WorldWideScience

Sample records for barley hvhak1 transporter

  1. HvALMT1 from barley is involved in the transport of organic anions.

    Science.gov (United States)

    Gruber, Benjamin D; Ryan, Peter R; Richardson, Alan E; Tyerman, Stephen D; Ramesh, Sunita; Hebb, Diane M; Howitt, Susan M; Delhaize, Emmanuel

    2010-03-01

    Members of the ALMT gene family contribute to the Al(3+) resistance of several plant species by facilitating malate efflux from root cells. The first member of this family to be cloned and characterized, TaALMT1, is responsible for most of the natural variation of Al(3+) resistance in wheat. The current study describes the isolation and characterization of HvALMT1, the barley gene with the greatest sequence similarity to TaALMT1. HvALMT1 is located on chromosome 2H which has not been associated with Al(3+) resistance in barley. The relatively low levels of HvALMT1 expression detected in root and shoot tissues were independent of external aluminium or phosphorus supply. Transgenic barley plants transformed with the HvALMT1 promoter fused to the green fluorescent protein (GFP) indicated that expression of HvALMT1 was relatively high in stomatal guard cells and in root tissues containing expanding cells. GFP fused to the C-terminus of the full HvALMT1 protein localized to the plasma membrane and motile vesicles within the cytoplasm. HvALMT1 conferred both inward and outward currents when expressed in Xenopus laevis oocytes that were bathed in a range of anions including malate. Both malate uptake and efflux were confirmed in oocyte assays using [(14)C]malate as a radiotracer. It is suggested that HvALMT1 functions as an anion channel to facilitate organic anion transport in stomatal function and expanding cells.

  2. Control of the Water Transport Activity of Barley HvTIP3;1 Specifically Expressed in Seeds.

    Science.gov (United States)

    Utsugi, Shigeko; Shibasaka, Mineo; Maekawa, Masahiko; Katsuhara, Maki

    2015-09-01

    Tonoplast intrinsic proteins (TIPs) are involved in the transport and storage of water, and control intracellular osmotic pressure by transporting material related to the water potential of cells. In the present study, we focused on HvTIP3;1 during the periods of seed development and desiccation in barley. HvTIP3;1 was specifically expressed in seeds. An immunochemical analysis showed that HvTIP3;1 strongly accumulated in the aleurone layers and outer layers of barley seeds. The water transport activities of HvTIP3;1 and HvTIP1;2, which also accumulated in seeds, were measured in the heterologous expression system of Xenopus oocytes. When they were expressed individually, HvTIP1;2 transported water, whereas HvTIP3;1 did not. However, HvTIP3;1 exhibited water transport activity when co-expressed with HvTIP1;2 in oocytes, and this activity was higher than when HvTIP1;2 was expressed alone. This is the first report to demonstrate that the water permeability of a TIP aquaporin was activated when co-expressed with another TIP. The split-yellow fluorescent protein (YFP) system in onion cells revealed that HvTIP3;1 interacted with HvTIP1;2 to form a heterotetramer in plants. These results suggest that HvTIP3;1 functions as an active water channel to regulate water movement through tissues during the periods of seed development and desiccation. © The Author 2015. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  3. The iron-regulated transporter 1 plays an essential role in uptake, translocation and grain-loading of manganese, but not iron, in barley

    DEFF Research Database (Denmark)

    Long, Lizhi; Persson, Daniel Olaf; Duan, Fengying

    2018-01-01

    Transporters involved in manganese (Mn) uptake and intracellular Mn homeostasis in Arabidopsis and rice are well characterized, while much less is known for barley, which is particularly prone to Mn deficiency. In this study we have investigated the role of the iron-regulated transporter 1 (IRT1...

  4. Boron toxicity tolerance in barley through reduced expression of the multifunctional aquaporin HvNIP2;1.

    Science.gov (United States)

    Schnurbusch, Thorsten; Hayes, Julie; Hrmova, Maria; Baumann, Ute; Ramesh, Sunita A; Tyerman, Stephen D; Langridge, Peter; Sutton, Tim

    2010-08-01

    Boron (B) toxicity is a significant limitation to cereal crop production in a number of regions worldwide. Here we describe the cloning of a gene from barley (Hordeum vulgare), underlying the chromosome 6H B toxicity tolerance quantitative trait locus. It is the second B toxicity tolerance gene identified in barley. Previously, we identified the gene Bot1 that functions as an efflux transporter in B toxicity-tolerant barley to move B out of the plant. The gene identified in this work encodes HvNIP2;1, an aquaporin from the nodulin-26-like intrinsic protein (NIP) subfamily that was recently described as a silicon influx transporter in barley and rice (Oryza sativa). Here we show that a rice mutant for this gene also shows reduced B accumulation in leaf blades compared to wild type and that the mutant protein alters growth of yeast (Saccharomyces cerevisiae) under high B. HvNIP2;1 facilitates significant transport of B when expressed in Xenopus oocytes compared to controls and to another NIP (NOD26), and also in yeast plasma membranes that appear to have relatively high B permeability. We propose that tolerance to high soil B is mediated by reduced expression of HvNIP2;1 to limit B uptake, as well as by increased expression of Bot1 to remove B from roots and sensitive tissues. Together with Bot1, the multifunctional aquaporin HvNIP2;1 is an important determinant of B toxicity tolerance in barley.

  5. Iron transport, deposition and bioavailability in the wheat and barley grain

    DEFF Research Database (Denmark)

    Borg, Søren; Brinch-Pedersen, Henrik; Tauris, Birgitte

    2009-01-01

    will briefly review existing knowledge on the distribution and transport pathways of iron in the two small grained cereals, barley and wheat, and focus on the efforts made to increase the iron content in cereals in general. However, mineral content is not the only factor of relevance for improving......). The nutritional impact of increasing mineral content accordingly has to be seen in the context of mineral bioavailability. Finally, we will briefly report on recent data from barley, where laser capture microdissection of the different grain tissues combined with gene expression profiling has provided some...

  6. An ATP-binding cassette subfamily G full transporter is essential for the retention of leaf water in both wild barley and rice.

    Science.gov (United States)

    Chen, Guoxiong; Komatsuda, Takao; Ma, Jian Feng; Nawrath, Christiane; Pourkheirandish, Mohammad; Tagiri, Akemi; Hu, Yin-Gang; Sameri, Mohammad; Li, Xinrong; Zhao, Xin; Liu, Yubing; Li, Chao; Ma, Xiaoying; Wang, Aidong; Nair, Sudha; Wang, Ning; Miyao, Akio; Sakuma, Shun; Yamaji, Naoki; Zheng, Xiuting; Nevo, Eviatar

    2011-07-26

    Land plants have developed a cuticle preventing uncontrolled water loss. Here we report that an ATP-binding cassette (ABC) subfamily G (ABCG) full transporter is required for leaf water conservation in both wild barley and rice. A spontaneous mutation, eibi1.b, in wild barley has a low capacity to retain leaf water, a phenotype associated with reduced cutin deposition and a thin cuticle. Map-based cloning revealed that Eibi1 encodes an HvABCG31 full transporter. The gene was highly expressed in the elongation zone of a growing leaf (the site of cutin synthesis), and its gene product also was localized in developing, but not in mature tissue. A de novo wild barley mutant named "eibi1.c," along with two transposon insertion lines of rice mutated in the ortholog of HvABCG31 also were unable to restrict water loss from detached leaves. HvABCG31 is hypothesized to function as a transporter involved in cutin formation. Homologs of HvABCG31 were found in green algae, moss, and lycopods, indicating that this full transporter is highly conserved in the evolution of land plants.

  7. The barley MATE gene, HvAACT1, increases citrate efflux and Al3+ tolerance when expressed in wheat and barley

    Science.gov (United States)

    Zhou, Gaofeng; Delhaize, Emmanuel; Zhou, Meixue; Ryan, Peter R.

    2013-01-01

    Background and Aims Aluminium is toxic in acid soils because the soluble Al3+ inhibits root growth. A mechanism of Al3+ tolerance discovered in many plant species involves the release of organic anions from root apices. The Al3+-activated release of citrate from the root apices of Al3+-tolerant genotypes of barley is controlled by a MATE gene named HvAACT1 that encodes a citrate transport protein located on the plasma membrane. The aim of this study was to investigate whether expressing HvAACT1 with a constitutive promoter in barley and wheat can increase citrate efflux and Al3+ tolerance of these important cereal species. Methods HvAACT1 was over-expressed in wheat (Triticum aestivum) and barley (Hordeum vulgare) using the maize ubiquitin promoter. Root apices of transgenic and control lines were analysed for HvAACT1 expression and organic acid efflux. The Al3+ tolerance of transgenic and control lines was assessed in both hydroponic solution and acid soil. Key Results and Conclusions Increased HvAACT1 expression in both cereal species was associated with increased citrate efflux from root apices and enhanced Al3+ tolerance, thus demonstrating that biotechnology can complement traditional breeding practices to increase the Al3+ tolerance of important crop plants. PMID:23798600

  8. Oligosaccharide binding to barley alpha-amylase 1

    DEFF Research Database (Denmark)

    Robert, X.; Haser, R.; Mori, H.

    2005-01-01

    Enzymatic subsite mapping earlier predicted 10 binding subsites in the active site substrate binding cleft of barley alpha-amylase isozymes. The three-dimensional structures of the oligosaccharide complexes with barley alpha-amylase isozyme 1 (AMY1) described here give for the first time a thorough...... in barley alpha-amylase isozyme 2 (AMY2), and the sugar binding modes are compared between the two isozymes. The "sugar tongs" surface binding site discovered in the AMY1-thio-DP4 complex is confirmed in the present work. A site that putatively serves as an entrance for the substrate to the active site...

  9. Golgi localized barley MTP8 proteins facilitate Mn transport

    DEFF Research Database (Denmark)

    Pedas, Pai Rosager; Schiller, Michaela; Hegelund, Josefine Nymark

    2014-01-01

    Many metabolic processes in plants are regulated by manganese (Mn) but limited information is available on the molecular mechanisms controlling cellular Mn homeostasis. In this study, a yeast assay was used to isolate and characterize two genes, MTP8.1 and MTP8.2 , which encode membrane...... in yeast, MTP8.1 and MTP8.2 were found to be Mn transporters catalysing Mn efflux in a similar manner as the Golgi localized endogenous yeast protein Pmr1p. The level of MTP8.1 transcripts in barley roots increased with external Mn supply ranging from deficiency to toxicity, while MTP8.2 transcripts...

  10. Studies on /sup 32/P transport and yellow rust resistance in barley

    Energy Technology Data Exchange (ETDEWEB)

    Schubert, J. (Akademie der Landwirtschaftswissenschaften der DDR, Aschersleben. Inst. fuer Phytopathologie)

    1982-01-01

    Several cultivars of barley (Hordeum vulgare L.) differing in their resistance to yellow rust were used to study the influence of the infection with Puccinia striiformis West. (strain 24) on /sup 32/P transport in intact plants and isolated leaves. Close correlations exist between transport processes and resistance. For example, resistant plants seem to have a more intensive matter transport than susceptible ones. The importance of the rate of transport to the effectiveness of hypothetic inducers of resistance reactions and defence substances is discussed.

  11. Influence of yellow rust infextion on 32P transport in detached barley leaves

    International Nuclear Information System (INIS)

    Schubert, J.

    1982-01-01

    Several barley cultivars (Hordeum vulgare L.) differing in their resistance to yellow rust (Puccinia striiformis West.) were tested for relationships between changes of 32 P transport in detached leaves and resistance to yellow rust disease. Investigation carried out with detached second leaves from plants infected at their first leaf revealed a matter transport in these leaves changed by the infection. Transport was also influenced by inoculation with yellow rust uredospores. In that case rust infection influenced the basipetal transport less strongly in resistent plants than in susceptible ones. Connected with the findings the influence of fungal substances on transport processes is discussed in general. (author)

  12. HvALMT1 from barley is involved in the transport of organic anions

    OpenAIRE

    Gruber, Benjamin D.; Ryan, Peter R.; Richardson, Alan E.; Tyerman, Stephen D.; Ramesh, Sunita; Hebb, Diane M.; Howitt, Susan M.; Delhaize, Emmanuel

    2010-01-01

    Members of the ALMT gene family contribute to the Al3+ resistance of several plant species by facilitating malate efflux from root cells. The first member of this family to be cloned and characterized, TaALMT1, is responsible for most of the natural variation of Al3+ resistance in wheat. The current study describes the isolation and characterization of HvALMT1, the barley gene with the greatest sequence similarity to TaALMT1. HvALMT1 is located on chromosome 2H which has not been associated w...

  13. Boron-toxicity tolerance in barley arising from efflux transporter amplification.

    Science.gov (United States)

    Sutton, Tim; Baumann, Ute; Hayes, Julie; Collins, Nicholas C; Shi, Bu-Jun; Schnurbusch, Thorsten; Hay, Alison; Mayo, Gwenda; Pallotta, Margaret; Tester, Mark; Langridge, Peter

    2007-11-30

    Both limiting and toxic soil concentrations of the essential micronutrient boron represent major limitations to crop production worldwide. We identified Bot1, a BOR1 ortholog, as the gene responsible for the superior boron-toxicity tolerance of the Algerian barley landrace Sahara 3771 (Sahara). Bot1 was located at the tolerance locus by high-resolution mapping. Compared to intolerant genotypes, Sahara contains about four times as many Bot1 gene copies, produces substantially more Bot1 transcript, and encodes a Bot1 protein with a higher capacity to provide tolerance in yeast. Bot1 transcript levels identified in barley tissues are consistent with a role in limiting the net entry of boron into the root and in the disposal of boron from leaves via hydathode guttation.

  14. Influence of yellow rust infection on /sup 32/P transport in detached barley leaves

    Energy Technology Data Exchange (ETDEWEB)

    Schubert, J. (Akademie der Landwirtschaftswissenschaften der DDR, Aschersleben. Inst. fuer Phytopathologie)

    1982-01-01

    Several barley cultivars (Hordeum vulgare L.) differing in their resistance to yellow rust (Puccinia striiformis West.) were tested for relationships between changes of /sup 32/P transport in detached leaves and resistance to yellow rust disease. Investigation carried out with detached second leaves from plants infected at their first leaf revealed a matter transport in these leaves changed by the infection. Transport was also influenced by inoculation with yellow rust uredospores. In that case rust infection influenced the basipetal transport less strongly in resistent plants than in susceptible ones. Connected with the findings the influence of fungal substances on transport processes is discussed in general.

  15. The composite water and solute transport of barley (Hordeum vulgare) roots: effect of suberized barriers.

    Science.gov (United States)

    Ranathunge, Kosala; Kim, Yangmin X; Wassmann, Friedrich; Kreszies, Tino; Zeisler, Viktoria; Schreiber, Lukas

    2017-03-01

    Roots have complex anatomical structures, and certain localized cell layers develop suberized apoplastic barriers. The size and tightness of these barriers depend on the growth conditions and on the age of the root. Such complex anatomical structures result in a composite water and solute transport in roots. Development of apoplastic barriers along barley seminal roots was detected using various staining methods, and the suberin amounts in the apical and basal zones were analysed using gas chromatography-mass spectometry (GC-MS). The hydraulic conductivity of roots ( Lp r ) and of cortical cells ( Lp c ) was measured using root and cell pressure probes. When grown in hydroponics, barley roots did not form an exodermis, even at their basal zones. However, they developed an endodermis. Endodermal Casparian bands first appeared as 'dots' as early as at 20 mm from the apex, whereas a patchy suberin lamellae appeared at 60 mm. The endodermal suberin accounted for the total suberin of the roots. The absolute amount in the basal zone was significantly higher than in the apical zone, which was inversely proportional to the Lp r . Comparison of Lp r and Lp c suggested that cell to cell pathways dominate for water transport in roots. However, the calculation of Lp r from Lp c showed that at least 26 % of water transport occurs through the apoplast. Roots had different solute permeabilities ( P sr ) and reflection coefficients ( σ sr ) for the solutes used. The σ sr was below unity for the solutes, which have virtually zero permeability for semi-permeable membranes. Suberized endodermis significantly reduces Lp r of seminal roots. The water and solute transport across barley roots is composite in nature and they do not behave like ideal osmometers. The composite transport model should be extended by adding components arranged in series (cortex, endodermis) in addition to the currently included components arranged in parallel (apoplastic, cell to cell pathways). © The

  16. Mapping of HKT1;5 Gene in Barley Using GWAS Approach and Its Implication in Salt Tolerance Mechanism

    Science.gov (United States)

    Hazzouri, Khaled M.; Khraiwesh, Basel; Amiri, Khaled M. A.; Pauli, Duke; Blake, Tom; Shahid, Mohammad; Mullath, Sangeeta K.; Nelson, David; Mansour, Alain L.; Salehi-Ashtiani, Kourosh; Purugganan, Michael; Masmoudi, Khaled

    2018-01-01

    Sodium (Na+) accumulation in the cytosol will result in ion homeostasis imbalance and toxicity of transpiring leaves. Studies of salinity tolerance in the diploid wheat ancestor Triticum monococcum showed that HKT1;5-like gene was a major gene in the QTL for salt tolerance, named Nax2. In the present study, we were interested in investigating the molecular mechanisms underpinning the role of the HKT1;5 gene in salt tolerance in barley (Hordeum vulgare). A USDA mini-core collection of 2,671 barley lines, part of a field trial was screened for salinity tolerance, and a Genome Wide Association Study (GWAS) was performed. Our results showed important SNPs that are correlated with salt tolerance that mapped to a region where HKT1;5 ion transporter located on chromosome four. Furthermore, sodium (Na+) and potassium (K+) content analysis revealed that tolerant lines accumulate more sodium in roots and leaf sheaths, than in the sensitive ones. In contrast, sodium concentration was reduced in leaf blades of the tolerant lines under salt stress. In the absence of NaCl, the concentration of Na+ and K+ were the same in the roots, leaf sheaths and leaf blades between the tolerant and the sensitive lines. In order to study the molecular mechanism behind that, alleles of the HKT1;5 gene from five tolerant and five sensitive barley lines were cloned and sequenced. Sequence analysis did not show the presence of any polymorphism that distinguishes between the tolerant and sensitive alleles. Our real-time RT-PCR experiments, showed that the expression of HKT1;5 gene in roots of the tolerant line was significantly induced after challenging the plants with salt stress. In contrast, in leaf sheaths the expression was decreased after salt treatment. In sensitive lines, there was no difference in the expression of HKT1;5 gene in leaf sheath under control and saline conditions, while a slight increase in the expression was observed in roots after salt treatment. These results provide

  17. Mapping of HKT1;5 Gene in Barley Using GWAS Approach and Its Implication in Salt Tolerance Mechanism

    Directory of Open Access Journals (Sweden)

    Khaled M. Hazzouri

    2018-02-01

    Full Text Available Sodium (Na+ accumulation in the cytosol will result in ion homeostasis imbalance and toxicity of transpiring leaves. Studies of salinity tolerance in the diploid wheat ancestor Triticum monococcum showed that HKT1;5-like gene was a major gene in the QTL for salt tolerance, named Nax2. In the present study, we were interested in investigating the molecular mechanisms underpinning the role of the HKT1;5 gene in salt tolerance in barley (Hordeum vulgare. A USDA mini-core collection of 2,671 barley lines, part of a field trial was screened for salinity tolerance, and a Genome Wide Association Study (GWAS was performed. Our results showed important SNPs that are correlated with salt tolerance that mapped to a region where HKT1;5 ion transporter located on chromosome four. Furthermore, sodium (Na+ and potassium (K+ content analysis revealed that tolerant lines accumulate more sodium in roots and leaf sheaths, than in the sensitive ones. In contrast, sodium concentration was reduced in leaf blades of the tolerant lines under salt stress. In the absence of NaCl, the concentration of Na+ and K+ were the same in the roots, leaf sheaths and leaf blades between the tolerant and the sensitive lines. In order to study the molecular mechanism behind that, alleles of the HKT1;5 gene from five tolerant and five sensitive barley lines were cloned and sequenced. Sequence analysis did not show the presence of any polymorphism that distinguishes between the tolerant and sensitive alleles. Our real-time RT-PCR experiments, showed that the expression of HKT1;5 gene in roots of the tolerant line was significantly induced after challenging the plants with salt stress. In contrast, in leaf sheaths the expression was decreased after salt treatment. In sensitive lines, there was no difference in the expression of HKT1;5 gene in leaf sheath under control and saline conditions, while a slight increase in the expression was observed in roots after salt treatment. These

  18. Amino acid transport across the tonoplast of vacuoles isolated from barley mesophyll protoplasts: Uptake of alanine, leucine, and glutamine

    International Nuclear Information System (INIS)

    Dietz, K.J.; Jaeger, R.; Kaiser, G.; Martinoia, E.

    1990-01-01

    Mesophyll protoplasts from leaves of well-fertilized barley (Hordeum vulgare L.) plants contained amino acids at concentrations as high as 120 millimoles per liter. With the exception of glutamic acid, which is predominantly localized in the cytoplasm, a major part of all other amino acids was contained inside the large central vacuole. Alanine, leucine, and glutamine are the dominant vacuolar amino acids in barley. Their transport into isolated vacuoles was studied using 14 C-labeled amino acids. Uptake was slow in the absence of ATP. A three- to sixfold stimulation of uptake was observed after addition of ATP or adenylyl imidodiphosphate an ATP analogue not being hydrolyzed by ATPases. Other nucleotides were ineffective in increasing the rate of uptake. ATP-Stimulated amino acid transport was not dependent on the transtonoplast pH or membrane potential. p-Chloromercuriphenylsulfonic acid and n-ethyl maleimide increased transport independently of ATP. Neutral amino acids such as valine or leucine effectively decreased the rate of alanine transport. Glutamine and glycine were less effective or not effective as competitive inhibitors of alanine transport. The results indicate the existence of a uniport translocator specific for neutral or basic amino acids that is under control of metabolic effectors

  19. Boron Toxicity Tolerance in Barley through Reduced Expression of the Multifunctional Aquaporin HvNIP2;11[W

    Science.gov (United States)

    Schnurbusch, Thorsten; Hayes, Julie; Hrmova, Maria; Baumann, Ute; Ramesh, Sunita A.; Tyerman, Stephen D.; Langridge, Peter; Sutton, Tim

    2010-01-01

    Boron (B) toxicity is a significant limitation to cereal crop production in a number of regions worldwide. Here we describe the cloning of a gene from barley (Hordeum vulgare), underlying the chromosome 6H B toxicity tolerance quantitative trait locus. It is the second B toxicity tolerance gene identified in barley. Previously, we identified the gene Bot1 that functions as an efflux transporter in B toxicity-tolerant barley to move B out of the plant. The gene identified in this work encodes HvNIP2;1, an aquaporin from the nodulin-26-like intrinsic protein (NIP) subfamily that was recently described as a silicon influx transporter in barley and rice (Oryza sativa). Here we show that a rice mutant for this gene also shows reduced B accumulation in leaf blades compared to wild type and that the mutant protein alters growth of yeast (Saccharomyces cerevisiae) under high B. HvNIP2;1 facilitates significant transport of B when expressed in Xenopus oocytes compared to controls and to another NIP (NOD26), and also in yeast plasma membranes that appear to have relatively high B permeability. We propose that tolerance to high soil B is mediated by reduced expression of HvNIP2;1 to limit B uptake, as well as by increased expression of Bot1 to remove B from roots and sensitive tissues. Together with Bot1, the multifunctional aquaporin HvNIP2;1 is an important determinant of B toxicity tolerance in barley. PMID:20581256

  20. Functional characterisation of an intron retaining K+ transporter of barley reveals intron-mediated alternate splicing

    KAUST Repository

    Shahzad, K.

    2015-01-01

    Intron retention in transcripts and the presence of 5 and 3 splice sites within these introns mediate alternate splicing, which is widely observed in animals and plants. Here, functional characterisation of the K+ transporter, HvHKT2;1, with stably retained introns from barley (Hordeum vulgare) in yeast (Saccharomyces cerevisiae), and transcript profiling in yeast and transgenic tobacco (Nicotiana tabacum) is presented. Expression of intron-retaining HvHKT2;1 cDNA (HvHKT2;1-i) in trk1, trk2 yeast strain defective in K+ uptake restored growth in medium containing hygromycin in the presence of different concentrations of K+ and mediated hypersensitivity to Na+. HvHKT2;1-i produces multiple transcripts via alternate splicing of two regular introns and three exons in different compositions. HKT isoforms with retained introns and exon skipping variants were detected in relative expression analysis of (i) HvHKT2;1-i in barley under native conditions, (ii) in transgenic tobacco plants constitutively expressing HvHKT2;1-i, and (iii) in trk1, trk2 yeast expressing HvHKT2;1-i under control of an inducible promoter. Mixed proportions of three HKT transcripts: HvHKT2;1-e (first exon region), HvHKT2;1-i1 (first intron) and HvHKT2;1-i2 (second intron) were observed. The variation in transcript accumulation in response to changing K+ and Na+ concentrations was observed in both heterologous and plant systems. These findings suggest a link between intron-retaining transcripts and different splice variants to ion homeostasis, and their possible role in salt stress.

  1. BAX INHIBITOR-1 is required for full susceptibility of barley to powdery mildew.

    Science.gov (United States)

    Eichmann, Ruth; Bischof, Melanie; Weis, Corina; Shaw, Jane; Lacomme, Christophe; Schweizer, Patrick; Duchkov, Dimitar; Hensel, Götz; Kumlehn, Jochen; Hückelhoven, Ralph

    2010-09-01

    BAX INHIBITOR-1 (BI-1) is one of the few proteins known to have cross-kingdom conserved functions in negative control of programmed cell death. Additionally, barley BI-1 (HvBI-1) suppresses defense responses and basal resistance to the powdery mildew fungus Blumeria graminis f. sp. hordei and enhances resistance to cell death-provoking fungi when overexpressed in barley. Downregulation of HvBI-1 by transient-induced gene silencing or virus-induced gene silencing limited susceptibility to B. graminis f. sp. hordei, suggesting that HvBI-1 is a susceptibility factor toward powdery mildew. Transient silencing of BI-1 did not limit supersusceptibility induced by overexpression of MLO. Transgenic barley plants harboring an HvBI-1 RNA interference (RNAi) construct displayed lower levels of HvBI-1 transcripts and were less susceptible to powdery mildew than wild-type plants. At the cellular level, HvBI-1 RNAi plants had enhanced resistance to penetration by B. graminis f. sp. hordei. These data support a function of BI-1 in modulating cell-wall-associated defense and in establishing full compatibility of B. graminis f. sp. hordei with barley.

  2. Root plasma membrane transporters controlling K+/Na+ homeostasis in salt-stressed bBarley1[C][W

    DEFF Research Database (Denmark)

    Chen, Zhonghua; Pottosin, Igor I.; Cuin, Tracey A.

    2007-01-01

    are well combined to withstand saline conditions. These mechanisms include: (1) better control of membrane voltage so retaining a more negative membrane potential; (2) intrinsically higher H1 pump activity; (3) better ability of root cells to pump Na1 from the cytosol to the external medium; and (4) higher......Plant salinity tolerance is a polygenic trait with contributions from genetic, developmental, and physiological interactions, in addition to interactions between the plant and its environment. In this study, we show that in salt-tolerant genotypes of barley (Hordeum vulgare), multiple mechanisms...... of the cytosolic K1-to-Na1 ratio being a key determinant of plant salinity tolerance, and suggest multiple pathways of controlling that important feature in salt-tolerant plants....

  3. Differential disease resistance response in the barley necrotic mutant nec1

    Directory of Open Access Journals (Sweden)

    Kunga Laura

    2011-04-01

    Full Text Available Abstract Background Although ion fluxes are considered to be an integral part of signal transduction during responses to pathogens, only a few ion channels are known to participate in the plant response to infection. CNGC4 is a disease resistance-related cyclic nucleotide-gated ion channel. Arabidopsis thaliana CNGC4 mutants hlm1 and dnd2 display an impaired hypersensitive response (HR, retarded growth, a constitutively active salicylic acid (SA-mediated pathogenesis-related response and elevated resistance against bacterial pathogens. Barley CNGC4 shares 67% aa identity with AtCNGC4. The barley mutant nec1 comprising of a frame-shift mutation of CNGC4 displays a necrotic phenotype and constitutively over-expresses PR-1, yet it is not known what effect the nec1 mutation has on barley resistance against different types of pathogens. Results nec1 mutant accumulated high amount of SA and hydrogen peroxide compared to parental cv. Parkland. Experiments investigating nec1 disease resistance demonstrated positive effect of nec1 mutation on non-host resistance against Pseudomonas syringae pv. tomato (Pst at high inoculum density, whereas at normal Pst inoculum concentration nec1 resistance did not differ from wt. In contrast to augmented P. syringae resistance, penetration resistance against biotrophic fungus Blumeria graminis f. sp. hordei (Bgh, the causal agent of powdery mildew, was not altered in nec1. The nec1 mutant significantly over-expressed race non-specific Bgh resistance-related genes BI-1 and MLO. Induction of BI-1 and MLO suggested putative involvement of nec1 in race non-specific Bgh resistance, therefore the effect of nec1on mlo-5-mediated Bgh resistance was assessed. The nec1/mlo-5 double mutant was as resistant to Bgh as Nec1/mlo-5 plants, suggesting that nec1 did not impair mlo-5 race non-specific Bgh resistance. Conclusions Together, the results suggest that nec1 mutation alters activation of systemic acquired resistance

  4. Characterization of barley Prp1 gene and its expression during seed development and under abiotic stress.

    Science.gov (United States)

    Jiang, Qian-Tao; Liu, Tao; Ma, Jian; Wei, Yu-Ming; Lu, Zhen-Xiang; Lan, Xiu-Jin; Dai, Shou-Fen; Zheng, You-Liang

    2011-10-01

    The pre-mRNA processing (Prp1) gene encodes a spliceosomal protein. It was firstly identified in fission yeast and plays a regular role during spliceosome activation and cell cycle. Plant Prp1 genes have only been identified from rice, Sorghum and Arabidopsis thaliana. In this study, we reported the identification and isolation of a novel Prp1 gene from barley, and further explored its expressional pattern by using real-time quantitative RTPCR, promoter prediction and analysis of microarray data. The putative barley Prp1 protein has a similar primary structure features to those of other known Prp1 protein in this family. The results of amino acid comparison indicated that Prp1 protein of barley and other plant species has a highly conserved 30 termnal region while their 50 sequences greatly varied. The results of expressional analysis revealed that the expression level of barley Prp1 gene is always stable in different vegetative tissues, except it is up-regulated at the mid- and late stages of seed development or under the condition of cold stress. This kind of expressional pattern for barley Prp1 is also supported by our results of comparison of microarray data from barley, rice and Arabidopsis. For the molecular mechanism of its expressional pattern, we conclude that the expression of Prp1 gene may be up-regulated by the increase of pre-mRNAs and not be constitutive or ubiquitous.

  5. Technical note: In situ ruminal starch disappearance kinetics of hull-less barley, hulled barley, and corn grains.

    Science.gov (United States)

    Ferreira, G; Yang, Y; Teets, C L; Brooks, W S; Griffey, C A

    2018-07-01

    The objective of this study was to compare ruminal starch disappearance rates of hull-less barley, hulled barley, and corn grains. Five different genotypes were used for each of the 2 barley types. In addition, each of these genotypes was grown in 2 different locations and years, resulting 10 independent barley samples for each of the 2 barley grain types. Five different genotypes of corn grain were obtained from a commercial seed company. After being ground to pass through a 4-mm screen of a cutter mill, 3.6 g of each grain was placed into a porous bag, which was then incubated in the rumen of 2 ruminally cannulated cows for 0, 4, 8, 12, 24, and 48 h. Corn grains had greater instant ruminal starch disappearances than barley grains (22.4 and 8.2%, respectively). Instant ruminal starch disappearances did not differ between hulled and hull-less barley grains. Ruminal starch fractional disappearance rates were greatest for hulled barley grains, moderate for hull-less barley grains, and lowest for corn grains (15.3, 13.9, and 7.1%/h, respectively). Ruminal starch half-life was shortest for hulled and hull-less barley grains (4.4 h) and longest for corn grains (6.6 h). Ruminal starch half-life did not differ between hulled barley and hull-less barley grains. In conclusion, using a holistic experimental design and statistical analysis, this study showed that starch from hull-less barley grains has a ruminal half-life similar to that of hulled barley grains and shorter than that of corn grains. Copyright © 2018 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  6. Induction of Barley Silicon Transporter HvLsi1 and HvLsi2, increased silicon concentration in the shoot and regulated Starch and ABA Homeostasis under Osmotic stress and Concomitant Potassium Deficiency

    Directory of Open Access Journals (Sweden)

    Seyed A. Hosseini

    2017-08-01

    Full Text Available Drought is one of the major stress factors reducing cereal production worldwide. There is ample evidence that the mineral nutrient status of plants plays a critical role in increasing plant tolerance to different biotic and abiotic stresses. In this regard, the important role of various nutrients e.g., potassium (K or silicon (Si in the mitigation of different stress factors, such as drought, heat or frost has been well documented. Si application has been reported to ameliorate plant nutrient deficiency. Here, we used K and Si either solely or in combination to investigate whether an additive positive effect on barley growth can be achieved under osmotic stress and which mechanisms contribute to a better tolerance to osmotic stress. To achieve this goal, barley plants were subjected to polyethylene glycol (PEG-induced osmotic stress under low or high K supply and two Si regimes. The results showed that barley silicon transporters HvLsi1 and HvLsi2 regulate the accumulation of Si in the shoot only when plant suffered from K deficiency. Si, in turn, increased the starch level under both osmotic stress and K deficiency and modulated the glycolytic and TCA pathways. Hormone profiling revealed that the beneficial effect of Si is most likely mediated also by ABA homeostasis and active cytokinin isopentenyl adenine (iP. We conclude that Si may effectively improve stress tolerance under K deficient condition in particular when additional stress like osmotic stress interferes.

  7. Suppression of Zn stress on barley by irradiated chitosan

    Energy Technology Data Exchange (ETDEWEB)

    Nagasawa, N.; Mitomo, H. [Gunma Univ., Faculty of Engineering, Department of Biological and Chemical Engineering, Kiryu, Gunma (Japan); Ha, P.T.L. [Nuclear Research Institute, Dalat (Viet Nam); Watanabe, S.; Ito, T.; Takeshita, H.; Yoshii, F.; Kume, T. [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment

    2001-03-01

    Chitosan was irradiated up to 1000 kGy in solid state. Irradiation of chitosan caused the reduction of molecular weight. The molecular weight of the chitosan reduced from ca. 4 x 10{sup 5} to ca. 6 x 10{sup 3} by irradiation at 1000 kGy. For the barley growth promotion, irradiated chitosan showed the significant effect and 1000 kGy irradiated chitosan improved 20% of growth. Using the positron emitting tracer imaging system (PETIS), the effect of chitosan on uptake and transportation of {sup 62}Zn in barley were investigated. It was found that the transportation of Zn from root to shoot and the damage of plant by Zn were suppressed with irradiated chitosan. (author)

  8. Suppression of Zn stress on barley by irradiated chitosan

    International Nuclear Information System (INIS)

    Nagasawa, N.; Mitomo, H.; Ha, P.T.L.; Watanabe, S.; Ito, T.; Takeshita, H.; Yoshii, F.; Kume, T.

    2001-01-01

    Chitosan was irradiated up to 1000 kGy in solid state. Irradiation of chitosan caused the reduction of molecular weight. The molecular weight of the chitosan reduced from ca. 4 x 10 5 to ca. 6 x 10 3 by irradiation at 1000 kGy. For the barley growth promotion, irradiated chitosan showed the significant effect and 1000 kGy irradiated chitosan improved 20% of growth. Using the positron emitting tracer imaging system (PETIS), the effect of chitosan on uptake and transportation of 62 Zn in barley were investigated. It was found that the transportation of Zn from root to shoot and the damage of plant by Zn were suppressed with irradiated chitosan. (author)

  9. Kinetic and thermodynamic properties of two barley thioredoxin h isozymes, HvTrxh1 and HvTrxh2

    DEFF Research Database (Denmark)

    Maeda, Kenji; Hägglund, Per; Björnberg, Olof

    2010-01-01

    -dependent fluorescence, and the barley isozymes, reaction kinetics and thermodynamic properties were readily determined. The reaction constants were 60% higher for HvTrxh1 than HvTrxh2, while their redox potentials were very similar. The primary nucleophile, Cys(N), of the active site Trp-Cys(N)-Gly-Pro-Cys......Barley thioredoxin h isozymes 1 (HvTrxh1) and barley thioredoxin h isozymes 2 (HvTrxh2) show distinct spatiotemporal distribution in germinating seeds. Using a novel approach involving measurement of bidirectional electron transfer rates between Escherichia coli thioredoxin, which exhibits redox...

  10. Root hair mutants of barley

    International Nuclear Information System (INIS)

    Engvild, K.C.; Rasmussen, K.

    2005-01-01

    Barley mutants without root hairs or with short or reduced root hairs were isolated among M 2 seeds of 'Lux' barley (Hordeum vulgare L.) after acidified sodium azide mutagenesis. Root hair mutants are investigated intensively in Arabidopsis where about 40 genes are known. A few root hair mutants are known in maize, rice, barley and tomato. Many plants without root hairs grow quite well with good plant nutrition, and mutants have been used for investigations of uptake of strongly bound nutrients like phosphorus, iron, zinc and silicon. Seed of 'Lux' barley (Sejet Plant Breeding, Denmark) were soaked overnight, and then treated with 1.5-millimolarsodium azide in 0.1 molar sodium phosphate buffer, pH 3, for 2.5 hours according to the IAEA Manual on Mutation Breeding (2nd Ed.). After rinsing in tap water and air-drying, the M 2 seeds were sown in the field the same day. Spikes, 4-6 per M 1 plant, were harvested. The mutation frequency was similar to that obtained with other barley cultivars from which low-phytate mutants were isolated [5]. Seeds were germinated on black filter paper in tap water for 3 or 4 days before scoring for root hair mutants

  11. Transcriptome analysis of trichothecene-induced gene expression in barley.

    Science.gov (United States)

    Boddu, Jayanand; Cho, Seungho; Muehlbauer, Gary J

    2007-11-01

    Fusarium head blight, caused primarily by Fusarium graminearum, is a major disease problem on barley (Hordeum vulgare L.). Trichothecene mycotoxins produced by the fungus during infection increase the aggressiveness of the fungus and promote infection in wheat (Triticum aestivum L.). Loss-of-function mutations in the TRI5 gene in F. graminearum result in the inability to synthesize trichothecenes and in reduced virulence on wheat. We examined the impact of pathogen-derived trichothecenes on virulence and the transcriptional differences in barley spikes infected with a trichothecene-producing wild-type strain and a loss-of-function tri5 trichothecene nonproducing mutant. Disease severity, fungal biomass, and floret necrosis and bleaching were reduced in spikes inoculated with the tri5 mutant strain compared with the wild-type strain, indicating that the inability to synthesize trichothecenes results in reduced virulence in barley. We detected 63 transcripts that were induced during trichothecene accumulation, including genes encoding putative trichothecene detoxification and transport proteins, ubiquitination-related proteins, programmed cell death-related proteins, transcription factors, and cytochrome P450s. We also detected 414 gene transcripts that were designated as basal defense response genes largely independent of trichothecene accumulation. Our results show that barley exhibits a specific response to trichothecene accumulation that can be separated from the basal defense response. We propose that barley responds to trichothecene accumulation by inducing at least two general responses. One response is the induction of genes encoding trichothecene detoxification and transport activities that may reduce the impact of trichothecenes. The other response is to induce genes encoding proteins associated with ubiquitination and cell death which may promote successful establishment of the disease.

  12. Matter accumulation and changes of assimilation product transport and carbohydrate regime in barley plants as induced by infection with Puccinia striiformis West

    Energy Technology Data Exchange (ETDEWEB)

    Schubert, J. (Akademie der Landwirtschaftswissenschaften der DDR, Aschersleben. Inst. fuer Phytopathologie)

    1982-01-01

    Accumulation of nuclides (/sup 32/P, /sup 14/C), /sup 14/CO/sub 2/ assimilation and /sup 14/C transport were studied in several barley cultivars differing in their resistance to yellow rust. Increased matter accumulation was found in the rust pustules. Mycelium was proved by means of autoradiography. Infection causes changes with regard to /sup 14/CO/sub 2/ assimilation, carbohydrate regime and transport of /sup 14/C assimilation products. Certain relationships exist between these changes and plant resistance to yellow rust. During germination the rust uredospores release substances, particularly amino acids, to be transported in the plant.

  13. Structural Basis for Specificity of Propeptide-Enzyme Interaction in Barley C1A Cysteine Peptidases

    Science.gov (United States)

    Cambra, Inés; Hernández, David; Diaz, Isabel; Martinez, Manuel

    2012-01-01

    C1A cysteine peptidases are synthesized as inactive proenzymes. Activation takes place by proteolysis cleaving off the inhibitory propeptide. The inhibitory capacity of propeptides from barley cathepsin L and B-like peptidases towards commercial and barley cathepsins has been characterized. Differences in selectivity have been found for propeptides from L-cathepsins against their cognate and non cognate enzymes. Besides, the propeptide from barley cathepsin B was not able to inhibit bovine cathepsin B. Modelling of their three-dimensional structures suggests that most propeptide inhibitory properties can be explained from the interaction between the propeptide and the mature cathepsin structures. Their potential use as biotechnological tools is discussed. PMID:22615948

  14. The barley anion channel, HvALMT1, has multiple roles in guard cell physiology and grain metabolism.

    Science.gov (United States)

    Xu, Muyun; Gruber, Benjamin D; Delhaize, Emmanuel; White, Rosemary G; James, Richard A; You, Jiangfeng; Yang, Zhenming; Ryan, Peter R

    2015-01-01

    The barley (Hordeum vulgare) gene HvALMT1 encodes an anion channel in guard cells and in certain root tissues indicating that it may perform multiple roles. The protein localizes to the plasma membrane and facilitates malate efflux from cells when constitutively expressed in barley plants and Xenopus oocytes. This study investigated the function of HvALMT1 further by identifying its tissue-specific expression and by generating and characterizing RNAi lines with reduced HvALMT1 expression. We show that transgenic plants with 18-30% of wild-type HvALMT1 expression had impaired guard cell function. They maintained higher stomatal conductance in low light intensity and lost water more rapidly from excised leaves than the null segregant control plants. Tissue-specific expression of HvALMT1 was investigated in developing grain and during germination using transgenic barley lines expressing the green fluorescent protein (GFP) with the HvALMT1 promoter. We found that HvALMT1 is expressed in the nucellar projection, the aleurone layer and the scutellum of developing barley grain. Malate release measured from isolated aleurone layers prepared from imbibed grain was significantly lower in the RNAi barley plants compared with control plants. These data provide molecular and physiological evidence that HvALMT1 functions in guard cells, in grain development and during germination. We propose that HvALMT1 releases malate and perhaps other anions from guard cells to promote stomatal closure. The likely roles of HvALMT1 during seed development and grain germination are also discussed. © 2014 Scandinavian Plant Physiology Society.

  15. Transglycosylation by barley α-amylase 1

    DEFF Research Database (Denmark)

    Mótyán, János A.; Fazekas, Erika; Mori, Haruhide

    2011-01-01

    The transglycosylation activity of barley α-amylase 1 (AMY1) and active site AMY1 subsite mutant enzymes was investigated. We report here the transferase ability of the V47A, V47F, V47D and S48Y single mutants and V47K/S48G and V47G/S48D double mutant AMY1 enzymes in which the replaced amino acids...... play important role in substrate binding at subsites at −3 through −5. Although mutation increases the transglycosylation activity of enzymes, in the presence of acceptors the difference between wild type and mutants is not so significant. Oligomer transfer reactions of AMY1 wild type and its mutants...... as donor. 4-Methylumbelliferyl-α-d-maltoside, -maltotrioside, -maltotetraoside and -maltopentaoside have been synthesized. Products were identified by MALDI-TOF MS. 1H and 13C NMR analyses showed that AMY1 V47F preserved the stereo- and regioselectivity. The produced MU-α-d-MOSs of degree of polymerization...

  16. Diversity in boron toxicity tolerance of Australian barley (Hordeum vulgare L.) genotypes.

    Science.gov (United States)

    Hayes, Julie E; Pallotta, Margaret; Garcia, Melissa; Öz, Mehmet Tufan; Rongala, Jay; Sutton, Tim

    2015-09-26

    Boron (B) is an important micronutrient for plant growth, but is toxic when levels are too high. This commonly occurs in environments with alkaline soils and relatively low rainfall, including many of the cereal growing regions of southern Australia. Four major genetic loci controlling tolerance to high soil B have been identified in the landrace barley, Sahara 3771. Genes underlying two of the loci encode the B transporters HvBot1 and HvNIP2;1. We investigated sequence and expression level diversity in HvBot1 and HvNIP2;1 across barley germplasm, and identified five novel coding sequence alleles for HvBot1. Lines were identified containing either single or multiple copies of the Sahara HvBot1 allele. We established that only the tandemly duplicated Sahara allele conferred B tolerance, and this duplicated allele was found only in a set of nine lines accessioned in Australian collections as Sahara 3763-3771. HvNIP2;1 coding sequences were highly conserved across barley germplasm. We identified the likely causative SNP in the 5'UTR of Sahara HvNIP2;1, and propose that the creation of a small upstream open reading frame interferes with HvNIP2;1 translation in Sahara 3771. Similar to HvBot1, the tolerant HvNIP2;1 allele was unique to the Sahara barley accessions. We identified a new source of the 2H B tolerance allele controlling leaf symptom development, in the landrace Ethiopia 756. Ethiopia 756, as well as the cultivar Sloop Vic which carries both the 2H and HvBot1 B tolerance alleles derived from Sahara 3771, may be valuable as alternative parents in breeding programs targeted to high soil B environments. There is significant diversity in B toxicity tolerance among contemporary Australian barley varieties but this is not related to variation at any of the four known B tolerance loci, indicating that novel, as yet undiscovered, sources of tolerance exist.

  17. Fungal growth during malting of barley

    Directory of Open Access Journals (Sweden)

    Kocić-Tanackov Sunčica D.

    2005-01-01

    Full Text Available Fungi were isolated and identified in two samples of winter two-row barley (SSK3 and SSK6 harvested in 2003, Kragujevac location, during micromalting. Fungi were isolated and identified in barley before the micromalting, after the 1st, 2nd and 3rd day of steeping, the first day and after the germination after kilning and after malt degermination. The total fungi count was followed in both barley samples, during the mentioned phases. The total count of fungi was also determined in the steeping water, and the isolation and identification was performed after the steeping process. Change of the total count of fungi during barley micromalting was exponentional. During barley micromalting nine fungi genera were isolated: Phoma, Alternaria, Fusarium aspergillus, Cladosporium, Geotrichum, Scopulariopsis, Aureobasidium and Mucor. The most frequent genera were: Phoma, Alternaria and Fusarium. In water for steeping, five genera were identified: Geotrichum, Fusarium, Phoma Cladosporium and Mucor. The most frequent genera was Phoma.

  18. Functional proteomics of barley and barley chloroplasts – strategies, methods and perspectives

    DEFF Research Database (Denmark)

    Petersen, Jørgen; Rogowska-Wrzesinska, Adelina; Jensen, Ole Nørregaard

    2013-01-01

    Barley (Hordeum vulgare) is an important cereal grain that is used in a range of products for animal and human consumption. Crop yield and seed quality has been optimized during decades by plant breeding programs supported by biotechnology and molecular biology techniques. The recently completed...... whole-genome sequencing of barley revealed approximately 26,100 open reading frames, which provides a foundation for detailed molecular studies of barley by functional genomics and proteomics approaches. Such studies will provide further insights into the mechanisms of, for example, drought and stress...... tolerance, micronutrient utilization, and photosynthesis in barley. In the present review we present the current state of proteomics research for investigations of barley chloroplasts, i.e., the organelle that contain the photosynthetic apparatus in the plant. We describe several different proteomics...

  19. Effect of phytase supplementation to barley-canola meal and barley-soybean meal diets on phosphorus and calcium balance in growing pigs

    NARCIS (Netherlands)

    Sauer, W.C.; Cervantes, M.; He, J.M.M.; Schulze, H.

    2003-01-01

    Two metabolism experiments were carried out, to determine the effect of microbial phytase addition to barley-canola meal and barley-soybean meal diets on P and Ca balance in growing. pigs; In experiment 1, six barrows (29.6kg: initial LW) were fed a barley-canola meal diet, without or. with phytase

  20. Brewing with fractionated barley

    NARCIS (Netherlands)

    Donkelaar, van L.H.G.

    2016-01-01

    Brewing with fractionated barley

    Beer is a globally consumed beverage, which is produced from malted barley, water, hops and yeast. In recent years, the use of unmalted barley and exogenous enzymes have become more popular because they enable simpler processing and reduced environmental

  1. Suberized transport barriers in Arabidopsis, barley and rice roots: From the model plant to crop species.

    Science.gov (United States)

    Kreszies, Tino; Schreiber, Lukas; Ranathunge, Kosala

    2018-02-07

    Water is the most important prerequisite for life and plays a major role during uptake and transport of nutrients. Roots are the plant organs that take up the major part of water, from the surrounding soil. Water uptake is related to the root system architecture, root growth, age and species dependent complex developmental changes in the anatomical structures. The latter is mainly attributed to the deposition of suberized barriers in certain layers of cell walls, such as endo- and exodermis. With respect to water permeability, changes in the suberization of roots are most relevant. Water transport or hydraulic conductivity of roots (Lp r ) can be described by the composite transport model and is known to be very variable between plant species and growth conditions and root developmental states. In this review, we summarize how anatomical structures and apoplastic barriers of roots can diversely affect water transport, comparing the model plant Arabidopsis with crop plants, such as barley and rice. Results comparing the suberin amounts and water transport properties indicate that the common assumption that suberin amount negatively correlates with water and solute transport through roots may not always be true. The composition, microstructure and localization of suberin may also have a great impact on the formation of efficient barriers to water and solutes. Copyright © 2018 The Authors. Published by Elsevier GmbH.. All rights reserved.

  2. Molecular Chemical Structure of Barley Proteins Revealed by Ultra-Spatially Resolved Synchrotron Light Sourced FTIR Microspectroscopy: Comparison of Barley Varieties

    International Nuclear Information System (INIS)

    Yu, P.

    2007-01-01

    Barley protein structure affects the barley quality, fermentation, and degradation behavior in both humans and animals among other factors such as protein matrix. Publications show various biological differences among barley varieties such as Valier and Harrington, which have significantly different degradation behaviors. The objectives of this study were to reveal the molecular structure of barley protein, comparing various varieties (Dolly, Valier, Harrington, LP955, AC Metcalfe, and Sisler), and quantify protein structure profiles using Gaussian and Lorentzian methods of multi-component peak modeling by using the ultra-spatially resolved synchrotron light sourced Fourier transform infrared microspectroscopy (SFTIRM). The items of the protein molecular structure revealed included protein structure α-helices, β-sheets, and others such as β-turns and random coils. The experiment was performed at the National Synchrotron Light Source in Brookhaven National Laboratory (BNL, US Department of Energy, NY). The results showed that with the SFTIRM, the molecular structure of barley protein could be revealed. Barley protein structures exhibited significant differences among the varieties in terms of proportion and ratio of model-fitted α-helices, β-sheets, and others. By using multi-component peaks modeling at protein amide I region of 1710-1576 cm -1 , the results show that barley protein consisted of approximately 18-34% of α-helices, 14-25% of β-sheets, and 44-69% others. AC Metcalfe, Sisler, and LP955 consisted of higher (P 0.05). The ratio of α-helices to others (0.3 to 1.0, P < 0.05) and that of β-sheets to others (0.2 to 0.8, P < 0.05) were different among the barley varieties. It needs to be pointed out that using a multi-peak modeling for protein structure analysis is only for making relative estimates and not exact determinations and only for the comparison purpose between varieties. The principal component analysis showed that protein amide I Fourier

  3. High-throughput Agrobacterium-mediated barley transformation

    Directory of Open Access Journals (Sweden)

    Snape John W

    2008-09-01

    Full Text Available Abstract Background Plant transformation is an invaluable tool for basic plant research, as well as a useful technique for the direct improvement of commercial crops. Barley (Hordeum vulgare is the fourth most abundant cereal crop in the world. It also provides a useful model for the study of wheat, which has a larger and more complex genome. Most existing barley transformation methodologies are either complex or have low ( Results A robust, simple and reproducible barley transformation protocol has been developed that yields average transformation efficiencies of 25%. This protocol is based on the infection of immature barley embryos with Agrobacterium strain AGL1, carrying vectors from the pBract series that contain the hpt gene (conferring hygromycin resistance as a selectable marker. Results of large scale experiments utilising the luc (firefly luciferase gene as a reporter are described. The method presented here has been used to produce hundreds of independent, transgenic plant lines and we show that a large proportion of these lines contain single copies of the luc gene. Conclusion This protocol demonstrates significant improvements in both efficiency and ease of use over existing barley transformation methods. This opens up opportunities for the development of functional genomics resources in barley.

  4. The knottin-like Blufensin family regulates genes involved in nuclear import and the secretory pathway in barley-powdery mildew interactions

    Science.gov (United States)

    Xu, Weihui; Meng, Yan; Surana, Priyanka; Fuerst, Greg; Nettleton, Dan; Wise, Roger P.

    2015-01-01

    Plants have evolved complex regulatory mechanisms to control a multi-layered defense response to microbial attack. Both temporal and spatial gene expression are tightly regulated in response to pathogen ingress, modulating both positive and negative control of defense. BLUFENSINs, small knottin-like peptides in barley, wheat, and rice, are highly induced by attack from fungal pathogens, in particular, the obligate biotrophic fungus, Blumeria graminis f. sp. hordei (Bgh), causal agent of barley powdery mildew. Previous research indicated that Blufensin1 (Bln1) functions as a negative regulator of basal defense mechanisms. In the current report, we show that BLN1 and BLN2 can both be secreted to the apoplast and Barley stripe mosaic virus (BSMV)-mediated overexpression of Bln2 increases susceptibility of barley to Bgh. Bimolecular fluorescence complementation (BiFC) assays signify that BLN1 and BLN2 can interact with each other, and with calmodulin. We then used BSMV-induced gene silencing to knock down Bln1, followed by Barley1 GeneChip transcriptome analysis, to identify additional host genes influenced by Bln1. Analysis of differential expression revealed a gene set enriched for those encoding proteins annotated to nuclear import and the secretory pathway, particularly Importin α1-b and Sec61 γ subunits. Further functional analysis of these two affected genes showed that when silenced, they also reduced susceptibility to Bgh. Taken together, we postulate that Bln1 is co-opted by Bgh to facilitate transport of disease-related host proteins or effectors, influencing the establishment of Bgh compatibility on its barley host. PMID:26089830

  5. The Swedish mutant barley collection

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1989-07-01

    Full text: The Swedish mutation research programme in barley began about 50 years ago and has mainly been carried out at Svaloev in co-operation with the institute of Genetics at the University of Lund. The collection has been produced from different Swedish high-yielding spring barley varieties, using the following mutagens: X-rays, neutrons, several organic chemical compounds such as ethyleneimine, several sulfonate derivatives and the inorganic chemical mutagen sodium azide. Nearly 10,000 barley mutants are stored in the Nordic Gene Bank and documented in databases developed by Udda Lundquist, Svaloev AB. The collection consists of the following nine categories with 94 different types of mutants: 1. Mutants with changes in the spike and spikelets; 2. Changes in culm length and culm composition; 3. Changes in growth types; 4. Physiological mutants; 5. Changes in awns; 6. Changes in seed size and shape; 7. Changes in leaf blades; 8. Changes in anthocyanin and colour; 9. Resistance to barley powdery mildew. Barley is one of the most thoroughly investigated crops in terms of induction of mutations and mutation genetics. So far, about half of the mutants stored at the Nordic Gene Bank, have been analysed genetically; They constitute, however, only a minority of the 94 different mutant types. The genetic analyses have given valuable insights into the mutation process but also into the genetic architecture of various characters. A number of mutants of two-row barley have been registered and commercially released. One of the earliest released, Mari, an early maturing, daylength neutral, straw stiff mutant, is still grown in Iceland. The Swedish mutation material has been used in Sweden, but also in other countries, such as Denmark, Germany, and USA, for various studies providing a better understanding of the barley genome. The collection will be immensely valuable for future molecular genetical analyses of clone mutant genes. (author)

  6. The Swedish mutant barley collection

    International Nuclear Information System (INIS)

    1989-01-01

    Full text: The Swedish mutation research programme in barley began about 50 years ago and has mainly been carried out at Svaloev in co-operation with the institute of Genetics at the University of Lund. The collection has been produced from different Swedish high-yielding spring barley varieties, using the following mutagens: X-rays, neutrons, several organic chemical compounds such as ethyleneimine, several sulfonate derivatives and the inorganic chemical mutagen sodium azide. Nearly 10,000 barley mutants are stored in the Nordic Gene Bank and documented in databases developed by Udda Lundquist, Svaloev AB. The collection consists of the following nine categories with 94 different types of mutants: 1. Mutants with changes in the spike and spikelets; 2. Changes in culm length and culm composition; 3. Changes in growth types; 4. Physiological mutants; 5. Changes in awns; 6. Changes in seed size and shape; 7. Changes in leaf blades; 8. Changes in anthocyanin and colour; 9. Resistance to barley powdery mildew. Barley is one of the most thoroughly investigated crops in terms of induction of mutations and mutation genetics. So far, about half of the mutants stored at the Nordic Gene Bank, have been analysed genetically; They constitute, however, only a minority of the 94 different mutant types. The genetic analyses have given valuable insights into the mutation process but also into the genetic architecture of various characters. A number of mutants of two-row barley have been registered and commercially released. One of the earliest released, Mari, an early maturing, daylength neutral, straw stiff mutant, is still grown in Iceland. The Swedish mutation material has been used in Sweden, but also in other countries, such as Denmark, Germany, and USA, for various studies providing a better understanding of the barley genome. The collection will be immensely valuable for future molecular genetical analyses of clone mutant genes. (author)

  7. Optimised purification and characterisation of lipid transfer protein 1 (LTP1) and its lipid-bound isoform LTP1b from barley malt.

    Science.gov (United States)

    Nieuwoudt, Melanie; Lombard, Nicolaas; Rautenbach, Marina

    2014-08-15

    In beer brewing, brewers worldwide strive to obtain product consistency in terms of flavour, colour and foam. Important proteins contributing to beer foam are lipid transfer proteins (LTPs), in particular LTP1 and its lipid-bound isoform LTP1b, which are known to transport lipids in vivo and prevent lipids from destabilising the beer foam. LTP1 and LTP1b were successfully purified using only five purification steps with a high purified protein yield (160 mg LTP1 and LTP1b from 200 g barley). Circular dichroism of LTP1 and LTP1b confirmed that both proteins are highly tolerant to high temperatures (>90 °C) and are pH stable, particularly at a neutral to a more basic pH. Only LTP1 exhibited antiyeast and thermo-stable lytic activity, while LTP1b was inactive, indicating that the fatty acid moiety compromised the antimicrobial activity of LTP1. This lack in antiyeast activity and the positive foam properties of LTP1b would benefit beer fermentation and quality. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Evaluation of Some Chemical Characteristics of barley Mutants induced by Gamma Irradiation

    International Nuclear Information System (INIS)

    Abdeldaiem, M.H.; Ali, H.G.M.

    2011-01-01

    This study aims to evaluate the antioxidant activity of acetonic extract from some barley mutations (P1, P2 and P3 varieties) induced by gamma irradiation as compared with local barley variety (Hordeum vulgare L.) as control. Barley samples were obtained from Plant Breeding Unit, Plant Research Department, Nuclear Research Centre, Atomic Energy Authority, Egypt. The measurements of the antioxidant activity using a radical scavenging capacity against 2,2-diphenyl-1-picrylhydrazyl (DPPH) and ?-carotene bleaching assay were assessed in the barley acetonic extract. Furthermore, amino acids composition of barley mutant samples was determined. The results indicated that the acetonic extract of barley varieties under investigation possess marked antioxidant and anti radical capacities. The data showed that the acetonic extract of barley mutant P1 possessed the higher antioxidant activity as compared with the antioxidant activities of acetonic extract from control and other barley mutant samples. Meanwhile, the flour of barley mutations under investigation contained trace elements of iron, copper and manganese. GC and mass analyses were used to identify the active compound of extract of control and mutant barley samples. The results illustrated that the main components of the control sample of barely extract was pentane, 3 methyl (47.73%) while gamma irradiation caused noticeable change in the relative percentage of some components of acetonic extract from barley mutant samples. Moreover, the results presented that changes were disappeared, and some compounds of the acetonic extract from mutant barley samples were appeared. Furthermore, the results exhibited that barley flour supplemented with wheat flour at 30% level produced acceptable cookies. Accordingly, the phenolic constituents of barley acetonic extract induced by gamma irradiation, especially samples of P1 mutant, may have a future role as ingredients in the development of functional foods.

  9. miR172 down-regulates the translation of cleistogamy 1 in barley

    Science.gov (United States)

    Floret opening in barley is induced by the swelling of the lodicule, a trait under the control of the cleistogamy1 (cly1) gene. The product of cly1 is a member of the APETALA2 (AP2) transcription factor family, which inhibits lodicule development. A sequence polymorphism at the miR172 target site wi...

  10. Cytosolic glutamine synthetase in barley

    DEFF Research Database (Denmark)

    Thomsen, Hanne Cecilie

    remobilisation from ageing plant parts. Thus, GS is highly involved in determining crop yield and NUE. The major objective of this PhD project was to investigate the NUE properties of transgenic barley designed to constitutively overexpress a GS1 isogene (HvGS1.1). These transgenic lines exhibited an increased...... for N demand. Of the GS isogenes, only the transcript levels of root HvGS1.1 increased when plants were transferred from high to low N. This change coincided with an increase in total GS activity. Pronounced diurnal variation was observed for root nitrate transporter genes and GS isogenes in both root...... fertilizer requirement. The enzyme glutamine synthetase (GS) has been a major topic in plant nitrogen research for decades due to its central role in plant N metabolism. The cytosolic version of this enzyme (GS1) plays an important role in relation to primary N assimilation as well as in relation to N...

  11. The Importance of Barley Varieties in terms of Production, Marketing and Processing

    Directory of Open Access Journals (Sweden)

    Rahmi Taşcı

    2017-08-01

    Full Text Available In this study, it is aimed to investigate the criteria affecting the marketing of barley in the stages of barley production, marketing and processing in Konya province. In the study; survey results were used which get from mixed feed (37 items and malt factory (1 item, traders (50 items purchasing and selling barley, and agricultural enterprises (107 items including barley production in agricultural activities operating in Konya province. It was determined that barley varieties were not an important criterion in the selling price, while the hectoliter and other plant species do not mix into barley are the main criteria considered by agricultural enterprises to affect the sale of barley. The most important criteria that traders keep in mind when buying barley is hectoliter of barley, which is followed by moisture, colour and foreign matter confusion rate of barley. The most important criteria that factories take into consideration when purchasing barley is determined as the moisture content of the barley, followed by the hectoliter of barley and the rate of foreign matter contamination. For the malt industry; Barley variety is a very important factor in the purchase criteria, followed by barley humidity and colour.

  12. HvPap-1 C1A Protease Participates Differentially in the Barley Response to a Pathogen and an Herbivore

    Directory of Open Access Journals (Sweden)

    Mercedes Diaz-Mendoza

    2017-09-01

    Full Text Available Co-evolutionary processes in plant–pathogen/herbivore systems indicate that protease inhibitors have a particular value in biotic interactions. However, little is known about the defensive role of their targets, the plant proteases. C1A cysteine proteases are the most abundant enzymes responsible for the proteolytic activity during different processes like germination, development and senescence in plants. To identify and characterize C1A cysteine proteases of barley with a potential role in defense, mRNA and protein expression patterns were analyzed in response to biotics stresses. A barley cysteine protease, HvPap-1, previously related to abiotic stresses and grain germination, was particularly induced by flagellin or chitosan elicitation, and biotic stresses such as the phytopathogenic fungus Magnaporthe oryzae or the phytophagous mite Tetranychus urticae. To elucidate the in vivo participation of this enzyme in defense, transformed barley plants overexpressing or silencing HvPap-1 encoding gene were subjected to M. oryzae infection or T. urticae infestation. Whereas overexpressing plants were less susceptible to the fungus than silencing plants, the opposite behavior occurred to the mite. This unexpected result highlights the complexity of the regulatory events leading to the response to a particular biotic stress.

  13. Barley germination

    DEFF Research Database (Denmark)

    Daneri-Castro, Sergio N.; Svensson, Birte; Roberts, Thomas H.

    2016-01-01

    germination. Lastly, the application of metabolomics to barley grain germination provides essential data on biochemical processes, including insights into the formation of compounds that contribute to malt quality. To maximize the benefits of the 'omics' revolution to the malting industry, there is a need......Germination of barley grain is central to the malting industry and is a valuable model for cereal grain germination. Our current understanding of the complexity of germination at the molecular level is facilitated by access to genomic, transcriptomic, proteomic and metabolomic data. Here we review...... of germination in the context of industrial malting. For transcriptomics, recent advances in sequencing the barley genome allow next-generation sequencing approaches to reveal novel effects of variety and environment on germination. For proteomics, selection of the source tissue(s) and the protein extraction...

  14. Dynamic Allocation of Sugars in Barley

    Science.gov (United States)

    Cumberbatch, L. C.; Crowell, A. S.; Fallin, B. A.; Howell, C. R.; Reid, C. D.; Weisenberger, A. G.; Lee, S. J.; McKisson, J. E.

    2014-03-01

    Allocation of carbon and nitrogen is a key factor for plant productivity. Measurements are carried out by tracing 11C-tagged sugars using positron emission tomography and coincidence counting. We study the mechanisms of carbon allocation and transport from carbohydrate sources (leaves) to sinks (stem, shoot, roots) under various environmental conditions such as soil nutrient levels and atmospheric CO2 concentration. The data are analyzed using a transfer function analysis technique to model transport and allocation in barley plants. The experimental technique will be described and preliminary results presented. This work was supported in part by USDOE Grant No. DE-FG02-97-ER41033 and DE-SC0005057.

  15. Characteristics of injury and recovery of net NO3- transport of barley seedlings from treatments of NaCl

    Science.gov (United States)

    Klobus, G.; Ward, M. R.; Huffaker, R. C.

    1988-01-01

    The nature of the injury and recovery of nitrate uptake (net uptake) from NaCl stress in young barley (Hordeum vulgare L, var CM 72) seedlings was investigated. Nitrate uptake was inhibited rapidly by NaCl, within 1 minute after exposure to 200 millimolar NaCl. The duration of exposure to saline conditions determined the time of recovery of NO3- uptake from NaCl stress. Recovery was dependent on the presence of NO3- and was inhibited by cycloheximide, 6-methylpurine, and cerulenin, respective inhibitors of protein, RNA, and sterol/fatty acid synthesis. These inhibitors also prevented the induction of the NO3- uptake system in uninduced seedlings. Uninduced seedlings exhibited endogenous NO3- transport activity that appeared to be constitutive. This constitutive activity was also inhibited by NaCl. Recovery of constitutive NO3- uptake did not require the presence of NO3-.

  16. Proteomic analysis of barley response during early spot blotch infection

    International Nuclear Information System (INIS)

    Al-Daoude, A.; Jawhar, M.; Shoaib, A.; Arabi, M.I.E.

    2015-01-01

    Spot blotch (SB), caused by the fungus Cochliobolus sativus, is a common foliar disease of barley worldwide, but little is known about the host response to infection at the protein level. In this study, a systematic shotgun proteomics approach was chosen to document the early barley response to C. sativus infection. Overall, 28 protein spots were consistently observed as differential in the proteome profiles of the challenged and unchallenged plants. After tryptic digestion, MALDI-TOF/MS analysis and MASCOT database searching identified proteins associated with the defense response including resistance proteins, putative hydrolase, proteinase, kinase and general metabolism and transport proteins. These afford important functions in host resistance and pathogen's inhibition in plants. One of the identified products is a putative NBS-LRR protein which is considered one of the major plant disease resistance proteins identified to date. This work indicates that, in combination with functional genomics, response of barley to challenge by C. sativus involved the recruitment of proteins from various defense pathways.(author)

  17. Construction of barley consensus map showing chromosomal ...

    African Journals Online (AJOL)

    In the past, it has been difficult to accurately determine the location of many types of barley molecular markers due to the lack of commonality between international barley linkage maps. In this study, a consensus map of barley was constructed from five different maps (OWB, VxHs, KxM, barley consensus 2 and barley ...

  18. Barley fibre and wet distillers' solubles in the diet of growing cattle

    Directory of Open Access Journals (Sweden)

    T. ROOT

    2008-12-01

    Full Text Available Twenty-eight bulls were used in a 3 × 2 factorial design to study the effects of two by-products from the integrated starch-ethanol process, barley fibre and distillers' solubles, as supplements for grass silage. The animals were divided into five blocks and slaughtered when the average live weight (LW of each block reached 500 kg. The three energy supplements were barley (B, a mixture (1:1 on a dry matter (DM basis of barley and barley fibre (BF, and barley fibre (F, fed without (DS- or with (DS+ wet distillers' solubles (200 g kg-1 concentrate on DM basis. Concentrates were given at the rate of 95 g DM kg-1 LW0.6. Including barley fibre in the diet did not affect feed intake, but distillers' solubles tended to increase both silage and total DM intakes as well as amino acids absorbed in the intestine and energy intake. The protein balance in the rumen increased with the inclusion of barley fibre (P

  19. A cathepsin F-like peptidase involved in barley grain protein mobilization, HvPap-1, is modulated by its own propeptide and by cystatins

    Science.gov (United States)

    Diaz, Isabel

    2012-01-01

    Among the C1A cysteine proteases, the plant cathepsin F-like group has been poorly studied. This paper describes the molecular and functional characterization of the HvPap-1 cathepsin F-like protein from barley. This peptidase is N-glycosylated and has to be processed to become active by its own propeptide being an important modulator of the peptidase activity. The expression pattern of its mRNA and protein suggest that it is involved in different proteolytic processes in the barley plant. HvPap-1 peptidase has been purified in Escherichia coli and the recombinant protein is able to degrade different substrates, including barley grain proteins (hordeins, albumins, and globulins) stored in the barley endosperm. It has been localized in protein bodies and vesicles of the embryo and it is induced in aleurones by gibberellin treatment. These three features support the implication of HvPap-1 in storage protein mobilization during grain germination. In addition, a complex regulation exerted by the barley cystatins, which are cysteine protease inhibitors, and by its own propeptide, is also described PMID:22791822

  20. Grain Composition and Functional Ingredients of Barley Varieties Created in Latvia

    Directory of Open Access Journals (Sweden)

    Šterna Vita

    2015-09-01

    Full Text Available Cereals, including barley, have been recognised as functional foods that provide beneficial effect on the health of the consumer and decrease the risk of various diseases. The aim of investigation was to determine the grain composition of barley varieties and perspective breeding lines bred in Latvia and to evaluate its functional ingredients. The results of analysis showed that protein content among varieties ranged from 106.6-146.8 g·kg-1, total dietary fibre 187.4-208.2 g·kg-1, β-glucans 42.8 g-49.4 g·kg-1, and amount of α-tocopherol 6.03-8.93 mg·kg-1. The sum of essential amino acids in barley grain samples was from 32.90 g·kg-1 to 38.71 g·kg-1. All varieties of hulled and hulless barley grain were found to be sources of protein with high biological value. Comparison of barley varieties bred in Latvia suggests that variety ‘Kornelija’ outperforms others in protein, dietary fibre and micronutrient content.

  1. Fermented Dough Characteristics of Wheat-barley-hemp Composites. Comparison of Two Dosages of Barley and Hemp Wholemeal/Flour

    Directory of Open Access Journals (Sweden)

    Marie Hrušková

    2016-01-01

    Full Text Available Wheat flour substitution by barley one led to shortening of fermentation and leavening times (about 14–57% and 35–83%, respectively as well as to lessening of dough volumes (about 25–75%, based on lowered protein quality (Zeleny value. Addition of barley flour affected specific bread volume; diminishing for wheat-barley blends 70:30 and 50:50 reached 30% and 43%, respectively. Volume of bread prepared from wheat-barley blend 70:30 enhanced by dehulled hemp wholemeal was the highest within the tested tri-composites set, achieving 130% of wheat-barley control; other hemp products caused the parameter decrease (from 8 to 33%. Within a group of bakery products containing 50% of barley flour, hulled hemp wholemeal partially supressed negative effect of barley flour – specific bread volumes increased about ca 15%. Commercial fine hemp flour samples demonstrated a reversal influence – its addition resulted into lower buns size than wheat-barley control (about 3–34%. Between wheat flour and both groups of flour tri-composites, PCA confirmed differences in dough and bread technological quality. Specific bread volume could be predicted according to maturograph dough elasticity, dough or bread OTG volumes.

