. Scaling of phloem structure and optimality of photoassimilate transport in conifer needles

    DEFF Research Database (Denmark)

    Ronellenfitsch, Henrik; Liesche, Johannes; Jensen, Kaare Hartvig

    2015-01-01

    The phloem vascular system facilitates transport of energy-rich sugar and signalling molecules in plants, thus permitting long-range communication within the organism and growth of non-photosynthesizing organs such as roots and fruits. The flow is driven by osmotic pressure, generated...... conductive elements obeys a power law. We present a minimal model that accounts for these common traits and takes into account the transport strategy and natural constraints. This minimal model predicts a power law phloem distribution consistent with transport energy minimization, suggesting that energetics...

  14. Xylem and phloem phenology in co-occurring conifers exposed to drought

    OpenAIRE

    Swidrak, Irene; GRUBER, Andreas; Oberhuber, Walter

    2014-01-01

    Key message Variability in xylem and phloem phenology among years and species is caused by contrasting temperatures prevailing at the start of the growing season and species-specific sensitivity to drought. Abstract The focus of this study was to determine temporal dynamics of xylem and phloem formation in co-occurring deciduous and evergreen coniferous species in a dry inner Alpine environment (750 m a.s.l., Tyrol, Austria). By repeated micro-sampling of the stem, timing of key phenological ...

  15. 49 CFR 40.297 - Does anyone have the authority to change a SAP's initial evaluation?

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 1 2010-10-01 2010-10-01 false Does anyone have the authority to change a SAP's... the Return-to-Duty Process § 40.297 Does anyone have the authority to change a SAP's initial... managed-care provider, any service agent) may change in any way the SAP's evaluation or recommendations...

  16. 30 CFR 285.606 - What must I demonstrate in my SAP?

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 2 2010-07-01 2010-07-01 false What must I demonstrate in my SAP? 285.606 Section 285.606 Mineral Resources MINERALS MANAGEMENT SERVICE, DEPARTMENT OF THE INTERIOR OFFSHORE... demonstrate in my SAP? (a) Your SAP must demonstrate that you have planned and are prepared to conduct the...

  17. 49 CFR 40.289 - Are employers required to provide SAP and treatment services to employees?

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 1 2010-10-01 2010-10-01 false Are employers required to provide SAP and... Professionals and the Return-to-Duty Process § 40.289 Are employers required to provide SAP and treatment services to employees? (a) As an employer, you are not required to provide a SAP evaluation or any...

  18. 49 CFR 40.285 - When is a SAP evaluation required?

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 1 2010-10-01 2010-10-01 false When is a SAP evaluation required? 40.285 Section... § 40.285 When is a SAP evaluation required? (a) As an employee, when you have violated DOT drug and... unless you complete the SAP evaluation, referral, and education/treatment process set forth in this...

  19. 30 CFR 285.613 - How will MMS process my SAP?

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 2 2010-07-01 2010-07-01 false How will MMS process my SAP? 285.613 Section... Requirements Contents of the Site Assessment Plan § 285.613 How will MMS process my SAP? (a) The MMS will review your submitted SAP, and additional information provided pursuant to § 285.611, to determine if it...

  20. 49 CFR Appendix E to Part 40 - SAP Equivalency Requirements for Certification Organizations

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 1 2010-10-01 2010-10-01 false SAP Equivalency Requirements for Certification... TRANSPORTATION WORKPLACE DRUG AND ALCOHOL TESTING PROGRAMS Pt. 40, App. E Appendix E to Part 40—SAP Equivalency... of knowledge must be of sufficient quantity to ensure a high quality of SAP evaluation and referral...

  1. DMPD: The SAP family of adaptors in immune regulation. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 15541655 The SAP family of adaptors in immune regulation. Latour S, Veillette A. Se...min Immunol. 2004 Dec;16(6):409-19. (.png) (.svg) (.html) (.csml) Show The SAP family of adaptors in immune ...regulation. PubmedID 15541655 Title The SAP family of adaptors in immune regulation. Authors Latour S, Veill

  2. Accounting Control Technology Using SAP: A Case-Based Approach

    Science.gov (United States)

    Ragan, Joseph; Puccio, Christopher; Talisesky, Brandon

    2014-01-01

    The Sarbanes-Oxley Act (SOX) revolutionized the accounting and audit industry. The use of preventative and process controls to evaluate the continuous audit process done via an SAP ERP ECC 6.0 system is key to compliance with SOX and managing costs. This paper can be used in a variety of ways to discuss issues associated with auditing and testing…

  3. SAP BusinessObjects Dashboards 4.1 cookbook

    CERN Document Server

    Lai, David

    2015-01-01

    If you are a developer with a good command and knowledge of creating dashboards, but are not yet an advanced user of SAP BusinessObjects Dashboards, then this is the perfect book for you. Prerequisites include a good working knowledge of Microsoft Excel as well as knowledge of basic dashboard practices.

  4. Association mapping of partitioning loci in barley

    Directory of Open Access Journals (Sweden)

    Mackay Ian J

    2008-02-01

    Full Text Available Abstract Background Association mapping, initially developed in human disease genetics, is now being applied to plant species. The model species Arabidopsis provided some of the first examples of association mapping in plants, identifying previously cloned flowering time genes, despite high population sub-structure. More recently, association genetics has been applied to barley, where breeding activity has resulted in a high degree of population sub-structure. A major genotypic division within barley is that between winter- and spring-sown varieties, which differ in their requirement for vernalization to promote subsequent flowering. To date, all attempts to validate association genetics in barley by identifying major flowering time loci that control vernalization requirement (VRN-H1 and VRN-H2 have failed. Here, we validate the use of association genetics in barley by identifying VRN-H1 and VRN-H2, despite their prominent role in determining population sub-structure. Results By taking barley as a typical inbreeding crop, and seasonal growth habit as a major partitioning phenotype, we develop an association mapping approach which successfully identifies VRN-H1 and VRN-H2, the underlying loci largely responsible for this agronomic division. We find a combination of Structured Association followed by Genomic Control to correct for population structure and inflation of the test statistic, resolved significant associations only with VRN-H1 and the VRN-H2 candidate genes, as well as two genes closely linked to VRN-H1 (HvCSFs1 and HvPHYC. Conclusion We show that, after employing appropriate statistical methods to correct for population sub-structure, the genome-wide partitioning effect of allelic status at VRN-H1 and VRN-H2 does not result in the high levels of spurious association expected to occur in highly structured samples. Furthermore, we demonstrate that both VRN-H1 and the candidate VRN-H2 genes can be identified using association mapping

  5. Application of Super Absorbent Polymers (SAP) in Concrete Construction State-of-the-Art Report Prepared by Technical Committee 225-SAP

    CERN Document Server

    Reinhardt, Hans-Wolf

    2012-01-01

    This is the state-of-the-art report prepared by the RILEM TC “Application of Super Absorbent Polymers (SAP) in concrete construction”. It gives a comprehensive overview of the properties of SAP, specific water absorption and desorption behaviour of SAP in fresh and hardening concrete, effects of the SAP addition on rheological properties of fresh concrete, changes of cement paste microstructure and mechanical properties of concrete. Furthermore, the key advantages of using SAP are described in detail: the ability of this material to act as an internal curing agent to mitigate autogenous shrinkage of high-performance concrete, the possibility to use SAP as an alternative to air-entrainment agents in order to increase the frost resistance of concrete, and finally, the benefit of steering the rheology of fresh cement-based materials. The final chapter describes the first existing and numerous prospective applications for this new concrete additive.

  6. Barley grain for ruminants: A global treasure or tragedy

    Directory of Open Access Journals (Sweden)

    Nikkhah Akbar

    2012-07-01

    Full Text Available Abstract Barley grain (Hordeum vulgare L. is characterized by a thick fibrous coat, a high level of ß-glucans and simply-arranged starch granules. World production of barley is about 30 % of that of corn. In comparison with corn, barley has more protein, methionine, lysine, cysteine and tryptophan. For ruminants, barley is the third most readily degradable cereal behind oats and wheat. Due to its more rapid starch fermentation rate compared with corn, barley also provides a more synchronous release of energy and nitrogen, thereby improving microbial nutrient assimilation. As a result, feeding barley can reduce the need for feeding protected protein sources. However, this benefit is only realized if rumen acidity is maintained within an optimal range (e.g., > 5.8 to 6.0; below this range, microbial maintenance requirements and wastage increase. With a low pH, microbial endotoxines cause pro-inflammatory responses that can weaken immunity and shorten animal longevity. Thus, mismanagement in barley processing and feeding may make a tragedy from this treasure or pearl of cereal grains. Steam-rolling of barley may improve feed efficiency and post-rumen starch digestion. However, it is doubtful if such processing can improve milk production and feed intake. Due to the need to process barley less extensively than other cereals (as long as the pericarp is broken, consistent and global standards for feeding and processing barley could be feasibly established. In high-starch diets, barley feeding reduces the need for capacious small intestinal starch assimilation, subsequently reducing hindgut starch use and fecal nutrient loss. With its nutritional exclusivities underlined, barley use will be a factual art that can either matchlessly profit or harm rumen microbes, cattle production, farm economics and the environment.

  7. Agrobacterium-mediated transformation of barley (Hordeum vulgare L.).

    Science.gov (United States)

    Ismagul, Ainur; Mazonka, Iryna; Callegari, Corinne; Eliby, Serik

    2014-01-01

    Barley biotechnology requires efficient genetic engineering tools for producing transgenic plants necessary for conducting reverse genetics analyses in breeding and functional genomics research. Agrobacterium-mediated genetic transformation is an important technique for producing barley transgenics with simple low-copy number transgenes. This chapter reports a refined protocol for the systematic high-throughput transformation of the advanced Australian spring barley breeding line WI4330.

  8. Molecular characterization of Trypanosoma cruzi SAP proteins with host-cell lysosome exocytosis-inducing activity required for parasite invasion.

    Science.gov (United States)

    Zanforlin, Tamiris; Bayer-Santos, Ethel; Cortez, Cristian; Almeida, Igor C; Yoshida, Nobuko; da Silveira, José Franco

    2013-01-01

    To invade target cells, Trypanosoma cruzi metacyclic forms engage distinct sets of surface and secreted molecules that interact with host components. Serine-, alanine-, and proline-rich proteins (SAP) comprise a multigene family constituted of molecules with a high serine, alanine and proline residue content. SAP proteins have a central domain (SAP-CD) responsible for interaction with and invasion of mammalian cells by metacyclic forms. Using a 513 bp sequence from SAP-CD in blastn analysis, we identified 39 full-length SAP genes in the genome of T. cruzi. Although most of these genes were mapped in the T. cruzi in silico chromosome TcChr41, several SAP sequences were spread out across the genome. The level of SAP transcripts was twice as high in metacyclic forms as in epimastigotes. Monoclonal (MAb-SAP) and polyclonal (anti-SAP) antibodies produced against the recombinant protein SAP-CD were used to investigate the expression and localization of SAP proteins. MAb-SAP reacted with a 55 kDa SAP protein released by epimastigotes and metacyclic forms and with distinct sets of SAP variants expressed in amastigotes and tissue culture-derived trypomastigotes (TCTs). Anti-SAP antibodies reacted with components located in the anterior region of epimastigotes and between the nucleus and the kinetoplast in metacyclic trypomastigotes. In contrast, anti-SAP recognized surface components of amastigotes and TCTs, suggesting that SAP proteins are directed to different cellular compartments. Ten SAP peptides were identified by mass spectrometry in vesicle and soluble-protein fractions obtained from parasite conditioned medium. Using overlapping sequences from SAP-CD, we identified a 54-aa peptide (SAP-CE) that was able to induce host-cell lysosome exocytosis and inhibit parasite internalization by 52%. This study provides novel information about the genomic organization, expression and cellular localization of SAP proteins and proposes a triggering role for extracellular SAP

  9. Changes of Limiting Dextrinase in Germinating Process of Malting Barley

    Institute of Scientific and Technical Information of China (English)

    LIANG Xiu-mei; LI Fen; WANG Hong-zhen; WANG Xing-zhi

    2002-01-01

    Based on five different species of barley, the foot layer analytic method was used to examine the activity and heat-resistance of the limiting dextrinase. The study was conducted on the dynamic changes of several types of the dextrinase in barley germinating process, the effect of temperature on the dextrinase and the divergence of dextrinase in different barley variety. The probability of the dextrinase that as reference index is used for screening and evaluating beer barley was discussed. The importance of dextrinase in brewing and its significant function was also discussed.

  10. FERTILIZING BREWING BARLEY (Hordeum vulgare L.

    Directory of Open Access Journals (Sweden)

    I. Kádár

    2000-12-01

    Full Text Available Four levels of N, P and K nutrition (poor, moderate, satisfactory and high and all their possible combinations with 64 treatments in two replications (128 plots were studied in a long term field trial on barley yield and malting quality. A standard East-European spring barley "Opal" (bred in Czechoslovakia was grown in 1986, 13th year of the agricultural experiment, involving various crops in previous years, on a calcareous loamy chernozem soil. The optimum fertility levels for yield enhancement resulted in the poorest malting quality: low modification and extract but long saccharification time and high protein. To solve this problem the brewing industry will have to apply the well-known technological methods available since growers are not likely to give up their fertilizers. Applying soil and plant analysis data, having knowledge about both soil and plant optimum values, the danger of the excessive use of fertilizers can be realized and decreased.

  11. Functional dependency between the logistics security system and the MySAP ERP in metallurgy

    Directory of Open Access Journals (Sweden)

    P. Ranitović

    2013-10-01

    Full Text Available MySAP ERP - Enterprise Resource Planning (system - solution which provides a whole set of functions for the business analytics, finance, human resources management, logistics and corporate services has developed from SAP R/3. It is one of the main products of the SAP AG German multinational company and as such, it is a very important element of the international industrial and technological security system. By defining the functional dependency between the security systems (logistics security systems and the IT (My SAP ERP systems in metallurgy, a concept for designing MY SAP ERP system in metallurgic industry is defined, based on the security aspects.

  12. Critical factors in the limited occurrence of the Japanese tree sap mite Hericia sanukiensis (Acari: Astigmata: Algophagidae) inhabiting the sap of the oak Quercus acutissima.

    Science.gov (United States)

    Hayashi, Kyohei; Ichikawa, Toshihide; Yasui, Yukio

    2011-08-01

    Hericia sanukiensis (Astigmata: Algophagidae) is a semi-aquatic mite inhabiting fermented sap flux of the Japanese sawtooth oak (Quercus acutissima) and utilizes Nitidulidae (Coleoptera) as the dispersal (phoretic) carrier. Although nitidulid beetles are commonly found in sap flux, the occurrence of H. sanukiensis has been extremely limited to a few trees in Shikoku Island, Kagawa Prefecture, Japan. To elucidate the critical factors limiting the occurrence of this species, we compared several physical and biological characteristics of sap-exudation points, including the structure and temperature of tree trunks, period and abundance of sap exudation, and seasonal occurrence and dispersal behavior of nitidulid beetles between environments with and without mites. During the two consecutive years of field research, we found that only sap-exudation points with obvious tree holes (ringent area >10 cm², depth >10 cm) had sustained mite populations throughout the observation period. In contrast, for the sap-exudation points lacking tree holes, H. sanukiensis temporally (from spring to autumn) colonized only when the sap production was considerably high. Thus, we suggest that the settlement of H. sanukiensis populations requires tree holes as an overwintering habitat. Nitidulid beetles also concentrated in areas with high sap production and did not disperse from such habitats during the sap flow season. This indicates that H. sanukiensis mites may only disperse and colonize new habitats at very limited opportunities, such as drastic habitat deterioration, which may promote the movement of their carrier. Taken together, these findings may explain the limited occurrence of this mite species.

  13. Taxonomy Icon Data: barley [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available barley Hordeum vulgare Hordeum_vulgare_L.png Hordeum_vulgare_NL.png Hordeum_vulgare_S.png Hordeum_vu...lgare_NS.png http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Hordeum+vulgare&t=L http://bi...osciencedbc.jp/taxonomy_icon/icon.cgi?i=Hordeum+vulgare&t=NL http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Hordeum+vu...lgare&t=S http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Hordeum+vulgare&t=NS ...

  14. Search for endophytic diazotrophs in barley seeds

    Directory of Open Access Journals (Sweden)

    Myriam S. Zawoznik

    2014-06-01

    Full Text Available Eight endophytic isolates assigned to Pseudomonas, Azospirillum, and Bacillus genera according to pheno-genotypic features were retrieved from barley seeds under selective pressure for nitrogen-fixers. Genetic relationships among related isolates were investigated through RAPD. Six isolates displayed nitrogen-fixing ability, while all could biosynthesize indolacetic acid in vitro and showed no antibiosis effects against Azospirillum brasilense Az39, a recognized PGPR.

  15. Transgenic Wheat, Barley and Oats: Future Prospects

    Science.gov (United States)

    Dunwell, Jim M.

    Following the success of transgenic maize and rice, methods have now been developed for the efficient introduction of genes into wheat, barley and oats. This review summarizes the present position in relation to these three species, and also uses information from field trial databases and the patent literature to assess the future trends in the exploitation of transgenic material. This analysis includes agronomic traits and also discusses opportunities in expanding areas such as biofuels and biopharming.

  16. Search for endophytic diazotrophs in barley seeds.

    Science.gov (United States)

    Zawoznik, Myriam S; Vázquez, Susana C; Díaz Herrera, Silvana M; Groppa, María D

    2014-01-01

    Eight endophytic isolates assigned to Pseudomonas, Azospirillum, and Bacillus genera according to pheno-genotypic features were retrieved from barley seeds under selective pressure for nitrogen-fixers. Genetic relationships among related isolates were investigated through RAPD. Six isolates displayed nitrogen-fixing ability, while all could biosynthesize indolacetic acid in vitro and showed no antibiosis effects against Azospirillum brasilense Az39, a recognized PGPR.

  17. Functional Analysis of Barley Powdery Mildew Effector Candidates and Identification of their Barley Targets

    DEFF Research Database (Denmark)

    Ahmed, Ali Abdurehim

    about the function of many CSEPs in virulence and the identities of their host targets. In this PhD study, we investigated the function of nine CSEPs and found that CSEP0081, CSEP0105, CSEP0162 and CSEP0254 act as effectors by promoting the Bgh infection success. Independent silencing of these CSEPs...... to the cytosol and the nucleus of barley epidermal cells. Furthermore, CSEP0162 and CSEP0254 accumulated in the extrahaustorial matrix in Bgh-infected cells. This implies that their virulence targets may localize in the same cellular compartments. Using yeast two-hybrid screens, two barley small heat shock...... misfolding and aggregation. Through their chaperone activity, some sHsps contribute to pathogen defence by stabilizing intracellular proteins, including resistance and defence signalling proteins. In this study, we validated the chaperone activity of the barley Hsp16.9, which prevented the aggregation...

  18. Stability of Barley stripe mosaic virus induced gene silencing in barley

    DEFF Research Database (Denmark)

    Bruun-Rasmussen, Marianne; Madsen, Christian Toft; Jessing, Stine

    2007-01-01

    Virus-induced gene silencing (VIGS) can be used as a powerful tool for functional genomics studies in plants. With this approach, it is possible to target most genes and downregulate the messenger (m)RNA in a sequence-specific manner. Barley stripe mosaic virus (BSMV) is an established VIGS vector...... for barley and wheat; however, silencing using this vector is generally transient, with efficient silencing often being confined to the first two or three systemically infected leaves. To investigate this further, part of the barley Phytoene desaturase (PDS) gene was inserted into BSMV and the resulting...... inoculation, although large parts of the insert had been lost from the virus vector. The instability of the insert, observed consistently throughout our experiments, offers an explanation for the transient nature of silencing when using BSMV as a VIGS vector....

  19. The NAC transcription factors of barley

    DEFF Research Database (Denmark)

    Wagner, Michael; Holm, Preben Bach; Gregersen, Per L.

    2011-01-01

    ). From these data we have identified not only putative regulators of leaf senescence (HvNAC005, HvNAC027 and HvNAC029), but also possible regulators of secondary wall synthesis (HvNAC033, HvNAC034 and HvNAC039), lateral root formation (HvNAC022) and seed development (HvNAC017, HvNAC018, HvNAC019 and Hv...... genes characterized so far have regulatory functions in a broad range of plant developmental processes and tolerances to both biotic and abiotic stresses. This makes the NAC family highly interesting target genes for plant researchers and breeders. As part of a larger project on the identification...... of Hordeum vulgare (barley) leaf senescence regulators, we have attempted to characterize for the first time all presently available barley NAC genes (HvNACs). By searching the NCBI barley EST database using the tBLASTn function, with all known NAC genes from Brachypodium and rice as input, in combination...

  20. Slower phloem transport in gymnosperm trees can be attributed to higher sieve element resistance.

    Science.gov (United States)

    Liesche, Johannes; Windt, Carel; Bohr, Tomas; Schulz, Alexander; Jensen, Kaare H

    2015-04-01

    In trees, carbohydrates produced in photosynthesizing leaves are transported to roots and other sink organs over distances of up to 100 m inside a specialized transport tissue, the phloem. Angiosperm and gymnosperm trees have a fundamentally different phloem anatomy with respect to cell size, shape and connectivity. Whether these differences have an effect on the physiology of carbohydrate transport, however, is not clear. A meta-analysis of the experimental data on phloem transport speed in trees yielded average speeds of 56 cm h(-1) for angiosperm trees and 22 cm h(-1) for gymnosperm trees. Similar values resulted from theoretical modeling using a simple transport resistance model. Analysis of the model parameters clearly identified sieve element (SE) anatomy as the main factor for the significantly slower carbohydrate transport speed inside the phloem in gymnosperm compared with angiosperm trees. In order to investigate the influence of SE anatomy on the hydraulic resistance, anatomical data on SEs and sieve pores were collected by transmission electron microscopy analysis and from the literature for 18 tree species. Calculations showed that the hydraulic resistance is significantly higher in the gymnosperm than in angiosperm trees. The higher resistance is only partially offset by the considerably longer SEs of gymnosperms.

  1. A Phloem Sandwich Unit for Observing Bark Beetles, Associated Predators, and Parasites

    Science.gov (United States)

    Donald N. Kim; Mitchel C. Miller

    1981-01-01

    This paper describes a phloem sandwich that allows observation of parent beetles, their brood, and associates within the inner bark, and permits observation of predator and parasite behavior on the bark surface. The construction of the unit permits the introduction of multiple pairs of beetles into a single sandwich.

  2. Phloem Loading in the Tulip Tree. Mechanisms and Evolutionary Implications1

    Science.gov (United States)

    Goggin, Fiona L.; Medville, Richard; Turgeon, Robert

    2001-01-01

    Minor vein ultrastructure and phloem loading were studied in leaves of the tulip tree (Liriodendron tulipifera; Magnoliaceae). Plasmodesmatal frequencies leading into minor vein companion cells are higher than in species known to load via the apoplast. However, these companion cells are not specialized as “intermediary cells” as they are in species in which the best evidence for symplastic phloem loading has been documented. Mesophyll cells plasmolyzed in 600 mm sorbitol, whereas sieve elements and companion cells did not plasmolyze even in 1.2 m sorbitol, indicating that solute accumulates in the phloem against a steep concentration gradient. Both [14C]sucrose and 14C-labeled photo-assimilate accumulated in the minor vein network, as demonstrated by autoradiography. [14C]sucrose accumulation was prevented by p-chloromercuribenzenesulfonic acid, an inhibitor of sucrose-proton cotransport from the apoplast. p-Chloromercuribenzenesulfonic acid largely, but not entirely, inhibited exudation of radiolabeled photoassimilate. The evidence is most consistent with the presence of an apoplastic component to phloem loading in this species, contrary to speculation that the more basal members of the angiosperms load by an entirely symplastic mechanism. PMID:11161046

  3. PHLOEM PROMOTERS IN TRANSGENIC SWEET ORANGE ARE DIFFERENTIALLY TRIGGERED BY Candidatus Liberibacter asiaticus

    Directory of Open Access Journals (Sweden)

    LUZIA YURIKO MIYATA

    Full Text Available ABSTRACT The use of promoters preferentially expressed in specific plant tissues is a desirable strategy to search for resistance for pathogens that colonize these tissues. The bacterium Candidatus Liberibacter asiaticus (Las, associated with huanglongbing disease (HLB of citrus, colonizes phloem vessels. Some promoters, besides conferring tissue-specific expression, can also respond to the presence of the pathogen. The objective of the present study was to verify if the presence of Las could modulate the activation of the phloem-specific promoters AtPP2 (Arabidopsis thaliana phloem protein 2, AtSUC2 (A. thaliana sucrose transporter 2 and CsPP2 ( pCitrus phloemrotein 2, known to be expressed in Citrus sinensis phloem. ‘Hamlin’ sweet orange plants (Citrus sinensis L. Osbeck transformed with the uidA (GUS reporter gene under the control of AtPP2, AtSUC2 and CsPP2 promoters were infected to evaluate the interdependence between transgene expression and the concentration of Las. Plants were inoculated with Las by Diaphorina citri and eighteen months later, bacterial concentration and uidA expression were determined by qPCR and RT-qPCR, respectively. Reporter gene expression driven by AtSUC2 promoter was strongly and positively correlated with Las concentration. Therefore, this promoter combines desirable features of both tissue-specificity and pathogen-inducibility for the production of transgenic plants tolerant to Las.

  4. Analytic solutions and universal properties of sugar loading models in Münch phloem flow

    DEFF Research Database (Denmark)

    Jensen, Kåre Hartvig; Berg-Sørensen, Kirstine; Friis, Søren Michael Mørk;

    2012-01-01

    The transport of sugars in the phloem vascular system of plants is believed to be driven by osmotic pressure differences according to the Münch hypothesis. Thus, the translocation process is viewed as a passive reaction to the active sugar loading in the leaves and sugar unloading in roots...

