WorldWideScience

Sample records for barley hvwrky38 transcription

  1. Barley Genes as Tools to Confer Abiotic Stress Tolerance in Crops.

    Science.gov (United States)

    Gürel, Filiz; Öztürk, Zahide N; Uçarlı, Cüneyt; Rosellini, Daniele

    2016-01-01

    Barley is one of the oldest cultivated crops in the world with a high adaptive capacity. The natural tolerance of barley to stress has led to increasing interest in identification of stress responsive genes through small/large-scale omics studies, comparative genomics, and overexpression of some of these genes by genetic transformation. Two major categories of proteins involved in stress tolerance are transcription factors (TFs) responsible from the re-programming of the metabolism in stress environment, and genes encoding Late Embryogenesis Abundant (LEA) proteins, antioxidant enzymes, osmolytes, and transporters. Constitutive overexpression of several barley TFs, such as C-repeat binding factors (HvCBF4), dehydration-responsive element-binding factors (HvDREB1), and WRKYs (HvWRKY38), in transgenic plants resulted in higher tolerance to drought and salinity, possibly by effectively altering the expression levels of stress tolerance genes due to their higher DNA binding affinity. Na(+)/H(+) antiporters, channel proteins, and lipid transporters can also be the strong candidates for engineering plants for tolerance to salinity and low temperatures.

  2. Barley genes as a tool to confer abiotic stress tolerance in crops

    Directory of Open Access Journals (Sweden)

    Filiz Gürel

    2016-08-01

    Full Text Available Barley is one of the oldest cultivated crops in the world with a high adaptive capacity. The natural tolerance of barley to stress has led to increasing interest in identification of stress responsive genes through small/large-scale omics studies, comparative genomics, and overexpression of some of these genes by genetic transformation. Two major categories of proteins involved in stress tolerance are transcription factors (TFs responsible from the re-programming of the metabolism in stress environment, and genes encoding Late Embryogenesis Abundant (LEA proteins, antioxidant enzymes, osmolytes and transporters. Constitutive overexpression of several barley TFs, such as C-repeat binding factors (HvCBF4, dehydration-responsive element-binding factors (HvDREB1 and WRKYs (HvWRKY38, in transgenic plants resulted in higher tolerance to drought and salinity, possibly by effectively altering the expression levels of stress tolerance genes due to their higher DNA binding affinity. Na+/H+ antiporters, channel proteins, and lipid transporters can also be the strong candidates for engineering plants for tolerance to salinity and low temperatures.

  3. The NAC transcription factors of barley

    DEFF Research Database (Denmark)

    Wagner, Michael; Holm, Preben Bach; Gregersen, Per L.

    2011-01-01

    ). From these data we have identified not only putative regulators of leaf senescence (HvNAC005, HvNAC027 and HvNAC029), but also possible regulators of secondary wall synthesis (HvNAC033, HvNAC034 and HvNAC039), lateral root formation (HvNAC022) and seed development (HvNAC017, HvNAC018, HvNAC019 and Hv...... genes characterized so far have regulatory functions in a broad range of plant developmental processes and tolerances to both biotic and abiotic stresses. This makes the NAC family highly interesting target genes for plant researchers and breeders. As part of a larger project on the identification...... of Hordeum vulgare (barley) leaf senescence regulators, we have attempted to characterize for the first time all presently available barley NAC genes (HvNACs). By searching the NCBI barley EST database using the tBLASTn function, with all known NAC genes from Brachypodium and rice as input, in combination...

  4. Accumulation of Transcripts Abundance after Barley Inoculation with Cochliobolus sativus

    Directory of Open Access Journals (Sweden)

    Mohammad Imad Eddin Arabi

    2015-03-01

    Full Text Available Spot blotch caused by the hemibiotrophic pathogen Cochliobolus sativus has been the major yield-reducing factor for barley production during the last decade. Monitoring transcriptional reorganization triggered in response to this fungus is an essential first step for the functional analysis of genes involved in the process. To characterize the defense responses initiated by barley resistant and susceptible cultivars, a survey of transcript abundance at early time points of C. sativus inoculation was conducted. A notable number of transcripts exhibiting significant differential accumulations in the resistant and susceptible cultivars were detected compared to the non-inoculated controls. At the p-value of 0.0001, transcripts were divided into three general categories; defense, regulatory and unknown function, and the resistant cultivar had the greatest number of common transcripts at different time points. Quantities of differentially accumulated gene transcripts in both cultivars were identified at 24 h post infection, the approximate time when the pathogen changes trophic lifestyles. The unique and common accumulated transcripts might be of considerable interest for enhancing effective resistance to C. sativus.

  5. Transcriptional Responses to Gibberellin and Abscisic Acid in Barley Aleurone

    Institute of Scientific and Technical Information of China (English)

    Kegui Chen; Yong-Qiang Charles An

    2006-01-01

    Cereal aleurone has been established as a model system to investigate giberrellin (GA) and abscisic acid (ABA) responses. Using Barley 1 GeneChip, we examined the mRNA accumulation of over 22 000 genes in de-embryonated barley aleurone treated with GA and ABA. We observed that 1328 genes had more than a threefold change in response to GA treatment, whereas 206 genes had a more than threefold change in response to ABA treatment. Interestingly, approximately 2.5-fold more genes were up-regulated than downregulated by ABA. Eighty-three genes were differentially regulated by both GA and ABA. Most of the genes were subject to antagonistic regulation by ABA and GA, particularly for genes related to seed maturation and germination, such as genes encoding late embryogenesis abundant proteins and storage mobilization enzymes. This supports the antagonistic roles of GA and ABA in seed maturation and seed germination.Interestingly, we observed that a significant percentage of the genes were coordinately regulated by both GA and ABA. Some GA-responsive genes encoded proteins involved in ethylene, jasmonate, brassinosteroid and auxin metabolic and signaling transduction pathways, suggesting their potential interaction with the GA response. We also identified a group of transcription factor genes, such as MYB and Homeobox genes, that were differentially regulated by GA. In addition, a number of GA- and/or ABA-responsive genes encoded components potentially involved in GA and ABA signal transduction pathway. Overall, the present study provides a comprehensive and global view of transcript expression accompanying the GA and ABA response in barley aleurone and identifies a group of genes with potential regulatory functions in GA- and ABA-signaling pathways for future functional validation.

  6. The Hv NAC6 transcription factor: a positive regulator of penetration resistance in barley and Arabidopsis

    DEFF Research Database (Denmark)

    Jensen, Michael Krogh; Rung, Jesper Henrik; Gregersen, Per Langkjaer

    2007-01-01

    Pathogens induce the expression of many genes encoding plant transcription factors, though specific knowledge of the biological function of individual transcription factors remains scarce. NAC transcription factors are encoded in plants by a gene family with proposed functions in both abiotic...... and biotic stress adaptation, as well as in developmental processes. In this paper, we provide convincing evidence that a barley NAC transcription factor has a direct role in regulating basal defence. The gene transcript was isolated by differential display from barley leaves infected with the biotrophic...... powdery mildew fungus, Blumeria graminis f.sp. hordei (Bgh). The full-length cDNA clone was obtained using 5'-RACE and termed HvNAC6, due to its high similarity to the rice homologue, OsNAC6. Gene silencing of HvNAC6 during Bgh inoculation compromises penetration resistance in barley epidermal cells...

  7. Transcriptional Activity of rRNA Genes in Barley Cells after Mutagenic Treatment.

    Directory of Open Access Journals (Sweden)

    Jolanta Kwasniewska

    Full Text Available In the present study, the combination of the micronucleus test with analysis of the activity of the rRNA genes in mutagen-treated Hordeum vulgare (barley by maleic hydrazide (MH cells was performed. Simultaneously fluorescence in situ hybridization (FISH with 25S rDNA as probes and an analysis of the transcriptional activity of 35S rRNA genes with silver staining were performed. The results showed that transcriptional activity is always maintained in the micronuclei although they are eliminated during the next cell cycle. The analysis of the transcriptional activity was extended to barley nuclei. MH influenced the fusion of the nucleoli in barley nuclei. The silver staining enabled detection of the nuclear bodies which arose after MH treatment. The results confirmed the usefulness of cytogenetic techniques in the characterization of micronuclei. Similar analyses can be now extended to other abiotic stresses to study the response of plant cells to the environment.

  8. NAC Transcription Factors of Barley (Hordeum vulgare L.) and their Involvement in Leaf Senescence

    DEFF Research Database (Denmark)

    Wagner, Michael

    yielding cereal crops are generated. In cereals, the process of leaf senescence is of utmost relevance when discussing yield. It is during the senescence process that all nutrients are transported from the withering leaf to the developing grains. Furthermore, the timing of senescence determines...... parts of the senescence process. The specific aims of this study were therefore (1) to establish and characterise the NAC transcription factors of the model cereal crop barley (Hordeum vulgare L.) (2) to identify and study putative barley NAC transcription factors involved in the regulation of leaf...

  9. A barley PHD finger transcription factor that confers male sterility by affecting tapetal development.

    Science.gov (United States)

    Fernández Gómez, José; Wilson, Zoe A

    2014-08-01

    Controlling pollen development is of major commercial importance in generating hybrid crops and selective breeding, but characterized genes for male sterility in crops are rare, with no current examples in barley. However, translation of knowledge from model species is now providing opportunities to understand and manipulate such processes in economically important crops. We have used information from regulatory networks in Arabidopsis to identify and functionally characterize a barley PHD transcription factor MALE STERTILITY1 (MS1), which expresses in the anther tapetum and plays a critical role during pollen development. Comparative analysis of Arabidopsis, rice and Brachypodium genomes was used to identify conserved regions in MS1 for primer design to amplify the barley MS1 gene; RACE-PCR was subsequently used to generate the full-length sequence. This gene shows anther-specific tapetal expression, between late tetrad stage and early microspore release. HvMS1 silencing and overexpression in barley resulted in male sterility. Additionally, HvMS1 cDNA, controlled by the native Arabidopsis MS1 promoter, successfully complemented the homozygous ms1 Arabidopsis mutant. These results confirm the conservation of MS1 function in higher plants and in particular in temperate cereals. This has provided the first example of a characterized male sterility gene in barley, which presents a valuable tool for the future control of male fertility in barley for hybrid development.

  10. Transcriptional Modulation of Squalene Synthase Genes in Barley Treated with PGPR

    OpenAIRE

    Anam eYousaf; Abdul eQadir; Tehmina eAnjum; Aqeel eAhmad

    2015-01-01

    Phytosterol contents and food quality of plant produce is directly associated with transcription of gene Squalene Synthase (SS). In current study, barley plants were treated with different rhizobacterial strains under semi controlled (27±3°C) greenhouse conditions in order to modulate expression of SS gene. Plant samples were analysed through semi-quantitative PCR to evaluate effect of rhizobacterial application on transcriptional status of squalene synthase. Results revealed that among four ...

  11. Transcriptional modulation of squalene synthase genes in barley treated with PGPR

    OpenAIRE

    Yousaf, Anam; Qadir, Abdul; Anjum, Tehmina; Ahmad, Aqeel

    2015-01-01

    Phytosterol contents and food quality of plant produce is directly associated with transcription of gene squalene synthase (SS). In current study, barley plants were treated with different rhizobacterial strains under semi controlled (27 ± 3°C) greenhouse conditions in order to modulate expression of SS gene. Plant samples were analyzed through semi-quantitative PCR to evaluate effect of rhizobacterial application on transcriptional status of SS. Results revealed that among four SS genes (i.e...

  12. Transcriptional regulatory programs underlying barley germination and regulatory functions of Gibberellin and abscisic acid

    Directory of Open Access Journals (Sweden)

    Lin Li

    2011-06-01

    Full Text Available Abstract Background Seed germination is a complex multi-stage developmental process, and mainly accomplished through concerted activities of many gene products and biological pathways that are often subjected to strict developmental regulation. Gibberellins (GA and abscisic acid (ABA are two key phytohormones regulating seed germination and seedling growth. However, transcriptional regulatory networks underlying seed germination and its associated biological pathways are largely unknown. Results The studies examined transcriptomes of barley representing six distinct and well characterized germination stages and revealed that the transcriptional regulatory program underlying barley germination was composed of early, late, and post-germination phases. Each phase was accompanied with transcriptional up-regulation of distinct biological pathways. Cell wall synthesis and regulatory components including transcription factors, signaling and post-translational modification components were specifically and transiently up-regulated in early germination phase while histone families and many metabolic pathways were up-regulated in late germination phase. Photosynthesis and seed reserve mobilization pathways were up-regulated in post-germination phase. However, stress related pathways and seed storage proteins were suppressed through the entire course of germination. A set of genes were transiently up-regulated within three hours of imbibition, and might play roles in initiating biological pathways involved in seed germination. However, highly abundant transcripts in dry barley and Arabidopsis seeds were significantly conserved. Comparison with transcriptomes of barley aleurone in response to GA and ABA identified three sets of germination responsive genes that were regulated coordinately by GA, antagonistically by ABA, and coordinately by GA but antagonistically by ABA. Major CHO metabolism, cell wall degradation and protein degradation pathways were up

  13. Comparative Transcriptional Profiling of Two Contrasting Barley Genotypes under Salinity Stress during the Seedling Stage

    Directory of Open Access Journals (Sweden)

    Runhong Gao

    2013-01-01

    Full Text Available Salinity is one of the major abiotic stresses that affect crop productivity. Identification of the potential novel genes responsible for salt tolerance in barley will contribute to understanding the molecular mechanism of barley responses to salt stress. We compared changes in transcriptome between Hua 11 (a salt-tolerant genotype and Hua 30 (a salt sensitive genotype in response to salt stress at the seedling stage using barley cDNA microarrays. In total, 557 and 247 salt-responsive genes were expressed exclusively in the shoot and root tissue of the salt-tolerant genotype, respectively. Among these genes, a number of signal-related genes, transcription factors and compatible solutes were identified and some of these genes were carefully discussed. Notably, a LysM RLK was firstly found involved in salt stress response. Moreover, key enzymes in the pathways of jasmonic acid biosynthesis, lipid metabolism and indole-3-acetic acid homeostasis were specifically affected by salt stress in salt tolerance genotype. These salt-responsive genes and biochemical pathways identified in this study could provide further information for understanding the mechanisms of salt tolerance in barley.

  14. Characterization of senscence-associated NAC transcription factors in Barley (Hordeum Vulgare L.)

    DEFF Research Database (Denmark)

    Podzimska, Dagmara Agata

    the senescence process has been extensively studied in the model plant Arabidopsis, knowledge about the molecular mechanism driving senescence in crop plants is still limited. Extending our knowledge about the genes that control senescence in cereals is very important for future improvement of agronomic traits......, such as yield, biomass production and nutrient quality, and NAC (NAM, ATAF1/2 and CUC2) transcription factors are promising targets for the breeding. The aim of this thesis was thus to assess the role of NAC transcription factors in regulation of senescence in barley (Hordeum vulgare L.) and to contribute...

  15. Characterization of barley (Hordeum vulgare L. NAC transcription factors suggests conserved functions compared to both monocots and dicots

    Directory of Open Access Journals (Sweden)

    Gregersen Per L

    2011-08-01

    Full Text Available Abstract Background The NAC transcription factor family is involved in the regulation of traits in both monocots and dicots of high agronomic importance. Understanding the precise functions of the NAC genes can be of utmost importance for the improvement of cereal crop plants through plant breeding. For the cereal crop plant barley (Hordeum vulgare L. only a few NAC genes have so far been investigated. Results Through searches in publicly available barley sequence databases we have obtained a list of 48 barley NAC genes (HvNACs with 43 of them representing full-length coding sequences. Phylogenetic comparisons to Brachypodium, rice, and Arabidopsis NAC proteins indicate that the barley NAC family includes members from all of the eight NAC subfamilies, although by comparison to these species a number of HvNACs still remains to be identified. Using qRT-PCR we investigated the expression profiles of 46 HvNACs across eight barley tissues (young flag leaf, senescing flag leaf, young ear, old ear, milk grain, late dough grain, roots, and developing stem and two hormone treatments (abscisic acid and methyl jasmonate. Conclusions Comparisons of expression profiles of selected barley NAC genes with the published functions of closely related NAC genes from other plant species, including both monocots and dicots, suggest conserved functions in the areas of secondary cell wall biosynthesis, leaf senescence, root development, seed development, and hormone regulated stress responses.

  16. Broad-spectrum acquired resistance in barley induced by the Pseudomonas pathosystem shares transcriptional components with Arabidopsis systemic acquired resistance.

    Science.gov (United States)

    Colebrook, E H; Creissen, G; McGrann, G R D; Dreos, R; Lamb, C; Boyd, L A

    2012-05-01

    Inducible resistance responses play a central role in the defense of plants against pathogen attack. Acquired resistance (AR) is induced alongside defense toward primary attack, providing broad-spectrum protection against subsequent pathogen challenge. The localization and molecular basis of AR in cereals is poorly understood, in contrast with the well-characterized systemic acquired resistance (SAR) response in Arabidopsis. Here, we use Pseudomonas syringae as a biological inducer of AR in barley, providing a clear frame of reference to the Arabidopsis-P. syringae pathosystem. Inoculation of barley leaf tissue with the nonadapted P. syringae pv. tomato avrRpm1 (PstavrRpm1) induced an active local defense response. Furthermore, inoculation of barley with PstavrRpm1 resulted in the induction of broad-spectrum AR at a distance from the local lesion, "adjacent" AR, effective against compatible isolates of P. syringae and Magnaporthe oryzae. Global transcriptional profiling of this adjacent AR revealed similarities with the transcriptional profile of SAR in Arabidopsis, as well as transcripts previously associated with chemically induced AR in cereals, suggesting that AR in barley and SAR in Arabidopsis may be mediated by analogous pathways.

  17. Deciphering Mineral Homeostasis in Barley Seed Transfer Cells at Transcriptional Level.

    Directory of Open Access Journals (Sweden)

    Behrooz Darbani

    Full Text Available In addition to the micronutrient inadequacy of staple crops for optimal human nutrition, a global downtrend in crop-quality has emerged from intensive breeding for yield. This trend will be aggravated by elevated levels of the greenhouse gas carbon dioxide. Therefore, crop biofortification is inevitable to ensure a sustainable supply of minerals to the large part of human population who is dietary dependent on staple crops. This requires a thorough understanding of plant-mineral interactions due to the complexity of mineral homeostasis. Employing RNA sequencing, we here communicate transfer cell specific effects of excess iron and zinc during grain filling in our model crop plant barley. Responding to alterations in mineral contents, we found a long range of different genes and transcripts. Among them, it is worth to highlight the auxin and ethylene signaling factors Arfs, Abcbs, Cand1, Hps4, Hac1, Ecr1, and Ctr1, diurnal fluctuation components Sdg2, Imb1, Lip1, and PhyC, retroelements, sulfur homeostasis components Amp1, Hmt3, Eil3, and Vip1, mineral trafficking components Med16, Cnnm4, Aha2, Clpc1, and Pcbps, and vacuole organization factors Ymr155W, RabG3F, Vps4, and Cbl3. Our analysis introduces new interactors and signifies a broad spectrum of regulatory levels from chromatin remodeling to intracellular protein sorting mechanisms active in the plant mineral homeostasis. The results highlight the importance of storage proteins in metal ion toxicity-resistance and chelation. Interestingly, the protein sorting and recycling factors Exoc7, Cdc1, Sec23A, and Rab11A contributed to the response as well as the polar distributors of metal-transporters ensuring the directional flow of minerals. Alternative isoform switching was found important for plant adaptation and occurred among transcripts coding for identical proteins as well as transcripts coding for protein isoforms. We also identified differences in the alternative-isoform preference between

  18. Expression of barley SUSIBA2 transcription factor yields high-starch low-methane rice

    Energy Technology Data Exchange (ETDEWEB)

    Su, J.; Hu, C.; Yan, X.; Jin, Y.; Chen, Z.; Guan, Q.; Wang, Y.; Zhong, D.; Jansson, Georg C.; Wang, F.; Schnrer, Anna; Sun, Chuanxin

    2015-07-22

    Atmospheric methane is the second most important greenhouse gas after carbon dioxide, and is responsible for about 20% of the global warming effect since pre-industrial times. Rice paddies are the largest anthropogenic methane source and produce 7–17% of atmospheric methane. Warm waterlogged soil and exuded nutrients from rice roots provide ideal conditions for methanogenesis in paddies with annual methane emissions of 25–100-million tonnes. This scenario will be exacerbated by an expansion in rice cultivation needed to meet the escalating demand for food in the coming decades4. There is an urgent need to establish sustainable technologies for increasing rice production while reducing methane fluxes from rice paddies. However, ongoing efforts for methane mitigation in rice paddies are mainly based on farming practices and measures that are difficult to implement5. Despite proposed strategies to increase rice productivity and reduce methane emissions4,6, no high-starch low-methane-emission rice has been developed. Here we show that the addition of a single transcription factor gene, barley SUSIBA2, conferred a shift of carbon flux to SUSIBA2 rice, favouring the allocation of photosynthates to aboveground biomass over allocation to roots. The altered allocation resulted in an increased biomass and starch content in the seeds and stems, and suppressed methanogenesis, possibly through a reduction in root exudates. Three-year field trials in China demonstrated that the cultivation of SUSIBA2 rice was associated with a significant reduction in methane emissions and a decrease in rhizospheric methanogen levels. SUSIBA2 rice offers a sustainable means of providing increased starch content for food production while reducing greenhouse gas emissions from rice cultivation. Approaches to increase rice productivity and reduce methane emissions as seen in SUSIBA2 rice may be particularly beneficial in a future climate with rising temperatures resulting in increased methane

  19. Expression of barley SUSIBA2 transcription factor yields high-starch low-methane rice

    Science.gov (United States)

    Su, J.; Hu, C.; Yan, X.; Jin, Y.; Chen, Z.; Guan, Q.; Wang, Y.; Zhong, D.; Jansson, C.; Wang, F.; Schnürer, A.; Sun, C.

    2015-07-01

    Atmospheric methane is the second most important greenhouse gas after carbon dioxide, and is responsible for about 20% of the global warming effect since pre-industrial times. Rice paddies are the largest anthropogenic methane source and produce 7-17% of atmospheric methane. Warm waterlogged soil and exuded nutrients from rice roots provide ideal conditions for methanogenesis in paddies with annual methane emissions of 25-100-million tonnes. This scenario will be exacerbated by an expansion in rice cultivation needed to meet the escalating demand for food in the coming decades. There is an urgent need to establish sustainable technologies for increasing rice production while reducing methane fluxes from rice paddies. However, ongoing efforts for methane mitigation in rice paddies are mainly based on farming practices and measures that are difficult to implement. Despite proposed strategies to increase rice productivity and reduce methane emissions, no high-starch low-methane-emission rice has been developed. Here we show that the addition of a single transcription factor gene, barley SUSIBA2 (refs 7, 8), conferred a shift of carbon flux to SUSIBA2 rice, favouring the allocation of photosynthates to aboveground biomass over allocation to roots. The altered allocation resulted in an increased biomass and starch content in the seeds and stems, and suppressed methanogenesis, possibly through a reduction in root exudates. Three-year field trials in China demonstrated that the cultivation of SUSIBA2 rice was associated with a significant reduction in methane emissions and a decrease in rhizospheric methanogen levels. SUSIBA2 rice offers a sustainable means of providing increased starch content for food production while reducing greenhouse gas emissions from rice cultivation. Approaches to increase rice productivity and reduce methane emissions as seen in SUSIBA2 rice may be particularly beneficial in a future climate with rising temperatures resulting in increased

  20. Quantitative and qualitative stem rust resistance factors in barley are associated with transcriptional suppression of defense regulons.

    Directory of Open Access Journals (Sweden)

    Matthew J Moscou

    2011-07-01

    Full Text Available Stem rust (Puccinia graminis f. sp. tritici; Pgt is a devastating fungal disease of wheat and barley. Pgt race TTKSK (isolate Ug99 is a serious threat to these Triticeae grain crops because resistance is rare. In barley, the complex Rpg-TTKSK locus on chromosome 5H is presently the only known source of qualitative resistance to this aggressive Pgt race. Segregation for resistance observed on seedlings of the Q21861 × SM89010 (QSM doubled-haploid (DH population was found to be predominantly qualitative, with little of the remaining variance explained by loci other than Rpg-TTKSK. In contrast, analysis of adult QSM DH plants infected by field inoculum of Pgt race TTKSK in Njoro, Kenya, revealed several additional quantitative trait loci that contribute to resistance. To molecularly characterize these loci, Barley1 GeneChips were used to measure the expression of 22,792 genes in the QSM population after inoculation with Pgt race TTKSK or mock-inoculation. Comparison of expression Quantitative Trait Loci (eQTL between treatments revealed an inoculation-dependent expression polymorphism implicating Actin depolymerizing factor3 (within the Rpg-TTKSK locus as a candidate susceptibility gene. In parallel, we identified a chromosome 2H trans-eQTL hotspot that co-segregates with an enhancer of Rpg-TTKSK-mediated, adult plant resistance discovered through the Njoro field trials. Our genome-wide eQTL studies demonstrate that transcript accumulation of 25% of barley genes is altered following challenge by Pgt race TTKSK, but that few of these genes are regulated by the qualitative Rpg-TTKSK on chromosome 5H. It is instead the chromosome 2H trans-eQTL hotspot that orchestrates the largest inoculation-specific responses, where enhanced resistance is associated with transcriptional suppression of hundreds of genes scattered throughout the genome. Hence, the present study associates the early suppression of genes expressed in this host-pathogen interaction with

  1. Single-cell transcript profiling of barley attacked by the powdery mildew fungus

    DEFF Research Database (Denmark)

    Gjetting, Torben; Hagedorn, Peter; Schweizer, Patrick

    2007-01-01

    attacked at the same time may resist fungal penetration. To date, the mixed cellular responses seen even in susceptible host leaves have made it difficult to relate induced changes in gene expression to resistance or susceptibility in bulk leaf samples. By microextraction of cell-specific m......RNA and subsequent cDNA array analysis, we have successfully obtained separate gene expression profiles for specific mildew-resistant and -infected barley cells. Thus, for the first time, it is possible to identify genes that are specifically regulated in infected cells and, presumably, involved in fungal...... establishment. Further, although much is understood about the genetic basis of effective papilla resistance associated with mutant mlo barley, we provide here the first evidence for gene regulation associated with effective papilla-based nonspecific resistance expressed in nominally "susceptible" wild...

  2. A pathway-specific microarray analysis highlights the complex and co-ordinated transcriptional networks of the developing grain of field-grown barley

    DEFF Research Database (Denmark)

    Hansen, Michael; Friis, Carsten; Bowra, Steve

    2009-01-01

    The aim of the study was to describe the molecular and biochemical interactions associated with amino acid biosynthesis and storage protein accumulation in the developing grains of field-grown barley. Our strategy was to analyse the transcription of genes associated with the biosynthesis of stora...

  3. Effects of 24-epibrassinolide and green light on plastid gene transcription and cytokinin content of barley leaves.

    Science.gov (United States)

    Efimova, Marina V; Vankova, Radomira; Kusnetsov, Victor V; Litvinovskaya, Raisa P; Zlobin, Ilya E; Dobrev, Petre; Vedenicheva, Nina P; Savchuk, Alina L; Karnachuk, Raisa A; Kudryakova, Natalia V; Kuznetsov, Vladimir V

    2017-04-01

    In order to evaluate whether brassinosteroids (BS) and green light regulate the transcription of plastid genes in a cross-talk with cytokinins (CKs), transcription rates of 12 plastid genes (ndhF, rrn23, rpoB, psaA, psaB, rrn16, psbA, psbD, psbK, rbcL, atpB, and trnE/trnY) as well as the accumulation of transcripts of some photoreceptors (PHYA, CRY2, CRY1A, and CRY1B) and signaling (SERK and CAS) genes were followed in detached etiolated barley leaves exposed to darkness, green or white light ±1μm 24-epibrassinolide (EBL). EBL in the dark was shown to up-regulate the transcription of 12 plastid genes, while green light activated 10 genes and the EBL combined with the green light affected the transcription of only two genes (psaB and rpoB). Green light inhibited the expression of photoreceptor genes, except for CRY1A. Under the green light, EBL practically did not affect the expression of CRY1A, CAS and SERK genes, but it reduced the influence of white light on the accumulation of CAS, CRY1A, CRY1B, and SERK gene transcripts. The total content of BS in the dark and under white light remained largely unchanged, while under green light the total content of BRs (brassinolide, castasterone, and 6-deoxocastasterone) and HBRs (28-homobrassinolide, 28-homocastasterone, and 6-deoxo-28-homocastasterone) increased. The EBL-dependent up-regulation of plastome transcription in the dark was accompanied by a significant decrease in CK deactivation by O-glucosylation. However, no significant effect on the content of active CKs was detected. EBL combined with green light moderately increased the contents of trans-zeatin and isopentenyladenine, but had a negative effect on cis-zeatin. The most significant promotive effect of EBL on active CK bases was observed in white light. The data obtained suggest the involvement of CKs in the BS- and light-dependent transcription regulation of plastid genes. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. The CesA gene family of barley. Quantitative analysis of transcripts reveals two groups of co-expressed genes.

    Science.gov (United States)

    Burton, Rachel A; Shirley, Neil J; King, Brendon J; Harvey, Andrew J; Fincher, Geoffrey B

    2004-01-01

    Sequence data from cDNA and genomic clones, coupled with analyses of expressed sequence tag databases, indicate that the CesA (cellulose synthase) gene family from barley (Hordeum vulgare) has at least eight members, which are distributed across the genome. Quantitative polymerase chain reaction has been used to determine the relative abundance of mRNA transcripts for individual HvCesA genes in vegetative and floral tissues, at different stages of development. To ensure accurate expression profiling, geometric averaging of multiple internal control gene transcripts has been applied for the normalization of transcript abundance. Total HvCesA mRNA levels are highest in coleoptiles, roots, and stems and much lower in floral tissues, early developing grain, and in the elongation zone of leaves. In most tissues, HvCesA1, HvCesA2, and HvCesA6 predominate, and their relative abundance is very similar; these genes appear to be coordinately transcribed. A second group, comprising HvCesA4, HvCesA7, and HvCesA8, also appears to be coordinately transcribed, most obviously in maturing stem and root tissues. The HvCesA3 expression pattern does not fall into either of these two groups, and HvCesA5 transcript levels are extremely low in all tissues. Thus, the HvCesA genes fall into two general groups of three genes with respect to mRNA abundance, and the co-expression of the groups identifies their products as candidates for the rosettes that are involved in cellulose biosynthesis at the plasma membrane. Phylogenetic analysis allows the two groups of genes to be linked with orthologous Arabidopsis CesA genes that have been implicated in primary and secondary wall synthesis.

  5. Powerful regulatory systems and post-transcriptional gene silencing resist increases in cellulose content in cell walls of barley

    OpenAIRE

    Tan, Hwei-Ting; Shirley, Neil J; Singh, Rohan R; Henderson, Marilyn; Dhugga, Kanwarpal S; Mayo, Gwenda M; Fincher, Geoffrey B.; Burton, Rachel A.

    2015-01-01

    Background The ability to increase cellulose content and improve the stem strength of cereals could have beneficial applications in stem lodging and producing crops with higher cellulose content for biofuel feedstocks. Here, such potential is explored in the commercially important crop barley through the manipulation of cellulose synthase genes (CesA). Results Barley plants transformed with primary cell wall (PCW) and secondary cell wall (SCW) barley cellulose synthase (HvCesA) cDNAs driven b...

  6. Members of the barley NAC transcription factor gene family show differential co-regulation with senescence-associated genes during senescence of flag leaves

    DEFF Research Database (Denmark)

    Christiansen, Michael W; Gregersen, Per L.

    2014-01-01

    The senescence process of plants is important for the completion of their life cycle, particularly for crop plants, it is essential for efficient nutrient remobilization during seed filling. It is a highly regulated process, and in order to address the regulatory aspect, the role of genes...... in the NAC transcription factor family during senescence of barley flag leaves was studied. Several members of the NAC transcription factor gene family were up-regulated during senescence in a microarray experiment, together with a large range of senescence-associated genes, reflecting the coordinated...... activation of degradation processes in senescing barley leaf tissues. This picture was confirmed in a detailed quantitative reverse transcription–PCR (qRT–PCR) experiment, which also showed distinct gene expression patterns for different members of the NAC gene family, suggesting a group of ~15 out of the 47...

  7. Global Scale Transcriptional Profiling of Two Contrasting Barley Genotypes Exposed to Moderate Drought Conditions: Contribution of Leaves and Crowns to Water Shortage Coping Strategies.

    Science.gov (United States)

    Svoboda, Pavel; Janská, Anna; Spiwok, Vojtěch; Prášil, Ilja T; Kosová, Klára; Vítámvás, Pavel; Ovesná, Jaroslava

    2016-01-01

    Drought is a serious threat for sustainable agriculture. Barley represents a species well adapted to environmental stresses including drought. To elucidate the adaptive mechanism of barley on transcriptional level we evaluated transcriptomic changes of two contrasting barley cultivars upon drought using the microarray technique on the level of leaves and crowns. Using bioinformatic tools, differentially expressed genes in treated vs. non-treated plants were identified. Both genotypes revealed tissue dehydration under drought conditions as shown at water saturation deficit and osmotic potential data; however, dehydration was more severe in Amulet than in drought-resistant Tadmor under the same ambient conditions. Performed analysis showed that Amulet enhanced expression of genes related to active plant growth and development, while Tadmor regarding the stimulated genes revealed conservative, water saving strategy. Common reactions of both genotypes and tissues included an induction of genes encoding several stress-responsive signaling proteins, transcription factors as well as effector genes encoding proteins directly involved in stress acclimation. In leaf, tolerant cultivar effectively stimulated mainly the expression of genes encoding proteins and enzymes involved in protein folding, sulfur metabolism, ROS detoxification or lipid biosynthesis and transport. The crown specific reaction of tolerant cultivar was an enhanced expression of genes encoding proteins and enzymes involved in cell wall lignification, ABRE-dependent abscisic acid (ABA) signaling, nucleosome remodeling, along with genes for numerous jasmonate induced proteins.

  8. Contribution of the drought tolerance-related stress-responsive NAC1 transcription factor to resistance of barley to Ramularia leaf spot.

    Science.gov (United States)

    McGrann, Graham R D; Steed, Andrew; Burt, Christopher; Goddard, Rachel; Lachaux, Clea; Bansal, Anuradha; Corbitt, Margaret; Gorniak, Kalina; Nicholson, Paul; Brown, James K M

    2015-02-01

    NAC proteins are plant transcription factors that are involved in tolerance to abiotic and biotic stresses, as well as in many developmental processes. Stress-responsive NAC1 (SNAC1) transcription factor is involved in drought tolerance in barley and rice, but has not been shown previously to have a role in disease resistance. Transgenic over-expression of HvSNAC1 in barley cv. Golden Promise reduced the severity of Ramularia leaf spot (RLS), caused by the fungus Ramularia collo-cygni, but had no effect on disease symptoms caused by Fusarium culmorum, Oculimacula yallundae (eyespot), Blumeria graminis f. sp. hordei (powdery mildew) or Magnaporthe oryzae (blast). The HvSNAC1 transcript was weakly induced in the RLS-susceptible cv. Golden Promise during the latter stages of R. collo-cygni symptom development when infected leaves were senescing. Potential mechanisms controlling HvSNAC1-mediated resistance to RLS were investigated. Gene expression analysis revealed no difference in the constitutive levels of antioxidant transcripts in either of the over-expression lines compared with cv. Golden Promise, nor was any difference in stomatal conductance or sensitivity to reactive oxygen species-induced cell death observed. Over-expression of HvSNAC1 delayed dark-induced leaf senescence. It is proposed that mechanisms controlled by HvSNAC1 that are involved in tolerance to abiotic stress and that inhibit senescence also confer resistance to R. collo-cygni and suppress RLS symptoms. This provides further evidence for an association between abiotic stress and senescence in barley and the development of RLS.

  9. Phylogenetic and comparative gene expression analysis of barley (Hordeum vulgare)WRKY transcription factor family reveals putatively retained functions betweenmonocots and dicots

    Energy Technology Data Exchange (ETDEWEB)

    Mangelsen, Elke; Kilian, Joachim; Berendzen, Kenneth W.; Kolukisaoglu, Uner; Harter, Klaus; Jansson, Christer; Wanke, Dierk

    2008-02-01

    WRKY proteins belong to the WRKY-GCM1 superfamily of zinc finger transcription factors that have been subject to a large plant-specific diversification. For the cereal crop barley (Hordeum vulgare), three different WRKY proteins have been characterized so far, as regulators in sucrose signaling, in pathogen defense, and in response to cold and drought, respectively. However, their phylogenetic relationship remained unresolved. In this study, we used the available sequence information to identify a minimum number of 45 barley WRKY transcription factor (HvWRKY) genes. According to their structural features the HvWRKY factors were classified into the previously defined polyphyletic WRKY subgroups 1 to 3. Furthermore, we could assign putative orthologs of the HvWRKY proteins in Arabidopsis and rice. While in most cases clades of orthologous proteins were formed within each group or subgroup, other clades were composed of paralogous proteins for the grasses and Arabidopsis only, which is indicative of specific gene radiation events. To gain insight into their putative functions, we examined expression profiles of WRKY genes from publicly available microarray data resources and found group specific expression patterns. While putative orthologs of the HvWRKY transcription factors have been inferred from phylogenetic sequence analysis, we performed a comparative expression analysis of WRKY genes in Arabidopsis and barley. Indeed, highly correlative expression profiles were found between some of the putative orthologs. HvWRKY genes have not only undergone radiation in monocot or dicot species, but exhibit evolutionary traits specific to grasses. HvWRKY proteins exhibited not only sequence similarities between orthologs with Arabidopsis, but also relatedness in their expression patterns. This correlative expression is indicative for a putative conserved function of related WRKY proteins in mono- and dicot species.

  10. Phylogenetic and comparative gene expression analysis of barley (Hordeum vulgare WRKY transcription factor family reveals putatively retained functions between monocots and dicots

    Directory of Open Access Journals (Sweden)

    Jansson Christer

    2008-04-01

    Full Text Available Abstract Background WRKY proteins belong to the WRKY-GCM1 superfamily of zinc finger transcription factors that have been subject to a large plant-specific diversification. For the cereal crop barley (Hordeum vulgare, three different WRKY proteins have been characterized so far as regulators in sucrose signaling, pathogen defense, and in response to cold and drought. However, their phylogenetic relationship remained unresolved. Results In this study, we used available sequence information to identify a minimum number of 45 barley WRKY transcription factor (HvWRKY genes. According to their structural features, the HvWRKY factors were classified into the previously defined polyphyletic WRKY subgroups 1 to 3. Furthermore, we could assign putative orthologs of the HvWRKY proteins in Arabidopsis and rice. While in most cases clades of orthologous proteins were formed within each group or subgroup, other clades were composed of paralogous proteins for the grasses and Arabidopsis only, which is indicative of specific gene radiation events. To gain insight into their putative functions, we examined expression profiles of WRKY genes from publicly available microarray data resources and found group specific expression patterns. While putative orthologs of the HvWRKY transcription factors have been inferred from phylogenetic sequence analysis, we performed a comparative expression analysis of WRKY genes in Arabidopsis and barley. Indeed, highly correlative expression profiles were found between some of the putative orthologs. Conclusion HvWRKY genes have not only undergone radiation in monocot or dicot species, but exhibit evolutionary traits specific to grasses. HvWRKY proteins exhibited not only sequence similarities between orthologs with Arabidopsis, but also relatedness in their expression patterns. This correlative expression is indicative for a putative conserved function of related WRKY proteins in monocot and dicot species.

  11. Barley plants over-expressing the NAC transcription factor gene HvNAC005 show stunting and delay in development combined with early senescence

    DEFF Research Database (Denmark)

    Christiansen, Michael W.; Matthewman, Colette; Podzimska-Sroka, Dagmara Agata;

    2016-01-01

    -expressing plants showed up-regulation of genes involved with secondary metabolism, hormone metabolism, stress, signalling, development, and transport. Up-regulation of senescence markers and hormone metabolism and signalling genes supports a role of HvNAC005 in the cross field of different hormone and signalling......The plant-specific NAC transcription factors have attracted particular attention because of their involvement in stress responses, senescence, and nutrient remobilization. The HvNAC005 gene of barley encodes a protein belonging to subgroup NAC-a6 of the NAC family. This study shows that HvNAC005...

  12. Effects of Zn fertilization on hordein transcripts at early developmental stage of barley grain and correlation with increased Zn concentration in the mature grain.

    Directory of Open Access Journals (Sweden)

    Mohammad Nasir Uddin

    Full Text Available Zinc deficiency is causing malnutrition for nearly one third of world populations. It is especially relevant in cereal-based diets in which low amounts of mineral and protein are present. In biological systems, Zn is mainly associated with protein. Cereal grains contain the highest Zn concentration during early developmental stage. Although hordeins are the major storage proteins in the mature barley grain and suggested to be involved in Zn binding, very little information is available regarding the Zn fertilization effects of hordein transcripts at early developmental stage and possible incorporation of Zn with hordein protein of matured grain. Zinc fertilization experiments were conducted in a greenhouse with barley cv. Golden Promise. Zn concentration of the matured grain was measured and the results showed that the increasing Zn fertilization increased grain Zn concentration. Quantitative real time PCR showed increased level of total hordein transcripts upon increasing level of Zn fertilization at 10 days after pollination. Among the hordein transcripts the amount of B-hordeins was highly correlated with the Zn concentration of matured grain. In addition, protein content of the matured grain was analysed and a positive linear relationship was found between the percentage of B-hordein and total grain Zn concentration while C-hordein level decreased. Zn sensing dithizone assay was applied to localize Zn in the matured grain. The Zn distribution was not limited to the embryo and aleurone layer but was also present in the outer part of the endosperm (sub-aleurone layers which known to be rich in proteins including B-hordeins. Increased Zn fertilization enriched Zn even in the endosperm. Therefore, the increased amount of B-hordein and decreased C-hordein content suggested that B-hordein upregulation or difference between B and C hordein could be one of the key factors for Zn biofortification of cereal grains due to the Zn fertilization.

  13. Senescence-associated Barley NAC (NAM, ATAF1,2, CUC) Transcription Factor Interacts with Radical-induced Cell Death 1 through a Disordered Regulatory Domain

    DEFF Research Database (Denmark)

    Kjærsgaard, Trine; Jensen, Michael Krogh; Wagner, Michael

    2011-01-01

    as a transcriptional activator suggesting that an involvement of HvNAC013 and HvNAC005 in senescence will be different. HvNAC013 interacted with barley radical-induced cell death 1 (RCD1) via the very C-terminal part of its TRD, outside of the region containing the LP motif. No significant secondary structure...... was induced in the HvNAC013 TRD upon interaction with RCD1. RCD1 also interacted with regions dominated by intrinsic disorder in TFs of the MYB and basic helix-loop-helix families. We propose that RCD1 is a regulatory protein capable of interacting with many different TFs by exploiting their intrinsic...

  14. DNA polymorphisms and haplotype patterns of transcription factors involved in barley endosperm development are associated with key agronomic traits

    Directory of Open Access Journals (Sweden)

    Stracke Silke

    2010-01-01

    Full Text Available Abstract Background Association mapping is receiving considerable attention in plant genetics for its potential to fine map quantitative trait loci (QTL, validate candidate genes, and identify alleles of interest. In the present study association mapping in barley (Hordeum vulgare L. is investigated by associating DNA polymorphisms with variation in grain quality traits, plant height, and flowering time to gain further understanding of gene functions involved in the control of these traits. We focused on the four loci BLZ1, BLZ2, BPBF and HvGAMYB that play a role in the regulation of B-hordein expression, the major fraction of the barley storage protein. The association was tested in a collection of 224 spring barley accessions using a two-stage mixed model approach. Results Within the sequenced fragments of four candidate genes we observed different levels of nucleotide diversity. The effect of selection on the candidate genes was tested by Tajima's D which revealed significant values for BLZ1, BLZ2, and BPBF in the subset of two-rowed barleys. Pair-wise LD estimates between the detected SNPs within each candidate gene revealed different intra-genic linkage patterns. On the basis of a more extensive examination of genomic regions surrounding the four candidate genes we found a sharp decrease of LD (r2 Significant marker-trait associations between SNP sites within BLZ1 and flowering time, BPBF and crude protein content and BPBF and starch content were detected. Most haplotypes occurred at frequencies BPBF was associated to crude protein content and starch content, BLZ2 showed association to thousand-grain weight and BLZ1 was found to be associated with flowering time and plant height. Conclusions Differences in nucleotide diversity and LD pattern within the candidate genes BLZ1, BLZ2, BPBF, and HvGAMYB reflect the impact of selection on the nucleotide sequence of the four candidate loci. Despite significant associations, the analysed candidate

  15. DNA polymorphisms and haplotype patterns of transcription factors involved in barley endosperm development are associated with key agronomic traits

    Science.gov (United States)

    2010-01-01

    Background Association mapping is receiving considerable attention in plant genetics for its potential to fine map quantitative trait loci (QTL), validate candidate genes, and identify alleles of interest. In the present study association mapping in barley (Hordeum vulgare L.) is investigated by associating DNA polymorphisms with variation in grain quality traits, plant height, and flowering time to gain further understanding of gene functions involved in the control of these traits. We focused on the four loci BLZ1, BLZ2, BPBF and HvGAMYB that play a role in the regulation of B-hordein expression, the major fraction of the barley storage protein. The association was tested in a collection of 224 spring barley accessions using a two-stage mixed model approach. Results Within the sequenced fragments of four candidate genes we observed different levels of nucleotide diversity. The effect of selection on the candidate genes was tested by Tajima's D which revealed significant values for BLZ1, BLZ2, and BPBF in the subset of two-rowed barleys. Pair-wise LD estimates between the detected SNPs within each candidate gene revealed different intra-genic linkage patterns. On the basis of a more extensive examination of genomic regions surrounding the four candidate genes we found a sharp decrease of LD (r2<0.2 within 1 cM) in all but one flanking regions. Significant marker-trait associations between SNP sites within BLZ1 and flowering time, BPBF and crude protein content and BPBF and starch content were detected. Most haplotypes occurred at frequencies <0.05 and therefore were rejected from the association analysis. Based on haplotype information, BPBF was associated to crude protein content and starch content, BLZ2 showed association to thousand-grain weight and BLZ1 was found to be associated with flowering time and plant height. Conclusions Differences in nucleotide diversity and LD pattern within the candidate genes BLZ1, BLZ2, BPBF, and HvGAMYB reflect the impact of

  16. The barley HvNAC6 transcription factor affects ABA accumulation and promotes basal resistance against powdery mildew

    DEFF Research Database (Denmark)

    Chen, Yan-Jun; Perera, Venura; Wagner, Michael

    2013-01-01

    a transgenic approach to constitutively silence HvNAC6 expression, using RNA interference (RNAi), to investigate the in vivo functions of HvNAC6 in basal resistance responses in barley in relation to the phytohormone ABA. The HvNAC6 RNAi plants displayed reduced HvNAC6 transcript levels and were more...... susceptible to Bgh than wild-type plants. Application of exogenous ABA increased basal resistance against Bgh in wild-type plants, but not in HvNAC6 RNAi plants, suggesting that ABA is a positive regulator of basal resistance which depends on HvNAC6. Silencing of HvNAC6 expression altered the light....../dark rhythm of ABA levels which were, however, not influenced by Bgh inoculation. The expression of the two ABA biosynthetic genes HvNCED1 and HvNCED2 was compromised, and transcript levels of the ABA conjugating HvBG7 enzyme were elevated in the HvNAC6 RNAi lines, but this effect was not clearly associated...

  17. The role of the HvNAC6 transcription factor in response to biotic and abiotic stress in barley

    DEFF Research Database (Denmark)

    Chen, Yan-Jun

    The thesis is organized in six chapters: Chapter I provides an introduction to NAC transcription factors (TFs), including the regulation of NAC TFs and their functions in abiotic and biotic stresses. Recently, several reports have highlighted the NAC TF family for their potential to improve plant...... and abiotic stress. Chapter II is also part of the introduction for the thesis, and represents a review chapter discusses the challenges and the prospects for genetically engineering for disease resistance. My contribution comprised reviewing the progress in understanding the regulatory mechanisms of hormones...... and transcription factors in plant immunity, which provides an essential foundation before new strategies for developing transgenic resistance can be designed. The following chapters describe the experimental work and results achieved during the PhD study. Chapters III and IV are two manuscripts presenting...

  18. Barley germination

    DEFF Research Database (Denmark)

    Daneri-Castro, Sergio N.; Svensson, Birte; Roberts, Thomas H.

    2016-01-01

    conditions continue to be key to discovering the roles of individual protein forms and posttranslational modifications, such as glycosylation. Activity-based proteomics, particularly in combination with new gene editing technologies, has great potential to elucidate the network of enzymes in barley...

  19. Brewing with fractionated barley

    OpenAIRE

    Donkelaar, van, CC René

    2016-01-01

    Brewing with fractionated barley Beer is a globally consumed beverage, which is produced from malted barley, water, hops and yeast. In recent years, the use of unmalted barley and exogenous enzymes have become more popular because they enable simpler processing and reduced environmental impact. Raw barley, however, contains less endogenous enzymes and more undesired components for the use of beer brewing, compared to malted barley.  The overall aim of this thesis is to investigate how ba...

  20. A pathway-specific microarray analysis highlights the complex and co-ordinated transcriptional networks of the developing grain of field-grown barley

    DEFF Research Database (Denmark)

    Hansen, Michael; Friis, Carsten; Bowra, Steve

    2009-01-01

    -specific microarray is a reliable and cost-effective tool for monitoring temporal changes in the transcriptome of the major metabolic pathways in the barley grain. Moreover, it was sensitive enough to monitor differences in the gene expression profiles of different homologues from the storage protein families....... The study described here should provide a strong complement to existing knowledge assisting further understanding of grain development and thereby provide a foundation for plant breeding towards storage proteins with improved nutritional quality....

  1. Brewing with fractionated barley

    NARCIS (Netherlands)

    Donkelaar, van L.H.G.

    2016-01-01

    Brewing with fractionated barley Beer is a globally consumed beverage, which is produced from malted barley, water, hops and yeast. In recent years, the use of unmalted barley and exogenous enzymes have become more popular because they enable simpler processing and reduced environmental impact. Raw

  2. Brewing with fractionated barley

    NARCIS (Netherlands)

    Donkelaar, van L.H.G.

    2016-01-01

    Brewing with fractionated barley Beer is a globally consumed beverage, which is produced from malted barley, water, hops and yeast. In recent years, the use of unmalted barley and exogenous enzymes have become more popular because they enable simpler processing and reduced environmental impact. Raw

  3. Bioactive phytochemicals in barley

    Directory of Open Access Journals (Sweden)

    Emmanuel Idehen

    2017-01-01

    Full Text Available Epidemiological studies have consistently shown that regular consumption of whole grain barley reduces the risk of developing chronic diseases. The presence of barley fiber, especially β-glucan in whole grain barley, has been largely credited for these health benefits. However, it is now widely believed that the actions of the fiber component alone do not explain the observed health benefits associated with the consumption of whole grain barley. Whole grain barley also contains phytochemicals including phenolic acids, flavonoids, lignans, tocols, phytosterols, and folate. These phytochemicals exhibit strong antioxidant, antiproliferative, and cholesterol lowering abilities, which are potentially useful in lowering the risk of certain diseases. Therefore, the high concentration of phytochemicals in barley may be largely responsible for its health benefits. This paper reviews available information regarding barley phytochemicals and their potential to combat common nutrition-related diseases including cancer, cardiovascular disease, diabetes, and obesity.

  4. Differentially expressed genes between drought-tolerant and drought-sensitive barley genotypes in response to drought stress during the reproductive stage

    OpenAIRE

    Guo, P; Baum, M.; Grando, S.; Ceccarelli, S.; Bai, G.; Li, R; Von Korff, M.; Varshney, R.,; Graner, A.; Valkoun, V.

    2007-01-01

    Drought tolerance is a key trait for increasing and stabilizing barley productivity in dry areas worldwide. Identification of the genes responsible for drought tolerance in barley (Hordeum vulgare L.) will facilitate understanding of the molecular mechanisms of drought tolerance, and also facilitate the genetic improvement of barley through marker-assisted selection or gene transformation. To monitor the changes in gene expression at the transcriptional level in barley leaves during the repro...

  5. Barley peroxidase isozymes

    Science.gov (United States)

    Laugesen, Sabrina; Bak-Jensen, Kristian Sass; Hägglund, Per; Henriksen, Anette; Finnie, Christine; Svensson, Birte; Roepstorff, Peter

    2007-12-01

    Thirteen peroxidase spots on two-dimensional gels were identified by comprehensive proteome analysis of the barley seed. Mass spectrometry tracked multiple forms of three different peroxidase isozymes: barley seed peroxidase 1, barley seed-specific peroxidase BP1 and a not previously identified putative barley peroxidase. The presence of multiple spots for each of the isozymes reflected variations in post-translational glycosylation and protein truncation. Complete sequence coverage was achieved by using a series of proteases and chromatographic resins for sample preparation prior to mass spectrometric analysis. Distinct peroxidase spot patterns divided the 16 cultivars tested into two groups. The distribution of the three isozymes in different seed tissues (endosperm, embryo, and aleurone layer) suggested the peroxidases to play individual albeit partially overlapping roles during germination. In summary, a subset of three peroxidase isozymes was found to occur in the seed, whereas products of four other barley peroxidase genes were not detected. The present analysis documents the selective expression profiles and post-translational modifications of isozymes from a large plant gene family.

  6. Involvement of Alternative Splicing in Barley Seed Germination.

    Science.gov (United States)

    Zhang, Qisen; Zhang, Xiaoqi; Wang, Songbo; Tan, Cong; Zhou, Gaofeng; Li, Chengdao

    2016-01-01

    Seed germination activates many new biological processes including DNA, membrane and mitochondrial repairs and requires active protein synthesis and sufficient energy supply. Alternative splicing (AS) regulates many cellular processes including cell differentiation and environmental adaptations. However, limited information is available on the regulation of seed germination at post-transcriptional levels. We have conducted RNA-sequencing experiments to dissect AS events in barley seed germination. We identified between 552 and 669 common AS transcripts in germinating barley embryos from four barley varieties (Hordeum vulgare L. Bass, Baudin, Harrington and Stirling). Alternative 3' splicing (34%-45%), intron retention (32%-34%) and alternative 5' splicing (16%-21%) were three major AS events in germinating embryos. The AS transcripts were predominantly mapped onto ribosome, RNA transport machineries, spliceosome, plant hormone signal transduction, glycolysis, sugar and carbon metabolism pathways. Transcripts of these genes were also very abundant in the early stage of seed germination. Correlation analysis of gene expression showed that AS hormone responsive transcripts could also be co-expressed with genes responsible for protein biosynthesis and sugar metabolisms. Our RNA-sequencing data revealed that AS could play important roles in barley seed germination.

  7. Differentially Expressed Genes between Two Barley Cultivars Contrasting in Drought Tolerance

    Institute of Scientific and Technical Information of China (English)

    P.G. Guo; M. Baum; R.H. Li; S. Grando; R.K. Varshney; J. Valkoun; S. Ceccarelli; A. Grane

    2007-01-01

    @@ Drought tolerance is a key trait for increasing and stabilizing barley productivity in dry areas. A number of genes have been described that respond to drought at the transcriptional level (Seki et al., 2002; Cheong et al.,2003).

  8. Malting barley BRS Borema

    Directory of Open Access Journals (Sweden)

    Euclydes Minella

    2006-01-01

    Full Text Available BRS Borema is an early maturing, two-rowed spring barley registered in 2003 for commercial production inSouthern Brazil, bred by Embrapa Trigo. It combines good yield potential with superior malting quality and a reasonable levelof disease (net blotch, powdery mildew, leaf rust resistance. It is well-adapted to all major production regions of maltingbarley in Brazil.

  9. The NAC transcription factors of barley

    DEFF Research Database (Denmark)

    Wagner, Michael; Holm, Preben Bach; Gregersen, Per L.

    2011-01-01

    genes characterized so far have regulatory functions in a broad range of plant developmental processes and tolerances to both biotic and abiotic stresses. This makes the NAC family highly interesting target genes for plant researchers and breeders. As part of a larger project on the identification......NAC024). References: Souer, E., Houwelingen, A.L.V., Kloos, D., Mol, J., Koes, R. (1996). The No Apical Meristem Gene of Petunia Is Required for Pattern Formation in Embryos and Flowers and Is Expressed at Meristem and Primordia Boundaries. Cell 85:159-170 Shen, H., Yin, Y., Chen, F., Xu, Y., Dixon, R...

  10. HEALTH BENEFITS OF BARLEY

    Directory of Open Access Journals (Sweden)

    Akula Annapurna

    2013-09-01

    Full Text Available Prevalence of lifestyle diseases is increasing day by day. Mostly the younger generation do not have much awareness about healthy nutritional supplements. One such important cereal grain not used mostly by youngsters is barley It is a good old grain with so many health benefits like weight reduction, decreasing blood pressure, blood cholesterol, blood glucose in Type 2 diabetes and preventing colon cancer. It is easily available and cheap grain. It contains both soluble and insoluble fiber, protein, vitamins B and E, minerals selenium, magnesium and iron, copper, flavonoids and anthocynins. Barley contains soluble fiber, beta glucan binds to bile acids in the intestines and thereby decreasing plasma cholesterol levels. Absorbed soluble fiber decreases cholesterol synthesis by liver and cleansing blood vessels. Insoluble fiber provides bulkiness in the intestines, thereby satiety. decreased appetite. It promotes intestinal movements relieving constipation, cleansing colonic harmful bacteria and reduced incidence of colonic cancer. It is a good source of niacin ,reducing LDL levels and increasing HDL levels. Selenium and vitamin E providing beneficial antioxidant effects. Magnesium, a cofactor for many carbohydrate metabolism enzymes and high fiber content contributes for its blood glucose reducing effect in Type 2 diabetes. It is having good diuretic activity and is useful in urinary tract infections. Barley contains gluten, contraindicated in celiac disease.

  11. Genomic Prediction in Barley

    DEFF Research Database (Denmark)

    Edriss, Vahid; Cericola, Fabio; Jensen, Jens D

    2015-01-01

    Genomic prediction uses markers (SNPs) across the whole genome to predict individual breeding values at an early growth stage potentially before large scale phenotyping. One of the applications of genomic prediction in plant breeding is to identify the best individual candidate lines to contribute...... to next generation. The main goal of this study was to see the potential of using genomic prediction in a commercial Barley breeding program. The data used in this study was from Nordic Seed company which is located in Denmark. Around 350 advanced lines were genotyped with 9K Barely chip from Illumina...

  12. Dawn and Dusk Set States of the Circadian Oscillator in Sprouting Barley (Hordeum vulgare Seedlings.

    Directory of Open Access Journals (Sweden)

    Weiwei Deng

    Full Text Available The plant circadian clock is an internal timekeeper that coordinates biological processes with daily changes in the external environment. The transcript levels of clock genes, which oscillate to control circadian outputs, were examined during early seedling development in barley (Hordeum vulgare, a model for temperate cereal crops. Oscillations of clock gene transcript levels do not occur in barley seedlings grown in darkness or constant light but were observed with day-night cycles. A dark-to-light transition influenced transcript levels of some clock genes but triggered only weak oscillations of gene expression, whereas a light-to-dark transition triggered robust oscillations. Single light pulses of 6, 12 or 18 hours induced robust oscillations. The light-to-dark transition was the primary determinant of the timing of subsequent peaks of clock gene expression. After the light-to-dark transition the timing of peak transcript levels of clock gene also varied depending on the length of the preceding light pulse. Thus, a single photoperiod can trigger initiation of photoperiod-dependent circadian rhythms in barley seedlings. Photoperiod-specific rhythms of clock gene expression were observed in two week old barley plants. Changing the timing of dusk altered clock gene expression patterns within a single day, showing that alteration of circadian oscillator behaviour is amongst the most rapid molecular responses to changing photoperiod in barley. A barley EARLY FLOWERING3 mutant, which exhibits rapid photoperiod-insensitive flowering behaviour, does not establish clock rhythms in response to a single photoperiod. The data presented show that dawn and dusk cues are important signals for setting the state of the circadian oscillator during early development of barley and that the circadian oscillator of barley exhibits photoperiod-dependent oscillation states.

  13. Barley Transformation Using Biolistic Techniques

    Science.gov (United States)

    Harwood, Wendy A.; Smedley, Mark A.

    Microprojectile bombardment or biolistic techniques have been widely used for cereal transformation. These methods rely on the acceleration of gold particles, coated with plasmid DNA, into plant cells as a method of directly introducing the DNA. The first report of the generation of fertile, transgenic barley plants used biolistic techniques. However, more recently Agrobacterium-mediated transformation has been adopted as the method of choice for most cereals including barley. Biolistic procedures are still important for some barley transformation applications and also provide transient test systems for the rapid checking of constructs. This chapter describes methods for the transformation of barley using biolistic procedures and also highlights the use of the technology in transient assays.

  14. Functional proteomics of barley and barley chloroplasts – strategies, methods and perspectives

    DEFF Research Database (Denmark)

    Petersen, Jørgen; Rogowska-Wrzesinska, Adelina; Jensen, Ole Nørregaard

    2013-01-01

    tolerance, micronutrient utilization, and photosynthesis in barley. In the present review we present the current state of proteomics research for investigations of barley chloroplasts, i.e., the organelle that contain the photosynthetic apparatus in the plant. We describe several different proteomics...... strategies and discuss their applications in characterization of the barley chloroplast as well as future perspectives for functional proteomics in barley research....

  15. Transcriptomics analysis of hulless barley during grain development with a focus on starch biosynthesis.

    Science.gov (United States)

    Tang, Yawei; Zeng, Xingquan; Wang, Yulin; Bai, Lijun; Xu, Qijun; Wei, Zexiu; Yuan, Hongjun; Nyima, Tashi

    2017-01-01

    Hulless barley, with its unique nutritional value and potential health benefits, has increasingly attracted attentions in recent years. However, the transcription dynamics during hulless barley grain development is not well understood. In the present study, we investigated the transcriptome changes during barley grain development using Illumina paired-end RNA-sequencing. Two datasets of the developing grain transcriptomes from two barley landraces with the differential seed starch synthesis traits were generated, and comparative transcriptome approach in both genotypes was performed. The results showed that 38 differentially expressed genes (DEGs) were found co-modulated in both genotypes during the barley grain development. Of those, the proteins encoded by most of those DGEs were found, such as alpha-amylase-related proteins, lipid-transfer protein, homeodomain leucine zipper (HD-Zip), NUCLEAR FACTOR-Y, subunit B (NF-YBs), as well as MYB transcription factors. More interestingly, two genes Hvulgare_GLEAN_10012370 and Hvulgare_GLEAN_10021199 encoding SuSy, AGPase (Hvulgare_GLEAN_10033640 and Hvulgare_GLEAN_10056301), as well as SBE2b (Hvulgare_GLEAN_10018352) were found to significantly contribute to the regulatory mechanism during grain development in both genotypes. Moreover, six co-expression modules associated with specific biological processes or pathways (M1 to M6) were identified by consensus co-expression network. Significantly enriched pathways of those module genes showed difference in both genotypes. These results will expand our understanding of the complex molecular mechanism of starch synthesis during barley grain development.

  16. Linkage mapping of putative regulator genes of barley grain development characterized by expression profiling

    Directory of Open Access Journals (Sweden)

    Wobus Ulrich

    2009-01-01

    Full Text Available Abstract Background Barley (Hordeum vulgare L. seed development is a highly regulated process with fine-tuned interaction of various tissues controlling distinct physiological events during prestorage, storage and dessication phase. As potential regulators involved within this process we studied 172 transcription factors and 204 kinases for their expression behaviour and anchored a subset of them to the barley linkage map to promote marker-assisted studies on barley grains. Results By a hierachical clustering of the expression profiles of 376 potential regulatory genes expressed in 37 different tissues, we found 50 regulators preferentially expressed in one of the three grain tissue fractions pericarp, endosperm and embryo during seed development. In addition, 27 regulators found to be expressed during both seed development and germination and 32 additional regulators are characteristically expressed in multiple tissues undergoing cell differentiation events during barley plant ontogeny. Another 96 regulators were, beside in the developing seed, ubiquitously expressed among all tissues of germinating seedlings as well as in reproductive tissues. SNP-marker development for those regulators resulted in anchoring 61 markers on the genetic linkage map of barley and the chromosomal assignment of another 12 loci by using wheat-barley addition lines. The SNP frequency ranged from 0.5 to 1.0 SNP/kb in the parents of the various mapping populations and was 2.3 SNP/kb over all eight lines tested. Exploration of macrosynteny to rice revealed that the chromosomal orders of the mapped putative regulatory factors were predominantly conserved during evolution. Conclusion We identified expression patterns of major transcription factors and signaling related genes expressed during barley ontogeny and further assigned possible functions based on likely orthologs functionally well characterized in model plant species. The combined linkage map and reference

  17. CO-FERMENTATION OF KOCHO WITH BARLEY

    African Journals Online (AJOL)

    improved protein content in which kocho and barley flour were fermented for 96 hrs with barley flour. ... involving co-fermentation of kocho and barley flour for the production of nutritionally improved ..... chickpeas. J. Food Sci. 44:234-236.