  2. Reduction of deoxynivalenol in barley by treatment with aqueous sodium carbonate and heat.

    Science.gov (United States)

    Abramson, David; House, James D; Nyachoti, C Martin

    2005-11-01

    Naturally contaminated lots of Canadian barley containing either 18.4 or 4.3 microg/g deoxynivalenol (DON) were heated at 80 degrees C, with small amounts of water or 1 M sodium carbonate solution to study the rate of DON reduction. Samples were heated in sealed polypropylene containers for periods of up to 8 days. In the 18.4 microg/g DON barley, rapid reductions were observed: with no solutions added, DON declined to 14.7 microg/g after 1 day, and to 4.9 microg/g after 8 days solely due to heat; with water at 10 mL/100 g barley, DON levels reached 3.7 microg/g after 8 days; with 1 M sodium carbonate solution added at 10 mL/100 g barley, DON declined to 4.7 microg/g after 1 day, and to 0.4 microg/g after 8 days; with 20 mL/100 g barley, DON declined to 1.4 microg/g after 1 day and to near-zero levels after 8 days. In the 4.3 microg/g DON barley, more gradual reductions were evident: with no solutions added, DON declined to 2.9 microg/g after 8 days solely due to heat; with water at 10 mL/100 g barley, DON levels reached 2.3 microg/g after 8 days; with 1 M sodium carbonate solution added at 10 mL/100 g barley, DON declined to 2.7 microg/g after 1 day, and to near-zero levels after 8 days; with 20 mL/100 g barley, DON declined to 1.4 microg/g after 1 day and to near-zero levels after 3, 5 and 8 days.

  3. Comparative proteomic analysis of aluminum tolerance in tibetan wild and cultivated barleys.

    Directory of Open Access Journals (Sweden)

    Huaxin Dai

    Full Text Available Aluminum (Al toxicity is a major limiting factor for plant production in acid soils. Wild barley germplasm is rich in genetic diversity and may provide elite genes for crop Al tolerance improvement. The hydroponic-experiments were performed to compare proteomic and transcriptional characteristics of two contrasting Tibetan wild barley genotypes Al- resistant/tolerant XZ16 and Al-sensitive XZ61 as well as Al-resistant cv. Dayton. Results showed that XZ16 had less Al uptake and translocation than XZ61 and Dayton under Al stress. Thirty-five Al-tolerance/resistance-associated proteins were identified and categorized mainly in metabolism, energy, cell growth/division, protein biosynthesis, protein destination/storage, transporter, signal transduction, disease/defense, etc. Among them, 30 were mapped on barley genome, with 16 proteins being exclusively up-regulated by Al stress in XZ16, including 4 proteins (S-adenosylmethionine-synthase 3, ATP synthase beta subunit, triosephosphate isomerase, Bp2A specifically expressed in XZ16 but not Dayton. The findings highlighted the significance of specific-proteins associated with Al tolerance, and verified Tibetan wild barley as a novel genetic resource for Al tolerance.

  4. Long-term reconstitution of dry barley increased phosphorus digestibility in pigs

    DEFF Research Database (Denmark)

    Ton Nu, Mai Anh; Blaabjerg, Karoline; Poulsen, Hanne Damgaard

    of reconstitution compared to dry stored barley on phosphorus (P) digestibility in pigs. Materials and Methods: Dry barley (13% moisture; phytate P, 1.7 g/kg DM) was rolled and stored directly or reconstituted with water to produce rolled barley with 35% moisture that was stored in air-tight conditions. After 49...

  5. Association mapping of partitioning loci in barley

    Directory of Open Access Journals (Sweden)

    Mackay Ian J

    2008-02-01

    Full Text Available Abstract Background Association mapping, initially developed in human disease genetics, is now being applied to plant species. The model species Arabidopsis provided some of the first examples of association mapping in plants, identifying previously cloned flowering time genes, despite high population sub-structure. More recently, association genetics has been applied to barley, where breeding activity has resulted in a high degree of population sub-structure. A major genotypic division within barley is that between winter- and spring-sown varieties, which differ in their requirement for vernalization to promote subsequent flowering. To date, all attempts to validate association genetics in barley by identifying major flowering time loci that control vernalization requirement (VRN-H1 and VRN-H2 have failed. Here, we validate the use of association genetics in barley by identifying VRN-H1 and VRN-H2, despite their prominent role in determining population sub-structure. Results By taking barley as a typical inbreeding crop, and seasonal growth habit as a major partitioning phenotype, we develop an association mapping approach which successfully identifies VRN-H1 and VRN-H2, the underlying loci largely responsible for this agronomic division. We find a combination of Structured Association followed by Genomic Control to correct for population structure and inflation of the test statistic, resolved significant associations only with VRN-H1 and the VRN-H2 candidate genes, as well as two genes closely linked to VRN-H1 (HvCSFs1 and HvPHYC. Conclusion We show that, after employing appropriate statistical methods to correct for population sub-structure, the genome-wide partitioning effect of allelic status at VRN-H1 and VRN-H2 does not result in the high levels of spurious association expected to occur in highly structured samples. Furthermore, we demonstrate that both VRN-H1 and the candidate VRN-H2 genes can be identified using association mapping

  6. Molecular characterization of barley 3H semi-dwarf genes.

    Directory of Open Access Journals (Sweden)

    Haobing Li

    Full Text Available The barley chromosome 3H accommodates many semi-dwarfing genes. To characterize these genes, the two-rowed semi-dwarf Chinese barley landrace 'TX9425' was crossed with the Australian barley variety 'Franklin' to generate a doubled haploid (DH population, and major QTLs controlling plant height have been identified in our previous study. The major QTL derived from 'TX9425' was targeted to investigate the allelism of the semi-dwarf gene uzu in barley. Twelve sets of near-isogenic lines and a large NILF2 fine mapping population segregating only for the dwarfing gene from 'TX9425' were developed. The semi-dwarfing gene in 'TX9425' was located within a 2.8 cM region close to the centromere on chromosome 3H by fine mapping. Molecular cloning and sequence analyses showed that the 'TX9425'-derived allele contained a single nucleotide substitution from A to G at position 2612 of the HvBRI1 gene. This was apparently the same mutation as that reported in six-rowed uzu barley. Markers co-segregating with the QTL were developed from the sequence of the HvBRI1 gene and were validated in the 'TX9425'/'Franklin' DH population. The other major dwarfing QTL derived from the Franklin variety was distally located on chromosome 3HL and co-segregated with the sdw1 diagnostic marker hv20ox2. A third dwarfing gene, expressed only in winter-sown trials, was identified and located on chromosome 3HS. The effects and interactions of these dwarfing genes under different growing conditions are discussed. These results improve our understanding of the genetic mechanisms controlling semi-dwarf stature in barley and provide diagnostic markers for the selection of semi-dwarfness in barley breeding programs.

  7. The β-Ketoacyl-CoA Synthase HvKCS1, Encoded by Cer-zh, Plays a Key Role in Synthesis of Barley Leaf Wax and Germination of Barley Powdery Mildew.

    Science.gov (United States)

    Li, Chao; Haslam, Tegan M; Krüger, Anna; Schneider, Lizette M; Mishina, Kohei; Samuels, Lacey; Yang, Hongxing; Kunst, Ljerka; Schaffrath, Ulrich; Nawrath, Christiane; Chen, Guoxiong; Komatsuda, Takao; von Wettstein-Knowles, Penny

    2018-04-01

    The cuticle coats the primary aerial surfaces of land plants. It consists of cutin and waxes, which provide protection against desiccation, pathogens and herbivores. Acyl cuticular waxes are synthesized via elongase complexes that extend fatty acyl precursors up to 38 carbons for downstream modification pathways. The leaves of 21 barley eceriferum (cer) mutants appear to have less or no epicuticular wax crystals, making these mutants excellent tools for identifying elongase and modification pathway biosynthetic genes. Positional cloning of the gene mutated in cer-zh identified an elongase component, β-ketoacyl-CoA synthase (CER-ZH/HvKCS1) that is one of 34 homologous KCSs encoded by the barley genome. The biochemical function of CER-ZH was deduced from wax and cutin analyses and by heterologous expression in yeast. Combined, these experiments revealed that CER-ZH/HvKCS1 has a substrate specificity for C16-C20, especially unsaturated, acyl chains, thus playing a major role in total acyl chain elongation for wax biosynthesis. The contribution of CER-ZH to water barrier properties of the cuticle and its influence on the germination of barley powdery mildew fungus were also assessed.

  8. stability analysis of food barley genotypes in northern ethiopia

    African Journals Online (AJOL)

    ACSS

    interaction and stability for barley grain yield and yield related traits in the growing ... that the environments were diverse; causing most of the variation in grain yield. ... component axes IPCA1, IPCA2 and IPCA3, which explained 58.06, 27.11 and ..... AMMI analysis of variance for grain yield (t ha-1) of food barley genotypes ...

  9. Characterization of the newly isolated Geobacillus sp. T1, the efficient cellulase-producer on untreated barley and wheat straws.

    Science.gov (United States)

    Assareh, Reza; Shahbani Zahiri, Hossein; Akbari Noghabi, Kambiz; Aminzadeh, Saeed; Bakhshi Khaniki, Gholamreza

    2012-09-01

    A thermophile cellulase-producing bacterium was isolated and identified as closely related to Geobacillus subterraneus. The strain, named Geobacillus sp. T1, was able to grow and produce cellulase on cellobiose, microcrystalline cellulose, carboxymethylcellulose (CMC), barley straw, wheat straw and Whatman No. 1 filter paper. However, barley and wheat straws were significantly better substrates for cellulase production. When Geobacillus sp. T1 was cultivated in the presence of 0.5% barley straw, 0.1% Tween 80 and pH 6.5 at 50°C, the maximum level of free cellulase up to 143.50 U/mL was produced after 24h. This cellulase (≈ 54 kDa) was most active at pH 6.5 and 70°C. The enzyme in citrate phosphate buffer (10mM) was stable at 60°C for at least 1h. Geobacillus sp. T1 with efficient growth and cellulase production on straws seems a potential candidate for conversion of agricultural biomass to fuels. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. Green Barley as an Ingredient in Pasta: Antioxidant Activity and Sensory Characteristics Evaluation

    Directory of Open Access Journals (Sweden)

    Ivanišová Eva

    2018-03-01

    Full Text Available The aims of the present study was to determine antioxidant activity, sensory properties as well as total polyphenol, flavonoid and chlorophyll content of raw and cooked pasta enriched by 1%, 3% and 5% addition of green barley powder. Results of antioxidant activity showed that increase of green barley addition increase antioxidant activity of pasta. The values in raw pasta obtained by DPPH ranged from 1.17 (control to 1.81 (5% addition mg TEAC/g DM, after cooking values ranged from 0.82 (control to 1.59 (5% addition mg TEAC/g DM. Similar tendency was signed by molybdenum reducing antioxidant power method. In enriched pasta was also found higher content of total polyphenol (0.19 in control raw sample and 1.81 mg GAE/g DM in pasta with 5 % of green barley addition; values of cooked pasta ranged from 0.10 in control sample to 0.73 mg GAE/g DM in pasta with 5 % of green barley addition as well as total flavonoid content (results of raw pasta were from 0.00 in control sample to 0.41 mg QE/g DM in pasta with 5% of green barley addition; values of cooked pasta were from 0.00 in control sample to 0.29 mg QE/g DM in variant with 5% green barley. Green barley also enriched pasta for chlorophyll with the best results in 5% addition. From prepared variants of enriched pasta the best overall acceptability was sign in 3% of green barley addition. Pastas enriched with plant-derived bioactive compounds such as green barley may confer health benefits to consumers.

  11. Contribution of the drought tolerance-related Stress-responsive NAC1 transcription factor to resistance of barley to Ramularia leaf spot

    OpenAIRE

    MCGRANN, GRAHAM R D; STEED, ANDREW; BURT, CHRISTOPHER; GODDARD, RACHEL; LACHAUX, CLEA; BANSAL, ANURADHA; CORBITT, MARGARET; GORNIAK, KALINA; NICHOLSON, PAUL; BROWN, JAMES K M

    2014-01-01

    NAC proteins are plant transcription factors that are involved in tolerance to abiotic and biotic stresses, as well as in many developmental processes. Stress-responsive NAC1 (SNAC1) transcription factor is involved in drought tolerance in barley and rice, but has not been shown previously to have a role in disease resistance. Transgenic over-expression of HvSNAC1 in barley cv. Golden Promise reduced the severity of Ramularia leaf spot (RLS), caused by the fungus Ramularia collo-cygni, but ha...

  12. Radiosensitivities of cultured barley of different type (Hordeum vulgare)

    International Nuclear Information System (INIS)

    Wang Cailian; Shen Mei; Xu Gang; Zhao Kongnan

    1990-01-01

    The dormant seeds (with 13% moisture) of 47 barley varieties were irradiated with various doses (0-40 krad) of 137 Cs γ-rays. The radiosensitivities of naked barley was significantly higher than that of hulled barley. The sensitive coefficients of seedling height were 0.04945 and 0.03667 for naked barley and hulled barley, respectively. The radiosensitivity of four-row naked barley was significantly higher than that of two-row hulled barley and six-row hulled barley. 47 varieties studied could be divided into five types with different radiosensitivities, i.e. extreme resistant, resistant, intermediate, sensitive and extreme sensitive. It was also found that the dose-effect curves of cell nucleus volume had a peal at 30 krad

  13. Characterization of volatile aroma compounds in different brewing barley cultivars.

    Science.gov (United States)

    Dong, Liang; Hou, Yingmin; Li, Feng; Piao, Yongzhe; Zhang, Xiao; Zhang, Xiaoyu; Li, Cheng; Zhao, Changxin

    2015-03-30

    Beer is a popular alcoholic malt beverage resulting from fermentation of the aqueous extract of malted barley with hops. The aroma of brewing barley impacts the flavor of beer indirectly, because some flavor compounds or their precursors in beer come from the barley. The objectives of this research were to study volatile profiles and to characterize odor-active compounds of brewing barley in order to determine the variability of the aroma composition among different brewing barley cultivars. Forty-one volatiles comprising aldehydes, ketones, alcohols, organic acids, aromatic compounds and furans were identified using solid phase microextraction combined with gas chromatography/mass spectrometry, among which aldehydes, alcohols and ketones were quantitatively in greatest abundance. Quantitative measurements performed by means of solvent extraction and calculation of odor activity values revealed that acetaldehyde, 2-methylpropanal, 3-methylbutanal, 2-methylbutanal, hexanal, heptanal, octanal, nonanal, 3-methyl-1-butanol, cyclopentanol, 2,3-butanedione, 2,3-pentanedione, 2-heptanone, acetic acid, ethyl acetate, 2-pentylfuran and benzeneacetaldehyde, whose concentrations exceeded their odor thresholds, could be considered as odor-active compounds of brewing barley. Principal component analysis was employed to evaluate the differences among cultivars. The results demonstrated that the volatile profile based on the concentrations of aroma compounds enabled good differentiation of most barley cultivars. © 2014 Society of Chemical Industry.

  14. Water uptake in barley grain: Physiology; genetics and industrial applications.

    Science.gov (United States)

    Cu, Suong; Collins, Helen M; Betts, Natalie S; March, Timothy J; Janusz, Agnieszka; Stewart, Doug C; Skadhauge, Birgitte; Eglinton, Jason; Kyriacou, Bianca; Little, Alan; Burton, Rachel A; Fincher, Geoffrey B

    2016-01-01

    Water uptake by mature barley grains initiates germination and is the first stage in the malting process. Here we have investigated the effects of starchy endosperm cell wall thickness on water uptake, together with the effects of varying amounts of the wall polysaccharide, (1,3;1,4)-β-glucan. In the latter case, we examined mutant barley lines from a mutant library and transgenic barley lines in which the (1,3;1,4)-β-glucan synthase gene, HvCslF6, was down-regulated by RNA interference. Neither cell wall thickness nor the levels of grain (1,3;1,4)-β-glucan were significantly correlated with water uptake but are likely to influence modification during malting. However, when a barley mapping population was phenotyped for rate of water uptake into grain, quantitative trait locus (QTL) analysis identified specific regions of chromosomes 4H, 5H and 7H that accounted for approximately 17%, 18% and 11%, respectively, of the phenotypic variation. These data indicate that variation in water uptake rates by elite malting cultivars of barley is genetically controlled and a number of candidate genes that might control the trait were identified under the QTL. The genomics data raise the possibility that the genetic variation in water uptake rates might be exploited by breeders for the benefit of the malting and brewing industries. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  15. Radiosensitivity study of cultured barley (hordeum vulgare)

    International Nuclear Information System (INIS)

    Wang Cailian; Shen Mei; Xu Gang; Zhao Kongnan; Chen Qiufang

    1991-07-01

    For studying the radioactivity, forty seven varieties of dormant barley seeds were irradiated with various doses (0 ∼ 400 Gy) of 137 Cs γ-rays. The results showed that the dose-effects relations of seedling growth inhibition could be fitted by an equation of F(D) = 1 - (1 - e -a 1 D ) N , and the dose-effects of cell-nucleus, the frequency of root tip cell with chromosome aberations and peroxidase isoenzyme band could be expressed by a linear regression equation Y = A + B · X. The radioactivity of naked barley was much higher than of covered barley. According to different radiosensitivities the varieties studied could be divided into five types i.e. extreme resistant, resistant, intermediate, sensitive, and extreme sensitive. The results also showed that there was close relationship between the DNA content of cell-nucleus, peroxidase isoenzyme zymogram and radioactivity. The radiosensitivty was proportional to the DNA content. The volume of cell-nucleus varied inversly as D 50 of nucleus volume and no obvious correlation with the D 50 of seedling growth inhibition

  16. Messenger RNAs from the Scutellum and Aleurone of Germinating Barley Encode (1-->3,1-->4)-beta-d-Glucanase, alpha-Amylase and Carboxypeptidase

    DEFF Research Database (Denmark)

    Mundy, John; Brandt, Anders; Fincher, Geoffrey B

    1985-01-01

    Polyclonal antibodies raised against barley (1-->3,1-->4)-beta-d-glucanase, alpha-amylase and carboxypeptidase were used to detect precursor polypeptides of these hydrolytic enzymes among the in vitro translation products of mRNA isolated from the scutellum and aleurone of germinating barley....... In the scutellum, mRNA encoding carboxypeptidase appeared to be relatively more abundant than that encoding alpha-amylase or (1-->3,1-->4)-beta-d-glucanase, while in the aleurone alpha-amylase and (1-->3,1-->4)-beta-d-glucanase mRNAs predominated. The apparent molecular weights of the precursors for (1......-->3,1-->4)-beta-d-glucanase, alpha-amylase, and carboxypeptidase were 33,000, 44,000, and 35,000, respectively. In each case these are slightly higher (1,500-5,000) than molecular weights of the mature enzymes. Molecular weights of precursors immunoprecipitated from aleurone and scutellum mRNA translation...

  17. Effect of microwave freeze drying on quality and energy supply in drying of barley grass.

    Science.gov (United States)

    Cao, Xiaohuang; Zhang, Min; Mujumdar, Arun S; Zhong, Qifeng; Wang, Zhushang

    2018-03-01

    Young barley grass leaves are well-known for containing the antioxidant substances flavonoid and chlorophyll. However, low product quality and energy efficiency exist with respect to the dehydration of barley grass leaves. To improve energy supply and the quality of barley grass, microwave heating instead of contact heat was applied for the freeze drying of barley grass at a pilot scale at 1, 1.5 and 2 W g -1 , respectively; After drying, energy supply and quality parameters of color, moisture content, chlorophyll, flavonoids, odors of dried barley grass were determined to evaluate the feasibility of the study. Microwave freeze drying (MFD) allowed a low energy supply and high contents of chlorophyll and flavonoids. A lightness value of 60.0, a green value of -11.5 and an energy supply of 0.61 kW h -1  g -1 were observed in 1.5 W g -1 MFD; whereas drying time (7 h) decreased by 42% compared to contact heating. Maximum content of flavonoid and chlorophyll was 11.7 and 12.8 g kg -1 barley grass. Microwave heating leads to an odor change larger than that for contact heating observed for the freeze drying of barley grass. MFD retains chlorophyll and flavonoids, as well as colors and odors of samples, and also decreases energy consumption in the freeze drying of barley grass. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  18. Heat Stress Affects Pi-related Genes Expression and Inorganic Phosphate Deposition/Accumulation in Barley

    DEFF Research Database (Denmark)

    Pacak, Andrzej; Barciszewska-Pacak, Maria; Swida-Barteczka, Aleksandra

    2016-01-01

    Phosphorus (P) in plants is taken from soil as an inorganic phosphate (Pi) and is one of the most important macroelements in growth and development. Plants actively react to Pi starvation by the induced expression of Pi transporters, MIR399, MIR827, and miR399 molecular sponge - IPS1 genes...... and by the decreased expression of the ubiquitin-conjugating enzyme E2 (PHOSPHATE2 - PHO2) and Pi sensing and transport SPX-MFS genes. The PHO2 protein is involved in the degradation of Pi transporters PHT1;1 (from soil to roots) and PHO1 (from roots to shoots). The decreased expression of PHO2 leads to Pi....... In shoots, the PHO2 mRNA level is decreased, leading to an increased Pi level. We concluded that Pi homeostasis in barley during heat stress is maintained by dynamic changes in Pi-related genes expression....

  19. TILLING in the two-rowed barley cultivar 'Barke' reveals preferred sites of functional diversity in the gene HvHox1

    Directory of Open Access Journals (Sweden)

    Komatsuda Takao

    2009-12-01

    Full Text Available Abstract Background The economic importance of cereals such as barley, and the demand for improved yield and quality require a better understanding of the genetic components that modulate biologically and commercially relevant traits. While Arabidopsis thaliana is the premiere model plant system, the spectrum of its traits cannot address all of the fundamental questions of crop plant development. Unlike Arabidopsis, barley is both a crop and a model system for scientific research, and it is increasingly being used for genetic and molecular investigations into the conserved biological processes of cereals. A common challenge in genetic studies in plants with large genomes arises from the very time-consuming work of associating mutant phenotypes with gene sequence information, especially if insertion mutagenesis is not routine, as in barley. Reverse genetics based on chemical mutagenesis represents the best solution to this obstacle. Findings In barley, we generated a new TILLING (Targeting Local Lesions IN Genomes resource comprising 10,279 M2 mutants in the two-rowed malting cultivar 'Barke,' which has been used in the generation of other genomic resources in barley (~150,000 ESTs, DH mapping population. The value of this new resource was tested using selected candidate genes. An average frequency of approximately one mutation per 0.5 Mb was determined by screening ten fragments of six different genes. The ethyl methanesulphonate (EMSmutagenesis efficiency was studied by recording and relating the mutagenesis-dependent effects found in the three mutant generations (M1-M3. A detailed analysis was performed for the homeodomain-leucine-zipper (HD-ZIP gene HvHox1. Thirty-one mutations were identified by screening a 1,270-bp fragment in 7,348 M2 lines. Three of the newly identified mutants exhibited either a six-rowed or an intermedium-spike phenotype, and one mutant displayed a significantly altered spikelet morphology compared to that of the 'Barke

  20. Revisit to Ethiopian traditional barley-based food

    Directory of Open Access Journals (Sweden)

    Jemal Mohammed

    2016-06-01

    Full Text Available Barley is the number one food crop in the highland parts of North Eastern Ethiopia produced by subsistence farmers grown as landraces. Barley producers in Ethiopia have given it the name gebs ye ehil nigus, which means barley is the king of crops, due to its suitability for preparing many of the known Ethiopians traditional dishes. Various barley foods and drinks play an important role in the socioeconomic and cultural life of Ethiopians, but detailed descriptions related to their preparation and their socioeconomic and cultural roles are not well-recorded and documented like most of the Ethiopian cultural foods. Foods such as ingera, kita, dabo, kolo, genfo, beso, chuko, shamet, tihlo, kinch, and shorba are the most commonly known traditional Ethiopian barley-based foods. These products are prepared from either roasted whole grain, raw and roasted-milled grain, or cracked grain as main, side, ceremonial, and recuperating dishes. The various barley-based traditional foods have perceived qualities and health benefits by the consumers. For example, genfo is served to breast-feeding mothers with the belief that it enhances breast milk production and serves as a good substitute for breast milk. Beso is claimed to be a remedy for gastritis, while genfo and kinche are used to heal broken bones and fractures. Considering the Western consumers' trend on functional foods and health benefits of barley, Ethiopian traditional barley-based foods are worth studying as functional foods, which can be appealing to Western consumers.

  1. Expression of the Arabidopsis vacuolar H+-pyrophosphatase gene (AVP1) improves the shoot biomass of transgenic barley and increases grain yield in a saline field

    KAUST Repository

    Schilling, Rhiannon K.

    2013-11-22

    Cereal varieties with improved salinity tolerance are needed to achieve profitable grain yields in saline soils. The expression of AVP1, an Arabidopsis gene encoding a vacuolar proton pumping pyrophosphatase (H+-PPase), has been shown to improve the salinity tolerance of transgenic plants in greenhouse conditions. However, the potential for this gene to improve the grain yield of cereal crops in a saline field has yet to be evaluated. Recent advances in high-throughput nondestructive phenotyping technologies also offer an opportunity to quantitatively evaluate the growth of transgenic plants under abiotic stress through time. In this study, the growth of transgenic barley expressing AVP1 was evaluated under saline conditions in a pot experiment using nondestructive plant imaging and in a saline field trial. Greenhouse-grown transgenic barley expressing AVP1 produced a larger shoot biomass compared to segregants, as determined by an increase in projected shoot area, when grown in soil with 150 mm NaCl. This increase in shoot biomass of transgenic AVP1 barley occurred from an early growth stage and also in nonsaline conditions. In a saline field, the transgenic barley expressing AVP1 also showed an increase in shoot biomass and, importantly, produced a greater grain yield per plant compared to wild-type plants. Interestingly, the expression of AVP1 did not alter barley leaf sodium concentrations in either greenhouse- or field-grown plants. This study validates our greenhouse-based experiments and indicates that transgenic barley expressing AVP1 is a promising option for increasing cereal crop productivity in saline fields. © 2013 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  2. Expression of the Arabidopsis vacuolar H+-pyrophosphatase gene (AVP1) improves the shoot biomass of transgenic barley and increases grain yield in a saline field

    KAUST Repository

    Schilling, Rhiannon K.; Marschner, Petra; Shavrukov, Yuri N.; Berger, Bettina; Tester, Mark A.; Roy, Stuart John; Plett, Darren Craig

    2013-01-01

    Cereal varieties with improved salinity tolerance are needed to achieve profitable grain yields in saline soils. The expression of AVP1, an Arabidopsis gene encoding a vacuolar proton pumping pyrophosphatase (H+-PPase), has been shown to improve the salinity tolerance of transgenic plants in greenhouse conditions. However, the potential for this gene to improve the grain yield of cereal crops in a saline field has yet to be evaluated. Recent advances in high-throughput nondestructive phenotyping technologies also offer an opportunity to quantitatively evaluate the growth of transgenic plants under abiotic stress through time. In this study, the growth of transgenic barley expressing AVP1 was evaluated under saline conditions in a pot experiment using nondestructive plant imaging and in a saline field trial. Greenhouse-grown transgenic barley expressing AVP1 produced a larger shoot biomass compared to segregants, as determined by an increase in projected shoot area, when grown in soil with 150 mm NaCl. This increase in shoot biomass of transgenic AVP1 barley occurred from an early growth stage and also in nonsaline conditions. In a saline field, the transgenic barley expressing AVP1 also showed an increase in shoot biomass and, importantly, produced a greater grain yield per plant compared to wild-type plants. Interestingly, the expression of AVP1 did not alter barley leaf sodium concentrations in either greenhouse- or field-grown plants. This study validates our greenhouse-based experiments and indicates that transgenic barley expressing AVP1 is a promising option for increasing cereal crop productivity in saline fields. © 2013 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  3. Electrospray mass spectrometry characterization of post-translational modifications of barley alpha-amylase 1 produced in yeast

    DEFF Research Database (Denmark)

    Søgaard, M; Andersen, Jens S.; Roepstorff, P

    1993-01-01

    We have used electrospray mass spectrometry (ESMS) in combination with protein chemistry and genetics to delineate post-translational modifications in yeast of barley alpha-amylase 1 (AMY1), a 45 kD enzyme crucial for production of malt, an important starting material in the manufacture of beer...

  4. Winter forage quality of oats (avena sativa), barley (hordeum vulgare) and vetch (vicia sativa) in pure stand and cereal legume mixture

    International Nuclear Information System (INIS)

    Ullah, Z.

    2015-01-01

    A field study was carried out for two consecutive years in subtropical rainfed conditions of Rawalpindi, Pakistan to evaluate the forage quality of oats, barley and vetch grown in pure stands and cereal-legume mixtures. Treatments comprised oats pure stand, oats in oats-vetch mixture, barley pure stand, barley in barley-vetch mixture, vetch pure stand, vetch in oats-vetch mixture and vetch in barley-vetch mixture. Forage yield and quality of oats and barley were improved in oats-vetch and barley-vetch mixtures than their respective pure stands. The higher values of crude protein (CP) and lower values of neutral detergent fiber (NDF) and acid detergent fiber (ADF) reflected quality forage. CP for oats in oats-vetch -1 -1 mixture and barley in barley-vetch mixture was 175 g kg and 170 g kg, -1 respectively. NDF and ADF for oats in oats-vetch mixture were 494 g kg /sup -1/ and 341 g kg, respectively; while these values for barley in barley-vetch -1 -1 mixture were 340 g kg and 176 g kg, respectively. (author)

  5. Low-Resolution Structure of the Full-Length Barley (Hordeum vulgare) SGT1 Protein in Solution, Obtained Using Small-Angle X-Ray Scattering

    Science.gov (United States)

    Taube, Michał; Pieńkowska, Joanna R.; Jarmołowski, Artur; Kozak, Maciej

    2014-01-01

    SGT1 is an evolutionarily conserved eukaryotic protein involved in many important cellular processes. In plants, SGT1 is involved in resistance to disease. In a low ionic strength environment, the SGT1 protein tends to form dimers. The protein consists of three structurally independent domains (the tetratricopeptide repeats domain (TPR), the CHORD- and SGT1-containing domain (CS), and the SGT1-specific domain (SGS)), and two less conserved variable regions (VR1 and VR2). In the present study, we provide the low-resolution structure of the barley (Hordeum vulgare) SGT1 protein in solution and its dimer/monomer equilibrium using small-angle scattering of synchrotron radiation, ab-initio modeling and circular dichroism spectroscopy. The multivariate curve resolution least-square method (MCR-ALS) was applied to separate the scattering data of the monomeric and dimeric species from a complex mixture. The models of the barley SGT1 dimer and monomer were formulated using rigid body modeling with ab-initio structure prediction. Both oligomeric forms of barley SGT1 have elongated shapes with unfolded inter-domain regions. Circular dichroism spectroscopy confirmed that the barley SGT1 protein had a modular architecture, with an α-helical TPR domain, a β-sheet sandwich CS domain, and a disordered SGS domain separated by VR1 and VR2 regions. Using molecular docking and ab-initio protein structure prediction, a model of dimerization of the TPR domains was proposed. PMID:24714665

  6. SPRING BARLEY BREEDING FOR MALTING QUALITY

    Directory of Open Access Journals (Sweden)

    Alžbeta Žofajová

    2010-05-01

    Full Text Available The aim of this contribution is to illustrate the results of spring barley breeding for malting quality and point out an important position of variety in production of  qualitative  raw material for maltinq and beer  industry as well as the system of evaluation the qualitative parameters of breeding materials and adaptation of barley breeding programms to the  new requirements of  malting and beer industry. As an example of the results obtained most recently description is made of the Ezer, Levan, Donaris, Sladar spring barley varieties with very good malting quality and effective resistance to  powdery mildew.  Cultivation of these varieties  and malting barley production with  reduced use  of pesticidies is environmentally friedly alternative. doi:10.5219/50

  7. The adsorption of α-amylase on barley proteins affects the in vitro digestion of starch in barley flour.

    Science.gov (United States)

    Yu, Wenwen; Zou, Wei; Dhital, Sushil; Wu, Peng; Gidley, Michael J; Fox, Glen P; Gilbert, Robert G

    2018-02-15

    The conversion of barley starch to sugars is a complex enzymic process. Most previous work concerned the biotechnical aspect of in situ barley enzymes. However, the interactions among the macromolecular substrates and their effects on enzymic catalysis has been little examined. Here, we explore the mechanisms whereby interactions of protein and starch in barley flour affect the kinetics of enzymatic hydrolysis of starch in an in vitro system, using digestion rate data and structural analysis by confocal microscopy. The degradation kinetics of both uncooked barley flour and of purified starches are found to be two-step sequential processes. Barley proteins, especially the water-soluble component, are found to retard the digestion of starch degraded by α-amylase: the enzyme binds with water-insoluble protein and with starch granules, leading to reduced starch hydrolysis. These findings are of potential industrial value in both the brewing and food industries. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Barley grain for ruminants: A global treasure or tragedy

    Directory of Open Access Journals (Sweden)

    Nikkhah Akbar

    2012-07-01

    Full Text Available Abstract Barley grain (Hordeum vulgare L. is characterized by a thick fibrous coat, a high level of ß-glucans and simply-arranged starch granules. World production of barley is about 30 % of that of corn. In comparison with corn, barley has more protein, methionine, lysine, cysteine and tryptophan. For ruminants, barley is the third most readily degradable cereal behind oats and wheat. Due to its more rapid starch fermentation rate compared with corn, barley also provides a more synchronous release of energy and nitrogen, thereby improving microbial nutrient assimilation. As a result, feeding barley can reduce the need for feeding protected protein sources. However, this benefit is only realized if rumen acidity is maintained within an optimal range (e.g., > 5.8 to 6.0; below this range, microbial maintenance requirements and wastage increase. With a low pH, microbial endotoxines cause pro-inflammatory responses that can weaken immunity and shorten animal longevity. Thus, mismanagement in barley processing and feeding may make a tragedy from this treasure or pearl of cereal grains. Steam-rolling of barley may improve feed efficiency and post-rumen starch digestion. However, it is doubtful if such processing can improve milk production and feed intake. Due to the need to process barley less extensively than other cereals (as long as the pericarp is broken, consistent and global standards for feeding and processing barley could be feasibly established. In high-starch diets, barley feeding reduces the need for capacious small intestinal starch assimilation, subsequently reducing hindgut starch use and fecal nutrient loss. With its nutritional exclusivities underlined, barley use will be a factual art that can either matchlessly profit or harm rumen microbes, cattle production, farm economics and the environment.

  9. Roles of Hydroxynitrile Glucosides in Barley

    DEFF Research Database (Denmark)

    Roelsgaard, Pernille Sølvhøj

    on barley (Hordeum vulgare). Barley accumulates five hydroxynitrile glucosides, including one cyanogenic glucoside, in the epidermal cell layer. Cyanogenic glucosides are classically known as hydrogen cyanide-releasing defense compounds which act against generalist insects and herbivores. However...... is proposed. The results obtained in this Ph.D. study provide a unique insight demonstrating that hydroxynitrile glucosides play a far more complex role in barley defense against and susceptibility to Bgh than previously described. Future studies can build on the platforms established in this study to provide...

  10. Expression conservation within the circadian clock of a monocot: natural variation at barley Ppd-H1 affects circadian expression of flowering time genes, but not clock orthologs.

    Science.gov (United States)

    Campoli, Chiara; Shtaya, Munqez; Davis, Seth J; von Korff, Maria

    2012-06-21

    The circadian clock is an endogenous mechanism that coordinates biological processes with daily changes in the environment. In plants, circadian rhythms contribute to both agricultural productivity and evolutionary fitness. In barley, the photoperiod response regulator and flowering-time gene Ppd-H1 is orthologous to the Arabidopsis core-clock gene PRR7. However, relatively little is known about the role of Ppd-H1 and other components of the circadian clock in temperate crop species. In this study, we identified barley clock orthologs and tested the effects of natural genetic variation at Ppd-H1 on diurnal and circadian expression of clock and output genes from the photoperiod-response pathway. Barley clock orthologs HvCCA1, HvGI, HvPRR1, HvPRR37 (Ppd-H1), HvPRR73, HvPRR59 and HvPRR95 showed a high level of sequence similarity and conservation of diurnal and circadian expression patterns, when compared to Arabidopsis. The natural mutation at Ppd-H1 did not affect diurnal or circadian cycling of barley clock genes. However, the Ppd-H1 mutant was found to be arrhythmic under free-running conditions for the photoperiod-response genes HvCO1, HvCO2, and the MADS-box transcription factor and vernalization responsive gene Vrn-H1. We suggest that the described eudicot clock is largely conserved in the monocot barley. However, genetic differentiation within gene families and differences in the function of Ppd-H1 suggest evolutionary modification in the angiosperm clock. Our data indicates that natural variation at Ppd-H1 does not affect the expression level of clock genes, but controls photoperiodic output genes. Circadian control of Vrn-H1 in barley suggests that this vernalization responsive gene is also controlled by the photoperiod-response pathway. Structural and functional characterization of the barley circadian clock will set the basis for future studies of the adaptive significance of the circadian clock in Triticeae species.

  11. Modification of barley powdery mildew resistance controlled by the gene M1-a212

    International Nuclear Information System (INIS)

    Torp, J.; Joergensen, J.H.

    1989-01-01

    Full text: The barley line Sultan 5 carries resistance gene M1-a12. Seeds were treated with EMS or NaN 3 . Among 10381 M 1 -spike progenies inoculated with M1-a12 a-virulent isolates of Erysiphe graminis, 25 segregated for less resistant infection type. Among 10 mutants analyzed, 9 had mutant allels of M1-a12 and one had a recessive mutant gene in a different locus acting as a ''suppressor'' of M1-a12. (author)

  12. Near infrared spectra indicate specific mutant endosperm genes and reveal a new mechanism for substituting starch with (1-->3,1-->4)-[beta]-glucan in barley

    DEFF Research Database (Denmark)

    Munck, L.; Møller, B.; Jacobsen, Susanne

    2004-01-01

    -->3,1-->4)-[beta]-glucan (up to 15-20%), thus, maintaining a constant production of polysaccharides at 50-55%, within the range of normal barley.The spectral tool was tested by an independent data set with six mutants with unknown polysaccharide composition. Spectral data from four of these were classified within...... the high (1-->3,1-->4)-[beta]-glucan BG lys5 cluster in a PCA. Their high (1-->3,1-->4)-[beta]-glucan and low starch content was verified. It is concluded that genetic diversity such as from gene regulated polysaccharide and storage protein pathways in the endosperm tissue can be discovered directly from...... the phenotype by chemometric classification of a spectral library, representing the digitised phenome from a barley gene bank....

  13. Occurrence of deoxynivalenol and zearalenone in brewing barley grains from Brazil.

    Science.gov (United States)

    Piacentini, Karim C; Rocha, L O; Savi, G D; Carnielli-Queiroz, L; Almeida, F G; Minella, E; Corrêa, B

    2018-03-09

    Barley (Hordeum vulgare L.) is an important cereal crop for food and represents one of the main ingredients in beer production. Considering the importance of barley and its derived products, the knowledge about the mycotoxin contamination in the barley production is essential in order to assess its safety. In this study, the levels of deoxynivalenol (DON) and zearalenone (ZEN) in brewing barley were determined using a LC-MS/MS method. A survey was conducted in 2015 to estimate the mycotoxin levels in these products (n = 76) from four crop regions in Brazil. The results showed high levels of DON and ZEN in the analyzed samples, with contamination levels of 94 and 73.6%, respectively. The mean levels of DON and ZEN ranged from 1700 to 7500 μg/kg and from 300 to 630 μg/kg, respectively. Barley samples from regions 1 and 2 presented higher levels of ZEN and DON, respectively, and those from region 4 presented lower levels of both. Co-occurrence of DON and ZEN was seen in the majority of the barley grain samples, and the mycotoxin content was above the maximum levels established by the Brazilian and European regulations.

  14. Effects of Different Soil Tillage Intensity on Yields of Spring Barley

    Directory of Open Access Journals (Sweden)

    Alena Pernicová

    2014-01-01

    Full Text Available Within the period 1990–2012, effects of different soil tillage intensity on yields of spring barley were studied in a field experiment in the sugar-beet producing region (Ivanovice na Hané, Czech Republic. The forecrop of the spring barley was always sugar beet; following in three different crop rotations, after maize for silage, winter wheat and spring barley. Four variants of tillage were evaluated: Variant 1 – ploughing to the depth of 0.22 m; Variant 2 – shallow ploughing to the depth of 0.15 m; Variant 3 – no tillage; Variant 4 – shallow loosening soil to the depth of 0.10 m.Effect of different tillage on yields of spring barley was statistically insignificant. In all three crop rotations, the highest and the lowest average yields were obtained in Variant 2 (ploughing to the depth of 0.15 m and Variant 1 (ploughing to the depth of 0.22 m, respectively. Average yields in variants of soil tillage were these: variant 1 – 6.42 t.ha−1; variant 2 – 6.57 t.ha−1, variant 3 – 6.53 t.ha−1, variant 4 – 6.50 t.ha−1. The obtained results indicate that in these pedo-climatic conditions reduction of intensity soil tillage represented a very suitable alternative in case of growing spring barley after sugar beet as compared with the conventional method of tillage by ploughing to the depth of 0.22 m.

  15. Transcriptome Comparative Profiling of Barley eibi1 Mutant Reveals Pleiotropic Effects of HvABCG31 Gene on Cuticle Biogenesis and Stress Responsive Pathways

    Directory of Open Access Journals (Sweden)

    Eviatar Nevo

    2013-10-01

    Full Text Available Wild barley eibi1 mutant with HvABCG31 gene mutation has low capacity to retain leaf water, a phenotype associated with reduced cutin deposition and a thin cuticle. To better understand how such a mutant plant survives, we performed a genome-wide gene expression analysis. The leaf transcriptomes between the near-isogenic lines eibi1 and the wild type were compared using the 22-k Barley1 Affymetrix microarray. We found that the pleiotropic effect of the single gene HvABCG31 mutation was linked to the co-regulation of metabolic processes and stress-related system. The cuticle development involved cytochrome P450 family members and fatty acid metabolism pathways were significantly up-regulated by the HvABCG31 mutation, which might be anticipated to reduce the levels of cutin monomers or wax and display conspicuous cuticle defects. The candidate genes for responses to stress were induced by eibi1 mutant through activating the jasmonate pathway. The down-regulation of co-expressed enzyme genes responsible for DNA methylation and histone deacetylation also suggested that HvABCG31 mutation may affect the epigenetic regulation for barley development. Comparison of transcriptomic profiling of barley under biotic and abiotic stresses revealed that the functions of HvABCG31 gene to high-water loss rate might be different from other osmotic stresses of gene mutations in barley. The transcriptional profiling of the HvABCG31 mutation provided candidate genes for further investigation of the physiological and developmental changes caused by the mutant.

  16. Amylolytic strains of Lactobacillus plantarum isolated from barley ...

    African Journals Online (AJOL)

    ... naturally present in barley, and produced cell-bound and cell-free α-amylase at alkaline conditions. The two strains may be developed into starter cultures to facilitate the germination of barley and produce malt with a higher fermentable sugar content. Key words: Lactobacillus plantarum, starch hydrolysis, barley, malting ...

  17. Brachypodium distachyon line Bd3-1 resistance is elicited by the barley stripe mosaic virus triple gene block 1 movement protein

    NARCIS (Netherlands)

    Lee, M.Y.; Yan, L.J.; Gorter, F.A.; Kim, B.Y.T.; Cui, Y.; Hu, Y.; Yuan, C.; Grindheim, J.; Ganesan, U.; Liu, Z.Y.; Han, C.G.; Yu, J.L.; Li, D.W.; Jackson, A.O.

    2012-01-01

    Barley stripe mosaic virus North Dakota 18 (ND18), Beijing (BJ), Xinjiang (Xi), Type (TY) and CV21 strains are unable to infect the Brachypodium distachyon Bd3-1 inbred line, which harbours a resistance gene designated Bsr1, but the Norwich (NW) strain is virulent on Bd3-1. Analysis of ND18 and NW

  18. Implementation of biochemical screening to improve baking quality of barley

    DEFF Research Database (Denmark)

    Vincze, Éva; Dionisio, Giuseppe; Aaslo, Per

    2011-01-01

    Barley (Hordeum vulgare) has the potential to offer considerable human nutritional benefits, especially as supplement to wheat-based breads. Under current commercial baking conditions it is not possible to introduce more that 20% barley flour to the wheat bread without negative impact on the phys......Barley (Hordeum vulgare) has the potential to offer considerable human nutritional benefits, especially as supplement to wheat-based breads. Under current commercial baking conditions it is not possible to introduce more that 20% barley flour to the wheat bread without negative impact...... on the physical chemical properties of the bread products due to the poor baking properties of barley flour. As a consequence, the nutritional advantages of barley are not fully exploited. The inferior leavening and baking properties of barley can, in part, be attributed to the physical properties of the storage...... proteins. Changing the storage protein composition can lessen this problem. Our working hypothesis was that exploiting the substantial genetic variation within the gene pool for storage proteins could enable improving the baking qualities of barley flour. We characterised forty-nine barley cultivars...

  19. Possible evidence for transport of an iron cyanide complex by plants

    International Nuclear Information System (INIS)

    Samiotakis, M.; Ebbs, S.D.

    2004-01-01

    Barley (Hordeum vulgare L.), oat (Avena sativa L.), and wild cane (Sorghum bicolor L.), were exposed to 15 N-labeled ferrocyanide to determine whether these plant species can transport this iron cyanide complex. Plants were treated with ferrocyanide in a nutrient solution that simulated iron cyanide contaminated groundwater and soil solutions. This nutrient solution has been shown to maintain ferrocyanide speciation with minimal dissociation to free cyanide. Following treatment, all three plants showed dramatic enrichments in roots (δ 15 N%o=1000-1500) and shoots (δ 15 N%o=500). Barley and oat showed enrichment primarily in roots while wild cane showed a near equal enrichment in root and shoot tissues. Nitrogen-deficient barley plants treated with ferrocyanide showed a significantly greater 15 N enrichment as compared to nitrogen-sufficient plants. While the results are suggestive of ferrocyanide transport by these plant species, additional study will be required to verify these results. - Results suggest ferrocyanide transport by barley, oat and wild cane

  20. Possible evidence for transport of an iron cyanide complex by plants

    Energy Technology Data Exchange (ETDEWEB)

    Samiotakis, M.; Ebbs, S.D

    2004-01-01

    Barley (Hordeum vulgare L.), oat (Avena sativa L.), and wild cane (Sorghum bicolor L.), were exposed to {sup 15}N-labeled ferrocyanide to determine whether these plant species can transport this iron cyanide complex. Plants were treated with ferrocyanide in a nutrient solution that simulated iron cyanide contaminated groundwater and soil solutions. This nutrient solution has been shown to maintain ferrocyanide speciation with minimal dissociation to free cyanide. Following treatment, all three plants showed dramatic enrichments in roots ({delta} {sup 15}N%o=1000-1500) and shoots ({delta} {sup 15}N%o=500). Barley and oat showed enrichment primarily in roots while wild cane showed a near equal enrichment in root and shoot tissues. Nitrogen-deficient barley plants treated with ferrocyanide showed a significantly greater {sup 15}N enrichment as compared to nitrogen-sufficient plants. While the results are suggestive of ferrocyanide transport by these plant species, additional study will be required to verify these results. - Results suggest ferrocyanide transport by barley, oat and wild cane.

  1. Linking stomatal traits and expression of slow anion channel genes HvSLAH1 2 HvSLAC1 with grain yield for increasing salinity tolerance in barley

    Directory of Open Access Journals (Sweden)

    Xiaohui eLiu

    2014-11-01

    Full Text Available Soil salinity is an environmental and agricultural problem in many parts of the world. One of the keys to breeding barley for adaptation to salinity lies in a better understanding of the genetic control of stomatal regulation. We have employed a range of physiological and molecular techniques (stomata assay, gas exchange, phylogenetic analysis, QTL analysis, and gene expression to investigate stomatal behaviour and genotypic variation in barley cultivars and a genetic population in four experimental trials. A set of relatively efficient and reliable methods were developed for the characterisation of stomatal behaviour of large numbers of varieties and genetic lines. Furthermore, we have found a large genetic variation of gas exchange and stomatal traits in barley in response to salinity stress. Salt-tolerant CM72 showed significantly larger stomatal aperture in 200 mM NaCl treatment than that of salt-sensitive Gairdner. Stomatal traits such as aperture width/length were found to significantly correlate with grain yield in salt treatment. Phenotypic characterisation and QTL analysis of a segregating double haploid population of the CM72/Gairdner resulted in the identification of significant stomatal traits-related QTLs for salt tolerance. Moreover, expression analysis of the slow anion channel genes HvSLAH1 and HvSLAC1 demonstrated that their up-regulation is linked to high barley grain yield in the field.

  2. CDNA cloning, characterization and expression of an endosperm-specific barley peroxidase

    DEFF Research Database (Denmark)

    Rasmussen, Søren Kjærsgård; Welinder, K.G.; Hejgaard, J.

    1991-01-01

    A barley peroxidase (BP 1) of pI ca. 8.5 and M(r) 37000 has been purified from mature barley grains. Using antibodies towards peroxidase BP 1, a cDNA clone (pcR7) was isolated from cDNA expression library. The nucleotide sequence of pcR7 gave a derived amino acid sequence identical to the 158 C...

  3. Barley yellow dwarf virus in barley crops in Tunisia: prevalence and molecular characterization

    OpenAIRE

    Asma NAJAR; Imen HAMDI; Arvind VARSANI

    2017-01-01

    A field survey was conducted in Tunisia in the North-Eastern regions (Bizerte, CapBon and Zaghouan), the North-Western region (Kef) and the Central-Eastern region (Kairouan) during the 2011/2012 growing season, in order to determine the incidence and the geographic distribution of Barley yellow dwarf virus (BYDVs) in barley fields. Tissue blot immunoassays (TBIA) showed that BYDV was most common in Zaghouan (incidence 14%), Cap Bon (14%) and Bizerte (35%), in randomly collected samples from t...

  4. Structural comparison of arabinoxylans from two barley side-stream fractions.

    Science.gov (United States)

    Pitkänen, Leena; Tuomainen, Päivi; Virkki, Liisa; Aseyev, Vladimir; Tenkanen, Maija

    2008-07-09

    The structures of barley ( Hordeum vulgare) arabinoxylans isolated from two industrial side fractions, barley husks (BH) and barley fiber (BF), were characterized. Arabinoxylans were extracted with saturated barium hydroxide after enzymatic pretreatment. Barium hydroxide was selective toward arabinoxylans, and only a minor amount of glucose-containing material was coextracted. Acid methanolysis followed by gas chromatography, 1H NMR spectroscopy, and specific enzymatic treatments followed by anion exchange chromatography with pulse amperometric detection (HPAEC-PAD) revealed that the chemical structure of barley husk arabinoxylan (BHAX) clearly differed from that of barley fiber arabinoxylan (BFAX). BFAX was more branched, containing more beta-D-xylopyranosyl (beta-D-Xylp) residues carrying alpha-L-arabinofuranosyl (alpha-L-Araf) units at both O-2 and O-3 positions. BHAX, on the other hand, contained more 2-O-beta-D-Xyl p-alpha-L-Ara f substituents than BFAX. BHAX and BFAX also differed with respect to the hydrodynamic properties investigated with multidetector size exclusion chromatography. BFAX had a higher weight-average molar mass and larger hydrodynamic volume, the latter indicating less dense conformation than BHAX. Mn, Mw /Mn, Rh, and the Mark-Houwink a value were also determined for both arabinoxylans.

  5. Autoradiographic study on moisture distribution in pearl-barley and in rice grain

    International Nuclear Information System (INIS)

    Sakharov, Eh.V.; Koz'mina, E.P.; Troitskaya, E.Ya

    1975-01-01

    The dependence of some structural details of the pearl-barley and rice endosperm on the internal moisture distribution is found. The general scheme of the study is shown. The curves of the local moisture distribution in the pearly-barley and rice kernel are plotted according to the radiography data. Moisture distribution over the whole section of the rice kernel is relatively constant at 85 deg C after ten minutes of moisture. Whereas moisture of pearl-barley kernel is only approaching the center of kernel by the time the moisture content increases to 1.5-2%. The slow moisture transfer in the pearl-barley kernel makes the cooking period three times longer as that of the rice

  6. Senescence-associated barley NAC (NAM, ATAF1,2, CUC) transcription factor interacts with radical-induced cell death 1 through a disordered regulatory domain

    DEFF Research Database (Denmark)

    Kjaersgaard, Trine; Jensen, Michael K; Christiansen, Michael W

    2011-01-01

    as a transcriptional activator suggesting that an involvement of HvNAC013 and HvNAC005 in senescence will be different. HvNAC013 interacted with barley radical-induced cell death 1 (RCD1) via the very C-terminal part of its TRD, outside of the region containing the LP motif. No significant secondary structure...... (NAM, ATAF1,2, CUC) TF family are up-regulated during senescence in barley (Hordeum vulgare). Both HvNAC005 and HvNAC013 bound the conserved NAC DNA target sequence. Computational and biophysical analyses showed that both proteins are intrinsically disordered in their large C-terminal domains, which...... was induced in the HvNAC013 TRD upon interaction with RCD1. RCD1 also interacted with regions dominated by intrinsic disorder in TFs of the MYB and basic helix-loop-helix families. We propose that RCD1 is a regulatory protein capable of interacting with many different TFs by exploiting their intrinsic...

  7. Comparative energy content and amino acid digestibility of barley obtained from diverse sources fed to growing pigs

    Directory of Open Access Journals (Sweden)

    Hong Liang Wang

    2017-07-01

    Full Text Available Objective Two experiments were conducted to determine the content of digestible energy (DE and metabolizable energy (ME as well as the apparent ileal digestibility (AID and standardized ileal digestibility (SID of crude protein (CP and amino acids (AA in barley grains obtained from Australia, France or Canada. Methods In Exp. 1, 18 growing barrows (Duroc×Landrace×Yorkshire; 31.5±3.2 kg were individually placed in stainless-steel metabolism crates (1.4×0.7×0.6 m and randomly allotted to 1 of 3 test diets. In Exp. 2, eight crossbred pigs (30.9±1.8 kg were allotted to a replicate 3×4 Youden Square designed experiment with three periods and four diets. Two pigs received each diet during each test period. The diets included one nitrogen-free diet and three test diets. Results The relative amounts of gross energy (GE, CP, and all AA in the Canadian barley were higher than those in Australian and French barley while higher concentrations of neutral detergent fiber, acid detergent fiber, total dietary fiber, insoluble dietary fiber and β-glucan as well as lower concentrations of GE and ether extract were observed in the French barley compared with the other two barley sources. The DE and ME as well as the SID of histidine, isoleucine, leucine and phenylalanine in Canadian barley were higher (p<0.05 than those in French barley but did not differ from Australian barley. Conclusion Differences in the chemical composition, energy content and the SID and AID of AA were observed among barley sources obtained from three countries. The feeding value of barley from Canada and Australia was superior to barley obtained from France which is important information in developing feeding systems for growing pigs where imported grains are used.

  8. Allelic variations of a light harvesting chlorophyll a/b-binding protein gene (Lhcb1 associated with agronomic traits in barley.

    Directory of Open Access Journals (Sweden)

    Yanshi Xia

    Full Text Available Light-harvesting chlorophyll a/b-binding protein (LHCP is one of the most abundant chloroplast proteins in plants. Its main function is to collect and transfer light energy to photosynthetic reaction centers. However, the roles of different LHCPs in light-harvesting antenna systems remain obscure. Exploration of nucleotide variation in the genes encoding LHCP can facilitate a better understanding of the functions of LHCP. In this study, nucleotide variations in Lhcb1, a LHCP gene in barley, were investigated across 292 barley accessions collected from 35 different countries using EcoTILLING technology, a variation of the Targeting Induced Local Lesions In Genomes (TILLING. A total of 23 nucleotide variations were detected including three insert/deletions (indels and 20 single nucleotide polymorphisms (SNPs. Among them, 17 SNPs were in the coding region with nine missense changes. Two SNPs with missense changes are predicted to be deleterious to protein function. Seventeen SNP formed 31 distinguishable haplotypes in the barley collection. The levels of nucleotide diversity in the Lhcb1 locus differed markedly with geographic origins and species of accessions. The accessions from Middle East Asia exhibited the highest nucleotide and haplotype diversity. H. spontaneum showed greater nucleotide diversity than H. vulgare. Five SNPs in Lhcb1 were significantly associated with at least one of the six agronomic traits evaluated, namely plant height, spike length, number of grains per spike, thousand grain weight, flag leaf area and leaf color, and these SNPs may be used as potential markers for improvement of these barley traits.

  9. Lipid and sugar profiles of various barley cultivars (Hordeum vulgare

    Directory of Open Access Journals (Sweden)

    Pastor Kristian A.

    2015-01-01

    Full Text Available The lipid components and soluble sugars in flour samples of different cultivars of barley (Hordeum vulgare, involving winter malting barley, winter forage barley, spring barley, and hulless barley, were identified. Fatty acids were extracted from flour samples with n-hexane, and derivatized into volatile methyl esters, using TMSH (trimethylsulfonium hydroxide in methanol. Soluble sugars were extracted from defatted and dried samples of barley flour with 96% ethanol, and further derivatized into the corresponding trimethylsilyl (TMS oximes, using hydroxylamine hydrochloride solution and BSTFA (N,O-bis-(trimethylsilyl-trifluoroacetamide. The hexane and alcoholic extracts of barley cultivars were analyzed by GC-MS system. Lipid and sugar compositions were very similar in all barley cultivars. Therefore, multivariate analysis was applied to numerical values of automatically integrated areas of the identified fatty acid methyl esters and TMS oximes of soluble sugars. The application of hierarchical cluster analysis showed a great similarity between the investigated flour samples of barley cultivars, according to their fatty acid content (0.96. Also, significant, but somewhat less similarity was observed regarding the content of soluble sugars (0.70. These preliminary results indicate the possibility of distinguishing flour made of barley, regardless of the variety, from flours made of other cereal species, just by the analysis of the contents of fatty acids and soluble sugars.[Projekat Ministarstva nauke Republike Srbije, br. TR 31066

  10. Comparative analysis the selenium concentration in grains of wheat and barley species

    International Nuclear Information System (INIS)

    Jalal, F.; Arif, M.; Munsif, F.; Ali, K.

    2016-01-01

    Macro and micro nutrients are essential for human health and growth development. It is reported that about three million people are suffering from nutrient deficiencies all over the world. Various sources are available like: vegetables, fruits, fish, meat and cereals to overcome these deficiencies. Among cereals, wheat and barley are main source to meet the requirement of this dietary element. Two year studies were conducted to investigate the Se concentration in grains of different wheat (T. aestivum L., T. turgidum L. and T. durum L.) and barley (H. spontaneum L. and H. vulgare L.) species originated from different parts of the world. Results indicated that the durum and emmer wheat grains contain higher Se level in both studied years (70.5 and 72.9 micro g kg-1 in 2012 and 74.1 and 73.2 microg kg-1 in 2013 respectively). Among H. spontaneum L. collected from six populations, Mahola population of barley showed remarkable variations in grain Se concentration ranged from 88.3-437.2 and 90.2-439.5 micro g kg-1 in 2012 and 2013 respectively. The information obtained from the findings helps in identifying the lines of wild barley that have more Se uptake and accumulation capability. According to the conclusion of the study that H. Spontaneum L. had greater genetic variation for Se as compare to other species of wheat and barley. (author)

  11. Effects of particle size of processed barley grain, enzyme addition and microwave treatment on disappearance and gas production for feedlot cattle

    Directory of Open Access Journals (Sweden)

    Shin-ichi Tagawa

    2017-04-01

    Full Text Available Objective The effects of particle size of processed barley grain, enzyme addition and microwave treatment on in vitro dry matter (DM disappearance (DMD, gas production and fermentation pH were investigated for feedlot cattle. Methods Rumen fluid from four fistulated feedlot cattle fed a diet of 860 dry-rolled barley grain, 90 maize silage and 50 supplement g/kg DM was used as inoculum in 3 batch culture in vitro studies. In Experiment 1, dry-rolled barley and barley ground through a 1-, 2-, or 4-mm screen were used to obtain four substrates differing in particle size. In Experiment 2, cellulase enzyme (ENZ from Acremonium cellulolyticus Y-94 was added to dry-rolled and ground barley (2-mm at 0, 0.1, 0.5, 1, and 2 mg/g, while Experiment 3 examined the interactions between microwaving (0, 30, and 60 s microwaving and ENZ addition (0, 1, and 2 mg/g using dry-rolled barley and 2-mm ground barley. Results In Experiment 1, decreasing particle size increased DMD and gas production, and decreased fermentation pH (p<0.01. The DMD (g/kg DM of the dry-rolled barley after 24 h incubation was considerably lower (p<0.05 than that of the ground barley (119.1 dry-rolled barley versus 284.8 for 4-mm, 341.7 for 2-mm; and 358.6 for 1-mm. In Experiment 2, addition of ENZ to dry-rolled barley increased DMD (p<0.01 and tended to increase (p = 0.09 gas production and decreased (p<0.01 fermentation pH, but these variables were not affected by ENZ addition to ground barley. In Experiment 3, there were no interactions between microwaving and ENZ addition after microwaving for any of the variables. Microwaving had minimal effects (except decreased fermentation pH, but consistent with Experiment 2, ENZ addition increased (p<0.01 DMD and gas production, and decreased (p<0.05 fermentation pH of dry-rolled barley, but not ground barley. Conclusion We conclude that cellulase enzymes can be used to increase the rumen disappearance of barley grain when it is coarsely processed

  12. Barley yellow dwarf virus in barley crops in Tunisia: prevalence and molecular characterization

    Directory of Open Access Journals (Sweden)

    Asma NAJAR

    2017-05-01

    Full Text Available A field survey was conducted in Tunisia in the North-Eastern regions (Bizerte, CapBon and Zaghouan, the North-Western region (Kef and the Central-Eastern region (Kairouan during the 2011/2012 growing season, in order to determine the incidence and the geographic distribution of Barley yellow dwarf virus (BYDVs in barley fields. Tissue blot immunoassays (TBIA showed that BYDV was most common in Zaghouan (incidence 14%, Cap Bon (14% and Bizerte (35%, in randomly collected samples from these three locations.Among the different BYDVs identified, BYDV-PAV (64% was the most common followed by BYDV-MAV (16% and CYDV-RPV (3%. The coat protein gene sequences of six isolates collected from different regions shared >98% pairwise similarity. In comparisons with other BYDV sequences from around the world, the Tunisian sequences shared greatest homology with isolates 109 and ASL1 from the United States of America and Germany (≈97%, and <90% with all other isolate sequences available in public databases.

  13. Purification of barley dimeric α-amylase inhibitor-1 (BDAI-1) and avenin-like protein-a (ALP) from beer and their impact on beer foam stability.

    Science.gov (United States)

    Iimure, Takashi; Kihara, Makoto; Sato, Kazuhiro; Ogushi, Kensuke

    2015-04-01

    Foam stability is a key factor of beer quality for consumers and brewers. Recent beer proteome analyses have suggested that barley dimeric α-amylase inhibitor-1 (BDAI-1) and avenin-like protein-a (ALP) derived from barley are important for beer foam stability. In this study, BDAI-1 and ALP were purified from a Japanese commercial beer sample using salt precipitation and column chromatography. The purification level was verified using two-dimensional gel electrophoresis, mass spectrometry, and database searches. Purified BDAI-1 and ALP were added to a beer sample to compare the foam stability to that of a control beer sample. As a result, beer foam stability was significantly improved by BDAI-1 but not by ALP, thereby suggesting that BDAI-1 affects beer foam stability whereas ALP does not. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Comparison of agrobacterium mediated wheat and barley transformation with nucleoside diphosphate kinase 2 (NDPK2) gene

    International Nuclear Information System (INIS)

    Waheed, U.; Shah, M.M.; Smedley, M.; Harwood, W.

    2016-01-01

    An efficient and reliable transformation system is imperative for improvement of important crop species like barley and wheat. Wheat transformation is complex due to larger genome size and polyploidy while barley has a limitation of genotypic dependency. The objective of current study was to compare the relative transformation efficiency of wheat and barley using specific expression vector pBRACT 214-NDPK2 constructed through gateway cloning carrying Nucleoside Diphosphate Kinase 2 (NDPK2) gene. The vector was used to compare the transformation response in both crops using immature embryos through Agrobacterium mediated transformation. Both wheat and barley showed different responses towards callus induction and regeneration. Immature embryos of 1.5 to 2 mm in diameter was found optimum for wheat callus induction while 1 to 1.5 mm for barley. Both embryogenic and non-embryogenic calli were found in wheat with significantly greater tendency for embryogenecity in barley. The overall regeneration response was found different for all transformed wheat and barley cultivars. Wheat cultivars showed good response initially that drastically slowed down in later stages with the exception of Fielder that reached to the green shoots with good roots. The barley transformed lines showed good regeneration response as compared to wheat. PCR analysis of putative transformants using genomic DNA showed a maximum of 27% transformation efficiency in barely. No true transformation response was obtained in all cultivars of wheat used in this study. The protocol developed for wheat and barley transformation will greatly be helpful in crop improvement programme through genetic engineering especially in diploid relatives of cereals. (author)

  15. Barley yellow dwarf virus: Luteoviridae or Tombusviridae?

    Science.gov (United States)

    Miller, W Allen; Liu, Sijun; Beckett, Randy

    2002-07-01

    Summary Barley yellow dwarf virus (BYDV), the most economically important virus of small grains, features highly specialised relationships with its aphid vectors, a plethora of novel translation mechanisms mediated by long-distance RNA interactions, and an ambiguous taxonomic status. The structural and movement proteins of BYDV that confer aphid transmission and phloem-limitation properties resemble those of the Luteoviridae, the family in which BYDV is classified. In contrast, many genes and cis-acting signals involved in replication and gene expression most closely resemble those of the Tombusviridae. BYDV is in genus Luteovirus, family Luteoviridae. BYDV includes at least two serotypes or viruses: BYDV-PAV and BYDV-MAV. The former BYDV-RPV is now Cereal yellow dwarf virus-RPV (CYDV-RPV). CYDV is in genus Polerovirus, family Luteoviridae. Genus Luteovirus shares many features with family Tombusviridae. Physical properties: approximately 25 nm icosahedral (T = 3) virions. One major (22 kDa) and one minor (50-55 kDa) coat protein. 5.6-5.8 kb positive sense RNA genome with no 5'-cap and no poly(A) tail. Most grasses. Most important in oats, barley and wheat. Also infects maize and rice. Yellowing and dwarfing in barley, stunting in wheat; reddening, yellowing and blasting in oats. Some isolates cause leaf notching and curling. Key attractions: Model for the study of circulative transmission of aphid-transmitted viruses. Plethora of unusual translation mechanisms. Evidence of recombination in recent evolutionary history creates taxonomic ambiguity. Economically important virus of wheat, barley and oats, worldwide. Useful websites/meetings: International symposium: 'Barley Yellow Dwarf Disease: Recent Advances and Future Strategies', CIMMYT, El Batan, Mexico, 1-5 September 2002, http://www.cimmyt.cgiar.org/Research/wheat/Conf_BYD_02/invitation.htm http://www.cimmyt.org/Research/wheat/BYDVNEWS/htm/BYDVNEWS.htm Aphid transmission animation: http://www.ppws.vt.edu/~sforza/tmv/bydv_aph.html.

  16. Growth and yield of barley (Hordeum vulgare L.) as affected by ...

    African Journals Online (AJOL)

    Bheema

    (2003) reported that about 65% of grain yield variability in barley was attributed to ... of those of the respective non-stressed environments (Cantero-Martínez et ... production stability of barley (Fekadu and Skjelvåg, 2002) and nitrogen and phosphorus are .... of SAS version 9.1 for analysis of variance of non-orthogonal data.

  17. Mutation breeding in malting barley

    Energy Technology Data Exchange (ETDEWEB)

    Hiraki, Makoto; Sanada, Matsuyoshi

    1984-03-01

    The released varieties of malting barley through mutation breeding is more than ten in number, including foreign varieties. In Japan four varieties has been released so far. We started mutation breeding in 1956 together with cross breeding that we employed before. Until now, Gamma 4, Amagi Nijo 1 and Fuji Nijo 2 have been produced from the direct use of induced mutations and Nirasaki Nijo 8 from the indirect use of them. Mutation breeding has been used mainly in the partial improvement of agronomic characteristics since the selection for malting quality was very complicated. As the variety bred by induced mutation is usually equivalent to the original variety in malting quality, both this new variety and the original one could be cultivated in the same area without any problem on later malt production. Particularly when one farmer cultivates barley in an extensive acreage, he can harvest at the best time according to the different maturing time of each variety. From these points of view, mutation breeding is an efficient tool in malting barley breeding. Mutagens we have used so far are X-rays, ..gamma..-rays, neutron and chemicals such as dES. From our experience in selection, the low dose of radiation and chemical mutagens are more effective in selection of point mutation than the high dose of radiation which tends to produce many abnormal but few practical mutants. (author).

  18. Genetic analysis of aluminum tolerance in Brazilian barleys

    Directory of Open Access Journals (Sweden)

    Minella Euclydes

    2002-01-01

    Full Text Available Aluminum (Al toxicity is a major factor limiting barley growth in acid soils, and genotypes with adequate level of tolerance are needed for improving barley adaptation in Brazil. To study the inheritance of Al tolerance in Brazilian barleys, cultivars Antarctica 1, BR 1 and FM 404 were crossed to sensitive Kearney and PFC 8026, and intercrossed. Parental, F1, F2 and F6 generations were grown in nutrient solution containing 0.03, 0.05 and 0.07 mM of Al and classified for tolerance by the root tip hematoxylin staining assay. Tolerant by sensitive F2 progenies segregated three tolerant to one sensitive, fitting the 3:1 ratio expected for a single gene. The F6 populations segregated one tolerant to one sensitive also fitting a monogenic ratio. The F2 seedlings from crosses among tolerant genotypes scored the same as the parents. Since the population size used would allow detection of recombination as low as 7%, the complete absence of Al sensitive recombinants suggests that tolerance in these cultivars is most probably, controlled by the same gene. Thus, the potential for improving Al tolerance through recombination of these genotypes is very low and different gene sources should be evaluated.

  19. Development of endosperm transfer cells in barley.

    Science.gov (United States)

    Thiel, Johannes

    2014-01-01

    Endosperm transfer cells (ETCs) are positioned at the intersection of maternal and filial tissues in seeds of cereals and represent a bottleneck for apoplasmic transport of assimilates into the endosperm. Endosperm cellularization starts at the maternal-filial boundary and generates the highly specialized ETCs. During differentiation barley ETCs develop characteristic flange-like wall ingrowths to facilitate effective nutrient transfer. A comprehensive morphological analysis depicted distinct developmental time points in establishment of transfer cell (TC) morphology and revealed intracellular changes possibly associated with cell wall metabolism. Embedded inside the grain, ETCs are barely accessible by manual preparation. To get tissue-specific information about ETC specification and differentiation, laser microdissection (LM)-based methods were used for transcript and metabolite profiling. Transcriptome analysis of ETCs at different developmental stages by microarrays indicated activated gene expression programs related to control of cell proliferation and cell shape, cell wall and carbohydrate metabolism reflecting the morphological changes during early ETC development. Transporter genes reveal distinct expression patterns suggesting a switch from active to passive modes of nutrient uptake with the onset of grain filling. Tissue-specific RNA-seq of the differentiating ETC region from the syncytial stage until functionality in nutrient transfer identified a high number of novel transcripts putatively involved in ETC differentiation. An essential role for two-component signaling (TCS) pathways in ETC development of barley emerged from this analysis. Correlative data provide evidence for abscisic acid and ethylene influences on ETC differentiation and hint at a crosstalk between hormone signal transduction and TCS phosphorelays. Collectively, the data expose a comprehensive view on ETC development, associated pathways and identified candidate genes for ETC

  20. Characterization of Resistance to Cephus cinctus (Hymenoptera: Cephidae) in Barley Germplasm.

    Science.gov (United States)

    Varella, Andrea C; Talbert, Luther E; Achhami, Buddhi B; Blake, Nancy K; Hofland, Megan L; Sherman, Jamie D; Lamb, Peggy F; Reddy, Gadi V P; Weaver, David K

    2018-04-02

    Most barley cultivars have some degree of resistance to the wheat stem sawfly (WSS), Cephus cinctus Norton (Hymenoptera: Cephidae). Damage caused by WSS is currently observed in fields of barley grown in the Northern Great Plains, but the impact of WSS damage among cultivars due to genetic differences within the barley germplasm is not known. Specifically, little is known about the mechanisms underlying WSS resistance in barley. We characterized WSS resistance in a subset of the spring barley CAP (Coordinated Agricultural Project) germplasm panel containing 193 current and historically important breeding lines from six North American breeding programs. Panel lines were grown in WSS infested fields for two consecutive years. Lines were characterized for stem solidness, stem cutting, WSS infestation (antixenosis), larval mortality (antibiosis), and parasitism (indirect plant defense). Variation in resistance to WSS in barley was compared to observations made for solid-stemmed resistant and hollow-stemmed susceptible wheat lines. Results indicate that both antibiosis and antixenosis are involved in the resistance of barley to the WSS, but antibiosis seems to be more prevalent. Almost all of the barley lines had greater larval mortality than the hollow-stemmed wheat lines, and only a few barley lines had mortality as low as that observed in the solid-stemmed wheat line. Since barley lines lack solid stems, it is apparent that barley has a different form of antibiosis. Our results provide information for use of barley in rotation to control the WSS and may provide a basis for identification of new approaches for improving WSS resistance in wheat.