  5. Phloem-associated auxin response maxima determine radial positioning of lateral roots in maize.

    Science.gov (United States)

    Jansen, Leentje; Roberts, Ianto; De Rycke, Riet; Beeckman, Tom

    2012-06-05

    In Arabidopsis thaliana, lateral-root-forming competence of pericycle cells is associated with their position at the xylem poles and depends on the establishment of protoxylem-localized auxin response maxima. In maize, our histological analyses revealed an interruption of the pericycle at the xylem poles, and confirmed the earlier reported proto-phloem-specific lateral root initiation. Phloem-pole pericycle cells were larger and had thinner cell walls compared with the other pericycle cells, highlighting the heterogeneous character of the maize root pericycle. A maize DR5::RFP marker line demonstrated the presence of auxin response maxima in differentiating xylem cells at the root tip and in cells surrounding the proto-phloem vessels. Chemical inhibition of auxin transport indicated that the establishment of the phloem-localized auxin response maxima is crucial for lateral root formation in maize, because in their absence, random divisions of pericycle and endodermis cells occurred, not resulting in organogenesis. These data hint at an evolutionarily conserved mechanism, in which the establishment of vascular auxin response maxima is required to trigger cells in the flanking outer tissue layer for lateral root initiation. It further indicates that lateral root initiation is not dependent on cellular specification or differentiation of the type of vascular tissue.

  6. Phloem transdifferentiation from immature xylem cells during bark regeneration after girdling in Eucommia ulmoides Oliv.

    Science.gov (United States)

    Pang, Yu; Zhang, Jing; Cao, Jing; Yin, Shen-Yi; He, Xin-Qiang; Cui, Ke-Ming

    2008-01-01

    Eucommia ulmoides Oliv. (Eucommiaceae), a traditional Chinese medicinal plant, was used to study phloem cell differentiation during bark regeneration after girdling on a large scale. Here it is shown that new sieve elements (SEs) appeared in the regenerated tissues before the formation of wound cambium during bark regeneration after girdling, and they could originate from the transdifferentiation of immature/differentiating axial xylem cells left on the trunk. Assays of water-cultured twigs revealed that girdling blocked sucrose transport until the formation of new SEs, and the regeneration of the functional SEs was not dependent on the substance provided by the axis system outside the girdled areas, while exogenous indole acetic acid (IAA) applied on the wound surface accelerated SE differentiation. The experiments suggest that the immature xylem cells can transdifferentiate into phloem cells under certain conditions, which means xylem and phloem cells might share some identical features at the beginning of their differentiation pathway. This study also showed that the bark regeneration system could provide a novel method for studying xylem and phloem cell differentiation.

  7. Polyphenols in ceratocystis minor infected Pinus Taeda: fungal metabolites, phloem, and xylem phenols

    Science.gov (United States)

    R.W. Hemingway; G.W. McGraw; S.J. Barras

    1977-01-01

    Since Ceratocystis minor is central to the death of pines infested by southern pine beetles, changes in polyphenols of infected loblolly pine were examined with regard to accumulation of fungal metabolites and changes in concentrations of fungitoxic and fungistatic phloem and xylem constitutents. C. minor grown in liquid culture...

  8. Effect of different ascorbic acid levels (Vitamin C on eco-physiological properties of barley in soils contaminated with lead

    Directory of Open Access Journals (Sweden)

    Kamdin Akhavan Samimi

    2016-03-01

    Full Text Available This study was carried out to examine the effects of foliar application of ascorbic acid on barley in contaminated soil in a completely randomized factorial design with 2 factors, 9 treatments and 3 replications in Varamin in 1393.150 mg of lead nitrate per kg of soil were applied to infect the soil for all treatments. Superabsorbent was the first factor used in three levels (0, 3, 6 g per kg soil and ascorbic acid as the second factor was also used in three levels (0, 50 and 100 ppm. The results of this experiment showed that increase in superabsorbent and ascorbic acid concentrations in barley improved the morphological traits such as plant height and spike and grain number, grain weight, total weight of shoot, root dry weight and thousand grain weight and also improved physiological traits such as protein content and chlorophyll a, b and total chlorophyll in barley, moreover, increase in ascorbic acid in the plant resulted in reduction in antioxidant enzymes content such as superoxide dismutase andcatalase, and physiological traits such as proline, increased relative water content and reduced lead content in leaves and roots.So it can be concluded that, given that the country is located in arid and semiarid regions and considering Iran’s soils pollution with heavy metals,using effective treatments such as ascorbic acid can enhance crop water holding capacity and also reduce the effects of these elements toxicity. Therefore,the use of ascorbic acid seems essential.Due to the non-degradable and long life of heavy metals in soil, insoluble hydrophilic polymers with different amounts carboxylic groups are used. The surface carboxylic groups of the polymer (SAP due to exposure to pH are ionized and make strong bonds with soil pollutant metals, and eventually form a gel and are separated from soil.

  9. SAP modulates B cell functions in a genetic background-dependent manner.

    Science.gov (United States)

    Detre, Cynthia; Yigit, Burcu; Keszei, Marton; Castro, Wilson; Magelky, Erica M; Terhorst, Cox

    2013-06-01

    Mutations affecting the SLAM-associated protein (SAP) are responsible for the X-linked lympho-proliferative syndrome (XLP), a severe primary immunodeficiency syndrome with disease manifestations that include fatal mononucleosis, B cell lymphoma and dysgammaglobulinemia. It is well accepted that insufficient help by SAP-/- CD4+ T cells, in particular during the germinal center reaction, is a component of dysgammaglobulinemia in XLP patients and SAP-/- animals. It is however not well understood whether in XLP patients and SAP-/- mice B cell functions are affected, even though B cells themselves do not express SAP. Here we report that B cell intrinsic responses to haptenated protein antigens are impaired in SAP-/- mice and in Rag-/- mice into which B cells derived from SAP-/- mice together with wt CD4+ T cells had been transferred. This impaired B cells functions are in part depending on the genetic background of the SAP-/- mouse, which affects B cell homeostasis. Surprisingly, stimulation with an agonistic anti-CD40 causes strong in vivo and in vitro B cell responses in SAP-/- mice. Taken together, the data demonstrate that genetic factors play an important role in the SAP-related B cell functions. The finding that anti-CD40 can in part restore impaired B cell responses in SAP-/- mice, suggests potentially novel therapeutic interventions in subsets of XLP patients. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. SAP Suppresses the Development of Experimental Autoimmune Encephalomyelitis in C57BL6 Mice

    Science.gov (United States)

    Ji, Zhe; Ke, Zun-Ji; Geng, Jian-Guo

    2012-01-01

    Experimental autoimmune encephalomyelitis (EAE) is a CD4+ T cell-mediated disease of the CNS. Serum amyloid P component (SAP) is a highly conserved plasma protein named for its universal presence in amyloid deposits. Here we report SAP transgenic mice had unexpectedly attenuated EAE due to impaired encephalitogenic responses. Following induction with myelin oligodendroglial glycoprotein (MOG) peptide 35–55 in CFA, SAP transgenic mice showed reduced spinal cord inflammation with lower severity of EAE attacks as compared with control C57BL/6 mice. However in SAP-KO mice, the severity of EAE is enhanced. Adoptive transfer of Ag-restimulated T cells from wild-type to SAP transgenic mice or transfer of SAP transgenic Ag-restimulated T cells to control mice induced milder EAE. T cells from MOG-primed SAP transgenic mice showed weak proliferative responses. Furthermore, in SAP transgenic mice, there is little infiltration of CD45-positive cells in the spinal cord. In vitro, SAP suppressed the secretion of IL-2 stimulated by P-selectin, and blocked P-selectin binding to T cells. Moreover, SAP could change the affinity between α4-integrin and T cells. These data suggested that SAP could antagonize the development of the acute phase of inflammation accompanying EAE by modulating the function of P-selectin. PMID:21647172

  11. SAP suppresses the development of experimental autoimmune encephalomyelitis in C57BL/6 mice.

    Science.gov (United States)

    Ji, Zhe; Ke, Zun-Ji; Geng, Jian-Guo

    2012-04-01

    Experimental autoimmune encephalomyelitis (EAE) is a CD4(+) T cell-mediated disease of the central nervous system. Serum amyloid P component (SAP) is a highly conserved plasma protein named for its universal presence in amyloid deposits. Here we report that SAP-transgenic mice had unexpectedly attenuated EAE due to impaired encephalitogenic responses. Following induction with myelin oligodendroglial glycoprotein (MOG) peptide 35-55 in complete Freund's adjuvant, SAP-transgenic mice showed reduced spinal cord inflammation with lower severity of EAE attacks as compared with control C57BL/6 mice. However, in SAP-Knockout mice, the severity of EAE is enhanced. Adoptive transfer of Ag-restimulated T cells from wild type to SAP-transgenic mice, or transfer of SAP-transgenic Ag-restimulated T cells to control mice, induced milder EAE. T cells from MOG-primed SAP-transgenic mice showed weak proliferative responses. Furthermore, in SAP-transgenic mice, there is little infiltration of CD45-positive cells in the spinal cord. In vitro, SAP suppressed the secretion of interleukin-2 stimulated by P-selectin and blocked P-selectin binding to T cells. Moreover, SAP could change the affinity between α4-integrin and T cells. These data suggested that SAP could antagonize the development of the acute phase of inflammation accompanying EAE by modulating the function of P-selectin.

  12. SLAM-family receptors: immune regulators with or without SAP-family adaptors.

    Science.gov (United States)

    Veillette, André

    2010-03-01

    The signaling lymphocytic activation molecule (SLAM) family of receptors and the SLAM-associated protein (SAP) family of intracellular adaptors are expressed in immune cells. By way of their cytoplasmic domain, SLAM-related receptors physically associate with SAP-related adaptors. Evidence is accumulating that the SLAM and SAP families play crucial roles in multiple immune cell types. Moreover, the prototype of the SAP family, that is SAP, is mutated in a human immunodeficiency, X-linked lymphoproliferative (XLP) disease. In the presence of SAP-family adaptors, the SLAM family usually mediates stimulatory signals that promote immune cell activation or differentiation. In the absence of SAP-family adaptors, though, the SLAM family undergoes a "switch-of-function," thereby mediating inhibitory signals that suppress immune cell functions. The molecular basis and significance of this mechanism are discussed herein.

  13. Serum Amyloid P Component (SAP) Interactome in Human Plasma Containing Physiological Calcium Levels.

    Science.gov (United States)

    Poulsen, Ebbe Toftgaard; Pedersen, Kata Wolff; Marzeda, Anna Maria; Enghild, Jan J

    2017-02-14

    The pentraxin serum amyloid P component (SAP) is secreted by the liver and found in plasma at a concentration of approximately 30 mg/L. SAP is a 25 kDa homopentamer known to bind both protein and nonprotein ligands, all in a calcium-dependent manner. The function of SAP is unclear but likely involves the humoral innate immune system spanning the complement system, inflammation, and coagulation. Also, SAP is known to bind to the generic structure of amyloid deposits and possibly to protect them against proteolysis. In this study, we have characterized the SAP interactome in human plasma containing the physiological Ca(2+) concentration using SAP affinity pull-down and co-immunoprecipitation experiments followed by mass spectrometry analyses. The analyses resulted in the identification of 33 proteins, of which 24 were direct or indirect interaction partners not previously reported. The SAP interactome can be divided into categories that include apolipoproteins, the complement system, coagulation, and proteolytic regulation.

  14. Novel Aggregation Properties of Candida albicans Secreted Aspartyl Proteinase Sap6 Mediate Virulence in Oral Candidiasis.

    Science.gov (United States)

    Kumar, Rohitashw; Saraswat, Darpan; Tati, Swetha; Edgerton, Mira

    2015-07-01

    Candida albicans, a commensal fungus of the oral microbiome, causes oral candidiasis in humans with localized or systemic immune deficiencies. Secreted aspartic proteinases (Saps) are a family of 10 related proteases and are virulence factors due to their proteolytic activity, as well as their roles in adherence and colonization of host tissues. We found that mice infected sublingually with C. albicans cells overexpressing Sap6 (SAP6 OE and a Δsap8 strain) had thicker fungal plaques and more severe oral infection, while infection with the Δsap6 strain was attenuated. These hypervirulent strains had highly aggregative colony structure in vitro and higher secreted proteinase activity; however, the levels of proteinase activity of C. albicans Saps did not uniformly match their abilities to damage cultured oral epithelial cells (SCC-15 cells). Hyphal induction in cells overexpressing Sap6 (SAP6 OE and Δsap8 cells) resulted in formation of large cell-cell aggregates. These aggregates could be produced in germinated wild-type cells by addition of native or heat-inactivated Sap6. Sap6 bound only to germinated cells and increased C. albicans adhesion to oral epithelial cells. The adhesion properties of Sap6 were lost upon deletion of its integrin-binding motif (RGD) and could be inhibited by addition of RGD peptide or anti-integrin antibodies. Thus, Sap6 (but not Sap5) has an alternative novel function in cell-cell aggregation, independent of its proteinase activity, to promote infection and virulence in oral candidiasis.

  15. Transport and coordination in the coupled soil-root-xylem-phloem leaf system

    Science.gov (United States)

    Huang, C. W.; Katul, G. G.; Pockman, W.; Litvak, M. E.; Domec, J. C.; Palmroth, S.

    2016-12-01

    In response to varying environmental conditions, stomatal pores act as biological valves that dynamically adjust their size thereby determining the rate of CO2 assimilation and water loss (i.e., transpiration) to the dry atmosphere. Although the significance of this biotic control on gas exchange is rarely disputed, representing parsimoniously all the underlying mechanisms responsible for stomatal kinetics remain a subject of some debate. It has been conjectured that stomatal control in seed plants (i.e., angiosperm and gymnosperm) represents a compromise between biochemical demand for CO2 and prevention of excessive water loss. This view has been amended at the whole-plant level, where xylem hydraulics and sucrose transport efficiency in phloem appear to impose additional constraints on gas exchange. If such additional constraints impact stomatal opening and closure, then seed plants may have evolved coordinated photosynthetic-hydraulic-sugar transporting machinery that confers some competitive advantages in fluctuating environmental conditions. Thus, a stomatal optimization model that explicitly considers xylem hydraulics and maximum sucrose transport is developed to explore this coordination in the leaf-xylem-phloem system. The model is then applied to progressive drought conditions. The main findings from the model calculations are that (1) the predicted stomatal conductance from the conventional stomatal optimization theory at the leaf and the newly proposed models converge, suggesting a tight coordination in the leaf-xylem-phloem system; (2) stomatal control is mainly limited by the water supply function of the soil-xylem hydraulic system especially when the water flux through the transpiration stream is significantly larger than water exchange between xylem and phloem; (3) thus, xylem limitation imposed on the supply function can be used to differentiate species with different water use strategy across the spectrum of isohydric to anisohydric behavior

  16. Anatomy and lignin distribution in reaction phloem fibres of several Japanese hardwoods.

    Science.gov (United States)

    Nakagawa, Kaori; Yoshinaga, Arata; Takabe, Keiji

    2012-09-01

    Although tension wood formation and the structure of gelatinous fibres (G-fibres) have been widely investigated, studies of the influence of the reaction phenomenon on phloem fibres have been few and incomplete in comparison with those of xylem wood fibres. This study was undertaken to clarify the influence of stem inclination on phloem fibres using several Japanese hardwood species that produce different G-fibre types in tension wood. Eight hardwood species were inclined at 30-45° at the beginning of April. Specimens were collected in July and December. The cell-wall structure and lignin distribution of phloem fibres on both the tension and opposite sides were compared by light microscopy, ultraviolet microscopy, confocal laser scanning microscopy after staining with acriflavine, and transmission electron microscopy after staining with potassium permanganate. Three types of changes were found in tension-side phloem fibres: (1) increases in the proportion of the syringyl unit in lignin in the S(1) and S(2) layers and compound middle lamella (Cercidiphyllum japonicum), (2) formation of unlignified gelatinous layers (Melia azedarach and Acer rufinerve) and (3) increases in the number of layers (n) in the multi-layered structure of S(1) + S(2) + n (G + L) (Mallotus japonicus). Other species showed no obvious change in cell-wall structure or lignin distribution. Phloem fibres of the tree species examined in our study showed three types of changes in lignin distribution and cell-wall structure. The reaction phenomenon may vary with tree species and may not be closely related to G-fibre type in tension wood.

  17. Visualization of scattering angular distributions with the SAP code

    Science.gov (United States)

    Fernandez, J. E.; Scot, V.; Basile, S.

    2010-07-01

    SAP (Scattering Angular distribution Plot) is a graphical tool developed at the University of Bologna to compute and plot Rayleigh and Compton differential cross-sections (atomic and electronic), form-factors (FFs) and incoherent scattering functions (SFs) for single elements, compounds and mixture of compounds, for monochromatic excitation in the range of 1-1000 keV. The computation of FFs and SFs may be performed in two ways: (a) by interpolating Hubbell's data from EPDL97 library and (b) by using semi-empirical formulas as described in the text. Two kinds of normalization permit to compare the plots of different magnitudes, by imposing a similar scale. The characteristics of the code SAP are illustrated with one example.

  18. 7 CFR 457.118 - Malting barley crop insurance.

    Science.gov (United States)

    2010-01-01

    ... Barley Price and Quality Endorsement (This is a continuous endorsement. Refer to section 2 of the Common... all quality criteria contained herein or grades U.S. No. 4 or lower in accordance with the grades and... coverage for malting barley production and quality losses at a price per bushel greater than that offered...

  19. Barley metallothioneins differ in ontogenetic pattern and response to metals

    DEFF Research Database (Denmark)

    Schiller, Michaela; Hegelund, Josefine Nymark; Pedas, Pai

    2014-01-01

    The barley genome encodes a family of 10 metallothioneins (MTs) that have not previously been subject to extensive gene expression profiling. We show here that expression of MT1a, MT2b1, MT2b2 and MT3 in barley leaves increased more than 50-fold during the first 10 d after germination. Concurrent...

  20. Analysis of Pregerminated Barley Using Hyperspectral Image Analysis

    DEFF Research Database (Denmark)

    Arngren, Morten; Hansen, Per Waaben; Eriksen, Birger

    2011-01-01

    Pregermination is one of many serious degradations to barley when used for malting. A pregerminated barley kernel can under certain conditions not regerminate and is reduced to animal feed of lower quality. Identifying pregermination at an early stage is therefore essential in order to segregate ...

  1. Progressive hull removal from barley using the Fitzpatrick comminuting mill

    Science.gov (United States)

    The objective of the study was to explore an alternative use of the Fitzpatrick Comminuting Machine: to use it to remove the hull from hulled barley while keeping the barley kernel intact. Traditionally, this mill is used to grind material, but we have recently discovered that it also has the abili...

  2. Combining unmalted barley and pearling gives good quality brewing

    NARCIS (Netherlands)

    Donkelaar, van Laura H.G.; Hageman, Jos A.; Oguz, Serhat; Noordman, Tom R.; Boom, Remko M.; Goot, van der Atze Jan

    2016-01-01

    Brewing with unmalted barley can reduce the use of raw materials, thereby increasing the efficiency of the brewing process. However, unmalted barley contains several undesired components for brewing and has a low enzymatic activity. Pearling, an abrasive milling method, has been proposed as a pre

  3. Low Phytic Acid Barley Responses to Phosphorus Rates

    Science.gov (United States)

    Low phytic acid (LPA) barley (Hordeum vulgare L.) cultivars partition phosphorus in seed tissue differently than conventional barley cultivars through a reduction in seed phytic acid (myo-inositol-1,2,3,4,5,6-hexkisphosphate) coupled with an increase in inorganic phosphorus. The response of the LPA...

  4. Sap flow measurements combining sap-flux density radial profiles with punctual sap-flux density measurements in oak trees (Quercus ilex and Quercus pyrenaica) - water-use implications in a water-limited savanna-

    Science.gov (United States)

    Reyes, J. Leonardo; Lubczynski1, Maciek W.

    2010-05-01

    Sap flow measurement is a key aspect for understanding how plants use water and their impacts on the ecosystems. A variety of sensors have been developed to measure sap flow, each one with its unique characteristics. When the aim of a research is to have accurate tree water use calculations, with high temporal and spatial resolution (i.e. scaled), a sensor with high accuracy, high measurement efficiency, low signal-to-noise ratio and low price is ideal, but such has not been developed yet. Granier's thermal dissipation probes (TDP) have been widely used in many studies and various environmental conditions because of its simplicity, reliability, efficiency and low cost. However, it has two major flaws when is used in semi-arid environments and broad-stem tree species: it is often affected by high natural thermal gradients (NTG), which distorts the measurements, and it cannot measure the radial variability of sap-flux density in trees with sapwood thicker than two centimeters. The new, multi point heat field deformation sensor (HFD) is theoretically not affected by NTG, and it can measure the radial variability of the sap flow at different depths. However, its high cost is a serious limitation when simultaneous measurements are required in several trees (e.g. catchment-scale studies). The underlying challenge is to develop a monitoring schema in which HFD and TDP are combined to satisfy the needs of measurement efficiency and accuracy in water accounting. To assess the level of agreement between TDP and HFD methods in quantifying sap flow rates and temporal patterns on Quercus ilex (Q.i ) and Quercus pyrenaica trees (Q.p.), three measurement schemas: standard TDP, TDP-NTG-corrected and HFD were compared in dry season at the semi-arid Sardon area, near Salamanca in Spain in the period from June to September 2009. To correct TDP measurements with regard to radial sap flow variability, a radial sap flux density correction factor was applied and tested by adjusting TDP

  5. 基于中间件平台SAP Business Connector的应用系统集成

    Institute of Scientific and Technical Information of China (English)

    佘春子

    2007-01-01

    文中介绍SAP BC(SAP Business Connector)基本概念和其最新技术SAP XI(SAP Exchange Infrastructure),其次概述SAP BC技术架构,最后提出基于SAPBC平台的应用系统集成方案:基于该方案并实现了E-comlIlerce-采购交互商务系统.

  6. Role of NuSAP in Prostate Tumor Progression

    Science.gov (United States)

    2012-06-01

    G2-- mitosis phase and declines rapidly following cell division. NuSAP expression is highly correlated with cell prolifera- tion during embryogenesis...transfected LNCaP and PC3 cell lines were incubated for 15min at room temperature with 20 nM of a biotin-labeled oligonucleotide probe containing a... temperature prior to adding the labeled oligonucleotide. The probe-bound nuclear extracts were separated from the free probe in a 6% DNA retardation gel

  7. Barley Stripe Mosaic Virus and the Frequency of Triploids and Aneuploids in Barley

    DEFF Research Database (Denmark)

    Sandfær, J.

    1973-01-01

    BSMV infection caused a pronounced increase in the frequency of triploid and aneuploid seeds in eleven barley varieties, but with considerable variation in frequency among varieties. In some of the varieties triploids exceeded three per cent. In virus-free material a few triploids were found in m...

  8. Giemsa C-banding of Barley Chromosomes. IV. Chromosomal Constitution of Autotetraploid Barley

    DEFF Research Database (Denmark)

    Linde-Laursen, Ib

    1984-01-01

    The progeny of an autotetraploid barley plant (C1) consisted of 45 tetraploids and 33 aneuploids. Giemsa C-banding was used to identify each of the chromosomes in 20 euploid and 31 aneuploid C2--seedlings, and in 11 C3--offspring of aneuploid C2--plants. The euploid C2--seedlings all had four hom...

  9. Adulteration and Contamination of Commercial Sap of Hymenaea Species

    Science.gov (United States)

    Farias, Katyuce de Souza; Auharek, Sarah Alves; Cunha-Laura, Andréa Luiza; de Souza, Jeana Mara Escher; Damasceno-Junior, Geraldo Alves; Toffoli-Kadri, Mônica Cristina; de Oliveira Filiú, Wander Fernando; dos Santos, Edson dos Anjos; Chang, Marilene Rodrigues

    2017-01-01

    The Hymenaea stigonocarpa and Hymenaea martiana species, commonly known as “jatobá,” produce a sap which is extracted by perforation of the trunk and is commonly used in folk medicine as a tonic. For this study, the authenticity of commercial samples of jatobá was verified by the identification of the main compounds and multivariate analysis and contamination by microbial presence analysis. The acute toxicity of the authentic jatobá sap was also evaluated. The metabolites composition and multivariate analysis revealed that none of the commercial samples were authentic. In the microbiological contamination analysis, five of the six commercial samples showed positive cultures within the range of 1,700–100,000 CFU/mL and the authentic sap produced no signs of toxicity, and from a histological point of view, there was the maintenance of tissue integrity. In brief, the commercial samples were deemed inappropriate for consumption and represent a danger to the population. PMID:28303155

  10. Adulteration and Contamination of Commercial Sap of Hymenaea Species

    Directory of Open Access Journals (Sweden)

    Katyuce de Souza Farias

    2017-01-01

    Full Text Available The Hymenaea stigonocarpa and Hymenaea martiana species, commonly known as “jatobá,” produce a sap which is extracted by perforation of the trunk and is commonly used in folk medicine as a tonic. For this study, the authenticity of commercial samples of jatobá was verified by the identification of the main compounds and multivariate analysis and contamination by microbial presence analysis. The acute toxicity of the authentic jatobá sap was also evaluated. The metabolites composition and multivariate analysis revealed that none of the commercial samples were authentic. In the microbiological contamination analysis, five of the six commercial samples showed positive cultures within the range of 1,700–100,000 CFU/mL and the authentic sap produced no signs of toxicity, and from a histological point of view, there was the maintenance of tissue integrity. In brief, the commercial samples were deemed inappropriate for consumption and represent a danger to the population.

  11. p53 contributes to T cell homeostasis through the induction of pro-apoptotic SAP.

    Science.gov (United States)

    Madapura, Harsha S; Salamon, Daniel; Wiman, Klas G; Lain, Sonia; Klein, George; Klein, Eva; Nagy, Noémi

    2012-12-15

    Lack of functional SAP protein, due to gene deletion or mutation, is the cause of X-linked lymphoproliferative disease (XLP), characterized by functionally impaired T and NK cells and a high risk of lymphoma development. We have demonstrated earlier that SAP has a pro-apoptotic function in T and B cells. Deficiency of this function might contribute to the pathogenesis of XLP. We have also shown that SAP is a target of p53 in B cell lines. In the present study, we show that activated primary T cells express p53, which induces SAP expression. p53 is functional as a transcription factor in activated T cells and induces the expression of p21, PUMA and MDM2. PARP cleavage in the late phase of activation indicates that T cells expressing high levels of SAP undergo apoptosis. Modifying p53 levels using Nutlin-3, which specifically dissociates the MDM2-p53 interaction, was sufficient to upregulate SAP expression, indicating that SAP is a target of p53 in T cells. We also demonstrated p53's role as a transcription factor for SAP in activated T cells by ChIP assays. Our result suggests that p53 contributes to T cell homeostasis through the induction of the pro-apoptotic SAP. A high level of SAP is necessary for the activation-induced cell death that is pivotal in termination of the T cell response.