  18. Development of endosperm transfer cells in barley

    Directory of Open Access Journals (Sweden)

    Johannes eThiel

    2014-03-01

    Full Text Available Endosperm transfer cells (ETCs are positioned at the intersection of maternal and filial tissues in seeds of cereals and represent a bottleneck for apoplasmic transport of assimilates into the endosperm. Endosperm cellularization starts at the maternal-filial boundary and generates the highly specialized ETCs. During differentiation barley ETCs develop characteristic flange-like wall ingrowths to facilitate effective nutrient transfer. A comprehensive morphological analysis depicted distinct developmental time points in establishment of transfer cell morphology and revealed intracellular changes possibly associated with cell wall metabolism. Embedded inside the grain, ETCs are barely accessible by manual preparation. To get tissue-specific information about ETC specification and differentiation, laser microdissection(LM-based methods were used for transcript and metabolite profiling. Transcriptome analysis of ETCs at different developmental stages by microarrays indicated activated gene expression programs related to control of cell proliferation and cell shape, cell wall and carbohydrate metabolism reflecting the morphological changes during early ETC development. Transporter genes reveal distinct expression patterns suggesting a switch from active to passive modes of nutrient uptake with the onset of grain filling. Tissue-specific RNA-seq of the differentiating ETC region from the syncytial stage until functionality in nutrient transfer identified a high number of novel transcripts putatively involved in ETC differentiation. An essential role for two-component signaling (TCS pathways in transfer cell development of barley emerged from this analysis. Correlative data provide evidence for ABA and ethylene influences on ETC differentiation and hint at a crosstalk between hormone signal transduction and TCS phosphorelays. Collectively, the data expose a comprehensive view on ETC development, associated pathways and identified candidate genes for

  19. Boron Stress Responsive MicroRNAs and Their Targets in Barley

    Science.gov (United States)

    Ozhuner, Esma; Eldem, Vahap; Ipek, Arif; Okay, Sezer; Sakcali, Serdal; Zhang, Baohong; Boke, Hatice; Unver, Turgay

    2013-01-01

    Boron stress is an environmental factor affecting plant development and production. Recently, microRNAs (miRNAs) have been found to be involved in several plant processes such as growth regulation and stress responses. In this study, miRNAs associated with boron stress were identified and characterized in barley. miRNA profiles were also comparatively analyzed between root and leave samples. A total of 31 known and 3 new miRNAs were identified in barley; 25 of them were found to respond to boron treatment. Several miRNAs were expressed in a tissue specific manner; for example, miR156d, miR171a, miR397, and miR444a were only detected in leaves. Additionally, a total of 934 barley transcripts were found to be specifically targeted and degraded by miRNAs. In silico analysis of miRNA target genes demonstrated that many miRNA targets are conserved transcription factors such as Squamosa promoter-binding protein, Auxin response factor (ARF), and the MYB transcription factor family. A majority of these targets were responsible for plant growth and response to environmental changes. We also propose that some of the miRNAs in barley such as miRNA408 might play critical roles against boron exposure. In conclusion, barley may use several pathways and cellular processes targeted by miRNAs to cope with boron stress. PMID:23555702

  20. Alanine aminotransferase controls seed dormancy in barley

    Science.gov (United States)

    Sato, Kazuhiro; Yamane, Miki; Yamaji, Nami; Kanamori, Hiroyuki; Tagiri, Akemi; Schwerdt, Julian G.; Fincher, Geoffrey B.; Matsumoto, Takashi; Takeda, Kazuyoshi; Komatsuda, Takao

    2016-01-01

    Dormancy allows wild barley grains to survive dry summers in the Near East. After domestication, barley was selected for shorter dormancy periods. Here we isolate the major seed dormancy gene qsd1 from wild barley, which encodes an alanine aminotransferase (AlaAT). The seed dormancy gene is expressed specifically in the embryo. The AlaAT isoenzymes encoded by the long and short dormancy alleles differ in a single amino acid residue. The reduced dormancy allele Qsd1 evolved from barleys that were first domesticated in the southern Levant and had the long dormancy qsd1 allele that can be traced back to wild barleys. The reduced dormancy mutation likely contributed to the enhanced performance of barley in industrial applications such as beer and whisky production, which involve controlled germination. In contrast, the long dormancy allele might be used to control pre-harvest sprouting in higher rainfall areas to enhance global adaptation of barley. PMID:27188711

  1. Resistance in winter barley against Ramularia leaf spot

    DEFF Research Database (Denmark)

    Hjortshøj, Rasmus Lund

    Ramularia leaf spot is an emerging disease in barley caused by R. collo-cygni. At present little is known about the resistance mechanisms carried out by the host plant to avoid disease development. Nor is the lifecycle of the fungus or its populations structure fully understood. To gain insight...... into these aspects four experiments were set up; (1) a mapping experiment aiming at identifying QTL’s controlling disease levels under field conditions was conducted in two winterbarley populations. (2) a toxin assay testing the parental lines used in the mapping populations for response to Rubellin D was developed....... (3) microarray analysis of transcriptional response in barley to inoculation with R. collo-cygni was carried out, and finally the (4) population genetic structure of R. collo-cygni was assessed by AFLP and gene sequencing. Based on these experiments interaction was compared to the interactions of C...

  2. Golgi localized barley MTP8 proteins facilitate Mn transport.

    Science.gov (United States)

    Pedas, Pai; Schiller Stokholm, Michaela; Hegelund, Josefine Nymark; Ladegård, Anne Hald; Schjoerring, Jan Kofod; Husted, Søren

    2014-01-01

    Many metabolic processes in plants are regulated by manganese (Mn) but limited information is available on the molecular mechanisms controlling cellular Mn homeostasis. In this study, a yeast assay was used to isolate and characterize two genes, MTP8.1 and MTP8.2, which encode membrane-bound proteins belonging to the cation diffusion facilitator (CDF) family in the cereal species barley (Hordeum vulgare). Transient expression in onion epidermal cells showed that MTP8.1 and MTP8.2 proteins fused to the green fluorescent protein (GFP) are localized to Golgi. When heterologously expressed in yeast, MTP8.1 and MTP8.2 were found to be Mn transporters catalysing Mn efflux in a similar manner as the Golgi localized endogenous yeast protein Pmr1p. The level of MTP8.1 transcripts in barley roots increased with external Mn supply ranging from deficiency to toxicity, while MTP8.2 transcripts decreased under the same conditions, indicating non-overlapping functions for the two genes. In barley leaves, the expression of both MTP8 genes declined in response to toxic Mn additions to the roots suggesting a role in ensuring proper delivery of Mn to Golgi. Based on the above we suggest that barley MTP8 proteins are involved in Mn loading to the Golgi apparatus and play a role in Mn homeostasis by delivering Mn to Mn-dependent enzymes and/or by facilitating Mn efflux via secretory vesicles. This study highlights the importance of MTP transporters in Mn homeostasis and is the first report of Golgi localized Mn2+ transport proteins in a monocot plant species.

  3. Golgi localized barley MTP8 proteins facilitate Mn transport.

    Directory of Open Access Journals (Sweden)

    Pai Pedas

    Full Text Available Many metabolic processes in plants are regulated by manganese (Mn but limited information is available on the molecular mechanisms controlling cellular Mn homeostasis. In this study, a yeast assay was used to isolate and characterize two genes, MTP8.1 and MTP8.2, which encode membrane-bound proteins belonging to the cation diffusion facilitator (CDF family in the cereal species barley (Hordeum vulgare. Transient expression in onion epidermal cells showed that MTP8.1 and MTP8.2 proteins fused to the green fluorescent protein (GFP are localized to Golgi. When heterologously expressed in yeast, MTP8.1 and MTP8.2 were found to be Mn transporters catalysing Mn efflux in a similar manner as the Golgi localized endogenous yeast protein Pmr1p. The level of MTP8.1 transcripts in barley roots increased with external Mn supply ranging from deficiency to toxicity, while MTP8.2 transcripts decreased under the same conditions, indicating non-overlapping functions for the two genes. In barley leaves, the expression of both MTP8 genes declined in response to toxic Mn additions to the roots suggesting a role in ensuring proper delivery of Mn to Golgi. Based on the above we suggest that barley MTP8 proteins are involved in Mn loading to the Golgi apparatus and play a role in Mn homeostasis by delivering Mn to Mn-dependent enzymes and/or by facilitating Mn efflux via secretory vesicles. This study highlights the importance of MTP transporters in Mn homeostasis and is the first report of Golgi localized Mn2+ transport proteins in a monocot plant species.

  4. Analysis of Genetic diversity and reltionships in local Tunisian barley ...

    African Journals Online (AJOL)

    Yomi

    Key words: Barley, RAPD markers, SSR markers, genetic diversity. INTRODUCTION. Barley ... surveyed by each kind of marker, their distribution ..... that belong to the Center. ..... tagged-site facilitated PCR for barley genome mapping. Theor.

  5. Roles of Hydroxynitrile Glucosides in Barley

    DEFF Research Database (Denmark)

    Roelsgaard, Pernille Sølvhøj

    , the defense capability of these compounds requires the activity of a specific β-glucosidase, and this β-glucosidase is not found in barley leaf tissue. Therefore, the role of hydroxynitrile glucosides in barley leaves is unclear. In contrast to acting as defense compounds, it has been suggested......) has been reported in the literature. In this thesis, the role of hydroxynitrile glucosides in the interaction between barley and Bgh is investigated. It is shown that the hydroxynitrile glucoside levels increase over time in barley leaves upon Bgh infection. In addition, isolation of fungal hyphae...

  6. Enumeration of fungi in barley

    CSIR Research Space (South Africa)

    Rabie, CJ

    1997-04-01

    Full Text Available et al., 1975), and affect the resultant beer by causing off-flavours and colours and, in some instances, gushing (Haikara, 1983; Vaag, 1985). Under cer- tain circumstances some fungal species and/or their products may... samples Dominant spccics Kernels inl?cctcd,? (?j6) Table I Fungi isolated from baa-ley kernels As high levels of infection in barley are detri- mental to good quality malt and beer. it is impor- tant to quantify fungal...

  7. Identification and Expression Analysis of the Barley (Hordeum vulgare L. Aquaporin Gene Family.

    Directory of Open Access Journals (Sweden)

    Runyararo M Hove

    Full Text Available Aquaporins (AQPs are major intrinsic proteins (MIPs that mediate bidirectional flux of water and other substrates across cell membranes, and play critical roles in plant-water relations, dehydration stress responses and crop productivity. However, limited data are available as yet on the contributions of these proteins to the physiology of the major crop barley (Hordeum vulgare. The present work reports the identification and expression analysis of the barley MIP family. A comprehensive search of publicly available leaf mRNA-seq data, draft barley genome data, GenBank transcripts and sixteen new annotations together revealed that the barley MIP family is comprised of at least forty AQPs. Alternative splicing events were likely in two plasma membrane intrinsic protein (PIP AQPs. Analyses of the AQP signature sequences and specificity determining positions indicated a potential of several putative AQP isoforms to transport non-aqua substrates including physiological important substrates, and respond to abiotic stresses. Analysis of our publicly available leaf mRNA-seq data identified notable differential expression of HvPIP1;2 and HvTIP4;1 under salt stress. Analyses of other gene expression resources also confirmed isoform-specific responses in different tissues and/or in response to salinity, as well as some potentially inter-cultivar differences. The work reports systematic and comprehensive analysis of most, if not all, barley AQP genes, their sequences, expression patterns in different tissues, potential transport and stress response functions, and a strong framework for selection and/or development of stress tolerant barley varieties. In addition, the barley data would be highly valuable for genetic studies of the evolutionarily closely related wheat (Triticum aestivum L..

  8. Issues surrounding health claims for barley.

    Science.gov (United States)

    Ames, Nancy P; Rhymer, Camille R

    2008-06-01

    Government-approved health claims support dietary intervention as a safe and practical approach to improving consumer health and provide industry with regulatory guidelines for food product labels. Claims already allowed in the United States, United Kingdom, Sweden, and The Netherlands for reducing cholesterol through consumption of oat or barley soluble fiber provide a basis for review, but each country may have different criteria for assessing clinical evidence for a physiological effect. For example, the FDA-approved barley health claim was based on a petition that included 39 animal model studies and 11 human clinical trials. Since then, more studies have been published, but with few exceptions, clinical data continue to demonstrate that the consumption of barley products is effective for lowering total and LDL cholesterol. More research is needed to fully understand the mechanism of cholesterol reduction and the role of beta-glucan molecular weight, viscosity, and solubility. In an assessment of the physiological efficacy of a dietary intervention, consideration should also be given to the potential impact of physical and thermal food-processing treatments and genotypic variation in the barley source. New barley cultivars have been generated specifically for food use, possessing increased beta-glucan, desirable starch composition profiles, and improved milling/processing traits. These advances in barley production, coupled with the establishment of a government-regulated health claim for barley beta-glucan, will stimulate new processing opportunities for barley foods and provide consumers with reliable, healthy food choices.

  9. Molecular characterization of two lipoxygenases from barley

    NARCIS (Netherlands)

    Mechelen, J.R. van; Schuurink, R.C.; Smits, M.; Graner, A.; Douma, A.C.; Sedee, N.J.A.; Schmitt, N.F.; Valk, B.E.

    1999-01-01

    Two full-length lipoxygenase cDNA sequences (LoxB and LoxC) from barley (Hordeum distichum cv. L. Triumph) are described. The cDNAs share high homology with the barley LoxA cDNA. Southern blotting experiments indicate single copy numbers of the three lipoxygenase genes. RFLP mapping revealed the pre

  10. Identification of a novel gene (Hsdr4) involved in water-stress tolerance in wild barley.

    Science.gov (United States)

    Suprunova, Tatiana; Krugman, Tamar; Distelfeld, Assaf; Fahima, Tzion; Nevo, Eviatar; Korol, Abraham

    2007-05-01

    Drought is one of the most severe stresses limiting plant growth and yield. Genes involved in water stress tolerance of wild barley (Hordeum spontaneoum), the progenitor of cultivated barley, were investigated using genotypes contrasting in their response to water stress. Gene expression profiles of water-stress tolerant vs. water-stress sensitive wild barley genotypes, under severe dehydration stress applied at the seedling stage, were compared using cDNA-AFLP analysis. Of the 1100 transcript-derived fragments (TDFs) amplified about 70 displayed differential expression between control and stress conditions. Eleven of them showed clear difference (up- or down-regulation) between tolerant and susceptible genotypes. These TDFs were isolated, sequenced and tested by RT-PCR. The differential expression of seven TDFs was confirmed by RT-PCR, and TDF-4 was selected as a promising candidate gene for water-stress tolerance. The corresponding gene, designated Hsdr4 (Hordeum spontaneum dehydration-responsive), was sequenced and the transcribed and flanking regions were determined. The deduced amino acid sequence has similarity to the rice Rho-GTPase-activating protein-like with a Sec14 p-like lipid-binding domain. Analysis of Hsdr4 promoter region that was isolated by screening a barley BAC library, revealed a new putative miniature inverted-repeat transposable element (MITE), and several potential stress-related binding sites for transcription factors (MYC, MYB, LTRE, and GT-1), suggesting a role of the Hsdr4 gene in plant tolerance to dehydration stress. Furthermore, the Hsdr4 gene was mapped using wild barley mapping population to the long arm of chromosome 3H between markers EBmac541 and EBmag705, within a region that previously was shown to affect osmotic adaptation in barley.

  11. Calcium homeostasis in barley aleurone

    Energy Technology Data Exchange (ETDEWEB)

    Jones, R.L.

    1990-02-21

    Under the auspices of the Department of Energy we investigated calcium homeostasis in aleurone cells of barley. This investigation was initiated to explore the role played by extracellular Ca{sup 2+} in gibberellic acid (GA)-induced synthesis and secretion of hydrolases in the aleurone layer. We have focused our attention on four topics that relate to the role of Ca{sup 2+} in regulating the synthesis of {alpha}-amylase. First, we determined the stoichiometry of Ca{sup 2+} binding to the two principal classes of barley {alpha}-amylase and examined some of the biochemical and physical properties of the native and Ca{sup 2+}-depleted forms of the enzyme. Second, since {alpha}-amylase is a Ca{sup 2+} containing metalloenzyme that binds one atom of Ca{sup 2+} per molecule, we developed methods to determine the concentration of Ca{sup 2+} in the cytosol of the aleurone cell. We developed a technique for introducing Ca{sup 2+}-sensitive dyes into aleurone protoplasts that allows the measurement of Ca{sup 2+} in both cytosol and endoplasmic reticulum (ER). Third, because the results of our Ca{sup 2+} measurements showed higher levels of Ca{sup 2+} in the ER than in the cytosol, we examined Ca{sup 2+} transport into the ER of control and GA-treated aleurone tissue. And fourth, we applied the technique of patch-clamping to the barley aleurone protoplast to examine ion transport at the plasma membrane. Our results with the patch-clamp technique established the presence of K{sup +} channels in the plasma membrane of the aleurone protoplast, and they showed that this cell is ideally suited for the application of this methodology for studying ion transport. 34 refs.

  12. Resistance to Barley Leaf Stripe

    DEFF Research Database (Denmark)

    Nørgaard Knudsen, J. C.

    1986-01-01

    in well adapted Northwest European spring cultivars. Virulence matching two hitherto not overcome resistances was demonstrated. Differences in apparent race nonspecific or partial resistance were also present, changing the percentage of infected plants of susceptible genotypes from about 20 to 44 per cent.......Ten barley [Hordeum vulgare] genotypes were inoculated with twelve isolates of Pyrenophora graminea of diverse European and North African origin. Race specific resistance occurred. Four, possibly five, genetically different sources of race-specific resistance were found, three of them occurring...

  13. Cisgenic barley for animal feed

    DEFF Research Database (Denmark)

    Holme, Inger; Dionisio, Giuseppe; Brinch-Pedersen, Henrik

    2011-01-01

    for Cisgenesis. Recently, Dionisio et al. (2011) have cloned and characterized phytases belonging to the purple acid phosphatases (PAPs) in barley. We have isolated the genomic PAP-clone of the isoform expressed during grain filling including 2.3 kb of the promoter region and 600 bp of the terminator region...... using a genomic barley lambda library. The clone has been inserted into a Cisgenic Agrobacterium vector where both the gene of interest and the selection gene are flanked by their own T-DNA borders in order to promote integration of the two genes at unlinked places in the plant genome. T0-plants show...... increases in the phytase activity of mature seeds from 1350 in wild type to 7500 FTU/kg in T0-plants. We have identified two Cisgenic T1-lines without selection gene and vector backbone but with one additional genomic clone of the phytase gene. Lines homozygous for the additional cisgene show 2-3 fold...

  14. Abscisic acid effects on activity and expression of barley (Hordeum vulgare) plastidial glucose-6-phosphate dehydrogenase.

    Science.gov (United States)

    Cardi, Manuela; Chibani, Kamel; Cafasso, Donata; Rouhier, Nicolas; Jacquot, Jean-Pierre; Esposito, Sergio

    2011-07-01

    Total glucose-6-phosphate dehydrogenase (G6PDH) activity, protein abundance, and transcript levels of G6PDH isoforms were measured in response to exogenous abscisic acid (ABA) supply to barley (Hordeum vulgare cv Nure) hydroponic culture. Total G6PDH activity increased by 50% in roots treated for 12 h with exogenous 0.1 mM ABA. In roots, a considerable increase (35%) in plastidial P2-G6PDH transcript levels was observed during the first 3 h of ABA treatment. Similar protein variations were observed in immunoblotting analyses. In leaves, a 2-fold increase in total G6PDH activity was observed after ABA treatment, probably related to an increase in the mRNA level (increased by 50%) and amount of protein (increased by 85%) of P2-G6PDH. Together these results suggest that the plastidial P2-isoform plays an important role in ABA-treated barley plants.

  15. Functional Analysis of Barley Powdery Mildew Effector Candidates and Identification of their Barley Targets

    DEFF Research Database (Denmark)

    Ahmed, Ali Abdurehim

    The genome of barley powdery mildew fungus (Blumeria graminis f. sp. hordei, Bgh) encodes around 500 Candidate Secreted Effector Proteins (CSEPs), which are believed to be delivered to the barley cells either to interfere with plant defence and/or promote nutrient uptake. So far, little is known...

  16. 2015 nationwide survey revealed Barley stripe mosaic virus in Korean barley fields

    Science.gov (United States)

    A seed-transmitted virus has consistently caused significant economic damage to barley crops in Korea in recent years, and may be increasing because many farmers save seed for replanting. Because some barley seed is imported, there is the potential for introduction of new seed-transmitted viruses, c...

  17. Nitrogen deficiency in barley (Hordeum vulgare) seedlings induces molecular and metabolic adjustments that trigger aphid resistance.

    Science.gov (United States)

    Comadira, Gloria; Rasool, Brwa; Karpinska, Barbara; Morris, Jenny; Verrall, Susan R; Hedley, Peter E; Foyer, Christine H; Hancock, Robert D

    2015-06-01

    Agricultural nitrous oxide (N2O) pollution resulting from the use of synthetic fertilizers represents a significant contribution to anthropogenic greenhouse gas emissions, providing a rationale for reduced use of nitrogen (N) fertilizers. Nitrogen limitation results in extensive systems rebalancing that remodels metabolism and defence processes. To analyse the regulation underpinning these responses, barley (Horedeum vulgare) seedlings were grown for 7 d under N-deficient conditions until net photosynthesis was 50% lower than in N-replete controls. Although shoot growth was decreased there was no evidence for the induction of oxidative stress despite lower total concentrations of N-containing antioxidants. Nitrogen-deficient barley leaves were rich in amino acids, sugars and tricarboxylic acid cycle intermediates. In contrast to N-replete leaves one-day-old nymphs of the green peach aphid (Myzus persicae) failed to reach adulthood when transferred to N-deficient barley leaves. Transcripts encoding cell, sugar and nutrient signalling, protein degradation and secondary metabolism were over-represented in N-deficient leaves while those associated with hormone metabolism were similar under both nutrient regimes with the exception of mRNAs encoding proteins involved in auxin metabolism and responses. Significant similarities were observed between the N-limited barley leaf transcriptome and that of aphid-infested Arabidopsis leaves. These findings not only highlight significant similarities between biotic and abiotic stress signalling cascades but also identify potential targets for increasing aphid resistance with implications for the development of sustainable agriculture.

  18. TAL effector nucleases induce mutations at a pre-selected location in the genome of primary barley transformants.

    Science.gov (United States)

    Wendt, Toni; Holm, Preben Bach; Starker, Colby G; Christian, Michelle; Voytas, Daniel F; Brinch-Pedersen, Henrik; Holme, Inger Bæksted

    2013-10-01

    Transcription activator-like effector nucleases (TALENs) enable targeted mutagenesis in a variety of organisms. The primary advantage of TALENs over other sequence-specific nucleases, namely zinc finger nucleases and meganucleases, lies in their ease of assembly, reliability of function, and their broad targeting range. Here we report the assembly of several TALENs for a specific genomic locus in barley. The cleavage activity of individual TALENs was first tested in vivo using a yeast-based, single-strand annealing assay. The most efficient TALEN was then selected for barley transformation. Analysis of the resulting transformants showed that TALEN-induced double strand breaks led to the introduction of short deletions at the target site. Additional analysis revealed that each barley transformant contained a range of different mutations, indicating that mutations occurred independently in different cells.

  19. Triple Hybridization with Cultivated Barley (Hordeum vulgare L.)

    DEFF Research Database (Denmark)

    Bothmer, R. von; Claesson, L.; Flink, J.;

    1989-01-01

    represented species closely or distantly related to H. jubatum and H. lechleri. In trispecific crosses with diploid barley, the seed set was 5.7%. Crosses with tetraploid barley were highly unsuccessful (0.2% seed set). Three lines of diploid barley were used in the crosses, i.e. 'Gull', 'Golden Promise...

  20. Effects of n-butanol on barley microspore embryogenesis

    DEFF Research Database (Denmark)

    Castillo, Ana Maria; Nielsen, Nanna; Jensen, Anni

    2014-01-01

    Doubled haploid (DH) production is an efficient tool in barley breeding, but efficiency of DH methods is not consistent. Hence, the aim of this study was to study the effect of n-butanol application on DH barley plant production efficiency. Five elite cultivars of barley and thirteen breeding cro...

  1. MS Based Imaging of Barley Seed Development

    Institute of Scientific and Technical Information of China (English)

    Manuela Peukert; Andrea Matros; Hans-Peter Mock

    2012-01-01

    Spatially resolved analysis of metabolites and proteins is essential to model compartmentalized cellular processes in plants.Within recent years,tremendous progress has been made in MS based imaging (MSI) techniques,mostly MALDI MSI.The technology has been pioneered and is now widely applied in medicinal and pharmacological studies,and in recent years found its way into plant science (Kaspar et al.,2011; Peukert etal.,2012).We are interested in the elucidation of spatially resolved metabolic networks related to barley grain development.An understanding of developmentally and ecologically regulated processes affecting agronomical traits such as final grain weight,seed quality and stress tolerance is of outmost importance,as barley provides one of the staple foods.Barley also serves as a model plant for other cereals such as wheat.The presentation will introduce an untargeted MALDI MSI approach to the analysis of me-tabolite patterns during barley grain development.We analyzed longitudinal and cross sections from developing barley grains (3,7,10 and 14 days after pollination).In the presentation we will address spatial resolution,sensitivity and identification of unknown compounds will also be discussed.A major task is to connect the metabolite patterns to distinct cellular and physiological events.As an example,particular metabolite distributions indicative for nutrient transport into the developing endosperm will be shown.

  2. Evaluation of Barley as Human Food

    Directory of Open Access Journals (Sweden)

    Mehmet Köten

    2013-12-01

    Full Text Available Barley, as animal feed, raw material for malting and human food, constitute an important part among cereal sources in the world. Majority of barley that produced both in Turkey and other countries of the world, is being used as animal feed. Poor baking quality, taste and appearance of barley restricted its use in human nutrition. However, recently high protein, fiber, especially β-glucan and high starch content appeal to food industry. Many scientific researches established that β-glucan, a soluble fiber, has an effect in healing coronary-hearth diseases, lowering blood cholesterol level, balancing blood sugar level, preventing obesity. Being a healthy cereal that can be used in various purposes, and an additive in many food products, barley is considered a very promising cereal, and research to increase possibilities of its use in human nutrition is being increased. In the literature, there has been researches on making noodles, bulgur, kavut (roasted cereal, breakfast cereals. In this study the researches relating to evaluation of barley, importance of which is increased every day, as human food was reviewed.

  3. Immigration of the barley mildew pathogen into field plots of barley

    DEFF Research Database (Denmark)

    O'Hara, R.B.; Brown, J.K.M.

    1996-01-01

    Immigration of the barley powdery mildew pathogen (Erysiphe graminis f.sp. hordei) into field plots of the spring barley variety Tyra (carrying the resistance allele Mla1) was investigated. Spores were trapped from the top of the plot canopies, as well as from control plots of wheat with no barley...... nearby. Comparison of the frequencies of virulent and avirulent single-colony isolates showed that the amount of immigration, relative to the amount of inoculum being produced within the plot, reduced very rapidly, until it could not be detected in the middle of the growing season (mid-June)....

  4. Golgi localized barley MTP8 proteins facilitate Mn transport

    DEFF Research Database (Denmark)

    Pedas, Pai Rosager; Schiller, Michaela; Hegelund, Josefine Nymark

    2014-01-01

    Many metabolic processes in plants are regulated by manganese (Mn) but limited information is available on the molecular mechanisms controlling cellular Mn homeostasis. In this study, a yeast assay was used to isolate and characterize two genes, MTP8.1 and MTP8.2 , which encode membrane-bound pro......Many metabolic processes in plants are regulated by manganese (Mn) but limited information is available on the molecular mechanisms controlling cellular Mn homeostasis. In this study, a yeast assay was used to isolate and characterize two genes, MTP8.1 and MTP8.2 , which encode membrane...... in yeast, MTP8.1 and MTP8.2 were found to be Mn transporters catalysing Mn efflux in a similar manner as the Golgi localized endogenous yeast protein Pmr1p. The level of MTP8.1 transcripts in barley roots increased with external Mn supply ranging from deficiency to toxicity, while MTP8.2 transcripts...... decreased under the same conditions, indicating non-overlapping functions for the two genes. In barley leaves, the expression of both MTP8 genes declined in response to toxic Mn additions to the roots suggesting a role in ensuring proper delivery of Mn to Golgi. Based on the above we suggest that barley MTP...

  5. Barley seed proteomics from spots to structures

    DEFF Research Database (Denmark)

    Finnie, Christine; Svensson, Birte

    2009-01-01

    with information from rice and other cereals facilitate identification of barley proteins. Several hundred barley seed proteins are identified and lower abundance proteins including membrane proteins are now being analysed. In the present review we focus on variation in protein profiles of seed tissues during...... forms on 2D-gels. Specific protein families, including peroxidases and alpha-amylases have been subjected to in-depth analysis resulting in characterisation of different isozymes, post-translational. modifications and processing. A functional proteomics study focusing on the seed thioredoxin system has...

  6. Differential gene expression in individual papilla-resistant and powdery mildew-infected barley epidermal cells

    DEFF Research Database (Denmark)

    Gjetting, T.; Carver, Timothy L. W.; Skøt, Leif

    2004-01-01

    Resistance and susceptibility in barley to the powdery mildew fungus (Blumeria graminis f. sp. hordei) is determined at the single-cell level. Even in genetically compatible interactions, attacked plant epidermal cells defend themselves against attempted fungal penetration by localized responses...... leading to papilla deposition and reinforcement of their cell wall. This conveys a race-nonspecific form of resistance. However, this defense is not complete, and a proportion of penetration attempts succeed in infection. The resultant mixture of infected and uninfected leaf cells makes it impossible...... to relate powdery mildew-induced gene expression in whole leaves or even dissected epidermal tissues to resistance or susceptibility. A method for generating transcript profiles from individual barley epidermal cells was established and proven useful for analyzing resistant and successfully infected cells...

  7. Developmentally regulated expression and complex processing of barley pri-microRNAs.

    Science.gov (United States)

    Kruszka, Katarzyna; Pacak, Andrzej; Swida-Barteczka, Aleksandra; Stefaniak, Agnieszka K; Kaja, Elzbieta; Sierocka, Izabela; Karlowski, Wojciech; Jarmolowski, Artur; Szweykowska-Kulinska, Zofia

    2013-01-16

    MicroRNAs (miRNAs) regulate gene expression via mRNA cleavage or translation inhibition. In spite of barley being a cereal of great economic importance, very little data is available concerning its miRNA biogenesis. There are 69 barley miRNA and 67 pre-miRNA sequences available in the miRBase (release 19). However, no barley pri-miRNA and MIR gene structures have been shown experimentally. In the present paper, we examine the biogenesis of selected barley miRNAs and the developmental regulation of their pri-miRNA processing to learn more about miRNA maturation in barely. To investigate the organization of barley microRNA genes, nine microRNAs - 156g, 159b, 166n, 168a-5p/168a-3p, 171e, 397b-3p, 1120, and 1126 - were selected. Two of the studied miRNAs originate from one MIR168a-5p/168a-3p gene. The presence of all miRNAs was confirmed using a Northern blot approach. The miRNAs are encoded by genes with diverse organizations, representing mostly independent transcription units with or without introns. The intron-containing miRNA transcripts undergo complex splicing events to generate various spliced isoforms. We identified miRNAs that were encoded within introns of the noncoding genes MIR156g and MIR1126. Interestingly, the intron that encodes miR156g is spliced less efficiently than the intron encoding miR1126 from their specific precursors. miR397b-3p was detected in barley as a most probable functional miRNA, in contrast to rice where it has been identified as a complementary partner miRNA*. In the case of miR168a-5p/168a-3p, we found the generation of stable, mature molecules from both pre-miRNA arms, confirming evolutionary conservation of the stability of both species, as shown in rice and maize. We suggest that miR1120, located within the 3' UTR of a protein-coding gene and described as a functional miRNA in wheat, may represent a siRNA generated from a mariner-like transposable element. Seven of the eight barley miRNA genes characterized in this study contain

  8. Do 14-3-3 proteins and plasma membrane H+-ATPases interact in the barley epidermis in response to the barley powdery mildew fungus?

    DEFF Research Database (Denmark)

    Finnie, C.; Andersen, C.H.; Borch, J.

    2002-01-01

    14-3-3 proteins form a family of highly conserved proteins with central roles in many eukaryotic signalling networks. In plants, they bind to and activate the plasma membrane H+-ATPase, creating a binding site for the phytotoxin fusicoccin. Barley 14-3-3 transcripts accumulate in the epidermis upon......+-ATPase. These effects are seen specifically in the inoculated epidermis and not in the whole leaf. We propose that 14-3-3 proteins are involved in an epidermis-specific response to the powdery mildew fungus, possibly via an activation of the plasma membrane H+-ATPase....

  9. Do 14-3-3 proteins and plasma membrane H+-AtPases interact in the barley epidermis in response to the barley powdery mildew fungus?

    DEFF Research Database (Denmark)

    Finni, Christine; Andersen, Claus H; Borch, Jonas

    2002-01-01

    14-3-3 proteins form a family of highly conserved proteins with central roles in many eukaryotic signalling networks. In plants, they bind to and activate the plasma membrane H+-ATPase, creating a binding site for the phytotoxin fusicoccin. Barley 14-3-3 transcripts accumulate in the epidermis upon......+-ATPase. These effects are seen specifically in the inoculated epidermis and not in the whole leaf. We propose that 14-3-3 proteins are involved in an epidermis-specific response to the powdery mildew fungus, possibly via an activation of the plasma membrane H+-ATPase....

  10. The barley Jip23b gene

    DEFF Research Database (Denmark)

    Müller-Uri, Frieder; Cameron-Mills, Verena; Mundy, John

    2002-01-01

    The barley gene (Jip23) encoding a 23,000-Da protein of unknown function was isolated and shown to be induced by jasmonate methyl ester (MeJA) in leaves. 5'upstream Jip23 sequence was isolated and fused to the beta-glucuronidase gene (GUS), and this reporter was introduced by particle bombardment...

  11. Cisgenic barley with improved phytase activity

    DEFF Research Database (Denmark)

    Holme, Inger; Dionisio, Giuseppe; Brinch-Pedersen, Henrik

    2010-01-01

    are accordingly very similar to those generated by conventional breeding. The cisgenesis concept allows for the introduction of extra gene copies of a particular gene to accentuate the trait. We are using a barley purple acid phosphatase expressed during grain filling as candidate gene for cisgenesis. A genomic...

  12. Endoproteolytic activity assay in malting barley

    Directory of Open Access Journals (Sweden)

    Blanca Gómez Guerrero

    2013-12-01

    Full Text Available Hydrolysis of barley proteins into peptides and amino acids is one of the most important processes during barley germination.The degradation of the endosperm stored proteins facilitates water and enzyme movements, enhances modification, liberates starch granules and increases soluble amino nitrogen. Protease activity is the result of the activities of a mixture of exo- and endo-proteases. The barley proteins are initially solubilized by endo-proteases and the further by exo-proteases. Four classes of endo-proteases have been described: serine-proteases, cysteine-proteases, aspartic-proteases and metallo-proteases. The objective of this work was to develop a rapid and colorimetric enzymatic assay to determine the endo-proteolytic activity of the four endo-protease classes using two different substrates: azo-gelatin and azo-casein. Optimum conditions for the assays such as: pH,reaction time and temperature and absorbance scale were determined. Azo-gelatin presented several difficulties in standardizing an “in solution” assay. On the other hand, azo-casein allowed standardization of the assay for the four enzyme classes to produce consistent results. The endo-proteoteolytic method developed was applied to determine the endo-protease activity in barley, malt and wort.

  13. Adaptation of barley to harsh Mediterranean environments.

    NARCIS (Netherlands)

    Oosterom, van E.

    1993-01-01

    Research ObjectivesBarley is in Syria the dominant crop in areas receiving less than 300 mm annual precipitation. Grain yield is often below 1 ton ha -1, and is reduced by low temperatures in winter and terminal drought stress in spring. Variation i

  14. Expression of the betaine aldehyde dehydrogenase gene in barley in response to osmotic stress and abscisic acid.

    Science.gov (United States)

    Ishitani, M; Nakamura, T; Han, S Y; Takabe, T

    1995-01-01

    When subjected to salt stress or drought, some vascular plants such as barley respond with an increased accumulation of the osmoprotectant glycine betaine (betaine), being the last step of betaine synthesis catalyzed by betaine aldehyde dehydrogenase (BADH). We report here cloning and characterization of BADH cDNA from barley, a monocot, and the expression pattern of a BADH transcript. An open reading frame of 1515 bp encoded a protein which showed high homology to BADH enzymes present in other plants (spinach and sugar-beet) and in Escherichia coli. Transgenic tobacco plants harboring the clone expressed high levels of both BADH protein and its enzymatic activity. Northern blot analyses indicated that BADH mRNA levels increased almost 8-fold and 2-fold, respectively, in leaves and roots of barley plants grown in high-salt conditions, and that these levels decreased upon release of the stress, whereas they did not decrease under continuous salt stress. BADH transcripts also accumulate in response to water stress or drought, indicating a common response of the plant to osmotic changes that affect its water status. The addition of abscisic acid (ABA) to plants during growth also increased the levels of BADH transcripts dramatically, although the response was delayed when compared to that found for salt-stressed plants. Removal of plant roots before transferring the plants to high-salt conditions reduced only slightly the accumulation of BADH transcripts in the leaves.

  15. Transgenic barley: a prospective tool for biotechnology and agriculture.

    Science.gov (United States)

    Mrízová, Katarína; Holasková, Edita; Öz, M Tufan; Jiskrová, Eva; Frébort, Ivo; Galuszka, Petr

    2014-01-01

    Barley (Hordeum vulgare L.) is one of the founder crops of agriculture, and today it is the fourth most important cereal grain worldwide. Barley is used as malt in brewing and distilling industry, as an additive for animal feed, and as a component of various food and bread for human consumption. Progress in stable genetic transformation of barley ensures a potential for improvement of its agronomic performance or use of barley in various biotechnological and industrial applications. Recently, barley grain has been successfully used in molecular farming as a promising bioreactor adapted for production of human therapeutic proteins or animal vaccines. In addition to development of reliable transformation technologies, an extensive amount of various barley genetic resources and tools such as sequence data, microarrays, genetic maps, and databases has been generated. Current status on barley transformation technologies including gene transfer techniques, targets, and progeny stabilization, recent trials for improvement of agricultural traits and performance of barley, especially in relation to increased biotic and abiotic stress tolerance, and potential use of barley grain as a protein production platform have been reviewed in this study. Overall, barley represents a promising tool for both agricultural and biotechnological transgenic approaches, and is considered an ancient but rediscovered crop as a model industrial platform for molecular farming.

  16. Association mapping of partitioning loci in barley

    Directory of Open Access Journals (Sweden)

    Mackay Ian J

    2008-02-01

    Full Text Available Abstract Background Association mapping, initially developed in human disease genetics, is now being applied to plant species. The model species Arabidopsis provided some of the first examples of association mapping in plants, identifying previously cloned flowering time genes, despite high population sub-structure. More recently, association genetics has been applied to barley, where breeding activity has resulted in a high degree of population sub-structure. A major genotypic division within barley is that between winter- and spring-sown varieties, which differ in their requirement for vernalization to promote subsequent flowering. To date, all attempts to validate association genetics in barley by identifying major flowering time loci that control vernalization requirement (VRN-H1 and VRN-H2 have failed. Here, we validate the use of association genetics in barley by identifying VRN-H1 and VRN-H2, despite their prominent role in determining population sub-structure. Results By taking barley as a typical inbreeding crop, and seasonal growth habit as a major partitioning phenotype, we develop an association mapping approach which successfully identifies VRN-H1 and VRN-H2, the underlying loci largely responsible for this agronomic division. We find a combination of Structured Association followed by Genomic Control to correct for population structure and inflation of the test statistic, resolved significant associations only with VRN-H1 and the VRN-H2 candidate genes, as well as two genes closely linked to VRN-H1 (HvCSFs1 and HvPHYC. Conclusion We show that, after employing appropriate statistical methods to correct for population sub-structure, the genome-wide partitioning effect of allelic status at VRN-H1 and VRN-H2 does not result in the high levels of spurious association expected to occur in highly structured samples. Furthermore, we demonstrate that both VRN-H1 and the candidate VRN-H2 genes can be identified using association mapping

  17. Transcriptome analysis of the barley-deoxynivalenol interaction: evidence for a role of glutathione in deoxynivalenol detoxification.

    Science.gov (United States)

    Gardiner, Stephanie A; Boddu, Jayanand; Berthiller, Franz; Hametner, Christian; Stupar, Robert M; Adam, Gerhard; Muehlbauer, Gary J

    2010-07-01

    Trichothecenes are a major group of toxins produced by phytopathogenic fungi, including Fusarium graminearum. Trichothecenes inhibit protein synthesis in eukaryotic cells and are toxicologically relevant mycotoxins for humans and animals. Because they promote plant disease, the role of host responses to trichothecene accumulation is considered to be an important aspect of plant defense and resistance to fungal infection. Our overall objective was to examine the barley response to application of the type B trichothecene deoxynivalenol (DON). We found that DON is diluted by movement from the application site to acropetal and basipetal florets. A susceptible barley genotype converted DON to DON-3-O-glucoside, indicating that UDP-glucosyltransferases capable of detoxifying DON must exist in barley. RNA profiling of DON-treated barley spikes revealed strong upregulation of gene transcripts encoding ABC transporters, UDP-glucosyltransferases, cytochrome P450s, and glutathione-S-transferases. We noted that transcripts encoding cysteine synthases were dramatically induced by DON, and that toxin-sensitive yeast on glutathione- or cysteine-supplemented media or carrying a gene that encodes a cysteine biosynthetic enzyme exhibit DON resistance, suggesting that preventing glutathione depletion by increasing cysteine supply could play a role in ameliorating the impact of DON. Evidence for nonenzymatic formation of DON-glutathione adducts in vitro was found using both liquid chromatography-mass spectrometry and nuclear magnetic resonance analysis, indicating that the formation of DON-glutathione conjugates in vivo may reduce the impact of trichothecenes. Our results indicate that barley exhibits multiple defense mechanisms against trichothecenes.

  18. Barley grain for ruminants: A global treasure or tragedy

    Directory of Open Access Journals (Sweden)

    Nikkhah Akbar

    2012-07-01

    Full Text Available Abstract Barley grain (Hordeum vulgare L. is characterized by a thick fibrous coat, a high level of ß-glucans and simply-arranged starch granules. World production of barley is about 30 % of that of corn. In comparison with corn, barley has more protein, methionine, lysine, cysteine and tryptophan. For ruminants, barley is the third most readily degradable cereal behind oats and wheat. Due to its more rapid starch fermentation rate compared with corn, barley also provides a more synchronous release of energy and nitrogen, thereby improving microbial nutrient assimilation. As a result, feeding barley can reduce the need for feeding protected protein sources. However, this benefit is only realized if rumen acidity is maintained within an optimal range (e.g., > 5.8 to 6.0; below this range, microbial maintenance requirements and wastage increase. With a low pH, microbial endotoxines cause pro-inflammatory responses that can weaken immunity and shorten animal longevity. Thus, mismanagement in barley processing and feeding may make a tragedy from this treasure or pearl of cereal grains. Steam-rolling of barley may improve feed efficiency and post-rumen starch digestion. However, it is doubtful if such processing can improve milk production and feed intake. Due to the need to process barley less extensively than other cereals (as long as the pericarp is broken, consistent and global standards for feeding and processing barley could be feasibly established. In high-starch diets, barley feeding reduces the need for capacious small intestinal starch assimilation, subsequently reducing hindgut starch use and fecal nutrient loss. With its nutritional exclusivities underlined, barley use will be a factual art that can either matchlessly profit or harm rumen microbes, cattle production, farm economics and the environment.

  19. Agrobacterium-mediated transformation of barley (Hordeum vulgare L.).

    Science.gov (United States)

    Ismagul, Ainur; Mazonka, Iryna; Callegari, Corinne; Eliby, Serik

    2014-01-01

    Barley biotechnology requires efficient genetic engineering tools for producing transgenic plants necessary for conducting reverse genetics analyses in breeding and functional genomics research. Agrobacterium-mediated genetic transformation is an important technique for producing barley transgenics with simple low-copy number transgenes. This chapter reports a refined protocol for the systematic high-throughput transformation of the advanced Australian spring barley breeding line WI4330.

  20. The white barley mutant albostrians shows enhanced resistance to the biotroph Blumeria graminis f. sp. hordei.

    Science.gov (United States)

    Jain, Sanjay Kumar; Langen, Gregor; Hess, Wolfgang; Börner, Thomas; Hückelhoven, Ralph; Kogel, Karl-Heinz

    2004-04-01

    We performed cytological and molecular analyses of the interaction between the biotrophic barley powdery mildew fungus Blumeria graminis f. sp. hordei and white and green leaves of the barley albostrians mutant. The leaves have the same nuclear genotype but differ from each other in respect to plastid differentiation. White leaves showed enhanced penetration resistance to B. graminis f. sp. hordei, associated with higher epidermal H2O2 accumulation beneath the appressorial germ tubes and protein cross-linking in papillae. Very low basal salicylic acid content was found in white leaves, which further confirmed that H2O2 accumulation and penetration resistance in barley are independent of salicylic acid. Expression analysis of stress and defense-related genes, including such being involved in reactive oxygen species production and cell death regulation, revealed stronger constitutive or pathogen-induced transcript accumulation in white leaves. We discuss the data on the basis of the finding that white albostrians leaves exhibit a supersusceptible interaction phenotype with the hemibiotrophic fungus Bipolaris sorokiniana.

  1. Changes of Limiting Dextrinase in Germinating Process of Malting Barley

    Institute of Scientific and Technical Information of China (English)

    LIANG Xiu-mei; LI Fen; WANG Hong-zhen; WANG Xing-zhi

    2002-01-01

    Based on five different species of barley, the foot layer analytic method was used to examine the activity and heat-resistance of the limiting dextrinase. The study was conducted on the dynamic changes of several types of the dextrinase in barley germinating process, the effect of temperature on the dextrinase and the divergence of dextrinase in different barley variety. The probability of the dextrinase that as reference index is used for screening and evaluating beer barley was discussed. The importance of dextrinase in brewing and its significant function was also discussed.

  2. FERTILIZING BREWING BARLEY (Hordeum vulgare L.

    Directory of Open Access Journals (Sweden)

    I. Kádár

    2000-12-01

    Full Text Available Four levels of N, P and K nutrition (poor, moderate, satisfactory and high and all their possible combinations with 64 treatments in two replications (128 plots were studied in a long term field trial on barley yield and malting quality. A standard East-European spring barley "Opal" (bred in Czechoslovakia was grown in 1986, 13th year of the agricultural experiment, involving various crops in previous years, on a calcareous loamy chernozem soil. The optimum fertility levels for yield enhancement resulted in the poorest malting quality: low modification and extract but long saccharification time and high protein. To solve this problem the brewing industry will have to apply the well-known technological methods available since growers are not likely to give up their fertilizers. Applying soil and plant analysis data, having knowledge about both soil and plant optimum values, the danger of the excessive use of fertilizers can be realized and decreased.

  3. The cold response of CBF genes in barley is regulated by distinct signaling mechanisms.

    Science.gov (United States)

    Marozsán-Tóth, Zsuzsa; Vashegyi, Ildikó; Galiba, Gábor; Tóth, Balázs

    2015-06-01

    Cold acclimation ability is crucial in the winter survival of cereals. In this process CBF transcription factors play key role, therefore understanding the regulation of these genes might provide useful knowledge for molecular breeding. In the present study the signal transduction pathways leading to the cold induction of different CBF genes were investigated in barley cv. Nure using pharmacological approach. Our results showed that the cold induced expression of CBF9 and CBF14 transcription factors is regulated by phospholipase C, phospholipase D pathways and calcium. On the contrary, these pathways have negative effect on the cold induction of CBF12 that is regulated by a different, as yet unidentified pathway. The diversity in the regulation of these transcription factors corresponds to their sequence based phylogenetic relationships suggesting that their evolutionary separation happened on structural, functional and regulational levels as well. On the CBF effector gene level, the signaling regulation is more complex, resultant effect of multiple pathways.

  4. Taxonomy Icon Data: barley [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available barley Hordeum vulgare Hordeum_vulgare_L.png Hordeum_vulgare_NL.png Hordeum_vulgare_S.png Hordeum_vu...lgare_NS.png http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Hordeum+vulgare&t=L http://bi...osciencedbc.jp/taxonomy_icon/icon.cgi?i=Hordeum+vulgare&t=NL http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Hordeum+vu...lgare&t=S http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Hordeum+vulgare&t=NS ...

  5. Search for endophytic diazotrophs in barley seeds

    Directory of Open Access Journals (Sweden)

    Myriam S. Zawoznik

    2014-06-01

    Full Text Available Eight endophytic isolates assigned to Pseudomonas, Azospirillum, and Bacillus genera according to pheno-genotypic features were retrieved from barley seeds under selective pressure for nitrogen-fixers. Genetic relationships among related isolates were investigated through RAPD. Six isolates displayed nitrogen-fixing ability, while all could biosynthesize indolacetic acid in vitro and showed no antibiosis effects against Azospirillum brasilense Az39, a recognized PGPR.

  6. Transgenic Wheat, Barley and Oats: Future Prospects

    Science.gov (United States)

    Dunwell, Jim M.

    Following the success of transgenic maize and rice, methods have now been developed for the efficient introduction of genes into wheat, barley and oats. This review summarizes the present position in relation to these three species, and also uses information from field trial databases and the patent literature to assess the future trends in the exploitation of transgenic material. This analysis includes agronomic traits and also discusses opportunities in expanding areas such as biofuels and biopharming.

  7. Search for endophytic diazotrophs in barley seeds.

    Science.gov (United States)

    Zawoznik, Myriam S; Vázquez, Susana C; Díaz Herrera, Silvana M; Groppa, María D

    2014-01-01

    Eight endophytic isolates assigned to Pseudomonas, Azospirillum, and Bacillus genera according to pheno-genotypic features were retrieved from barley seeds under selective pressure for nitrogen-fixers. Genetic relationships among related isolates were investigated through RAPD. Six isolates displayed nitrogen-fixing ability, while all could biosynthesize indolacetic acid in vitro and showed no antibiosis effects against Azospirillum brasilense Az39, a recognized PGPR.

  8. Functional Analysis of Barley Powdery Mildew Effector Candidates and Identification of their Barley Targets

    DEFF Research Database (Denmark)

    Ahmed, Ali Abdurehim

    about the function of many CSEPs in virulence and the identities of their host targets. In this PhD study, we investigated the function of nine CSEPs and found that CSEP0081, CSEP0105, CSEP0162 and CSEP0254 act as effectors by promoting the Bgh infection success. Independent silencing of these CSEPs...... to the cytosol and the nucleus of barley epidermal cells. Furthermore, CSEP0162 and CSEP0254 accumulated in the extrahaustorial matrix in Bgh-infected cells. This implies that their virulence targets may localize in the same cellular compartments. Using yeast two-hybrid screens, two barley small heat shock...... misfolding and aggregation. Through their chaperone activity, some sHsps contribute to pathogen defence by stabilizing intracellular proteins, including resistance and defence signalling proteins. In this study, we validated the chaperone activity of the barley Hsp16.9, which prevented the aggregation...

  9. Stability of Barley stripe mosaic virus induced gene silencing in barley

    DEFF Research Database (Denmark)

    Bruun-Rasmussen, Marianne; Madsen, Christian Toft; Jessing, Stine

    2007-01-01

    Virus-induced gene silencing (VIGS) can be used as a powerful tool for functional genomics studies in plants. With this approach, it is possible to target most genes and downregulate the messenger (m)RNA in a sequence-specific manner. Barley stripe mosaic virus (BSMV) is an established VIGS vector...... for barley and wheat; however, silencing using this vector is generally transient, with efficient silencing often being confined to the first two or three systemically infected leaves. To investigate this further, part of the barley Phytoene desaturase (PDS) gene was inserted into BSMV and the resulting...... inoculation, although large parts of the insert had been lost from the virus vector. The instability of the insert, observed consistently throughout our experiments, offers an explanation for the transient nature of silencing when using BSMV as a VIGS vector....

  10. Competitive advantage and tolerance of selected shochu yeast in barley shochu mash.

    Science.gov (United States)

    Takashita, Hideharu; Fujihara, Emi; Furutera, Mihoko; Kajiwara, Yasuhiro; Shimoda, Masahiko; Matsuoka, Masayoshi; Ogawa, Takahira; Kawamoto, Seiji; Ono, Kazuhisa

    2013-07-01

    A shochu yeast strain, Saccharomyces cerevisiae BAW-6, was previously isolated from Kagoshima yeast strain Ko, and has since been utilized in shochu production. The BAW-6 strain carries pho3/pho3 homozygous genes in contrast to the heterozygous PHO3/pho3 genes in the parental Ko strain. However, absence of the PHO3 gene per se cannot explain the fermentation superiority of BAW-6. Here, we demonstrate the growth advantage of the BAW-6 strain over the Ko strain by competitive cultivation in barley shochu preparation, where alcohol yield and nihonshudo of the former strain were higher than those of the latter strain. In addition, the maximum growth rate of BAW-6 was less affected than that of Ko by high Brix values of barley koji medium, suggesting that BAW-6 is less sensitive to growth inhibitory compounds derived from barley or barley koji. The tolerance of BAW-6 to growth inhibitory compounds, cerulenin and diethylstilbestrol (an H⁺-ATPase inhibitor), was also higher than that of other yeast strains. Consistent with BAW-6's tolerance to diethylstilbestrol in the presence of 8% ethanol (pH 4.5), H⁺-ATPase activity, but not transcription of its gene, was higher in BAW-6 than in Ko. We conclude that the BAW-6 strain is associated with certain gene alterations other than PHO3, such that it can maintain cellular ion homeostasis under conditions of ethanol stress during the latter phase of fermentation. Copyright © 2013 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  11. Functional characterisation of an intron retaining K+ transporter of barley reveals intron-mediated alternate splicing

    KAUST Repository

    Shahzad, K.

    2015-01-01

    Intron retention in transcripts and the presence of 5 and 3 splice sites within these introns mediate alternate splicing, which is widely observed in animals and plants. Here, functional characterisation of the K+ transporter, HvHKT2;1, with stably retained introns from barley (Hordeum vulgare) in yeast (Saccharomyces cerevisiae), and transcript profiling in yeast and transgenic tobacco (Nicotiana tabacum) is presented. Expression of intron-retaining HvHKT2;1 cDNA (HvHKT2;1-i) in trk1, trk2 yeast strain defective in K+ uptake restored growth in medium containing hygromycin in the presence of different concentrations of K+ and mediated hypersensitivity to Na+. HvHKT2;1-i produces multiple transcripts via alternate splicing of two regular introns and three exons in different compositions. HKT isoforms with retained introns and exon skipping variants were detected in relative expression analysis of (i) HvHKT2;1-i in barley under native conditions, (ii) in transgenic tobacco plants constitutively expressing HvHKT2;1-i, and (iii) in trk1, trk2 yeast expressing HvHKT2;1-i under control of an inducible promoter. Mixed proportions of three HKT transcripts: HvHKT2;1-e (first exon region), HvHKT2;1-i1 (first intron) and HvHKT2;1-i2 (second intron) were observed. The variation in transcript accumulation in response to changing K+ and Na+ concentrations was observed in both heterologous and plant systems. These findings suggest a link between intron-retaining transcripts and different splice variants to ion homeostasis, and their possible role in salt stress.

  12. [Cold induced cDNA library construction of highland barley (Hordeum vulgare L. var. nudum Hk. f.) using suppression subtractive hybridization technology].

    Science.gov (United States)

    He, Tao; Jia, Jing Fen

    2008-12-01

    Cold-induced genes of highland barley (Hordeum vulgare L. var. nudum Hk. f.) were studied using suppression subtractive hybridization (SSH) technique. The cDNA from the materials treated with 4 degrees C was used as "tester", and that from the materials growing in green house (20+/-2 degrees C) as "driver". A subtractive library of highland barley including 640 cDNA clones was constructed in this study. Enzyme digestion of 32 clones chosen randomly from the library indicated that 87.5% of them contained inserts. The cDNA inserts of 16 clones were sequenced. Blast search analyses showed that these cDNAs were homologies to genes encoding the following proteins: metallothionein, protein kinase, ethylene signal transcription factor, bZIP transcription factor, zing finger transcription factor, ribulose-1,5-bisphosphate carboxylase, ribosomal protein, sodium: hydrogen antiporter, catalase, NADPH-cytochrome reductase, ascorbate peroxidase, DNA binding protein, and sugar transporter-like protein. These results indicated that the cDNA clones in the library were related to cold-induced genes, and suggested that the cold-tolerant mechanism of highland barley might be a complicated, interactive system involving multiple approaches and genes. Construction of subtractive cDNA library provided an advantage for further studies to isolate and clone cold-induced genes in highland barley.

  13. 7 CFR 457.118 - Malting barley crop insurance.

    Science.gov (United States)

    2010-01-01

    ... Barley Price and Quality Endorsement (This is a continuous endorsement. Refer to section 2 of the Common... all quality criteria contained herein or grades U.S. No. 4 or lower in accordance with the grades and... coverage for malting barley production and quality losses at a price per bushel greater than that offered...

  14. Barley metallothioneins differ in ontogenetic pattern and response to metals

    DEFF Research Database (Denmark)

    Schiller, Michaela; Hegelund, Josefine Nymark; Pedas, Pai

    2014-01-01

    The barley genome encodes a family of 10 metallothioneins (MTs) that have not previously been subject to extensive gene expression profiling. We show here that expression of MT1a, MT2b1, MT2b2 and MT3 in barley leaves increased more than 50-fold during the first 10 d after germination. Concurrent...

  15. Analysis of Pregerminated Barley Using Hyperspectral Image Analysis

    DEFF Research Database (Denmark)

    Arngren, Morten; Hansen, Per Waaben; Eriksen, Birger

    2011-01-01

    Pregermination is one of many serious degradations to barley when used for malting. A pregerminated barley kernel can under certain conditions not regerminate and is reduced to animal feed of lower quality. Identifying pregermination at an early stage is therefore essential in order to segregate ...

  16. Progressive hull removal from barley using the Fitzpatrick comminuting mill

    Science.gov (United States)

    The objective of the study was to explore an alternative use of the Fitzpatrick Comminuting Machine: to use it to remove the hull from hulled barley while keeping the barley kernel intact. Traditionally, this mill is used to grind material, but we have recently discovered that it also has the abili...

  17. Combining unmalted barley and pearling gives good quality brewing

    NARCIS (Netherlands)

    Donkelaar, van Laura H.G.; Hageman, Jos A.; Oguz, Serhat; Noordman, Tom R.; Boom, Remko M.; Goot, van der Atze Jan

    2016-01-01

    Brewing with unmalted barley can reduce the use of raw materials, thereby increasing the efficiency of the brewing process. However, unmalted barley contains several undesired components for brewing and has a low enzymatic activity. Pearling, an abrasive milling method, has been proposed as a pre

  18. Low Phytic Acid Barley Responses to Phosphorus Rates

    Science.gov (United States)

    Low phytic acid (LPA) barley (Hordeum vulgare L.) cultivars partition phosphorus in seed tissue differently than conventional barley cultivars through a reduction in seed phytic acid (myo-inositol-1,2,3,4,5,6-hexkisphosphate) coupled with an increase in inorganic phosphorus. The response of the LPA...

  19. Barley Stripe Mosaic Virus and the Frequency of Triploids and Aneuploids in Barley

    DEFF Research Database (Denmark)

    Sandfær, J.

    1973-01-01

    BSMV infection caused a pronounced increase in the frequency of triploid and aneuploid seeds in eleven barley varieties, but with considerable variation in frequency among varieties. In some of the varieties triploids exceeded three per cent. In virus-free material a few triploids were found in m...

  20. Giemsa C-banding of Barley Chromosomes. IV. Chromosomal Constitution of Autotetraploid Barley

    DEFF Research Database (Denmark)

    Linde-Laursen, Ib

    1984-01-01

    The progeny of an autotetraploid barley plant (C1) consisted of 45 tetraploids and 33 aneuploids. Giemsa C-banding was used to identify each of the chromosomes in 20 euploid and 31 aneuploid C2--seedlings, and in 11 C3--offspring of aneuploid C2--plants. The euploid C2--seedlings all had four hom...

  1. Glutathione S-transferase (GST) family in barley: identification of members, enzyme activity, and gene expression pattern.

    Science.gov (United States)

    Rezaei, Mohammad Kazem; Shobbar, Zahra-Sadat; Shahbazi, Maryam; Abedini, Raha; Zare, Sajjad

    2013-09-15

    Barley (Hordeum vulgare) is one of the most important cereals in many developing countries where drought stress considerably diminishes agricultural production. Glutathione S-transferases (GSTs EC 2.5.1.18) are multifunctional enzymes which play a crucial role in cellular detoxification and oxidative stress tolerance. In this study, 84 GST genes were identified in barley by a comprehensive in silico approach. Sequence alignment and phylogenetic analysis grouped these HvGST proteins in eight classes. The largest numbers of the HvGST genes (50) were included in the Tau class followed by 21 genes in Phi, five in Zeta, two in DHAR, two in EF1G, two in Lambda, and one each in TCHQD and Theta classes. Phylogenetic analysis of the putative GSTs from Arabidopsis, rice, and barley indicated that major functional diversification within the GST family predated the monocot/dicot divergence. However, intra-specious duplication seems to be common. Expression patterns of five GST genes from Phi and Tau classes were investigated in three barley genotypes (Yusof [drought-tolerant], Moroc9-75 [drought-sensitive], and HS1 [wild ecotype]) under control and drought-stressed conditions, during the vegetative stage. All investigated genes were up-regulated significantly under drought stress and/or showed a higher level of transcripts in the tolerant cultivar. Additionally, GST enzyme activity was superior in Yusof and induced in the extreme-drought-treated leaves, while it was not changed in Moroc9-75 under drought conditions. Moreover, the lowest and highest levels of lipid peroxidation were observed in the Yusof and Moroc9-75 cultivars, respectively. Based on the achieved results, detoxification and antioxidant activity of GSTs might be considered an important factor in the drought tolerance of barley genotypes for further investigations.

  2. A novel major gene on chromosome 6H for resistance of barley against the barley yellow dwarf virus

    NARCIS (Netherlands)

    Niks, R.E.; Habekuss, A.; Bekele, B.; Ordon, F.

    2004-01-01

    In a mapping population derived from the Ethiopian barley line L94 x Vada, natural infection by barley yellow dwarf virus (BYDV) occurred. While line L94 hardly showed symptoms, Vada was severely affected. The 103 recombinant inbred lines segregated bimodally. The major gene responsible for this res

  3. Reconstitution of cyanogenesis in barley (Hordeum vulgare L.) and its implications for resistance against the barley powdery mildew fungus.

    Science.gov (United States)

    Nielsen, Kirsten A; Hrmova, Maria; Nielsen, Janni Nyvang; Forslund, Karin; Ebert, Stefan; Olsen, Carl E; Fincher, Geoffrey B; Møller, Birger Lindberg

    2006-04-01

    Barley (Hordeum vulgare L.) produces a leucine-derived cyanogenic beta-D-glucoside, epiheterodendrin that accumulates specifically in leaf epidermis. Barley leaves are not cyanogenic, i.e. they do not possess the ability to release hydrogen cyanide, because they lack a cyanide releasing beta-D-glucosidase. Cyanogenesis was reconstituted in barley leaf epidermal cells through single cell expression of a cDNA encoding dhurrinase-2, a cyanogenic beta-D-glucosidase from sorghum. This resulted in a 35-60% reduction in colonization rate by an obligate parasite Blumeria graminis f. sp. hordei, the causal agent of barley powdery mildew. A database search for barley homologues of dhurrinase-2 identified a (1,4)-beta-D-glucan exohydrolase isozyme betaII that is located in the starchy endosperm of barley grain. The purified barley (1,4)-beta-D-glucan exohydrolase isozyme betaII was found to hydrolyze the cyanogenic beta-D-glucosides, epiheterodendrin and dhurrin. Molecular modelling of its active site based on the crystal structure of linamarase from white clover, demonstrated that the disposition of the catalytic active amino acid residues was structurally conserved. Epiheterodendrin stimulated appressoria and appressorial hook formation of B. graminis in vitro, suggesting that loss of cyanogenesis in barley leaves has enabled the fungus to utilize the presence of epiheterodendrin to facilitate host recognition and to establish infection.

  4. Genomic Prediction of Barley Hybrid Performance

    Directory of Open Access Journals (Sweden)

    Norman Philipp

    2016-07-01

    Full Text Available Hybrid breeding in barley ( L. offers great opportunities to accelerate the rate of genetic improvement and to boost yield stability. A crucial requirement consists of the efficient selection of superior hybrid combinations. We used comprehensive phenotypic and genomic data from a commercial breeding program with the goal of examining the potential to predict the hybrid performances. The phenotypic data were comprised of replicated grain yield trials for 385 two-way and 408 three-way hybrids evaluated in up to 47 environments. The parental lines were genotyped using a 3k single nucleotide polymorphism (SNP array based on an Illumina Infinium assay. We implemented ridge regression best linear unbiased prediction modeling for additive and dominance effects and evaluated the prediction ability using five-fold cross validations. The prediction ability of hybrid performances based on general combining ability (GCA effects was moderate, amounting to 0.56 and 0.48 for two- and three-way hybrids, respectively. The potential of GCA-based hybrid prediction requires that both parental components have been evaluated in a hybrid background. This is not necessary for genomic prediction for which we also observed moderate cross-validated prediction abilities of 0.51 and 0.58 for two- and three-way hybrids, respectively. This exemplifies the potential of genomic prediction in hybrid barley. Interestingly, prediction ability using the two-way hybrids as training population and the three-way hybrids as test population or vice versa was low, presumably, because of the different genetic makeup of the parental source populations. Consequently, further research is needed to optimize genomic prediction approaches combining different source populations in barley.

  5. Replication of DNA during barley endosperm development

    DEFF Research Database (Denmark)

    Giese, H.

    1992-01-01

    The incorporation of [6-H-3]-thymidine into DNA of developing barley end sperm was examined by autoradiography of cross sections of seeds and DNA analysis. The majority of nuclear divisions took place in the very young endosperm, but as late as 25 days after anthesis there was evidence for DNA...... replication. The DNA content of the endosperm increases during development and in response to nitrogen application in parallel to the storage protein synthesis profile. The hordein genes were hypersensitive to DNase I treatment throughout development....

  6. Dynamic Allocation of Sugars in Barley

    Science.gov (United States)

    Cumberbatch, L. C.; Crowell, A. S.; Fallin, B. A.; Howell, C. R.; Reid, C. D.; Weisenberger, A. G.; Lee, S. J.; McKisson, J. E.

    2014-03-01

    Allocation of carbon and nitrogen is a key factor for plant productivity. Measurements are carried out by tracing 11C-tagged sugars using positron emission tomography and coincidence counting. We study the mechanisms of carbon allocation and transport from carbohydrate sources (leaves) to sinks (stem, shoot, roots) under various environmental conditions such as soil nutrient levels and atmospheric CO2 concentration. The data are analyzed using a transfer function analysis technique to model transport and allocation in barley plants. The experimental technique will be described and preliminary results presented. This work was supported in part by USDOE Grant No. DE-FG02-97-ER41033 and DE-SC0005057.

  7. Transglycosylation by barley α-amylase 1

    DEFF Research Database (Denmark)

    Mótyán, János A.; Fazekas, Erika; Mori, Haruhide

    2011-01-01

    The transglycosylation activity of barley α-amylase 1 (AMY1) and active site AMY1 subsite mutant enzymes was investigated. We report here the transferase ability of the V47A, V47F, V47D and S48Y single mutants and V47K/S48G and V47G/S48D double mutant AMY1 enzymes in which the replaced amino acid...... DP 2, DP 3 and DP 5 were successfully applied to detect activity of Bacillus stearothermophilus maltogenic α-amylase, human salivary α-amylase and Bacillus licheniformis α-amylase, respectively in a fast and simple fluorometric assay....

  8. Characterization of the entire cystatin gene family in barley and their target cathepsin L-like cysteine-proteases, partners in the hordein mobilization during seed germination.

