WorldWideScience

Sample records for barley endosperm development

  1. Replication of DNA during barley endosperm development

    DEFF Research Database (Denmark)

    Giese, H.

    1992-01-01

    The incorporation of [6-H-3]-thymidine into DNA of developing barley end sperm was examined by autoradiography of cross sections of seeds and DNA analysis. The majority of nuclear divisions took place in the very young endosperm, but as late as 25 days after anthesis there was evidence for DNA...... replication. The DNA content of the endosperm increases during development and in response to nitrogen application in parallel to the storage protein synthesis profile. The hordein genes were hypersensitive to DNase I treatment throughout development....

  2. Development of endosperm transfer cells in barley.

    Science.gov (United States)

    Thiel, Johannes

    2014-01-01

    Endosperm transfer cells (ETCs) are positioned at the intersection of maternal and filial tissues in seeds of cereals and represent a bottleneck for apoplasmic transport of assimilates into the endosperm. Endosperm cellularization starts at the maternal-filial boundary and generates the highly specialized ETCs. During differentiation barley ETCs develop characteristic flange-like wall ingrowths to facilitate effective nutrient transfer. A comprehensive morphological analysis depicted distinct developmental time points in establishment of transfer cell (TC) morphology and revealed intracellular changes possibly associated with cell wall metabolism. Embedded inside the grain, ETCs are barely accessible by manual preparation. To get tissue-specific information about ETC specification and differentiation, laser microdissection (LM)-based methods were used for transcript and metabolite profiling. Transcriptome analysis of ETCs at different developmental stages by microarrays indicated activated gene expression programs related to control of cell proliferation and cell shape, cell wall and carbohydrate metabolism reflecting the morphological changes during early ETC development. Transporter genes reveal distinct expression patterns suggesting a switch from active to passive modes of nutrient uptake with the onset of grain filling. Tissue-specific RNA-seq of the differentiating ETC region from the syncytial stage until functionality in nutrient transfer identified a high number of novel transcripts putatively involved in ETC differentiation. An essential role for two-component signaling (TCS) pathways in ETC development of barley emerged from this analysis. Correlative data provide evidence for abscisic acid and ethylene influences on ETC differentiation and hint at a crosstalk between hormone signal transduction and TCS phosphorelays. Collectively, the data expose a comprehensive view on ETC development, associated pathways and identified candidate genes for ETC

  3. Correlation-maximizing surrogate gene space for visual mining of gene expression patterns in developing barley endosperm tissue

    Directory of Open Access Journals (Sweden)

    Usadel Björn

    2007-05-01

    Full Text Available Abstract Background Micro- and macroarray technologies help acquire thousands of gene expression patterns covering important biological processes during plant ontogeny. Particularly, faithful visualization methods are beneficial for revealing interesting gene expression patterns and functional relationships of coexpressed genes. Such screening helps to gain deeper insights into regulatory behavior and cellular responses, as will be discussed for expression data of developing barley endosperm tissue. For that purpose, high-throughput multidimensional scaling (HiT-MDS, a recent method for similarity-preserving data embedding, is substantially refined and used for (a assessing the quality and reliability of centroid gene expression patterns, and for (b derivation of functional relationships of coexpressed genes of endosperm tissue during barley grain development (0–26 days after flowering. Results Temporal expression profiles of 4824 genes at 14 time points are faithfully embedded into two-dimensional displays. Thereby, similar shapes of coexpressed genes get closely grouped by a correlation-based similarity measure. As a main result, by using power transformation of correlation terms, a characteristic cloud of points with bipolar sandglass shape is obtained that is inherently connected to expression patterns of pre-storage, intermediate and storage phase of endosperm development. Conclusion The new HiT-MDS-2 method helps to create global views of expression patterns and to validate centroids obtained from clustering programs. Furthermore, functional gene annotation for developing endosperm barley tissue is successfully mapped to the visualization, making easy localization of major centroids of enriched functional categories possible.

  4. Functional and structural characterization of plastidic starch phosphorylase during barley endosperm development

    DEFF Research Database (Denmark)

    Cuesta-Seijo, Jose A.; Ruzanski, Christian; Krucewicz, Katarzyna

    2017-01-01

    The production of starch is essential for human nutrition and represents a major metabolic flux in the biosphere. The biosynthesis of starch in storage organs like barley endosperm operates via two main pathways using different substrates: starch synthases use ADP-glucose to produce amylose......,4-glucans using HvPho1 from G1P as the sole substrate. The structural properties of HvPho1 provide insights into the low affinity of HvPho1 for large polysaccharides like starch or amylopectin. Our results suggest that HvPho1 may play a role during the initiation of starch biosynthesis in barley....... and amylopectin, the two major components of starch, whereas starch phosphorylase (Pho1) uses glucose-1-phosphate (G1P), a precursor for ADP-glucose production, to produce α-1,4 glucans. The significance of the Pho1 pathway in starch biosynthesis has remained unclear. To elucidate the importance of barley Pho1...

  5. Development of maternal seed tissue in barley is mediated by regulated cell expansion and cell disintegration and coordinated with endosperm growth.

    Science.gov (United States)

    Radchuk, Volodymyr; Weier, Diana; Radchuk, Ruslana; Weschke, Winfriede; Weber, Hans

    2011-01-01

    After fertilization, filial grain organs are surrounded by the maternal nucellus embedded within the integuments and pericarp. Rapid early endosperm growth must be coordinated with maternal tissue development. Parameters of maternal tissue growth and development were analysed during early endosperm formation. In the pericarp, cell proliferation is accomplished around the time of fertilization, followed by cell elongation predominantly in longitudinal directions. The rapid cell expansion coincides with endosperm cellularization. Distribution of TUNEL (terminal deoxynucleotidyl transferase-mediated dUTP nick end labelling)-positive nuclei reveals distinct patterns starting in the nucellus at anthesis and followed later by the inner cell rows of the pericarp, then spreading to the whole pericarp. The pattern suggests timely and spatially regulated programmed cell death (PCD) processes in maternal seed tissues. When the endosperm is coenocytic, PCD events are only observed within the nucellus. Thereby, remobilization of nucellar storage compounds by PCD could nourish the early developing endosperm when functional interconnections are absent between maternal and filial seed organs. Specific proteases promote PCD events. Characterization of the barley vacuolar processing enzyme (VPE) gene family identified seven gene members specifically expressed in the developing grain. HvVPE2a (known as nucellain) together with closely similar HvVPE2b and HvVPE2d might be involved in nucellar PCD. HvVPE4 is strongly cell specific for pericarp parenchyma. Correlative evidence suggests that HvVPE4 plays a role in PCD events in the pericarp. Possible functions of PCD in the maternal tissues imply a potential nutritive role or the relief of a physical restraint for endosperm growth. PCD could also activate post-phloem transport functions.

  6. Analysis of the arabinoxylan arabinofuranohydrolase gene family in barley does not support their involvement in the remodelling of endosperm cell walls during development.

    Science.gov (United States)

    Laidlaw, Hunter K C; Lahnstein, Jelle; Burton, Rachel A; Fincher, Geoffrey B; Jobling, Stephen A

    2012-05-01

    Arabinoxylan arabinofuranohydrolases (AXAHs) are family GH51 enzymes that have been implicated in the removal of arabinofuranosyl residues from the (1,4)-β-xylan backbone of heteroxylans. Five genes encoding barley AXAHs range in size from 4.6 kb to 7.1 kb and each contains 16 introns. The barley HvAXAH genes map to chromosomes 2H, 4H, and 5H. A small cluster of three HvAXAH genes is located on chromosome 4H and there is evidence for gene duplication and the presence of pseudogenes in barley. The cDNAs corresponding to barley and wheat AXAH genes were cloned, and transcript levels of the genes were profiled across a range of tissues at different developmental stages. Two HvAXAH cDNAs that were successfully expressed in Nicotiana benthamiana leaves exhibited similar activities against 4-nitrophenyl α-L-arabinofuranoside, but HvAXAH2 activity was significantly higher against wheat flour arabinoxylan, compared with HvAXAH1. HvAXAH2 also displayed activity against (1,5)-α-L-arabinopentaose and debranched arabinan. Western blotting with an anti-HvAXAH antibody was used to define further the locations of the AXAH enzymes in developing barley grain, where high levels were detected in the outer layers of the grain but little or no protein was detected in the endosperm. The chromosomal locations of the genes do not correspond to any previously identified genomic regions shown to influence heteroxylan structure. The data are therefore consistent with a role for AXAH in depolymerizing arabinoxylans in maternal tissues during grain development, but do not provide compelling evidence for a role in remodelling arabinoxylans during endosperm or coleoptile development in barley as previously proposed.

  7. In vitro biochemical characterization of all barley endosperm starch synthases

    DEFF Research Database (Denmark)

    Cuesta-Seijo, Jose A.; Nielsen, Morten M.; Ruzanski, Christian

    2016-01-01

    Starch is the main storage polysaccharide in cereals and the major source of calories in the human diet. It is synthesized by a panel of enzymes including five classes of starch synthases (SSs). While the overall starch synthase (SS) reaction is known, the functional differences between the five SS....... Here we provide a detailed biochemical study of the activity of all five classes of SSs in barley endosperm. Each enzyme was produced recombinantly in E. coli and the properties and modes of action in vitro were studied in isolation from other SSs and other substrate modifying activities. Our results...... define the mode of action of each SS class in unprecedented detail; we analyze their substrate selection, temperature dependence and stability, substrate affinity and temporal abundance during barley development. Our results are at variance with some generally accepted ideas about starch biosynthesis...

  8. In Vitro Biochemical Characterization of All Barley Endosperm Starch Synthases

    Directory of Open Access Journals (Sweden)

    Jose Antonio Cuesta-Seijo

    2016-01-01

    Full Text Available Starch is the main storage polysaccharide in cereals and the major source of calories in the human diet. It is synthesized by a panel of enzymes including five classes of starch synthases (SSs. While the overall starch synthase (SS reaction is known, the functional differences between the five SS classes are poorly understood. Much of our knowledge comes from analyzing mutant plants with altered SS activities, but the resulting data are often difficult to interpret as a result of pleitropic effects, competition between enzymes, overlaps in enzyme activity and disruption of multi-enzyme complexes. Here we provide a detailed biochemical study of the activity of all five classes of SSs in barley endosperm. Each enzyme was produced recombinantly in E. coli and the properties and modes of action in vitro were studied in isolation from other SSs and other substrate modifying activities. Our results define the mode of action of each SS class in unprecedented detail; we analyze their substrate selection, temperature dependence and stability, substrate affinity and temporal abundance during barley development. Our results are at variance with some generally accepted ideas about starch biosynthesis and might lead to the reinterpretation of results obtained in planta. In particular, they indicate that granule bound SS is capable of processive action even in the absence of a starch matrix, that SSI has no elongation limit, and that SSIV, believed to be critical for the initiation of starch granules, has maltoligosaccharides and not polysaccharides as its preferred substrates.