  12. Physico-chemical properties and amino acid profiles of sap from Tunisian date palm

    Directory of Open Access Journals (Sweden)

    Ines Makhlouf-Gafsi

    2016-02-01

    Full Text Available ABSTRACT Date palm sap (Phoenix dactylifera L., also known as “legmi”, is a fresh juice extracted from date palm trees. The present study aimed to elucidate the effects of collection time (at the beginning of the tapping period and after seven days of collection on the amino acid profile and physico-chemical properties of date palm sap from both male and female trees. Dry matter, protein, amino acid, and sugar profiles were determined using the Kjeldahl method, High-Performance Liquid Chromatography (HPLC, and High-Performance Anion-Exchange Chromatography with Pulsed Amperometric Detection (HPAEC-PAD, respectively. Date palm sap from both male and female trees contained high levels of carbohydrates. HPLC analysis showed that this fraction was dominated by sucrose in the sap sample from female trees compared to that from male trees. Male date palm sap was noted to exhibit lower dry matter content than female date palm sap but higher protein, total polyphenol, ash, and amino acid contents. While the major essential amino acids in the sap from male trees consisted of valine and threonine, they were represented by lysine and phenylalanine in sap samples from female trees. Further, Sodium Dodecyl Sulfate Polyacrylamide Gel Electrophoresis (SDS-PAGE analysis showed the presence of a proteinic band of 30 kDa only for the sap from male trees. Taken together, the sap from both male and female date palm trees had a number of properties that are highly valued by the functional food industry.

  13. Uses of tree saps in northern and eastern parts of Europe

    Directory of Open Access Journals (Sweden)

    Ingvar Svanberg

    2012-12-01

    Full Text Available In this article we review the use of tree saps in northern and eastern Europe. Published accounts by travellers, ethnologists and ethnobotanists were searched for historical and contemporary details. Field observations made by the authors have also been used. The presented data shows that the use of tree sap has occurred in most north and eastern European countries. It can be assumed that tree saps were most used where there were extensive stands of birch or maple trees, as these two genera generally produce the largest amount of sap. The taxa most commonly used have been Betula pendula, B. pubescens, and Acer platanoides, but scattered data on the use of several other taxa are presented. Tree sap was used as a fresh drink, but also as an ingredient in food and beverages. It was also fermented to make light alcoholic products like ale and wine. Other folk uses of tree saps vary from supplementary nutrition in the form of sugar, minerals and vitamins, to cosmetic applications for skin and hair and folk medicinal use. Russia, Ukraine, Belarus, Estonia, Latvia and Lithuania are the only countries where the gathering and use of sap (mainly birch sap has remained an important activity until recently, due to the existence of large birch forests, low population density and the incorporation of sap into the former Soviet economic system. It is evident that gathering sap from birch and other trees was more widespread in earlier times. There are records indicating extensive use of tree saps from Scandinavia, Poland, Slovakia and Romania, but it is primarily of a historical character. The extraction of tree sap in these countries is nowadays viewed as a curiosity carried out only by a few individuals. However, tree saps have been regaining popularity in urban settings through niche trading.

  14. A novel major gene on chromosome 6H for resistance of barley against the barley yellow dwarf virus

    NARCIS (Netherlands)

    Niks, R.E.; Habekuss, A.; Bekele, B.; Ordon, F.

    2004-01-01

    In a mapping population derived from the Ethiopian barley line L94 x Vada, natural infection by barley yellow dwarf virus (BYDV) occurred. While line L94 hardly showed symptoms, Vada was severely affected. The 103 recombinant inbred lines segregated bimodally. The major gene responsible for this res

  15. Reconstitution of cyanogenesis in barley (Hordeum vulgare L.) and its implications for resistance against the barley powdery mildew fungus.

    Science.gov (United States)

    Nielsen, Kirsten A; Hrmova, Maria; Nielsen, Janni Nyvang; Forslund, Karin; Ebert, Stefan; Olsen, Carl E; Fincher, Geoffrey B; Møller, Birger Lindberg

    2006-04-01

    Barley (Hordeum vulgare L.) produces a leucine-derived cyanogenic beta-D-glucoside, epiheterodendrin that accumulates specifically in leaf epidermis. Barley leaves are not cyanogenic, i.e. they do not possess the ability to release hydrogen cyanide, because they lack a cyanide releasing beta-D-glucosidase. Cyanogenesis was reconstituted in barley leaf epidermal cells through single cell expression of a cDNA encoding dhurrinase-2, a cyanogenic beta-D-glucosidase from sorghum. This resulted in a 35-60% reduction in colonization rate by an obligate parasite Blumeria graminis f. sp. hordei, the causal agent of barley powdery mildew. A database search for barley homologues of dhurrinase-2 identified a (1,4)-beta-D-glucan exohydrolase isozyme betaII that is located in the starchy endosperm of barley grain. The purified barley (1,4)-beta-D-glucan exohydrolase isozyme betaII was found to hydrolyze the cyanogenic beta-D-glucosides, epiheterodendrin and dhurrin. Molecular modelling of its active site based on the crystal structure of linamarase from white clover, demonstrated that the disposition of the catalytic active amino acid residues was structurally conserved. Epiheterodendrin stimulated appressoria and appressorial hook formation of B. graminis in vitro, suggesting that loss of cyanogenesis in barley leaves has enabled the fungus to utilize the presence of epiheterodendrin to facilitate host recognition and to establish infection.

  16. Validation of the scale on Satisfaction of Adolescents with Postoperative pain management-idiopathic Scoliosis (SAP-S

    Directory of Open Access Journals (Sweden)

    Khadra C

    2017-01-01

    Full Text Available Christelle Khadra,1–3 Sylvie Le May,1,2 Ariane Ballard,1,2 Jean Théroux,1,4 Sylvie Charette,5 Edith Villeneuve,6,7 Stefan Parent,2,8,9 Argerie Tsimicalis,10,11 Jill MacLaren Chorney12,13 1Faculty of Nursing, Université de Montréal, 2CHU Sainte-Justine Research Centre, 3Montreal Chest Institute, McGill University Health Centre, Montreal, QC, Canada; 4School of Health Professions, Murdoch University, Perth, WA, Australia; 5Direction of Nursing, 6Department of Anesthesia, CHU Sainte-Justine, 7Department of Anesthesia, 8Department of Surgery, Faculty of Medicine, Université de Montréal, 9Orthopaedic Service, Department of Surgery, CHU Sainte-Justine, 10Ingram School of Nursing, McGill University, 11Shriners Hospitals for Children, Montreal, QC, 12Pediatric Complex Pain Team, IWK Health Centre, 13Department of Anesthesia, Pain Management, and Perioperative Medicine, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada Background: Spinal fusion is a common orthopedic surgery in children and adolescents and is associated with high pain levels postoperatively. If the pain is not well managed, negative outcomes may ensue. To our knowledge, there is no measure in English that assesses patient’s satisfaction with postoperative pain management following idiopathic scoliosis surgery. The aim of the present study was to assess the psychometric properties of the satisfaction subscale of the English version of the Satisfaction of Adolescents with Postoperative pain management – idiopathic Scoliosis (SAP-S scale.Methods: Eighty-two participants aged 10–18 years, who had undergone spinal fusion surgery, fully completed the SAP-S scale at 10–14 days postdischarge. Construct validity was assessed through a principal component analysis using varimax rotation.Results: Principal component analysis indicated a three-factor structure of the 13-item satisfaction subscale of the SAP-S scale. Factors referred to satisfaction regarding current

  17. Genomic Prediction of Barley Hybrid Performance

    Directory of Open Access Journals (Sweden)

    Norman Philipp

    2016-07-01

    Full Text Available Hybrid breeding in barley ( L. offers great opportunities to accelerate the rate of genetic improvement and to boost yield stability. A crucial requirement consists of the efficient selection of superior hybrid combinations. We used comprehensive phenotypic and genomic data from a commercial breeding program with the goal of examining the potential to predict the hybrid performances. The phenotypic data were comprised of replicated grain yield trials for 385 two-way and 408 three-way hybrids evaluated in up to 47 environments. The parental lines were genotyped using a 3k single nucleotide polymorphism (SNP array based on an Illumina Infinium assay. We implemented ridge regression best linear unbiased prediction modeling for additive and dominance effects and evaluated the prediction ability using five-fold cross validations. The prediction ability of hybrid performances based on general combining ability (GCA effects was moderate, amounting to 0.56 and 0.48 for two- and three-way hybrids, respectively. The potential of GCA-based hybrid prediction requires that both parental components have been evaluated in a hybrid background. This is not necessary for genomic prediction for which we also observed moderate cross-validated prediction abilities of 0.51 and 0.58 for two- and three-way hybrids, respectively. This exemplifies the potential of genomic prediction in hybrid barley. Interestingly, prediction ability using the two-way hybrids as training population and the three-way hybrids as test population or vice versa was low, presumably, because of the different genetic makeup of the parental source populations. Consequently, further research is needed to optimize genomic prediction approaches combining different source populations in barley.

  18. Replication of DNA during barley endosperm development

    DEFF Research Database (Denmark)

    Giese, H.

    1992-01-01

    The incorporation of [6-H-3]-thymidine into DNA of developing barley end sperm was examined by autoradiography of cross sections of seeds and DNA analysis. The majority of nuclear divisions took place in the very young endosperm, but as late as 25 days after anthesis there was evidence for DNA...... replication. The DNA content of the endosperm increases during development and in response to nitrogen application in parallel to the storage protein synthesis profile. The hordein genes were hypersensitive to DNase I treatment throughout development....

  19. Dynamic Allocation of Sugars in Barley

    Science.gov (United States)

    Cumberbatch, L. C.; Crowell, A. S.; Fallin, B. A.; Howell, C. R.; Reid, C. D.; Weisenberger, A. G.; Lee, S. J.; McKisson, J. E.

    2014-03-01

    Allocation of carbon and nitrogen is a key factor for plant productivity. Measurements are carried out by tracing 11C-tagged sugars using positron emission tomography and coincidence counting. We study the mechanisms of carbon allocation and transport from carbohydrate sources (leaves) to sinks (stem, shoot, roots) under various environmental conditions such as soil nutrient levels and atmospheric CO2 concentration. The data are analyzed using a transfer function analysis technique to model transport and allocation in barley plants. The experimental technique will be described and preliminary results presented. This work was supported in part by USDOE Grant No. DE-FG02-97-ER41033 and DE-SC0005057.

  20. Transglycosylation by barley α-amylase 1

    DEFF Research Database (Denmark)

    Mótyán, János A.; Fazekas, Erika; Mori, Haruhide

    2011-01-01

    The transglycosylation activity of barley α-amylase 1 (AMY1) and active site AMY1 subsite mutant enzymes was investigated. We report here the transferase ability of the V47A, V47F, V47D and S48Y single mutants and V47K/S48G and V47G/S48D double mutant AMY1 enzymes in which the replaced amino acid...... DP 2, DP 3 and DP 5 were successfully applied to detect activity of Bacillus stearothermophilus maltogenic α-amylase, human salivary α-amylase and Bacillus licheniformis α-amylase, respectively in a fast and simple fluorometric assay....

  1. Phloem parenchyma transfer cells in Arabidopsis – an experimental system to identify transcriptional regulators of wall ingrowth formation

    OpenAIRE

    Arun Chinnappa, Kiruba S.; Nguyen, Thi Thu S.; Hou, Jiexi; Wu, Yuzhou; McCurdy, David W.

    2013-01-01

    In species performing apoplasmic loading, phloem cells adjacent to sieve elements often develop into transfer cells (TCs) with wall ingrowths. The highly invaginated wall ingrowths serve to amplify plasma membrane surface area to achieve increased rates of apoplasmic transport, and may also serve as physical barriers to deter pathogen invasion. Wall ingrowth formation in TCs therefore plays an important role in phloem biology, however, the transcriptional switches regulating the deposition of...

  2. 植物和刺吸式口器昆虫的诱导防御与反防御研究进展%The induced defense and anti-defense between host plant and phloem sucker insect

    Institute of Scientific and Technical Information of China (English)

    刘勇; 孙玉诚; 王国红

    2011-01-01

    刺吸式口器昆虫在长期的进化过程中形成特殊的口针结构,用于专门吸食植物韧皮部筛管细胞的汁液成分.以蚜虫为例,它们在取食过程中分泌的胶状唾液和水状唾液将有效的降低植物防御反应,其中水状唾液包含的大量酶类不仅可以帮助蚜虫穿刺植物韧皮部,刺探到筛管细胞,同时也是植物感受蚜虫为害的激发因子,诱导出植物防御反应和相关抗性基因的表达.一般来说,蚜虫通常诱导植物水杨酸(SA)防御途径,但也有证据表明茉莉酸/乙烯(JA/ET)途径也参与了蚜虫诱导植物的防御反应过程,而蚜虫会采取反防御策略避开并适应植物的诱导抗性,使植物forisome蛋白失活,进而持续的在取食位点吸食汁液.由此可见,刺吸式口器昆虫的唾液分泌物将在昆虫与寄主植物互作关系中发挥重要作用.%In the course of long term co-evolution with their host plants, phloem-sucking insects have evolved a special styler that facilitates feeding on phloem sap. Using aphids as an example, we investigated the feeding mechanisms used by phloem-sucking insects. Aphids secrete both viscous and watery saliva to reduce the resistance of their host plants during the feeding process. The watery saliva contains a complex mixture of enzymes that not only make it easier for the aphid to penetrate the phloem but which also appear to trigger the plant' s chemical defense mechanisms. Generally, aphids activate the plant's defenses via the salicylic acid signaling pathway. However, previous research demonstrates that the jasmonic acid and ethylene signaling pathways are also involved in plant defenses against aphids. Aphids have evolved a variety of adaptations to counter plant defenses. For example, aphid feeding activity renders plant forisome protein inactive, thereby allowing aphids to continue feeding on their host plants. Our observations suggest that components of the saliva of phloem-sucking insects are

  3. Phosphorylated SAP155, the spliceosomal component, is localized to chromatin in postnatal mouse testes

    Energy Technology Data Exchange (ETDEWEB)

    Eto, Ko, E-mail: etoko@gpo.kumamoto-u.ac.jp [Department of Biological Sciences, Graduate School of Science and Technology, Kumamoto University, Kumamoto 860-8555 (Japan); Sonoda, Yoshiyuki [Department of Biological Sciences, Graduate School of Science and Technology, Kumamoto University, Kumamoto 860-8555 (Japan); Jin, Yuji [School of Basic Medicine, Jilin Medical College, Jilin 132013 (China); Abe, Shin-ichi [Department of Biological Sciences, Graduate School of Science and Technology, Kumamoto University, Kumamoto 860-8555 (Japan)

    2010-03-19

    SAP155 is an essential component of the spliceosome and its phosphorylation is required for splicing catalysis, but little is known concerning its expression and regulation during spermatogenesis in postnatal mouse testes. We report that SAP155 is ubiquitously expressed in nuclei of germ and Sertoli cells within the seminiferous tubules of 6- and 35-day postpartum (dpp) testes. Analyses by fractionation of testes revealed that (1) phosphorylated SAP155 was found in the fraction containing nuclear structures at 6 dpp in amounts much larger than that at other ages; (2) non-phosphorylated SAP155 was detected in the fraction containing nucleoplasm; and (3) phosphorylated SAP155 was preferentially associated with chromatin. Our findings suggest that the active spliceosome, containing phosphorylated SAP155, performs pre-mRNA splicing on chromatin concomitant with transcription during testicular development.

  4. Phloem unloading follows an extensive apoplasmic pathway in cucumber (Cucumis sativus L.) fruit from anthesis to marketable maturing stage.

    Science.gov (United States)

    Hu, Liping; Sun, Huihui; Li, Ruifu; Zhang, Lingyun; Wang, Shaohui; Sui, Xiaolei; Zhang, Zhenxian

    2011-11-01

    The phloem unloading pathway remains unclear in fruits of Cucurbitaceae, a classical stachyose-transporting species with bicollateral phloem. Using a combination of electron microscopy, transport of phloem-mobile symplasmic tracer carboxyfluorescein, assays of acid invertase and sucrose transporter, and [(14)C]sugar uptake, the phloem unloading pathway was studied in cucumber (Cucumis sativus) fruit from anthesis to the marketable maturing stage. Structural investigations showed that the sieve element-companion cell (SE-CC) complex of the vascular bundles feeding fruit flesh is apparently symplasmically restricted. Imaging of carboxyfluorescein unloading showed that the dye remained confined to the phloem strands of the vascular bundles in the whole fruit throughout the stages examined. A 37 kDa acid invertase was located predominantly in the cell walls of SE-CC complexes and parenchyma cells. Studies of [(14)C]sugar uptake suggested that energy-driven transporters may be functional in sugar trans-membrane transport within symplasmically restricted SE-CC complex, which was further confirmed by the existence of a functional plasma membrane sucrose transporter (CsSUT4) in cucumber fruit. These data provide a clear evidence for an apoplasmic phloem unloading pathway in cucumber fruit. A presumption that putative raffinose or stachyose transporters may be involved in soluble sugars unloading was discussed.

  5. Dynamics and control of phloem loading of indole-3-acetic acid in seedling cotyledons of Ricinus communis.

    Science.gov (United States)

    Tamas, Imre A; Davies, Peter J

    2016-08-01

    During seed germination, sugars and auxin are produced from stored precursors or conjugates respectively, and transported to the seedling axis. To elucidate the mode of travel of indole-3-acetic acid (IAA) into the phloem, a solution of [(3)H]IAA, together with [(14)C]sucrose, was injected into the endosperm cavity harboring the cotyledons of germinating seedlings of Ricinus communis Phloem exudate from the cut hypocotyl was collected and the radioactivity recorded. Sucrose loading into the phloem was inhibited at higher IAA levels, and the rate of filling of the transient pool(s) was reduced by IAA. IAA was detected within 10min, with the concentration increasing over 30min and reaching a steady-state by 60min. The kinetics indicated that phloem loading of IAA involving both an active, carrier-based, and a passive, diffusion-based component, with IAA traveling along a pathway containing an intermediary pool, possibly the protoplasts of mesophyll cells. Phloem loading of IAA was altered by sucrose, K(+), and a range of non-specific and IAA-specific analogs and inhibitors in a manner that showed that IAA moves into the phloem from the extra cotyledonary solution by multiple pathways, with a carrier-mediated pathway playing a principal role.

  6. Concurrent measurements of change in the bark and xylem diameters of trees reveal a phloem-generated turgor signal.

    Science.gov (United States)

    Mencuccini, Maurizio; Hölttä, Teemu; Sevanto, Sanna; Nikinmaa, Eero

    2013-06-01

    · Currently, phloem transport in plants under field conditions is not well understood. This is largely the result of the lack of techniques suitable for the measurement of the physiological properties of phloem. · We present a model that interprets the changes in xylem diameter and live bark thickness and separates the components responsible for such changes. We test the predictions from this model on data from three mature Scots pine trees in Finland. The model separates the live bark thickness variations caused by bark water capacitance from a residual signal interpreted to indicate the turgor changes in the bark. · The predictions from the model are consistent with processes related to phloem transport. At the diurnal scale, this signal is related to patterns of photosynthetic activity and phloem loading. At the seasonal scale, bark turgor showed rapid changes during two droughts and after two rainfall events, consistent with physiological predictions. Daily cumulative totals of this turgor term were related to daily cumulative totals of canopy photosynthesis. Finally, the model parameter representing radial hydraulic conductance between phloem and xylem showed a temperature dependence consistent with the temperature-driven changes in water viscosity. · We propose that this model has potential for the continuous field monitoring of tree phloem function. © 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.

  7. Dynamics and control of phloem loading of indole-3-acetic acid in seedling cotyledons of Ricinus communis

    Science.gov (United States)

    Tamas, Imre A.; Davies, Peter J.

    2016-01-01

    During seed germination, sugars and auxin are produced from stored precursors or conjugates respectively, and transported to the seedling axis. To elucidate the mode of travel of indole-3-acetic acid (IAA) into the phloem, a solution of [3H]IAA, together with [14C]sucrose, was injected into the endosperm cavity harboring the cotyledons of germinating seedlings of Ricinus communis. Phloem exudate from the cut hypocotyl was collected and the radioactivity recorded. Sucrose loading into the phloem was inhibited at higher IAA levels, and the rate of filling of the transient pool(s) was reduced by IAA. IAA was detected within 10min, with the concentration increasing over 30min and reaching a steady-state by 60min. The kinetics indicated that phloem loading of IAA involving both an active, carrier-based, and a passive, diffusion-based component, with IAA traveling along a pathway containing an intermediary pool, possibly the protoplasts of mesophyll cells. Phloem loading of IAA was altered by sucrose, K+, and a range of non-specific and IAA-specific analogs and inhibitors in a manner that showed that IAA moves into the phloem from the extra cotyledonary solution by multiple pathways, with a carrier-mediated pathway playing a principal role. PMID:27371947

  8. Phloem Proteomics Reveals New Aspects of Long-distance Signaling in Plants

    Institute of Scientific and Technical Information of China (English)

    Urs F.Benning; Banita Tamot; Susanne Hoffmann-Benning

    2012-01-01

    As the world population grows our need for food and fuel increases drastically.Given the additional impact of the global climate change a second "green revolution",however seems unlikely to be achieved by simply adding fertilizer or accessing new land but will need a better understanding of the factors and processes essential for plant growth and development.One of those processes is the adaptation of plants to their environment.Since plants are sessile and cannot move to appropriate hiding places or feeding grounds to escape adverse conditions,they evolved mechanisms to detect changes in their environment,communicate these to different organs,and adjust development accordingly.One of these adaptations,the phloem,serves as a major trafficking pathway for assimilates,viruses,RNA,plant hormones,metabolites,and proteins with functions ranging from synthesis to metabolism to signaling.The study of signaling compounds within the phloem is essential for our understanding of plant communication of environmental cues.Determining the nature of signals and the mechanisms by which they are communicated through the phloem will lead to a more complete understanding of plant development and plant responses to stress and,as a result could lead to the development of plants with increased adaptation to a changed environment.Our analysis of Arabidopsis phloem exudates revealed several lipid-binding proteins as well as lipids.Lipids are not typically expected in the aqueous environment of SEs.Yet the long-distance transport of hydrophobic compounds in aqueous systems is not without precedence in biological systems:In human blood lipids are often bound to proteins and transported for storage,use,modification,or degradation; alternatively,they serve as messengers and modulate transcription factor activity and,as a result,development.It is conceivable that lipids and the respective lipid-binding proteins in the phloem serve similar functions in plants and play an important role in

  9. Diffusion and bulk flow in phloem loading - a theoretical analysis of the polymer trap mechanism

    CERN Document Server

    Dölger, Julia; Liesche, Johannes; Schulz, Alexander; Bohr, Tomas

    2014-01-01

    Plants create sugar in the mesophyll cells of their leaves by photosynthesis. This sugar, mostly sucrose, has to be loaded via the bundle sheath into the phloem vascular system (the sieve elements), where it is distributed to growing parts of the plant. We analyse the feasibility of a particular loading mechanism, active symplasmic loading, also called the polymer trap mechanism, where sucrose is transformed into heavier sugars, such as raffinose and stachyose, in the intermediary-type companion cells bordering the sieve elements in the minor veins of the phloem. Keeping the heavier sugars from diffusing back requires that the plasmodesmata connecting the bundle sheath with the intermediary cell act as extremely precise filters, which are able to distinguish between molecules that differ by less than 20% in size. In our modeling, we take into account the coupled water and sugar movement across the relevant interfaces, without explicitly considering the chemical reactions transforming the sucrose into the heav...

  10. Nucleic acids encoding phloem small RNA-binding proteins and transgenic plants comprising them

    Science.gov (United States)

    Lucas, William J.; Yoo, Byung-Chun; Lough, Tony J.; Varkonyi-Gasic, Erika

    2007-03-13

    The present invention provides a polynucleotide sequence encoding a component of the protein machinery involved in small RNA trafficking, Cucurbita maxima phloem small RNA-binding protein (CmPSRB 1), and the corresponding polypeptide sequence. The invention also provides genetic constructs and transgenic plants comprising the polynucleotide sequence encoding a phloem small RNA-binding protein to alter (e.g., prevent, reduce or elevate) non-cell autonomous signaling events in the plants involving small RNA metabolism. These signaling events are involved in a broad spectrum of plant physiological and biochemical processes, including, for example, systemic resistance to pathogens, responses to environmental stresses, e.g., heat, drought, salinity, and systemic gene silencing (e.g., viral infections).

  11. Annulate lamellae in phloem cells of virus-infected Sonchus plants.

    Science.gov (United States)

    Steinkamp, M P; Hoefert, L L

    1977-07-01

    The occurrence of annulate lamellae (AL) in differentiating phloem of Sonchus oleraceus (Compositae) singly infected with sowthistle yellow vein virus (SYVV) and doubly infected with a combination of SYVV and beet yellow stunt virus is documented by electron microscopy. Cell types in which AL were found were immature sieve elements and phloem parenchyma cells. AL were found only in cells that also contained SYVV particles although a direct association between the virus and AL was not apparent. The substructure of the AL and the relationships between the AL and the nuclear envelope and endoplasmic reticulum are similar to those reported in other descriptions of this organelle in the literature. This report appears to be the first one concerning the association of AL with a plant virus disease.

  12. Plant-PET Scans: In Vivo Mapping of Xylem and Phloem Functioning.

    Science.gov (United States)

    Hubeau, Michiel; Steppe, Kathy

    2015-10-01

    Medical imaging techniques are rapidly expanding in the field of plant sciences. Positron emission tomography (PET) is advancing as a powerful functional imaging technique to decipher in vivo the function of xylem water flow (with (15)O or (18)F), phloem sugar flow (with (11)C or (18)F), and the importance of their strong coupling. However, much remains to be learned about how water flow and sugar distribution are coordinated in intact plants, both under present and future climate regimes. We propose to use PET analysis of plants (plant-PET) to visualize and generate these missing data about integrated xylem and phloem transport. These insights are crucial to understanding how a given environment will affect plant physiological processes and growth. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. 30 CFR 285.607 - How do I submit my SAP?