  1. Effects of particle size of processed barley grain, enzyme addition and microwave treatment on in vitro disappearance and gas production for feedlot cattle.

    Science.gov (United States)

    Tagawa, Shin-Ichi; Holtshausen, Lucia; McAllister, Tim A; Yang, Wen Zhu; Beauchemin, Karen Ann

    2017-04-01

    The effects of particle size of processed barley grain, enzyme addition and microwave treatment on in vitro dry matter (DM) disappearance (DMD), gas production and fermentation pH were investigated for feedlot cattle. Rumen fluid from four fistulated feedlot cattle fed a diet of 860 dry-rolled barley grain, 90 maize silage and 50 supplement g/kg DM was used as inoculum in 3 batch culture in vitro studies. In Experiment 1, dry-rolled barley and barley ground through a 1-, 2-, or 4-mm screen were used to obtain four substrates differing in particle size. In Experiment 2, cellulase enzyme (ENZ) from Acremonium cellulolyticus Y-94 was added to dry-rolled and ground barley (2-mm) at 0, 0.1, 0.5, 1, and 2 mg/g, while Experiment 3 examined the interactions between microwaving (0, 30, and 60 s microwaving) and ENZ addition (0, 1, and 2 mg/g) using dry-rolled barley and 2-mm ground barley. In Experiment 1, decreasing particle size increased DMD and gas production, and decreased fermentation pH (pgas production and decreased (pgas production, and decreased (p<0.05) fermentation pH of dry-rolled barley, but not ground barley. We conclude that cellulase enzymes can be used to increase the rumen disappearance of barley grain when it is coarsely processed as in the case of dry-rolled barley. However, microwaving of barley grain offered no further improvements in ruminal fermentation of barley grain.

  2. Simultaneous Detection of Barley Virus Diseases in Korea

    Directory of Open Access Journals (Sweden)

    Bong-Choon Lee

    2017-12-01

    Full Text Available Barley mild mosaic virus (BaMMV, Barley yellow mosaic virus (BaYMV and Barley yellow dwarf virus (BYDV have been identified as an important causative agents for an economically important disease of winter barley in Korea. In this study, a multiplex reverse transcription polymerase chain reaction (mRT-PCR method was used for the simultaneous detection. Three sets of virus-specific primers targeted to the capsid protein coding genes of BaMMV, BaYMV and BYDV were used to amplify fragments that were 594 bp, 461 bp, and 290 bp, respectively. Several sets of primers for each target virus were evaluated for their sensitivity and specificity by multiplex RT-PCR. The optimum primer concentrations and RT-PCR conditions were determined for the multiplex RT-PCR. The mRT-PCR assay was found to be a better and rapid virus diagnostic tool of specific barley diseases and potential for investigating the epidemiology of these viral diseases.

  3. Sprouted barley for dairy cows: Nutritional composition and digestibility

    Science.gov (United States)

    A 4-unit dual-flow continuous culture fermentor system was used to assess the effect of supplementing 7-d sprouted barley or barley grain with an haylage or pasture diet on nutrient digestibility and methane output. Barley grain was sprouted in climate controlled growth chambers, to be used as part ...

  4. Comparative energy content and amino acid digestibility of barley obtained from diverse sources fed to growing pigs.

    Science.gov (United States)

    Wang, Hong Liang; Shi, Meng; Xu, Xiao; Ma, Xiao Kang; Liu, Ling; Piao, Xiang Shu

    2017-07-01

    Two experiments were conducted to determine the content of digestible energy (DE) and metabolizable energy (ME) as well as the apparent ileal digestibility (AID) and standardized ileal digestibility (SID) of crude protein (CP) and amino acids (AA) in barley grains obtained from Australia, France or Canada. In Exp. 1, 18 growing barrows (Duroc×Landrace×Yorkshire; 31.5±3.2 kg) were individually placed in stainless-steel metabolism crates (1.4×0.7×0.6 m) and randomly allotted to 1 of 3 test diets. In Exp. 2, eight crossbred pigs (30.9±1.8 kg) were allotted to a replicate 3×4 Youden Square designed experiment with three periods and four diets. Two pigs received each diet during each test period. The diets included one nitrogen-free diet and three test diets. The relative amounts of gross energy (GE), CP, and all AA in the Canadian barley were higher than those in Australian and French barley while higher concentrations of neutral detergent fiber, acid detergent fiber, total dietary fiber, insoluble dietary fiber and β-glucan as well as lower concentrations of GE and ether extract were observed in the French barley compared with the other two barley sources. The DE and ME as well as the SID of histidine, isoleucine, leucine and phenylalanine in Canadian barley were higher (penergy content and the SID and AID of AA were observed among barley sources obtained from three countries. The feeding value of barley from Canada and Australia was superior to barley obtained from France which is important information in developing feeding systems for growing pigs where imported grains are used.

  5. Effect of Gamma-irradiation on aflatoxin B1 produced by aspergillus parasiticus in barley containing antimicrobial food additives

    International Nuclear Information System (INIS)

    Aziz, N.H.; Abd El-Rehim, L.M.; El-Far, M.A.

    1999-01-01

    Influence of gamma irradiation on, growth and aflatoxin B 1 produced by aspergillus parasiticus in ba supplemented with sodium chloride, potassium sorbate and sodium benzoate was investigated. Total viable population of A. Parasiticus and aflatoxin B 1 production decreased significantly by increasing gamma irradiation doses. No growth or aflatoxin B 1 production occurred at 4.0 KGy. Increasing the concentration of NaCl reduced the total viable population A. Parasiticus as well as the accumulation of aflatoxin B 1 . No growth and aflatoxin B 1 production occurred in barley treated with 2.0 KGy and 6% NaCl. Potassium sorbate and sodium benzoate at concentration 500 ppm reduced the population of A. Parasiticus and the levels of aflatoxin B 1 over 100 days. At 2.0 KGy, a sharp drop in aflatoxin B 1 level occurred in barley by 2% NaCl and 500 ppm potassium sorbate and sodium benzoate. At 2.0 KGy, 2% NaCl and 1000 ppm potassium sorbate and sodium benzoate completely inhibited growth and aflatoxin B 1 production by A. parasiticus for 100 days of incubation

  6. COMPARISON OF THE FROST RESISTANCE OF BARLEY ...

    African Journals Online (AJOL)

    Preferred Customer

    immediate recovery of the photosynthetic quantum yield after freezing. Landraces which showed the highest cold tolerance were found to acclimatize best. Key words/phrases: Barley, chlorophyll fluorescence, cold acclimation, Ethiopia, frost tolerance. INTRODUCTION. Barley (Hordeum vulgare L.) is a traditional crop.

  7. Functional and structural characterization of plastidic starch phosphorylase during barley endosperm development

    DEFF Research Database (Denmark)

    Cuesta-Seijo, Jose A.; Ruzanski, Christian; Krucewicz, Katarzyna

    2017-01-01

    The production of starch is essential for human nutrition and represents a major metabolic flux in the biosphere. The biosynthesis of starch in storage organs like barley endosperm operates via two main pathways using different substrates: starch synthases use ADP-glucose to produce amylose......,4-glucans using HvPho1 from G1P as the sole substrate. The structural properties of HvPho1 provide insights into the low affinity of HvPho1 for large polysaccharides like starch or amylopectin. Our results suggest that HvPho1 may play a role during the initiation of starch biosynthesis in barley....... and amylopectin, the two major components of starch, whereas starch phosphorylase (Pho1) uses glucose-1-phosphate (G1P), a precursor for ADP-glucose production, to produce α-1,4 glucans. The significance of the Pho1 pathway in starch biosynthesis has remained unclear. To elucidate the importance of barley Pho1...

  8. The breeding of new malting barley variety 'Yangpi No.2'

    International Nuclear Information System (INIS)

    Chen Xiulan; He Zhentian; Han Yuepeng; Wang Jinrong; Yang Hefeng

    2005-01-01

    'Yangpi No.2' barley pasted the examination of Jiangsu province in 2002, is the new spring two-rowed malting barley variety selected by which irradiation mutated the early-maturing of barley. The yield capacity of 'Yangpi No.2' barley is about 6750 kg/hm 2 , it had the characters of early-maturing, good agronomic characters, strong anti-adversity, high quality, and adapted well to everywhere in Jiangsu province. (authors)

  9. Identification of AFLP molecular linked to row- type gene in barley

    International Nuclear Information System (INIS)

    Sayed- Tabatabaei, B.E.

    2005-01-01

    Formation of the two-and six-rowed types in barley is predominantly controlled by alleles at a single locus (vrzl) which is located in long armn of chromosome 2H. This gene is a key character on the study of barley domestication and yield. Near-isogenic lines of barley were produced from crosses between Kanto Nakate Gold (tow-rowed) and Azumamugi (six-rowed). The selected lines were used for screening of AFLP polymorphic bands which are linked to vrs1 locus. After screening of a total of 1792 primer combination, five polymorphic bands were identified. A construction of high resolution map around the vrs1 locus was made using recombinant inbred lines. These markers can be used for a map-based cloning of the genes at the vrsl locus

  10. Cadmium translocation and accumulation in developing barley grains

    DEFF Research Database (Denmark)

    Chen, Fei; Wu, Feibo; Dong, Jing

    2007-01-01

     Soil cadmium (Cd) contamination has posed a serious problem for safe food production and become a potential agricultural and environmental hazard worldwide. In order to study the transport of Cd into the developing grains, detached ears of two-rowed barley cv. ZAU 3 were cultured in Cd stressed...... of detached spike showed increase Cd accumulation for 5 days, followed by sharp decrease till day 10 and increase again after 12.5 days. Awn-removal and stem-girdling markedly decreased Cd concentration in grains, and sucrose or zinc (Zn) addition to the medium and higher relative humidity (RH) also induced...

  11. Useful mutations in Iraqi black barley

    International Nuclear Information System (INIS)

    Ibrahim, I.F.

    1989-01-01

    Full text: Barley (Hordeum vulgare L.) is an important fodder crop in Iraq, with a cultivated area of about 1 392 375 ha and a total production of about 838500 t. The 2-row black barley ''LBB'' is the most desirable one in semi-arid zone in northern part of Iraq, because of its drought tolerance and high protein content. However, this cultivar is susceptible to powdery mildew, and lodges. Gamma rays and EMS were used to induce mutations in ''LBB'' and its hybrid with A rivat''. Nine mutants with improved lodging were selected during the first six generations. Five mutants INRC-BB-1, INRC-BB-3, INRC-BBR-4A, INRC-HB-552 and INRC-HB-553 were resistant to powdery mildew while 2 mutants INRC-BBH-1 and INRC-HBR-3 were moderately resistant. Two mutants INRC-BB-123 and INRC-HBR-3 were also resistant to drought under 350-400 mm rainfall. Three mutants INRC-BB-1, INRC-HBR-3 and INRC-HBR-88 exceeded their original variety in seed weight per spike and TKW. (author)

  12. Characterization and partial purification of beta-1,3-D-glucan (callose) synthase from barley (Hordeum vulgare) leaves

    DEFF Research Database (Denmark)

    Pedersen, L.H.; Jacobsen, S.; Hejgaard, J.

    1993-01-01

    The plasma membrane bound beta-1,3-D-glucan (callose) synthase. assumed to be involved in the resistance to the powdery mildew fungus (Erysiphe graminis f.sp. hordei), was partially purified from a microsomal fraction of green barley leaves (Hordeum vulgare L.). Plasma membranes were enriched...

  13. Cereal bioengineering: Amylopectin-free and hyper-phosphorylated barley starch

    DEFF Research Database (Denmark)

    Carciofi, Massimiliano; Shaik, Shahnoor Sultana; Jensen, Susanne Langgård

    Barley lines producing grains with either amylopectin-free or hyper-phosphorylated starches were made by transgenic methods. Cereals producing these kind of starches have not been reported before. Amylopectin-free barley was generated by simultaneously silencing the three genes encoding the starch...... and T1) of transgenic grains was tenfold higher than from vector control and wild type grains. Amylose content was not affected in hyper-phosphorylated grains. Hyper-phosphorylated starch granules had several pores on the surfaces, similar to pores seen on enzymatically semi-degraded granules...

  14. Cereal bioengineering: Amylopectin-free and hyper-phosphorylated barley starch

    DEFF Research Database (Denmark)

    Carciofi, Massimiliano; Shaik, Shahnoor Sultana; Jensen, Susanne Langgård

    2011-01-01

    Barley lines producing grains with either amylopectin-free or hyper-phosphorylated starches were made by transgenic methods. Cereals producing these kind of starches have not been reported before. Amylopectin-free barley was generated by simultaneously silencing the three genes encoding the starch...... and T1) of transgenic grains was tenfold higher than from vector control and wild type grains. Amylose content was not affected in hyper-phosphorylated grains. Hyper-phosphorylated starch granules had several pores on the surfaces, similar to pores seen on enzymatically semi-degraded granules...

  15. Barley HvPAPhy_a as transgene provides high and stable phytase activities in mature barley straw and in grains

    DEFF Research Database (Denmark)

    Holme, Inger; Dionisio, Giuseppe; Madsen, Claus Krogh

    2017-01-01

    The phytase purple acid phosphatase (HvPAPhy_a) expressed during barley seed development was evaluated as transgene for overexpression in barley. The phytase was expressed constitutively driven by the cauliflower mosaic virus 35S-promoter, and the phytase activity was measured in the mature grains......, the green leaves and in the dry mature vegetative plant parts left after harvest of the grains. The T2-generation of HvPAPhy_a transformed barley showed phytase activity increases up to 19-fold (29 000 phytase units (FTU) per kg in mature grains). Moreover, also in green leaves and mature dry straw, phytase...... activities were increased significantly by 110-fold (52 000 FTU/kg) and 57-fold (51 000 FTU/kg), respectively. The HvPAPhy_a-transformed barley plants with high phytase activities possess triple potential utilities for the improvement of phosphate bioavailability. First of all, the utilization of the mature...

  16. Phytotoxic effects of argan shell biochar on salad and barley germination

    Directory of Open Access Journals (Sweden)

    Laila Bouqbis

    2017-08-01

    Full Text Available Biochar produced from argan shells can be contaminated by toxic substances accumulated during the pyrolysis process. To determine the potential impact of toxic substances and salt stress, this study focused on the effect argan shell biochar had on the germination of salad (0%, 0.5%, 1%, 2%, 4% or 8% biochar dry weight in a sand-biochar mixture and barley seeds (0%, 1%, 2.5%, 5% or 10% biochar dry weight in a peat-biochar mixture. No negative salt stress effect of argan biochar on the germination of salad was observed nor on the germination rate and fresh weight of seedlings. Additionally, biochar application increased the germination rate and the fresh biomass weight in all of the treatments. No significant difference was observed from the control with the barley germination rate, fresh and dry weights of barley seedlings, water content and water use efficiency of different mixtures (peat-biochar. Thus, for both the salad and barley germination tests, no negative effects of biochar produced from argan shells were identified, providing a preliminary indication that it could be safely used for agriculture.

  17. BarleyBase—an expression profiling database for plant genomics

    Science.gov (United States)

    Shen, Lishuang; Gong, Jian; Caldo, Rico A.; Nettleton, Dan; Cook, Dianne; Wise, Roger P.; Dickerson, Julie A.

    2005-01-01

    BarleyBase (BB) (www.barleybase.org) is an online database for plant microarrays with integrated tools for data visualization and statistical analysis. BB houses raw and normalized expression data from the two publicly available Affymetrix genome arrays, Barley1 and Arabidopsis ATH1 with plans to include the new Affymetrix 61K wheat, maize, soybean and rice arrays, as they become available. BB contains a broad set of query and display options at all data levels, ranging from experiments to individual hybridizations to probe sets down to individual probes. Users can perform cross-experiment queries on probe sets based on observed expression profiles and/or based on known biological information. Probe set queries are integrated with visualization and analysis tools such as the R statistical toolbox, data filters and a large variety of plot types. Controlled vocabularies for gene and plant ontologies, as well as interconnecting links to physical or genetic map and other genomic data in PlantGDB, Gramene and GrainGenes, allow users to perform EST alignments and gene function prediction using Barley1 exemplar sequences, thus, enhancing cross-species comparison. PMID:15608273

  18. An LRR/malectin receptor-like kinase mediates resistance to non-adapted and adapted powdery mildew fungi in barley and wheat

    Directory of Open Access Journals (Sweden)

    Jeyaraman Rajaraman

    2016-12-01

    Full Text Available Pattern recognition receptors (PRRs belonging to the multigene family of receptor-like kinases (RLKs are the sensing devices of plants for microbe- or pathogen-associated molecular patterns released from microbial organisms. Here we describe Rnr8 (for required for nonhost resistance 8 encoding HvLEMK1, a LRR-malectin domain-containing transmembrane RLK that mediates nonhost resistance of barley to the non-adapted wheat powdery mildew fungus Blumeria graminis f.sp. tritici. Transgenic barley lines with silenced HvLEMK1 allow entry and colony growth of the non-adapted pathogen, although sporulation was reduced and final colony size did not reach that of the adapted barley powdery mildew fungus Blumeria graminis f.sp. hordei. Transient expression of the barley or wheat LEMK1 genes enhanced resistance in wheat to the adapted wheat powdery mildew fungus while expression of the same genes did not protect barley from attack by the barley powdery mildew fungus. The results suggest that HvLEMK1 is a factor mediating nonhost resistance in barley and quantitative host resistance in wheat to the wheat powdery mildew fungus.

  19. An LRR/Malectin Receptor-Like Kinase Mediates Resistance to Non-adapted and Adapted Powdery Mildew Fungi in Barley and Wheat.

    Science.gov (United States)

    Rajaraman, Jeyaraman; Douchkov, Dimitar; Hensel, Götz; Stefanato, Francesca L; Gordon, Anna; Ereful, Nelzo; Caldararu, Octav F; Petrescu, Andrei-Jose; Kumlehn, Jochen; Boyd, Lesley A; Schweizer, Patrick

    2016-01-01

    Pattern recognition receptors (PRRs) belonging to the multigene family of receptor-like kinases (RLKs) are the sensing devices of plants for microbe- or pathogen-associated molecular patterns released from microbial organisms. Here we describe Rnr8 (for Required for non-host resistance 8 ) encoding HvLEMK1, a LRR-malectin domain-containing transmembrane RLK that mediates non-host resistance of barley to the non-adapted wheat powdery mildew fungus Blumeria graminis f.sp. tritici . Transgenic barley lines with silenced HvLEMK1 allow entry and colony growth of the non-adapted pathogen, although sporulation was reduced and final colony size did not reach that of the adapted barley powdery mildew fungus B. graminis f.sp. hordei . Transient expression of the barley or wheat LEMK1 genes enhanced resistance in wheat to the adapted wheat powdery mildew fungus while expression of the same genes did not protect barley from attack by the barley powdery mildew fungus. The results suggest that HvLEMK1 is a factor mediating non-host resistance in barley and quantitative host resistance in wheat to the wheat powdery mildew fungus.

  20. Comparative transcriptome profiling of two Tibetan wild barley genotypes in responses to low potassium.

    Directory of Open Access Journals (Sweden)

    Jianbin Zeng

    Full Text Available Potassium (K deficiency is one of the major factors affecting crop growth and productivity. Development of low-K tolerant crops is an effective approach to solve the nutritional deficiency in agricultural production. Tibetan annual wild barley is rich in genetic diversity and can grow normally under poor soils, including low-K supply. However, the molecular mechanism about low K tolerance is still poorly understood. In this study, Illumina RNA-Sequencing was performed using two Tibetan wild barley genotypes differing in low K tolerance (XZ153, tolerant and XZ141, sensitive, to determine the genotypic difference in transcriptome profiling. We identified a total of 692 differentially expressed genes (DEGs in two genotypes at 6 h and 48 h after low-K treatment, including transcription factors, transporters and kinases, oxidative stress and hormone signaling related genes. Meanwhile, 294 low-K tolerant associated DEGs were assigned to transporter and antioxidant activities, stimulus response, and other gene ontology (GO, which were mainly involved in starch and sucrose metabolism, lipid metabolism and ethylene biosynthesis. Finally, a hypothetical model of low-K tolerance mechanism in XZ153 was presented. It may be concluded that wild barley accession XZ153 has a higher capability of K absorption and use efficiency than XZ141 under low K stress. A rapid response to low K stress in XZ153 is attributed to its more K uptake and accumulation in plants, resulting in higher low K tolerance. The ethylene response pathway may account for the genotypic difference in low-K tolerance.

  1. Endoproteolytic activity assay in malting barley

    Directory of Open Access Journals (Sweden)

    Blanca Gómez Guerrero

    2013-12-01

    Full Text Available Hydrolysis of barley proteins into peptides and amino acids is one of the most important processes during barley germination.The degradation of the endosperm stored proteins facilitates water and enzyme movements, enhances modification, liberates starch granules and increases soluble amino nitrogen. Protease activity is the result of the activities of a mixture of exo- and endo-proteases. The barley proteins are initially solubilized by endo-proteases and the further by exo-proteases. Four classes of endo-proteases have been described: serine-proteases, cysteine-proteases, aspartic-proteases and metallo-proteases. The objective of this work was to develop a rapid and colorimetric enzymatic assay to determine the endo-proteolytic activity of the four endo-protease classes using two different substrates: azo-gelatin and azo-casein. Optimum conditions for the assays such as: pH,reaction time and temperature and absorbance scale were determined. Azo-gelatin presented several difficulties in standardizing an “in solution” assay. On the other hand, azo-casein allowed standardization of the assay for the four enzyme classes to produce consistent results. The endo-proteoteolytic method developed was applied to determine the endo-protease activity in barley, malt and wort.

  2. Effect of Enzyme Supplementation and Irradiation of Barley on Broiler Chicks Performance

    International Nuclear Information System (INIS)

    Farag, D.H.M.; Abd El-Hakeim, N.F.

    1999-01-01

    The experiments were conducted to study the influence of irradiation treatment at dose levels of 0.20 and 60 kGy on barley beta-glucan and the effect of enzyme supplementation and irradiation of barley on broiler chicks performance. The amount of total and water-soluble beta-glucan in raw barley was 36 kg -1 , respectively. The effect of irradiation treatment on total beta-glucan was insignificant while the level of soluble beta-glucan was increased with increasing the dose levels of irradiation. The effect of irradiation treatment and enzyme supplementation of barley diets on growth and conversion performance of broiler chicks indicated that birds fed raw barley diet had lower body weight, body weight gain and feed conversion than those fed control diet throughout the experimental period. Irradiation of barley at dose of 20 kGy did not affect the chick performance (feed consumption, weight gain feed-gain ratio) that received the B 20 diet from 7 to 21 days of age, but when bird maintained on B 20 diet from 7 28 days of age, only feed-gain ratio was improved by 14.4%. The results indicate that there was a significant effect of irradiation of barley at 60 kGy (B 60) on feed -gain ratio of chicks when were fed B 60 diet from 7 to 21 days of age. The corresponding improvement in feed-gain ratio was 16.4%. When birds were fed B 60 diet from 7-28 days of age, the improvement in body weight and feed-gain ratio was 25.5 and 19.6%, respectively

  3. Transient Overexpression of HvSERK2 Improves Barley Resistance to Powdery Mildew.

    Science.gov (United States)

    Li, Yingbo; Li, Qingwei; Guo, Guimei; He, Ting; Gao, Runhong; Faheem, Muhammad; Huang, Jianhua; Lu, Ruiju; Liu, Chenghong

    2018-04-18

    Somatic embryogenesis receptor-like kinases (SERKs) play an essential role in plant response to pathogen infection. Here we identified three SERK genes ( HvSERK1/2/3 ) from barley, and aimed to determine their implication in defense responses to barley powdery mildew ( Bgh ). Although HvSERK1/2/3 share the characteristic domains of the SERK family, only HvSERK2 was significantly induced in barley leaves during Bgh infection. The expression of HvSERK2 was rapidly induced by hydrogen peroxide (H₂O₂) treatment, but not by treatment with salicylic acid (SA), methyl jasmonate (MeJA), ethephon (ETH), or abscisic acid (ABA). Bioinformatics analysis of the cloned HvSERK2 promoter revealed that it contains several elements responsible for defense responses against pathogens. Promoter functional analysis showed that the HvSERK2 promoter was induced by Bgh and H₂O₂. Subcellular localization analysis of HvSERK2 indicated that it is mainly located on the plasma membrane. Transient overexpression of HvSERK2 in epidermal cells of the susceptible barley cultivar Hua 30 reduced the Bgh haustorium index from 58.6% to 43.2%. This study suggests that the HvSERK2 gene plays a positive role in the improvement of barley resistance to powdery mildew, and provides new insight into the function of SERK genes in the biotic stress response of plants.

  4. Research on mutant barley population under biotic and abiotic stress condition

    International Nuclear Information System (INIS)

    Peskircioglu, H.; Tuyluer, I.; Sagel, Z.; Kunter, B.; Kantoglu, Y.

    2009-01-01

    Barley is one of the most important cereal with 8,5 million tons production, 3,5 million hectares of sowing area in Turkey which is also one of the gene centres of barley. Barley is grown in every regions of Turkey where climatic conditions are available for the crop. But barley is the predominant crop in the driest land areas throughout the Anatolian plateau. Winters on that plateau are especially severe. Summers are hot and dry with temperatures above 30 degree C. Annual precipitation averages about 300 to 400 millimeters and rains mainly in winter. Because of all of these prerequisite conditions, winter barley dominates in Turkey, which indirectly refers to water economy. According to the above mentioned reasons the objectives of this investigation were: 1) Improvement of drought resistance, loading resistance and high yielding barley varieties by mutation breeding in Central Anatolian Region. 2) Determination and selection of abiotic stress such as salt resistance In our barley mutation breeding programme under Central Anatolian conditions well adapted Tokak 157/37 variety has been used. We applied 250 Gy-300 Gy gamma ray doses . Selection began at M 2 generation. Agronomical characters including earliness, straw length, lodging resistance and disease resistance are monitored in the field and greenhouse. Mutant lines have been tested for salt resistance in the hydrophonic culture which contains 180 mMol and 220 mMol NaCl concentrations. Preliminary yield trial and advanced yield trial are started after M 4 generations. In M 6 generation, we had some desirable lines those are 25-30 days earlier than its parents, so these lines escape from drought period. Some lines that have grown in the hydrophonic cultures, contains 180mMol NaCl still surviving.

  5. Identification and characterization of barley RNA-directed RNA polymerases

    DEFF Research Database (Denmark)

    Madsen, Christian Toft; Stephens, Jennifer; Hornyik, Csaba

    2009-01-01

    in dicot species. In this report, we identi!ed and characterized HvRDR1, HvRDR2 and HvRDR6 genes in the monocot plant barley (Hordeum vulgare). We analysed their expression under various biotic and abiotic stresses including fungal and viral infections, salicylic acid treatment as well as during plant...... development. The different classes and subclasses of barley RDRs displayed contrasting expression patterns during pathogen challenge and development suggesting their involvement in speci!c regulatory pathways. Their response to heat and salicylic acid treatment suggests a conserved pattern of expression...

  6. Archaeogenetic evidence of ancient nubian barley evolution from six to two-row indicates local adaptation.

    Directory of Open Access Journals (Sweden)

    Sarah A Palmer

    Full Text Available BACKGROUND: Archaeobotanical samples of barley (Hordeum vulgare L. found at Qasr Ibrim display a two-row phenotype that is unique to the region of archaeological sites upriver of the first cataract of the Nile, characterised by the development of distinctive lateral bracts. The phenotype occurs throughout all strata at Qasr Ibrim, which range in age from 3000 to a few hundred years. METHODOLOGY AND FINDINGS: We extracted ancient DNA from barley samples from the entire range of occupancy of the site, and studied the Vrs1 gene responsible for row number in extant barley. Surprisingly, we found a discord between the genotype and phenotype in all samples; all the barley had a genotype consistent with the six-row condition. These results indicate a six-row ancestry for the Qasr Ibrim barley, followed by a reassertion of the two-row condition. Modelling demonstrates that this sequence of evolutionary events requires a strong selection pressure. CONCLUSIONS: The two-row phenotype at Qasr Ibrim is caused by a different mechanism to that in extant barley. The strength of selection required for this mechanism to prevail indicates that the barley became locally adapted in the region in response to a local selection pressure. The consistency of the genotype/phenotype discord over time supports a scenario of adoption of this barley type by successive cultures, rather than the importation of new barley varieties associated with individual cultures.

  7. Optimization of microwave-assisted extraction of flavonoids from young barley leaves

    Science.gov (United States)

    Gao, Tian; Zhang, Min; Fang, Zhongxiang; Zhong, Qifeng

    2017-01-01

    A central composite design combined with response surface methodology was utilized to optimise microwave-assisted extraction of flavonoids from young barley leaves. The results showed that using water as solvent, the optimum conditions of microwave-assisted extraction were extracted twice at 1.27 W g-1 microwave power and liquid-solid ratio 34.02 ml g-1 for 11.12 min. The maximum extraction yield of flavonoids (rutin equivalents) was 80.78±0.52%. Compared with conventional extraction method, the microwave-assisted extraction was more efficient as the extraction time was only 6.18% of conventional extraction, but the extraction yield of flavonoids was increased by 5.47%. The main flavonoid components from the young barley leaf extract were probably 33.36% of isoorientin-7-O-glueoside and 54.17% of isovitexin-7-O-glucoside, based on the HPLC-MS analysis. The barley leaf extract exhibited strong reducing power as well as the DPPH radical scavenging capacity.

  8. Winter barley mutants created in the Ukraine

    International Nuclear Information System (INIS)

    Zayats, O.M.

    2001-01-01

    Full text: Increasing fodder and protein production is one of the objectives of the development of agriculture in Ukraine. Higher productivity of fodder crops, due to new highly productive varieties, is the means to meet this aim. Winter barley is an important crop for fodder purposes. The climate of the Ukraine is favourable for growing this crop. The areas used for the growth of winter barley are however, small (500,000-550,000 ha) and there is a shortage of good quality varieties. The main aim of the work was therefore to create new varieties of highly productive winter barley, of good quality. The new varieties and mutation lines of winter barley were created under the influence of water solutions of N-nitroso-N-methylurea (NMH - 0,012, 0,005%), N-nitroso-N-ethylurea (NEH - 0,05; 0.025; 0,012%) ethyleneimine (EI - 0,02; 0,01; 0,005%) on winter barley seeds of the varieties of local and foreign selections. On the basis of many years of investigations (1984-94) the following mutations were described: hard-grained, winter-hardiness, earliness, middle-maturity, late-maturity, wide and large leaves, narrow leaves, multinodal, great number of leaves, great number of flowers, strong stem (lodging resistant), tallness, semi-dwarfness, dwarfness, and high productivity. Particularly valuable are mutants with high productivity of green bulk. Their potential yield is 70 t/ha. As a result of the work two varieties of winter barley 'Shyrokolysty' and 'Kormovy' were released into the State register of plant varieties of the Ukraine. The other valuable mutant genotypes are used in cross breeding programmes. (author)

  9. N-acyl-homoserine lactone uptake and systemic transport in barley rest upon active parts of the plant

    Czech Academy of Sciences Publication Activity Database

    Sieper, T.; Forczek, Sándor; Matucha, Miroslav; Kraemer, P.; Hartmann, A.; Schroeder, P.

    2014-01-01

    Roč. 201, č. 2 (2014), s. 545-555 ISSN 1469-8137 Institutional support: RVO:61389030 Keywords : barley (Hordeum vulgare) * monoclonal antibodies * N-acyl-homoserine lactones (HSLs) Subject RIV: EF - Botanics Impact factor: 6.545, year: 2013

  10. HvDep1 Is a Positive Regulator of Culm Elongation and Grain Size in Barley and Impacts Yield in an Environment-Dependent Manner.

    Directory of Open Access Journals (Sweden)

    Toni Wendt

    Full Text Available Heterotrimeric G proteins are intracellular membrane-attached signal transducers involved in various cellular processes in both plants and animals. They consist of three subunits denoted as α, β and γ. The γ-subunits of the so-called AGG3 type, which comprise a transmembrane domain, are exclusively found in plants. In model species, these proteins have been shown to participate in the control of plant height, branching and seed size and could therefore impact the harvestable yield of various crop plants. Whether AGG3-type γ-subunits influence yield in temperate cereals like barley and wheat remains unknown. Using a transgenic complementation approach, we show here that the Scottish malting barley cultivar (cv. Golden Promise carries a loss-of-function mutation in HvDep1, an AGG3-type subunit encoding gene that positively regulates culm elongation and seed size in barley. Somewhat intriguingly, agronomic field data collected over a 12-year period reveals that the HvDep1 loss-of-function mutation in cv. Golden Promise has the potential to confer either a significant increase or decrease in harvestable yield depending on the environment. Our results confirm the role of AGG3-type subunit-encoding genes in shaping plant architecture, but interestingly also indicate that the impact HvDep1 has on yield in barley is both genotypically and environmentally sensitive. This may explain why widespread exploitation of variation in AGG3-type subunit-encoding genes has not occurred in temperate cereals while in rice the DEP1 locus is widely exploited to improve harvestable yield.

  11. Dilute-acid pretreatment of barley straw for biological hydrogen production using Caldicellulosiruptor saccharolyticus

    NARCIS (Netherlands)

    Panagiotopoulos, I.A.; Bakker, R.R.C.; Vrije, de G.J.; Claassen, P.A.M.; Koukios, E.G.

    2012-01-01

    The main objective of this study was to use the fermentability test to investigate the feasibility of applying various dilute acids in the pretreatment of barley straw for biological hydrogen production. At a fixed acid loading of 1% (w/w dry matter) 28-32% of barley straw was converted to soluble

  12. Influence of Leaf Tolerance Mechanisms and Rain on Boron Toxicity in Barley and Wheat1[C

    Science.gov (United States)

    Reid, Rob; Fitzpatrick, Kate

    2009-01-01

    Boron (B) toxicity is common in many areas of the world. Plant tolerance to high B varies widely and has previously been attributed to reduced uptake of B, most commonly as a result of B efflux from roots. In this study, it is shown that the expression of genes encoding B efflux transporters in leaves of wheat (Triticum aestivum) and barley (Hordeum vulgare) is associated with an ability of leaf tissues to withstand higher concentrations of B. In tolerant cultivars, necrosis in leaves occurred at B concentrations more than 2-fold higher than in sensitive cultivars. It is hypothesized that this leaf tolerance is achieved via redistribution of B by efflux transporters from sensitive symplastic compartments into the leaf apoplast. Measurements of B concentrations in leaf protoplasts, and of B released following infiltration of leaves, support this hypothesis. It was also shown that under B-toxic conditions, leaching of B from leaves by rain had a strong positive effect on growth of both roots and shoots. Measurements of rates of guttation and the concentration of B in guttation droplets indicated that the impact of guttation on the alleviation of B toxicity would be small. PMID:19625636

  13. Contribution of the drought tolerance-related Stress-responsive NAC1 transcription factor to resistance of barley to Ramularia leaf spot

    Science.gov (United States)

    MCGRANN, GRAHAM R D; STEED, ANDREW; BURT, CHRISTOPHER; GODDARD, RACHEL; LACHAUX, CLEA; BANSAL, ANURADHA; CORBITT, MARGARET; GORNIAK, KALINA; NICHOLSON, PAUL; BROWN, JAMES K M

    2015-01-01

    NAC proteins are plant transcription factors that are involved in tolerance to abiotic and biotic stresses, as well as in many developmental processes. Stress-responsive NAC1 (SNAC1) transcription factor is involved in drought tolerance in barley and rice, but has not been shown previously to have a role in disease resistance. Transgenic over-expression of HvSNAC1 in barley cv. Golden Promise reduced the severity of Ramularia leaf spot (RLS), caused by the fungus Ramularia collo-cygni, but had no effect on disease symptoms caused by Fusarium culmorum, Oculimacula yallundae (eyespot), Blumeria graminis f. sp. hordei (powdery mildew) or Magnaporthe oryzae (blast). The HvSNAC1 transcript was weakly induced in the RLS-susceptible cv. Golden Promise during the latter stages of R. collo-cygni symptom development when infected leaves were senescing. Potential mechanisms controlling HvSNAC1-mediated resistance to RLS were investigated. Gene expression analysis revealed no difference in the constitutive levels of antioxidant transcripts in either of the over-expression lines compared with cv. Golden Promise, nor was any difference in stomatal conductance or sensitivity to reactive oxygen species-induced cell death observed. Over-expression of HvSNAC1 delayed dark-induced leaf senescence. It is proposed that mechanisms controlled by HvSNAC1 that are involved in tolerance to abiotic stress and that inhibit senescence also confer resistance to R. collo-cygni and suppress RLS symptoms. This provides further evidence for an association between abiotic stress and senescence in barley and the development of RLS. PMID:25040333

  14. Mixed cropping of annual feed legumes with barley improves feed quantity and crude protein content under dry-land conditions

    Directory of Open Access Journals (Sweden)

    Khoshnood Alizadeh

    2013-01-01

    Full Text Available The objective of this research is to determine a suitable mixture of annual feed legumes and barley as a winter crop under dry-land conditions. Seeds of Hungarian vetch (cv. 2670, smooth vetch (cv. Maragheh, and local varieties of grass pea and field pea were mixed with barley (cv. Abidar in a 1:1 ratio and were tested, along with related monoculture. All legumes in the mixture survived winter while legumes alone, except Hungarian vetch, did not survive in the cold areas. The maximum fresh and dry forage yields (56 and 15 ton ha-1 respectively were obtained from a mixture of smooth vetch and barley in provinces with mild winter and more than 400 mm of rainfall. The mixture of barley and smooth vetch resulted in the highest mean crude protein content (17%. Autumn seeding of smooth vetch and barley in a 1:1 ratio produced more than 2 ton ha-1 of dry biomass with good quality in all studied areas and thus could serve as an alternative cropping system after wheat/barley in cold and semi-cold dry land.

  15. Conserved Transcriptional Regulatory Programs Underlying Rice and Barley Germination

    Science.gov (United States)

    Lin, Li; Tian, Shulan; Kaeppler, Shawn; Liu, Zongrang; An, Yong-Qiang (Charles)

    2014-01-01

    Germination is a biological process important to plant development and agricultural production. Barley and rice diverged 50 million years ago, but share a similar germination process. To gain insight into the conservation of their underlying gene regulatory programs, we compared transcriptomes of barley and rice at start, middle and end points of germination, and revealed that germination regulated barley and rice genes (BRs) diverged significantly in expression patterns and/or protein sequences. However, BRs with higher protein sequence similarity tended to have more conserved expression patterns. We identified and characterized 316 sets of conserved barley and rice genes (cBRs) with high similarity in both protein sequences and expression patterns, and provided a comprehensive depiction of the transcriptional regulatory program conserved in barley and rice germination at gene, pathway and systems levels. The cBRs encoded proteins involved in a variety of biological pathways and had a wide range of expression patterns. The cBRs encoding key regulatory components in signaling pathways often had diverse expression patterns. Early germination up-regulation of cell wall metabolic pathway and peroxidases, and late germination up-regulation of chromatin structure and remodeling pathways were conserved in both barley and rice. Protein sequence and expression pattern of a gene change quickly if it is not subjected to a functional constraint. Preserving germination-regulated expression patterns and protein sequences of those cBRs for 50 million years strongly suggests that the cBRs are functionally significant and equivalent in germination, and contribute to the ancient characteristics of germination preserved in barley and rice. The functional significance and equivalence of the cBR genes predicted here can serve as a foundation to further characterize their biological functions and facilitate bridging rice and barley germination research with greater confidence. PMID

  16. γ-ray radiation decontamination of barley plant powder

    International Nuclear Information System (INIS)

    Zhao Xiaojun; Fu Junjie; Wang Zhiping; Zhang Guobin

    2007-01-01

    Radiation decontamination of barley plant powder by 60 Co γ-rays and the effect on its components were studied. Results showed that irradiation was very effective in killing the microorganisms in barley plant powder. The irradiation did not cause obvious changes of the major components of protein, total sugar, free amino acid, crude fiber, but 35% loss of vitamin E was observed after 10kGy irradiation. It is suggested that 7.5-10kGy irradiation is good enough for decontamination of the barley plant powder. (authors)

  17. Microarray Analysis of Late Response to Boron Toxicity in Barley (Hordeum vulgare L.) Leaves

    NARCIS (Netherlands)

    Oz, M.T.; Yilmaz, R.; Eyidogan, F.; Graaff, de L.H.; Yucel, M.; Oktem, H.A.

    2009-01-01

    DNA microarrays, being high-density and high-throughput, allow quantitative analyses of thousands of genes and their expression patterns in parallel. In this study, Barley1 GereChip was used to investigate transcriptome changes associated with boron (B) toxicity in a sensitive barley cultivar

  18. Occurrence of barley leaf disease and control strategies in Denmark

    DEFF Research Database (Denmark)

    Jørgensen, Lise Nistrup; Ørum, Jens Erik; Heick, Thies Marten

    Barley (Hordeum vulgare) is one of the major crops in Denmark and of special importance for malting and for pig feed. In 2016, the crop was grown covering a total area of 700,000 ha; approximately 25% of arable area in Denmark. To ensure high yield of around 60 dt ha-1, disease-tolerant cultivars...... have proven to be quite effective against all leaf diseases, aside from brown rust and mildew. Denmark has a national record system for pesticide usages. All farmers upload their fungicide use by crop, creating a good basis for assessing the differences in use pattern across different regions...... and fungicide treatments are required. Each year, barley cultivars are assessed for susceptibility towards leaf diseases in national observation plots. The most predominant fungal leaf diseases in Denmark are barley scald (Rhynchosporium secalis), net blotch (Pyrenophora teres), brown rust (Puccinia hordei...

  19. Regeneration of the Barley Zygote in In Vitro Cultured Ovules

    DEFF Research Database (Denmark)

    Holme, Inger B; Brinch-Pedersen, Henrik; Lange, Mette

    2010-01-01

    In vitro cultures of zygotes and small embryos carry a lot of potential for studying plant embryogenesis and are also highly relevant for plant biotechnology. Several years ago we established an in vitro ovule culture technique for barley that allows the regeneration of plants from zygotes (Holm et...... culture ability in immature embryo culture i.e. Femina, Salome and Corniche. Barley spikes were emasculated and hand pollinated 3 days after emasculation. In barley, fertilization takes place one hour after pollination and ovules with fertilized egg cells could therefore be isolated one hour after...... pollination. Ovules were grown for 3 weeks on a culture medium where after embryos could be isolated and transferred to regeneration medium. An average of 1.2 green plantlets per ovule could be regenerated from 50 % of the isolated ovules. No genotypic differences were found on embryo induction...

  20. Substitution of wheat dried distillers grains with solubles for barley grain or barley silage in feedlot cattle diets: intake, digestibility, and ruminal fermentation.

    Science.gov (United States)

    Li, Y L; McAllister, T A; Beauchemin, K A; He, M L; McKinnon, J J; Yang, W Z

    2011-08-01

    The objective of this study was to evaluate the effects of substituting wheat dried distillers grains with solubles (DDGS) for barley grain and barley silage on intake, digestibility, and ruminal fermentation in feedlot beef cattle. Eight ruminally cannulated Angus heifers (initial BW 455 ± 10.8 kg) were assigned to a replicated 4 × 4 Latin square design with 4 treatments: control, low (25%), medium (30%), and high (35%) wheat DDGS (DM basis). The diets consisted of barley silage, barley concentrate, and wheat DDGS in ratios of 15:85:0 (CON), 10:65:25 (25DDGS), 5:65:30 (30DDGS), and 0:65:35 (35DDGS; DM basis), respectively. The diets were formulated such that wheat DDGS was substituted for both barley grain and barley silage to evaluate whether wheat DDGS can be fed as a source of both energy (grain) and fiber in feedlot finishing diets. Intakes (kg/d) of DM and OM were not different, whereas those of CP, NDF, ADF, and ether extract (EE) were greater (P Ruminal pH and total VFA concentrations were not different (P > 0.15) between 25DDGS and CON diets. Replacing barley silage with increasing amounts of wheat DDGS (i.e., from 25DDGS to 35DDGS) linearly reduced (P ruminal pH tended (P=0.10) to linearly decrease, and ruminal pH status decreased with longer (P=0.04) duration of pH 0.19) ruminal VFA and NH(3)-N concentrations. Results indicated that wheat DDGS can be effectively used to replace both barley grain and silage at a moderate amount to meet energy and fiber requirements of finishing cattle. However, when silage content of the diet is low (ruminal pH status even though the rapidly fermentable starch content of the diet is considerably reduced. © 2011 American Society of Animal Science. All rights reserved.

  1. 454 sequencing of pooled BAC clones on chromosome 3H of barley

    Directory of Open Access Journals (Sweden)

    Yamaji Nami

    2011-05-01

    Full Text Available Abstract Background Genome sequencing of barley has been delayed due to its large genome size (ca. 5,000Mbp. Among the fast sequencing systems, 454 liquid phase pyrosequencing provides the longest reads and is the most promising method for BAC clones. Here we report the results of pooled sequencing of BAC clones selected with ESTs genetically mapped to chromosome 3H. Results We sequenced pooled barley BAC clones using a 454 parallel genome sequencer. A PCR screening system based on primer sets derived from genetically mapped ESTs on chromosome 3H was used for clone selection in a BAC library developed from cultivar "Haruna Nijo". The DNA samples of 10 or 20 BAC clones were pooled and used for shotgun library development. The homology between contig sequences generated in each pooled library and mapped EST sequences was studied. The number of contigs assigned on chromosome 3H was 372. Their lengths ranged from 1,230 bp to 58,322 bp with an average 14,891 bp. Of these contigs, 240 showed homology and colinearity with the genome sequence of rice chromosome 1. A contig annotation browser supplemented with query search by unique sequence or genetic map position was developed. The identified contigs can be annotated with barley cDNAs and reference sequences on the browser. Homology analysis of these contigs with rice genes indicated that 1,239 rice genes can be assigned to barley contigs by the simple comparison of sequence lengths in both species. Of these genes, 492 are assigned to rice chromosome 1. Conclusions We demonstrate the efficiency of sequencing gene rich regions from barley chromosome 3H, with special reference to syntenic relationships with rice chromosome 1.

  2. Luteibacter rhizovicinus MIMR1 promotes root development in barley (Hordeum vulgare L.) under laboratory conditions.

    Science.gov (United States)

    Guglielmetti, Simone; Basilico, Roberto; Taverniti, Valentina; Arioli, Stefania; Piagnani, Claudia; Bernacchi, Andrea

    2013-11-01

    In order to preserve environmental quality, alternative strategies to chemical-intensive agriculture are strongly needed. In this study, we characterized in vitro the potential plant growth promoting (PGP) properties of a gamma-proteobacterium, named MIMR1, originally isolated from apple shoots in micropropagation. The analysis of the 16S rRNA gene sequence allowed the taxonomic identification of MIMR1 as Luteibacter rhizovicinus. The PGP properties of MIMR1 were compared to Pseudomonas chlororaphis subsp. aurantiaca DSM 19603(T), which was selected as a reference PGP bacterium. By means of in vitro experiments, we showed that L. rhizovicinus MIMR1 and P. chlororaphis DSM 19603(T) have the ability to produce molecules able to chelate ferric ions and solubilize monocalcium phosphate. On the contrary, both strains were apparently unable to solubilize tricalcium phosphate. Furthermore, the ability to produce 3-indol acetic acid by MIMR1 was approximately three times higher than that of DSM 19603(T). By using fluorescent recombinants of strains MIMR1 and DSM 19603(T), we also demonstrated that both bacteria are able to abundantly proliferate and colonize the barley rhizosphere, preferentially localizing on root tips and in the rhizoplane. Finally, we observed a negative effect of DSM 19603(T) on barley seed germination and plant growth, whereas MIMR1, compared to the control, determined a significant increase of the weight of aerial part (+22 %), and the weight and length of roots (+53 and +32 %, respectively). The results obtained in this work make L. rhizovicinus MIMR1 a good candidate for possible use in the formulation of bio-fertilizers.

  3. Comparison of Production Effectiveness of Wheat and Barley in Terms of Energy Use and Productivity in Sistan and Blochestan Province

    Directory of Open Access Journals (Sweden)

    S.M. Ziaei

    2013-10-01

    Full Text Available Comparison of energy productivity of different crops can be used as an effective tool to prioritize crops planting in each area. This study was conducted in order to compare of wheat and barley farms of Sistan and Blochestan province in relation of various aspects of energy consumption at 2009. 100 wheat and 100 barley fields were selected randomly from Zahedan, Zabol, Saravan, Khash, Iranshahr, Gasht, Sib and Soran, Zaboli, Nahok, Jalegh and Nikshahr cities. Inputs data and yield of wheat and barley fields were collected in the form of questionnaires in a face-to-face interviewing. Results showed that total energy inputs of wheat and barley fields were 32492.97 and 25655.81 MJ.ha-1, respectively. Total energy outputs for wheat and barley fields also were 48517.24 and 49800.87 MJ.ha-1, respectively. Based on these results the amount of energy use efficiency for wheat and barley fields were 1.49 and 1.94 respectively, and the amount of energy productivity for mentioned fields were 0.056 and 0.066. The share of renewable energy as one of the sustainability index of agricultural systems was 19.60 for wheat and 14.60 for barley fields. Therefore, it seems that barley production is more efficient from various aspects of energy consumption rather than wheat in Sistan and Blochestan province.

  4. Effect of pH and Recombinant Barley (Hordeum vulgare L.) Endoprotease B2 on Degradation of Proteins in Soaked Barley

    DEFF Research Database (Denmark)

    Christensen, Jesper Bjerg; Dionisio, Giuseppe; Poulsen, Hanne Damgaard

    2014-01-01

    .3. Solubilized and degraded proteins evaluated by biuret, SDS-PAGE, and differential proteomics revealed that pH 4.3 had the greatest impact on both solubilization and degradation. In order to boost proteolysis, the recombinant barley endoprotease B2 (rec-HvEP-B2) was included after 8 h using the pH 4.3 regime......Nonfermented soaking of barley feedstuff has been established as an in vitro procedure prior to the feeding of pigs as it can increase protein digestibility. In the current study, two feed cultivars of barley (Finlissa and Zephyr) were soaked in vitro either nonbuffered or buffered at pH 3.6 and 4....... Proteolysis evaluated by SDS-PAGE and differential proteomics confirmed a powerful effect of adding rec-HvEP-B2 to the soaked barley, regardless of the genotype. Our study addresses the use of rec-HvEP-B2 as an effective feed enzyme protease. HvEP-B2 has the potential to increase the digestibility of protein...

  5. Complex Interspecific Hybridization in Barley (Hordeum vulgare L.) and the Possible Occurrence of Apomixis

    DEFF Research Database (Denmark)

    Bothmer, R. von; Bengtsson, M.; Flink, J.

    1988-01-01

    Several complex hybrids were produced from the combination [(Hordeum lechleri, 6 .times. .times. H. procerum, 6 .times.) .times. H. vulgare, 2 .times.]. Crosses with six diploid barley lines resulted in triple hybrids, most of which had a full complement of barley chromosomes (no. 1-7), but were...

  6. NAC Transcription Factors of Barley (Hordeum vulgare L.) and their Involvement in Leaf Senescence

    DEFF Research Database (Denmark)

    Wagner, Michael

    parts of the senescence process. The specific aims of this study were therefore (1) to establish and characterise the NAC transcription factors of the model cereal crop barley (Hordeum vulgare L.) (2) to identify and study putative barley NAC transcription factors involved in the regulation of leaf...

  7. Investigation of the effect of nitrogen on severity of Fusarium Head Blight in barley

    DEFF Research Database (Denmark)

    Yang, Fen; Jensen, J.D.; Spliid, N.H.

    2010-01-01

    The effect of nitrogen on Fusarium Head Blight (FHB) in a susceptible barley cultivar was investigated using gel-based proteomics. Barley grown with either 15 or 100 kg ha(-1)N fertilizer was inoculated with Fusarium graminearum (Fg). The storage protein fraction did not change significantly...

  8. Pirimiphos-methyl residues in stored wheat and barley, bread, burghul and parboiled wheat

    International Nuclear Information System (INIS)

    Hadjidemetriou, D.G.

    1990-01-01

    Residues of 14 C-pirimiphos-methyl in stored grain declined to 88% in wheat and 82% in barley after 12 months. Corresponding percentages with the unlabelled insecticide were 78% and 59% since only the parent chemical was determined. Surface residues, removed by washing the grain with water, decreased from 3.3 to 0.2 mg/kg for wheat and from 2.0 to 0.2 mg/kg for barley. Bound residues increased gradually with time and reached a maximum of 2.2% for wheat and 3.0% for barley in 12 months. Pirimiphos-methyl residues in flour increased from 1.1 at 0 time to 2.2 mg/kg after one year. The mean values of residues contained in the unwashed wheat grain were 81% for bran and 19% for flour. The loss in milling during preparation of wholemeal flour from prewashed grain was 7% for wheat and 6% for barley. Processed products from wheat showed residue losses ranging from 24 to 45%. (author). 16 refs, 2 figs, 2 tabs

  9. Resistance genes in barley (Hordeum vulgare L.) and their identification with molecular markers.

    Science.gov (United States)

    Chełkowski, Jerzy; Tyrka, Mirosław; Sobkiewicz, Andrzej

    2003-01-01

    Current information on barley resistance genes available from scientific papers and on-line databases is summarised. The recent literature contains information on 107 major resistance genes (R genes) against fungal pathogens (excluding powdery mildew), pathogenic viruses and aphids identified in Hordeum vulgare accessions. The highest number of resistance genes was identified against Puccinia hordei, Rhynchosporium secalis, and the viruses BaYMV and BaMMV, with 17, 14 and 13 genes respectively. There is still a lot of confusion regarding symbols for R genes against powdery mildew. Among the 23 loci described to date, two regions Mla and Mlo comprise approximately 31 and 25 alleles. Over 50 R genes have already been localised and over 30 mapped on 7 barley chromosomes. Four barley R genes have been cloned recently: Mlo, Rpg1, Mla1 and Mla6, and their structures (sequences) are available. The paper presents a catalogue of barley resistance gene symbols, their chromosomalocation and the list of available DNA markers useful in characterising cultivars and breeding accessions.

  10. Barley starch bioengineering for high phosphate and amylose

    DEFF Research Database (Denmark)

    Blennow, Per Gunnar Andreas; Carciofi, Massimiliano; Shaik, Shahnoor Sultana

    2011-01-01

    Starch is a biological polymer that can be industrially produced in massive amounts in a very pure form. Cereals is the main source for starch production and any improvement of the starch fraction can have a tremendous impact in food and feed applications. Barley ranks number four among cereal...... crops and barley is a genetically very well characterized. Aiming at producing new starch qualities in the cereal system, we used RNAi and overexpression strategies to produce pure amylose and high-phosphate starch, respectively, using the barley kernel as a polymer factory. By simultaneous silencing...... of the three genes encoding the starch-branching enzymes SBEI, SBEIIa, and SBEIIb using a triple RNAi chimeric hairpin construct we generated a virtually amylopectin-free barley. The grains of the transgenic lines were shrunken and had a yield of around 80% of the control line. The starch granules were...

  11. Cisgenic barley with improved phytase activity

    DEFF Research Database (Denmark)

    Holme, Inger; Dionisio, Giuseppe; Brinch-Pedersen, Henrik

    2010-01-01

    copies of the genomic phytase gene and the selection gene to identify segregation between the two genes. Presently, we have identified two cisgenic T1 plants without vector backbone and selection gene but with an extra copy of the genomic phytase gene....... are accordingly very similar to those generated by conventional breeding. The cisgenesis concept allows for the introduction of extra gene copies of a particular gene to accentuate the trait. We are using a barley purple acid phosphatase expressed during grain filling as candidate gene for cisgenesis. A genomic...... barley lambda library has been used to isolate the genomic clone of this phytase including 2.3 kb of the promoter region and 600 bp of the terminator region. The clone has been inserted into a cisgenic Agrobacterium vector where both the gene of interest and the selection gene are flanked by their own T...

  12. Biochemical and Molecular Characterization of a Barley Seed ß-Glucosidase

    DEFF Research Database (Denmark)

    Leah, R.; Kigel, J.; Svendsen, I.

    1995-01-01

    blot analysis with the cDNA as probe indicated that BGQ60 is encoded by a single gene, and that BGQ60 mRNA only accumulates in the starchy endosperm tissue of late developing seeds. The bgq60 structural gene of approximately 5 kilobases contains an open reading frame encoding 485 amino acids...... during barley seed development and germination are discussed.......A 60-kDa ß-glucosidase (BGQ60) was purified and characterized from seeds of barley (Hordeum vulgare L.). BGQ60 catalytic activity was restricted to the cleavage of short-chain oligosaccharides composed of(1, 2) -,(1, 2, 3) -, and/or(1, 2, 3, 4) -ß-linked glucose or mannose units...

  13. Oligosaccharide and Substrate Binding in the Starch Debranching Enzyme Barley Limit Dextrinase

    DEFF Research Database (Denmark)

    Møller, Marie Sofie; Windahl, Michael Skovbo; Sim, Lyann

    2015-01-01

    Complete hydrolytic degradation of starch requires hydrolysis of both the α-1,4- and α-1,6-glucosidic bonds in amylopectin. Limit dextrinase (LD) is the only endogenous barley enzyme capable of hydrolyzing the α-1,6-glucosidic bond during seed germination, and impaired LD activity inevitably...... reduces the maltose and glucose yields from starch degradation. Crystal structures of barley LD and active-site mutants with natural substrates, products and substrate analogues were sought to better understand the facets of LD-substrate interactions that αconfine high activity of LD to branched...... starch synthesis....

  14. Lysine metabolism in antisense C-hordein barley grains

    DEFF Research Database (Denmark)

    Schmidt, Daiana; Rizzi, Vanessa; Gaziola, Salete A

    2015-01-01

    The grain proteins of barley are deficient in lysine and threonine due to their low concentrations in the major storage protein class, the hordeins, especially in the C-hordein subgroup. Previously produced antisense C-hordein transgenic barley lines have an improved amino acid composition, with ...

  15. Diversity for seedling vigor in wild barley (hordeum vulgare L. subs. simpatina) germplasm

    International Nuclear Information System (INIS)

    Tyagi, K.; Park, M.R.; Lee, H.J.; Lee, C.A.; Rehman, S.; Steffenson, B.; Lee, K.J.; Yun, S.J.

    2011-01-01

    Seedling vigor is important for improving stand establishment of barley crops, particularly in arid regions and areas where the soil temperature is low at sowing time. Three hundred and fifteen wild barley accessions from the Wild Barley Diversity Collection (WBDC) were evaluated for nine seedling vigor traits in a poly house and growth chamber under hydroponic conditions. The accessions exhibited significant differences for all traits investigated. Traits showing greatest phenotypic variation were seedling visual score, plant height, shoot fresh weight, shoot dry weight and shoot length. Seed weight exhibited the least variation. Seed weight was significantly correlated with visual seedling score and shoot and seedling fresh and dry weight. Correlation analysis showed that the visual seedling score was a reliable method for estimating seedling vigor in wild barley. The first three principal components (PC) explained 82.3% of the variation present in the WBDC with PC1(54.0%) associated with shoot fresh weight, shoot dry weight, seedling dry weight, seedling fresh weight, shoot length and seedling length. Accessions from the southwest portion of the Fertile Crescent, like WBDC020 (Turkey), WBDC238 (Jordan) and WBDC244 (Jordan) exhibited the highest positive values for most of the plant vigor traits investigated. These wild barley accessions likely carry alleles that will be useful for the improvement of plant vigor traits in cultivated barley. (author)

  16. Fusarium infection and trichothecenes in barley and its comparison with wheat

    NARCIS (Netherlands)

    Janssen, Esmee; Liu, C.; Fels, van der H.J.

    2018-01-01

    Barley is a small-grain cereal that can be infected by Fusarium spp. resulting in reduced quality and safety of harvested barley (products). Barley and other small-grain cereals are commonly studied together for Fusarium infection and related mycotoxin contamination, since the infection and its

  17. Matrix attachment regions (MARs) enhance transformation frequencies and reduce variance of transgene expression in barley

    DEFF Research Database (Denmark)

    Petersen, K.; Leah, R.; Knudsen, S.

    2002-01-01

    -MAR from petunia revealed that only the P1-MAR had specific binding affinity for barley nuclear matrices. The barley transformation frequency with the uidA reporter gene was increased 2-fold when the gene was flanked with either the P1-MAR or TBS-MAR, while the gene copy number was strongly reduced...

  18. Dinitrogen fixation estimates in Vetch-barley swards using {sup 15} N-methodology

    Energy Technology Data Exchange (ETDEWEB)

    Kurdali, F; Sharabi, N E [Atomic Energy Commission, P.O.Box 6091, Damascus, (Syrian Arab Republic)

    1995-10-01

    N 2- fixation in vetch (Vicia Sativa) grown alone and in mixture with barley (hordeum vulgare) in pots was evaluated using {sup 15} N isotope dilution method. Two harvests were made over the growing season. The proportion of the above-ground N, derived from atmospheric N 2 (% Ndfa) in mixed vetch was significantly higher than that of vetch in pure culture for the different harvests. However, this increase was not accompanied with the amount of N 2-fixation. On the other hand, no significant differences were observed in N-content or in N-derived from soil between barley grown in mixture and in monoculture, in spite of the difference in the number of plants between the tow cropping systems. These results indicate a high competing capacity of barley for soil nitrogen in mixed culture. Barley grown together with vetch had lower atom % 15 N excess than barley grown in mono-culture because it may have received some of their N from N-released by the legume in the second herbage but not in the first. Overall, results obtained from this experiment indicate the importance of mixed crops for forage production. Based on these results, further investigation must carried out in the field. 1 fig.

  19. SPRING BARLEY BREEDING FOR MALTING QUALITY

    OpenAIRE

    Alžbeta Žofajová; Jozef Gubiš; Ľudovít Sleziak; Klára Križanová; Vratislav Psota

    2010-01-01

    The aim of this contribution is to illustrate the results of spring barley breeding for malting quality and point out an important position of variety in production of  qualitative  raw material for maltinq and beer  industry as well as the system of evaluation the qualitative parameters of breeding materials and adaptation of barley breeding programms to the  new requirements of  malting and beer industry. As an example of the results obtained most recently descripti...

  20. Adaptive microclimatic structural and expressional dehydrin 1 evolution in wild barley, Hordeum spontaneum, at 'Evolution Canyon', Mount Carmel, Israel.

    Science.gov (United States)

    Yang, Zujun; Zhang, Tao; Bolshoy, Alexander; Beharav, Alexander; Nevo, Eviatar

    2009-05-01

    'Evolution Canyon' (ECI) at Lower Nahal Oren, Mount Carmel, Israel, is an optimal natural microscale model for unravelling evolution in action highlighting the twin evolutionary processes of adaptation and speciation. A major model organism in ECI is wild barley, Hordeum spontaneum, the progenitor of cultivated barley, which displays dramatic interslope adaptive and speciational divergence on the 'African' dry slope (AS) and the 'European' humid slope (ES), separated on average by 200 m. Here we examined interslope single nucleotide polymorphism (SNP) sequences and the expression diversity of the drought resistant dehydrin 1 gene (Dhn1) between the opposite slopes. We analysed 47 plants (genotypes), 4-10 individuals in each of seven stations (populations) in an area of 7000 m(2), for Dhn1 sequence diversity located in the 5' upstream flanking region of the gene. We found significant levels of Dhn1 genic diversity represented by 29 haplotypes, derived from 45 SNPs in a total of 708 bp sites. Most of the haplotypes, 25 out of 29 (= 86.2%), were represented by one genotype; hence, unique to one population. Only a single haplotype was common to both slopes. Genetic divergence of sequence and haplotype diversity was generally and significantly different among the populations and slopes. Nucleotide diversity was higher on the AS, whereas haplotype diversity was higher on the ES. Interslope divergence was significantly higher than intraslope divergence. The applied Tajima D rejected neutrality of the SNP diversity. The Dhn1 expression under dehydration indicated interslope divergent expression between AS and ES genotypes, reinforcing Dhn1 associated with drought resistance of wild barley at 'Evolution Canyon'. These results are inexplicable by mutation, gene flow, or chance effects, and support adaptive natural microclimatic selection as the major evolutionary divergent driving force.

  1. 7 CFR 801.3 - Tolerances for barley pearlers.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 7 2010-01-01 2010-01-01 false Tolerances for barley pearlers. 801.3 Section 801.3 Agriculture Regulations of the Department of Agriculture (Continued) GRAIN INSPECTION, PACKERS AND STOCKYARD... FOR GRAIN INSPECTION EQUIPMENT § 801.3 Tolerances for barley pearlers. The maintenance tolerances for...

  2. Breeding of proanthocyanidin free malting barley

    International Nuclear Information System (INIS)

    Andersen, Anna Maria

    1990-01-01

    Full text: Haze formation in stored beer is due to colloidal precipitation of proteins with polyphenols of which proanthocyanidins are the most important group. 70-80% of proanthocyanidin in beer are from barley malt. Today breweries attain haze stability by using enzymes, additives or adsorbents. A better solution would be to remove proanthocyanidins. Carlsberg Plant Breeding uses induced mutations to breed proanthocyanidin-free malting barley. After mutagen treatment with sodium azide M1 seeds are planted in the field and M2 seeds are harvested in bulk. A single seed, non-destructive method has been developed to identify mutant kernels lacking proanthocyanidins in the testa. The method involves the inclusion of M2 seeds - 50 at a time - in semisolid clay blocks, whereafter a small part of the endosperm, testa and pericarp are exposed by sanding the seeds. The clay block is then placed in a vanillin-HCI solution so that the uncovered tissues can react with the solution. A red colour will develop in the testa of normal seeds, whereas the testa layers of proanthocyanid-free seeds remain colourless. So far, more than 600 mutants have been induced in over 100 barley varieties, spring as well as winter-types, from barley producing areas around the world. The mutants can be assigned to at least 7 loci, all of which can block the biosynthetic pathway for the proanthocyanidins. Mutants in the ant-18 and ant-19 loci show poor kernel development. Only a few mutants are known in the ant-12, ant-22 and ant-25 loci. Breeding work is focussed on mutants belonging to the ant-13 and ant-17 loci. Whereas the malting quality of ant-17 lines suffer from apparent abnormal enzyme development in the aleurone layer, this defect does not exist in ant-13 lines. Brewing trials with proanthocyanidin-free malt have shown excellent haze stability without changes in beer flavour. Breeding work based on the ant-13 lines led to disease resistant lines with good malting quality, while grain yield

  3. New NS varieties of six-rowed winter barley

    Directory of Open Access Journals (Sweden)

    Pržulj Novo

    2009-01-01

    Full Text Available The paper describes the characteristics of several new NS varieties of winter six-rowed barley released in Serbia between 2004 and 2007. These are Somborac, Ozren, Javor, Novosadski 773, Sremac and Leotar. In the official variety trials in the country, all six of these varieties outyielded the check variety, and the margins were as follows: Somborac - 3.4%, Ozren - 5.0%, Javor - 7.3%, Novosadski 773 - 3.4%, Sremac - 7.4%, and Leotar - 7.2%. Yield levels in absolute terms depended on the variety as well as year. All six-rowed NS varieties headed earlier than the check and had better resistance to lodging than the check has. The test weight of the new varieties was 70.2-73.8 kg/hl and the 1000-grain weight 33.4-50.2 g. The cellulose content was 4.4-4.8%, the fat content 1.4%, and the protein content 13.3-14.6%. The high variability of the new NS varieties of winter six-rowed barley makes it possible to choose the most suitable genotype for each barley-growing area in the country. .

  4. PHYSIOLOGICAL AND AGROECOLOGICAL ASPECTS OF CADMIUM INTERACTIONS WITH BARLEY PLANTS: AN OVERVIEW

    Directory of Open Access Journals (Sweden)

    A VASSILEV

    2003-07-01

    Full Text Available This work is a review of author’s previous publications, unpublished results as well as available literature on barley responses to Cd contamination. The physiological backgrounds of the acute Cd toxicity in barley plants are briefly described. Some data characterizing the chronic Cd toxicity in barley have been also provided in relation to its possible use for seed production and Cd phytoextraction on Cd-contaminated agricultural soils. Information about the main physiological factors limiting growth of Cd-exposed barley plants and grain yield, seedling quality as well as Cd phytoextraction capacity of barley grown in Cd-contaminated soils is presented.

  5. Spring Barley Yield Parameters after Lignite, Sodium Humate and Nitrogen Utilization

    Directory of Open Access Journals (Sweden)

    Kováčik Peter

    2016-10-01

    Full Text Available The existence of a small number of publications dealing with the impact of solid sodium humate and lignite on the quantity and quality of grown crops was the reason for establishing the field experiment. The objective of this experiment was to detect the impact of solid lignite and solid sodium humate on the quantity and quality of spring barley yield. These substances were applied into the soil either independently or along with nitrogen fertiliser. The next objective was to determine the impact of foliar application of sodium humate water solution applied either independently or along with nitrogen fertiliser on the quality and quantity of spring barley yield. The achieved results showed that the autumn application of solid lignite and the presowing application of solid sodium humate into the soil tended to decrease the yield of both grain and straw of spring barley, crude protein content in grain, proportion of the first-class grains and volume weight of grain, whereas the impact of humate was more negative. Lignite and sodium humate in the solid form should be used along with nitrogen fertiliser. The application of sodium humate in liquid form during the growth season of barley tended to increase the yield of both grain and straw. The joint application of nitrogen and liquid sodium humate during the growth season of barley increased the grain yield of barley significantly. A lower dose of nitrogen, applied during the growth season of barley (growth season BBCH 23, increased the grain yield of barley considerably more than a higher N dose, applied into the soil before barley sowing.

  6. Nitrogen immobilization and mineralization during initial decomposition of 15N-labelled pea and barley residues

    DEFF Research Database (Denmark)

    Jensen, E.S.

    1997-01-01

    The immobilization and mineralization of N following plant residue incorporation were studied in a sandy loam soil using N-15-labelled field pea (Pisum sativum L.) and spring barley (Hordeum vulgare L.) straw. Both crop residues caused a net immobilization of soil-derived inorganic N during...... the complete incubation period of 84 days. The maximum rate of N immobilization was found to 12 and 18 mg soil-derived N g(-1) added C after incorporation of pea and barley residues, respectively. After 7 days of incubation, 21% of the pea and 17% of the barley residue N were assimilated by the soil microbial...... the decomposition of the barley residue. The net mineralization of residue-derived N was 2% in the barley and 22% in the pea residue treatment after 84 days of incubation. The results demonstrated that even if crop residues have a relative low C/N ratio (15), transient immobilization of soil N in the microbial...

  7. Molecular characterization of barley ( Hordeum vulgare L.) genome ...

    African Journals Online (AJOL)

    The present work aimed to select drought tolerant barley (Hordeum vulgare L.) cultivars through identification of stress genes responsible for drought tolerance. Several barley genotypes were tested for drought resistance using specific molecular markers, nine out of all the genotypes were chosen for this study; five out of ...

  8. Adaptation of barley to mild winters: A role for PPDH2

    Directory of Open Access Journals (Sweden)

    Casao M Cristina

    2011-11-01

    Full Text Available Abstract Background Understanding the adaptation of cereals to environmental conditions is one of the key areas in which plant science can contribute to tackling challenges presented by climate change. Temperature and day length are the main environmental regulators of flowering and drivers of adaptation in temperate cereals. The major genes that control flowering time in barley in response to environmental cues are VRNH1, VRNH2, VRNH3, PPDH1, and PPDH2 (candidate gene HvFT3. These genes from the vernalization and photoperiod pathways show complex interactions to promote flowering that are still not understood fully. In particular, PPDH2 function is assumed to be limited to the ability of a short photoperiod to promote flowering. Evidence from the fields of biodiversity, ecogeography, agronomy, and molecular genetics was combined to obtain a more complete overview of the potential role of PPDH2 in environmental adaptation in barley. Results The dominant PPDH2 allele is represented widely in spring barley cultivars but is found only occasionally in modern winter cultivars that have strong vernalization requirements. However, old landraces from the Iberian Peninsula, which also have a vernalization requirement, possess this allele at a much higher frequency than modern winter barley cultivars. Under field conditions in which the vernalization requirement of winter cultivars is not satisfied, the dominant PPDH2 allele promotes flowering, even under increasing photoperiods above 12 h. This hypothesis was supported by expression analysis of vernalization-responsive genotypes. When the dominant allele of PPDH2 was expressed, this was associated with enhanced levels of VRNH1 and VRNH3 expression. Expression of these two genes is needed for the induction of flowering. Therefore, both in the field and under controlled conditions, PPDH2 has an effect of promotion of flowering. Conclusions The dominant, ancestral, allele of PPDH2 is prevalent in southern

  9. Supplementation of hydroxypropyl methylcellulose into yeast leavened all-whole grain barley bread potentiates cholesterol-lowering effect.