  9. Differentiation of endosperm transfer cells of barley: a comprehensive analysis at the micro-scale.

    Science.gov (United States)

    Thiel, Johannes; Riewe, David; Rutten, Twan; Melzer, Michael; Friedel, Swetlana; Bollenbeck, Felix; Weschke, Winfriede; Weber, Hans

    2012-08-01

    Barley endosperm cells differentiate into transfer cells (ETCs) opposite the nucellar projection. To comprehensively analyse ETC differentiation, laser microdissection-based transcript and metabolite profiles were obtained from laser microdissected tissues and cell morphology was analysed. Flange-like secondary-wall ingrowths appeared between 5 and 7 days after pollination within the three outermost cell layers. Gene expression analysis indicated that ethylene-signalling pathways initiate ETC morphology. This is accompanied by gene activity related to cell shape control and vesicle transport, with abundant mitochondria and endomembrane structures. Gene expression analyses indicate predominant formation of hemicelluloses, glucuronoxylans and arabinoxylans, and transient formation of callose, together with proline and 4-hydroxyproline biosynthesis. Activation of the methylation cycle is probably required for biosynthesis of phospholipids, pectins and ethylene. Membrane microdomains involving sterols/sphingolipids and remorins are potentially involved in ETC development. The transcriptional activity of assimilate and micronutrient transporters suggests ETCs as the main uptake organs of solutes into the endosperm. Accordingly, the endosperm grows maximally after ETCs are fully developed. Up-regulated gene expression related to amino acid catabolism, C:N balances, carbohydrate oxidation, mitochondrial activity and starch degradation meets high demands for respiratory energy and carbohydrates, required for cell proliferation and wall synthesis. At 10 days after pollination, ETCs undergo further differentiation, potentially initiated by abscisic acid, and metabolism is reprogrammed as shown by activated storage and stress-related processes. Overall, the data provide a comprehensive view of barley ETC differentiation and development, and identify candidate genes and associated pathways. © 2012 The Authors. The Plant Journal © 2012 Blackwell Publishing Ltd.

  10. The cereal starch endosperm development and its relationship with other endosperm tissues and embryo.

    Science.gov (United States)

    Zheng, Yankun; Wang, Zhong

    2015-01-01

    The cereal starch endosperm is the central part of endosperm, and it is rich in starch and protein which are the important resources for human food. The starch and protein are separately accumulated in starch granules and protein bodies. Content and configuration of starch granules and protein bodies affect the quality of the starch endosperm. The development of starch endosperm is mediated by genes, enzymes, and hormones, and it also has a close relationship with other endosperm tissues and embryo. This paper reviews the latest investigations on the starch endosperm and will provide some useful information for the future researches on the development of cereal endosperm.

  11. Structure and Composition of Protein Bodies from Wild-Type and High-Lysine Barley Endosperm

    DEFF Research Database (Denmark)

    Ingversen, J.

    1975-01-01

    Protein bodies were isolated from 13 and 28 day old endosperms of barley mutant 1508 and its wild type, Bomi barley. The fine structure of the isolated protein bodies was determined by electron microscopy, and the proteins present in the preparations characterized by amino-acid analysis and SDS......-polyacrylamidegel electrophoresis. Sections through pellets of isolated protein bodies from both the mutant and the wild type revealed protein body structures corresponding with those observed in sections through the intact starchy endosperms. The majority of the wild-type protein bodies was homogeneous spheres accompanied...... that the wild-type protein bodies contained large amounts of prolamines (the storage protein group which is soluble in 55 % isopropanol) and some glutelins (the storage proteins soluble in dilute alkali), whereas the mutant protein bodies have glutelin as the major component and little prolamines...

  12. 454 Transcriptome sequencing suggests a role for two-component signalling in cellularization and differentiation of barley endosperm transfer cells.

    Science.gov (United States)

    Thiel, Johannes; Hollmann, Julien; Rutten, Twan; Weber, Hans; Scholz, Uwe; Weschke, Winfriede

    2012-01-01

    Cell specification and differentiation in the endosperm of cereals starts at the maternal-filial boundary and generates the endosperm transfer cells (ETCs). Besides the importance in assimilate transfer, ETCs are proposed to play an essential role in the regulation of endosperm differentiation by affecting development of proximate endosperm tissues. We attempted to identify signalling elements involved in early endosperm differentiation by using a combination of laser-assisted microdissection and 454 transcriptome sequencing. 454 sequencing of the differentiating ETC region from the syncytial state until functionality in transfer processes captured a high proportion of novel transcripts which are not available in existing barley EST databases. Intriguingly, the ETC-transcriptome showed a high abundance of elements of the two-component signalling (TCS) system suggesting an outstanding role in ETC differentiation. All components and subfamilies of the TCS, including distinct kinds of membrane-bound receptors, have been identified to be expressed in ETCs. The TCS system represents an ancient signal transduction system firstly discovered in bacteria and has previously been shown to be co-opted by eukaryotes, like fungi and plants, whereas in animals and humans this signalling route does not exist. Transcript profiling of TCS elements by qRT-PCR suggested pivotal roles for specific phosphorelays activated in a coordinated time flow during ETC cellularization and differentiation. ETC-specificity of transcriptionally activated TCS phosphorelays was assessed for early differentiation and cellularization contrasting to an extension of expression to other grain tissues at the beginning of ETC maturation. Features of candidate genes of distinct phosphorelays and transcriptional activation of genes putatively implicated in hormone signalling pathways hint at a crosstalk of hormonal influences, putatively ABA and ethylene, and TCS signalling. Our findings suggest an integral

  13. The Allosterically Unregulated Isoform of ADP-Glucose Pyrophosphorylase from Barley Endosperm Is the Most Likely Source of ADP-Glucose Incorporated into Endosperm Starch1

    Science.gov (United States)

    Doan, Danny N.P.; Rudi, Heidi; Olsen, Odd-Arne

    1999-01-01

    We present the results of studies of an unmodified version of the recombinant major barley (Hordeum vulgare) endosperm ADP-glucose pyrophoshorylase (AGPase) expressed in insect cells, which corroborate previous data that this isoform of the enzyme acts independently of the allosteric regulators 3-phosphoglycerate and inorganic phosphate. We also present a characterization of the individual subunits expressed separately in insect cells, showing that the SS AGPase is active in the presence of 3-phosphoglycerate and is inhibited by inorganic phosphate. As a step toward the elucidation of the role of the two AGPase isoforms in barley, the temporal and spatial expression profile of the four barley AGPase transcripts encoding these isoforms were studied. The results show that the steady-state level of beps and bepl, the transcripts encoding the major endosperm isoform, correlated positively with the rate of endosperm starch accumulation. In contrast, blps and blpl, the transcripts encoding the major leaf isoform, were constitutively expressed at a very low steady-state level throughout the barley plant. The implications of these findings for the evolution of plant AGPases are discussed. PMID:10557246

  14. The Allosterically Unregulated Isoform of ADP-Glucose Pyrophosphorylase from Barley Endosperm Is the Most Likely Source of ADP-Glucose Incorporated into Endosperm Starch.

    Science.gov (United States)

    Doan; Rudi; Olsen

    1999-11-01

    We present the results of studies of an unmodified version of the recombinant major barley (Hordeum vulgare) endosperm ADP-glucose pyrophoshorylase (AGPase) expressed in insect cells, which corroborate previous data that this isoform of the enzyme acts independently of the allosteric regulators 3-phosphoglycerate and inorganic phosphate. We also present a characterization of the individual subunits expressed separately in insect cells, showing that the SS AGPase is active in the presence of 3-phosphoglycerate and is inhibited by inorganic phosphate. As a step toward the elucidation of the role of the two AGPase isoforms in barley, the temporal and spatial expression profile of the four barley AGPase transcripts encoding these isoforms were studied. The results show that the steady-state level of beps and bepl, the transcripts encoding the major endosperm isoform, correlated positively with the rate of endosperm starch accumulation. In contrast, blps and blpl, the transcripts encoding the major leaf isoform, were constitutively expressed at a very low steady-state level throughout the barley plant. The implications of these findings for the evolution of plant AGPases are discussed.

  15. Transcriptome Dynamics during Maize Endosperm Development.

    Directory of Open Access Journals (Sweden)

    Jianzhou Qu

    Full Text Available The endosperm is a major organ of the seed that plays vital roles in determining seed weight and quality. However, genome-wide transcriptome patterns throughout maize endosperm development have not been comprehensively investigated to date. Accordingly, we performed a high-throughput RNA sequencing (RNA-seq analysis of the maize endosperm transcriptome at 5, 10, 15 and 20 days after pollination (DAP. We found that more than 11,000 protein-coding genes underwent alternative splicing (AS events during the four developmental stages studied. These genes were mainly involved in intracellular protein transport, signal transmission, cellular carbohydrate metabolism, cellular lipid metabolism, lipid biosynthesis, protein modification, histone modification, cellular amino acid metabolism, and DNA repair. Additionally, 7,633 genes, including 473 transcription factors (TFs, were differentially expressed among the four developmental stages. The differentially expressed TFs were from 50 families, including the bZIP, WRKY, GeBP and ARF families. Further analysis of the stage-specific TFs showed that binding, nucleus and ligand-dependent nuclear receptor activities might be important at 5 DAP, that immune responses, signalling, binding and lumen development are involved at 10 DAP, that protein metabolic processes and the cytoplasm might be important at 15 DAP, and that the responses to various stimuli are different at 20 DAP compared with the other developmental stages. This RNA-seq analysis provides novel, comprehensive insights into the transcriptome dynamics during early endosperm development in maize.

  16. Differential Synthesis in Vitro of Barley Aleurone and Starchy Endosperm Proteins

    DEFF Research Database (Denmark)

    Mundy, John; Hejgaard, Jørn; Hansen, Annette

    1986-01-01

    RNAs from isolated endosperm and aleurone tissues (developing and mature grain) and from cultured (germinating) aleurone layers treated with abscisic acid (ABA) and GA(3). B and C hordein polypeptides and the salt-soluble proteins beta-amylase, protein Z, protein C, the chymotrypsin inhibitors (CI-1 and 2...

  17. Hordein gene dose effects in triploid endosperm of barley (Hordeum vulgare L.

    Directory of Open Access Journals (Sweden)

    Perović Dragan

    2009-01-01

    Full Text Available The presence of two maternal chromosome sets in triploid barley endosperm allows the distinction of maternal and paternal hordein bands in an electrophoregram: the maternal bands are stronger due to the higher gene dose. In the F1 generation there are differences between reciprocal crosses and in the F2 generation all 16 classes that are theoretically possible for a pair of polymorphic loci can be distinguished. This full classification is rarely possible in genetic studies, and allows more accurate estimates of recombination rates. Two hordein gene clusters (Hor1 and Hor2, corresponding to hordein C and hordein B respectively were analyzed in hybrids obtained by crossing two winter barley cultivars Partizan and HWV-247. Hordein separation was performed by acid-polyacrylamide gel electrophoresis at pH 3.2 (A-PAGE. A set of most informative bands of B and C hordeins was selected in each cross by two criteria: (1 presence or absence of bands in the parents and (2 signal strength to allow doses scoring. The average genetic distance between Hor1 and Hor2 loci was 11 cM. Distances in male and female maps were not significantly different, suggesting a similar recombination rate in male and female meiosis.

  18. Lignification of developing maize (Zea mays L.) endosperm transfer cells and starchy endosperm cells

    Science.gov (United States)

    Rocha, Sara; Monjardino, Paulo; Mendonça, Duarte; da Câmara Machado, Artur; Fernandes, Rui; Sampaio, Paula; Salema, Roberto

    2014-01-01

    Endosperm transfer cells in maize have extensive cell wall ingrowths that play a key role in kernel development. Although the incorporation of lignin would support this process, its presence in these structures has not been reported in previous studies. We used potassium permanganate staining combined with transmission electron microscopy – energy dispersive X-ray spectrometry as well as acriflavine staining combined with confocal laser scanning microscopy to determine whether the most basal endosperm transfer cells (MBETCs) contain lignified cell walls, using starchy endosperm cells for comparison. We investigated the lignin content of ultrathin sections of MBETCs treated with hydrogen peroxide. The lignin content of transfer and starchy cell walls was also determined by the acetyl bromide method. Finally, the relationship between cell wall lignification and MBETC growth/flange ingrowth orientation was evaluated. MBETC walls and ingrowths contained lignin throughout the period of cell growth we monitored. The same was true of the starchy cells, but those underwent an even more extensive growth period than the transfer cells. Both the reticulate and flange ingrowths were also lignified early in development. The significance of the lignification of maize endosperm cell walls is discussed in terms of its impact on cell growth and flange ingrowth orientation. PMID:24688487

  19. From discovery of high lysine barley endosperm mutants in the 1960-70 ties to new holistic spectral models of the phenome and of pleiotropy in 2008

    International Nuclear Information System (INIS)

    Munck, L.; Moeller Jespersen, B.