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 2 2010-07-01 2010-07-01 false How do I submit my SAP? 285.607 Section 285.607... Assessment Plan and Information Requirements for Commercial Leases § 285.607 How do I submit my SAP? You must submit one paper copy and one electronic version of your SAP to MMS at the address listed in § 285.110(a). ...

  14. Dynamic control of osmolality and ionic composition of the xylem sap in two mangrove species.

    Science.gov (United States)

    López-Portillo, Jorge; Ewers, Frank W; Méndez-Alonzo, Rodrigo; Paredes López, Claudia L; Angeles, Guillermo; Alarcón Jiménez, Ana Luisa; Lara-Domínguez, Ana Laura; Torres Barrera, María Del Carmen

    2014-06-01

    • Premise of the study: Xylem sap osmolality and salinity is a critical unresolved issue in plant function with impacts on transport efficiency, pressure gradients, and living cell turgor pressure, especially for halophytes such as mangrove trees.• Methods: We collected successive xylem vessel sap samples from stems and shoots of Avicennia germinans and Laguncularia racemosa using vacuum and pressure extraction and measured their osmolality. Following a series of extractions with the pressure chamber, we depressurized the shoot and pressurized again after various equilibration periods (minutes to hours) to test for dynamic control of osmolality. Transpiration and final sap osmolality were measured in shoots perfused with deionized water or different seawater dilutions.• Key results: For both species, the sap osmolality values of consecutive samples collected by vacuum extraction were stable and matched those of the initial samples extracted with the pressure chamber. Further extraction of samples with the pressure chamber decreased sap osmolality, suggesting reverse osmosis occurred. However, sap osmolalities increased when longer equilibration periods after sap extraction were allowed. Analysis of expressed sap with HPLC indicated a 1:1 relation between measured osmolality and the osmolality of the inorganic ions in the sap (mainly Na(+), K(+), and Cl(-)), suggesting no contamination by organic compounds. In stems perfused with deionized water, the sap osmolality increased to mimic the native sap osmolality.• Conclusions: Xylem sap osmolality and ionic contents are dynamically adjusted by mangroves and may help modulate turgor pressure, hydraulic conductivity, and water potential, thus being important for mangrove physiology, survival, and distribution. © 2014 Botanical Society of America, Inc.

  15. SAP HR工资核算处理机制分析

    Institute of Scientific and Technical Information of China (English)

    苏赤

    2014-01-01

    SAP ER系统功能强大,本文以工作实践为基础,深入分析了SAP系统工资核算处理机制及工资项评估机制,帮助广大用户更好理解SAP HR工资核算的内在处理机制和使用SAP HR工资核算功能.

  16. Characterization of volatile aroma compounds in different brewing barley cultivars.

    Science.gov (United States)

    Dong, Liang; Hou, Yingmin; Li, Feng; Piao, Yongzhe; Zhang, Xiao; Zhang, Xiaoyu; Li, Cheng; Zhao, Changxin

    2015-03-30

    Beer is a popular alcoholic malt beverage resulting from fermentation of the aqueous extract of malted barley with hops. The aroma of brewing barley impacts the flavor of beer indirectly, because some flavor compounds or their precursors in beer come from the barley. The objectives of this research were to study volatile profiles and to characterize odor-active compounds of brewing barley in order to determine the variability of the aroma composition among different brewing barley cultivars. Forty-one volatiles comprising aldehydes, ketones, alcohols, organic acids, aromatic compounds and furans were identified using solid phase microextraction combined with gas chromatography/mass spectrometry, among which aldehydes, alcohols and ketones were quantitatively in greatest abundance. Quantitative measurements performed by means of solvent extraction and calculation of odor activity values revealed that acetaldehyde, 2-methylpropanal, 3-methylbutanal, 2-methylbutanal, hexanal, heptanal, octanal, nonanal, 3-methyl-1-butanol, cyclopentanol, 2,3-butanedione, 2,3-pentanedione, 2-heptanone, acetic acid, ethyl acetate, 2-pentylfuran and benzeneacetaldehyde, whose concentrations exceeded their odor thresholds, could be considered as odor-active compounds of brewing barley. Principal component analysis was employed to evaluate the differences among cultivars. The results demonstrated that the volatile profile based on the concentrations of aroma compounds enabled good differentiation of most barley cultivars. © 2014 Society of Chemical Industry.

  17. Influence of Temperature on the Extractibility of Polysaccharides in Barley

    Directory of Open Access Journals (Sweden)

    Rodica Căpriţă

    2011-10-01

    Full Text Available Barley contains substantial amounts of both soluble and insoluble non-starch polysaccharides (NSP. The main watersoluble NSP in barley are highly viscous β-glucans. Monogastric animals, including humans and birds, cannotsynthesize β-glucanase, and the amount of β-glucanase derived from barley grain and bacteria in the gastrointestinaltract is insufficient to completely hydrolyze β-glucans. In the present investigation, we have studied the influence oftemperature and heating time on the extractibility of soluble polysaccharides in barley. Heating the barley samples at60°C and 80°C before extraction has the effect of lowering the soluble fraction of the polysaccharides. The dynamicviscosity values of water extracts from barley decreased up to 21.68% when heating at 60ºC for 15 minutes, and upto 25.30% when heating at 80ºC for 15 minutes, when the determinations were made immediately after extractseparation. Heating the barley samples for 15 minutes at 80°C deactivates the endogenous hydrolytic enzymes.

  18. The Serum Amyloid p Component (SAP) Interactome in Human Plasma Containing Physiological Calcium Levels

    DEFF Research Database (Denmark)

    Poulsen, Ebbe Toftgaard; Pedersen, Kata Wolff; Marzeda, Anna Maria

    2017-01-01

    containing the physiological Ca2+ concentration using SAP affinity pull-down and co-immunoprecipitation experiments followed by mass spectrometry analyses. The analyses resulted in the identification of 33 proteins of which 24 were direct or indirect integration partners not previously reported. The SAP...... involves the humoral innate immune system spanning the complement system, inflammation, and coagulation. Also, SAP is known to binding to the generic structure of amyloid deposits and possibly to protect these against proteolysis. In this study, we have characterized the SAP interactome in human plasma...

  19. dbSAP: single amino-acid polymorphism database for protein variation detection

    Science.gov (United States)

    Cao, Ruifang; Shi, Yan; Chen, Shuangguan; Ma, Yimin; Chen, Jiajun; Yang, Juan; Chen, Geng; Shi, Tieliu

    2017-01-01

    Millions of human single nucleotide polymorphisms (SNPs) or mutations have been identified so far, and these variants could be strongly correlated with phenotypic variations of traits/diseases. Among these variants, non-synonymous ones can result in amino-acid changes that are called single amino-acid polymorphisms (SAPs). Although some studies have tried to investigate the SAPs, only a small fraction of SAPs have been identified due to inadequately inferred protein variation database and the low coverage of mass spectrometry (MS) experiments. Here, we present the dbSAP database for conveniently accessing the comprehensive information and relationships of spectra, peptides and proteins of SAPs, as well as related genes, pathways, diseases and drug targets. In order to fully explore human SAPs, we built a customized protein database that contained comprehensive variant proteins by integrating and annotating the human SNPs and mutations from eight distinct databases (UniProt, Protein Mutation Database, HPMD, MSIPI, MS-CanProVar, dbSNP, Ensembl and COSMIC). After a series of quality controls, a total of 16 854 SAP peptides involving in 439 537 spectra were identified with large scale MS datasets from various human tissues and cell lines. dbSAP is freely available at http://www.megabionet.org/dbSAP/index.html. PMID:27903894

  20. The adaptor molecule SAP plays essential roles during invariant NKT cell cytotoxicity and lytic synapse formation.

    Science.gov (United States)

    Das, Rupali; Bassiri, Hamid; Guan, Peng; Wiener, Susan; Banerjee, Pinaki P; Zhong, Ming-Chao; Veillette, André; Orange, Jordan S; Nichols, Kim E

    2013-04-25

    The adaptor molecule signaling lymphocytic activation molecule-associated protein (SAP) plays critical roles during invariant natural killer T (iNKT) cell ontogeny. As a result, SAP-deficient humans and mice lack iNKT cells. The strict developmental requirement for SAP has made it difficult to discern its possible involvement in mature iNKT cell functions. By using temporal Cre recombinase-mediated gene deletion to ablate SAP expression after completion of iNKT cell development, we demonstrate that SAP is essential for T-cell receptor (TCR)-induced iNKT cell cytotoxicity against T-cell and B-cell leukemia targets in vitro and iNKT-cell-mediated control of T-cell leukemia growth in vivo. These findings are not restricted to the murine system: silencing RNA-mediated suppression of SAP expression in human iNKT cells also significantly impairs TCR-induced cytolysis. Mechanistic studies reveal that iNKT cell killing requires the tyrosine kinase Fyn, a known SAP-binding protein. Furthermore, SAP expression is required within iNKT cells to facilitate their interaction with T-cell targets and induce reorientation of the microtubule-organizing center to the immunologic synapse (IS). Collectively, these studies highlight a novel and essential role for SAP during iNKT cell cytotoxicity and formation of a functional IS.

  1. Biochemical and Genetic Evidence for a SAP-PKC-θ Interaction Contributing to IL-4 Regulation

    Science.gov (United States)

    Cannons, Jennifer L.; Wu, Julie Z.; Gomez-Rodriguez, Julio; Zhang, Jinyi; Dong, Baoxia; Liu, Yin; Shaw, Stephen; Siminovitch, Katherine A.; Schwartzberg, Pamela L.

    2012-01-01

    SAP, an adaptor molecule that recruits Fyn to the SLAM-family of immunomodulatory receptors, is mutated in X-linked lymphoproliferative disease. CD4+ T cells from SAP-deficient mice have defective TCR-induced IL-4 production and impaired T cell-mediated help for germinal center formation; however, the downstream intermediates contributing to these defects remain unclear. We previously found that SAP-deficient CD4+ T cells exhibit decreased PKC-θ recruitment upon TCR stimulation. We demonstrate here using GST-pulldowns and co-immunoprecipitation studies that SAP constitutively associates with PKC-θ in T cells. SAP-PKC-θ interactions required R78 of SAP, a residue previously implicated in Fyn recruitment, yet SAP’s interactions with PKC-θ occurred independent of phosphotyrosine binding and Fyn. Overexpression of SAP in T cells increased and sustained PKC-θ recruitment to the immune synapse and elevated IL-4 production in response to TCR plus SLAM-mediated stimulation. Moreover, PKC-θ, like SAP, was required for SLAM-mediated increases in IL-4 production and conversely, membrane-targeted PKC-θ mutants rescued IL-4 expression in SAP−/− CD4+ T cells, providing genetic evidence that PKC-θ is a critical component of SLAM/SAP-mediated pathways that influence TCR-driven IL-4 production. PMID:20668219

  2. [Application of thermal dissipation probe in the study of Bambusa chungii sap flow].

    Science.gov (United States)

    Zhao, Ping; Mei, Ting-Ting; Ni, Guang-Yan; Yu, Meng-Hao; Zeng, Xiao-Ping

    2012-04-01

    Based on the validation of Granier's empirical formula for calculating tree stem sap flux density, a comparative study was conducted on the measurement of Bambusa chungi sap flow by using different lengths of thermal dissipation probe (TDP), aimed to approach the applicability of TDP in measuring the sap flow of B. chungii. The difference in the daily change of the sap flow between B. chungii and nearby growing Schima superb was also analyzed. Because of the thinner bamboo wall and the heterogeneous anatomy, the sap flux density of B. chungii measured by 10 mm long probe could be underestimated, but that measured by 8 and 5 mm long probes could be relatively accurate. The comparison of the sap flow between B. chungii and nearby growing S. superba revealed that both the mean sap flux density and its daily change pattern' s skewness of B. chungii were higher than those of S. superba, but the nighttime sap flow of B. chungii was less than that of S. superba, indicating that the water recharge of B. chungii during nighttime was less active than that of S. superba. It was suggested that using TDP to investigate the sap flow of bamboo would be feasible, but careful calibration would be required before the TDP was put into application on different bamboo species.

  3. Methane emissions from feedlot cattle fed barley or corn diets.

    Science.gov (United States)

    Beauchemin, K A; McGinn, S M

    2005-03-01

    Methane emitted from the livestock sector contributes to greenhouse gas emissions worldwide. Understanding the variability in enteric methane production related to diet is essential to decreasing uncertainty in greenhouse gas emission inventories and to identifying viable greenhouse gas reduction strategies. Our study focused on measuring methane in growing beef cattle fed corn- or barley-based diets typical of those fed to cattle in North American feedlots. The experiment was designed as a randomized complete block (group) design with two treatments, barley and corn. Angus heifer calves (initial BW = 328 kg) were allocated to two groups (eight per group), with four cattle in each group fed a corn or barley diet. The experiment was conducted over a 42-d backgrounding phase, a 35-d transition phase and a 32-d finishing phase. Backgrounding diets consisted of 70% barley silage or corn silage and 30% concentrate containing steam-rolled barley or dry-rolled corn (DM basis). Finishing diets consisted of 9% barley silage and 91% concentrate containing barley or corn (DM basis). All diets contained monensin (33 mg/kg of DM). Cattle were placed into four large environmental chambers (two heifers per chamber) during each phase to measure enteric methane production for 3 d. During the backgrounding phase, DMI was greater by cattle fed corn than for those fed barley (10.2 vs. 7.6 kg/d, P cattle were in the chambers; thus, methane emissions (g/d) reported may underestimate those of the feedlot industry. Methane emissions per kilogram of DMI and as a percentage of GE intake were not affected by grain source during the backgrounding phase (24.6 g/kg of DMI; 7.42% of GE), but were less (P methane emissions of cattle fed high-forage backgrounding diets and barley-based finishing diets. Mitigating methane losses from cattle will have long-term environmental benefits by decreasing agriculture's contribution to greenhouse gas emissions.

  4. Evaluation of four phloem-specific promoters in vegetative tissues of transgenic citrus plants.

    Science.gov (United States)

    Dutt, M; Ananthakrishnan, G; Jaromin, M K; Brlansky, R H; Grosser, J W

    2012-01-01

    'Mexican' lime (Citrus aurantifolia Swingle) was transformed with constructs that contained chimeric promoter-gus gene fusions of phloem-specific rolC promoter of Agrobacterium rhizogenes, Arabidopsis thaliana sucrose-H(+) symporter (AtSUC2) gene promoter of Arabidopsis thaliana, rice tungro bacilliform virus (RTBV) promoter and sucrose synthase l (RSs1) gene promoter of Oryza sativa (rice). Histochemical β-glucuronidase (GUS) analysis revealed vascular-specific expression of the GUS protein in citrus. The RTBV promoter was the most efficient promoter in this study while the RSs1 promoter could drive low levels of gus gene expression in citrus. These results were further validated by reverse transcription real-time polymerase chain reaction and northern blotting. Southern blot analysis confirmed stable transgene integration, which ranged from a single insertion to four copies per genome. The use of phloem-specific promoters in citrus will allow targeted transgene expression of antibacterial constructs designed to battle huanglongbing disease (HLB or citrus greening disease), associated with a phloem-limited Gram-negative bacterium.

  5. Rapid affinity-purification and physicochemical characterization of pumpkin (Cucurbita maxima) phloem exudate lectin.

    Science.gov (United States)

    Narahari, Akkaladevi; Swamy, Musti J

    2010-04-21

    The chito-oligosaccharide-specific lectin from pumpkin (Cucurbita maxima) phloem exudate has been purified to homogeneity by affinity chromatography on chitin. After SDS/PAGE in the presence of 2-mercaptoethanol, the pumpkin phloem lectin yielded a single band corresponding to a molecular mass of 23.7 kDa, whereas ESI-MS (electrospray ionization MS) gave the molecular masses of the subunit as 24645 Da. Analysis of the CD spectrum of the protein indicated that the secondary structure of the lectin consists of 9.7% alpha-helix, 35.8% beta-sheet, 22.5% beta-turn and 32.3% unordered structure. Saccharide binding did not significantly affect the secondary and tertiary structures of the protein. The haemagglutinating activity of pumpkin phloem lectin was mostly unaffected in the temperature range 4-70 degrees C, but a sharp decrease was seen between 75 and 85 degrees C. Differential scanning calorimetric and CD spectroscopic studies suggest that the lectin undergoes a co-operative thermal unfolding process centred at approx. 81.5 degrees C, indicating that it is a relatively stable protein.

  6. βIII-Gal is involved in galactan reduction during phloem element differentiation in chickpea stems.

    Science.gov (United States)

    Martín, Ignacio; Hernández-Nistal, Josefina; Albornos, Lucía; Labrador, Emilia; Dopico, Berta

    2013-06-01

    βIII-Gal, a member of the chickpea β-galactosidase family, is the enzyme responsible for the cell wall autolytic process. This enzyme, whose activity increases during epicotyl growth, displays significant hydrolytic activity against cell wall pectins, and its natural substrate has been determined as an arabinogalactan from the pectic fraction of the cell wall. In the present work, the localization of βIII-Gal in different seedling and plant organs was analyzed by using specific anti-βIII-Gal antibodies. Our results revealed that besides its possible role in cell wall loosening and in early events during primary xylem and phloem fiber differentiation βIII-Gal acts on the development of sieve elements. Localization of the enzyme in this tissue, both in epicotyls and radicles from seedlings and in the different stem internodes, is consistent with the reduction in galactan during the maturation of phloem elements, as can be observed with LM5 antibodies. Thus, βIII-Gal could act on its natural substrate, the neutral side chains of rhamnogalacturonan I, contributing to cell wall reinforcement allowing phloem elements to differentiate, and conferring the necessary strengthening of the cell wall to fulfill its function. This work completes the immunolocation studies of all known chickpea β-galactosidases. Taken together, our results reflect the broad range of developmental processes covered by different members of this protein family, and confirm their crucial role in cell wall remodeling during tissue differentiation.

  7. Purification, physico-chemical characterization and thermodynamics of chitooligosaccharide binding to cucumber (Cucumis sativus) phloem lectin.

    Science.gov (United States)

    Nareddy, Pavan Kumar; Bobbili, Kishore Babu; Swamy, Musti J

    2017-02-01

    A chitooligosaccharide-specific lectin has been purified from the phloem exudate of cucumber (Cucumis sativus) by affinity chromatography on chitin. The molecular weight of the cucumber phloem lectin (CPL) was determined as 51912.8Da by mass spectrometry whereas SDS-PAGE yielded a single band with a subunit mass of 26kDa, indicating that the protein is a homodimer. Peptide mass fingerprinting studies strongly suggest that CPL is identical to the 26kDa phloem protein 2 (PP2) from cucumber. CD spectroscopy indicated that CPL is a predominantly β-sheets protein. Hemagglutination activity of CPL was mostly unaffected between 4 and 90°C and between pH 4.0 and 10.0, indicating functional stability of the protein. Isothermal titration calorimetric studies indicate that the CPL dimer binds to two chitooligosaccharide ((GlcNAc)2-6) molecules with association constants ranging from 1.0×10(3) to 17.5×10(5)M(-1). The binding reaction was strongly enthalpy driven (ΔHb=-ve) with negative contribution from binding entropy (ΔSb=-ve). The enthalpy-driven nature of binding reactions suggests that hydrogen bonding and van der Waals interactions stabilize the CPL-chitooligosaccharide association. Enthalpy-entropy compensation was observed for the CPL-chitooligosaccharide interaction, indicating that water molecules play an important role in the binding process. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Oligosaccharide binding to barley alpha-amylase 1

    DEFF Research Database (Denmark)

    Robert, X.; Haser, R.; Mori, H.

    2005-01-01

    Enzymatic subsite mapping earlier predicted 10 binding subsites in the active site substrate binding cleft of barley alpha-amylase isozymes. The three-dimensional structures of the oligosaccharide complexes with barley alpha-amylase isozyme 1 (AMY1) described here give for the first time a thorough...... in barley alpha-amylase isozyme 2 (AMY2), and the sugar binding modes are compared between the two isozymes. The "sugar tongs" surface binding site discovered in the AMY1-thio-DP4 complex is confirmed in the present work. A site that putatively serves as an entrance for the substrate to the active site...

  9. STUDIES ON SYNBIOTIC BARLEY GRAIN EXTRACT AGAINST SOME HUMAN PATHOGENS

    Directory of Open Access Journals (Sweden)

    T. Sheela

    2012-01-01

    Full Text Available This study evaluated that effect of prebiotic food containing oligosaccharide to enhance the growth and activity of probiotic strains. Barley grains probioticated using different strains of probiotics are Lactobacillus kefiranofaciens, Candida kefir,and saccharomyces boluradii. To select a suitable prebiotics like inulin for the development of Synbiotic barley and tested for antibacterial activity against diarrhoea causing pathogen such as Esherichia coli, Staphylococcus aureus, Salmonella paratyphi A, Shigella dysenteriae, Vibrio cholerae. Analysis of identified compound from synbiotic barley grain using GC-MS.

  10. Comparison of beer quality attributes between beers brewed with 100% barley malt and 100% barley raw material.

    Science.gov (United States)

    Steiner, Elisabeth; Auer, Andrea; Becker, Thomas; Gastl, Martina

    2012-03-15

    Brewing with 100% barley using the Ondea® Pro exogenous brewing enzyme product was compared to brewing with 100% barley. The use of barley, rather than malt, in the brewing process and the consequences for selected beer quality attributes (foam formation, colloidal stability and filterability, sensory differences, protein content and composition) was considered. The quality attributes of barley, malt, kettle-full-wort, cold wort, unfiltered beer and filtered beer were assessed. A particular focus was given to monitoring changes in the barley protein composition during the brewing process and how the exogenous OndeaPro® enzymes influenced wort protein composition. All analyses were based on standard brewing methods described in ASBC, EBC or MEBAK. To monitor the protein changes two-dimensional polyacrylamide gel electrophoresis was used. It was shown that by brewing beer with 100% barley and an appropriate addition of exogenous Ondea® Pro enzymes it was possible to efficiently brew beer of a satisfactory quality. The production of beers brewed with 100% barley resulted in good process efficiency (lautering and filtration) and to a final product whose sensory quality was described as light, with little body and mouthfeel, very good foam stability and similar organoleptic qualities compared to conventional malt beer. In spite of the sensory evaluation differences could still be seen in protein content and composition. Copyright © 2011 Society of Chemical Industry.

  11. Sap flow measurements to determine the transpiration of facade greenings

    Science.gov (United States)

    Hölscher, Marie-Therese; Nehls, Thomas; Wessolek, Gerd

    2014-05-01

    Facade greening is expected to make a major contribution to the mitigation of the urban heat-island effect through transpiration cooling, thermal insulation and shading of vertical built structures. However, no studies are available on water demand and the transpiration of urban vertical green. Such knowledge is needed as the plants must be sufficiently watered, otherwise the posited positive effects of vertical green can turn into disadvantages when compared to a white wall. Within the framework of the German Research Group DFG FOR 1736 "Urban Climate and Heat Stress" this study aims to test the practicability of the sap flow technique for transpiration measurements of climbing plants and to obtain potential transpiration rates for the most commonly used species. Using sap flow measurements we determined the transpiration of Fallopia baldschuanica, Parthenocissus tricuspidata and Hedera helix in pot experiments (about 1 m high) during the hot summer period from August 17th to August 30th 2012 under indoor conditions. Sap flow measurements corresponded well to simultaneous weight measurement on a daily base (factor 1.19). Fallopia baldschuanica has the highest daily transpiration rate based on leaf area (1.6 mm d-1) and per base area (5.0 mm d-1). Parthenocissus tricuspidata and Hedera helix show transpiration rates of 3.5 and 0.4 mm d-1 (per base area). Through water shortage, transpiration strongly decreased and leaf temperature measured by infrared thermography increased by 1 K compared to a well watered plant. We transferred the technique to outdoor conditions and will present first results for facade greenings in the inner-city of Berlin for the hottest period in summer 2013.

  12. Modal Pushover Analysis on Bridges Using SAP2000 Software%SAP2000软件对桥梁结构的MPA分析

    Institute of Scientific and Technical Information of China (English)

    冷鑫

    2011-01-01

    基于SAP2000软件的标准Pushover分析功能,进行适当改进,通过多次运算,在SAP2000软件上完成了MPA分析,并用该方法计算一座实际桥梁结构的非线性反应,与标准Pushover分析的结果进行比较,表明SAP2000对高阶振型起主要作用的结构也能得到较准确的计算结果.

  13. SUSE Linux Enterprise Server被选用于SAP HANA

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    SUSE公司于近日宣布,作为与SAP公司(NYSE:SAP)正在进行的合作的一部分,SUSE Linux Enterprise Server已被选用于SAP HANATM。"我们与SAP和IBM的合作已经使数千客户从SUSE Linux所提供的令人兴奋的好处中获益,其中包括操作成本的降低和性能的改进。"SUSE公司全球营销和联盟副总裁Michael Miller说。

  14. A barley SKP1-like protein controls abundance of the susceptibility factor RACB and influences the interaction of barley with the barley powdery mildew fungus.

    Science.gov (United States)

    Reiner, Tina; Hoefle, Caroline; Hückelhoven, Ralph

    2016-02-01

    In an increasing number of plant-microbe interactions, it has become evident that the abundance of immunity-related proteins is controlled by the ubiquitin-26S proteasome system. In the interaction of barley with the biotrophic barley powdery mildew fungus Blumeria graminis f.sp. hordei (Bgh), the RAC/ROP [RAT SARCOMA-related C3 botulinum toxin substrate/RAT SARCOMA HOMOLOGUE (RHO) of plants] guanosine triphosphatase (GTPase) HvRACB supports the fungus in a compatible interaction. By contrast, barley HvRBK1, a ROP-binding receptor-like cytoplasmic kinase that interacts with and can be activated by constitutively activated HvRACB, limits fungal infection success. We have identified a barley type II S-phase kinase 1-associated (SKP1)-like protein (HvSKP1-like) as a molecular interactor of HvRBK1. SKP1 proteins are subunits of the SKP1-cullin 1-F-box (SCF)-E3 ubiquitin ligase complex that acts in the specific recognition and ubiquitination of protein substrates for subsequent proteasomal degradation. Transient induced gene silencing of either HvSKP1-like or HvRBK1 increased protein abundance of constitutively activated HvRACB in barley epidermal cells, whereas abundance of dominant negative RACB only weakly increased. In addition, silencing of HvSKP1-like enhanced the susceptibility of barley to haustorium establishment by Bgh. In summary, our results suggest that HvSKP1-like, together with HvRBK1, controls the abundance of HvRACB and, at the same time, modulates the outcome of the barley-Bgh interaction. A possible feedback mechanism from RAC/ROP-activated HvRBK1 on the susceptibility factor HvRACB is discussed.