    Science.gov (United States)

    Kim, Hyunsook; Turowski, Maciej; Anderson, W H Kerr; Young, Scott A; Kim, Yookyung; Yokoyama, Wallace

    2011-07-27

    We investigated in Syrian Golden hamsters the biological impact and its underlying mechanism of single whole grain breads supplemented with 2-3% hydroxypropyl methylcellulose (HPMC), a semisynthetic viscous soluble dietary fiber (SDF) as a substitute for gluten. Hamsters were fed high-fat diets supplemented with 48-65% (w/w) differently ground, freeze-dried single grain breads including whole grain wheat, barley, barley supplemented with HPMC, debranned oat, and oat supplemented with HPMC which were compared to a diet containing microcrystalline cellulose (control). All single grain breads significantly lowered plasma LDL-cholesterol concentrations compared to the control. Enrichment with HPMC further lowered plasma and hepatic cholesterol concentrations. Despite the reduced molecular weight of naturally occurring soluble (1--->3),(1--->4)-β-d-glucan (β-glucan) caused by the bread-making process, whole grain barley breads downregulated hepatic expression of CYP7A1 and HMG-CoAR genes that are responsible for bile acid and cholesterol synthesis, suggesting a possible role of bioactive compounds such as short-chain fatty acids and phenolic compounds from barley bread. Barley bread enriched with HPMC downregulated expression of ABCG5 gene. Taken together, it appears that distinctive modulation of synthesis and excretion of hepatic cholesterol and bile acid contributes to the cholesterol-lowering properties of whole grain barley breads and breads enriched with HPMC. These data suggests that alternative whole grain breads supplemented with HPMC may provide consumers with a staple food that can assist in cholesterol management.

  10. Dipeptide transporters in Fusarium graminearum

    DEFF Research Database (Denmark)

    Droce, Aida; Giese, Henriette; Søndergaard, Teis

    Fungi have evolved different transport mechanisms in order to utilize both inorganic and organic nitrogen sources because nitrogen availability often is one of the limiting factors in pathogenic processes. In this study we have characterized four di/tripeptide transporters in the necrotrophic plant...... pathogen Fusarium graminearum Fusarium that causes head blight (FHB) in wheat and barley....

  11. Mutants in the host-pathogen system barley-powdery mildew

    International Nuclear Information System (INIS)

    Joergensen, J.H.

    1989-10-01

    Mutation induction was used to analyse the host/pathogen interaction of barley and Erysiphe graminis. By irradiation or chemical mutagens, a number of similar mutations were induced in the ml-o gene (locus) of barley. The mutants had non-specific and durable resistance, which is rather uncommon. Studies revealed, that in spite of their similarity (the same mutated locus, monogenic recessive inheritance), the mutants were not identical and represent unique sources of disease resistant germ plasm. To study more fundamentally the interference of induced mutations in host/pathogen interactions, barley carrying the dominant resistance gene M1-a 12 was irradiated to mutate this gene. Instead of the expected ''monogenic recessive susceptibility'', several different mutational events inside and outside the locus were found to modify the resistance towards a more or less susceptible reaction. A third interesting approach was to induce mutations in the pathogen and thus create new virulence genes. The result, that no true mutation towards virulence was obtained in extremely large populations, deserves attention and further study to be sure about its implication. 13 refs

  12. Detection of Ustilago nuda (Jensen Rostrup in winter barley seed

    Directory of Open Access Journals (Sweden)

    Ignjatov Maja

    2011-01-01

    Full Text Available Barley is one of the most important cereals grown in our agroecological conditions. The causal agent of loose smut on barley Ustilago nuda (Jensen Rostrup occurs frequently as varieties susceptible to this pathogen are present in the production. Disease symptoms are manifested on barley head (spike. Parasite is transmitted by seed (seedborne and stays in the embryo tissue of the infected kernel as dormant mycelium. Recommended method for detection of U. nuda is given by ISTA Rules (method 7-013. In tests, nine samples (weighing 120 g each of naturally infected barley seed (about 1000 seeds, depending on the absolute mass of seed were examined, observed and described using a Zeiss microscope with sub stage illumination with magnification range x 40 or higher. Mycelium of the fungus approximately 3 μ thick, golden brown in colour was detected and visible without a stain. The percentage of infected embryos in the examined samples of barley seeds ranged from 0.8% to 5.2%.

  13. A putative role for amino acid permeases in sink-source communication of barley tissues uncovered by RNA-seq

    Directory of Open Access Journals (Sweden)

    Kohl Stefan

    2012-08-01

    Full Text Available Abstract Background The majority of nitrogen accumulating in cereal grains originates from proteins remobilised from vegetative organs. However, interactions between grain filling and remobilisation are poorly understood. We used transcriptome large-scale pyrosequencing of flag leaves, glumes and developing grains to identify cysteine peptidase and N transporter genes playing a role in remobilisation and accumulation of nitrogen in barley. Results Combination of already known and newly derived sequence information reduced redundancy, increased contig length and identified new members of cysteine peptidase and N transporter gene families. The dataset for N transporter genes was aligned with N transporter amino acid sequences of rice and Arabidopsis derived from Aramemnon database. 57 AAT, 45 NRT1/PTR and 22 OPT unigenes identified by this approach cluster to defined subgroups in the respective phylogenetic trees, among them 25 AAT, 8 NRT1/PTR and 5 OPT full-length sequences. Besides, 59 unigenes encoding cysteine peptidases were identified and subdivided into different families of the papain cysteine peptidase clade. Expression profiling of full-length AAT genes highlighted amino acid permeases as the group showing highest transcriptional activity. HvAAP2 and HvAAP6 are highly expressed in vegetative organs whereas HvAAP3 is grain-specific. Sequence similarities cluster HvAAP2 and the putative transporter HvAAP6 together with Arabidopsis transporters, which are involved in long-distance transfer of amino acids. HvAAP3 is closely related to AtAAP1 and AtAAP8 playing a role in supplying N to developing seeds. An important role in amino acid re-translocation can be considered for HvLHT1 and HvLHT2 which are specifically expressed in glumes and flag leaves, respectively. PCA and K-means clustering of AAT transcript data revealed coordinate developmental stages in flag leaves, glumes and grains. Phloem-specific metabolic compounds are proposed that

  14. Effects of Net Blotch ( Pyrenophora teres ) on Malt Barley Yield and ...

    African Journals Online (AJOL)

    Barley (Hordeum vulgare L.) production is constrained by diseases such as net blotch caused by Pyrenophora teres Drechsl. The objectives of this study were to assess the effects of net blotch disease on malt barley yield and grain quality under natural infection. Four malt barley varieties (Beka, HB 120, HB 52 and Holker), ...

  15. BIOCHEMICAL COMPOSITION AND NUTRITIONAL EVALUATION OF BARLEY RIHANE (HORDEUM VULGARE L.).

    Science.gov (United States)

    Lahouar, Lamia; Ghrairi, Fatma; El Arem, Amira; Medimagh, Sana; El Felah, Mouledi; Salem, Hichem Ben; Achour, Lotfi

    2017-01-01

    Many experimental studies have suggested an important role for barley Rihane(BR)in the prevention of colon cancer and cardiovascular diseases. The objective of this study was to evaluate the physico-chemical properties and nutritional characterizations of BR compared to other varieties grown in Tunisia (Manel, Roho and Tej). Total, insoluble and soluble dietary fiber(β-glucan), total protein, ash and some minerals of BR and Tunisian barley varieties were determined. The results revealed that BR is good source of dietary fiber mainly β-glucan compared to the other varieties. This variety is a relatively rich source of phosphorous and potassium and it contains many important unsaturated fatty acids. BR has higher nutritional value than other varieties. Barley Rihane has significant nutritional characterizations compared to others Tunisian barleys varieties. Abbreviations: BR, Barley Rihane; LDL, low density lipoprotein; HDL, high density lipoprotein; AOM, azoxymethane; TBV, Tunisian barley varieties; TGW, thousand grain weight; SW, weight specific; TDF, total dietary fiber; IDF, insoluble dietary fiber; SDF, soluble dietary fiber; DM, Dry Matter.

  16. Effects of Pleurotus sapidus (Schulzer Sacc. treatment on nutrient composition and ruminal fermentability of barley straw, barley rootless, and a mixture of the two

    Directory of Open Access Journals (Sweden)

    Alfonso Soto-Sánchez

    2015-09-01

    Full Text Available Barley (Hordeum vulgare L., and its derivatives, ranks fourth in cereal production worldwide, and the Pleurotus species are among the most efficient types of lignocellulolytic white-rot fungi. The objective of this research study was to evaluate the degradation of barley straw and barley rootless with an inoculum of Pleurotus to improve their nutritional availability as a food source for ruminants. Two experiments were conducted; the first was to determine the effects of inoculation of Pleurotus sapidus (Schulzer Sacc. (PS in barley straw (BS, barley rootless (BR, and a 75% BS and 25% BR mixture (M. The second experiment was to evaluate the same substrates in vitro ruminal fermentation. Barley rootless had better organic matter (OM degradability than BS after 24 h incubation with PS. The protein content in BR was higher than in BS (P < 0.01. Enzyme activities had the highest concentration from the start of fermentation, and in vitro dry matter (DM degradability in BS and BR increased after 8 and 24 d fermentation, respectively (P < 0.05. Propionic acid concentration was enhanced after 16 d fermentation in BR (P < 0.5. The use of BS combined with BR exhibited better fermentation; this result provides relevant information for integrating BR with other substrates and improving the use of straw, which can be more nutritionally available for feeding ruminants.

  17. Molecular phylogeography of domesticated barley traces expansion of agriculture in the Old World.

    Science.gov (United States)

    Saisho, Daisuke; Purugganan, Michael D

    2007-11-01

    Barley (Hordeum vulgare ssp. vulgare) was first cultivated 10,500 years ago in the Fertile Crescent and is one of the founder crops of Eurasian agriculture. Phylogeographic analysis of five nuclear loci and morphological assessment of two traits in >250 domesticated barley accessions reveal that landraces found in South and East Asia are genetically distinct from those in Europe and North Africa. A Bayesian population structure assessment method indicates that barley accessions are subdivided into six clusters and that barley landraces from 10 different geographical regions of Eurasia and North Africa show distinct patterns of distribution across these clusters. Using haplotype frequency data, it appears that the Europe/North Africa landraces are most similar to the Near East population (F ST = 0.15) as well as to wild barley (F ST = 0.11) and are strongly differentiated from all other Asian populations (F ST = 0.34-0.74). A neighbor-joining analysis using these F ST estimates also supports a division between European, North African, and Near East barley types from more easterly Asian accessions. There is also differentiation in the presence of a naked caryopsis and spikelet row number between eastern and western barley accessions. The data support the differential migration of barley from two domestication events that led to the origin of barley--one in the Fertile Crescent and another farther east, possibly at the eastern edge of the Iranian Plateau--with European and North African barley largely originating from the former and much of Asian barley arising from the latter. This suggests that cultural diffusion or independent innovation is responsible for the expansion of agriculture to areas of South and East Asia during the Neolithic revolution.

  18. Economical Evaluation of Single Irrigation Efficient of Rainfed Barley under Different Agronimic Managements at On-farm Areas

    Directory of Open Access Journals (Sweden)

    Ali Reza Tavakoli

    2016-02-01

    income, C (w : Cost of production, YG: Crop yield (kg/ ha, PG : Price of crop(Rials/kg, YS: straw yield (kg/ ha PS : Price of straw (Rials/kg, C1: Total fixed cost without cost of water and irrigation (Rials/ ha, Pw: Price of water and irrigation (Rials/ m3 and W: Amount of water and irrigation (m3/ ha. Changes of incomes and changes of costs for every treatment in different crop managements were used as follows: (2 (3 Where j and j+1 show existence and substitution crop managements. In order to determine the price of irrigation water, total cost including pump and electromotor, semi deep well, power instrument, maps, pipe transport and implementation network, other primary cost and operation cost were used. The analysis period for the instruments (pump and electromotor, maps, implementation network was 20 years and for the semi deep well was 30 years. In this study, total cost was referred to the present value with %15 discount rate by uniform series formulas. Then, the water was used in the farm. The price of water was determined. Capital recovery formula is as follows: (4 Where: A: Annual value of primary investment costs, P: Primary investment costs for irrigation system, i: Discount rate and n: analysis period. Results and Discussion: According to the results, the price of water and irrigation at the research region based on its components and under 15% and 25% interest rates were obtained to be 213 and 338.1 Rials per cubic meters, respectively. The barley grain yield and its net benefit under advanced management were more than that obtained under traditional management. In traditional management, the mean barley grain yield for treatments including rainfed, Single irrigation (SI - planting and SI spring were estimated to be 1572, 2487 and 2670 kgha-1, respectively. The mean profit for rainfed barley production for treatments including rainfed, SI-planting and SI spring were estimated to be 1270.2, 2314.2 and 2607 (Thousand Rial.ha-1, respectively. In advanced

  19. Comparisons of Copy Number, Genomic Structure, and Conserved Motifs for α-Amylase Genes from Barley, Rice, and Wheat

    Directory of Open Access Journals (Sweden)

    Qisen Zhang

    2017-10-01

    Full Text Available Barley is an important crop for the production of malt and beer. However, crops such as rice and wheat are rarely used for malting. α-amylase is the key enzyme that degrades starch during malting. In this study, we compared the genomic properties, gene copies, and conserved promoter motifs of α-amylase genes in barley, rice, and wheat. In all three crops, α-amylase consists of four subfamilies designated amy1, amy2, amy3, and amy4. In wheat and barley, members of amy1 and amy2 genes are localized on chromosomes 6 and 7, respectively. In rice, members of amy1 genes are found on chromosomes 1 and 2, and amy2 genes on chromosome 6. The barley genome has six amy1 members and three amy2 members. The wheat B genome contains four amy1 members and three amy2 members, while the rice genome has three amy1 members and one amy2 member. The B genome has mostly amy1 and amy2 members among the three wheat genomes. Amy1 promoters from all three crop genomes contain a GA-responsive complex consisting of a GA-responsive element (CAATAAA, pyrimidine box (CCTTTT and TATCCAT/C box. This study has shown that amy1 and amy2 from both wheat and barley have similar genomic properties, including exon/intron structures and GA-responsive elements on promoters, but these differ in rice. Like barley, wheat should have sufficient amy activity to degrade starch completely during malting. Other factors, such as high protein with haze issues and the lack of husk causing Lauting difficulty, may limit the use of wheat for brewing.

  20. Genetic variations of HvP5CS1 and their association with drought tolerance related traits in barley (Hordeum vulgare L.)

    Science.gov (United States)

    Delta-1-pyrroline-5-carboxylate synthase gene1 (P5CS1) is the key gene involved in the biosynthesis of proline and is significantly induced by drought stress. The exploration of genetic variation in HvP5CS1 may facilitate a better understanding of the mechanism of drought adaptation in barley. In th...

  1. Chromosome aberration assays in barley (Hordeum vulgare)

    Energy Technology Data Exchange (ETDEWEB)

    Constantin, M J [Univ. of Tennessee, Knoxville; Nilan, R A

    1982-01-01

    Barley is an exceellent organism for studies of induced chromosome aberrations because of its few (2n = 2x = 14) relatively large chromosomes. Root-tip and shoot-tip cells have been used extensively for the study of ionizing radiation-induced chromosome aberrations. The general procedures are well known, the technology is simple and easy to learn, and the assays are relatively quick and inexpensive. Both root tips and shoot tips can be used for the study of chemical mutagens as well as ionizing radiations. Pollen mother cells are well suited for studying the effects of mutagens on meiotic chromosomes. The literature review for the Gene-Tox Program reported on 61 chemicals tested for their effects on barley chromosomes. Of these, 90% were reported to be either positive or positive dose-related, while 7% were negative and 3% were questionable. Barley assays based on chromosomal aberrations are useful to detect the clastogenic potency of chemicals under laboratory conditions. Indications are that the data from barley can be used to corroborate data obtained from other organisms. Among the classes of chemicals assayed were: alcohols and phenols; alkaloids; epoxides; alkyl sulfates; amides and sulfonamides; aromatic amines; aryl halides; aziridines; alkenes; carbamates; hydroazides; nitroaromatics; nitrosamides; nitrosources; phenothiazines; and polycyclic aromatic hydrocarbons.

  2. Localization to Chromosomes of Structural Genes for the Major Protease Inhibitors of Barley Grains

    DEFF Research Database (Denmark)

    Hejgaard, Jørn; Bjørn, S.E.; Nielsen, Gunnar Gissel

    1984-01-01

    Wheat-barley chromosome addition lines were compared by isoelectric focusing of protein extracts to identify chromosomes carrying loci for the major immunochemically distinct protease inhibitors of barley grains. Structural genes for the following inhibitors were localized: an inhibitor of both...... endogenous α-amylase 2 and subtilisin (ASI) on chromosome 2, two chymotrypsin/subtilisin inhibitors (CI-1 and CI-2) on chromosome 5 (long arm) and the major trypsin inhibitor (TI-1) on chromosome 3....

  3. Induced mutations for disease resistance in wheat and barley

    International Nuclear Information System (INIS)

    Hanis, M.; Hanisova, A.; Knytl, V.; Cerny, J.; Benc, S.

    1977-01-01

    The induction of mutations in cultivars of wheat (Triticum aestivum), barley (Hordeum vulgare), and field beans (Phaseolus vulgaris) has been part of the breeding programme at the Plant Breeding Station at Stupice since 1960. A total of 26 cultivars or selections of winter wheat, 4 cultivars or selections of spring wheat, 2 cultivars of field beans, and 43 selections of spring barley have been treated since 1960. A total of 140 mutant lines of wheat and 37 mutant lines of barley with improved disease resistance of a race-specific type have been obtained. Several mutation programme derived cultivars have been registered in Czechoslovakia (''Diamant'', ''Ametyst'', ''Favorit'', ''Hana'', ''Rapid'', and ''Atlas'' in barley, and ''Alfa'' in field beans), but none of them is a mutation for disease resistance. A series of mutants have been used in crossing programmes. Approaches to improve the efficiency of mutation breeding for disease resistance are suggested. (author)

  4. Application of proteomics to investigate barley-Fusarium graminearum interaction

    DEFF Research Database (Denmark)

    Yang, Fen

    in plants under low N and iv) proteomes of uninfected plants were similar under two N levels. Correlation of level of proteolysis induced by the fungus with measurement of Fusarium-damaged kernels, fungal biomass and mycotoxin levels indicated that FHB was more severe in barley with low N. In Chapter 3......, the molecular mechanisms of barley defense to Fusarium graminearum at the early infection stage were studied. Antibodies against barley β-amylases were shown to be the markers for infection at proteome level and for selection of the time for proteome analysis before extensive degradation caused by the fungus...... the disease. Due to the advantages of gel-based proteomics that differentially expressed proteins involved in the interaction can be directly detected by comparing protein profiles displayed on 2-D gels, it is used as a tool for studying the barley- Fusarium graminearum interaction form three different...

  5. Barley yellow mosaic virus VPg is the determinant protein for breaking eIF4E-mediated recessive resistance in barley plants

    Directory of Open Access Journals (Sweden)

    Huangai Li

    2016-09-01

    Full Text Available In this study, we investigated the barley yellow mosaic virus (BaYMV, genus Bymovirus factor(s responsible for breaking eIF4E-mediated recessive resistance genes (rym4/5/6 in barley. Genome mapping analysis using chimeric infectious cDNA clones between rym5-breaking (JT10 and rym5-non-breaking (JK05 isolates indicated that genome-linked viral protein (VPg is the determinant protein for breaking the rym5 resistance. Likewise, VPg is also responsible for overcoming the resistances of rym4 and rym6 alleles. Mutational analysis identified that amino acids Ser-118, Thr-120 and His-142 in JT10 VPg are the most critical residues for overcoming rym5 resistance in protoplasts. Moreover, the rym5-non-breaking JK05 could accumulate in the rym5 protoplasts when eIF4E derived from a susceptible barley cultivar was expressed from the viral genome. Thus, the compatibility between VPg and host eIF4E determines the ability of BaYMV to infect barley plants.

  6. Melatonin enhances cold tolerance in drought-primed wild-type and abscisic acid-deficient mutant barley.

    Science.gov (United States)

    Li, Xiangnan; Tan, Dun-Xian; Jiang, Dong; Liu, Fulai

    2016-10-01

    Melatonin is involved in multiple plant developmental processes and various stress responses. To explore the roles of melatonin played as well as its association with abscisic acid (ABA) in a process of drought priming-induced cold tolerance (DPICT), a wild-type barley and its ABA-deficient mutant Az34 counterpart were selected for comparison, in which the effects of melatonin application (either foliarly or rhizospherically) and/or drought priming on the cold tolerance of both types of barleys were systematically investigated. It was demonstrated that the early drought priming induced an increase of endogenous melatonin production, which is not ABA dependent. In addition, exogenously applied melatonin resulted in higher ABA concentration in the drought-primed plants than in the nonprimed plants when exposed to cold stress, indicating that ABA responded in a drought-dependent manner. The interplay of melatonin and ABA leads to plants maintaining better water status. Drought priming-induced melatonin accumulation enhanced the antioxidant capacity in both chloroplasts and mitochondria, which sustained the photosynthetic electron transport in photosynthetic apparatus of the plants under cold stress. These results suggest that the exogenous melatonin application enhances the DPICT by modulating subcellular antioxidant systems and ABA levels in barley. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  7. Detection of Ustilago nuda (Jensen) Rostrup in winter barley seed

    OpenAIRE

    Ignjatov Maja; Petrović Dragana; Vujaković Milka; Taški-Ajduković Ksenija; Nikolić Zorica; Jovičić Dušica

    2011-01-01

    Barley is one of the most important cereals grown in our agroecological conditions. The causal agent of loose smut on barley Ustilago nuda (Jensen) Rostrup occurs frequently as varieties susceptible to this pathogen are present in the production. Disease symptoms are manifested on barley head (spike). Parasite is transmitted by seed (seedborne) and stays in the embryo tissue of the infected kernel as dormant mycelium. Recommended method for detection of U. nuda is given by ISTA Rules (method ...

  8. Spatial aggregation of pathotypes of barley powdery mildew

    DEFF Research Database (Denmark)

    O'Hara, R.B.; Brown, J.K.M.

    1997-01-01

    Aggregation in the distribution of pathotypes of Erysiphe graminis f.sp. hordei, the barley powdery mildew pathogen, was investigated in field plots of 'Golden Promise', 'Proctor' and 'Tyra'. 'Golden Promise' and 'Proctor' have no effective mildew resistance alleles, whereas 'Tyra' has Mla1, which...

  9. Identification of a Phytase Gene in Barley (Hordeum vulgare L.)

    Science.gov (United States)

    Dai, Fei; Qiu, Long; Ye, Lingzhen; Wu, Dezhi; Zhou, Meixue; Zhang, Guoping

    2011-01-01

    Background Endogenous phytase plays a crucial role in phytate degradation and is thus closely related to nutrient efficiency in barley products. The understanding of genetic information of phytase in barley can provide a useful tool for breeding new barley varieties with high phytase activity. Methodology/Principal Findings Quantitative trait loci (QTL) analysis for phytase activity was conducted using a doubled haploid population. Phytase protein was purified and identified by the LC-ESI MS/MS Shotgun method. Purple acid phosphatase (PAP) gene was sequenced and the position was compared with the QTL controlling phytase activity. A major QTL for phytase activity was mapped to chromosome 5 H in barley. The gene controlling phytase activity in the region was named as mqPhy. The gene HvPAP a was mapped to the same position as mqPhy, supporting the colinearity between HvPAP a and mqPhy. Conclusions/Significance It is the first report on QTLs for phytase activity and the results showed that HvPAP a, which shares a same position with the QTL, is a major phytase gene in barley grains. PMID:21533044

  10. Combining unmalted barley and pearling gives good quality brewing

    NARCIS (Netherlands)

    Donkelaar, van Laura H.G.; Hageman, Jos A.; Oguz, Serhat; Noordman, Tom R.; Boom, Remko M.; Goot, van der Atze Jan

    2016-01-01

    Brewing with unmalted barley can reduce the use of raw materials, thereby increasing the efficiency of the brewing process. However, unmalted barley contains several undesired components for brewing and has a low enzymatic activity. Pearling, an abrasive milling method, has been proposed as a

  11. Cooking Characteristics and Antioxidant Activity of Rice-Barley Mix at Different Cooking Method and Mixing Ratio.

    Science.gov (United States)

    Woo, Koan Sik; Kim, Hyun-Joo; Lee, Ji Hae; Ko, Jee Yeon; Lee, Byong Won; Lee, Byoung Kyu

    2018-03-01

    This study aimed to compare the phenolic compounds and antioxidant activity of barley at different proportion (0, 5, 10, 15, and 20%), and using different cooking methods. The grains used in this experiment are barley ( Hordeum vulgare L. cv. Huinchalssal) and Samkwang rice. The rice-barley mixture was cooked using general and high pressure cooking methods with and without fermented alcohol. The quality characteristics such as water binding capacity, pasting characteristic, water solubility, and swelling power of different proportions of barley were evaluated. The antioxidant characteristics evaluated are total polyphenol, flavonoid contents, 2,2-diphenyl-1-picrylhydrazyl (DPPH), and 2,2-azinobis(3-ethylbenothiazoline-6-sulphonic acid) (ABTS) diammonium salt radical scavenging activities. Results showed that peak [195.0~184.0 rapid visco units (RVU)], trough (130.0~116.2 RVU), final (252.0~221.8 RVU), and setback viscosity (57.0~37.5 RVU) decreased correspondingly with the increase in the amount of barley. Water binding capacity (187.31~136.01%) and swelling power (162.37~127.58%) decreased as amounts of barley increases, however the water solubility (5.35~6.89%) increased. Moreover, the total polyphenol and flavonoid, and the DPPH and ABTS radical scavenging activities contents increased as the amounts of barley in the mixture increases. This study generally aims to provide useful information for the manufacturing of processed products.

  12. INVITRO DIGESTIBILITY OF PROTEIN FROM BARLEY AND OTHER CEREALS

    DEFF Research Database (Denmark)

    Buchmann, N. B.

    1979-01-01

    An in vitro method for measuring barley protein digestibility is presented. Samples were first incubated with pepsin in HCl; pancreatin was then added concomitantly with a bacteriostatic borate buffer. After TCA-precipitation, soluble nitrogen was measured. The digestion was unaffected...... by accumulated free amino acids. There were no free amino acids following pepsin treatment, but the essential ones were well liberated by pancreatin. Results for barley grown in the field or in pots, and for decortified barley fractions agreed with true digestibility values determined with rats. Of these samples...... digestibility depended on the type of enzyme and on the enzyme-to-substrate ratio....

  13. ALTERATIONS IN BARLEY PROTEOME UPON FUNGAL INFECTION AND TRICYCLAZOLE TREATMENT

    Directory of Open Access Journals (Sweden)

    Manoj Kumar a,b

    2017-04-01

    Full Text Available The barley proteome was investigated upon fungal infection and subsequent treatment by tricyclazole (TCZ, which is known to have applications in spot blotch disease management in barley.Significantly enhanced chlorophyll content was recorded in TCZ treated plants. The disease severity was significantly reduced after TCZ application in pathogen inoculated plants by reducing the appressoria formation at infection site in barley leaves. Two-dimensional gel electrophoresis (2-DE revealed the expression profile of proteins from (I control plants (healthy barley leaves; application with sterile water,(II plants after foliar application of TCZ (100 µg/ml, (III plants inoculated with B. sorokiniana and (IV plants treated with TCZ (72 h after B. sorokiniana inoculation. A set of 33 proteins expressed differentially after TCZ treatment. Out of this 19 had known functions, while others were unknown or hypothetical proteins. These differentially expressed proteins were related to redox-activity and gene expression, electron transfer,cell division and chromosome partitioning, cell envelop biogenesis, energy metabolism and conversion, respiration and pathogenesis related functions in the barley plants. The study provides a platform and documents the proteins that might be involved in disease management in barley following TCZ application. It is expected that the study will provide boost in understanding proteome regulation upon fungal infection and subsequent anti-fungal treatment and will attract researchers for further validation leading to better pest management.

  14. Preventive and Therapeutic Role of Functional Ingredients of Barley Grass for Chronic Diseases in Human Beings

    Directory of Open Access Journals (Sweden)

    Yawen Zeng

    2018-01-01

    Full Text Available Barley grass powder is the best functional food that provides nutrition and eliminates toxins from cells in human beings; however, its functional ingredients have played an important role as health benefit. In order to better cognize the preventive and therapeutic role of barley grass for chronic diseases, we carried out the systematic strategies for functional ingredients of barley grass, based on the comprehensive databases, especially the PubMed, Baidu, ISI Web of Science, and CNKI, between 2008 and 2017. Barley grass is rich in functional ingredients, such as gamma-aminobutyric acid (GABA, flavonoids, saponarin, lutonarin, superoxide dismutase (SOD, K, Ca, Se, tryptophan, chlorophyll, vitamins (A, B1, C, and E, dietary fiber, polysaccharide, alkaloid, metallothioneins, and polyphenols. Barley grass promotes sleep; has antidiabetic effect; regulates blood pressure; enhances immunity; protects liver; has anti-acne/detoxifying and antidepressant effects; improves gastrointestinal function; has anticancer, anti-inflammatory, antioxidant, hypolipidemic, and antigout effects; reduces hyperuricemia; prevents hypoxia, cardiovascular diseases, fatigue, and constipation; alleviates atopic dermatitis; is a calcium supplement; improves cognition; and so on. These results support that barley grass may be one of the best functional foods for preventive chronic diseases and the best raw material of modern diet structure in promoting the development of large health industry and further reveal that GABA, flavonoids, SOD, K-Ca, vitamins, and tryptophan mechanism of barley grass have preventive and therapeutic role for chronic diseases. This paper can be used as a scientific evidence for developing functional foods and novel drugs for barley grass for preventive chronic diseases.

  15. Field Screening of Waterlogging Tolerance in Spring Wheat and Spring Barley

    Directory of Open Access Journals (Sweden)

    Tove Kristina Sundgren

    2018-03-01

    Full Text Available Improved waterlogging tolerance of wheat and barley varieties may alleviate yield constraints caused by heavy or long-lasting precipitation. The waterlogging tolerance of 181 wheat and 210 barley genotypes was investigated in field trials between 2013 and 2014. A subset of wheat genotypes were selected for yield trials in 2015 and 2016. Our aim was to: (1 characterize the waterlogging tolerance of genotypes with importance for Norwegian wheat and barley breeding, and (2 identify which phenotypic traits that most accurately determine the waterlogging tolerance of wheat in our field trials. Waterlogging tolerance was determined by principal component analysis (PCA where best linear unbiased predictors (BLUPs of the traits chlorosis, relative plant height, heading delay, relative spike number, relative biomass and an overall condition score were used as input variables. Six wheat and five barley genotypes were identified as consistently more tolerant in 2013 and 2014. This included the waterlogging tolerant CIMMYT line CETA/Ae. tauschii (895. Chlorosis and the overall condition score were the traits that best explained the yield response of the genotypes selected for the yield trials. Our results show that early stress symptoms did not necessarily reflect the ability to recover post treatment. Thus, records from full crop cycles appear as fundamental when screening populations with unknown tolerance properties.

  16. Acceleration of leaf senescence is slowed down in transgenic barley plants deficient in the DNA/RNA-binding protein WHIRLY1.

    Science.gov (United States)

    Kucharewicz, Weronika; Distelfeld, Assaf; Bilger, Wolfgang; Müller, Maren; Munné-Bosch, Sergi; Hensel, Götz; Krupinska, Karin

    2017-02-01

    WHIRLY1 in barley was isolated as a potential regulator of the senescence-associated gene HvS40. In order to investigate whether the plastid-nucleus-located DNA/RNA-binding protein WHIRLY1 plays a role in regulation of leaf senescence, primary foliage leaves from transgenic barley plants with an RNAi-mediated knockdown of the WHIRLY1 gene were characterized by typical senescence parameters, namely pigment contents, function and composition of the photosynthetic apparatus, as well as expression of selected genes known to be either down- or up-regulated during leaf senescence. When the plants were grown at low light intensity, senescence progression was similar between wild-type and RNAi-W1 plants. Likewise, dark-induced senescence of detached leaves was not affected by reduction of WHIRLY1. When plants were grown at high light intensity, however, senescence was induced prematurely in wild-type plants but was delayed in RNAi-W1 plants. This result suggests that WHIRLY1 plays a role in light sensing and/or stress communication between chloroplasts and the nucleus. © The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  17. Fungal Distribution and Varieties Resistance to Kernel Discoloration in Korean Two-rowed Barley

    OpenAIRE

    Sang-Hyun Shin; Eun-Jo Seo; Jae-Seong Choi; JungKwan Lee; Jong-Chul Park; Chun-Sik Kang

    2013-01-01

    Barley kernel discoloration (KD) leads to substantial loss in value through downgrading and discounting of malting barley. The objective of this research is to investigate fungal distribution and varieties resistance to KD in Korean two-rowed barley. Several fungal organisms including Alternaria spp., Fusarium spp., Aspergillus spp., Epicoccum spp. and Rhizopus spp. were isolated from Korean two-rowed barley representing KD. The symptoms of KD were brown and black discolorations o...

  18. N2O emission from organic barley cultivation as affected by green manure management

    Directory of Open Access Journals (Sweden)

    P. Dörsch

    2012-07-01

    Full Text Available Legumes are an important source of nitrogen in stockless organic cereal production. However, substantial amounts of N can be lost from legume-grass leys prior to or after incorporation as green manure (GM. Here we report N2O emissions from a field experiment in SE Norway exploring different green manure management strategies: mulching versus removal of grass-clover herbage during a whole growing season and return as biogas residue to a subsequent barley crop. Grass-clover ley had small but significantly higher N2O emissions as compared with a non-fertilised cereal reference during the year of green manure (GM production in 2009. Mulching of herbage induced significantly more N2O emission (+0.37 kg N2O-N ha−1 throughout the growing season than removing herbage. In spring 2010, all plots were ploughed (with and without GM and sown with barley, resulting in generally higher N2O emissions than during the previous year. Application of biogas residue (60 kg NH4+-N + 50 kg organic N ha−1 before sowing did not increase emissions neither when applied to previous ley plots nor when applied to previously unfertilised cereal plots. Ley management (mulching vs. removing biomass in 2009 had no effect on N2O emissions during barley production in 2010. In general, GM ley (mulched or harvested increased N2O emissions relative to a cereal reference with low mineral N fertilisation (80 kg N ha−1. Based on measurements covering the growing season 2010, organic cereal production emitted 95 g N2O-N kg−1 N yield in barley grain, which was substantially higher than in the cereal reference treatment with 80 kg mineral N fertilisation (47 g N2O-N kg−1 N yield in barley grain.

  19. Some Root Traits of Barley (Hordeum vulgare L. as Affected by Mycorrhizal Symbiosis under Drought Stress

    Directory of Open Access Journals (Sweden)

    R. Bayani

    2016-05-01

    Full Text Available The effect of drought stress and mycorrhizal symbiosis on the colonization, root and leaf phosphorous content, root and leaf phosphatase activity, root volume and area as well as shoot dry weight of a variety of hulless barley were evaluated using a completely randomized experimental design (CRD with 3 replications. Treatments were three levels of drought stress of 30, 60 and 90% field capacity and two levels of mycorrhizal with and without inoculation. According to the results, the highest value of leaf phosphorous (1.54 mg/g was observed at mycorrhizal symbiosis against severe drought treatment. Root phosphatase activity was highest (297.9 OD min -1 FW-1 at severe drought stress with mycorrhizal symbiosis which in comparison with mild stress in the presence of mycorrhiza showed 16.6 fold increasing. The control and non-mycorrhizal symbiosis treatments had highest root dry weight (0.091 g. The lowest root volume (0.016 cm2 observed at mycorrhizal symbiosis × severe drought treatment. Generally, Inoculation of barley seed with mycorrhiza at severe water stress could transport more phosphorous to shoot, especially leaf via inducing of leaf and root phosphatase activity. Also, in addition to supply of nutrient sources especially phosphorous for plant, mycorrhizal symbiosis could play an important role in withstanding water stress in plant via increasing of root dry weight and area.

  20. Physiological basis of barley yield under near optimal and stress conditions

    Directory of Open Access Journals (Sweden)

    Pržulj Novo

    2004-01-01

    Full Text Available Average barley yield fall below its potential due to incidence of stresses. Water stress is the main environmental factor limiting yield. The component a priori more sensitive to most stresses is the amount of radiation absorbed. The effect of stresses influence on the total amount of radiation absorbed by barley crop during its vegetation and the photosynthetic efficiency of radiation conversion. Growth inhibition is accompanied by reductions in leaf and cell wall extensibility. Grain yield under drought conditions is source limited. Supply of assimilates to the developing inflorescence plays a critical role in establishing final grain number and grain size. Grain weight is negatively affected by drought, high temperature, and any other factors that may reduce grain filling duration and grain filling rate. Awns and glaucousness confer better performance of barley under drought stress conditions. Barley responds with an increased accumulation of a number of proteins when subjected to different stress inducing cell dehydration. Screening techniques that are able to identify desirable genotypes based on the evaluation of physiological traits related to stress evasion and stress resistance maybe useful in breeding barley for resistance to stress, particularly drought stress. Crop management and breeding can reduce the incidence of stress on yield. The effect of these practices is sustained by an understanding of their physiology. In this paper the physiological basis of the processes determining barley yield and the incidence of stresses on photosynthetic metabolism that determine grain yield of barley is discussed. .

  1. Ingestible roasted barley for contrast-enhanced photoacoustic imaging in animal and human subjects.

    Science.gov (United States)

    Wang, Depeng; Lee, Dong Hyeun; Huang, Haoyuan; Vu, Tri; Lim, Rachel Su Ann; Nyayapathi, Nikhila; Chitgupi, Upendra; Liu, Maggie; Geng, Jumin; Xia, Jun; Lovell, Jonathan F

    2018-08-01

    Photoacoustic computed tomography (PACT) is an emerging imaging modality. While many contrast agents have been developed for PACT, these typically cannot immediately be used in humans due to the lengthy regulatory process. We screened two hundred types of ingestible foodstuff samples for photoacoustic contrast with 1064 nm pulse laser excitation, and identified roasted barley as a promising candidate. Twenty brands of roasted barley were further screened to identify the one with the strongest contrast, presumably based on complex chemical modifications incurred during the roasting process. Individual roasted barley particles could be detected through 3.5 cm of chicken-breast tissue and through the whole hand of healthy human volunteers. With PACT, but not ultrasound imaging, a single grain of roasted barley was detected in a field of hundreds of non-roasted particles. Upon oral administration, roasted barley enabled imaging of the gut and peristalsis in mice. Prepared roasted barley tea could be detected through 2.5 cm chicken breast tissue. When barley tea was administered to humans, photoacoustic imaging visualized swallowing dynamics in healthy volunteers. Thus, roasted barley represents an edible foodstuff that should be considered for photoacoustic contrast imaging of swallowing and gut processes, with immediate potential for clinical translation. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Analysis of enzyme production by submerged culture of Aspergillus oryzae using whole barley.

    Science.gov (United States)

    Masuda, Susumu; Kikuchi, Kaori; Matsumoto, Yuko; Sugimoto, Toshikazu; Shoji, Hiroshi; Tanabe, Masayuki

    2009-10-01

    We have reported on high enzyme production by submerged culture of Aspergillus kawachii using barley with the husk (whole barley). To elucidate the mechanism underlying this high enzyme production, we performed a detailed analysis. Aspergillus oryzae RIB40 was submerged-cultured using whole barley and milled whole barley. Enzyme production was analyzed in terms of changes in medium components and gene expression levels. When whole barley was used, high production of glucoamylase and alpha-amylase and high gene expression levels of these enzymes were observed. Low ammonium concentrations were maintained with nitrate ion uptake continuing into the late stage using whole barley. These findings suggest that the sustainability of nitrogen metabolism is related to high enzyme production, and that a mechanism other than that associated with the conventional amylase expression system is involved in this relationship.

  3. The Mutation Frequency in Different Spike Categories in Barley

    DEFF Research Database (Denmark)

    Frydenberg, O.; Doll, Hans; Sandfær, J.

    1964-01-01

    After gamma irradiation of barley seeds, a comparison has been made between the chlorophyll-mutant frequencies in X1 spikes that had multicellular bud meristems in the seeds at the time of treatment (denoted as pre-formed spikes) and X1 spikes having no recognizable meristems at the time...

  4. Genetic dissection of photoperiod response based on GWAS of pre-anthesis phase duration in spring barley.

    Directory of Open Access Journals (Sweden)

    Ahmad M Alqudah

    Full Text Available Heading time is a complex trait, and natural variation in photoperiod responses is a major factor controlling time to heading, adaptation and grain yield. In barley, previous heading time studies have been mainly conducted under field conditions to measure total days to heading. We followed a novel approach and studied the natural variation of time to heading in a world-wide spring barley collection (218 accessions, comprising of 95 photoperiod-sensitive (Ppd-H1 and 123 accessions with reduced photoperiod sensitivity (ppd-H1 to long-day (LD through dissecting pre-anthesis development into four major stages and sub-phases. The study was conducted under greenhouse (GH conditions (LD; 16/8 h; ∼20/∼16°C day/night. Genotyping was performed using a genome-wide high density 9K single nucleotide polymorphisms (SNPs chip which assayed 7842 SNPs. We used the barley physical map to identify candidate genes underlying genome-wide association scans (GWAS. GWAS for pre-anthesis stages/sub-phases in each photoperiod group provided great power for partitioning genetic effects on floral initiation and heading time. In addition to major genes known to regulate heading time under field conditions, several novel QTL with medium to high effects, including new QTL having major effects on developmental stages/sub-phases were found to be associated in this study. For example, highly associated SNPs tagged the physical regions around HvCO1 (barley CONSTANS1 and BFL (BARLEY FLORICAULA/LEAFY genes. Based upon our GWAS analysis, we propose a new genetic network model for each photoperiod group, which includes several newly identified genes, such as several HvCO-like genes, belonging to different heading time pathways in barley.

  5. Barley Transformation Using Agrobacterium-Mediated Techniques

    Science.gov (United States)

    Harwood, Wendy A.; Bartlett, Joanne G.; Alves, Silvia C.; Perry, Matthew; Smedley, Mark A.; Leyland, Nicola; Snape, John W.

    Methods for the transformation of barley using Agrobacterium-mediated techniques have been available for the past 10 years. Agrobacterium offers a number of advantages over biolistic-mediated techniques in terms of efficiency and the quality of the transformed plants produced. This chapter describes a simple system for the transformation of barley based on the infection of immature embryos with Agrobacterium tumefaciens followed by the selection of transgenic tissue on media containing the antibiotic hygromycin. The method can lead to the production of large numbers of fertile, independent transgenic lines. It is therefore ideal for studies of gene function in a cereal crop system.

  6. Leaf rust of cultivated barley: pathology and control.

    Science.gov (United States)

    Park, Robert F; Golegaonkar, Prashant G; Derevnina, Lida; Sandhu, Karanjeet S; Karaoglu, Haydar; Elmansour, Huda M; Dracatos, Peter M; Singh, Davinder

    2015-01-01

    Leaf rust of barley is caused by the macrocyclic, heteroecious rust pathogen Puccinia hordei, with aecia reported from selected species of the genera Ornithogalum, Leopoldia, and Dipcadi, and uredinia and telia occurring on Hordeum vulgare, H. vulgare ssp. spontaneum, Hordeum bulbosum, and Hordeum murinum, on which distinct parasitic specialization occurs. Although Puccinia hordei is sporadic in its occurrence, it is probably the most common and widely distributed rust disease of barley. Leaf rust has increased in importance in recent decades in temperate barley-growing regions, presumably because of more intensive agricultural practices. Although total crop loss does not occur, under epidemic conditions yield reductions of up to 62% have been reported in susceptible varieties. Leaf rust is primarily controlled by the use of resistant cultivars, and, to date, 21 seedling resistance genes and two adult plant resistance (APR) genes have been identified. Virulence has been detected for most seedling resistance genes but is unknown for the APR genes Rph20 and Rph23. Other potentially new sources of APR have been reported, and additivity has been described for some of these resistances. Approaches to achieving durable resistance to leaf rust in barley are discussed.

  7. Fungal Distribution and Varieties Resistance to Kernel Discoloration in Korean Two-rowed Barley

    Directory of Open Access Journals (Sweden)

    Sang-Hyun Shin

    2013-09-01

    Full Text Available Barley kernel discoloration (KD leads to substantial loss in value through downgrading and discounting of malting barley. The objective of this research is to investigate fungal distribution and varieties resistance to KD in Korean two-rowed barley. Several fungal organisms including Alternaria spp., Fusarium spp., Aspergillus spp., Epicoccum spp. and Rhizopus spp. were isolated from Korean two-rowed barley representing KD. The symptoms of KD were brown and black discolorations of the lemma and palea. The most frequently detected fungal species was Alternaria spp. which exhibited 69.1% and 72.2% in 2011 and 2012, respectively. Epicoccum spp., Fusarium spp., and Aspergillus spp. were also detected. Fusarium spp., primary pathogen of barley head blight, were rarely occurred in the 2011 and their occurrence increased to 4.7% in 2012. Twenty cultivars of Korean two-rowed barely were evaluated to KD. The average percentage of KD was 8.0−36.0% in 2011 and 5.2−36.6% in 2012. Two cultivars (‘Sacheon 6’ and ‘Dajinbori’ showed KD of 6.2% to 8.8% and determined resistant, however ‘Samdobori’ and ‘Daeyeongbori’ demonstrating KD of 22.2−36.6% were highly susceptible. ‘Jinyangbori’, ‘Danwonbori’, ‘Sinhobori’ and ‘Kwangmaegbori’ showing KD of less than 15% were moderately resistant cultivar.

  8. Linkage mapping of putative regulator genes of barley grain development characterized by expression profiling

    Directory of Open Access Journals (Sweden)

    Wobus Ulrich

    2009-01-01

    Full Text Available Abstract Background Barley (Hordeum vulgare L. seed development is a highly regulated process with fine-tuned interaction of various tissues controlling distinct physiological events during prestorage, storage and dessication phase. As potential regulators involved within this process we studied 172 transcription factors and 204 kinases for their expression behaviour and anchored a subset of them to the barley linkage map to promote marker-assisted studies on barley grains. Results By a hierachical clustering of the expression profiles of 376 potential regulatory genes expressed in 37 different tissues, we found 50 regulators preferentially expressed in one of the three grain tissue fractions pericarp, endosperm and embryo during seed development. In addition, 27 regulators found to be expressed during both seed development and germination and 32 additional regulators are characteristically expressed in multiple tissues undergoing cell differentiation events during barley plant ontogeny. Another 96 regulators were, beside in the developing seed, ubiquitously expressed among all tissues of germinating seedlings as well as in reproductive tissues. SNP-marker development for those regulators resulted in anchoring 61 markers on the genetic linkage map of barley and the chromosomal assignment of another 12 loci by using wheat-barley addition lines. The SNP frequency ranged from 0.5 to 1.0 SNP/kb in the parents of the various mapping populations and was 2.3 SNP/kb over all eight lines tested. Exploration of macrosynteny to rice revealed that the chromosomal orders of the mapped putative regulatory factors were predominantly conserved during evolution. Conclusion We identified expression patterns of major transcription factors and signaling related genes expressed during barley ontogeny and further assigned possible functions based on likely orthologs functionally well characterized in model plant species. The combined linkage map and reference

  9. Dissection of barley chromosomes 1H and 6H by the gametocidal system

    Czech Academy of Sciences Publication Activity Database

    Ishihara, A.; Mizuno, N.; Islam, R.A.K.M.; Doležel, Jaroslav; Endo, Takashi R.; Nasuda, S.

    2014-01-01

    Roč. 89, č. 5 (2014), s. 203-214 ISSN 1341-7568 Institutional support: RVO:61389030 Keywords : barley * chromosome dissection * chromosome mapping Subject RIV: EI - Biotechnology ; Bionics Impact factor: 0.930, year: 2014 http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=MEDLINE&DestLinkType=FullRecord&UT=25832747

  10. Symbiotic dinitrogen fixation measurement in vetch-barley mixed swards using {sup 15} N methodology

    Energy Technology Data Exchange (ETDEWEB)

    Kurdali, F; Sharabi, N E [Atomic Energy Commission, Damascus (Syrian Arab Republic). Dept. of Radiation Agriculture

    1995-01-01

    Field experiment on vetch and barley grown in monoculture and in mixed culture (3:1) under rain-fed conditions was conducted in 1991-1992 and 1992-1993 growing season. Three harvests were effectuated on one treatment throughout the growing season. Our results showed the importance of mixed cropping system of vetch and barley grown under rain fed conditions in terms of dry matter production, total nitrogen content and land use efficiency expressed as land equivalent ration (L.E.R). This advantage is clear in the plants harvested once at the end of the season. Therefore, it is important to grow legumes and cereals under rain fed conditions and to be left until late stage of growth and fed by animals directly. On the other hand, only two harvests could be done in the season with no additional harvests because this may weaken the plant growth, and as a result of the last approach we obtained poor production due to unpredicated an appropriate rain fall after the second harvest (April). Nitrogen fixation efficiency in vetch measured by {sup 1 5} N isotope dilution method varied with the number of harvests and the procedure adopted in culture. Comparing the results of %Ndfa of vetch between monoculture and mixed culture showed that the values in most cases were higher in mixed culture. The competition between vetch and barley in the mixed stand for soil N-uptake made the barley supplements its N requirements from soil. The poor competitiveness of vetch capability for soil N-uptake enhanced it to fix more nitrogen. On the other hand, N residual after harvest was higher in the mixed treatment than the others. Positive and high final nitrogen balance were observed with the inclusion of vetch in the mixture. We excluded, under the current experimental conditions, the possibility of N-transfer from vetch to barley due to the insignificant differences in the value of {sup 1 5} N atom excess for barley between the two types of farming. 35 refs., 2 figs., 15 tabs.

  11. Identification of a phytase gene in barley (Hordeum vulgare L..

    Directory of Open Access Journals (Sweden)

    Fei Dai

    Full Text Available BACKGROUND: Endogenous phytase plays a crucial role in phytate degradation and is thus closely related to nutrient efficiency in barley products. The understanding of genetic information of phytase in barley can provide a useful tool for breeding new barley varieties with high phytase activity. METHODOLOGY/PRINCIPAL FINDINGS: Quantitative trait loci (QTL analysis for phytase activity was conducted using a doubled haploid population. Phytase protein was purified and identified by the LC-ESI MS/MS Shotgun method. Purple acid phosphatase (PAP gene was sequenced and the position was compared with the QTL controlling phytase activity. A major QTL for phytase activity was mapped to chromosome 5 H in barley. The gene controlling phytase activity in the region was named as mqPhy. The gene HvPAP a was mapped to the same position as mqPhy, supporting the colinearity between HvPAP a and mqPhy. CONCLUSIONS/SIGNIFICANCE: It is the first report on QTLs for phytase activity and the results showed that HvPAP a, which shares a same position with the QTL, is a major phytase gene in barley grains.

  12. Aggressiveness of powdery mildew on 'ml-o'- resistant barley

    International Nuclear Information System (INIS)

    Andersen, Lars

    1990-01-01

    The ml-o genes in barley are important sources in breeding for resistance against the barley powdery mildew fungus (Erysiphe graminis). The resistance mechanism is a rapid formation of a large callose containing cell wall apposition at the site of the pathogen's infection attempt. This reduces the chances of infection to almost nil in all epidermal cells, except in the small subsidiary cells, in which appositions are rarely formed. Small mildew colonies from infections in subsidiary cells may be seen on the otherwise resistant leaf. This is described by the infection type 0/(4). Mildew isolate HL 3 selected by SCHWARZBACH has increased aggressiveness. No ml-o-virulent isolates are known. However, ml-o-resistant varieties when grown extensively in Europe, will introduce field selection for mildew pathotypes with aggressiveness or virulence to ml-o resistance. Studies on increased aggressiveness require new methods. The material comprises two powdery mildew isolates: GE 3 without ml-o aggressiveness and the aggressive HL 3/5; and two near-isogenic barley lines in Carlsberg II: Riso 5678(R) with the recessive mutant resistance gene ml-o5 and Riso 5678(S) with the wild-type gene for susceptibility. Latent period and disease efficiency show no significant differences between the two isolates on the susceptible barley line (S) but the isolates differ from each other on the resistant barley line

  13. Transcriptome assembly and analysis of Tibetan Hulless Barley (Hordeum vulgare L. var. nudum developing grains, with emphasis on quality properties.

    Directory of Open Access Journals (Sweden)

    Xin Chen

    Full Text Available BACKGROUND: Hulless barley is attracting increasing attention due to its unique nutritional value and potential health benefits. However, the molecular biology of the barley grain development and nutrient storage are not well understood. Furthermore, the genetic potential of hulless barley has not been fully tapped for breeding. METHODOLOGY/PRINCIPAL FINDINGS: In the present study, we investigated the transcriptome features during hulless barley grain development. Using Illumina paired-end RNA-Sequencing, we generated two data sets of the developing grain transcriptomes from two hulless barley landraces. A total of 13.1 and 12.9 million paired-end reads with lengths of 90 bp were generated from the two varieties and were assembled to 48,863 and 45,788 unigenes, respectively. A combined dataset of 46,485 All-Unigenes were generated from two transcriptomes with an average length of 542 bp, and 36,278 among were annotated with gene descriptions, conserved protein domains or gene ontology terms. Furthermore, sequences and expression levels of genes related to the biosynthesis of storage reserve compounds (starch, protein, and β-glucan were analyzed, and their temporal and spatial patterns were deduced from the transcriptome data of cultivated barley Morex. CONCLUSIONS/SIGNIFICANCE: We established a sequences and functional annotation integrated database and examined the expression profiles of the developing grains of Tibetan hulless barley. The characterization of genes encoding storage proteins and enzymes of starch synthesis and (1-3;1-4-β-D-glucan synthesis provided an overview of changes in gene expression associated with grain nutrition and health properties. Furthermore, the characterization of these genes provides a gene reservoir, which helps in quality improvement of hulless barley.

  14. Symbiotic dinitrogen fixation measurement in vetch-barley mixed swards using 15 N methodology

    International Nuclear Information System (INIS)

    Kurdali, F.; Sharabi, N.E.

    1995-01-01

    Field experiment on vetch and barley grown in monoculture and in mixed culture (3:1) under rain-fed conditions was conducted in 1991-1992 and 1992-1993 growing season. Three harvests were effectuated on one treatment throughout the growing season. While, other plots were harvested once at physiological maturity stage. Our results showed the importance of mixed cropping system of vetch and barley grown under rain fed conditions in terms of dry matter production, total nitrogen content and land use efficiency expressed as land equivalent ration (L.E.R). This advantage is clear in the plants harvested once at the end of the season. Therefore, it is important to grow legumes and cereals under rain fed conditions and to be left until late stage of growth and fed by animals directly. On the other hand, only two harvests could be done in the season with no additional harvests because this may weaken the plant growth, and as a result of the last approach we will obtained poor production due to unpredicated an appropriate rain fall after the second harvest (April). Nitrogen fixation efficiency in vetch measured by sup 1 sup 5 N isotop dilution method varied with the number of harvests and the procedure adopted in culture. Comparing the results of %Ndfa of vetch between monoculture and mixed culture showed that the values in most cases were higher in mixed culture. The competition between vetch and barley in the mixed stand for soil N-uptake made the barley supplements its N requirements from soil. The poor competitiveness of vetch capability for soil N-uptake enhanced it to fix more nitrogen. On the other hand, N residual after harvest was higher in the mixed treatment than the others. Positive and high final nitrogen balance were observed with the inclusion of vetch in the mixture. We excluded, under the current experimental conditions, the possibility of N-transfer from vetch to barley due to the insignificant differences in the value of sup 1 sup 5 N atom excess for

  15. Effect of supplementation with barley and calcium hydroxide on intake of Mediterranean shrubs

    Directory of Open Access Journals (Sweden)

    Dragan Skobic

    2011-04-01

    Full Text Available Maquis plant communities are one of the most varied vegetation types in the Mediterranean region and an important habitat for wild and domestic herbivores. Although the majority of these shrubs are nutritious, the secondary compounds are main impediments that reduce their forage value. In five experiments we determined the effect of supplementing goats with calcium hydroxide plus barley, and barley alone on intake of five dominant shrubs (Quercus ilex, Erica multiflora, Arbutus unedo, Viburnum tinus and Pistacia lentiscus of the Mediterranean maquis community. The combination of calcium hydroxide plus barley and barley alone increased utilization of all five investigated Mediterranean shrubs; therewith that intake of Arbutus unedo and Viburnum tinus was not statistically significant. Supplemented goats with calcium hydroxide plus barley or barley alone could be effective in controlling secondary compounds-rich Mediterranean shrubs where their abundance threatens biodiversity. This control can be facilitated by browsing dominant Mediterranean shrubs, which has been shown to be effective in managing Mediterranean maquis density. Calcium hydroxide and barley (energy enhance use of secondary compounds-containing plants, which may increase production of alternate forages and create a more diverse mix of plant species in the Mediterranean maquis plant community.

  16. Barley seed proteomics from spots to structures

    DEFF Research Database (Denmark)

    Finnie, Christine; Svensson, Birte

    2009-01-01

    forms on 2D-gels. Specific protein families, including peroxidases and alpha-amylases have been subjected to in-depth analysis resulting in characterisation of different isozymes, post-translational. modifications and processing. A functional proteomics study focusing on the seed thioredoxin system has...... with information from rice and other cereals facilitate identification of barley proteins. Several hundred barley seed proteins are identified and lower abundance proteins including membrane proteins are now being analysed. In the present review we focus on variation in protein profiles of seed tissues during...

  17. (GPx) activity in young barley seedlings enriched with selenium

    African Journals Online (AJOL)

    AJB_YOMI

    2011-09-21

    Sep 21, 2011 ... E-mail: guzx@njau.edu.cn. Tel/Fax: +86. 25 84396293. have been used for animal feeds and beer malts. Recently, young barley seedlings have been used as food material for people in Asian countries such as China,. Japan, and Korea. Young barley seedlings are rich in dietary fiber, chlorophyll, carotene ...

  18. Interaction between powdery mildew and barley with ¤mlo5¤ mildew resistance

    DEFF Research Database (Denmark)

    Lyngkjær, M.F.; Østergård, Hanne

    1998-01-01

    Powdery mildew infection of barley with the mlo5 barley powdery mildew resistance gene was examined, using near-isogenic barley lines, with and without mlo5 resistance, and two near-isogenic powdery mildew isolates, HL3/5 and GE3 with high (virulent) or low (avirulent) penetration efficiency...

  19. Vacuolar Localization of Endoproteinases EP(1) and EP(2) in Barley Mesophyll Cells.

    Science.gov (United States)

    Thayer, S S; Huffaker, R C

    1984-05-01

    The localization of two previously characterized endoproteinases (EP(1) and EP(2)) that comprise more than 95% of the protease activity in primary Hordeum vulgare L. var Numar leaves was determined. Intact vacuoles released from washed mesophyll protoplasts by gentle osmotic shock and increase in pH, were purified by flotation through a four-step Ficoll gradient. These vacuoles contained endoproteinases that rapidly degraded purified barley ribulose-1,5-bisphosphate carboxylase (RuBPCase) substrate. Breakdown products and extent of digestion of RuBPCase were determined using 12% polyacrylamide-sodium dodecyl sulfate gels. Coomassie brilliant blue- or silver-stained gels were scanned, and the peaks were integrated to provide quantitative information. The characteristics of the vacuolar endoproteinases (e.g. sensitivity to various inhibitors and activators, and the molecular weights of the breakdown products, i.e. peptide maps) closely resembled those of purified EP(1) and partially purified EP(2). It is therefore concluded that EP(1) and EP(2) are localized in the vacuoles of mesophyll cells.

  20. The proteomic analysis of barley albumins and globulins

    Czech Academy of Sciences Publication Activity Database

    Laštovičková, Markéta; Bobálová, Janette

    2008-01-01

    Roč. 102, č. 15 (2008), s709-s711 ISSN 1803-2389. [Meeting on Chemistry and Life /4./. Brno, 09.09.2008-11.09.2008] R&D Projects: GA MŠk 1M0570 Institutional research plan: CEZ:AV0Z40310501 Keywords : barley * albumins * globulins Subject RIV: CB - Analytical Chemistry, Separation

  1. Development and characterization of polymorphic EST based SSR markers in barley (Hordeum vulgare).

    Science.gov (United States)

    Jo, Won-Sam; Kim, Hye-Yeong; Kim, Kyung-Min

    2017-08-01

    In barley, breeding using good genetic characteristics can improve the quality or quantity of crop characters from one generation to the next generation. The development of effective molecular markers in barley is crucial for understanding and analyzing the diversity of useful alleles. In this study, we conducted genetic relationship analysis using expressed sequence tag-simple sequence repeat (EST-SSR) markers for barley identification and assessment of barley cultivar similarity. Seeds from 82 cultivars, including 31 each of naked and hulled barley from the Korea Seed and Variety Service and 20 of malting barley from the RDA-Genebank Information Center, were analyzed in this study. A cDNA library of the cultivar Gwanbori was constructed for use in analysis of genetic relationships, and 58 EST-SSR markers were developed and characterized. In total, 47 SSR markers were employed to analyze polymorphisms. A relationship dendrogram based on the polymorphism data was constructed to compare genetic diversity. We found that the polymorphism information content among the examined cultivars was 0.519, which indicates that there is low genetic diversity among Korean barley cultivars. The results obtained in this study may be useful in preventing redundant investment in new cultivars and in resolving disputes over seed patents. Our approach can be used by companies and government groups to develop different cultivars with distinguishable markers. In addition, the developed markers can be used for quantitative trait locus analysis to improve both the quantity and the quality of cultivated barley.

  2. Influence of barley grain particle size and treatment with citric acid on digestibility, ruminal fermentation and microbial protein synthesis in Holstein calves.

    Science.gov (United States)

    Kazemi-Bonchenari, M; Salem, A Z M; López, S

    2017-08-01

    Chemical and physical treatments of barley grain increase ruminally resistant starch and can improve the rumen fermentation pattern. The objective of the present study was to evaluate the effects of chemical (addition of citric acid, CA) and physical (grinding to two different particle sizes, PS) treatment of barley grain on performance, rumen fermentation, microbial protein yield in the rumen and selected blood metabolites in growing calves. In all, 28 male Holstein calves (172±5.1 kg initial BW) were used in a complete randomised design with a factorial arrangement of 2 barley grain particle sizes×2 levels of citric acid. The diets were as follows: (i) small PS (average 1200 µm) barley grain soaked in water (no CA addition); (ii) small PS barley grain soaked in a CA solution (adding 20 g CA/kg barley); (iii) large PS (average 2400 µm) barley grain soaked in water (no citric acid addition) and (iv) large PS barley grain soaked in a citric acid solution (adding 20 g CA/kg barley). Barley grain was then incorporated at 35% in a total mixed ration and fed to the calves for 11 weeks. Feeding small PS barley decreased feed intake (P=0.02) and average daily weight gain (P=0.01). The addition of CA to barley grain did not affect intake but increased weight gain (P0.05). However, the molar proportion of propionate was increased (P=0.03) when barley was more finely ground, and that of acetate was increased (P=0.04) when CA was added to barley grain. The ruminal concentration of ammonia nitrogen was increased (Pgrain with citric acid increased fibre digestibility of total mixed rations, attenuated the decrease in ruminal pH, and improved weight gain and feed efficiency in male Holstein growing calves fed a high-cereal diet (550 g cereal grain/kg diet).

  3. The project of mutation breeding in barley (first report)

    International Nuclear Information System (INIS)

    2010-01-01

    Barley is a second main crop with the production of 7 million tons per year and 3,5 million hectare cultivation area in Turkey. Because of wateer deficiency, cereals cultivated in Central Anatolian region. Barley is well adapted to dry farming system besides it is basic food for animal husbandry and main raw material for brewery industry. the main problems in barley production are drought disease epidemic and increasing salinity gradually. Main purposes of our project is to increase resistance and tolerence to this stress factors. In order to reach to our aim we have been using mutation breeding techniques and conventional breeding methods. This Project has been started with irradiation of barley seeds with different gamma ray doses. After that resistant and tolerant mutant has been selected most of these mutanys have resistance and tolerance to different disease and stress conditions. During the selection procedure, hydroponics and tissue culture techniques have been applied to improve the selection efficiency. Up to now, promising barley mutant lines 71 that have earliness (30 days) than parents and because of that reason that escape from drought period. Disease tests of our mutant lines have been conducted under controlled conditions and tolerant lines have been determined under the high the high epidemic conditions. Salt tolerance studies have been applied under hydroponics conditions and salt tolerant mutant have been determined under 180-200mMolNaCl concentration. All mutant lines are carried out to preliminary yield trials for their evaluation

  4. Fine mapping of the Bsr1 barley stripe mosaic virus resistance gene in the model grass Brachypodium distachyon.

    Directory of Open Access Journals (Sweden)

    Yu Cui

    Full Text Available The ND18 strain of Barley stripe mosaic virus (BSMV infects several lines of Brachypodium distachyon, a recently developed model system for genomics research in cereals. Among the inbred lines tested, Bd3-1 is highly resistant at 20 to 25 °C, whereas Bd21 is susceptible and infection results in an intense mosaic phenotype accompanied by high levels of replicating virus. We generated an F(6:7 recombinant inbred line (RIL population from a cross between Bd3-1 and Bd21 and used the RILs, and an F(2 population of a second Bd21 × Bd3-1 cross to evaluate the inheritance of resistance. The results indicate that resistance segregates as expected for a single dominant gene, which we have designated Barley stripe mosaic virus resistance 1 (Bsr1. We constructed a genetic linkage map of the RIL population using SNP markers to map this gene to within 705 Kb of the distal end of the top of chromosome 3. Additional CAPS and Indel markers were used to fine map Bsr1 to a 23 Kb interval containing five putative genes. Our study demonstrates the power of using RILs to rapidly map the genetic determinants of BSMV resistance in Brachypodium. Moreover, the RILs and their associated genetic map, when combined with the complete genomic sequence of Brachypodium, provide new resources for genetic analyses of many other traits.

  5. Epigenetic chromatin modifiers in barley: IV. The study of barley Polycomb group (PcG genes during seed development and in response to external ABA

    Directory of Open Access Journals (Sweden)

    Stanca Michele A

    2010-04-01

    Full Text Available Abstract Background Epigenetic phenomena have been associated with the regulation of active and silent chromatin states achieved by modifications of chromatin structure through DNA methylation, and histone post-translational modifications. The latter is accomplished, in part, through the action of PcG (Polycomb group protein complexes which methylate nucleosomal histone tails at specific sites, ultimately leading to chromatin compaction and gene silencing. Different PcG complex variants operating during different developmental stages have been described in plants. In particular, the so-called FIE/MEA/FIS2 complex governs the expression of genes important in embryo and endosperm development in Arabidopsis. In our effort to understand the epigenetic mechanisms regulating seed development in barley (Hordeum vulgare, an agronomically important monocot plant cultivated for its endosperm, we set out to characterize the genes encoding barley PcG proteins. Results Four barley PcG gene homologues, named HvFIE, HvE(Z, HvSu(z12a, and HvSu(z12b were identified and structurally and phylogenetically characterized. The corresponding genes HvFIE, HvE(Z, HvSu(z12a, and HvSu(z12b were mapped onto barley chromosomes 7H, 4H, 2H and 5H, respectively. Expression analysis of the PcG genes revealed significant differences in gene expression among tissues and seed developmental stages and between barley cultivars with varying seed size. Furthermore, HvFIE and HvE(Z gene expression was responsive to the abiotic stress-related hormone abscisic acid (ABA known to be involved in seed maturation, dormancy and germination. Conclusion This study reports the first characterization of the PcG homologues, HvFIE, HvE(Z, HvSu(z12a and HvSu(z12b in barley. All genes co-localized with known chromosomal regions responsible for malting quality related traits, suggesting that they might be used for developing molecular markers to be applied in marker assisted selection. The Pc

  6. Gamma-radiation Mutagenesis in Genetically Unstable Barley Mutants. Pt. 1. Chlorophyll Mutations in Allelic tw Mutants and Their Revertants

    International Nuclear Information System (INIS)

    Vaitkuniene, V.

    1995-01-01

    Genotypical environment is an essential factor determining the mutability of mutants of the same type. Decreased chlorophyll mutant frequency was a common characteristic of all tested tw type (tw, tw 1 , tw 2 ) mutants induced in barley c. 'Auksiniai II'. The mutability of all the tested revertants was close to that of the initial c. 'Auksiniai II'. (author). 9 refs., 2 tabs

  7. Barley HvPAPhy_a as transgene provides high and stable phytase activities in mature barley straw and in grains.

    Science.gov (United States)

    Holme, Inger Baeksted; Dionisio, Giuseppe; Madsen, Claus Krogh; Brinch-Pedersen, Henrik

    2017-04-01

    The phytase purple acid phosphatase (HvPAPhy_a) expressed during barley seed development was evaluated as transgene for overexpression in barley. The phytase was expressed constitutively driven by the cauliflower mosaic virus 35S-promoter, and the phytase activity was measured in the mature grains, the green leaves and in the dry mature vegetative plant parts left after harvest of the grains. The T 2 -generation of HvPAPhy_a transformed barley showed phytase activity increases up to 19-fold (29 000 phytase units (FTU) per kg in mature grains). Moreover, also in green leaves and mature dry straw, phytase activities were increased significantly by 110-fold (52 000 FTU/kg) and 57-fold (51 000 FTU/kg), respectively. The HvPAPhy_a-transformed barley plants with high phytase activities possess triple potential utilities for the improvement of phosphate bioavailability. First of all, the utilization of the mature grains as feed to increase the release of bio-available phosphate and minerals bound to the phytate of the grains; secondly, the utilization of the powdered straw either directly or phytase extracted hereof as a supplement to high phytate feed or food; and finally, the use of the stubble to be ploughed into the soil for mobilizing phytate-bound phosphate for plant growth. © 2016 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  8. Maize, Sunflower and Barley Sensitivity to the Residual Activity of Clomazone in Soil

    Directory of Open Access Journals (Sweden)

    Jelena Gajić Umiljendić

    2012-01-01

    Full Text Available Sensitivity of maize, sunflower and barley to clomazone residues in loamy soil wasassessed in the study using bioassay. Clomazone was applied at a series of concentrationsfrom 0.12 to 12 mg a.i./kg of soil. After 14 days, morphological (shoot height, fresh and dryweight and physiological (content of carotenoids, chlorophyll a and chlorophyll b parameterswere measured. The results showed that morphological parameters are not valid indicatorsof clomazone sensitivity. Based on the results showing inhibition of the physiologicalparameters, I50 values were calculated and used to estimate the difference in sensitivitybetween the species tested. Sunflower was the most sensitive species, while the differencein sensitivity between maize and barley was not significant.Nomenclature: clomazone (2-(2-chlorbenzyl-4,4-dimethyl-1,2-oxazolidin-3-one, maize(Zea mays L., sunflower (Helianthus annuus L., barley (Hordeum vulgare L.

  9. Molecular analysis of point mutations in a barley genome exposed to MNU and gamma rays

    Energy Technology Data Exchange (ETDEWEB)

    Kurowska, Marzena, E-mail: mkurowsk@us.edu.pl [Department of Genetics, Faculty of Biology and Environmental Protection, University of Silesia, Jagiellonska 28, 40-032 Katowice (Poland); Labocha-Pawlowska, Anna; Gnizda, Dominika; Maluszynski, Miroslaw; Szarejko, Iwona [Department of Genetics, Faculty of Biology and Environmental Protection, University of Silesia, Jagiellonska 28, 40-032 Katowice (Poland)

    2012-10-15

    We present studies aimed at determining the types and frequencies of mutations induced in the barley genome after treatment with chemical (N-methyl-N-nitrosourea, MNU) and physical (gamma rays) mutagens. We created M{sub 2} populations of a doubled haploid line and used them for the analysis of mutations in targeted DNA sequences and over an entire barley genome using TILLING (Targeting Induced Local Lesions in Genomes) and AFLP (Amplified Fragment Length Polymorphism) technique, respectively. Based on the TILLING analysis of the total DNA sequence of 4,537,117 bp in the MNU population, the average mutation density was estimated as 1/504 kb. Only one nucleotide change was found after an analysis of 3,207,444 bp derived from the highest dose of gamma rays applied. MNU was clearly a more efficient mutagen than gamma rays in inducing point mutations in barley. The majority (63.6%) of the MNU-induced nucleotide changes were transitions, with a similar number of G > A and C > T substitutions. The similar share of G > A and C > T transitions indicates a lack of bias in the repair of O{sup 6}-methylguanine lesions between DNA strands. There was, however, a strong specificity of the nucleotide surrounding the O{sup 6}-meG at the -1 position. Purines formed 81% of nucleotides observed at the -1 site. Scanning the barley genome with AFLP markers revealed ca. a three times higher level of AFLP polymorphism in MNU-treated as compared to the gamma-irradiated population. In order to check whether AFLP markers can really scan the whole barley genome for mutagen-induced polymorphism, 114 different AFLP products, were cloned and sequenced. 94% of bands were heterogenic, with some bands containing up to 8 different amplicons. The polymorphic AFLP products were characterised in terms of their similarity to the records deposited in a GenBank database. The types of sequences present in the polymorphic bands reflected the organisation of the barley genome.