    2008-01-01

    As documented by eight IAEA/FAO symposia 1968-82 on nutritionally improved seeds, a wide range of high lysine endosperm mutants were isolated in maize, sorghum and barley. These mutants observed by new spectroscopic screening methods can now be exploited to advance basic biological research and theory. Since 1982 effective methods to overview the physiochemical composition of seeds by Near Infrared Spectroscopy evaluated by chemometric data analysis have developed. Spectroscopic analyses by calibration have now substituted for the wet analyses in industry. In genetics there has traditionally been a differentiation between major genes for qualitative and minor 'polygenes' for quantitative traits. This view has been coupled to an incomplete understanding of pleiotropy. It is shown that seed spectra from isogenic barley endosperm mutants represent a coarse-grained physiochemical overview of the phenome that can be classified by chemometrics. Pleiotropy expressed by a gene is quantified as a whole pattern by the gene specific mutant spectrum subtracted by the spectrum of the parent variety. Selection for an improved plumpness (starch) in a breeding material with the lys3.a mutant visualises in spectra the effect of enriching 'minor polygenes' for an increased content of starch in a mutant gene background. Morphological, spectroscopic and chemical analyses suggest that mutant genes have both qualitative and quantitative expressions. They produce qualitative pleiotropic phenomenological patterns that can be observed as more or less severe changes in macro and microstructures of the plant and seed phenotype. Behind are quantitative chemical changes that by spectroscopy and chemometrics can be transferred to qualitative patterns. In fact one major gene for a qualitative trait can act as several apparent minor polygenes for quantitative variables. This explains the reduced need for the previously expected several hundred thousands of genes and gene modifiers down to the

  20. Changes in Nuclear Structure During Wheat Endosperm Development

    NARCIS (Netherlands)

    Wegel, E.

    2005-01-01

    This thesis is an investigation into the structure of wheat endosperm nuclei starting with nuclear divisions and migration during syncytium formation followed by the development of nuclear shape and positioning of chromosome territories and ending with changes in subchromosomal structure during the

  1. CDNA cloning, characterization and expression of an endosperm-specific barley peroxidase

    DEFF Research Database (Denmark)

    Rasmussen, Søren Kjærsgård; Welinder, K.G.; Hejgaard, J.

    1991-01-01

    A barley peroxidase (BP 1) of pI ca. 8.5 and M(r) 37000 has been purified from mature barley grains. Using antibodies towards peroxidase BP 1, a cDNA clone (pcR7) was isolated from cDNA expression library. The nucleotide sequence of pcR7 gave a derived amino acid sequence identical to the 158 C...

  2. [14C]sucrose uptake and labeling of starch in developing grains of normal segl barley

    International Nuclear Information System (INIS)

    Felker, F.C.; Peterson, D.M.; Nelson, O.E.

    1984-01-01

    Previous work showed that the segl mutant of barley (Hordeum vulgare o Betzes) did not differ from normal Betzes in plant growth, photosynthesis, or fertility, but it produced only shrunken seeds regardless of pollen source. To determine whether defects in sucrose uptake or starch synthesis resulted in the shrunken condition, developing grains of Betzes and segl were cultured in [ 14 C]sucrose solutions after slicing transversely to expose the endosperm cavity and free space. In both young grains (before genotypes differed in dry weight) and older grains (17 days after anthesis, when segl grains were smaller than Betzes), sucrose uptake and starch synthesis were similar in both genotypes on a dry weight basis. To determine if sucrose was hydrolyzed during uptake, spikes of Betzes and segl were allowed to take up [fructose-U- 14 C]sucrose 14 days after anthesis and the radioactivity of endosperm sugars was examined during 3 hours of incubation. Whereas less total radioactivity entered the endosperm and the endosperm cavity (free space) of segl, in both genotypes over 96% of the label of endosperm sugars was in sucrose, and there was no apparent initial or progressive randomization of label among hexose moieties of sucrose as compared to the free space sampled after 1 hour of incubation. The authors conclude that segl endosperms are capable of normal sucrose uptake and starch synthesis and that hydrolysis of sucrose is not required for uptake in either genotype. Evidence suggests abnormal development of grain tissue of maternal origin during growth of segl grains

  3. DNA endoreplication level in endosperm during seed development in three monocotyledonous species

    Directory of Open Access Journals (Sweden)

    Kazimierz Marciniak

    2014-01-01

    Full Text Available The DNA content after the Feulgen reaction in the endosperm of three monocotyledonous plant species (Asparagus officinalis, Muscari comosom, Haemanthus kurharinae differing in their 2C DNA content, was cytophotometrically measured. During endosperm development 1-6 endoreplication cycles take place, depending on the species. Differences in nuclear DNA endoreplication dynamics in the tested species are similar to those occurring in root parenchyma, but the endoreplication level in the endosperm is higher.

  4. Near infrared spectra indicate specific mutant endosperm genes and reveal a new mechanism for substituting starch with (1-->3,1-->4)-[beta]-glucan in barley

    DEFF Research Database (Denmark)

    Munck, L.; Møller, B.; Jacobsen, Susanne

    2004-01-01

    -->3,1-->4)-[beta]-glucan (up to 15-20%), thus, maintaining a constant production of polysaccharides at 50-55%, within the range of normal barley.The spectral tool was tested by an independent data set with six mutants with unknown polysaccharide composition. Spectral data from four of these were classified within...... the high (1-->3,1-->4)-[beta]-glucan BG lys5 cluster in a PCA. Their high (1-->3,1-->4)-[beta]-glucan and low starch content was verified. It is concluded that genetic diversity such as from gene regulated polysaccharide and storage protein pathways in the endosperm tissue can be discovered directly from...... the phenotype by chemometric classification of a spectral library, representing the digitised phenome from a barley gene bank....

  5. Comparison of starch granule development and physicochemical properties of starches in wheat pericarp and endosperm.

    Science.gov (United States)

    Yu, Xurun; Zhou, Liang; Zhang, Jing; Yu, Heng; Xiong, Fei; Wang, Zhong

    2015-01-01

    The objectives of this study were: (i) to characterize structural development of starch granule in pericarp and endosperm during wheat caryopsis growth; (ii) to compare physicochemical properties of starches in pericarp and endosperm; (iii) to further discover the relationships between pericarp starches and endosperm starches. Wheat pericarp and endosperm at different development stages were observed by light microscopy and scanning electron microscopy, respectively. Structural properties of starches were determined using X-ray power diffraction and (13) C solid nuclear magnetic resonance. Pericarp starch granules (PSG) accumulated in amyloplasts and chloroplasts, and showed a typical accumulation peak at 5 days after fertilization (DAF), and then gradually decomposed during 5-22 DAF. PSG in the abdominal region showed a higher rate of decomposition compared to the dorsal region of pericarp. Endosperm starch granules (ESG) accumulated in amyloplasts, and occurred in endosperm cells at 5 DAF, then rapidly enriched the endosperm cells until 22 DAF. Compared with ESG, PSG were compound granules of irregular shape and small size distribution. The results also suggested lower amylose content and V-type single-helix content and higher proportions of double helices for PSG compared to ESG. Based on the structural development of PSG and ESG, we speculated that the saccharides resulting from decomposition of PSG, on one hand, enabled the pericarp to survive before maturity of wheat caryopsis and, on the other hand, provided extra nutrition for the growth of ESG. © 2014 Society of Chemical Industry.

  6. A chemometric evaluation of the underlying physical and chemical patterns that support near infrared spectroscopy of barley seeds as a tool for explorative classification of endosperm genes and gene combinations

    DEFF Research Database (Denmark)

    Jacobsen, Susanne; Søndergaard, Ib; Møller, Birthe

    2005-01-01

    Analysis (PCA). Riso mutants R-13, R-29 high (I -> 3, 1 -> 4)-beta-glucan, low starch and R-1508 (high lysine, reduced starch), near isogeneic controls and normal lines and recombinants were studied. Based on proteome analysis results, six antimicrobial proteins were followed during endosperm development...... revealing pleiotropic gene effects in expression timing that supporting the gene classification. To verify that NIR spectroscopy data represents a physio-chemical fingerprint of the barley seed, physical and chemical spectral components were partially separated by Multiple Scatter Correction...... and their genetic classification ability verified. Wavelength bands with known water binding and (I -> 3, 1 -> 4)-beta-glucan assignments were successfully predicted by partial least squares regression giving insight into how NIR-data works in classification. Highly reproducible gene-specific, covariate...

  7. Linkage mapping of putative regulator genes of barley grain development characterized by expression profiling

    Directory of Open Access Journals (Sweden)

    Wobus Ulrich

    2009-01-01

    Full Text Available Abstract Background Barley (Hordeum vulgare L. seed development is a highly regulated process with fine-tuned interaction of various tissues controlling distinct physiological events during prestorage, storage and dessication phase. As potential regulators involved within this process we studied 172 transcription factors and 204 kinases for their expression behaviour and anchored a subset of them to the barley linkage map to promote marker-assisted studies on barley grains. Results By a hierachical clustering of the expression profiles of 376 potential regulatory genes expressed in 37 different tissues, we found 50 regulators preferentially expressed in one of the three grain tissue fractions pericarp, endosperm and embryo during seed development. In addition, 27 regulators found to be expressed during both seed development and germination and 32 additional regulators are characteristically expressed in multiple tissues undergoing cell differentiation events during barley plant ontogeny. Another 96 regulators were, beside in the developing seed, ubiquitously expressed among all tissues of germinating seedlings as well as in reproductive tissues. SNP-marker development for those regulators resulted in anchoring 61 markers on the genetic linkage map of barley and the chromosomal assignment of another 12 loci by using wheat-barley addition lines. The SNP frequency ranged from 0.5 to 1.0 SNP/kb in the parents of the various mapping populations and was 2.3 SNP/kb over all eight lines tested. Exploration of macrosynteny to rice revealed that the chromosomal orders of the mapped putative regulatory factors were predominantly conserved during evolution. Conclusion We identified expression patterns of major transcription factors and signaling related genes expressed during barley ontogeny and further assigned possible functions based on likely orthologs functionally well characterized in model plant species. The combined linkage map and reference

  8. Sugar uptake and starch biosynthesis by slices of developing maize endosperm

    International Nuclear Information System (INIS)

    Felker, F.C.; Liu, Kangchien; Shannon, J.C.

    1990-01-01

    14 C-Sugar uptake and incorporation into starch by slices of developing maize (Zea mays L.) endosperm were examined and compared with sugar uptake by maize endosperm-derived suspension cultures. Rates of sucrose, fructose, and D- and L-glucose uptake by slices were similar, whereas uptake rates for these sugars differed greatly in suspension cultures. Concentration dependence of sucrose, fructose, and D-glucose uptake was biphasic (consisting of linear plus saturable components) with suspension cultures but linear with slices. These and other differences suggest that endosperm slices are freely permeable to sugars. After diffusion into the slices, sugars were metabolized and incorporated into starch. Starch synthesis, but not sugar accumulation, was greatly reduced by 2.5 millimolar p-chloromercuribenzenesulfonic acid and 0.1 millimolar carbonyl cyanide m-chlorophenylhydrazone. Starch synthesis was dependent on kernel age and incubation temperature, but not on external pH (5 through 8). Competing sugars generally did not affect the distribution of 14 C among the soluble sugars extracted from endosperm slices incubated in 14 C-sugars. Competing hexoses reduced the incorporation of 14 C into starch, but competing sucrose did not, suggesting that sucrose is not a necessary intermediate in starch biosynthesis. The bidirectional permeability of endosperm slices to sugars makes the characterization of sugar transport into endosperm slices impossible, however the model system is useful for experiments dealing with starch biosynthesis which occurs in the metabolically active tissue

  9. Diurnal oscillation of SBE expression in sorghum endosperm

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Chuanxin; Mutisya, J.; Rosenquist, S.; Baguma, Y.; Jansson, C.