  15. Effect of phytase supplementation to barley-canola meal and barley-soybean meal diets on phosphorus and calcium balance in growing pigs

    NARCIS (Netherlands)

    Sauer, W.C.; Cervantes, M.; He, J.M.M.; Schulze, H.

    2003-01-01

    Two metabolism experiments were carried out, to determine the effect of microbial phytase addition to barley-canola meal and barley-soybean meal diets on P and Ca balance in growing. pigs; In experiment 1, six barrows (29.6kg: initial LW) were fed a barley-canola meal diet, without or. with phytase

  16. Microscopic insight into thermodynamics of conformational changes of SAP-SLAM complex in signal transduction cascade

    Science.gov (United States)

    Samanta, Sudipta; Mukherjee, Sanchita

    2017-04-01

    The signalling lymphocytic activation molecule (SLAM) family of receptors, expressed by an array of immune cells, associate with SLAM-associated protein (SAP)-related molecules, composed of single SH2 domain architecture. SAP activates Src-family kinase Fyn after SLAM ligation, resulting in a SLAM-SAP-Fyn complex, where, SAP binds the Fyn SH3 domain that does not involve canonical SH3 or SH2 interactions. This demands insight into this SAP mediated signalling cascade. Thermodynamics of the conformational changes are extracted from the histograms of dihedral angles obtained from the all-atom molecular dynamics simulations of this structurally well characterized SAP-SLAM complex. The results incorporate the binding induced thermodynamic changes of individual amino acid as well as the secondary structural elements of the protein and the solvent. Stabilization of the peptide partially comes through a strong hydrogen bonding network with the protein, while hydrophobic interactions also play a significant role where the peptide inserts itself into a hydrophobic cavity of the protein. SLAM binding widens SAP's second binding site for Fyn, which is the next step in the signal transduction cascade. The higher stabilization and less fluctuation of specific residues of SAP in the Fyn binding site, induced by SAP-SLAM complexation, emerge as the key structural elements to trigger the recognition of SAP by the SH3 domain of Fyn. The thermodynamic quantification of the protein due to complexation not only throws deeper understanding in the established mode of SAP-SLAM interaction but also assists in the recognition of the relevant residues of the protein responsible for alterations in its activity.

  17. Differences in phytase activity and phytic acid content between cultivated and Tibetan annual wild barleys.

    Science.gov (United States)

    Dai, Fei; Qiu, Long; Xu, Yang; Cai, Shengguan; Qiu, Boyin; Zhang, Guoping

    2010-11-24

    The Qinghai-Tibetan Plateau in China is considered to be one of the original centers of cultivated barley. At present, little is known about the phytase activity (Phy) or phytic acid content (PA) in grains of Tibetan annual wild barley. Phy and PA were determined in grains of 135 wild and 72 cultivated barleys. Phy ranged from 171.3 to 1299.2 U kg(-1) and from 219.9 to 998.2 U kg(-1) for wild and cultivated barleys, respectively. PA and protein contents were much higher in wild barley than in cultivated barley. Tibetan annual wild barley showed a larger genetic diversity in phytase activity and phytic acid and protein contents and is of value for barley breeding. There is no significant correlation between phytase activity and phytic acid or protein content in barley grains, indicating that endogenous phytase activity had little effect on the accumulation of phytic acid.

  18. Phloem as capacitor: radial transfer of water into xylem of tree stems occurs via symplastic transport in ray parenchyma.

    Science.gov (United States)

    Pfautsch, Sebastian; Renard, Justine; Tjoelker, Mark G; Salih, Anya

    2015-03-01

    The transfer of water from phloem into xylem is thought to mitigate increasing hydraulic tension in the vascular system of trees during the diel cycle of transpiration. Although a putative plant function, to date there is no direct evidence of such water transfer or the contributing pathways. Here, we trace the radial flow of water from the phloem into the xylem and investigate its diel variation. Introducing a fluorescent dye (0.1% [w/w] fluorescein) into the phloem water of the tree species Eucalyptus saligna allowed localization of the dye in phloem and xylem tissues using confocal laser scanning microscopy. Our results show that the majority of water transferred between the two tissues is facilitated via the symplast of horizontal ray parenchyma cells. The method also permitted assessment of the radial transfer of water during the diel cycle, where changes in water potential gradients between phloem and xylem determine the extent and direction of radial transfer. When injected during the morning, when xylem water potential rapidly declined, fluorescein was translocated, on average, farther into mature xylem (447 ± 188 µm) compared with nighttime, when xylem water potential was close to zero (155 ± 42 µm). These findings provide empirical evidence to support theoretical predictions of the role of phloem-xylem water transfer in the hydraulic functioning of plants. This method enables investigation of the role of phloem tissue as a dynamic capacitor for water storage and transfer and its contribution toward the maintenance of the functional integrity of xylem in trees. © 2015 American Society of Plant Biologists. All Rights Reserved.

  19. Amylolytic strains of Lactobacillus plantarum isolated from barley

    African Journals Online (AJOL)

    aghomotsegin

    2015-01-28

    Jan 28, 2015 ... Key words: Lactobacillus plantarum, starch hydrolysis, barley, malting. ... especially in environments rich in glucose or disac- charides such as sucrose ..... numbers produce less lactic acid, which in turn is less stringent on ...

  20. Implementation of biochemical screening to improve baking quality of barley

    DEFF Research Database (Denmark)

    Vincze, Éva; Dionisio, Giuseppe; Aaslo, Per;

    2011-01-01

    Barley (Hordeum vulgare) has the potential to offer considerable human nutritional benefits, especially as supplement to wheat-based breads. Under current commercial baking conditions it is not possible to introduce more that 20% barley flour to the wheat bread without negative impact...... proteins. Changing the storage protein composition can lessen this problem. Our working hypothesis was that exploiting the substantial genetic variation within the gene pool for storage proteins could enable improving the baking qualities of barley flour. We characterised forty-nine barley cultivars...... for variations in storage protein and AA composition. These cultivars were selected based on their higher protein contents (11.8–17.6%). The results obtained indicated that substantial variation not only in the distribution of the hordein polypeptides but also in the relative proportions of the storage proteins...

  1. Evaluation of fermented whole crop wheat and barley feeding on ...

    African Journals Online (AJOL)

    이창희

    2017-07-11

    Jul 11, 2017 ... After maize, wheat and barley are produced in large quantities and account ... Through fermentation, beneficial bacteria are increased and harmful .... LDL cholesterol, triglyceride, cortisol, and blood urea nitrogen (BUN).

  2. Introduction of Sap ERP System Into a Heterogeneous Academic Community

    Science.gov (United States)

    Mornar, Vedran; Fertalj, Krešimir; Kalpić, Damir

    2010-06-01

    Introduction of a complex ERP system like SAP into a heterogeneous academic environment like the University of Zagreb is far from being a trivial task. The University comprises more than 30 constituents, called faculties or academies, geographically dispersed, with long and specific traditions. Financing according to the lump sum principle, enforced in Croatia as a side effect of the in Europe obligatory and omnipresent Bologna process, requires a unified view on the educational institutions in order to provide a more just and appropriate financing scheme than the current one. After the experience with own development to support educational tasks and student administration, for standard financial and administration tasks SAP has been chosen as the most appropriate platform. The developer was selected after public bidding and the authors' institution was chosen for the pilot project. The authors were playing principal roles in the process of successful deployment and still expect to offer their expertise for implementation in the rest of the University. However, serious risks stemming from lack of motivation by some constituents are present.

  3. Handling of the demilitarized zone using service providers in SAP

    Science.gov (United States)

    Iovan, A.; Robu, R.

    2016-02-01

    External collaboration needs to allow data access from the Internet. In a trusted Internet collaboration scenario where the external user works on the same data like the internal user direct access to the data in the Intranet is required. The paper presents a solution to get access to certain data in the Enterprise Resource Planning system, having the User Interface on a system in the Demilitarized Zone and the database on a system which is located in the trusted area. Using the Service Provider Interface framework, connections between separate systems can be created in different areas of the network. The paper demonstrates how to connect the two systems, one in the Demilitarized Zone and one in the trusted area, using SAP ERP 6.0 with Enhancement Package 7. In order to use the Service Provider Interface SAP Business Suite Foundation component must be installed in both systems. The advantage of using the Service Provider Interface framework is that the external user works on the same data like the internal user (and not on copies). This assures data consistency and less overhead for backup and security systems.

  4. Flame resistant cellulosic substrate using banana pseudostem sap

    Directory of Open Access Journals (Sweden)

    Basak S.

    2015-03-01

    Full Text Available Flame retardancy was imparted in cellulosic cotton textile using banana pseudostem sap (BPS, an eco-friendly natural product. The extracted sap was made alkaline and applied in pre-mordanted bleached and mercerized cotton fabrics. Flame retardant properties of both the control and the treated fabrics were analysed in terms of limiting oxygen index (LOI, horizontal and vertical flammability. Fabrics treated with the non-diluted BPS were found to have good flame retardant property with LOI of 30 compared to the control fabric with LOI of 18, i.e., an increase of 1.6 times. In the vertical flammability test, the BPS treated fabric showed flame for a few seconds and then, got extinguished. In the horizontal flammability test, the treated fabric showed no flame, but was burning only with an afterglow with a propagation rate of 7.5 mm/min, which was almost 10 times lower than that noted with the control fabric. The thermal degradation and the pyrolysis of the fabric samples were studied using a thermogravimetric analysis (TGA, and the chemical composition by FTIR, SEM and EDX, besides the pure BPS being characterized by EDX and mass spectroscopy. The fabric after the treatment was found to produce stable natural khaki colour, and there was no significant degradation in mechanical strengths. Based on the results, the mechanism of imparting flame retardancy to cellulosic textile and the formation of natural colour on it using the proposed BPS treatment have been postulated.

  5. 论冶金企业 SAP 系统的二次开发技术%Secondary Development Technology for the SAP System of Metallurgical Enterprises

    Institute of Scientific and Technical Information of China (English)

    司海霞

    2013-01-01

    The concept, functional modules, development language ABAP and develop-ment method of the management software SAP system for enterprises are briefly introduced. The technical method and its essentials for the secondary development of the SAP system are discussed through actual project examples.%  简要介绍企业管理软件 SAP 系统的概念、功能模块、开发语言 ABAP 及开发方法,通过例举项目实施中的实例详细说明了 SAP 系统二次开发的技术方法及要点。

  6. Hydrothermal liquefaction of barley straw to bio-crude oil

    DEFF Research Database (Denmark)

    Zhu, Zhe; Rosendahl, Lasse; Toor, Saqib;

    2015-01-01

    Hydrothermal liquefaction (HTL) of barley straw with K2CO3 at different temperatures (280–400 C) was conducted and compared to optimize its process conditions; the aqueous phase as a co-product from this process was recycled to explore the feasibility of implementing wastewater reuse for bio...... a detailed insight into the HTL behavior of barley straw, and offers potential opportunities and benefits for bio-crude oil production through the reuse of aqueous phase....

  7. Androgenesis in anther culture of Lithuanian spring barley cultivars

    OpenAIRE

    Asakavičiūtė, Rita; Pašakinskienė, Izolda

    2006-01-01

    The method of anther culture was used for the production of doubled haploids in Lithuanian spring barley cultivars. Two methods, (i) regeneration from callus (Szarjeko’s method) and (ii) direct regeneration from embryoids (Caredda’s method) were applied to determine the androgenic potential according to the green regenerant yield and other morphogenetic factors. Green double haploid regenerants were obtained in four Lithuanian spring barley cultivars (‘Aura’, ‘Aidas’, ‘Alsa’ and ‘Auksiniai’) ...

  8. Weed suppression ability of spring barley varieties

    DEFF Research Database (Denmark)

    Christensen, Svend

    1995-01-01

    Three years of experiments with spring barley showed significant differences in weed suppression ability among varieties. Weed dry matter in the most suppressive variety, Ida, was 48% lower than the mean weed dry matter of all varieties, whereas it was 31% higher in the least suppressive variety......, Grit. Ranking varietal responses to weed competition in terms of grain yield loss corresponded well to ranking weed dry matter produced in crop weed mixtures. There was no correspondence between the varietal grain yields in pure stands and their competitiveness, suggesting that breeding to optimize...... interception model was developed to describe the light interception profiles of the varieties. A study of the estimated parameters showed significant correlation between weed dry matter, rate of canopy height development and the light interception profile. However, when estimates were standardized to eliminate...

  9. The spontaneous chlorophyll mutation frequency in barley

    DEFF Research Database (Denmark)

    Jørgensen, Jørgen Helms; Jensen, Hans Peter

    1986-01-01

    A total of 1866 barley plants were progeny tested in the greenhouse. Twenty-five plants segregated for newly arisen, spontaneous chlorophyll mutant genes. Among the total of 470,129 seedlings screened there were 79 mutants (1.7 .+-. 0.6 .times. 10-4). The data are added to data from three similar...... materials and the resulting estimate of the chlorophyll mutant frequency is 1.6 .times. 10-4 in about 1.43 million seedlings. The estimate of the chlorophyll mutation rate per generation is close to 67.3 .times. 10-4 per diploid genome or in the order of 6 .times. 10-7 per locus and haploid genome....

  10. The Barley Chromosome 5 Linkage Map

    DEFF Research Database (Denmark)

    Jensen, J.; Jørgensen, Jørgen Helms

    1975-01-01

    The literature is surveyed for data on recombination between loci on chromosome 5 of barley; 13 loci fall into the category “mapped” loci, more than 20 into the category “associated” loci and nine into the category “loci once suggested to be on chromosome 5”. A procedure was developed...... for estimating a linkage map; it involves (1) transformation by the Kosambi mapping function of the available recombination percentages to additive map distances, (2) calculations of a set of map distances from the transformed recombination percentages by a maximum likelihood method in which all the available...... data are utilized jointly, and (3) omission of inconsistent data and determination of the most likely order of the loci. This procedure was applied to the 42 recombination percentages available for the 13 “mapped” loci. Due to inconsistencies 14 of the recombination percentages and, therefore, two...

  11. Cadmium translocation and accumulation in developing barley grains

    DEFF Research Database (Denmark)

    Chen, Fei; Wu, Feibo; Dong, Jing

    2007-01-01

    nutrient solution containing the markers for phloem (rubidium) and xylem (strontium) transport. Cd concentration in each part of detached spikes increased with external Cd levels, and Cd concentration in various organs over the three Cd levels of 0.5, 2, 8 μM Cd on 15-day Cd exposure was in the order: awn...

  12. Development of endosperm transfer cells in barley

    Directory of Open Access Journals (Sweden)

    Johannes eThiel

    2014-03-01

    Full Text Available Endosperm transfer cells (ETCs are positioned at the intersection of maternal and filial tissues in seeds of cereals and represent a bottleneck for apoplasmic transport of assimilates into the endosperm. Endosperm cellularization starts at the maternal-filial boundary and generates the highly specialized ETCs. During differentiation barley ETCs develop characteristic flange-like wall ingrowths to facilitate effective nutrient transfer. A comprehensive morphological analysis depicted distinct developmental time points in establishment of transfer cell morphology and revealed intracellular changes possibly associated with cell wall metabolism. Embedded inside the grain, ETCs are barely accessible by manual preparation. To get tissue-specific information about ETC specification and differentiation, laser microdissection(LM-based methods were used for transcript and metabolite profiling. Transcriptome analysis of ETCs at different developmental stages by microarrays indicated activated gene expression programs related to control of cell proliferation and cell shape, cell wall and carbohydrate metabolism reflecting the morphological changes during early ETC development. Transporter genes reveal distinct expression patterns suggesting a switch from active to passive modes of nutrient uptake with the onset of grain filling. Tissue-specific RNA-seq of the differentiating ETC region from the syncytial stage until functionality in nutrient transfer identified a high number of novel transcripts putatively involved in ETC differentiation. An essential role for two-component signaling (TCS pathways in transfer cell development of barley emerged from this analysis. Correlative data provide evidence for ABA and ethylene influences on ETC differentiation and hint at a crosstalk between hormone signal transduction and TCS phosphorelays. Collectively, the data expose a comprehensive view on ETC development, associated pathways and identified candidate genes for

  13. Preliminary results of sugar maple carbohydrate and growth response under vacuum and gravity sap extraction

    Science.gov (United States)

    Mark L. Isselhardt; Timothy D. Perkins; Abby K. van den Berg; Paul G. Schaberg

    2016-01-01

    Recent technological advancements have increased the amount of sugar-enriched sap that can be extracted from sugar maple (Acer saccharum). This pilot study quantified overall sugar removal and the impacts of vacuum (60 cm Hg) and gravity sap extraction on residual nonstructural carbohydrate (NSC) concentrations and on stem and twig growth. Vacuum...

  14. Projecte d'implantació del sistema de gestió empresarial SAP R/3

    OpenAIRE

    Vilanova Mateu, Pere

    2013-01-01

    Projecte d'implantació del sistema SAP R/3 que inclou les fases d'anàlisi i de disseny funcional. Proyecto de implantación del sistema SAP R/3 que incluye las fases de análisis y de diseño funcional.

  15. Optimization of dry - season sap flow measurements in an oak semi - arid open woodland in Spain

    NARCIS (Netherlands)

    Reyes-Acosta, J.L.; Lubczynski, M.

    2014-01-01

    In sap flow studies, there is no method complying with high efficiency and versatility of sap flow measurements. To improve that, we propose combining two methods: (1) thermal dissipation probe (TDP) known to be efficient and cost effective and (2) heat field deformation (HFD) known to be versatile.

  16. SAP: structure, function, and its roles in immune-related diseases.

    Science.gov (United States)

    Xi, Dan; Luo, TianTian; Xiong, Haowei; Liu, Jichen; Lu, Hao; Li, Menghao; Hou, Yuqing; Guo, Zhigang

    2015-01-01

    Serum amyloid P component (SAP), also known as pentraxin-2, is a member of the pentraxin protein family with an established relationship to the immune response. In the last century, SAP has been used as a diagnostic marker in amyloidosis diagnosis and patient follow-up. SAP has been thought to have potential for treating and curing amyloidosis and fibrosis diseases. More recently, it has been shown that SAP may serve as both a diagnostic marker and a therapeutic target for many immune-related diseases, such as cardiovascular, pulmonary, nephritic, neurological and autoimmune diseases. In the cardiovascular system, SAP has been defined as the culprit in amyloidosis in the heart. SAP may also exert a protective role during the early stage of atherosclerosis and myocardial fibrosis. In noncardiovascular system diseases, SAP is being developed for the treatment of pulmonary fibrosis. In this review, we summarize SAP history, structure, and its roles in immune-related diseases in different systems with emphasis on the cardiovascular system. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  17. Detoxification of Sap from Felled Oil Palm Trunks for the Efficient Production of Lactic Acid.

    Science.gov (United States)

    Kunasundari, Balakrishnan; Arai, Takamitsu; Sudesh, Kumar; Hashim, Rokiah; Sulaiman, Othman; Stalin, Natra Joseph; Kosugi, Akihiko

    2017-03-30

    The availability of fermentable sugars in high concentrations in the sap of felled oil palm trunks and the thermophilic nature of the recently isolated Bacillus coagulans strain 191 were exploited for lactic acid production under non-sterile conditions. Screening indicated that strain 191 was active toward most sugars including sucrose, which is a major component of sap. Strain 191 catalyzed a moderate conversion of sap sugars to lactic acid (53%) with a productivity of 1.56 g/L/h. Pretreatment of oil palm sap (OPS) using alkaline precipitation improved the sugar fermentability, providing a lactic acid yield of 92% and productivity of 2.64 g/L/h. To better characterize potential inhibitors in the sap, phenolic, organic, and mineral compounds were analyzed using non-treated sap and saps treated with activated charcoal and alkaline precipitation. Phthalic acid, 3,4-dimethoxybenzoic acid, aconitic acid, syringic acid, and ferulic acid were reduced in the sap after treatment. High concentrations of Mg, P, K, and Ca were also precipitated by the alkaline treatment. These results suggest that elimination of excess phenolic and mineral compounds in OPS can improve the fermentation yield. OPS, a non-food resource that is readily available in bulk quantities from plantation sites, is a promising source for lactic acid production.

  18. Baseliner: an open source, interactive tool for processing sap flux data from thermal dissipation probes.

    Science.gov (United States)

    Andrew C. Oishi; David Hawthorne; Ram Oren

    2016-01-01

    Estimating transpiration from woody plants using thermal dissipation sap flux sensors requires careful data processing. Currently, researchers accomplish this using spreadsheets, or by personally writing scripts for statistical software programs (e.g., R, SAS). We developed the Baseliner software to help establish a standardized protocol for processing sap...

  19. The Analysis and Application on JCO Accessing SAP R/3 Interface%JCO访问SAP R/3接口分析与应用

    Institute of Scientific and Technical Information of China (English)

    牛启光

    2011-01-01

    SAP R/3是知名的ERP软件,它提供了先进的接口技术,基于JAVA平台的管理信息系统要实现与SAP互访需要通过SAP提供的JCO组件.介绍了SAP R/3目前流行的3种接口技术,以及通过JCO如何访问R/3接口.

  20. The effect of added enzymes on process potentials derived from different qualities of barley

    DEFF Research Database (Denmark)

    Shetty, Radhakrishna; Zhuang, Shiwen; Hansen, Preben Bøje;

    Barley sorting is an important step for picking up grain of desired quality. Whilst brewing with 100% sorted barley (picked high quality) has become realistic with the addition of exogenous enzymes, the effect of added enzymes on process potentials derived from un-sorted barley (mixed) and sorted...... filterability, the Ondea® Pro treatment resulted in significantly lower turbidity and smaller particle size compared to Cellic® CTec2; however, this effect was observed in sorted and un-sorted barley but not in sorted-out barley. Consequently the un-sorted barley demonstrated great potential in brewing process...

  1. Long-term reconstitution of dry barley increased phosphorus digestibility in pigs

    DEFF Research Database (Denmark)

    Ton Nu, Mai Anh; Blaabjerg, Karoline; Poulsen, Hanne Damgaard

    of reconstitution compared to dry stored barley on phosphorus (P) digestibility in pigs. Materials and Methods: Dry barley (13% moisture; phytate P, 1.7 g/kg DM) was rolled and stored directly or reconstituted with water to produce rolled barley with 35% moisture that was stored in air-tight conditions. After 49......: Reconstituted barley had higher soluble P (2.56 g/kg DM) and lower phytate P (0.93 g/ kg DM) compared with dry barley (0.78 and 1.7 g/kg DM, respectively). Pigs fed the reconstituted barley diet showed increased P absorption (52%) and decreased P excretion in feces (21%) (P

  2. Constructing the barley model for genetic transformation in Triticeae

    Institute of Scientific and Technical Information of China (English)

    LÜ Bo; WU Jia-jie; FU Dao-lin

    2015-01-01

    Barley (Hordeum vulgare L.) is one of the oldest domesticated crops, showing dramatic adaptation to various climate and environmental conditions. As a major cereal crop, barley ranks the 4th after wheat, maize and rice in terms of planting area and production al over the world. Due to its diploid nature, the cultivated barley is considered as an ideal model to study the polyploid wheat and other Triticeae species. Here, we reviewed the development, optimization, and application of transgenic approaches in barley. The most efifcient and robust genetic transformation has been built on the Agrobacterium-mediated transfer in conjunction with the immature embryo-based regeneration. We then discussed future considerations of using more practical technologies in barley transformation, such as the T-DNA/transposon tagging and the genome editing. As a cereal crop amenable to genetic transformation, barley wil serve as the most valuable carrier for global functional genomics in Triticeae and is becoming the most practical model for generating value-added products.

  3. Glycaemic response to barley porridge varying in dietary fibre content.

    Science.gov (United States)

    Thondre, Pariyarath S; Wang, Ke; Rosenthal, Andrew J; Henry, Christiani J K

    2012-03-01

    The interest in barley as a food is increasing worldwide because of its high dietary fibre (DF) content and low glycaemic index (GI). DF in cereals may prove beneficial in improving blood glucose response in the long term. However, a dose-dependent effect of insoluble fibre on reducing postprandial blood glucose levels is yet to be proven. The objective of the present study was to determine the glycaemic response to two barley porridges prepared from whole barley grains varying in fibre content. In two separate non-blind randomised crossover trials, ten human subjects consumed barley porridge with 16 g/100 g and 10 g/100 g fibre content provided in different serving sizes (equivalent to 25 and 50 g available carbohydrate). The glycaemic response to both barley porridges was significantly lower than the reference glucose (P porridges. We concluded that irrespective of the difference in total fibre content or serving size of barley porridges, their GI values did not differ significantly.

  4. Evaluasi Implementasi SAP Modul Material Management: Studi Kasus pada PT Bumitama Gunajaya Agro

    Directory of Open Access Journals (Sweden)

    Santo Fernandi Wijaya

    2012-06-01

    Full Text Available An integrated information system is a necessity for a company to help solve problems in business transactions management. SAP application is an application that is able to provide solutions to such problems. The purpose of this study was to evaluate the running business processes on the Material Management module;evaluate the performance of the running SAP systems associated with the implementation and maintenance of SAP applications as well as to give sugestions based on the development of evaluation results obtained, in terms of business processes, performance, and financial. Utilized for analysis is IT Balanced Scorecard method, while ASAP (Accelerated SAP method is used for the system development. This study produced an analysis of the evaluation of the enterprise business processes in implementing the SAP development of ERP system modulesMaterial Management.

  5. Improvement of pea biomass and seed productivity by simultaneous increase of phloem and embryo loading with amino acids.