    Science.gov (United States)

    Martinez, Manuel; Cambra, Ines; Carrillo, Laura; Diaz-Mendoza, Mercedes; Diaz, Isabel

    2009-11-01

    Plant cystatins are inhibitors of cysteine-proteases of the papain C1A and legumain C13 families. Cystatin data from multiple plant species have suggested that these inhibitors act as defense proteins against pests and pathogens and as regulators of protein turnover. In this study, we characterize the entire cystatin gene family from barley (Hordeum vulgare), which contain 13 nonredundant genes, and identify and characterize their target enzymes, the barley cathepsin L-like proteases. Cystatins and proteases were expressed and purified from Escherichia coli cultures. Each cystatin was found to have different inhibitory capability against barley cysteine-proteases in in vitro inhibitory assays using specific substrates. Real-time reverse transcription-polymerase chain reaction revealed that inhibitors and enzymes present a wide variation in their messenger RNA expression patterns. Their transcripts were mainly detected in developing and germinating seeds, and some of them were also expressed in leaves and roots. Subcellular localization of cystatins and cathepsin L-like proteases fused to green fluorescent protein demonstrated the presence of both protein families throughout the endoplasmic reticulum and the Golgi complex. Proteases and cystatins not only colocalized but also interacted in vivo in the plant cell, as revealed by bimolecular fluorescence complementation. The functional relationship between cystatins and cathepsin L-like proteases was inferred from their common implication as counterparts of mobilization of storage proteins upon barley seed germination. The opposite pattern of transcription expression in gibberellin-treated aleurones presented by inhibitors and enzymes allowed proteases to specifically degrade B, C, and D hordeins stored in the endosperm of barley seeds.

  9. Characterization of volatile aroma compounds in different brewing barley cultivars.

    Science.gov (United States)

    Dong, Liang; Hou, Yingmin; Li, Feng; Piao, Yongzhe; Zhang, Xiao; Zhang, Xiaoyu; Li, Cheng; Zhao, Changxin

    2015-03-30

    Beer is a popular alcoholic malt beverage resulting from fermentation of the aqueous extract of malted barley with hops. The aroma of brewing barley impacts the flavor of beer indirectly, because some flavor compounds or their precursors in beer come from the barley. The objectives of this research were to study volatile profiles and to characterize odor-active compounds of brewing barley in order to determine the variability of the aroma composition among different brewing barley cultivars. Forty-one volatiles comprising aldehydes, ketones, alcohols, organic acids, aromatic compounds and furans were identified using solid phase microextraction combined with gas chromatography/mass spectrometry, among which aldehydes, alcohols and ketones were quantitatively in greatest abundance. Quantitative measurements performed by means of solvent extraction and calculation of odor activity values revealed that acetaldehyde, 2-methylpropanal, 3-methylbutanal, 2-methylbutanal, hexanal, heptanal, octanal, nonanal, 3-methyl-1-butanol, cyclopentanol, 2,3-butanedione, 2,3-pentanedione, 2-heptanone, acetic acid, ethyl acetate, 2-pentylfuran and benzeneacetaldehyde, whose concentrations exceeded their odor thresholds, could be considered as odor-active compounds of brewing barley. Principal component analysis was employed to evaluate the differences among cultivars. The results demonstrated that the volatile profile based on the concentrations of aroma compounds enabled good differentiation of most barley cultivars. © 2014 Society of Chemical Industry.

  10. Influence of Temperature on the Extractibility of Polysaccharides in Barley

    Directory of Open Access Journals (Sweden)

    Rodica Căpriţă

    2011-10-01

    Full Text Available Barley contains substantial amounts of both soluble and insoluble non-starch polysaccharides (NSP. The main watersoluble NSP in barley are highly viscous β-glucans. Monogastric animals, including humans and birds, cannotsynthesize β-glucanase, and the amount of β-glucanase derived from barley grain and bacteria in the gastrointestinaltract is insufficient to completely hydrolyze β-glucans. In the present investigation, we have studied the influence oftemperature and heating time on the extractibility of soluble polysaccharides in barley. Heating the barley samples at60°C and 80°C before extraction has the effect of lowering the soluble fraction of the polysaccharides. The dynamicviscosity values of water extracts from barley decreased up to 21.68% when heating at 60ºC for 15 minutes, and upto 25.30% when heating at 80ºC for 15 minutes, when the determinations were made immediately after extractseparation. Heating the barley samples for 15 minutes at 80°C deactivates the endogenous hydrolytic enzymes.

  11. Construction of the Seed-Coat cDNA Microarray and Screening of Differentially Expressed Genes in Barley

    Institute of Scientific and Technical Information of China (English)

    Jin-Song PANG; Meng-Yuan HE; Bao LIU

    2004-01-01

    Some barley mutants can synthesize neither anthocyanins nor proanthocyanidins in the seed coat, which is related to several genes in locus Ant13, but the exact model of action remains unknown. We used the cDNA microarray technology with barley transcription-deficient mutant (ant13-152) that does not synthesize proanthocyanidins as the tester, and its wild type genotype (Triumph) as the driver, to study this question. Six-thousand and forty-eight clones from the wild type Morex testa+pericarp cDNA library were amplified using PCR, and the DNA fragments were spotted on commercial amino-modified glass slide as microarray. The mRNAs from the developing seed coat (8-15 days) of both the mutant and the wild-type barley plants were isolated, and labeled respectively with Cy3-dUTP and Cy5-dUTP when reversely transcribed to cDNAs. The labeled cDNAs were used as probes, mixed at the same molar concentration, and hybridized with the DNA fragments on the slide. Seventy clones exhibiting marked differential expression (ratio>4) were identified from the microarray. All the 25 cDNA clones that showed an over-expression in wild type in comparison to the mutant ant13-152 were sequenced. It was found that most of these overexpressing clones were transcription/translation and hordein-associated genes. These results have laid a solid material basis for further elucidation of the metabolic pathway in proanthocyanidin synthesis in barley and likely other plants.

  12. The Hydrogen Sulfide Donor NaHS Delays Programmed Cell Death in Barley Aleurone Layers by Acting as an Antioxidant.

    Science.gov (United States)

    Zhang, Ying-Xin; Hu, Kang-Di; Lv, Kai; Li, Yan-Hong; Hu, Lan-Ying; Zhang, Xi-Qi; Ruan, Long; Liu, Yong-Sheng; Zhang, Hua

    2015-01-01

    H2S is a signaling molecule in plants and animals. Here we investigated the effects of H2S on programmed cell death (PCD) in barley (Hordeum vulgare L.) aleurone layers. The H2S donor NaHS significantly delayed PCD in aleurone layers isolated from imbibed embryoless barley grain. NaHS at 0.25 mM effectively reduced the accumulation of superoxide anion (·O2 (-)), hydrogen peroxide (H2O2), and malondialdehyde (MDA), promoted the activity of superoxide dismutase (SOD), guaiacol peroxidase (POD), catalase (CAT), and ascorbate peroxidase (APX), and decreased those of lipoxygenase (LOX) in isolated aleurone layers. Quantitative-PCR showed that NaHS treatment of aleurone tissue led to enhanced transcript levels of the antioxidant genes HvSOD1, HvAPX, HvCAT1, and HvCAT2 and repressed transcript levels of HvLOX (lipoxygenase gene) and of two cysteine protease genes HvEPA and HvCP3-31. NaHS treatment in gibberellic acid- (GA-) treated aleurone layers also delayed the PCD process, reduced the content of ·O2 (-), and increased POD activity while decreasing LOX activity. Furthermore, α-amylase secretion in barley aleurone layers was enhanced by NaHS treatment regardless of the presence or absence of GA. These data imply that H2S acted as an antioxidant in delaying PCD and enhances α-amylase secretion regardless of the presence of GA in barley aleurone layers.

  13. The Hydrogen Sulfide Donor NaHS Delays Programmed Cell Death in Barley Aleurone Layers by Acting as an Antioxidant

    Directory of Open Access Journals (Sweden)

    Ying-Xin Zhang

    2015-01-01

    Full Text Available H2S is a signaling molecule in plants and animals. Here we investigated the effects of H2S on programmed cell death (PCD in barley (Hordeum vulgare L. aleurone layers. The H2S donor NaHS significantly delayed PCD in aleurone layers isolated from imbibed embryoless barley grain. NaHS at 0.25 mM effectively reduced the accumulation of superoxide anion (·O2-, hydrogen peroxide (H2O2, and malondialdehyde (MDA, promoted the activity of superoxide dismutase (SOD, guaiacol peroxidase (POD, catalase (CAT, and ascorbate peroxidase (APX, and decreased those of lipoxygenase (LOX in isolated aleurone layers. Quantitative-PCR showed that NaHS treatment of aleurone tissue led to enhanced transcript levels of the antioxidant genes HvSOD1, HvAPX, HvCAT1, and HvCAT2 and repressed transcript levels of HvLOX (lipoxygenase gene and of two cysteine protease genes HvEPA and HvCP3-31. NaHS treatment in gibberellic acid- (GA- treated aleurone layers also delayed the PCD process, reduced the content of ·O2-, and increased POD activity while decreasing LOX activity. Furthermore, α-amylase secretion in barley aleurone layers was enhanced by NaHS treatment regardless of the presence or absence of GA. These data imply that H2S acted as an antioxidant in delaying PCD and enhances α-amylase secretion regardless of the presence of GA in barley aleurone layers.

  14. Methane emissions from feedlot cattle fed barley or corn diets.

    Science.gov (United States)

    Beauchemin, K A; McGinn, S M

    2005-03-01

    Methane emitted from the livestock sector contributes to greenhouse gas emissions worldwide. Understanding the variability in enteric methane production related to diet is essential to decreasing uncertainty in greenhouse gas emission inventories and to identifying viable greenhouse gas reduction strategies. Our study focused on measuring methane in growing beef cattle fed corn- or barley-based diets typical of those fed to cattle in North American feedlots. The experiment was designed as a randomized complete block (group) design with two treatments, barley and corn. Angus heifer calves (initial BW = 328 kg) were allocated to two groups (eight per group), with four cattle in each group fed a corn or barley diet. The experiment was conducted over a 42-d backgrounding phase, a 35-d transition phase and a 32-d finishing phase. Backgrounding diets consisted of 70% barley silage or corn silage and 30% concentrate containing steam-rolled barley or dry-rolled corn (DM basis). Finishing diets consisted of 9% barley silage and 91% concentrate containing barley or corn (DM basis). All diets contained monensin (33 mg/kg of DM). Cattle were placed into four large environmental chambers (two heifers per chamber) during each phase to measure enteric methane production for 3 d. During the backgrounding phase, DMI was greater by cattle fed corn than for those fed barley (10.2 vs. 7.6 kg/d, P cattle were in the chambers; thus, methane emissions (g/d) reported may underestimate those of the feedlot industry. Methane emissions per kilogram of DMI and as a percentage of GE intake were not affected by grain source during the backgrounding phase (24.6 g/kg of DMI; 7.42% of GE), but were less (P methane emissions of cattle fed high-forage backgrounding diets and barley-based finishing diets. Mitigating methane losses from cattle will have long-term environmental benefits by decreasing agriculture's contribution to greenhouse gas emissions.

  15. Oligosaccharide binding to barley alpha-amylase 1

    DEFF Research Database (Denmark)

    Robert, X.; Haser, R.; Mori, H.

    2005-01-01

    Enzymatic subsite mapping earlier predicted 10 binding subsites in the active site substrate binding cleft of barley alpha-amylase isozymes. The three-dimensional structures of the oligosaccharide complexes with barley alpha-amylase isozyme 1 (AMY1) described here give for the first time a thorough...... in barley alpha-amylase isozyme 2 (AMY2), and the sugar binding modes are compared between the two isozymes. The "sugar tongs" surface binding site discovered in the AMY1-thio-DP4 complex is confirmed in the present work. A site that putatively serves as an entrance for the substrate to the active site...

  16. STUDIES ON SYNBIOTIC BARLEY GRAIN EXTRACT AGAINST SOME HUMAN PATHOGENS

    Directory of Open Access Journals (Sweden)

    T. Sheela

    2012-01-01

    Full Text Available This study evaluated that effect of prebiotic food containing oligosaccharide to enhance the growth and activity of probiotic strains. Barley grains probioticated using different strains of probiotics are Lactobacillus kefiranofaciens, Candida kefir,and saccharomyces boluradii. To select a suitable prebiotics like inulin for the development of Synbiotic barley and tested for antibacterial activity against diarrhoea causing pathogen such as Esherichia coli, Staphylococcus aureus, Salmonella paratyphi A, Shigella dysenteriae, Vibrio cholerae. Analysis of identified compound from synbiotic barley grain using GC-MS.

  17. Comparison of beer quality attributes between beers brewed with 100% barley malt and 100% barley raw material.

    Science.gov (United States)

    Steiner, Elisabeth; Auer, Andrea; Becker, Thomas; Gastl, Martina

    2012-03-15

    Brewing with 100% barley using the Ondea® Pro exogenous brewing enzyme product was compared to brewing with 100% barley. The use of barley, rather than malt, in the brewing process and the consequences for selected beer quality attributes (foam formation, colloidal stability and filterability, sensory differences, protein content and composition) was considered. The quality attributes of barley, malt, kettle-full-wort, cold wort, unfiltered beer and filtered beer were assessed. A particular focus was given to monitoring changes in the barley protein composition during the brewing process and how the exogenous OndeaPro® enzymes influenced wort protein composition. All analyses were based on standard brewing methods described in ASBC, EBC or MEBAK. To monitor the protein changes two-dimensional polyacrylamide gel electrophoresis was used. It was shown that by brewing beer with 100% barley and an appropriate addition of exogenous Ondea® Pro enzymes it was possible to efficiently brew beer of a satisfactory quality. The production of beers brewed with 100% barley resulted in good process efficiency (lautering and filtration) and to a final product whose sensory quality was described as light, with little body and mouthfeel, very good foam stability and similar organoleptic qualities compared to conventional malt beer. In spite of the sensory evaluation differences could still be seen in protein content and composition. Copyright © 2011 Society of Chemical Industry.

  18. A barley SKP1-like protein controls abundance of the susceptibility factor RACB and influences the interaction of barley with the barley powdery mildew fungus.

    Science.gov (United States)

    Reiner, Tina; Hoefle, Caroline; Hückelhoven, Ralph

    2016-02-01

    In an increasing number of plant-microbe interactions, it has become evident that the abundance of immunity-related proteins is controlled by the ubiquitin-26S proteasome system. In the interaction of barley with the biotrophic barley powdery mildew fungus Blumeria graminis f.sp. hordei (Bgh), the RAC/ROP [RAT SARCOMA-related C3 botulinum toxin substrate/RAT SARCOMA HOMOLOGUE (RHO) of plants] guanosine triphosphatase (GTPase) HvRACB supports the fungus in a compatible interaction. By contrast, barley HvRBK1, a ROP-binding receptor-like cytoplasmic kinase that interacts with and can be activated by constitutively activated HvRACB, limits fungal infection success. We have identified a barley type II S-phase kinase 1-associated (SKP1)-like protein (HvSKP1-like) as a molecular interactor of HvRBK1. SKP1 proteins are subunits of the SKP1-cullin 1-F-box (SCF)-E3 ubiquitin ligase complex that acts in the specific recognition and ubiquitination of protein substrates for subsequent proteasomal degradation. Transient induced gene silencing of either HvSKP1-like or HvRBK1 increased protein abundance of constitutively activated HvRACB in barley epidermal cells, whereas abundance of dominant negative RACB only weakly increased. In addition, silencing of HvSKP1-like enhanced the susceptibility of barley to haustorium establishment by Bgh. In summary, our results suggest that HvSKP1-like, together with HvRBK1, controls the abundance of HvRACB and, at the same time, modulates the outcome of the barley-Bgh interaction. A possible feedback mechanism from RAC/ROP-activated HvRBK1 on the susceptibility factor HvRACB is discussed.

  19. Effect of phytase supplementation to barley-canola meal and barley-soybean meal diets on phosphorus and calcium balance in growing pigs

    NARCIS (Netherlands)

    Sauer, W.C.; Cervantes, M.; He, J.M.M.; Schulze, H.

    2003-01-01

    Two metabolism experiments were carried out, to determine the effect of microbial phytase addition to barley-canola meal and barley-soybean meal diets on P and Ca balance in growing. pigs; In experiment 1, six barrows (29.6kg: initial LW) were fed a barley-canola meal diet, without or. with phytase

  20. Differences in phytase activity and phytic acid content between cultivated and Tibetan annual wild barleys.

    Science.gov (United States)

    Dai, Fei; Qiu, Long; Xu, Yang; Cai, Shengguan; Qiu, Boyin; Zhang, Guoping

    2010-11-24

    The Qinghai-Tibetan Plateau in China is considered to be one of the original centers of cultivated barley. At present, little is known about the phytase activity (Phy) or phytic acid content (PA) in grains of Tibetan annual wild barley. Phy and PA were determined in grains of 135 wild and 72 cultivated barleys. Phy ranged from 171.3 to 1299.2 U kg(-1) and from 219.9 to 998.2 U kg(-1) for wild and cultivated barleys, respectively. PA and protein contents were much higher in wild barley than in cultivated barley. Tibetan annual wild barley showed a larger genetic diversity in phytase activity and phytic acid and protein contents and is of value for barley breeding. There is no significant correlation between phytase activity and phytic acid or protein content in barley grains, indicating that endogenous phytase activity had little effect on the accumulation of phytic acid.

  1. Amylolytic strains of Lactobacillus plantarum isolated from barley

    African Journals Online (AJOL)

    aghomotsegin

    2015-01-28

    Jan 28, 2015 ... Key words: Lactobacillus plantarum, starch hydrolysis, barley, malting. ... especially in environments rich in glucose or disac- charides such as sucrose ..... numbers produce less lactic acid, which in turn is less stringent on ...

  2. Implementation of biochemical screening to improve baking quality of barley

    DEFF Research Database (Denmark)

    Vincze, Éva; Dionisio, Giuseppe; Aaslo, Per;

    2011-01-01

    Barley (Hordeum vulgare) has the potential to offer considerable human nutritional benefits, especially as supplement to wheat-based breads. Under current commercial baking conditions it is not possible to introduce more that 20% barley flour to the wheat bread without negative impact...... proteins. Changing the storage protein composition can lessen this problem. Our working hypothesis was that exploiting the substantial genetic variation within the gene pool for storage proteins could enable improving the baking qualities of barley flour. We characterised forty-nine barley cultivars...... for variations in storage protein and AA composition. These cultivars were selected based on their higher protein contents (11.8–17.6%). The results obtained indicated that substantial variation not only in the distribution of the hordein polypeptides but also in the relative proportions of the storage proteins...

  3. Evaluation of fermented whole crop wheat and barley feeding on ...

    African Journals Online (AJOL)

    이창희

    2017-07-11

    Jul 11, 2017 ... After maize, wheat and barley are produced in large quantities and account ... Through fermentation, beneficial bacteria are increased and harmful .... LDL cholesterol, triglyceride, cortisol, and blood urea nitrogen (BUN).

  4. Mapping regulatory genes as candidates for cold and drought stress tolerance in barley.

    Science.gov (United States)

    Tondelli, A; Francia, E; Barabaschi, D; Aprile, A; Skinner, J S; Stockinger, E J; Stanca, A M; Pecchioni, N

    2006-02-01

    Cereal crop yield is greatly affected in many growing areas by abiotic stresses, mainly low temperature and drought. In order to find candidates for the tolerance genes for these stresses, 13 genes encoding for transcription factors and upstream regulators were screened by amplification and SSCP on six parental genotypes of three barley mapping populations ('Nure' x 'Tremois', 'Proctor' x 'Nudinka', and 'Steptoe' x 'Morex'), and mapped as newly developed STS, SNP, and SSCP markers. A new consensus function map was then drawn using the three maps above, including 16 regulatory candidate genes (CGs). The positions of barley cold and drought tolerance quantitative trait loci (QTLs) presently described in the literature were added to the consensus map to find positional candidates from among the mapped genes. A cluster of six HvCBF genes co-mapped with the Fr-H2 cold tolerance QTL, while no QTLs for the same trait were positioned on chromosome 7H, where two putative barley regulators of CBF expression, ICE1 and FRY1, found by homology search, were mapped in this work. These observations suggest that CBF gene(s) themselves, rather than their two regulators, are at present the best candidates for cold tolerance. Four out of 12 drought tolerance QTLs of the consensus map are associated with regulatory CGs, on chromosomes 2H, 5H, and 7H, and two QTLs with effector genes, on chromosomes 5H and 6H. The results obtained could be used to guide MAS applications, allowing introduction into an ideal genotype of favourable alleles of tolerance QTLs.

  5. Comparative transcriptome profiling of two Tibetan wild barley genotypes in responses to low potassium.

    Directory of Open Access Journals (Sweden)

    Jianbin Zeng

    Full Text Available Potassium (K deficiency is one of the major factors affecting crop growth and productivity. Development of low-K tolerant crops is an effective approach to solve the nutritional deficiency in agricultural production. Tibetan annual wild barley is rich in genetic diversity and can grow normally under poor soils, including low-K supply. However, the molecular mechanism about low K tolerance is still poorly understood. In this study, Illumina RNA-Sequencing was performed using two Tibetan wild barley genotypes differing in low K tolerance (XZ153, tolerant and XZ141, sensitive, to determine the genotypic difference in transcriptome profiling. We identified a total of 692 differentially expressed genes (DEGs in two genotypes at 6 h and 48 h after low-K treatment, including transcription factors, transporters and kinases, oxidative stress and hormone signaling related genes. Meanwhile, 294 low-K tolerant associated DEGs were assigned to transporter and antioxidant activities, stimulus response, and other gene ontology (GO, which were mainly involved in starch and sucrose metabolism, lipid metabolism and ethylene biosynthesis. Finally, a hypothetical model of low-K tolerance mechanism in XZ153 was presented. It may be concluded that wild barley accession XZ153 has a higher capability of K absorption and use efficiency than XZ141 under low K stress. A rapid response to low K stress in XZ153 is attributed to its more K uptake and accumulation in plants, resulting in higher low K tolerance. The ethylene response pathway may account for the genotypic difference in low-K tolerance.

  6. Hydrothermal liquefaction of barley straw to bio-crude oil

    DEFF Research Database (Denmark)

    Zhu, Zhe; Rosendahl, Lasse; Toor, Saqib;

    2015-01-01

    Hydrothermal liquefaction (HTL) of barley straw with K2CO3 at different temperatures (280–400 C) was conducted and compared to optimize its process conditions; the aqueous phase as a co-product from this process was recycled to explore the feasibility of implementing wastewater reuse for bio...... a detailed insight into the HTL behavior of barley straw, and offers potential opportunities and benefits for bio-crude oil production through the reuse of aqueous phase....

  7. Androgenesis in anther culture of Lithuanian spring barley cultivars

    OpenAIRE

    Asakavičiūtė, Rita; Pašakinskienė, Izolda

    2006-01-01

    The method of anther culture was used for the production of doubled haploids in Lithuanian spring barley cultivars. Two methods, (i) regeneration from callus (Szarjeko’s method) and (ii) direct regeneration from embryoids (Caredda’s method) were applied to determine the androgenic potential according to the green regenerant yield and other morphogenetic factors. Green double haploid regenerants were obtained in four Lithuanian spring barley cultivars (‘Aura’, ‘Aidas’, ‘Alsa’ and ‘Auksiniai’) ...

  8. Weed suppression ability of spring barley varieties

    DEFF Research Database (Denmark)

    Christensen, Svend

    1995-01-01

    Three years of experiments with spring barley showed significant differences in weed suppression ability among varieties. Weed dry matter in the most suppressive variety, Ida, was 48% lower than the mean weed dry matter of all varieties, whereas it was 31% higher in the least suppressive variety......, Grit. Ranking varietal responses to weed competition in terms of grain yield loss corresponded well to ranking weed dry matter produced in crop weed mixtures. There was no correspondence between the varietal grain yields in pure stands and their competitiveness, suggesting that breeding to optimize...... interception model was developed to describe the light interception profiles of the varieties. A study of the estimated parameters showed significant correlation between weed dry matter, rate of canopy height development and the light interception profile. However, when estimates were standardized to eliminate...

  9. The spontaneous chlorophyll mutation frequency in barley

    DEFF Research Database (Denmark)

    Jørgensen, Jørgen Helms; Jensen, Hans Peter

    1986-01-01

    A total of 1866 barley plants were progeny tested in the greenhouse. Twenty-five plants segregated for newly arisen, spontaneous chlorophyll mutant genes. Among the total of 470,129 seedlings screened there were 79 mutants (1.7 .+-. 0.6 .times. 10-4). The data are added to data from three similar...... materials and the resulting estimate of the chlorophyll mutant frequency is 1.6 .times. 10-4 in about 1.43 million seedlings. The estimate of the chlorophyll mutation rate per generation is close to 67.3 .times. 10-4 per diploid genome or in the order of 6 .times. 10-7 per locus and haploid genome....

  10. The Barley Chromosome 5 Linkage Map

    DEFF Research Database (Denmark)

    Jensen, J.; Jørgensen, Jørgen Helms

    1975-01-01

    The literature is surveyed for data on recombination between loci on chromosome 5 of barley; 13 loci fall into the category “mapped” loci, more than 20 into the category “associated” loci and nine into the category “loci once suggested to be on chromosome 5”. A procedure was developed...... for estimating a linkage map; it involves (1) transformation by the Kosambi mapping function of the available recombination percentages to additive map distances, (2) calculations of a set of map distances from the transformed recombination percentages by a maximum likelihood method in which all the available...... data are utilized jointly, and (3) omission of inconsistent data and determination of the most likely order of the loci. This procedure was applied to the 42 recombination percentages available for the 13 “mapped” loci. Due to inconsistencies 14 of the recombination percentages and, therefore, two...

  11. Effect of wide variation of the Waxy gene on starch properties in hull-less barley from Qinghai-Tibet plateau in China.

    Science.gov (United States)

    Li, Qiao; Pan, Zhifen; Deng, Guangbing; Long, Hai; Li, Zhongyi; Deng, Xiaoqing; Liang, JunJun; Tang, Yawei; Zeng, Xingquan; Tashi, Nyima; Yu, Maoqun

    2014-11-26

    Granule-bound starch synthase I (GBSS I) plays an important role in the synthesis of amylose and in the determination of starch properties in barley grains. Genomic DNAs for the Waxy gene encoding GBSS I protein were sequenced from 34 barley accessions or lines from Qinghai-Tibet plateau in China, to identify Waxy gene nucleotide variations and study the roles of polymorphic sites of the Waxy gene on expression levels of Waxy transcripts and GBSS I proteins and on resulting starch properties. A total of 116 DNA polymorphic sites were identified within the barley Waxy gene, which divided the studied accessions into 11 haplotypes. Among 33 nucleotide polymorphic sites in coding regions, 5 SNPs in three exons were found to play different roles on the expression level of the Waxy transcript and the GBSS I protein and on the amylose content and starch properties. One SNP G(3935)-to-T substitution in the 10th exon in the accession Z999 (HP II-2) caused a high expression level of the Waxy transcript and the GBSS I protein and the amylose free phenotype. The other SNP alteration was a C(2453)-to-T in the fifth exon in the accession Z1191 (HP I-5), which drastically reduced the expression level of the Waxy transcript and the GBSS I protein and, finally, produced the amylose free phenotype. Three SNPs in the seventh exon in the accession Z1337 (HP I-6) did not significantly change the level of Waxy transcript, the GBSS I protein, and starch properties, except obviously reducing the breakdown value of starch viscosity and extending the peak time. A total of 84 DNA polymorphic sites were found in the noncoding regions. A 403 bp deletion at 5'UTR in the accession Z1979 (HP I-3) had low transcript level, low GBSS I protein level, and low amylose content due to the deletion of cis-acting DNA regulatory elements. A 191 bp insertion and a 15 bp insertion in the first intron and second exons, respectively, may be closely related to a higher transcript level of the Waxy gene and

  12. The effect of added enzymes on process potentials derived from different qualities of barley

    DEFF Research Database (Denmark)

    Shetty, Radhakrishna; Zhuang, Shiwen; Hansen, Preben Bøje;

    Barley sorting is an important step for picking up grain of desired quality. Whilst brewing with 100% sorted barley (picked high quality) has become realistic with the addition of exogenous enzymes, the effect of added enzymes on process potentials derived from un-sorted barley (mixed) and sorted...... filterability, the Ondea® Pro treatment resulted in significantly lower turbidity and smaller particle size compared to Cellic® CTec2; however, this effect was observed in sorted and un-sorted barley but not in sorted-out barley. Consequently the un-sorted barley demonstrated great potential in brewing process...

  13. Long-term reconstitution of dry barley increased phosphorus digestibility in pigs

    DEFF Research Database (Denmark)

    Ton Nu, Mai Anh; Blaabjerg, Karoline; Poulsen, Hanne Damgaard

    of reconstitution compared to dry stored barley on phosphorus (P) digestibility in pigs. Materials and Methods: Dry barley (13% moisture; phytate P, 1.7 g/kg DM) was rolled and stored directly or reconstituted with water to produce rolled barley with 35% moisture that was stored in air-tight conditions. After 49......: Reconstituted barley had higher soluble P (2.56 g/kg DM) and lower phytate P (0.93 g/ kg DM) compared with dry barley (0.78 and 1.7 g/kg DM, respectively). Pigs fed the reconstituted barley diet showed increased P absorption (52%) and decreased P excretion in feces (21%) (P

  14. Constructing the barley model for genetic transformation in Triticeae

    Institute of Scientific and Technical Information of China (English)

    LÜ Bo; WU Jia-jie; FU Dao-lin

    2015-01-01

    Barley (Hordeum vulgare L.) is one of the oldest domesticated crops, showing dramatic adaptation to various climate and environmental conditions. As a major cereal crop, barley ranks the 4th after wheat, maize and rice in terms of planting area and production al over the world. Due to its diploid nature, the cultivated barley is considered as an ideal model to study the polyploid wheat and other Triticeae species. Here, we reviewed the development, optimization, and application of transgenic approaches in barley. The most efifcient and robust genetic transformation has been built on the Agrobacterium-mediated transfer in conjunction with the immature embryo-based regeneration. We then discussed future considerations of using more practical technologies in barley transformation, such as the T-DNA/transposon tagging and the genome editing. As a cereal crop amenable to genetic transformation, barley wil serve as the most valuable carrier for global functional genomics in Triticeae and is becoming the most practical model for generating value-added products.

  15. Glycaemic response to barley porridge varying in dietary fibre content.

    Science.gov (United States)

    Thondre, Pariyarath S; Wang, Ke; Rosenthal, Andrew J; Henry, Christiani J K

    2012-03-01

    The interest in barley as a food is increasing worldwide because of its high dietary fibre (DF) content and low glycaemic index (GI). DF in cereals may prove beneficial in improving blood glucose response in the long term. However, a dose-dependent effect of insoluble fibre on reducing postprandial blood glucose levels is yet to be proven. The objective of the present study was to determine the glycaemic response to two barley porridges prepared from whole barley grains varying in fibre content. In two separate non-blind randomised crossover trials, ten human subjects consumed barley porridge with 16 g/100 g and 10 g/100 g fibre content provided in different serving sizes (equivalent to 25 and 50 g available carbohydrate). The glycaemic response to both barley porridges was significantly lower than the reference glucose (P porridges. We concluded that irrespective of the difference in total fibre content or serving size of barley porridges, their GI values did not differ significantly.

  16. True-breeding targeted gene knock-out in barley using designer TALE-nuclease in haploid cells.

    Directory of Open Access Journals (Sweden)

    Maia Gurushidze

    Full Text Available Transcription activator-like effector nucleases (TALENs are customizable fusion proteins able to cleave virtually any genomic DNA sequence of choice, and thereby to generate site-directed genetic modifications in a wide range of cells and organisms. In the present study, we expressed TALENs in pollen-derived, regenerable cells to establish the generation of instantly true-breeding mutant plants. A gfp-specific TALEN pair was expressed via Agrobacterium-mediated transformation in embryogenic pollen of transgenic barley harboring a functional copy of gfp. Thanks to the haploid nature of the target cells, knock-out mutations were readily detected, and homozygous primary mutant plants obtained following genome duplication. In all, 22% of the TALEN transgenics proved knocked out with respect to gfp, and the loss of function could be ascribed to the deletions of between four and 36 nucleotides in length. The altered gfp alleles were transmitted normally through meiosis, and the knock-out phenotype was consistently shown by the offspring of two independent mutants. Thus, here we describe the efficient production of TALEN-mediated gene knock-outs in barley that are instantaneously homozygous and non-chimeric in regard to the site-directed mutations induced. This TALEN approach has broad applicability for both elucidating gene function and tailoring the phenotype of barley and other crop species.

  17. Nematode assemblages in the rhizosphere of spring barley (Hordeum vulgare L.) depended on fertilisation and plant growth phase

    DEFF Research Database (Denmark)

    Madsen, Mette Vestergård

    2004-01-01

    rhizosphere; nitrogen and phosphorus fertilisation; nematode assemblages; plant parasites; barley......rhizosphere; nitrogen and phosphorus fertilisation; nematode assemblages; plant parasites; barley...

  18. Allele mining in barley genetic resources reveals genes of race-nonspecific powdery mildew resistance

    Directory of Open Access Journals (Sweden)

    Annika eSpies

    2012-01-01

    Full Text Available Race-nonspecific, or quantitative, pathogen resistance is of high importance to plant breeders due to its expected durability. However, it is usually controlled by multiple quantitative trait loci (QTL and therefore difficult to handle in practice. Knowing the genes that underlie race-nonspecific resistance would allow its exploitation in a more targeted manner. Here, we performed an association-genetic study in a customized worlwide collection of spring barley accessions for candidate genes of race-nonspecific resistance to the powdery mildew fungus Blumeria graminis f.sp. hordei (Bgh and combined data with results from QTL-mapping- as well as functional-genomics approaches. This led to the idenfication of 11 associated genes with converging evidence for an important role in race-nonspecific resistance in the presence of the Mlo-gene for basal susceptibility. Outstanding in this respect was the gene encoding the transcription factor WRKY2. The results suggest that unlocking plant genetic resources and integrating functional-genomic with genetic approaches accelerates the discovery of genes underlying race-nonspecific resistance in barley and other crop plants.

  19. Cloning and characterization of a gibberellin-induced RNase expressed in barley aleurone cells

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, S.W.; Rogers, J.C. (Washington State Univ., Pullman, WA (United States). Inst. of Biological Chemistry)

    1999-04-01

    The authors cloned a cDNA for a gibberellin-induced ribonuclease (RNase) expressed in barley (Hordeum vulgare) aleurone and the gene for a second barley RNase expressed in leaf tissue. The protein encoded by the cDNA is unique among RNases described to date in that it contains a novel 23-amino acid insert between the C2 and C3 conserved sequences. Expression of the recombinant protein in tobacco (Ncotiana tabacum) suspension-cultured protoplasts gave an active RNase of the expected size, confirming the enzymatic activity of the protein. Analyses of hormone regulation of re-expression of mRNA for the aleurone RNase revealed that, like the pattern for [alpha]-amylase, mRNA levels increased in the presence of gibberellic acid, and its antagonist abscisic acid prevented this effect. Quantitative studies at early times demonstrated that cycloheximide treatment of aleurone layers increased mRNA levels 4-fold, whereas a combination of gibberellin plus cycloheximide treatment was required to increase [alpha]-amylase mRNA levels to the same extent. These results are consistent with loss of repression as an initial effect of gibberellic acid on transcription of those genes, although the regulatory pathways for the two genes may differ.

  20. Comparing genomic expression patterns across plant species reveals highly diverged transcriptional dynamics in response to salt stress

    Directory of Open Access Journals (Sweden)

    Close Timothy J

    2009-08-01

    Full Text Available Abstract Background Rice and barley are both members of Poaceae (grass family but have a marked difference in salt tolerance. The molecular mechanism underlying this difference was previously unexplored. This study employs a comparative genomics approach to identify analogous and contrasting gene expression patterns between rice and barley. Results A hierarchical clustering approach identified several interesting expression trajectories among rice and barley genotypes. There were no major conserved expression patterns between the two species in response to salt stress. A wheat salt-stress dataset was queried for comparison with rice and barley. Roughly one-third of the salt-stress responses of barley were conserved with wheat while overlap between wheat and rice was minimal. These results demonstrate that, at transcriptome level, rice is strikingly different compared to the more closely related barley and wheat. This apparent lack of analogous transcriptional programs in response to salt stress is further highlighted through close examination of genes associated with root growth and development. Conclusion The analysis provides support for the hypothesis that conservation of transcriptional signatures in response to environmental cues depends on the genetic similarity among the genotypes within a species, and on the phylogenetic distance between the species.

  1. Differentially expressed genes between drought-tolerant and drought-sensitive barley genotypes in response to drought stress during the reproductive stage

    Science.gov (United States)

    Guo, Peiguo; Baum, Michael; Grando, Stefania; Ceccarelli, Salvatore; Bai, Guihua; Li, Ronghua; von Korff, Maria; Varshney, Rajeev K.; Graner, Andreas; Valkoun, Jan

    2009-01-01

    Drought tolerance is a key trait for increasing and stabilizing barley productivity in dry areas worldwide. Identification of the genes responsible for drought tolerance in barley (Hordeum vulgare L.) will facilitate understanding of the molecular mechanisms of drought tolerance, and also facilitate the genetic improvement of barley through marker-assisted selection or gene transformation. To monitor the changes in gene expression at the transcriptional level in barley leaves during the reproductive stage under drought conditions, the 22K Affymetrix Barley 1 microarray was used to screen two drought-tolerant barley genotypes, Martin and Hordeum spontaneum 41-1 (HS41-1), and one drought-sensitive genotype Moroc9-75. Seventeen genes were expressed exclusively in the two drought-tolerant genotypes under drought stress, and their encoded proteins may play significant roles in enhancing drought tolerance through controlling stomatal closure via carbon metabolism (NADP malic enzyme, NADP-ME, and pyruvate dehydrogenase, PDH), synthesizing the osmoprotectant glycine-betaine (C-4 sterol methyl oxidase, CSMO), generating protectants against reactive-oxygen-species scavenging (aldehyde dehydrogenase,ALDH, ascorbate-dependent oxidoreductase, ADOR), and stabilizing membranes and proteins (heat-shock protein 17.8, HSP17.8, and dehydrin 3, DHN3). Moreover, 17 genes were abundantly expressed in Martin and HS41-1 compared with Moroc9-75 under both drought and control conditions. These genes were possibly constitutively expressed in drought-tolerant genotypes. Among them, seven known annotated genes might enhance drought tolerance through signalling [such as calcium-dependent protein kinase (CDPK) and membrane steroid binding protein (MSBP)], anti-senescence (G2 pea dark accumulated protein, GDA2), and detoxification (glutathione S-transferase, GST) pathways. In addition, 18 genes, including those encoding Δl-pyrroline-5-carboxylate synthetase (P5CS), protein phosphatase 2C

  2. The promoter of the barley aleurone-specific gene encoding a putative 7 kDa lipid transfer protein confers aleurone cell-specific expression in transgenic rice.

    Science.gov (United States)

    Kalla, R; Shimamoto, K; Potter, R; Nielsen, P S; Linnestad, C; Olsen, O A

    1994-12-01

    This paper describes the aleurone-specific gene Ltp2 from barley, which encodes a putative 7 kDa non-specific lipid transfer protein. As shown by Northern and in situ hybridization analyses, the Ltp2 transcript is present in barley aleurone cells shortly after the initiation of aleurone cell differentiation. The expression of Ltp2 increases until grain mid-maturity, but the mRNA is absent from mature grains. The Ltp2 transcript is undetectable in the embryo and vegetative tissues, confirming the aleurone specificity of the Ltp2 gene. The ability of the isolated 801 bp Ltp2 promoter to direct aleurone-specific expression in immature barley grains is demonstrated by particle bombardment experiments. In these experiments, the activity of the Ltp2 promoter is 5% of the activity of the strong constitutive Actin1 promoter from rice, as quantified by GUS activity measurements. In stably transformed rice plants containing the Ltp2 promoter-Gus construct, the specificity of the Ltp2 promoter is confirmed in vivo by the presence of GUS activity exclusively in the aleurone layer. This study demonstrates the conserved nature of the regulatory signals involved in aleurone-specific gene transcription in cereal grains.

  3. Competition and Facilitation in Hairy Vetch-Barley Intercrops

    Directory of Open Access Journals (Sweden)

    Giacomo Tosti

    2010-09-01

    Full Text Available Intercrops between legumes and non-legumes are widely used for fodder production and as cover crops, but little quantitative data are available on competition between species in the mixture. The objective of the present study was to assess the interaction between hairy vetch (Vicia villosa Roth. and barley (Hordeum vulgare L. grown as pure crops or intercrops with different proportions of seed rates at sowing. A 4-year field study was conducted using hairy vetch and barley as pure stands at full sowing density and as intercrops at different proportions of their own full seed rate according to the replacement principle. Interaction between species was evaluated on the basis of Land Equivalent Ratio (LER, Relative Neighbour Effect (RNE and Aggressivity (A calculated on biomass and nitrogen (N accumulation. The N accumulation of the mixed crops increased linearly with the legume proportion in the mixture. The mixtures were more efficient than the pure crops in terms of N use (LER > 1. Partial LER values indicated that the barley component benefited from the presence of the legume, while the hairy vetch partial LER decreased with increasing barley proportion in the mixture. The competitive response in terms of biomass accumulation was high for both species when their density in the mixture was high. Concerning N accumulation, barley benefited from an asymmetric interspecific facilitation while the vetch behaviour was similar to that observed for biomass accumulation. Barley dominance progressively increased reaching a maximum just before the last sampling date. At the last sampling date the competitive ability of hairy vetch showed a considerable increase in all mixtures (A ≈ 0. These findings indicate that the use of mixtures between hairy vetch and barley allows an increase in the use efficiency of N resource with respect to pure crops. Barley is the dominant component of the mixture and the hairy vetch is able to cope with the cereal

  4. PTK1, a mitogen-activated-protein kinase gene, is required for conidiation, appressorium formation, and pathogenicity of Pyrenophora teres on barley.

    Science.gov (United States)

    Ruiz-Roldán, M C; Maier, F J; Schäfer, W

    2001-02-01

    Mitogen-activated protein kinases (MAPKs) are a group of protein kinases that execute a wide variety of roles in cellular signal transduction pathways such as osmoregulation, cell wall biosynthesis, growth, and differentiation. A polymerase chain reaction (PCR) with degenerate primers based on conserved regions of known MAPKs was used to clone the MAPK gene PTK1 from the leaf pathogen Pyrenophora teres (anamorph Drechslera teres), the causal agent of net blotch of barley (Hordeum vulgare L.). The predicted amino acid sequence shows high homology with MAPKs from other phytopathogenic fungi. The gene is present in the genome as a single copy. PTK1 is expressed during in vitro growth on complete medium, under conidiation-inducing conditions and during infection of barley leaves, as shown by reverse transcription-PCR studies. In order to assess the role of PTK1 in the life cycle of P. teres, targeted gene disruption was conducted. Mutants carrying an interrupted copy of the gene were deficient in conidiation, did not form appressoria on glass surfaces or on barley leaves, lost their ability to infect barley leaves, and could not colonize host tissues following artificial wounding.

  5. Efficient production of tetraploid barley (Hordeum vulgare L. by colchicine treatment of diploid barley

    Directory of Open Access Journals (Sweden)

    Ayed Sourour

    2014-03-01

    Full Text Available An experiment was conducted to induce tetraploidy in three diploid barley varieties (Martin, Rihane and Manel through different colchicines treatments. Colchicine was added for three different concentrations at three different stages of plant development i.e. on seed (0.05% for 48 hours, on pre-germinated seeds (0.1% for 2 hours and on three leaf stage (0.1% for 16 hours. Colchicine application reduced significantly germination percentage and viability of plants. Seed germination was completely inhibited in Martin, while a reduction of 20% and 30% for germination percentage compared to control was recorded in varieties Manel and Rihane, respectively at 0.1% colchicine concentration. Ploidy evaluation showed no tetraploidy in all the three tested varieties by colchicine application of 0.05% for 48 hours on seeds and 0.1% for 2 hours on pre-germinated seeds. However, tetraploid plants were produced only by treatment with 0.1% for 16 hours of seedlings. The percentages of plants were 40%, 44% and 100% for Rihane, Manel and Martin, respectively. Cytological analyses showed the increase of chromosome numbers from 2n=2x=14 to 2n=4x=28. The increase of ploidy levels caused major changes in some morphological traits. In fact, the induced tetraploids in barley was accompanied by significant (P<0.01 decrease in plant height, tiller height, leaf number and leaf length compared to diploid control plants. colchicine treatment induce successfully the production of tetraploid barley plants and could be used in breeding programs.

  6. Molecular characterization of barley 3H semi-dwarf genes.

    Directory of Open Access Journals (Sweden)

    Haobing Li

    Full Text Available The barley chromosome 3H accommodates many semi-dwarfing genes. To characterize these genes, the two-rowed semi-dwarf Chinese barley landrace 'TX9425' was crossed with the Australian barley variety 'Franklin' to generate a doubled haploid (DH population, and major QTLs controlling plant height have been identified in our previous study. The major QTL derived from 'TX9425' was targeted to investigate the allelism of the semi-dwarf gene uzu in barley. Twelve sets of near-isogenic lines and a large NILF2 fine mapping population segregating only for the dwarfing gene from 'TX9425' were developed. The semi-dwarfing gene in 'TX9425' was located within a 2.8 cM region close to the centromere on chromosome 3H by fine mapping. Molecular cloning and sequence analyses showed that the 'TX9425'-derived allele contained a single nucleotide substitution from A to G at position 2612 of the HvBRI1 gene. This was apparently the same mutation as that reported in six-rowed uzu barley. Markers co-segregating with the QTL were developed from the sequence of the HvBRI1 gene and were validated in the 'TX9425'/'Franklin' DH population. The other major dwarfing QTL derived from the Franklin variety was distally located on chromosome 3HL and co-segregated with the sdw1 diagnostic marker hv20ox2. A third dwarfing gene, expressed only in winter-sown trials, was identified and located on chromosome 3HS. The effects and interactions of these dwarfing genes under different growing conditions are discussed. These results improve our understanding of the genetic mechanisms controlling semi-dwarf stature in barley and provide diagnostic markers for the selection of semi-dwarfness in barley breeding programs.

  7. Pearling barley to alter the composition of the raw material before brewing

    NARCIS (Netherlands)

    Donkelaar, van L.H.G.; Noordman, T.R.; Boom, R.M.; Goot, van der A.J.

    2015-01-01

    Partly replacing malt with unmalted barley is a trend in brewing. The use of unmalted barley, however, leads to issues such as haze and high mash viscosity, due to its higher content of undesired components. Pearling, an abrasive method to remove the outer layers of the barley kernels has been shown

  8. Interaction between powdery mildew and barley with ¤mlo5¤ mildew resistance

    DEFF Research Database (Denmark)

    Lyngkjær, M.F.; Østergård, Hanne

    1998-01-01

    Powdery mildew infection of barley with the mlo5 barley powdery mildew resistance gene was examined, using near-isogenic barley lines, with and without mlo5 resistance, and two near-isogenic powdery mildew isolates, HL3/5 and GE3 with high (virulent) or low (avirulent) penetration efficiency...

  9. 7 CFR 457.102 - Wheat or barley winter coverage endorsement.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 6 2010-01-01 2010-01-01 false Wheat or barley winter coverage endorsement. 457.102... INSURANCE CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.102 Wheat or barley... Wheat or Barley Winter Coverage Endorsement (This is a continuous endorsement) 1. In return for...

  10. Genetic dissection of grain beta-glucan and amylose content in barley (Hordeum vulgare L.)

    Science.gov (United States)

    High beta glucan (BG) barleys (Hordeum vulgare L.) have major potential as food ingredients due to the well know health benefits. Quantitative trait loci (QTLs) associated with BG have been reported in hulled barley, however no QTL studies have been reported in hulless barley. In this study, QTL an...

  11. The role of root hairs in cadmium acquisition by barley

    Energy Technology Data Exchange (ETDEWEB)

    Zheng Ruilun; Li Huafen [Key Laboratory of Plant-Soil Interactions of the Ministry of Education, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100094 (China); Jiang Rongfeng, E-mail: rfjiang@cau.edu.c [Key Laboratory of Plant-Soil Interactions of the Ministry of Education, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100094 (China); Roemheld, Volker [Institute of Plant Nutrition, University of Hohenheim, D-70593 Stuttgart (Germany); Zhang Fusuo [Key Laboratory of Plant-Soil Interactions of the Ministry of Education, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100094 (China); Zhao Fangjie [Soil Science Department, Rothamsted Research, Harpenden, Hertfordshire AL5 2JQ (United Kingdom)

    2011-02-15

    The role of root hairs in Cd acquisition from soil was investigated in three pot experiments using a root hairless mutant (bald root barley, brb) and its wild-type (WT) cultivar of barley (Hordeum vulgare). brb had significantly lower concentrations and lower total amounts of Cd in shoots than WT. The Cd uptake efficiency based on total root length was 8-45% lower in brb than in WT. The difference between brb and WT increased with increasing extractable Cd in soil under the experimental conditions used. Additions of phosphate to soil decreased Cd extractability. Both soil and foliar additions of phosphate decreased root length, and root hair formation in WT. These effects resulted in decreased Cd uptake with increasing P supply. Cd uptake in WT correlated significantly with root length, root hair length and density, and soil extractable Cd. Root hairs contribute significantly to Cd uptake by barley. - Research highlights: The Cd uptake efficiency was significantly lower in brb than in WT. Additions of phosphate to soil decreased Cd extractability and Cd uptake. Both soil and foliar additions of phosphate decreased root length, and root hair formation in WT. Root hairs contribute significantly to Cd uptake by barley. - The Cd uptake efficiency based on total root length was 8-45% lower in a barley root hairless mutant than in its wild-type, indicating an important role of root hairs in Cd acquisition.

  12. Identification of a phytase gene in barley (Hordeum vulgare L..

    Directory of Open Access Journals (Sweden)

    Fei Dai

    Full Text Available BACKGROUND: Endogenous phytase plays a crucial role in phytate degradation and is thus closely related to nutrient efficiency in barley products. The understanding of genetic information of phytase in barley can provide a useful tool for breeding new barley varieties with high phytase activity. METHODOLOGY/PRINCIPAL FINDINGS: Quantitative trait loci (QTL analysis for phytase activity was conducted using a doubled haploid population. Phytase protein was purified and identified by the LC-ESI MS/MS Shotgun method. Purple acid phosphatase (PAP gene was sequenced and the position was compared with the QTL controlling phytase activity. A major QTL for phytase activity was mapped to chromosome 5 H in barley. The gene controlling phytase activity in the region was named as mqPhy. The gene HvPAP a was mapped to the same position as mqPhy, supporting the colinearity between HvPAP a and mqPhy. CONCLUSIONS/SIGNIFICANCE: It is the first report on QTLs for phytase activity and the results showed that HvPAP a, which shares a same position with the QTL, is a major phytase gene in barley grains.

  13. Mutagenesis of barley malting quality QTLs with Ds transposons.

    Science.gov (United States)

    Singh, Surinder; Tan, Han Qi; Singh, Jaswinder

    2012-03-01

    Various functional genomic tools are being used to identify and characterize genes in plants. The Activator/Dissociation (Ac/Ds) transposon-based approach offers great potential, especially in barley, due to its limited success of genetic transformation and its large genome size. The bias of the Ac/Ds system towards genic regions and its tendency toward localized transpositions can greatly enhance the discovery and tagging of genes linked to Ds. Barley is a key ingredient in malting and brewing industry; therefore, gene discovery in relation to malting has an industrial perspective. Malting quality in barley is a complex and quantitatively inherited trait. Two major quantitative trait loci (QTLs) affecting malting quality traits have been located on chromosome 4H. In this study, Ds was reactivated from parent transposants (TNP) lines, TNP-29 and TNP-79, where Ds was mapped in the vicinity of important malting QTLs. Reactivation of Ds was carried out both by conventional breeding and in vitro approaches. A threefold increase in reactivation frequency through the in vitro approach enabled the development of a new genomic resource for the dissection of malting QTL and gene discovery in barley. Identification of unique flanking sequences, using high-efficiency thermal asymmetric interlaced PCR and inverse PCR from these populations, has further emphasized the new location of Ds in the barley genome and provided new transposon mutants especially in β-GAL1, β-amylase-like gene and ABC transporter for functional genomic studies.

  14. Products based on a high fiber barley genotype, but not on common barley or oats, lower postprandial glucose and insulin responses in healthy humans.

    Science.gov (United States)

    Liljeberg, H G; Granfeldt, Y E; Björck, I M

    1996-02-01

    Postprandial blood glucose and insulin responses to cereal products made from common barley, oats or a barley genotype containing elevated levels of beta-glucans were evaluated in nine healthy subjects. Porridges were made from commercial Swedish whole-meal barley or oat flours, and a mixed whole-meal porridge using the high fiber barley genotype and commercial Swedish common barley (50:50). Also studied were two types of flour-based bread products composed of high fiber barley and common barley in ratios of 50:50 or 80:20, respectively. The common oat and barley porridges produced postprandial glucose and insulin responses similar to the white wheat bread reference, suggesting that the naturally occurring dietary fiber in these whole-meal flours has no impact on the glucose tolerance. In contrast, all high fiber barley products induced significantly lower responses than did the reference product, with the glycemic and insulin indices ranging from 57 to 72 or 42 to 72%, respectively. It is concluded that "lente" products of high sensory quality can be prepared from a barley genotype with an elevated content of soluble dietary fiber. The glycemic index of these products compares favorably with that of products made from common cereals, suggesting their use as a potential component of diets for patients with diabetes and hyperlipidemia, and for individuals predisposed to metabolic disease.

  15. Lysine metabolism in antisense C-hordein barley grains

    DEFF Research Database (Denmark)

    Schmidt, Daiana; Rizzi, Vanessa; Gaziola, Salete A

    2015-01-01

    ) and five antisense C-hordein transgenic barley lines. Considering the amounts of soluble and protein-bound aspartate-derived amino acids together with the analysis of key enzymes of aspartate metabolic pathway, we suggest that the C-hordein suppression did not only alter the metabolism of at least one......The grain proteins of barley are deficient in lysine and threonine due to their low concentrations in the major storage protein class, the hordeins, especially in the C-hordein subgroup. Previously produced antisense C-hordein transgenic barley lines have an improved amino acid composition......, with increased lysine, methionine and threonine contents. The objective of the study was to investigate the possible changes in the regulation of key enzymes of the aspartate metabolic pathway and the contents of aspartate-derived amino acids in the nontransgenic line (Hordeum vulgare L. cv. Golden Promise...

  16. Application of proteomics to investigate barley-Fusarium graminearum interaction

    DEFF Research Database (Denmark)

    Yang, Fen

    the disease. Due to the advantages of gel-based proteomics that differentially expressed proteins involved in the interaction can be directly detected by comparing protein profiles displayed on 2-D gels, it is used as a tool for studying the barley- Fusarium graminearum interaction form three different....... The functional characterization of two proteins is undergoing. In Chapter 6, microarray data of F. graminearum during interaction with barley and wheat was analysed. The expression patterns of 11fungal genes in microarray analysis were different from qRT-PCR results in Chapter 4. Overall, our results will give...... some insights into the cellular activities during the interaction between barley and Fusarium graminearum for designing new efficient strategies for the control of FHB disease....

  17. Factors underlying restricted crossover localization in barley meiosis.

    Science.gov (United States)

    Higgins, James D; Osman, Kim; Jones, Gareth H; Franklin, F Chris H

    2014-01-01

    Meiotic recombination results in the formation of cytological structures known as chiasmata at the sites of genetic crossovers (COs). The formation of at least one chiasma/CO between homologous chromosome pairs is essential for accurate chromosome segregation at the first meiotic division as well as for generating genetic variation. Although DNA double-strand breaks, which initiate recombination, are widely distributed along the chromosomes, this is not necessarily reflected in the chiasma distribution. In many species there is a tendency for chiasmata to be distributed in favored regions along the chromosomes, whereas in others, such as barley and some other grasses, chiasma localization is extremely pronounced. Localization of chiasma to the distal regions of barley chromosomes restricts the genetic variation available to breeders. Studies reviewed herein are beginning to provide an explanation for chiasma localization in barley. Moreover, they suggest a potential route to manipulating chiasma distribution that could be of value to plant breeders.

  18. Oligosaccharide binding to barley alpha-amylase 1

    DEFF Research Database (Denmark)

    Robert, X.; Haser, R.; Mori, H.;

    2005-01-01

    Enzymatic subsite mapping earlier predicted 10 binding subsites in the active site substrate binding cleft of barley alpha-amylase isozymes. The three-dimensional structures of the oligosaccharide complexes with barley alpha-amylase isozyme 1 (AMY1) described here give for the first time a thorough...... insight into the substrate binding by describing residues defining 9 subsites, namely -7 through +2. These structures support that the pseudotetrasaccharide inhibitor acarbose is hydrolyzed by the active enzymes. Moreover, sugar binding was observed to the starch granule-binding site previously determined...... in barley alpha-amylase isozyme 2 (AMY2), and the sugar binding modes are compared between the two isozymes. The "sugar tongs" surface binding site discovered in the AMY1-thio-DP4 complex is confirmed in the present work. A site that putatively serves as an entrance for the substrate to the active site...

  19. Origin of worldwide cultivated barley revealed by NAM-1 gene and grain protein content

    Directory of Open Access Journals (Sweden)

    Yonggang eWang

    2015-09-01

    Full Text Available The origin, evolution and distribution of cultivated barley provides powerful insights into the historic origin and early spread of agrarian culture. Here, population-based genetic diversity and phylogenetic analyses were performed to determine the evolution and origin of barley and how domestication and subsequent introgression have affected the genetic diversity and changes in cultivated barley on a worldwide scale. A set of worldwide cultivated and wild barleys from Asia and Tibet of China were analyzed using the sequences for NAM-1 gene and gene-associated traits-GPC (grain protein content. Our results showed Tibetan wild barley distinctly diverged from Near Eastern barley, and confirmed that Tibet is one of the origin and domestication centers for cultivated barley, and in turn supported a polyphyletic origin of domesticated barley. Comparison of haplotype composition among geographic regions revealed gene flow between Eastern and Western barley populations, suggesting that the Silk Road might have played a crucial role in the spread of genes. The GPC in the 118 cultivated and 93 wild barley accessions ranged from 6.73% to 12.35% with a mean of 9.43%. Overall, wild barley had higher averaged GPC (10.44% than cultivated barley. Two unique haplotypes (Hap2 and Hap7 caused by a base mutations (at position 544 in the coding region of the NAM-1 gene might have a significant impact on the GPC. SNPs and haplotypes of NAM-1 associated with GPC in barley could provide a useful method for screening GPC in barley germplasm. The Tibetan wild accessions with lower GPC could be useful for malt barley breeding

  20. Transcriptome comparative profiling of barley eibi1 mutant reveals pleiotropic effects of HvABCG31 gene on cuticle biogenesis and stress responsive pathways.

    Science.gov (United States)

    Yang, Zujun; Zhang, Tao; Lang, Tao; Li, Guangrong; Chen, Guoxiong; Nevo, Eviatar

    2013-10-14

    Wild barley eibi1 mutant with HvABCG31 gene mutation has low capacity to retain leaf water, a phenotype associated with reduced cutin deposition and a thin cuticle. To better understand how such a mutant plant survives, we performed a genome-wide gene expression analysis. The leaf transcriptomes between the near-isogenic lines eibi1 and the wild type were compared using the 22-k Barley1 Affymetrix microarray. We found that the pleiotropic effect of the single gene HvABCG31 mutation was linked to the co-regulation of metabolic processes and stress-related system. The cuticle development involved cytochrome P450 family members and fatty acid metabolism pathways were significantly up-regulated by the HvABCG31 mutation, which might be anticipated to reduce the levels of cutin monomers or wax and display conspicuous cuticle defects. The candidate genes for responses to stress were induced by eibi1 mutant through activating the jasmonate pathway. The down-regulation of co-expressed enzyme genes responsible for DNA methylation and histone deacetylation also suggested that HvABCG31 mutation may affect the epigenetic regulation for barley development. Comparison of transcriptomic profiling of barley under biotic and abiotic stresses revealed that the functions of HvABCG31 gene to high-water loss rate might be different from other osmotic stresses of gene mutations in barley. The transcriptional profiling of the HvABCG31 mutation provided candidate genes for further investigation of the physiological and developmental changes caused by the mutant.

  1. Transcriptome Comparative Profiling of Barley eibi1 Mutant Reveals Pleiotropic Effects of HvABCG31 Gene on Cuticle Biogenesis and Stress Responsive Pathways

    Directory of Open Access Journals (Sweden)

    Eviatar Nevo

    2013-10-01

    Full Text Available Wild barley eibi1 mutant with HvABCG31 gene mutation has low capacity to retain leaf water, a phenotype associated with reduced cutin deposition and a thin cuticle. To better understand how such a mutant plant survives, we performed a genome-wide gene expression analysis. The leaf transcriptomes between the near-isogenic lines eibi1 and the wild type were compared using the 22-k Barley1 Affymetrix microarray. We found that the pleiotropic effect of the single gene HvABCG31 mutation was linked to the co-regulation of metabolic processes and stress-related system. The cuticle development involved cytochrome P450 family members and fatty acid metabolism pathways were significantly up-regulated by the HvABCG31 mutation, which might be anticipated to reduce the levels of cutin monomers or wax and display conspicuous cuticle defects. The candidate genes for responses to stress were induced by eibi1 mutant through activating the jasmonate pathway. The down-regulation of co-expressed enzyme genes responsible for DNA methylation and histone deacetylation also suggested that HvABCG31 mutation may affect the epigenetic regulation for barley development. Comparison of transcriptomic profiling of barley under biotic and abiotic stresses revealed that the functions of HvABCG31 gene to high-water loss rate might be different from other osmotic stresses of gene mutations in barley. The transcriptional profiling of the HvABCG31 mutation provided candidate genes for further investigation of the physiological and developmental changes caused by the mutant.

  2. The CELLULOSE-SYNTHASE LIKE C (CSLC) Family of Barley Includes Members that Are Integral Membrane Proteins Targeted to the Plasma Membrane

    Institute of Scientific and Technical Information of China (English)

    Fenny M. Dwivany; Dina Yuli; Rachel A. Burton; Neil J. Shirley; Sarah M. Wilson; Geoffrey B. Fincher; Antony Bacic; Ed Newbigin; Monika S. Doblin

    2009-01-01

    The CELLULOSESYNTHASE-LIKE C(CSLC) family is an ancient lineage within the CELLULOSE SYNTHASE/CEL-LULOSE SYNTHASE-LIKE (CESA/CSL) polysaccharide synthase superfamily that is thought to have arisen before the diver-gence of mosses and vascular plants. As studies in the flowering plant Arabidopsis have suggested synthesis of the (1,4)-β-glucan backbone of xyloglucan (XyG), a wall polysaccharide that tethers adjacent cellulose microfibrils to each other, as a probable function for the CSLCs, CSLC function was investigated in barley (Hordeum vulgare L.), a species with low amounts of XyG in its walls. Four barley CSLC genes were identified (designated HvCSLC1-4). Phylogenetic analysis reveals three well supported clades of CSLCs in flowering plants, with barley having representatives in two of these clades. The four barley CSLCs were expressed in various tissues, with in situ PCR detecting transcripts in all cell types of the coleoptile and root, including cells with primary and secondary cell walls. Co-expression analysis showed that HvCSLC3 was coor-dinately expressed with putative XyG xylosyltransferase genes. Both immuno-EM and membrane fractionation showed that HvCSLC2 was located in the plasma membrane of barley suspension-cultured cells and was not in internal membranes such as endoplasmic reticulum or Golgi apparatus. Based on our current knowledge of the sub-cellular locations of poly-saccharide synthesis, we conclude that the CSLC family probably contains more than one type of polysaccharide synthase.

  3. Gene Targeting Without DSB Induction Is Inefficient in Barley.

    Science.gov (United States)

    Horvath, Mihaly; Steinbiss, Hans-Henning; Reiss, Bernd

    2016-01-01

    Double strand-break (DSB) induction allowed efficient gene targeting in barley (Hordeum vulgare), but little is known about efficiencies in its absence. To obtain such data, an assay system based on the acetolactate synthase (ALS) gene was established, a target gene which had been used previously in rice and Arabidopsis thaliana. Expression of recombinases RAD51 and RAD54 had been shown to improve gene targeting in A. thaliana and positive-negative (P-N) selection allows the routine production of targeted mutants without DSB induction in rice. We implemented these approaches in barley and analysed gene targeting with the ALS gene in wild type and RAD51 and RAD54 transgenic lines. In addition, P-N selection was tested. In contrast to the high gene targeting efficiencies obtained in the absence of DSB induction in A. thaliana or rice, not one single gene targeting event was obtained in barley. These data suggest that gene targeting efficiencies are very low in barley and can substantially differ between different plants, even at the same target locus. They also suggest that the amount of labour and time would become unreasonably high to use these methods as a tool in routine applications. This is particularly true since DSB induction offers efficient alternatives. Barley, unlike rice and A. thaliana has a large, complex genome, suggesting that genome size or complexity could be the reason for the low efficiencies. We discuss to what extent transformation methods, genome size or genome complexity could contribute to the striking differences in the gene targeting efficiencies between barley, rice and A. thaliana.

  4. PHYSIOLOGICAL AND AGROECOLOGICAL ASPECTS OF CADMIUM INTERACTIONS WITH BARLEY PLANTS: AN OVERVIEW

    Directory of Open Access Journals (Sweden)

    A VASSILEV

    2003-07-01

    Full Text Available This work is a review of author’s previous publications, unpublished results as well as available literature on barley responses to Cd contamination. The physiological backgrounds of the acute Cd toxicity in barley plants are briefly described. Some data characterizing the chronic Cd toxicity in barley have been also provided in relation to its possible use for seed production and Cd phytoextraction on Cd-contaminated agricultural soils. Information about the main physiological factors limiting growth of Cd-exposed barley plants and grain yield, seedling quality as well as Cd phytoextraction capacity of barley grown in Cd-contaminated soils is presented.

  5. Identification and characterization of barley RNA-directed RNA polymerases

    DEFF Research Database (Denmark)

    Madsen, Christian Toft; Stephens, Jennifer; Hornyik, Csaba

    2009-01-01

    in dicot species. In this report, we identi!ed and characterized HvRDR1, HvRDR2 and HvRDR6 genes in the monocot plant barley (Hordeum vulgare). We analysed their expression under various biotic and abiotic stresses including fungal and viral infections, salicylic acid treatment as well as during plant...... development. The different classes and subclasses of barley RDRs displayed contrasting expression patterns during pathogen challenge and development suggesting their involvement in speci!c regulatory pathways. Their response to heat and salicylic acid treatment suggests a conserved pattern of expression...