    2009-01-15

    Spatial and temporal expression patterns of the sorghum SBEI, SBEIIA and SBEIIB genes, encoding, respectively, starch branching enzyme (SBE) I, IIA and IIB, in the developing endosperm of sorghum (Sorghum bicolor) were studied. Full-length genomic and cDNA clones for sorghum was cloned and the SBEIIA cDNA was used together with gene-specific probes for sorghum SBEIIB and SBEI. In contrast to sorghum SBEIIB, which was expressed primarily in endosperm and embryo, SBEIIA was expressed also in vegetative tissues. All three genes shared a similar temporal expression profile during endosperm development, with a maximum activity at 15-24 days after pollination. This is different from barley and maize where SBEI gene activity showed a significantly later onset compared to that of SBEIIA and SBEIIB. Expression of the three SBE genes in the sorghum endosperm exhibited a diurnal rhythm during a 24-h cycle.

  10. Epigenetic chromatin modifiers in barley: IV. The study of barley Polycomb group (PcG genes during seed development and in response to external ABA

    Directory of Open Access Journals (Sweden)

    Stanca Michele A

    2010-04-01

    Full Text Available Abstract Background Epigenetic phenomena have been associated with the regulation of active and silent chromatin states achieved by modifications of chromatin structure through DNA methylation, and histone post-translational modifications. The latter is accomplished, in part, through the action of PcG (Polycomb group protein complexes which methylate nucleosomal histone tails at specific sites, ultimately leading to chromatin compaction and gene silencing. Different PcG complex variants operating during different developmental stages have been described in plants. In particular, the so-called FIE/MEA/FIS2 complex governs the expression of genes important in embryo and endosperm development in Arabidopsis. In our effort to understand the epigenetic mechanisms regulating seed development in barley (Hordeum vulgare, an agronomically important monocot plant cultivated for its endosperm, we set out to characterize the genes encoding barley PcG proteins. Results Four barley PcG gene homologues, named HvFIE, HvE(Z, HvSu(z12a, and HvSu(z12b were identified and structurally and phylogenetically characterized. The corresponding genes HvFIE, HvE(Z, HvSu(z12a, and HvSu(z12b were mapped onto barley chromosomes 7H, 4H, 2H and 5H, respectively. Expression analysis of the PcG genes revealed significant differences in gene expression among tissues and seed developmental stages and between barley cultivars with varying seed size. Furthermore, HvFIE and HvE(Z gene expression was responsive to the abiotic stress-related hormone abscisic acid (ABA known to be involved in seed maturation, dormancy and germination. Conclusion This study reports the first characterization of the PcG homologues, HvFIE, HvE(Z, HvSu(z12a and HvSu(z12b in barley. All genes co-localized with known chromosomal regions responsible for malting quality related traits, suggesting that they might be used for developing molecular markers to be applied in marker assisted selection. The Pc

  11. Water mobility in the endosperm of high beta-glucan barley mutants as studied by nuclear magnetic resonance imaging

    DEFF Research Database (Denmark)

    Seefeldt, Helene Fast; van den Berg, Frans W.J.; Köckenberger, Walter

    2007-01-01

    1H NMR imaging (MRI) was used as a noninvasive technique to study water distribution and mobility in hydrated barley (Hordeum vulgare L.) seeds of accessions with varying content of beta glucan (BG), a highly hygroscopic cell wall component. High contents of BG in barley are unfavorable in malting...... where it leads to clotting of filters and hazing of beer as well as in animal feed where it hinders the rapid uptake of energy. However, a high content of BG has a positive nutritional effect, as it lowers the cholesterol and the glycaemic index. It was studied whether water distribution and mobility...... were related to content and location of BG. Water mobility was investigated by following the rate and mode of desiccation in hydrated single seeds. In order to determine the different water components, a multispin echo experiment was set up to reveal the T2 transverse relaxation rates of water within...

  12. Disruption of endosperm development: an inbreeding effect in almond (Prunus dulcis).

    Science.gov (United States)

    Ortega, Encarnación; Martínez-García, Pedro J; Dicenta, Federico; Egea, José

    2010-06-01

    A homozygous self-compatible almond, originated from self-fertilization of a self-compatible genotype and producing a reasonable yield following open pollination, exhibited a very high fruit drop rate when self-pollinated. To investigate whether fruit dropping in this individual is related to an abnormal development of the embryo sac following self-fertilization, histological sections of ovaries from self and cross-pollinated flowers were observed by light microscopy. Additionally, the presence of pollen tubes in the ovary and fruit set were determined for both types of pollination. Despite pollen tubes reached the ovary after both pollinations, differences in embryo sac and endosperm development after fertilization were found. Thus, while for cross-fertilized ovules a pro-embryo and an endosperm with abundant nuclei were generally observed, most self-fertilized ovules remained in a previous developmental stage in which the embryo sac was not elongated and endosperm nuclei were absent. Although 30 days after pollination fruit set was similar for both pollination types, at 60 days it was significantly reduced for self-pollination. These results provide evidence that the high fruit drop in this genotype is the consequence of a disrupted development of the endosperm, what could be an expression of its high level of inbreeding.

  13. Synthesis of Salt Soluble Proteins in Barley. Pulse-Labeling Study of Grain Filling in Liquid-Cultured Detached Spikes

    DEFF Research Database (Denmark)

    Giese, Nanna Henriette; Hejgaard, Jørn

    1984-01-01

    The accumulation of salt-soluble proteins in the endosperm of developing barley (Hordeum vulgare L.) grains was examined. Detached spikes of barley were cultured at different levels of nitrogen nutrition and pulse-labeled with [14C] sucrose at specific times after anthesis. Proteins were extracted...... to increased nitrogen nutrition. Two major components, β-amylase and protein Z in particular, had a synthesis profile almost identical to that of the endosperm storage protein, hordein....

  14. Entwicklung transgener Gerste (Hordeum vulgare L.) mit dem Ziel der Lysin- und Threoninanreicherung im Endosperm

    OpenAIRE

    Ibrahim, Ahmed Shawky Ahmed

    2006-01-01

    An efficient Agrobacterium-mediated barley transformation system was established with a transformation rate of 13.4 % on average. Towards improving the nutritional value of barley, a set of novel transformation vectors was developed including the dapA and lysC genes encoding the feed-back-inhibition insensitive form of the dihydrodipicolinate synthase (DHDPS) and aspartate kinase (AK) respectively. Both genes under the control of the endosperm-specific D-hordein promoter or the constitutive u...

  15. Auxin production in the endosperm drives seed coat development in Arabidopsis

    Science.gov (United States)

    Figueiredo, Duarte D; Batista, Rita A; Roszak, Pawel J; Hennig, Lars; Köhler, Claudia

    2016-01-01

    In flowering plants, seed development is initiated by the fusion of the maternal egg and central cells with two paternal sperm cells, leading to the formation of embryo and endosperm, respectively. The fertilization products are surrounded by the maternally derived seed coat, whose development prior to fertilization is blocked by epigenetic regulators belonging to the Polycomb Group (PcG) protein family. Here we show that fertilization of the central cell results in the production of auxin and most likely its export to the maternal tissues, which drives seed coat development by removing PcG function. We furthermore show that mutants for the MADS-box transcription factor AGL62 have an impaired transport of auxin from the endosperm to the integuments, which results in seed abortion. We propose that AGL62 regulates auxin transport from the endosperm to the integuments, leading to the removal of the PcG block on seed coat development. DOI: http://dx.doi.org/10.7554/eLife.20542.001 PMID:27848912

  16. Disruption of endosperm development is a major cause of hybrid seed inviability between Mimulus guttatus and Mimulus nudatus.

    Science.gov (United States)

    Oneal, Elen; Willis, John H; Franks, Robert G

    2016-05-01

    Divergence of developmental mechanisms within populations could lead to hybrid developmental failure, and might be a factor driving speciation in angiosperms. We investigate patterns of endosperm and embryo development in Mimulus guttatus and the closely related, serpentine endemic Mimulus nudatus, and compare them to those of reciprocal hybrid seed. We address whether disruption in hybrid seed development is the primary source of reproductive isolation between these sympatric taxa. M. guttatus and M. nudatus differ in the pattern and timing of endosperm and embryo development. Some hybrid seeds exhibit early disruption of endosperm development and are completely inviable, while others develop relatively normally at first, but later exhibit impaired endosperm proliferation and low germination success. These developmental patterns are reflected in mature hybrid seeds, which are either small and flat (indicating little to no endosperm) or shriveled (indicating reduced endosperm volume). Hybrid seed inviability forms a potent reproductive barrier between M. guttatus and M. nudatus. We shed light on the extent of developmental variation between closely related species within the M. guttatus species complex, an important ecological model system, and provide a partial mechanism for the hybrid barrier between M. guttatus and M. nudatus. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  17. High Temperature-Induced Expression of Rice α-Amylases in Developing Endosperm Produces Chalky Grains

    Directory of Open Access Journals (Sweden)

    Masaru Nakata

    2017-12-01

    Full Text Available Global warming impairs grain filling in rice and reduces starch accumulation in the endosperm, leading to chalky-appearing grains, which damages their market value. We found previously that high temperature-induced expression of starch-lytic α-amylases during ripening is crucial for grain chalkiness. Because the rice genome carries at least eight functional α-amylase genes, identification of the α-amylase(s that contribute most strongly to the production of chalky grains could accelerate efficient breeding. To identify α-amylase genes responsible for the production of chalky grains, we characterized the histological expression pattern of eight α-amylase genes and the influences of their overexpression on grain appearance and carbohydrate components through a series of experiments with transgenic rice plants. The promoter activity of most α-amylase genes was elevated to various extents at high temperature. Among them, the expression of Amy1A and Amy3C was induced in the internal, especially basal to dorsal, region of developing endosperm, whereas that of Amy3D was confined near the ventral aleurone. These regions coincided with the site of occurrence of chalkiness, which was in clear contrast to conventionally known expression patterns of the enzyme in the scutellum and aleurone during seed germination. Furthermore, overexpression of α-amylase genes, except for Amy3E, in developing endosperm produced various degrees of chalky grains without heat exposure, whereas that of Amy3E yielded normal translucent grains, as was the case in the vector control, even though Amy3E-overexpressing grains contained enhanced α-amylase activities. The weight of the chalky grains was decreased due to reduced amounts of starch, and microscopic observation of the chalky part of these grains revealed that their endosperm consisted of loosely packed round starch granules that had numerous pits on their surface, confirming the hydrolysis of the starch reserve by

  18. The effects of calcium regulation of endosperm reserve protein ...

    African Journals Online (AJOL)

    Administrator

    2011-06-15

    Jun 15, 2011 ... on barley endosperm protein mobilization during malting. Although, the site and ... fractionating head of the digesting vigreux column. The digest was ... growth and enormous reductions in malting loss (Ezeogu and Okolo ...

  19. Rhinanthus serotinus (Schönheit) Oborny (Scrophulariaceae): immunohistochemical and ultrastructural studies of endosperm chalazal haustorium development.