  10. The draft genome of Tibetan hulless barley reveals adaptive patterns to the high stressful Tibetan Plateau.

    Science.gov (United States)

    Zeng, Xingquan; Long, Hai; Wang, Zhuo; Zhao, Shancen; Tang, Yawei; Huang, Zhiyong; Wang, Yulin; Xu, Qijun; Mao, Likai; Deng, Guangbing; Yao, Xiaoming; Li, Xiangfeng; Bai, Lijun; Yuan, Hongjun; Pan, Zhifen; Liu, Renjian; Chen, Xin; WangMu, QiMei; Chen, Ming; Yu, Lili; Liang, Junjun; DunZhu, DaWa; Zheng, Yuan; Yu, Shuiyang; LuoBu, ZhaXi; Guang, Xuanmin; Li, Jiang; Deng, Cao; Hu, Wushu; Chen, Chunhai; TaBa, XiongNu; Gao, Liyun; Lv, Xiaodan; Abu, Yuval Ben; Fang, Xiaodong; Nevo, Eviatar; Yu, Maoqun; Wang, Jun; Tashi, Nyima

    2015-01-27

    The Tibetan hulless barley (Hordeum vulgare L. var. nudum), also called "Qingke" in Chinese and "Ne" in Tibetan, is the staple food for Tibetans and an important livestock feed in the Tibetan Plateau. The diploid nature and adaptation to diverse environments of the highland give it unique resources for genetic research and crop improvement. Here we produced a 3.89-Gb draft assembly of Tibetan hulless barley with 36,151 predicted protein-coding genes. Comparative analyses revealed the divergence times and synteny between barley and other representative Poaceae genomes. The expansion of the gene family related to stress responses was found in Tibetan hulless barley. Resequencing of 10 barley accessions uncovered high levels of genetic variation in Tibetan wild barley and genetic divergence between Tibetan and non-Tibetan barley genomes. Selective sweep analyses demonstrate adaptive correlations of genes under selection with extensive environmental variables. Our results not only construct a genomic framework for crop improvement but also provide evolutionary insights of highland adaptation of Tibetan hulless barley.

  11. Structure, morphology and functionality of acetylated and oxidised barley starches.

    Science.gov (United States)

    El Halal, Shanise Lisie Mello; Colussi, Rosana; Pinto, Vânia Zanella; Bartz, Josiane; Radunz, Marjana; Carreño, Neftali Lenin Villarreal; Dias, Alvaro Renato Guerra; Zavareze, Elessandra da Rosa

    2015-02-01

    Acetylation and oxidation are chemical modifications which alter the properties of starch. The degree of modification of acetylated and oxidized starches is dependent on the catalyst and active chlorine concentrations, respectively. The objective of this study was to evaluate the effect of acetylation and oxidation on the structural, morphological, physical-chemical, thermal and pasting properties of barley starch. Barley starches were acetylated at different catalyst levels (11%, 17%, and 23% of NaOH solution) and oxidized at different sodium hypochlorite concentrations (1.0%, 1.5%, and 2.0% of active chlorine). Fourier-transformed infrared spectroscopy (FTIR), X-ray diffractograms, thermal, morphological, and pasting properties, swelling power and solubility of starches were evaluated. The degree of substitution (DS) of the acetylated starches increased with the rise in catalyst concentration. The percentage of carbonyl (CO) and carboxyl (COOH) groups in oxidized starches also increased with the rise of active chlorine level. The presence of hydrophobic acetyl groups, carbonyl and carboxyl groups caused a partial disorganization and depolymerization of starch granules. The structural, morphological and functional changes in acetylated and oxidized starches varied according to reaction conditions. Acetylation makes barley starch more hydrophobic by the insertion of acetyl groups. Also the oxidation promotes low retrogradation and viscosity. All these characteristics are important for biodegradable film production. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. A study on the qualitative and quantitative traits of barley (Hordeum ...

    African Journals Online (AJOL)

    user

    Key words: Qualitative and quantitative, barley, narbon vetch, weed, dry land. ... and biomass production (Baishya and Sharma, 1990; ..... pakistan. Digitalverlag gmbh, germany. 157: 1-5. Pisulewska E, Hanczowski P, Pisulewski P (2003).

  13. Effect of Barley and Enzyme on Performance, Carcass, Enzyme Activity and Digestion Parameters of Broilers

    Directory of Open Access Journals (Sweden)

    majid kalantar

    2016-04-01

    Full Text Available Introduction Corn has been recently used for producing ethanol fuel in the major corn-producing countries such as the US and Brazil. Recent diversion of corn for biofuel production along with the increased world's demand for this feedstuff has resulted in unprecedented rise in feed cost for poultry worldwide. Alternative grains such as wheat and barley can be successfully replaced for corn in poultry diets. These cereal grains can locally grow in many parts of the world as they have remarkably lower water requirement than corn. Wheat and barley are generally used as major sources of energy in poultry diets. Though the major components of these grains are starch and proteins, they have considerable content of non-starch polysaccharides (NSPs, derived from the cell walls (Olukosi et al. 2007; Mirzaie et al. 2012. NSPs are generally considered as anti-nutritional factors (Jamroz et al. 2002. The content and structure of NSP polymers vary between different grains, which consequently affect their nutritive value (Olukosi et al. 2007.Wheat and barley are generally used as major sources of energy in poultry diets. The major components of these grains are starch and proteins, they have considerable content of non-starch polysaccharides (NSPs, derived from the cell walls. NSPs are generally considered as anti-nutritional factors. The content and structure of NSP polymers vary between different grains, which consequently affect their nutritive value. The major part of NSPs in barley comprises polymers of (1→3 (1→4-β- glucans which could impede growth factors and consequently carcass quality through lowering the rate and amount of available nutrients in the mucosal surface of the intestinal. Materials and Methods This experiment was conducted to evaluate the effect of corn and barley based diets supplemented with multi-enzyme on growth, carcass, pancreas enzyme activity and physiological characteristics of broilers. A total number of 375 one day old

  14. Investigation of additives for preventing ash fouling and sintering during barley straw combustion

    International Nuclear Information System (INIS)

    Wang, Liang; Skreiberg, Øyvind; Becidan, Michael

    2014-01-01

    Formation of potassium chloride reduces ash sintering temperature and causes fouling deposits in biomass combustion applications. In the present work, the capacity of two mineral additives zeolite 24A and kaolin to capture KCl were investigated. A series of thermogravimetric experiments were carried out to measure fractions of KCl retained in the two additives as function of reaction temperature and heating time. The residues from additive-KCl mixtures after heating treatment were analyzed by X-ray diffractometry (XRD). When heated at 900 °C for 1 h, the overall KCl capturing efficiencies of the two additives were 60% and 45% for zeolite 24A and kaolin respectively, which slightly decreased to 50% and 43% as the heating time increased to 12 h. At 1000 °C, the fractions of KCl captured by zeolite 24A and kaolin significantly decreased from 50% and 40% to 26% and 17%, as the KCl-additive mixtures were heated for 1 and 12 h, respectively. The decrease in of the overall KCl capturing efficiencies is mainly attributed to reduction of surface areas and chemically active compounds of the two additives with increasing temperature and heating time. The XRD analysis results showed that both zeolite 24A and kaolin can react with KCl to form different potassium aluminium silicates. It indicates that chemical reactions play an important role in the overall capturing process. The effects of zeolite 24A and kaolin on sintering behaviors of the barley straw ash were also investigated. The residues from sintering tests were analyzed by a combination of X-Ray diffractometry (XRD) and scanning electron microscopy equipped with energy dispersive X-Ray analysis (SEM-EDX). The barley straw ash melted intensively at elevated temperatures. Together with XRD analysis, the SEM-EDX analysis results revealed that severe melting of the barley straw ash was due to formation and fusion of low temperature melting potassium silicates. Addition of kaolin and zeolite 24A significantly

  15. Genomic Prediction in Barley

    DEFF Research Database (Denmark)

    Edriss, Vahid; Cericola, Fabio; Jensen, Jens D

    2015-01-01

    to next generation. The main goal of this study was to see the potential of using genomic prediction in a commercial Barley breeding program. The data used in this study was from Nordic Seed company which is located in Denmark. Around 350 advanced lines were genotyped with 9K Barely chip from Illumina....... Traits used in this study were grain yield, plant height and heading date. Heading date is number days it takes after 1st June for plant to head. Heritabilities were 0.33, 0.44 and 0.48 for yield, height and heading, respectively for the average of nine plots. The GBLUP model was used for genomic...

  16. Genetic diversity and structure analysis in wild and landraces of barley from Jordan by using ISJ markers

    International Nuclear Information System (INIS)

    Baloch, A. W.; Balogh, M. J.; Baloch, M.; Baloch, I. A.

    2016-01-01

    The present experiment was carried out to estimate genetic diversity and genetic structure in cultivated and wild barley populations collected from Jordan which is considered as primary gene pool of barley. In a total, 94 cultivated barley accessions composed of 4 populations and 52 wild barley accessions consisted of 3 populations were used for genetic analysis using 7 Intron Splice Junction (ISJ) markers. The genetic diversity index (He) of cultivated barley ranged between 0.049 and 0.060; whereas that of wild barley populations ranged between 0.084 and 0.146, suggesting that wild resources of barley harbored greater genetic diversity than its domesticated counterpart, reflecting that barley domestication occurred with genetic bottleneck. Analysis of molecular variance showed high genetic variations among rather than within populations, referring that high genetic differentiation of barley populations caused by genetic and geographical separation of the populations in the harsh growing conditions of Fertile Crescent. Principal coordinate, clustering and structure analysis not only separated cultivated and wild barley, but also each single population, showing their genetic basis and original sample site. The obtained Results also revealed that there is lesser genetic communication between cultivated and wild barley under natural environments. The current findings can better be exploited for collection and utilization of plant germplasms. (author)

  17. Changes in isovitexin-O-glycosylation during the development of young barley plants.

    Science.gov (United States)

    Brauch, Dominic; Porzel, Andrea; Schumann, Erika; Pillen, Klaus; Mock, Hans-Peter

    2018-04-01

    Phenylpropanoids are a class of plant natural products that have many biological functions, including stress defence. In barley, phenylpropanoids have been described as having protective properties against excess UV-B radiation and have been linked to resistance to pathogens. Although the phenylpropanoid composition of barley has recently been addressed in more detail, the biosynthesis and regulation of this pathway have not been fully established. Barley introgression lines, such as the S42IL-population offer a set of genetically diverse plants that enable the correlation of metabolic data to distinct genetic regions on the barley genome and, subsequently, identification of relevant genes. The phenylpropanoid profiles of the first and third leaf of barley seedlings in Scarlett and four members of the S42IL-population were obtained by LC-MS. Comparison of the leaf profiles revealed a change in the glycosylation pattern of the flavone-6-C-glucoside isovitexin in the elite cultivar Scarlett. The change was characterized by the stepwise decrease in isovitexin-7-O-glucoside (saponarin) and an increase in isovitexin-2″-O-β-D-glucoside content. The lines S42IL-101-, -177 and -178 were completely devoid of isovitexin-2″-O-β-D-glucoside. Parallel glucosyltransferase assays were consistent with the observed metabolic patterns. The genetic region responsible for this metabolic effect was located on chromosome 1H between 0.21 and 15.08 cM, encompassing 505 gene candidates in the genome of the sequenced cultivar Morex. Only one of these genes displayed sequence similarity with glucosyltransferases of plant secondary metabolism that possessed the characteristic PSPG motif. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. Comparison of foliar anatomy of ten bread wheat (triticum, poaceae) and ten barley (hordeum, poaceae) cultivars

    International Nuclear Information System (INIS)

    Ardic, M.; Sezer, O.; Ozgdsd, K.; Yaylaci, O. K.; Koyuncu, O.; Olgun, M.; Bascdftcd, Z. B.; Ayter, N. G.

    2015-01-01

    The aim of this study is to determine anatomical differences and classification of leaf and leaf cell characteristics (cuticle thickness, upper epidermis thickness, lower epidermis thickness, mesophyll thickness, parenchyma thickness and leaf thickness) between 10 bread wheat cultivars (Triticum aestivum L.) and 10 barley cultivars (Hordeum vulgare L.). Classification of leaf characteristics in bread wheat and barley cultivars and relationship between leaf characteristics are made by principal component and correlation analyses. Highest thickness belongs to W8 Mufitbey cultivar in mesophyll and lower epidermis and W1 Sonmez 01 cultivar have the lowest thickness of upper epidermis in bread wheat. In Barley, B1 Ince cultivar has highest leaf thickness mesophyll and parenchyma; lowest thickness of cuticle is included B7 Cumhuriyet 50 cultivar. All other cultivars have homogenous contents of leaf characteristics. (author)

  19. Enumeration of fungi in barley

    CSIR Research Space (South Africa)

    Rabie, CJ

    1997-04-01

    Full Text Available Estimation of fungal contamination of barley grain is important as certain fungi can proliferate during the malting process. The following factors which may affect the enumeration of fungi were evaluated: dilution versus direct plating, pre...

  20. Two Secondary Carbohydrate Binding Sites on the Surface of Barley alpha-Amylase 1 Have Distinct Functions and Display Synergy in Hydrolysis of Starch Granules

    DEFF Research Database (Denmark)

    Nielsen, Morten Munch; Bozonnet, Sophie; Seo, Eun-Seong

    2009-01-01

    Some polysaccharide processing enzymes possess secondary carbohydrate binding sites situated on the surface far from the active site. In barley alpha-amylase 1 (AMY1), two such sites, SBS1 and SBS2, are found on the catalytic (beta/alpha)8-barrel and the noncatalytic C-terminal domain, respective...

  1. A Metabolic Gene Cluster in the Wheat W1 and the Barley Cer-cqu Loci Determines β-Diketone Biosynthesis and Glaucousness.

    Science.gov (United States)

    Hen-Avivi, Shelly; Savin, Orna; Racovita, Radu C; Lee, Wing-Sham; Adamski, Nikolai M; Malitsky, Sergey; Almekias-Siegl, Efrat; Levy, Matan; Vautrin, Sonia; Bergès, Hélène; Friedlander, Gilgi; Kartvelishvily, Elena; Ben-Zvi, Gil; Alkan, Noam; Uauy, Cristobal; Kanyuka, Kostya; Jetter, Reinhard; Distelfeld, Assaf; Aharoni, Asaph

    2016-06-01

    The glaucous appearance of wheat (Triticum aestivum) and barley (Hordeum vulgare) plants, that is the light bluish-gray look of flag leaf, stem, and spike surfaces, results from deposition of cuticular β-diketone wax on their surfaces; this phenotype is associated with high yield, especially under drought conditions. Despite extensive genetic and biochemical characterization, the molecular genetic basis underlying the biosynthesis of β-diketones remains unclear. Here, we discovered that the wheat W1 locus contains a metabolic gene cluster mediating β-diketone biosynthesis. The cluster comprises genes encoding proteins of several families including type-III polyketide synthases, hydrolases, and cytochrome P450s related to known fatty acid hydroxylases. The cluster region was identified in both genetic and physical maps of glaucous and glossy tetraploid wheat, demonstrating entirely different haplotypes in these accessions. Complementary evidence obtained through gene silencing in planta and heterologous expression in bacteria supports a model for a β-diketone biosynthesis pathway involving members of these three protein families. Mutations in homologous genes were identified in the barley eceriferum mutants defective in β-diketone biosynthesis, demonstrating a gene cluster also in the β-diketone biosynthesis Cer-cqu locus in barley. Hence, our findings open new opportunities to breed major cereal crops for surface features that impact yield and stress response. © 2016 American Society of Plant Biologists. All rights reserved.

  2. Barley (Hordeum vulgare L.) cysteine proteases: heterologous expression, purification and characterization

    DEFF Research Database (Denmark)

    Rosenkilde, Anne Lind; Dionisio, Giuseppe; Holm, Preben Bach

    2011-01-01

    During germination of barley seeds, mobilization of protein is essential and cysteine proteases accounts for more than 90 % of the total proteolytic activity in the degradation of barley seed storage proteins. Cysteine proteases exist as pro-enzyme and is activated through reduction of the active...... site cysteines and by removal of the pro-domain. The complement of cysteine proteases is comprehensive and for detailed studies of the individual components of this complement, a fast and efficient eukaryotic expression platform is highly desirable. A cDNA clone of the barley key cysteine endoprotease...

  3. Distinct developmental defense activations in barley embryos identified by transcriptome profiling

    DEFF Research Database (Denmark)

    Nielsen, ME; Lok, F; Nielsen, Henrik Bjørn

    2006-01-01

    analyses of > 22,000 genes, which together with measurements of jasmonic acid and salicylic acid during embryo development provide new information on the initiation in the developing barley embryo of at least two distinct types of developmental defense activation (DDA). Early DDA is characterized by the up......-regulation of several PR genes is notable. Throughout barley embryo development, there are no indications of an increased biosynthesis of either jasmonic acid or salicylic acid. Collectively, the results help explain how the proposed DDA enables protection of the developing barley embryo and grain for purposes...

  4. Allelopathic effects of barley straw on germination and seedling growth of corn, sugar beet and sunflower

    Directory of Open Access Journals (Sweden)

    mohamad taghi naseri poor yazdi

    2009-06-01

    Full Text Available Allelopathic effects of barley straw and root on germination and growth of maize, sugar beet, and sunflower were investigated under glasshouse and laboratory experiments in Faculty of Agriculture, Ferdowsi University of Mashhad in 2006. The glasshouse experiment was designed based on randomized complete block design with three replications, treatments included: 0, 200, 400, 600 g/m² of grounded barley straw and also 0 and 50 g/m2 barley root. A laboratory experiment was carried out in order to study the effect of different concentrations of barley water extracts on germination and seedling characteristics of corn, sugar beet and sunflower. Treatments in laboratory trial included 0, 33, 50 and 100 percent of barley extracts. Results showed that leaf area of corn was significantly affected by barley straw treatments. Shoot dry matter and seed weight per plant in corn , leaf and tuber weight in sugar beet and leaf , stem weights , plant per plant in corn , leaf and tuber weight in sugar beet and leaf, stem weights, plant height, head diameter, head weight and seed weight in sunflower were significantly higher in treatment of 50g/m² barley roots. Crop seed germination decreased with increasing the amount of barley straw. The best germination response to barley extract was observed in corn. Maize radicle weight was significantly decreased with increasing concentration of barley water extract.

  5. Characterization of the Entire Cystatin Gene Family in Barley and Their Target Cathepsin L-Like Cysteine-Proteases, Partners in the Hordein Mobilization during Seed Germination1[W

    Science.gov (United States)

    Martinez, Manuel; Cambra, Ines; Carrillo, Laura; Diaz-Mendoza, Mercedes; Diaz, Isabel

    2009-01-01

    Plant cystatins are inhibitors of cysteine-proteases of the papain C1A and legumain C13 families. Cystatin data from multiple plant species have suggested that these inhibitors act as defense proteins against pests and pathogens and as regulators of protein turnover. In this study, we characterize the entire cystatin gene family from barley (Hordeum vulgare), which contain 13 nonredundant genes, and identify and characterize their target enzymes, the barley cathepsin L-like proteases. Cystatins and proteases were expressed and purified from Escherichia coli cultures. Each cystatin was found to have different inhibitory capability against barley cysteine-proteases in in vitro inhibitory assays using specific substrates. Real-time reverse transcription-polymerase chain reaction revealed that inhibitors and enzymes present a wide variation in their messenger RNA expression patterns. Their transcripts were mainly detected in developing and germinating seeds, and some of them were also expressed in leaves and roots. Subcellular localization of cystatins and cathepsin L-like proteases fused to green fluorescent protein demonstrated the presence of both protein families throughout the endoplasmic reticulum and the Golgi complex. Proteases and cystatins not only colocalized but also interacted in vivo in the plant cell, as revealed by bimolecular fluorescence complementation. The functional relationship between cystatins and cathepsin L-like proteases was inferred from their common implication as counterparts of mobilization of storage proteins upon barley seed germination. The opposite pattern of transcription expression in gibberellin-treated aleurones presented by inhibitors and enzymes allowed proteases to specifically degrade B, C, and D hordeins stored in the endosperm of barley seeds. PMID:19759340

  6. Total antioxidant capacity and starch digestibility of muffins baked with rice, wheat, oat, corn and barley flour.

    Science.gov (United States)

    Soong, Yean Yean; Tan, Seow Peng; Leong, Lai Peng; Henry, Jeya Kumar

    2014-12-01

    Muffins are a popular snack consumed in western and emerging countries. Increased glycemic load has been implicated in the aetiology of diabetes. This study examined the starch digestibility of muffins baked with rice, wheat, corn, oat and barley flour. Rapidly digested starch (RDS) was greatest in rice (445 mg/g) and wheat (444 mg/g) muffins, followed by oat (416 mg/g), corn (402 mg/g) and barley (387 mg/g). Total phenolic content was found to be positively correlated with total antioxidative capacity and inversely related to the RDS of muffins. The phenolic content was highest in muffin baked with barley flour (1,687 μg/g), followed by corn (1,454 μg/g), oat (945 μg/g), wheat (705 μg/g), and rice (675 μg/g) flour. Browning was shown not to correlate with free radical scavenging capacity and digestibility of muffins. The presence of high phenolic content and low RDS makes barley muffin an ideal snack to modulate glycemic response. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Barley uptake of N deposited in the rhizosphere of associated field pea

    DEFF Research Database (Denmark)

    Jensen, E.S.

    1996-01-01

    N deposited in the rhizosphere of a legume may contribute to the N-nutrition of an intercropped non-legume. The process of deposition and subsequent uptake by a neighbouring plant is often termed N-transfer. The N-transfer from field pea (Pisum sativum L.) to associated spring barley (Hordeum...... debris. Separating the root systems reduced the barley recovery of pea-derived N to about half the amount recovered in the association where root systems grew in the same compartment. The death of pea, caused by spraying with a herbicide, increased the amount of N recovered in barley, whereas shading...... the pea plant had no effect on the amount of pea-derived N taken up in barley. The N deposited up to 45 days of growth contributed

  8. DNA microarray revealed and RNAi plants confirmed key genes conferring low Cd accumulation in barley grains

    DEFF Research Database (Denmark)

    Sun, Hongyan; Chen, Zhong-Hua; Chen, Fei

    2015-01-01

    Background Understanding the mechanism of low Cd accumulation in crops is crucial for sustainable safe food production in Cd-contaminated soils. Results Confocal microscopy, atomic absorption spectrometry, gas exchange and chlorophyll fluorescence analyses revealed a distinct difference in Cd...... with a substantial difference between the two genotypes. Cd stress led to higher expression of genes involved in transport, carbohydrate metabolism and signal transduction in the low-grain-Cd-accumulating genotype. Novel transporter genes such as zinc transporter genes were identified as being associated with low Cd...... accumulation. Quantitative RT-PCR confirmed our microarray data. Furthermore, suppression of the zinc transporter genes HvZIP3 and HvZIP8 by RNAi silencing showed increased Cd accumulation and reduced Zn and Mn concentrations in barley grains. Thus, HvZIP3 and HvZIP8 could be candidate genes related to low...

  9. Energy consumption in barley and turnip rape cultivation for bioethanol and biodiesel (RME) production

    Energy Technology Data Exchange (ETDEWEB)

    Mikkola, Hannu; Ahokas, Jukka [University of Helsinki, Faculty of Agriculture and Forestry, Department of Agricultural Sciences, FIN-00014 Helsingin yliopisto (Finland); Pahkala, Katri [MTT, Agrifood Research Finland, Crop Science and Technology, FIN-31600 Jokioinen (Finland)

    2011-01-15

    The energy consumption for six spring barley (Hordeum vulgare L.) production chains and five spring turnip rape (Brassica rapa ssp. oleifera (DC) Metsg.) production chains were compared with each other and in relation to the energy content of the seed yield. Two cultivation intensities, standard and intensive production, were used for barley. Fertiliser production and grain drying were the most energy consuming phases of the chains. The production of nitrogen fertiliser alone accounted for 1/3-1/2 of the total energy consumption of the production chains. If barley were direct drilled and the yield stored in airtight silos, instead of drying, the energy consumption would decrease by 30-34%. Use of wood-chips instead of oil for grain drying would decrease the use of fossil fuel to the same extent. The input-output ratios for the intensive barley production chains were 0.18-0.25. They were somewhat lower than the ratios for the standard production intensity. The intensive production was more energy efficient despite higher input rates. The input-output ratios for turnip rape production were 0.32-0.34. The energy consumption for manufacturing, repair and maintenance of machines and buildings requires more research because it is a significant factor but the data available are largely old and few studies have been conducted. (author)

  10. Association Mapping of Malting Quality Quantitative Trait Loci in Winter Barley: Positive Signals from Small Germplasm Arrays

    Directory of Open Access Journals (Sweden)

    Lucía Gutiérrez

    2011-11-01

    Full Text Available Malting quality comprises one of the most economically relevant set of traits in barley ( L.. It is a complex phenotype, expensive and difficult to measure, that would benefit from a marker-assisted selection strategy. Malting quality is a target of the U.S. Barley Coordinated Agricultural Project (CAP and development of winter habit malting barley varieties is a key objective of the U.S. barley research community. The objective of this work was to detect quantitative trait loci (QTL for malting quality traits in a winter breeding program that is a component of the U.S. Barley CAP. We studied the association between five malting quality traits and 3072 single nucleotide polymorphisms (SNPs from the barley oligonucleotide pool assay (BOPA 1 and 2, assayed in advanced inbred lines from the Oregon State University (OSU breeding program from three germplasm arrays (CAP I, CAP II, and CAP III. After comparing 16 models we selected a structured association model with posterior probabilities inferred from software STRUCTURE (QK approach to use on all germplasm arrays. Most of the marker-trait associations are germplasm- and environment-specific and close to previously mapped genes and QTL relevant for malt and beer quality. We found alleles fixed by random genetic drift, novel unmasked alleles, and genetic-background interaction. In a relatively small population size study we provide strong evidence for detecting true QTL.

  11. Uptake and distribution of 232U in peas and barley

    International Nuclear Information System (INIS)

    Schreckhise, R.G.; Cline, J.F.

    1980-01-01

    The uptake of 232 U from soil and its distribution in peas and barley were examined under conditions which isolated root uptake from deposition on aboveground plant parts. Aboveground plant parts were harvested at maturity and analyzed for 232 U content by alpha-energy-analysis. The ratio of concentration (CR) of 232 U in the dry barley seeds to dry soil was 1.6 x 10 -4 while the CR values of the stem/leaf to dry soil fraction was 3.6 x 10 -3 . The Cr values for the pea seed, stem/pod and leaf components were 5.4 x 10 -4 , 3.3 x 10 -3 and 1.7 x 10 -2 , respectively. This indicates that the CR values used in certain radiological dose-assessment models may be high by about a factor of 100 when evaluating the consumption of seeds of legumes or cereal grains by man. (author)

  12. Mitogen-Activated Protein Kinase Kinase 3 Regulates Seed Dormancy in Barley.

    Science.gov (United States)

    Nakamura, Shingo; Pourkheirandish, Mohammad; Morishige, Hiromi; Kubo, Yuta; Nakamura, Masako; Ichimura, Kazuya; Seo, Shigemi; Kanamori, Hiroyuki; Wu, Jianzhong; Ando, Tsuyu; Hensel, Goetz; Sameri, Mohammad; Stein, Nils; Sato, Kazuhiro; Matsumoto, Takashi; Yano, Masahiro; Komatsuda, Takao

    2016-03-21

    Seed dormancy has fundamental importance in plant survival and crop production; however, the mechanisms regulating dormancy remain unclear [1-3]. Seed dormancy levels generally decrease during domestication to ensure that crops successfully germinate in the field. However, reduction of seed dormancy can cause devastating losses in cereals like wheat (Triticum aestivum L.) and barley (Hordeum vulgare L.) due to pre-harvest sprouting, the germination of mature seed (grain) on the mother plant when rain occurs before harvest. Understanding the mechanisms of dormancy can facilitate breeding of crop varieties with the appropriate levels of seed dormancy [4-8]. Barley is a model crop [9, 10] and has two major seed dormancy quantitative trait loci (QTLs), SD1 and SD2, on chromosome 5H [11-19]. We detected a QTL designated Qsd2-AK at SD2 as the single major determinant explaining the difference in seed dormancy between the dormant cultivar "Azumamugi" (Az) and the non-dormant cultivar "Kanto Nakate Gold" (KNG). Using map-based cloning, we identified the causal gene for Qsd2-AK as Mitogen-activated Protein Kinase Kinase 3 (MKK3). The dormant Az allele of MKK3 is recessive; the N260T substitution in this allele decreases MKK3 kinase activity and appears to be causal for Qsd2-AK. The N260T substitution occurred in the immediate ancestor allele of the dormant allele, and the established dormant allele became prevalent in barley cultivars grown in East Asia, where the rainy season and harvest season often overlap. Our findings show fine-tuning of seed dormancy during domestication and provide key information for improving pre-harvest sprouting tolerance in barley and wheat. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Improvement of quinoa and barley through induced mutations and biotechnology

    International Nuclear Information System (INIS)

    Siles, A.Z.; Miranda, L.S.

    2001-01-01

    The main cropping problems in the Bolivian highlands are the long growing period of barley, high degree of environmental influence on the performance of quinoa, and low soil moisture at sowing time, leading to low germination rate and poor stands, and frost or chilling damages. The program aimed to establish protocols for induction of mutations with X rays and chemical mutagens (NaN 3 , MNH, EMS) in quinoa, barley, native forage species and forest plants and to obtain mutant lines, especially in barley and quinoa; and to establish callus regeneration in quinoa and micropropagation of kenua (Polilepis). The project is still in its study stages, hence further evaluations are needed before firm conclusions are drawn. (author)

  14. Functional Analysis of Barley Powdery Mildew Effector Candidates and Identification of their Barley Targets

    DEFF Research Database (Denmark)

    Ahmed, Ali Abdurehim

    The genome of barley powdery mildew fungus (Blumeria graminis f. sp. hordei, Bgh) encodes around 500 Candidate Secreted Effector Proteins (CSEPs), which are believed to be delivered to the barley cells either to interfere with plant defence and/or promote nutrient uptake. So far, little is known...... about the function of many CSEPs in virulence and the identities of their host targets. In this PhD study, we investigated the function of nine CSEPs and found that CSEP0081, CSEP0105, CSEP0162 and CSEP0254 act as effectors by promoting the Bgh infection success. Independent silencing of these CSEPs...... proteins (sHsps), Hsp16.9 and Hsp17.5, were identified as interactors for both CSEP0105 and CSEP0162. These interactions were confirmed in planta by BiFC and co-localization studies. Small heat shock proteins are highly conserved ATP-independent chaperones that protect the cell from stress-induced protein...

  15. Regrowth in Barley (Hordeum vulgare L.) and Rye (Secale cereale L.)

    DEFF Research Database (Denmark)

    Christiansen, J L; Jørgensen, Johannes Ravn; Jørnsgård, B

    1998-01-01

    Regrowth after cutting at four development stages, from heading to grain maturity, was investigated in a pot experiment containing three rye and four barley varieties (including 2 Hordeum spontaneum lines). Regrowth in the barley varieties decreased strongly from heading to grain maturity. Rye ge...

  16. Gravimorphism in rice and barley: promotion of leaf elongation by vertical inversion in agravitropically growing plants.

    Science.gov (United States)

    Abe, K; Takahashi, H; Suge, H

    1998-12-01

    We have compared shoot responses of agravitropic rice and barley plants to vertical inversion with those of normal ones. When rice plants were vertically inverted, the main stems of a japonica type of rice, cv. Kamenoo, showed negative gravitropism at nodes 2-15 of both elongated and non-elongated internodes. However, shoots of lazy line of rice, lazy-Kamenoo, bent gravitropically at nodes 11-15 only elongated internodes but not at nodes 2-10 of non-elongated ones. Thus, shoots of Kamenoo responded gravitropically at all stages of growth, whereas shoots of lazy-Kamenoo did not show gravitropic response before heading. In Kamenoo plants, lengths of both leaf-sheath and leaf-blade were shortened by vertical inversion, but those of the vertically inverted plants of lazy-Kamenoo were significantly longer than the plants in an upright position. When agravitropic and normal plants of barley were vertically inverted, the same results as in rice were obtained; elongation of both leaf-sheath and leaf-blade was inhibited in normal barley plants, Chikurin-Ibaragi No. 1, but significantly stimulated in agravitropic plants of serpentina barley. These results suggest that vertical inversion of rice and barley plants enhances the elongation growth of leaves in the absence of tropistic response.

  17. Distribution Map and Community Characteristics of Weeds in Barley Fields of Ardabil Province

    Directory of Open Access Journals (Sweden)

    B. Soheili

    2013-06-01

    Full Text Available Surveying weeds of irrigated barley fields is one of the most important practices in weed management. Based on cultivated areas irrigated barley in all counties of Ardabil province during six years (2000-2005, 46 sample barley fields were selected and weed species were counted in each sampling point and population indices were calculated with Thomas method. By using specific furmula the density, frequency and uniformity of each weed species in fields were calculated. In each field longitude, latitude and altitude were recorded by using GPS. These data were used for producing weed maps using GIS. Results showed that Galium tricurnatum, Fumaria vaillantiand Raphanus raphanistrum were dominante broadleaf species in irrigated barley fields of Ardabil province. The dominant grassy weed species in these fields were Avena fatua and Secale cereal. Convolvulus arvensis and Cirsium arvense were the most important troublesome plants prior to harvesting in irrigated barley fields of this province.

  18. DNA binding sites recognised in vitro by a knotted class 1 homeodomain protein encoded by the hooded gene, k, in barley (Hordeum vulgare)

    DEFF Research Database (Denmark)

    Krusell, L; Rasmussen, I; Gausing, K

    1997-01-01

    of knotted1 from maize was isolated from barley seedlings and expressed as a maltose binding protein fusion in E. coli. The purified HvH21-fusion protein selected DNA fragments with 1-3 copies of the sequence TGAC. Gel shift experiments showed that the TGAC element was required for binding and the results...

  19. Response of Agronomic Traits of Wheat and Barley to Sources and Different Rates of Selenium in Rainfed Condition

    Directory of Open Access Journals (Sweden)

    N. A Sajedi

    2017-10-01

    Full Text Available Introduction Environmental stresses affect growth, metabolism and crops yield. Drought is an important stress and it decreases crop productivity. Drought stress symptoms vary, depending on intensity and duration of drought and growth stage of the plant. The first response of plant to drought stress is producing the active oxygen species (ROS in cell that these cause injury to membranes and proteins. Selenium (Se application could have beneficial effect on growth and stress tolerance of plants by increasing their activity of antioxidants and reduce the reactive oxygen species over production. Selenium is essential for growth and activities of human and animals. Absorption and accumulation of selenium in plant depend on chemical compound and concentration of selenium in soil. Recent studies have demonstrated that Se increases resistance and antioxidant capacity of plants to various stress. It is reported that selenium application in barley plant no changes the amounts of malondialdehyde and hydrogen peroxide under water deficit stress. The current paper studies the response of agronomic traits of wheat and barley to sources and different rates of selenium in rain fed condition. Materials and Methods In order to investigate response of agronomic traits of wheat and barley to sources and different rates of selenium in rainfed condition, an experiment was carried out as factorial based on randomized complete block design with three replications at the Research Station of Islamic Azad University, Arak Branch, during 2014-2015. Experimental factors were included selenium sources at two levels, Sodium selenate and Selenite, Selenium rates at three levels of zero, 18 and 36 g ha-1 and two crop plants of wheat and barley. The wheat rain fed seed Azar 2 cultivar and Barley cultivar Abidar were hand planted at 15 cm spacing in 6 m rows, with one meter borders between the plots. Foliar application of Se was performed at rate of 18 and 36 g ha-1 at appearance

  20. The comparison of nitrogen use and leaching in sole cropped versus intercropped pea and barley

    DEFF Research Database (Denmark)

    Hauggaard-Nielsen, H.; Ambus, P.; Jensen, E.S.

    2003-01-01

    The effect of sole and intercropping of field pea (Pisum sativum L.) and spring barley (Hordeum vulgare L.) and of crop residue management on crop yield, NO3- leaching and N balance in the cropping system was tested in a 2-year lysimeter experiment on a temperate sandy loam soil. The crop rotation...... cropping. Crops received no fertilizer in the experimental period. Natural N-15 abundance techniques were used to determine pea N-2 fixation. The pea-barley intercrop yielded 4.0 Mg grain ha(-1), which was about 0.5 Mg lower than the yields of sole cropped pea but about 1.5 Mg greater than harvested...... was pea and barley sole and intercrops followed by winter-rye and a fallow period. The Land Equivalent Ratio (LER), which is defined as the relative land area under sole crops that is required to produce the yields achieved in intercropping, was used to compare intercropping performance relative to sole...

  1. High protein mutants of winter fodder barley induced by radiation and chemical mutagens

    Energy Technology Data Exchange (ETDEWEB)

    Yankulov, M.; Genchev, K.; Nikolov, Kh.

    1982-01-01

    Several induced mutants of winter fodder barley with higher rpotein content are described. These mutants were produced by treating seeds of cvs. Vogelsaenger Gold, Ager and 468 with gamma-rays, sodium azide and ethyl methanesulfonate (alone and in combinations) and with ethylene and formamide. The gamma-ray induced mutants of winter fodder barley have 1-4% higher protein content. The mutant line 109 has, besides high protein content (17,37%), 5.96 lysine per 100 g protein, but its endosperm is wrinkeled. Mutants produced by chemical mutagens have 6-7% higher protein content than the initial cultivars. All induced mutants have 85-95 cm high stems, i.e. they are by 10-20 cm shorter than the initial cultivars. Some of these mutants are now resistant to the diseases Helminthosporium gramineum and Ustilago nuda. The recommended mutants could be successfully used in breeding programs for producing of higher protein content and quality in winter fodder barley.

  2. High protein mutants of winter fodder barley induced by radiation and chemical mutagens

    International Nuclear Information System (INIS)

    Yankulov, M.; Genchev, K.; Nikolov, Kh.

    1982-01-01

    Several induced mutants of winter fodder barley with higher rpotein content are described. These mutants were produced by treating seeds of cvs. Vogelsaenger Gold, Ager and 468 with gamma-rays, sodium azide and ethyl methanesulfonate (alone and in combinations) and with ethylene and formamide. The gamma-ray induced mutants of winter fodder barley have 1-4% higher protein content. The mutant line 109 has, besides high protein content (17,37%), 5.96 lysine per 100 g protein, but its endosperm is wrinkeled. Mutants produced by chemical mutagens have 6-7% higher protein content than the initial cultivars. All induced mutants have 85-95 cm high stems, i.e. they are by 10-20 cm shorter than the initial cultivars. Some of these mutants are now resistant to the diseases Helminthosporium gramineum and Ustilago nuda. The recommended mutants could be successfully used in breeding programs for producing of higher protein content and quality in winter fodder barley

  3. Effects of process parameters on the properties of barley containing snacks enriched with brewer's spent grain.

    Science.gov (United States)

    Kirjoranta, Satu; Tenkanen, Maija; Jouppila, Kirsi

    2016-01-01

    Brewer's spent grain (BSG), a by-product of malting of barley in the production of malt extract, was used as an ingredient in extruded barley-based snacks in order to improve the nutritional value of the snacks and widen the applications of this by-product in food sector. The effects of the extrusion parameters on the selected properties of the snacks were studied. Snacks with different ingredients including whole grain barley flour, BSG, whey protein isolate (WPI), barley starch and waxy corn starch were produced in 5 separate trials using a co-rotating twin-screw extruder. Extrusion parameters were water content of the mass (17-23 %), screw speed (200-500 rpm) and temperature of the last section and die (110-150 °C). Expansion, hardness and water content of the snacks were determined. Snacks containing barley flour and BSG (10 % of solids) had small expansion and high hardness. Addition of WPI (20 % of solids) increased expansion only slightly. Snacks with high expansion and small hardness were obtained when part of the barley flour was replaced with starch (barley or waxy corn). Yet, the highest expansion and the smallest hardness were achieved when barley flour was used with barley starch and WPI without BSG. Furthermore, expansion increased by increasing screw speed and decreasing water content of the mass in most of the trials. This study showed that BSG is a suitable material for extruded snacks rich in dietary fiber. Physical properties of the snacks could be improved by using barley or waxy corn starch and WPI.

  4. The Barley Magnesium Chelatase 150-kD Subunit Is Not an Abscisic Acid Receptor1[OA

    Science.gov (United States)

    Müller, André H.; Hansson, Mats

    2009-01-01

    Magnesium chelatase is the first unique enzyme of the chlorophyll biosynthetic pathway. It is composed of three gene products of which the largest is 150 kD. This protein was recently identified as an abscisic acid receptor in Arabidopsis (Arabidopsis thaliana). We have evaluated whether the barley (Hordeum vulgare) magnesium chelatase large subunit, XanF, could be a receptor for the phytohormone. The study involved analysis of recombinant magnesium chelatase protein as well as several induced chlorophyll-deficient magnesium chelatase mutants with defects identified at the gene and protein levels. Abscisic acid had no effect on magnesium chelatase activity and binding to the barley 150-kD protein could not be shown. Magnesium chelatase mutants showed a wild-type response in respect to postgermination growth and stomatal aperture. Our results question the function of the large magnesium chelatase subunit as an abscisic acid receptor. PMID:19176716

  5. High-throughput transcriptome analysis of barley (Hordeum vulgare) exposed to excessive boron.

    Science.gov (United States)

    Tombuloglu, Guzin; Tombuloglu, Huseyin; Sakcali, M Serdal; Unver, Turgay

    2015-02-15

    Boron (B) is an essential micronutrient for optimum plant growth. However, above certain threshold B is toxic and causes yield loss in agricultural lands. While a number of studies were conducted to understand B tolerance mechanism, a transcriptome-wide approach for B tolerant barley is performed here for the first time. A high-throughput RNA-Seq (cDNA) sequencing technology (Illumina) was used with barley (Hordeum vulgare), yielding 208 million clean reads. In total, 256,874 unigenes were generated and assigned to known peptide databases: Gene Ontology (GO) (99,043), Swiss-Prot (38,266), Clusters of Orthologous Groups (COG) (26,250), and the Kyoto Encyclopedia of Genes and Genomes (KEGG) (36,860), as determined by BLASTx search. According to the digital gene expression (DGE) analyses, 16% and 17% of the transcripts were found to be differentially regulated in root and leaf tissues, respectively. Most of them were involved in cell wall, stress response, membrane, protein kinase and transporter mechanisms. Some of the genes detected as highly expressed in root tissue are phospholipases, predicted divalent heavy-metal cation transporters, formin-like proteins and calmodulin/Ca(2+)-binding proteins. In addition, chitin-binding lectin precursor, ubiquitin carboxyl-terminal hydrolase, and serine/threonine-protein kinase AFC2 genes were indicated to be highly regulated in leaf tissue upon excess B treatment. Some pathways, such as the Ca(2+)-calmodulin system, are activated in response to B toxicity. The differential regulation of 10 transcripts was confirmed by qRT-PCR, revealing the tissue-specific responses against B toxicity and their putative function in B-tolerance mechanisms. Copyright © 2014. Published by Elsevier B.V.

  6. Biotin Carboxyl Carrier Protein in Barley Chloroplast Membranes

    DEFF Research Database (Denmark)

    Kannangara, C. G.; Jense, C J

    1975-01-01

    Biotin localized in barley chloroplast lamellae is covalently bound to a single protein with an approximate molecular weight of 21000. It contains one mole of biotin per mole of protein and functions as a carboxyl carrier in the acetyl-CoA carboxylase reaction. The protein was obtained by solubil...... by solubilization of the lamellae in phenol/acetic acid/8 M urea. Feeding barley seedlings with [14C]-biotin revealed that the vitamin is not degraded into respiratory substrates by the plant, but is specifically incorporated into biotin carboxyl carrier protein....

  7. Allelopathic effect of ryegrass (lolium persicum) and wild mustard (sinapis arvensis) on barley

    International Nuclear Information System (INIS)

    Baziar, M.R.; Farahvash, F.; Mirshekari, B.; Rashidi, V.

    2014-01-01

    Most crop plants and weeds have allelopathic effects and analysis of these effects on plants in crop alteration and successive planting is very important. In this research the allelopathic ability of different parts and concentrations of two weeds, Lolium Persicum (Ryegrass) and Sinapis arvensis (wild mustered), on growth characteristics of two barley varieties was studied in the greenhouse using a completely randomized design with four replications. Test factors consisted of two barley varieties (Valfajr and Rehane), three weed organs (root, stalk, leaf) and four concentrations of extracts of weed organs (25, 50, 75 and control or distilled water). After the preparation of extracts of different weed organs with different concentrations, their effect on growth characteristics of barley plant was evaluated. Finally, seedling length, rootlet length caulicle length, wet weight of seedling, dry weight of seedling were measured. Also, the above two seeds had significant effects on the two strains of barley and could influence growth characteristics of barley. Based on the results of present study, one can argue that Ryegrass (Lolium Persicum) and wild mustard (Sinapis arvensis) can strongly affect germination, growth and performance of barley through production of chemical materials with allelopathic properties, leading unfavorable growth and product yield. (author)

  8. Effect of pulsed electric field on the germination of barley seeds

    DEFF Research Database (Denmark)

    Dymek, Katarzyna; Dejmek, Petr; Panarese, Valentina

    2012-01-01

    This study explores metabolic responses of germinating barley seeds upon the application of pulsed electric fields (PEF). Malting barley seeds were steeped in aerated water for 24 h and PEF-treated at varying voltages (0 (control), 110, 160, 240, 320, 400 and 480 V). The seeds were then allowed...

  9. Uptake of proline by the scutellum of germinating barley grain

    International Nuclear Information System (INIS)

    Vaeisaenen, E.; Sopanen, T.

    1986-01-01

    Scutella separated from germinating grains of barley (Hordeum vulgare L. cv Himalaya) took up 1 millimolar L-[ 14 C]proline at an initial rate of about 6.5 micromoles gram -1 fresh weight hour -1 (pH 5, 30 0 C). The uptake had a pH optimum at 5. The bulk of the uptake (93%) was via carrier-mediated active transport. All of the 19 L-amino acids tested at 10 millimolar concentration inhibited the mediated uptake of 1 millimolar proline, the inhibitions varying from 18 to 76%. By studying how large a fraction of the mediated uptake was inhibitable by asparagine, alanine, glutamine, and leucine, the mediated uptake was shown to be due to three components. Two of these are most probably attributable to the two nonspecific uptake systems proposed earlier to act in the uptake of glutamine and leucine. The third component was not inhibited by glutamine, asparagine, or alanine, but was inhibited by unlabeled proline and leucine. The uptake by this system was apparently carrier-mediated active transport. D-Proline inhibited this system as strongly as L-proline. Nine of the 16 L-amino tested at 50 millimolar concentrations did not inhibit the uptake of 1 millimolar proline by this system. Valine, leucine, isoleucine, and the basic amino acids were inhibitory, but in spite of this, they did not appear to be taken up by this system. It seems therefore that in addition to two nonspecific amino acid uptake systems the scutella have an uptake system which is specific for proline. It is likely that this proline-specific system accounts for the bulk of proline uptake in a germinating grain

  10. Density Stress has Minimal Impacts on the Barley or Maize Seedling Transcriptome

    Directory of Open Access Journals (Sweden)

    Summer St. Pierre

    2011-03-01

    Full Text Available High planting density affects the morphology and productivity of many crop species. Our objectives were to examine the phenotypic and transcriptomic changes that occur during plant density stress in barley ( L. and maize ( L. seedlings. In maize and barley seedlings, density stress impacted several morphological traits. Gene expression profiles were examined in four barley and five maize genotypes grown at low and high plant densities. Only 221 barley and 35 maize genes exhibited differential expression in response to plant density stress. The majority of the gene expression changes were observed in a subset of the genotypes and reflected minor changes in the level of expression, indicating that the plant density stress imposed in this study did not result in major changes in gene expression. Also, little overlap was observed within barley or maize genotypes in gene expression during density stress, indicating that genotypic differences play a major role in the response to density stress. While it is clear that gene expression differences are involved in morphological changes induced by high plant densities, it is likely that many of these gene expression differences are subtle and restricted to particular tissues and developmental time.

  11. Genetic variability of hull-less barley accessions based on molecular and quantitative data

    Directory of Open Access Journals (Sweden)

    Ricardo Meneses Sayd

    2015-02-01

    Full Text Available The objective of this work was to characterize and quantify the genetic, molecular, and agronomic variability of hull-less barley genotypes, for the selection of parents and identification of genotypes adapted to the irrigated production system in the Brazilian Cerrado. Eighteen hull-less barley accessions were evaluated, and three covered barley accessions served as reference. The characterization was based on 157 RAPD molecular markers and ten agronomic traits. Genetic distance matrices were obtained based on molecular markers and quantitative traits. Graphic grouping and dispersion analyses were performed. Genetic, molecular, and agronomic variability was high among genotypes. Ethiopian accessions were genetically more similar, and the Brazilian ones were genetically more distant. For agronomic traits, two more consistent groupings were obtained, one with the most two-rowed materials, and the other with six-rowed materials. The more diverging materials were the two-rowed CI 13453, CN Cerrado 5, CN Cerrado 1, and CN Cerrado 2. The PI 356466, CN Cerrado 1, PI 370799, and CI 13453 genotypes show agronomic traits of interest and, as genetically different genotypes, they are indicated for crossing, in breeding programs.

  12. Interactions between barley grain processing and source of supplemental dietary fat on nitrogen metabolism and urea-nitrogen recycling in dairy cows.

    Science.gov (United States)

    Gozho, G N; Hobin, M R; Mutsvangwa, T

    2008-01-01

    The objective of this study was to determine the effects of methods of barley grain processing and source of supplemental fat on urea-N transfer to the gastrointestinal tract (GIT) and the utilization of this recycled urea-N in lactating dairy cows. Four ruminally cannulated Holstein cows (656.3 +/- 27.7 kg of BW; 79.8 +/- 12.3 d in milk) were used in a 4 x 4 Latin square design with 28-d periods and a 2 x 2 factorial arrangement of dietary treatments. Experimental diets contained dry-rolled barley or pelleted barley in combination with whole canola or whole flaxseed as supplemental fat sources. Nitrogen balance was measured from d 15 to 19, with concurrent measurements of urea-N kinetics using continuous intrajugular infusions of [15N 15N]-urea. Dry matter intake and N intake were higher in cows fed dry-rolled barley compared with those fed pelleted barley. Nitrogen retention was not affected by diet, but fecal N excretion was higher in cows fed dry-rolled barley than in those fed pelleted barley. Actual and energy-corrected milk yield were not affected by diet. Milk fat content and milk fat yield were higher in cows fed dry-rolled barley compared with those fed pelleted barley. Source of supplemental fat did not affect urea-N kinetics. Urea-N production was higher (442.2 vs. 334.3 g of N/d), and urea-N entering the GIT tended to be higher (272.9 vs. 202.0 g of N/d), in cows fed dry-rolled barley compared with those fed pelleted barley. The amount of urea-N entry into the GIT that was returned to the ornithine cycle was higher (204.1 vs. 159.5 g of N/d) in cows fed dry-rolled barley than in pelleted barley-fed cows. The amount of urea-N recycled to the GIT and used for anabolic purposes, and the amounts lost in the urine or feces were not affected by dietary treatment. Microbial nonammonia N supply, estimated using total urinary excretion of purine derivatives, was not affected by diet. These results show that even though barley grain processing altered urea

  13. Malting barley BRS Borema

    Directory of Open Access Journals (Sweden)

    Euclydes Minella

    2006-01-01

    Full Text Available BRS Borema is an early maturing, two-rowed spring barley registered in 2003 for commercial production inSouthern Brazil, bred by Embrapa Trigo. It combines good yield potential with superior malting quality and a reasonable levelof disease (net blotch, powdery mildew, leaf rust resistance. It is well-adapted to all major production regions of maltingbarley in Brazil.

  14. Monitoring and Predicting the Long Distance Transport of Fusarium graminearum, Causal Agent of Fusarium Head Blight in Wheat and Barley

    Science.gov (United States)

    Prussin, Aaron Justin, II

    Fusarium head blight (FHB), caused by Fusarium graminearum , is a serious disease of wheat and barley that has caused several billion dollars in crop losses over the last decade in the United States. Spores of F. graminearum are released from corn and small grain residues left-over from the previous growing season and are transported long distances in the atmosphere before being deposited. Current risk assessment tools consider environmental conditions favorable for disease development, but do not include spore transport. Long distance transport models have been proposed for a number of plant pathogens, but many of these models have not been experimentally validated. In order to predict the atmospheric transport of F. graminearum, the potential source strength ( Qpot) of inoculum must be known. We conducted a series of laboratory and field experiments to estimate Qpot from a field-scale source of inoculum of F. graminearum. Perithecia were generated on artificial (carrot agar) and natural (corn stalk) substrates. Artificial substrate (carrot agar) produced 15+/-0.4 perithecia cm-2, and natural substrate (corn stalk) produced 44+/-2 perithecia cm-2. Individual perithecia were excised from both substrate types and allowed to release ascospores every 24 hours. Perithecia generated from artificial (carrot agar) and natural (corn stalk) substrates released a mean of 104+/-5 and 276+/-16 ascospores, respectively. A volumetric spore trap was placed inside a 3,716 m2 clonal source of inoculum in 2011 and 2012. Results indicated that ascospores were released under field conditions predominantly (>90%) during the night (1900 to 0700 hours). Estimates of Qpot for our field-scale sources of inoculum were approximately 4 billion ascospores per 3,716 m 2. Release-recapture studies were conducted from a clonal field-scale source of F. graminearum in 2011 and 2012. Microsatellites were used to identify the released clone of F. graminearum at distances up to 1 km from the source

  15. Interaction of micro and macro elements with manure on barley feed ...

    African Journals Online (AJOL)

    ajl yemi

    2011-11-28

    Nov 28, 2011 ... on barley feed yield and soil nutrient content in Sistan region ... In order to study the effect of interaction of 'micro' and 'macro' ... different proportions of manure and chemical fertilizer treatment were: 100% manure (F1), 100%.

  16. Application of proteomics to investigate barley-Fusarium graminearum interaction

    OpenAIRE

    Yang, Fen; Finnie, Christine; Jacobsen, Susanne

    2011-01-01

    Due to the great loss of barley grain yield and quality in addition to mycotoxins contamination caused by Fusarium head blight (FHB), it is essential to understand the molecular interaction between barley and Fusarium graminearum, one of the primary Fusarium species causing FHB, in order to control the disease. Due to the advantages of gel-based proteomics that differentially expressed proteins involved in the interaction can be directly detected by comparing protein profiles displayed on 2-D...

  17. Mapping resistance to powdery mildew in barley reveals a large-effect nonhost resistance QTL.

    Science.gov (United States)

    Romero, Cynara C T; Vermeulen, Jasper P; Vels, Anton; Himmelbach, Axel; Mascher, Martin; Niks, Rients E

    2018-05-01

    Resistance factors against non-adapted powdery mildews were mapped in barley. Some QTLs seem effective only to non-adapted mildews, while others also play a role in defense against the adapted form. The durability and effectiveness of nonhost resistance suggests promising practical applications for crop breeding, relying upon elucidation of key aspects of this type of resistance. We investigated which genetic factors determine the nonhost status of barley (Hordeum vulgare L.) to powdery mildews (Blumeria graminis). We set out to verify whether genes involved in nonhost resistance have a wide effectiveness spectrum, and whether nonhost resistance genes confer resistance to the barley adapted powdery mildew. Two barley lines, SusBgt SC and SusBgt DC , with some susceptibility to the wheat powdery mildew B. graminis f.sp. tritici (Bgt) were crossed with cv Vada to generate two mapping populations. Each population was assessed for level of infection against four B. graminis ff.spp, and QTL mapping analyses were performed. Our results demonstrate polygenic inheritance for nonhost resistance, with some QTLs effective only to non-adapted mildews, while others play a role against adapted and non-adapted forms. Histology analyses of nonhost interaction show that most penetration attempts are stopped in association with papillae, and also suggest independent layers of defence at haustorium establishment and conidiophore formation. Nonhost resistance of barley to powdery mildew relies mostly on non-hypersensitive mechanisms. A large-effect nonhost resistance QTL mapped to a 1.4 cM interval is suitable for map-based cloning.

  18. Do 14-3-3 proteins and plasma membrane H+-ATPases interact in the barley epidermis in response to the barley powdery mildew fungus?

    DEFF Research Database (Denmark)

    Finnie, C.; Andersen, C.H.; Borch, J.

    2002-01-01

    14-3-3 proteins form a family of highly conserved proteins with central roles in many eukaryotic signalling networks. In plants, they bind to and activate the plasma membrane H+-ATPase, creating a binding site for the phytotoxin fusicoccin. Barley 14-3-3 transcripts accumulate in the epidermis upon...... inoculation with the powdery mildew fungus. We have isolated a cDNA encoding a plasma membrane H+-ATPase (HvHA1), which is also induced by powdery mildew attack. The C-terminal domain of this H+-ATPase interacts with 14-3-3 proteins in the yeast two-hybrid system. Inoculation with the powdery mildew fungus......, or treatment with fusicoccin, results in an increase in fusicoccin binding ability of barley leaf membranes. Overlay assays show a fungus-induced increase in binding of digoxygenin-labelled 14-3-3 protein to several proteins including a 100 kDa membrane protein, probably the plasma membrane H...

  19. Sanitary state and yielding of spring barley as dependent on soil tillage method

    Directory of Open Access Journals (Sweden)

    Tomasz P. Kurowski

    2012-12-01

    Full Text Available The effects of traditional tillage cultivation (control treatment, no tillage (instead of tillage the soil was loosened with scruff, and direct sowing (with a special drill into unploughed soil on the health of spring barley cultivar. Klimek were compared in three-field crop rotation (field bean, winter wheat, spring barley in an experiment performed in the years 1997-1999 on the soil of a good wheat complex. The results of phytopathological observations carried out over the vegetation season are presented in the form of an injury index. The following diseases were recorded on spring barley: net blotch (Drechslera teres - net type and spot type, powdery mildew (Blumeria graminis, leaf blotch (Rhynchosporium secalis, eyespot (Tapesia yallundae and foot rot (fungal complex. Tillage system had no a significant influence on the occurrence of both types of net blotch. The intensity of powdery mildew and leaf blotch was the highest in the case of traditional tillage cultivation, and the lowest - in that of no tillage. Direct sowing was conductive to the development of eyespot, and no tillage - to foot rot. Fungi of the genus Fusarium, mainly F. culmorum, and the species Bipolaris sorokiniana, were isolated most frequently from infested stem bases. The weather conditions differed during spring barley grown in the three years analyzed. Mean air temperature in 1997 and 1998 was similar to the many-year average for the city of Olsztyn and its surroundings (13.8°C. In the vegetation season 1999 mean air temperature reached 14.6°C, and was considerably higher than the many-year average. Taking into account total precipitation and distribution in the three-year experimental cycle, 1997 and 1998 can be considered average, and 1999 - wet.The weather conditions had a significant effect on the intensity of all diseases observed on spring barley. The highest yield grain was obtained in the case of traditional tillage cultivation (on average 3.06 t·ha-1 for the

  20. The Allosterically Unregulated Isoform of ADP-Glucose Pyrophosphorylase from Barley Endosperm Is the Most Likely Source of ADP-Glucose Incorporated into Endosperm Starch1

    Science.gov (United States)

    Doan, Danny N.P.; Rudi, Heidi; Olsen, Odd-Arne

    1999-01-01

    We present the results of studies of an unmodified version of the recombinant major barley (Hordeum vulgare) endosperm ADP-glucose pyrophoshorylase (AGPase) expressed in insect cells, which corroborate previous data that this isoform of the enzyme acts independently of the allosteric regulators 3-phosphoglycerate and inorganic phosphate. We also present a characterization of the individual subunits expressed separately in insect cells, showing that the SS AGPase is active in the presence of 3-phosphoglycerate and is inhibited by inorganic phosphate. As a step toward the elucidation of the role of the two AGPase isoforms in barley, the temporal and spatial expression profile of the four barley AGPase transcripts encoding these isoforms were studied. The results show that the steady-state level of beps and bepl, the transcripts encoding the major endosperm isoform, correlated positively with the rate of endosperm starch accumulation. In contrast, blps and blpl, the transcripts encoding the major leaf isoform, were constitutively expressed at a very low steady-state level throughout the barley plant. The implications of these findings for the evolution of plant AGPases are discussed. PMID:10557246

  1. Zinc biofortification of cereals: rice differs from wheat and barley

    NARCIS (Netherlands)

    Stomph, T.J.; Jiang, W.; Struik, P.C.

    2009-01-01

    In their review, mainly focused on bread wheat (Triticum aestivum), durum wheat (Triticum durum) and barley (Hordeum vulgare), Palmgren et al. 1 M.G. Palmgren et al., Zinc biofortification of cereals: problems and solutions, Trends Plant Sci. 13 (2008), pp. 464–473. Article | PDF (905 K) | View

  2. Nitrogen acquisition by pea and barley and the effect of their crop residues on available nitrogen for subsequent crops

    DEFF Research Database (Denmark)

    Jensen, E.S.

    1996-01-01

    Nitrogen acquisition by field pea (Pisum sativum L.) and spring barley (Hordeum vulgare L.) grown on a sandy loam soil and availability of N in three subsequent sequences of a cropping system were studied in an outdoor pot experiment. The effect of crop residues on the N availability was evaluated....... The dry matter production and total N uptake of a spring barley crop following pea or barley, with a period of unplanted soil in the autumn/winter, were significantly higher after pea than after barley. The barley crop following pea and barley recovered 11% of the pea and 8% of the barley residue N...

  3. Distribution Map and Community Characteristics of Weeds in Barley Fields of Ardabil Province

    OpenAIRE

    B. Soheili; M. Minbashi; D. Hasanpanah; N. Razmi

    2013-01-01

    Surveying weeds of irrigated barley fields is one of the most important practices in weed management. Based on cultivated areas irrigated barley in all counties of Ardabil province during six years (2000-2005), 46 sample barley fields were selected and weed species were counted in each sampling point and population indices were calculated with Thomas method. By using specific furmula the density, frequency and uniformity of each weed species in fields were calculated. In each field longitude,...

  4. The effect of gamma radiation on yield of arabic abiad barley under different nitrogen levels

    Energy Technology Data Exchange (ETDEWEB)

    Khalifa, K [Atomic Energy Commission P.O.Box 6091, Damascus, (Syrian Arab Republic)

    1995-10-01

    A field experiment was carried out at ACSAD research station in deirezzor district during two seasons 1987/88 and 1988/89 on medium heavy textured soil. The aim was to study the effects of five doses of gamma rays 0, 5, 10 and 20 Gy and four levels of nitrogen 0, 50, 80 and 100 Kg N/ha, and the interaction effect on barley`s yield (c-v arabic abiad) under irrigated conditions. The results showed that the irradiation doses and nitrogen rates significantly increased barley`s grain and straw yield compared to control. The doses 5, 10, 15 and 20 Gy increased grain yield by 28.3, 25.4, and 19.9% and straw yield by 14.2, 7.0, 8,9 and 0.9% respectively. While nitrogen levels 50, 80 and 100 Kg N.ha lead to grain yield increases by 24.8, 32.0, and 29,9% and straw yield increases 19.2, 17.0 and 3.1% respectively. The highest positive interaction was observed at 50 Kg N/ha and doses 5 and 20 Gy. In general, the increase in radiation doses and nitrogen levels lead to a drop in the yield. 7 tabs.

  5. Lysine Rich Proteins in the Salt-Soluble Protein Fraction of Barley

    DEFF Research Database (Denmark)

    Ingversen, J.; Køie, B.

    1973-01-01

    Fractionation of the protein complex from Emir barley showed that the salt-soluble fraction accounts for 44% of the total lysine content but only for 2.......Fractionation of the protein complex from Emir barley showed that the salt-soluble fraction accounts for 44% of the total lysine content but only for 2....

  6. Genomic Regions Influencing Seminal Root Traits in Barley

    Directory of Open Access Journals (Sweden)

    Hannah Robinson

    2016-03-01

    Full Text Available Water availability is a major limiting factor for crop production, making drought adaptation and its many component traits a desirable attribute of plant cultivars. Previous studies in cereal crops indicate that root traits expressed at early plant developmental stages, such as seminal root angle and root number, are associated with water extraction at different depths. Here, we conducted the first study to map seminal root traits in barley ( L.. Using a recently developed high-throughput phenotyping method, a panel of 30 barley genotypes and a doubled-haploid (DH population (ND24260 × ‘Flagship’ comprising 330 lines genotyped with diversity array technology (DArT markers were evaluated for seminal root angle (deviation from vertical and root number under controlled environmental conditions. A high degree of phenotypic variation was observed in the panel of 30 genotypes: 13.5 to 82.2 and 3.6 to 6.9° for root angle and root number, respectively. A similar range was observed in the DH population: 16.4 to 70.5 and 3.6 to 6.5° for root angle and number, respectively. Seven quantitative trait loci (QTL for seminal root traits (root angle, two QTL; root number, five QTL were detected in the DH population. A major QTL influencing both root angle and root number (/ was positioned on chromosome 5HL. Across-species analysis identified 10 common genes underlying root trait QTL in barley, wheat ( L., and sorghum [ (L. Moench]. Here, we provide insight into seminal root phenotypes and provide a first look at the genetics controlling these traits in barley.

  7. Brassinosteroid enhances resistance to fusarium diseases of barley.

    Science.gov (United States)

    Ali, Shahin S; Kumar, G B Sunil; Khan, Mojibur; Doohan, Fiona M

    2013-12-01

    Fusarium pathogens are among the most damaging pathogens of cereals. These pathogens have the ability to attack the roots, seedlings, and flowering heads of barley and wheat plants with disease, resulting in yield loss and head blight disease and also resulting in the contamination of grain with mycotoxins harmful to human and animal health. There is increasing evidence that brassinosteroid (BR) hormones play an important role in plant defense against both biotic and abiotic stress agents and this study set out to determine if and how BR might affect Fusarium diseases of barley. Application of the epibrassinolide (epiBL) to heads of 'Lux' barley reduced the severity of Fusarium head blight (FHB) caused by Fusarium culmorum by 86% and reduced the FHB-associated loss in grain weight by 33%. Growth of plants in soil amended with epiBL resulted in a 28 and 35% reduction in Fusarium seedling blight (FSB) symptoms on the Lux and 'Akashinriki' barley, respectively. Microarray analysis was used to determine whether growth in epiBL-amended soil changed the transcriptional profile in stem base tissue during the early stages of FSB development. At 24 and 48 h post F. culmorum inoculation, there were 146 epiBL-responsive transcripts, the majority being from the 48-h time point (n = 118). Real-time reverse-transcription polymerase chain reaction analysis validated the results for eight transcripts, including five defense genes. The results of gene expression studies show that chromatin remodeling, hormonal signaling, photosynthesis, and pathogenesis-related genes are activated in plants as a result of growth in epiBL.

  8. Comparative Studies on Callose Formation in Powdery Mildew Compatible and Incompatible Barley

    DEFF Research Database (Denmark)

    Skou, Jens-Peder; Jørgensen, Jørgen Helms; Lilholt, Ulla

    1984-01-01

    Callose formation in barley mutants, lines and varieties with different genes for resistance to powdery mildew in seven different loci was compared. Only barley with resistance genes in the ml-o locus showed so early a callose formation passing off at such a high rate that it prevented fungal...... penetration Ml-(La) resistant varieties and near-isogenic lines in 'Manchuria' with resistance genes in 5 other loci showed only a tendency to a larger callose formation than their susceptible counterparts after inoculation with avirulent as well as virulent powdery mildew. The callose formation in ml......-o resistant barley was independent of the powdery mildew culture applied. This supports the hypothesis set forth as to why the ml-o mutants are resistant against all known cultures or races of barley powdery mildew, and why this resistance may be more durable than other powdery mildew resistances...

  9. Transcriptome reprogramming due to the introduction of a barley telosome into bread wheat affects more barley genes than wheat.

    Science.gov (United States)

    Rey, Elodie; Abrouk, Michael; Keeble-Gagnère, Gabriel; Karafiátová, Miroslava; Vrána, Jan; Balzergue, Sandrine; Soubigou-Taconnat, Ludivine; Brunaud, Véronique; Martin-Magniette, Marie-Laure; Endo, Takashi R; Bartoš, Jan; Appels, Rudi; Doležel, Jaroslav

    2018-03-06

    Despite a long history, the production of useful alien introgression lines in wheat remains difficult mainly due to linkage drag and incomplete genetic compensation. In addition, little is known about the molecular mechanisms underlying the impact of foreign chromatin on plant phenotype. Here, a comparison of the transcriptomes of barley, wheat and a wheat-barley 7HL addition line allowed the transcriptional impact both on 7HL genes of a non-native genetic background and on the wheat gene complement as a result of the presence of 7HL to be assessed. Some 42% (389/923) of the 7HL genes assayed were differentially transcribed, which was the case for only 3% (960/35 301) of the wheat gene complement. The absence of any transcript in the addition line of a suite of chromosome 7A genes implied the presence of a 36 Mbp deletion at the distal end of the 7AL arm; this deletion was found to be in common across the full set of Chinese Spring/Betzes barley addition lines. The remaining differentially transcribed wheat genes were distributed across the whole genome. The up-regulated barley genes were mostly located in the proximal part of the 7HL arm, while the down-regulated ones were concentrated in the distal part; as a result, genes encoding basal cellular functions tended to be transcribed, while those encoding specific functions were suppressed. An insight has been gained into gene transcription in an alien introgression line, thereby providing a basis for understanding the interactions between wheat and exotic genes in introgression materials. © 2018 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  10. Analysis of Pregerminated Barley Using Hyperspectral Image Analysis

    DEFF Research Database (Denmark)

    Arngren, Morten; Hansen, Per Waaben; Eriksen, Birger

    2011-01-01

    imaging system in a mathematical modeling framework to identify pregerminated barley at an early stage of approximately 12 h of pregermination. Our model only assigns pregermination as the cause for a single kernel’s lack of germination and is unable to identify dormancy, kernel damage etc. The analysis...... is based on more than 750 Rosalina barley kernels being pregerminated at 8 different durations between 0 and 60 h based on the BRF method. Regerminating the kernels reveals a grouping of the pregerminated kernels into three categories: normal, delayed and limited germination. Our model employs a supervised...

  11. Analysis of molecular diversity, population structure and linkage disequilibrium in a worldwide survey of cultivated barley germplasm (Hordeum vulgare L.

    Directory of Open Access Journals (Sweden)

    Ganal Martin W

    2006-01-01

    Full Text Available Abstract Background The goal of our study was a systematic survey of the molecular diversity in barley genetic resources. To this end 953 cultivated barley accessions originating from all inhabited continents except Australia were genotyped with 48 SSR markers. Molecular diversity was evaluated with routine statistics (allelic richness, gene diversity, allele frequency, heterozygosity and unique alleles, Principal Coordinate Analysis (PCoA, and analysis of genome-wide linkage disequilibrium. Results A genotyping database for 953 cultivated barley accessions profiled with 48 SSR markers was established. The PCoA revealed structuring of the barley population with regard to (i geographical regions and (ii agronomic traits. Geographic origin contributed most to the observed molecular diversity. Genome-wide linkage disequilibrium (LD was estimated as squared correlation of allele frequencies (r2. The values of LD for barley were comparable to other plant species (conifers, poplar, maize. The pattern of intrachromosomal LD with distances between the genomic loci ranging from 1 to 150 cM revealed that in barley LD extended up to distances as long as 50 cM with r2 > 0.05, or up to 10 cM with r2 > 0.2. Few loci mapping to different chromosomes showed significant LD with r2 > 0.05. The number of loci in significant LD as well as the pattern of LD were clearly dependent on the population structure. The LD in the homogenous group of 207 European 2-rowed spring barleys compared to the highly structured worldwide barley population was increased in the number of loci pairs with r2 > 0.05 and had higher values of r2, although the percentage of intrachromosomal loci pairs in significant LD based on P 0.80 provided higher LD values as compared to 19 low polymorphic loci (PIC Conclusion A global population of cultivated barley accessions was highly structured. Clustering highlighted the accessions with the same geographic origin, as well as accessions possessing

  12. Saccharification and fermentation of whole barley ground in the Szego mill

    Energy Technology Data Exchange (ETDEWEB)

    Wayman, M; Parekh, S R; Parekh, R S; Trass, O; Gandolfi, E

    1988-11-01

    Barley, after steeping in water, was ground with ease and efficiency in the Szego mill, and its starch was liquefied, saccharified and fermented to very high yields of ethanol. The Szego mill consists of vertical rollers with helical grooves which rotate within a fixed cylinder, resulting in very fine grinding and a somewhat flaky product. The steeped barley was ground to a fine paste. This was readily liquefied and saccharified by amylolytic enzymes (dual enzyme process), and the resulting sugars were fermented in 24 h by ordinary bakers' yeast Saccharomyces cerevisiae, resulting in over 450 l ethanol/t of barley. Still shorter time, 12 h, and the same high yield were achieved when liquefied barley starch was simultaneously saccharified by glucoamylase and fermented. Fermentation to ethanol by a glucoamylase-producing yeast S. diastaticus strain 164A (from Labatt Brewing Company) enabled the amount of this enzyme required for saccharification to be reduced to about one-half the normal quantity, but at some cost in slower fermentation and slightly lower ethanol yield.