  6. Occurrence of barley leaf disease and control strategies in Denmark

    DEFF Research Database (Denmark)

    Jørgensen, Lise Nistrup; Ørum, Jens Erik; Heick, Thies Marten

    Barley (Hordeum vulgare) is one of the major crops in Denmark and of special importance for malting and for pig feed. In 2016, the crop was grown covering a total area of 700,000 ha; approximately 25% of arable area in Denmark. To ensure high yield of around 60 dt ha-1, disease-tolerant cultivars......), mildew of barley (Erysiphe graminis f.sp. hordei) and Ramularia (Ramularia collo-cygni). In recent years, brown rust and net blotch have been the most important disease in terms of yield losses. As most cultivars have mlo resistance, powdery mildew is today seen as a minor problem. Significant attack...

  7. Biotin Carboxyl Carrier Protein in Barley Chloroplast Membranes

    DEFF Research Database (Denmark)

    Kannangara, C. G.; Jense, C J

    1975-01-01

    Biotin localized in barley chloroplast lamellae is covalently bound to a single protein with an approximate molecular weight of 21000. It contains one mole of biotin per mole of protein and functions as a carboxyl carrier in the acetyl-CoA carboxylase reaction. The protein was obtained by solubil......Biotin localized in barley chloroplast lamellae is covalently bound to a single protein with an approximate molecular weight of 21000. It contains one mole of biotin per mole of protein and functions as a carboxyl carrier in the acetyl-CoA carboxylase reaction. The protein was obtained...

  8. Barley starch bioengineering for high phosphate and amylose

    DEFF Research Database (Denmark)

    Blennow, Per Gunnar Andreas; Carciofi, Massimiliano; Shaik, Shahnoor Sultana

    2011-01-01

    of the three genes encoding the starch-branching enzymes SBEI, SBEIIa, and SBEIIb using a triple RNAi chimeric hairpin construct we generated a virtually amylopectin-free barley. The grains of the transgenic lines were shrunken and had a yield of around 80% of the control line. The starch granules were...... irregular and showed no distinct melting enthalpy and very weak X-ray scattering. Hyperphosphorylated barley starch was achieved by endosperm specific overexpression of the potato glucan water dikinase1 (StGWD1). The content of phosphate esters in this starch was tenfold higher than the control lines...

  9. Implementation of biochemical screening to improve baking quality of Barley

    DEFF Research Database (Denmark)

    Aaslo, Per; Langkilde, Ane; Dionisio, Giuseppe

    2011-01-01

    Barley (Hordeum vulgare) is mostly used in feed and malt production but has the ability to provide humans nutritional benefits. The current wheat based “barley” breads can unfortunately not exceed more than 20% barley flour mixed into the dough due to poor leavening properties. Therefore...... the opportunity to give a forecast of the taste of the bread, as the AA composition is known to control certain aspects of the taste. We uses a MSE approach on a time of flight instrument coupled to a UPLC and in gel digestion to identify and characterize the different D-hordeins responsible for baking quality...

  10. The transfer of {sup 137}Cs from barley to beer

    Energy Technology Data Exchange (ETDEWEB)

    Proehl, G.; Mueller, H.; Voigt, G. [Institut fuer Strahlenschutz, Oberschleibheim (Germany)] [and others

    1997-01-01

    Beer has been brewed from barley contaminated with {sup 137}Cs as a consequence of the Chernobyl accident. The {sup 137}Cs activity has been measured in all intermediate steps and in the by-products of the production process. About 35 % of the {sup 137}Cs in barley were recovered in beer. Processing factors defined as the concentration ratio of processed and raw products were determined to be 0.61, 3.3, 0.1 and 0.11 for malt, malt germs, spent grains and beer, respectively. 4 refs., 2 tabs.

  11. Expression conservation within the circadian clock of a monocot: natural variation at barley Ppd-H1 affects circadian expression of flowering time genes, but not clock orthologs

    Directory of Open Access Journals (Sweden)

    Campoli Chiara

    2012-06-01

    Full Text Available Abstract Background The circadian clock is an endogenous mechanism that coordinates biological processes with daily changes in the environment. In plants, circadian rhythms contribute to both agricultural productivity and evolutionary fitness. In barley, the photoperiod response regulator and flowering-time gene Ppd-H1 is orthologous to the Arabidopsis core-clock gene PRR7. However, relatively little is known about the role of Ppd-H1 and other components of the circadian clock in temperate crop species. In this study, we identified barley clock orthologs and tested the effects of natural genetic variation at Ppd-H1 on diurnal and circadian expression of clock and output genes from the photoperiod-response pathway. Results Barley clock orthologs HvCCA1, HvGI, HvPRR1, HvPRR37 (Ppd-H1, HvPRR73, HvPRR59 and HvPRR95 showed a high level of sequence similarity and conservation of diurnal and circadian expression patterns, when compared to Arabidopsis. The natural mutation at Ppd-H1 did not affect diurnal or circadian cycling of barley clock genes. However, the Ppd-H1 mutant was found to be arrhythmic under free-running conditions for the photoperiod-response genes HvCO1, HvCO2, and the MADS-box transcription factor and vernalization responsive gene Vrn-H1. Conclusion We suggest that the described eudicot clock is largely conserved in the monocot barley. However, genetic differentiation within gene families and differences in the function of Ppd-H1 suggest evolutionary modification in the angiosperm clock. Our data indicates that natural variation at Ppd-H1 does not affect the expression level of clock genes, but controls photoperiodic output genes. Circadian control of Vrn-H1 in barley suggests that this vernalization responsive gene is also controlled by the photoperiod-response pathway. Structural and functional characterization of the barley circadian clock will set the basis for future studies of the adaptive significance of the circadian clock in

  12. Expression conservation within the circadian clock of a monocot: natural variation at barley Ppd-H1 affects circadian expression of flowering time genes, but not clock orthologs.

    Science.gov (United States)

    Campoli, Chiara; Shtaya, Munqez; Davis, Seth J; von Korff, Maria

    2012-06-21

    The circadian clock is an endogenous mechanism that coordinates biological processes with daily changes in the environment. In plants, circadian rhythms contribute to both agricultural productivity and evolutionary fitness. In barley, the photoperiod response regulator and flowering-time gene Ppd-H1 is orthologous to the Arabidopsis core-clock gene PRR7. However, relatively little is known about the role of Ppd-H1 and other components of the circadian clock in temperate crop species. In this study, we identified barley clock orthologs and tested the effects of natural genetic variation at Ppd-H1 on diurnal and circadian expression of clock and output genes from the photoperiod-response pathway. Barley clock orthologs HvCCA1, HvGI, HvPRR1, HvPRR37 (Ppd-H1), HvPRR73, HvPRR59 and HvPRR95 showed a high level of sequence similarity and conservation of diurnal and circadian expression patterns, when compared to Arabidopsis. The natural mutation at Ppd-H1 did not affect diurnal or circadian cycling of barley clock genes. However, the Ppd-H1 mutant was found to be arrhythmic under free-running conditions for the photoperiod-response genes HvCO1, HvCO2, and the MADS-box transcription factor and vernalization responsive gene Vrn-H1. We suggest that the described eudicot clock is largely conserved in the monocot barley. However, genetic differentiation within gene families and differences in the function of Ppd-H1 suggest evolutionary modification in the angiosperm clock. Our data indicates that natural variation at Ppd-H1 does not affect the expression level of clock genes, but controls photoperiodic output genes. Circadian control of Vrn-H1 in barley suggests that this vernalization responsive gene is also controlled by the photoperiod-response pathway. Structural and functional characterization of the barley circadian clock will set the basis for future studies of the adaptive significance of the circadian clock in Triticeae species.

  13. Identification of Circular RNAs From the Parental Genes Involved in Multiple Aspects of Cellular Metabolism in Barley

    Directory of Open Access Journals (Sweden)

    Behrooz eDarbani

    2016-06-01

    Full Text Available RNA circularization made by head-to-tail back-splicing events is involved in the regulation of gene expression from transcriptional to post-translational levels. By exploiting RNA-Seq data and down-stream analysis, we shed light on the importance of circular RNAs in plants. The results introduce circular RNAs as novel interactors in the regulation of gene expression in plants and imply the comprehensiveness of this regulatory pathway by identifying circular RNAs for a diverse set of genes. These genes are involved in several aspects of cellular metabolism as hormonal signaling, intracellular protein sorting, carbohydrate metabolism and cell-wall biogenesis, respiration, amino acid biosynthesis, transcription and translation, and protein ubiquitination. Additionally, these parental loci of circular RNAs, from both nuclear and mitochondrial genomes, encode for different transcript classes including protein coding transcripts, microRNA, rRNA, and long non-coding/microprotein coding RNAs. The results shed light on the mitochondrial exonic circular RNAs and imply the importance of circular RNAs for regulation of mitochondrial genes. Importantly, we introduce circular RNAs in barley and elucidate their cellular-level alterations across tissues and in response to micronutrients iron and zinc. In further support of circular RNAs' functional roles in plants, we report several cases where fluctuations of circRNAs do not correlate with the levels of their parental-loci encoded linear transcripts.Keywords: circular RNAs, coding and non-coding transcripts, leaves, seeds, transfer cells, micronutrients, mitochondria

  14. Characterization of the Entire Cystatin Gene Family in Barley and Their Target Cathepsin L-Like Cysteine-Proteases, Partners in the Hordein Mobilization during Seed Germination1[W

    Science.gov (United States)

    Martinez, Manuel; Cambra, Ines; Carrillo, Laura; Diaz-Mendoza, Mercedes; Diaz, Isabel

    2009-01-01

    Plant cystatins are inhibitors of cysteine-proteases of the papain C1A and legumain C13 families. Cystatin data from multiple plant species have suggested that these inhibitors act as defense proteins against pests and pathogens and as regulators of protein turnover. In this study, we characterize the entire cystatin gene family from barley (Hordeum vulgare), which contain 13 nonredundant genes, and identify and characterize their target enzymes, the barley cathepsin L-like proteases. Cystatins and proteases were expressed and purified from Escherichia coli cultures. Each cystatin was found to have different inhibitory capability against barley cysteine-proteases in in vitro inhibitory assays using specific substrates. Real-time reverse transcription-polymerase chain reaction revealed that inhibitors and enzymes present a wide variation in their messenger RNA expression patterns. Their transcripts were mainly detected in developing and germinating seeds, and some of them were also expressed in leaves and roots. Subcellular localization of cystatins and cathepsin L-like proteases fused to green fluorescent protein demonstrated the presence of both protein families throughout the endoplasmic reticulum and the Golgi complex. Proteases and cystatins not only colocalized but also interacted in vivo in the plant cell, as revealed by bimolecular fluorescence complementation. The functional relationship between cystatins and cathepsin L-like proteases was inferred from their common implication as counterparts of mobilization of storage proteins upon barley seed germination. The opposite pattern of transcription expression in gibberellin-treated aleurones presented by inhibitors and enzymes allowed proteases to specifically degrade B, C, and D hordeins stored in the endosperm of barley seeds. PMID:19759340

  15. Expression levels of barley Cbf genes at the Frost resistance-H2 locus are dependent upon alleles at Fr-H1 and Fr-H2.

    Science.gov (United States)

    Stockinger, Eric J; Skinner, Jeffrey S; Gardner, Kip G; Francia, Enrico; Pecchioni, Nicola

    2007-07-01

    Genetic analyses have identified two loci in wheat and barley that mediate the capacity to overwinter in temperate climates. One locus co-segregates with VRN-1, which affects the vernalization requirement. This locus is known as Frost resistance-1 (Fr-1). The second locus, Fr-2, is coincident with a cluster of more than 12 Cbf genes. Cbf homologs in Arabidopsis thaliana play a key regulatory role in cold acclimatization and the acquisition of freezing tolerance. Here we report that the Hordeum vulgare (barley) locus VRN-H1/Fr-H1 affects expression of multiple barley Cbf genes at Fr-H2. RNA blot analyses, conducted on a 'Nure'x'Tremois' barley mapping population segregating for VRN-H1/Fr-H1 and Fr-H2, revealed that transcript levels of all cold-induced Cbf genes at Fr-H2 were significantly higher in recombinants harboring the vrn-H1 winter allele than in recombinants harboring the Vrn-H1 spring allele. Steady-state Cbf2 and Cbf4 levels were also significantly higher in recombinants harboring the Nure allele at Fr-H2. Additional experiments indicated that, in vrn-H1 genotypes requiring vernalization, Cbf expression levels were dampened after plants were vernalized, and dampened Cbf expression was accompanied by robust expression of Vrn-1. Cbf levels were also significantly higher in plants grown under short days than under long days. Experiments in wheat and rye indicated that similar regulatory mechanisms occurred in these plants. These results suggest that VRN-H1/Fr-H1 acts in part to repress or attenuate expression of the Cbf at Fr-H2; and that the greater level of low temperature tolerance attributable to the Nure Fr-H2 allele may be due to the greater accumulation of Cbf2 and Cbf4 transcripts during normal growth and development.

  16. Wheat and barley exposure to nanoceria: Implications for agricultural productivity

    Science.gov (United States)

    The impacts of man-made nanomaterials on agricultural productivity are not yet well understood. A soil microcosm study was performed to assess the physiological, phenological, and yield responses of wheat (Triticum aestivum) and barley (Hordeum vulgare L.) exposed to nanoceria (n...

  17. Classification and salt tolerance analysis of barley varieties

    NARCIS (Netherlands)

    Katerji, N.; Hoorn, van J.W.; Hamdy, A.; Mastrorilli, M.; Fares, C.; Ceccarelli, S.; Grando, S.; Oweis, T.

    2006-01-01

    Six varieties of barley (Hordeum vulgare), five of which were provided by ICARDA, were tested in a green house experiment for their salt tolerance. Afterwards the ICARDA variety Melusine, selected from this experiment for its combination of high yield and salt tolerance, was compared in a lysimeter

  18. Durum wheat and barley productivity in saline-drought environments

    NARCIS (Netherlands)

    Katerji, N.; Mastrorilli, M.; Hoorn, van J.W.; Lahmer, F.Z.; Hamdy, A.; Oweis, T.

    2009-01-01

    In two Successive years, durum wheat (Triticum turgidum Desf.) and barley (Hodeum vulgare L.) were tested in a factorial salinity-drought experiment, combining three levels of salinity and two levels of drought. The two drought treatments were obtained by applying irrigation water when the pre-dawn

  19. Zinc biofortification of cereals: rice differs from wheat and barley

    NARCIS (Netherlands)

    Stomph, T.J.; Jiang, W.; Struik, P.C.

    2009-01-01

    In their review, mainly focused on bread wheat (Triticum aestivum), durum wheat (Triticum durum) and barley (Hordeum vulgare), Palmgren et al. 1 M.G. Palmgren et al., Zinc biofortification of cereals: problems and solutions, Trends Plant Sci. 13 (2008), pp. 464–473. Article | PDF (905 K) | View Reco

  20. Isolating Barley (Hordeum vulgare L.) B1 Hordein Gene Promoter ...

    African Journals Online (AJOL)

    Yomi

    2012-04-10

    Apr 10, 2012 ... region of B1 hordein gene was isolated from the genomic DNA of Walfajre and Alger barley by ... plasmid DNA extraction kits were provided from Bioneer ... The E. coli competent cells were used for transformation by 5 µL of.

  1. Characterization of Gibberellin Receptor Mutants of Barley (Hordeum vulgare L.)

    Institute of Scientific and Technical Information of China (English)

    Peter M.Chandler; Carol A.Harding; Anthony R.Ashton; Mark D.Mulcair; Nicholas E.Dixon; Lewis N.Mander

    2008-01-01

    The sequence of Gidl (a gene for a gibberellin (GA) receptor from rice) was used to identify a putative orthoIogue from barley.This was expressed in E.coil,and produced a protein that was able to bind GA in vitro with both structural specificity and saturability.Its potential role in GA responses was investigated using barley mutants with reduced GA sensitivity (gsel mutants).Sixteen different gsel mutants each carried a unique nucleotide substitution in this sequence.In all but one case,these changes resulted in single amino acid substitutions,and,for the remaining mutant,a substitution in the 5' untranslated region of the mRNA is proposed to interfere with translation initiation.There was perfect linkage in segregating populations between new mutant alleles and the gsel phenotype,leading to the conclusion that the putative GID1 GA receptor sequence in barley corresponds to the Gsel locus.Determination of endogenous GA contents in one of the mutants revealed enhanced accumulation of bioactive GA1,and a deficit of C20 GA precursors.All of the gsel mutants had reduced sensitivity to exogenous GA3,and to AC94377 (a GA analogue) at concentrations that are normally 'saturating',but,at much higher concentrations,there was often a considerable response.The comparison between barley and rice mutants reveals interesting differences between these two cereal species in GA hormonal physiology.

  2. Evaluation of a malting barley quality assessment system

    NARCIS (Netherlands)

    Lonkhuijsen, H.J. van; Douma, A.C.; Angelino, S.A.G.F.

    1998-01-01

    New malting barley varieties are annually tested for their malting and brewing potential according to a field trial set-up combined with quality evaluation on pilot scale. To assess the effects of trial year and location on quality evaluation data, a data base consisting of quality data from Dutch

  3. Evaluation of a malting barley quality assessment system

    NARCIS (Netherlands)

    Lonkhuijsen, H.J. van; Douma, A.C.; Angelino, S.A.G.F.

    1998-01-01

    New malting barley varieties are annually tested for their malting and brewing potential according to a field trial set-up combined with quality evaluation on pilot scale. To assess the effects of trial year and location on quality evaluation data, a data base consisting of quality data from Dutch m

  4. Spatial aggregation of pathotypes of barley powdery mildew

    DEFF Research Database (Denmark)

    O'Hara, R.B.; Brown, J.K.M.

    1997-01-01

    Aggregation in the distribution of pathotypes of Erysiphe graminis f.sp. hordei, the barley powdery mildew pathogen, was investigated in field plots of 'Golden Promise', 'Proctor' and 'Tyra'. 'Golden Promise' and 'Proctor' have no effective mildew resistance alleles, whereas 'Tyra' has Mla1, which...

  5. Latent manganese deficiency increases transpiration in barley (Hordeum vulgare)

    DEFF Research Database (Denmark)

    Hebbern, Christopher Alan; Laursen, Kristian Holst; Ladegaard, Anne Hald

    2009-01-01

    To investigate if latent manganese (Mn) deficiency leads to increased transpiration, barley plants were grown for 10 weeks in hydroponics with daily additions of Mn in the low nM range. The Mn-starved plants did not exhibit visual leaf symptoms of Mn deficiency, but Chl a fluorescence measurements...

  6. Microgeographic Edaphic Differentiation in Hordein Polymorphisms of Wild Barley

    DEFF Research Database (Denmark)

    Nevo, E.; Beiles, A.; Storch, N.

    1983-01-01

    and topography. Likewise, significant correlations were found between hordein phenotypes and allozyme types detected in a previous study. Our results suggest that at least part of the hordein polymorphisms in wild barley is adaptive and selected by soil and topographic differences over very short distances....

  7. Wheat and barley seed systems in Ethiopia and Syria

    NARCIS (Netherlands)

    Bishaw, Z.

    2004-01-01

    Keywords: Wheat,Triticumspp., Barley,Hordeumvulgare L., Seed Systems, Formal Seed Sector, Informal Seed Sector, National Seed Program, Seed Source, Seed Selection, Seed Management, Seed Quality,

  8. Reclamation of Sodic-Saline Soils. Barley Crop Response

    Directory of Open Access Journals (Sweden)

    Giovanna Cucci

    2008-12-01

    Full Text Available The research was aimed at assessing the salinity and sodicity effects of two soil types submitted to correction on barley crop. The two soils, contained in cylindrical pots (0.40 m in size and 0.60 m h supplied with a bottom valve for the collection of drainage water and located under shed to prevent the leaching action of rainfall, were clay-textured and saline and sodic-saline at barley seeding, as they had been cultivated for 4 consecutive years with different herbaceous species irrigated with 9 types of brackish water. In 2002-2003 the 2 salinized and sodium-affected soils (ECe and ESP ranging respectively from 5.84-20.27 dSm-1 to 2.83-11.19%, submitted to correction, were cultivated with barley cv Micuccio, and irrigated with fresh water (ECw = 0.5 dS m-1 and SAR = 0.45 whenever 30% of the maximum soil available moisture was lost by evapotranspiration. Barley was shown to be a salt-tolerant species and did not experience any salt stress when grown in soils with an initial ECe up to 11 dS m-1. When it was grown in more saline soils (initial ECe of about 20 dS m-1, despite the correction, it showed a reduction in shoot biomass and kernel yield by 26% and 36% respectively, as compared to less saline soils.

  9. Barley coleoptile peroxidases. Purification, molecular cloning, and induction by pathogens

    DEFF Research Database (Denmark)

    Kristensen, B.K.; Bloch, H.; Rasmussen, Søren Kjærsgård

    1999-01-01

    A cDNA clone encoding the Prx7 peroxidase from barley (Hordeum vulgare L.) predicted a 341-amino acid protein with a molecular weight of 36,515. N- and C-terminal putative signal peptides were present, suggesting a vacuolar location of the peroxidase. Immunoblotting and reverse-transcriptase poly...

  10. Wheat and barley seed systems in Ethiopia and Syria

    NARCIS (Netherlands)

    Bishaw, Z.

    2004-01-01

    Keywords: Wheat,Triticumspp., Barley,Hordeumvulgare L., Seed Systems, Formal Seed Sector, Informal Seed Sector, National Seed Program, Seed Source, Seed Selection, Seed Management, Seed Quality,

  11. Wheat and barley differently affect porcine intestinal microbiota

    DEFF Research Database (Denmark)

    Weiss, Eva; Aumiller, Tobias; Spindler, Hanns K

    2016-01-01

    Diet influences the porcine intestinal microbial ecosystem. Barrows were fitted with ileal T-cannulas to compare short-term effects of eight different wheat or barley genotypes and period-to-period effects on seven bacterial groups in ileal digesta and faeces by qPCR. Within genotypes of wheat an...

  12. Zinc biofortification of cereals: rice differs from wheat and barley

    NARCIS (Netherlands)

    Stomph, T.J.; Jiang, W.; Struik, P.C.

    2009-01-01

    In their review, mainly focused on bread wheat (Triticum aestivum), durum wheat (Triticum durum) and barley (Hordeum vulgare), Palmgren et al. 1 M.G. Palmgren et al., Zinc biofortification of cereals: problems and solutions, Trends Plant Sci. 13 (2008), pp. 464–473. Article | PDF (905 K) | View Reco

  13. Genetic diversity of some Saudi barley (Hordeum Vulgare L ...

    African Journals Online (AJOL)

    enoh

    2012-03-13

    Mar 13, 2012 ... These results could be used for barley germplasm management in terms of biodiversity ... animal feed, malt manufactures and human food. Its importance ... indigenous crop genetic resources of KSA are potentially threatened and ... and Hayes, 2002; Turpeinen et al., 2003; Nevo et al.,. 2005; Chaabane et ...

  14. Evaluation of Wheat and Barley Cultivars Tolerance to Metribuzine Application

    Directory of Open Access Journals (Sweden)

    E Izadi Darbandi

    2013-08-01

    Full Text Available In order to study of barely and wheat cultivars tolerance to metribuzin, a factorial experiment was conducted as a completely randomized design, with three replications in Greenhouse of Agricultural Research at Ferdowsi University of Mashhad. Treatments included wheat cultivars (Backcross roshan, Cross Arvand, Bahar, Sepahan, Gascosion, Sayonez, Bam garmsiry, Garmsiri, Ghods, Pishtaz, Chamran and Shoori 6, barely cultivars (Macouyi, Karoon and Bahman and metribuzin application rates ( 0, 175, 350, 700, 1050, 1400 and 2100 gr. ai.ha-1. Metribuzine was applied at 3-4 leaf stage and 3 weeks after herbicide spraying, plants survival and their biomass were determined. Results showed that metribuzin application had a significant effect (p≤0.01 on barley and wheat dry weight. Based on results, mertibuzin application did not affect on barley cultivars up to 30 g.a.i.ha-1 but in wheat varieties lead to significant reduction in their biomass and survival. Increasing of metribuzin rates reduced wheat and barley cultivars biomass (p≤0.01. Barely varieties were less sensitive than wheat cultivars to metribuzine. The highest and the lowest ED50 in wheat cultivars were observed in cross arvand (940 and shoori (25 varieties, respectively. In barley cultivars the highest and lowest ED50 were observed in Macouyi (614 and Karoon (396, respectively.

  15. Barley starch bioengineering for high phosphate and amylose

    DEFF Research Database (Denmark)

    Blennow, Per Gunnar Andreas; Carciofi, Massimiliano; Shaik, Shahnoor Sultana

    2011-01-01

    of the three genes encoding the starch-branching enzymes SBEI, SBEIIa, and SBEIIb using a triple RNAi chimeric hairpin construct we generated a virtually amylopectin-free barley. The grains of the transgenic lines were shrunken and had a yield of around 80% of the control line. The starch granules were...

  16. Giemsa C-banding of Barley Chromosomes. III

    DEFF Research Database (Denmark)

    Linde-Laursen, Ib

    1979-01-01

    Sixty-five homozygous barley lines, i.e. coming from chromosome-doubled monoploids derived from female gametes of F1 plants by the bulbosum method, segregated as expected in accordance with a 1:1-ratio for C-bands at two locations on chromosome 3 and at one location on chromosome 6. C-bands at one...

  17. The Mutation Frequency in Different Spike Categories in Barley

    DEFF Research Database (Denmark)

    Frydenberg, O.; Doll, Hans; Sandfær, J.

    1964-01-01

    After gamma irradiation of barley seeds, a comparison has been made between the chlorophyll-mutant frequencies in X1 spikes that had multicellular bud meristems in the seeds at the time of treatment (denoted as pre-formed spikes) and X1 spikes having no recognizable meristems at the time...

  18. Synthesis of the major storage protein, hordein, in barley

    DEFF Research Database (Denmark)

    Giese, Nanna Henriette; Andersen, B.; Doll, Hans

    1983-01-01

    A liquid culture system for culturing detached spikes of barley (Hordeum vulgare L.) at different nutritional levels was established. The synthesis of hordein polypeptides was studied by pulse-labeling with [14C]sucrose at different stages of development and nitrogen (N) nutrition. All polypeptid...

  19. Wheat and barley exposure to nanoceria: Implications for agricultural productivity

    Science.gov (United States)

    The impacts of man-made nanomaterials on agricultural productivity are not yet well understood. A soil microcosm study was performed to assess the physiological, phenological, and yield responses of wheat (Triticum aestivum) and barley (Hordeum vulgare L.) exposed to nanoceria (n...

  20. Enzyme superoxide dismutase in grain of barley and malt

    Directory of Open Access Journals (Sweden)

    Natálie Belcrediová

    2006-01-01

    Full Text Available The aim of the work was modification of superoxide dismutase enzyme (SOD, EC 1.15.1.1 activity analysis in barley grain and identical malts with using of the Ransod set. This set from company Randox were used for enzyme determination in blood samples. This method employs xanthine and xanthine oxidase to generate superoxide radicals, which react with tetrazolium chloride to form a red formazan dye. SOD is classified as natural antioxidants and enzyme plays a significant role at detoxication of products of molecular oxygen degradation. The largest rate of SOD occurs in embryo of barley grain. Its presence in barley grain and malt thus inhibits rancidity of grain during storage and undesirable beer flavour. The line Wabet x Washonubet (in grain-104,93 and malt 152,42 U/g dry matter and the variety Annabell (104,65 a 147,21 U/g dry matter had the highest activity of SOD in grain and malt of barley while the lowest activity was measured in the line KM 1910 (73,15 a 88,16 U/g dry matter and variety Tolar (74,34 a 96,44 U/g dry matter.

  1. Registration of Harriman low-phytate, hulled spring barley

    Science.gov (United States)

    The Agricultural Research Service, U.S. Department of Agriculture (USDA-ARS), has released 'Harriman', (Hordeum vulgare L.) (Reg. No. xxxxxx, P.I. xxxxxx). Harriman is a hulled, low-phytate barley, the second to be developed and released by the USDA-ARS. Compared to the previously released hulled, l...

  2. Biotic stress in barley: disease problems and solutions

    Science.gov (United States)

    Barley (Hordeum vulgare L.) is cultivated over a wider geographic range than almost any other major crop species. It can be found growing from the tropics to the high latitudes and from the seacoast to the highest arable mountaintops. On marginal lands where alkaline soils, drought, or cold summer t...

  3. Radiation hybrid map of barley chromosome 3H

    Science.gov (United States)

    Assembly of the barley genome is complicated by its large size (5.1 Gb) and proportion of repetitive elements (84%). This process is facilitated by high resolution maps for aligning BAC contigs along chromosomes. Available genetic maps; however, do not provide accurate information on the physical po...

  4. Aspects of the barley seed proteome during development and germination

    DEFF Research Database (Denmark)

    Finnie, Christine; Maeda, K.; Østergaard, O.;

    2004-01-01

    Analysis of the water-soluble barley seed proteome has led to the identification of proteins by MS in the major spots on two-dimensional gels covering the pi ranges 4-7 and 6-11. This provides the basis for in-depth studies of proteome changes during seed development and germination, tissue...

  5. Dormant barley aleurone shows heterogeneity and a specific cytodifferentiation

    NARCIS (Netherlands)

    Schuurink, R.C.; Bakhuizen, R.; Libbenga, K.R.; Boulanger, F.; Sinjorgo, K.M.C.

    1997-01-01

    In response to gibberellic acid, aleurone layers isolated from dormant barley (Hordeum distichum L. cv. Triumph) kernels produced significantly less alpha-amylase than aleurones from non-dormant kernels. Light microscopical investigations using the dye acridine orange as well as electron microscopic

  6. Expression of lipoxygenase isoenzymes in developing barley grains

    NARCIS (Netherlands)

    Schmitt, N.F.; Mechelen, J.R. van

    1997-01-01

    Expression of lipoxygenase was studied in whole developing barley grains from 5 days after flowering (DAF) to full maturity. Lipoxygenase showed two distinct peaks of activity. The first peak of activity occurred in the early stages of grain development from 5 until 20 DAF, whereas the second peak o

  7. Transcription factories

    Science.gov (United States)

    Rieder, Dietmar; Trajanoski, Zlatko; McNally, James G.

    2012-01-01

    There is considerable evidence that transcription does not occur homogeneously or diffusely throughout the nucleus, but rather at a number of specialized, discrete sites termed transcription factories. The factories are composed of ~4–30 RNA polymerase molecules, and are associated with many other molecules involved in transcriptional activation and mRNA processing. Some data suggest that the polymerase molecules within a factory remain stationary relative to the transcribed DNA, which is thought to be reeled through the factory site. There is also some evidence that transcription factories could help organize chromatin and nuclear structure, contributing to both the formation of chromatin loops and the clustering of active and co-regulated genes. PMID:23109938

  8. iTAG Barley: A 9-12 curriculum to explore inheritance of traits and genes using Oregon Wolfe barley

    Science.gov (United States)

    Segregating plants from the Informative & Spectacular Subset (ISS) of the Oregon Wolfe doubled haploid barley (OWB) population are easily grown on a lighted window bench in the classroom. These lines originate from a wide cross and have exceptionally diverse and dramatic phenotypes, making this an i...

  9. Tocopherols and tocotrienols in barley oil prepared from germ and other fractions from scarification and sieving of hulless barley

    Science.gov (United States)

    Two cultivars of hulless barley (Doyce and Merlin), were scarified to abrade the outer layers of the kernels (germ, pericarp, and aleurone). The resulting scarification fines fractions were then separated into four particle size subfractions using sieves. Each of the size subfractions was then extr...

  10. Barley HvPAPhy_a as transgene provides high and stable phytase activities in mature barley straw and in grains.

    Science.gov (United States)

    Holme, Inger Baeksted; Dionisio, Giuseppe; Madsen, Claus Krogh; Brinch-Pedersen, Henrik

    2017-04-01

    The phytase purple acid phosphatase (HvPAPhy_a) expressed during barley seed development was evaluated as transgene for overexpression in barley. The phytase was expressed constitutively driven by the cauliflower mosaic virus 35S-promoter, and the phytase activity was measured in the mature grains, the green leaves and in the dry mature vegetative plant parts left after harvest of the grains. The T2 -generation of HvPAPhy_a transformed barley showed phytase activity increases up to 19-fold (29 000 phytase units (FTU) per kg in mature grains). Moreover, also in green leaves and mature dry straw, phytase activities were increased significantly by 110-fold (52 000 FTU/kg) and 57-fold (51 000 FTU/kg), respectively. The HvPAPhy_a-transformed barley plants with high phytase activities possess triple potential utilities for the improvement of phosphate bioavailability. First of all, the utilization of the mature grains as feed to increase the release of bio-available phosphate and minerals bound to the phytate of the grains; secondly, the utilization of the powdered straw either directly or phytase extracted hereof as a supplement to high phytate feed or food; and finally, the use of the stubble to be ploughed into the soil for mobilizing phytate-bound phosphate for plant growth. © 2016 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  11. Allelopathic effects of barley straw on germination and seedling growth of corn, sugar beet and sunflower

    Directory of Open Access Journals (Sweden)

    mohamad taghi naseri poor yazdi

    2009-06-01

    Full Text Available Allelopathic effects of barley straw and root on germination and growth of maize, sugar beet, and sunflower were investigated under glasshouse and laboratory experiments in Faculty of Agriculture, Ferdowsi University of Mashhad in 2006. The glasshouse experiment was designed based on randomized complete block design with three replications, treatments included: 0, 200, 400, 600 g/m² of grounded barley straw and also 0 and 50 g/m2 barley root. A laboratory experiment was carried out in order to study the effect of different concentrations of barley water extracts on germination and seedling characteristics of corn, sugar beet and sunflower. Treatments in laboratory trial included 0, 33, 50 and 100 percent of barley extracts. Results showed that leaf area of corn was significantly affected by barley straw treatments. Shoot dry matter and seed weight per plant in corn , leaf and tuber weight in sugar beet and leaf , stem weights , plant per plant in corn , leaf and tuber weight in sugar beet and leaf, stem weights, plant height, head diameter, head weight and seed weight in sunflower were significantly higher in treatment of 50g/m² barley roots. Crop seed germination decreased with increasing the amount of barley straw. The best germination response to barley extract was observed in corn. Maize radicle weight was significantly decreased with increasing concentration of barley water extract.

  12. Barley HvPAPhy_a as transgene provides high and stable phytase activities in mature barley straw and in grains

    DEFF Research Database (Denmark)

    Holme, Inger; Dionisio, Giuseppe; Madsen, Claus Krogh

    2017-01-01

    The phytase purple acid phosphatase (HvPAPhy_a) expressed during barley seed development was evaluated as transgene for overexpression in barley. The phytase was expressed constitutively driven by the cauliflower mosaic virus 35S-promoter, and the phytase activity was measured in the mature grain...

  13. Effect of pH and Recombinant Barley (Hordeum vulgare L.) Endoprotease B2 on Degradation of Proteins in Soaked Barley

    DEFF Research Database (Denmark)

    Christensen, Jesper Bjerg; Dionisio, Giuseppe; Poulsen, Hanne Damgaard

    2014-01-01

    Nonfermented soaking of barley feedstuff has been established as an in vitro procedure prior to the feeding of pigs as it can increase protein digestibility. In the current study, two feed cultivars of barley (Finlissa and Zephyr) were soaked in vitro either nonbuffered or buffered at pH 3.6 and ...

  14. Fine mapping of a HvCBF gene cluster at the frost resistance locus Fr-H2 in barley.

    Science.gov (United States)

    Francia, E; Barabaschi, D; Tondelli, A; Laidò, G; Rizza, F; Stanca, A M; Busconi, M; Fogher, C; Stockinger, E J; Pecchioni, N

    2007-11-01

    Barley is an economically important model for the Triticeae tribe. We recently developed a new resource: the 'Nure' x 'Tremois' mapping population. Two low temperature QTLs were found to segregate on the long arm of chromosome 5H (Fr-H1, distal; Fr-H2, proximal). With the final aim of positional cloning of the genetic determinants of Fr-H1 and Fr-H2, a large segregating population of 1,849 F(2) plants between parents 'Nure' and 'Tremois' was prepared. These two QT loci were first validated by using a set of F(3) families, marker-selected to harbor pairs of reciprocal haplotypes, with one QTL fixed at homozygosity and the alternate one in heterozygous phase. The study was then focused towards the isolation of the determinant of Fr-H2. Subsequent recombinant screens and phenotypic evaluation of F(4) segregants allowed us to estimate (P < or = 0.01) a refined genomic interval of Fr-H2 (4.6 cM). Several barley genes with the CBF transcription factor signature had been already roughly mapped in cluster at Fr-H2, and they represent likely candidate genes underlying this QTL. Using the large segregating population (3,698 gametes) a high-resolution genetic map of the HvCBF gene cluster was then constructed, and after fine mapping, six recombinations between the HvCBFs were observed. It was therefore possible to genetically divide seven HvCBF subclusters in barley, in a region spanning 0.81 cM, with distances among them varying from 0.03 to 0.32 cM. The few recombinants between the different HvCBF subclusters are being marker-selected and taken to homozygosity, to phenotypically separate the effects of the single HvCBF genes.

  15. Over-expression of microRNA171 affects phase transitions and floral meristem determinancy in barley

    Directory of Open Access Journals (Sweden)

    Curaba Julien

    2013-01-01

    Full Text Available Abstract Background The transitions from juvenile to adult and adult to reproductive phases of growth are important stages in the life cycle of plants. The regulators of these transitions include miRNAs, in particular miR156 and miR172 which are part of a regulatory module conserved across the angiosperms. In Arabidopsis miR171 represses differentiation of axillary meristems by repressing expression of SCARECROW-LIKE(SCL transcription factors, however the role of miR171 has not been examined in other plants. Results To investigate the roles of mir171 and its target genes in a monocot, the Hvu pri-miR171a was over-expressed in barley (Hordeum vulgare L. cv. Golden promise leading to reduced expression of at least one HvSCL gene. The resulting transgenic plants displayed a pleiotropic phenotype which included branching defects, an increased number of short vegetative phytomers and late flowering. These phenotypes appear to be the consequence of changes in the organisation of the shoot meristem. In addition, the data show that miR171 over-expression alters the vegetative to reproductive phase transition by activating the miR156 pathway and repressing the expression of the TRD (THIRD OUTER GLUME and HvPLA1 (Plastochron1 genes. Conclusions Our data suggest that some of the roles of miR171 and its target genes that have been determined in Arabidopsis are conserved in barley and that they have additional functions in barley including activation of the miR156 pathway.

  16. Phosphate utilization efficiency correlates with expression of low-affinity phosphate transporters and noncoding RNA, IPS1, in barley.

    Science.gov (United States)

    Huang, Chun Y; Shirley, Neil; Genc, Yusuf; Shi, Bujun; Langridge, Peter

    2011-07-01

    Genetic variation in phosphorus (P) efficiency exists among wheat (Triticum aestivum) and barley (Hordeum vulgare) genotypes, but the underlying mechanisms for the variation remain elusive. High- and low-affinity phosphate (Pi) PHT1 transporters play an indispensable role in P acquisition and remobilization. However, little is known about genetic variation in PHT1 gene expression and association with P acquisition efficiency (PAE) and P utilization efficiency (PUE). Here, we present quantitative analyses of transcript levels of high- and low-affinity PHT1 Pi transporters in four barley genotypes differing in PAE. The results showed that there was no clear pattern in the expression of four paralogs of the high-affinity Pi transporter HvPHT1;1 among the four barley genotypes, but the expression of a low-affinity Pi transporter, HvPHT1;6, and its close homolog HvHPT1;3 was correlated with the genotypes differing in PUE. Interestingly, the expression of HvPHT1;6 and HvPHT1;3 was correlated with the expression of HvIPS1 (for P starvation inducible; noncoding RNA) but not with HvIPS2, suggesting that HvIPS1 plays a distinct role in the regulation of the low-affinity Pi transporters. In addition, high PUE was found to be associated with high root-shoot ratios in low-P conditions, indicating that high carbohydrate partitioning into roots occurs simultaneously with high PUE. However, high PUE accompanying high carbon partitioning into roots could result in low PAE. Therefore, the optimization of PUE through the modification of low-affinity Pi transporter expression may assist further improvement of PAE for low-input agriculture systems.

  17. Determination of ergosterol levels in barley and malt varieties in the Czech Republic via HPLC.

    Science.gov (United States)

    Jedlicková, Lenka; Gadas, David; Havlová, Pavla; Havel, Josef

    2008-06-11

    Ergosterol is considered to be a suitable indicator of mold infestation in barley and malt. In this study ergosterol levels in different varieties of barley and malt produced in the Czech Republic were determined. A modified high-performance liquid chromatography (HPLC) method was statistically processed, validated (Effivalidation program), and applied to 124 samples of barley and malt. Ergosterol was isolated by extraction and saponification, and the quantification was performed using HPLC with diode array detection. The content of ergosterol ranged between the limit of detection (LOD) and 36.3 mg/kg in barley and between the LOD and 131.1 mg/kg in malt. Ergosterol is presumably connected with metabolites generated when barley grain is attacked by pathogens, and such barley often shows a high overfoaming (gushing) value. However, it was found that the content of ergosterol does not correlate with the degree of beer gushing.

  18. Retention and growth performance of chicks given low-phytate conventional or hull-less barleys

    Science.gov (United States)

    Four low-phytate, hulled lines, M2 422 (now referred to as barley lpa1-1), M2 635 (now referred to as barley lpa3-1), M2 955 and M2 1070 (now referred to as barley lpa2-1), and a "hulless" version of M2 422, were evaluated in a chick feeding experiment. The diets were provided in meal form, with the...

  19. Cultivar and Environmental Variation of β-glucan Content in Chinese Barleys

    Institute of Scientific and Technical Information of China (English)

    CHEN Jin-xin; Zhang Guo-ping; QIANG Xiao-lin; WANG Jun-mei; DING Shou-ren

    2002-01-01

    β-glucan is a polysaccharide compound closely related to the quality of barley used as malting,feed and food. Low β-glucan content is expected for brewing and feed barley, while high β-glucan content is desirable for food barley. The β-glucan content of barley genotypes collected from various areas of China as well as from Canada and Australia were assayed. Meanwhile a multi-locations trial was conducted to determineβ-glucan content of 10 barley cultivars in 8 locations for two successive planting years. The results showed that barley genotypes from Tibet and Xinjiang had higher β-glucan content and the genotypes with higher than 8%of β-glucan content were detected in Tibet barleys, being valuable for use in the development of healthy food.Barley cultivars being planted now in winter-sowing areas of China had basically the same β-glucan content as those from Canada and Australia. Barley seeds produced in Hangzhou had lower β-glucan content than seeds from the original areas. There was a highly significant difference in β-glucan content among 10 barleys, 8locations and between years. On an average of two years, Xiumei 3 and Kongpei 1 had the highest and lowestβ-glucan content, respectively, and Taian and Hangzhou produced the highest and lowest β-glucan content barley seeds, respectively. Analysis of AMMI model showed that interaction effect between cultivar and environment was highly significant in both experimental years, and was dependent on cuitivar, suggesting that it is important to plant the suitable cultivars in a particular area in order to obtain barley seeds with reasonableβ-glucan content.

  20. Application of Dual Coagulant (Alum + Barley in Removing Colour from Leachate

    Directory of Open Access Journals (Sweden)

    Shaylinda Mohd Zin Nur

    2017-01-01

    Full Text Available Coagulation/flocculation is one of the treatment method for highly polluted leachate. One of the main affecting factor for this process is the coagulant used. Coagulant is divided into natural and chemical coagulant. In the current study, Alum (chemical coagulant and barley (natural coagulant were used as dual coagulant. The aim of this study is to examine the effectiveness of dual coagulant made from alum and barley in removing colour from the effluent of Simpang Renggam landfill leachate aeration lagoon through coagulation/flocculation method. Coagulation/flocculation process with single alum coagulant, single barley coagulant and dual coagulant (alum+barley were examined by evaluating the optimum values of pH and dose. Optimum dose and pH for alum and barley as single coagulant were; 3 g/L & pH 5; 0.8 g/L & pH 6. Higher removal of colour was recorded for alum compared to barley. Application of alum and barley as dual coagulant had higher colour removal than alum and barley as single coagulant. The optimum pH and dose for dual coagulant were at pH 6, 3.0 g/L of alum and 0.8 g/L of barley respectively. However, at pH 6, 2 g/L alum and 1.6 g/L barley, the removal of colour was similar to alum at 3 g/L. It can be concluded that barley as coagulant aid able to reduce 33 % usage of alum at par removals of colour. Thus, the dual coagulant consist of alum and barley has the potential to be applied as a coagulant for leachate treatment.

  1. Suppression of the barley uroporphyrinogen III synthase gene by a Ds activation tagging element generates developmental photosensitivity.

    Science.gov (United States)

    Ayliffe, Michael A; Agostino, Anthony; Clarke, Bryan C; Furbank, Robert; von Caemmerer, Susanne; Pryor, Anthony J

    2009-03-01

    Chlorophyll production involves the synthesis of photoreactive intermediates that, when in excess, are toxic due to the production of reactive oxygen species (ROS). A novel, activation-tagged barley (Hordeum vulgare) mutant is described that results from antisense suppression of a uroporphyrinogen III synthase (Uros) gene, the product of which catalyzes the sixth step in the synthesis of chlorophyll and heme. In homozygous mutant plants, uroporphyrin(ogen) I accumulates by spontaneous cyclization of hydroxyl methylbilane, the substrate of Uros. Accumulation of this tetrapyrrole intermediate results in photosensitive cell death due to the production of ROS. The efficiency of Uros gene suppression is developmentally regulated, being most effective in mature seedling leaves compared with newly emergent leaves. Reduced transcript accumulation of a number of nuclear-encoded photosynthesis genes occurs in the mutant, even under 3% light conditions, consistent with a retrograde plastid-nuclear signaling mechanism arising from Uros gene suppression. A similar set of nuclear genes was repressed in wild-type barley following treatment with a singlet oxygen-generating herbicide, but not by a superoxide generating herbicide, suggesting that the retrograde signaling apparent in the mutant is specific to singlet oxygen.

  2. Barley Sprouts Extract Attenuates Alcoholic Fatty Liver Injury in Mice by Reducing Inflammatory Response

    Directory of Open Access Journals (Sweden)

    Yun-Hee Lee

    2016-07-01

    Full Text Available It has been reported that barley leaves possess beneficial properties such as antioxidant, hypolipidemic, antidepressant, and antidiabetic. Interestingly, barley sprouts contain a high content of saponarin, which showed both anti-inflammatory and antioxidant activities. In this study, we evaluated the effect of barley sprouts on alcohol-induced liver injury mediated by inflammation and oxidative stress. Raw barley sprouts were extracted, and quantitative and qualitative analyses of its components were performed. The mice were fed a liquid alcohol diet with or without barley sprouts for four weeks. Lipopolysaccharide (LPS-stimulated RAW 264.7 cells were used to study the effect of barley sprouts on inflammation. Alcohol intake for four weeks caused liver injury, evidenced by an increase in serum alanine aminotransferase and aspartate aminotransferase activities and tumor necrosis factor (TNF-α levels. The accumulation of lipid in the liver was also significantly induced, whereas the glutathione (GSH level was reduced. Moreover, the inflammation-related gene expression was dramatically increased. All these alcohol-induced changes were effectively prevented by barley sprouts treatment. In particular, pretreatment with barley sprouts significantly blocked inducible nitric oxide synthase (iNOS and cyclooxygenase (COX-2 expression in LPS-stimulated RAW 264.7. This study suggests that the protective effect of barley sprouts against alcohol-induced liver injury is potentially attributable to its inhibition of the inflammatory response induced by alcohol.

  3. Archaeogenetic evidence of ancient nubian barley evolution from six to two-row indicates local adaptation.

    Directory of Open Access Journals (Sweden)

    Sarah A Palmer

    Full Text Available BACKGROUND: Archaeobotanical samples of barley (Hordeum vulgare L. found at Qasr Ibrim display a two-row phenotype that is unique to the region of archaeological sites upriver of the first cataract of the Nile, characterised by the development of distinctive lateral bracts. The phenotype occurs throughout all strata at Qasr Ibrim, which range in age from 3000 to a few hundred years. METHODOLOGY AND FINDINGS: We extracted ancient DNA from barley samples from the entire range of occupancy of the site, and studied the Vrs1 gene responsible for row number in extant barley. Surprisingly, we found a discord between the genotype and phenotype in all samples; all the barley had a genotype consistent with the six-row condition. These results indicate a six-row ancestry for the Qasr Ibrim barley, followed by a reassertion of the two-row condition. Modelling demonstrates that this sequence of evolutionary events requires a strong selection pressure. CONCLUSIONS: The two-row phenotype at Qasr Ibrim is caused by a different mechanism to that in extant barley. The strength of selection required for this mechanism to prevail indicates that the barley became locally adapted in the region in response to a local selection pressure. The consistency of the genotype/phenotype discord over time supports a scenario of adoption of this barley type by successive cultures, rather than the importation of new barley varieties associated with individual cultures.

  4. Assessment of the Seedling Reactions of Some Hulless Barley Genotypes to Drechslera teres f. maculata

    OpenAIRE

    Gerlegiz, Emine Tuba; KARAKAYA, Aziz; Celik Oguz, Arzu; MERT, Zafer; Sayim, İsmail; Ergun, Namuk; Aydogan, Sinan

    2015-01-01

    The seedling reactions of three barley cultivars, one hulless barley cultivar, two candidate hulless barley lines and nine hulless barley genotypes were determined under greenhouse conditions to ten isolates of Drechslera teres f. maculata, the causal agent of spot form of net blotch. Isolates were obtained from Ankara, Çankırı, Eskişehir, Kayseri, Konya and Şanlıurfa provinces. The reactions of the cultivars and hulless cultivar ranged between suscepible-resistant. The reactions of the hulle...

  5. The non-touching method of the malting barley quality evaluation

    Science.gov (United States)

    Raba, B.; Nowakowski, K.; Lewicki, A.; Przybył, K.; Zaborowicz, M.; Koszela, K.; Boniecki, P.; Mueller, W.

    2014-04-01

    The first important stage of the malt production processes is the malting barley quality evaluation. Presented project was focused on the visual features of malting barley grains. The principal aim was to elaborate complete methodology to determine the level of grains contamination. The article describes the mechanisms of choosing parameters which can distinguish useful for the malt production grains from defects and impurities. Original computer system 'Hordeum v 3.1' helped obtain graphical data from images of contaminated barley samples. Research carried out in this area can improve the quality evaluation process of malting barley.

  6. Investigations of barley stripe mosaic virus as a gene silencing vector in barley roots and in Brachypodium distachyon and oat

    Directory of Open Access Journals (Sweden)

    Nilsson Lena

    2010-11-01

    Full Text Available Abstract Background Gene silencing vectors based on Barley stripe mosaic virus (BSMV are used extensively in cereals to study gene function, but nearly all studies have been limited to genes expressed in leaves of barley and wheat. However since many important aspects of plant biology are based on root-expressed genes we wanted to explore the potential of BSMV for silencing genes in root tissues. Furthermore, the newly completed genome sequence of the emerging cereal model species Brachypodium distachyon as well as the increasing amount of EST sequence information available for oat (Avena species have created a need for tools to study gene function in these species. Results Here we demonstrate the successful BSMV-mediated virus induced gene silencing (VIGS of three different genes in barley roots, i.e. the barley homologues of the IPS1, PHR1, and PHO2 genes known to participate in Pi uptake and reallocation in Arabidopsis. Attempts to silence two other genes, the Pi transporter gene HvPht1;1 and the endo-β-1,4-glucanase gene HvCel1, in barley roots were unsuccessful, probably due to instability of the plant gene inserts in the viral vector. In B. distachyon leaves, significant silencing of the PHYTOENE DESATURASE (BdPDS gene was obtained as shown by photobleaching as well as quantitative RT-PCR analysis. On the other hand, only very limited silencing of the oat AsPDS gene was observed in both hexaploid (A. sativa and diploid (A. strigosa oat. Finally, two modifications of the BSMV vector are presented, allowing ligation-free cloning of DNA fragments into the BSMV-γ component. Conclusions Our results show that BSMV can be used as a vector for gene silencing in barley roots and in B. distachyon leaves and possibly roots, opening up possibilities for using VIGS to study cereal root biology and to exploit the wealth of genome information in the new cereal model plant B. distachyon. On the other hand, the silencing induced by BSMV in oat seemed too

  7. Suppression of Zn stress on barley by irradiated chitosan

    Energy Technology Data Exchange (ETDEWEB)

    Nagasawa, N.; Mitomo, H. [Gunma Univ., Faculty of Engineering, Department of Biological and Chemical Engineering, Kiryu, Gunma (Japan); Ha, P.T.L. [Nuclear Research Institute, Dalat (Viet Nam); Watanabe, S.; Ito, T.; Takeshita, H.; Yoshii, F.; Kume, T. [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment

    2001-03-01

    Chitosan was irradiated up to 1000 kGy in solid state. Irradiation of chitosan caused the reduction of molecular weight. The molecular weight of the chitosan reduced from ca. 4 x 10{sup 5} to ca. 6 x 10{sup 3} by irradiation at 1000 kGy. For the barley growth promotion, irradiated chitosan showed the significant effect and 1000 kGy irradiated chitosan improved 20% of growth. Using the positron emitting tracer imaging system (PETIS), the effect of chitosan on uptake and transportation of {sup 62}Zn in barley were investigated. It was found that the transportation of Zn from root to shoot and the damage of plant by Zn were suppressed with irradiated chitosan. (author)

  8. In vitro fermentation of ten cultivars of barley silage

    Directory of Open Access Journals (Sweden)

    Federico Infascelli

    2010-01-01

    Full Text Available The fermentation characteristics of whole-crop barley silages from ten different cultivars were evaluated by the in vitro gas production technique. The organic matter degradability of barley silage (62.9% in average was comparable to those reported in our previous trials for oat (59.7% and sorghum silages (65.5%; while the maximum gas production rate (5.38 ml/h in average was slightly lower respect to oat (6.71 ml/h and sorghum silage (6.74 ml/h. The mean nutritive value (4.00 MJ/kg DM calculated on the basis of both chemical composition and in vitro fermentation data was comparable to that (4.16 MJ/kg DM obtained in our previous research performed on corn silage, from crop sowed in the same area.

  9. The Role of alpha-Glucosidase in Germinating Barley Grains

    DEFF Research Database (Denmark)

    Stanley, Duncan; Rejzek, Martin; Næsted, Henrik

    2011-01-01

    The importance of alpha-glucosidase in the endosperm starch metabolism of barley (Hordeum vulgare) seedlings is poorly understood. The enzyme converts maltose to glucose (Glc), but in vitro studies indicate that it can also attack starch granules. To discover its role in vivo, we took complementary...... chemical-genetic and reverse-genetic approaches. We identified iminosugar inhibitors of a recombinant form of an alpha-glucosidase previously discovered in barley endosperm (ALPHA-GLUCOSIDASE97 [HvAGL97]), and applied four of them to germinating grains. All four decreased the Glc-to-maltose ratio...... in the endosperm 10 d after imbibition, implying inhibition of maltase activity. Three of the four inhibitors also reduced starch degradation and seedling growth, but the fourth did not affect these parameters. Inhibition of starch degradation was apparently not due to inhibition of amylases. Inhibition...

  10. Barley grain enrichement with essential elements by agronomic biofortification

    Directory of Open Access Journals (Sweden)

    Dragičević Vesna D.

    2016-01-01

    Full Text Available Barley grain is rich in mineral nutrients, but their bioavailability to humans depends on antinutrients that restrain bioavailability and promoters that promote bioavailability. The aim of this study was to examine composition of barley grain, including phytate and phenolics as antinutrients, carotenoids and glutathione as promoters and mineral elements, such as Ca, Mg, Fe, Si, Zn and Mn influenced by various non-standard foliar fertilizers (Zircon, Chitosan, Siliplant, Propikonazole, including some hormonal growth-stimulators (Epin Extra, Benzyladenine, as potential biofortification measure. Chitosan increased glutathione concentration in grain. Unfavorable meteorological conditions were partly mitigated by application of Benzyladenine and Siliplant, reflected through increased potential bioavailability of P, Mg, Ca and Fe. [Projekat Ministarstva nauke Republike Srbije, br. TR-31037

  11. Pollen grain of barley (Hordeum vulgare L. - pattern of development

    Directory of Open Access Journals (Sweden)

    Maria Charzyńska

    2014-01-01

    Full Text Available Pollen development in barley follows the general pattern established for other species of Poaceae: 1 microspore division occurs at the vacuolate microspore stage with polarly located nucleus; 2 microspore mitosis is immediately followed by phragmoplast and cell plate formation; 3 in consequence or unequal microspore division, the generative cell, at first attached to the pollen wall, is separated from the vegetative cell by a callosic wall; 4 during the postmitotic two-cell stage of development, the vegetative nucleus migrates to the aperture pole and is followed by the generative cell that is detached and free of callose wall. In this position the generative cell divides into two sperm cells. These data do not confirm the interpretation of pollen grain development in barley given by Cass and Karas in Can. J. Bot. 53: 1051-1062, 1975.

  12. Environmental and transgene expression effects on the barley seed proteome

    DEFF Research Database (Denmark)

    Finnie, Christine; Steenholdt, T.; Noguera, O.R.;

    2004-01-01

    The barley (Hordeum vulgare) cultivar Golden Promise is no longer widely used for malting, but is amenable to transformation and is therefore a valuable experimental cultivar. Its characteristics include high salt tolerance, however it is also susceptible to several fungal pathogens. Proteome....... Eleven of these were identified by mass spectrometric peptide mass mapping, including an abundant chitinase implicated in defence against fungal pathogens and a small heat-shock protein. To enable a comparison with transgenic seed protein patterns, differences in spot patterns between field...... with extra nitrogen. Finally, the fate of transgene products in barley seeds was followed. Spots containing two green fluorescent protein constructs and the herbicide resistance marker phosphinothricin acetyltransferase were observed in 2D-gel patterns of transgenic seeds and identified by mass spectrometry...

  13. Effect of ozone pretreatment on hydrogen production from barley straw.

    Science.gov (United States)

    Wu, Jiangning; Ein-Mozaffari, Farhad; Upreti, Simant

    2013-09-01

    Application of ozone technology to lignocellulosic biohydrogen production was explored with a barley straw. Ozone pretreatment effectively degraded the straw lignin and increased reducing sugar yield. A simultaneous enzyme hydrolysis and dark fermentation experiment was conducted using a mixed anaerobic consortium together with saccharification enzymes. Both untreated and ozonated samples produced hydrogen. Compared to the untreated group, hydrogen produced by the groups ozonated for 15, 30, 45 and 90 min increased 99%, 133%, 166% and 94%, respectively. Some inhibitory effect on hydrogen production was observed with the samples ozonated for 90 min, and the inhibition was on the fermentative microorganisms, not the saccharification enzymes. These results demonstrate that production of biohydrogen from barley straw, a lignocellulosic biomass, can be significantly enhanced by ozone pretreatment.

  14. Nutritional assessment of barley, talbina and their germinated products

    Directory of Open Access Journals (Sweden)

    Mohamed kamal El-Sayed Youssef

    2013-02-01

    Full Text Available Talbina is a food product with high potential applications as a functional food. Talbina was prepared from two barley varieties namely: Giza126 and Giza130 by adding whole barley flour to water (1:10 w/v and (1:5 w/v for germinated barley then heating at  80° C for 5 minutes with continuous stirring until reaching a porridge like texture. The present investigation was carried out in an attempt to clearly the nutritional assessment of talbina as a functional food. The study included the determination of gross chemical composition, caloric value, mineral composition, vitamins composition and the amino acids composition. Meanwhile, computation of the chemical scores (CS and A/E ratios were carried out for raw, germinated barley, talbina, germinated talbina and commercial talbina. The data revealed that protein content of the all raw studied and processing treatments ranged from 8.75-18.34g/100g on dry weight basis. Besides, the all treatments recorded rather slight decrease in crude fat content. Likewise, ash and carbohydrates ranged between 2.29-2.86 and 73.40-82.66%, respectively. Whereas crude fiber had an increase after treatments and it ranged from 3.83-4.37%. On the other hand by making talbina iron, manganese, copper and zinc increased especially zinc, which recorded higher value than that recommended daily. Furthermore, germinated talbina130 recorded the highest amounts of vitamins B2, Nicotinic acid, B6 and folic acid. Moreover, the present study indicated that phenylalanine was the highest essential amino acid, followed by leucine.

  15. Drivers of phosphorus uptake by barley following secondary resource application

    Directory of Open Access Journals (Sweden)

    Eva eBrod

    2016-05-01

    Full Text Available Minable rock phosphate is a finite resource. Replacing mineral phosphorus (P fertilizer with P-rich secondary resources is one way to manage P more efficiently, but the importance of physicochemical and microbial soil processes induced by secondary resources for plant P uptake are still poorly understood. Using radioactive labelling techniques, the fertilization effects of dairy manure, fish sludge, meat bone meal and wood ash were studied as P uptake by barley after 44 days and compared with those of water-soluble mineral P (MinP and an unfertilized control (NoP in a pot experiment with an agricultural soil containing little available P at two soil pH levels, approximately pH 5.3 (unlimed soil and pH 6.2 (limed soil. In a parallel incubation experiment, the effects of the secondary resources on physicochemical and microbial soil processes were studied. The results showed that the relative agronomic efficiency compared with MinP decreased in the order: manure ≥ fish sludge ≥ wood ash ≥ meat bone meal. The solubility of inorganic P in secondary resources was the main driver for P uptake by barley (Hordeum vulgare. The effects of secondary resources on physicochemical and microbial soil processes were of little overall importance. Application of organic carbon with manure resulted in microbial P immobilisation and decreased uptake by barley of P derived from the soil. On both soils, P uptake by barley was best explained by a positive linear relationship with the H2O + NaHCO3-soluble inorganic P fraction in fertilizers, or by a linear negative relationship with the HCl-soluble inorganic P fraction in fertilizers.

  16. Ethylene production and peroxidase activity in aphid-infested barley.

    Science.gov (United States)

    Argandoña, V H; Chaman, M; Cardemil, L; Muñoz, O; Zúñiga, G E; Corcuera, L J

    2001-01-01

    The purpose of this work was to investigate whether ethylene is involved in the oxidative and defensive responses of barley to the aphids Schizaphis graminum (biotype C) and Rhopalophum padi. The effect of aphid infestation on ethylene production was measured in two barley cultivars (Frontera and Aramir) that differ in their susceptibility to aphids. Ethylene evolution was higher in plants infested for 16 hr than in plants infested for 4 hr in both cultivars. Under aphid infestation, the production of ethylene was higher in cv. Frontera than in Aramir, the more aphid susceptible cultivar. Ethylene production also increases with the degree of infestation. Maximum ethylene evolution was detected after 16 hr when plants were infested with 10 or more aphids. Comparing the two species of aphids, Schizaphis graminum induced more ethylene evolution than Rhopalosiphum padi. Infestation with S. graminum increased hydrogen peroxide content and total soluble peroxidase activity in cv. Frontera, with a maximum level of H2O2 observed after 20 min of infestation and the maximum in soluble peroxidase activity after 30 min of infestation. When noninfested barley seedlings from cv. Frontera were exposed to ethylene, an increase in hydrogen peroxide and in total peroxidase activity was detected at levels similar to those of infested plants from cv. Frontera. When noninfested plants were treated with 40 ppm of ethylene, the maximum levels of H2O2 and soluble peroxidase activity were at 10 and 40 min, respectively. Ethylene also increased the activity of both cell-wall-bound peroxidases types (ionically and covalently bound), comparable with infestation. These results suggest that ethylene is involved in the oxidative responses of barley plants induced by infestation.

  17. Genomic Regions Influencing Seminal Root Traits in Barley

    Directory of Open Access Journals (Sweden)

    Hannah Robinson

    2016-03-01

    Full Text Available Water availability is a major limiting factor for crop production, making drought adaptation and its many component traits a desirable attribute of plant cultivars. Previous studies in cereal crops indicate that root traits expressed at early plant developmental stages, such as seminal root angle and root number, are associated with water extraction at different depths. Here, we conducted the first study to map seminal root traits in barley ( L.. Using a recently developed high-throughput phenotyping method, a panel of 30 barley genotypes and a doubled-haploid (DH population (ND24260 × ‘Flagship’ comprising 330 lines genotyped with diversity array technology (DArT markers were evaluated for seminal root angle (deviation from vertical and root number under controlled environmental conditions. A high degree of phenotypic variation was observed in the panel of 30 genotypes: 13.5 to 82.2 and 3.6 to 6.9° for root angle and root number, respectively. A similar range was observed in the DH population: 16.4 to 70.5 and 3.6 to 6.5° for root angle and number, respectively. Seven quantitative trait loci (QTL for seminal root traits (root angle, two QTL; root number, five QTL were detected in the DH population. A major QTL influencing both root angle and root number (/ was positioned on chromosome 5HL. Across-species analysis identified 10 common genes underlying root trait QTL in barley, wheat ( L., and sorghum [ (L. Moench]. Here, we provide insight into seminal root phenotypes and provide a first look at the genetics controlling these traits in barley.

  18. HvEXPB7, a novel β-expansin gene revealed by the root hair transcriptome of Tibetan wild barley, improves root hair growth under drought stress.

    Science.gov (United States)

    He, Xiaoyan; Zeng, Jianbin; Cao, Fangbin; Ahmed, Imrul Mosaddek; Zhang, Guoping; Vincze, Eva; Wu, Feibo

    2015-12-01

    Tibetan wild barley is a treasure trove of useful genes for crop improvement including abiotic stress tolerance, like drought. Root hair of single-celled structures plays an important role in water and nutrition uptake. Polyethylene-glycol-induced drought stress hydroponic/petri-dish experiments were performed, where root hair morphology and transcriptional characteristics of two contrasting Tibetan wild barley genotypes (drought-tolerant XZ5 and drought-sensitive XZ54) and drought-tolerant cv. Tadmor were compared. Drought-induced root hair growth was only observed in XZ5. Thirty-six drought tolerance-associated genes were identified in XZ5, including 16 genes specifically highly expressed in XZ5 but not Tadmor under drought. The full length cDNA of a novel β-expansin gene (HvEXPB7), being the unique root hair development related gene in the identified genes, was cloned. The sequence comparison indicated that HvEXPB7 carried both DPBB_1 and Pollon_allerg_1 domains. HvEXPB7 is predominantly expressed in roots. Subcellular localization verified that HvEXPB7 is located in the plasma membrane. Barley stripe mosaic virus induced gene silencing (BSMV-VIGS) of HvEXPB7 led to severely suppressed root hairs both under control and drought conditions, and significantly reduced K uptake. These findings highlight and confer the significance of HvEXPB7 in root hair growth under drought stress in XZ5, and provide a novel insight into the genetic basis for drought tolerance in Tibetan wild barley.

  19. Identification of reference genes for quantitative expression analysis of microRNAs and mRNAs in barley under various stress conditions.