    Science.gov (United States)

    Świerczyńska, Joanna; Kozieradzka-Kiszkurno, Małgorzata; Bohdanowicz, Jerzy

    2013-12-01

    Chalazal endosperm haustorium in Rhinanthus serotinus consists of a single large binucleate cell. It originates from the primary endosperm cell dividing transversely into two unequal cells: a smaller micropylar cell and a larger chalazal cell. The chalazal cell undergoes a single mitotic division, then lengthens significantly during development and functions as a chalazal endosperm haustorium. In this paper, immunofluorescent techniques, rhodamine phalloidin assay, and electron microscopy were used to examine the actin and tubulin cytoskeleton during the development of the chalazal haustorium. During the differentiation stage, numerous longitudinally oriented bundles of microfilaments ran along the axis of transvacuolar strands in haustorium. Microtubules formed intensely fluorescent areas near the nuclear envelope and also formed radial perinuclear microtubule arrays. In the fully differentiated haustorium cell, the actin cytoskeleton formed dense clusters of microfilaments on the chalazal and micropylar poles of the haustorium. Numerous microfilament bundles occurred near wall ingrowths on the chalazal wall. There were numerous clusters of microfilaments and microtubules around the huge lobed polytenic haustorial nuclei. The microfilaments were oriented longitudinally to the long axis of the haustorium cell and surrounded both nuclei. The microtubules formed radial perinuclear systems which were appeared to radiate from the surface of the nuclear envelope. The early stage of degeneration of the chalazal haustorium was accompanied by the degradation of microtubules and disruption of the parallel orientation of microtubules in the chalazal area of the cell. The degree of vacuolization increased, autophagous vacuoles appeared and the number of vesicles decreased.

  20. Ricinosomes provide an early indicator of suspensor and endosperm cells destined to die during late seed development in quinoa (Chenopodium quinoa).

    Science.gov (United States)

    López-Fernández, M P; Maldonado, S

    2013-11-01

    In mature quinoa (Chenopodium quinoa) seeds, the lasting endosperm forms a micropylar cone covering the radicle. The suspensor cells lie within the centre of the cone. During the final stage of seed development, the cells of the lasting endosperm accumulate protein and lipids while the rest are crushed and disintegrated. Both the suspensor and endosperm die progressively from the innermost layers surrounding the embryo and extending towards the nucellar tissue. Ricinosomes are endoplasmic reticulum-derived organelles that accumulate both the pro-form and the mature form of cysteine endopeptidase (Cys-EP), first identified in castor bean (Ricinus communis) endosperm during germination. This study sought to identify associations between the presence of ricinosomes and programmed cell death (PCD) hallmarks in suspensor and endosperm cells predestined to die during quinoa seed development. A structural study using light microscopy and transmission electron microscopy was performed. To detect the presence of Cys-EP, both western blot and in situ immunolocalization assays were carried out using anti-R. communis Cys-EP antibody. A TUNEL assay was used to determine DNA fragmentation. Except for the one or two cell layers that constitute the lasting endosperm in the mature seed, ricinosomes were found in suspensor and endosperm cells. These cells were also the site of morphological abnormalities, including misshapen and fragmented nuclei, vesiculation of the cytosol, vacuole collapse and cell wall disorganization. It is proposed that, in suspensor and endosperm cells, the early detection of Cys-EP in ricinosomes predicts the occurrence of PCD during late seed development.

  1. Aspects of the barley seed proteome during development and germination

    DEFF Research Database (Denmark)

    Finnie, Christine; Maeda, K.; Østergaard, O.

    2004-01-01

    Analysis of the water-soluble barley seed proteome has led to the identification of proteins by MS in the major spots on two-dimensional gels covering the pi ranges 4-7 and 6-11. This provides the basis for in-depth studies of proteome changes during seed development and germination, tissue...

  2. Investigations on embryo and endosperm development in gamma-irradiated Capsicum annuum L. and Capsicum pendulum Willd. seeds

    Energy Technology Data Exchange (ETDEWEB)

    Ilieva, I; Molkhova, E [Akademiya na Selskostopanskite Nauki, Sofia (Bulgaria). Inst. po Genetika

    1976-01-01

    Investigations were carried out concerning the effect of ionizing rays on pepper embryo development and on the radiosensitivity of single phases of embryogenesis. A single gamma-irradiation was effected with doses 1000, 1500, 2000 and 2500 rad, 7 days after flower pollination, when the preembryo had two cells. As a result of irradiation a shortening of the suspensor was established as well as delayed development or even totally blocked growth and degeneration of the embryo. Blocked cell division and degeneration of endospermal cells were observed. These disturbances lead to histologic changes in the seeds and to their non-viability.

  3. Investigations on embryo and endosperm development in gamma-irradiated Capsicum annuum L. and Capsicum pendulum Willd. seeds

    International Nuclear Information System (INIS)

    Ilieva, I.; Molkhova, E.

    1976-01-01

    Investigations were carried out concerning the effect of ionizing rays on pepper embryo development and on the radiosensitivity of single phases of embryogenesis. A single gamma-irradiation was effected with doses 1000, 1500, 2000 and 2500 rad, 7 days after flower pollination, when the preembryo had two cells. As a result of irradiation a shortening of the suspensor was established as well as delayed development or even totally blocked growth and degeneration of the embryo. Blocked cell division and degeneration of endospermal cells were observed. These disturbances lead to histologic changes in the seeds and to their non-viability. (author)

  4. Cadmium translocation and accumulation in developing barley grains

    DEFF Research Database (Denmark)

    Chen, Fei; Wu, Feibo; Dong, Jing

    2007-01-01

     Soil cadmium (Cd) contamination has posed a serious problem for safe food production and become a potential agricultural and environmental hazard worldwide. In order to study the transport of Cd into the developing grains, detached ears of two-rowed barley cv. ZAU 3 were cultured in Cd stressed...... of detached spike showed increase Cd accumulation for 5 days, followed by sharp decrease till day 10 and increase again after 12.5 days. Awn-removal and stem-girdling markedly decreased Cd concentration in grains, and sucrose or zinc (Zn) addition to the medium and higher relative humidity (RH) also induced...

  5. Effect of high temperature on cell structure and gluten protein accumulation in the endosperm of the developing wheat (Triticum aestivum L.) grain

    Science.gov (United States)

    High temperature during grain fill is one of the more significant environmental factors that alters wheat yield and flour quality. To identify endosperm responses to high temperature, cell structure and gluten protein composition were investigated in developing wheat (Triticum aestivum L. cv. Butte ...

  6. The effect of high temperature on cell structure and gluten protein accumulation in the endosperm of the developing wheat (Triticum aestivum L.) grain

    Science.gov (United States)

    High temperature during grain fill is one of the more significant environmental factors that alters wheat yield and flour quality. To identify endosperm responses to high temperature, cell structure and gluten protein composition were investigated in developing wheat (Triticum aestivum L. cv. Butte ...

  7. An analysis of expressed sequence tags of developing castor endosperm using a full-length cDNA library

    Directory of Open Access Journals (Sweden)

    Wallis James G

    2007-07-01

    Full Text Available Abstract Background Castor seeds are a major source for ricinoleate, an important industrial raw material. Genomics studies of castor plant will provide critical information for understanding seed metabolism, for effectively engineering ricinoleate production in transgenic oilseeds, or for genetically improving castor plants by eliminating toxic and allergic proteins in seeds. Results Full-length cDNAs are useful resources in annotating genes and in providing functional analysis of genes and their products. We constructed a full-length cDNA library from developing castor endosperm, and obtained 4,720 ESTs from 5'-ends of the cDNA clones representing 1,908 unique sequences. The most abundant transcripts are genes encoding storage proteins, ricin, agglutinin and oleosins. Several other sequences are also very numerous, including two acidic triacylglycerol lipases, and the oleate hydroxylase (FAH12 gene that is responsible for ricinoleate biosynthesis. The role(s of the lipases in developing castor seeds are not clear, and co-expressing of a lipase and the FAH12 did not result in significant changes in hydroxy fatty acid accumulation in transgenic Arabidopsis seeds. Only one oleate desaturase (FAD2 gene was identified in our cDNA sequences. Sequence and functional analyses of the castor FAD2 were carried out since it had not been characterized previously. Overexpression of castor FAD2 in a FAH12-expressing Arabidopsis line resulted in decreased accumulation of hydroxy fatty acids in transgenic seeds. Conclusion Our results suggest that transcriptional regulation of FAD2 and FAH12 genes maybe one of the mechanisms that contribute to a high level of ricinoleate accumulation in castor endosperm. The full-length cDNA library will be used to search for additional genes that affect ricinoleate accumulation in seed oils. Our EST sequences will also be useful to annotate the castor genome, which whole sequence is being generated by shotgun sequencing at

  8. Development and characterization of polymorphic EST based SSR markers in barley (Hordeum vulgare).

    Science.gov (United States)

    Jo, Won-Sam; Kim, Hye-Yeong; Kim, Kyung-Min

    2017-08-01

    In barley, breeding using good genetic characteristics can improve the quality or quantity of crop characters from one generation to the next generation. The development of effective molecular markers in barley is crucial for understanding and analyzing the diversity of useful alleles. In this study, we conducted genetic relationship analysis using expressed sequence tag-simple sequence repeat (EST-SSR) markers for barley identification and assessment of barley cultivar similarity. Seeds from 82 cultivars, including 31 each of naked and hulled barley from the Korea Seed and Variety Service and 20 of malting barley from the RDA-Genebank Information Center, were analyzed in this study. A cDNA library of the cultivar Gwanbori was constructed for use in analysis of genetic relationships, and 58 EST-SSR markers were developed and characterized. In total, 47 SSR markers were employed to analyze polymorphisms. A relationship dendrogram based on the polymorphism data was constructed to compare genetic diversity. We found that the polymorphism information content among the examined cultivars was 0.519, which indicates that there is low genetic diversity among Korean barley cultivars. The results obtained in this study may be useful in preventing redundant investment in new cultivars and in resolving disputes over seed patents. Our approach can be used by companies and government groups to develop different cultivars with distinguishable markers. In addition, the developed markers can be used for quantitative trait locus analysis to improve both the quantity and the quality of cultivated barley.

  9. Development and Meiosis of Three Interspecific Hybrids with Cultivated Barley (Hordeum vulgare L.)

    DEFF Research Database (Denmark)

    Von Bothmer, R.; Flink, J.; Linde-Laursen, Ib

    1986-01-01

    The development and meiosis of three interspecific hybrids between cultivated barley (Hordeum vulgare L.) and H. secalinum Schreb., H. tetraploidum Covas, and H. parodii Covas, respectively, were studied. All three hybrid combinations developed very slowly vegetatively. Meiosis of the hybrids...

  10. Endoproteolytic activity assay in malting barley

    Directory of Open Access Journals (Sweden)

    Blanca Gómez Guerrero

    2013-12-01

    Full Text Available Hydrolysis of barley proteins into peptides and amino acids is one of the most important processes during barley germination.The degradation of the endosperm stored proteins facilitates water and enzyme movements, enhances modification, liberates starch granules and increases soluble amino nitrogen. Protease activity is the result of the activities of a mixture of exo- and endo-proteases. The barley proteins are initially solubilized by endo-proteases and the further by exo-proteases. Four classes of endo-proteases have been described: serine-proteases, cysteine-proteases, aspartic-proteases and metallo-proteases. The objective of this work was to develop a rapid and colorimetric enzymatic assay to determine the endo-proteolytic activity of the four endo-protease classes using two different substrates: azo-gelatin and azo-casein. Optimum conditions for the assays such as: pH,reaction time and temperature and absorbance scale were determined. Azo-gelatin presented several difficulties in standardizing an “in solution” assay. On the other hand, azo-casein allowed standardization of the assay for the four enzyme classes to produce consistent results. The endo-proteoteolytic method developed was applied to determine the endo-protease activity in barley, malt and wort.

  11. High-Throughput Sequencing of Small RNA Transcriptomes in Maize Kernel Identifies miRNAs Involved in Embryo and Endosperm Development.