  13. Characterization of a Thermo-Inducible Chlorophyll-Deficient Mutant in Barley

    Directory of Open Access Journals (Sweden)

    Rong Wang

    2017-11-01

    Full Text Available Leaf color is an important trait for not only controlling crop yield but also monitoring plant status under temperature stress. In this study, a thermo-inducible chlorophyll-deficient mutant, named V-V-Y, was identified from a gamma-radiated population of the barley variety Vlamingh. The leaves of the mutant were green under normal growing temperature but turned yellowish under high temperature in the glasshouse experiment. The ratio of chlorophyll a and chlorophyll b in the mutant declined much faster in the first 7–9 days under heat treatment. The leaves of V-V-Y turned yellowish but took longer to senesce under heat stress in the field experiment. Genetic analysis indicated that a single nuclear gene controlled the mutant trait. The mutant gene (vvy was mapped to the long arm of chromosome 4H between SNP markers 1_0269 and 1_1531 with a genetic distance of 2.2 cM and a physical interval of 9.85 Mb. A QTL for grain yield was mapped to the same interval and explained 10.4% of the yield variation with a LOD score of 4. This QTL is coincident with the vvy gene interval that is responsible for the thermo-inducible chlorophyll-deficient trait. Fine mapping, based on the barley reference genome sequence, further narrowed the vvy gene to a physical interval of 0.428 Mb with 11 annotated genes. This is the first report of fine mapping a thermo-inducible chlorophyll-deficient gene in barley.

  14. Hormonal changes in spring barley after triazine herbicide treatment and its mixtures of regulators of polyamine biosynthesis

    Directory of Open Access Journals (Sweden)

    Pavol Trebichalský

    2017-01-01

    Full Text Available Plants adapt to abiotic stress by undergoing diverse biochemical and physiological changes that involve hormone-dependent signalling pathways. The effects of regulators of polyamine biosynthesis can be mimicked by exogenous chemical regulators such as herbicide safeners, which not only enhance stress tolerance but also confer hormetic benefits such as increased vigor and yield. The phytohormones, abscisic acid (ABA and auxin (IAA play key roles in regulating stress responses in plants. Two years pot trials at Slovak University of agriculture Nitra were carried out with analyses of contents of plant hormones in spring barley grain of variety Kompakt: indolyl-acetic acid (IAA and abscisic acid (ABA, after exposing of tested plants to herbicide stress, as well as the possible decrease of these stress factors with application of regulators of polyamine synthesis was evaluated. At 1st year in spring barley grain after application of solo triazine herbicide treatment in dose 0,5 L.ha-1 an increase of all analyzed plant hormones was observed and contrary, at 2nd year there was the decrease of their contents. From our work there is an obvious influence of herbicide stress induced by application of certain dose of triazine herbicide at 1st year. Expect of the variant with mixture of triazine herbicide (in amount of 0,5 L.ha-1 and 29,6 g.ha-1 DAB, at this year all by us applied regulators of polyamine synthesis reduced the level of both plant hormones. Higher affect of stress caused by enhanced content of soluble macroelements in soil where the plants of barley were grown was observed next year. Soil with increased contents of macronutrients (mg.kg-1: N30.7 + P108.3 + K261.5 + Mg604.2 had reducing effect on contents of plant hormones in barley grain at variant treated with solo triazine herbicide (in dose at 0,5 L.ha-1 in comparison to control variant. The mixtures of regulators of polyamine synthesis reduced the contents of IAA only in comparison to

  15. Utilization of barley or wheat bran to bioconvert glutamate to γ-aminobutyric acid (GABA).

    Science.gov (United States)

    Jin, Wen-Jie; Kim, Min-Ju; Kim, Keun-Sung

    2013-09-01

    This study deals with the utilization of agro-industrial wastes created by barley and wheat bran in the production of a value-added product, γ-aminobutyric acid (GABA). The simple and eco-friendly reaction requires no pretreatment or microbial fermentation steps but uses barley or wheat bran as an enzyme source, glutamate as a substrate, and pyridoxal 5'-phosphate (PLP) as a cofactor. The optimal reaction conditions were determined on the basis of the temperatures and times used for the decarboxylation reactions and the initial concentrations of barley or wheat bran, glutamate, and PLP. The optimal reactions produced 9.2 mM of GABA from 10 mM glutamate, yielding a 92% GABA conversion rate, when barley bran was used and 6.0 mM of GABA from 10 mM glutamate, yielding a 60% GABA conversion rate, when wheat bran was used. The results imply that barley bran is more efficient than wheat bran in the production of GABA. © 2013 Institute of Food Technologists®

  16. Secretomics identifies Fusarium graminearum proteins involved in the interaction with barley and wheat

    DEFF Research Database (Denmark)

    Yang, Fen; Jensen, Jens D.; Svensson, Birte

    2012-01-01

    Fusarium graminearum is a phytopathogenic fungus primarily infecting small grain cereals, including barley and wheat. Secreted enzymes play important roles in the pathogenicity of many fungi. In order to access the secretome of F. graminearum, the fungus was grown in liquid culture with barley...... or wheat flour as the sole nutrient source to mimic the host–pathogen interaction. A gel‐based proteomics approach was employed to identify the proteins secreted into the culture medium. Sixty‐nine unique fungal proteins were identified in 154 protein spots, including enzymes involved in the degradation...... between wheat and barley flour medium were mainly involved in fungal cell wall remodelling and the degradation of plant cell walls, starch and proteins. The in planta expression of corresponding F. graminearum genes was confirmed by quantitative reverse transcriptase‐polymerase chain reaction in barley...

  17. Differentiation of endosperm transfer cells of barley: a comprehensive analysis at the micro-scale.

    Science.gov (United States)

    Thiel, Johannes; Riewe, David; Rutten, Twan; Melzer, Michael; Friedel, Swetlana; Bollenbeck, Felix; Weschke, Winfriede; Weber, Hans

    2012-08-01

    Barley endosperm cells differentiate into transfer cells (ETCs) opposite the nucellar projection. To comprehensively analyse ETC differentiation, laser microdissection-based transcript and metabolite profiles were obtained from laser microdissected tissues and cell morphology was analysed. Flange-like secondary-wall ingrowths appeared between 5 and 7 days after pollination within the three outermost cell layers. Gene expression analysis indicated that ethylene-signalling pathways initiate ETC morphology. This is accompanied by gene activity related to cell shape control and vesicle transport, with abundant mitochondria and endomembrane structures. Gene expression analyses indicate predominant formation of hemicelluloses, glucuronoxylans and arabinoxylans, and transient formation of callose, together with proline and 4-hydroxyproline biosynthesis. Activation of the methylation cycle is probably required for biosynthesis of phospholipids, pectins and ethylene. Membrane microdomains involving sterols/sphingolipids and remorins are potentially involved in ETC development. The transcriptional activity of assimilate and micronutrient transporters suggests ETCs as the main uptake organs of solutes into the endosperm. Accordingly, the endosperm grows maximally after ETCs are fully developed. Up-regulated gene expression related to amino acid catabolism, C:N balances, carbohydrate oxidation, mitochondrial activity and starch degradation meets high demands for respiratory energy and carbohydrates, required for cell proliferation and wall synthesis. At 10 days after pollination, ETCs undergo further differentiation, potentially initiated by abscisic acid, and metabolism is reprogrammed as shown by activated storage and stress-related processes. Overall, the data provide a comprehensive view of barley ETC differentiation and development, and identify candidate genes and associated pathways. © 2012 The Authors. The Plant Journal © 2012 Blackwell Publishing Ltd.

  18. [Characteristics of dry matter production and nitrogen accumulation in barley genotypes with high nitrogen utilization efficiency].

    Science.gov (United States)

    Huang, Yi; Li, Ting-Xuan; Zhang, Xi-Zhou; Ji, Lin

    2014-07-01

    A pot experiment was conducted under low (125 mg x kg-1) and normal (250 mg x kg(-1)) nitrogen treatments. The nitrogen uptake and utilization efficiency of 22 barley cultivars were investigated, and the characteristics of dry matter production and nitrogen accumulation in barley were analyzed. The results showed that nitrogen uptake and utilization efficiency were different for barley under two nitrogen levels. The maximal values of grain yield, nitrogen utilization efficiency for grain and nitrogen harvest index were 2.87, 2.91 and 2.47 times as those of the lowest under the low nitrogen treatment. Grain yield and nitrogen utilization efficiency for grain and nitrogen harvest index of barley genotype with high nitrogen utilization efficiency were significantly greater than low nitrogen utilization efficiency, and the parameters of high nitrogen utilization efficiency genotype were 82.1%, 61.5% and 50.5% higher than low nitrogen utilization efficiency genotype under the low nitrogen treatment. Dry matter mass and nitrogen utilization of high nitrogen utilization efficiency was significantly higher than those of low nitrogen utilization efficiency. A peak of dry matter mass of high nitrogen utilization efficiency occurred during jointing to heading stage, while that of nitrogen accumulation appeared before jointing. Under the low nitrogen treatment, dry matter mass of DH61 and DH121+ was 34.4% and 38.3%, and nitrogen accumulation was 54. 8% and 58.0% higher than DH80, respectively. Dry matter mass and nitrogen accumulation seriously affected yield before jointing stage, and the contribution rates were 47.9% and 54.7% respectively under the low nitrogen treatment. The effect of dry matter and nitrogen accumulation on nitrogen utilization efficiency for grain was the largest during heading to mature stages, followed by sowing to jointing stages, with the contribution rate being 29.5% and 48.7%, 29.0% and 15.8%, respectively. In conclusion, barley genotype with high

  19. Effect of barley and its amylopectin content on ruminal fermentation and nitrogen utilization in lactating dairy cows.

    Science.gov (United States)

    Foley, A E; Hristov, A N; Melgar, A; Ropp, J K; Etter, R P; Zaman, S; Hunt, C W; Huber, K; Price, W J

    2006-11-01

    The effect of type of grain (corn vs. barley) and amylopectin content of barley grain (normal vs. waxy) on ruminal fermentation, digestibility, and utilization of ruminal ammonia nitrogen for milk protein synthesis was studied in a replicated 3 x 3 Latin square design trial with 6 lactating dairy cows. The experimental treatments were (proportion of dietary dry matter): CORN, 40% corn grain, NBAR, 30% normal Baronesse barley:10% corn grain, and WBAR, 30% high-amylopectin (waxy) Baronesse barley:10% corn grain. All grains were steam-rolled and fed as part of a total mixed ration. The NBAR and WBAR diets resulted in increased ruminal ammonia concentrations compared with CORN (8.2, 7.4, and 5.6 mM, respectively), but other ruminal fermentation parameters were not affected. Ruminal digestibility of dietary nutrients and microbial protein synthesis in the rumen were also not affected by diet. Corn grain had greater in situ effective ruminal dry matter degradability (62.8%) than the barley grains (58.2 and 50.7%, respectively), and degradability of the normal barley starch was greater than that of the waxy barley (69.3 and 58.9%, respectively). A greater percentage of relative starch crystallinity was observed for the waxy compared with the normal barley grain. Total tract apparent digestibility of dry matter and organic matter were decreased by WBAR compared with CORN and NBAR. Total tract starch digestibility was greater and milk urea nitrogen content was lower for CORN compared with the 2 barley diets. In this study, the extent of processing of the grain component of the diet was most likely the factor that determined the diet responses. Minimal processing of barley grain (processing indexes of 79.2 to 87.9%) reduced its total tract digestibility of starch compared with steam-rolled corn (processing index of 58.8%). As a result of the increased ammonia concentration and reduced degradability of barley dry matter in the rumen, the utilization of ruminal ammonia

  20. Fingerprinting and genetic purity assessment of F1 barley hybrids and their salt-tolerant parental lines using nSSR molecular markers.

    Science.gov (United States)

    Ben Romdhane, Mériam; Riahi, Leila; Jardak, Rahma; Ghorbel, Abdelwahed; Zoghlami, Nejia

    2018-01-01

    Hybridity and the genuineness of hybrids are prominent characteristics for quality control of seeds and thereby for varietal improvement. In the current study, the cross between two local barley genotypes (Ardhaoui: female; Testour: male) previously identified as susceptible/tolerant to salt stress in Tunisia was achieved. The hybrid genetic purity of the generated F 1 putative hybrids and the fingerprinting of the parents along with their offspring were assessed using a set of 17 nuclear SSR markers. Among the analyzed loci, 11 nSSR were shown polymorphic among the parents and their offspring. Based on the applied 11 polymorphic SSR loci, a total of 28 alleles were detected with an average of 2.54 alleles per locus. The locus HVM33 presented the highest number of alleles. The highest polymorphism information content value was detected for the locus HVM33 (0.6713) whereas the lowest PIC value (0.368) was revealed by the loci BMAC0156 , EBMAC0970 and BMAG0013 with a mean value of 0.4619. The probabilities of identical genotypes PI for the 11 microsatellite markers were 8.63 × 10 -7 . Banding patterns among parents and hybrids showed polymorphic fragments. The 11 SSR loci had produced unique fingerprints for each analyzed genotype and segregate between the two parental lines and their four hybrids. Parentage analysis confirms the hybrid purity of the four analyzed genotypes. Six Tunisian barley accessions were used as an outgroup in the multivariate analysis to confirm the efficiency of the employed 11 nSSR markers in genetic differentiation among various barley germplasms. Thus, neighbor joining and factorial analysis revealed clearly the discrimination among the parental lines, the four hybrids and the outgroup accessions. Out of the detected polymorphic 11 nuclear SSR markers, a set of five markers ( HVM33 , WMC1E8 , BMAC0154 , BMAC0040 and BMAG0007 ) were shown to be sufficient and informative enough to discriminate among the six genotypes representing the two

  1. The Effects of Reduced Gluten Barley Diet on Humoral and Cell-Mediated Systemic Immune Responses of Gluten-Sensitive Rhesus Macaques

    Directory of Open Access Journals (Sweden)

    Karol Sestak

    2015-03-01

    Full Text Available Celiac disease (CD affects approximately 1% of the general population while an estimated additional 6% suffers from a recently characterized, rapidly emerging, similar disease, referred to as non-celiac gluten sensitivity (NCGS. The only effective treatment of CD and NCGS requires removal of gluten sources from the diet. Since required adherence to a gluten-free diet (GFD is difficult to accomplish, efforts to develop alternative treatments have been intensifying in recent years. In this study, the non-human primate model of CD/NCGS, e.g., gluten-sensitive rhesus macaque, was utilized with the objective to evaluate the treatment potential of reduced gluten cereals using a reduced gluten (RG; 1% of normal gluten barley mutant as a model. Conventional and RG barleys were used for the formulation of experimental chows and fed to gluten-sensitive (GS and control macaques to determine if RG barley causes a remission of dietary gluten-induced clinical and immune responses in GS macaques. The impacts of the RG barley diet were compared with the impacts of the conventional barley-containing chow and the GFD. Although remission of the anti-gliadin antibody (AGA serum responses and an improvement of clinical diarrhea were noted after switching the conventional to the RG barley diet, production of inflammatory cytokines, e.g., interferon-gamma (IFN-γ, tumor necrosis factor (TNF and interleukin-8 (IL-8 by peripheral CD4+ T helper lymphocytes, persisted during the RG chow treatment and were partially abolished only upon re-administration of the GFD. It was concluded that the RG barley diet might be used for the partial improvement of gluten-induced disease but its therapeutic value still requires upgrading—by co-administration of additional treatments.

  2. The effects of reduced gluten barley diet on humoral and cell-mediated systemic immune responses of gluten-sensitive rhesus macaques.

    Science.gov (United States)

    Sestak, Karol; Thwin, Hazel; Dufour, Jason; Aye, Pyone P; Liu, David X; Moehs, Charles P

    2015-03-06

    Celiac disease (CD) affects approximately 1% of the general population while an estimated additional 6% suffers from a recently characterized, rapidly emerging, similar disease, referred to as non-celiac gluten sensitivity (NCGS). The only effective treatment of CD and NCGS requires removal of gluten sources from the diet. Since required adherence to a gluten-free diet (GFD) is difficult to accomplish, efforts to develop alternative treatments have been intensifying in recent years. In this study, the non-human primate model of CD/NCGS, e.g., gluten-sensitive rhesus macaque, was utilized with the objective to evaluate the treatment potential of reduced gluten cereals using a reduced gluten (RG; 1% of normal gluten) barley mutant as a model. Conventional and RG barleys were used for the formulation of experimental chows and fed to gluten-sensitive (GS) and control macaques to determine if RG barley causes a remission of dietary gluten-induced clinical and immune responses in GS macaques. The impacts of the RG barley diet were compared with the impacts of the conventional barley-containing chow and the GFD. Although remission of the anti-gliadin antibody (AGA) serum responses and an improvement of clinical diarrhea were noted after switching the conventional to the RG barley diet, production of inflammatory cytokines, e.g., interferon-gamma (IFN-γ), tumor necrosis factor (TNF) and interleukin-8 (IL-8) by peripheral CD4+ T helper lymphocytes, persisted during the RG chow treatment and were partially abolished only upon re-administration of the GFD. It was concluded that the RG barley diet might be used for the partial improvement of gluten-induced disease but its therapeutic value still requires upgrading-by co-administration of additional treatments.

  3. THE STIMULATING EFFECT OF LASER RED LIGHT, FAR RED LIGHT AND SODIUM CARBONATE AT THE INITIAL STAGES OF BARLEY ONTOGENESIS

    Directory of Open Access Journals (Sweden)

    G. P. Dudin

    2014-01-01

    Full Text Available Summary. Modern ecological state of the environment and human unhealthy diet cause many diseases. A healthy diet is the one that contains adequate amounts of proteins, fats, carbohydrates, vitamins, macronutrients and micronutrients. Photosynthesis i. e. the process by which plants produce organic compounds from carbon dioxide and water, is the source of life, the source of evolution and proliferation of life forms on the Earth. Thus, the juice made from sprouted barley provides physiologically active chlorophyll, macronutrients and micronutrients, vitamins А, В2 , В3 , В5 , В6 , В8 , Е and К. It is well known that light from a red laser with a wavelength of 638.2 nm has a stimulating action on the germination energy, germination ability and productivity of seeds, and on the crop yields. Therefore, this research is of primary importance today. The research result produced a sharp decline in plant vigor and germinating capacity of barley when soaking in 1n sodium carbonate solution, as well as changes in the ratio of potassium-sodium balance in plants. Thus at lower concentrations of sodium carbonate and 0.1 n sodium increasing of pigment content in barley is observed on the seventh day. The red laser light has a similar stimulating action: the chlorophyll content of barley plants increased after the red laser treatment of barley seeds. However, the chlorophyll contents were depressed when the seeds were exposed to far red light with wavelengths of 754±10 nm. Using these factors, one can manage the content of chlorophyll and sodium-potassium balance in the initial stages of barley ontogenesis in the technology of barley juice or the powder for a healthy and proper human diet.

  4. Relationship of carbohydrates and lignin molecular structure spectral profiles to nutrient profile in newly developed oats cultivars and barley grain

    Science.gov (United States)

    Prates, Luciana Louzada; Refat, Basim; Lei, Yaogeng; Louzada-Prates, Mariana; Yu, Peiqiang

    2018-01-01

    The objectives of this study were to quantify the chemical profile and the magnitude of differences in the oat and barley grain varieties developed by Crop Development Centre (CDC) in terms of Cornell Net Carbohydrate Protein System (CNCPS) carbohydrate sub-fractions: CA4 (sugars), CB1 (starch), CB2 (soluble fibre), CB3 (available neutral detergent fibre - NDF), and CC (unavailable carbohydrate); to estimate the energy values; to detect the lignin and carbohydrate (CHO) molecular structure profiles in CDC Nasser and CDC Seabiscuit oat and CDC Meredith barley grains by using Fourier transform infrared attenuated total reflectance (FTIR-ATR); to develop a model to predict nutrient supply based on CHO molecular profile. Results showed that NDF, ADF and CHO were greater (P 0.05) for oat and barley grains as well as non-structural CHO. However, cellulosic compounds peak area and height were greater (P < 0.05) in oat than barley grains. Multiple regressions were determined to predict nutrient supply by using lignin and CHO molecular profiles. It was concluded that although there were some differences between oat and barley grains, CDC Nasser and CDC Meredith presented similarities related to chemical and molecular profiles, indicating that CDC Meredith barley could be replaced for CDC Nasser as ruminant feed. The FTIR was able to identify functional groups related to CHO molecular spectral in oat and barley grains and FTIR-ATR results could be used to predict nutrient supply in ruminant livestock systems.

  5. Effect of irradiation on the malting quality of barley

    International Nuclear Information System (INIS)

    Avtar, S.; Tejinder, S.; Bains, G.S.

    1985-01-01

    Two six-row barley cultivars, DL 70 and C164 were subjected to Co 60 gamma irradiation in the range of 0 to 250 Krad and malted with and without gibberellic acid treatment. Barley irradiated with doses up to 75 Krad produced normal malts when compared to the controls. Irradiation doses of 125 and 250 Krad significantly increased the malt yields but considerably decreased the α-amylase activity. Gibberellic acid significantly increased the enzyme activity and degree of modification of the irradiated and the control malts. (author)

  6. Targeted modification of storage protein content resulting in improved amino acid composition of barley grain

    DEFF Research Database (Denmark)

    Sikdar, Md. Shafiqul Islam; Bowra, S; Schmidt, Daiana

    2016-01-01

    family members. Analysis of the AA composition of the transgenic lines showed that the level of essential amino acids increased with a concomitant reduction in proline and glutamine. Both the barley C-hordein and wheat ω-gliadin genes proved successful for RNAi-gene mediated suppression of barley C......C-hordein in barley and ω-gliadins in wheat are members of the prolamins protein families. Prolamins are the major component of cereal storage proteins and composed of non-essential amino acids (AA) such as proline and glutamine therefore have low nutritional value. Using double stranded RNAi...... silencing technology directed towards C-hordein we obtained transgenic barley lines with up to 94.7 % reduction in the levels of C-hordein protein relative to the parental line. The composition of the prolamin fraction of the barley parental line cv. Golden Promise was resolved using SDS...

  7. Nitrogen uptake by Azospirillum brasilense inoculated barley (Hordeum vulgare L.) as influenced by N and P fertilization

    International Nuclear Information System (INIS)

    Negi, Mahima; Tilak, K.V.B.R.; Sachdev, M.S.

    1991-01-01

    Response of barley (Hordeum vulgare L.) in a sandy-loam soil under potted conditions revealed that application of nitrogen and phosphorus increased the population of Azospirillium in the barley rhizosphere. A two fold increase was observed in the Azospirillium population at 80 days compared to that at 40 days of plant growth. The unsterilized inoculated roots had more population than the surface sterilized inoculated roots. Increased drymatter production of barley was obtained in A. brasilense inoculated N 0 P 1 (0 kg N and 30 kg P 2 O 5 ha -1 ) treatment than uninoculated control. Also N and P uptake was higher in A. brasilense inoculated plants in the presence of both N and P fertilizers. The 15 N data revealed that at harvest nearly 36 per cent of the total N uptake was from the nitrogen fixed by A. brasilense irrespective of P treatment. (author). 16 refs., 4 tabs

  8. Transgressive segregation for very low and high levels of basal resistance to powdery mildew in barley

    NARCIS (Netherlands)

    Aghnoum, R.; Niks, R.E.

    2011-01-01

    Basal resistance of barley to powdery mildew is a quantitatively inherited trait that limits the growth and sporulation of barley powdery mildew pathogen by a non-hypersensitive mechanism of defense. Two experimental barley lines were developed with a very high (ErBgh) and low (EsBgh) level of basal

  9. Genomic Regions Influencing Seminal Root Traits in Barley.

    Science.gov (United States)

    Robinson, Hannah; Hickey, Lee; Richard, Cecile; Mace, Emma; Kelly, Alison; Borrell, Andrew; Franckowiak, Jerome; Fox, Glen

    2016-03-01

    Water availability is a major limiting factor for crop production, making drought adaptation and its many component traits a desirable attribute of plant cultivars. Previous studies in cereal crops indicate that root traits expressed at early plant developmental stages, such as seminal root angle and root number, are associated with water extraction at different depths. Here, we conducted the first study to map seminal root traits in barley ( L.). Using a recently developed high-throughput phenotyping method, a panel of 30 barley genotypes and a doubled-haploid (DH) population (ND24260 × 'Flagship') comprising 330 lines genotyped with diversity array technology (DArT) markers were evaluated for seminal root angle (deviation from vertical) and root number under controlled environmental conditions. A high degree of phenotypic variation was observed in the panel of 30 genotypes: 13.5 to 82.2 and 3.6 to 6.9° for root angle and root number, respectively. A similar range was observed in the DH population: 16.4 to 70.5 and 3.6 to 6.5° for root angle and number, respectively. Seven quantitative trait loci (QTL) for seminal root traits (root angle, two QTL; root number, five QTL) were detected in the DH population. A major QTL influencing both root angle and root number (/) was positioned on chromosome 5HL. Across-species analysis identified 10 common genes underlying root trait QTL in barley, wheat ( L.), and sorghum [ (L.) Moench]. Here, we provide insight into seminal root phenotypes and provide a first look at the genetics controlling these traits in barley. Copyright © 2016 Crop Science Society of America.

  10. The enhanced callose deposition in barley with ml-o powdery mildew resistance genes

    DEFF Research Database (Denmark)

    Skou, Jens-Peder

    1985-01-01

    Carborundum treatment of barley leaves induced a callose deposition which was detected as diffuse blotches in the epidermal cells of susceptible barleys and as deeply stained tracks along the scratches in barleys with the ml-o powdery mildew resistance gene. Subsequent inoculation with powdery...... mildew resulted in appositions that enlarged inversely to their size in the respective varieties when inoculated without carborundum treatment. Aphids sucking the leaves resulted in rows of callose containing spots along the anticlinal cell walls. The spots were larger in the ml-o mutant than...... in the mother variety. Callose was deposited in connection with the pleiotropic necrotic spotting in barleys with the ml-o gene. Modification of the necrotic spotting by crossing the ml-o gene into other gene backgrounds did not result in any change in the size of appositions upon inoculation with powdery...

  11. The wheat resistance gene Lr34 results in the constitutive induction of multiple defense pathways in transgenic barley.

    Science.gov (United States)

    Chauhan, Harsh; Boni, Rainer; Bucher, Rahel; Kuhn, Benjamin; Buchmann, Gabriele; Sucher, Justine; Selter, Liselotte L; Hensel, Goetz; Kumlehn, Jochen; Bigler, Laurent; Glauser, Gaëtan; Wicker, Thomas; Krattinger, Simon G; Keller, Beat

    2015-10-01

    The wheat gene Lr34 encodes an ABCG-type transporter which provides durable resistance against multiple pathogens. Lr34 is functional as a transgene in barley, but its mode of action has remained largely unknown both in wheat and barley. Here we studied gene expression in uninfected barley lines transgenic for Lr34. Genes from multiple defense pathways contributing to basal and inducible disease resistance were constitutively active in seedlings and mature leaves. In addition, the hormones jasmonic acid and salicylic acid were induced to high levels, and increased levels of lignin as well as hordatines were observed. These results demonstrate a strong, constitutive re-programming of metabolism by Lr34. The resistant Lr34 allele (Lr34res) encodes a protein that differs by two amino acid polymorphisms from the susceptible Lr34sus allele. The deletion of a single phenylalanine residue in Lr34sus was sufficient to induce the characteristic Lr34-based responses. Combination of Lr34res and Lr34sus in the same plant resulted in a reduction of Lr34res expression by 8- to 20-fold when the low-expressing Lr34res line BG8 was used as a parent. Crosses with the high-expressing Lr34res line BG9 resulted in an increase of Lr34sus expression by 13- to 16-fold in progenies that inherited both alleles. These results indicate an interaction of the two Lr34 alleles on the transcriptional level. Reduction of Lr34res expression in BG8 crosses reduced the negative pleiotropic effects of Lr34res on barley growth and vigor without compromising disease resistance, suggesting that transgenic combination of Lr34res and Lr34sus can result in agronomically useful resistance. © 2015 The Authors The Plant Journal © 2015 John Wiley & Sons Ltd.

  12. Inositol phosphates from barley low-phytate grain mutants analysed by metal-dye detection HPLC and NMR

    DEFF Research Database (Denmark)

    Hatzack, F.; Hübel, F.; Zhang, W.

    2001-01-01

    Inositolphosphates from barley low-phytate grain mutants and their parent variety were analysed by metal-dye detection HPLC and NMR. Compound assignment was carried out by comparison of retention times using a chemical hydrolysate of phytate [Ins(1,2,3,4,5,6)P(6)] as a reference; Co-inciding rete......Inositolphosphates from barley low-phytate grain mutants and their parent variety were analysed by metal-dye detection HPLC and NMR. Compound assignment was carried out by comparison of retention times using a chemical hydrolysate of phytate [Ins(1,2,3,4,5,6)P(6)] as a reference; Co...

  13. The spontaneous chlorophyll mutation frequency in barley

    DEFF Research Database (Denmark)

    Jørgensen, Jørgen Helms; Jensen, Hans Peter

    1986-01-01

    A total of 1866 barley plants were progeny tested in the greenhouse. Twenty-five plants segregated for newly arisen, spontaneous chlorophyll mutant genes. Among the total of 470,129 seedlings screened there were 79 mutants (1.7 .+-. 0.6 .times. 10-4). The data are added to data from three similar...... materials and the resulting estimate of the chlorophyll mutant frequency is 1.6 .times. 10-4 in about 1.43 million seedlings. The estimate of the chlorophyll mutation rate per generation is close to 67.3 .times. 10-4 per diploid genome or in the order of 6 .times. 10-7 per locus and haploid genome....

  14. Uptake and distribution of /sup 232/U in peas and barley

    Energy Technology Data Exchange (ETDEWEB)

    Schreckhise, R G; Cline, J F [Battelle Pacific Northwest Labs., Richland, WA (USA)

    1980-03-01

    The uptake of /sup 232/U from soil and its distribution in peas and barley were examined under conditions which isolated root uptake from deposition on aboveground plant parts. Aboveground plant parts were harvested at maturity and analyzed for /sup 232/U content by alpha-energy-analysis. The ratio of concentration (CR) of /sup 232/U in the dry barley seeds to dry soil was 1.6 x 10/sup -4/ while the CR values of the stem/leaf to dry soil fraction was 3.6 x 10/sup -3/. The Cr values for the pea seed, stem/pod and leaf components were 5.4 x 10/sup -4/, 3.3 x 10/sup -3/ and 1.7 x 10/sup -2/, respectively. This indicates that the CR values used in certain radiological dose-assessment models may be high by about a factor of 100 when evaluating the consumption of seeds of legumes or cereal grains by man.

  15. Investigation of Leaf Diseases and Estimation of Chlorophyll Concentration in Seven Barley Varieties Using Fluorescence and Hyperspectral Indices

    Directory of Open Access Journals (Sweden)

    Kang Yu

    2013-12-01

    Full Text Available Leaf diseases, such as powdery mildew and leaf rust, frequently infect barley plants and severely affect the economic value of malting barley. Early detection of barley diseases would facilitate the timely application of fungicides. In a field experiment, we investigated the performance of fluorescence and reflectance indices on (1 detecting barley disease risks when no fungicide is applied and (2 estimating leaf chlorophyll concentration (LCC. Leaf fluorescence and canopy reflectance were weekly measured by a portable fluorescence sensor and spectroradiometer, respectively. Results showed that vegetation indices recorded at canopy level performed well for the early detection of slightly-diseased plants. The combined reflectance index, MCARI/TCARI, yielded the best discrimination between healthy and diseased plants across seven barley varieties. The blue to far-red fluorescence ratio (BFRR_UV and OSAVI were the best fluorescence and reflectance indices for estimating LCC, respectively, yielding R2 of 0.72 and 0.79. Partial least squares (PLS and support vector machines (SVM regression models further improved the use of fluorescence signals for the estimation of LCC, yielding R2 of 0.81 and 0.84, respectively. Our results demonstrate that non-destructive spectral measurements are able to detect mild disease symptoms before significant losses in LCC due to diseases under natural conditions.

  16. Registration of Food Barley (Hordeum vulgare L.) Variety HB 1307 ...

    African Journals Online (AJOL)

    Six-rowed food type barley, HB 1307, was developed by Holetta Agricultural Research Center (HARC) from a cross between a landrace line and exotic germplasm (Awra gebs-1 x IBON93/91) and released in 2006 for mid and high altitude areas. The three consecutive years\\' (2002-2004) tests proved its superiority in grain ...

  17. Biosorption of nickel with barley straw.

    Science.gov (United States)

    Thevannan, Ayyasamy; Mungroo, Rubeena; Niu, Catherine Hui

    2010-03-01

    Wastewater containing nickel sulphate generated from a nickel plating industry is of great concern. In the present work, biosorption of nickel by barley straw from nickel sulphate solution was investigated. Nickel uptake at room temperature (23+/-0.5 degrees C) was very sensitive to solution pH, showing a better uptake value at a pH of 4.85+/-0.10 among the tested values. The nickel biosorption isotherm fitted well the Langmuir equation. When the ionic strength (IS) of the solution was increased from less than 0.02-0.6M, nickel uptake was reduced to 12% of that obtained at IS of less than 0.02 M. Barley straw showed a higher nickel uptake (0.61 mmol/g) than acid washed crab shells (0.04 mmol/g), demonstrating its potential as an adsorbent for removal of nickel. Copyright (c) 2009 Elsevier Ltd. All rights reserved.

  18. Classification of Fusarium-Infected Korean Hulled Barley Using Near-Infrared Reflectance Spectroscopy and Partial Least Squares Discriminant Analysis

    Directory of Open Access Journals (Sweden)

    Jongguk Lim

    2017-09-01

    Full Text Available The purpose of this study is to use near-infrared reflectance (NIR spectroscopy equipment to nondestructively and rapidly discriminate Fusarium-infected hulled barley. Both normal hulled barley and Fusarium-infected hulled barley were scanned by using a NIR spectrometer with a wavelength range of 1175 to 2170 nm. Multiple mathematical pretreatments were applied to the reflectance spectra obtained for Fusarium discrimination and the multivariate analysis method of partial least squares discriminant analysis (PLS-DA was used for discriminant prediction. The PLS-DA prediction model developed by applying the second-order derivative pretreatment to the reflectance spectra obtained from the side of hulled barley without crease achieved 100% accuracy in discriminating the normal hulled barley and the Fusarium-infected hulled barley. These results demonstrated the feasibility of rapid discrimination of the Fusarium-infected hulled barley by combining multivariate analysis with the NIR spectroscopic technique, which is utilized as a nondestructive detection method.

  19. Some quality attributes of low fat ice cream substituted with hulless barley flour and barley ß-glucan.

    Science.gov (United States)

    Abdel-Haleem, Amal M H; Awad, R A

    2015-10-01

    The purpose of this paper is to investigate some quality attributes of low fat ice cream (LFIC) substituted with hulless barley flour (HBF) and barley ß-glucan (BBG). The methodology included in this paper is based on adding HBF (1, 2, 3 and 4 %) as a partial substitution of skim milk powder (SMP) and BBG (0.40 %) as a complete substitution of carboxy methyl cellulose (CMC). All mixes and resultant ice cream samples were evaluated for their physicochemical properties as well as the sensory quality attributes.The results indicated that substitution of SMP with HBF significantly increased total solids (TS), fat and crude fiber, while crude protein and ash significantly decreased in ice cream mixes. BBG exhibited the same manner of control. Specific gravity was gradually increased with adding HBFand BBG in the mixes and therefore the overrun percent was significantly changed in the resultant ice cream. Adding HBF in ice cream formula led to significant decrease in acidity with higher freezing point and the product showed higher ability to meltdown. BBG treatment showed the same trend of control. Values of flow time and viscosity significantly increased with increasing HBF in the ice cream mixes, but these values significantly decreased in BBG mix. The time required to freeze ice cream mixes was decreased with increasing the ratio of HBF but, increased in BBG treatment. The substitution of SMP with 1 and 2 % HBF significantly (P ≤ 0.05) enhanced sensory attributes of ice cream samples. While, BBG treatment achieved mild score and acceptability.

  20. The Role of α-Glucosidase in Germinating Barley Grains1[W][OA

    Science.gov (United States)

    Stanley, Duncan; Rejzek, Martin; Naested, Henrik; Smedley, Mark; Otero, Sofía; Fahy, Brendan; Thorpe, Frazer; Nash, Robert J.; Harwood, Wendy; Svensson, Birte; Denyer, Kay; Field, Robert A.; Smith, Alison M.

    2011-01-01

    The importance of α-glucosidase in the endosperm starch metabolism of barley (Hordeum vulgare) seedlings is poorly understood. The enzyme converts maltose to glucose (Glc), but in vitro studies indicate that it can also attack starch granules. To discover its role in vivo, we took complementary chemical-genetic and reverse-genetic approaches. We identified iminosugar inhibitors of a recombinant form of an α-glucosidase previously discovered in barley endosperm (ALPHA-GLUCOSIDASE97 [HvAGL97]), and applied four of them to germinating grains. All four decreased the Glc-to-maltose ratio in the endosperm 10 d after imbibition, implying inhibition of maltase activity. Three of the four inhibitors also reduced starch degradation and seedling growth, but the fourth did not affect these parameters. Inhibition of starch degradation was apparently not due to inhibition of amylases. Inhibition of seedling growth was primarily a direct effect of the inhibitors on roots and coleoptiles rather than an indirect effect of the inhibition of endosperm metabolism. It may reflect inhibition of glycoprotein-processing glucosidases in these organs. In transgenic seedlings carrying an RNA interference silencing cassette for HvAgl97, α-glucosidase activity was reduced by up to 50%. There was a large decrease in the Glc-to-maltose ratio in these lines but no effect on starch degradation or seedling growth. Our results suggest that the α-glucosidase HvAGL97 is the major endosperm enzyme catalyzing the conversion of maltose to Glc but is not required for starch degradation. However, the effects of three glucosidase inhibitors on starch degradation in the endosperm indicate the existence of unidentified glucosidase(s) required for this process. PMID:21098673

  1. Demarcation of mutant-carrying regions in barley plants after ethylmethane-sulfonate seed treatment

    DEFF Research Database (Denmark)

    Jacobsen, P.

    1966-01-01

    The branching pattern of the barley plant is analyzed and the anatomical structure of the resting barley embryo studied in longitudinal and cross-sections as well as by dissection techniques. The frequency and distribution of ethylmethane-sulfonate induced chloroplast and morphological seedling...

  2. Environmental impacts of irrigated and rain-fed barley production in Iran using life cycle assessment (LCA)

    Energy Technology Data Exchange (ETDEWEB)

    Houshyar, E.

    2017-07-01

    Current intensive grain crops production is often associated with environmental burdens. However, very few studies deal with the environmental performance of both current and alternative systems of barley production. This study was undertaken to evaluate energy consumption and environmental impacts of irrigated and rain-fed barley production. Additionally, three alternative scenarios were examined for irrigated barley fields including conservation tillage and biomass utilization policies. The findings showed that around 25 GJ/ha energy is needed in order to produce 2300 kg/ha irrigated barley and 13 GJ/ha for 1100 kg/ha rain-fed barley. Life cycle assessment (LCA) results indicated that irrigated farms had more environmental impacts than rain-fed farms. Electricity generation and consumption had the highest effect on the abiotic depletion potential, human toxicity potential, freshwater and marine aquatic ecotoxicity potential. However, alternative scenarios revealed that using soil conservation tillage systems and biomass consumption vs. gas for electricity generation at power plants can significantly mitigate environmental impacts of irrigated barley production similar to the rain-fed conditions while higher yield is obtained.

  3. Environmental impacts of irrigated and rain-fed barley production in Iran using life cycle assessment (LCA)

    International Nuclear Information System (INIS)

    Houshyar, E.

    2017-01-01

    Current intensive grain crops production is often associated with environmental burdens. However, very few studies deal with the environmental performance of both current and alternative systems of barley production. This study was undertaken to evaluate energy consumption and environmental impacts of irrigated and rain-fed barley production. Additionally, three alternative scenarios were examined for irrigated barley fields including conservation tillage and biomass utilization policies. The findings showed that around 25 GJ/ha energy is needed in order to produce 2300 kg/ha irrigated barley and 13 GJ/ha for 1100 kg/ha rain-fed barley. Life cycle assessment (LCA) results indicated that irrigated farms had more environmental impacts than rain-fed farms. Electricity generation and consumption had the highest effect on the abiotic depletion potential, human toxicity potential, freshwater and marine aquatic ecotoxicity potential. However, alternative scenarios revealed that using soil conservation tillage systems and biomass consumption vs. gas for electricity generation at power plants can significantly mitigate environmental impacts of irrigated barley production similar to the rain-fed conditions while higher yield is obtained.

  4. Metabolite Profiling of Barley Grains Subjected to Water Stress: To Explain the Genotypic Difference in Drought-Induced Impacts on Malting Quality

    Directory of Open Access Journals (Sweden)

    Xiaojian Wu

    2017-09-01

    Full Text Available Grain weight and protein content will be reduced and increased, respectively, when barley is subjected to water stress after anthesis, consequently deteriorating the malt quality. However, such adverse impact of water stress differs greatly among barley genotypes. In this study, two Tibetan wild barley accessions and two cultivated varieties differing in water stress tolerance were used to investigate the genotypic difference in metabolic profiles during grain-filling stage under drought condition. Totally, 71 differently accumulated metabolites were identified, including organic acids, amino acids/amines, and sugars/sugar alcohols. Their relative contents were significantly affected by water stress for all genotypes and differed distinctly between the wild and cultivated barleys. The principal component analysis of metabolites indicated that the Tibetan wild barley XZ147 possessed a unique response to water stress. When subjected to water stress, the wild barley XZ147 showed the most increase of β-amylase activity among the four genotypes, as a result of its higher lysine content, less indole-3-acetic acid (IAA biosynthesis, more stable H2O2 homeostasis, and more up-regulation of BMY1 gene. On the other hand, XZ147 had the most reduction of β-glucan content under water stress than the other genotypes, which could be explained by the faster grain filling process and the less expression of β-glucan synthase gene GSL7. All these results indicated a great potential for XZ147 in barley breeding for improving water stress tolerance.

  5. Quantitative trait loci associated with the tocochromanol (vitamin E) pathway in barley

    Science.gov (United States)

    In this study, the Genome-Wide Association Studies approach was used to detect Quantitative Trait Loci associated with tocochromanol concentrations using a panel of 1,466 barley accessions. All major tocochromanol types- alpha-, beta-, delta-, gamma-tocopherol and tocotrienol- were assayed. We found...

  6. Dawn and Dusk Set States of the Circadian Oscillator in Sprouting Barley (Hordeum vulgare Seedlings.

    Directory of Open Access Journals (Sweden)

    Weiwei Deng

    Full Text Available The plant circadian clock is an internal timekeeper that coordinates biological processes with daily changes in the external environment. The transcript levels of clock genes, which oscillate to control circadian outputs, were examined during early seedling development in barley (Hordeum vulgare, a model for temperate cereal crops. Oscillations of clock gene transcript levels do not occur in barley seedlings grown in darkness or constant light but were observed with day-night cycles. A dark-to-light transition influenced transcript levels of some clock genes but triggered only weak oscillations of gene expression, whereas a light-to-dark transition triggered robust oscillations. Single light pulses of 6, 12 or 18 hours induced robust oscillations. The light-to-dark transition was the primary determinant of the timing of subsequent peaks of clock gene expression. After the light-to-dark transition the timing of peak transcript levels of clock gene also varied depending on the length of the preceding light pulse. Thus, a single photoperiod can trigger initiation of photoperiod-dependent circadian rhythms in barley seedlings. Photoperiod-specific rhythms of clock gene expression were observed in two week old barley plants. Changing the timing of dusk altered clock gene expression patterns within a single day, showing that alteration of circadian oscillator behaviour is amongst the most rapid molecular responses to changing photoperiod in barley. A barley EARLY FLOWERING3 mutant, which exhibits rapid photoperiod-insensitive flowering behaviour, does not establish clock rhythms in response to a single photoperiod. The data presented show that dawn and dusk cues are important signals for setting the state of the circadian oscillator during early development of barley and that the circadian oscillator of barley exhibits photoperiod-dependent oscillation states.

  7. Developmentally regulated expression and complex processing of barley pri-microRNAs

    Directory of Open Access Journals (Sweden)

    Kruszka Katarzyna

    2013-01-01

    Full Text Available Abstract Background MicroRNAs (miRNAs regulate gene expression via mRNA cleavage or translation inhibition. In spite of barley being a cereal of great economic importance, very little data is available concerning its miRNA biogenesis. There are 69 barley miRNA and 67 pre-miRNA sequences available in the miRBase (release 19. However, no barley pri-miRNA and MIR gene structures have been shown experimentally. In the present paper, we examine the biogenesis of selected barley miRNAs and the developmental regulation of their pri-miRNA processing to learn more about miRNA maturation in barely. Results To investigate the organization of barley microRNA genes, nine microRNAs - 156g, 159b, 166n, 168a-5p/168a-3p, 171e, 397b-3p, 1120, and 1126 - were selected. Two of the studied miRNAs originate from one MIR168a-5p/168a-3p gene. The presence of all miRNAs was confirmed using a Northern blot approach. The miRNAs are encoded by genes with diverse organizations, representing mostly independent transcription units with or without introns. The intron-containing miRNA transcripts undergo complex splicing events to generate various spliced isoforms. We identified miRNAs that were encoded within introns of the noncoding genes MIR156g and MIR1126. Interestingly, the intron that encodes miR156g is spliced less efficiently than the intron encoding miR1126 from their specific precursors. miR397b-3p was detected in barley as a most probable functional miRNA, in contrast to rice where it has been identified as a complementary partner miRNA*. In the case of miR168a-5p/168a-3p, we found the generation of stable, mature molecules from both pre-miRNA arms, confirming evolutionary conservation of the stability of both species, as shown in rice and maize. We suggest that miR1120, located within the 3′ UTR of a protein-coding gene and described as a functional miRNA in wheat, may represent a siRNA generated from a mariner-like transposable element. Conclusions Seven of the

  8. Transgenic barley (Hordeum vulgare L.) expressing the wheat aluminium resistance gene (TaALMT1) shows enhanced phosphorus nutrition and grain production when grown on an acid soil.

    Science.gov (United States)

    Delhaize, Emmanuel; Taylor, Phillip; Hocking, Peter J; Simpson, Richard J; Ryan, Peter R; Richardson, Alan E

    2009-06-01

    Barley (Hordeum vulgare L.), genetically modified with the Al(3+) resistance gene of wheat (TaALMT1), was compared with a non-transformed sibling line when grown on an acidic and highly phosphate-fixing ferrosol supplied with a range of phosphorus concentrations. In short-term pot trials (26 days), transgenic barley expressing TaALMT1 (GP-ALMT1) was more efficient than a non-transformed sibling line (GP) at taking up phosphorus on acid soil, but the genotypes did not differ when the soil was limed. Differences in phosphorus uptake efficiency on acid soil could be attributed not only to the differential effects of aluminium toxicity on root growth between the genotypes, but also to differences in phosphorus uptake per unit root length. Although GP-ALMT1 out-performed GP on acid soil, it was still not as efficient at taking up phosphorus as plants grown on limed soil. GP-ALMT1 plants grown in acid soil possessed substantially smaller rhizosheaths than those grown in limed soil, suggesting that root hairs were shorter. This is a probable reason for the lower phosphorus uptake efficiency. When grown to maturity in large pots, GP-ALMT1 plants produced more than twice the grain as GP plants grown on acid soil and 80% of the grain produced by limed controls. Expression of TaALMT1 in barley was not associated with a penalty in either total shoot or grain production in the absence of Al(3+), with both genotypes showing equivalent yields in limed soil. These findings demonstrate that an important crop species can be genetically engineered to successfully increase grain production on an acid soil.

  9. Bacteria-Triggered Systemic Immunity in Barley Is Associated with WRKY and ETHYLENE RESPONSIVE FACTORs But Not with Salicylic Acid1[C][W

    Science.gov (United States)

    Dey, Sanjukta; Wenig, Marion; Langen, Gregor; Sharma, Sapna; Kugler, Karl G.; Knappe, Claudia; Hause, Bettina; Bichlmeier, Marlies; Babaeizad, Valiollah; Imani, Jafargholi; Janzik, Ingar; Stempfl, Thomas; Hückelhoven, Ralph; Kogel, Karl-Heinz; Mayer, Klaus F.X.

    2014-01-01

    Leaf-to-leaf systemic immune signaling known as systemic acquired resistance is poorly understood in monocotyledonous plants. Here, we characterize systemic immunity in barley (Hordeum vulgare) triggered after primary leaf infection with either Pseudomonas syringae pathovar japonica (Psj) or Xanthomonas translucens pathovar cerealis (Xtc). Both pathogens induced resistance in systemic, uninfected leaves against a subsequent challenge infection with Xtc. In contrast to systemic acquired resistance in Arabidopsis (Arabidopsis thaliana), systemic immunity in barley was not associated with NONEXPRESSOR OF PATHOGENESIS-RELATED GENES1 or the local or systemic accumulation of salicylic acid. Instead, we documented a moderate local but not systemic induction of abscisic acid after infection of leaves with Psj. In contrast to salicylic acid or its functional analog benzothiadiazole, local applications of the jasmonic acid methyl ester or abscisic acid triggered systemic immunity to Xtc. RNA sequencing analysis of local and systemic transcript accumulation revealed unique gene expression changes in response to both Psj and Xtc and a clear separation of local from systemic responses. The systemic response appeared relatively modest, and quantitative reverse transcription-polymerase chain reaction associated systemic immunity with the local and systemic induction of two WRKY and two ETHYLENE RESPONSIVE FACTOR (ERF)-like transcription factors. Systemic immunity against Xtc was further associated with transcriptional changes after a secondary/systemic Xtc challenge infection; these changes were dependent on the primary treatment. Taken together, bacteria-induced systemic immunity in barley may be mediated in part by WRKY and ERF-like transcription factors, possibly facilitating transcriptional reprogramming to potentiate immunity. PMID:25332505

  10. Environmental impacts of barley cultivation under current and future climatic conditions

    DEFF Research Database (Denmark)

    Dijkman, Teunis Johannes; Birkved, Morten; Saxe, Henrik

    2017-01-01

    for the increased impacts. This finding was confirmed by the sensitivity analysis. Because this study focused solely on the impacts of climate change, technological improvements and political measures to reduce impacts in the 2050 scenario are not taken into account. Options to mitigate the environmental impacts......The purpose of this work is to compare the environmental impacts of spring barley cultivation in Denmark under current (year 2010) and future (year 2050) climatic conditions. Therefore, a Life Cycle Assessment was carried out for the production of 1 kg of spring barley in Denmark, at farm gate....... Both under 2010 and 2050 climatic conditions, four subscenarios were modelled, based on a combination of two soil types and two climates. Included in the assessment were seed production, soil preparation, fertilization, pesticide application, and harvest. When processes in the life cycle resulted in co...

  11. Effect of gamma-radiation of pollen tube growth and seed set in barley-rye crosses

    International Nuclear Information System (INIS)

    Rohilla, J.S.; Khanna, V.K.

    1993-01-01

    One variety of barley and one variety of rye were taken to study the effect of gamma-radiation on pollen germination, pollen tube growth and seed set in barley-rye crosses. There was an increase in pollen germination and pollen tube growth over control at 1 kR dose but it was reduced at higher doses. Seed set was maximum at 1 kR and it was more than control from 1-5 kR. Only seeds of the cross Karan - 4 (1 kR)*MRSP-992 were able to germinate. In these germinated seeds the root growth was arrested after the fourth day of germination and they turned brown. The shoot growth was also very poor and it stopped after a week. (author) 11 refs.; 2 tabs

  12. High-resolution mapping of the barley Ryd3 locus controlling tolerance to BYDV

    NARCIS (Netherlands)

    Lüpken, T.; Stein, N.; Perovic, D.; Habekuss, A.; Serfling, A.; Krämer, I.; Hähnel, U.; Steuernagel, B.; Scholz, U.; Ariyadasa, R.; Martis, M.; Mayer, K.; Niks, R.E.; Collins, N.C.; Friedt, W.; Ordon, F.

    2014-01-01

    Barley yellow dwarf disease (BYD) is transmitted by aphids and is caused by different strains of Barley yellow dwarf virus (BYDV) and Cereal yellow dwarf virus (CYDV). Economically it is one of the most important diseases of cereals worldwide. Besides chemical control of the vector, growing of

  13. HvWRKY10, HvWRKY19, and HvWRKY28 positively regulate Mla-triggered immunity and basal defense to barley powdery mildew

    Science.gov (United States)

    WRKY proteins represent a large family of transcription factors (TFs), involved in plant development and defense responses. So far, fifty-five unique barley TFs have been annotated that contain the WRKY domain; twenty-six of these are present on the Barley1 GeneChip. We analyzed time-course expres...

  14. Mutations in Barley Row Type Genes Have Pleiotropic Effects on Shoot Branching.

    Directory of Open Access Journals (Sweden)

    Corinna Brit Liller

    Full Text Available Cereal crop yield is determined by different yield components such as seed weight, seed number per spike and the tiller number and spikes. Negative correlations between these traits are often attributed to resource limitation. However, recent evidence suggests that the same genes or regulatory modules can regulate both inflorescence branching and tillering. It is therefore important to explore the role of genetic correlations between different yield components in small grain cereals. In this work, we studied pleiotropic effects of row type genes on seed size, seed number per spike, thousand grain weight, and tillering in barley to better understand the genetic correlations between individual yield components. Allelic mutants of nine different row type loci (36 mutants, in the original spring barley varieties Barke, Bonus and Foma and introgressed in the spring barley cultivar Bowman, were phenotyped under greenhouse and outdoor conditions. We identified two main mutant groups characterized by their relationships between seed and tillering parameters. The first group comprises all mutants with an increased number of seeds and significant change in tiller number at early development (group 1a or reduced tillering only at full maturity (group 1b. Mutants in the second group are characterized by a reduction in seeds per spike and tiller number, thus exhibiting positive correlations between seed and tiller number. Reduced tillering at full maturity (group 1b is likely due to resource limitations. In contrast, altered tillering at early development (groups 1a and 2 suggests that the same genes or regulatory modules affect inflorescence and shoot branching. Understanding the genetic bases of the trade-offs between these traits is important for the genetic manipulation of individual yield components.

  15. A Genome Wide Association Study of arabinoxylan content in 2-row spring barley grain.

    Directory of Open Access Journals (Sweden)

    Ali Saleh Hassan

    Full Text Available In barley endosperm arabinoxylan (AX is the second most abundant cell wall polysaccharide and in wheat it is the most abundant polysaccharide in the starchy endosperm walls of the grain. AX is one of the main contributors to grain dietary fibre content providing several health benefits including cholesterol and glucose lowering effects, and antioxidant activities. Due to its complex structural features, AX might also affect the downstream applications of barley grain in malting and brewing. Using a high pressure liquid chromatography (HPLC method we quantified AX amounts in mature grain in 128 spring 2-row barley accessions. Amounts ranged from ~ 5.2 μg/g to ~ 9 μg/g. We used this data for a Genome Wide Association Study (GWAS that revealed three significant quantitative trait loci (QTL associated with grain AX levels which passed a false discovery threshold (FDR and are located on two of the seven barley chromosomes. Regions underlying the QTLs were scanned for genes likely to be involved in AX biosynthesis or turnover, and strong candidates, including glycosyltransferases from the GT43 and GT61 families and glycoside hydrolases from the GH10 family, were identified. Phylogenetic trees of selected gene families were built based on protein translations and were used to examine the relationship of the barley candidate genes to those in other species. Our data reaffirms the roles of existing genes thought to contribute to AX content, and identifies novel QTL (and candidate genes associated with them potentially influencing the AX content of barley grain. One potential outcome of this work is the deployment of highly associated single nucleotide polymorphisms markers in breeding programs to guide the modification of AX abundance in barley grain.

  16. Mapping and validation of major quantitative trait loci for kernel length in wild barley (Hordeum vulgare ssp. spontaneum).

    Science.gov (United States)

    Zhou, Hong; Liu, Shihang; Liu, Yujiao; Liu, Yaxi; You, Jing; Deng, Mei; Ma, Jian; Chen, Guangdeng; Wei, Yuming; Liu, Chunji; Zheng, Youliang

    2016-09-13

    Kernel length is an important target trait in barley (Hordeum vulgare L.) breeding programs. However, the number of known quantitative trait loci (QTLs) controlling kernel length is limited. In the present study, we aimed to identify major QTLs for kernel length, as well as putative candidate genes that might influence kernel length in wild barley. A recombinant inbred line (RIL) population derived from the barley cultivar Baudin (H. vulgare ssp. vulgare) and the long-kernel wild barley genotype Awcs276 (H.vulgare ssp. spontaneum) was evaluated at one location over three years. A high-density genetic linkage map was constructed using 1,832 genome-wide diversity array technology (DArT) markers, spanning a total of 927.07 cM with an average interval of approximately 0.49 cM. Two major QTLs for kernel length, LEN-3H and LEN-4H, were detected across environments and further validated in a second RIL population derived from Fleet (H. vulgare ssp. vulgare) and Awcs276. In addition, a systematic search of public databases identified four candidate genes and four categories of proteins related to LEN-3H and LEN-4H. This study establishes a fundamental research platform for genomic studies and marker-assisted selection, since LEN-3H and LEN-4H could be used for accelerating progress in barley breeding programs that aim to improve kernel length.

  17. Using Goat's Milk, Barley Flour, Honey, and Probiotic to Manufacture of Functional Dairy Product.

    Science.gov (United States)

    Ismail, Magdy Mohamed; Hamad, Mohamed Farid; Elraghy, Esraa Mohamed

    2017-08-23

    Stirred yogurt manufactured using probiotic culture which usually called Rayeb milk in the Middle East region is one of the most important functional fermented milk products. To increase the health and functionality properties to this product, some ingredients like fruits, cereal, and whey protein are used in production. This study was carried out to prepare functional Rayeb milk from goat's milk, barley flour (15%) and honey (4%) mixtures using ABT culture. Also, vanilla and cocoa powder were used as flavorings. Adding barley flour and honey to goat's milk increased curd tension and water-holding capacity and decreased coagulation time and susceptibility to syneresis. The values of carbohydrate, total solids, dietary fiber, ash, total protein, water soluble nitrogen, total volatile fatty acids, unsaturated fatty acids, oleic, linoleic, α-linolenic acids, and antioxidant activity were higher in Rayeb milk supplemented with barley flour and honey than control. The viabilities of Lactobacillus acidophilus and Bifidobacterium lactis Bb12 (Chr. Hansen's Lab A/S) increased in fortified Rayeb milk. The recommended level of 10 7  cfu g -1 of bifidobacteria as a probiotic was exceeded for these samples. Addition of vanilla (0.1%) or cocoa powder (0.5%) improved the sensory properties of fortified Rayeb milk.

  18. The Effect of Fungicides for Seed Treatment on Germination of Barley

    Directory of Open Access Journals (Sweden)

    Vesna Stevanović

    2009-01-01

    Full Text Available The application of chemicals, such as fungicides for seed treatment, is one of the most reliable and perhaps most efficient measures for integrated preservation of crops, and its practicing has become a legal obligation for all seed producers. This investigation was carried out in the laboratory for seed quality and phytopathology of the Small Grains Research Center in Kragujevac. The objective was to establish the effect of fungicides on germination energy and seed germinability (determined after treatments. Two varieties were tested due to a possibility of specific sensitivities of some varieties, so that the results acquired on one variety would not necessarily be valid for another one. Fungicides based on active ingredients from the triasol chemical group had different effects on the energy of germination of barley seeds. Applying Raxil S040-FS, the average germination of barley seeds was 79.3% for the variety Record, and 91.3% for the Grand variety. The variety Record achieved a lower value than the minimum for barley seed germination (88% stipulated by the Rules on Seed Quality of Agricultural Crops.Regardless of barley type, the product Raxil S040-FS showed a statistically significant effect on the number of atypical seedlings and increase in the number of non-germinated seeds, compared to the control.

  19. The low-recombining pericentromeric region of barley restricts gene diversity and evolution but not gene expression

    Science.gov (United States)

    Baker, Katie; Bayer, Micha; Cook, Nicola; Dreißig, Steven; Dhillon, Taniya; Russell, Joanne; Hedley, Pete E; Morris, Jenny; Ramsay, Luke; Colas, Isabelle; Waugh, Robbie; Steffenson, Brian; Milne, Iain; Stephen, Gordon; Marshall, David; Flavell, Andrew J

    2014-01-01

    The low-recombining pericentromeric region of the barley genome contains roughly a quarter of the genes of the species, embedded in low-recombining DNA that is rich in repeats and repressive chromatin signatures. We have investigated the effects of pericentromeric region residency upon the expression, diversity and evolution of these genes. We observe no significant difference in average transcript level or developmental RNA specificity between the barley pericentromeric region and the rest of the genome. In contrast, all of the evolutionary parameters studied here show evidence of compromised gene evolution in this region. First, genes within the pericentromeric region of wild barley show reduced diversity and significantly weakened purifying selection compared with the rest of the genome. Second, gene duplicates (ohnolog pairs) derived from the cereal whole-genome duplication event ca. 60MYa have been completely eliminated from the barley pericentromeric region. Third, local gene duplication in the pericentromeric region is reduced by 29% relative to the rest of the genome. Thus, the pericentromeric region of barley is a permissive environment for gene expression but has restricted gene evolution in a sizeable fraction of barley's genes. PMID:24947331

  20. Genomic Prediction of Barley Hybrid Performance

    Directory of Open Access Journals (Sweden)

    Norman Philipp

    2016-07-01

    Full Text Available Hybrid breeding in barley ( L. offers great opportunities to accelerate the rate of genetic improvement and to boost yield stability. A crucial requirement consists of the efficient selection of superior hybrid combinations. We used comprehensive phenotypic and genomic data from a commercial breeding program with the goal of examining the potential to predict the hybrid performances. The phenotypic data were comprised of replicated grain yield trials for 385 two-way and 408 three-way hybrids evaluated in up to 47 environments. The parental lines were genotyped using a 3k single nucleotide polymorphism (SNP array based on an Illumina Infinium assay. We implemented ridge regression best linear unbiased prediction modeling for additive and dominance effects and evaluated the prediction ability using five-fold cross validations. The prediction ability of hybrid performances based on general combining ability (GCA effects was moderate, amounting to 0.56 and 0.48 for two- and three-way hybrids, respectively. The potential of GCA-based hybrid prediction requires that both parental components have been evaluated in a hybrid background. This is not necessary for genomic prediction for which we also observed moderate cross-validated prediction abilities of 0.51 and 0.58 for two- and three-way hybrids, respectively. This exemplifies the potential of genomic prediction in hybrid barley. Interestingly, prediction ability using the two-way hybrids as training population and the three-way hybrids as test population or vice versa was low, presumably, because of the different genetic makeup of the parental source populations. Consequently, further research is needed to optimize genomic prediction approaches combining different source populations in barley.

  1. Barley alpha-amylase/subtilisin inhibitor: structure, biophysics and protein engineering

    DEFF Research Database (Denmark)

    Nielsen, P.K.; Bønsager, Birgit Christine; Fukuda, Kenji

    2004-01-01

    Bifunctional alpha-amylase/subtilisin inhibitors have been implicated in plant defence and regulation of endogenous alpha-amylase action. The barley alpha-amylase/subtilisin inhibitor (BASI) inhibits the barley alpha-amylase 2 (AMY2) and subtilisin-type serine proteases. BASI belongs to the Kunitz...... Ca2+-modulated kinetics of the AMY2/BASl interaction and found that the complex formation involves minimal structural changes. The modulation of the interaction by calcium ions makes it unique among the currently known binding mechanisms of proteinaceous alpha-amylase inhibitors....

  2. The experience of induction of mutation on barley in Peru

    International Nuclear Information System (INIS)

    Romero Loli, M.; Pozo Cardenas, M.; Gomez Pando, L.

    1984-01-01

    Work on induced mutation of barley was started in 1978 under the Programme of Cereal Improvement. Barley was irradiated with gamma radiation at doses of 12, 15, 18, 21, and 24 Krad. Radiation doses of 18 and 21 Krad gave the highest frequency of albino and cloroticos mutants. Induced mutation is being carried out in different parts of the country to develop mutants having early germination property. These mutants will play an important role in the late cultivation in the mountain areas of Peru

  3. Expression of a defence-related intercellular barley peroxidase in transgenic tobacco

    DEFF Research Database (Denmark)

    Kristensen, B.K.; Brandt, J.; Bojsen, K.

    1997-01-01

    genetically, phenotypically and biochemically. The T-DNA was steadily inherited through three generations. The barley peroxidase is expressed and sorted to the intercellular space in the transgenic tobacco plants. The peroxidase can be extracted from the intercellular space in two molecular forms from both...... barley and transgenic tobacco. The tobacco expressed forms are indistinguishable from the barley expressed forms as determined by analytical isoelectric focusing (pI 8.5) and Western-blotting. Staining for N-glycosylation showed that one form only was glycosylated. The N-terminus of purified Prx8 from...... transgenic tobacco was blocked by pyroglutamate, after the removal of which, N-terminal sequencing verified the transit signal-peptide cleavage site deduced from the cDNA sequence. Phenotype comparisons show that the constitutive expression of Prx8 lead to growth retardation. However, an infection assay...

  4. Effects of feeding hulled and hull-less barley with low- and high-forage diets on lactation performance, nutrient digestibility, and milk fatty acid composition of lactating dairy cows.

    Science.gov (United States)

    Yang, Y; Ferreira, G; Teets, C L; Corl, B A; Thomason, W E; Griffey, C A

    2018-04-01

    The objective of this study was to evaluate lactation performance, nutrient digestibility, and milk fatty acid composition of high-producing dairy cows consuming diets containing hulled or hull-less barley as the grain source when feeding low-forage (LF) or high-forage (HF) diets. Eight primiparous (610 ± 40 kg of body weight and 72 ± 14 d in milk) and 16 multiparous (650 ± 58 kg of body weight and 58 ± 16 d in milk) Holstein cows were randomly assigned to 1 of 4 diets in a replicated 4 × 4 Latin square design with a 2 × 2 factorial arrangement of treatments and 21-d periods. Cows were assigned to squares based on parity (1, 2, and ≥3) and days in milk. Diets were formulated to contain on a dry matter basis (1) 45% forage and hulled barley as the sole grain source, (2) 65% forage and hulled barley as the sole grain source, (3) 45% forage and hull-less barley as the sole grain source, and (4) 65% forage and hull-less barley as the sole grain source. Dry matter intake tended to be lower for the diet with 65% forage and hulled barley than for the rest of the diets (24.4 vs. 26.6 kg/d). Neither the type of barley nor the forage-to-concentrate ratio affected milk yield (41.7 kg/d). Barley type did not affect milk fat or protein concentrations. Feeding LF diets decreased milk fat concentration from 3.91% to 3.50%. This decrease was less than anticipated and resulted in a 7% decrease in milk fat yield relative to cows consuming HF diets (1.60 and 1.49 kg/d for HF and LF diets, respectively). Feeding LF diets increased the concentration of C18:1 trans-10 in milk fat, suggesting that feeding LF diets may have marginally altered rumen function. In conclusion, LF diets containing barley grains can marginally decrease milk fat concentration. Overall, and based on the conditions of this study, there is limited evidence to anticipate a dramatic or acute milk fat depression when feeding hull-less barley as the grain source in diets for high-producing dairy cows. Copyright

  5. Method for hull-less barley transformation and manipulation of grain mixed-linkage beta-glucan.

    Science.gov (United States)

    Lim, Wai Li; Collins, Helen M; Singh, Rohan R; Kibble, Natalie A J; Yap, Kuok; Taylor, Jillian; Fincher, Geoffrey B; Burton, Rachel A

    2018-05-01

    Hull-less barley is increasingly offering scope for breeding grains with improved characteristics for human nutrition; however, recalcitrance of hull-less cultivars to transformation has limited the use of these varieties. To overcome this limitation, we sought to develop an effective transformation system for hull-less barley using the cultivar Torrens. Torrens yielded a transformation efficiency of 1.8%, using a modified Agrobacterium transformation method. This method was used to over-express genes encoding synthases for the important dietary fiber component, (1,3;1,4)-β-glucan (mixed-linkage glucan), primarily present in starchy endosperm cell walls. Over-expression of the HvCslF6 gene, driven by an endosperm-specific promoter, produced lines where mixed-linkage glucan content increased on average by 45%, peaking at 70% in some lines, with smaller increases in transgenic HvCslH1 grain. Transgenic HvCslF6 lines displayed alterations where grain had a darker color, were more easily crushed than wild type and were smaller. This was associated with an enlarged cavity in the central endosperm and changes in cell morphology, including aleurone and sub-aleurone cells. This work provides proof-of-concept evidence that mixed-linkage glucan content in hull-less barley grain can be increased by over-expression of the HvCslF6 gene, but also indicates that hull-less cultivars may be more sensitive to attempts to modify cell wall composition. © 2017 Institute of Botany, Chinese Academy of Sciences.

  6. Influence of PEG induced drought stress on molecular and biochemical constituents and seedling growth of Egyptian barley cultivars

    Directory of Open Access Journals (Sweden)

    F.A. Hellal

    2018-06-01

    Full Text Available In order to investigate the effects of drought stress on germination components of barley cultivars, a laboratory experiment was conducted in a factorial randomized complete design with four replications. The controlled experiment included ten of Egyptian barley cultivars namely; (Giza 123, 124, 125, 126, 127, 129, 130, 134, 135 and 2000 as first factor. The second factor included 4 levels of drought stress inducer by applying 0, 5, 10 and 20% of polyethylene glycol-6000 (PEG which is equivalent to four osmotic potential levels including −0.001, −0.27, −0.54 and −1.09 MPa, respectively. The results showed that, the highest reduction was related to the drought level of 20% PEG among the barley cultivars. The best cultivars in terms of germination traits were Giza 134, Giza 127, and Giza 126 this indicate their tolerance to drought stress and Giza 130, 135, 2000 cultivars was moderately tolerance and remaining is less tolerance. The protein band 27 kDa and 78 kDa showed high intensity after stress in almost all cultivars. Those two protein bands their exciting was very clear in treated barley leaf tissue. It could be related to dehydrine and oxygen evolving enhancer protein 2 (OEE2 which involved in drought stress tolerance response. Cultivars Giza 127, 130 and 134 showed highest tolerance response under drought stress. The antioxidant enzymes PAGE pattern of Peroxidase (POX, Sodium dismutase (SOD and Ascorbate peroxidase (APX for Barley cultivars under drought stress revealed a high activities for Giza 126, 127, 134, 136 and 2000 under −0.5 MPa osmotic stress by PEG in most of their isoforms. Based on similarity coefficient values the highest values were 1.0 with 100% similarly between tolerant cultivars Giza 130 and Giza 127. Similarly between the susceptible cultivars 125 and Giza 129 was 60%.These data confirmed by the growth parameters which we ranked as tolerant to drought stress. Keywords: Barley, Drought stress, Seed germination

  7. Yield and yield structure of spring barley (Hodeum vulgare L. grown in monoculture after different stubble crops

    Directory of Open Access Journals (Sweden)

    Dorota Gawęda

    2012-12-01

    Full Text Available A field experiment was conducted in the period 2006- 2008 in the Uhrusk Experimental Farm belonging to the University of Life Sciences in Lublin. The experimental factor was the type of stubble crop ploughed in each year after harvest of spring barley: white mustard, lacy phacelia, winter rape, and a mixture of narrow-leaf lupin with field pea. In the experiment, successive spring barley crops were grown one after the other (in continuous monoculture. The aim of the experiment was to evaluate the effect of stubble crops used on the size and structure of barley yield. The three-year study showed an increasing trend in grain yield of spring barley grown after the mixture of legumes, lacy phacelia, and white mustard compared to its size in the treatment with no cover crop. Straw yield was significantly higher when barley was grown after the mixture of narrowleaf lupin with field pea than in the other treatments of the experiment. The type of ploughed-in stubble crop did not modify significantly plant height, ear length, and grain weight per ear. Growing the mixture of leguminous plants as a cover crop resulted in a significant increase in the density of ears per unit area in barley by an average of 14.7% relative to the treatment with winter rape. The experiment also showed the beneficial effect of the winter rape cover crop on 1000-grain weight of spring barley compared to that obtained in the treatments with white mustard and the mixture of legumes. All the cover crops caused an increase in the number of grains per ear of barley relative to that found in the control treatment. However, this increase was statistically proven only for the barley crops grown after lacy phacelia and the mixture of legumes.

  8. Specific patterns of gene space organisation revealed in wheat by using the combination of barley and wheat genomic resources

    Directory of Open Access Journals (Sweden)

    Waugh Robbie

    2010-12-01

    Full Text Available Abstract Background Because of its size, allohexaploid nature and high repeat content, the wheat genome has always been perceived as too complex for efficient molecular studies. We recently constructed the first physical map of a wheat chromosome (3B. However gene mapping is still laborious in wheat because of high redundancy between the three homoeologous genomes. In contrast, in the closely related diploid species, barley, numerous gene-based markers have been developed. This study aims at combining the unique genomic resources developed in wheat and barley to decipher the organisation of gene space on wheat chromosome 3B. Results Three dimensional pools of the minimal tiling path of wheat chromosome 3B physical map were hybridised to a barley Agilent 15K expression microarray. This led to the fine mapping of 738 barley orthologous genes on wheat chromosome 3B. In addition, comparative analyses revealed that 68% of the genes identified were syntenic between the wheat chromosome 3B and barley chromosome 3 H and 59% between wheat chromosome 3B and rice chromosome 1, together with some wheat-specific rearrangements. Finally, it indicated an increasing gradient of gene density from the centromere to the telomeres positively correlated with the number of genes clustered in islands on wheat chromosome 3B. Conclusion Our study shows that novel structural genomics resources now available in wheat and barley can be combined efficiently to overcome specific problems of genetic anchoring of physical contigs in wheat and to perform high-resolution comparative analyses with rice for deciphering the organisation of the wheat gene space.