    Science.gov (United States)

    Zhang, Lizhi; Garneau, Matthew G; Majumdar, Rajtilak; Grant, Jan; Tegeder, Mechthild

    2015-01-01

    The development of sink organs such as fruits and seeds strongly depends on the amount of nitrogen that is moved within the phloem from photosynthetic-active source leaves to the reproductive sinks. In many plant species nitrogen is transported as amino acids. In pea (Pisum sativum L.), source to sink partitioning of amino acids requires at least two active transport events mediated by plasma membrane-localized proteins, and these are: (i) amino acid phloem loading; and (ii) import of amino acids into the seed cotyledons via epidermal transfer cells. As each of these transport steps might potentially be limiting to efficient nitrogen delivery to the pea embryo, we manipulated both simultaneously. Additional copies of the pea amino acid permease PsAAP1 were introduced into the pea genome and expression of the transporter was targeted to the sieve element-companion cell complexes of the leaf phloem and to the epidermis of the seed cotyledons. The transgenic pea plants showed increased phloem loading and embryo loading of amino acids resulting in improved long distance transport of nitrogen, sink development and seed protein accumulation. Analyses of root and leaf tissues further revealed that genetic manipulation positively affected root nitrogen uptake, as well as primary source and sink metabolism. Overall, the results suggest that amino acid phloem loading exerts regulatory control over pea biomass production and seed yield, and that import of amino acids into the cotyledons limits seed protein levels.

  6. In situ analysis of cell wall polymers associated with phloem fibre cells in stems of hemp, Cannabis sativa L.

    Science.gov (United States)

    Blake, Anthony W; Marcus, Susan E; Copeland, James E; Blackburn, Richard S; Knox, J Paul

    2008-06-01

    A study of stem anatomy and the sclerenchyma fibre cells associated with the phloem tissues of hemp (Cannabis sativa L.) plants is of interest for both understanding the formation of secondary cell walls and for the enhancement of fibre utility as industrial fibres and textiles. Using a range of molecular probes for cell wall polysaccharides we have surveyed the presence of cell wall components in stems of hemp in conjunction with an anatomical survey of stem and phloem fibre development. The only polysaccharide detected to occur abundantly throughout the secondary cell walls of phloem fibres was cellulose. Pectic homogalacturonan epitopes were detected in the primary cell walls/intercellular matrices between the phloem fibres although these epitopes were present at a lower level than in the surrounding parenchyma cell walls. Arabinogalactan-protein glycan epitopes displayed a diversity of occurrence in relation to fibre development and the JIM14 epitope was specific to fibre cells, binding to the inner surface of secondary cell walls, throughout development. Xylan epitopes were found to be present in the fibre cells (and xylem secondary cell walls) and absent from adjacent parenchyma cell walls. Analysis of xylan occurrence in the phloem fibre cells of hemp and flax indicated that xylan epitopes were restricted to the primary cell walls of fibre cells and were not present in the secondary cell walls of these cells.

  7. Nematode assemblages in the rhizosphere of spring barley (Hordeum vulgare L.) depended on fertilisation and plant growth phase

    DEFF Research Database (Denmark)

    Madsen, Mette Vestergård

    2004-01-01

    rhizosphere; nitrogen and phosphorus fertilisation; nematode assemblages; plant parasites; barley......rhizosphere; nitrogen and phosphorus fertilisation; nematode assemblages; plant parasites; barley...

  8. Diurnal and seasonal variability in radial distribution of sap flux density: Implications for estimating stand transpiration.

    Science.gov (United States)

    Fiora, Alessandro; Cescatti, Alessandro

    2006-09-01

    Daily and seasonal patterns in radial distribution of sap flux density were monitored in six trees differing in social position in a mixed coniferous stand dominated by silver fir (Abies alba Miller) and Norway spruce (Picea abies (L.) Karst) in the Alps of northeastern Italy. Radial distribution of sap flux was measured with arrays of 1-cm-long Granier probes. The radial profiles were either Gaussian or decreased monotonically toward the tree center, and seemed to be related to social position and crown distribution of the trees. The ratio between sap flux estimated with the most external sensor and the mean flux, weighted with the corresponding annulus areas, was used as a correction factor (CF) to express diurnal and seasonal radial variation in sap flow. During sunny days, the diurnal radial profile of sap flux changed with time and accumulated photosynthetic active radiation (PAR), with an increasing contribution of sap flux in the inner sapwood during the day. Seasonally, the contribution of sap flux in the inner xylem increased with daily cumulative PAR and the variation of CF was proportional to the tree diameter, ranging from 29% for suppressed trees up to 300% for dominant trees. Two models were developed, relating CF with PAR and tree diameter at breast height (DBH), to correct daily and seasonal estimates of whole-tree and stand sap flow obtained by assuming uniform sap flux density over the sapwood. If the variability in the radial profile of sap flux density was not accounted for, total stand transpiration would be overestimated by 32% during sunny days and 40% for the entire season.

  9. Role of Candida albicans-Secreted Aspartyl Proteinases (Saps in Severe Early Childhood Caries

    Directory of Open Access Journals (Sweden)

    Wenqing Li

    2014-06-01

    Full Text Available Candida albicans is strongly associated with severe early childhood caries (S-ECC. However, the roles of secreted aspartyl proteinases (Saps, an important virulence factor of C. albicans, in the progress of S-ECC are not clear. In our study, the Saps activities were evaluated by the yeast nitrogen base–bovine serum albumi (YNB–BSA agar plate method and by the MTT method with bovine serum albumin (BSA as the substrate. Genotypes of C. albicans and gene expression of Sap1–5 were evaluated. The relationships of Saps activities and genotypes with S-ECC were analyzed. The results showed that enzyme activities of Saps in the S-ECC group were significantly higher than those in the caries free (CF group (p < 0.05. Genotypes A, B and C were detected in the S-ECC group, and genotypes A and C were detected in the CF group. In the genotype A group, Saps activity in the S-ECC group was significantly different from that in the CF group (p < 0.05. The gene expression level of Sap1 in the S-ECC group was significantly higher than that in the CF group (p = 0.001, while Sap4 expression was significantly lower than that in the CF group (p = 0.029. It can be concluded that Sap1–5 are the predominant proteinase genes expressed in C. albicans from dental biofilm and Sap1 may play an important role in the development of S-ECC.

  10. Dynamic Acquisition and Loss of Dual-Obligate Symbionts in the Plant-Sap-Feeding Adelgidae (Hemiptera: Sternorrhyncha: Aphidoidea)

    Science.gov (United States)

    Carol D. von Dohlen; Usha Spaulding; Kistie B. Patch; Kathryn M. Weglarz; Robert G. Foottit; Nathan P. Havill; Gaelen R. Burke

    2017-01-01

    Sap-sucking insects typically engage in obligate relationships with symbiotic bacteria that play nutritional roles in synthesizing nutrients unavailable or in scarce supply from the plant-sap diets of their hosts. Adelgids are sap-sucking insects with complex life cycles that involve alternation between conifer tree species. While all adelgid species feed on spruce...

  11. 49 CFR 40.307 - What is the SAP's function in prescribing the employee's follow-up tests?

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 1 2010-10-01 2010-10-01 false What is the SAP's function in prescribing the... the Return-to-Duty Process § 40.307 What is the SAP's function in prescribing the employee's follow-up tests? (a) As a SAP, for each employee who has committed a DOT drug or alcohol regulation violation, and...

  12. 49 CFR 40.287 - What information is an employer required to provide concerning SAP services to an employee who...

    Science.gov (United States)

    2010-10-01

    ... provide concerning SAP services to an employee who has a DOT drug and alcohol regulation violation? 40.287... § 40.287 What information is an employer required to provide concerning SAP services to an employee who... (including an applicant or new employee) who violates a DOT drug and alcohol regulation a listing of SAPs...

  13. 30 CFR 285.902 - What are the general requirements for decommissioning for facilities authorized under my SAP, COP...

    Science.gov (United States)

    2010-07-01

    ... decommissioning for facilities authorized under my SAP, COP, or GAP? 285.902 Section 285.902 Mineral Resources... SAP, COP, or GAP? (a) Except as otherwise authorized by MMS under § 285.909, within 2 years following... under your SAP, COP, or GAP, you must submit a decommissioning application and receive approval from the...

  14. 49 CFR 40.293 - What is the SAP's function in conducting the initial evaluation of an employee?

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 1 2010-10-01 2010-10-01 false What is the SAP's function in conducting the... Professionals and the Return-to-Duty Process § 40.293 What is the SAP's function in conducting the initial evaluation of an employee? As a SAP, for every employee who comes to you following a DOT drug and alcohol...

  15. 30 CFR 285.617 - What activities require a revision to my SAP, and when will MMS approve the revision?

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 2 2010-07-01 2010-07-01 false What activities require a revision to my SAP... OUTER CONTINENTAL SHELF Plans and Information Requirements Activities Under An Approved Sap § 285.617 What activities require a revision to my SAP, and when will MMS approve the revision? (a) You must...

  16. 49 CFR 40.303 - What happens if the SAP believes the employee needs additional treatment, aftercare, or support...

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 1 2010-10-01 2010-10-01 false What happens if the SAP believes the employee... the Return-to-Duty Process § 40.303 What happens if the SAP believes the employee needs additional...? (a) As a SAP, if you believe that ongoing services (in addition to follow-up tests) are needed to...

  17. 78 FR 12676 - Timing Requirements for the Submission of a Site Assessment Plan (SAP) or General Activities Plan...

    Science.gov (United States)

    2013-02-25

    ... Submission of a Site Assessment Plan (SAP) or General Activities Plan (GAP) for a Renewable Energy Project on... Assessment Plan (SAP) or General Activities Plan (GAP) pursuant to the regulations governing renewable energy... lessee or grantee must submit a SAP or a GAP. BOEM is taking this action because the current regulations...

  18. 30 CFR 285.612 - How will my SAP be processed for Federal consistency under the Coastal Zone Management Act?

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 2 2010-07-01 2010-07-01 false How will my SAP be processed for Federal... Plan § 285.612 How will my SAP be processed for Federal consistency under the Coastal Zone Management Act? Your SAP will be processed based on how your commercial lease was issued: ER29AP09.118 ...

  19. 78 FR 43091 - Technical Operations Safety Action Program (T-SAP) and Air Traffic Safety Action Program (ATSAP)

    Science.gov (United States)

    2013-07-19

    ... Action Program (T-SAP) and Air Traffic Safety Action Program (ATSAP) AGENCY: Federal Aviation... under the T-SAP, established in Notice JO 7210.807 which will be incorporated in FAA Order JO 7200.20... voluntarily provide information to the FAA under the T-SAP and ATSAP, so the FAA can learn about and address...

  20. 30 CFR 285.615 - What other reports or notices must I submit to MMS under my approved SAP?

    Science.gov (United States)

    2010-07-01

    ... MMS under my approved SAP? 285.615 Section 285.615 Mineral Resources MINERALS MANAGEMENT SERVICE... CONTINENTAL SHELF Plans and Information Requirements Activities Under An Approved Sap § 285.615 What other reports or notices must I submit to MMS under my approved SAP? (a) You must notify MMS in writing within...

  1. Competition and Facilitation in Hairy Vetch-Barley Intercrops

    Directory of Open Access Journals (Sweden)

    Giacomo Tosti

    2010-09-01

    Full Text Available Intercrops between legumes and non-legumes are widely used for fodder production and as cover crops, but little quantitative data are available on competition between species in the mixture. The objective of the present study was to assess the interaction between hairy vetch (Vicia villosa Roth. and barley (Hordeum vulgare L. grown as pure crops or intercrops with different proportions of seed rates at sowing. A 4-year field study was conducted using hairy vetch and barley as pure stands at full sowing density and as intercrops at different proportions of their own full seed rate according to the replacement principle. Interaction between species was evaluated on the basis of Land Equivalent Ratio (LER, Relative Neighbour Effect (RNE and Aggressivity (A calculated on biomass and nitrogen (N accumulation. The N accumulation of the mixed crops increased linearly with the legume proportion in the mixture. The mixtures were more efficient than the pure crops in terms of N use (LER > 1. Partial LER values indicated that the barley component benefited from the presence of the legume, while the hairy vetch partial LER decreased with increasing barley proportion in the mixture. The competitive response in terms of biomass accumulation was high for both species when their density in the mixture was high. Concerning N accumulation, barley benefited from an asymmetric interspecific facilitation while the vetch behaviour was similar to that observed for biomass accumulation. Barley dominance progressively increased reaching a maximum just before the last sampling date. At the last sampling date the competitive ability of hairy vetch showed a considerable increase in all mixtures (A ≈ 0. These findings indicate that the use of mixtures between hairy vetch and barley allows an increase in the use efficiency of N resource with respect to pure crops. Barley is the dominant component of the mixture and the hairy vetch is able to cope with the cereal

  2. Physiological effects of the air pollutant hydrogen fluoride on phloem transport in soybean plants

    Energy Technology Data Exchange (ETDEWEB)

    Madkour, S.A.A.S.

    1984-01-01

    The effect of continuous exposure to HF at ca. 0, 1, and 5 ugF m/sup -3/ for 8-10 days on the transport and relative distribution of /sup 14/C-labelled photosynthetic assimilates in Hodgson soybean plants at three stages of development (vegetative, flowering and early fruit set, and pod filling) were investigated. Fumigated and non-fumigated plants were supplied with /sup 14/CO/sub 2/ by enclosing the second fully-expanded trifoliolate leaf in a cuvette designed for the purpose. Results from these experiments indicate that transport from the source leaves of /sup 14/C-labelled assimilates to sink tissues was partially inhibited by exposure to both concentrations of HF and at each stage of development. However, the greatest degree of inhibition in the transport occurred in plants that were exposed during the flowering stage. Results indicated that there was a greater retention of sugars and a greater incorporation of the /sup 14/C into non-transport compounds in the source leaves accompanied by a reduced transport to sink tissue as the HF concentration increases. This suggested that F-induced inhibition of phloem loading of sugars. The effect of HF fumigation on phloem loading was investigated by monitoring the uptake of /sup 14/C-sucrose supplied to source leaf discs, collected from fumigated and non-fumigated plants. HF was shown to inhibit the loading of /sup 14/C-sucrose. The effect of F on the activity of plasma membrane ATPase was investigated both in vivo, by isolating plasma membranes from fumigated and non-fumigated plants, and in vitro by exposure of plasma membranes to NaF. F was shown to inhibit ATPase activity both in vivo and in vitro. It is concluded that plasma membrane ATPases is the target site for F inhibition of phloem transport, and that the inhibition occurs through the formation of Mg/sup +2/-fluorophosphate complexes.

  3. Morphological, Histobiochemical and Molecular Characterisation of Low Lignin Phloem Fibre (llpf) Mutant of Dark Jute (Corchorus olitorius L.).

    Science.gov (United States)

    Choudhary, S B; Chowdhury, I; Singh, R K; Pandey, S P; Sharma, H K; Anil Kumar, A; Karmakar, P G; Kumari, N; Souframanien, J; Jambhulkar, S J

    2017-05-11

    Lignin is a versatile plant metabolite challenging high-end industrial applications of several plant products including jute. Application of developmental mutant in regulation of lignification in jute may open up door for much awaited jute based diversified products. In the present study, a novel dark jute (Corchorus olitorius L.) mutant with low lignin (7.23%) in phloem fibre being compared to wild-type JRO 204 (13.7%) was identified and characterised. Unique morphological features including undulated stem, petiole and leaf vein distinguished the mutant in gamma ray irradiated mutant population. Histological and biochemical analysis revealed reduced lignification of phloem fibre cells of the plant. RT-PCR analysis demonstrated temporal transcriptional regulation of CCoAMT1 gene in the mutant. The mutant was found an extremely useful model to study phloem fibre developmental biology in the crop besides acting as a donor genetic stock for low lignin containing jute fibre in dark jute improvement programme.

  4. Efficient production of tetraploid barley (Hordeum vulgare L. by colchicine treatment of diploid barley

    Directory of Open Access Journals (Sweden)

    Ayed Sourour

    2014-03-01

    Full Text Available An experiment was conducted to induce tetraploidy in three diploid barley varieties (Martin, Rihane and Manel through different colchicines treatments. Colchicine was added for three different concentrations at three different stages of plant development i.e. on seed (0.05% for 48 hours, on pre-germinated seeds (0.1% for 2 hours and on three leaf stage (0.1% for 16 hours. Colchicine application reduced significantly germination percentage and viability of plants. Seed germination was completely inhibited in Martin, while a reduction of 20% and 30% for germination percentage compared to control was recorded in varieties Manel and Rihane, respectively at 0.1% colchicine concentration. Ploidy evaluation showed no tetraploidy in all the three tested varieties by colchicine application of 0.05% for 48 hours on seeds and 0.1% for 2 hours on pre-germinated seeds. However, tetraploid plants were produced only by treatment with 0.1% for 16 hours of seedlings. The percentages of plants were 40%, 44% and 100% for Rihane, Manel and Martin, respectively. Cytological analyses showed the increase of chromosome numbers from 2n=2x=14 to 2n=4x=28. The increase of ploidy levels caused major changes in some morphological traits. In fact, the induced tetraploids in barley was accompanied by significant (P<0.01 decrease in plant height, tiller height, leaf number and leaf length compared to diploid control plants. colchicine treatment induce successfully the production of tetraploid barley plants and could be used in breeding programs.

  5. Sclerenchymatous ring as a barrier to phloem feeding by Asian citrus psyllid: Evidence from electrical penetration graph and visualization of stylet pathways

    Science.gov (United States)

    Asian citrus psyllid (ACP) feeding behaviors play a significant role in the transmission of the phloem-limited Candidatus Liberibacter asiaticus (CLas) bacteria that cause citrus greening disease. Sustained phloem ingestion by ACP on CLas infected plants is very important in pathogen acquisition and...

  6. Visualization of the stem water content of two genera with secondary phloem produced by successive cambia through Magnetic Resonance Imaging (MRI)

    NARCIS (Netherlands)

    Robert, E.M.R.; Schmitz, N.; Copini, P.; Gerkema, E.; Vergeldt, F.J.; Windt, C.W.; Beeckman, H.; Koedam, N.; As, van H.

    2014-01-01

    Shrubs and trees with secondary phloem tissue produced by successive cambia mainly occur in habitats characterized by a periodical or continuous lack of water availability. The amount of this secondary phloem tissue in stems of Avicennia trees rises with increasing soil water salinity and decreasing

  7. Functional ratios among leaf, xylem and phloem areas in branches change with shade tolerance, but not with local light conditions, across temperate tree species

    NARCIS (Netherlands)

    Zhang, Lan; Copini, Paul; Weemstra, Monique; Sterck, Frank

    2016-01-01

    Leaf, xylem and phloem areas drive the water and carbon fluxes within branches and trees, but their mutual coordination is poorly understood. We test the hypothesis that xylem and phloem areas increase relative to leaf area when species are selected for, or branches are exposed to, higher levels

  8. Molecular characterization of barley 3H semi-dwarf genes.

    Directory of Open Access Journals (Sweden)

    Haobing Li

    Full Text Available The barley chromosome 3H accommodates many semi-dwarfing genes. To characterize these genes, the two-rowed semi-dwarf Chinese barley landrace 'TX9425' was crossed with the Australian barley variety 'Franklin' to generate a doubled haploid (DH population, and major QTLs controlling plant height have been identified in our previous study. The major QTL derived from 'TX9425' was targeted to investigate the allelism of the semi-dwarf gene uzu in barley. Twelve sets of near-isogenic lines and a large NILF2 fine mapping population segregating only for the dwarfing gene from 'TX9425' were developed. The semi-dwarfing gene in 'TX9425' was located within a 2.8 cM region close to the centromere on chromosome 3H by fine mapping. Molecular cloning and sequence analyses showed that the 'TX9425'-derived allele contained a single nucleotide substitution from A to G at position 2612 of the HvBRI1 gene. This was apparently the same mutation as that reported in six-rowed uzu barley. Markers co-segregating with the QTL were developed from the sequence of the HvBRI1 gene and were validated in the 'TX9425'/'Franklin' DH population. The other major dwarfing QTL derived from the Franklin variety was distally located on chromosome 3HL and co-segregated with the sdw1 diagnostic marker hv20ox2. A third dwarfing gene, expressed only in winter-sown trials, was identified and located on chromosome 3HS. The effects and interactions of these dwarfing genes under different growing conditions are discussed. These results improve our understanding of the genetic mechanisms controlling semi-dwarf stature in barley and provide diagnostic markers for the selection of semi-dwarfness in barley breeding programs.

  9. Gain Real Visibility of SAP Shop Floor Transactions

    Directory of Open Access Journals (Sweden)

    Dr.S. Muthu

    2010-04-01

    Full Text Available This paper describes the main functionality and design aspects for the integration between MES and SAP r /3 systems. Massive product types, faster cycle times, smaller inventory buffers, increased customer expectations, less tolerance for errors and heightenedcompetition. More than ever, we need to manage rapid change and reduce costs at the same time. Today, the most promising way to meet these challenges is to increase coordination between enterprise and production systems. Start with existing or optional connectivity capability in our ERP systems such as SAP’s XI or xMII or usingXML or other standard protocol. Next, we create a functional specification that includes compliance with ISA/ANSI S95, GAMP and other standards, depending on our situation and preferences. Then wecreate an interface to our plant systems using proven open standard solutions.

  10. SAP推出基于Linux的SAP Business One

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    7月6日,SAP公司宣布推出基于Linux操作系统的SAP Business One解决方案。这是专门为中国中小型企业量身定制的一款完整而又经济的企业管理解决方案,旨在满足中国市场上中小企业对Linux解决方案的需求。它的推出延续了SAP为用户提供灵活解决方案的承诺,可为客户使用IT平台提供一个开放而自由的选择。

  11. Transcriptome sequencing and profiling of expressed genes in phloem and xylem of ramie (Boehmeria nivea L. Gaud.

    Directory of Open Access Journals (Sweden)

    Jianrong Chen

    Full Text Available Ramie (Boehmeria nivea L. Gaud is a highly versatile herbaceous plant which is widely cropped in southern China. The success of this herbaceous plant relies on wide use in modern industry. Understanding the profiling of expressed genes in phloem and xylem of ramie is crucial for improving its industrial performance. Herein, we uncover the transcriptome profile in phloem and xylem in present study. Using Illumina paired-end sequencing technology, 57 million high quality reads were generated. De novo assembly yielded 87,144 unigenes with an average length of 635 bp. By sequence similarity searching for public databases, a total of 32,541 (41.77% unigenes were annotated for their function. Among these genes, 57,873 (66.4% and 28,678 (32.9% unigenes were assigned to categories of Gene Ontology and Orthologous Groups database, respectively. By searching against the Kyoto Encyclopedia of Genes and Genomes Pathway database (KEGG, 18,331 (21.0% unigenes were mapped to 125 pathways. The metabolic pathways were assigned the most unigene (4,793, 26.2%. Furthermore, Pol II and Pol III subunits as well as the genes of Galactose metabolism pathway had higher expression in phloem compared to xylem. In addition, fatty acid metabolism pathway genes showed more abundant in xylem than phloem. These results suggest that high activities of RNA synthesis and Galactose metabolism pathway promises fiber synthesis in phloem. The present study is the initial exploration to uncover the fiber biosynthesis difference between phloem and xylem in ramie through the analysis of deep sequencing data.

  12. Transcriptome sequencing and profiling of expressed genes in phloem and xylem of ramie (Boehmeria nivea L. Gaud).

    Science.gov (United States)

    Chen, Jianrong; Liu, Fang; Tang, Yinghong; Yuan, Youmei; Guo, Qingquan

    2014-01-01

    Ramie (Boehmeria nivea L. Gaud) is a highly versatile herbaceous plant which is widely cropped in southern China. The success of this herbaceous plant relies on wide use in modern industry. Understanding the profiling of expressed genes in phloem and xylem of ramie is crucial for improving its industrial performance. Herein, we uncover the transcriptome profile in phloem and xylem in present study. Using Illumina paired-end sequencing technology, 57 million high quality reads were generated. De novo assembly yielded 87,144 unigenes with an average length of 635 bp. By sequence similarity searching for public databases, a total of 32,541 (41.77%) unigenes were annotated for their function. Among these genes, 57,873 (66.4%) and 28,678 (32.9%) unigenes were assigned to categories of Gene Ontology and Orthologous Groups database, respectively. By searching against the Kyoto Encyclopedia of Genes and Genomes Pathway database (KEGG), 18,331 (21.0%) unigenes were mapped to 125 pathways. The metabolic pathways were assigned the most unigene (4,793, 26.2%). Furthermore, Pol II and Pol III subunits as well as the genes of Galactose metabolism pathway had higher expression in phloem compared to xylem. In addition, fatty acid metabolism pathway genes showed more abundant in xylem than phloem. These results suggest that high activities of RNA synthesis and Galactose metabolism pathway promises fiber synthesis in phloem. The present study is the initial exploration to uncover the fiber biosynthesis difference between phloem and xylem in ramie through the analysis of deep sequencing data.