    Science.gov (United States)

    Xing, Lijuan; Zhu, Ming; Zhang, Min; Li, Wenzong; Jiang, Haiyang; Zou, Junjie; Wang, Lei; Xu, Miaoyun

    2017-12-14

    Maize kernel development is a complex biological process that involves the temporal and spatial expression of many genes and fine gene regulation at a transcriptional and post-transcriptional level, and microRNAs (miRNAs) play vital roles during this process. To gain insight into miRNA-mediated regulation of maize kernel development, a deep-sequencing technique was used to investigate the dynamic expression of miRNAs in the embryo and endosperm at three developmental stages in B73. By miRNA transcriptomic analysis, we characterized 132 known miRNAs and six novel miRNAs in developing maize kernel, among which, 15 and 14 miRNAs were commonly differentially expressed between the embryo and endosperm at 9 days after pollination (DAP), 15 DAP and 20 DAP respectively. Conserved miRNA families such as miR159, miR160, miR166, miR390, miR319, miR528 and miR529 were highly expressed in developing embryos; miR164, miR171, miR393 and miR2118 were highly expressed in developing endosperm. Genes targeted by those highly expressed miRNAs were found to be largely related to a regulation category, including the transcription, macromolecule biosynthetic and metabolic process in the embryo as well as the vitamin biosynthetic and metabolic process in the endosperm. Quantitative reverse transcription-PCR (qRT-PCR) analysis showed that these miRNAs displayed a negative correlation with the levels of their corresponding target genes. Importantly, our findings revealed that members of the miR169 family were highly and dynamically expressed in the developing kernel, which will help to exploit new players functioning in maize kernel development.

  12. A comparative glycoproteome study of developing endosperm in the hexose-deficient miniature1 (mn1 seed mutant and its wild type Mn1 in maize

    Directory of Open Access Journals (Sweden)

    Cecilia eSilva-Sanchez

    2014-02-01

    Full Text Available In maize developing seeds, transfer cells are prominently located at the basal endosperm transfer layer (BETL. As the first filial cell layer, BETL is a gateway to sugars, nutrients and water from mother plant; and anchor of numerous functions such as sucrose turnover, auxin and cytokinin biosynthesis/accumulation, energy metabolism, defense response, and signaling between maternal and filial generations. Previous studies showed that basal developing endosperms of miniature1 (mn1 mutant seeds lacking the Mn1-encoded cell wall invertase II, are also deficient for hexose. Given the role of glucose as one of the key sugars in protein glycosylation and proper protein folding; we performed a comparative large scale glycoproteome profiling of total proteins of these two genotypes (mn1 mutant vs Mn1 wild type using 2D gel electrophoresis and glycosylation/total protein staining, followed by image analysis. Protein identification was done by LC-MS/MS. A total of 413 spots were detected; from which, 113 spots matched between the two genotypes. Of these, 45 showed > 20% decrease/increase in glycosylation level and were selected for protein identification. A large number of identified proteins showed decreased glycosylation levels in mn1 developing endosperms as compared to the Mn1. Functional classification of proteins, showed mainly of post-translational modification, protein turnover, chaperone activities, carbohydrate and amino acid biosynthesis / transport, and cell wall biosynthesis. These proteins and activities were related to endoplasmic reticulum (ER stress and unfolded protein response (UPR as a result of the low glycolsylation levels of the mutant proteins. Overall, these results provide for the first time a global glycoproteome profile of maize BETL-enriched basal endosperm to better understand their role in seed development in maize.

  13. Map-Based Cloning of Seed Dormancy1-2 Identified a Gibberellin Synthesis Gene Regulating the Development of Endosperm-Imposed Dormancy in Rice.

    Science.gov (United States)

    Ye, Heng; Feng, Jiuhuan; Zhang, Lihua; Zhang, Jinfeng; Mispan, Muhamad S; Cao, Zhuanqin; Beighley, Donn H; Yang, Jianchang; Gu, Xing-You

    2015-11-01

    Natural variation in seed dormancy is controlled by multiple genes mapped as quantitative trait loci in major crop or model plants. This research aimed to clone and characterize the Seed Dormancy1-2 (qSD1-2) locus associated with endosperm-imposed dormancy and plant height in rice (Oryza sativa). qSD1-2 was delimited to a 20-kb region, which contains OsGA20ox2 and had an additive effect on germination. Naturally occurring or induced loss-of-function mutations of the gibberellin (GA) synthesis gene enhanced seed dormancy and also reduced plant height. Expression of this gene in seeds (including endospermic cells) during early development increased GA accumulation to promote tissue morphogenesis and maturation programs. The mutant allele prevalent in semidwarf cultivars reduced the seed GA content by up to 2-fold at the early stage, which decelerated tissue morphogenesis including endosperm cell differentiation, delayed abscisic acid accumulation by a shift in the temporal distribution pattern, and postponed dehydration, physiological maturity, and germinability development. As the endosperm of developing seeds dominates the moisture equilibrium and desiccation status of the embryo in cereal crops, qSD1-2 is proposed to control primary dormancy by a GA-regulated dehydration mechanism. Allelic distribution of OsGA20ox2, the rice Green Revolution gene, was associated with the indica and japonica subspeciation. However, this research provided no evidence that the primitive indica- and common japonica-specific alleles at the presumably domestication-related locus functionally differentiate in plant height and seed dormancy. Thus, the evolutionary mechanism of this agriculturally important gene remains open for discussion. © 2015 American Society of Plant Biologists. All Rights Reserved.

  14. Map-Based Cloning of Seed Dormancy1-2 Identified a Gibberellin Synthesis Gene Regulating the Development of Endosperm-Imposed Dormancy in Rice1

    Science.gov (United States)

    Ye, Heng; Feng, Jiuhuan; Zhang, Lihua; Zhang, Jinfeng; Mispan, Muhamad S.; Cao, Zhuanqin; Beighley, Donn H.; Yang, Jianchang; Gu, Xing-You

    2015-01-01

    Natural variation in seed dormancy is controlled by multiple genes mapped as quantitative trait loci in major crop or model plants. This research aimed to clone and characterize the Seed Dormancy1-2 (qSD1-2) locus associated with endosperm-imposed dormancy and plant height in rice (Oryza sativa). qSD1-2 was delimited to a 20-kb region, which contains OsGA20ox2 and had an additive effect on germination. Naturally occurring or induced loss-of-function mutations of the gibberellin (GA) synthesis gene enhanced seed dormancy and also reduced plant height. Expression of this gene in seeds (including endospermic cells) during early development increased GA accumulation to promote tissue morphogenesis and maturation programs. The mutant allele prevalent in semidwarf cultivars reduced the seed GA content by up to 2-fold at the early stage, which decelerated tissue morphogenesis including endosperm cell differentiation, delayed abscisic acid accumulation by a shift in the temporal distribution pattern, and postponed dehydration, physiological maturity, and germinability development. As the endosperm of developing seeds dominates the moisture equilibrium and desiccation status of the embryo in cereal crops, qSD1-2 is proposed to control primary dormancy by a GA-regulated dehydration mechanism. Allelic distribution of OsGA20ox2, the rice Green Revolution gene, was associated with the indica and japonica subspeciation. However, this research provided no evidence that the primitive indica- and common japonica-specific alleles at the presumably domestication-related locus functionally differentiate in plant height and seed dormancy. Thus, the evolutionary mechanism of this agriculturally important gene remains open for discussion. PMID:26373662

  15. Endosperm: food for humankind and fodder for scientific discoveries.

    Science.gov (United States)

    Li, Jing; Berger, Frédéric

    2012-07-01

    The endosperm is an essential constituent of seeds in flowering plants. It originates from a fertilization event parallel to the fertilization that gives rise to the embryo. The endosperm nurtures embryo development and, in some species including cereals, stores the seed reserves and represents a major source of food for humankind. Endosperm biology is characterized by specific features, including idiosyncratic cellular controls of cell division and epigenetic controls associated with parental genomic imprinting. This review attempts a comprehensive summary of our current knowledge of endosperm development and highlights recent advances in this field. © 2012 The Authors. New Phytologist © 2012 New Phytologist Trust.

  16. Development of marker-free transgenic Jatropha curcas producing curcin-deficient seeds through endosperm-specific RNAi-mediated gene silencing.

    Science.gov (United States)

    Gu, Keyu; Tian, Dongsheng; Mao, Huizhu; Wu, Lifang; Yin, Zhongchao

    2015-10-08

    Jatropha curcas L. is a potential biofuel plant and its seed oil is suitable for biodiesel production. Despite this promising application, jatropha seeds contain two major toxic components, namely phorbol esters and curcins. These compounds would reduce commercial value of seed cake and raise safety and environment concerns on jatropha plantation and processing. Curcins are Type I ribosome inactivating proteins. Several curcin genes have been identified in the jatropha genome. Among which, the Curcin 1 (C1) gene is identified to be specifically expressed in endosperm, whereas the Curcin 2A (C2A) is mainly expressed in young leaves. A marker-free RNAi construct carrying a β-estradiol-regulated Cre/loxP system and a C1 promoter-driven RNAi cassette for C1 gene was made and used to generate marker-free transgenic RNAi plants to specifically silence the C1 gene in the endosperm of J. curcas. Plants of transgenic line L1, derived from T0-1, carry two copies of marker-free RNAi cassette, whereas plants of L35, derived from T0-35, harbored one copy of marker-free RNAi cassette and three copies of closely linked and yet truncated Hpt genes. The C1 protein content in endosperm of L1 and L35 seeds was greatly reduced or undetectable, while the C2A proteins in young leaves of T0-1 and T0-35 plants were unaffected. In addition, the C1 mRNA transcripts were undetectable in the endosperm of T3 seeds of L1 and L35. The results demonstrated that the expression of the C1 gene was specifically down-regulated or silenced by the double-stranded RNA-mediated RNA interference generated from the RNAi cassette. The C1 promoter-driven RNAi cassette for the C1 gene in transgenic plants was functional and heritable. Both C1 transcripts and C1 proteins were greatly down-regulated or silenced in the endosperm of transgenic J. curcas. The marker-free transgenic plants and curcin-deficient seeds developed in this study provided a solution for the toxicity of curcins in jatropha seeds and

  17. Characterization of barley Prp1 gene and its expression during seed development and under abiotic stress.

    Science.gov (United States)

    Jiang, Qian-Tao; Liu, Tao; Ma, Jian; Wei, Yu-Ming; Lu, Zhen-Xiang; Lan, Xiu-Jin; Dai, Shou-Fen; Zheng, You-Liang

    2011-10-01

    The pre-mRNA processing (Prp1) gene encodes a spliceosomal protein. It was firstly identified in fission yeast and plays a regular role during spliceosome activation and cell cycle. Plant Prp1 genes have only been identified from rice, Sorghum and Arabidopsis thaliana. In this study, we reported the identification and isolation of a novel Prp1 gene from barley, and further explored its expressional pattern by using real-time quantitative RTPCR, promoter prediction and analysis of microarray data. The putative barley Prp1 protein has a similar primary structure features to those of other known Prp1 protein in this family. The results of amino acid comparison indicated that Prp1 protein of barley and other plant species has a highly conserved 30 termnal region while their 50 sequences greatly varied. The results of expressional analysis revealed that the expression level of barley Prp1 gene is always stable in different vegetative tissues, except it is up-regulated at the mid- and late stages of seed development or under the condition of cold stress. This kind of expressional pattern for barley Prp1 is also supported by our results of comparison of microarray data from barley, rice and Arabidopsis. For the molecular mechanism of its expressional pattern, we conclude that the expression of Prp1 gene may be up-regulated by the increase of pre-mRNAs and not be constitutive or ubiquitous.