  9. The effect of concentration and exposure time on 15N uptake and incorporation from urea and ammonium nitrate by spring barley in the initial growth period

    International Nuclear Information System (INIS)

    Matula, J.; Knop, K.

    1978-01-01

    The uptake and incorporation of 15 N from urea and ammonium nitrate by spring barley were studied in aquaculture at three nitrogen concentrations in complex nutrient solutions (28, 140 and 700 mg N per 1 litre) and for three lengths of exposure to 15 N-labelled nutrient solutions. The 'Diamant' variety plants were precultivated up to the stage of the 3rd to 4th leaf in a complex nutrient solution, and five days prior to exposure to 15 N-labelled solutions the plants were cultivated in a nutrient solution without nitrogen. At a concentration of 28 mg N per litre the course of urea absorption was similar to the absorption of ammonium nitrate, but at a lower level. The results suggest that urea uptake is basically controlled by the metabolic requirement, particularly at lower concentrations. Only at the highest concentrations of nitrogen in the nutrient solutions did the 15 N of urea and ammonium nitrate penetrate into the roots, passive uptake being preferred. The uptake of urea is controlled by the metabolic requirement but its availability for barley metabolism is lower. Ammonium nitrate NO 3 - was taken up at a lower rate than NH 4 + from the same compound. Nitrate nitrogen was transported relatively more intensively to the above-ground parts of barley. The increasing concentration of nitrogen and exposure to nutrient solutions induced a rise in the proportion of ethanol-soluble forms of nitrogen, particularly in the roots. (author)

  10. Effects of nitrogen application rate on dry matter redistribution, grain yield, nitrogen use efficiency and photosynthesis in malting barley

    DEFF Research Database (Denmark)

    Cai, J; Jiang, D; Wollenweber, Bernd

    2012-01-01

    The harmonious combination of malting barley yield, quality and nitrogen (N) use-efficiency under nitrogen (N) rates applications was greatly conducive to production in China. The malting barley cultivar Supi 3 was planted during the growing seasons 2005 and 2006 at two contrasting sites in China....... Five nitrogen (N) application rates (0, 75, 150, 225 and 300 kg ha−1) were applied for research of effects of N rates application on grain yield, protein content and N use-efficiency. At both sites and in both years, grain yield increased with increasing N application rates up to 225 kg N ha−1...... with a quadrant model, the optimum N application rates for high grain yield with high nitrogen use-efficiency in malting barley could be indicated. So, the higher yields could be mainly ascribed to the higher accumulation of photoassimilates between anthesis and maturity. In order to achieve high grain yield...

  11. Films based on oxidized starch and cellulose from barley.

    Science.gov (United States)

    El Halal, Shanise Lisie Mello; Colussi, Rosana; Deon, Vinícius Gonçalves; Pinto, Vânia Zanella; Villanova, Franciene Almeida; Carreño, Neftali Lenin Villarreal; Dias, Alvaro Renato Guerra; Zavareze, Elessandra da Rosa

    2015-11-20

    Starch and cellulose fibers were isolated from grains and the husk from barley, respectively. Biodegradable films of native starch or oxidized starches and glycerol with different concentrations of cellulose fibers (0%, 10% and 20%) were prepared. The films were characterized by morphological, mechanical, barrier, and thermal properties. Cellulose fibers isolated from the barley husk were obtained with 75% purity and high crystallinity. The morphology of the films of the oxidized starches, regardless of the fiber addition, was more homogeneous as compared to the film of the native starch. The addition of cellulose fibers in the films increased the tensile strength and decreased elongation. The water vapor permeability of the film of oxidized starch with 20% of cellulose fibers was lower than the without fibers. However the films with cellulose fibers had the highest decomposition with the initial temperature and thermal stability. The oxidized starch and cellulose fibers from barley have a good potential for use in packaging. The addition of cellulose fibers in starch films can contribute to the development of films more resistant that can be applied in food systems to maintain its integrity. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Development of functional spaghetti enriched in bioactive compounds using barley coarse fraction obtained by air classification.

    Science.gov (United States)

    Verardo, Vito; Gómez-Caravaca, Ana Maria; Messia, Maria Cristina; Marconi, Emanuele; Caboni, Maria Fiorenza

    2011-09-14

    Barley byproducts obtained by air classification have been used to produce a different barley functional spaghetti, which were compared to different commercial whole semolina samples. Total, insoluble, and soluble fiber and β-glucan contents of the barley spaghetti were found to be greater than those of commercial samples. Furthermore, it was proved that barley spaghetti reached the FDA requirements, which could allow these pastas to deserve the health claims "good source of dietary fiber" and "may reduce the risk of heart disease". When the barley coarse fraction was used, a flavan-3-ols enrichment and an increase of antioxidant activity were reported, while commercial samples showed the absence of flavan-3-ols and a higher presence of phenolic acids and tannins. Whole semolina commercial spaghetti had a significantly higher content of phenolic acids than semolina spaghetti samples. Besides, it was observed that when vital gluten was added to the spaghetti formulation, phenolic compounds were blocked in the gluten network and were partially released during the cooking process.

  13. Genetic mapping of the barley lodging resistance locus Erectoides-k

    DEFF Research Database (Denmark)

    Kristensen, Peter Skov; Dockter, Christoph; Lundqvist, Udda

    2016-01-01

    ’ is a semi-dwarf barley cultivar known for its culm stability and resistance to lodging. In total, eight allelic ert-k mutants are known that show different phenotypic strength concerning culm length and spike architecture. They represent alternatives to the widely used, but pleiotropic ‘Green Revolution...... provides a solid foundation for the identification of the underlying mutations causing the ert-k lodging-resistant phenotype. In addition, the linked markers could be used to follow the ert-k mutant genotype in marker-assisted selection of new lodging-resistant barley cultivars....

  14. Analysis of the arabinoxylan arabinofuranohydrolase gene family in barley does not support their involvement in the remodelling of endosperm cell walls during development.

    Science.gov (United States)

    Laidlaw, Hunter K C; Lahnstein, Jelle; Burton, Rachel A; Fincher, Geoffrey B; Jobling, Stephen A

    2012-05-01

    Arabinoxylan arabinofuranohydrolases (AXAHs) are family GH51 enzymes that have been implicated in the removal of arabinofuranosyl residues from the (1,4)-β-xylan backbone of heteroxylans. Five genes encoding barley AXAHs range in size from 4.6 kb to 7.1 kb and each contains 16 introns. The barley HvAXAH genes map to chromosomes 2H, 4H, and 5H. A small cluster of three HvAXAH genes is located on chromosome 4H and there is evidence for gene duplication and the presence of pseudogenes in barley. The cDNAs corresponding to barley and wheat AXAH genes were cloned, and transcript levels of the genes were profiled across a range of tissues at different developmental stages. Two HvAXAH cDNAs that were successfully expressed in Nicotiana benthamiana leaves exhibited similar activities against 4-nitrophenyl α-L-arabinofuranoside, but HvAXAH2 activity was significantly higher against wheat flour arabinoxylan, compared with HvAXAH1. HvAXAH2 also displayed activity against (1,5)-α-L-arabinopentaose and debranched arabinan. Western blotting with an anti-HvAXAH antibody was used to define further the locations of the AXAH enzymes in developing barley grain, where high levels were detected in the outer layers of the grain but little or no protein was detected in the endosperm. The chromosomal locations of the genes do not correspond to any previously identified genomic regions shown to influence heteroxylan structure. The data are therefore consistent with a role for AXAH in depolymerizing arabinoxylans in maternal tissues during grain development, but do not provide compelling evidence for a role in remodelling arabinoxylans during endosperm or coleoptile development in barley as previously proposed.

  15. Ethnobotany, diverse food uses, claimed health benefits and implications on conservation of barley landraces in North Eastern Ethiopia highlands.

    Science.gov (United States)

    Shewayrga, Hailemichael; Sopade, Peter A

    2011-06-28

    Barley is the number one food crop in the highland parts of North Eastern Ethiopia produced by subsistence farmers grown as landraces. Information on the ethnobotany, food utilization and maintenance of barley landraces is valuable to design and plan germplasm conservation strategies as well as to improve food utilization of barley. A study, involving field visits and household interviews, was conducted in three administrative zones. Eleven districts from the three zones, five kebeles in each district and five households from each kebele were visited to gather information on the ethnobotany, the utilization of barley and how barley end-uses influence the maintenance of landrace diversity. According to farmers, barley is the "king of crops" and it is put for diverse uses with more than 20 types of barley dishes and beverages reportedly prepared in the study area. The products are prepared from either boiled/roasted whole grain, raw- and roasted-milled grain, or cracked grain as main, side, ceremonial, and recuperating dishes. The various barley traditional foods have perceived qualities and health benefits by the farmers. Fifteen diverse barley landraces were reported by farmers, and the ethnobotany of the landraces reflects key quantitative and qualitative traits. Some landraces that are preferred for their culinary qualities are being marginalized due to moisture shortage and soil degradation. Farmers' preference of different landraces for various end-use qualities is one of the important factors that affect the decision process of landraces maintenance, which in turn affect genetic diversity. Further studies on improving maintenance of landraces, developing suitable varieties and improving the food utilization of barley including processing techniques could contribute to food security of the area.

  16. The Barley Chromosome 5 Linkage Map

    DEFF Research Database (Denmark)

    Jensen, J.; Jørgensen, Jørgen Helms

    1975-01-01

    The literature is surveyed for data on recombination between loci on chromosome 5 of barley; 13 loci fall into the category “mapped” loci, more than 20 into the category “associated” loci and nine into the category “loci once suggested to be on chromosome 5”. A procedure was developed...

  17. The barley Jip23b gene

    DEFF Research Database (Denmark)

    Müller-Uri, Frieder; Cameron-Mills, Verena; Mundy, John

    2002-01-01

    The barley gene (Jip23) encoding a 23,000-Da protein of unknown function was isolated and shown to be induced by jasmonate methyl ester (MeJA) in leaves. 5'upstream Jip23 sequence was isolated and fused to the beta-glucuronidase gene (GUS), and this reporter was introduced by particle bombardment...

  18. Identification of QTL conferring resistance to stripe rust (Puccinia striiformis f. sp. hordei) and leaf rust (Puccinia hordei) in barley using nested association mapping (NAM).

    Science.gov (United States)

    Vatter, Thomas; Maurer, Andreas; Perovic, Dragan; Kopahnke, Doris; Pillen, Klaus; Ordon, Frank

    2018-01-01

    The biotrophic rust fungi Puccinia hordei and Puccinia striiformis are important barley pathogens with the potential to cause high yield losses through an epidemic spread. The identification of QTL conferring resistance to these pathogens is the basis for targeted breeding approaches aiming to improve stripe rust and leaf rust resistance of modern cultivars. Exploiting the allelic richness of wild barley accessions proved to be a valuable tool to broaden the genetic base of resistance of barley cultivars. In this study, SNP-based nested association mapping (NAM) was performed to map stripe rust and leaf rust resistance QTL in the barley NAM population HEB-25, comprising 1,420 lines derived from BC1S3 generation. By scoring the percentage of infected leaf area, followed by calculation of the area under the disease progress curve and the average ordinate during a two-year field trial, a large variability of resistance across and within HEB-25 families was observed. NAM based on 5,715 informative SNPs resulted in the identification of twelve and eleven robust QTL for resistance against stripe rust and leaf rust, respectively. Out of these, eight QTL for stripe rust and two QTL for leaf rust are considered novel showing no overlap with previously reported resistance QTL. Overall, resistance to both pathogens in HEB-25 is most likely due to the accumulation of numerous small effect loci. In addition, the NAM results indicate that the 25 wild donor QTL alleles present in HEB-25 strongly differ in regard to their individual effect on rust resistance. In future, the NAM concept will allow to select and combine individual wild barley alleles from different HEB parents to increase rust resistance in barley. The HEB-25 results will support to unravel the genetic basis of rust resistance in barley, and to improve resistance against stripe rust and leaf rust of modern barley cultivars.

  19. THE MALT EXTRACT, RELATIVE EXTRACT AND DIASTATIC POWER AS A VARIETAL CHARACTERISTIC OF MALTING BARLEY

    Directory of Open Access Journals (Sweden)

    Štefan Dráb

    2014-02-01

    Full Text Available Malting quality of barley depends on genetic and agro-ekological factors. Chemical composition of malting barley and its technological parameters are very important for malting and brewing, due to this fact the quality of barley must be strictly evaluated. The aim of this work was to evaluate the influence of variety, locality and year of production on the 5 technological parameters of malt: extract, relative extract at 45 °C, Kolbach index, diastatic power and friability. It was found out that the barley variety significantly influenced the following parameters: extract, relative extract and diastatic power. The growing locality weakly influenced qualitative parameters i.e. Kolbach index and relative extract at 45°C. The study confirmed the most significant impact of the year on the Kolbach index and friability.

  20. Tracer study on sulphur use efficiency in potato-barley sequence on acid soil of Shimla

    International Nuclear Information System (INIS)

    Sud, K.C.; Sharma, R.C.; Sharma, N.K.

    1999-01-01

    Controlled studies were conducted on acidic soil of Fagu (Shimla) to study the efficiency of labelled ammonium sulphate as effected by farmyard manure (FYM) on potato (Solanum tuberosum L.) and its residual effect on succeeding barley (Hordeum vulgare L.). The direct and residual effects of FYM and sulphur on dry matter yield and S concentration in potato and barley plants were significant. Applied FYM had a positive effect on radioassay values i.e. % Sdff and % S utilization by potato from labelled S carrier, whereas, the residual effect of applied S on barley was more than its direct effect on potato. Results indicate that combined application of S and FYM resulted in 3.4 per cent more S contribution to barley crop and was reflected in % S utilization values. (author)

  1. Organic anion transporter 3- and organic anion transporting polypeptides 1B1- and 1B3-mediated transport of catalposide

    Directory of Open Access Journals (Sweden)

    Jeong HU

    2015-01-01

    Full Text Available Hyeon-Uk Jeong,1 Mihwa Kwon,2 Yongnam Lee,3 Ji Seok Yoo,3 Dae Hee Shin,3 Im-Sook Song,2 Hye Suk Lee1 1College of Pharmacy, The Catholic University of Korea, Bucheon 420-743, Korea; 2College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu 702-701, Korea; 3Central R&D Institute, Yungjin Pharm Co., Ltd., Suwon 443-270, Korea Abstract: We investigated the in vitro transport characteristics of catalposide in HEK293 cells overexpressing organic anion transporter 1 (OAT1, OAT3, organic anion transporting polypeptide 1B1 (OATP1B1, OATP1B3, organic cation transporter 1 (OCT1, OCT2, P-glycoprotein (P-gp, and breast cancer resistance protein (BCRP. The transport mechanism of catalposide was investigated in HEK293 and LLC-PK1 cells overexpressing the relevant transporters. The uptake of catalposide was 319-, 13.6-, and 9.3-fold greater in HEK293 cells overexpressing OAT3, OATP1B1, and OATP1B3 transporters, respectively, than in HEK293 control cells. The increased uptake of catalposide via the OAT3, OATP1B1, and OATP1B3 transporters was decreased to basal levels in the presence of representative inhibitors such as probenecid, furosemide, and cimetidine (for OAT3 and cyclosporin A, gemfibrozil, and rifampin (for OATP1B1 and OATP1B3. The concentration-dependent OAT3-mediated uptake of catalposide revealed the following kinetic parameters: Michaelis constant (Km =41.5 µM, maximum uptake rate (Vmax =46.2 pmol/minute, and intrinsic clearance (CLint =1.11 µL/minute. OATP1B1- and OATP1B3-mediated catalposide uptake also showed concentration dependency, with low CLint values of 0.035 and 0.034 µL/minute, respectively. However, the OCT1, OCT2, OAT1, P-gp, and BCRP transporters were apparently not involved in the uptake of catalposide into cells. In addition, catalposide inhibited the transport activities of OAT3, OATP1B1, and OATP1B3 with half-maximal inhibitory concentration values of 83, 200, and 235 µ

  2. 76 FR 61287 - Request for Public Comment on the United States Standards for Barley

    Science.gov (United States)

    2011-10-04

    ... barley marketing and define U.S. barley quality in the domestic and global marketplace. The standards define commonly used industry terms; contain basic principles governing the application of standards... standards using approved methodologies and can be applied at any point in the marketing chain. Furthermore...

  3. Pea-barley intercropping and short-term subsequent crop effects across European organic cropping conditions

    DEFF Research Database (Denmark)

    Hauggaard-Nielsen, Henrik; Gooding, M.; Ambus, Per

    2009-01-01

    . In the replacement design the total relative plant density is kept constant, while the additive design uses the optimal sole crop density for pea supplementing with ‘extra’ barley plants. The pea and barley crops were followed by winter wheat with and without N application. Additional experiments in Denmark......) to grain N yield with 25–30% using the Land Equivalent ratio. In terms of absolute quantities, sole cropped pea accumulated more N in the grains as compared to the additive design followed by the replacement design and then sole cropped barley. The post harvest soil mineral N content was unaffected...

  4. The barley HvNAC6 transcription factor affects ABA accumulation and promotes basal resistance against powdery mildew

    DEFF Research Database (Denmark)

    Chen, Yan-Jun; Perera, Venura; Wagner, Michael

    2013-01-01

    Barley HvNAC6 is a member of the plant-specific NAC (NAM, ATAF1,2, CUC2) transcription factor family and we have shown previously that it acts as a positive regulator of basal resistance in barley against the biotrophic pathogen Blumeria graminis f. sp. hordei (Bgh). In this study, we use a trans...

  5. EFFECTS OF BARLEY FLOUR ADDITION AND BAKING TEMPERATURE ON Β-GLUCANS CONTENT AND BISCUITS PROPERTIES

    OpenAIRE

    Džafić, A; Oručević-Žuljević, Sanja; Spaho, Nermina; Akagić, Asima

    2017-01-01

    The aim of this study was to investigate opportunities to improve the nutritional value of biscuits. Therefore, the content of β-glucans, physical, chemical and sensory properties of biscuits were determined in relation to a share of added barley flour and a baking temperature. Five different blends of barley and wheat were used for biscuit production: barley/wheat flours in combinations: 0/100; 25/75; 50/50; 75/25 and 100/0 according to the procedure described in AACC method 10-52. The temp...

  6. Yield improvement in barley by using gamma-irradiation

    International Nuclear Information System (INIS)

    Benamer, Ibrahim Mohammed

    1990-01-01

    Breeding work for barley improvement in Libya is very rare. All varieties grown here are foreign varieties. Yield per hectare is low compared with other countries having similar climatic conditions. Productivity, lodging, disease resistance, drought and salt tolerance are the main characteristics that need to be improved. A mutation breeding programme for barley improvement was initiated at the Tajoura Nuclear Research Centre in 1983-1984. The objectives of this programme are the development of new lines that could be used directly or indirectly in the development of new varieties. The locally adapted barley (Hordeum vulgare L.) variety ''California Mariout'' was used as a parent material. Grains with 14% moisture were exposed to 200 Gy gamma-ray from 60 Co source at the Centre. Three experiments were conducted during 1986-1989. From the first experiment (1986-1987), 62 mutant lines were evaluated. From the second and third experiments (1987-1989), only seven mutant lines were evaluated. In the 1988-1989 experiment, the crop was irrigated and fertilised with 0, 100 and 200 kgN/ha. Lodging score was low in 0 kgN/ha and increased significantly by the increase in N level. None of the mutant lines more lodging resistant than the parent or the control. However, yield differences were significant and the application of 100 kgN/ha increased the grain yield

  7. Genomic Prediction of Seed Quality Traits Using Advanced Barley Breeding Lines

    Science.gov (United States)

    Nielsen, Nanna Hellum; Jahoor, Ahmed; Jensen, Jens Due; Orabi, Jihad; Cericola, Fabio; Edriss, Vahid; Jensen, Just

    2016-01-01

    Genomic selection was recently introduced in plant breeding. The objective of this study was to develop genomic prediction for important seed quality parameters in spring barley. The aim was to predict breeding values without expensive phenotyping of large sets of lines. A total number of 309 advanced spring barley lines tested at two locations each with three replicates were phenotyped and each line was genotyped by Illumina iSelect 9Kbarley chip. The population originated from two different breeding sets, which were phenotyped in two different years. Phenotypic measurements considered were: seed size, protein content, protein yield, test weight and ergosterol content. A leave-one-out cross-validation strategy revealed high prediction accuracies ranging between 0.40 and 0.83. Prediction across breeding sets resulted in reduced accuracies compared to the leave-one-out strategy. Furthermore, predicting across full and half-sib-families resulted in reduced prediction accuracies. Additionally, predictions were performed using reduced marker sets and reduced training population sets. In conclusion, using less than 200 lines in the training set can result in low prediction accuracy, and the accuracy will then be highly dependent on the family structure of the selected training set. However, the results also indicate that relatively small training sets (200 lines) are sufficient for genomic prediction in commercial barley breeding. In addition, our results indicate a minimum marker set of 1,000 to decrease the risk of low prediction accuracy for some traits or some families. PMID:27783639

  8. Genomic Prediction of Seed Quality Traits Using Advanced Barley Breeding Lines.

    Directory of Open Access Journals (Sweden)

    Nanna Hellum Nielsen

    Full Text Available Genomic selection was recently introduced in plant breeding. The objective of this study was to develop genomic prediction for important seed quality parameters in spring barley. The aim was to predict breeding values without expensive phenotyping of large sets of lines. A total number of 309 advanced spring barley lines tested at two locations each with three replicates were phenotyped and each line was genotyped by Illumina iSelect 9Kbarley chip. The population originated from two different breeding sets, which were phenotyped in two different years. Phenotypic measurements considered were: seed size, protein content, protein yield, test weight and ergosterol content. A leave-one-out cross-validation strategy revealed high prediction accuracies ranging between 0.40 and 0.83. Prediction across breeding sets resulted in reduced accuracies compared to the leave-one-out strategy. Furthermore, predicting across full and half-sib-families resulted in reduced prediction accuracies. Additionally, predictions were performed using reduced marker sets and reduced training population sets. In conclusion, using less than 200 lines in the training set can result in low prediction accuracy, and the accuracy will then be highly dependent on the family structure of the selected training set. However, the results also indicate that relatively small training sets (200 lines are sufficient for genomic prediction in commercial barley breeding. In addition, our results indicate a minimum marker set of 1,000 to decrease the risk of low prediction accuracy for some traits or some families.

  9. Genetic differentiation and geographical Relationship of Asian barley landraces using SSRs

    Directory of Open Access Journals (Sweden)

    Rehan Naeem

    2011-01-01

    Full Text Available Genetic diversity in 403 morphologically distinct landraces of barley (Hordeum vulgare L. subsp. vulgare originating from seven geographical zones of Asia was studied using simple sequence repeat (SSR markers from regions of medium to high recombination in the barley genome. The seven polymorphic SSR markers representing each of the chromosomes chosen for the study revealed a high level of allelic diversity among the landraces. Genetic richness was highest in those from India, followed by Pakistan while it was lowest for Uzbekistan and Turkmenistan. Out of the 50 alleles detected, 15 were unique to a geographic region. Genetic diversity was highest for landraces from Pakistan (0.70 ± 0.06 and lowest for those from Uzbekistan (0.18 ± 0.17. Likewise, polymorphic information content (PIC was highest for Pakistan (0.67 ± 0.06 and lowest for Uzbekistan (0.15 ± 0.17. Diversity among groups was 40% compared to 60% within groups. Principal component analysis clustered the barley landraces into three groups to predict their domestication patterns. In total 51.58% of the variation was explained by the first two principal components of the barley germplasm. Pakistan landraces were clustered separately from those of India, Iran, Nepal and Iraq, whereas those from Turkmenistan and Uzbekistan were clustered together into a separate group.

  10. Effect of Climate and Agricultural Land Use Changes on UK Feed Barley Production and Food Security to the 2050s

    Directory of Open Access Journals (Sweden)

    David O. Yawson

    2017-10-01

    Full Text Available Currently, the UK has a high self-sufficiency rate in barley production. This paper assessed the effects of projected climate and land use changes on feed barley production and, consequently, on meat supply in the UK from the 2030s to the 2050s. Total barley production under projected land use and climate changes ranged from 4.6 million tons in the 2030s to 9.0 million tons in the 2050s. From these, the projected feed barley supply ranged from approximately 2.3 to 4.6 million tons from the 2030s to the 2050s, respectively. The results indicate that while UK spring barley production will thrive under, and benefit from climate change, total land area allocated to barley production will ultimately determine self-sufficiency. Without expansion in the area of land and/or further significant increases in yields, the UK may face large deficits in domestic feed barley production and, for that matter, meat supply in the future. Hence, agricultural and food security policy needs to consider, principally, the effect of agricultural land use change on key crops, such as barley. Even though the UK can import feed barley or meat to address the deficits observed in this study, the question that needs to be addressed is where all that import will come from.

  11. Physiological effects and transport of 24-epibrassinolide in heat-stressed barley

    Czech Academy of Sciences Publication Activity Database

    Janeczko, A.; Oklešťková, Jana; Pociecha, E.; Koscielniak, J.; Mirek, M.

    2011-01-01

    Roč. 33, č. 4 (2011), s. 1249-1259 ISSN 0137-5881 R&D Projects: GA AV ČR IAA400550801; GA ČR GA301/08/1649 Institutional research plan: CEZ:AV0Z50380511 Keywords : Brassinosteroid transport * Dark respiration * Hordeum vulgare L * PSII efficiency * Metabolic activity Subject RIV: EF - Botanics Impact factor: 1.639, year: 2011

  12. Ethnobotany, diverse food uses, claimed health benefits and implications on conservation of barley landraces in North Eastern Ethiopia highlands

    Directory of Open Access Journals (Sweden)

    Sopade Peter A

    2011-06-01

    Full Text Available Abstract Background Barley is the number one food crop in the highland parts of North Eastern Ethiopia produced by subsistence farmers grown as landraces. Information on the ethnobotany, food utilization and maintenance of barley landraces is valuable to design and plan germplasm conservation strategies as well as to improve food utilization of barley. Methods A study, involving field visits and household interviews, was conducted in three administrative zones. Eleven districts from the three zones, five kebeles in each district and five households from each kebele were visited to gather information on the ethnobotany, the utilization of barley and how barley end-uses influence the maintenance of landrace diversity. Results According to farmers, barley is the "king of crops" and it is put for diverse uses with more than 20 types of barley dishes and beverages reportedly prepared in the study area. The products are prepared from either boiled/roasted whole grain, raw- and roasted-milled grain, or cracked grain as main, side, ceremonial, and recuperating dishes. The various barley traditional foods have perceived qualities and health benefits by the farmers. Fifteen diverse barley landraces were reported by farmers, and the ethnobotany of the landraces reflects key quantitative and qualitative traits. Some landraces that are preferred for their culinary qualities are being marginalized due to moisture shortage and soil degradation. Conclusions Farmers' preference of different landraces for various end-use qualities is one of the important factors that affect the decision process of landraces maintenance, which in turn affect genetic diversity. Further studies on improving maintenance of landraces, developing suitable varieties and improving the food utilization of barley including processing techniques could contribute to food security of the area.

  13. Giemsa C-banding of Barley Chromosomes. IV. Chromosomal Constitution of Autotetraploid Barley

    DEFF Research Database (Denmark)

    Linde-Laursen, Ib

    1984-01-01

    The progeny of an autotetraploid barley plant (C1) consisted of 45 tetraploids and 33 aneuploids. Giemsa C-banding was used to identify each of the chromosomes in 20 euploid and 31 aneuploid C2--seedlings, and in 11 C3--offspring of aneuploid C2--plants. The euploid C2--seedlings all had four...... homologues of each of the chromosomes. The aneuploid C2--seedlings were fairly equally distributed on hypo-and hyperploids, and on the seven chromosome groups. This suggests that a particular chromosome is lost or gained at random in gametes and embryos. The 11 C3--seedlings comprised seven true euploids......, one seedling with 2n=28 having an extra chromosome 6 and missing one chromosome 3, and three seedlings with 2n=29. The chromosomal composition of aneuploid C3--seedlings did not reflect that of their aneuploid C2--parents with respect to missing or extra chromosomes. Two hypohexaploid C2--seedlings...

  14. Effects of gamma irradiation of barley and malt on malting quality

    International Nuclear Information System (INIS)

    Köksel, H.; ÇElik, S.; ÖZkara, R.

    1998-01-01

    Two two-rowed barley cultivars, Tokak and Clerine, were irradiated at two different dose ranges (0.05–0.75 kGy and 0.5–5.0 kGy) using a 60Co source. Irradiation of barley at the medium levels before malting had detrimental effects on most of the malt quality criteria. The detrimental effects of irradiation was lower at doses up to 0.25 kGy. Irradiation of malt samples caused either slight or no deterioration of quality characteristics

  15. Evolutionary history of barley cultivation in Europe revealed by genetic analysis of extant landraces

    Directory of Open Access Journals (Sweden)

    Jones Huw

    2011-11-01

    Full Text Available Abstract Background Understanding the evolution of cultivated barley is important for two reasons. First, the evolutionary relationships between different landraces might provide information on the spread and subsequent development of barley cultivation, including the adaptation of the crop to new environments and its response to human selection. Second, evolutionary information would enable landraces with similar traits but different genetic backgrounds to be identified, providing alternative strategies for the introduction of these traits into modern germplasm. Results The evolutionary relationships between 651 barley landraces were inferred from the genotypes for 24 microsatellites. The landraces could be divided into nine populations, each with a different geographical distribution. Comparisons with ear row number, caryopsis structure, seasonal growth habit and flowering time revealed a degree of association between population structure and phenotype, and analysis of climate variables indicated that the landraces are adapted, at least to some extent, to their environment. Human selection and/or environmental adaptation may therefore have played a role in the origin and/or maintenance of one or more of the barley landrace populations. There was also evidence that at least some of the population structure derived from geographical partitioning set up during the initial spread of barley cultivation into Europe, or reflected the later introduction of novel varieties. In particular, three closely-related populations were made up almost entirely of plants with the daylength nonresponsive version of the photoperiod response gene PPD-H1, conferring adaptation to the long annual growth season of northern Europe. These three populations probably originated in the eastern Fertile Crescent and entered Europe after the initial spread of agriculture. Conclusions The discovery of population structure, combined with knowledge of associated phenotypes and

  16. PCR-identification of a Nicotiana plumbaginifolia cDNA homologous to the high-affinity nitrate transporters of the crnA family.

    Science.gov (United States)

    Quesada, A; Krapp, A; Trueman, L J; Daniel-Vedele, F; Fernández, E; Forde, B G; Caboche, M

    1997-05-01

    A family of high-affinity nitrate transporters has been identified in Aspergillus nidulans and Chlamydomonas reinhardtii, and recently homologues of this family have been cloned from a higher plant (barley). Based on six of the peptide sequences most strongly conserved between the barley and C. reinhardtii polypeptides, a set of degenerate primers was designed to permit amplification of the corresponding genes from other plant species. The utility of these primers was demonstrated by RT-PCR with cDNA made from poly(A)+ RNA from barley, C. reinhardtii and Nicotiana plumbaginifolia. A PCR fragment amplified from N. plumbaginifolia was used as probe to isolate a full-length cDNA clone which encodes a protein, NRT2;1Np, that is closely related to the previously isolated crnA homologue from barley. Genomic Southern blots indicated that there are only 1 or 2 members of the Nrt2 gene family in N. plumbaginifolia. Northern blotting showed that the Nrt2 transcripts are most strongly expressed in roots. The effects of external treatments with different N sources showed that the regulation of the Nrt2 gene(s) is very similar to that reported for nitrate reductase and nitrite reductase genes: their expression was strongly induced by nitrate but was repressed when reduced forms of N were supplied to the roots.

  17. Study of Barley Grain Molecular Structure for Ruminants Using DRIFT, FTIR-ATR and Synchrotron Radiation Infrared Microspectroscopy (SR-IMS): A Review

    International Nuclear Information System (INIS)

    Yu Peiqiang

    2012-01-01

    Barley inherent structures are highly associated with nutrient utilization and availability in both humans and animals. Barley has different degradation kinetics compared with other cereal grains. It has a relatively higher degradation rate and extent, which often cause digestive disorder in the rumen. Therefore understanding barley inherent structure at cellular and molecular levels and processing-induced structure changes is important, because we can manipulate barley inherent structures and digestive behaviors. Several molecular spectroscopy techniques can be used to detect barley inherent structures at cellular and molecular levels. This article reviews several applications of the IR molecular spectral bioanalytical techniques - DRIFT, FT/IR-ATR and SR-IMS for barley chemistry, molecular structure and molecular nutrition research

  18. Lumbricus terrestris L. activity increases the availability of metals and their accumulation in maize and barley

    International Nuclear Information System (INIS)

    Ruiz, E.; Alonso-Azcarate, J.; Rodriguez, L.

    2011-01-01

    The effect of the earthworm Lumbricus terrestris L. on metal availability in two mining soils was assessed by means of chemical extraction methods and a pot experiment using crop plants. Results from single and sequential extractions showed that L. terrestris had a slight effect on metal fractionation in the studied soils: only metals bound to the soil organic matter were significantly increased in some cases. However, we found that L. terrestris significantly increased root, shoot and total Pb and Zn concentrations in maize and barley for the soil with the highest concentrations of total and available metals. Specifically, shoot Pb concentration was increased by a factor of 7.5 and 3.9 for maize and barley, respectively, while shoot Zn concentration was increased by a factor of 3.7 and 1.7 for maize and barley, respectively. Our results demonstrated that earthworm activity increases the bioavailability of metals in soils. - Research highlights: → Lumbricus terrestris L. activity increases the bioavailability of metals in soils. → Earthworm activity can significantly increase total, shoot and root metal concentrations for crop plants. → Both bioassays and chemical extraction methods are necessary for assessing the bioavailability of metals in contaminated soils. - Lumbricus terrestris L. activity increases the bioavailability of metals in soils and total, shoot and root metal concentrations for maize and barley.

  19. Lumbricus terrestris L. activity increases the availability of metals and their accumulation in maize and barley

    Energy Technology Data Exchange (ETDEWEB)

    Ruiz, E. [Department of Chemical Engineering, School of Civil Engineering, University of Castilla-La Mancha, Avenida Camilo Jose Cela, s/n, 13071 Ciudad Real (Spain); Alonso-Azcarate, J. [Department of Physical Chemistry, Faculty of Environmental Sciences, University of Castilla-La Mancha, Avenida Carlos III, s/n, 45071 Toledo (Spain); Rodriguez, L., E-mail: Luis.Rromero@uclm.es [Department of Chemical Engineering, School of Civil Engineering, University of Castilla-La Mancha, Avenida Camilo Jose Cela, s/n, 13071 Ciudad Real (Spain)

    2011-03-15

    The effect of the earthworm Lumbricus terrestris L. on metal availability in two mining soils was assessed by means of chemical extraction methods and a pot experiment using crop plants. Results from single and sequential extractions showed that L. terrestris had a slight effect on metal fractionation in the studied soils: only metals bound to the soil organic matter were significantly increased in some cases. However, we found that L. terrestris significantly increased root, shoot and total Pb and Zn concentrations in maize and barley for the soil with the highest concentrations of total and available metals. Specifically, shoot Pb concentration was increased by a factor of 7.5 and 3.9 for maize and barley, respectively, while shoot Zn concentration was increased by a factor of 3.7 and 1.7 for maize and barley, respectively. Our results demonstrated that earthworm activity increases the bioavailability of metals in soils. - Research highlights: > Lumbricus terrestris L. activity increases the bioavailability of metals in soils. > Earthworm activity can significantly increase total, shoot and root metal concentrations for crop plants. > Both bioassays and chemical extraction methods are necessary for assessing the bioavailability of metals in contaminated soils. - Lumbricus terrestris L. activity increases the bioavailability of metals in soils and total, shoot and root metal concentrations for maize and barley.

  20. Phosphorus acquisition by barley (Hordeum vulgare L. at suboptimal soil temperature

    Directory of Open Access Journals (Sweden)

    Kari Ylivainio

    2012-12-01

    Full Text Available We studied the effects of soil temperature (8 ºC and 15 ºC on barley growth, barley phosphorus (P uptake and soil P solubility. Barley was grown in a pot experiment in two soils with different P fertilization histories for 22 years. The availability of P was estimated by using 33P-labeled fertilizer and calculating L-values. After cultivation for 22 years at ambient soil temperature without P fertilization (-P, soil L-value had decreased compared to soil that received annual P fertilization (P+. Low soil temperature further reduced the L-values, more in the -P soil than in the +P soil. Our results demonstrated that P fertilization can only partially ameliorate poor growth at low soil temperatures. Thus, applying ample fertilization to compensate for poor growth at low soil temperatures would increase the P content and solubility in the soil, but plant uptake would remain inhibited by cold.

  1. Silicon efflux transporters isolated from two pumpkin cultivars contrasting in Si uptake

    Science.gov (United States)

    Mitani-Ueno, Namiki; Yamaji, Naoki

    2011-01-01

    The accumulation of silicon (Si) differs greatly with plant species and cultivars due to different ability of the roots to take up Si. In Si accumulating plants such as rice, barley and maize, Si uptake is mediated by the influx (Lsi1) and efflux (Lsi2) transporters. Here we report isolation and functional analysis of two Si efflux transporters (CmLsi2-1 and CmLsi2-2) from two pumpkin (Cucurbita moschata Duch.) cultivars contrasting in Si uptake. These cultivars are used for rootstocks of bloom and bloomless cucumber, respectively. Different from mutations in the Si influx transporter CmLsi1, there was no difference in the sequence of either CmLsi2 between two cultivars. Both CmLsi2-1 and CmLsi2-2 showed an efflux transport activity for Si and they were expressed in both the roots and shoots. These results confirm our previous finding that mutation in CmLsi1, but not in CmLsi2-1 and CmLsi2-2 are responsible for bloomless phenotype resulting from low Si uptake. PMID:21617377

  2. An Integrated Resource for Barley Linkage Map and Malting Quality QTL Alignment

    Directory of Open Access Journals (Sweden)

    Péter Szűcs

    2009-07-01

    Full Text Available Barley ( L. is an economically important model plant for genetics research. Barley is currently served by an increasingly comprehensive set of tools for genetic analysis that have recently been augmented by high-density genetic linkage maps built with gene-based single nucleotide polymorphisms (SNPs. These SNP-based maps need to be aligned with earlier generation maps, which were used for quantitative trait locus (QTL detection, by integrating multiple types of markers into a single map. A 2383 locus linkage map was developed using the Oregon Wolfe Barley (OWB Mapping Population to allow such alignments. The map is based on 1472 SNP, 722 DArT, and 189 prior markers which include morphological, simple sequence repeat (SSR, Restriction Fragment Length Polymorphism (RFLP, and sequence tagged site (STS loci. This new OWB map forms, therefore, a useful bridge between high-density SNP-only maps and prior QTL reports. The application of this bridge concept is shown using malting-quality QTLs from multiple mapping populations, as reported in the literature. This is the first step toward developing a Barley QTL Community Curation workbook for all types of QTLs and maps, on the GrainGenes website. The OWB-related resources are available at OWB Data and GrainGenes Tools (OWB-DGGT (.

  3. Characterization of senscence-associated NAC transcription factors in Barley (Hordeum Vulgare L.)

    DEFF Research Database (Denmark)

    Podzimska, Dagmara Agata

    , such as yield, biomass production and nutrient quality, and NAC (NAM, ATAF1/2 and CUC2) transcription factors are promising targets for the breeding. The aim of this thesis was thus to assess the role of NAC transcription factors in regulation of senescence in barley (Hordeum vulgare L.) and to contribute...

  4. Inhibition of barley grain germination by light

    NARCIS (Netherlands)

    Roth-Bejerano, N.; Meulen, R.M. van der; Wang, M.

    1996-01-01

    Intact grains of barley (Hordeum distichum cv. Triumph) germinated rapidly in the dark or when exposed to brief daily light breaks in the temperature range 15-25°C, although germination proceeded less rapidly at low temperatures. Prolonged illumination (16 h/day) or continuous light inhibited

  5. Accumulation of mixed linkage (1¿3) (1¿4)-ß-D-glucan during grain filling in barley

    DEFF Research Database (Denmark)

    Seefeldt, Helene Fast; Blennow, Per Gunnar Andreas; Jespersen, Birthe P Møller

    2009-01-01

    18% BG (w/w) dry matter 30 days after flowering (DAF), seemingly compensating for a decreased synthesis of starch. The spectral information of the barley flour was compared to pure BG spectra and partial least squares regression (PLS) models were constructed for calibration to BG content. Informative...... the normal control Cork were studied. The Cork and lys3a genotypes showed a linear BG accumulation throughout the grain filling to reach a maximum of approximately 6 and 4% BG (w/w) dry matter, respectively. However, lys5f mutant exhibited an exponential increase in BG synthesis to a maximum of approximately...

  6. Allelic barley MLA immune receptors recognize sequence-unrelated avirulence effectors of the powdery mildew pathogen.

    Science.gov (United States)

    Lu, Xunli; Kracher, Barbara; Saur, Isabel M L; Bauer, Saskia; Ellwood, Simon R; Wise, Roger; Yaeno, Takashi; Maekawa, Takaki; Schulze-Lefert, Paul

    2016-10-18

    Disease-resistance genes encoding intracellular nucleotide-binding domain and leucine-rich repeat proteins (NLRs) are key components of the plant innate immune system and typically detect the presence of isolate-specific avirulence (AVR) effectors from pathogens. NLR genes define the fastest-evolving gene family of flowering plants and are often arranged in gene clusters containing multiple paralogs, contributing to copy number and allele-specific NLR variation within a host species. Barley mildew resistance locus a (Mla) has been subject to extensive functional diversification, resulting in allelic resistance specificities each recognizing a cognate, but largely unidentified, AVR a gene of the powdery mildew fungus, Blumeria graminis f. sp. hordei (Bgh). We applied a transcriptome-wide association study among 17 Bgh isolates containing different AVR a genes and identified AVR a1 and AVR a13 , encoding candidate-secreted effectors recognized by Mla1 and Mla13 alleles, respectively. Transient expression of the effector genes in barley leaves or protoplasts was sufficient to trigger Mla1 or Mla13 allele-specific cell death, a hallmark of NLR receptor-mediated immunity. AVR a1 and AVR a13 are phylogenetically unrelated, demonstrating that certain allelic MLA receptors evolved to recognize sequence-unrelated effectors. They are ancient effectors because corresponding loci are present in wheat powdery mildew. AVR A1 recognition by barley MLA1 is retained in transgenic Arabidopsis, indicating that AVR A1 directly binds MLA1 or that its recognition involves an evolutionarily conserved host target of AVR A1 Furthermore, analysis of transcriptome-wide sequence variation among the Bgh isolates provides evidence for Bgh population structure that is partially linked to geographic isolation.

  7. Soil fertility, nutrition and yield of maize and barley with gypsum application on soil surface in no-till

    Directory of Open Access Journals (Sweden)

    Leandro Michalovicz

    2014-10-01

    Full Text Available Annual crop yield and nutrition have shown differentiated responses to modifications in soil chemical properties brought about by gypsum application. The aim of this study was to evaluate the effect of gypsum application rates on the chemical properties of a Latossolo Bruno (Clayey Oxisol, as well as on the nutrition and yield of a maize-barley succession under no-till. The experiment was set up in November 2009 in Guarapuava, Parana, Brazil, applying gypsum rates of 0.0, 1.5, 3.0, 4.5, and 6.0 Mg ha-1 to the soil surface upon sowing maize, with crop succession of barley. Gypsum application decreased the levels of Al3+ and Mg2+ in the 0.0-0.1 m layer and increased soil pH in the layers from 0.2-0.6 m depth. Gypsum application has increased the levels of Ca2+ in all soil layers up to 0.6 m, and the levels of S-SO4(2- up to 0.8 m. In both crops, the leaf concentrations of Ca and S were increased while Mg concentrations have decreased as a function of gypsum rates. There was also an effect of gypsum rates on grain yield, with a quadratic response of maize and a linear increase for barley. Yield increases were up to 11 and 12 % in relation to control for the maximum technical efficiency (MTE rates of 3.8 and 6.0 Mg ha-1 of gypsum, respectively. Gypsum application improved soil fertility in the profile, especially in the subsurface, as well as plant nutrition, increasing the yields of maize and barley.

  8. Transformation of barley (Hordeum vulgare L.) by Agrobacterium tumefaciens infection of in vitro cultured ovules

    DEFF Research Database (Denmark)

    Holme, Inger; Brinch-Pedersen, Henrik; Lange, Mette

    2012-01-01

    Agrobacterium-mediated transformation of in vitro cultured barley ovules is an attractive alternative to well-established barley transformation methods of immature embryos. The ovule culture system can be used for transformation with and without selection and has successfully been used to transfo...

  9. Modification of mutation process in radiated seeds oat (Avena sativa L.) and barley (Hordeum vulgare L.)

    International Nuclear Information System (INIS)

    Shishlov, M.P.

    2007-01-01

    The results of a long-term investigations for experimental mutagenesis of oats and barley are reported in the article. It was found the problem of modification of a mutant process to spread spectrum and increase the general induction frequency and display of macro- and micro mutations. Application as modificators of salts the heavy metals, inhibitors of nuclein, protein synthesis and energy returned processes and also doses spectrum and its strength of gamma-radiation and ultrasound allowed to increase the general frequency of mutant induction of barley and oats on 1-2 order. On the base of evaluation of correlative links between the attributes variability in M1 and M2 generations it was formulated a conception of guarantied creation of mutant forms of the grain crops. (authors)

  10. Survey on acrylamide in roasted coffee and barley and in potato crisps sold in Italy by a LC-MS/MS method.

    Science.gov (United States)

    Bertuzzi, Terenzio; Rastelli, Silvia; Mulazzi, Annalisa; Pietri, Amedeo

    2017-12-01

    A survey on the occurrence of acrylamide (AA) in roasted coffee, barley, and potato crisps was carried out using an intra-lab validated liquid chromatography (LC)-MS (mass spectrometry)/MS method. Over the years 2015-2016, 66 samples of coffee, 22 of roasted barley, and 22 of potato crisps were collected from retail outlets in Italy. AA was detected in almost all samples. In roasted coffee, the level exceeded 450 µg kg -1 , the limit recommended by the European Commission (EC), in 36.4% of the samples. In roasted barley, mean contamination was slightly lower than in coffee and no sample exceeded the EC limit of 2000 µg kg -1 . The AA contamination in potato crisps was remarkable. A percentage of 36.4 (n = 8) showed a value higher than the EC limit of 1000 µg kg -1 . Considering the average consumption of coffee and potato crisps by Italian people, AA exposure is significant and should be decreased.

  11. Localisation of genes for resistance against ¤Blumeria graminis¤ f.sp. ¤hordei¤ and ¤Puccinia graminis¤ in a cross between a barley cultivar and a wild barley (¤Hordeum vulgare¤ ssp. ¤spontaneum¤) line

    DEFF Research Database (Denmark)

    Backes, G.; Madsen, L.H.; Jaiser, H.

    2003-01-01

    The aims of this investigation have been to map new (quantitative) resistance genes against powdery mildew, caused by Blumeria graminis f.sp. hordei L., and leaf rust, caused by Puccinia hordei L., in a cross between the barley (Hordeum vulgare ssp. vulgare) cultivar "Vada" and the wild barley...... (Hordeum vulgare ssp. spontaneum) line "1B-87" originating from Israel. The population consisted of 121 recombinant inbred lines. Resistance against leaf rust and powdery mildew was tested on detached leaves. The leaf rust isolate "I-80" and the powdery mildew isolate "Va-4", respectively, were used...

  12. Characterizing the pathotype structure of barley powdery mildew and effectiveness of resistance genes to this pathogen in Kazakhstan.

    Science.gov (United States)

    Rsaliyev, Aralbek; Pahratdinova, Zhazira; Rsaliyev, Shynbolat

    2017-11-14

    Powdery mildew of barley is a wind-borne and obligate biotrophic pathogen, which ranks among the most widespread barley pathogens worldwide. However, purposeful research towards studying the structure of the barley powdery mildew populations, of their virulence and of effectiveness of certain resistance genes against the infection was not conducted in Kazakhstan till present time. This paper is the first to describe characteristics of the pathotype structure of Blumeria graminis f.sp. hordei (Bgh) population and effectiveness of resistance genes in two regions of barley cultivation in the republic. One hundred and seven isolates of Bgh were obtained from seven populations occurring on cultivated barley at two geographically locations in Kazakhstan during 2015 and 2016. Their virulence frequency was determined on 17 differential lines Pallas. All isolates were virulent on the resistance gene Mla8 and avirulent for the resistance genes Mla9, Mla1 + MlaAl2, Mla6 + Mla14, Mla13 + MlRu3, Mla7 + MlNo3, Mla10 + MlDu2, Mla13 + MlRu3 and Mlo-5. The frequencies of isolates overcoming the genes Mla3, Mla22, Mlat Mlg + MlCP and Mla12 + MlEm2 were 0.0-33.33%, and frequencies of isolates overcoming the genes Mlra, Mlk, MlLa and Mlh ranged from 10.0 to 78.6%. Based on reactions of differential lines possessing the genes Mla22, Mlra, Mlk, Mlat, MlLa and Mlh, pathotypes were identified. In total, 23 pathotypes with virulence complexity ranging from 1 to 6 were identified. During both years in all populations of South Kazakhstan and Zhambyl regions pathotypes 24 and 64 mainly prevailed. Obtained data suggest that low similarity of populations Bgh in Kazakhstan to European, African, Australian and South-East Asian populations. The present study provides a foundation for future studies on the pathogenic variability within of Bgh populations in Kazakhstan and addresses the knowledge gap on the virulence structure of Bgh in Central Asia. Complete effectiveness of the

  13. Estimating Leaching Requirements for Barley Growth under Saline Irrigation

    Directory of Open Access Journals (Sweden)

    Ahmed Al-Busaidi

    2012-01-01

    Full Text Available The utilization of marginal water resources for agriculture is receiving considerable attention. The lands irrigated with saline water are required to reduce salt accumulations through leaching and/or drainage practices. A field experiment was carried out to investigate the effect of saline irrigation and leaching fraction on barley (Hordeum vulgare L. growth. For this purpose highly saline water was diluted to the salinity levels of 3, 6 and 9 dS m-1 and applied by drip irrigation at 0.0, 0.15, 0.20 and 0.25 leaching fractions (LF. The results of the experiment showed that both quantity and quality of water regulated salts distribution within the soil in the following manner: a the salts were found higher near or immediate below the soil surface; b an enhanced LF carried more salts down the soil horizon but there was no significant difference in plant yield between different treatments of leaching fractions. Salinity of water significantly impaired barley growth. The good drainage of sandy soil enhanced the leaching process and minimized the differences between leaching fractions. The increment in saline treatments (3, 6 and 9 dS m-1 added more salts and stressed plant growth. However, the conjunctive use of marginal water at proportional LF could be effective in enhancing the yield potential of crops in water-scarce areas.

  14. Nematode assemblages in the rhizosphere of spring barley (Hordeum vulgare L.) depended on fertilisation and plant growth phase

    DEFF Research Database (Denmark)

    Madsen, Mette Vestergård

    2004-01-01

    rhizosphere; nitrogen and phosphorus fertilisation; nematode assemblages; plant parasites; barley......rhizosphere; nitrogen and phosphorus fertilisation; nematode assemblages; plant parasites; barley...

  15. [Effects of phosphorus sources on phosphorus fractions in rhizosphere soil of wild barley genotypes with high phosphorus utilization efficiency].

    Science.gov (United States)

    Cai, Qiu-Yan; Zhang, Xi-Zhou; Li, Ting-Xuan; Chen, Guang-Deng

    2014-11-01

    High P-efficiency (IS-22-30, IS-22-25) and low P-efficiency (IS-07-07) wild barley cultivars were chosen to evaluate characteristics of phosphorus uptake and utilization, and properties of phosphorus fractions in rhizosphere and non-rhizosphere in a pot experiment with 0 (CK) and 30 mg P · kg(-1) supplied as only Pi (KH2PO4), only Po (phytate) or Pi + Po (KH2PO4+ phytate). The results showed that dry matter and phosphorus accumulation of wild barley in the different treatments was ranked as Pi > Pi + Po > Po > CK. In addition, dry matter yield and phosphorus uptake of wild barley with high P-efficiency exhibited significantly greater than that with low P-efficiency. The concentration of soil available phosphorus was significantly different after application of different phosphorus sources, which was presented as Pi > Pi + Po > Po. The concentration of soil available phosphorus in high P-efficiency wild barley was significantly higher than that of low P-efficiency in the rhizosphere soil. There was a deficit in rhizosphere available phosphorus of high P-efficiency wild barley, especially in Pi and Pi+Po treatments. The inorganic phosphorus fractions increased with the increasing Pi treatment, and the concentrations of inorganic phosphorus fractions in soil were sorted as follows: Ca10-P > O-P > Fe-P > Al-P > Ca2-P > Ca8-P. The contents of Ca2-P and Ca8-P for high P-efficiency wild barley showed deficits in rhizosphere soil under each phosphorus source treatment. In addition, enrichment of Al-P and Fe-P was observed in Pi treatment in rhizosphere soil. The concentrations of organic phosphorus fractions in soil were sorted as follows: moderate labile organic phosphorus > moderate resistant, resistant organic phosphorus > labile organic phosphorus. The labile and moderate labile organic phosphorus enriched in rhizosphere soil and the greatest enrichment appeared in Pi treatment. Furthermore, the concentrations of moderate resistant organic phosphorus and resistant

  16. Monitoring of barley starch amylolysis by gravitational field flow fractionation and MALDI-TOF MS

    Czech Academy of Sciences Publication Activity Database

    Mazanec, Karel; Dyčka, Filip; Bobálová, Janette

    2011-01-01

    Roč. 91, č. 15 (2011), s. 2756-2761 ISSN 0022-5142 R&D Projects: GA MŠk 1M0570; GA MŠk 1M06030; GA MŠk 2B06037 Institutional research plan: CEZ:AV0Z40310501 Keywords : barley * starch * malting process Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 1.436, year: 2011

  17. The dehydration stress of couch grass is associated with its lipid metabolism, the induction of transporters and the re-programming of development coordinated by ABA.

    Science.gov (United States)

    Janská, Anna; Svoboda, Pavel; Spiwok, Vojtěch; Kučera, Ladislav; Ovesná, Jaroslava

    2018-05-02

    The wild relatives of crop species represent a potentially valuable source of novel genetic variation, particularly in the context of improving the crop's level of tolerance to abiotic stress. The mechanistic basis of these tolerances remains largely unexplored. Here, the focus was to characterize the transcriptomic response of the nodes (meristematic tissue) of couch grass (a relative of barley) to dehydration stress, and to compare it to that of the barley crown formed by both a drought tolerant and a drought sensitive barley cultivar. Many of the genes up-regulated in the nodes by the stress were homologs of genes known to be mediated by abscisic acid during the response to drought, or were linked to either development or lipid metabolism. Transporters also featured prominently, as did genes acting on root architecture. The resilience of the couch grass node arise from both their capacity to develop an altered, more effective root architecture, but also from their formation of a lipid barrier on their outer surface and their ability to modify both their lipid metabolism and transporter activity when challenged by dehydration stress. Our analysis revealed the nature of dehydration stress response in couch grass. We suggested the tolerance is associated with lipid metabolism, the induction of transporters and the re-programming of development coordinated by ABA. We also proved the applicability of barley microarray for couch grass stress-response analysis.

  18. Characterization of Gene Candidates for Vacuolar Sodium Transport from Hordeum Vulgare

    KAUST Repository

    Scheu, Arne Hagen August

    2017-01-01

    Various potential causes are discussed, including inaccuracies in the genome resource used as reference for primer design and issues inherent to the model system. Finally, I make suggestions on how to proceed to further characterize the candidate genes and hopefully identify novel sodium transporters from barley.

  19. Wheat and barley seed system in Syria: How diverse are wheat and barley varieties and landraces from farmer’s fields?

    NARCIS (Netherlands)

    Bishaw, Z.; Struik, P.C.; Gastel, van A.J.G.

    2015-01-01

    The present study described the diversity of wheat and barley varieties and landraces available in farmer’s fields in Syria using different indicators. Analysis of spatial and temporal diversity and coefficient of parentage along with measurements of agronomic and morphological traits were employed

  20. Resistance in winter barley against Ramularia leaf spot

    DEFF Research Database (Denmark)

    Hjortshøj, Rasmus Lund

    Ramularia leaf spot is an emerging disease in barley caused by R. collo-cygni. At present little is known about the resistance mechanisms carried out by the host plant to avoid disease development. Nor is the lifecycle of the fungus or its populations structure fully understood. To gain insight....... fulvum-tomato and S. tritici-wheat in order to find modelsystems to enhance interpretation of results from R. collo-cygni-barley interaction. Results from the mapping showed that resistance to Ramularia leaf spot is controlled by a number of QTL’s, some of which co-locate with other physiological traits....... The populations further segregated for physiological leaf spots, a phenomenon related to the leaf damage imposed by Rubellin, although, resistance to physiological leafspots appeared to come from the Ramularia leaf spot susceptible parent. The toxin assay further supported this result as the genotypes susceptible...

  1. Identification of QTL conferring resistance to stripe rust (Puccinia striiformis f. sp. hordei) and leaf rust (Puccinia hordei) in barley using nested association mapping (NAM)

    Science.gov (United States)

    Vatter, Thomas; Maurer, Andreas; Perovic, Dragan; Kopahnke, Doris; Pillen, Klaus

    2018-01-01

    The biotrophic rust fungi Puccinia hordei and Puccinia striiformis are important barley pathogens with the potential to cause high yield losses through an epidemic spread. The identification of QTL conferring resistance to these pathogens is the basis for targeted breeding approaches aiming to improve stripe rust and leaf rust resistance of modern cultivars. Exploiting the allelic richness of wild barley accessions proved to be a valuable tool to broaden the genetic base of resistance of barley cultivars. In this study, SNP-based nested association mapping (NAM) was performed to map stripe rust and leaf rust resistance QTL in the barley NAM population HEB-25, comprising 1,420 lines derived from BC1S3 generation. By scoring the percentage of infected leaf area, followed by calculation of the area under the disease progress curve and the average ordinate during a two-year field trial, a large variability of resistance across and within HEB-25 families was observed. NAM based on 5,715 informative SNPs resulted in the identification of twelve and eleven robust QTL for resistance against stripe rust and leaf rust, respectively. Out of these, eight QTL for stripe rust and two QTL for leaf rust are considered novel showing no overlap with previously reported resistance QTL. Overall, resistance to both pathogens in HEB-25 is most likely due to the accumulation of numerous small effect loci. In addition, the NAM results indicate that the 25 wild donor QTL alleles present in HEB-25 strongly differ in regard to their individual effect on rust resistance. In future, the NAM concept will allow to select and combine individual wild barley alleles from different HEB parents to increase rust resistance in barley. The HEB-25 results will support to unravel the genetic basis of rust resistance in barley, and to improve resistance against stripe rust and leaf rust of modern barley cultivars. PMID:29370232

  2. Identification of QTL conferring resistance to stripe rust (Puccinia striiformis f. sp. hordei and leaf rust (Puccinia hordei in barley using nested association mapping (NAM.

    Directory of Open Access Journals (Sweden)

    Thomas Vatter

    Full Text Available The biotrophic rust fungi Puccinia hordei and Puccinia striiformis are important barley pathogens with the potential to cause high yield losses through an epidemic spread. The identification of QTL conferring resistance to these pathogens is the basis for targeted breeding approaches aiming to improve stripe rust and leaf rust resistance of modern cultivars. Exploiting the allelic richness of wild barley accessions proved to be a valuable tool to broaden the genetic base of resistance of barley cultivars. In this study, SNP-based nested association mapping (NAM was performed to map stripe rust and leaf rust resistance QTL in the barley NAM population HEB-25, comprising 1,420 lines derived from BC1S3 generation. By scoring the percentage of infected leaf area, followed by calculation of the area under the disease progress curve and the average ordinate during a two-year field trial, a large variability of resistance across and within HEB-25 families was observed. NAM based on 5,715 informative SNPs resulted in the identification of twelve and eleven robust QTL for resistance against stripe rust and leaf rust, respectively. Out of these, eight QTL for stripe rust and two QTL for leaf rust are considered novel showing no overlap with previously reported resistance QTL. Overall, resistance to both pathogens in HEB-25 is most likely due to the accumulation of numerous small effect loci. In addition, the NAM results indicate that the 25 wild donor QTL alleles present in HEB-25 strongly differ in regard to their individual effect on rust resistance. In future, the NAM concept will allow to select and combine individual wild barley alleles from different HEB parents to increase rust resistance in barley. The HEB-25 results will support to unravel the genetic basis of rust resistance in barley, and to improve resistance against stripe rust and leaf rust of modern barley cultivars.

  3. Drivers of phosphorus uptake by barley following secondary resource application

    Directory of Open Access Journals (Sweden)

    Eva eBrod

    2016-05-01

    Full Text Available Minable rock phosphate is a finite resource. Replacing mineral phosphorus (P fertilizer with P-rich secondary resources is one way to manage P more efficiently, but the importance of physicochemical and microbial soil processes induced by secondary resources for plant P uptake are still poorly understood. Using radioactive labelling techniques, the fertilization effects of dairy manure, fish sludge, meat bone meal and wood ash were studied as P uptake by barley after 44 days and compared with those of water-soluble mineral P (MinP and an unfertilized control (NoP in a pot experiment with an agricultural soil containing little available P at two soil pH levels, approximately pH 5.3 (unlimed soil and pH 6.2 (limed soil. In a parallel incubation experiment, the effects of the secondary resources on physicochemical and microbial soil processes were studied. The results showed that the relative agronomic efficiency compared with MinP decreased in the order: manure ≥ fish sludge ≥ wood ash ≥ meat bone meal. The solubility of inorganic P in secondary resources was the main driver for P uptake by barley (Hordeum vulgare. The effects of secondary resources on physicochemical and microbial soil processes were of little overall importance. Application of organic carbon with manure resulted in microbial P immobilisation and decreased uptake by barley of P derived from the soil. On both soils, P uptake by barley was best explained by a positive linear relationship with the H2O + NaHCO3-soluble inorganic P fraction in fertilizers, or by a linear negative relationship with the HCl-soluble inorganic P fraction in fertilizers.

  4. Drivers of Phosphorus Uptake by Barley Following Secondary Resource Application

    Science.gov (United States)

    Brod, Eva; Øgaard, Anne Falk; Krogstad, Tore; Haraldsen, Trond Knapp; Frossard, Emmanuel; Oberson, Astrid

    2016-01-01

    Minable rock phosphate is a finite resource. Replacing mineral phosphorus (P) fertilizer with P-rich secondary resources is one way to manage P more efficiently, but the importance of physicochemical and microbial soil processes induced by secondary resources for plant P uptake is still poorly understood. Using radioactive-labeling techniques, the fertilization effects of dairy manure, fish sludge, meat bone meal, and wood ash were studied as P uptake by barley after 44 days and compared with those of water-soluble mineral P (MinP) and an unfertilized control (NoP) in a pot experiment with an agricultural soil containing little available P at two soil pH levels, approximately pH 5.3 (unlimed soil) and pH 6.2 (limed soil). In a parallel incubation experiment, the effects of the secondary resources on physicochemical and microbial soil processes were studied. The results showed that the relative agronomic efficiency compared with MinP decreased in the order: manure ≥fish sludge ≥wood ash ≥meat bone meal. The solubility of inorganic P in secondary resources was the main driver for P uptake by barley (Hordeum vulgare). The effects of secondary resources on physicochemical and microbial soil processes were of little overall importance. Application of organic carbon with manure resulted in microbial P immobilization and decreased uptake by barley of P derived from the soil. On both soils, P uptake by barley was best explained by a positive linear relationship with the H2O + NaHCO3-soluble inorganic P fraction in fertilizers or by a linear negative relationship with the HCl-soluble inorganic P fraction in fertilizers. PMID:27243015

  5. Phenotypic and Physiological Evaluation of Two and Six Rows Barley under Different Environmental Conditions.

    Science.gov (United States)

    Naser, Mahmoud; Badran, Mohamed; Abouzied, Hanaa; Ali, Heba; Elbasyoni, Ibrahim

    2018-05-04

    In recent years, barley has attracted more interest as a food and feed source because of its high soluble dietary fiber and β-glucan content compared with other small grains. Twenty-five barley genotypes (20 imported genotypes and five check cultivars) were grown in three environments for two successive seasons: 2015/2016 and 2016/2017. The first environment was in El-Nubaria, Alexandria, Egypt during 2015/2016, while the second and third environments were in El-Bostan, Elbhera, Egypt during 2015/2016 and 2016/2017. The experiments were conducted in a randomized complete block design with the three replicates. The primary objectives of the current study were to evaluate the performance of 20 imported barley genotypes under several environmental conditions. The imported materials were superior to the local commercial cultivars for several traits, including grain yield. Therefore, the superior genotypes will be further evaluated and used in barley breeding programs. Our future work will focus on creating several crosses among the selected superior genotypes to improve yield and other important traits, while applying marker-assisted selection.

  6. Purification, enzymatic characterization, and nucleotide sequence of a high-isoelectric-point alpha-glucosidase from barley malt

    DEFF Research Database (Denmark)

    Frandsen, T P; Lok, F; Mirgorodskaya, E

    2000-01-01

    in the transition state complex. Mass spectrometry of tryptic fragments assigned the 92-kD protein to a barley cDNA (GenBank accession no. U22450) that appears to encode an alpha-glucosidase. A corresponding sequence (HvAgl97; GenBank accession no. AF118226) was isolated from a genomic phage library using a c......High-isoelectric-point (pI) alpha-glucosidase was purified 7, 300-fold from an extract of barley (Hordeum vulgare) malt by ammonium sulfate fractionation, ion-exchange, and butyl-Sepharose chromatography. The enzyme had high activity toward maltose (k(cat) = 25 s(-1)), with an optimum at pH 4...

  7. The effect of lanthanum applications on drought tolerance in barley

    International Nuclear Information System (INIS)

    Buckingham, S.; Maheswaran, J.; Peverill, K.; Meehan, B.; Stokes, J.

    1998-01-01

    Full text: Glasshouse investigations carried out by the authors on both perlite and soil, have repeatedly shown that several plant species, when treated with lanthanum, retain greater amounts of moisture under water stressed conditions. Dry matter increases under water stress have been observed in some cases. Barley plants watered to 50% field capacity, and show-ing signs of water stress, yielded 18% more dry matter when treated with 5 kg/ha and 10 kg/ha of lanthanum than control plants (P<0.05). The results of these experiments suggest that increased dry matter production in crops under periods of water stress, is likely when previously treated with lanthanum. Consequently, it is conceivable that lanthanum may have potential as an agent that induces drought tolerance in grain crops, grown in low rainfall areas. Subsequent field trials using barley as a test crop at Walpeup, in the Mallee region of Victoria have shown that in a below average rainfall year, combined soil and foliar applications of lanthanum can significantly increase grain yield. This effect was not evident when barley grown on the same soil type was treated with lanthanum under above average rainfall conditions

  8. Variation in the agronomic and morphological traits in spring barley

    Directory of Open Access Journals (Sweden)

    N. Dyulgerov

    2017-12-01

    Full Text Available Abstract. The study was conducted to examine the variation in the agronomic and morphological traits in spring barley. For this purpose, 22 lines from the ICARDA High Input Barley Program for favorable environment and 3 check varieties (Rihane-03, VMorales and Veslets were tested in an alpha-lattice design with two replications at the Institute of Agriculture – Karnobat, Bulgaria in 2014 and 2015 growing season. The traits days to heading, plant height, number of tillers per plant, flag leaf length, flag leaf width, spike length, awn length, peduncle length, spikelet number per spike, grain number per spike, grain weight per spike, 1000 grains weight, grain yield, powdery mildew (Erysiphe graminis f. sp. hordei, net blotch (Pyrenophora teres f. teres and stripe rust (Puccinia striiformis f. sp. hordei infection were studied. Significant differences between lines for all studied traits were found. The number of fertile tillers per plant was significantly positively correlated with grain yield. Lines expressed higher grain yields, shorter stem, better tolerance to net blotch and stripe rust than Bulgarian check variety Veslets were identified. These genotypes can, therefore, be used as parents for the improvement of spring barley.

  9. Quality Control System for Beer Developed with Monoclonal Antibodies Specific to Barley Lipid Transfer Protein

    Directory of Open Access Journals (Sweden)

    Yukie Murakami-Yamaguchi

    2012-10-01

    Full Text Available Non-specific lipid transfer protein (LTP in barley grain reacted with the IgE in sera drawn from food allergy patients. A sandwich-type of enzyme-linked immunosorbent assay (ELISA was developed with mouse monoclonal antibodies raised against LTP purified with barley flour. This ELISA showed a practical working range of 0.3–3 ng/mL and no cross-reactivity with wheat, adlay and rye. Using this ELISA, LTP was determined in several types of barley-foods, including fermented foods such as malt vinegar, barley-malt miso and beer. LTP content in beer of the same kind was approximately constant, even if manufacturing factory and production days were different. Not only as a factor of foam formation and stability but also as an allergen, controlling and monitoring of LTP in beer should be considered. Taken together, our LTP-detecting ELISA can be proposed as an appropriate system for the quality control of beer.

  10. Isozyme differences in barley mutants

    International Nuclear Information System (INIS)

    AI-Jibouri, A.A.M.; Dham, K.M.

    1990-01-01

    Full text: Thirty mutants (M 11 ) of barley (Hordeum vulgare L.) induced by physical and chemical mutagens were analysed for isozyme composition using polyacrylamide gel electrophoresis. Results show that these mutants were different in the isozymes leucine aminopeptidase, esterase and peroxidase. The differences included the number of forms of each enzyme, relative mobility value and their intensity on the gel. Glutamate oxaloacetate transaminase isozyme was found in six molecular forms and these forms were similar in all mutants. (author)

  11. Performance of spring barley varieties and variety mixtures as affected by manure application and their order in an organic crop rotation

    DEFF Research Database (Denmark)

    Askegaard, Margrethe; Thomsen, Ingrid Kaag; Berntsen, Jørgen

    2011-01-01

    In order to obtain a high and stable yield of organic spring barley, production should be optimized according to the specific environment. To test the performance of spring barley varieties under varying cropping conditions, a field experiment was carried out in 2003 and 2004 in a six-field mixed...... with low manure input than others, variety mixtures that give a robust and stable organic production may potentially be developed....... organic crop rotation. We investigated the choice of variety, the order in a rotation, and the application of manure (slurry and farmyard manure; 0 to 120 total-N ha−1) on grain yields of six selected varieties with different characteristics grown in either pure stands or in two spring barley mixtures...

  12. Diversity in Indian barley (Hordeum vulgare) cultivars and ...

    Indian Academy of Sciences (India)

    tinguish varieties of crop plants and establish their purity as a prerequisite for any ... of genetic material in germplasm collection and as a general guide for the choice ... Sixty-nine barley cultivars were grown under field condi- tions in three ...

  13. Development and Evaluation of a Barley 50k iSelect SNP Array

    Directory of Open Access Journals (Sweden)

    Micha M. Bayer

    2017-10-01

    Full Text Available High-throughput genotyping arrays continue to be an attractive, cost-effective alternative to sequencing based approaches. We have developed a new 50k Illumina Infinium iSelect genotyping array for barley, a cereal crop species of major international importance. The majority of SNPs on the array have been extracted from variants called in exome capture data of a wide range of European barley germplasm. We used the recently published barley pseudomolecule assembly to map the exome capture data, which allowed us to generate markers with accurate physical positions and detailed gene annotation. Markers from an existing and widely used barley 9k Infinium iSelect array were carried over onto the 50k chip for backward compatibility. The array design featured 49,267 SNP markers that converted into 44,040 working assays, of which 43,461 were scorable in GenomeStudio. Of the working assays, 6,251 are from the 9k iSelect platform. We validated the SNPs by comparing the genotype calls from the new array to legacy datasets. Rates of agreement averaged 98.1 and 93.9% respectively for the legacy 9k iSelect SNP set (Comadran et al., 2012 and the exome capture SNPs. To test the utility of the 50k chip for genetic mapping, we genotyped a segregating population derived from a Golden Promise × Morex cross (Liu et al., 2014 and mapped over 14,000 SNPs to genetic positions which showed a near exact correspondence to their known physical positions. Manual adjustment of the cluster files used by the interpreting software for genotype scoring improved results substantially, but migration of cluster files between sites led to a deterioration of results, suggesting that local adjustment of cluster files is required on a site-per-site basis. Information relating to the markers on the chip is available online at https://ics.hutton.ac.uk/50k.

  14. High capacity of plant regeneration from callus of interspecific hybrids with cultivated barley (Hordeum vulgare L.)

    DEFF Research Database (Denmark)

    Bagger Jørgensen, Rikke; Jensen, C. J.; Andersen, B.