    Science.gov (United States)

    Ferdous, Jannatul; Li, Yuan; Reid, Nicolas; Langridge, Peter; Shi, Bu-Jun; Tricker, Penny J

    2015-01-01

    For accurate and reliable gene expression analysis using quantitative real-time reverse transcription PCR (qPCR), the selection of appropriate reference genes as an internal control for normalization is crucial. We hypothesized that non-coding, small nucleolar RNAs (snoRNAs)would be stably expressed in different barley varieties and under different experimental treatments,in different tissues and at different developmental stages of plant growth and therefore might prove to be suitable reference genes for expression analysis of both microRNAs (miRNAs)and mRNAs. In this study, we examined the expression stability of ten candidate reference genes in six barley genotypes under five experimental stresses, drought, fungal infection,boron toxicity, nutrient deficiency and salinity. We compared four commonly used housekeeping genes; Actin (ACT), alpha-Tubulin (α-TUB), Glycolytic glyceraldehyde-3-phosphate dehydrogenase(GAPDH), ADP-ribosylation factor 1-like protein (ADP), four snoRNAs; (U18,U61, snoR14 and snoR23) and two microRNAs (miR168, miR159) as candidate reference genes. We found that ADP, snoR14 and snoR23 were ranked as the best of these candidates across diverse samples. Additionally, we found that miR168 was a suitable reference gene for expression analysis in barley. Finally, we validated the performance of our stable and unstable candidate reference genes for both mRNA and miRNA qPCR data normalization under different stress conditions and demonstrated the superiority of the stable candidates. Our data demonstrate the suitability of barley snoRNAs and miRNAs as potential reference genes form iRNA and mRNA qPCR data normalization under different stress treatments [corrected].

  20. Unique and Conserved Features of the Barley Root Meristem

    Directory of Open Access Journals (Sweden)

    Gwendolyn K. Kirschner

    2017-07-01

    Full Text Available Plant root growth is enabled by root meristems that harbor the stem cell niches as a source of progenitors for the different root tissues. Understanding the root development of diverse plant species is important to be able to control root growth in order to gain better performances of crop plants. In this study, we analyzed the root meristem of the fourth most abundant crop plant, barley (Hordeum vulgare. Cell division studies revealed that the barley stem cell niche comprises a Quiescent Center (QC of around 30 cells with low mitotic activity. The surrounding stem cells contribute to root growth through the production of new cells that are displaced from the meristem, elongate and differentiate into specialized root tissues. The distal stem cells produce the root cap and lateral root cap cells, while cells lateral to the QC generate the epidermis, as it is typical for monocots. Endodermis and inner cortex are derived from one common initial lateral to the QC, while the outer cortex cell layers are derived from a distinct stem cell. In rice and Arabidopsis, meristem homeostasis is achieved through feedback signaling from differentiated cells involving peptides of the CLE family. Application of synthetic CLE40 orthologous peptide from barley promotes meristem cell differentiation, similar to rice and Arabidopsis. However, in contrast to Arabidopsis, the columella stem cells do not respond to the CLE40 peptide, indicating that distinct mechanisms control columella cell fate in monocot and dicot plants.

  1. Genetic analysis of aluminum tolerance in Brazilian barleys

    Directory of Open Access Journals (Sweden)

    Minella Euclydes

    2002-01-01

    Full Text Available Aluminum (Al toxicity is a major factor limiting barley growth in acid soils, and genotypes with adequate level of tolerance are needed for improving barley adaptation in Brazil. To study the inheritance of Al tolerance in Brazilian barleys, cultivars Antarctica 1, BR 1 and FM 404 were crossed to sensitive Kearney and PFC 8026, and intercrossed. Parental, F1, F2 and F6 generations were grown in nutrient solution containing 0.03, 0.05 and 0.07 mM of Al and classified for tolerance by the root tip hematoxylin staining assay. Tolerant by sensitive F2 progenies segregated three tolerant to one sensitive, fitting the 3:1 ratio expected for a single gene. The F6 populations segregated one tolerant to one sensitive also fitting a monogenic ratio. The F2 seedlings from crosses among tolerant genotypes scored the same as the parents. Since the population size used would allow detection of recombination as low as 7%, the complete absence of Al sensitive recombinants suggests that tolerance in these cultivars is most probably, controlled by the same gene. Thus, the potential for improving Al tolerance through recombination of these genotypes is very low and different gene sources should be evaluated.

  2. Pysicochemical properties of Tibetan hull-less barley starch.

    Science.gov (United States)

    Yangcheng, Hanyu; Gong, Lingxiao; Zhang, Ying; Jane, Jay-lin

    2016-02-10

    Objectives of this study were to (1) determine the starch physicochemical properties of two commercial Tibetan hull-less barley varieties, Beiqing (BQ) and Kangqing (KQ); and (2) understand the relationship between unique properties of the starches, their structures, and impacts of growing conditions. The BQ barleys were grown at a location with lower temperature and less rainfall compared with the KQ barleys. The BQ starches showed significantly lower onset-gelatinization temperature (54.1-54.9 °C), larger gelatinization-temperature range (9.4-10.6 °C), and higher peak-viscosities (138.9-153.9RVU) than the KQ starches (55.1-56.1 °C, 7.4-8.8 °C, and 63.4-64.7RVU, respectively). After a treatment with 2% sodium-dodecyl-sulphate solution, the KQ starches showed substantially greater increases in peak viscosities than the BQ starches. Annealing of starch and enhanced amylose-lipid complex formation, resulting from higher growing temperature during the development of the KQ starches, likely contributed to the differences in thermal and pasting properties between the BQ and KQ starches.

  3. Unique and Conserved Features of the Barley Root Meristem.

    Science.gov (United States)

    Kirschner, Gwendolyn K; Stahl, Yvonne; Von Korff, Maria; Simon, Rüdiger

    2017-01-01

    Plant root growth is enabled by root meristems that harbor the stem cell niches as a source of progenitors for the different root tissues. Understanding the root development of diverse plant species is important to be able to control root growth in order to gain better performances of crop plants. In this study, we analyzed the root meristem of the fourth most abundant crop plant, barley (Hordeum vulgare). Cell division studies revealed that the barley stem cell niche comprises a Quiescent Center (QC) of around 30 cells with low mitotic activity. The surrounding stem cells contribute to root growth through the production of new cells that are displaced from the meristem, elongate and differentiate into specialized root tissues. The distal stem cells produce the root cap and lateral root cap cells, while cells lateral to the QC generate the epidermis, as it is typical for monocots. Endodermis and inner cortex are derived from one common initial lateral to the QC, while the outer cortex cell layers are derived from a distinct stem cell. In rice and Arabidopsis, meristem homeostasis is achieved through feedback signaling from differentiated cells involving peptides of the CLE family. Application of synthetic CLE40 orthologous peptide from barley promotes meristem cell differentiation, similar to rice and Arabidopsis. However, in contrast to Arabidopsis, the columella stem cells do not respond to the CLE40 peptide, indicating that distinct mechanisms control columella cell fate in monocot and dicot plants.

  4. The Metabolic Signature of Biomass Formation in Barley.

    Science.gov (United States)

    Ghaffari, Mohammad R; Shahinnia, Fahimeh; Usadel, Björn; Junker, Björn; Schreiber, Falk; Sreenivasulu, Nese; Hajirezaei, Mohammad R

    2016-09-01

    The network analysis of genome-wide transcriptome responses, metabolic signatures and enzymes' relationship to biomass formation has been studied in a diverse panel of 12 barley accessions during vegetative and reproductive stages. The primary metabolites and enzymes involved in central metabolism that determine the accumulation of shoot biomass at the vegetative stage of barley development are primarily being linked to sucrose accumulation and sucrose synthase activity. Interestingly, the metabolic and enzyme links which are strongly associated with biomass accumulation during reproductive stages are related to starch accumulation and tricarboxylic acid (TCA) cycle intermediates citrate, malate, trans-aconitate and isocitrate. Additional significant associations were also found for UDP glucose, ATP and the amino acids isoleucine, valine, glutamate and histidine during the reproductive stage. A network analysis resulted in a combined identification of metabolite and enzyme signatures indicative for grain weight accumulation that was correlated with the activity of ADP-glucose pyrophosphorylase (AGPase), a rate-limiting enzyme involved in starch biosynthesis, and with that of alanine amino transferase involved in the synthesis of storage proteins. We propose that the mechanism related to vegetative and reproductive biomass formation vs. seed biomass formation is being linked to distinct fluxes regulating sucrose, starch, sugars and amino acids as central resources. These distinct biomarkers can be used to engineer biomass production and grain weight in barley.

  5. Effects of ethylene on root elongation in barley and rice

    Energy Technology Data Exchange (ETDEWEB)

    John, A.; Hall, M.A.; Crossett, R.N.

    1972-01-01

    Experiments were performed to determine the effects of rice and barley to growth inhibition by ethylene. The mechanism of growth inhibition was investigated at the cellular level and a detailed comparison was made between the responses of the two species. The following measurements were made on intact plants in short (up to 200 minutes), medium (up to 3 days) or long (up to 10 days) experiments: the rate of extension growth of main root axes; the final cell length and number of elongating cells produced; and the extensibility of the apical growing region. Results indicate that the effects of ethylene on the elongation of roots of rice and barley plants are different. In barley there is a rapid inhibition of root extension which persists with prolonged exposure to the gas but with little effect on the production of growing cells. However, rice roots exhibit no rapid growth inhibition response, but a reduction does occur after prolonged exposure. Low concentrations promote extension rice roots. The inhibition of root growth is reflected in a reduced extensibility of the apical growing region.

  6. Alleviation of Al Toxicity in Barley by Addition of Calcium

    Institute of Scientific and Technical Information of China (English)

    GUO Tian-rong; CHEN Ying; ZHANG Yan-hua; JIN Ye-fei

    2006-01-01

    The potential mechanism by which Ca alleviates Al toxicity was investigated in barley seedlings. It was found that 100 μM Al-alone treatment inhibited barley plant growth and thereby reduced shoot height and root length, and dry weights of root, shoot and leaf; promoted Al accumulation but inhibited Ca absorption in plant tissues; and induced an increase in the activities of superoxide dismutase (SOD), catalase (CAT), and peroxidase (POD) and in the level of lipid peroxidation (MDA content) in leaves. Except for the increase in Ca concentration in plant tissues, treatment with 0.5 mM Ca in the absence of Al had less effect on the above-mentioned parameters, compared with the control. Addition of Ca efficiently reduced Al toxicity, which is reflected by the promotion of plant growth, reduction in Al concentration and MDA content,increase in Ca concentration and in SOD, POD, and CAT activities compared with the Al-alone-treatment; with increase in Ca level (3.0 mM), the ameliorative effect became more dominant. This indicated that the alleviation of aluminum toxicity in barley seedlings with Ca supplementation could be associated with less absorption of Al and the enhancement of the protective ability of the cell because of increased activity of the antioxidative enzyme.

  7. Nitrate Uptake into Barley (Hordeum vulgare) Plants 1

    Science.gov (United States)

    Deane-Drummond, Celia E.; Glass, Anthony D. M.

    1982-01-01

    Evidence is presented that chlorate is an extremely good analog for nitrate during nitrate uptake by intact barley (Hordeum vulgare cv. Fergus) roots. The depletion of ClO3− or NO3− from uptake media over 2 to 6 hours by seedlings was found to be dependent on combined NO3− plus ClO3− concentrations, and total anion uptake was equivalent at different NO3−/ClO3− ratios. After loading barley seedlings with 36ClO3− for 6 hours, kinetic parameters were derived from the analysis of efflux of [36Cl] chlorate into unlabeled solution. On the basis of this analysis, the half times for exchange for the cytoplasmic and vacuolar phases were 17 minutes and 20 hours, respectively. Data pooled from a number of different experiments were used to calculate kinetic constants (Km and Vmax) for 36ClO3− influx into barley roots at different external ClO3−/NO3− ratios, using short (10 minutes) influx times. There appeared to be no discrimination by the root cells between ClO3− and NO3−. Lineweaver-Burk analysis of the interaction between nitrate and chlorate were characteristic of competitive inhibition at low nitrate concentrations (0-0.5 mm). At higher concentrations, in the range of >1 mm, similar interactions between these ions were evident. PMID:16662478

  8. Screening of the aerodynamic and biophysical properties of barley malt

    Science.gov (United States)

    Ghodsvali, Alireza; Farzaneh, Vahid; Bakhshabadi, Hamid; Zare, Zahra; Karami, Zahra; Mokhtarian, Mohsen; Carvalho, Isabel. S.

    2016-10-01

    An understanding of the aerodynamic and biophysical properties of barley malt is necessary for the appropriate design of equipment for the handling, shipping, dehydration, grading, sorting and warehousing of this strategic crop. Malting is a complex biotechnological process that includes steeping; germination and finally, the dehydration of cereal grains under controlled temperature and humidity conditions. In this investigation, the biophysical properties of barley malt were predicted using two models of artificial neural networks as well as response surface methodology. Stepping time and germination time were selected as the independent variables and 1 000 kernel weight, kernel density and terminal velocity were selected as the dependent variables (responses). The obtained outcomes showed that the artificial neural network model, with a logarithmic sigmoid activation function, presents more precise results than the response surface model in the prediction of the aerodynamic and biophysical properties of produced barley malt. This model presented the best result with 8 nodes in the hidden layer and significant correlation coefficient values of 0.783, 0.767 and 0.991 were obtained for responses one thousand kernel weight, kernel density, and terminal velocity, respectively. The outcomes indicated that this novel technique could be successfully applied in quantitative and qualitative monitoring within the malting process.

  9. Transcription elongation

    Science.gov (United States)

    Imashimizu, Masahiko; Shimamoto, Nobuo; Oshima, Taku; Kashlev, Mikhail

    2014-01-01

    Regulation of transcription elongation via pausing of RNA polymerase has multiple physiological roles. The pausing mechanism depends on the sequence heterogeneity of the DNA being transcribed, as well as on certain interactions of polymerase with specific DNA sequences. In order to describe the mechanism of regulation, we introduce the concept of heterogeneity into the previously proposed alternative models of elongation, power stroke and Brownian ratchet. We also discuss molecular origins and physiological significances of the heterogeneity. PMID:25764114

  10. Observed and predicted changes over eight years in frequency of barley powdery mildew avirulent to spring barley in France and Denmark

    DEFF Research Database (Denmark)

    Bousset, L.; Hovmøller, M.S.; Caffier, V.

    2002-01-01

    Aerial populations of Blumeria graminis f.sp. hordei were studied in two French and two Danish regions from 1991 to 1999, at a time of year when only winter barley was present. A high frequency of genotypes not able to grow on the spring-sown crop of the previous growing season (denoted 'spring-a...... be predicted from the proportion of the barley area sown with winter barley, the use of resistance genes in the cultivars, the initial composition of the pathogen population, and hitch-hiking due to gametic disequilibria....

  11. Removal and isolation of germ-rich fractions from hull-less barley using a fitzpatrick comminuting mill

    Science.gov (United States)

    A process was developed to produce a germ-enriched fraction from hull-less barley using a Fitzpatrick Comminuting Mill followed by sieving. Hulled and hull-less barleys contain 1.5-2.5% oil and, like wheat kernels which contain wheat germ oil, much of the oil in barley kernels is in the germ fracti...

  12. Transcript profile of barley aleurone differs between total and polysomal RNAs: Implications for proteome modeling

    Science.gov (United States)

    Microarray analysis of mRNA populations is routinely conducted with total RNA. However, such analyses would probably represent the translated genome (proteome) more accurately if conducted with polysomal RNA. In order to determine whether significant variation occurs between these two populations,...

  13. Barley metallothioneins: MT3 and MT4 are localized in the grain aleurone layer and show differential zinc binding.

    Science.gov (United States)

    Hegelund, Josefine Nymark; Schiller, Michaela; Kichey, Thomas; Hansen, Thomas Hesselhøj; Pedas, Pai; Husted, Søren; Schjoerring, Jan Kofod

    2012-07-01

    Metallothioneins (MTs) are low-molecular-weight, cysteine-rich proteins believed to play a role in cytosolic zinc (Zn) and copper (Cu) homeostasis. However, evidence for the functional properties of MTs has been hampered by methodological problems in the isolation and characterization of the proteins. Here, we document that barley (Hordeum vulgare) MT3 and MT4 proteins exist in planta and that they differ in tissue localization as well as in metal coordination chemistry. Combined transcriptional and histological analyses showed temporal and spatial correlations between transcript levels and protein abundance during grain development. MT3 was present in tissues of both maternal and filial origin throughout grain filling. In contrast, MT4 was confined to the embryo and aleurone layer, where it appeared during tissue specialization and remained until maturity. Using state-of-the-art speciation analysis by size-exclusion chromatography inductively coupled plasma mass spectrometry and electrospray ionization time-of-flight mass spectrometry on recombinant MT3 and MT4, their specificity and capacity for metal ion binding were quantified, showing a strong preferential Zn binding relative to Cu and cadmium (Cd) in MT4, which was not the case for MT3. When complementary DNAs from barley MTs were expressed in Cu- or Cd-sensitive yeast mutants, MT3 provided a much stronger complementation than did MT4. We conclude that MT3 may play a housekeeping role in metal homeostasis, while MT4 may function in Zn storage in developing and mature grains. The localization of MT4 and its discrimination against Cd make it an ideal candidate for future biofortification strategies directed toward increasing food and feed Zn concentrations.

  14. High capacity of plant regeneration from callus of interspecific hybrids with cultivated barley (Hordeum vulgare L.)

    DEFF Research Database (Denmark)

    Bagger Jørgensen, Rikke; Jensen, C. J.; Andersen, B.

    1986-01-01

    Callus was induced from hybrids between cultivated barley (Hordeum vulgare L. ssp. vulgare) and ten species of wild barley (Hordeum L.) as well as from one backcross line ((H. lechleri .times. H. vulgare) .times. H. vulgare). Successful callus induction and regeneration of plants were achieved from...

  15. Quantitative Analysis of the Early Powdery Mildew Infection Stages on Resistant Barley Genotypes

    DEFF Research Database (Denmark)

    Andersen, J. B.; Torp, J.

    1986-01-01

    A classification system was developed, that allowed quantification of the leaf surface development of the barley powdery mildew fungus on barley. An experiment with Manchuria and Pallas as susceptible controls and 4 resistance gene each represented by three lines with different gene backgrounds s...

  16. A promising low beta-glucan barley mutation of m351 for better bioethanol production use

    Science.gov (United States)

    Bioethanol is an important liquid fuel complement. Barley is an alternative raw material for ethanol production and its byproduct is a nutritious feed. The barley m351mutant line, which has a mutation for low beta-glucan content, was tested for its ethanol production efficiency and feed fraction qua...

  17. Localization to Chromosomes of Structural Genes for the Major Protease Inhibitors of Barley Grains

    DEFF Research Database (Denmark)

    Hejgaard, Jørn; Bjørn, S.E.; Nielsen, Gunnar Gissel

    1984-01-01

    Wheat-barley chromosome addition lines were compared by isoelectric focusing of protein extracts to identify chromosomes carrying loci for the major immunochemically distinct protease inhibitors of barley grains. Structural genes for the following inhibitors were localized: an inhibitor of both...

  18. Determinants of barley grain yield in a wide range of Mediterranean environments

    NARCIS (Netherlands)

    Francia, E.; Tondelli, A.; Rizza, F.; Badeck, F.W.; Li Destri Nicosia, O.; Akar, T.; Grando, S.; Al-Yassin, A.; Benkelkacim, A.; Thomas, W.T.B.; Eeuwijk, van F.A.; Romagosa, I.; Stanca, A.M.; Pechionni, N.

    2011-01-01

    Barley grain yield in rainfed Mediterranean regions can be largely influenced by terminal drought events. In this study the ecophysiological performance of the ‘Nure’ (winter) × ‘Tremois’ (spring) barley mapping population (118 Doubled Haploids, DHs) was evaluated in a multi-environment trial of eig

  19. Microarray Analysis of Late Response to Boron Toxicity in Barley (Hordeum vulgare L.) Leaves

    NARCIS (Netherlands)

    Oz, M.T.; Yilmaz, R.; Eyidogan, F.; Graaff, de L.H.; Yucel, M.; Oktem, H.A.

    2009-01-01

    DNA microarrays, being high-density and high-throughput, allow quantitative analyses of thousands of genes and their expression patterns in parallel. In this study, Barley1 GereChip was used to investigate transcriptome changes associated with boron (B) toxicity in a sensitive barley cultivar (Horde

  20. USE OF BARLEY OZONIZED GRAIN AND PROBIOTICS FOR INCREASING BIOLOGICAL VALUE OF POULTRY

    OpenAIRE

    Temiraev R. B.; Baeva A. A.; Bazaeva L. M.; Vityuk L. A.

    2014-01-01

    The article presents experimental data indicating that for the optimization of biological and food processing meat value at risk of aflatoxicosis in feeding chicken-broilers with barley-wheat and sunflower type one should include hullless barley grain at exposure of ozone of 3.0 hour complex with Bifidumbacterinum probiotics

  1. Transformation of Barley (Hordeum vulgar L.) by Agrobacterium tumefasciens Infection of In Vitro Cultured Ovules

    DEFF Research Database (Denmark)

    Holme, Inger Bæksted; Brinch-Pedersen, Henrik; Lange, Mette;

    2012-01-01

    Agrobacterium-mediated transformation of in vitro cultured barley ovules is an attractive alternative to well-established barley transformation methods of immature embryos. The ovule culture system can be used for transformation with and without selection and has successfully been used to transform...

  2. Integration of weed management and tillage practices in spring barley production

    Science.gov (United States)

    Spring barley can be used to diversify and intensify winter wheat-based production systems in the U.S. Pacific Northwest, but the response of barley to conservation tillage systems, which are needed to reduce the risk of soil erosion, is not well documented. The objective of this study was to descri...

  3. Influence of alkali catalyst on product yield and properties via hydrothermal liquefaction of barley straw

    DEFF Research Database (Denmark)

    Zhu, Z.; Toor, Saqib; Rosendahl, Lasse

    2015-01-01

    Barley straw was successfully converted to bio-crude by hydrothermal liquefaction at temperature of 280 e400 C using an alkali catalyst (K2CO3) in our previous work, and the maximum bio-crude yield was obtained at 300 C. This paper extends previous work on studying liquefaction behavior of barley...

  4. Demarcation of mutant-carrying regions in barley plants after ethylmethane-sulfonate seed treatment

    DEFF Research Database (Denmark)

    Jacobsen, P.

    1966-01-01

    The branching pattern of the barley plant is analyzed and the anatomical structure of the resting barley embryo studied in longitudinal and cross-sections as well as by dissection techniques. The frequency and distribution of ethylmethane-sulfonate induced chloroplast and morphological seedling...

  5. Characterizing the Pyrenophora teres f. maculata – barley interaction using pathogen genetics

    Science.gov (United States)

    Pyrenophora teres f. maculata is the cause of the foliar disease spot form net blotch (SFNB) on barley. To evaluate pathogen genetics underlying the P. teres f. maculata- barley interaction, we developed a 105-progeny population by crossing two globally diverse isolates, one from North Dakota, USA a...

  6. Quantifying relationships between rooting traits and water uptake under drought in Mediterranean barley and durum wheat

    Institute of Scientific and Technical Information of China (English)

    Pedro Carvalho; Sayed AzamAli; M. John Foulkes

    2014-01-01

    In Mediterranean regions drought is the major factor limiting spring barley and durum wheat grain yields. This study aimed to compare spring barley and durum wheat root and shoot responses to drought and quantify relationships between root traits and water uptake under terminal drought. One spring barley (Hordeum vulgare L. cv. Rum) and two durum wheat Mediterranean cultivars (Triticum turgidum L. var durum cvs Hourani and Karim) were examined in soil-column experi-ments under wel watered and drought conditions. Root system architecture traits, water uptake, and plant growth were measured. Barley aerial biomass and grain yields were higher than for durum wheat cultivars in wel watered conditions. Drought decreased grain yield more for barley (47%) than durum wheat (30%, Hourani). Root-to-shoot dry matter ratio increased for durum wheat under drought but not for barley, and root weight increased for wheat in response to drought but decreased for barley. The critical root length density (RLD) and root volume density (RVD) for 90%available water capture for wheat were similar to (cv. Hourani) or lower than (cv. Karim) for barley depending on wheat cultivar. For both species, RVD accounted for a slightly higher proportion of phenotypic variation in water uptake under drought than RLD.

  7. A comparison of energy use and productivity of wheat and barley (case study

    Directory of Open Access Journals (Sweden)

    S.M. Ziaei

    2015-01-01

    Full Text Available Comparison of energy productivity of different crops can be used as an effective tool to prioritize crops planting in each area. This study was conducted in order to compare wheat and barley farms of Sistan and Baluchestan province in Iran in relation to various aspects of energy consumption at 2009. 100 wheat and 100 barley fields were selected randomly from main 11 cities in the studied region. Input data and yield of wheat and barley fields were collected in the form of questionnaires in a face-to-face interview. Results showed that total energy inputs of wheat and barley fields were 32492.97 and 25655.81 MJ ha−1, respectively. Total energy outputs for wheat and barley fields were 48517.24 and 49800.87 MJ ha−1, respectively. Based on these results the amount of energy use efficiency for wheat and barley fields were 1.49 and 1.94, respectively, and the amount of energy productivity for mentioned fields were 0.056 and 0.066. The share of renewable energy as one of the sustainability indexes of agricultural systems was 19.60 for wheat and 14.60 for barley fields. Therefore, it seems that barley production is more efficient from various aspects of energy consumption rather than wheat in the studied region.

  8. Dilute-acid pretreatment of barley straw for biological hydrogen production using Caldicellulosiruptor saccharolyticus

    NARCIS (Netherlands)

    Panagiotopoulos, I.A.; Bakker, R.R.C.; Vrije, de G.J.; Claassen, P.A.M.; Koukios, E.G.

    2012-01-01

    The main objective of this study was to use the fermentability test to investigate the feasibility of applying various dilute acids in the pretreatment of barley straw for biological hydrogen production. At a fixed acid loading of 1% (w/w dry matter) 28-32% of barley straw was converted to soluble m

  9. Lysine Rich Proteins in the Salt-Soluble Protein Fraction of Barley

    DEFF Research Database (Denmark)

    Ingversen, J.; Køie, B.

    1973-01-01

    Fractionation of the protein complex from Emir barley showed that the salt-soluble fraction accounts for 44% of the total lysine content but only for 2.......Fractionation of the protein complex from Emir barley showed that the salt-soluble fraction accounts for 44% of the total lysine content but only for 2....

  10. Compositional equivalence of barleys differing only in low and normal phytate levels

    Science.gov (United States)

    Recent breeding advances have led to the development of several barley lines with reduced levels of phytate. One of them was further developed and released as a hulless low phytate cultivar (Clearwater). Because barley oil contains high levels of tocotrienols and other functional lipids, we conduc...

  11. Investigation of the effect of nitrogen on severity of Fusarium Head Blight in barley

    DEFF Research Database (Denmark)

    Yang, Fen; Jensen, J.D.; Spliid, N.H.;

    2010-01-01

    The effect of nitrogen on Fusarium Head Blight (FHB) in a susceptible barley cultivar was investigated using gel-based proteomics. Barley grown with either 15 or 100 kg ha(-1)N fertilizer was inoculated with Fusarium graminearum (Fg). The storage protein fraction did not change significantly...

  12. Immunomodulatory properties of oat and barley β-glucan populations on bone marrow derived dendritic cells

    NARCIS (Netherlands)

    Rosch, Christiane; Meijerink, Marjolein; Delahaije, Roy J.B.M.; Taverne, Nico; Gruppen, Harry; Wells, Jerry M.; Schols, Henk A.

    2016-01-01

    Specific structures of oat and barley β(1,3)(1,4)-glucans induced different in vitro immunomodulatory effects in bone marrow derived dendritic cells (BMDC) from TLR2/4 knock out mice. All barley β-glucan fractions induced larger amounts of cytokines in BMDCs than their oat equivalents. The particula

  13. Barley (Hordeum vulgare L.) cysteine proteases: heterologous expression, purification and characterization

    DEFF Research Database (Denmark)

    Rosenkilde, Anne Lind; Dionisio, Giuseppe; Holm, Preben Bach

    2011-01-01

    During germination of barley seeds, mobilization of protein is essential and cysteine proteases accounts for more than 90 % of the total proteolytic activity in the degradation of barley seed storage proteins. Cysteine proteases exist as pro-enzyme and is activated through reduction of the active...

  14. Differential levels of mite infestation of wheat and barley in Czech grain stores

    Institute of Scientific and Technical Information of China (English)

    Jan Hubert; Zuzana Kucerova; Radek Aulicky; Marta Nesvoma; Vaclav Stejskal

    2009-01-01

    While mites are able to utilize numerous food sources, the suitability of the food strongly influences population growth. The different suitabilities of various stored agricultural products will thus affect the level of infestation. In this study, we compared field mite infestation rates in two stored cereals: wheat and barley. We analyzed mite abundance, frequency and species composition in samples of grain obtained from 79 selected Czech grain stores. Stored barley seemed to be more vulnerable to mite attack than wheat, as we consistently found more infested samples, more species and higher mean and median mite abundance per sample in barley as compared to wheat. The mean mite abundance per sample were 55 and 506 individuals for wheat and barley, respectively. In barley, 10% of samples exceeded allergen risk threshold (i.e., 1 000 individuals per kg of grain). Altogether, 25 species were identified from approximately 35 000 individuals. The most frequently identified species were the same in wheat and barley, that is, Tydeus interruptus Sig Thor, Acarus siro L., Tarsonemus granarius Lindquist, Lepidoglyphus destructor (Schrank) and 1),rophagusputrescentiae (Schrank). Based on principal components analysis, we found a closer association of T. interruptus, T. putrescentiae, L. destructor and Cheyletus eruditus (Schrank) with barley samples, corresponding to the high frequency and abundance values of these mites. The probable reasons for the higher infestation, especially mite abundance in barley, are discussed in relation to the higher proportion of crushed parts, which may release favorable nutrient sources and amplify the abundance values.

  15. Dryland malt barley yield and quality affected by tillage, cropping sequence, and nitrogen fertilization

    Science.gov (United States)

    Information is needed on the effects of management practices on dryland malt barley (Hordeum vulgaris L.) and pea (Pisum sativum L.) yields and quality. We evaluated the effects of tillage and cropping sequence combination and N fertilization on dryland malt barley and pea yields, grain characterist...

  16. Malt barley yield and quality affected by irrigation, tillage, crop rotation, and nitrogen fertilization

    Science.gov (United States)

    Little is known about the comparison of management practices on malt barley (Hordeum vulgare L.) yield and quality in irrigated and non-irrigated cropping systems. We evaluated the effects of irrigation, tillage, cropping system, and N fertilization on malt barley yield and quality in a sandy loam s...

  17. Early changes in protein expression of barley following inoculation with erysiphe graminis f. sp. hordei

    Energy Technology Data Exchange (ETDEWEB)

    Simons, S.P.; Somerville, S.C. (Michigan State Univ., East Lansing (USA))

    1989-04-01

    Erysiphe graminis f. sp. hordei is an obligate pathogen of barley causing the powdery mildew disease. Resistance to this disease is the product of a highly specific interaction between barley lines with specific resistance alleles and pathogen races carrying complementary avirulence alleles. Using congenic barley lines which differ at the M1-a disease reaction locus, we hope to define the early molecular events of this interaction. Accordingly, resistant and susceptible barley seedlings were labelled with {sup 35}S-methionine and examined by two-dimensional electrophoresis at two hour intervals following inoculation. Infection related changes were observed with both isolines during the four to twelve hour time period. Additional differences existed constitutively between the barley lines. These differences have been quantified. Further characterization of these proteins will yield useful markers for events preceding or coinciding with cytological responses any may lead to identification and cloning of the M1-a gene.

  18. Efficacy of imidacloprid for control of cereal leaf beetle (Coleoptera: Chrysomelidae) in barley.

    Science.gov (United States)

    Tharp, C; Blodgett, S L; Johnson, G D

    2000-02-01

    The toxicity of imidacloprid to the cereal leaf beetle, Oulema melanopus (L.), was measured under laboratory and field conditions. Insect mortality and plant damage were determined from artificial and natural infestations of O. melanopus applied to various growth stages of barley. All rates of imidacloprid formulated and applied as a seed treatment caused >90% mortality to cereal leaf beetle larvae when barley was infested with eggs at the 4-leaf stage, but were ineffective when barley was infested with eggs at the early tillering or flag-leaf stages of barley. This window of susceptibility influenced results obtained in field trials where peak larval emergence did not occur until the early tillering stage of barley. The resulting mortality in plants from treated seeds never exceeded 40% in the field. Foliar imidacloprid, however, caused >90% mortality in the field, and may be another option in the management of the cereal leaf beetle.

  19. Effects of processing technologies combined with cell wall degrading enzymes on in vitro degradability of barley.

    Science.gov (United States)

    de Vries, S; Pustjens, A M; Schols, H A; Hendriks, W H; Gerrits, W J J

    2012-12-01

    Effects of processing technologies and cell wall degrading enzymes on in vitro degradation of barley were tested in a 5 × 2 factorial arrangement: 5 technologies (unprocessed, wet-milling, extrusion, autoclaving, and acid-autoclaving), with or without enzymes. Upper gastrointestinal tract digestion (Boisen incubation) and large intestinal fermentation (gas production technique) were simulated in duplicate. All technologies increased digestion of DM (13 to 43% units) and starch (22 to 51% units) during Boisen incubation, compared with the unprocessed control (P starch (≈ 20% units), and CP (≈ 10% units) in unprocessed and autoclaved barley (P starch present in the Boisen residues. In conclusion, wet-milling, extrusion, and acid-autoclaving improved in vitro starch and CP digestion in barley, which is related to the cell wall matrix disruption. Addition of xylanases and β-glucanases improved in vitro starch and CP digestion only in unprocessed barley or barley poorly affected by processing.

  20. Targeted modification of storage protein content resulting in improved amino acid composition of barley grain

    DEFF Research Database (Denmark)

    Sikdar, Md. Shafiqul Islam; Bowra, S; Schmidt, Daiana;

    2016-01-01

    family members. Analysis of the AA composition of the transgenic lines showed that the level of essential amino acids increased with a concomitant reduction in proline and glutamine. Both the barley C-hordein and wheat ω-gliadin genes proved successful for RNAi-gene mediated suppression of barley C......C-hordein in barley and ω-gliadins in wheat are members of the prolamins protein families. Prolamins are the major component of cereal storage proteins and composed of non-essential amino acids (AA) such as proline and glutamine therefore have low nutritional value. Using double stranded RNAi...... silencing technology directed towards C-hordein we obtained transgenic barley lines with up to 94.7 % reduction in the levels of C-hordein protein relative to the parental line. The composition of the prolamin fraction of the barley parental line cv. Golden Promise was resolved using SDS...

  1. Assessment of genetic diversity among barley cultivars and breeding lines adapted to the US Pacific Northwest, and its implications in breeding barley for imidazolinone-resistance.

    Directory of Open Access Journals (Sweden)

    Sachin Rustgi

    Full Text Available Extensive application of imidazolinone (IMI herbicides had a significant impact on barley productivity contributing to a continuous decline in its acreage over the last two decades. A possible solution to this problem is to transfer IMI-resistance from a recently characterized mutation in the 'Bob' barley AHAS (acetohydroxy acid synthase gene to other food, feed and malting barley cultivars. We focused our efforts on transferring IMI-resistance to barley varieties adapted to the US Pacific Northwest (PNW, since it comprises ∼23% (335,000 ha of the US agricultural land under barley production. To effectively breed for IMI-resistance, we studied the genetic diversity among 13 two-rowed spring barley cultivars/breeding-lines from the PNW using 61 microsatellite markers, and selected six barley genotypes that showed medium to high genetic dissimilarity with the 'Bob' AHAS mutant. The six selected genotypes were used to make 29-53 crosses with the AHAS mutant and a range of 358-471 F1 seeds were obtained. To make informed selection for the recovery of the recipient parent genome, the genetic location of the AHAS gene was determined and its genetic nature assessed. Large F2 populations ranging in size from 2158-2846 individuals were evaluated for herbicide resistance and seedling vigor. Based on the results, F3 lines from the six most vigorous F2 genotypes per cross combination were evaluated for their genetic background. A range of 20%-90% recovery of the recipient parent genome for the carrier chromosome was observed. An effort was made to determine the critical dose of herbicide to distinguish between heterozygotes and homozygotes for the mutant allele. Results suggested that the mutant can survive up to the 10× field recommended dose of herbicide, and the 8× and 10× herbicide doses can distinguish between the two AHAS mutant genotypes. Finally, implications of this research in sustaining barley productivity in the PNW are discussed.

  2. Effects of Pleurotus sapidus (Schulzer Sacc. treatment on nutrient composition and ruminal fermentability of barley straw, barley rootless, and a mixture of the two

    Directory of Open Access Journals (Sweden)

    Alfonso Soto-Sánchez

    2015-09-01

    Full Text Available Barley (Hordeum vulgare L., and its derivatives, ranks fourth in cereal production worldwide, and the Pleurotus species are among the most efficient types of lignocellulolytic white-rot fungi. The objective of this research study was to evaluate the degradation of barley straw and barley rootless with an inoculum of Pleurotus to improve their nutritional availability as a food source for ruminants. Two experiments were conducted; the first was to determine the effects of inoculation of Pleurotus sapidus (Schulzer Sacc. (PS in barley straw (BS, barley rootless (BR, and a 75% BS and 25% BR mixture (M. The second experiment was to evaluate the same substrates in vitro ruminal fermentation. Barley rootless had better organic matter (OM degradability than BS after 24 h incubation with PS. The protein content in BR was higher than in BS (P < 0.01. Enzyme activities had the highest concentration from the start of fermentation, and in vitro dry matter (DM degradability in BS and BR increased after 8 and 24 d fermentation, respectively (P < 0.05. Propionic acid concentration was enhanced after 16 d fermentation in BR (P < 0.5. The use of BS combined with BR exhibited better fermentation; this result provides relevant information for integrating BR with other substrates and improving the use of straw, which can be more nutritionally available for feeding ruminants.

  3. Identification and selection of normalization controls for quantitative transcript analysis in Blumeria graminis.

    Science.gov (United States)

    Pennington, Helen G; Li, Linhan; Spanu, Pietro D

    2016-05-01

    The investigation of obligate biotrophic pathogens, for example Blumeria graminis, presents a number of challenges. The sensitivity of many assays is reduced because of the presence of host material. Furthermore, the fungal structures inside and outside of the plant possess very different characteristics. Normalization genes are used in quantitative real-time polymerase chain reaction (qPCR) to compensate for changes as a result of the quantity and quality of template material. Such genes are used as references against which genes of interest are compared, enabling true quantification. Here, we identified six potential B. graminis and five barley genes for qPCR normalization. The relative changes in abundance of the transcripts were assayed across an infection time course in barley epidermis, in B. graminis epiphytic structures and haustoria. The B. graminis glyceraldehyde-3-phosphate dehydrogenase (GAPDH), actin (ACT) and histone 3 (H3) genes and the barley GAPDH, ubiquitin (UBI) and α-tubulin 2B (TUBA2B) genes were optimal normalization controls for qPCR during the infection cycle. These genes were then used for normalization in the quantification of the members of a Candidate Secreted Effector Protein (CSEP) family 21, a conidia-specific gene and barley genes encoding putative interactors of CSEP0064. The analysis demonstrates the importance of identifying which reference genes are appropriate for each investigation.

  4. Long-term reconstitution with water of dry barley before feeding increases phosphorus digestibility in pigs1

    DEFF Research Database (Denmark)

    Ton Nu, Mai Anh; Blaabjerg, Karoline; Poulsen, Hanne Damgaard

    2016-01-01

    compared to dry stored barley on apparent total tract digestibility (ATTD) of P in pigs. Dry barley (12% moisture; total P, 3.3 g/kg DM; phytate P, 1.7 g/kg DM) was rolled and stored directly or reconstituted with water to produce rolled barley with 35% moisture that was stored in air-tight conditions...... numerically more soluble P (2.56 g/kg DM) and less phytate P (0.93 g/kg DM) than dry barley (0.78 and 1.7 g/kg DM). Pigs fed the reconstituted barley diet showed an increase in P absorption (54%, P

  5. New starch phenotypes produced by TILLING in barley.

    Directory of Open Access Journals (Sweden)

    Francesca Sparla

    Full Text Available Barley grain starch is formed by amylose and amylopectin in a 1:3 ratio, and is packed into granules of different dimensions. The distribution of granule dimension is bimodal, with a majority of small spherical B-granules and a smaller amount of large discoidal A-granules containing the majority of the starch. Starch granules are semi-crystalline structures with characteristic X-ray diffraction patterns. Distinct features of starch granules are controlled by different enzymes and are relevant for nutritional value or industrial applications. Here, the Targeting-Induced Local Lesions IN Genomes (TILLING approach was applied on the barley TILLMore TILLING population to identify 29 new alleles in five genes related to starch metabolism known to be expressed in the endosperm during grain filling: BMY1 (Beta-amylase 1, GBSSI (Granule Bound Starch Synthase I, LDA1 (Limit Dextrinase 1, SSI (Starch Synthase I, SSIIa (Starch Synthase IIa. Reserve starch of nine M3 mutant lines carrying missense or nonsense mutations was analysed for granule size, crystallinity and amylose/amylopectin content. Seven mutant lines presented starches with different features in respect to the wild-type: (i a mutant line with a missense mutation in GBSSI showed a 4-fold reduced amylose/amylopectin ratio; (ii a missense mutations in SSI resulted in 2-fold increase in A:B granule ratio; (iii a nonsense mutation in SSIIa was associated with shrunken seeds with a 2-fold increased amylose/amylopectin ratio and different type of crystal packing in the granule; (iv the remaining four missense mutations suggested a role of LDA1 in granule initiation, and of SSIIa in determining the size of A-granules. We demonstrate the feasibility of the TILLING approach to identify new alleles in genes related to starch metabolism in barley. Based on their novel physicochemical properties, some of the identified new mutations may have nutritional and/or industrial applications.

  6. Reactive oxygen species are involved in gibberellin/abscisic acid signaling in barley aleurone cells.

    Science.gov (United States)

    Ishibashi, Yushi; Tawaratsumida, Tomoya; Kondo, Koji; Kasa, Shinsuke; Sakamoto, Masatsugu; Aoki, Nozomi; Zheng, Shao-Hui; Yuasa, Takashi; Iwaya-Inoue, Mari

    2012-04-01

    Reactive oxygen species (ROS) act as signal molecules for a variety of processes in plants. However, many questions about the roles of ROS in plants remain to be clarified. Here, we report the role of ROS in gibberellin (GA) and abscisic acid (ABA) signaling in barley (Hordeum vulgare) aleurone cells. The production of hydrogen peroxide (H2O2), a type of ROS, was induced by GA in aleurone cells but suppressed by ABA. Furthermore, exogenous H2O2 appeared to promote the induction of α-amylases by GA. In contrast, antioxidants suppressed the induction of α-amylases. Therefore, H2O2 seems to function in GA and ABA signaling, and in regulation of α-amylase production, in aleurone cells. To identify the target of H2O2 in GA and ABA signaling, we analyzed the interrelationships between H2O2 and DELLA proteins Slender1 (SLN1), GA-regulated Myb transcription factor (GAmyb), and ABA-responsive protein kinase (PKABA) and their roles in GA and ABA signaling in aleurone cells. In the presence of GA, exogenous H2O2 had little effect on the degradation of SLN1, the primary transcriptional repressor mediating GA signaling, but it promoted the production of the mRNA encoding GAMyb, which acts downstream of SLN1 and involves induction of α-amylase mRNA. Additionally, H2O2 suppressed the production of PKABA mRNA, which is induced by ABA:PKABA represses the production of GAMyb mRNA. From these observations, we concluded that H2O2 released the repression of GAMyb mRNA by PKABA and consequently promoted the production of α-amylase mRNA, thus suggesting that the H2O2 generated by GA in aleurone cells is a signal molecule that antagonizes ABA signaling.

  7. Factorial combinations of protein interactions generate a multiplicity of florigen activation complexes in wheat and barley.

    Science.gov (United States)

    Li, Chengxia; Lin, Huiqiong; Dubcovsky, Jorge

    2015-10-01

    The FLOWERING LOCUS T (FT) protein is a central component of a mobile flowering signal (florigen) that is transported from leaves to the shoot apical meristem (SAM). Two FT monomers and two DNA-binding bZIP transcription factors interact with a dimeric 14-3-3 protein bridge to form a hexameric protein complex. This complex, designated as the 'florigen activation complex' (FAC), plays a critical role in flowering. The wheat homologue of FT, designated FT1 (= VRN3), activates expression of VRN1 in the leaves and the SAM, promoting flowering under inductive long days. In this study, we show that FT1, other FT-like proteins, and different FD-like proteins, can interact with multiple wheat and barley 14-3-3 proteins. We also identify the critical amino acid residues in FT1 and FD-like proteins required for their interactions, and demonstrate that 14-3-3 proteins are necessary bridges to mediate the FT1-TaFDL2 interaction. Using in vivo bimolecular fluorescent complementation (BiFC) assays, we demonstrate that the interaction between FT1 and 14-3-3 occurs in the cytoplasm, and that this complex is then translocated to the nucleus, where it interacts with TaFDL2 to form a FAC. We also demonstrate that a FAC including FT1, TaFDL2 and Ta14-3-3C can bind to the VRN1 promoter in vitro. Finally, we show that relative transcript levels of FD-like and 14-3-3 genes vary among tissues and developmental stages. Since FD-like proteins determine the DNA specificity of the FACs, variation in FD-like gene expression can result in spatial and temporal modulation of the effects of mobile FT-like signals.

  8. Leaf senescence and nutrient remobilisation in barley and wheat

    DEFF Research Database (Denmark)

    Gregersen, P L; Holm, P B; Krupinska, K

    2008-01-01

    Extensive studies have been undertaken on senescence processes in barley and wheat and their importance for the nitrogen use efficiency of these crop plants. During the senescence processes, proteins are degraded and nutrients are re-mobilised from senescing leaves to other organs, especially...... in degradative, metabolic and regulatory processes that could be used in future strategies aimed at modifying the senescence process. The breeding of crops for characters related to senescence processes, e.g. higher yields and better nutrient use efficiency, is complex. Such breeding has to cope with the dilemma...

  9. Metabolo-transcriptome profiling of barley reveals induction of chitin elicitor receptor kinase gene (HvCERK1) conferring resistance against Fusarium graminearum.

    Science.gov (United States)

    Karre, Shailesh; Kumar, Arun; Dhokane, Dhananjay; Kushalappa, Ajjamada C

    2017-02-01

    We report plausible disease resistance mechanisms induced by barley resistant genotype CI89831 against Fusarium head blight (FHB) based on metabolo-transcriptomics approach. We identified HvCERK1 as a candidate gene for FHB resistance, which is functional in resistant genotype CI9831 but non-functional in susceptible cultivars H106-371 and Zhedar-2. For the first time, we were able to show a hierarchy of regulatory genes that regulated downstream biosynthetic genes that eventually produced resistance related metabolites that reinforce the cell walls to contain the pathogen progress in plant. The HvCERK1 can be used for replacing in susceptible commercial cultivars, if non-functional, based on genome editing. Fusarium head blight (FHB) management is a great challenge in barley and wheat production worldwide. Though barley genome sequence and advanced omics technologies are available, till date none of the resistance mechanisms has been clearly deciphered. Hence, this study was aimed at identifying candidate gene(s) and elucidating resistance mechanisms induced by barley resistant genotype CI9831 based on integrated metabolomics and transcriptomics approach. Following Fusarium graminearum infection, we identified accumulation of specific set of induced secondary metabolites, belonging to phenylpropanoid, hydroxycinnamic acid (HCAA) and jasmonic acid pathways, and their biosynthetic genes. In association with these, receptor kinases such as chitin elicitor receptor kinase (HvCERK1) and protein kinases such as MAP kinase 3 (HvMPK3) and MAPK substrate 1 (HvMKS1), and transcription factors such as HvERF1/5, HvNAC42, HvWRKY23 and HvWRKY70 were also found upregulated with high fold change. Polymorphism studies across three barley genotypes confirmed the presence of mutations in HvCERK1 gene in two susceptible genotypes, isolating this gene as a potential candidate for FHB resistance. Further, the silencing of functional HvCERK1 gene in the resistant genotype CI9831

  10. Barley leaf transcriptome and metabolite analysis reveals new aspects of compatibility and Piriformospora indica-mediated systemic induced resistance to powdery mildew.

    Science.gov (United States)

    Molitor, Alexandra; Zajic, Doreen; Voll, Lars M; Pons-K Hnemann, Jorn; Samans, Birgit; Kogel, Karl-Heinz; Waller, Frank

    2011-12-01

    Colonization of barley roots with the basidiomycete fungus Piriformospora indica (Sebacinales) induces systemic resistance against the biotrophic leaf pathogen Blumeria graminis f. sp. hordei (B. graminis). To identify genes involved in this mycorrhiza-induced systemic resistance, we compared the leaf transcriptome of P. indica-colonized and noncolonized barley plants 12, 24, and 96 h after challenge with a virulent race of B. graminis. The leaf pathogen induced specific gene sets (e.g., LRR receptor kinases and WRKY transcription factors) at 12 h postinoculation (hpi) (prepenetration phase) and vesicle-localized gene products 24 hpi (haustorium establishment). Metabolic analysis revealed a progressing shift of steady state contents of the intermediates glucose-1-phosphate, uridinediphosphate-glucose, and phosphoenolpyruvate 24 and 96 hpi, indicating that B. graminis shifts central carbohydrate metabolism in favor of sucrose biosynthesis. Both B. graminis and P. indica increased glutamine and alanine contents, whereas substrates for starch and nitrogen assimilation (adenosinediphosphate- glucose and oxoglutarate) decreased. In plants that were more B. graminis resistant due to P. indica root colonization, 22 transcripts, including those of pathogenesis-related genes and genes encoding heat-shock proteins, were differentially expressed ?twofold in leaves after B. graminis inoculation compared with non-mycorrhized plants. Detailed expression analysis revealed a faster induction after B. graminis inoculation between 8 and 16 hpi, suggesting that priming of these genes is an important mechanism of P. indica-induced systemic disease resistance.

  11. Further molecular evidence for the Hordeum vulgare ssp. spontaneum in Tibet as ultimate progenitor of Chinese cultivated barley

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    106 accessions of Tibetan wild barley, including 50 accessions of the two-rowed wild barley Hordeum vulgare ssp. spontaneum(HS), 27 accessions of the six-rowed bottle-shaped wild barley H. lagunculiforme(HL) and 29 accessions of the six-rowed wild barley H. agriocrithon(HA) that separately represent different agrigeographical regions of Tibet, were used to study the genetic diversity and genetic differentiation using SSR markers selected from seven barley linkage groups. 229 allelic variants were identified with an average of 7.6 alleles/locus. The average of total number of alleles per locus in HA(6.4) is much higher than that in HS(3.9) and HL(3.4). The genetic diversity and its standard deviation among the three subspecies were in the order of HS>HL>HA. Very significant genetic differentiation was observed among the three subspecies of wild barley. Comparisons of the results from this and previous studies showed a strong Oriental-Occidental differentiation of barley, and that Shannan region of Tibet might be the center of origin of the Tibetan two-rowed wild barley, thus supporting not only the hypothesis of a mono-phyletic origin of cultivated barley but also the proposition that the Tibetan two-rowed wild barley as ultimate progenitor of Chinese cultivated barley.

  12. 大麦雄性不育的遗传研究%Genetic Study on Barley Male Sterility

    Institute of Scientific and Technical Information of China (English)

    张凤英; 刘志萍; 包海柱

    2009-01-01

    [Objective] The aim was to research the genetic mechanism of barley male sterility, and provide the theoretical reference for breeding strong heterosis hybrid of barley. [Method] Fertility segregation phenomenon, morphological characteristics and main agronomic characters of male sterility character of 4 kinds of barley male sterility materials 2001-17, 2001-37, 2001-84 and 2001-116 and their derived lines were observed and researched. [Result] Barley male sterility existed genetic phenomenon of single dominant nuclear gene caused by environmental stimulation, its sterility controlled by MS, the sterile genotype was MSms. There was stable nucleo-cytoplasmic inheritance on barley male sterility which was controlled by cytoplasmic male sterile gene S and nuclear gene rr, and its genotype was S(rr), this male sterility belonged to CMS type sterility. Temperature had no effect on fertility. [Conclusion] There was stable nucleo-cytoplasmic inheritance on barley male sterility, this result played a positively promoting role in barley practical production.

  13. Effects of Added Enzymes on Sorted, Unsorted and Sorted-Out Barley: A Model Study on Realtime Viscosity and Process Potentials Using Rapid Visco Analyser

    DEFF Research Database (Denmark)

    Shetty, Radhakrishna; Zhuang, Shiwen; Olsen, Rasmus Lyngsø

    2017-01-01

    Barley sorting is an important step for selecting grain of required quality for malting prior to brewing. However, brewing with unmalted barley with added enzymes has been thoroughly proven, raising the question of whether traditional sorting for high quality malting-barley is still necessary...... but not in sorted-out barley. Consequently, we find that unsorted barley demonstrates great potential for brewing with added enzymes and its use may help to improve sustainability of the brewing process....

  14. Barley fibre and wet distillers' solubles in the diet of growing cattle

    Directory of Open Access Journals (Sweden)

    T. ROOT

    2008-12-01

    Full Text Available Twenty-eight bulls were used in a 3 × 2 factorial design to study the effects of two by-products from the integrated starch-ethanol process, barley fibre and distillers' solubles, as supplements for grass silage. The animals were divided into five blocks and slaughtered when the average live weight (LW of each block reached 500 kg. The three energy supplements were barley (B, a mixture (1:1 on a dry matter (DM basis of barley and barley fibre (BF, and barley fibre (F, fed without (DS- or with (DS+ wet distillers' solubles (200 g kg-1 concentrate on DM basis. Concentrates were given at the rate of 95 g DM kg-1 LW0.6. Including barley fibre in the diet did not affect feed intake, but distillers' solubles tended to increase both silage and total DM intakes as well as amino acids absorbed in the intestine and energy intake. The protein balance in the rumen increased with the inclusion of barley fibre (P

  15. Genetic structure and linkage disequilibrium in landrace populations of barley in Sardinia.

    Science.gov (United States)

    Rodriguez, Monica; Rau, Domenico; O'Sullivan, Donal; Brown, Anthony H D; Papa, Roberto; Attene, Giovanna

    2012-06-01

    Multilocus digenic linkage disequilibria (LD) and their population structure were investigated in eleven landrace populations of barley (Hordeum vulgare ssp. vulgare L.) in Sardinia, using 134 dominant simple-sequence amplified polymorphism markers. The analysis of molecular variance for these markers indicated that the populations were partially differentiated (F(ST) = 0.18), and clustered into three geographic areas. Consistent with this population pattern, STRUCTURE analysis allocated individuals from a bulk of all populations into four genetic groups, and these groups also showed geographic patterns. In agreement with other molecular studies in barley, the general level of LD was low (13% of locus pairs, with P landrace populations, but that epistatic homogenising or diversifying selection was also present. Notably, the variance of the disequilibrium component was relatively high, which implies caution in the pooling of barley lines for association studies. Finally, we compared the analyses of multilocus structure in barley landrace populations with parallel analyses in both composite crosses of barley on the one hand and in natural populations of wild barley on the other. Neither of these serves as suitable mimics of landraces in barley, which require their own study. Overall, the results suggest that these populations can be exploited for LD mapping if population structure is controlled.

  16. Comparative Proteomic Analysis of Two Barley Cultivars (Hordeum vulgare L.) with Contrasting Grain Protein Content

    Science.gov (United States)

    Guo, Baojian; Luan, Haiye; Lin, Shen; Lv, Chao; Zhang, Xinzhong; Xu, Rugen

    2016-01-01

    Grain protein contents (GPCs) of barley seeds are significantly different between feed and malting barley cultivars. However, there is still no insight into the proteomic analysis of seed proteins between feed and malting barley cultivars. Also, the genetic control of barley GPC is still unclear. GPCs were measured between mature grains of Yangsimai 3 and Naso Nijo. A proteome profiling of differentially expressed protein was established by using a combination of 2-DE and tandem mass spectrometry. In total, 502 reproducible protein spots in barley seed proteome were detected with a pH range of 4–7 and 6–11, among these 41 protein spots (8.17%) were detected differentially expressed between Yangsimai 3 and Naso Nijo. Thirty-four protein spots corresponding to 23 different proteins were identified, which were grouped into eight categories, including stress, protein degradation and post-translational modification, development, cell, signaling, glycolysis, starch metabolism, and other functions. Among the identified proteins, enolase (spot 274) and small subunit of ADP-glucose pyrophosphorylase (spot 271) are exclusively expressed in barley Yangsimai 3, which may be involved in regulating seed protein expression. In addition, malting quality is characterized by an accumulation of serpin protein, Alpha-amylase/trypsin inhibitor CMb and Alpha-amylase inhibitor BDAI-1. Most noticeably, globulin, an important storage protein in barley seed, undergoes post-translational processing in both cultivars, and also displays different expression patterns. PMID:27200019

  17. Effects of barley chromosome addition to wheat on behavior and development of Locusta migratoria nymphs.

    Science.gov (United States)

    Suematsu, Shunji; Harano, Ken-ichi; Tanaka, Seiji; Kawaura, Kanako; Ogihara, Yasunari; Watari, Yasuhiko; Saito, Osamu; Tokuda, Makoto

    2013-01-01

    Locusta migratoria feeds on various Poaceae plants but barley. Barley genes related to feeding deterrence may be useful for developing novel resistant crops. We investigated the effects of barley cultivar Betzes, wheat cultivar Chinese Spring (CS), and six barley chromosome disomic addition lines of wheat (2H-7H) on locomotor activity, feeding behavior, survival and development of L. migratoria nymphs. Locomotor activity was similar in nymphs kept with wheat and 2H-7H in an actograph, whereas it was generally high in those kept with barely. No-choice and choice feeding tests suggested that barley genes related to inhibition of feeding by L. migratoria are located on barley chromosomes 5H and 6H and those related to the palatability of plants on chromosomes 2H, 5H and 6H. Rearing experiments suggested the presence of barley genes negatively affecting the survival and growth of locust nymphs on chromosomes 5H and 2H, respectively, and the effects are phase-dependent.

  18. Effect of supplementation with barley and calcium hydroxide on intake of Mediterranean shrubs

    Directory of Open Access Journals (Sweden)

    Dragan Skobic

    2011-04-01

    Full Text Available Maquis plant communities are one of the most varied vegetation types in the Mediterranean region and an important habitat for wild and domestic herbivores. Although the majority of these shrubs are nutritious, the secondary compounds are main impediments that reduce their forage value. In five experiments we determined the effect of supplementing goats with calcium hydroxide plus barley, and barley alone on intake of five dominant shrubs (Quercus ilex, Erica multiflora, Arbutus unedo, Viburnum tinus and Pistacia lentiscus of the Mediterranean maquis community. The combination of calcium hydroxide plus barley and barley alone increased utilization of all five investigated Mediterranean shrubs; therewith that intake of Arbutus unedo and Viburnum tinus was not statistically significant. Supplemented goats with calcium hydroxide plus barley or barley alone could be effective in controlling secondary compounds-rich Mediterranean shrubs where their abundance threatens biodiversity. This control can be facilitated by browsing dominant Mediterranean shrubs, which has been shown to be effective in managing Mediterranean maquis density. Calcium hydroxide and barley (energy enhance use of secondary compounds-containing plants, which may increase production of alternate forages and create a more diverse mix of plant species in the Mediterranean maquis plant community.

  19. In Vitro Biochemical Characterization of All Barley Endosperm Starch Synthases

    Directory of Open Access Journals (Sweden)

    Jose Antonio Cuesta-Seijo

    2016-01-01

    Full Text Available Starch is the main storage polysaccharide in cereals and the major source of calories in the human diet. It is synthesized by a panel of enzymes including five classes of starch synthases (SSs. While the overall starch synthase (SS reaction is known, the functional differences between the five SS classes are poorly understood. Much of our knowledge comes from analyzing mutant plants with altered SS activities, but the resulting data are often difficult to interpret as a result of pleitropic effects, competition between enzymes, overlaps in enzyme activity and disruption of multi-enzyme complexes. Here we provide a detailed biochemical study of the activity of all five classes of SSs in barley endosperm. Each enzyme was produced recombinantly in E. coli and the properties and modes of action in vitro were studied in isolation from other SSs and other substrate modifying activities. Our results define the mode of action of each SS class in unprecedented detail; we analyze their substrate selection, temperature dependence and stability, substrate affinity and temporal abundance during barley development. Our results are at variance with some generally accepted ideas about starch biosynthesis and might lead to the reinterpretation of results obtained in planta. In particular, they indicate that granule bound SS is capable of processive action even in the absence of a starch matrix, that SSI has no elongation limit, and that SSIV, believed to be critical for the initiation of starch granules, has maltoligosaccharides and not polysaccharides as its preferred substrates.

  20. How barley growing conditions and its output change in Hungary

    Directory of Open Access Journals (Sweden)

    Éva Erdélyi

    2010-11-01

    Full Text Available There is no doubt that climate change has started. It is very important to make effort in developing impact analyses and adaptation strategies. First we were investigated how theproduction risk of winter barley is changing with time using the E,V efficiency criterion. Based on the regional yearly production data of the crop, we can conclude that beside other non-climatic effects, the changing climate has considerable impact on crops yield; its variability is increasing with the variability of meteorological parameters. We have used production data from 1951 to nowadays. Next, using comparison analyses for climate scenarios, we predict what we can expect in the future. For detecting the reasons of risk increase in the past, and forecasting the potential main points of future risk we have analysed statistically whether the climate needs of winter barley will be satisfied ornot in its important periods of growing. Frequency calculations were made based on the daily meteorological data. The situation doesn’t show big change, but It is no doubt that the anomalies of the indicators have been becoming more and more frequent. The morefrequent the extreme weather events are, the more we can be convinced of uncertainty.

  1. Barley β-glucans extraction and partial characterization.

    Science.gov (United States)

    Limberger-Bayer, Valéria M; de Francisco, Alicia; Chan, Aline; Oro, Tatiana; Ogliari, Paulo J; Barreto, Pedro L M

    2014-07-01

    Barley is rarely used in the food industry, even though it is a main source of β-glucans, which have important health benefits and a technological role in food. This work evaluated the humid extraction of barley β-glucans and partially characterized them. The extraction was studied using surface response methodology with both temperature and pH as variables. The extracted β-glucans were characterized by chemical and rheological analysis, infrared spectroscopy and scanning electron microscopy. The effect on extraction of linear and quadratic terms of pH and temperature corresponding to the regression model was significant, and we obtained a maximum concentration of 53.4% at pH 7.56 and temperature 45.5°C, with protein and mainly starch contamination. The extracted β-glucans presented a higher apparent viscosity than the commercial ones, the behavior of the commercial and extracted samples can be described as Newtonian and pseudoplastic, respectively. The results of infrared spectroscopy and scanning electron microscopy were characteristic of commercial β-glucans, indicating that this method is efficient for extracting β-glucans.

  2. Superoxide DismutasE in Spring Barley Caryopses

    Directory of Open Access Journals (Sweden)

    Natálie Březinová Belcredi

    2016-01-01

    Full Text Available Superoxide dismutase (SOD activity was determined in caryopses of spring barley grown in field trials in 2004–2006. A total set under study included five malting varieties with hulled grain, three waxy hull-less and hulled varieties (of US origin, seven lines formed by crossing of the above given varieties and four hull-less lines of Czech origin. SOD activity was determined by a modified method using a Ransod diagnostic kit (RANDOX. The method employs xanthine and xanthine oxidase to generate superoxide radicals which react with 2-(4-iodophenyl-3-(4-nitrophenol-5-phenyltetrazolium chloride (INT to form a red formazan dye. Statistically significantly higher activity was measured in the variety Nordus (131 U.g−1 d.m. and line ME1 (128 U.g−1 d.m. compared to the other varieties/lines (66–111 U.g−1 d.m.. The line ME1 had significantly higher SOD activity in grain versus its parental varieties Kompakt (83 U.g−1 d.m. and Krona (78 U.g−1 d.m.. The results of this study proved the availability of varieties/lines with a higher SOD content, the antioxidant effect of SOD can improve quality of beer and food made from barley.

  3. Effect of cultivar and year on phyllochron in winter barley

    Directory of Open Access Journals (Sweden)

    Pržulj Novo M.

    2013-01-01

    Full Text Available Development and growth of leaves in cereals significantly affects grain yield since dry matter accumulation depends on the leaf area that intercepts light. Phyllochron (PHY is defined as time interval between the emergences of successive leaves on the main stem. The aim of this study was to determine the effect of year and cultivar on phyllochron in winter barley. Twelve cultivars of winter barley differing in origin and time of anthesis were tested during six growing seasons (GS, from 2002/03 to 2007/08. The highest PHY across GSs was determined in the two-rowed cultivar Cordoba (81.6°Cd and the lowest in the two-rowed cultivar Novosadski 581 (71.0°Cd. The early cultivars had fast leaf development, the medium cultivars medium and the late cultivars slow development, 72.5°Cd, 75.6°Cd and 78.9°Cd, respectively. The tested cultivars showed significant variability in the PHY, which can be used for selecting most adaptable genotypes for specific growing conditions.

  4. Response of barley aleurone layers to abscisic acid

    Energy Technology Data Exchange (ETDEWEB)

    Ho, D.T.H.; Varner, J.E.

    1976-02-01

    Cordycepin, an inhibitor of RNA synthesis in barley (Hordeum vulgare L.) aleurone cells, does not inhibit the gibberellic acid-enhanced ..cap alpha..-amylase (EC 3.2.1.1.) synthesis in barley aleurone layers if it is added 12 hours or more after the addition of the hormone. However, the accumulation of ..cap alpha..-amylase activity after 12 hours of gibberellic acid can be decreased by abscisic acid. The accumulation of ..cap alpha..-amylase activity is sustained or quickly restored when cordycepin is added simultaneously or some time after abscisic acid, indicating that the response of aleurone layers to abscisic acid depends on the continuous synthesis of a short lived RNA. By analysis of the newly synthesized proteins by gel electrophoresis with sodium dodecylsulfate, it was observed that the synthesis of ..cap alpha..-amylase is decreased in the presence of abscisic acid while the synthesis of most of the other proteins remains unchanged. From the rate of resumption of ..cap alpha..-amylase production in the presence of cordycepin and abscisic acid, it appears that abscisic acid does not have a measurable effect on the stability of ..cap alpha..-amylase mRNA.