  18. Quality Control System for Beer Developed with Monoclonal Antibodies Specific to Barley Lipid Transfer Protein

    Directory of Open Access Journals (Sweden)

    Yukie Murakami-Yamaguchi

    2012-10-01

    Full Text Available Non-specific lipid transfer protein (LTP in barley grain reacted with the IgE in sera drawn from food allergy patients. A sandwich-type of enzyme-linked immunosorbent assay (ELISA was developed with mouse monoclonal antibodies raised against LTP purified with barley flour. This ELISA showed a practical working range of 0.3–3 ng/mL and no cross-reactivity with wheat, adlay and rye. Using this ELISA, LTP was determined in several types of barley-foods, including fermented foods such as malt vinegar, barley-malt miso and beer. LTP content in beer of the same kind was approximately constant, even if manufacturing factory and production days were different. Not only as a factor of foam formation and stability but also as an allergen, controlling and monitoring of LTP in beer should be considered. Taken together, our LTP-detecting ELISA can be proposed as an appropriate system for the quality control of beer.

  19. Relationship of carbohydrates and lignin molecular structure spectral profiles to nutrient profile in newly developed oats cultivars and barley grain

    Science.gov (United States)

    Prates, Luciana Louzada; Refat, Basim; Lei, Yaogeng; Louzada-Prates, Mariana; Yu, Peiqiang

    2018-01-01

    The objectives of this study were to quantify the chemical profile and the magnitude of differences in the oat and barley grain varieties developed by Crop Development Centre (CDC) in terms of Cornell Net Carbohydrate Protein System (CNCPS) carbohydrate sub-fractions: CA4 (sugars), CB1 (starch), CB2 (soluble fibre), CB3 (available neutral detergent fibre - NDF), and CC (unavailable carbohydrate); to estimate the energy values; to detect the lignin and carbohydrate (CHO) molecular structure profiles in CDC Nasser and CDC Seabiscuit oat and CDC Meredith barley grains by using Fourier transform infrared attenuated total reflectance (FTIR-ATR); to develop a model to predict nutrient supply based on CHO molecular profile. Results showed that NDF, ADF and CHO were greater (P 0.05) for oat and barley grains as well as non-structural CHO. However, cellulosic compounds peak area and height were greater (P < 0.05) in oat than barley grains. Multiple regressions were determined to predict nutrient supply by using lignin and CHO molecular profiles. It was concluded that although there were some differences between oat and barley grains, CDC Nasser and CDC Meredith presented similarities related to chemical and molecular profiles, indicating that CDC Meredith barley could be replaced for CDC Nasser as ruminant feed. The FTIR was able to identify functional groups related to CHO molecular spectral in oat and barley grains and FTIR-ATR results could be used to predict nutrient supply in ruminant livestock systems.

  20. Brassica napus seed endosperm - metabolism and signaling in a dead end tissue.

    Science.gov (United States)

    Lorenz, Christin; Rolletschek, Hardy; Sunderhaus, Stephanie; Braun, Hans-Peter

    2014-08-28

    Oilseeds are an important element of human nutrition and of increasing significance for the production of industrial materials. The development of the seeds is based on a coordinated interplay of the embryo and its surrounding tissue, the endosperm. This study aims to give insights into the physiological role of endosperm for seed development in the oilseed crop Brassica napus. Using protein separation by two-dimensional (2D) isoelectric focusing (IEF)/SDS polyacrylamide gel electrophoresis (PAGE) and protein identification by mass spectrometry three proteome projects were carried out: (i) establishment of an endosperm proteome reference map, (ii) proteomic characterization of endosperm development and (iii) comparison of endosperm and embryo proteomes. The endosperm proteome reference map comprises 930 distinct proteins, including enzymes involved in genetic information processing, carbohydrate metabolism, environmental information processing, energy metabolism, cellular processes and amino acid metabolism. To investigate dynamic changes in protein abundance during seed development, total soluble proteins were extracted from embryo and endosperm fractions at defined time points. Proteins involved in sugar converting and recycling processes, ascorbate metabolism, amino acid biosynthesis and redox balancing were found to be of special importance for seed development in B. napus. Implications for the seed filling process and the function of the endosperm for seed development are discussed. The endosperm is of key importance for embryo development during seed formation in plants. We present a broad study for characterizing endosperm proteins in the oilseed plant B. napus. Furthermore, a project on the biochemical interplay between the embryo and the endosperm during seed development is presented. We provide evidence that the endosperm includes a complete set of enzymes necessary for plant primary metabolism. Combination of our results with metabolome data will further

  1. Transcriptome assembly and analysis of Tibetan Hulless Barley (Hordeum vulgare L. var. nudum developing grains, with emphasis on quality properties.

    Directory of Open Access Journals (Sweden)

    Xin Chen

    Full Text Available BACKGROUND: Hulless barley is attracting increasing attention due to its unique nutritional value and potential health benefits. However, the molecular biology of the barley grain development and nutrient storage are not well understood. Furthermore, the genetic potential of hulless barley has not been fully tapped for breeding. METHODOLOGY/PRINCIPAL FINDINGS: In the present study, we investigated the transcriptome features during hulless barley grain development. Using Illumina paired-end RNA-Sequencing, we generated two data sets of the developing grain transcriptomes from two hulless barley landraces. A total of 13.1 and 12.9 million paired-end reads with lengths of 90 bp were generated from the two varieties and were assembled to 48,863 and 45,788 unigenes, respectively. A combined dataset of 46,485 All-Unigenes were generated from two transcriptomes with an average length of 542 bp, and 36,278 among were annotated with gene descriptions, conserved protein domains or gene ontology terms. Furthermore, sequences and expression levels of genes related to the biosynthesis of storage reserve compounds (starch, protein, and β-glucan were analyzed, and their temporal and spatial patterns were deduced from the transcriptome data of cultivated barley Morex. CONCLUSIONS/SIGNIFICANCE: We established a sequences and functional annotation integrated database and examined the expression profiles of the developing grains of Tibetan hulless barley. The characterization of genes encoding storage proteins and enzymes of starch synthesis and (1-3;1-4-β-D-glucan synthesis provided an overview of changes in gene expression associated with grain nutrition and health properties. Furthermore, the characterization of these genes provides a gene reservoir, which helps in quality improvement of hulless barley.

  2. Development and Evaluation of a Barley 50k iSelect SNP Array

    Directory of Open Access Journals (Sweden)

    Micha M. Bayer

    2017-10-01

    Full Text Available High-throughput genotyping arrays continue to be an attractive, cost-effective alternative to sequencing based approaches. We have developed a new 50k Illumina Infinium iSelect genotyping array for barley, a cereal crop species of major international importance. The majority of SNPs on the array have been extracted from variants called in exome capture data of a wide range of European barley germplasm. We used the recently published barley pseudomolecule assembly to map the exome capture data, which allowed us to generate markers with accurate physical positions and detailed gene annotation. Markers from an existing and widely used barley 9k Infinium iSelect array were carried over onto the 50k chip for backward compatibility. The array design featured 49,267 SNP markers that converted into 44,040 working assays, of which 43,461 were scorable in GenomeStudio. Of the working assays, 6,251 are from the 9k iSelect platform. We validated the SNPs by comparing the genotype calls from the new array to legacy datasets. Rates of agreement averaged 98.1 and 93.9% respectively for the legacy 9k iSelect SNP set (Comadran et al., 2012 and the exome capture SNPs. To test the utility of the 50k chip for genetic mapping, we genotyped a segregating population derived from a Golden Promise × Morex cross (Liu et al., 2014 and mapped over 14,000 SNPs to genetic positions which showed a near exact correspondence to their known physical positions. Manual adjustment of the cluster files used by the interpreting software for genotype scoring improved results substantially, but migration of cluster files between sites led to a deterioration of results, suggesting that local adjustment of cluster files is required on a site-per-site basis. Information relating to the markers on the chip is available online at https://ics.hutton.ac.uk/50k.

  3. Enrichment and Identification of the Most Abundant Zinc Binding Proteins in Developing Barley Grains by Zinc-IMAC Capture and Nano LC-MS/MS

    Directory of Open Access Journals (Sweden)

    Giuseppe Dionisio

    2018-01-01

    Full Text Available Background: Zinc accumulates in the embryo, aleurone, and subaleurone layers at different amounts in cereal grains. Our hypothesis is that zinc could be stored bound, not only to low MW metabolites/proteins, but also to high MW proteins as well. Methods: In order to identify the most abundant zinc binding proteins in different grain tissues, we microdissected barley grains into (1 seed coats; (2 aleurone/subaleurone; (3 embryo; and (4 endosperm. Initial screening for putative zinc binding proteins from the different tissue types was performed by fractionating proteins according to solubility (Osborne fractionation, and resolving those via Sodium Dodecyl Sulfate Polyacrylamide Gel Electrophoresis (SDS-PAGE followed by polyvinylidene fluoride (PVDF membrane blotting and dithizone staining. Selected protein fractions were subjected to Zn2+-immobilized metal ion affinity chromatography, and the captured proteins were identified using nanoscale liquid chromatography coupled to tandem mass spectrometry (nanoLC-MS/MS. Results: In the endosperm, the most abundant zinc binding proteins were the storage protein B-hordeins, gamma-, and D-hordeins, while in the embryo, 7S globulins storage proteins exhibited zinc binding. In the aleurone/subaleurone, zinc affinity captured proteins were late abundant embryogenesis proteins, dehydrins, many isoforms of non-specific lipid transfer proteins, and alpha amylase trypsin inhibitor. Conclusions: We have shown evidence that abundant barley grain proteins have been captured by Zn-IMAC, and their zinc binding properties in relationship to the possibility of zinc storage is discussed.

  4. Impact of mineral fertilizers on common winter barley (Hordeum vulgare L. agrophytocenosis development

    Directory of Open Access Journals (Sweden)

    Я. М. Мукан

    2014-04-01

    Full Text Available In 2011 to 2013 a study was completed for the impact of varying rates of fertilizing onto the indices of productivity for barley agrophytocenosis of Helios and Commandor, in particular, such its components as a number of productive stems, number of seeds per ear, potential biological activity of ear and photosynthetic apparatus. It is found that the level of spring barley agrophytocenosis productivity is subject both to varietal peculiarities and the rate of mineral fertilizer application. When applying N 60P 60K 60 і N 90P 90K 90 the highest potential and biological productivity of Helios and Commandor was recorder as compared against the control. Impact of varying application rates for fertilizers onto the components of ear biological productivity has been scrutinized. The qualitative composition of ear is a clear expression of variety phenotype and identifies the level of biological yield for spring barley. Application of N 60 P 60 K 60 і N 90 P 90 K 90 mineral fertilizers fairly increased the average leaf surface, photosynthetic lead capacity of varieties in 2 to 2.5 times, as well as FAR efficiency coefficient in 1.5 to 2.0 times as against control that thus contributed to the development of highest biological yield of Helios variety phytomass at the level of 14.9 to 15.0, grain – 7.8 to 8.0 ton per ha and, respectively, 12.7 and 7.5 tons per ha for Comandor variety.

  5. Biochemical and Molecular Characterization of a Barley Seed ß-Glucosidase

    DEFF Research Database (Denmark)

    Leah, R.; Kigel, J.; Svendsen, I.

    1995-01-01

    blot analysis with the cDNA as probe indicated that BGQ60 is encoded by a single gene, and that BGQ60 mRNA only accumulates in the starchy endosperm tissue of late developing seeds. The bgq60 structural gene of approximately 5 kilobases contains an open reading frame encoding 485 amino acids...... during barley seed development and germination are discussed.......A 60-kDa ß-glucosidase (BGQ60) was purified and characterized from seeds of barley (Hordeum vulgare L.). BGQ60 catalytic activity was restricted to the cleavage of short-chain oligosaccharides composed of(1, 2) -,(1, 2, 3) -, and/or(1, 2, 3, 4) -ß-linked glucose or mannose units...