  13. Cloning, expression and cellular localization of Daphnia pulex senescence-associated protein, DpSAP.

    Science.gov (United States)

    Liu, Ajing; Kong, Ling; Zhang, Mingqing; Wu, Donglei; Wang, Danli; Zhao, Yunlong

    2014-01-25

    Daphnia (water fleas) are small crustaceans that undergo an unusual switch from asexual to sexual reproduction that is dependent on environmental conditions. In this study, a senescence-associated protein (SAP) from the common freshwater species Daphnia pulex was cloned using primers based on homologous sequences and rapid amplification of cDNA ends (RACE). Real-time PCR was employed to quantify the expression of D. pulex SAP (DpSAP) in individual organisms. The role of DpSAP in the reproductive transformation was further investigated in both parthenogenetic and sexual females by using digoxin-labeled SAP RNA probes and RNA whole-mount in situ hybridization. DpSAP was more highly expressed in sexual females, indicating a role in growth and reproduction. Cellular localization studies using RNA whole-mount in situ hybridization showed specific expression in the second tentacle joints. These expression patterns suggest an important role for DpSAP in the reproductive transformation of D. pulex. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. Osmolality and non-structural carbohydrate composition in the secondary phloem of trees across a latitudinal gradient in Europe

    Directory of Open Access Journals (Sweden)

    Anna eLintunen

    2016-06-01

    Full Text Available Phloem osmolality and its components are involved in basic cell metabolism, cell growth, and in various physiological processes including the ability of living cells to withstand drought and frost. Osmolality and sugar composition responses to environmental stresses have been extensively studied for leaves, but less for the secondary phloem of plant stems and branches. Leaf osmotic concentration and the share of pinitol and raffinose among soluble sugars increase with increasing drought or cold stress, and osmotic concentration is adjusted with osmoregulation. We hypothesize that similar responses occur in the secondary phloem of branches. We collected living bark samples from branches of adult Pinus sylvestris, Picea abies, Betula pendula and Populus tremula trees across Europe, from boreal Northern Finland to Mediterranean Portugal. In all studied species, the observed variation in phloem osmolality was mainly driven by variation in phloem water content, while tissue solute content was rather constant across regions. Osmoregulation, in which osmolality is controlled by variable tissue solute content, was stronger for Betula and Populus in comparison to the evergreen conifers. Osmolality was lowest in mid-latitude region, and from there increased by 37% towards northern Europe and 38% towards southern Europe due to low phloem water content in these regions. The ratio of raffinose to all soluble sugars was negligible at mid-latitudes and increased towards north and south, reflecting its role in cold and drought tolerance. For pinitol, another sugar known for contributing to stress tolerance, no such latitudinal pattern was observed. The proportion of sucrose was remarkably low and that of hexoses (i.e. glucose and fructose high at mid-latitudes. The ratio of starch to all non-structural carbohydrates increased towards the northern latitudes in agreement with the build-up of osmotically inactive C reservoir that can be converted into soluble

  15. Osmolality and Non-Structural Carbohydrate Composition in the Secondary Phloem of Trees across a Latitudinal Gradient in Europe

    Science.gov (United States)

    Lintunen, Anna; Paljakka, Teemu; Jyske, Tuula; Peltoniemi, Mikko; Sterck, Frank; von Arx, Georg; Cochard, Hervé; Copini, Paul; Caldeira, Maria C.; Delzon, Sylvain; Gebauer, Roman; Grönlund, Leila; Kiorapostolou, Natasa; Lechthaler, Silvia; Lobo-do-Vale, Raquel; Peters, Richard L.; Petit, Giai; Prendin, Angela L.; Salmon, Yann; Steppe, Kathy; Urban, Josef; Roig Juan, Sílvia; Robert, Elisabeth M. R.; Hölttä, Teemu

    2016-01-01

    Phloem osmolality and its components are involved in basic cell metabolism, cell growth, and in various physiological processes including the ability of living cells to withstand drought and frost. Osmolality and sugar composition responses to environmental stresses have been extensively studied for leaves, but less for the secondary phloem of plant stems and branches. Leaf osmotic concentration and the share of pinitol and raffinose among soluble sugars increase with increasing drought or cold stress, and osmotic concentration is adjusted with osmoregulation. We hypothesize that similar responses occur in the secondary phloem of branches. We collected living bark samples from branches of adult Pinus sylvestris, Picea abies, Betula pendula and Populus tremula trees across Europe, from boreal Northern Finland to Mediterranean Portugal. In all studied species, the observed variation in phloem osmolality was mainly driven by variation in phloem water content, while tissue solute content was rather constant across regions. Osmoregulation, in which osmolality is controlled by variable tissue solute content, was stronger for Betula and Populus in comparison to the evergreen conifers. Osmolality was lowest in mid-latitude region, and from there increased by 37% toward northern Europe and 38% toward southern Europe due to low phloem water content in these regions. The ratio of raffinose to all soluble sugars was negligible at mid-latitudes and increased toward north and south, reflecting its role in cold and drought tolerance. For pinitol, another sugar known for contributing to stress tolerance, no such latitudinal pattern was observed. The proportion of sucrose was remarkably low and that of hexoses (i.e., glucose and fructose) high at mid-latitudes. The ratio of starch to all non-structural carbohydrates increased toward the northern latitudes in agreement with the build-up of osmotically inactive C reservoir that can be converted into soluble sugars during winter

  16. Osmolality and Non-Structural Carbohydrate Composition in the Secondary Phloem of Trees across a Latitudinal Gradient in Europe.

    Science.gov (United States)

    Lintunen, Anna; Paljakka, Teemu; Jyske, Tuula; Peltoniemi, Mikko; Sterck, Frank; von Arx, Georg; Cochard, Hervé; Copini, Paul; Caldeira, Maria C; Delzon, Sylvain; Gebauer, Roman; Grönlund, Leila; Kiorapostolou, Natasa; Lechthaler, Silvia; Lobo-do-Vale, Raquel; Peters, Richard L; Petit, Giai; Prendin, Angela L; Salmon, Yann; Steppe, Kathy; Urban, Josef; Roig Juan, Sílvia; Robert, Elisabeth M R; Hölttä, Teemu

    2016-01-01

    Phloem osmolality and its components are involved in basic cell metabolism, cell growth, and in various physiological processes including the ability of living cells to withstand drought and frost. Osmolality and sugar composition responses to environmental stresses have been extensively studied for leaves, but less for the secondary phloem of plant stems and branches. Leaf osmotic concentration and the share of pinitol and raffinose among soluble sugars increase with increasing drought or cold stress, and osmotic concentration is adjusted with osmoregulation. We hypothesize that similar responses occur in the secondary phloem of branches. We collected living bark samples from branches of adult Pinus sylvestris, Picea abies, Betula pendula and Populus tremula trees across Europe, from boreal Northern Finland to Mediterranean Portugal. In all studied species, the observed variation in phloem osmolality was mainly driven by variation in phloem water content, while tissue solute content was rather constant across regions. Osmoregulation, in which osmolality is controlled by variable tissue solute content, was stronger for Betula and Populus in comparison to the evergreen conifers. Osmolality was lowest in mid-latitude region, and from there increased by 37% toward northern Europe and 38% toward southern Europe due to low phloem water content in these regions. The ratio of raffinose to all soluble sugars was negligible at mid-latitudes and increased toward north and south, reflecting its role in cold and drought tolerance. For pinitol, another sugar known for contributing to stress tolerance, no such latitudinal pattern was observed. The proportion of sucrose was remarkably low and that of hexoses (i.e., glucose and fructose) high at mid-latitudes. The ratio of starch to all non-structural carbohydrates increased toward the northern latitudes in agreement with the build-up of osmotically inactive C reservoir that can be converted into soluble sugars during winter

  17. Haemophilus ducreyi SapA contributes to cathelicidin resistance and virulence in humans.

    Science.gov (United States)

    Mount, Kristy L B; Townsend, Carisa A; Rinker, Sherri D; Gu, Xiaoping; Fortney, Kate R; Zwickl, Beth W; Janowicz, Diane M; Spinola, Stanley M; Katz, Barry P; Bauer, Margaret E

    2010-03-01

    Haemophilus ducreyi is an extracellular pathogen of human epithelial surfaces that resists human antimicrobial peptides (APs). The organism's genome contains homologs of genes sensitive to antimicrobial peptides (sap operon) in nontypeable Haemophilus influenzae. In this study, we characterized the sap-containing loci of H. ducreyi 35000HP and demonstrated that sapA is expressed in broth cultures and H. ducreyi-infected tissue; sapA is also conserved among both class I and class II H. ducreyi strains. We constructed a nonpolar sapA mutant of H. ducreyi 35000HP, designated 35000HPsapA, and compared the percent survival of wild-type 35000HP and 35000HPsapA exposed to several human APs, including alpha-defensins, beta-defensins, and the cathelicidin LL-37. Unlike an H. influenzae sapA mutant, strain 35000HPsapA was not more susceptible to defensins than strain 35000HP was. However, we observed a significant decrease in the survival of strain 35000HPsapA after exposure to LL-37, which was complemented by introducing sapA in trans. Thus, the Sap transporter plays a role in resistance of H. ducreyi to LL-37. We next compared mutant strain 35000HPsapA with strain 35000HP for their ability to cause disease in human volunteers. Although both strains caused papules to form at similar rates, the pustule formation rate at sites inoculated with 35000HPsapA was significantly lower than that of sites inoculated with 35000HP (33.3% versus 66.7%; P = 0.007). Together, these data establish that SapA acts as a virulence factor and as one mechanism for H. ducreyi to resist killing by antimicrobial peptides. To our knowledge, this is the first demonstration that an antimicrobial peptide resistance mechanism contributes to bacterial virulence in humans.

  18. Sap Flux Scaled Transpiration in Ring-porous Tree Species: Assumptions, Pitfalls and Calibration

    Science.gov (United States)

    Bush, S. E.; Hultine, K. R.; Ehleringer, J. R.

    2008-12-01

    Thermal dissipation probes for measuring sap flow (Granier-type) at the whole tree and stand level are routinely used in forest ecology and site water balance studies. While the original empirical relationship used to calculate sap flow was reported as independent of wood anatomy (ring-porous, diffuse-porous, tracheid), it has been suggested that potentially large errors in sap flow calculations may occur when using the original calibration for ring-porous species, due to large radial trends in sap velocity and/or shallow sapwood depth. Despite these concerns, sap flux measurements have rarely been calibrated in ring-porous taxa. We used a simple technique to calibrate thermal dissipation sap flux measurements on ring-porous trees in the lab. Calibration measurements were conducted on five ring-porous species in the Salt Lake City, USA metropolitan area including Quercus gambelii (Gambel oak), Gleditsia triacanthos (Honey locust), Elaeagnus angustifolia (Russian olive), Sophora japonica (Japanese pagoda), and Celtis occidentalis (Common hackberry). Six stems per species of approximately 1 m in length were instrumented with heat dissipation probes to measure sap flux concurrently with gravimetric measurements of water flow through each stem. Safranin dye was pulled through the stems following flow rate measurements to determine sapwood area. As expected, nearly all the conducting sapwood area was limited to regions within the current year growth rings. Consequently, we found that the original Granier equation underestimated sap flux density for all species considered. Our results indicate that the use of thermal dissipation probes for measuring sap flow in ring-porous species should be independently calibrated, particularly when species- specific calibration data are not available. Ring-porous taxa are widely distributed and represent an important component of the regional water budgets of many temperate regions. Our results are important for evaluating plant water

  19. Management of setpoint information using SAP-PM; Gerenciamento das informacoes de setpoints usando o SAP-PM

    Energy Technology Data Exchange (ETDEWEB)

    Ribeiro, Robison Tirre; Pereira, Paulo Manoel Borges [TBG - Transportadora Brasileira Gasoduto Bolivia Brasil S.A., Rio de Janeiro, RJ (Brazil)

    2005-07-01

    It is always a challenge to assure that the set points of field instruments and valves (e.g., transmitters, regulator valves, shut off valves, safety valves, etc) are adjusted in conformity either to the originally designed values or the ones established by the operations team, specially when multiple teams are involved in the activity. In such circumstances, keeping these values updated on proper data sheets is also a defying task. The correct information is essential to the Control Room operators and its accuracy is a step ahead towards operational availability and safety. TBG, through CMMS (Computerized Maintenance Management System) - SAP R/3, PM Module, developed a set of automated tools to integrate data from different environments (reports, handhelds, workflows and procedures), thus allowing allow a better control over the set point adjustment process. (author)

  20. Pearling barley to alter the composition of the raw material before brewing

    NARCIS (Netherlands)

    Donkelaar, van L.H.G.; Noordman, T.R.; Boom, R.M.; Goot, van der A.J.

    2015-01-01

    Partly replacing malt with unmalted barley is a trend in brewing. The use of unmalted barley, however, leads to issues such as haze and high mash viscosity, due to its higher content of undesired components. Pearling, an abrasive method to remove the outer layers of the barley kernels has been shown

  1. Interaction between powdery mildew and barley with ¤mlo5¤ mildew resistance

    DEFF Research Database (Denmark)

    Lyngkjær, M.F.; Østergård, Hanne

    1998-01-01

    Powdery mildew infection of barley with the mlo5 barley powdery mildew resistance gene was examined, using near-isogenic barley lines, with and without mlo5 resistance, and two near-isogenic powdery mildew isolates, HL3/5 and GE3 with high (virulent) or low (avirulent) penetration efficiency...

  2. 7 CFR 457.102 - Wheat or barley winter coverage endorsement.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 6 2010-01-01 2010-01-01 false Wheat or barley winter coverage endorsement. 457.102... INSURANCE CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.102 Wheat or barley... Wheat or Barley Winter Coverage Endorsement (This is a continuous endorsement) 1. In return for...

  3. Genetic dissection of grain beta-glucan and amylose content in barley (Hordeum vulgare L.)

    Science.gov (United States)

    High beta glucan (BG) barleys (Hordeum vulgare L.) have major potential as food ingredients due to the well know health benefits. Quantitative trait loci (QTLs) associated with BG have been reported in hulled barley, however no QTL studies have been reported in hulless barley. In this study, QTL an...

  4. The role of root hairs in cadmium acquisition by barley

    Energy Technology Data Exchange (ETDEWEB)

    Zheng Ruilun; Li Huafen [Key Laboratory of Plant-Soil Interactions of the Ministry of Education, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100094 (China); Jiang Rongfeng, E-mail: rfjiang@cau.edu.c [Key Laboratory of Plant-Soil Interactions of the Ministry of Education, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100094 (China); Roemheld, Volker [Institute of Plant Nutrition, University of Hohenheim, D-70593 Stuttgart (Germany); Zhang Fusuo [Key Laboratory of Plant-Soil Interactions of the Ministry of Education, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100094 (China); Zhao Fangjie [Soil Science Department, Rothamsted Research, Harpenden, Hertfordshire AL5 2JQ (United Kingdom)

    2011-02-15

    The role of root hairs in Cd acquisition from soil was investigated in three pot experiments using a root hairless mutant (bald root barley, brb) and its wild-type (WT) cultivar of barley (Hordeum vulgare). brb had significantly lower concentrations and lower total amounts of Cd in shoots than WT. The Cd uptake efficiency based on total root length was 8-45% lower in brb than in WT. The difference between brb and WT increased with increasing extractable Cd in soil under the experimental conditions used. Additions of phosphate to soil decreased Cd extractability. Both soil and foliar additions of phosphate decreased root length, and root hair formation in WT. These effects resulted in decreased Cd uptake with increasing P supply. Cd uptake in WT correlated significantly with root length, root hair length and density, and soil extractable Cd. Root hairs contribute significantly to Cd uptake by barley. - Research highlights: The Cd uptake efficiency was significantly lower in brb than in WT. Additions of phosphate to soil decreased Cd extractability and Cd uptake. Both soil and foliar additions of phosphate decreased root length, and root hair formation in WT. Root hairs contribute significantly to Cd uptake by barley. - The Cd uptake efficiency based on total root length was 8-45% lower in a barley root hairless mutant than in its wild-type, indicating an important role of root hairs in Cd acquisition.

  5. Identification of a phytase gene in barley (Hordeum vulgare L..

    Directory of Open Access Journals (Sweden)

    Fei Dai

    Full Text Available BACKGROUND: Endogenous phytase plays a crucial role in phytate degradation and is thus closely related to nutrient efficiency in barley products. The understanding of genetic information of phytase in barley can provide a useful tool for breeding new barley varieties with high phytase activity. METHODOLOGY/PRINCIPAL FINDINGS: Quantitative trait loci (QTL analysis for phytase activity was conducted using a doubled haploid population. Phytase protein was purified and identified by the LC-ESI MS/MS Shotgun method. Purple acid phosphatase (PAP gene was sequenced and the position was compared with the QTL controlling phytase activity. A major QTL for phytase activity was mapped to chromosome 5 H in barley. The gene controlling phytase activity in the region was named as mqPhy. The gene HvPAP a was mapped to the same position as mqPhy, supporting the colinearity between HvPAP a and mqPhy. CONCLUSIONS/SIGNIFICANCE: It is the first report on QTLs for phytase activity and the results showed that HvPAP a, which shares a same position with the QTL, is a major phytase gene in barley grains.

  6. Mutagenesis of barley malting quality QTLs with Ds transposons.

    Science.gov (United States)

    Singh, Surinder; Tan, Han Qi; Singh, Jaswinder

    2012-03-01

    Various functional genomic tools are being used to identify and characterize genes in plants. The Activator/Dissociation (Ac/Ds) transposon-based approach offers great potential, especially in barley, due to its limited success of genetic transformation and its large genome size. The bias of the Ac/Ds system towards genic regions and its tendency toward localized transpositions can greatly enhance the discovery and tagging of genes linked to Ds. Barley is a key ingredient in malting and brewing industry; therefore, gene discovery in relation to malting has an industrial perspective. Malting quality in barley is a complex and quantitatively inherited trait. Two major quantitative trait loci (QTLs) affecting malting quality traits have been located on chromosome 4H. In this study, Ds was reactivated from parent transposants (TNP) lines, TNP-29 and TNP-79, where Ds was mapped in the vicinity of important malting QTLs. Reactivation of Ds was carried out both by conventional breeding and in vitro approaches. A threefold increase in reactivation frequency through the in vitro approach enabled the development of a new genomic resource for the dissection of malting QTL and gene discovery in barley. Identification of unique flanking sequences, using high-efficiency thermal asymmetric interlaced PCR and inverse PCR from these populations, has further emphasized the new location of Ds in the barley genome and provided new transposon mutants especially in β-GAL1, β-amylase-like gene and ABC transporter for functional genomic studies.

  7. Products based on a high fiber barley genotype, but not on common barley or oats, lower postprandial glucose and insulin responses in healthy humans.

    Science.gov (United States)

    Liljeberg, H G; Granfeldt, Y E; Björck, I M

    1996-02-01

    Postprandial blood glucose and insulin responses to cereal products made from common barley, oats or a barley genotype containing elevated levels of beta-glucans were evaluated in nine healthy subjects. Porridges were made from commercial Swedish whole-meal barley or oat flours, and a mixed whole-meal porridge using the high fiber barley genotype and commercial Swedish common barley (50:50). Also studied were two types of flour-based bread products composed of high fiber barley and common barley in ratios of 50:50 or 80:20, respectively. The common oat and barley porridges produced postprandial glucose and insulin responses similar to the white wheat bread reference, suggesting that the naturally occurring dietary fiber in these whole-meal flours has no impact on the glucose tolerance. In contrast, all high fiber barley products induced significantly lower responses than did the reference product, with the glycemic and insulin indices ranging from 57 to 72 or 42 to 72%, respectively. It is concluded that "lente" products of high sensory quality can be prepared from a barley genotype with an elevated content of soluble dietary fiber. The glycemic index of these products compares favorably with that of products made from common cereals, suggesting their use as a potential component of diets for patients with diabetes and hyperlipidemia, and for individuals predisposed to metabolic disease.

  8. SAP HANA技术研究与应用实施

    Institute of Scientific and Technical Information of China (English)

    高天

    2016-01-01

    通过对SAP HANA存储结构和工作原理的分析,结合大港油田ERP系统运行实际,论述了SAP报表加速技术、方案设计与实现方法,分析利用SAP HANA实施提升重要报表访问速度,支持企业决策;SAP HANA技术改变了传统数据应用模式,为企业ERP深化应用提供了典型案例.

  9. Protein folding of the SAP domain, a naturally occurring two-helix bundle.

    Science.gov (United States)

    Dodson, Charlotte A; Arbely, Eyal

    2015-07-01

    The SAP domain from the Saccharomyces cerevisiae Tho1 protein is comprised of just two helices and a hydrophobic core and is one of the smallest proteins whose folding has been characterised. Φ-value analysis revealed that Tho1 SAP folds through a transition state where helix 1 is the most extensively formed element of secondary structure and flickering native-like core contacts from Leu35 are also present. The contacts that contribute most to native state stability of Tho1 SAP are not formed in the transition state.

  10. Sulfonic-based precursors (SAPs for silica mesostructures: Advances in synthesis and applications

    Directory of Open Access Journals (Sweden)

    Sadegh Rostamnia*

    2016-01-01

    Full Text Available Sulfonic acid-based precursors (SAP play an important role in tailoring mesoporous silica’s and convert them to a solid acid catalyst with a Bronsted-type nature. These kinds of solid acids contribute to sustainable and green chemistry by their heterogeneous, recyclable, and high efficiency features. Therefore, knowing the properties and reactivity of SAPs can guide us to manufacture a sulfonated mesostructures compatible with reaction type and conditions. In the present review, some of the important SAPs, their reactivity and mechanism of functionalization are discussed.

  11. Herbivory by a Phloem-feeding insect inhibits floral volatile production.

    Directory of Open Access Journals (Sweden)

    Martin Pareja

    Full Text Available There is extensive knowledge on the effects of insect herbivory on volatile emission from vegetative tissue, but little is known about its impact on floral volatiles. We show that herbivory by phloem-feeding aphids inhibits floral volatile emission in white mustard Sinapis alba measured by gas chromatographic analysis of headspace volatiles. The effect of the Brassica specialist aphid Lipaphis erysimi was stronger than the generalist aphid Myzus persicae and feeding by chewing larvae of the moth Plutella xylostella caused no reduction in floral volatile emission. Field observations showed no effect of L. erysimi-mediated floral volatile emission on the total number of flower visits by pollinators. Olfactory bioassays suggested that although two aphid natural enemies could detect aphid inhibition of floral volatiles, their olfactory orientation to infested plants was not disrupted. This is the first demonstration that phloem-feeding herbivory can affect floral volatile emission, and that the outcome of interaction between herbivory and floral chemistry may differ depending on the herbivore's feeding mode and degree of specialisation. The findings provide new insights into interactions between insect herbivores and plant chemistry.

  12. Herbivory by a Phloem-feeding insect inhibits floral volatile production.

    Science.gov (United States)

    Pareja, Martin; Qvarfordt, Erika; Webster, Ben; Mayon, Patrick; Pickett, John; Birkett, Michael; Glinwood, Robert

    2012-01-01

    There is extensive knowledge on the effects of insect herbivory on volatile emission from vegetative tissue, but little is known about its impact on floral volatiles. We show that herbivory by phloem-feeding aphids inhibits floral volatile emission in white mustard Sinapis alba measured by gas chromatographic analysis of headspace volatiles. The effect of the Brassica specialist aphid Lipaphis erysimi was stronger than the generalist aphid Myzus persicae and feeding by chewing larvae of the moth Plutella xylostella caused no reduction in floral volatile emission. Field observations showed no effect of L. erysimi-mediated floral volatile emission on the total number of flower visits by pollinators. Olfactory bioassays suggested that although two aphid natural enemies could detect aphid inhibition of floral volatiles, their olfactory orientation to infested plants was not disrupted. This is the first demonstration that phloem-feeding herbivory can affect floral volatile emission, and that the outcome of interaction between herbivory and floral chemistry may differ depending on the herbivore's feeding mode and degree of specialisation. The findings provide new insights into interactions between insect herbivores and plant chemistry.

  13. Harnessing Host-Vector Microbiome for Sustainable Plant Disease Management of Phloem-Limited Bacteria.

    Science.gov (United States)

    Trivedi, Pankaj; Trivedi, Chanda; Grinyer, Jasmine; Anderson, Ian C; Singh, Brajesh K

    2016-01-01

    Plant health and productivity is strongly influenced by their intimate interaction with deleterious and beneficial organisms, including microbes, and insects. Of the various plant diseases, insect-vectored diseases are of particular interest, including those caused by obligate parasites affecting plant phloem such as Candidatus (Ca.) Phytoplasma species and several species of Ca. Liberibacter. Recent studies on plant-microbe and plant-insect interactions of these pathogens have demonstrated that plant-microbe-insect interactions have far reaching consequences for the functioning and evolution of the organisms involved. These interactions take place within complex pathosystems and are shaped by a myriad of biotic and abiotic factors. However, our current understanding of these processes and their implications for the establishment and spread of insect-borne diseases remains limited. This article highlights the molecular, ecological, and evolutionary aspects of interactions among insects, plants, and their associated microbial communities with a focus on insect vectored and phloem-limited pathogens belonging to Ca. Phytoplasma and Ca. Liberibacter species. We propose that innovative and interdisciplinary research aimed at linking scales from the cellular to the community level will be vital for increasing our understanding of the mechanisms underpinning plant-insect-microbe interactions. Examination of such interactions could lead us to applied solutions for sustainable disease and pest management.

  14. Harnessing host-vector microbiome for sustainable plant disease management of phloem-limited bacteria

    Directory of Open Access Journals (Sweden)

    Pankaj Trivedi

    2016-09-01

    Full Text Available Plant health and productivity is strongly influenced by their intimate interaction with deleterious and beneficial organisms, including microbes and insects. Of the various plant diseases, insect-vectored diseases are of particular interest, including those caused by obligate parasites affecting plant phloem such as Candidatus (Ca. Phytoplasma species and several species of Ca. Liberibacter. Recent studies on plant-microbe and plant-insect interactions of these pathogens have demonstrated that plant-microbe-insect interactions have far reaching consequences for the functioning and evolution of the organisms involved. These interactions take place within complex pathosystems and are shaped by a myriad of biotic and abiotic factors. However our current understanding of these processes and their implications for the establishment and spread of insect-borne diseases remains limited. This article highlights the molecular, ecological, and evolutionary aspects of interactions among insects, plants, and their associated microbial communities with a focus on insect vectored and phloem-limited pathogens belonging to Ca. Phytoplasma and Ca. Liberibacter species. We propose that innovative and interdisciplinary research aimed at linking scales from the cellular to the community level will be vital for increasing our understanding of the mechanisms underpinning plant-insect-microbe interactions. Examination of such interactions could lead us to applied solutions for sustainable disease and pest management.

  15. Pectinmethylesterases (PME) and pectinmethylesterase inhibitors (PMEI) enriched during phloem fiber development in flax (Linum usitatissimum).

    Science.gov (United States)

    Pinzon-Latorre, David; Deyholos, Michael K

    2014-01-01

    Flax phloem fibers achieve their length by intrusive-diffusive growth, which requires them to penetrate the extracellular matrix of adjacent cells. Fiber elongation therefore involves extensive remodelling of cell walls and middle lamellae, including modifying the degree and pattern of methylesterification of galacturonic acid (GalA) residues of pectin. Pectin methylesterases (PME) are important enzymes for fiber elongation as they mediate the demethylesterification of GalA in muro, in either a block-wise fashion or in a random fashion. Our objective was to identify PMEs and PMEIs that mediate phloem fiber elongation in flax. For this purpose, we measured transcript abundance of candidate genes at nine different stages of stem and fiber development and found sets of genes enriched during fiber elongation and maturation as well as during xylem development. We expressed one of the flax PMEIs in E. coli and demonstrated that it was able to inhibit most of the native PME activity in the upper portion of the flax stem. These results identify key genetic components of the intrusive growth process and define targets for fiber engineering and crop improvement.

  16. Pectinmethylesterases (PME and pectinmethylesterase inhibitors (PMEI enriched during phloem fiber development in flax (Linum usitatissimum.