  5. Homeopathically prepared gibberellic acid and barley seed germination.

    Science.gov (United States)

    Hamman, B; Koning, G; Lok, K Him

    2003-07-01

    The potentisation process by which homeopathic preparations are produced raises the concern that these medicines have placebo effects only, since they theoretically no longer contain active molecules of the diluted substance. Plant models offer a method of examining the efficacy of homeopathically prepared solutions. This study examined the effects of homeopathically prepared gibberellic acid (HGA3) on the germination performance of barley (Hordeum vulgare L.) seeds. The effect of HGA3 (4-200 cH) on seed germination rate and seedling development was compared to that of the most commonly used form of gibberellic acid (GA3), 0.5 g l(-1), and control (distilled water). The extent and type of response was dependent on the vigour level of the seedlot. Treating seeds from three vigour groups in HGA3 consistently resulted in larger seedlings. High-vigour seeds treated with HGA3 4, 30 and 200 cH germinated faster, and roots of medium-vigour seedlots treated in HGA3 15 cH were longer. Biphasic effects of HGA3 were also demonstrated. As a plant model, germinating barley seeds successfully demonstrated the ability of HGA3 to produce a biological response.

  6. Extraction of starch from hulled and hull-less barley with papain and aqueous sodium hydroxide.

    Science.gov (United States)

    Sharma, Priyanka; Tejinder, S

    2014-12-01

    Starch was isolated from hulled (VJM 201) and hull-less (BL 134) barley with papain and aqueous sodium hydroxide treatments. For enzyme-assisted extraction, barley was steeped in water containing 0.2 % SO2 + 0.55 % lactic acid at 50° ± 2 °C for 4-5 h. The slurry was mixed with 0.4-2.0 g papain/kg barley and incubated at 50° ± 2 °C for 1-5 h. Aqueous sodium hydroxide (0.01-0.05 M) was added to the finely ground barley meal. The alkaline slurry was incubated at ambient temperature (25° ± 2 °C) for 15-60 min. The starch and grain fractions were isolated by screening and centrifugation. Increases in the time of treatment significantly affected the fiber, centrifugation and non-starch residue losses. Concentration of papain and sodium hydroxide had negligible effect on extraction losses. The enzyme-assisted extraction efficiency of starch was higher (80.7-84.6 %) than the alkaline method (70.9-83.7 %). The hulled barley showed higher extraction efficiency than the hull-less barley. The slurry treated with 0.4 g papain/kg barley for 5 h and 0.03 M sodium hydroxide for 60 min produced maximal yield of starch. Barley starch showed desirably high pasting temperature, water binding capacity and hold viscosity; and low final and setback viscosity compared with the commercial corn starch. The alkaline extracted hull-less barley starch showed exceptionally high peak and hold viscosities.

  7. Effects of Break Crops on Yield and Grain Protein Concentration of Barley in a Boreal Climate.

    Directory of Open Access Journals (Sweden)

    Ling Zou

    Full Text Available Rotation with dicotyledonous crops to break cereal monoculture has proven to be beneficial to successive cereals. In two fields where the soil had been subjected to prolonged, continuous cereal production, two 3-year rotation trials were established. In the first year, faba bean, turnip rape and barley were grown, as first crops, in large blocks and their residues tilled into the soil after harvest. In the following year, barley, buckwheat, caraway, faba bean, hemp and white lupin were sown, as second crops, in each block and incorporated either at flowering stage (except barley or after harvest. In the third year, barley was grown in all plots and its yield and grain protein concentration were determined. Mineral N in the plough layer was determined two months after incorporation of crops and again before sowing barley in the following year. The effect of faba bean and turnip rape on improving barley yields and grain protein concentration was still detectable two years after they were grown. The yield response of barley was not sensitive to the growth stage of second crops when they were incorporated, but was to different second crops, showing clear benefits averaging 6-7% after white lupin, faba bean and hemp but no benefit from caraway or buckwheat. The effect of increased N in the plough layer derived from rotation crops on barley yields was minor. Incorporation of plants at flowering stage slightly increased third-year barley grain protein concentration but posed a great potential for N loss compared with incorporation of crop residues after harvest, showing the value of either delayed incorporation or using catch crops.

  8. Analysis on Interaction between Genotype of Four Main Flavonoids of Barley Grain and Environment

    Institute of Scientific and Technical Information of China (English)

    Tao YANG; Chengli DUAN; Yawen ZENG; Juan DU; Shuming YANG; Xiaoying PU; Shengchao YANG

    2012-01-01

    [Objective] This study aimed to analyze the interaction between genotype of flavonoids of barley grain and environment, to increase the flavonoid content of barley grain in cultivation and breeding. [Method] In this study, the content of cate- chin, myricetin, quercetin and kaempferol of barley grain planted in Kunming, Qujing and Baoshan were determined by HPLC, and the genotype, environment, genotype- environment interaction of the flavonoid content of barley grain were analyzed. [Result] According to the experimental results, the genotype variance, environmental variance and G x E interaction variance of catechin and kaempferol contents show the same trend: genotype variation 〉 environmental variation 〉 G × E interaction variation, which all reach a extremely significant level; the genotype variance, envi- ronmental variance and G × E interaction variance of quercetin and total flavonoid contents show the same trend: genetype variation 〉 G × E interaction variation 〉 environmental variation, which all reach a extremely significant level; the genotype variance and environmental variance of myricetin content both reach a extremely sig- nificant level, while the G × E interaction variance reaches a significant level, showing an order of genotype variation 〉 environmental variation 〉 G × E interaction variation; the genotype variance, environmental variance and G x E interaction vari- ance of total flavonoid content show an order of genotype variation 〉 environmental variation 〉 G × E interaction variation. Among different barley varieties, Ziguang- mangluoerling and Kuanyingdamai in Qujing, Kunming and Baoshan have relatively high content of quercetin, while other barley varieties barely contain any quercetin. The grains of Ziguangmangluoerling and Kuanyingdamai are purple, while the grains of other barley varieties are yellow. [Conclusion] Four main flavonoids and the total flavonoids of barley grain are mainly under genetic control and

  9. Distinct developmental defense activations in barley embryos identified by transcriptome profiling

    DEFF Research Database (Denmark)

    Nielsen, ME; Lok, F; Nielsen, Henrik Bjørn

    2006-01-01

    analyses of > 22,000 genes, which together with measurements of jasmonic acid and salicylic acid during embryo development provide new information on the initiation in the developing barley embryo of at least two distinct types of developmental defense activation (DDA). Early DDA is characterized by the up......-regulation of several PR genes is notable. Throughout barley embryo development, there are no indications of an increased biosynthesis of either jasmonic acid or salicylic acid. Collectively, the results help explain how the proposed DDA enables protection of the developing barley embryo and grain for purposes...

  10. Effect of pulsed electric field on the germination of barley seeds

    DEFF Research Database (Denmark)

    Dymek, Katarzyna; Dejmek, Petr; Panarese, Valentina;

    2012-01-01

    This study explores metabolic responses of germinating barley seeds upon the application of pulsed electric fields (PEF). Malting barley seeds were steeped in aerated water for 24 h and PEF-treated at varying voltages (0 (control), 110, 160, 240, 320, 400 and 480 V). The seeds were then allowed...... to finish germination in saturated air. It is shown that exposure of germinating barley to PEF affects radicle emergence without significantly affecting the seeds’ gross metabolic activity, as quantified by isothermal calorimetry. An exploration of protein 2-DE profiles of both the embryo and the starchy...

  11. Heterologous expression and purification of barley (Hordeum vulgare L.) cysteine protease in yeast

    DEFF Research Database (Denmark)

    Rosenkilde, Anne Lind; Dionisio, Giuseppe; Holm, Preben Bach

    2011-01-01

    The mobilization of protein during germination of barley seeds is essential and Cysteine Proteases accounts for more than 90 % of the total proteolytic activity in the degradation of barley seed storage proteins [1]. Cysteine proteases exist as pro-enzyme until activated through reduction...... of the active site cysteines and via removal of the pro-domain. The complement of cysteine proteases is comprehensive and for detailed studies of the individual components of this complement, a fast and efficient eukaryotic expression platform is highly desirable. The barley key cysteine protease, endoprotease...

  12. Structural Basis for Specificity of Propeptide-Enzyme Interaction in Barley C1A Cysteine Peptidases

    Science.gov (United States)

    Cambra, Inés; Hernández, David; Diaz, Isabel; Martinez, Manuel

    2012-01-01

    C1A cysteine peptidases are synthesized as inactive proenzymes. Activation takes place by proteolysis cleaving off the inhibitory propeptide. The inhibitory capacity of propeptides from barley cathepsin L and B-like peptidases towards commercial and barley cathepsins has been characterized. Differences in selectivity have been found for propeptides from L-cathepsins against their cognate and non cognate enzymes. Besides, the propeptide from barley cathepsin B was not able to inhibit bovine cathepsin B. Modelling of their three-dimensional structures suggests that most propeptide inhibitory properties can be explained from the interaction between the propeptide and the mature cathepsin structures. Their potential use as biotechnological tools is discussed. PMID:22615948

  13. Biotesting of radioactively contaminated forest soils using barley-based bioassay

    Science.gov (United States)

    Mel'nikova, T. V.; Polyakova, L. P.; Oudalova, A. A.

    2017-01-01

    Findings from radioactivity and phytotoxicity study are presented for soils from nine study-sites of the Klintsovsky Forestry located in the Bryansk region that were radioactively contaminated after the Chernobyl accident. According to the bioassay based on barley as test-species, stimulating effect of the soils analyzed is revealed for biological indexes of the length of barley roots and sprouts. From data on 137Cs specific activities in soils and plant biomass, the migration potential of radionuclide in the "soil-plant" system is assessed as a transfer factor. With correlation analysis, an impact of 137Cs in soil on the biological characteristics of barley is estimated.

  14. A potential role of flag leaf potassium in conferring tolerance to drought-induced leaf senescence in barley

    Directory of Open Access Journals (Sweden)

    Seyed A. Hosseini

    2016-02-01

    Full Text Available Terminal drought stress decreases crop yields by inducing abscisic acid (ABA and premature leaf senescence. As potassium (K is known to interfere with ABA homeostasis we addressed the question whether there is genetic variability regarding the role of K nutrition in ABA homeostasis and drought tolerance. To compare their response to drought stress, two barley lines contrasting in drought-induced leaf senescence were grown in a pot experiment under high and low K supply for the analysis of flag leaves from the same developmental stage. Relative to the drought-sensitive line LPR, the line HPR retained more K in its flag leaves under low K supply and showed delayed flag leaf senescence under terminal drought stress. High K retention was further associated with a higher leaf water status, a higher concentration of starch and other primary carbon metabolites. With regard to ABA homeostasis, HPR accumulated less ABA but higher levels of the ABA degradation products phaseic acid and dehydro-phaseic acid. Under K deficiency this went along with higher transcript levels of ABA8’-HYDROXYLASE, encoding a key enzyme in ABA degradation. The present study provides evidence for a positive impact of the K nutritional status on ABA homeostasis and carbohydrate metabolism under drought stress. We conclude that genotypes with a high K nutritional status in the flag leaf show superior drought tolerance by promoting ABA degradation but attenuating starch degradation which delays flag leaf senescence. Flag leaf K levels may thus represent a useful trait for the selection of drought-tolerant barley cultivars.

  15. Expression analysis of abscisic acid (ABA) and metabolic signalling factors in developing endosperm and embryo of barley.

    Science.gov (United States)

    Chen, Zhiwei; Huang, Jianhua; Muttucumaru, Nira; Powers, Stephen J; Halford, Nigel G

    2013-09-01

    The expression of genes encoding components of ABA and metabolic signalling pathways in developing barley endosperm and embryo was investigated. The genes included HvRCAR35_47387 and HvRCAR35_2538 (encoding ABA receptors), HvABI1d (protein phosphatase 2C), HvSnRK2.4, HvSnRK2.6 and HvPKABA1 (SnRK2-type protein kinases) and HvABI5 (ABA response element binding protein; AREBP), as well as two genes encoding SnRK1-type protein kinases. Both SnRK1 and SnRK2 phosphorylate AREBPs, but SnRK2 is activated by ABA whereas SnRK1 may be broken down. Multiple cereal AREBPs with two conserved SnRK1/2 target sites and another class of BZIP transcription factors with SnRK1/2 binding sites, including HvBLZ1, were identified. Barley grain (cv. Triumph) was sampled at 15, 20, 25 and 30 days post-anthesis (dpa). HvRCAR35_47387, HvABI1d, HvSnRK2.4 and HvABI5 were expressed highly in the endosperm but at much lower levels in the embryo. Conversely, HvPKABA1 and HvRCAR35_2538 were expressed at higher levels in the embryo than the endosperm, while HvSnRK2.6 was expressed at similar levels in both. HvRCAR35_47387, HvABI1d, HvSnRK2.4 and HvABI5 all peaked in expression in the endosperm at 20 dpa. A model is proposed in which ABA brings about a transition from a SnRK1-dominated state in the endosperm during grain filling to a SnRK2-dominated state during maturation.

  16. Expression of Nudix hydrolase genes in barley under UV irradiation

    Science.gov (United States)

    Tanaka, Sayuri; Sugimoto, Manabu; Kihara, Makoto

    Seed storage and cultivation should be necessary to self-supply foods when astronauts would stay and investigate during long-term space travel and habitation in the bases on the Moon and Mars. Thought the sunlight is the most importance to plants, both as the ultimate energy source and as an environmental signal regulating growth and development, UV presenting the sunlight can damage many aspects of plant processes at the physiological and DNA level. Especially UV-C, which is eliminated by the stratospheric ozone layer, is suspected to be extremely harmful and give a deadly injury to plants in space. However, the defense mechanism against UV-C irradiation damage in plant cells has not been clear. In this study, we investigated the expression of Nudix hydrolases, which defense plants from biotic / abiotic stress, in barley under UV irradiation. The genes encoding the amino acid sequences, which show homology to those of 28 kinds of Nudix hydrolases in Arabidopsis thaliana, were identified in the barley full-length cDNA library. BLAST analysis showed 14 kinds of barley genes (HvNUDX1-14), which encode the Nudix motif sequence. A phylogenetic tree showed that HvNUDX1, HvNUDX7, HvNUDX9 and HvNUDX11 belonged to the ADP-ribose pyrophosphohydrolase, ADP-sugar pyrophosphohydrolase, NAD(P)H pyrophosphohydrolase and FAD pyrophosphohydrolase subfamilies, respectively, HvNUDX3, HvNUDX6, and HvNUDX8 belonged to the Ap _{n}A pyrophosphohydrolase subfamilies, HvNUDX5 and HvNUDX14 belonged to the coenzyme A pyrophosphohydrolase subfamilies, HvNUDX12 and HvNUDX13 belonged to the Ap _{4}A pyrophosphohydrolase subfamilies. Induction of HvNUDX genes by UV-A (340nm), UV-B (312nm), and UV-C (260nm) were analyzed by quantitative RT-PCR. The results showed that HvNUDX4 was induced by UV-A and UV-B, HvNUDX6 was induced by UV-B and UV-C, and HvNUDX7 and HvNUDX14 were induced by UV-C, significantly. Our results suggest that the response of HvNUDXs to UV irradiation is different by UV

  17. Structural genes of wheat and barley 5-methylcytosine DNA glycosylases and their potential applications for human health.

    Science.gov (United States)

    Wen, Shanshan; Wen, Nuan; Pang, Jinsong; Langen, Gregor; Brew-Appiah, Rhoda A T; Mejias, Jaime H; Osorio, Claudia; Yang, Mingming; Gemini, Richa; Moehs, Charles P; Zemetra, Robert S; Kogel, Karl-Heinz; Liu, Bao; Wang, Xingzhi; von Wettstein, Diter; Rustgi, Sachin

    2012-12-11

    Wheat supplies about 20% of the total food calories consumed worldwide and is a national staple in many countries. Besides being a key source of plant proteins, it is also a major cause of many diet-induced health issues, especially celiac disease. The only effective treatment for this disease is a total gluten-free diet. The present report describes an effort to develop a natural dietary therapy for this disorder by transcriptional suppression of wheat DEMETER (DME) homeologs using RNA interference. DME encodes a 5-methylcytosine DNA glycosylase responsible for transcriptional derepression of gliadins and low-molecular-weight glutenins (LMWgs) by active demethylation of their promoters in the wheat endosperm. Previous research has demonstrated these proteins to be the major source of immunogenic epitopes. In this research, barley and wheat DME genes were cloned and localized on the syntenous chromosomes. Nucleotide diversity among DME homeologs was studied and used for their virtual transcript profiling. Functional conservation of DME enzyme was confirmed by comparing the motif and domain structure within and across the plant kingdom. Presence and absence of CpG islands in prolamin gene sequences was studied as a hallmark of hypo- and hypermethylation, respectively. Finally the epigenetic influence of DME silencing on accumulation of LMWgs and gliadins was studied using 20 transformants expressing hairpin RNA in their endosperm. These transformants showed up to 85.6% suppression in DME transcript abundance and up to 76.4% reduction in the amount of immunogenic prolamins, demonstrating the possibility of developing wheat varieties compatible for the celiac patients.

  18. 454 Transcriptome sequencing suggests a role for two-component signalling in cellularization and differentiation of barley endosperm transfer cells.

    Directory of Open Access Journals (Sweden)

    Johannes Thiel

    Full Text Available BACKGROUND: Cell specification and differentiation in the endosperm of cereals starts at the maternal-filial boundary and generates the endosperm transfer cells (ETCs. Besides the importance in assimilate transfer, ETCs are proposed to play an essential role in the regulation of endosperm differentiation by affecting development of proximate endosperm tissues. We attempted to identify signalling elements involved in early endosperm differentiation by using a combination of laser-assisted microdissection and 454 transcriptome sequencing. PRINCIPAL FINDINGS: 454 sequencing of the differentiating ETC region from the syncytial state until functionality in transfer processes captured a high proportion of novel transcripts which are not available in existing barley EST databases. Intriguingly, the ETC-transcriptome showed a high abundance of elements of the two-component signalling (TCS system suggesting an outstanding role in ETC differentiation. All components and subfamilies of the TCS, including distinct kinds of membrane-bound receptors, have been identified to be expressed in ETCs. The TCS system represents an ancient signal transduction system firstly discovered in bacteria and has previously been shown to be co-opted by eukaryotes, like fungi and plants, whereas in animals and humans this signalling route does not exist. Transcript profiling of TCS elements by qRT-PCR suggested pivotal roles for specific phosphorelays activated in a coordinated time flow during ETC cellularization and differentiation. ETC-specificity of transcriptionally activated TCS phosphorelays was assessed for early differentiation and cellularization contrasting to an extension of expression to other grain tissues at the beginning of ETC maturation. Features of candidate genes of distinct phosphorelays and transcriptional activation of genes putatively implicated in hormone signalling pathways hint at a crosstalk of hormonal influences, putatively ABA and ethylene, and

  19. Targeted Modification of Gene Function Exploiting Homology-Directed Repair of TALEN-Mediated Double-Strand Breaks in Barley.

    Science.gov (United States)

    Budhagatapalli, Nagaveni; Rutten, Twan; Gurushidze, Maia; Kumlehn, Jochen; Hensel, Goetz

    2015-07-06

    Transcription activator-like effector nucleases open up new opportunities for targeted mutagenesis in eukaryotic genomes. Similar to zinc-finger nucleases, sequence-specific DNA-binding domains can be fused with effector domains like the nucleolytically active part of FokI to induce double-strand breaks and thereby modify the host genome on a predefined target site via nonhomologous end joining. More sophisticated applications of programmable endonucleases involve the use of a DNA repair template facilitating homology-directed repair (HDR) so as to create predefined rather than random DNA sequence modifications. The aim of this study was to demonstrate the feasibility of editing the barley genome by precisely modifying a defined target DNA sequence resulting in a predicted alteration of gene function. We used gfp-specific transcription activator-like effector nucleases along with a repair template that, via HDR, facilitates conversion of gfp into yfp, which is associated with a single amino acid exchange in the gene product. As a result of co-bombardment of leaf epidermis, we detected yellow fluorescent protein accumulation in about three of 100 mutated cells. The creation of a functional yfp gene via HDR was unambiguously confirmed by sequencing of the respective genomic site. In addition to the allele conversion accomplished in planta, a readily screenable marker system is introduced that might be useful for optimization approaches in the field of genome editing.

  20. A role for arabinogalactan proteins in gibberellin-induced alpha-amylase production in barley aleurone cells.

    Science.gov (United States)

    Suzuki, Yoshihito; Kitagawa, Mamiko; Knox, J Paul; Yamaguchi, Isomaro

    2002-03-01

    Arabinogalactan proteins (AGPs) are plant proteoglycans that have been implicated in plant growth and development. The possible involvement of AGPs in the action of gibberellin (GA), a class of plant hormones, was examined by applying beta-glucosyl Yariv reagent (beta-Glc)3Y, a synthetic phenyl glycoside that interacts selectively with AGPs, to barley aleurone protoplasts. Gibberellin induces transcription and secretion of alpha-amylases in the protoplasts. Induction of alpha-amylase was clearly inhibited by (beta-Glc)3Y but not by (alpha-Gal)3Y, a negative control of the Yariv reagent that does not interact with AGPs. Transfection analysis, using an alpha-amylase promoter-GUS fusion gene in the protoplasts, indicated that the transcriptional activation of the alpha-amylase promoter was inhibited specifically by (beta-Glc)3Y. These observations are the first indication of an involvement of AGPs in a plant hormone function. The inhibitory effect of (beta-Glc)3Y was not observed when aleurone layers or half-seed grains were used. This result, together with the fact that protoplasts do not have cell walls, suggests that the AGPs that function in alpha-amylase induction reside at the plasma membrane. An aleurone-specific AGP was detected by reversed-phase HPLC, and supported the idea that an AGP may play an important role in aleurone-specific events. The possible mechanism of AGP function in gibberellin-induced alpha-amylase production is discussed.

  1. The enhanced callose deposition in barley with ml-o powdery mildew resistance genes

    DEFF Research Database (Denmark)

    Skou, Jens-Peder

    1985-01-01

    Carborundum treatment of barley leaves induced a callose deposition which was detected as diffuse blotches in the epidermal cells of susceptible barleys and as deeply stained tracks along the scratches in barleys with the ml-o powdery mildew resistance gene. Subsequent inoculation with powdery...... mildew resulted in appositions that enlarged inversely to their size in the respective varieties when inoculated without carborundum treatment. Aphids sucking the leaves resulted in rows of callose containing spots along the anticlinal cell walls. The spots were larger in the ml-o mutant than...... in the mother variety. Callose was deposited in connection with the pleiotropic necrotic spotting in barleys with the ml-o gene. Modification of the necrotic spotting by crossing the ml-o gene into other gene backgrounds did not result in any change in the size of appositions upon inoculation with powdery...

  2. Extraction of starch from hulled and hull-less barley with papain and aqueous sodium hydroxide

    OpenAIRE

    2013-01-01

    Starch was isolated from hulled (VJM 201) and hull-less (BL 134) barley with papain and aqueous sodium hydroxide treatments. For enzyme-assisted extraction, barley was steeped in water containing 0.2 % SO2 + 0.55 % lactic acid at 50° ± 2 °C for 4–5 h. The slurry was mixed with 0.4–2.0 g papain/kg barley and incubated at 50° ± 2 °C for 1–5 h. Aqueous sodium hydroxide (0.01–0.05 M) was added to the finely ground barley meal. The alkaline slurry was incubated at ambient temperature (25° ± 2 °C) ...

  3. THE MALT EXTRACT, RELATIVE EXTRACT AND DIASTATIC POWER AS A VARIETAL CHARACTERISTIC OF MALTING BARLEY

    Directory of Open Access Journals (Sweden)

    Štefan Dráb

    2014-02-01

    Full Text Available Malting quality of barley depends on genetic and agro-ekological factors. Chemical composition of malting barley and its technological parameters are very important for malting and brewing, due to this fact the quality of barley must be strictly evaluated. The aim of this work was to evaluate the influence of variety, locality and year of production on the 5 technological parameters of malt: extract, relative extract at 45 °C, Kolbach index, diastatic power and friability. It was found out that the barley variety significantly influenced the following parameters: extract, relative extract and diastatic power. The growing locality weakly influenced qualitative parameters i.e. Kolbach index and relative extract at 45°C. The study confirmed the most significant impact of the year on the Kolbach index and friability.

  4. Optimization of additive content and their combination to improve the quality of pure barley bread

    National Research Council Canada - National Science Library

    Pojić, Milica; Dapčević Hadnađev, Tamara; Hadnađev, Miroslav; Rakita, Slađana; Torbica, Aleksandra

    2017-01-01

    ...) on breadmaking potential of barley flour by using response surface methodology. Addition of these ingredients had significant effect on specific bread volume, crust and crumb lightness, crumb texture, average cell size and crumb density...

  5. Comparison of different pretreatment strategies for enzymatic hydrolysis of wheat and barley straw

    DEFF Research Database (Denmark)

    Rosgaard, Lisa; Pedersen, Sven; Meyer, Anne Boye Strunge

    2007-01-01

    In biomass-to-ethanol processes a physico-chemical pretreatment of the lignocellulosic biomass is a critical requirement for enhancing the accessibility of the cellulose substrate to enzymatic attack. This report evaluates the efficacy on barley and wheat straw of three different pretreatment...... generally produced higher glucose concentrations after enzymatic hydrolysis than wheat straw. Acid or water impregnation followed by steam explosion of barley straw was the best pretreatment in terms of resulting glucose concentration in the liquid hydrolysate after enzymatic hydrolysis. When the glucose...... a glucose yield of similar to 39% (g g(-1)). Addition of extra enzyme (Celluclast 1.5 L (R)+Novozyme 188) during enzymatic hydrolysis resulted in the highest total glucose concentrations from barley straw, 32-39 g L-1, but the relative increases in glucose yields were higher on wheat straw than on barley...

  6. The enhanced callose deposition in barley with ml-o powdery mildew resistance genes

    DEFF Research Database (Denmark)

    Skou, Jens-Peder

    1985-01-01

    Carborundum treatment of barley leaves induced a callose deposition which was detected as diffuse blotches in the epidermal cells of susceptible barleys and as deeply stained tracks along the scratches in barleys with the ml-o powdery mildew resistance gene. Subsequent inoculation with powdery...... mildew resulted in appositions that enlarged inversely to their size in the respective varieties when inoculated without carborundum treatment. Aphids sucking the leaves resulted in rows of callose containing spots along the anticlinal cell walls. The spots were larger in the ml-o mutant than...... in the mother variety. Callose was deposited in connection with the pleiotropic necrotic spotting in barleys with the ml-o gene. Modification of the necrotic spotting by crossing the ml-o gene into other gene backgrounds did not result in any change in the size of appositions upon inoculation with powdery...

  7. Development and Meiosis of Three Interspecific Hybrids with Cultivated Barley (Hordeum vulgare L.)

    DEFF Research Database (Denmark)

    Von Bothmer, R.; Flink, J.; Linde-Laursen, Ib

    1986-01-01

    The development and meiosis of three interspecific hybrids between cultivated barley (Hordeum vulgare L.) and H. secalinum Schreb., H. tetraploidum Covas, and H. parodii Covas, respectively, were studied. All three hybrid combinations developed very slowly vegetatively. Meiosis of the hybrids...

  8. Functional and structural characterization of plastidic starch phosphorylase during barley endosperm development

    DEFF Research Database (Denmark)

    Cuesta-Seijo, Jose A.; Ruzanski, Christian; Krucewicz, Katarzyna

    2017-01-01

    (HvPho1) for starch biosynthesis in barley endosperm, we analyzed HvPho1 protein production and enzyme activity levels throughout barley endosperm development and characterized structure-function relationships of HvPho1. The molecular mechanisms underlying the initiation of starch granule biosynthesis......The production of starch is essential for human nutrition and represents a major metabolic flux in the biosphere. The biosynthesis of starch in storage organs like barley endosperm operates via two main pathways using different substrates: starch synthases use ADP-glucose to produce amylose...... and amylopectin, the two major components of starch, whereas starch phosphorylase (Pho1) uses glucose-1-phosphate (G1P), a precursor for ADP-glucose production, to produce α-1,4 glucans. The significance of the Pho1 pathway in starch biosynthesis has remained unclear. To elucidate the importance of barley Pho1...

  9. Exploring options for managing strategies for pea-barley intercropping using a modeling approach

    DEFF Research Database (Denmark)

    Launay, M.; Brisson, N.; Satger, S.;

    2009-01-01

    A modeling study was carried out into pea–barley intercropping in northern Europe. The two objectives were (a) to compare pea–barley intercropping to sole cropping in terms of grain and nitrogen yield amounts and stability, and (b) to explore options for managing pea–barley intercropping systems...... Kingdom and France), and using 10 years of weather records. A preliminary stage evaluated the STICS intercrop model's ability to predict grain and nitrogen yields of the two species, using a 2-year dataset from trials conducted at the three sites. The work was carried out in two phases, (a) the model......) intercropping made better use of environmental resources as regards yield amount and stability than sole cropping, with a noticeable site effect, (2) pea growth in intercrops was strongly linked to soil moisture, and barley yield was determined by nitrogen uptake and light interception due to its height...

  10. The effect of hydrolyzed Spirulina by malted barley on forced swimming test in ICR mice.

    Science.gov (United States)

    Kim, Na-Hyung; Jeong, Hyun-Ja; Lee, Ju-Young; Go, Hoyeon; Ko, Seong-Gyu; Hong, Seung-Heon; Kim, Hyung-Min; Um, Jae-Young

    2008-11-01

    Spirulina is a true puree of a filamentous, spiral-shaped blue alga and exerts the useful properties as a source of many biochemicals. This study investigated the antidepressant-like effect of hydrolyzed Spirulina by malted barley on the forced swimming test in mice. After the forced swimming test, we examined the levels of several blood biochemical parameters in mice. The effect of the hydrolyzed Spirulina by malted barley-treated group for 2 weeks on the immobility time was significantly reduced in comparison with the control group (p Spirulina by malted barley-treated group compared with the control group (p Spirulina by malted barley might be a candidate among antidepressant agents.

  11. Standardized ileal digestibility of amino acids in eight genotypes of barley fed to growing pigs

    DEFF Research Database (Denmark)

    Spindler, H K; Mosenthin, R; Rosenfelder, Pia

    2016-01-01

    To determine chemical composition, physical characteristics and standardized ileal digestibility (SID) of CP and amino acids (AA) in eight current hulled barley genotypes, an experiment with growing pigs has been conducted. These genotypes included Yool, Campanile, Lomerit, Travira, Anisette...

  12. Expression of a defence-related intercellular barley peroxidase in transgenic tobacco

    DEFF Research Database (Denmark)

    Kristensen, B.K.; Brandt, J.; Bojsen, K.

    1997-01-01

    Tobacco plants (Nicotiana benthamiana L.) have been transformed with a T-DNA vector construct carrying the cDNA pBH6-301, encoding the major pathogen induced leaf peroxidase (Prx8) of barley, under control of an enhanced CaMV 35S promoter. Progeny from three independent transformants were analyzed...... genetically, phenotypically and biochemically. The T-DNA was steadily inherited through three generations. The barley peroxidase is expressed and sorted to the intercellular space in the transgenic tobacco plants. The peroxidase can be extracted from the intercellular space in two molecular forms from both...... barley and transgenic tobacco. The tobacco expressed forms are indistinguishable from the barley expressed forms as determined by analytical isoelectric focusing (pI 8.5) and Western-blotting. Staining for N-glycosylation showed that one form only was glycosylated. The N-terminus of purified Prx8 from...

  13. Influence of barley variety, timing of nitrogen fertilisation and sunn pest infestation on malting and brewing.

    Science.gov (United States)

    Marconi, Ombretta; Sileoni, Valeria; Sensidoni, Michele; Rubio, José Manuel Amigo; Perretti, Giuseppe; Fantozzi, Paolo

    2011-03-30

    This paper presents a multivariate approach to investigate the influence of barley variety, timing of nitrogen fertilisation and sunn pest infestation on malting and brewing. Four spring and two winter barley varieties were grown in one location in southern Europe. Moreover, one of the spring varieties was infested with sunn pest, in order to study the effects of this pest on malting quality, and subjected to different nitrogen fertilisation timing regimes. The samples were micromalted, mashed, brewed and analysed. The data showed that even though the two winter barleys seemed to be the best regarding their physical appearance (sieving fraction I + II > 82%), this superiority was not confirmed in the malt samples, which showed low values of Hartong extract (27.1%) and high values of pH (6.07-6.11) and β-glucan content (12.5-13.2 g kg(-1)), resulting in low-quality beers. The barley sample subjected to postponed fertilisation had a total nitrogen content (19.5 g kg(-1) dry matter) exceeding the specification for malting barley and gave a beer with a low content of free amino nitrogen (47 mg L(-1)) and high values of viscosity (1.99 cP) and β-glucan content (533 mg L(-1)). The beer obtained from the barley sample subjected to pest attack had good quality parameters. All spring barleys gave well-modified malts and consequently beers of higher quality than the winter barleys. Moreover, postponed fertilisation was negatively related to the quality of the final beer, and sunn pest infestation did not induce important economic losses in the beer production chain. Copyright © 2010 Society of Chemical Industry.

  14. Identification of two key genes controlling chill haze stability of beer in barley (Hordeum vulgare L)

    OpenAIRE

    Ye, Lingzhen; Huang, Yuqing; Dai, Fei; Ning, Huajiang; Li, Chengdao; Zhou, Meixue; Zhang, Guoping

    2015-01-01

    Background In bright beer, haze formation is a serious quality problem, degrading beer quality and reducing its shelf life. The quality of barley (Hordeum vulgare L) malt, as the main raw material for beer brewing, largely affects the colloidal stability of beer. Results In this study, the genetic mechanism of the factors affecting beer haze stability in barley was studied. Quantitative trait loci (QTL) analysis of alcohol chill haze (ACH) in beer was carried out using a Franklin/Yerong doubl...

  15. Cloning and Characterization of Purple Acid Phosphatase Phytases from Wheat, Barley, Maize and Rice

    DEFF Research Database (Denmark)

    Dionisio, Giuseppe; Madsen, Claus Krogh; Holm, Preben Bach

    2011-01-01

    , it is demonstrated that wheat, barley, maize, and rice all possess purple acid phosphatase (PAP) genes that, expressed in Pichia pastoris, give fully functional phytases (PAPhys) with very similar enzyme kinetics. Preformed wheat PAPhy was localized to the protein crystalloid of the aleurone vacuole. Phylogenetic...... that the PAPhy_a isogene set present in wheat/barley but not in rice/maize is the origin of high phytase activity in mature grains....

  16. Uzu mutation in barley (Hordeum vulgare L.) reduces the leaf unrolling response to brassinolide.

    Science.gov (United States)

    Honda, Ichiro; Zeniya, Haruko; Yoneyama, Koichi; Chono, Makiko; Kaneko, Shigenobu; Watanabe, Yoshiaki

    2003-05-01

    A sensitive method to examine the brassinolide (BL) response of barley (Hordeum vulgare L.) using dark-grown leaf segments was established based on the known method for wheat. BL responses of 53 dwarf isogenic lines of barley were examined, and two lines were found having a uzu gene that doesn't respond significantly. These results indicate that uzu dwarfism may be caused by the non-responding character to BL.

  17. Complex Interspecific Hybridization in Barley (Hordeum vulgare L.) and the Possible Occurrence of Apomixis

    DEFF Research Database (Denmark)

    Bothmer, R. von; Bengtsson, M.; Flink, J.

    1988-01-01

    Several complex hybrids were produced from the combination [(Hordeum lechleri, 6 .times. .times. H. procerum, 6 .times.) .times. H. vulgare, 2 .times.]. Crosses with six diploid barley lines resulted in triple hybrids, most of which had a full complement of barley chromosomes (no. 1-7), but were ...... is that an unreduced gamete from the amphiploid was fertilized by a normal gamete from the backcross parent, and during early embryo development, some chromosomes were eliminated....

  18. Identification of thioredoxin target disulfides in proteins released from barley aleurone layers

    DEFF Research Database (Denmark)

    Hägglund, Per; Bunkenborg, J.; Yang, Fen

    2010-01-01

    Thioredoxins are ubiquitous disulfide reductases involved in a wide range of cellular processes including DNA synthesis, oxidative stress response and apoptosis. In cereal seeds thioredoxins are proposed to facilitate the germination process by reducing disulfide bonds in storage proteins and other...... targets in the starchy endosperm. Here we have applied a thiol-specific labeling approach to identify specific disulfide targets of barley thioredoxin in proteins released from barley aleurone layers incubated in buffer containing gibberellic acid....

  19. Brewing with 100 % unmalted grains: barley, wheat, oat and rye

    DEFF Research Database (Denmark)

    Zhuang, Shiwen; Shetty, Radhakrishna; Hansen, Mikkel

    2017-01-01

    Whilst beers have been produced using various levels of unmalted grains as adjuncts along with malt, brewing with 100 % unmalted grains in combination with added mashing enzymes remains mostly unknown. The aim of this study was to investigate the brewing potential of 100 % unmalted barley, wheat......, oat and rye in comparison with 100 % malt. To address this, identical brewing methods were adopted at 10-L scale for each grain type by applying a commercial mashing enzyme blend (Ondea® Pro), and selected quality attributes were assessed for respective worts and beers. Different compositions...... and higher viscosity than malt wort. Furthermore, the use of 100 % unmalted grains resulted in a decrease in the levels of colour and brightness, as well as higher alcohols and esters in the final beers. Consequently, the study provides valuable information for exploring beer brewing with 100 % unmalted...

  20. Biomechanics of Wheat/Barley Straw and Corn Stover

    Energy Technology Data Exchange (ETDEWEB)

    Christopher T. Wright; Peter A. Pryfogle; Nathan A. Stevens; Eric D. Steffler; J. Richard Hess; Thomas H. Ulrich

    2005-03-01

    The lack of understanding of the mechanical characteristics of cellulosic feedstocks is a limiting factor in economically collecting and processing crop residues, primarily wheat and barley stems and corn stover. Several testing methods, including compression, tension, and bend have been investigated to increase our understanding of the biomechanical behavior of cellulosic feedstocks. Biomechanical data from these tests can provide required input to numerical models and help advance harvesting, handling, and processing techniques. In addition, integrating the models with the complete data set from this study can identify potential tools for manipulating the biomechanical properties of plant varieties in such a manner as to optimize their physical characteristics to produce higher value biomass and more energy efficient harvesting practices.

  1. Inhibition of coagulation factors by recombinant barley serpin BSZx

    DEFF Research Database (Denmark)

    Dahl, Søren Weis; Rasmussen, S.K.; Petersen, L..C.;

    1996-01-01

    Barley serpin BSZx is a potent inhibitor of trypsin and chymotrypsin at overlapping reactive sites (Dahl, S.W., Rasmussen, S.K. and Hejgaard, J. (1996) J. Biol, Chem., in press), We have now investigated the interactions of BSZx with a range of serine proteinases from human plasma, pancreas...... as substrate, Complexes of these proteinase with BSZx resisted boiling in SDS, and amino acid sequencing showed that cleavage in the reactive center loop only occurred after P-1 Arg. Activated protein C and leukocyte elastase were slowly inhibited by BSZx (k(ass) = 1-2 x 10(2) M(-1) s(-1)) whereas factor XIIa......, urokinase and tissue type plasminogen activator, plasmin and pancreas kallikrein and elastase were not or only weakly affected, The inhibition pattern with mammalian proteinases reveal a specificity of BSZx similar to that of antithrombin III. Trypsin from Fusarium was not inhibited while interaction...

  2. The plasma membrane proteome of germinating barley embryos

    DEFF Research Database (Denmark)

    Hynek, Radovan; Svensson, Birte; Jensen, O.N.

    2009-01-01

    was used to reduce soluble protein contamination and enrich for hydrophobic proteins. Sixty-one proteins in 14 SDS-PAGE bands were identified by LC-MS/MS and database searches. The identifications provide new insight into the plasma membrane functions in seed germination.......Cereal seed germination involves a complex coordination between different seed tissues. Plasma membranes must play crucial roles in coordination and execution of germination; however, very little is known about seed plasma membrane proteomes due to limited tissue amounts combined...... with amphiphilicity and low abundance of membrane proteins. A fraction enriched in plasma membranes was prepared from embryos dissected from 18 h germinated barley seeds using aqueous two-phase partitioning. Reversed-phase chromatography on C-4 resin performed in micro-spin columns with stepwise elution by 2-propanol...

  3. The Role of alpha-Glucosidase in Germinating Barley Grains

    DEFF Research Database (Denmark)

    Stanley, Duncan; Rejzek, Martin; Næsted, Henrik;

    2011-01-01

    in the endosperm 10 d after imbibition, implying inhibition of maltase activity. Three of the four inhibitors also reduced starch degradation and seedling growth, but the fourth did not affect these parameters. Inhibition of starch degradation was apparently not due to inhibition of amylases. Inhibition......The importance of alpha-glucosidase in the endosperm starch metabolism of barley (Hordeum vulgare) seedlings is poorly understood. The enzyme converts maltose to glucose (Glc), but in vitro studies indicate that it can also attack starch granules. To discover its role in vivo, we took complementary...... silencing cassette for HvAgl97, alpha-glucosidase activity was reduced by up to 50%. There was a large decrease in the Glc-to-maltose ratio in these lines but no effect on starch degradation or seedling growth. Our results suggest that the alpha-glucosidase HvAGL97 is the major endosperm enzyme catalyzing...

  4. In vitro biochemical characterization of all barley endosperm starch synthases

    DEFF Research Database (Denmark)

    Cuesta-Seijo, Jose A.; Nielsen, Morten M.; Ruzanski, Christian;

    2016-01-01

    Starch is the main storage polysaccharide in cereals and the major source of calories in the human diet. It is synthesized by a panel of enzymes including five classes of starch synthases (SSs). While the overall starch synthase (SS) reaction is known, the functional differences between the five SS...... classes are poorly understood. Much of our knowledge comes from analyzing mutant plants with altered SS activities, but the resulting data are often difficult to interpret as a result of pleitropic effects, competition between enzymes, overlaps in enzyme activity and disruption of multi-enzyme complexes....... Here we provide a detailed biochemical study of the activity of all five classes of SSs in barley endosperm. Each enzyme was produced recombinantly in E. coli and the properties and modes of action in vitro were studied in isolation from other SSs and other substrate modifying activities. Our results...

  5. Enzymes associated with protein bodies isolated from ungerminated barley seeds.

    Science.gov (United States)

    Ory, R L; Henningsen, K W

    1969-11-01

    Protein bodies were isolated intact from dormant barley seeds, Hordeum vulgare, var. Kenia, by a combination of buffer extractions and centrifugations over a sucrose gradient. Examination of the protein bodies pellet in the electron microscope shows 2 types of protein bodies in a wide variation of sizes. The majority of them stain evenly with osmium, are contained within a single membrane, and have no other structural components. The other type, mostly the larger particles, has a fine structure of orderly dark and light-stained layers attached to the protein bodies. Two acid hydrolases are associated with these particles: acid phosphatase activity, specific for sodium phytate but inactive on beta-glycerol phosphate, glucose 1-phosphate, fructose 1,6-diphosphate and adenosine triphosphate; and acid protease activity.

  6. Regeneration of the Barley Zygote in In Vitro Cultured Ovules

    DEFF Research Database (Denmark)

    Holme, Inger B; Brinch-Pedersen, Henrik; Lange, Mette;

    2010-01-01

    In vitro cultures of zygotes and small embryos carry a lot of potential for studying plant embryogenesis and are also highly relevant for plant biotechnology. Several years ago we established an in vitro ovule culture technique for barley that allows the regeneration of plants from zygotes (Holm et...... al., 1995, Sex. Plant. Reprod. 8:49-59). This culture system proved to be highly effective and indications for genotype independency was obtained. To further sustain this we recently investigated the ovule culture response in the cultivar Golden Promise and three cultivars known for low tissue...... pollination. Ovules were grown for 3 weeks on a culture medium where after embryos could be isolated and transferred to regeneration medium. An average of 1.2 green plantlets per ovule could be regenerated from 50 % of the isolated ovules. No genotypic differences were found on embryo induction...

  7. Cyclitols in maturing grains of wheat, triticale and barley

    Directory of Open Access Journals (Sweden)

    Lesław B. Lahuta

    2011-01-01

    Full Text Available In the present study, the feeding of stem-flag leaf-ear explants of wheat, triticale and barley with d-chiro-inositol and d-pinitol was used for modification of the composition of soluble carbohydrates in grains without genetic transformation of plants. Maturing grains indicated ability to uptake exogenously applied cyclitols, not occurring naturally in cereal plants, and synthesized their a-d-galactosides. The pattern of changes in soluble carbohydrates during grain maturation and germination was not disturbed by the uptake and accumulation of cyclitols. Both, d-chiro-inositol and d-pinitol as well as their a-d-galactosides can be an additional pool of soluble carbohydrates accumulated by maturing grains, without decreasing seeds viability. This is the first report indicating the possibility of introduction of cyclitols with potentially human health benefits properties into cereal grains.

  8. Dynamics of Microbial Functional Groups in Rhizosphere of Spring Barley

    Directory of Open Access Journals (Sweden)

    Vlad Stoian

    2016-11-01

    Full Text Available Plant rhizosphere is the portion of soil which is in direct contact with the plant roots. From the microbiological point of view, this area is characterized by strong dynamic of functional groups with high specificity towards the substrate available. Spring barley is a crop with high requirements to the composition of the microflora in the rhizosphere, disturbances produced by agronomic inputs affecting the stability of rhizospheric contact interfaces and ultimately the plant growth. Analysis of changes within the microbial community was carried out with the purpose of defining the disruptive impact of mineral inputs and potential of zeolite to reduce these disruptions. Microbial functional groups were analyzed on the basis of the CO2 export under the specific conditions of soil inoculation on specific substrates over a time period of incubation. Microresp detection plates allow evaluation of a large number of samples under identical conditions of inoculation and the establishment of dynamics of the entire microbial community. The dynamics of the entire microbial communities (basal respiration is stimulated to increase in case of unilateral application of zeolite and zeolite as a buffer for urea fertilization. General growth trend of microbial communities follows proportional the associated application of zeolite with urea, the most powerful non-symbiotic nitrogen fixation processes being stimulated by this combination of fertilizers. Simultaneously, an increase in the dynamics of denitrifiers was observed, also the decomposition of lignin and cellulose and biological crust formation due to the proliferation of cyanobacteria. Rhizosphere of barley plants is characterized by the presence of actinomycetes as dominant in functional microbial community of all experimental variants analyzed with a high capacity for biological degradation and raised mineralization of organic matter.

  9. Combinatorial pooling enables selective sequencing of the barley gene space.

    Directory of Open Access Journals (Sweden)

    Stefano Lonardi

    2013-04-01

    Full Text Available For the vast majority of species - including many economically or ecologically important organisms, progress in biological research is hampered due to the lack of a reference genome sequence. Despite recent advances in sequencing technologies, several factors still limit the availability of such a critical resource. At the same time, many research groups and international consortia have already produced BAC libraries and physical maps and now are in a position to proceed with the development of whole-genome sequences organized around a physical map anchored to a genetic map. We propose a BAC-by-BAC sequencing protocol that combines combinatorial pooling design and second-generation sequencing technology to efficiently approach denovo selective genome sequencing. We show that combinatorial pooling is a cost-effective and practical alternative to exhaustive DNA barcoding when preparing sequencing libraries for hundreds or thousands of DNA samples, such as in this case gene-bearing minimum-tiling-path BAC clones. The novelty of the protocol hinges on the computational ability to efficiently compare hundred millions of short reads and assign them to the correct BAC clones (deconvolution so that the assembly can be carried out clone-by-clone. Experimental results on simulated data for the rice genome show that the deconvolution is very accurate, and the resulting BAC assemblies have high quality. Results on real data for a gene-rich subset of the barley genome confirm that the deconvolution is accurate and the BAC assemblies have good quality. While our method cannot provide the level of completeness that one would achieve with a comprehensive whole-genome sequencing project, we show that it is quite successful in reconstructing the gene sequences within BACs. In the case of plants such as barley, this level of sequence knowledge is sufficient to support critical end-point objectives such as map-based cloning and marker-assisted breeding.

  10. Meat bone meal as fertiliser for barley and oat

    Directory of Open Access Journals (Sweden)

    L. CHEN

    2008-12-01

    Full Text Available The traditional production of mineral N and P fertilisers is unsustainable due its reliance on fossil fuels in the case of N, and on limited mineral resource stocks in the case of P. The use of alternative or complementary fertilisers that originate from organic waste materials is gaining interest. Organic farms, especially arable organic farms without livestock, need usable sources of plant nutrients. Meat bone meal (MBM, a potential organic fertiliser for agricultural crops, contains considerable amounts of nutrients (on average 8% N, 5% P, 1% K and 10% Ca. In EU countries, Commission regulation (EC No 181/2006 authorised the use of MBM as an organic fertiliser. In this study, MBM was compared to conventional mineral NPK fertiliser. Two randomised complete block split-plot field experiments were conducted: one with spring barley (Hordeum vulgare in two years; and another with oat (Avena sativa for three years, including a fourth year of testing for residual effect. Compared to mineral fertiliser (20% N, 3% P and 9% K, MBM was applied at three N levels: 60, 90 and 120 kg N ha-1. The grain yield of both cereal species supported by MBM, did not differ from the yield obtained with the mineral fertiliser at any N level. At 120 kg N ha-1, the grain yield level with either type was ca. 4500 kg ha-1 of barley and 5000 kg ha-1 of oat, representing fair averages for Finnish conditions. Moreover, MBM and mineral fertilisation showed no differences in quality in terms of 1000-grain weight, test-weight, protein content and protein yield. Since MBM has a low N/P ratio, P was applied in surplus to attain comparable N levels. Therefore MBM fertilisation should be fitted for crop rotation and for meeting environmental requirements.;

  11. The barley Frost resistance-H2 locus.

    Science.gov (United States)

    Pasquariello, Marianna; Barabaschi, Delfina; Himmelbach, Axel; Steuernagel, Burkhard; Ariyadasa, Ruvini; Stein, Nils; Gandolfi, Francesco; Tenedini, Elena; Bernardis, Isabella; Tagliafico, Enrico; Pecchioni, Nicola; Francia, Enrico

    2014-03-01

    Frost resistance-H2 (Fr-H2) is a major QTL affecting freezing tolerance in barley, yet its molecular basis is still not clearly understood. To gain a better insight into the structural characterization of the locus, a high-resolution linkage map developed from the Nure × Tremois cross was initially implemented to map 13 loci which divided the 0.602 cM total genetic distance into ten recombination segments. A PCR-based screening was then applied to identify positive bacterial artificial chromosome (BAC) clones from two genomic libraries of the reference genotype Morex. Twenty-six overlapping BACs from the integrated physical-genetic map were 454 sequenced. Reads assembled in contigs were subsequently ordered, aligned and manually curated in 42 scaffolds. In a total of 1.47 Mbp, 58 protein-coding sequences were identified, 33 of which classified according to similarity with sequences in public databases. As three complete barley C-repeat Binding Factors (HvCBF) genes were newly identified, the locus contained13 full-length HvCBFs, four Related to AP2 Triticeae (RAPT) genes, and at least five CBF pseudogenes. The final overall assembly of Fr-H2 includes more than 90 % of target region: all genes were identified along the locus, and a general survey of Repetitive Elements obtained. We believe that this gold-standard sequence for the Morex Fr-H2 will be a useful genomic tool for structural and evolutionary comparisons with Fr-H2 in winter-hardy cultivars along with Fr-2 of other Triticeae crops.

  12. The role of alpha-glucosidase in germinating barley grains.

    Science.gov (United States)

    Stanley, Duncan; Rejzek, Martin; Naested, Henrik; Smedley, Mark; Otero, Sofía; Fahy, Brendan; Thorpe, Frazer; Nash, Robert J; Harwood, Wendy; Svensson, Birte; Denyer, Kay; Field, Robert A; Smith, Alison M

    2011-02-01

    The importance of α-glucosidase in the endosperm starch metabolism of barley (Hordeum vulgare) seedlings is poorly understood. The enzyme converts maltose to glucose (Glc), but in vitro studies indicate that it can also attack starch granules. To discover its role in vivo, we took complementary chemical-genetic and reverse-genetic approaches. We identified iminosugar inhibitors of a recombinant form of an α-glucosidase previously discovered in barley endosperm (ALPHA-GLUCOSIDASE97 [HvAGL97]), and applied four of them to germinating grains. All four decreased the Glc-to-maltose ratio in the endosperm 10 d after imbibition, implying inhibition of maltase activity. Three of the four inhibitors also reduced starch degradation and seedling growth, but the fourth did not affect these parameters. Inhibition of starch degradation was apparently not due to inhibition of amylases. Inhibition of seedling growth was primarily a direct effect of the inhibitors on roots and coleoptiles rather than an indirect effect of the inhibition of endosperm metabolism. It may reflect inhibition of glycoprotein-processing glucosidases in these organs. In transgenic seedlings carrying an RNA interference silencing cassette for HvAgl97, α-glucosidase activity was reduced by up to 50%. There was a large decrease in the Glc-to-maltose ratio in these lines but no effect on starch degradation or seedling growth. Our results suggest that the α-glucosidase HvAGL97 is the major endosperm enzyme catalyzing the conversion of maltose to Glc but is not required for starch degradation. However, the effects of three glucosidase inhibitors on starch degradation in the endosperm indicate the existence of unidentified glucosidase(s) required for this process.

  13. Heterogeneity of Powdery Mildew Resistance Revealed in Accessions of the ICARDA Wild Barley Collection

    Science.gov (United States)

    Dreiseitl, Antonin

    2017-01-01

    The primary genepool of barley comprises two subspecies – wild barley (Hordeum vulgare subsp. spontaneum) and cultivated barley H. vulgare. subsp. vulgare. The former originated 5.5 million years ago in southwest Asia and is the immediate ancestor of cultivated barley, which arose around 10,000 years ago. In this study, the specific resistance of a set of 146 wild barley accessions, maintained by the International Center for Agriculture Research in the Dry Areas (ICARDA), to 32 isolates of barley powdery mildew caused by Blumeria graminis f. sp. hordei was evaluated. The set comprised 146 heterogeneous accessions of a previously tested collection. Seed was obtained by single seed descent and each accession was usually represented by five single plant progenies. In total, 687 plant progenies were tested. There were 211 phenotypes of resistance among the accessions, 87 of which were found in single plants, while 202 plants contained the eight most common phenotypes. The most frequent phenotype was found in 56 plants that were susceptible to all pathogen isolates, whereas the second most frequent phenotype, which occurred in 46 plants, was resistant to all isolates. The broad resistance diversity that was revealed is of practical importance and is an aid to determining the extent and role of resistance in natural ecosystems.

  14. Intake and digestion of whole-crop barley and wheat silages by dairy heifers.

    Science.gov (United States)

    Rustas, B-O; Bertilsson, J; Martinsson, K; Elverstedt, T; Nadeau, E

    2011-12-01

    The effect of maturity at harvest on the digestibility and intake of large bale silage made from whole-crop barley and wheat when fed to growing heifers was evaluated. Two crops of spring barley (Hordeum distichum cv. Filippa and Kinnan) and 1 of winter wheat (Triticum aestivum cv. Olevin) were harvested at the heading, milk, and dough stages of maturity. The silage was fed to 36 dairy heifers in a balanced crossover experiment with 3 periods and 9 treatments (diets based on 3 crops and 3 stages of maturity), organized into 6 pairs of 3 × 3 Latin squares. No clear relationship was observed between intake and stage of maturity of whole-crop cereal silage, but intake was positively correlated to silage DM content (P silage (P = 0.034). The NDF digestibility decreased between the heading and milk stages in all crops (P < 0.001), whereas it decreased in 1 barley crop (P < 0.001), increased in the other barley (P = 0.025), and was unchanged in the wheat between the milk and dough stages of maturity. Starch digestibility was less in the 2 barley crops compared with the wheat at the dough stage of maturity (P < 0.001). The feeding value of the whole-crop barley and wheat declined between the heading and milk stages of maturity, but thereafter the effect of maturity on the feeding value was minor.

  15. The effect of fungicidal treatment on selected quality parameters of barley and malt.

    Science.gov (United States)

    Havlová, Pavla; Lancová, Katerina; Vánová, Marie; Havel, Josef; Hajslová, Jana

    2006-02-22

    Protection of barley grain against contamination by fungi such as Fusarium spp., particularly by those producing mycotoxins, secondary metabolites with adverse health effects, is of principal importance. Fungicides applied immediately after full heading of spring barley is one method of direct protection. In this work, extensive two-year field experiments combined with a detailed chemical laboratory analysis (barley and malt) were performed with the aim to study the effect of previous crops, different fungicides, and other conditions on the selected barley and malt quality parameters (content of beta-glucans, pentosans, oxalic acid, deoxynivalenol, and gushing), while the main task was to follow the effect of the fungicide (used as a treatment to protect against pathogens, mostly Fusarium) on changes of the chemical composition in barley and malt, and gushing. It was found that the relationship between the studied factors and the parameters usually applied to the evaluation of barley and malt quality is quite complex and not straightforward. The responses show typical features of a multifactorial influence with both positive and negative correlations resulting in a decrease or increase in grain quality (concentrations of beta-glucans, pentosans, deoxynivalenol, and other studied parameters). The role of previous crops was also found to be important. The fungicides should be applied at the time of heading but not at the very beginning of this period.

  16. Some quality attributes of low fat ice cream substituted with hulless barley flour and barley ß-glucan.

    Science.gov (United States)

    Abdel-Haleem, Amal M H; Awad, R A

    2015-10-01

    The purpose of this paper is to investigate some quality attributes of low fat ice cream (LFIC) substituted with hulless barley flour (HBF) and barley ß-glucan (BBG). The methodology included in this paper is based on adding HBF (1, 2, 3 and 4 %) as a partial substitution of skim milk powder (SMP) and BBG (0.40 %) as a complete substitution of carboxy methyl cellulose (CMC). All mixes and resultant ice cream samples were evaluated for their physicochemical properties as well as the sensory quality attributes.The results indicated that substitution of SMP with HBF significantly increased total solids (TS), fat and crude fiber, while crude protein and ash significantly decreased in ice cream mixes. BBG exhibited the same manner of control. Specific gravity was gradually increased with adding HBFand BBG in the mixes and therefore the overrun percent was significantly changed in the resultant ice cream. Adding HBF in ice cream formula led to significant decrease in acidity with higher freezing point and the product showed higher ability to meltdown. BBG treatment showed the same trend of control. Values of flow time and viscosity significantly increased with increasing HBF in the ice cream mixes, but these values significantly decreased in BBG mix. The time required to freeze ice cream mixes was decreased with increasing the ratio of HBF but, increased in BBG treatment. The substitution of SMP with 1 and 2 % HBF significantly (P ≤ 0.05) enhanced sensory attributes of ice cream samples. While, BBG treatment achieved mild score and acceptability.

  17. The sexed shape of Helminthosporium gramineum Rabh. fungus involved in increasing disease damage of torn leaves in barley

    Directory of Open Access Journals (Sweden)

    Viorel FLORIAN

    1988-08-01

    Full Text Available The onset of some sclerotic formations are reported on barley straws on which the following microscopic investigations and biometrical measurements peritecia, ascia and ascospores of Pyrenophora graminea (Rabh. Ito et Kurib. were detected, representing the sexed multiplication of fungus Helminthosporium gramineum, the pathogenic factor causing leaf tearing in barley, a condition rarely encountered in nature. Owing to the great number of peritecia on barley straw residues, we are of the opinion that the sexed multiplication of fungus represents a real danger in barley cultivation assigning the efficient control steps against this pest.

  18. Evaluation of triticale dried distillers grains with solubles as a substitute for barley grain and barley silage in feedlot finishing diets.

    Science.gov (United States)

    Wierenga, K T; McAllister, T A; Gibb, D J; Chaves, A V; Okine, E K; Beauchemin, K A; Oba, M

    2010-09-01

    The objective of this study was to assess the value of triticale dried distillers grains with solubles (DDGS) as a replacement for barley silage in addition to a portion of the dry-rolled barley (DRB) in a grain-based feedlot finishing diet. The trial used 160 crossbred yearling steers: 144 noncannulated (478 +/- 84 kg) in a complete randomized design, and 16 ruminally cannulated (494 +/- 50 kg) in a replicated 4 x 4 Latin square design. The noncannulated steers were assigned to 8 standard pens (10 per pen) and 8 pens equipped with the GrowSafe system (GrowSafe Systems Ltd., Airdrie, Alberta, Canada; 8 per pen). The cannulated steers were placed (2 per pen) in the 8 GrowSafe pens and moved between pens at 28-d intervals. Each of 4 experimental diets was fed in 2 standard and 2 GrowSafe pens. The diets contained (DM basis) 1) 85% DRB and 10% barley silage (CON); 2) 65% DRB, 20% triticale DDGS, and 10% barley silage (D-10S), 3) 65% DRB, 25% triticale DDGS, and 5% barley silage, and 4) 65% DRB, 30% triticale DDGS, and no barley silage. Supplement (5% of dietary DM) was included in all diets. Ruminal pH was measured over four 7-d periods using indwelling electrodes. Replacing barley silage with triticale DDGS linearly decreased mean ruminal pH (P = 0.006), linearly increased duration (P = 0.006 and P = 0.01) and area under the curve (P = 0.02 and P = 0.05) below pH 5.5 and 5.2, and linearly increased the frequency of subacute (P = 0.005) and acute (P = 0.05) bouts of ruminal acidosis. Variation in mean ruminal pH decreased (P = 0.008) in steers fed D-10S compared with CON. Similarly, variation in DMI was less for steers fed triticale DDGS compared with CON. Steers fed D-10S tended to have greater DMI (P = 0.08) but similar ADG and G:F compared with CON steers. Replacing barley silage with triticale DDGS tended to linearly decrease DMI (P = 0.10) and increase (P = 0.06) G:F. Compared with CON, steers fed D-10S tended to have greater backfat thickness (P = 0.10) and

  19. Population-genetic analysis of HvABCG31 promoter sequence in wild barley (Hordeum vulgare ssp. spontaneum

    Directory of Open Access Journals (Sweden)

    Ma Xiaoying

    2012-09-01

    Full Text Available Abstract Background The cuticle is an important adaptive structure whose origin played a crucial role in the transition of plants from aqueous to terrestrial conditions. HvABCG31/Eibi1 is an ABCG transporter gene, involved in cuticle formation that was recently identified in wild barley (Hordeum vulgare ssp. spontaneum. To study the genetic variation of HvABCG31 in different habitats, its 2 kb promoter region was sequenced from 112 wild barley accessions collected from five natural populations from southern and northern Israel. The sites included three mesic and two xeric habitats, and differed in annual rainfall, soil type, and soil water capacity. Results Phylogenetic analysis of the aligned HvABCG31 promoter sequences clustered the majority of accessions (69 out of 71 from the three northern mesic populations into one cluster, while all 21 accessions from the Dead Sea area, a xeric southern population, and two isolated accessions (one from a xeric population at Mitzpe Ramon and one from the xeric ‘African Slope’ of “Evolution Canyon” formed the second cluster. The southern arid populations included six haplotypes, but they differed from the consensus sequence at a large number of positions, while the northern mesic populations included 15 haplotypes that were, on average, more similar to the consensus sequence. Most of the haplotypes (20 of 22 were unique to a population. Interestingly, higher genetic variation occurred within populations (54.2% than among populations (45.8%. Analysis of the promoter region detected a large number of transcription factor binding sites: 121–128 and 121–134 sites in the two southern arid populations, and 123–128,125–128, and 123–125 sites in the three northern mesic populations. Three types of TFBSs were significantly enriched: those related to GA (gibberellin, Dof (DNA binding with one finger, and light. Conclusions Drought stress and adaptive natural selection may have been important

  20. Boosting transcription by transcription: enhancer-associated transcripts.

    Science.gov (United States)

    Darrow, Emily M; Chadwick, Brian P

    2013-12-01

    Enhancers are traditionally viewed as DNA sequences located some distance from a promoter that act in cis and in an orientation-independent fashion to increase utilization of specific promoters and thereby regulate gene expression. Much progress has been made over the last decade toward understanding how these distant elements interact with target promoters, but how transcription is enhanced remains an object of active inquiry. Recent reports convey the prevalence and diversity of enhancer transcription and transcripts and support both as key factors with mechanistically distinct, but not mutually exclusive roles in enhancer function. Decoupling the causes and effects of transcription on the local chromatin landscape and understanding the role of enhancer transcripts in the context of long-range interactions are challenges that require additional attention. In this review, we focus on the possible functions of enhancer transcription by highlighting several recent enhancer RNA papers and, within the context of other enhancer studies, speculate on the role of enhancer transcription in regulating differential gene expression.

  1. Heat processing of barley and enzyme supplementation of diets for broilers.

    Science.gov (United States)

    Gracia, M I; Latorre, M A; García, M; Lázaro, R; Mateos, G G

    2003-08-01

    The influence of heat processing (HP) of barley and enzyme supplementation (ES) of the diet on digestive and performance traits of broilers to 21 d was studied. There were four treatments arranged factorially with two barley-processing treatments (raw or heated), two levels of ES (0 or 500 ppm), and five replicates per treatment. Chicks fed HP barley grew faster than broilers fed raw barley until 8 d of age, but the effect disappeared thereafter. In general, ES improved broiler performance at all ages. Intestinal viscosity was increased by HP of barley (P viscosity caused by ES was greater for HP than for raw barley diets (HP x ES; P starch and neutral detergent fiber, retention increased linearly with age (P < or = 0.01), but for the remaining nutrients the retention decreased from d 4 to 8 and then increased until d 21 (P < or = 0.001). Also, the beneficial effects of HP on retention of nutrients were more pronounced at younger ages (HP x age; P < or = 0.05). Both HP (P < or = 0.001) and ES (P < or = 0.01) increased liver weight, and enzymes reduced the weights of pancreas (P < or = 0.05) and small intestine (P < or = 0.001). Villus height was improved by HP (P < or = 0.001) and ES (P < or = 0.01), but villus surface area was only improved by enzymes (P < or = 0.01). It was concluded that broiler performance is improved by HP of barley at early ages and by ES of the diet throughout the trial. Also, HP and ES increased apparent retention of nutrients, AMEn of the diet, and villus height.

  2. Barley Leaf Area and Leaf Growth Rates Are Maximized during the Pre-Anthesis Phase

    Directory of Open Access Journals (Sweden)

    Ahmad M. Alqudah

    2015-04-01

    Full Text Available Leaf developmental traits are an important component of crop breeding in small-grain cereals. Surprisingly, little is known about the genetic basis for the differences in barley (Hordeum vulgare L. leaf development. The two barley row-type classes, i.e., two- and six-rowed, show clear-cut differences in leaf development. To quantify these differences and to measure the genetic component of the phenotypic variance for the leaf developmental differences in both row-type classes we investigated 32 representative spring barley accessions (14 two- and 18 six-rowed accessions under three independent growth conditions. Leaf mass area is lower in plants grown under greenhouse (GH conditions due to fewer, smaller, and lighter leaf blades per main culm compared to pot- and soil-grown field plants. Larger and heavier leaf blades of six-rowed barley correlate with higher main culm spike grain yield, spike dry weight, and harvest index; however, smaller leaf area (LA in two-rowed barley can be attributed to more spikes, tillers, and biological yield (aboveground parts. In general, leaf growth rate was significantly higher between awn primordium and tipping stages. Moderate to very high broad-sense heritabilities (0.67–0.90 were found under all growth conditions, indicating that these traits are predominantly genetically controlled. In addition, our data suggests that GH conditions are suitable for studying leaf developmental traits. Our results also demonstrated that LA impacts single plant yield and can be reconsidered in future breeding programs. Six-rowed spike 1 (Vrs1 is the major determinate of barley row-types, the differences in leaf development between two- and six-rowed barleys may be attributed to the regulation of Vrs1 in these two classes, which needs further testing.