    1986-01-01

    Callus was induced from hybrids between cultivated barley (Hordeum vulgare L. ssp. vulgare) and ten species of wild barley (Hordeum L.) as well as from one backcross line ((H. lechleri .times. H. vulgare) .times. H. vulgare). Successful callus induction and regeneration of plants were achieved from...... explants of young spikes on the barley medium J 25-8. The capacity for plant regeneration was dependent on the wild parental species. In particular, combinations with four related wild species, viz. H. jubatum, H. roshevitzii, H. lechleri, and H. procerum, regenerated high numbers of plants from calli....

  15. Standardized ileal digestibility of amino acids in eight genotypes of barley fed to growing pigs

    DEFF Research Database (Denmark)

    Spindler, H K; Mosenthin, R; Rosenfelder, Pia

    2016-01-01

    . In conclusion, a comprehensive database on chemical composition and SID of CP and AA in eight current barley genotypes has been made available. However, as present SID values are lower compared to feed tables, adjustments are required to minimize the risk of overestimating the actual protein value of barley...

  16. Recovery of nitrogen by spring barley following incorporation of 15N-labelled straw and catch crop material

    DEFF Research Database (Denmark)

    Thomsen, I.K.; Jensen, E.S.

    1994-01-01

    The recovery by spring barley (Hordeum vulgare L.) of nitrogen mineralized from N-15-labelled straw and ryegrass material was followed for 3 years in the field. The effects of separate and combined applications of straw and ryegrass were studied using cross-labelling with N-15. Reference plots re...... mineral fertilizer was in the second and third barley crop similar to the recovery of N from incorporated plant residues.......The recovery by spring barley (Hordeum vulgare L.) of nitrogen mineralized from N-15-labelled straw and ryegrass material was followed for 3 years in the field. The effects of separate and combined applications of straw and ryegrass were studied using cross-labelling with N-15. Reference plots...... receiving (NH4NO3)-N-15-N-15 were included. Plant samples were taken every second week until maturity during the first growing season and at maturity in the two following years. Incorporation of plant material had no significant influence on the above-ground dry matter yield of the barley. The barley...

  17. Antidepressant-like effects of young green barley leaf (Hordeum vulgare L.) in the mouse forced swimming test.

    Science.gov (United States)

    Yamaura, Katsunori; Nakayama, Noriyuki; Shimada, Maki; Bi, Yuanyuan; Fukata, Hideki; Ueno, Koichi

    2012-01-01

    Young green barley leaf is one of the richest sources of antioxidants and has been widely consumed for health management in Japan. In this study, we examined whether oral administration of young green barley leaf has an antidepressant effect on the forced swimming test in mice. Mice were individually forced to swim in an open cylindrical container, one hour after oral administration of young green barley leaf (400 or 1000 mg / kg) or imipramine (100 mg / kg). Expression of mRNA for nerve growth factor (NGF), brain-derived neurotrophic factor, and glucocorticoid receptor in the brain was analyzed using real-time quantitative polymerase chain reaction (PCR). There was a significant antidepressant-like effect in the forced swimming test; both 400 and 1000 mg / kg young green barley leaves, as well as the positive control imipramine (100 mg / kg), reduced the immobility duration compared to the vehicle group. The expression of mRNA for NGF detected in the hippocampus immediately after the last swimming test was higher than that in the non-swimming group (Nil). Oral administration of imipramine suppressed this increase to the level of the Nil group. Young green barley leaf (400 and 1000 mg / kg) also showed a moderate decrease in the expression of mRNA for NGF, in a dose-dependent manner. Oral administration of young green barley leaf is able to produce an antidepressant-like effect in the forced swimming test. Consequently it is possible that the antidepressant-like effects of the young green barley leaf are, at least in part, mediated by an inhibition of the increase in the hippocampus levels of NGF.

  18. Advances in the use of mutation induction for genetic improvement of barley and native grains in Peru

    International Nuclear Information System (INIS)

    Romero Loli, M.; Luz Gomez, P.; Jorge Jimenez, D.; Agripina Roldan, Ch.

    2001-01-01

    Barley seeds of two varieties were treated with several doses of gamma rays and sodium azide. Seeds of a quinoa (Chenopodium) variety were treated with three doses of gamma rays. Yield trials were conducted also for doubled haploid lines of barley derived from earlier mutagenic treatments. Some promising new barley mutant lines were identified in the yield trials. The results from the Chenopodium trials facilitate the determination of the optimum dose of gamma rays for the PRQ-22 variety. (author)

  19. Proteome analysis of dissected barley seed tissue during germination and radicle elongation

    DEFF Research Database (Denmark)

    Bønsager, Birgit Christine

    2007-01-01

    at the protein or the DNA level. In addition, germination of barley seeds is of interest for the brewing industry since this process corresponds to the steeping process that starts the industrial malting. In the present study a proteomics approach was employed to understand the initial changes in the water...... soluble protein composition of the barley seed upon imbibition and the following events that occur until to 72 h post imbibition (PI). 2D gel electrophoresis of proteins extracted from dissected barley seeds tissues during germination (0-24 h) and the subsequent radicle elongation (24-72 h) describes...... spatio-temporal variations in the protein patterns. Seeds from 8 time points (0, 4, 12, 24, 36, 52, 60, and 72 h PI) were dissected into embryo, aleurone layer and endosperm and small scale protein extractions enabled us to obtain good resolution 2D gels. The 2D gels were compared between the time points...

  20. Feeding barley grain steeped in lactic acid modulates rumen fermentation patterns and increases milk fat content in dairy cows.

    Science.gov (United States)

    Iqbal, S; Zebeli, Q; Mazzolari, A; Bertoni, G; Dunn, S M; Yang, W Z; Ametaj, B N

    2009-12-01

    The objectives of the present in vivo and in situ trials were to evaluate whether feeding barley grain steeped in lactic acid (LA) would affect rumen fermentation patterns, in situ dry matter (DM) degradation kinetics, and milk production and composition in lactating dairy cows. The in vivo trial involved 8 rumen-fistulated Holstein cows fed once daily a total mixed ration containing rolled barley grain (27% in DM) steeped for 48 h in an equal quantity of tap water (CTR) or in 0.5% LA (TRT) in a 2 x 2 crossover design. The in situ trials consisted of incubation of untreated rolled barley grain in cows fed CTR or TRT diets and of incubation of 3 different substrates including CTR or barley grain steeped in 0.5% or 1.0% LA (TRT1 and TRT2, respectively) up to 72 h in the rumen. Results of the in vivo trial indicated that cows fed the TRT diet had greater rumen pH during most intensive fermentation phases at 10 and 12 h post-feeding. The latter effect was associated with a shorter duration in which rumen pH was below 5.8 for cows fed the TRT diet (2.4 h) compared with CTR diet (3.9 h). Furthermore, cows fed the TRT diet had lower concentrations of volatile fatty acids at 2 and 4 h post-feeding. In addition, concentrations of preprandial volatile fatty acids were lower in the rumen fluid of cows fed the TRT diet. Results also showed that molar proportion of acetate was lower, whereas propionate tended to increase by feeding cows the TRT diet. Cows fed the TRT diet demonstrated greater rumen in situ lag time of substrate DM degradation and a tendency to lower the fractional degradation rate. Other in situ results indicated a quadratic effect of LA on the effective rumen degradability of substrates whereby the latter variable was decreased from CTR to TRT1 but increased for TRT2 substrate. Although the diet did not affect actual milk yield, fat-corrected milk, percentages of milk protein, and lactose and concentration of milk urea nitrogen, cows fed the TRT diet increased

  1. Weed infestation of spring barley (Hordeum vulgare L. depending on the cover crop and weed control method

    Directory of Open Access Journals (Sweden)

    Dorota Gawęda

    2014-04-01

    Full Text Available The aim of this 3-year field study was to evaluate the effect of some stubble crops and weed control methods on the species composition, number and air-dry weight of weeds in a spring barley crop grown in short-term monoculture. The study was conducted in the period 2009–2011 at the Uhrusk Experimental Farm, on mixed rendzina soil classified as very good rye soil complex. It included stubble crops which were ploughed under in each year (control treatment without cover crop, white mustard, lacy phacelia, a mixture of legumes – narrow-leaf lupin + field pea and 3 weed control methods used in spring barley crops (mechanical, mechanical and chemical, chemical weed control. Veronica persica was the weed species that occurred in greatest numbers in the spring barley crop sown after stubble crops. All cover crops reduced the numbers of Avena fatua which was the dominant species in the control treatment. Chemical as well as chemical and mechanical weed control significantly reduced the numbers of Avena fatua compared to the treatment where only double harrowing was used for weed control. The stubble crops did not reduce weed infestation of spring barley. Compared to the control treatment, the ploughing-in of white mustard and the mixture of legumes reduced the dry weight of weeds by 49.1 and 22.7%, respectively. Mechanical weed management proved to be less effective in reducing the number and dry weight of weeds compared to the other weed control methods. A significant negative correlation was found between the dry weight of weeds in the spring barley crop and the dry weight of the ploughed-in white mustard cover crop under the conditions of chemical weed control as well as in the case of the mixture of legumes when complete mechanical and chemical weed control was used.

  2. Microbiological and technological characterization of sourdoughs destined for bread-making with barley flour.

    Science.gov (United States)

    Zannini, Emanuele; Garofalo, Cristiana; Aquilanti, Lucia; Santarelli, Sara; Silvestri, Gloria; Clementi, Francesca

    2009-10-01

    The aim of the present study was the microbiological and technological characterization of laboratory- made sourdoughs for use in barley-flour-based bread-making. A defined multi-strain starter culture consisting of selected lactic acid bacteria (LAB) and yeasts from wheat sourdoughs was inoculated into three flour-water mixtures, composed of: (i) 100% wheat flour (ii) 50% wheat flour and 50% hull-less barley flour (composite flour); (iii) 100% hull-less barley flour. After two months of continuous propagation, the chemical characteristics of the three sourdoughs were investigated by measuring: pH, total titratable acidity and concentrations of various microbial metabolites by HPLC (i.e. lactic, acetic, phenyllactic and butyric acids and diacetyl). The microbial traits were studied through viable counts, isolation and typing of LAB and yeasts and PCR-DGGE analyses. Only Saccharomyces cerevisiae and Lactobacillus plantarum were detectable in the sourdoughs together with other lactobacilli species which were different depending on the type of flour blend used. The molecular typing of the isolates highlighted that only a few strains among those initially inoculated prevailed. The volume increases of the three types of sourdough were also investigated and a correlation was seen between an increase in the barley flour content and a reduction in the dough volume.

  3. Hordein gene dose effects in triploid endosperm of barley (Hordeum vulgare L.

    Directory of Open Access Journals (Sweden)

    Perović Dragan

    2009-01-01

    Full Text Available The presence of two maternal chromosome sets in triploid barley endosperm allows the distinction of maternal and paternal hordein bands in an electrophoregram: the maternal bands are stronger due to the higher gene dose. In the F1 generation there are differences between reciprocal crosses and in the F2 generation all 16 classes that are theoretically possible for a pair of polymorphic loci can be distinguished. This full classification is rarely possible in genetic studies, and allows more accurate estimates of recombination rates. Two hordein gene clusters (Hor1 and Hor2, corresponding to hordein C and hordein B respectively were analyzed in hybrids obtained by crossing two winter barley cultivars Partizan and HWV-247. Hordein separation was performed by acid-polyacrylamide gel electrophoresis at pH 3.2 (A-PAGE. A set of most informative bands of B and C hordeins was selected in each cross by two criteria: (1 presence or absence of bands in the parents and (2 signal strength to allow doses scoring. The average genetic distance between Hor1 and Hor2 loci was 11 cM. Distances in male and female maps were not significantly different, suggesting a similar recombination rate in male and female meiosis.

  4. Linkage disequilibrium mapping of morphological, resistance, and other agronomically relevant traits in modern spring barley cultivars

    NARCIS (Netherlands)

    Kraakman, A.T.W.; Martinez, F.; Mussiraliev, B.; Eeuwijk, van F.A.; Niks, R.E.

    2006-01-01

    A set of 148 modern spring barley cultivars was explored for the extent of linkage disequilibrium (LD) between genes governing traits and nearby marker alleles. Associations of agronomically relevant traits (days to heading, plant height), resistance traits (leaf rust, barley yellow dwarf virus

  5. Biosynthesis of the leucine derived α-, β- and γ-hydroxynitrile glucosides in barley (Hordeum vulgare L.)

    DEFF Research Database (Denmark)

    Knoch, Eva; Motawie, Mohammed Saddik; Olsen, Carl Erik

    2016-01-01

    Barley (Hordeum vulgare L.) produces five leucine-derived hydroxynitrile glucosides (HNGs), of which only epiheterodendrin is a cyanogenic glucoside. The four non-cyanogenic HNGs are the β-HNG epidermin and the γ-HNGs osmaronin, dihydroosmaronin and sutherlandin. By analyzing 247 spring barley...

  6. Effect of gamma irradiation (60CO) on quatitative characters of barley (Hordeum vulgare)

    International Nuclear Information System (INIS)

    Santana, T.C.; Gonzalez, F.C.

    1984-01-01

    Seeds od f a barley line were irradiated with doses ranging from O to 64 Kr of gamma radiation for three consecutive generations (R1,R2 and R3). From these, several mutant generations were obtained in the field, planting at a commercial density and without selection. (M.A.C.) [pt

  7. Cisgenic Barley with Improved Phytase Activity

    DEFF Research Database (Denmark)

    Holme, Inger; Dionisio, Giuseppe; Brinch-Pedersen, Henrik

    2010-01-01

    barley lambda library has been used to isolate the genomic clone of this phytase including 2.3 kb of the promoter region and 600 bp of the terminator region. The clone has been inserted into a cisgenic Agrobacterium vector where both the gene of interest and the selection gene are flanked by their own T......-DNA borders in order to promote integration of the two genes at unlinked places in the plant genome. Transformed T0 plants show increases in the phytase activity of mature seeds from 1,400 in wild type to 8,950 FTU/kg in T0 plants. T1 plants of each transformant are currently screened with PCR for extra...... copies of the genomic phytase gene and the selection gene to identify segregation between the two genes. Presently, we have identified two cisgenic T1 plants without vector backbone and selection gene but with an extra copy of the genomic phytase gene....

  8. Cisgenic barley with improved phytase activity

    DEFF Research Database (Denmark)

    Holme, Inger; Dionisio, Giuseppe; Brinch-Pedersen, Henrik

    2010-01-01

    barley lambda library has been used to isolate the genomic clone of this phytase including 2.3 kb of the promoter region and 600 bp of the terminator region. The clone has been inserted into a cisgenic Agrobacterium vector where both the gene of interest and the selection gene are flanked by their own T......-DNA borders in order to promote integration of the two genes at unlinked places in the plant genome. Transformed T0 plants show increases in the phytase activity of mature seeds from 1,400 in wild type to 8,950 FTU/kg in T0 plants. T1 plants of each transformant are currently screened with PCR for extra...... copies of the genomic phytase gene and the selection gene to identify segregation between the two genes. Presently, we have identified two cisgenic T1 plants without vector backbone and selection gene but with an extra copy of the genomic phytase gene....

  9. The effect of nitrogen fertilization and irradiation on barley susceptibility to net blotch disease

    International Nuclear Information System (INIS)

    Arabi, M.I.E.; Al-safadi, B.; Charbaji, T.

    2000-11-01

    Isolates of Drechslera teres f. sp. teres that cause net blotch symptoms on barley were collected from fields in different regions of Syria. there virulence spectra were determined using 11 barley cultivars. Cultivars exhibited a continuos range of response from very susceptible to moderately resistant. Isolate Raqa 13 had the highest mean virulence, then Halap 2, whereas ICARDA 3 was the lowest virulent. The effect of three concentrations (1000, 1500, 2000 ppm) of nitrogen (Urea 45%) fertilizer, and two doses of gamma ray (10 and 20 Gy), on susceptibility to infection by Drechslera teres were studied. Two barley cultivars (Thibaut and Furia) were used in this study. Results showed that 1000 ppm (N) and 15 Gy dose treatment had a positive effect on decreasing the susceptibility. (author)

  10. Classification and Processing Optimization of Barley Milk Production Using NIR Spectroscopy, Particle Size, and Total Dissolved Solids Analysis

    Directory of Open Access Journals (Sweden)

    Jasenka Gajdoš Kljusurić

    2015-01-01

    Full Text Available Barley is a grain whose consumption has a significant nutritional benefit for human health as a very good source of dietary fibre, minerals, vitamins, and phenolic and phytic acids. Nowadays, it is more and more often used in the production of plant milk, which is used to replace cow milk in the diet by an increasing number of consumers. The aim of the study was to classify barley milk and determine the optimal processing conditions in barley milk production based on NIR spectra, particle size, and total dissolved solids analysis. Standard recipe for barley milk was used without added additives. Barley grain was ground and mixed in a blender for 15, 30, 45, and 60 seconds. The samples were filtered and particle size of the grains was determined by laser diffraction particle sizing. The plant milk was also analysed using near infrared spectroscopy (NIRS, in the range from 904 to 1699 nm. Furthermore, conductivity of each sample was determined and microphotographs were taken in order to identify the structure of fat globules and particles in the barley milk. NIR spectra, particle size distribution, and conductivity results all point to 45 seconds as the optimal blending time, since further blending results in the saturation of the samples.

  11. Interchromosomal Transfer of Immune Regulation During Infection of Barley with the Powdery Mildew Pathogen

    Science.gov (United States)

    Surana, Priyanka; Xu, Ruo; Fuerst, Gregory; Chapman, Antony V. E.; Nettleton, Dan; Wise, Roger P.

    2017-01-01

    Powdery mildew pathogens colonize over 9500 plant species, causing critical yield loss. The Ascomycete fungus, Blumeria graminis f. sp. hordei (Bgh), causes powdery mildew disease in barley (Hordeum vulgare L.). Successful infection begins with penetration of host epidermal cells, culminating in haustorial feeding structures, facilitating delivery of fungal effectors to the plant and exchange of nutrients from host to pathogen. We used expression Quantitative Trait Locus (eQTL) analysis to dissect the temporal control of immunity-associated gene expression in a doubled haploid barley population challenged with Bgh. Two highly significant regions possessing trans eQTL were identified near the telomeric ends of chromosomes (Chr) 2HL and 1HS. Within these regions reside diverse resistance loci derived from barley landrace H. laevigatum (MlLa) and H. vulgare cv. Algerian (Mla1), which associate with the altered expression of 961 and 3296 genes during fungal penetration of the host and haustorial development, respectively. Regulatory control of transcript levels for 299 of the 961 genes is reprioritized from MlLa on 2HL to Mla1 on 1HS as infection progresses, with 292 of the 299 alternating the allele responsible for higher expression, including Adaptin Protein-2 subunit μ AP2M and Vesicle Associated Membrane Protein VAMP72 subfamily members VAMP721/722. AP2M mediates effector-triggered immunity (ETI) via endocytosis of plasma membrane receptor components. VAMP721/722 and SNAP33 form a Soluble N-ethylmaleimide-sensitive factor Attachment Protein REceptor (SNARE) complex with SYP121 (PEN1), which is engaged in pathogen associated molecular pattern (PAMP)-triggered immunity via exocytosis. We postulate that genes regulated by alternate chromosomal positions are repurposed as part of a conserved immune complex to respond to different pathogen attack scenarios. PMID:28790145

  12. Interchromosomal Transfer of Immune Regulation During Infection of Barley with the Powdery Mildew Pathogen

    Directory of Open Access Journals (Sweden)

    Priyanka Surana

    2017-10-01

    Full Text Available Powdery mildew pathogens colonize over 9500 plant species, causing critical yield loss. The Ascomycete fungus, Blumeria graminis f. sp. hordei (Bgh, causes powdery mildew disease in barley (Hordeum vulgare L.. Successful infection begins with penetration of host epidermal cells, culminating in haustorial feeding structures, facilitating delivery of fungal effectors to the plant and exchange of nutrients from host to pathogen. We used expression Quantitative Trait Locus (eQTL analysis to dissect the temporal control of immunity-associated gene expression in a doubled haploid barley population challenged with Bgh. Two highly significant regions possessing trans eQTL were identified near the telomeric ends of chromosomes (Chr 2HL and 1HS. Within these regions reside diverse resistance loci derived from barley landrace H. laevigatum (MlLa and H. vulgare cv. Algerian (Mla1, which associate with the altered expression of 961 and 3296 genes during fungal penetration of the host and haustorial development, respectively. Regulatory control of transcript levels for 299 of the 961 genes is reprioritized from MlLa on 2HL to Mla1 on 1HS as infection progresses, with 292 of the 299 alternating the allele responsible for higher expression, including Adaptin Protein-2 subunit μ AP2M and Vesicle Associated Membrane Protein VAMP72 subfamily members VAMP721/722. AP2M mediates effector-triggered immunity (ETI via endocytosis of plasma membrane receptor components. VAMP721/722 and SNAP33 form a Soluble N-ethylmaleimide-sensitive factor Attachment Protein REceptor (SNARE complex with SYP121 (PEN1, which is engaged in pathogen associated molecular pattern (PAMP-triggered immunity via exocytosis. We postulate that genes regulated by alternate chromosomal positions are repurposed as part of a conserved immune complex to respond to different pathogen attack scenarios.

  13. Isozyme differences in barley mutants

    Energy Technology Data Exchange (ETDEWEB)

    AI-Jibouri, A A.M.; Dham, K M [Department of Botany, Nuclear Research Centre, Baghdad (Iraq)

    1990-01-01

    Full text: Thirty mutants (M{sub 11}) of barley (Hordeum vulgare L.) induced by physical and chemical mutagens were analysed for isozyme composition using polyacrylamide gel electrophoresis. Results show that these mutants were different in the isozymes leucine aminopeptidase, esterase and peroxidase. The differences included the number of forms of each enzyme, relative mobility value and their intensity on the gel. Glutamate oxaloacetate transaminase isozyme was found in six molecular forms and these forms were similar in all mutants. (author)

  14. Resistance to Barley Leaf Stripe

    DEFF Research Database (Denmark)

    Nørgaard Knudsen, J. C.

    1986-01-01

    in well adapted Northwest European spring cultivars. Virulence matching two hitherto not overcome resistances was demonstrated. Differences in apparent race nonspecific or partial resistance were also present, changing the percentage of infected plants of susceptible genotypes from about 20 to 44 per cent.......Ten barley [Hordeum vulgare] genotypes were inoculated with twelve isolates of Pyrenophora graminea of diverse European and North African origin. Race specific resistance occurred. Four, possibly five, genetically different sources of race-specific resistance were found, three of them occurring...

  15. Is barley malt safe as a food ingredient?

    DEFF Research Database (Denmark)

    Duedahl-Olesen, Lene; Olesen, P. A.

    hydrocarbons (PAH) are such process contaminants previously identified in e.g. smoked fish [3]. Germinated barley is smoke treated and for many whisky malt dried over peat-fuelled furnace for flavour addition probably with increased health risks for spent grain consumers as a result. To evaluate our concern we...... for animal feed and recently the high nutritive value has made it feasible as bread flour supplement [1] and therefore human food. Process contamination such as the genotoxic acrylamide formed due to Maillard reactions between reducing sugars and amino acids at raised temperature could appear during drying...

  16. Effects of feeding hull-less barley on production performance, milk fatty acid composition, and nutrient digestibility of lactating dairy cows.

    Science.gov (United States)

    Yang, Y; Ferreira, G; Teets, C L; Corl, B A; Thomason, W E; Griffey, C A

    2017-05-01

    The objectives of this study were to evaluate production performance, milk fatty acid composition, and nutrient digestibility in high-producing dairy cows consuming diets containing corn and hull-less barley (cultivar Amaze 10) in different proportions as the grain source. Eight primiparous and 16 multiparous Holstein cows were assigned to 1 of 4 diets in a replicated 4 × 4 Latin square design with 21-d periods. Cows were fed once daily (1200 h) by means of a Calan gate system (American Calan Inc., Northwood, NH). All diets contained ∼20% grain (dry matter basis). Treatments consisted of 100% corn (0B), 67% corn and 33% hull-less barley (33B), 33% corn and 67% hull-less barley (67B), and 100% hull-less barley (100B) as the grain sources. Total-tract nutrient digestibility was estimated using lanthanum chloride (LaCl 3 ) as an external marker. Dry matter intake differed quadratically among treatments, being lowest for 67B and highest for 0B and 100B. Feeding hull-less barley did not affect milk yield, and milk fat concentration differed cubically among treatments. The cubic response was attributed to the higher milk fat concentration observed for the diet containing 67B. Neither the concentrations in milk of protein and lactose nor the yields of protein and lactose differed among treatments. The proportion of de novo synthesized fatty acids in milk did not differ among treatments. The apparent total-tract digestibility of dry matter, crude protein, and neutral detergent fiber did not differ among treatments. Although a quadratic effect was observed, starch digestibility was minimally affected by treatments. In conclusion, this study indicates that hull-less barley grain is as good as corn grain as an energy source when formulating diets for high-producing dairy cows. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  17. Short communication: Effects of processing methods of barley grain in starter diets on feed intake and performance of dairy calves.

    Science.gov (United States)

    Jarrah, A; Ghorbani, G R; Rezamand, P; Khorvash, M

    2013-01-01

    The present study was conducted to evaluate the effects of different processing methods of barley grain in starter rations on feed intake, average daily gain, feed efficiency, skeletal growth, fecal score, and rumen pH of dairy calves. Thirty-two Holstein dairy calves (16 female and 16 male) were randomly allocated to 1 of 4 treatments consisting of coarse ground, whole, steam-rolled, or roasted barley from d 4 to 56 of birth in a completely randomized design. Starter diets were formulated to have similar ingredients and composition. All calves had free access to water and feed throughout the study period and received 4 L of milk/d from a bottle from d 4 to 41, 2L/d from d 41 to 45, and weaning occurred on d 45. Feed intake and fecal score were recorded daily. Body weight and skeletal growth measures were recorded on d 4 (beginning of the study), 45, and 56. Rumen fluid and blood samples were collected on d 35, 45, and 56. Data were analyzed using PROC MIXED of SAS (SAS Institute Inc., Cary, NC). The results indicate that different methods of processing barley had no detectable effect on dry matter intake, average daily gain, and feed efficiency and that skeletal growth, health, and rumen pH were not affected by dietary treatments. In conclusion, the results show that different processing methods of barley included in starter diets had no detectable effect on the performance of dairy calves under our experimental conditions. Therefore, feeding whole or coarsely ground barley would be a more economical method compared with steam rolled or roasted barley. Copyright © 2013 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  18. Fine mapping and identification of a candidate gene for the barley Un8 true loose smut resistance gene.

    Science.gov (United States)

    Zang, Wen; Eckstein, Peter E; Colin, Mark; Voth, Doug; Himmelbach, Axel; Beier, Sebastian; Stein, Nils; Scoles, Graham J; Beattie, Aaron D

    2015-07-01

    The candidate gene for the barley Un8 true loose smut resistance gene encodes a deduced protein containing two tandem protein kinase domains. In North America, durable resistance against all known isolates of barley true loose smut, caused by the basidiomycete pathogen Ustilago nuda (Jens.) Rostr. (U. nuda), is under the control of the Un8 resistance gene. Previous genetic studies mapped Un8 to the long arm of chromosome 5 (1HL). Here, a population of 4625 lines segregating for Un8 was used to delimit the Un8 gene to a 0.108 cM interval on chromosome arm 1HL, and assign it to fingerprinted contig 546 of the barley physical map. The minimal tilling path was identified for the Un8 locus using two flanking markers and consisted of two overlapping bacterial artificial chromosomes. One gene located close to a marker co-segregating with Un8 showed high sequence identity to a disease resistance gene containing two kinase domains. Sequence of the candidate gene from the parents of the segregating population, and in an additional 19 barley lines representing a broader spectrum of diversity, showed there was no intron in alleles present in either resistant or susceptible lines, and fifteen amino acid variations unique to the deduced protein sequence in resistant lines differentiated it from the deduced protein sequences in susceptible lines. Some of these variations were present within putative functional domains which may cause a loss of function in the deduced protein sequences within susceptible lines.

  19. Replacement of Dietary Barley Grain by Different Levels of Restaurant Waste and Its Effect on Hybrid Lambs Performance

    Directory of Open Access Journals (Sweden)

    M. Moradi

    2013-08-01

    Full Text Available This study was conducted to determine the nutritive value of restaurant waste (RW, substituted with dietary barley grain and its effects on the performance of finishing lambs. Dry matter, organic matter, crude protein, ether extract and ash content of RW were 33.4, 95.9, 15.1, 14.1 and 4 percent respectively. 36 male and female lambs, (initial weight of 33.4± 0.5 and 29.7± 0.5 kg respectively were used in the experiment. The experimental lambs were from three hybrid groups: Ghezel*Merino (n=12, Merino*Moghani (n=18 and Ghezel*Baluchi (n=6. Dietary barley grains at the levels of 50 and 100 percent were replaced with RW and along with control group (no RW compromised experimental treatments.. Experimental diets were offered three times daily at 6.00, 14.00 and 20.00 hours. Dry matter intake was not significantly different between the treatments. The average daily gain and feed conversion ratio were differ between sexes. Weight gain of male and female lambs during the fattening period was 250.3 and 171.6 g/day respectively. Replacement of barley grain with RW in the 3rd treatment significantly affected ruminal pH, N-NH3 and total volatile fatty acids content and fecal pH, as well as blood glucose and BUN comparing the control group. Replacement of RW with barley grain at levels of 50 and 100 percent reduced cost of the live weight gain up to 24 and 37.7 percent respectively versus control diet.

  20. MICROBIOLIZATION WITH TRICHODERMA SPP., COMBINED OR NOT WITH POLYMER, ON THE HEALTH, GERMINATION AND VIGOR OF BLACK OATS AND BARLEY SEEDS

    Directory of Open Access Journals (Sweden)

    E. R. Baseggio

    2017-12-01

    Full Text Available The use of bioprotectors in the coating of seeds is increasing, and these become an alternative for the use of chemical fungicides. The aim of this work was to evaluate the use of Trichoderma spp., with or without polymerization, in the control of pathogens associated with black oats (Avena strigosa and barley (Hordeum vulgare seeds of the cultivars 'Comum' (black oats and BRS Cauê (barley, 2014 crop. After asepsis and dried of the seeds, the treatments were applied, using a dose of 5 mL of Trichoderma spp. kg-1 and 10 mL of seed polymer kg-1 of seeds. Sanity tests; germination; germination and emergency rate index; length of seedling (shoot and root; and fresh and dry weight were performed. The coating of oat and barley seeds with Trichoderma spp. was efficient in the control of pathogens, as well as increased the germination and development of the seedlings for both cultures evaluated.

  1. Free and esterified carotenoids in pigmented wheat, tritordeum and barley grains.

    Science.gov (United States)

    Paznocht, Luboš; Kotíková, Zora; Šulc, Miloslav; Lachman, Jaromír; Orsák, Matyáš; Eliášová, Marie; Martinek, Petr

    2018-02-01

    Carotenoids are important phytonutrients responsible for the yellow endosperm color in cereal grains. Five carotenoids, namely lutein, zeaxanthin, antheraxanthin, α- and β-carotene, were quantified by HPLC-DAD-MS in fourteen genotypes of wheat, barley and tritordeum harvested in Czechia in 2014 and 2015. The highest carotenoid contents were found in yellow-grained tritordeum HT 439 (12.16μg/gDW), followed by blue-grained wheat V1-131-15 (7.46μg/gDW), and yellow-grained wheat TA 4024 (7.04μg/gDW). Comparing carotenoid contents, blue varieties had lower whereas purple ones had the same or higher levels than conventional bread wheat. Lutein was the main carotenoid found in wheat and tritordeum while zeaxanthin dominated in barley. The majority of cereals contained considerable levels of esterified forms (up to 61%) of which lutein esters prevailed. It was assessed that cereal genotype determines the proportion of free and esterified forms. High temperatures and drought during the growing season promoted carotenoid biosynthesis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Methods of scoring induced chromosome structural changes in barley

    International Nuclear Information System (INIS)

    Nicoleff, H.; Gecheff, K.

    1976-01-01

    In barley, a material widely used in mutation and chromosomal aberration studies, the method most frequently used for scoring induced chromosomal changes is still anaphase analysis. In this paper, data obtained after treatment of barley with gamma-rays and ethyleneimine (EI) and comparative scoring of aberrations in metaphase and anaphase are reported and discussed. It is evident that the metaphase aberrations induced by gamma-rays and ethyleneimine, due probably to their specific location, showed a differential manifestation during anaphase. Thus, after treatment with ethyleneimine a great portion of the induced aberrations, being located preferentially at the centromere regions, gave no scorable bridges, and an apparent excess of fragments was observed at anaphase. After gamma-irradiation the differences between metaphase and anaphase scoring were mainly due to a large portion of fragments escaping detection

  3. Leaf senescence and nutrient remobilisation in barley and wheat

    DEFF Research Database (Denmark)

    Gregersen, P L; Holm, P B; Krupinska, K

    2008-01-01

    Extensive studies have been undertaken on senescence processes in barley and wheat and their importance for the nitrogen use efficiency of these crop plants. During the senescence processes, proteins are degraded and nutrients are re-mobilised from senescing leaves to other organs, especially...... of chloroplasts is summarised. Rubisco is thought to be released from chloroplasts into vesicles containing stroma material (RCB = Rubisco-containing bodies). These vesicles may then take different routes for their degradation. Transcriptome analyses on barley and wheat senescence have identified genes involved...... in degradative, metabolic and regulatory processes that could be used in future strategies aimed at modifying the senescence process. The breeding of crops for characters related to senescence processes, e.g. higher yields and better nutrient use efficiency, is complex. Such breeding has to cope with the dilemma...

  4. Growth, Carbon Isotope Discrimination and Nitrogen Uptake in Silicon and/or Potassium Fed barley Grown under Two Watering Regimes

    OpenAIRE

    Kurdali, Fawaz; Al-Chammaa, Mohammad

    2013-01-01

    The present pot experiment was an attempt to monitor the beneficial effects of silicon (Si) and/or potassium (K) applications on growth and nitrogen uptake in barley plants grown under water (FC1) and non water (FC2) stress conditions using 15N and 13C isotopes. Three fertilizer rates of Si (Si 50, Si 100 and Si 200) and one fertilizer rate of K were used. Dry matter (DM) and N yield (NY) in different plant parts of barley plants was affected by Si and/ or K fertilization as well as by the wa...

  5. Two barley yellow dwarf luteovirus serotypes associated with ...

    African Journals Online (AJOL)

    Barley yellow dwarf luteovirus (BYDV) serotypes PAV and RPV were identified from irrigated wheat (Triticum aestivum L.) samples from three provinces of Zambia by double antibody sandwich enzyme-linked immunosorbent assay using polyclonal and monoclonal antisera. Nine wheat cultivars were surveyed in 11 wheat ...

  6. Variation in In Vitro Digestibility of Barley Protein

    DEFF Research Database (Denmark)

    Buchmann, N. B.

    1979-01-01

    impaired digestibilities; these findings were partially verified in a repeated field trial, but were not confirmed in vivo. In vitro digestibilities of barleys grown in pots at various N-levels were positively correlated with protein or hordein content. In vitro digestibility was negatively correlated...

  7. Barley Straw Ash: Pozzolanic Activity and Comparison with other Natural and Artificial Pozzolans from México

    Directory of Open Access Journals (Sweden)

    Carlos Cobreros

    2015-05-01

    Full Text Available The construction industry is one of the largest and most active growth sectors worldwide. It presents an important environmental impact, and one way to reduce the impact of the construction activity is to substitute pozzolanic materials for ordinary Portland cement. In this work, barley straw, barley straw ash, and other natural and artificial pozzolans from Mexico were characterized and compared. Also, the pozzolanic activity of barley straw ash was compared with the pozzolanic properties of some natural and artificial pozzolans from Mexico. Materials considered included recycled dust of fired clay brick, fly ash, volcanic ash, and wheat straw ash.

  8. Effect of crop density on competition by wheat and barley with Agrostemma githago and other weeds

    DEFF Research Database (Denmark)

    Doll, H.; Holm, U.; Søgaard, B.

    1995-01-01

    The effect of Agrostemma githago L. and other naturally occurring weeds on biomass production and grain yield was studied in winter wheat and winter barley. Naturally occurring weeds had only a negligible effect on barley, but reduced wheat grain yield by 10% at a quarter of normal crop density....... The interaction between the cereals and A. githago was studied in additive series employing different crop densities. Growth of this weed species was strongly dependent on crop density, which was more important for controlling weed growth than it was for obtaining a normal grain yield. Wheat and especially barley...

  9. Degradation of the starch components amylopectin and amylose by barley α-amylase 1: Role of surface binding site 2

    DEFF Research Database (Denmark)

    Nielsen, Jonas Willum; Kramhøft, Birte; Bozonnet, Sophie

    2012-01-01

    Barley α-amylase isozyme 1 (AMY1, EC 3.2.1.1) contains two surface binding sites, SBS1 and SBS2, involved in the degradation of starch granules. The distinct role of SBS1 and SBS2 remains to be fully understood. Mutational analysis of Tyr-380 situated at SBS2 previously revealed that Tyr-380...... is required for binding of the amylose helix mimic, β-cyclodextrin. Also, mutant enzymes altered at position 380 displayed reduced binding to starch granules. Similarly, binding of wild type AMY1 to starch granules was suppressed in the presence of β-cyclodextrin. We investigated the role of SBS2 by comparing...... kinetic properties of the wild type AMY1 and the Y380A mutant enzyme in hydrolysis of amylopectin, amylose and β-limit dextrin, and the inhibition by β-cyclodextrin. Progress curves of the release of reducing ends revealed a bi-exponential hydrolysis of amylopectin and β-limit dextrin, whereas hydrolysis...

  10. Temporal and spatial distribution of roots and competition for nitrogen in pea-barley intercrops - a field study employing P-32 technique

    DEFF Research Database (Denmark)

    Hauggaard-Nielsen, H.; Ambus, P.; Jensen, E.S.

    2001-01-01

    was the dominant component of the pea-barley intercrop, obtaining 90% of its sole crop yield, while pea produced only 15% of the grains of a sole crop pea. Intercropping of pea and barley improved the utilization of plant growth resources (LER > 1) as compared to sole crops. Root system distribution in time...... and space can partly explain interspecific competition. The P-32 methodology proved to be a valuable tool for determining root dynamics in intercropping systems....

  11. The effect of intercropping on weed infestation of a spring barley crop cultivated in monoculture

    Directory of Open Access Journals (Sweden)

    Ewa Kwiecińska-Poppe

    2012-12-01

    Full Text Available This paper presents the results of a study carried out in the years 2005-2007 in the Bezek Experimental Farm near the city of Chełm, Poland, on heavy mixed rendzina soil. The effect of intercropping, using red clover (cv. Dajana and white clover (cv. Astra, on weed infestation of a spring barley crop was studied. The species composition of weeds in the spring barley crop changed to a small extent under the influence of the application of clover intercropping, whereas the population size of particular species showed large fluctuations. In the spring barley crop with the red clover intercrop, Sonchus arvensis occurred in greatest numbers among dicotyledonous weed species. In the barley crop with white clover and without intercrop, Viola arvensis and Sonchus arvensis were the dominant dicotyledonous species. Setaria pumila was the dominant monocotyledonous species in all the treatments. Intercropping using red and white clover clearly limited the growth and development of weeds. The red clover intercrop in the spring barley crop better reduced the infestation with dicotyledonous weeds and also significantly reduced the number of monocotyledonous weeds and the total number of weeds, whereas the white clover intercrop limited only the number of monocotyledonous weeds. The application of the herbicide Chwastox Extra 300 SL significantly reduced the fresh weight of weeds found in the spring barley crop. The presence of the intercrop resulted in different total numbers of weeds in particular treatments. Intercropping distinctly limited the occurrence of the following weed species: Sonchus arvensis, Fallopia convolvulus, Melandrium album, Amaranthus retroflexus, Veronica arvensis and Medicago lupulina. The investigated intercrop species also reduced the biomass of weeds. The application of the herbicide did not differentiate the number of monocotyledonous weeds, which resulted from the application of Chwastox Extra 300 SL that controls only

  12. A root hairless barley mutant for elucidating genetic of root hairs and phosphorus uptake (Correction in v. 242, 2002, p. 299)

    DEFF Research Database (Denmark)

    Gahoonia, T.S.; Nielsen, N.E.; Priyavadan, A.J.

    2001-01-01

    This paper reports a new barley mutant missing root hairs. The mutant was spontaneously discovered among the population of wild type (Pallas, a spring barley cultivar), producing normal, 0.8 mm long root hairs. We have called the mutant bald root barley (brb). Root anatomical studies confirmed...

  13. Early maturing mutations as germplasm stocks for barley breeding

    International Nuclear Information System (INIS)

    Ukai, Yasuo

    1985-01-01

    A total of 102 early maturing mutations have been isolated after various treatments of seeds or plants with ionizing radiations or chemicals from a barley cultivar 'Chikurin Ibaraki 1' or its mutants. Fifty of them were evaluated as regards responses to internal physiological factors. The mutants were found to have a mutational alteration in vernalization and/or photoperiodic response. Earliness in a narrow sense was not noticeably changed. The original genotype is a winter and long-day type. By mutation four different degrees of change in vernalization requirement i.e. complete (V 1 ) and incomplete (V 2 ) spring habit and winter habit with reduced requirement to varying degrees (V 3 , V 4 ) have been produced. Photoperiodic response was also changed into at least three types i.e. complete (P 1 ) and incomplete (P 2 ) loss of sensitivity to short photoperiod and a slight reduction in critical daylength for heading. P 1 and P 2 type mutants were all characterized by marked earliness in heading time in field. Thirty seven mutants were located in seven separate loci. Allelism test of the mutated genes to spontaneous ones revealed that the genes carried by P 1 type mutants were all allelic to an earliness gene ea sub(k) on chromosome 5 and the gene involved in P 2 type mutants to ea 7 on chromosome 6. On the contrary, the gene commonly involved in all V 1 type mutants and one V 2 type mutant was not allelic to spring habit gene Sh 2 or Sh 3 . It seemed likely that the gene was not allelic to, either, but closely linked with sh on chromosome 4. The diversity in terms of genetic and physiological properties of the early maturing mutants arising from common ancestry emphasizes the importance of induced mutation in broadening of germplasm of barley breeding. (author)

  14. Barley Breeding for Quality Improvement in Tunisia

    African Journals Online (AJOL)

    TOSHIBA

    2012-11-06

    Nov 6, 2012 ... sub-humid environment at Beja and a semi-arid one at Kef. Heading date ... State of art showed that barley was a main food crop in. North Africa for ... rably to many other food grains (wheat, rye, and oats) and played a .... rates both analysis of variance (ANOVA) and principal component analysis (PCA) into ...

  15. Free α-dicarbonyl compounds in coffee, barley coffee and soy sauce and effects of in vitro digestion.

    Science.gov (United States)

    Papetti, Adele; Mascherpa, Dora; Gazzani, Gabriella

    2014-12-01

    α-Dicarbonyl (α-DC) compounds were characterised in roasted (coffee, barley coffee) and in fermented (soy sauce) food matrices. Glyoxal (GO), methylglyoxal (MGO), diacetyl (DA) and 3-deoxyglucosone (3-DG) were found in all samples, and hydroxypyruvaldehyde and 5-hydroxypentane-2,3-dione in barley and soy. Cis and trans 3,4-dideoxyglucosone-3-ene (3,4-DGE) isomers and 4-glucosyl-5,6-dihydroxy-2-oxohexanal (4-G,3-DG) were found only in barley, and 3,4-DGE only in soy sauce with molasses. GO, MGO, and DA were quantified. Findings indicate that i) α-DC profiles depend on the food matrix and any technological treatments applied; ii) α-DC quantitation by HPLC requires matrix-specific, validated methods; iii) GO and MGO were the most abundant α-DCs; and iv) barley coffee was the matrix richest in α-DCs both qualitatively and quantitatively. In vitro simulated digestion reduced (coffee) or strongly increased (barley, soy sauce) free α-DC content. These findings suggest that α-DC bioavailability could actually depend not on food content but rather on reactions occurring during digestion. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Loose smut of barley grown in three types of farming

    Directory of Open Access Journals (Sweden)

    T. Nedelcheva

    2016-09-01

    Full Text Available Abstract. Over the period of 2014-2015, on the experimental field of the Institute of Agriculture in Karnobat, Bulgaria, was set a field trial with twenty cultivars of barley – 15 two-row: Obzor, Emon, Perun, Orfey, Lardeya, Asparuh, Kuber, Zagorets, Imeon, Sayra, Devinya, Sitara, Krami, Vicky, Potok; 3 four-row: Veslets, Aheloy 2, Tamaris; and 2 six-row cultivars – IZ Bori and Bozhin. All the cultivars were grown in three types of farming: conventional, organic and biodynamic. In conventional farming were applied pesticides and nitrogen fertilization. In the organic production were not used pesticides, mineral and organic fertilizers; and in biodynamic farming was applied biodynamic compost prepared from manure and biodynamic preparations (also organic. In conventional farming, the seeds were disinfected before sowing with Kinto plus (Triticonazole 20 g/l + Prochloraz 60 g/l, at a rate of 150 ml/100 kg seeds. In organic and biodynamic farming were used nondisinfected seeds. In the phenophase of full maturity of barley was conducted monitoring survey for plants infected with loose smut in all 2 the trial variants, the number of infected plants per m were counted and the infection rates were calculated. Infected plants of Tamaris grown in the three types of farming underwent microscopic analysis and measurement of 100 teliospores from each variant. The aim of this experiment was to investigate varietal susceptibility of barley to Ustilago nuda, grown in three types of farming, and to establish if the growing method affects the size of the teliospores of the pathogen. With two-row barley were found plants of Lardeya, Kuber, Devinya, Krami and Vicky infected with Ustilago nuda. Krami manifested the lowest resistance in the three types of farming. With four-row barley, Tamaris was found to be highly susceptible and Veslets was poorly resistant. Both cultivars expressed weaker susceptibility in conventional and biodynamic farming and stronger in

  17. Barley polyamine oxidase: Characterisation and analysis of the cofactor and the N-terminal amino acid sequence

    DEFF Research Database (Denmark)

    Radova, A.; Sebela, M.; Galuszka, P.

    2001-01-01

    This paper reports the first purification method developed for the isolation of an homogeneous polyamine oxidase (PAO) from etiolated barley seedlings. The crude enzyme preparation was obtained after initial precipitation of the extract with protamine sulphate and ammonium sulphate. The enzyme...... was further confirmed by measuring the fluorescence spectra, Barley PAO is an acidic protein (pI 5.4) containing 3% of neutral sugars: its molecular mass determined by SDS-PAGE was 56 kDa, whilst gel permeation chromatography revealed the higher value of 76 kDa. The N-terminal amino acid sequence of barley...... PAO shows a high degree of similarity to that of maize PAO and to several other flavoprotein oxidases. The polyamines spermine and spermidine were the only two substrates of the enzyme with K-m values 4 x 10(-5) and 3 x 10(-5) M and pH optima of 5.0 and 6.0, respectively. Barley polyamine oxidase...

  18. Improved bioavailability of dietary phenolic acids in whole grain barley and oat groat following fermentation with probiotic Lactobacillus acidophilus , Lactobacillus johnsonii , and Lactobacillus reuteri.

    Science.gov (United States)

    Hole, Anastasia S; Rud, Ida; Grimmer, Stine; Sigl, Stefanie; Narvhus, Judith; Sahlstrøm, Stefan

    2012-06-27

    The aim of this study was to improve the bioavailability of the dietary phenolic acids in flours from whole grain barley and oat groat following fermentation with lactic acid bacteria (LAB) exhibiting high feruloyl esterase activity (FAE). The highest increase of free phenolic acids was observed after fermentation with three probiotic strains, Lactobacillus johnsonii LA1, Lactobacillus reuteri SD2112, and Lactobacillus acidophilus LA-5, with maximum increases from 2.55 to 69.91 μg g(-1) DM and from 4.13 to 109.42 μg g(-1) DM in whole grain barley and oat groat, respectively. Interestingly, higher amounts of bound phenolic acids were detected after both water treatment and LAB fermentation in whole grain barley, indicating higher bioaccessibility, whereas some decrease was detected in oat groat. To conclude, cereal fermentation with specific probiotic strains can lead to significant increase of free phenolic acids, thereby improving their bioavailability.

  19. Classification and salt tolerance analysis of barley varieties

    NARCIS (Netherlands)

    Katerji, N.; Hoorn, van J.W.; Hamdy, A.; Mastrorilli, M.; Fares, C.; Ceccarelli, S.; Grando, S.; Oweis, T.

    2006-01-01

    Six varieties of barley (Hordeum vulgare), five of which were provided by ICARDA, were tested in a green house experiment for their salt tolerance. Afterwards the ICARDA variety Melusine, selected from this experiment for its combination of high yield and salt tolerance, was compared in a lysimeter

  20. The absence of chlorophyll b affects lateral mobility of photosynthetic complexes and lipids in grana membranes of Arabidopsis and barley chlorina mutants.

    Science.gov (United States)

    Tyutereva, Elena V; Evkaikina, Anastasiia I; Ivanova, Alexandra N; Voitsekhovskaja, Olga V

    2017-09-01

    The lateral mobility of integral components of thylakoid membranes, such as plastoquinone, xanthophylls, and pigment-protein complexes, is critical for the maintenance of efficient light harvesting, high rates of linear electron transport, and successful repair of damaged photosystem II (PSII). The packaging of the photosynthetic pigment-protein complexes in the membrane depends on their size and stereometric parameters which in turn depend on the composition of the complexes. Chlorophyll b (Chlb) is an important regulator of antenna size and composition. In this study, the lateral mobility (the mobile fraction size) of pigment-protein complexes and lipids in grana membranes was analyzed in chlorina mutants of Arabidopsis and barley lacking Chlb. In the Arabidopsis ch1-3 mutant, diffusion of membrane lipids decreased as compared to wild-type plants, but the diffusion of photosynthetic complexes was not affected. In the barley chlorina f2 3613 mutant, the diffusion of pigment-protein complexes significantly decreased, while the diffusion of lipids increased, as compared to wild-type plants. We propose that the size of the mobile fractions of pigment-protein complexes in grana membranes in vivo is higher than reported previously. The data are discussed in the context of the protein composition of antennae, characteristics of the plastoquinone pool, and production of reactive oxygen species in leaves of chlorina mutants.

  1. TAL effector nucleases induce mutations at a pre-selected location in the genome of primary barley transformants

    DEFF Research Database (Denmark)

    Wendt, Toni; Holm, Preben Bach; Starker, Colby G

    2013-01-01

    , and their broad targeting range. Here we report the assembly of several TALENs for a specific genomic locus in barley. The cleavage activity of individual TALENs was first tested in vivo using a yeast-based, single-strand annealing assay. The most efficient TALEN was then selected for barley transformation....... Analysis of the resulting transformants showed that TALEN-induced double strand breaks led to the introduction of short deletions at the target site. Additional analysis revealed that each barley transformant contained a range of different mutations, indicating that mutations occurred independently...

  2. QTL underlying some agronomic traits in barley detected by SNP markers.

    Science.gov (United States)

    Wang, Jibin; Sun, Genlou; Ren, Xifeng; Li, Chengdao; Liu, Lipan; Wang, Qifei; Du, Binbin; Sun, Dongfa

    2016-07-07

    Increasing the yield of barley (Hordeum vulgare L.) is a main breeding goal in developing barley cultivars. A high density genetic linkage map containing 1894 SNP and 68 SSR markers covering 1375.8 cM was constructed and used for mapping quantitative traits. A late-generation double haploid population (DH) derived from the Huaai 11 × Huadamai 6 cross was used to identify QTLs and QTL × environment interactions for ten traits affecting grain yield including length of main spike (MSL), spikelet number on main spike (SMS), spikelet number per plant (SLP), grain number per plant (GP), grain weight per plant (GWP), grain number per spike (GS), thousand grain weight (TGW), grain weight per spike (GWS), spike density (SPD) and spike number per plant (SP). In single environment analysis using composite interval mapping (CIM), a total of 221 QTLs underlying the ten traits were detected in five consecutive years (2009-2013). The QTLs detected in each year were 50, 48, 41, 41 and 41 for the year 2009 to 2013. The QTLs associated with these traits were generally clustered on chromosome 2H, 4H and 7H. In multi-environment analysis, a total of 111 significant QTLs including 18 for MSL, 16 for SMS, 15 for SPD, 5 for SP, 4 for SLP, 14 for TGW, 5 for GP, 11 for GS, 8 for GWP, and 15 for GWS were detected in the five years. Most QTLs showed significant QTL × environment interactions (QEI), nine QTLs (qIMSL3-1, qIMSL4-1, qIMSL4-2, qIMSL6-1, qISMS7-1, qISPD2-7, qISPD7-1, qITGW3-1 and qIGWS4-3) were detected with minimal QEI effects and stable in different years. Among 111 QTLs,71 (63.40 %) QTLs were detected in both single and multiple environments. Three main QTL cluster regions associated with the 10 agronomic traits on chromosome 2H, 4H and 7H were detected. The QTLs for SMS, SLP, GP and GWP were located in the region near Vrs1 on chromosome 2H. The QTLs underlying SMS, SPD and SLP were clustered on chromosome 4H. On the terminal of chromosome 7H, there was a QTL

  3. Genome-wide association mapping of barley yellow dwarf virus tolerance in spring oat (Avena sativa L.)

    Science.gov (United States)

    Barley yellow dwarf (BYD) is one of the most destructive diseases of cereal crops worldwide. Barley yellow dwarf viruses (BYDVs) are responsible for BYD and affect many cereals including oat (Avena sativa L.). Until recently, the molecular marker technology in oat has not allowed for many marker-t...

  4. Sequencing of 15622 gene-bearing BACs clarifies the gene-dense regions of the barley genome

    Czech Academy of Sciences Publication Activity Database

    Munoz-Amatriain, M.; Lonardi, S.; Luo, M.C.; Madishetty, K.; Svensson, J.T.; Moscou, M. J.; Wanamaker, S.; Kudrna, D.; Zheng, J.; Šimková, Hana; Doležel, Jaroslav; Grimwood, J.; Mammadov, J.; Close, T.J.

    2015-01-01

    Roč. 84, č. 1 (2015), s. 216-227 ISSN 0960-7412 R&D Projects: GA MŠk(CZ) LO1204 Institutional support: RVO:61389030 Keywords : Barley * Hordeum vulgare L * BAC sequencing Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 5.468, year: 2015

  5. Exploring the Plant–Microbe Interface by Profiling the Surface-Associated Proteins of Barley Grains

    DEFF Research Database (Denmark)

    Sultan, Abida; Andersen, Birgit; Svensson, Birte

    2016-01-01

    Cereal grains are colonized by a microbial community that actively interacts with the plant via secretion of various enzymes, hormones, and metabolites. Microorganisms decompose plant tissues by a collection of depolymerizing enzymes, including β-1,4-xylanases, that are in turn inhibited by plant...... xylanase inhibitors. To gain insight into the importance of the microbial consortia and their interaction with barley grains, we used a combined gel-based (2-DE coupled to MALDI-TOF-TOF MS) and gel-free (LC–MS/MS) proteomics approach complemented with enzyme activity assays to profile the surface......-associated proteins and xylanolytic activities of two barley cultivars. The surface-associated proteome was dominated by plant proteins with roles in defense and stress-responses, while the relatively less abundant microbial (bacterial and fungal) proteins were involved in cell-wall and polysaccharide degradation...

  6. HvZIP7 mediates zinc accumulation in barley (Hordeum vulgare) at moderately high zinc supply

    DEFF Research Database (Denmark)

    Tiong, Jingwen; Mcdonald, Glenn K.; Genc, Yusuf

    2014-01-01

    Summary: High expression of zinc (Zn)-regulated, iron-regulated transporter-like protein (ZIP) genes increases root Zn uptake in dicots, leading to high accumulation of Zn in shoots. However, none of the ZIP genes tested previously in monocots could enhance shoot Zn accumulation. In this report...... were also generated to further understand the functions of HvZIP7 in metal transport. HvZIP7 is strongly induced by Zn deficiency, primarily in vascular tissues of roots and leaves, and its protein was localized in the plasma membrane. These properties are similar to its closely related homologs...... in dicots. Overexpression of HvZIP7 in barley plants increased Zn uptake when moderately high concentrations of Zn were supplied. Significantly, there was a specific enhancement of shoot Zn accumulation, with no measurable increase in iron (Fe), manganese (Mn), copper (Cu) or cadmium (Cd). HvZIP7 displays...

  7. Response of barley to grasshopper defoliation in interior Alaska: dry matter and grain yield.

    Science.gov (United States)

    Begna, Sultan H; Fielding, Dennis J

    2005-12-01

    Barley, Hordeum vulgare L., is well adapted to subarctic Alaska growing conditions, but little is known about its response to grasshopper defoliation. A field experiment was conducted to study dry matter and grain yield in response to a combination of grasshopper defoliation and weeds in 2002 and 2003 near Delta Junction, AK (63 degrees 55' N, 145 degrees 20' W). Barley plants at third to fourth leaf stage were exposed to a combination of two levels of weeds (present or absent) and four densities of grasshoppers (equivalent to 0, 25, 50, and 75 grasshoppers per m2) of third to fourth instars of Melanoplus sanguinipes (F). Dry matter accumulation by the barley plants was determined at three times during the growing seasons: approximately 10 d after introduction of the grasshoppers, shortly after anthesis, and at maturity. Dry matter accumulation and grain yield were much lower in 2003 than in 2002, probably due to very low levels of soil moisture early in the growing season of 2003. Head clipping accounted for a greater portion of yield loss in 2003 than in 2002. The percentage of reduction in harvestable yield due to grasshoppers remained fairly constant between years (1.9 and 1.4 g per grasshopper per m2 in 2002 and 2003, respectively) despite a large difference in overall yield. Examination of the yield components suggest that yields were reduced by the early season drought in 2003 primarily through fewer seeds per head, whereas grasshoppers in both years reduced average seed weight, but not numbers of seeds.

  8. Occurrence of Rhynchosporium secalis (Oud. J.J. Davis on spring barley and winter rye in Finland

    Directory of Open Access Journals (Sweden)

    Kaiho Mäkelä

    1974-05-01

    Full Text Available This study was carried out on Rhynchosprium secalis (Oud. J. J. Davis occurring on spring barley, winter rye and couch grass (Agropyron repens (L. PB in Finland. The results were obtained from samples of barley (c. 860 samples and rye (c. 200 samples gathered in fields during the growing season throughout the country in 1971 1973. The samples (c. 170 samples of Agropyron repens were collected in fields and the borders of fields. The fungi of all the samples were examined by microscope and cultures and inocolation tests were used as well. Rhynchosporium secalis was observed to occur commonly on spring barley throughout the country from Helsinki to Lapland. The fungus was observed in about 30 per cent of the fields and in below 60 percent of the localities examined. Leaf blotch was commoner on six rowed barley than on two-rowed barley. The fungus sometimes attacked a field in great profusion. R. secalis was observed in below 50 per cent of the winter rye samples and in below 70 per cent of the localities examined. The fungus occurred commonly in the southern part of Finland and was found also in Lapland (Inari, 69° N, 27°E. Spores of the fungus were most abundant in the leaves of rye in spring and in early summer. R. secalis was observed rather scarce (in over 10 per cent of fields and in over 25 per cent of the localities examined on Agropyron repens throughout the country. A high degree of host specialisation has been found within the species R. secalis. Two isolates from spring barley and from winter rye were pathogenic to their original host only.

  9. 2D-HPLC and MALDI-TOF/TOF analysis of barley proteins glycated during brewing

    Czech Academy of Sciences Publication Activity Database

    Petry-Podgorska, Inga; Žídková, Jitka; Flodrová, Dana; Bobálová, Janette

    2010-01-01

    Roč. 878, č. 30 (2010), s. 3143-3148 ISSN 1570-0232 R&D Projects: GA MŠk 1M0570 Institutional research plan: CEZ:AV0Z40310501 Keywords : 2D-HPLC * MALDI-TOF/TOF mass spectrometry * barley Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 2.971, year: 2010

  10. Comparative study of the radionuclide uptake and distribution within plants for barley and maize varieties

    International Nuclear Information System (INIS)

    Kostyuk, O.

    1998-01-01

    Differences in the Cs-134 and Sr-85 uptake by three barley and two maize varieties were investigated in a water culture experiment. In barley, the maximum differences were about 30% for cesium and 50% for strontium. The differences between the maize varieties were negligible. The maximum difference between the varieties of the two species of crops was approximately 30% for cesium and 1 70% for strontium with higher radionuclide uptake by maize. All barley varieties accumulated cesium nearly 3.5 times more effectively than strontium, whereas for the maize varieties, cesium was accumulated about 2 times more effectively. There is a large difference in the radionuclide distribution within the plants: the amount of radiocesium in the green part of plants of both species was approximately 30% of the total, while for radiostrontium it was about 80%. As a result, approximately the same amount of the radionuclides were present in the green part of plants, despite the large difference in the uptake of the radionuclides by the whole plants. It is concluded that crop selection as a provision to reduce radionuclide contamination of the food chain should only be applied taking into account the different radionuclide distributions within the plants

  11. Mapping genes in barley for resistance to Puccinia coronata from couch grass and to P. striiformis from brome, wheat and barley

    NARCIS (Netherlands)

    Niks, R.E.; Alemu, Sisay K.; Marcel, T.C.; Heyzen, van Skye

    2015-01-01

    Barley (Hordeum vulgare L.) mapping populations have been developed that are useful to study the inheritance of quantitative resistance to adapted and unadapted rust fungi. In a recent host range study, we found that the parents of those mapping populations also differed in their resistance to

  12. Unique and Conserved Features of the Barley Root Meristem

    Directory of Open Access Journals (Sweden)

    Gwendolyn K. Kirschner

    2017-07-01

    Full Text Available Plant root growth is enabled by root meristems that harbor the stem cell niches as a source of progenitors for the different root tissues. Understanding the root development of diverse plant species is important to be able to control root growth in order to gain better performances of crop plants. In this study, we analyzed the root meristem of the fourth most abundant crop plant, barley (Hordeum vulgare. Cell division studies revealed that the barley stem cell niche comprises a Quiescent Center (QC of around 30 cells with low mitotic activity. The surrounding stem cells contribute to root growth through the production of new cells that are displaced from the meristem, elongate and differentiate into specialized root tissues. The distal stem cells produce the root cap and lateral root cap cells, while cells lateral to the QC generate the epidermis, as it is typical for monocots. Endodermis and inner cortex are derived from one common initial lateral to the QC, while the outer cortex cell layers are derived from a distinct stem cell. In rice and Arabidopsis, meristem homeostasis is achieved through feedback signaling from differentiated cells involving peptides of the CLE family. Application of synthetic CLE40 orthologous peptide from barley promotes meristem cell differentiation, similar to rice and Arabidopsis. However, in contrast to Arabidopsis, the columella stem cells do not respond to the CLE40 peptide, indicating that distinct mechanisms control columella cell fate in monocot and dicot plants.

  13. Impact of mineral fertilizers on common winter barley (Hordeum vulgare L. agrophytocenosis development

    Directory of Open Access Journals (Sweden)

    Я. М. Мукан

    2014-04-01

    Full Text Available In 2011 to 2013 a study was completed for the impact of varying rates of fertilizing onto the indices of productivity for barley agrophytocenosis of Helios and Commandor, in particular, such its components as a number of productive stems, number of seeds per ear, potential biological activity of ear and photosynthetic apparatus. It is found that the level of spring barley agrophytocenosis productivity is subject both to varietal peculiarities and the rate of mineral fertilizer application. When applying N 60P 60K 60 і N 90P 90K 90 the highest potential and biological productivity of Helios and Commandor was recorder as compared against the control. Impact of varying application rates for fertilizers onto the components of ear biological productivity has been scrutinized. The qualitative composition of ear is a clear expression of variety phenotype and identifies the level of biological yield for spring barley. Application of N 60 P 60 K 60 і N 90 P 90 K 90 mineral fertilizers fairly increased the average leaf surface, photosynthetic lead capacity of varieties in 2 to 2.5 times, as well as FAR efficiency coefficient in 1.5 to 2.0 times as against control that thus contributed to the development of highest biological yield of Helios variety phytomass at the level of 14.9 to 15.0, grain – 7.8 to 8.0 ton per ha and, respectively, 12.7 and 7.5 tons per ha for Comandor variety.

  14. Transcriptome Sequencing in a Tibetan Barley Landrace with High Resistance to Powdery Mildew

    Directory of Open Access Journals (Sweden)

    Xing-Quan Zeng

    2014-01-01

    Full Text Available Hulless barley is an important cereal crop worldwide, especially in Tibet of China. However, this crop is usually susceptible to powdery mildew caused by Blumeria graminis f. sp. hordei. In this study, we aimed to understand the functions and pathways of genes involved in the disease resistance by transcriptome sequencing of a Tibetan barley landrace with high resistance to powdery mildew. A total of 831 significant differentially expressed genes were found in the infected seedlings, covering 19 functions. Either “cell,” “cell part,” and “extracellular region” in the cellular component category or “binding” and “catalytic” in the category of molecular function as well as “metabolic process” and “cellular process” in the biological process category together demonstrated that these functions may be involved in the resistance to powdery mildew of the hulless barley. In addition, 330 KEGG pathways were found using BLASTx with an E-value cut-off of <10−5. Among them, three pathways, namely, “photosynthesis,” “plant-pathogen interaction,” and “photosynthesis-antenna proteins” had significant matches in the database. Significant expressions of the three pathways were detected at 24 h, 48 h, and 96 h after infection, respectively. These results indicated a complex process of barley response to powdery mildew infection.

  15. Submergence sensitivity of durum wheat, bread wheat and barley at the germination stage

    Directory of Open Access Journals (Sweden)

    Iduna Arduini

    2016-06-01

    Full Text Available Soil waterlogging at initial growth stages can cause heavy yield losses of winter cereals. Therefore, the screening for submergence tolerance traits in seeds of commercial varieties is of high concern worldwide. Ten Italian varieties of durum wheat (Triticum durum Desf., bread wheat (T. aestivum L. and barley (Hordeum vulgare L. were investigated for their ability to germinate in submerged conditions and to recover after submergence periods of three to 15 days. Submergence prevented germination and decreased germinability, at rates that increased with duration of submergence. Sensitivity ranked in the order: barley >durum wheat >bread wheat. We related the higher sensitivity of barley to its slower germination and slightly higher leakage of electrolytes, whereas the percentage of abnormal seedlings was lower than in other species. It was less than 4%, compared to less than 15 and 8% in durum wheat and bread wheat, respectively. Wide varietal differences were found in all species. According to variety, after 6-day submergence, germinability ranged from 2 to 42% in barley, from 5 to 80% in durum wheat, and from 30 to 77% in bread wheat. Varieties with more than 40% seed survival were three, six and seven per species, in the same order. The differential submergence sensitivity of varieties indicates a potential to select for waterlogging tolerance within Italian genotypes of winter cereal crops.

  16. The soil acidity as restrictive factor of the use of nitrogen fertilizer by spring barley

    International Nuclear Information System (INIS)

    Hejnak, V.; Lippold, H.

    1999-01-01

    In two - year micro - plot trials was studied the effect of soil pH value (pH > 6,5 and pH 15 N in first year and no enriched in second year, rates of 0, 85, 170 and 255 mg N per pot, i.e. 0, 30, 60 and 90 kg N.ha -1 ) on the spring barley productivity and on the use of nitrogen fertilizer by plants in the application year of 15 N and in the following year. The productivity of spring barley is significantly higher in neutral soil than in acid soil. The gradated rates of nitrogen fertilization increased this difference. The total nitrogen uptake by plants was higher in neutral soil. The share of the nitrogen from 'the old soil's supply' in the total uptake by the harvest ranges from 95 to 82 % and is practically identical in studied soils. 'Priming effect' was higher in soil with better fertility (153 - 186 mg N per pot) than in acid soil (to 49 mg N per pot only). The gradated rates of ammonium sulphate increased the uptake nitrogen from fertilizer by harvest of spring barley in the application year of 15 N from 39 mg N to 107 mg N per pot in neutral soil and from 26 mg N to 83 mg N per pot in acid soil and in the following year from 3,05 mg N to 8,15 mg N per pot in neutral soil and from 1,76 mg N to 3,37 mg N per pot in acid soil. The total balance of fertilizer nitrogen ( 15 N) in soil - crop system in two years from application showed that in neutral soil 46 % used by spring barley (42 % in the application year and 4 % in the following year), 16 % rested in soil and loss was 38 % and in acid soil 35 % used by harvest (33 % in first year and 2 % second year), 12 % rested in soil and loss was 53 %. Refs. 5 (author)

  17. Observed and predicted changes over eight years in frequency of barley powdery mildew avirulent to spring barley in France and Denmark

    DEFF Research Database (Denmark)

    Bousset, L.; Hovmøller, M.S.; Caffier, V.

    2002-01-01

    Aerial populations of Blumeria graminis f.sp. hordei were studied in two French and two Danish regions from 1991 to 1999, at a time of year when only winter barley was present. A high frequency of genotypes not able to grow on the spring-sown crop of the previous growing season (denoted 'spring......-avirulent') was observed in most years and regions. This frequency increased with increasing proportion of winter barley; it was highest in France and decreased in general over the 8-year period. Most of the spring-avirulent genotypes possessed the V-a22 virulence gene, matching a resistance that has never been present...... of the pathogen population in this system, demonstrated that selection solely due to host resistance genes, i.e. without assuming any cost of virulence, might lead to such results as those observed. The changes in frequency of spring-avirulent genotypes and the frequency of unnecessary virulence genes may...

  18. Marine eutrophication impacts from present and future production of spring barley

    DEFF Research Database (Denmark)

    Cosme, Nuno Miguel Dias; Niero, Monia

    2015-01-01

    Environmental emissions of nitrogen (N) from agriculture surplus may enrich coastal waters and trigger marine eutrophication impacts. We estimated these impacts for spring barley production in Denmark, under present and future climatic conditions with double carbon dioxide concentration and 5 °C...... increase. Characterised emissions of airborne (NH3 and NOx) and waterborne (NO3-) forms result in an endpoint impact of 2.35*10-12 (North Sea) and 8.47*10-12 species.yr (Baltic Sea) under present conditions per kg spring barley produced. The future scenario shows 67% increase on both spatial units. Spatial...... to hypoxia under future pressures may alter the impacts assessment....

  19. Meat bone meal as fertiliser for barley and oat

    Directory of Open Access Journals (Sweden)

    L. CHEN

    2008-12-01

    Full Text Available The traditional production of mineral N and P fertilisers is unsustainable due its reliance on fossil fuels in the case of N, and on limited mineral resource stocks in the case of P. The use of alternative or complementary fertilisers that originate from organic waste materials is gaining interest. Organic farms, especially arable organic farms without livestock, need usable sources of plant nutrients. Meat bone meal (MBM, a potential organic fertiliser for agricultural crops, contains considerable amounts of nutrients (on average 8% N, 5% P, 1% K and 10% Ca. In EU countries, Commission regulation (EC No 181/2006 authorised the use of MBM as an organic fertiliser. In this study, MBM was compared to conventional mineral NPK fertiliser. Two randomised complete block split-plot field experiments were conducted: one with spring barley (Hordeum vulgare in two years; and another with oat (Avena sativa for three years, including a fourth year of testing for residual effect. Compared to mineral fertiliser (20% N, 3% P and 9% K, MBM was applied at three N levels: 60, 90 and 120 kg N ha-1. The grain yield of both cereal species supported by MBM, did not differ from the yield obtained with the mineral fertiliser at any N level. At 120 kg N ha-1, the grain yield level with either type was ca. 4500 kg ha-1 of barley and 5000 kg ha-1 of oat, representing fair averages for Finnish conditions. Moreover, MBM and mineral fertilisation showed no differences in quality in terms of 1000-grain weight, test-weight, protein content and protein yield. Since MBM has a low N/P ratio, P was applied in surplus to attain comparable N levels. Therefore MBM fertilisation should be fitted for crop rotation and for meeting environmental requirements.;

  20. Rumen Microbial Protein Production in Rumen-Simulating-Technique (RUSITEC) Using 15N-Urea Nitrogen, as Influenced By Hay and Barley Ratios in Feed

    International Nuclear Information System (INIS)

    Al-Masri, M. R.; Abel, HJ.; Steinberg, W.

    2004-01-01

    Metabolism of dietary nitrogen using labeled 15 N and the changes in the microbial protein mass and NH3-N were studied in five rumen-simulating-technique(RUSITEC)-fermenters, which were run simultaneously in three identically repeated experiments. Each experiment consisted of a 6-day adaptation period followed directly by a 3-day collection period. The feed of the fermenters (G1, G2, G3, G4 and G5) varied in the ratio of barley. The barley increased by 20% between the fermenters. Grass hay+barley (g/d) in the feed of the fermenters was 10+2 (G1), 8+4 (G2), 6+6 (G3), 4+8 (G4) and 2+10 (G5). The results indicated that there were no significant (P>0.05) changes in the amounts of microbial nitrogen (92-118 mg/d) and microbial mass syntheses which were (mg/d): 1154 (G1), 1063 (G2), 1152 (G3), 1127 (G4) and 1362 (G5). Increasing the proportion of barley in the fermenters (G4 and G5) decreased NH3-N amounts (G2 and G3) significantly (P<0.05). The energy was not efficiently used in G5 having a lower ratio of the microbial nitrogen and microbial mass to the total short chain fatty acids than that other fermenters. (authors)