    Directory of Open Access Journals (Sweden)

    David Pinzon-Latorre

    Full Text Available Flax phloem fibers achieve their length by intrusive-diffusive growth, which requires them to penetrate the extracellular matrix of adjacent cells. Fiber elongation therefore involves extensive remodelling of cell walls and middle lamellae, including modifying the degree and pattern of methylesterification of galacturonic acid (GalA residues of pectin. Pectin methylesterases (PME are important enzymes for fiber elongation as they mediate the demethylesterification of GalA in muro, in either a block-wise fashion or in a random fashion. Our objective was to identify PMEs and PMEIs that mediate phloem fiber elongation in flax. For this purpose, we measured transcript abundance of candidate genes at nine different stages of stem and fiber development and found sets of genes enriched during fiber elongation and maturation as well as during xylem development. We expressed one of the flax PMEIs in E. coli and demonstrated that it was able to inhibit most of the native PME activity in the upper portion of the flax stem. These results identify key genetic components of the intrusive growth process and define targets for fiber engineering and crop improvement.

  17. Refilling embolized xylem conduits: is it a matter of phloem unloading?

    Science.gov (United States)

    Nardini, Andrea; Lo Gullo, Maria A; Salleo, Sebastiano

    2011-04-01

    Long-distance water transport in plants relies on negative pressures established in continuous water columns in xylem conduits. Water under tension is in a metastable state and is prone to cavitation and embolism, which leads to loss of hydraulic conductance, reduced productivity and eventually plant death. Experimental evidence suggests that plants can repair embolized xylem by pushing water from living vessel-associated cells into the gas-filled conduit lumina. Most surprisingly, embolism refilling is known to occur even when the bulk of still functioning xylem is under tension, a finding that is in seemingly contradiction to basic principles of thermodynamics. This review summarizes our current understanding of xylem refilling processes and speculates that embolism repair under tension can be envisioned as a particular case of phloem unloading, as suggested by several events and components of embolism repair, typically involved in phloem unloading mechanisms. Far from being a challenge to irreversible thermodynamics, embolism refilling is emerging as a finely regulated vital process essential for plant functioning under different environmental stresses. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  18. Mevalocidin: a novel, phloem mobile phytotoxin from Fusarium DA056446 and Rosellinia DA092917.

    Science.gov (United States)

    Gerwick, B Clifford; Brewster, William K; Deboer, Gerrit J; Fields, Steve C; Graupner, Paul R; Hahn, Donald R; Pearce, Cedric J; Schmitzer, Paul R; Webster, Jeffery D

    2013-02-01

    A multiyear effort to identify new natural products was built on a hypothesis that both phytotoxins from plant pathogens and antimicrobial compounds might demonstrate herbicidal activity. The discovery of one such compound, mevalocidin, is described in the current report. Mevalocidin was discovered from static cultures of two unrelated fungal isolates designated Rosellinia DA092917 and Fusarium DA056446. The chemical structure was confirmed by independent synthesis. Mevalocidin demonstrated broad spectrum post-emergence activity on grasses and broadleaves and produced a unique set of visual symptoms on treated plants suggesting a novel mode of action. Mevalocidin was rapidly absorbed in a representative grass and broadleaf plant. Translocation occurred from the treated leaf to other plant parts including roots confirming phloem as well as xylem mobility. By 24 hr after application, over 20 % had been redistributed through-out the plant. Mevalocidin is a unique phytotoxin based on its chemistry, with the uncommon attribute of demonstrating both xylem and phloem mobility in grass and broadleaf plants.

  19. UMAMIT14 is an amino acid exporter involved in phloem unloading in Arabidopsis roots.

    Science.gov (United States)

    Besnard, Julien; Pratelli, Réjane; Zhao, Chengsong; Sonawala, Unnati; Collakova, Eva; Pilot, Guillaume; Okumoto, Sakiko

    2016-12-01

    Amino acids are the main form of nitrogen transported between the plant organs. Transport of amino acids across membranes is mediated by specialized proteins: importers, exporters, and facilitators. Unlike amino acid importers, amino acid exporters have not been thoroughly studied, partly due to a lack of high-throughput techniques enabling their isolation. Usually Multiple Acids Move In and out Transporters 14 (UMAMIT14) from Arabidopsis shares sequence similarity to the amino acid facilitator Silique Are Red1 (UMAMIT18), and has been shown to be involved in amino acid transfer to the seeds. We show here that UMAMIT14 is also expressed in root pericycle and phloem cells and mediates export of a broad range of amino acids in yeast. Loss-of-function of UMAMIT14 leads to a reduced shoot-to-root and root-to-medium transfer of amino acids originating from the leaves. These fluxes were further reduced in an umamti14 umamit18 double loss-of-function mutant. This study suggests that UMAMIT14 is involved in phloem unloading of amino acids in roots, and that UMAMIT14 and UMAMIT18 are involved in the radial transport of amino acids in roots, which is essential for maintaining amino acid secretion to the soil.

  20. RNA interference against gut osmoregulatory genes in phloem-feeding insects.

    Science.gov (United States)

    Tzin, Vered; Yang, Xiaowei; Jing, Xiangfeng; Zhang, Kai; Jander, Georg; Douglas, Angela E

    2015-08-01

    In planta RNAi (i.e. plants engineered to synthesize active RNAi molecules) has great potential as a strategy to control insect crop pests. This study investigated the impact of RNAi against osmoregulatory genes expressed in the gut of two phloem-feeding species, the green peach aphid Myzus persicae and the potato/tomato psyllid Bactericera cockerelli. The target genes comprising candidate gut sucrase, aquaporin and sugar transporter genes were identified by mining insect genomic and transcriptomic datasets for genes orthologous to empirically-tested osmoregulatory genes of the pea aphid Acyrthosiphon pisum. Insects feeding on plants with RNAi against the target genes exhibited elevated hemolymph osmotic pressure (a predicted effect of perturbed osmotic function) and some reduction in performance, especially offspring production in M. persicae and mortality in B. cockerelli, associated with up to 50% reduction in mean expression of the target genes. The effects were particularly pronounced for insects treated with RNAi against multiple osmoregulatory genes, i.e. combinatorial RNAi, suggesting that the partial silencing of multiple genes with related roles can yield greater functional impairment than RNAi against a single gene. These results demonstrate the potential of RNAi against osmoregulatory genes, but further advances to improve the efficacy of RNAi in phloem-feeding insects are required to achieve effective pest control.

  1. A transgenic approach to control hemipteran insects by expressing insecticidal genes under phloem-specific promoters

    Science.gov (United States)

    Javaid, Shaista; Amin, Imran; Jander, Georg; Mukhtar, Zahid; Saeed, Nasir A.; Mansoor, Shahid

    2016-01-01

    The first generation transgenic crops used strong constitutive promoters for transgene expression. However, tissue-specific expression is desirable for more precise targeting of transgenes. Moreover, piercing/sucking insects, which are generally resistant to insecticidal Bacillus thuringiensis (Bt) proteins, have emerged as a major pests since the introduction of transgenic crops expressing these toxins. Phloem-specific promoters isolated from Banana bunchy top virus (BBTV) were used for the expression of two insecticidal proteins, Hadronyche versuta (Blue Mountains funnel-web spider) neurotoxin (Hvt) and onion leaf lectin, in tobacco (Nicotiana tabacum). Here we demonstrate that transgenic plants expressing Hvt alone or in combination with onion leaf lectin are resistant to Phenacoccus solenopsis (cotton mealybug), Myzus persicae (green peach aphids) and Bemisia tabaci (silver leaf whitefly). The expression of both proteins under different phloem-specific promoters resulted in close to 100% mortality and provided more rapid protection than Hvt alone. Our results suggest the employment of the Hvt and onion leaf lectin transgenic constructs at the commercial level will reduce the use of chemical pesticides for control of hemipteran insect pests. PMID:27708374

  2. SAP-like domain in nucleolar spindle associated protein mediates mitotic chromosome loading as well as interphase chromatin interaction

    Energy Technology Data Exchange (ETDEWEB)

    Verbakel, Werner, E-mail: werner.verbakel@chem.kuleuven.be [Laboratory of Biomolecular Dynamics, Katholieke Universiteit Leuven, Celestijnenlaan 200G, Bus 2403, 3001 Heverlee (Belgium); Carmeliet, Geert, E-mail: geert.carmeliet@med.kuleuven.be [Laboratory of Experimental Medicine and Endocrinology, Katholieke Universiteit Leuven, Herestraat 49, Bus 902, 3000 Leuven (Belgium); Engelborghs, Yves, E-mail: yves.engelborghs@fys.kuleuven.be [Laboratory of Biomolecular Dynamics, Katholieke Universiteit Leuven, Celestijnenlaan 200G, Bus 2403, 3001 Heverlee (Belgium)

    2011-08-12

    Highlights: {yields} The SAP-like domain in NuSAP is a functional DNA-binding domain with preference for dsDNA. {yields} This SAP-like domain is essential for chromosome loading during early mitosis. {yields} NuSAP is highly dynamic on mitotic chromatin, as evident from photobleaching experiments. {yields} The SAP-like domain also mediates NuSAP-chromatin interaction in interphase nucleoplasm. -- Abstract: Nucleolar spindle associated protein (NuSAP) is a microtubule-stabilizing protein that localizes to chromosome arms and chromosome-proximal microtubules during mitosis and to the nucleus, with enrichment in the nucleoli, during interphase. The critical function of NuSAP is underscored by the finding that its depletion in HeLa cells results in various mitotic defects. Moreover, NuSAP is found overexpressed in multiple cancers and its expression levels often correlate with the aggressiveness of cancer. Due to its localization on chromosome arms and combination of microtubule-stabilizing and DNA-binding properties, NuSAP takes a special place within the extensive group of spindle assembly factors. In this study, we identify a SAP-like domain that shows DNA binding in vitro with a preference for dsDNA. Deletion of the SAP-like domain abolishes chromosome arm binding of NuSAP during mitosis, but is not sufficient to abrogate its chromosome-proximal localization after anaphase onset. Fluorescence recovery after photobleaching experiments revealed the highly dynamic nature of this NuSAP-chromatin interaction during mitosis. In interphase cells, NuSAP also interacts with chromatin through its SAP-like domain, as evident from its enrichment on dense chromatin regions and intranuclear mobility, measured by fluorescence correlation spectroscopy. The obtained results are in agreement with a model where NuSAP dynamically stabilizes newly formed microtubules on mitotic chromosomes to enhance chromosome positioning without immobilizing these microtubules. Interphase NuSAP

  3. Lysine metabolism in antisense C-hordein barley grains

    DEFF Research Database (Denmark)

    Schmidt, Daiana; Rizzi, Vanessa; Gaziola, Salete A

    2015-01-01

    ) and five antisense C-hordein transgenic barley lines. Considering the amounts of soluble and protein-bound aspartate-derived amino acids together with the analysis of key enzymes of aspartate metabolic pathway, we suggest that the C-hordein suppression did not only alter the metabolism of at least one......The grain proteins of barley are deficient in lysine and threonine due to their low concentrations in the major storage protein class, the hordeins, especially in the C-hordein subgroup. Previously produced antisense C-hordein transgenic barley lines have an improved amino acid composition......, with increased lysine, methionine and threonine contents. The objective of the study was to investigate the possible changes in the regulation of key enzymes of the aspartate metabolic pathway and the contents of aspartate-derived amino acids in the nontransgenic line (Hordeum vulgare L. cv. Golden Promise...

  4. Application of proteomics to investigate barley-Fusarium graminearum interaction

    DEFF Research Database (Denmark)

    Yang, Fen

    the disease. Due to the advantages of gel-based proteomics that differentially expressed proteins involved in the interaction can be directly detected by comparing protein profiles displayed on 2-D gels, it is used as a tool for studying the barley- Fusarium graminearum interaction form three different....... The functional characterization of two proteins is undergoing. In Chapter 6, microarray data of F. graminearum during interaction with barley and wheat was analysed. The expression patterns of 11fungal genes in microarray analysis were different from qRT-PCR results in Chapter 4. Overall, our results will give...... some insights into the cellular activities during the interaction between barley and Fusarium graminearum for designing new efficient strategies for the control of FHB disease....

  5. Factors underlying restricted crossover localization in barley meiosis.

    Science.gov (United States)

    Higgins, James D; Osman, Kim; Jones, Gareth H; Franklin, F Chris H

    2014-01-01

    Meiotic recombination results in the formation of cytological structures known as chiasmata at the sites of genetic crossovers (COs). The formation of at least one chiasma/CO between homologous chromosome pairs is essential for accurate chromosome segregation at the first meiotic division as well as for generating genetic variation. Although DNA double-strand breaks, which initiate recombination, are widely distributed along the chromosomes, this is not necessarily reflected in the chiasma distribution. In many species there is a tendency for chiasmata to be distributed in favored regions along the chromosomes, whereas in others, such as barley and some other grasses, chiasma localization is extremely pronounced. Localization of chiasma to the distal regions of barley chromosomes restricts the genetic variation available to breeders. Studies reviewed herein are beginning to provide an explanation for chiasma localization in barley. Moreover, they suggest a potential route to manipulating chiasma distribution that could be of value to plant breeders.

  6. Oligosaccharide binding to barley alpha-amylase 1

    DEFF Research Database (Denmark)

    Robert, X.; Haser, R.; Mori, H.;

    2005-01-01

    Enzymatic subsite mapping earlier predicted 10 binding subsites in the active site substrate binding cleft of barley alpha-amylase isozymes. The three-dimensional structures of the oligosaccharide complexes with barley alpha-amylase isozyme 1 (AMY1) described here give for the first time a thorough...... insight into the substrate binding by describing residues defining 9 subsites, namely -7 through +2. These structures support that the pseudotetrasaccharide inhibitor acarbose is hydrolyzed by the active enzymes. Moreover, sugar binding was observed to the starch granule-binding site previously determined...... in barley alpha-amylase isozyme 2 (AMY2), and the sugar binding modes are compared between the two isozymes. The "sugar tongs" surface binding site discovered in the AMY1-thio-DP4 complex is confirmed in the present work. A site that putatively serves as an entrance for the substrate to the active site...

  7. Origin of worldwide cultivated barley revealed by NAM-1 gene and grain protein content

    Directory of Open Access Journals (Sweden)

    Yonggang eWang

    2015-09-01

    Full Text Available The origin, evolution and distribution of cultivated barley provides powerful insights into the historic origin and early spread of agrarian culture. Here, population-based genetic diversity and phylogenetic analyses were performed to determine the evolution and origin of barley and how domestication and subsequent introgression have affected the genetic diversity and changes in cultivated barley on a worldwide scale. A set of worldwide cultivated and wild barleys from Asia and Tibet of China were analyzed using the sequences for NAM-1 gene and gene-associated traits-GPC (grain protein content. Our results showed Tibetan wild barley distinctly diverged from Near Eastern barley, and confirmed that Tibet is one of the origin and domestication centers for cultivated barley, and in turn supported a polyphyletic origin of domesticated barley. Comparison of haplotype composition among geographic regions revealed gene flow between Eastern and Western barley populations, suggesting that the Silk Road might have played a crucial role in the spread of genes. The GPC in the 118 cultivated and 93 wild barley accessions ranged from 6.73% to 12.35% with a mean of 9.43%. Overall, wild barley had higher averaged GPC (10.44% than cultivated barley. Two unique haplotypes (Hap2 and Hap7 caused by a base mutations (at position 544 in the coding region of the NAM-1 gene might have a significant impact on the GPC. SNPs and haplotypes of NAM-1 associated with GPC in barley could provide a useful method for screening GPC in barley germplasm. The Tibetan wild accessions with lower GPC could be useful for malt barley breeding

  8. Gene Targeting Without DSB Induction Is Inefficient in Barley.

    Science.gov (United States)

    Horvath, Mihaly; Steinbiss, Hans-Henning; Reiss, Bernd

    2016-01-01

    Double strand-break (DSB) induction allowed efficient gene targeting in barley (Hordeum vulgare), but little is known about efficiencies in its absence. To obtain such data, an assay system based on the acetolactate synthase (ALS) gene was established, a target gene which had been used previously in rice and Arabidopsis thaliana. Expression of recombinases RAD51 and RAD54 had been shown to improve gene targeting in A. thaliana and positive-negative (P-N) selection allows the routine production of targeted mutants without DSB induction in rice. We implemented these approaches in barley and analysed gene targeting with the ALS gene in wild type and RAD51 and RAD54 transgenic lines. In addition, P-N selection was tested. In contrast to the high gene targeting efficiencies obtained in the absence of DSB induction in A. thaliana or rice, not one single gene targeting event was obtained in barley. These data suggest that gene targeting efficiencies are very low in barley and can substantially differ between different plants, even at the same target locus. They also suggest that the amount of labour and time would become unreasonably high to use these methods as a tool in routine applications. This is particularly true since DSB induction offers efficient alternatives. Barley, unlike rice and A. thaliana has a large, complex genome, suggesting that genome size or complexity could be the reason for the low efficiencies. We discuss to what extent transformation methods, genome size or genome complexity could contribute to the striking differences in the gene targeting efficiencies between barley, rice and A. thaliana.

  9. Research and Application of ERP Technology Based on SAP R/3%基于SAP R/3的ERP技术研究与应用

    Institute of Scientific and Technical Information of China (English)

    潘昊; 易泽湘; 孙秀红; 易锦华; 王晓勇

    2006-01-01

    结合钢铁制造行业信息化建设的特点,介绍了客户/服务器领域标准商务应用软件SAP R/3 ,并利用SAP R/3 ERP系统自带的ABAP/4(Advanced Business Application Programming/4) 开发平台,对某钢铁公司ERP系统的物料管理、销售与分销、管理会计和财务会计四个模块进行了二次开发,使得二次开发后的ERP系统与原SAP R/3 ERP系统实现无缝结合.

  10. PHYSIOLOGICAL AND AGROECOLOGICAL ASPECTS OF CADMIUM INTERACTIONS WITH BARLEY PLANTS: AN OVERVIEW

    Directory of Open Access Journals (Sweden)

    A VASSILEV

    2003-07-01

    Full Text Available This work is a review of author’s previous publications, unpublished results as well as available literature on barley responses to Cd contamination. The physiological backgrounds of the acute Cd toxicity in barley plants are briefly described. Some data characterizing the chronic Cd toxicity in barley have been also provided in relation to its possible use for seed production and Cd phytoextraction on Cd-contaminated agricultural soils. Information about the main physiological factors limiting growth of Cd-exposed barley plants and grain yield, seedling quality as well as Cd phytoextraction capacity of barley grown in Cd-contaminated soils is presented.

  11. Nitrogen Under- and Over-supply Induces Distinct Protein Responses in Maize Xylem Sap

    Institute of Scientific and Technical Information of China (English)

    Chengsong Liao; Renyi Liu; Fusuo Zhang; Chunjian Li; Xuexian Li

    2012-01-01

    Xylem sap primarily transports water and mineral nutrients such as nitrogen (N) from roots to shoots in vascular plants.However,it remains largely unknown how nitrogenous compounds,especially proteins in xylem sap,respond to N under- or over-supply.We found that reducing N supply increased amino-N percentage of total N in maize (Zea mays L.) xylem sap.Proteomic analysis showed that 23 proteins in the xylem sap of maize plants,including 12 newly identified ones,differentially accumulated in response to various N supplies.Fifteen of these 23 proteins were primarily involved in general abiotic or biotic stress responses,whereas the other five proteins appeared to respond largely to N under- or over-supply,suggesting distinct protein responses in maize xylem upon N under- and over-supply.Furthermore,one putative xylanase inhibitor and two putative O-glycosyl hydrolases had preferential gene expression in shoots.

  12. SAP HANA在信息处理领域应用的探讨

    Institute of Scientific and Technical Information of China (English)

    罗保山

    2012-01-01

      SAP HANA 是一个基于“列式存储”及“内存计算技术”的软硬件结合体,通过处理在服务器主存储器上的大量实时数据,获得分析和交易的即时结果,为客户即时洞察、预计未来和行动决策间的贯通提供持续的支持。本文从 SAP HANA 的研究内容、典型应用以及发展等方面出发,对 SAP HANA 应用和发展的基本思想作了介绍,分析了 SAP HANA 应用的优势和可靠性。

  13. Paraformaldehyde pellet not necessary in vacuum-pumped maple sap system

    Science.gov (United States)

    H. Clay Smith; Carter B. Gibbs

    1970-01-01

    In a study of sugar maple sap collection through a vacuum-pumped plastic tubing system, yields were compared between tapholes in which paraformaldehyde pellets were used and tapholes without pellets, Use of the pellets did not increase yield.

  14. Nitrogen compounds in the apoplastic sap of sugarcane stem: some implications in the association with endophytes.

    Science.gov (United States)

    Tejera, Noel; Ortega, Eduardo; Rodes, Rosa; Lluch, Carmen

    2006-01-01

    Several nitrogen compounds were identified and quantified in the apoplastic and symplastic sap of sugarcane stems. The sap of stems was composed mainly of soluble sugars, which constituted 95% of the total organic compounds detected. Sap also contained nitrogen compounds, with amino acids (50-70% of N) and proteins (20-30% of N), being the main nitrogenous substances, as well as inorganic forms as ammonium, nitrite and nitrate, in low concentrations (Gluconacetobacter diazotrophicus. The total amino acid content of apoplastic sap was six to nine times lower in non-nitrogen fertilized plants than in fertilized ones. The possible roles of these substances to regulate endophytic associations with sugarcane are also discussed.

  15. Comparison of two simplified severity scores (SAPS and APACHE II) for patients with acute myocardial infarction.

    Science.gov (United States)

    Moreau, R; Soupison, T; Vauquelin, P; Derrida, S; Beaucour, H; Sicot, C

    1989-05-01

    The Simplified Acute Physiology Score (SAPS), the Acute Physiology and Chronic Health Evaluation II (APACHE II), the Acute Physiology Score (APS), and the Coronary Prognostic Index (CPI), calculated within the first 24 h of ICU admission, were compared in 76 patients with acute myocardial infarction (AMI). Sixteen (21%) patients subsequently died in the ICU. The nonsurvivors had significantly higher SAPS, APACHE II, and CPI scores than the survivors. ROC curves drawn for each severity index were in a discriminating position. There were no significant differences either between the areas under the ROC curves drawn for SAPS, APACHE II, and CPI, or between the overall accuracies of these indices. APS provided less homogeneous information. We conclude that SAPS and APACHE II, two severity indices which are easy to use, assess accurately the short-term prognosis, i.e., the ICU outcome, of patients with AMI.

  16. Use of the heat dissipation method for sap flow measurement in citrus nursery trees1

    Directory of Open Access Journals (Sweden)

    Eduardo Augusto Girardi

    2010-12-01

    Full Text Available Sap flow could be used as physiological parameter to assist irrigation of screen house citrus nursery trees by continuous water consumption estimation. Herein we report a first set of results indicating the potential use of the heat dissipation method for sap flow measurement in containerized citrus nursery trees. 'Valencia' sweet orange [Citrus sinensis (L. Osbeck] budded on 'Rangpur' lime (Citrus limonia Osbeck was evaluated for 30 days during summer. Heat dissipation probes and thermocouple sensors were constructed with low-cost and easily available materials in order to improve accessibility of the method. Sap flow showed high correlation to air temperature inside the screen house. However, errors due to natural thermal gradient and plant tissue injuries affected measurement precision. Transpiration estimated by sap flow measurement was four times higher than gravimetric measurement. Improved micro-probes, adequate method calibration, and non-toxic insulating materials should be further investigated.

  17. Selection and Implementation of ERP Systems: A Comparison of SAP implementation between BIH and Turkey

    National Research Council Canada - National Science Library

    Findik, Seyda; Kusakci, Ali Osman; Findik, Fehim; Kusakci, Sumeyye

    2012-01-01

    .... After the literature review of ERP implementation strategies, a survey is reviewed that was conducted among several large and mid-size companies that adopted SAP, one of the major ERP solutions...

  18. Mechanical properties of Concrete with SAP. Part I: Development of compressive strength

    DEFF Research Database (Denmark)

    Hasholt, Marianne Tange; Jespersen, Morten H. Seneka; Jensen, Ole Mejlhede

    2010-01-01

    The development of mechanical properties has been studied in a test program comprising 15 different concrete mixes with 3 different w/c ratios and different additions of superabsorbent polymers (SAP). The degree of hydration is followed for 15 corresponding paste mixes. This paper concerns...... compressive strength. It shows that results agree well with a model based on the following: 1. Concrete compressive strength is proportional to compressive strength of the paste phase 2. Paste strength depends on gel space ratio, as suggested by Powers 3. The influence of air voids created by SAP...... on compressive strength can be accounted for in the same way as when taking the air content into account in Bolomeys formula. The implication of the model is that at low w/c ratios (w/c SAP additions, SAP increases the compressive strength at later ages (from 3 days after casting and onwards...

  19. Mechanical properties of Concrete with SAP. Part I: Development of compressive strength

    DEFF Research Database (Denmark)

    Hasholt, Marianne Tange; Jespersen, Morten H. Seneka; Jensen, Ole Mejlhede

    2010-01-01

    The development of mechanical properties has been studied in a test program comprising 15 different concrete mixes with 3 different w/c ratios and different additions of superabsorbent polymers (SAP). The degree of hydration is followed for 15 corresponding paste mixes. This paper concerns...... compressive strength. It shows that results agree well with a model based on the following: 1. Concrete compressive strength is proportional to compressive strength of the paste phase 2. Paste strength depends on gel space ratio, as suggested by Powers 3. The influence of air voids created by SAP...... on compressive strength can be accounted for in the same way as when taking the air content into account in Bolomeys formula. The implication of the model is that at low w/c ratios (w/c SAP additions, SAP increases the compressive strength at later ages (from 3 days after casting and onwards...

  20. Identification and characterization of barley RNA-directed RNA polymerases

    DEFF Research Database (Denmark)

    Madsen, Christian Toft; Stephens, Jennifer; Hornyik, Csaba

    2009-01-01

    in dicot species. In this report, we identi!ed and characterized HvRDR1, HvRDR2 and HvRDR6 genes in the monocot plant barley (Hordeum vulgare). We analysed their expression under various biotic and abiotic stresses including fungal and viral infections, salicylic acid treatment as well as during plant...... development. The different classes and subclasses of barley RDRs displayed contrasting expression patterns during pathogen challenge and development suggesting their involvement in speci!c regulatory pathways. Their response to heat and salicylic acid treatment suggests a conserved pattern of expression...