  3. A Genome Wide Association Study of arabinoxylan content in 2-row spring barley grain.

    Science.gov (United States)

    Hassan, Ali Saleh; Houston, Kelly; Lahnstein, Jelle; Shirley, Neil; Schwerdt, Julian G; Gidley, Michael J; Waugh, Robbie; Little, Alan; Burton, Rachel A

    2017-01-01

    In barley endosperm arabinoxylan (AX) is the second most abundant cell wall polysaccharide and in wheat it is the most abundant polysaccharide in the starchy endosperm walls of the grain. AX is one of the main contributors to grain dietary fibre content providing several health benefits including cholesterol and glucose lowering effects, and antioxidant activities. Due to its complex structural features, AX might also affect the downstream applications of barley grain in malting and brewing. Using a high pressure liquid chromatography (HPLC) method we quantified AX amounts in mature grain in 128 spring 2-row barley accessions. Amounts ranged from ~ 5.2 μg/g to ~ 9 μg/g. We used this data for a Genome Wide Association Study (GWAS) that revealed three significant quantitative trait loci (QTL) associated with grain AX levels which passed a false discovery threshold (FDR) and are located on two of the seven barley chromosomes. Regions underlying the QTLs were scanned for genes likely to be involved in AX biosynthesis or turnover, and strong candidates, including glycosyltransferases from the GT43 and GT61 families and glycoside hydrolases from the GH10 family, were identified. Phylogenetic trees of selected gene families were built based on protein translations and were used to examine the relationship of the barley candidate genes to those in other species. Our data reaffirms the roles of existing genes thought to contribute to AX content, and identifies novel QTL (and candidate genes associated with them) potentially influencing the AX content of barley grain. One potential outcome of this work is the deployment of highly associated single nucleotide polymorphisms markers in breeding programs to guide the modification of AX abundance in barley grain.

  4. Comparison of different pretreatment strategies for enzymatic hydrolysis of wheat and barley straw.

    Science.gov (United States)

    Rosgaard, Lisa; Pedersen, Sven; Meyer, Anne S

    2007-12-01

    In biomass-to-ethanol processes a physico-chemical pretreatment of the lignocellulosic biomass is a critical requirement for enhancing the accessibility of the cellulose substrate to enzymatic attack. This report evaluates the efficacy on barley and wheat straw of three different pretreatment procedures: acid or water impregnation followed by steam explosion versus hot water extraction. The pretreatments were compared after enzyme treatment using a cellulase enzyme system, Celluclast 1.5 L from Trichoderma reesei, and a beta-glucosidase, Novozyme 188 from Aspergillus niger. Barley straw generally produced higher glucose concentrations after enzymatic hydrolysis than wheat straw. Acid or water impregnation followed by steam explosion of barley straw was the best pretreatment in terms of resulting glucose concentration in the liquid hydrolysate after enzymatic hydrolysis. When the glucose concentrations obtained after enzymatic hydrolyses were related to the potential glucose present in the pretreated residues, the highest yield, approximately 48% (g g-1), was obtained with hot water extraction pretreatment of barley straw; this pretreatment also produced highest yields for wheat straw, producing a glucose yield of approximately 39% (g g-1). Addition of extra enzyme (Celluclast 1.5 L+Novozyme 188) during enzymatic hydrolysis resulted in the highest total glucose concentrations from barley straw, 32-39 g L-1, but the relative increases in glucose yields were higher on wheat straw than on barley straw. Maldi-TOF MS analyses of supernatants of pretreated barley and wheat straw samples subjected to acid and water impregnation, respectively, and steam explosion, revealed that the water impregnated + steam-exploded samples gave a wider range of pentose oligomers than the corresponding acid-impregnated samples.

  5. Do 14-3-3 proteins and plasma membrane H+-AtPases interact in the barley epidermis in response to the barley powdery mildew fungus?

    DEFF Research Database (Denmark)

    Finni, Christine; Andersen, Claus H; Borch, Jonas

    2002-01-01

    , or treatment with fusicoccin, results in an increase in fusicoccin binding ability of barley leaf membranes. Overlay assays show a fungus-induced increase in binding of digoxygenin-labelled 14-3-3 protein to several proteins including a 100 kDa membrane protein, probably the plasma membrane H...

  6. Mapping genes in barley for resistance to Puccinia coronata from couch grass and to P. striiformis from brome, wheat and barley

    NARCIS (Netherlands)

    Niks, R.E.; Alemu, Sisay K.; Marcel, T.C.; Heyzen, van Skye

    2015-01-01

    Barley (Hordeum vulgare L.) mapping populations have been developed that are useful to study the inheritance of quantitative resistance to adapted and unadapted rust fungi. In a recent host range study, we found that the parents of those mapping populations also differed in their resistance to th

  7. Barley Yellow Mosaic Virus VPg Is the Determinant Protein for Breaking eIF4E-Mediated Recessive Resistance in Barley Plants

    Science.gov (United States)

    Li, Huangai; Kondo, Hideki; Kühne, Thomas; Shirako, Yukio

    2016-01-01

    In this study, we investigated the barley yellow mosaic virus (BaYMV, genus Bymovirus) factor(s) responsible for breaking eIF4E-mediated recessive resistance genes (rym4/5/6) in barley. Genome mapping analysis using chimeric infectious cDNA clones between rym5-breaking (JT10) and rym5-non-breaking (JK05) isolates indicated that genome-linked viral protein (VPg) is the determinant protein for breaking the rym5 resistance. Likewise, VPg is also responsible for overcoming the resistances of rym4 and rym6 alleles. Mutational analysis identified that amino acids Ser-118, Thr-120, and His-142 in JT10 VPg are the most critical residues for overcoming rym5 resistance in protoplasts. Moreover, the rym5-non-breaking JK05 could accumulate in the rym5 protoplasts when eIF4E derived from a susceptible barley cultivar was expressed from the viral genome. Thus, the compatibility between VPg and host eIF4E determines the ability of BaYMV to infect barley plants. PMID:27746794

  8. Effect of feeding corn, hull-less or hulled barley on fermentation by mixed cultures of ruminal microorganisms.

    Science.gov (United States)

    Fellner, V; Burns, J C; Marshall, D S

    2008-05-01

    Increased demands for corn grain warrant the evaluation of alternative grain types for ruminant production systems. This study was conducted to determine the effects of hulled and hull-less barley (Hordeum vulgare L.) cultivars compared with corn (Zea mays L.) as an alternative grain type on fermentation in cultures of mixed ruminal microorganisms. Three continuous fermentors were fed 14 g of dry feed per day (divided equally between 2 feedings) consisting of alfalfa (Medicago sativa L.) hay pellets (40% of dry matter) and 1) ground corn, 2) hulled barley, or 3) hull-less barley concentrate (60% of dry matter) in each fermentor. Following an adaptation period of 5 d, culture samples were taken at 2 h after the morning feeding on d 6, 7, and 8 of each period for analysis. A second run of the fermentors followed the same treatment sequence to provide replication. Culture pH was reduced with corn (5.55) and did not differ between barley cultivars (average pH 5.89). Total volatile fatty acid concentration and acetate to propionate ratio were not different across grain type or barley cultivar with the exception of greater total volatile fatty acid concentrations with hull-less barley. Corn produced less methane (14.6 mmol/d) and ammonia-N (7.3 mg/100 mL) compared with barley (33.1 mmol/d and 22 mg/100 mL, respectively); methane was greater with hull-less barley but ammonia-N concentration was similar between the 2 barley cultivars. Hull-less barley had greater digestibility compared with hulled barley, and corn had reduced digestibility compared with barley. Concentrations of C18:0 were greater and those of C18:1 and C18:2 lesser in cultures fed hulled and hull-less barley compared with corn. Our data indicate that grain type and barley cultivar have an impact on ruminal fermentation. The lesser starch concentration of barley minimized the drop in culture pH and improved digestibility.

  9. Effects of sulfur nutritional level on cadmium toxicity in barley

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yichang; Huerta, A.J. (Miami Univ., Oxford, OH (United States))

    1993-05-01

    The effects of S levels on Cd toxicity were studied in barley (Hordeum vulgare L.cv.UC 476). Barley was grown hydroponically in half-strength Hoagland's solution containing either 100% or 10% S in a growth chamber at constant 20 C, 290 umole M[sup [minus]2] s[sup [minus]1] light intensity, and a 16/18 hour light/dark period. Five days after the first true leaf appeared, 15 uM Cd was added to the nutrient solutions where appropriate. At 14 days after beginning of Cd treatment, plants were analyzed for photosynthetic characteristics. The photosynthetic characteristics measured were CO[sub 2] response curves (measured with a LICOR 6200 portable photosynthesis system), and fluorescence measurement system. At 21 days they were analyzed for morphological and biomass measurements. The CO[sub 2] response curves for leaves of plants treated with 10% S did not significantly differ from those of plants treated with 100% S. Treatment with Cd significantly reduced the CO[sup 2] saturated rates of photosynthesis and the reduction was more significant in the 10% S than in the 100% S plants. Photochemical efficiency of PSII (FV/FM) and fluorescence quenching capacity (FQ) were not affected by 10% S as compared to 100% S treatment. Interestingly, treatment with Cd significantly increased both FV/FM and FQ as compared to control., However, S level had no effect on the fluorescence parameters of Cd-treated plants. Leaf and root length, leaf area, root and shoot dry weight were only slightly affected (increased or decreased) by 10% S as compared to 100% S but very significantly reduced by treatment with Cd. Our results agree with the previous reports which show that S (an important component of glutathione and phytochelatins which are low molecular weight Cd binding proteins), is important in regulating Cd detoxification in plants. However, we are continuing to conduct experiments as even lower S concentrations and different Cd concentrations.

  10. Root Hair Mutations Displace the Barley Rhizosphere Microbiota

    Directory of Open Access Journals (Sweden)

    Robertson-Albertyn Senga

    2017-06-01

    Full Text Available The rhizosphere, the thin layer of soil surrounding and influenced by plant roots, defines a distinct and selective microbial habitat compared to unplanted soil. The microbial communities inhabiting the rhizosphere, the rhizosphere microbiota, engage in interactions with their host plants which span from parasitism to mutualism. Therefore, the rhizosphere microbiota emerges as one of the determinants of yield potential in crops. Studies conducted with different plant species have unequivocally pointed to the host plant as a driver of the microbiota thriving at the root–soil interface. Thus far, the host genetic traits shaping the rhizosphere microbiota are not completely understood. As root hairs play a critical role in resource exchanges between plants and the rhizosphere, we hypothesized that they can act as a determinant of the microbiota thriving at the root–soil interface. To test this hypothesis, we took advantage of barley (Hordeum vulgare mutant lines contrasting for their root hair characteristics. Plants were grown in two agricultural soils, differentiating in their organic matter contents, under controlled environmental conditions. At early stem elongation rhizosphere specimens were collected and subjected to high-resolution 16S rRNA gene profiling. Our data revealed that the barley rhizosphere microbiota is largely dominated by members of the phyla Bacteroidetes and Proteobacteria, regardless of the soil type and the root hair characteristics of the host plant. Conversely, ecological indices calculated using operational taxonomic units (OTUs presence, abundance, and phylogeny revealed a significant impact of root hair mutations on the composition of the rhizosphere microbiota. In particular, our data indicate that mutant plants host a reduced-complexity community compared to wild-type genotypes and unplanted soil controls. Congruently, the host genotype explained up to 18% of the variation in ecological distances computed for the

  11. Root Hair Mutations Displace the Barley Rhizosphere Microbiota.

    Science.gov (United States)

    Senga, Robertson-Albertyn; Alegria Terrazas, Senga; Balbirnie, Katharin; Blank, Manuel; Janiak, Agnieszka; Szarejko, Iwona; Chmielewska, Beata; Karcz, Jagna; Morris, Jenny; Hedley, Pete E; George, Timothy S; Bulgarelli, Davide

    2017-01-01

    The rhizosphere, the thin layer of soil surrounding and influenced by plant roots, defines a distinct and selective microbial habitat compared to unplanted soil. The microbial communities inhabiting the rhizosphere, the rhizosphere microbiota, engage in interactions with their host plants which span from parasitism to mutualism. Therefore, the rhizosphere microbiota emerges as one of the determinants of yield potential in crops. Studies conducted with different plant species have unequivocally pointed to the host plant as a driver of the microbiota thriving at the root-soil interface. Thus far, the host genetic traits shaping the rhizosphere microbiota are not completely understood. As root hairs play a critical role in resource exchanges between plants and the rhizosphere, we hypothesized that they can act as a determinant of the microbiota thriving at the root-soil interface. To test this hypothesis, we took advantage of barley (Hordeum vulgare) mutant lines contrasting for their root hair characteristics. Plants were grown in two agricultural soils, differentiating in their organic matter contents, under controlled environmental conditions. At early stem elongation rhizosphere specimens were collected and subjected to high-resolution 16S rRNA gene profiling. Our data revealed that the barley rhizosphere microbiota is largely dominated by members of the phyla Bacteroidetes and Proteobacteria, regardless of the soil type and the root hair characteristics of the host plant. Conversely, ecological indices calculated using operational taxonomic units (OTUs) presence, abundance, and phylogeny revealed a significant impact of root hair mutations on the composition of the rhizosphere microbiota. In particular, our data indicate that mutant plants host a reduced-complexity community compared to wild-type genotypes and unplanted soil controls. Congruently, the host genotype explained up to 18% of the variation in ecological distances computed for the rhizosphere samples

  12. Fermentation of barley by using Saccharomyces cerevisiae: examination of barley as a feedstock for bioethanol production and value-added products.

    Science.gov (United States)

    Gibreel, Amera; Sandercock, James R; Lan, Jingui; Goonewardene, Laksiri A; Zijlstra, Ruurd T; Curtis, Jonathan M; Bressler, David C

    2009-03-01

    The objective of this study was to examine the ethanol yield potential of three barley varieties (Xena, Bold, and Fibar) in comparison to two benchmarks, corn and wheat. Very high gravity (VHG; 30% solids) fermentations using both conventional and Stargen 001 enzymes for starch hydrolysis were carried out as simultaneous saccharification and fermentation. The grains and their corresponding dried distiller's grain with solubles (DDGS) were also analyzed for nutritional and value-added characteristics. A VHG traditional fermentation approach utilizing jet-cooking fermentation revealed that both dehulled Bold and Xena barley produced ethanol concentrations higher than that produced by wheat (12.3, 12.2, and 11.9%, respectively) but lower than that produced by corn (13.8%). VHG-modified Stargen-based fermentation of dehulled Bold barley demonstrated comparable performance (14.3% ethanol) relative to that of corn (14.5%) and wheat (13.3%). Several important components were found to survive fermentation and were concentrated in DDGS. The highest yield of phenolics was detected in the DDGS (modified Stargen 001, 20% solids) of Xena (14.6 mg of gallic acid/g) and Bold (15.0 mg of gallic acid/g) when the hull was not removed before fermentation. The highest concentration of sterols in DDGS from barley was found in Xena (3.9 mg/g) when the hull was included. The DDGS recovered from corn had the highest concentration of fatty acids (72.6 and 77.5 mg/g). The DDGS recovered from VHG jet-cooking fermentations of Fibar, dehulled Bold, and corn demonstrated similar levels of tocopherols and tocotrienols. Corn DDGS was highest in crude fat but was lowest in crude protein and in vitro energy digestibility. Wheat DDGS was highest in crude protein content, similar to previous studies. The barley DDGS was the highest in in vitro energy digestibility.

  13. Enzymatic fractionation of SAA-pretreated barley straw for production of fuel ethanol and astaxanthin as a value-added co-product

    Science.gov (United States)

    Barley straw was used to demonstrate a process for production of ethanol and astaxanthin as a value-added co-product. Barley straw was pretreated by soaking in aqueous ammonia (SAA) using the previously determined optimum conditions. The pretreated barley straw was first hydrolyzed with Accellerase®...

  14. Enzymatic fingerprinting of arabinoxylan and β-glucan in triticale, barley and tritordeum grains.

    Science.gov (United States)

    Rakha, A; Saulnier, L; Aman, P; Andersson, R

    2012-10-15

    Enzymatic fingerprinting of arabinoxylan (AX) and β-glucan using endo-xylanase and lichenase, respectively, helps determine the structural heterogeneity between different cereals and within genotypes of the same cereal. This study characterised the structural features of AX and β-glucan in whole grains of eight triticale cultivars grown at two locations, 20 barley cultivars/lines with wide variation in composition and morphology and five tritordeum breeding lines. Principal component analysis (PCA) resulted in clear clustering of these cereals. In general, barley and tritordeum had a higher relative proportion of highly branched arabinoxylan oligosaccharides (AXOS) than triticale. Subsequent analysis of triticale revealed two clusters based on growing region along principal component (PC) 1, while PC2 explained the genetic variability and was based on mono-substitution and di-substitution in AX fragments. PCA of β-glucan features separated the three cereals based on β-glucan content. The molar ratio of trisaccharide to tetrasaccharide was 2.5-3.4 in triticale, 2.3-3.3 in barley and 2.8-3.4 in tritordeum. Barley showed a strong positive correlation (r=0.86) between β-glucan content and relative proportion of trisaccharide. The results show that structural features of AX and β-glucan vary between and within triticale, barley and tritordeum grains which might be important determinants of end-use quality of grains.

  15. [Hordein locus polymorphism of cultivated barley (Hordeum vulgare L.) in Turkey].

    Science.gov (United States)

    Pomortsev, A A; Martynov, S P; Lialina, E V

    2007-11-01

    Starch gel electrophoresis has been used to study the polymorphism of hordeins encoded by the Hrd A, Hrd B, and Hrd F loci in 93 landrace specimens of barley assigned to 17 ancient provinces located in modem Turkey. Forty-five alleles of Hrd A with frequencies of 0.11-29.34%, 51 alleles of Hrd B with frequencies of 0.11-8.07%, and 5 alleles of Hrd F with frequencies of 0.75-41.29% have been detected. Cluster analysis of the matrix of allele frequencies has demonstrated that barley populations from different old provinces of Turkey are similar to one another. Cluster structure of local barley populations has been found, most populations (82%) falling into three clusters. The first cluster comprises barley populations from six provinces (Thracia, Bithynia, Pontus, Lydia, Cappadocia, and Armenia); the second cluster, populations from five provinces (Paphlagonia, Galatia, Lycaonia, Cilicia, and Mesopotamia); and the third one, populations from three provinces (Phrygia, Karia, and Lycia). Barley populations from Mysia, Pamphlya, and Syria do not fall in any cluster.

  16. Constitutively activated barley ROPs modulate epidermal cell size, defense reactions and interactions with fungal leaf pathogens.

    Science.gov (United States)

    Pathuri, Indira Priyadarshini; Zellerhoff, Nina; Schaffrath, Ulrich; Hensel, Götz; Kumlehn, Jochen; Kogel, Karl-Heinz; Eichmann, Ruth; Hückelhoven, Ralph

    2008-12-01

    RHO-like monomeric G-proteins of plants (ROPs, also called RACs), are involved in plant development and interaction with the environment. The barley (Hordeum vulgare) ROP protein HvRACB has been shown to be required for entry of the biotrophic powdery mildew fungus Blumeria graminis f.sp. hordei (Bgh) into living host cells. To get a deeper insight into evolutionarily conserved functions of ROPs in cell polarity and pathogen responses, we stably expressed constitutively activated (CA) mutant variants of different barley ROPs (HvRACB, HvRAC1, HvRAC3) in barley. CA HvROPs induced epidermal cell expansion and/or abolished polarity in tip growing root hairs. All three CA HvROPs enhanced susceptibility of barley to penetration by Bgh whereas only CA HvRAC1 supported whole cell H(2)O(2) production in non-penetrated cells. Despite increasing penetration by Bgh, CA HvRAC1 promoted callose deposition at sites of fungal attack and resistance to penetration by Magnaporthe oryzae. The data show an involvement of ROPs in polar growth processes of the monocot barley and in responses to fungal pathogens with different life style.

  17. Review:Aluminium tolerance in barley (Hordeum vulgare L.): physiological mechanisms, genetics and screening methods

    Institute of Scientific and Technical Information of China (English)

    WANG Jun-ping; RAMAN Harsh; ZHANG Guo-ping; MENDHAM Neville; ZHOU Mei-xue

    2006-01-01

    Aluminium (Al) toxicity is one of the major limiting factors for barley production on acid soils. It inhibits root cell division and elongation, thus reducing water and nutrient uptake, consequently resulting in poor plant growth and yield. Plants tolerate Al either through external resistance mechanisms, by which Al is excluded from plant tissues or internal tolerance mechanisms, conferring the ability of plants to tolerate Al ion in the plant symplasm where Al that has permeated the plasmalemma is sequestered or converted into an innocuous form. Barley is considered to be most sensitive to Al toxicity among cereal species. Al tolerance in barley has been assessed by several methods, such as nutrient solution culture, soil bioassay and field screening. Genetic and molecular mapping research has shown that Al tolerance in barley is controlled by a single locus which is located on chromosome 4H. Molecular markers linked with Al tolerance loci have been identified and validated in a range of diverse populations. This paper reviews the (1) screening methods for evaluating Al tolerance, (2) genetics and (3) mechanisms underlying Al tolerance in barley.

  18. Induction of beta-1,3-glucanase in barley in response to infection by fungal pathogens.

    Science.gov (United States)

    Jutidamrongphan, W; Andersen, J B; Mackinnon, G; Manners, J M; Simpson, R S; Scott, K J

    1991-05-01

    The sequence of a partial cDNA clone corresponding to an mRNA induced in leaves of barley (Hordeum vulgare) by infection with fungal pathogens matched almost perfectly with that of a cDNA clone coding for beta-1,-3-glucanase isolated from the scutellum of barley. Western blot analysis of intercellular proteins from near-isogenic barley lines inoculated with the powdery mildew fungus (Erysiphe graminis f. sp. hordei) showed a strong induction of glucanase in all inoculated lines but was most pronounced in two resistant lines. These data were confirmed by beta-1,3-glucanase assays. The barley cDNA was used as a hybridization probe to detect mRNAs in barley, wheat (Triticum aestivum), rice (oryza sativus), and sorghum (Sorghum bicolor), which are induced by infection with the necrotrophic pathogen Bipolaris sorokiniana. These results demonstrate that activation of beta-1,3-glucanase genes may be a general response of cereals to infection by fungal pathogens.

  19. Histochemical characterization of early response to Cochliobolus sativus infection in selected barley genotypes.

    Science.gov (United States)

    Rodríguez-Decuadro, Susana; Silva, Paula; Bentancur, Oscar; Gamba, Fernanda; Pritsch, Clara

    2014-07-01

    Much effort is being made to breed barley with durable resistance to leaf spot blotch incited by Bipolaris sorokiniana (teleomorph: Cochliobolus sativus). We hypothesized that susceptibility and resistance traits in 11 diverse barley genotypes inoculated with a single C. sativus isolate might specify a range of distinct host cell responses. Quantitative descriptions of interaction microphenotypes exhibited by different barley genotype seedlings after infection with C. sativus are provided. Early oxidative responses occurring in epidermis and mesophyll leaf tissue were monitored by histochemical analysis of H2O2 accumulation at 8, 24, and 48 h after inoculation. Cell wall apposition (CWA) in epidermal cells and hypersensitive reaction (HR) of epidermal or mesophyll tissue were early defenses in both resistant and susceptible genotypes. There were differences in level, duration, and frequency of occurrence for CWA and HR for the different barley genotypes. Occurrence of HR in epidermal cells at post-penetration stages was indicative of compatibility. Patterns of cell responses were microphenotypically diverse between different resistant and susceptible genotypes. This suggests that timing and level of response are key features of microphenotypic diversity that distinguish different functional mechanisms of resistance and susceptibility present in barley.

  20. Evaluation of Toxic Effects and Bioaccumulation of Cadmium and Copper in Spring Barley (Hordeum vulgare L.

    Directory of Open Access Journals (Sweden)

    Jūratė Žaltauskaitė

    2013-07-01

    Full Text Available This paper deals with the analysis of toxic effects of cadmium and copper on the growth of spring barley (Hordeum vulgare L. cultivated in hydroponics. The seedlings of barley were treated with four different concentrations of cadmium and copper, ranging from 0.1 to 10 mg L-1. The aim of the study was to assess toxic effects of cadmium (Cd and copper (Cu on the growth of spring barley, and to determine metal accumulation in above-ground and underground parts of the plant. The impact of Cu and Cd on photosynthetic pigments (chlorophyll a, b, the content of malondialdehyde (MDA, and the essential micronutrients (Mn, Fe were examined. Metal treatment reduced the growth of roots (by 60%, shoots (Cd – 48 %, Cu – 57% and dry weight (Cd – 47 %, Cu – 52% of barley. Exposure to metals altered the content of photosynthetic pigments and caused lipid peroxidation. Regression analysis revealed that there was significant negative relationship between MDA content and biomass of barley treated with Cu (r=-0.99, p=0.01. The examined heavy metals were accumulated mainly in the roots and bioconcentration of Cu there was higher than that of Cd, indicating that roots tended to accumulate higher amounts of Cu than Cd. Though translocation of Cd from roots to above-ground tissues was higher, higher levels of Cd were observed in leaves.DOI: http://dx.doi.org/10.5755/j01.erem.64.2.1951

  1. EFFECTS OF BARLEY PROCESSING ON THE BIOPRODUCTIVE INDICES IN FATTENING WEANED LAMBS

    Directory of Open Access Journals (Sweden)

    S. VOIA

    2013-12-01

    Full Text Available The objective of our researches was to observe the nutritive and productive effect of the ratio, offered at discretion, composed of alfalfa hay and barley under the following presentation forms: whole grains, roughly ground (4mm with and without addition of yeast, strain Yea-Sacc1026, to lambs submitted for fattening. The experiment lasted 54 days, the biological material was represented by Turcana lambs, grouped in three lots (n=12. Growth performances were significant bigger (p< 0.04 for the final body weight, total weight gain and average daily gain, but the specific intake was decreased with 0.49 UNC in lambs that consumed ground barley prior to those that consumed whole barley grains. The addition of Saccharomyces cerevisiae, strain Yea-Sacc1026 in the ground barley at 4 mm has a more productive and evident effect (p<0.02 regarding final body weight, total weight and average daily weigh compared to the lambs fed with whole barley grains, with a specific intake lower with 0.89 UNC.

  2. Utilization of barley or wheat bran to bioconvert glutamate to γ-aminobutyric acid (GABA).

    Science.gov (United States)

    Jin, Wen-Jie; Kim, Min-Ju; Kim, Keun-Sung

    2013-09-01

    This study deals with the utilization of agro-industrial wastes created by barley and wheat bran in the production of a value-added product, γ-aminobutyric acid (GABA). The simple and eco-friendly reaction requires no pretreatment or microbial fermentation steps but uses barley or wheat bran as an enzyme source, glutamate as a substrate, and pyridoxal 5'-phosphate (PLP) as a cofactor. The optimal reaction conditions were determined on the basis of the temperatures and times used for the decarboxylation reactions and the initial concentrations of barley or wheat bran, glutamate, and PLP. The optimal reactions produced 9.2 mM of GABA from 10 mM glutamate, yielding a 92% GABA conversion rate, when barley bran was used and 6.0 mM of GABA from 10 mM glutamate, yielding a 60% GABA conversion rate, when wheat bran was used. The results imply that barley bran is more efficient than wheat bran in the production of GABA.

  3. Mathematical Modelling of Allelopathy: IV. Assessment of Contributions of Competition and Allelopathy to Interference by Barley.

    Science.gov (United States)

    Liu, De Li; An, Min; Johnson, I R; Lovett, J V

    2005-04-01

    One of the main challenges to the research on allelopathy is technically the separation of allelopathic effect from competition, and quantitatively, the assessment of the contribution of each component to overall interference. A simple mathematical model is proposed to calculate the contribution of allelopathy and competition to interference. As an example of applying the quantitative model to interference by barley (Hordeum vulgare cv. Triumph), the approach used was an addition of allelopathic effect, by an equivalent amount, to the environment of the test plant (white mustard, Sinapis alba), rather than elimination of competition. Experiments were conducted in glasshouse to determine the magnitude of the contributions of allelopathy and competition to interference by barley. The leachates of living barley roots significantly reduced the total dry weight of white mustard. The model involved the calculation of adjusted densities to an equivalent basis for modelling the contribution of allelopathy and competition to total interference. The results showed that allelopathy contributed 40%, 37% and 43% to interference by barley at 6, 12 and 18 white mustard pot(-1). The consistency in magnitude of the calculated contribution of allelopathic effect by barley across various densities of receiver plant suggested that the adjusted equivalent density is effective and that the model is able to assess the contribution of each component of interference regardless of the density of receiver plant.

  4. Grain Composition and Functional Ingredients of Barley Varieties Created in Latvia

    Directory of Open Access Journals (Sweden)

    Šterna Vita

    2015-09-01

    Full Text Available Cereals, including barley, have been recognised as functional foods that provide beneficial effect on the health of the consumer and decrease the risk of various diseases. The aim of investigation was to determine the grain composition of barley varieties and perspective breeding lines bred in Latvia and to evaluate its functional ingredients. The results of analysis showed that protein content among varieties ranged from 106.6-146.8 g·kg-1, total dietary fibre 187.4-208.2 g·kg-1, β-glucans 42.8 g-49.4 g·kg-1, and amount of α-tocopherol 6.03-8.93 mg·kg-1. The sum of essential amino acids in barley grain samples was from 32.90 g·kg-1 to 38.71 g·kg-1. All varieties of hulled and hulless barley grain were found to be sources of protein with high biological value. Comparison of barley varieties bred in Latvia suggests that variety ‘Kornelija’ outperforms others in protein, dietary fibre and micronutrient content.

  5. Density Stress has Minimal Impacts on the Barley or Maize Seedling Transcriptome

    Directory of Open Access Journals (Sweden)

    Summer St. Pierre

    2011-03-01

    Full Text Available High planting density affects the morphology and productivity of many crop species. Our objectives were to examine the phenotypic and transcriptomic changes that occur during plant density stress in barley ( L. and maize ( L. seedlings. In maize and barley seedlings, density stress impacted several morphological traits. Gene expression profiles were examined in four barley and five maize genotypes grown at low and high plant densities. Only 221 barley and 35 maize genes exhibited differential expression in response to plant density stress. The majority of the gene expression changes were observed in a subset of the genotypes and reflected minor changes in the level of expression, indicating that the plant density stress imposed in this study did not result in major changes in gene expression. Also, little overlap was observed within barley or maize genotypes in gene expression during density stress, indicating that genotypic differences play a major role in the response to density stress. While it is clear that gene expression differences are involved in morphological changes induced by high plant densities, it is likely that many of these gene expression differences are subtle and restricted to particular tissues and developmental time.

  6. Identification of Barley (Hordeum vulgare L. Autophagy Genes and Their Expression Levels during Leaf Senescence, Chronic Nitrogen Limitation and in Response to Dark Exposure

    Directory of Open Access Journals (Sweden)

    Liliana Avila-Ospina

    2016-02-01

    Full Text Available Barley is a cereal of primary importance for forage and human nutrition, and is a useful model for wheat. Autophagy genes first described in yeast have been subsequently isolated in mammals and Arabidopsis thaliana. In Arabidopsis and maize it was recently shown that autophagy machinery participates in nitrogen remobilization for grain filling. In rice, autophagy is also important for nitrogen recycling at the vegetative stage. In this study, HvATGs, HvNBR1 and HvATI1 sequences were identified from bacterial artificial chromosome (BAC, complementary DNA (cDNA and expressed sequence tag (EST libraries. The gene models were subsequently determined from alignments between genome and transcript sequences. Essential amino acids were identified from the protein sequences in order to estimate their functionality. A total of twenty-four barley HvATG genes, one HvNBR1 gene and one HvATI1 gene were identified. Except for HvATG5, all the genomic sequences found completely matched their cDNA sequences. The HvATG5 gene sequence presents a gap that cannot be sequenced due to its high GC content. The HvATG5 coding DNA sequence (CDS, when over-expressed in the Arabidopsis atg5 mutant, complemented the plant phenotype. The HvATG transcript levels were increased globally by leaf senescence, nitrogen starvation and dark-treatment. The induction of HvATG5 during senescence was mainly observed in the flag leaves, while it remained surprisingly stable in the seedling leaves, irrespective of the leaf age during stress treatment.

  7. Flor Revisited (Again):eQTL and Mutational Analysis of NB-LRR Mediated Immunity to Powdery Mildew in Barley

    Institute of Scientific and Technical Information of China (English)

    Roger Wise; Priyanka Surana; Greg Fuerst; Ruo Xu; Divya Mistry; Julie Dickerson; Dan Nettleton

    2014-01-01

    Genes encoding early signaling events in pathogen defense often are identiifed only by their phenotype. Such genes involved in barley-powdery mildew interactions includeMla, specifying race-speciifc resistance;Rar1(Required for Mla12-speciifed resistance1), andRom1 (Restoration of Mla-speciifed resistance1). The HSP90-SGT1-RAR1 complex appears to function as chaperone in MLA-speciifed resistance, however, much remains to be discovered regarding the precise signaling underlying plant immunity. Genetic analyses of fast-neutron mutants derived from CI 16151 (Mla6) uncovered a novel locus, designated Rar3(Required for Mla6-specified resistance3).Rar3 segregates independent ofMla6 andRar1, andrar3 mutants are susceptible toBlumeria graminis f. sp.hordei (Bgh) isolate 5874 (AVRa6), whereas, wild-type progenitor plants are resistant. Comparative expression analyses of therar3 mutantvs. its wild-type progenitor were conductedvia Barley1 GeneChip and GAIIx paired-end RNA-Seq. Whereas Rar1affects transcription of relatively few genes; Rar3appearstoinlfuence thousands, notably in genes controlling ATP binding, catalytic activity, transcription, and phosphorylation; possibly membrane bound or in the nucleus. eQTL analysis of a segregating doubled haploid population identiifed over two-thousand genes as being regulated byMla(q value/FDR=0.00001), a subset of which are signiifcant inRar3 interactions. The intersection of datasets derived frommla-loss-of-function mutants,Mla-associated eQTL, andrar3-mediated transcriptome reprogramming are narrowing the focus on essential genes required forMla-speciifed immunity.

  8. Alleviation of chromium toxicity by hydrogen sulfide in barley.

    Science.gov (United States)

    Ali, Shafaqat; Farooq, Muhammad Ahsan; Hussain, Sabir; Yasmeen, Tahira; Abbasi, G H; Zhang, Guoping

    2013-10-01

    A hydroponic experiment was carried out to examine the effect of hydrogen sulfide (H2 S) in alleviating chromium (Cr) stress in barley. A 2-factorial design with 6 replications was selected, including 3 levels of NaHS (0 μM, 100 μM, and 200 μM) and 2 levels of Cr (0 μM and 100 μM) as treatments. The results showed that NaHS addition enhances plant growth and photosynthesis slightly compared with the control. Moreover, NaHS alleviated the inhibition in plant growth and photosynthesis by Cr stress. Higher levels of NaHS exhibited more pronounced effects in reducing Cr concentrations in roots, shoots, and leaves. Ultrastructural examination of plant cells supported the facts by indication of visible alleviation of cell disorders in both root and leaf with exogenous application of NaHS. An increased number of plastoglobuli, disintegration, and disappearance of thylakoid membranes and starch granules were visualized inside the chloroplast of Cr-stressed plants. Starch accumulation in the chloroplasts was also noticed in the Cr-treated cells, with the effect being much less in Cr + NaHS-treated plants. Hence, it is concluded that H2 S produced from NaHS can improve plant tolerance under Cr stress.

  9. Molecular analysis of Korean isolate of barley yellow mosaic virus.

    Science.gov (United States)

    Lee, Kui Jae; Choi, Min Kyung; Lee, Wang Hyu; Rajkumar, Mani

    2006-04-01

    The complete sequences of both RNAs of an isolate of barley yellow mosaic virus (BaYMV) from Haenam, Korea, were determined. RNA1 is 7639 nucleotides long [excluding the 3'-poly(A)], and codes for a 270 kDa polyprotein of 2411 amino acids which contains the capsid protein (CP) at the C terminus and seven putative non-structural proteins. RNA2 is 3582 nucleotides long and codes for a polyprotein of 890 amino acids, which contains a 28 kDa putative proteinase (P1) and a 73 kDa polypeptide (P2). The whole sequences of Korean isolate (BaYMV-K) closely resembled those of an isolate from Japan (BaYMV-J) (99.6 identical nucleotides for RNA1; 99.4 for RNA2) and china (BaYMV-C) (96.7 and 96.2%, respectively) than from Germany (BaYMV-G) (93.6 and 90.4%, respectively). The greatest differences between the BaYMV-K and BaYMV-J isolates were in the 3'-NCRs of RNA1 and 5' NCRs of RNA2 and there were also some other regions of difference in Nib Pro (RNA1) and P1 (RNA2). Further, the phylogenetic analysis of CP region showed that Asian and European isolates formed distinct clusters. However, molecular variations between isolates could not be linked to earlier results showing differences in cultivar response.

  10. Proteome analysis of grain filling and seed maturation in barley.

    Science.gov (United States)

    Finnie, Christine; Melchior, Sabrina; Roepstorff, Peter; Svensson, Birte

    2002-07-01

    In monocotyledonous plants, the process of seed development involves the deposition of reserves in the starchy endosperm and development of the embryo and aleurone layer. The final stages of seed development are accompanied by an increase in desiccation tolerance and drying out of the mature seed. We have used two-dimensional gel electrophoresis for a time-resolved study of the changes in proteins that occur during seed development in barley (Hordeum vulgare). About 1,000 low-salt extractable protein spots could be resolved on the two-dimensional gels. Protein spots were divided into six categories according to the timing of appearance or disappearance during the 5-week period of comparison. Nineteen different proteins or protein fragments in 36 selected spots were identified by matrix-assisted laser-desorption ionization time of flight mass spectrometry (MS) or nano-electrospray tandem MS/MS. Some proteins were present throughout development (for example, cytosolic malate dehydrogenase), whereas others were associated with the early grain filling (ascorbate peroxidase) or desiccation (Cor14b) stages. Most noticeably, the development process is characterized by an accumulation of low-M(r) alpha-amylase/trypsin inhibitors, serine protease inhibitors, and enzymes involved in protection against oxidative stress. We present examples of proteins not previously experimentally observed, differential extractability of thiol-bound proteins, and possible allele-specific spot variation. Our results both confirm and expand on knowledge gained from previous analyses of individual proteins involved in grain filling and maturation.

  11. Mechanisms of Induced Resistance in Barley Against Drechslera teres.

    Science.gov (United States)

    Lyngs Jørgensen, H J; Lübeck, P S; Thordal-Christensen, H; de Neergaard, E; Smedegaard-Petersen, V

    1998-07-01

    ABSTRACT Quantitative and qualitative histopathological methods and molecular analyses were used to study the mechanisms by which preinoculation with either of the nonbarley pathogens, Bipolaris maydis and Septoria nodorum, inhibited growth of Drechslera teres. Collectively, our data suggest that induced resistance is the principal mechanism responsible for impeding the pathogen. The enhancement of resistance in the host was primarily manifested during penetration by D. teres, and after penetration, where growth of D. teres ceased soon after development of infection vesicles. Thus, 24 h after pretreatment with B. maydis or S. nodorum, the penetration frequency from D. teres appressoria was reduced from 42.7% in the controls to 9.5 and 14.8%, respectively. The reductions were associated with increased formation of fluorescent papillae in induced cells (early defense reaction). The postpenetrational inhibition of D. teres completely stopped fungal growth and was apparently linked to an enhancement of multicellular hypersensitive responses in inducer-treated leaves (late defense reaction). Papillae formation and multicellular hypersensitive reactions were also observed in fully susceptible, noninduced control leaves, but they were inadequate to stop fungal progress. Northern blots from leaves treated with either inducer alone support the conclusion that induced resistance is involved in suppression of D. teres by increased formation of papillae and hypersensitive reactions. Thus, the blots showed strong expression of several defense response genes that are involved in these reactions in barley attacked by Erysiphe graminis f. sp. hordei.

  12. Dynamic viscosity study of barley malt and chicory concentrates

    Directory of Open Access Journals (Sweden)

    G. O. Magomedov

    2016-01-01

    Full Text Available The purpose of research is to find optimal conditions for dispersing and subsequent dehydration of liquid food environments in the nozzle spray drying chamber through the study of dynamic changes in viscosity according to temperature, velocities gradients and dry residue content. The objects of study were roasted chicory and malt barley concentrates with dry residue content of 20, 40, 60 and 80%. Research of dynamic viscosity were carried out at the measuring complex based on the rotational viscometer Rheotest II, analog-to-digital converter, module Laurent and a personal computer with a unique software that allows to record in real time (not only on a tape recorder, but also in the form of graphic files the behavior of the viscosity characteristics of concentrates. Registration of changes of dynamic viscosity was carried out at a shear rate gradient from 1,0 с -1 to 27,0 с -1 and the products temperature thermostating : 35, 55, 75˚ C. The research results are presented in the form of graphic dependences of effective viscosity on shear rate and flow curves (dependencies of shear stresses on the velocity gradient, which defined flow regimes, the optimal modes of dispersion concentrates into spray dryer chambers in obtaining of powdered semi-finished products and instanting were found: dry residue content - 40 %, concentrate temperature - 75 ˚C, velocity gradient in the air channel of the nozzle at least 20 c-1

  13. Structural lability of Barley stripe mosaic virus virions.

    Directory of Open Access Journals (Sweden)

    Valentin V Makarov

    Full Text Available Virions of Barley stripe mosaic virus (BSMV were neglected for more than thirty years after their basic properties were determined. In this paper, the physicochemical characteristics of BSMV virions and virion-derived viral capsid protein (CP were analyzed, namely, the absorption and intrinsic fluorescence spectra, circular dichroism spectra, differential scanning calorimetry curves, and size distributions by dynamic laser light scattering. The structural properties of BSMV virions proved to be intermediate between those of Tobacco mosaic virus (TMV, a well-characterized virus with rigid rod-shaped virions, and flexuous filamentous plant viruses. The BSMV virions were found to be considerably more labile than expected from their rod-like morphology and a distant sequence relation of the BSMV and TMV CPs. The circular dichroism spectra of BSMV CP subunits incorporated into the virions, but not subunits of free CP, demonstrated a significant proportion of beta-structure elements, which were proposed to be localized mostly in the protein regions exposed on the virion outer surface. These beta-structure elements likely formed during virion assembly can comprise the N- and C-terminal protein regions unstructured in the non-virion CP and can mediate inter-subunit interactions. Based on computer-assisted structure modeling, a model for BSMV CP subunit structural fold compliant with the available experimental data was proposed.

  14. Plastome Mutations and Recombination Events in Barley Chloroplast Mutator Seedlings.

    Science.gov (United States)

    Landau, Alejandra; Lencina, Franco; Pacheco, María G; Prina, Alberto R

    2016-05-01

    The barley chloroplast mutator (cpm) is an allele of a nuclear gene that when homozygous induces several types of cytoplasmically inherited chlorophyll deficiencies. In this work, a plastome Targeting Induced Local Lesions in Genomes (TILLING) strategy based on mismatch digestion was used on families that carried the cpm genotype through many generations. Extensive scanning of 33 plastome genes and a few intergenic regions was conducted. Numerous polymorphisms were detected on both genic and intergenic regions. The detected polymorphisms can be accounted for by at least 61 independent mutational events. The vast majority of the polymorphisms originated in substitutions and small indels (insertions/deletions) in microsatellites. The rpl23 and the rps16 genes were the most polymorphic. Interestingly, the variation observed in the rpl23 gene consisted of several combinations of 5 different one nucleotide polymorphisms. Besides, 4 large indels that have direct repeats at both ends were also observed, which appear to be originated from recombinational events. The cpm mutation spectrum suggests that the CPM gene product is probably involved in plastome mismatch repair. The numerous subtle molecular changes that were localized in a wide range of plastome sites show the cpm as a valuable source of plastome variability for plant research and/or plant breeding. Moreover, the cpm mutant appears to be an interesting experimental material for investigating the mechanisms responsible for maintaining the stability of plant organelle DNA.

  15. Growth curve registration for evaluating salinity tolerance in barley

    KAUST Repository

    Meng, Rui

    2017-03-23

    Background: Smarthouses capable of non-destructive, high-throughput plant phenotyping collect large amounts of data that can be used to understand plant growth and productivity in extreme environments. The challenge is to apply the statistical tool that best analyzes the data to study plant traits, such as salinity tolerance, or plant-growth-related traits. Results: We derive family-wise salinity sensitivity (FSS) growth curves and use registration techniques to summarize growth patterns of HEB-25 barley families and the commercial variety, Navigator. We account for the spatial variation in smarthouse microclimates and in temporal variation across phenotyping runs using a functional ANOVA model to derive corrected FSS curves. From FSS, we derive corrected values for family-wise salinity tolerance, which are strongly negatively correlated with Na but not significantly with K, indicating that Na content is an important factor affecting salinity tolerance in these families, at least for plants of this age and grown in these conditions. Conclusions: Our family-wise methodology is suitable for analyzing the growth curves of a large number of plants from multiple families. The corrected curves accurately account for the spatial and temporal variations among plants that are inherent to high-throughput experiments.

  16. Management of diabetic dyslipidemia with subatmospheric dehydrated barley grass powder

    Directory of Open Access Journals (Sweden)

    Venugopal Shonima

    2010-01-01

    Full Text Available Diabetes is a chronic, potentially debilitating and often fatal disease. The prevalence of type 2 diabetes is increasing in all populations worldwide. The investigation was carried out to study the impact of barley grass powder (BGP supplementation on the carbohydrate and lipid metabolism of stable type 2 diabetes mellitus (T2DM subjects. A total of 59 stable type 2 diabetic subjects were enrolled in the study from pathology laboratories and divided into experimental (n=36 and control groups (n=23. BGP (1.2 g/day in the form of capsules (n=4 was given to the experimental group subjects for a period of 60 days. Fasting blood sugar (FBS, glycated haemoglobin (HbA1c and lipid profile levels were monitored at baseline and at 60 days. Paired t test was applied using Microsoft® Office Excel 2003. Supplementation with BGP resulted in a significant decrease in FBS, HbA1c, total cholesterol (TC, low-density lipoprotein cholesterol (LDL-C and non-high-density lipoprotein cholesterol (Non-HDL-C and a significant increase in high-density lipoprotein cholesterol (HDL-C levels. In conclusion, the results obtained suggest that BGP holds promise to be used as a functional food to optimise the health of diabetic subjects.

  17. Effectiveness of rabbit manure biofertilizer in barley crop yield.

    Science.gov (United States)

    Islas-Valdez, Samira; Lucho-Constantino, Carlos A; Beltrán-Hernández, Rosa I; Gómez-Mercado, René; Vázquez-Rodríguez, Gabriela A; Herrera, Juan M; Jiménez-González, Angélica

    2015-11-07

    The quality of biofertilizers is usually assessed only in terms of the amount of nutrients that they supply to the crops and their lack of viable pathogens and phytotoxicity. The goal of this study was to determine the effectiveness of a liquid biofertilizer obtained from rabbit manure in terms of presence of pathogens, phytotoxicity, and its effect on the grain yield and other agronomic traits of barley (Hordeum vulgare L.). Environmental effects of the biofertilizer were also evaluated by following its influence on selected soil parameters. We applied the biofertilizer at five combinations of doses and timings each and in two application modes (foliar or direct soil application) within a randomized complete block design with three replicates and using a chemical fertilizer as control. The agronomic traits evaluated were plant height, root length, dry weight, and number of leaves and stems at three growth stages: tillering, jointing, and flowering. The effectiveness of the biofertilizer was significantly modified by the mode of application, the growth stage of the crop, and the dose of biofertilizer applied. The results showed that the foliar application of the biofertilizer at the tillering stage produced the highest increase in grain yield (59.7 %, p biofertilizer caused significant changes in soil, particularly concerning pH, EC, Ca, Zn, Mg, and Mn. It is our view that the production and use of biofertilizers are a reliable alternative to deal with a solid waste problem while food security is increased.

  18. Influence of crop rotation and meteorological conditons on density and biomass of weeds in spring barley (Hordeum vulgare L.

    Directory of Open Access Journals (Sweden)

    Maria Wanic

    2012-12-01

    Full Text Available The paper presents the analysis of changes in weed infestation in spring barley cultivated in the years 1990-2004 in crop rotation with a 25% proportion of this cereal (potato - spring barley - sowing peas - winter triticale, when it was grown after potato, and in crop rotation with its 75% proportion (potato - spring barley - spring barley - spring barley, when it was grown once or twice after spring barley. In the experiment, no weed control was applied. Every year in the spring (at full emergence of the cereal and before the harvest, the composition of weed species and weed density of particular weed species were determined, and before the harvest also their biomass. Weed density increased linearly on all plots during the 15-year period. The average values confirm the increase in weed biomass in the case when spring barley was grown once or twice after this crop; however, those differences were influenced by the previous situation only during some seasons. Weed density and biomass showed high year-to-year variability and a positive correlation with the amount of precipitation and a negative correlation with temperature during the period of the study. A negative correlation between the yield of barley and weed biomass was shown.

  19. Genome-wide association mapping of barley yellow dwarf virus tolerance in spring oat (Avena sativa L.)

    Science.gov (United States)

    Barley yellow dwarf (BYD) is one of the most destructive diseases of cereal crops worldwide. Barley yellow dwarf viruses (BYDVs) are responsible for BYD and affect many cereals including oat (Avena sativa L.). Until recently, the molecular marker technology in oat has not allowed for many marker-t...

  20. Chloroindolyl-3-acetic Acid and its Methyl Ester Incorporation of 36Cl in Immature Seeds of Pea and Barley

    DEFF Research Database (Denmark)

    Engvild, Kjeld Christensen

    1974-01-01

    compounds besides Cl−. One compound, present in pea and probably in barley, cochromatographed with a mixture of 4- and 6-chloroindolyl-3-acetic acid methyl esters. Another, detected in pea, but probably not in barley, cochromatographed with a mixture of 4-and 6-chloroindolyl-3-acetic acids....

  1. Accelerated rates of protein evolution in barley grain and pistil biased genes might be legacy of domestication.

    Science.gov (United States)

    Shi, Tao; Dimitrov, Ivan; Zhang, Yinling; Tax, Frans E; Yi, Jing; Gou, Xiaoping; Li, Jia

    2015-10-01

    Traits related to grain and reproductive organs in grass crops have been under continuous directional selection during domestication. Barley is one of the oldest domesticated crops in human history. Thus genes associated with the grain and reproductive organs in barley may show evidence of dramatic evolutionary change. To understand how artificial selection contributes to protein evolution of biased genes in different barley organs, we used Digital Gene Expression analysis of six barley organs (grain, pistil, anther, leaf, stem and root) to identify genes with biased expression in specific organs. Pairwise comparisons of orthologs between barley and Brachypodium distachyon, as well as between highland and lowland barley cultivars mutually indicated that grain and pistil biased genes show relatively higher protein evolutionary rates compared with the median of all orthologs and other organ biased genes. Lineage-specific protein evolutionary rates estimation showed similar patterns with elevated protein evolution in barley grain and pistil biased genes, yet protein sequences generally evolve much faster in the lowland barley cultivar. Further functional annotations revealed that some of these grain and pistil biased genes with rapid protein evolution are related to nutrient biosynthesis and cell cycle/division. Our analyses provide insights into how domestication differentially shaped the evolution of genes specific to different organs of a crop species, and implications for future functional studies of domestication genes.

  2. The untranslated leader sequence of the barley lipoxygenase 1 (Lox1) gene confers embryo-specific expression

    NARCIS (Netherlands)

    Rouster, J.; Mechelen J. van; Cameron-Mills, V.

    1998-01-01

    The barley lipoxygenase 1 (Lox1) gene encodes a protein expressed in embryos during grain development and germination and in leaves after methyl-jasmonate (MeJA) treatment. Transient gene expression assays in germinating barley embryos were used to identify cis-regulatory elements involved in the em

  3. Accumulation of mixed linkage (1¿3) (1¿4)-ß-D-glucan during grain filling in barley

    DEFF Research Database (Denmark)

    Seefeldt, Helene Fast; Blennow, Per Gunnar Andreas; Jespersen, Birthe P Møller

    2009-01-01

    The accumulation of mixed linkage barley (1 → 3) (1 → 4)-β-d-glucan (BG) during grain filling at eight stages was studied using standard reference methods and infrared spectroscopy. Two mutant barley genotypes having higher (starch mutant lys5f) and lower (high lysine mutant lys3a) BG content tha...

  4. Isolate specificity and polygenic inheritance of resistance in barley to the heterologous rust pathogen Puccinia graminis f. sp. avenae

    NARCIS (Netherlands)

    Dracatos, P.M.; Nansamba, M.; Berlin, A.; Park, R.F.; Niks, R.E.

    2016-01-01

    Barley is a near-nonhost to numerous heterologous (nonadapted) rust pathogens because a small proportion of genotypes are somewhat susceptible. We assessed 66 barley accessions and three mapping populations (Vada x SusPtrit, Cebada Capa x SusPtrit, and SusPtrit x Golden Promise) for response to t

  5. Association mapping of grain hardness, polyphenol oxidase, total phenolics, amylose content, and ß-glucan in US barley breeding germplasm

    Science.gov (United States)

    A renewed interest in breeding barley specifically for food end-uses is being driven by increased consumer interest in healthier foods. We conducted association mapping on physicochemical properties of barley that play a role in food quality and processing including, grain hardness, polyphenol oxid...

  6. Sequencing of 15,622 gene-bearing BACs clarifies the gene-dense regions of the barley genome

    Science.gov (United States)

    Barley (Hordeum vulgare L.) possesses a large and highly repetitive genome of 5.1 Gb that has hindered the development of a complete sequence. In 2012, the International Barley Sequencing Consortium released a resource integrating whole-genome shotgun sequences with a physical and genetic framework....

  7. The untranslated leader sequence of the barley lipoxygenase 1 (Lox1) gene confers embryo-specific expression

    NARCIS (Netherlands)

    Rouster, J.; Mechelen J. van; Cameron-Mills, V.

    1998-01-01

    The barley lipoxygenase 1 (Lox1) gene encodes a protein expressed in embryos during grain development and germination and in leaves after methyl-jasmonate (MeJA) treatment. Transient gene expression assays in germinating barley embryos were used to identify cis-regulatory elements involved in the em

  8. Induction by chromium ions of chitinases and polyamines in barley (Hordeum vulgare L.) and rape (Brassica napus L. ssp. oleifera)

    DEFF Research Database (Denmark)

    Jacobsen, S.; Hauschild, M.Z.; Rasmussen, U.

    1992-01-01

    Barley and rape seedlings were grown in hydroponic culture with increasing concentrations of CrO3 (Cr(VI)) or CrCl3 (Cr(III)). The chitinase activity and the concentrations of putrescine, spennidine and spermine were determined in the third leaf of barley seed-lings and in the second leaf of rape...

  9. Transcription in archaea

    Science.gov (United States)

    Kyrpides, N. C.; Ouzounis, C. A.; Woese, C. R. (Principal Investigator)

    1999-01-01

    Using the sequences of all the known transcription-associated proteins from Bacteria and Eucarya (a total of 4,147), we have identified their homologous counterparts in the four complete archaeal genomes. Through extensive sequence comparisons, we establish the presence of 280 predicted transcription factors or transcription-associated proteins in the four archaeal genomes, of which 168 have homologs only in Bacteria, 51 have homologs only in Eucarya, and the remaining 61 have homologs in both phylogenetic domains. Although bacterial and eukaryotic transcription have very few factors in common, each exclusively shares a significantly greater number with the Archaea, especially the Bacteria. This last fact contrasts with the obvious close relationship between the archaeal and eukaryotic transcription mechanisms per se, and in particular, basic transcription initiation. We interpret these results to mean that the archaeal transcription system has retained more ancestral characteristics than have the transcription mechanisms in either of the other two domains.

  10. Influence of jet milling and particle size on the composition, physicochemical and mechanical properties of barley and rye flours.

    Science.gov (United States)

    Drakos, Antonios; Kyriakakis, Georgios; Evageliou, Vasiliki; Protonotariou, Styliani; Mandala, Ioanna; Ritzoulis, Christos

    2017-01-15

    Finer barley and rye flours were produced by jet milling at two feed rates. The effect of reduced particle size on composition and several physicochemical and mechanical properties of all flours were evaluated. Moisture content decreased as the size of the granules decreased. Differences on ash and protein contents were observed. Jet milling increased the amount of damaged starch in both rye and barley flours. True density increased with decreased particle size whereas porosity and bulk density increased. The solvent retention capacity profile was also affected by jet milling. Barley was richer in phenolics and had greater antioxidant activity than rye. Regarding colour, both rye and barley flours when subjected to jet milling became brighter, whereas their yellowness was not altered significantly. The minimum gelation concentration for all flours was 16%w/v. Barley flour gels were stronger, firmer and more elastic than the rye ones. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Response of Barley Seedlings to Microwaves at 2.45 GHz

    Directory of Open Access Journals (Sweden)

    Iuliana Crețescu

    2013-05-01

    Full Text Available Abstract The objective of the present study was to investigate the changes induced upon germination and growth rate, expressed by vigor index of barley seeds exposed to microwave (MW treatment. As a microwave source was used a magnetron MWG20H, which emits radiation with a frequency of 2.45 GHz. In the experiment, barley seeds were exposed for 0s, 10s and 20s. The germination energy (GE and germination (G, cotyledon length (CL, leaves length (LL and roots length (RL in cm were determined on the 3th, 7th and 14th day after irradiation in order to estimate the influence of microwave treatment on them. The hypothesis was that seeds exposed to MW will behave differently than those unexposed. It was observed that the best results in terms of GE, G and vigor index (SVI were obtained in barley seeds for the treatment with output microwaves power of 400W for 20s.

  12. Dissecting molecular interactions involved in recognition of target disulfides by the barley thioredoxin system

    DEFF Research Database (Denmark)

    Björnberg, Olof; Maeda, Kenji; Svensson, Birte

    2012-01-01

    Thioredoxin reduces disulfide bonds, thus regulating activities of target proteins in various biological systems, e.g., inactivation of inhibitors of starch hydrolases and proteases in germinating plant seeds. In the three-dimensional structure of a complex with barley α-amylase/subtilisin inhibi......Thioredoxin reduces disulfide bonds, thus regulating activities of target proteins in various biological systems, e.g., inactivation of inhibitors of starch hydrolases and proteases in germinating plant seeds. In the three-dimensional structure of a complex with barley α......-amylase/subtilisin inhibitor (BASI), two loops in barley thioredoxin h2 (HvTrxh2), containing an invariant cis-proline (86EAMP89) and a conserved glycine (104VGA106), surround the active site cysteines ( 45WCGPC49) and contribute to binding of BASI through backbone-backbone hydrogen bonds [Maeda, K., Hägglund, P., Finnie, C...

  13. Allelopathic potential of Chrozophora tinctoria on early growth of Barley and Wheat

    Directory of Open Access Journals (Sweden)

    Ali Asghar Aliloo

    2015-02-01

    Full Text Available A laboratory bioassay was conducted to investigate the allelopathic effects of Chrozophora tinctoria on germination and seedling growth of barley and wheat. Aqueous leave extracts of C. tinctoria at 5, 10, 15 and 20 % concentrations were prepared and distilled water was used as a control. Results showed that germination percentage of two species decreased with increasing the extract concentrations; however, wheat germination was relatively resistant to allelochemicals than barley. In contrast to germination behavior, seedling traits showed different responses. The extracts improved seedling dry weights, particularly barley, whereas seedling lengths were inhibited. Roots of both species were more affected than shoots by extracts. The extracts reduced seed reserve mobilization significantly (p≤0.05. It was concluded that the used extract had inhibitory effects on seed germination of the crops; however, at seedling stages the effects were severely reduced.

  14. Effect of Soil Erosion on Spring Barley Growth in East Anglia,England:Preliminary Results

    Institute of Scientific and Technical Information of China (English)

    LUXI-XI; Y.BIOT

    1994-01-01

    The effect of soil erosion on spring barley growth was studied on a deep loamy soil in East Anglia,England,in 1992,Soil erosion was simulated by three levels of soil desurfacing,7.5,18and 30cm with three replicates.Significant differences in crop height,ground cover and crop yield were observed between the three levels of desurfacing.Soil desurfacing also has a singnificant effect on soil moisture at the 20cm depth.The interaction between soil removal and crop performance affected soil moisture at the depths of 50 and 100cm,No significant differences were found in runoff and sediment etween the three topsoil removals due to very dry growing season.Regression equations were developed between spring barley yield and soil desurfacing Spring barley grain yield declined by 97.6kg/ha per cm soil desurfacing.

  15. Metabolite Profiling for Leaf Senescence in Barley Reveals Decreases in Amino Acids and Glycolysis Intermediates

    Directory of Open Access Journals (Sweden)

    Liliana Avila-Ospina

    2017-02-01

    Full Text Available Leaf senescence is a long developmental phase important for plant performance and nutrient management. Cell constituents are recycled in old leaves to provide nutrients that are redistributed to the sink organs. Up to now, metabolomic changes during leaf senescence have been mainly studied in Arabidopsis (Arabidopsis thaliana L.. The metabolite profiling conducted in barley (Hordeum vulgare L. during primary leaf senescence under two nitrate regimes and in flag leaf shows that amino acids, hexose, sucrose and glycolysis intermediates decrease during senescence, while minor carbohydrates accumulate. Tricarboxylic acid (TCA compounds changed with senescence only in primary leaves. The senescence-related metabolite changes in the flag leaf were globally similar to those observed in primary leaves. The effect of senescence on the metabolite changes of barley leaves was similar to that previously described in Arabidopsis except for sugars and glycolysis compounds. This suggests a different role of sugars in the control of leaf senescence in Arabidopsis and in barley.

  16. Transcriptome sequencing in a Tibetan barley landrace with high resistance to powdery mildew.

    Science.gov (United States)

    Zeng, Xing-Quan; Luo, Xiao-Mei; Wang, Yu-Lin; Xu, Qi-Jun; Bai, Li-Jun; Yuan, Hong-Jun; Tashi, Nyima

    2014-01-01

    Hulless barley is an important cereal crop worldwide, especially in Tibet of China. However, this crop is usually susceptible to powdery mildew caused by Blumeria graminis f. sp. hordei. In this study, we aimed to understand the functions and pathways of genes involved in the disease resistance by transcriptome sequencing of a Tibetan barley landrace with high resistance to powdery mildew. A total of 831 significant differentially expressed genes were found in the infected seedlings, covering 19 functions. Either "cell," "cell part," and "extracellular region" in the cellular component category or "binding" and "catalytic" in the category of molecular function as well as "metabolic process" and "cellular process" in the biological process category together demonstrated that these functions may be involved in the resistance to powdery mildew of the hulless barley. In addition, 330 KEGG pathways were found using BLASTx with an E-value cut-off of powdery mildew infection.

  17. Rhizodeposition of N by pea and barley and its effect on soil N dynamics

    DEFF Research Database (Denmark)

    Jensen, E.S.

    1996-01-01

    Rhizodeposition of N during plant growth influences the microbial activity in the rhizosphere and constitutes a source of labile organic N, but has not been quantified to the same degree as the rhizodeposition of C. The rhizodeposition of N, defined as root-derived N present in the soil after...... removal of visible roots and root fragments, was determined during field pea (Pisum sativum L.) and spring barley (Hordeum vulgare L.) growth in a sandy soil at a low concentration of mineral N using a continuous split-root N-15-labelling technique. The N rhizodeposition constituted 15 and 48...... plant(-1) (20% of total plant N) for barley. Incubation of soils, after removal of roots, showed that the N rhizodeposits were labile; 79% of the pea and 48% of the barley root-derived N present in soil at 7 WAP were mineralizable. The root-derived N present in soil at maturity was less labile, since...

  18. Effect of crop density on competition by wheat and barley with Agrostemma githago and other weeds

    DEFF Research Database (Denmark)

    Doll, H.; Holm, U.; Søgaard, B.

    1995-01-01

    The effect of Agrostemma githago L. and other naturally occurring weeds on biomass production and grain yield was studied in winter wheat and winter barley. Naturally occurring weeds had only a negligible effect on barley, but reduced wheat grain yield by 10% at a quarter of normal crop density....... The interaction between the cereals and A. githago was studied in additive series employing different crop densities. Growth of this weed species was strongly dependent on crop density, which was more important for controlling weed growth than it was for obtaining a normal grain yield. Wheat and especially barley...... had a better competitive ability than A. githago. Wheat and A. githago utilized resources for growth better when grown in mixture than when grown in pure stands as the relative yield totals were significantly larger than unity....

  19. An attenuated total reflectance mid infrared (ATR-MIR) spectroscopy study of gelatinization in barley.

    Science.gov (United States)

    Cozzolino, D; Roumeliotis, S; Eglinton, J

    2014-08-08

    The aim of this study was to evaluate the use of attenuated total reflectance and mid infrared (ATR-MIR) spectroscopy and to understand the gelatinization and retro-gradation of flour barley samples and the relationship with malting quality. Samples were sourced from two commercial barley varieties exhibiting high hot water extract (HWE) namely Navigator (n=8), and Admiral (n=8). Samples were analysed using the Rapid Visco Analyser (RVA) and ATR-MIR analysis. These results showed that ATR-MIR spectroscopy is capable of characterising gel samples derived from barley flour samples having different malting characteristics. Infrared spectra can effectively represent a 'fingerprint' of the sample being analysed and can be used to simplify and reduce analytical times in the routine methods currently used. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Maize, Sunflower and Barley Sensitivity to the Residual Activity of Clomazone in Soil

    Directory of Open Access Journals (Sweden)

    Jelena Gajić Umiljendić

    2012-01-01

    Full Text Available Sensitivity of maize, sunflower and barley to clomazone residues in loamy soil wasassessed in the study using bioassay. Clomazone was applied at a series of concentrationsfrom 0.12 to 12 mg a.i./kg of soil. After 14 days, morphological (shoot height, fresh and dryweight and physiological (content of carotenoids, chlorophyll a and chlorophyll b parameterswere measured. The results showed that morphological parameters are not valid indicatorsof clomazone sensitivity. Based on the results showing inhibition of the physiologicalparameters, I50 values were calculated and used to estimate the difference in sensitivitybetween the species tested. Sunflower was the most sensitive species, while the differencein sensitivity between maize and barley was not significant.Nomenclature: clomazone (2-(2-chlorbenzyl-4,4-dimethyl-1,2-oxazolidin-3-one, maize(Zea mays L., sunflower (Helianthus annuus L., barley (Hordeum vulgare L.

  1. Screening for disease resistance in barley cultivars against Bipolaris sorokiniana using callus culture method.

    Science.gov (United States)

    Chand, Ramesh; Sen, Devyani; Prasad, K D; Singh, A K; Bashyal, B M; Prasad, L C; Joshi, A K

    2008-04-01

    Screening for resistant barley genotypes in response to fungal toxin of Bipolaris sorokiniana was assessed on standing barley plants as well as in selected callus lines of the same. For the standing lines tested, those manifesting chlorosis in response to toxin infiltration showed a significantly slower disease progress as compared to the necrotic lines. Also, necrosis in the callus tissues of the susceptible cultivar in MS medium supplemented with different concentrations of the crude toxin was significantly higher than in the callus tissues of the chlorotic lines studied. Similar host response to the toxin in in vitro and field situations open up the possibility of screening barley cultivars for resistance to spot blotch using callus culture as against classical methods of screening in order to increase accuracy and save time and space.

  2. Secretomics identifies Fusarium graminearum proteins involved in the interaction with barley and wheat

    DEFF Research Database (Denmark)

    Yang, Fen; Jensen, Jens D.; Svensson, Birte;

    2012-01-01

    of cell walls, starch and proteins. Of these proteins, 35% had not been identified in previous in planta or in vitro studies, 70% were predicted to contain signal peptides and a further 16% may be secreted in a nonclassical manner. Proteins identified in the 72 spots showing differential appearance...... between wheat and barley flour medium were mainly involved in fungal cell wall remodelling and the degradation of plant cell walls, starch and proteins. The in planta expression of corresponding F. graminearum genes was confirmed by quantitative reverse transcriptase‐polymerase chain reaction in barley...... and wheat spikelets harvested at 2−6 days after inoculation. In addition, a clear difference in the accumulation of fungal biomass and the extent of fungal‐induced proteolysis of plant β‐amylase was observed in barley and wheat. The present study considerably expands the current database of F. graminearum...

  3. Genes controlling seed dormancy and pre-harvest sprouting in a rice-wheat-barley comparison

    DEFF Research Database (Denmark)

    Li, Chengdao; Ni, Peixiang; Francki, Michael;

    2004-01-01

    Pre-harvest sprouting results in significant economic loss for the grain industry around the world. Lack of adequate seed dormancy is the major reason for pre-harvest sprouting in the field under wet weather conditions. Although this trait is governed by multiple genes it is also highly heritable....... A major QTL controlling both pre-harvest sprouting and seed dormancy has been identified on the long arm of barley chromosome 5H, and it explains over 70% of the phenotypic variation. Comparative genomics approaches among barley, wheat and rice were used to identify candidate gene(s) controlling seed...... dormancy and hence one aspect of pre-harvest sprouting. The barley seed dormancy/pre-harvest sprouting QTL was located in a region that showed good synteny with the terminal end of the long arm of rice chromosome 3. The rice DNA sequences were annotated and a gene encoding GA20-oxidase was identified...

  4. Impact of Low Concentration of Cadmium on Photosynthesis and Growth of Pea and Barley

    Directory of Open Access Journals (Sweden)

    Irena Januškaitienė

    2010-10-01

    Full Text Available Photosynthetic gas exchange and growth characteristics were examined in pea and barley plants using 1 mM Cd treatment. Plants were sown into neutral peat substrate and at a leaf development stage were treated with 1 mM cadmium concentration solution. Gas exchange parameters (photosynthetic rate; intercellular CO2 concentration; transpiration rate; water use efficiency were measured with portable photosynthesis system LI-6400 on the fifth day after Cd treatment. Under Cd stress the photosynthetic rate of pea and barley plants decreased by 16.7 % (p 2 concentration decreased by 27.4 % (p 2 reduction processes of Cd treated pea leaves increased (because intercellular CO2 concentration decreased, but that had no positive effect on a photosynthetic rate, and the photosynthetic rate of pea decreased by 4 % more than that of barley. The changes of dry biomass of cadmium treated plants were weak and statistically insignificant.

  5. Important Quality Attributes of Malt Barley (Hordeum vulgare L. ): Effect of Genetics, Environments and Agronomic Factors

    Institute of Scientific and Technical Information of China (English)

    Virender Sardana; ZHANG Guo-ping

    2003-01-01

    Barley has been in use as food and fodder for thousands of years, and also used currently as themost important raw material in malting and brewing. The quality of malt barley is not much satisfied with therequirement by malting and brewing industry worldwide, although the great effort has been devoted to its im-provement through breeding and agronomy. The quality of malt barley is involved in many physical and chemi-cal traits, including hydrolytic enzymes. Of them, kernel protein content, beta-amylase activity, beta-glucancontent and kernel plumpness have dramatic influence on malting or brewing quality. The expression of thesequality parameters varies greatly in genotypes and is easily changed by diverse environments and agronomicpractices. This paper reviewed the important role of various parameters influencing the quality of malt barleyand the effect of different factors on them.

  6. The comparison of nitrogen use and leaching in sole cropped versus intercropped pea and barley

    DEFF Research Database (Denmark)

    Hauggaard-Nielsen, H.; Ambus, P.; Jensen, E.S.

    2003-01-01

    The effect of sole and intercropping of field pea (Pisum sativum L.) and spring barley (Hordeum vulgare L.) and of crop residue management on crop yield, NO3- leaching and N balance in the cropping system was tested in a 2-year lysimeter experiment on a temperate sandy loam soil. The crop rotation...... was pea and barley sole and intercrops followed by winter-rye and a fallow period. The Land Equivalent Ratio (LER), which is defined as the relative land area under sole crops that is required to produce the yields achieved in intercropping, was used to compare intercropping performance relative to sole...... from the sole cropped pea and barley lysimeters. Soil N balances indicated depletion of N in the soil-plant system during the experimental period, independent of cropping system and residue management. N complementarity in the cropping system and the synchrony between residual N availability and crop N...

  7. Compared cycling in a soil-plant system of pea and barley residue nitrogen

    DEFF Research Database (Denmark)

    Jensen, E.S.

    1996-01-01

    and 35% of the pea residue N were unaccounted for. Since these apparent losses are comparable to almost twice the amounts of pea and barley residue N taken up by the perennial ryegrass crop, there seems to be a potential for improved crop residue management in order to conserve nutrients in the soil......Field experiments were carried out on a temperate soil to determine the decline rate, the stabilization in soil organic matter and the plant uptake of N from N-15-labelled crop residues. The fate of N from field pea (Pisum sativum L.) and spring barley (Hordeum vulgare L.) residues was followed...... in the top 10 cm soil declined rapidly during the initial 86 DAI for all residue types. Leaching of soluble organic materials may have contributed to this decline. At 216 DAI 72, 59 and 45% of the barley, mature pea and green pea residue N, respectively, were present in organic N-forms in the topsoil. During...

  8. Interaction of barley powdery mildew effector candidate CSEP0055 with the defence protein PR17c

    DEFF Research Database (Denmark)

    Zhang, Wen-Jing; Pedersen, Carsten; Kwaaitaal, Mark Adrianus Cornelis J

    2012-01-01

    A large number of effector candidates have been identified recently in powdery mildew fungi. However, their roles and how they perform their functions remain unresolved. In this study, we made use of host-induced gene silencing and confirmed that the secreted barley powdery mildew effector...... candidate, CSEP0055, contributes to the aggressiveness of the fungus. This result suggests that CSEP0055 is involved in the suppression of plant defence. A yeast two-hybrid screen indicated that CSEP0055 interacts with members of the barley pathogenesis-related protein families, PR1 and PR17. Interaction...... with PR17c was confirmed by bimolecular fluorescence complementation analyses. Down-regulation and over-expression of PR17c in epidermal cells of barley confirmed that this protein is important for penetration resistance against the powdery mildew fungus. In line with this, PR17c was found...

  9. Density and relative frequency effects on competitive interactions and resource use in pea–barley intercrops

    DEFF Research Database (Denmark)

    Hauggaard-Nielsen, H.; Andersen, H.K.; Jørnsgaard, B.;

    2006-01-01

    Intercropping advantages may be influenced by both plant density and relative frequency of the intercrop components. In a field study barley (Hordeum vulgare L.) and pea (Pisum sativum L.) were sole cropped and intercropped at three densities and with two relative frequencies when intercropped....... Earlier seedling emergence gave barley an initial growth advantage, assessed using the relative efficiency index (REIc), whereas pea was in general more growth efficient once the initial growth phase had been passed. This reversal in relative growth efficiency along with the observation that early barley...... of the growing period and more so in the pea dominated intercrop. At the final harvest land equivalent ratios (LER) of 0.9-1.2 express resource complementarity in almost all studied intercrops, complementarity that was not directly affected by changes in plant density or relative frequency. Intercropped pea did...

  10. Ethnobotany, diverse food uses, claimed health benefits and implications on conservation of barley landraces in North Eastern Ethiopia highlands

    Directory of Open Access Journals (Sweden)

    Sopade Peter A

    2011-06-01

    Full Text Available Abstract Background Barley is the number one food crop in the highland parts of North Eastern Ethiopia produced by subsistence farmers grown as landraces. Information on the ethnobotany, food utilization and maintenance of barley landraces is valuable to design and plan germplasm conservation strategies as well as to improve food utilization of barley. Methods A study, involving field visits and household interviews, was conducted in three administrative zones. Eleven districts from the three zones, five kebeles in each district and five households from each kebele were visited to gather information on the ethnobotany, the utilization of barley and how barley end-uses influence the maintenance of landrace diversity. Results According to farmers, barley is the "king of crops" and it is put for diverse uses with more than 20 types of barley dishes and beverages reportedly prepared in the study area. The products are prepared from either boiled/roasted whole grain, raw- and roasted-milled grain, or cracked grain as main, side, ceremonial, and recuperating dishes. The various barley traditional foods have perceived qualities and health benefits by the farmers. Fifteen diverse barley landraces were reported by farmers, and the ethnobotany of the landraces reflects key quantitative and qualitative traits. Some landraces that are preferred for their culinary qualities are being marginalized due to moisture shortage and soil degradation. Conclusions Farmers' preference of different landraces for various end-use qualities is one of the important factors that affect the decision process of landraces maintenance, which in turn affect genetic diversity. Further studies on improving maintenance of landraces, developing suitable varieties and improving the food utilization of barley including processing techniques could contribute to food security of the area.

  11. Capacity of Fusarium species isolated from brewer's barley to synthesise zearalenone

    Directory of Open Access Journals (Sweden)

    Kocić-Tanackov Sunčica D.

    2005-01-01

    Full Text Available Fungi of the genus Fusarium, known as toxigenic species, are very of- ten parasites and contaminants of brewer's barley. In this paper, the composition of the genus Fusarium species in brewer's barley samples and their potential in the zearalenone synthesis were investigated. The tests were done on different brewer's barley varieties, crop 2003, samples (SSK1, SSK2, SSK3 SSK4, SSK5, SSK6, SSK7, SSK8, SSK9, SSK10 and SSK12 from Kragujevac locality. The isolation and identification of the Fusarium species were done according to the methods described by N e l s o n et al. (1983. The identified Fusarium species (6 were tested for their capacity to synthesise zearalenone. The isolates were cultivated on sterilised barley grains at the temperature of 25°C for 14 days, and then the zearalenone concentration was determined by the fluorometric method on the fluorometer "VI- CAM" series 4. The following seven Fusarium species were isolated from barley samples: F. acuminatum, F. avenaceum, F. culmorum, F. equiseti, F. poae, F. sporotrichioides and F. tricinctum. F. poae was the most distributed species (10.26%. The zearalenone concentration within the range of 12.0 to 430.0 g kg-1 was determined in cultures of barley grain inoculated with F. avenacuem (SSK6 and SSK12, F. culmorum (SSK8, F. tricinctum (SSK1, F. sporotrichioides (SSK7 and SSK12 and F. poae (SSK5, SSK9 and SSK10. Isolates of F. equiseti (SSK2 and F. poae (SSK6 did not express capacity to synthesise this toxic metabolite.

  12. Functional and structural characterization of plastidic starch phosphorylase during barley endosperm development.

    Science.gov (United States)

    Cuesta-Seijo, Jose A; Ruzanski, Christian; Krucewicz, Katarzyna; Meier, Sebastian; Hägglund, Per; Svensson, Birte; Palcic, Monica M

    2017-01-01

    The production of starch is essential for human nutrition and represents a major metabolic flux in the biosphere. The biosynthesis of starch in storage organs like barley endosperm operates via two main pathways using different substrates: starch synthases use ADP-glucose to produce amylose and amylopectin, the two major components of starch, whereas starch phosphorylase (Pho1) uses glucose-1-phosphate (G1P), a precursor for ADP-glucose production, to produce α-1,4 glucans. The significance of the Pho1 pathway in starch biosynthesis has remained unclear. To elucidate the importance of barley Pho1 (HvPho1) for starch biosynthesis in barley endosperm, we analyzed HvPho1 protein production and enzyme activity levels throughout barley endosperm development and characterized structure-function relationships of HvPho1. The molecular mechanisms underlying the initiation of starch granule biosynthesis, that is, the enzymes and substrates involved in the initial transition from simple sugars to polysaccharides, remain unclear. We found that HvPho1 is present as an active protein at the onset of barley endosperm development. Notably, purified recombinant protein can catalyze the de novo production of α-1,4-glucans using HvPho1 from G1P as the sole substrate. The structural properties of HvPho1 provide insights into the low affinity of HvPho1 for large polysaccharides like starch or amylopectin. Our results suggest that HvPho1 may play a role during the initiation of starch biosynthesis in barley.

  13. Glycemic index of cracked corn, oat groats and rolled barley in horses.

    Science.gov (United States)

    Jose-Cunilleras, E; Taylor, L E; Hinchcliff, K W

    2004-09-01

    Muscle glycogen synthesis depends on glucose availability. This study was undertaken to determine the glycemic and insulinemic response of horses to equal amounts of hydrolyzable carbohydrates (starch and sugar) in the form of one of three grain meals or intragastric administration of a glucose solution. In a randomized crossover design, seven horses were fed each of three grain meals (cracked corn, steamed oat groats, or rolled barley) or were infused intragastrically with glucose solution at 2 g of hydrolyzable carbohydrate (starch plus sugar) per kilogram of BW. The quantity of hydrolyzable carbohydrate ingested was not different among all treatments (P = 0.70). Plasma glucose concentration peaked in all four treatments by 1.5 to 2 h after feeding. Plasma glucose concentration remained higher than baseline in oat groats or barley-fed horses throughout 8 h, whereas plasma glucose returned to baseline by 5 to 6 h in corn-fed horses or after glucose administration. Meal consumption was slower in oat groats-fed horses than in corn-fed ones, which may confound the glycemic and insulinemic responses observed after grain feeding. Plasma glucose area under the curve (AUC) was 63% both in corn and oat groats and 57% in barley-fed horses compared with that of horses administered glucose (P = 0.13). Serum immunoreactive insulin concentration peaked between 2 and 3 h after feeding or glucose administration, and barley-fed horses had lower serum immunoreactive insulin concentration by 3 to 4 h than corn-fed horses or after glucose administration (P oat groats, corn, and barley result in similar plasma glucose AUC and, compared with the glycemic index of 100 as the glucose reference, corn, oat groats, and barley had a glycemic index of approximately 60.

  14. Organization and expression of two tandemly oriented genes encoding ribulosebisphosphate carboxylase/oxygenase activase in barley.

    Science.gov (United States)

    Rundle, S J; Zielinski, R E

    1991-03-15

    We have isolated and structurally characterized genomic DNA and cDNA sequences encoding ribulose-1,5-bisphosphate carboxylase/oxygenase (Rbu-P2 carboxylase) activase from barley (Hordeum vulgare L.). Three Rbu-P2 carboxylase activase (Rca) polypeptides are encoded in the barley genome by two closely linked, tandemly oriented nuclear genes (RcaA and RcaB); cDNAs encoding each of the three Rbu-P2 carboxylase activase polypeptides were isolated from cDNA libraries of barley leaf mRNA. RcaA produces two mRNAs, which encode polypeptides of 42 and 46 kDa, by an alternative splicing mechanism identical to that previously reported for spinach and Arabidopsis Rca genes (Werneke, J.M., Chatfield, J.M., and Ogren, W. L. (1989) Plant Cell 1, 815-825). RcaB is transcribed to produce a single mRNA, which encodes a mature peptide of 42 kDa. Genomic Southern blots indicate that RcaA and RcaB represent the entire Rbu-P2 carboxylase activase gene family in barley. The genes share 80% nucleotide sequence identity, and the 42-kDa polypeptides encoded by RcaA and RcaB share 87% amino acid sequence identity. Coding regions of the two barley Rca genes are separated by 1 kilobase pair of flanking DNA. DNA sequence motifs similar to those thought to control light-regulated gene expression in other nuclear-encoded plastid polypeptide genes are found at the 5' end of both barley Rca genes. Probes specific to three mRNAs were used to determine the relative contribution each species makes to the total Rca mRNA pool.

  15. phiC31 integrase-mediated site-specific recombination in barley.

    Directory of Open Access Journals (Sweden)

    Eszter Kapusi

    Full Text Available The Streptomyces phage phiC31 integrase was tested for its feasibility in excising transgenes from the barley genome through site-specific recombination. We produced transgenic barley plants expressing an active phiC31 integrase and crossed them with transgenic barley plants carrying a target locus for recombination. The target sequence involves a reporter gene encoding green fluorescent protein (GFP, which is flanked by the attB and attP recognition sites for the phiC31 integrase. This sequence disruptively separates a gusA coding sequence from an upstream rice actin promoter. We succeeded in producing site-specific recombination events in the hybrid progeny of 11 independent barley plants carrying the above target sequence after crossing with plants carrying a phiC31 expression cassette. Some of the hybrids displayed fully executed recombination. Excision of the GFP gene fostered activation of the gusA gene, as visualized in tissue of hybrid plants by histochemical staining. The recombinant loci were detected in progeny of selfed F(1, even in individuals lacking the phiC31 transgene, which provides evidence of stability and generative transmission of the recombination events. In several plants that displayed incomplete recombination, extrachromosomal excision circles were identified. Besides the technical advance achieved in this study, the generated phiC31 integrase-expressing barley plants provide foundational stock material for use in future approaches to barley genetic improvement, such as the production of marker-free transgenic plants or switching transgene activity.

  16. Proteomic analysis of differences in barley (Hordeum vulgare) malts with distinct filterability by DIGE.

    Science.gov (United States)

    Jin, Zhao; Li, Xiao-Min; Gao, Fei; Sun, Jun-Yong; Mu, Yu-Wen; Lu, Jian

    2013-11-20

    Filterability is an essential quality parameter of barley malt and significantly impacts productive efficiency and quality of beer. In the study, differences of metabolic capability, rather than of initial contents of macromolecules in barleys, were found to be the main reason for malt filterability gap between the widely used cultivars Dan'er and Metcalfe in China. Comparative proteomics based on fluorescent difference gel electrophoresis (DIGE) was employed to quantitatively analyze proteins of four commercial malts belonging to the two cultivars, and 51 cultivar-differential spots were identified to 40 metabolic proteins by MALDI-TOF/TOF mass spectrometry, mainly including hydrolases and pathogen-related proteins. According to their function analysis and abundance comparison between cultivars, filterability-beneficial and -adverse proteins were putatively proposed. Two most remarkable differential proteins, β-amylase and serpin Z7, were further investigated to verify their effects on Dan'er malt filterability. These results provide biological markers for barley breeders and maltsters to improve malt filterability. To the best of our knowledge, this is the first report of comprehensive investigation of metabolic proteins related to wort filterability of barley malts, and sheds light on clues for filterability improvement. Visible differences in the expression level of metabolic proteins between Dan'er and Metcalfe malts using 2D-DIGE signify a valuable tool for cultivar comparison, illustration of key proteins responsible for filterability and even other qualities of barley malts. And with these explorations on biomarkers of malt filterability and other aspects, there will be higher efficiency and quality of beer brewing, less application of exogenous hydrolases and more expending market for Chinese malting barleys. This article is part of a Special Issue entitled: Translational Plant Proteomics. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. Response of Barley Seedlings to Microwaves at 2.45 GHz

    OpenAIRE

    Iuliana Crețescu; Rodica Căpriță; Giancarla Velicevici; Sorina Ropciuc; Genoveva Buzamat

    2013-01-01

    Abstract The objective of the present study was to investigate the changes induced upon germination and growth rate, expressed by vigor index of barley seeds exposed to microwave (MW) treatment. As a microwave source was used a magnetron MWG20H, which emits radiation with a frequency of 2.45 GHz. In the experiment, barley seeds were exposed for 0s, 10s and 20s. The germination energy (GE) and germination (G), cotyledon length (CL), leaves length (LL) and roots length (RL) in cm were determine...

  18. cDNA, amino acid carbohydrate sequence of barley seed-specific peroxidase BP 1

    DEFF Research Database (Denmark)

    Johansson, A.; Rasmussen, Søren Kjærsgård; Harthill, J.E.

    1992-01-01

    The major peroxidase of barley seed BP 1 was characterized. Previous studies showed a low carbohydrate content, low specific activity and tissue-specific expression, and suggested that this basic peroxidase could be particularly useful in the elucidation of the structure-function relationship...... plant modified-type structure, Man-alpha-1-6(Xyl-beta-1-2)Man-beta-1-4GlcNAc-beta-1-4(Fuc-alpha-1-3)GlcNAc. The BP 1 gene was RFLP-mapped on barley chromosome 3, and we propose Prx5 as the name for this new peroxidase locus....

  19. Effect of Barley and Enzyme on Performance, Carcass, Enzyme Activity and Digestion Parameters of Broilers

    Directory of Open Access Journals (Sweden)

    majid kalantar

    2016-04-01

    Full Text Available Introduction Corn has been recently used for producing ethanol fuel in the major corn-producing countries such as the US and Brazil. Recent diversion of corn for biofuel production along with the increased world's demand for this feedstuff has resulted in unprecedented rise in feed cost for poultry worldwide. Alternative grains such as wheat and barley can be successfully replaced for corn in poultry diets. These cereal grains can locally grow in many parts of the world as they have remarkably lower water requirement than corn. Wheat and barley are generally used as major sources of energy in poultry diets. Though the major components of these grains are starch and proteins, they have considerable content of non-starch polysaccharides (NSPs, derived from the cell walls (Olukosi et al. 2007; Mirzaie et al. 2012. NSPs are generally considered as anti-nutritional factors (Jamroz et al. 2002. The content and structure of NSP polymers vary between different grains, which consequently affect their nutritive value (Olukosi et al. 2007.Wheat and barley are generally used as major sources of energy in poultry diets. The major components of these grains are starch and proteins, they have considerable content of non-starch polysaccharides (NSPs, derived from the cell walls. NSPs are generally considered as anti-nutritional factors. The content and structure of NSP polymers vary between different grains, which consequently affect their nutritive value. The major part of NSPs in barley comprises polymers of (1→3 (1→4-β- glucans which could impede growth factors and consequently carcass quality through lowering the rate and amount of available nutrients in the mucosal surface of the intestinal. Materials and Methods This experiment was conducted to evaluate the effect of corn and barley based diets supplemented with multi-enzyme on growth, carcass, pancreas enzyme activity and physiological characteristics of broilers. A total number of 375 one day old

  20. Comparison of functional and nutritional characteristics of barley and oat mixed linkage ß-glucans

    DEFF Research Database (Denmark)

    Mikkelsen, Mette Skau

    It is well accepted that dietary fibres, especially mixed linkage (1→3, 1→4)-β-Dglucans (β-glucan) from barley and oat, have beneficial effects on health and prevent modern lifestyle diseases. Even though recent research has shed some light on the mechanisms of action and structure...... showed that consumption of 3.3 g/day extracted barley and oat β-glucan for 3 weeks does not significantly lower total and LDL cholesterol levels in young and healthy adults. However, an indicated potential effect of oat suggests the importance of solubility for β-glucan interference with the cholesterol...

  1. Extracted oat and barley β-glucans do not affect cholesterol metabolism in young healthy adults

    DEFF Research Database (Denmark)

    Ibrügger, Sabine; Kristensen, Mette Bredal; Poulsen, Malene Wibe

    2013-01-01

    , barley, and barley mutant β-glucans of similar molecular mass. Before and after each period, fasting and postprandial blood samples were drawn and 3-d fecal samples were collected. Treatment did not affect changes in total, LDL, and HDL cholesterol compared with control; however, consumption of 3.3 g......:cellotetraosyl). Decreases in fasting triacylglycerol were substantially greater after oat β-glucan treatment compared with control (P = 0.03). Fecal dry and wet weight, stool frequency, fecal pH, and energy excretion were unaffected. The results do not fully support the hypocholesterolemic effects by differently structured...

  2. Development of DNA markers associated with beer foam stability for barley breeding.

    Science.gov (United States)

    Iimure, Takashi; Kihara, Makoto; Ichikawa, Seiichiro; Ito, Kazutoshi; Takeda, Kazuyoshi; Sato, Kazuhiro

    2011-01-01

    Traits conferring brewing quality are important objectives in malting barley breeding. Beer foam stability is one of the more difficult traits to evaluate due to the requirement for a relatively large amount of grain to be malted and then the experimental costs for subsequent brewing trials. Consequently, foam stability tends to be evaluated with only advanced lines in the final stages of the breeding process. To simplify the evaluation and selection for this trait, efficient DNA makers were developed in this study. Previous studies have suggested that the level of both of the foam-associated proteins Z4 and Z7 were possible factors that influenced beer foam stability. To confirm the relationship between levels of these proteins in beer and foam stability, 24 beer samples prepared from malt made from 10 barley cultivars, were examined. Regression analyses suggested that beer proteins Z4 and Z7 could be positive and negative markers for beer foam stability, respectively. To develop DNA markers associated with contents of proteins Z4 and Z7 in barley grain, nucleotide sequence polymorphisms in barley cultivars in the upstream region of the translation initiation codon, where the promoter region might be located were compared. As a result, 5 and 23 nucleotide sequence polymorphisms were detected in protein Z4 and protein Z7, respectively. By using these polymorphisms, cleaved amplified polymorphic sequence (CAPS) markers were developed. The CAPS markers for proteins Z4 and Z7 were applied to classify the barley grain content of 23 barley cultivars into two protein Z4 (pZ4-H and pZ4-L) and three protein Z7 (the pZ7-H, pZ7-L and pZ7-L2) haplotypes, respectively. Barley cultivars with pZ4-H showed significantly higher levels of protein Z4 in grain, and those with pZ7-L and pZ7-L2 showed significantly lower levels of protein Z7 in grain. Beer foam stability in the cultivars with pZ4-H and pZ7-L was significantly higher than that with pZ4-L and pZ7-H, respectively. Our

  3. Isolation and characterization of the gene encoding the starch debranching enzyme limit dextrinase from germinating barley

    DEFF Research Database (Denmark)

    Kristensen, Michael; Lok, Finn; Planchot, Véronique

    1999-01-01

    The gene encoding the starch debranching enzyme limit dextrinase, LD, from barley (Hordeum vulgare), was isolated from a genomic phage library using a barley cDNA clone as probe. The gene encodes a protein of 904 amino acid residues with a calculated molecular mass of 98.6 kDa. This is in agreement...... fragments coupled with matrix assisted laser desorption mass spectrometry. The sequenced peptide fragments cover 70% of the entire protein sequence, which shows 62% and 77% identity to that of starch debranching enzymes from spinach and rice and 37% identity to Klebsiella pullulanase. Sequence alignment...

  4. A major baker's asthma allergen from rye flour is considerably more active than its barley counterpart.

    Science.gov (United States)

    García-Casado, G; Armentia, A; Sánchez-Monge, R; Sánchez, L M; Lopez-Otín, C; Salcedo, G

    1995-05-01

    A rye flour protein of about 13.5 kDa, as well as its barley homologue, have been isolated. The rye component was recognized in vitro by IgE of allergic patients and provoked positive responses in 15 out of 21 baker's asthma patients (71%) when skin prick tests were performed. Its barley homologue showed no detectable in vitro reactivity and caused positive responses in only one-third of patients. Although no inhibitory activity against different alpha-amylases or trypsin was found for these two proteins, their N-terminal sequencing revealed considerable similarity to several members of the cereal alpha-amylase/trypsin inhibitor family.

  5. Oligosaccharide and Substrate Binding in the Starch Debranching Enzyme Barley Limit Dextrinase

    DEFF Research Database (Denmark)

    Møller, Marie Sofie; Windahl, Michael Skovbo; Sim, Lyann;

    2015-01-01

    Complete hydrolytic degradation of starch requires hydrolysis of both the α-1,4- and α-1,6-glucosidic bonds in amylopectin. Limit dextrinase (LD) is the only endogenous barley enzyme capable of hydrolyzing the α-1,6-glucosidic bond during seed germination, and impaired LD activity inevitably...... reduces the maltose and glucose yields from starch degradation. Crystal structures of barley LD and active-site mutants with natural substrates, products and substrate analogues were sought to better understand the facets of LD-substrate interactions that αconfine high activity of LD to branched...... starch synthesis....

  6. Structure and Composition of Protein Bodies from Wild-Type and High-Lysine Barley Endosperm

    DEFF Research Database (Denmark)

    Ingversen, J.

    1975-01-01

    Protein bodies were isolated from 13 and 28 day old endosperms of barley mutant 1508 and its wild type, Bomi barley. The fine structure of the isolated protein bodies was determined by electron microscopy, and the proteins present in the preparations characterized by amino-acid analysis and SDS...... with a granular component. Particles with the same structure were present in the protein body preparation from the mutant, where, however, the granular component was the most prominent. Amino-acid composition and SDS-polyacrylamide gel electrophoresis of the proteins from the protein body preparation revealed...

  7. Regeneration of the Barley Zygote in In Vitro Cultured Ovules

    DEFF Research Database (Denmark)

    Holme, Inger B; Brinch-Pedersen, Henrik; Lange, Mette

    2010-01-01

    culture ability in immature embryo culture i.e. Femina, Salome and Corniche. Barley spikes were emasculated and hand pollinated 3 days after emasculation. In barley, fertilization takes place one hour after pollination and ovules with fertilized egg cells could therefore be isolated one hour after...... pollination. Ovules were grown for 3 weeks on a culture medium where after embryos could be isolated and transferred to regeneration medium. An average of 1.2 green plantlets per ovule could be regenerated from 50 % of the isolated ovules. No genotypic differences were found on embryo induction...

  8. Demarcation of mutant-carrying regions in barley plants after ethylmethane-sulfonate seed treatment

    DEFF Research Database (Denmark)

    Jacobsen, P.

    1966-01-01

    was obtained.The absence of cluster sharing allows the recognition in the barley plant of 8 mutually exclusive mutant sectors which never had a mutant cluster in common. The anatomical analysis proves that the barley embryo contains at least 6 separate shoot meristems or prospective shoot meristems, which...... will constitute mutually exclusive mutant sectors in the plant. The combined genetical and anatomical analysis reveals that in large seeds there are always 9 meristems leading to 9 mutually exclusive mutant sectors. Up to 7 additional meristems leading to mutually exclusive mutant sectors can be present...

  9. Pea-barley intercropping and short-term subsequent crop effects across European organic cropping conditions

    DEFF Research Database (Denmark)

    Hauggaard-Nielsen, Henrik; Gooding, M.; Ambus, Per

    2009-01-01

    Grain legumes are known to increase the soil mineral nitrogen (N) content, reduce the infection pressure of soil borne pathogens, and hence enhance subsequent cereals yields. Replicated field experiments were performed throughout W. Europe (Denmark, United Kingdom, France, Germany and Italy....... In the replacement design the total relative plant density is kept constant, while the additive design uses the optimal sole crop density for pea supplementing with ‘extra’ barley plants. The pea and barley crops were followed by winter wheat with and without N application. Additional experiments in Denmark...

  10. Improving the nutritional quality of the barley and wheat grain storage proteins by antisense technology

    DEFF Research Database (Denmark)

    Sikdar, Md. Shafiqul Islam; Lange, Mette; Aaslo, Per

    2011-01-01

    Prolamins are the predominant storage proteins in barley and wheat grains, accounting for 50 to 80% of total seed protein. However, the prolamins are not optimal feed for monogastric animals as they have a low content of certain essential amino acids such as lysine, threonine and tryptophan...... gliadins) are also available from Germany and UK. We have grown them under different N regimes (high, medium and low N) in semi-field conditions. Previously five different antisense C-hordein lines of barley have been characterized in our laboratory. The analyses revealed that the lysine, threonine...

  11. Dominant species of dicot-weeds and weed biodiversity in spring barley in Latvia.

    Science.gov (United States)

    Vanaga, I; Mintale, Z; Smirnova, O

    2010-01-01

    The composition of weed species in spring barley and weed biodiversity was evaluated in experiments in different growing seasons and with different previous crops. The aim of the experiments was to evaluate the composition of weed species in spring barley during a four year period in weather conditions of different growing seasons and with different previous crop as well as to assess the biodiversity in the experiments where the different groups of herbicides were applied. Over years and previous crops, the dicotyledonous weed community was dominated by Chenopodium album, followed by Viola arvensis. The herbicides from different groups had significant influences on the biodiversity of weeds.

  12. Radioprotective effects of ascorbic acid in barley seeds

    Energy Technology Data Exchange (ETDEWEB)

    Conger, B.V.

    1975-01-01

    Experiments were conducted to test the radioprotective effects of a naturally occurring reducing agent, ascorbic acid, on seeds (caryopses) of barley, Hordeum vulgare L. emend Lam. Seeds were soaked either before or after ..gamma.. or fission neutron irradiation in distilled water or ascorbic acid solutions ranging in concentration from 0.01 to 1.00 M. Results are reported as percentage germination, seedling height, seedling growth reduction, and (in one experiment) percent of cells with chromosome aberrations. As evidenced by both reduced germination and seedling growth, ascorbic acid was toxic when seeds were soaked for 1 hr at ambient temperature prior to irradiation and then planted immediately. When seeds were soaked in ascorbic acid before irradiation and soaked after irradiation in air-bubbled water at 0/sup 0/C for 18 hr, the toxicity disappeared, and a protective effect (which increased with increasing ascorbic acid concentration) was observed for ..gamma.. and, to a lesser extent, for neutron irradiation. Additional studies suggested that the protective effect was related to reduced hydration of the embryos of seeds soaked in ascorbic acid. Also, no radioprotective effect was observed when seeds were presoaked for 2 or 16 hr in 0.01 M ascorbic acid solutions buffered at pH 3 or pH 7. A protective effect was observed for seeds of 1.5 percent water content soaked after irradiation in an oxygen-bubbled ascorbic acid solution of 0.5 M but was not observed for seeds soaked in nitrogen-bubbled ascorbic acid. The protective effect against oxygen-dependent damage may be a result of interaction of ascorbic acid with radiation-induced free radicals.

  13. Rhynchosporium commune: a persistent threat to barley cultivation.

    Science.gov (United States)

    Avrova, Anna; Knogge, Wolfgang

    2012-12-01

    Rhynchosporium commune is a haploid fungus causing scald or leaf blotch on barley, other Hordeum spp. and Bromus diandrus. Rhynchosporium commune is an anamorphic Ascomycete closely related to the teleomorph Helotiales genera Oculimacula and Pyrenopeziza. Rhynchosporium commune causes scald-like lesions on leaves, leaf sheaths and ears. Early symptoms are generally pale grey oval lesions. With time, the lesions acquire a dark brown margin with the centre of the lesion remaining pale green or pale brown. Lesions often merge to form large areas around which leaf yellowing is common. Infection frequently occurs in the leaf axil, which can lead to chlorosis and eventual death of the leaf. Rhynchosporium commune is seed borne, but the importance of this phase of the disease is not fully understood. Debris from previous crops and volunteers, infected from the stubble from previous crops, are considered to be the most important sources of the disease. Autumn-sown crops can become infected very soon after sowing. Secondary spread of disease occurs mainly through splash dispersal of conidia from infected leaves. Rainfall at the stem extension growth stage is the major environmental factor in epidemic development. DETECTION AND QUANTIFICATION: Rhynchosporium commune produces unique beak-shaped, one-septate spores both on leaves and in culture. The development of a specific polymerase chain reaction (PCR) and, more recently, quantitative PCR (qPCR) has allowed the identification of asymptomatic infection in seeds and during the growing season. The main measure for the control of R. commune is the use of fungicides with different modes of action, in combination with the use of resistant cultivars. However, this is constantly under review because of the ability of the pathogen to adapt to host plant resistance and to develop fungicide resistance. © 2012 THE AUTHORS. MOLECULAR PLANT PATHOLOGY © 2012 BSPP AND BLACKWELL PUBLISHING LTD.

  14. Gibberellic Acid enhancement of DNA turnover in barley aleurone cells.

    Science.gov (United States)

    Taiz, L; Starks, J E

    1977-08-01

    When imbibed, deembryonated halfseeds from barley (Hordeum vulgare L., var. Himalaya) are incubated in buffer, the DNA content of the aleurone layer increases 25 to 40% over a 24-hour period. In contrast, the DNA of isolated aleurone layers declines by 20% over the same time period. Gibberellic acid (GA) causes a reduction in DNA levels in both halfseed aleurone layers and isolated aleurone layers. GA also increases the specific radioactivity of [(3)H]thymidine-labeled halfseed aleurone layer DNA during the first 12 hours of treatment. Pulse-chase studies demonstrated that the newly synthesized DNA is metabolically labile.The buoyant density on CsCl density gradients of hormone-treated aleurone DNA is identical with that of DNA extracted from whole seedlings. After density-labeling halfseed DNA with 5-bromodeoxyuridine, a bimodal absorption profile is obtained in neutral CsCl. The light band (1.70 g/ml) corresponds to unsubstituted DNA, while the heavy band (1.725-1.74 g/ml) corresponds to a hybrid density-labeled species. GA increases the relative amount of the heavy (hybrid) peak in halfseed aleurone layer DNA, further suggesting that the hormone enhances semiconservative replication in halfseeds.DNA methylation was also demonstrated. Over 60% of the radioactivity from [(3)H-Me]methionine is incorporated into 5-methylcytosine. GA has no effect on the percentage distribution of label among the bases.It was concluded that GA enhances the rate of DNA degradation and DNA synthesis (turnover) in halfseeds, but primarily DNA degradation in isolated aleurone layers. Incorporation by isolated aleurone layers is due to DNA repair. Semiconservative replication apparently plays no physiological role in the hormone response, since both isolated aleurone layers and gamma-irradiated halfseeds respond normally. The hypothesis was advanced that endoreduplication and DNA degradation are means by which the seed stores and mobilizes deoxyribonucleotides for the embryo during

  15. Evaluation of qualitative and quantitative immunoassays to detect barley contamination in gluten-free beer with confirmation using LC/MS/MS.

    Science.gov (United States)

    Allred, Laura K; Sealey Voyksner, Jennifer A; Voyksner, Robert D

    2014-01-01

    To meet the need for the detection and quantitation of barley gluten in beer, qualitative screening and quantitative immunoassays based on the monoclonal antigluten antibody 401/21 (Skerritt) were validated in a single laboratory. Sample replicates were tested at each stage of beer production using multiple yeast strains and methods of end-stage protein removal. Quantitation was performed using barley-specific standards based on barley flour extracts. Immunoassay results were confirmed using LC/MS/MS for barley-specific peptides. The LOD for the qualitative screening test was 5 mg/L barley gluten. Recovery for the barley-spiked worts ranged from 81 to 128% in the quantitative ELISA assay; the LOD was methods were found to be fit for the purposes of detection of low levels of barley gluten in beer.

  16. Cell layer-specific distribution of transiently expressed barley ESCRT-III component HvVPS60 in developing barley endosperm.

    Science.gov (United States)

    Hilscher, Julia; Kapusi, Eszter; Stoger, Eva; Ibl, Verena

    2016-01-01

    The significance of the endosomal sorting complexes required for transport (ESCRT)-III in cereal endosperm has been shown by the identification of the recessive mutant supernumerary aleurone layer1 (SAL1) in maize. ESCRT-III is indispensable in the final membrane fission step during biogenesis of multivesicular bodies (MVBs), responsible for protein sorting to vacuoles and to the cell surface. Here, we annotated barley ESCRT-III members in the (model) crop Hordeum vulgare and show that all identified members are expressed in developing barley endosperm. We used fluorescently tagged core ESCRT-III members HvSNF7a/CHMP4 and HvVPS24/CHMP3 and the associated ESCRT-III component HvVPS60a/CHMP5 for transient localization studies in barley endosperm. In vivo confocal microscopic analyses show that the localization of recombinantly expressed HvSNF7a, HvVPS24 and HvVPS60a differs within barley endosperm. Whereas HvSNF7a induces large agglomerations, HvVPS24 shows mainly cytosolic localization in aleurone and subaleurone. In contrast, HvVPS60a localizes strongly at the plasma membrane in aleurone. In subaleurone, HvVPS60a was found to a lesser extent at the plasma membrane and at vacuolar membranes. These results indicate that the steady-state association of ESCRT-III may be influenced by cell layer-specific protein deposition or trafficking and remodelling of the endomembrane system in endosperm. We show that sorting of an artificially mono-ubiquitinated Arabidopsis plasma membrane protein is inhibited by HvVPS60a in aleurone. The involvement of HvVPS60a in different cell layer-specific trafficking pathways, reflected by localization of HvVPS60a at the plasma membrane in aleurone and at the PSV membrane in subaleurone, is discussed.

  17. Analysis of single nucleotide polymorphisms based on RNA sequencing data of diverse bio-geographical accessions in barley

    Science.gov (United States)

    Takahagi, Kotaro; Uehara-Yamaguchi, Yukiko; Yoshida, Takuhiro; Sakurai, Tetsuya; Shinozaki, Kazuo; Mochida, Keiichi; Saisho, Daisuke

    2016-01-01

    Barley is one of the founder crops of Old world agriculture and has become the fourth most important cereal worldwide. Information on genome-scale DNA polymorphisms allows elucidating the evolutionary history behind domestication, as well as discovering and isolating useful genes for molecular breeding. Deep transcriptome sequencing enables the exploration of sequence variations in transcribed sequences; such analysis is particularly useful for species with large and complex genomes, such as barley. In this study, we performed RNA sequencing of 20 barley accessions, comprising representatives of several biogeographic regions and a wild ancestor. We identified 38,729 to 79,949 SNPs in the 19 domesticated accessions and 55,403 SNPs in the wild barley and revealed their genome-wide distribution using a reference genome. Genome-scale comparisons among accessions showed a clear differentiation between oriental and occidental barley populations. The results based on population structure analyses provide genome-scale properties of sub-populations grouped to oriental, occidental and marginal groups in barley. Our findings suggest that the oriental population of domesticated barley has genomic variations distinct from those in occidental groups, which might have contributed to barley’s domestication. PMID:27616653

  18. Weed infestation in canopy of spring barley in condition of different tillage systems and fertilization and plant protection levels

    Directory of Open Access Journals (Sweden)

    Piotr Kraska

    2012-12-01

    Full Text Available The purpose of this work was to determine the influence of conventional tillage (fall ploughing at 25 cm and minimum tillage systems (chisel ploughing at 30 cm and two differentiated fertilization and plant protection levels on number, species composition and air dry weed mass in spring barley cv. Rataj. This spring barley was cultivated in crop rotation potato - spring barley - winter rye. The analysis of field infestation was made prior to spring barley harvest with quantitative- weighting method. There was estimated number of weeds, weed species composition and air dry weight of weeds in two randomly chosen areas of each plot of 0.5 m2. The density of weeds and weed air dry weight was statistically analysed by means of variance analysis, and the mean values were estimated with Tukey's confidence intervals (p=0.05. Intensive level of fertilization and chemical crop protection decreased number of monocotyledonous weeds and total weeds in canopy of spring barley. Conventional system of soil cultivation decreased in a canopy of spring barley the following species of weeds: Geranium pusillum, Galinsoga parviflora, Stellaria media, Apera spica-venti, Poa annua and Echinochloa crusgalli. Conventional tillage increases number of Chamomilla suaveolens and Fallopia convolvulus in a canopy of spring barley. Intensive fertilization and plant protection levels decreased weed infestation first of all through Echinochloa crusgalli, Apera spica-venti, Fallopia convolvulus, Galinsoga parviflora, Geranium pusillum, Chenopodium album and Setaria pumila.

  19. The effect of interspecies interactions and water deficit on spring barley and red clover biomass accumulation at successive growth stages

    Directory of Open Access Journals (Sweden)

    Magdalena Jastrzębska

    2016-12-01

    Full Text Available A pot experiment was conducted in a greenhouse in Olsztyn, Poland, in the period 2010–2012. The aim of the study was to examine whether soil water deficit would change biomass volume and distribution of pure sown spring barley and red clover as well as growth rate during their joint vegetation and mutual interactions. The interactions between spring barley and red clover were of a competitive character, and the cereal was the stronger crop. The strength of this competition increased in time with the growing season. Through most of the growing season, the competition was poorer in water deficit conditions. The impact of clover on barley before the heading stage showed facilitation symptoms. Interspecific competition reduced the rate of barley biomass accumulation and decreased stem and leaf biomass towards the end of the growing season. Intensified translocation of assimilates from the vegetative parts to grain minimized the decrease in spike biomass. Water deficit stress had a more inhibitory effect on the biomass and growth rate of barley than competition, and competition did not exacerbate the adverse influence of water deficit stress on barley. Competition from barley significantly reduced the biomass and biomass accumulation rate of clover. Water deficit stress did not exacerbate barley’s competitive effect on clover, but it strongly inhibited the growth of aboveground biomass in pure-sown clover.

  20. Community dynamics and metabolite target analysis of spontaneous, backslopped barley sourdough fermentations under laboratory and bakery conditions.

    Science.gov (United States)

    Harth, Henning; Van Kerrebroeck, Simon; De Vuyst, Luc

    2016-07-02

    Barley flour is not commonly used for baking because of its negative effects on bread dough rheology and loaf volume. However, barley sourdoughs are promising ingredients to produce improved barley-based breads. Spontaneous barley sourdough fermentations were performed through backslopping (every 24h, 10days) under laboratory (fermentors, controlled temperature of 30°C, high dough yield of 400) and bakery conditions (open vessels, ambient temperature of 17-22°C, low dough yield of 200), making use of the same batch of flour. They differed in pH evolution, microbial community dynamics, and lactic acid bacteria (LAB) species composition. After ten backsloppings, the barley sourdoughs were characterized by the presence of the LAB species Lactobacillus fermentum, Lactobacillus plantarum, and Lactobacillus brevis in the case of the laboratory productions (fast pH decrease, pHsourdough productions, Saccharomyces cerevisiae was the sole yeast species. Breads made with wheat flour supplemented with 20% (on flour basis) barley sourdough displayed a firmer texture, a smaller volume, and an acceptable flavour compared with all wheat-based reference breads. Hence, representative strains of the LAB species mentioned above, adapted to the environmental conditions they will be confronted with, may be selected as starter cultures for the production of stable barley sourdoughs and flavourful breads.

  1. A Barley ROP GTPase ACTIVATING PROTEIN Associates with Microtubules and Regulates Entry of the Barley Powdery Mildew Fungus into Leaf Epidermal Cells[C][W

    Science.gov (United States)

    Hoefle, Caroline; Huesmann, Christina; Schultheiss, Holger; Börnke, Frederik; Hensel, Götz; Kumlehn, Jochen; Hückelhoven, Ralph

    2011-01-01

    Little is known about the function of host factors involved in disease susceptibility. The barley (Hordeum vulgare) ROP (RHO of plants) G-protein RACB is required for full susceptibility of the leaf epidermis to invasion by the biotrophic fungus Blumeria graminis f. sp hordei. Stable transgenic knockdown of RACB reduced the ability of barley to accommodate haustoria of B. graminis in intact epidermal leaf cells and to form hairs on the root epidermis, suggesting that RACB is a common element of root hair outgrowth and ingrowth of haustoria in leaf epidermal cells. We further identified a barley MICROTUBULE-ASSOCIATED ROP-GTPASE ACTIVATING PROTEIN (MAGAP1) interacting with RACB in yeast and in planta. Fluorescent MAGAP1 decorated cortical microtubules and was recruited by activated RACB to the cell periphery. Under fungal attack, MAGAP1-labeled microtubules built a polarized network at sites of successful defense. By contrast, microtubules loosened where the fungus succeeded in penetration. Genetic evidence suggests a function of MAGAP1 in limiting susceptibility to penetration by B. graminis. Additionally, MAGAP1 influenced the polar organization of cortical microtubules. These results add to our understanding of how intact plant cells accommodate fungal infection structures and suggest that RACB and MAGAP1 might be antagonistic players in cytoskeleton organization for fungal entry. PMID:21685259

  2. In situ identification and quantification of starch-hydrolyzing bacteria attached to barley and corn grain in the rumen of cows fed barley-based diets.

    Science.gov (United States)

    Xia, Yun; Kong, Yunhong; Seviour, Robert; Yang, Hee-Eun; Forster, Robert; Vasanthan, Thavaratnam; McAllister, Tim

    2015-08-01

    Cereal grains rich in starch are widely used to meet the energy demands of high-producing beef and dairy cattle. Bacteria are important players in starch digestion in the rumen, and thus play an important role in the hydrolysis and fermentation of cereal grains. However, our understanding of the composition of the rumen starch-hydrolyzing bacteria (SHB) is limited. In this study, BODIPY FL DQ starch staining combined with fluorescence in situ hybridization (FISH) and quantitative FISH were applied to label, identify and quantify SHB possessing active cell-surface-associated (CSA) α-amylase activity in the rumen of heifers fed barley-based diets. When individual cells of SHB with active CSA α-amylase activity were enumerated, they constituted 19-23% of the total bacterial cells attached to particles of four different cultivars of barley grain and corn. Quantitative FISH revealed that up to 70-80% of these SHB were members of Ruminococcaceae in the phylum Firmicutes but were not Streptococcus bovis, Ruminobacter amylophilus, Succinomonas amylolytica, Bifidobacterium spp. or Butyrivibrio fibrisolvens, all of whose amylolytic activities have been demonstrated previously in vitro. The proportion of barley grain in the diet had a large impact on the percentage abundance of total SHB and Ruminococcaceae SHB in these animals.

  3. Yield and yield structure of spring barley (Hodeum vulgare L. grown in monoculture after different stubble crops

    Directory of Open Access Journals (Sweden)

    Dorota Gawęda

    2012-12-01

    Full Text Available A field experiment was conducted in the period 2006- 2008 in the Uhrusk Experimental Farm belonging to the University of Life Sciences in Lublin. The experimental factor was the type of stubble crop ploughed in each year after harvest of spring barley: white mustard, lacy phacelia, winter rape, and a mixture of narrow-leaf lupin with field pea. In the experiment, successive spring barley crops were grown one after the other (in continuous monoculture. The aim of the experiment was to evaluate the effect of stubble crops used on the size and structure of barley yield. The three-year study showed an increasing trend in grain yield of spring barley grown after the mixture of legumes, lacy phacelia, and white mustard compared to its size in the treatment with no cover crop. Straw yield was significantly higher when barley was grown after the mixture of narrowleaf lupin with field pea than in the other treatments of the experiment. The type of ploughed-in stubble crop did not modify significantly plant height, ear length, and grain weight per ear. Growing the mixture of leguminous plants as a cover crop resulted in a significant increase in the density of ears per unit area in barley by an average of 14.7% relative to the treatment with winter rape. The experiment also showed the beneficial effect of the winter rape cover crop on 1000-grain weight of spring barley compared to that obtained in the treatments with white mustard and the mixture of legumes. All the cover crops caused an increase in the number of grains per ear of barley relative to that found in the control treatment. However, this increase was statistically proven only for the barley crops grown after lacy phacelia and the mixture of legumes.

  4. Sequencing of 15 622 gene-bearing BACs clarifies the gene-dense regions of the barley genome.

    Science.gov (United States)

    Muñoz-Amatriaín, María; Lonardi, Stefano; Luo, MingCheng; Madishetty, Kavitha; Svensson, Jan T; Moscou, Matthew J; Wanamaker, Steve; Jiang, Tao; Kleinhofs, Andris; Muehlbauer, Gary J; Wise, Roger P; Stein, Nils; Ma, Yaqin; Rodriguez, Edmundo; Kudrna, Dave; Bhat, Prasanna R; Chao, Shiaoman; Condamine, Pascal; Heinen, Shane; Resnik, Josh; Wing, Rod; Witt, Heather N; Alpert, Matthew; Beccuti, Marco; Bozdag, Serdar; Cordero, Francesca; Mirebrahim, Hamid; Ounit, Rachid; Wu, Yonghui; You, Frank; Zheng, Jie; Simková, Hana; Dolezel, Jaroslav; Grimwood, Jane; Schmutz, Jeremy; Duma, Denisa; Altschmied, Lothar; Blake, Tom; Bregitzer, Phil; Cooper, Laurel; Dilbirligi, Muharrem; Falk, Anders; Feiz, Leila; Graner, Andreas; Gustafson, Perry; Hayes, Patrick M; Lemaux, Peggy; Mammadov, Jafar; Close, Timothy J

    2015-10-01

    Barley (Hordeum vulgare L.) possesses a large and highly repetitive genome of 5.1 Gb that has hindered the development of a complete sequence. In 2012, the International Barley Sequencing Consortium released a resource integrating whole-genome shotgun sequences with a physical and genetic framework. However, because only 6278 bacterial artificial chromosome (BACs) in the physical map were sequenced, fine structure was limited. To gain access to the gene-containing portion of the barley genome at high resolution, we identified and sequenced 15 622 BACs representing the minimal tiling path of 72 052 physical-mapped gene-bearing BACs. This generated ~1.7 Gb of genomic sequence containing an estimated 2/3 of all Morex barley genes. Exploration of these sequenced BACs revealed that although distal ends of chromosomes contain most of the gene-enriched BACs and are characterized by high recombination rates, there are also gene-dense regions with suppressed recombination. We made use of published map-anchored sequence data from Aegilops tauschii to develop a synteny viewer between barley and the ancestor of the wheat D-genome. Except for some notable inversions, there is a high level of collinearity between the two species. The software HarvEST:Barley provides facile access to BAC sequences and their annotations, along with the barley-Ae. tauschii synteny viewer. These BAC sequences constitute a resource to improve the efficiency of marker development, map-based cloning, and comparative genomics in barley and related crops. Additional knowledge about regions of the barley genome that are gene-dense but low recombination is particularly relevant.

  5. Lumbricus terrestris L. activity increases the availability of metals and their accumulation in maize and barley

    Energy Technology Data Exchange (ETDEWEB)

    Ruiz, E. [Department of Chemical Engineering, School of Civil Engineering, University of Castilla-La Mancha, Avenida Camilo Jose Cela, s/n, 13071 Ciudad Real (Spain); Alonso-Azcarate, J. [Department of Physical Chemistry, Faculty of Environmental Sciences, University of Castilla-La Mancha, Avenida Carlos III, s/n, 45071 Toledo (Spain); Rodriguez, L., E-mail: Luis.Rromero@uclm.es [Department of Chemical Engineering, School of Civil Engineering, University of Castilla-La Mancha, Avenida Camilo Jose Cela, s/n, 13071 Ciudad Real (Spain)

    2011-03-15

    The effect of the earthworm Lumbricus terrestris L. on metal availability in two mining soils was assessed by means of chemical extraction methods and a pot experiment using crop plants. Results from single and sequential extractions showed that L. terrestris had a slight effect on metal fractionation in the studied soils: only metals bound to the soil organic matter were significantly increased in some cases. However, we found that L. terrestris significantly increased root, shoot and total Pb and Zn concentrations in maize and barley for the soil with the highest concentrations of total and available metals. Specifically, shoot Pb concentration was increased by a factor of 7.5 and 3.9 for maize and barley, respectively, while shoot Zn concentration was increased by a factor of 3.7 and 1.7 for maize and barley, respectively. Our results demonstrated that earthworm activity increases the bioavailability of metals in soils. - Research highlights: > Lumbricus terrestris L. activity increases the bioavailability of metals in soils. > Earthworm activity can significantly increase total, shoot and root metal concentrations for crop plants. > Both bioassays and chemical extraction methods are necessary for assessing the bioavailability of metals in contaminated soils. - Lumbricus terrestris L. activity increases the bioavailability of metals in soils and total, shoot and root metal concentrations for maize and barley.

  6. Selectivity of the surface binding site (SBS) on barley starch synthase I

    DEFF Research Database (Denmark)

    Wilkens, Casper; Cuesta-Seijo, Jose A.; Palcic, Monica

    2014-01-01

    Starch synthase I (SSI) from various sources has been shown to preferentially elongate branch chains of degree of polymerisation (DP) from 6–7 to produce chains of DP 8–12. In the recently determined crystal structure of barley starch synthase I (HvSSI) a so-called surface binding site (SBS) was ...

  7. Effects of Microbial Additives on Chemical Composition and Fermentation Characteristics of Barley Silage

    Science.gov (United States)

    Amanullah, S. M.; Kim, D. H.; Lee, H. J.; Joo, Y. H.; Kim, S. B.; Kim, S. C.

    2014-01-01

    This study examined the effects of bacterial inoculants on chemical composition and fermentation indices of barley silage. Barley forage (Youngyang) was harvested at 24% dry matter (DM) and wilted to 47.9% DM. The wilted barley forage was chopped to 3–5 cm length and applied with no inoculant (CON), L. plantarum (1×1010 cfu/g, LP) or Effective Microorganisms (0.5×109 cfu/g, EM). Then the forages were ensiled in four replications for each treatment in 20 L mini silos and stored for 100 days. The contents of crude protein and ether extract were higher in CON silage ensiled for 100-d, while the contents of DM and crude ash were higher in EM silage (p0.05). The pH, ammonia-N concentration and lactate to acetate ratio were higher (p<0.05) in CON silage, while lactate concentrations were higher (p<0.05) in CON and LP silage. Acetate concentration and lactic acid bacteria was increased (p<0.05) by both inoculants (LP and EM), but propionate concentration and yeast was increased (p<0.05) by EM and LP, respectively. These results indicated that the fermentation quality of barley silage was improved by the application of bacterial inoculants. PMID:25049981

  8. Penicillium verrucosum in wheat and barley indicates presence of ochratoxin A

    DEFF Research Database (Denmark)

    Lund, Flemming; Frisvad, Jens Christian

    2003-01-01

    Aims: The aims of this study were to isolate and identify ochratoxin A (OTA) producing fungi in cereals containing OTA and to determine the best selective and indicative medium for recovery of OTA producing fungi.Methods and Results: Seventy-six wheat, barley and rye samples from Europe containing...

  9. Impact of removing straw from wheat and barley fields: A literature review

    Science.gov (United States)

    The sustainability of straw removal from wheat and barley fields from the standpoint of its effects on soil properties and nutrient cycling is a concern. A recent literature review reveals that there is no negative effect of small grain straw removal on soil organic carbon (SOC) content with irriga...

  10. Cereal bioengineering: amylopectin-free and hyper-phosphorylated barley starch

    DEFF Research Database (Denmark)

    Hebelstrup, Kim; Carciofi, Massimiliano; Jensen, Susanne Langgård

    2011-01-01

    for the presence of a general mechanism in starch degradation in the plant kingdom where phosphorylation carried out by ectopic expression of StGWD tags barley starch granules for degradation by endogenous enzymes. Together this work shows two new strategies for in planta starch bioengineering of cereals...

  11. Composition and Functional Lipid Profiles of Low-Phyate Barleys and Related Cultivars

    Science.gov (United States)

    Barley, one of the earliest cultivated cereal grains in the world, is gaining renewed interest for use in food, feed and as a bioethanol feedstock. Like other grains, its high phytate content is undesirable since phytate affects mineral bioavailability and contributes to P pollution to environment....

  12. A weed suppressive index for spring barley (Hordeum vulgare) varieties

    DEFF Research Database (Denmark)

    Hansen, P K; Kristensen, K; Willas, J

    2008-01-01

    successfully developed a method for indexing the weed suppressive ability of spring barley varieties. The suppressive index ranged from 12% in Lux and 55% in Modena in proportion to the 90% quantile coverage of all varieties. The index was validated against independent data from two locations in 2005 with 14...

  13. Saccharification and fermentation of whole barley ground in the Szego mill

    Energy Technology Data Exchange (ETDEWEB)

    Wayman, M.; Parekh, S.R.; Parekh, R.S.; Trass, O.; Gandolfi, E.

    1988-11-01

    Barley, after steeping in water, was ground with ease and efficiency in the Szego mill, and its starch was liquefied, saccharified and fermented to very high yields of ethanol. The Szego mill consists of vertical rollers with helical grooves which rotate within a fixed cylinder, resulting in very fine grinding and a somewhat flaky product. The steeped barley was ground to a fine paste. This was readily liquefied and saccharified by amylolytic enzymes (dual enzyme process), and the resulting sugars were fermented in 24 h by ordinary bakers' yeast Saccharomyces cerevisiae, resulting in over 450 l ethanol/t of barley. Still shorter time, 12 h, and the same high yield were achieved when liquefied barley starch was simultaneously saccharified by glucoamylase and fermented. Fermentation to ethanol by a glucoamylase-producing yeast S. diastaticus strain 164A (from Labatt Brewing Company) enabled the amount of this enzyme required for saccharification to be reduced to about one-half the normal quantity, but at some cost in slower fermentation and slightly lower ethanol yield.

  14. Structure and function of the bacterial root microbiota in wild and domesticated barley.

    Science.gov (United States)

    Bulgarelli, Davide; Garrido-Oter, Ruben; Münch, Philipp C; Weiman, Aaron; Dröge, Johannes; Pan, Yao; McHardy, Alice C; Schulze-Lefert, Paul

    2015-03-11

    The microbial communities inhabiting the root interior of healthy plants, as well as the rhizosphere, which consists of soil particles firmly attached to roots, engage in symbiotic associations with their host. To investigate the structural and functional diversification among these communities, we employed a combination of 16S rRNA gene profiling and shotgun metagenome analysis of the microbiota associated with wild and domesticated accessions of barley (Hordeum vulgare). Bacterial families Comamonadaceae, Flavobacteriaceae, and Rhizobiaceae dominate the barley root-enriched microbiota. Host genotype has a small, but significant, effect on the diversity of root-associated bacterial communities, possibly representing a footprint of barley domestication. Traits related to pathogenesis, secretion, phage interactions, and nutrient mobilization are enriched in the barley root-associated microbiota. Strikingly, protein families assigned to these same traits showed evidence of positive selection. Our results indicate that the combined action of microbe-microbe and host-microbe interactions drives microbiota differentiation at the root-soil interface.

  15. Malt quality of 4 barley ( Hordeum vulgare L.) grain varieties grown ...

    African Journals Online (AJOL)

    Malt quality of 4 barley ( Hordeum vulgare L.) grain varieties grown under low ... Thousand-kernel malting weight loss (TKMWL) was 11 to 13% and is in the ... and refined wheat flour starch as a substrate (1:29) showed a reduction in peak ...

  16. Quality Control System for Beer Developed with Monoclonal Antibodies Specific to Barley Lipid Transfer Protein

    Directory of Open Access Journals (Sweden)

    Yukie Murakami-Yamaguchi

    2012-10-01

    Full Text Available Non-specific lipid transfer protein (LTP in barley grain reacted with the IgE in sera drawn from food allergy patients. A sandwich-type of enzyme-linked immunosorbent assay (ELISA was developed with mouse monoclonal antibodies raised against LTP purified with barley flour. This ELISA showed a practical working range of 0.3–3 ng/mL and no cross-reactivity with wheat, adlay and rye. Using this ELISA, LTP was determined in several types of barley-foods, including fermented foods such as malt vinegar, barley-malt miso and beer. LTP content in beer of the same kind was approximately constant, even if manufacturing factory and production days were different. Not only as a factor of foam formation and stability but also as an allergen, controlling and monitoring of LTP in beer should be considered. Taken together, our LTP-detecting ELISA can be proposed as an appropriate system for the quality control of beer.

  17. Structure and Function of the Bacterial Root Microbiota in Wild and Domesticated Barley

    Science.gov (United States)

    Bulgarelli, Davide; Garrido-Oter, Ruben; Münch, Philipp C.; Weiman, Aaron; Dröge, Johannes; Pan, Yao; McHardy, Alice C.; Schulze-Lefert, Paul

    2015-01-01

    Summary The microbial communities inhabiting the root interior of healthy plants, as well as the rhizosphere, which consists of soil particles firmly attached to roots, engage in symbiotic associations with their host. To investigate the structural and functional diversification among these communities, we employed a combination of 16S rRNA gene profiling and shotgun metagenome analysis of the microbiota associated with wild and domesticated accessions of barley (Hordeum vulgare). Bacterial families Comamonadaceae, Flavobacteriaceae, and Rhizobiaceae dominate the barley root-enriched microbiota. Host genotype has a small, but significant, effect on the diversity of root-associated bacterial communities, possibly representing a footprint of barley domestication. Traits related to pathogenesis, secretion, phage interactions, and nutrient mobilization are enriched in the barley root-associated microbiota. Strikingly, protein families assigned to these same traits showed evidence of positive selection. Our results indicate that the combined action of microbe-microbe and host-microbe interactions drives microbiota differentiation at the root-soil interface. PMID:25732064

  18. Application of fluorescence-based semi-automated AFLP analysis in barley and wheat

    DEFF Research Database (Denmark)

    Schwarz, G.; Herz, M.; Huang, X.Q.

    2000-01-01

    Genetic mapping and the selection of closely linked molecular markers for important agronomic traits require efficient, large-scale genotyping methods. A semi-automated multifluorophore technique was applied for genotyping AFLP marker loci in barley and wheat. In comparison to conventional P-33...

  19. Starch and Prolamin Level in Single and Double High-Lysine Barley Mutants

    DEFF Research Database (Denmark)

    Kreis, M.; Doll, Hans

    1980-01-01

    At maturity the high-lysine barley (Hordeum vulgare L.) Ris0 mutants 1508, 527 and 29 kernels contained about 20% less starch and twice as much free sugars as the parent varieties Bomi and Carlsberg II. An enhanched effect on starch reduction and free sugar accumulation was observed during kernel...

  20. Mechanistic and genetic overlap of barley host and non-host resistance to Blumeria graminis

    NARCIS (Netherlands)

    Trujillo, M.; Troeger, M.; Niks, R.E.; Kogel, K.H.; Huckelhoven, R.

    2004-01-01

    Non-host resistance of barley to Blumeria graminis f.sp. tritici (Bgt), an inappropriate forma specialis of the grass powdery mildew fungus, is associated with formation of cell wall appositions (papillae) at sites of attempted fungal penetration and a hypersensitive cell death reaction (HR) of sing