  6. The MADS Box Genes ABS, SHP1, and SHP2 Are Essential for the Coordination of Cell Divisions in Ovule and Seed Coat Development and for Endosperm Formation in Arabidopsis thaliana.

    Science.gov (United States)

    Ehlers, Katrin; Bhide, Amey S; Tekleyohans, Dawit G; Wittkop, Benjamin; Snowdon, Rod J; Becker, Annette

    2016-01-01

    Seed formation is a pivotal process in plant reproduction and dispersal. It begins with megagametophyte development in the ovule, followed by fertilization and subsequently coordinated development of embryo, endosperm, and maternal seed coat. Two closely related MADS-box genes, SHATTERPROOF 1 and 2 (SHP1 and SHP2) are involved in specifying ovule integument identity in Arabidopsis thaliana. The MADS box gene ARABIDOPSIS BSISTER (ABS or TT16) is required, together with SEEDSTICK (STK) for the formation of endothelium, part of the seed coat and innermost tissue layer formed by the maternal plant. Little is known about the genetic interaction of SHP1 and SHP2 with ABS and the coordination of endosperm and seed coat development. In this work, mutant and expression analysis shed light on this aspect of concerted development. Triple tt16 shp1 shp2 mutants produce malformed seedlings, seed coat formation defects, fewer seeds, and mucilage reduction. While shp1 shp2 mutants fail to coordinate the timely development of ovules, tt16 mutants show less peripheral endosperm after fertilization. Failure in coordinated division of the innermost integument layer in early ovule stages leads to inner seed coat defects in tt16 and tt16 shp1 shp2 triple mutant seeds. An antagonistic action of ABS and SHP1/SHP2 is observed in inner seed coat layer formation. Expression analysis also indicates that ABS represses SHP1, SHP2, and FRUITFUL expression. Our work shows that the evolutionary conserved Bsister genes are required not only for endothelium but also for endosperm development and genetically interact with SHP1 and SHP2 in a partially antagonistic manner.

  7. The MADS Box Genes ABS, SHP1, and SHP2 Are Essential for the Coordination of Cell Divisions in Ovule and Seed Coat Development and for Endosperm Formation in Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Katrin Ehlers

    Full Text Available Seed formation is a pivotal process in plant reproduction and dispersal. It begins with megagametophyte development in the ovule, followed by fertilization and subsequently coordinated development of embryo, endosperm, and maternal seed coat. Two closely related MADS-box genes, SHATTERPROOF 1 and 2 (SHP1 and SHP2 are involved in specifying ovule integument identity in Arabidopsis thaliana. The MADS box gene ARABIDOPSIS BSISTER (ABS or TT16 is required, together with SEEDSTICK (STK for the formation of endothelium, part of the seed coat and innermost tissue layer formed by the maternal plant. Little is known about the genetic interaction of SHP1 and SHP2 with ABS and the coordination of endosperm and seed coat development. In this work, mutant and expression analysis shed light on this aspect of concerted development. Triple tt16 shp1 shp2 mutants produce malformed seedlings, seed coat formation defects, fewer seeds, and mucilage reduction. While shp1 shp2 mutants fail to coordinate the timely development of ovules, tt16 mutants show less peripheral endosperm after fertilization. Failure in coordinated division of the innermost integument layer in early ovule stages leads to inner seed coat defects in tt16 and tt16 shp1 shp2 triple mutant seeds. An antagonistic action of ABS and SHP1/SHP2 is observed in inner seed coat layer formation. Expression analysis also indicates that ABS represses SHP1, SHP2, and FRUITFUL expression. Our work shows that the evolutionary conserved Bsister genes are required not only for endothelium but also for endosperm development and genetically interact with SHP1 and SHP2 in a partially antagonistic manner.

  8. The Role of alpha-Glucosidase in Germinating Barley Grains

    DEFF Research Database (Denmark)

    Stanley, Duncan; Rejzek, Martin; Næsted, Henrik

    2011-01-01

    The importance of alpha-glucosidase in the endosperm starch metabolism of barley (Hordeum vulgare) seedlings is poorly understood. The enzyme converts maltose to glucose (Glc), but in vitro studies indicate that it can also attack starch granules. To discover its role in vivo, we took complementa...

  9. Breeding of proanthocyanidin free malting barley

    International Nuclear Information System (INIS)

    Andersen, Anna Maria

    1990-01-01

    Full text: Haze formation in stored beer is due to colloidal precipitation of proteins with polyphenols of which proanthocyanidins are the most important group. 70-80% of proanthocyanidin in beer are from barley malt. Today breweries attain haze stability by using enzymes, additives or adsorbents. A better solution would be to remove proanthocyanidins. Carlsberg Plant Breeding uses induced mutations to breed proanthocyanidin-free malting barley. After mutagen treatment with sodium azide M1 seeds are planted in the field and M2 seeds are harvested in bulk. A single seed, non-destructive method has been developed to identify mutant kernels lacking proanthocyanidins in the testa. The method involves the inclusion of M2 seeds - 50 at a time - in semisolid clay blocks, whereafter a small part of the endosperm, testa and pericarp are exposed by sanding the seeds. The clay block is then placed in a vanillin-HCI solution so that the uncovered tissues can react with the solution. A red colour will develop in the testa of normal seeds, whereas the testa layers of proanthocyanid-free seeds remain colourless. So far, more than 600 mutants have been induced in over 100 barley varieties, spring as well as winter-types, from barley producing areas around the world. The mutants can be assigned to at least 7 loci, all of which can block the biosynthetic pathway for the proanthocyanidins. Mutants in the ant-18 and ant-19 loci show poor kernel development. Only a few mutants are known in the ant-12, ant-22 and ant-25 loci. Breeding work is focussed on mutants belonging to the ant-13 and ant-17 loci. Whereas the malting quality of ant-17 lines suffer from apparent abnormal enzyme development in the aleurone layer, this defect does not exist in ant-13 lines. Brewing trials with proanthocyanidin-free malt have shown excellent haze stability without changes in beer flavour. Breeding work based on the ant-13 lines led to disease resistant lines with good malting quality, while grain yield

  10. Method for hull-less barley transformation and manipulation of grain mixed-linkage beta-glucan.

    Science.gov (United States)

    Lim, Wai Li; Collins, Helen M; Singh, Rohan R; Kibble, Natalie A J; Yap, Kuok; Taylor, Jillian; Fincher, Geoffrey B; Burton, Rachel A

    2018-05-01

    Hull-less barley is increasingly offering scope for breeding grains with improved characteristics for human nutrition; however, recalcitrance of hull-less cultivars to transformation has limited the use of these varieties. To overcome this limitation, we sought to develop an effective transformation system for hull-less barley using the cultivar Torrens. Torrens yielded a transformation efficiency of 1.8%, using a modified Agrobacterium transformation method. This method was used to over-express genes encoding synthases for the important dietary fiber component, (1,3;1,4)-β-glucan (mixed-linkage glucan), primarily present in starchy endosperm cell walls. Over-expression of the HvCslF6 gene, driven by an endosperm-specific promoter, produced lines where mixed-linkage glucan content increased on average by 45%, peaking at 70% in some lines, with smaller increases in transgenic HvCslH1 grain. Transgenic HvCslF6 lines displayed alterations where grain had a darker color, were more easily crushed than wild type and were smaller. This was associated with an enlarged cavity in the central endosperm and changes in cell morphology, including aleurone and sub-aleurone cells. This work provides proof-of-concept evidence that mixed-linkage glucan content in hull-less barley grain can be increased by over-expression of the HvCslF6 gene, but also indicates that hull-less cultivars may be more sensitive to attempts to modify cell wall composition. © 2017 Institute of Botany, Chinese Academy of Sciences.

  11. Accumulation and conversion of sugars by developing wheat grains. VII. Effect of changes in sieve tube and endosperm cavity sap concentrations on the grain filling rate

    International Nuclear Information System (INIS)

    Fisher, D.B.; Gifford, R.M.

    1987-01-01

    The extent to which wheat grain growth is dependent on transport pool solute concentration was investigated by the use of illumination and partial grain removal to vary solute concentrations in the sieve tube and endosperm cavity saps of the wheat ear (Triticum aestivum L.). Short-term grain growth rates were estimated indirectly from the product of phloem area, sieve tube sap concentration, and 32 P translocation velocity. On a per grain basis, calculated rates of mass transport through the peduncle were fairly constant over a substantial range in other transport parameters (i.e. velocity, concentration, phloem area, and grain number). The rates were about 40% higher than expected; this probably reflects some unavoidable bias on faster-moving tracer in the velocity estimates. Sieve tube sap concentration increased in all experiments (by 20 to 64%), with a concomitant decline in velocity (to as low as 8% of the initial value). Endosperm cavity sucrose concentration also increased in all experiments, but cavity sap osmolality and total amino acid concentration remained nearly constant. No evidence was found for an increase in the rate of mass transport per grain through the peduncle in response to the treatments. This apparent unresponsiveness of grain growth rate to increased cavity sap sucrose concentration conflicts with earlier in vitro endosperm studies showing that sucrose uptake increased with increasing external sucrose concentration up to 150 to 200 millimolar

  12. [Starch synthesis in the maize endosperm as affected by starch-synthesizing mutants]. [Annual report, March 1994--June 30, 1995

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, O.

    1995-07-01

    Progress is reported in several areas relevant to maize endosperm development. These areas are (1) The tentative identification of the enzymatic deficiency in a previously unknown endosperm mutant, sugary3-1 (su3-1). The evidence leading to this conclusion will be presented below. (2) The recognition that the endosperm mutant that produces an interesting starch resembling some starches that have been chemically modified is actually an unusual, hypomorphic allele (8132) at the brittle2 (bt2) locus; (3) The orange endosperm color present in some progenies derived from a cross between the original bt2-8132 and W22N apparently results from an interaction between two genes, one of which behaves as though linked to the bt2 locus. In the orange endosperm derivative, our limited evidence suggests that the quantity of all the carotinoids present in the yellow endosperm stocks appear to be increased proportionally.

  13. Breeding cultivars of barley and mustard containing biochemical mutants

    Energy Technology Data Exchange (ETDEWEB)

    Oram, R N [Division of Plant industry, CSIRO, Canberra (Australia)

    1990-01-01

    Full text: The inactivation of dominant and co-dominant alleles is becoming increasingly important in changing the composition of seed carbohydrates, protein, oil, fibre and secondary products to suit modern food and feed technologies. In barley, breeding lines adapted to south-eastern Australian conditions have been developed containing a waxy endosperm from the Japanese variety 'Sumire Mochi', the high lysine gene lys from cv. 'Hiproly' of Ethiopia, and the induced high lysine mutant gene lys 3a from 'Risoe 1508'. The improved mutant lines yield 12-34% less than the highest yielding feed barley. The lys and lys 3a alleles suppress the formation of prolamins, the waxy allele inhibits the formation of amylose. It seems difficult to modify the background genotype to fully compensate for the reduction of major storage carbohydrate or protein compounds. However, waxy barleys have uses in some human foods and a premium can be paid to producers. The grain of the provisionally-patented waxy cultivar Wasiro is suitable for pearling. It contains 5% {beta}-glucan (soluble fibre) and therefore should be as effective as oat bran for reducing blood cholesterol. In Indian mustard (Brassica juncea), three cultivars differing in date of maturity, each containing the spontaneous mutant alleles for low erucic acid levels in the seed oil, have been developed to produce a high quality, mildly flavoured cooking/salad oil. The concentration of glucosinolates in the seed meal must be reduced to make it palatable and non-toxic to pigs and poultry. Three B. juncea lines were treated in up to four successive generations with gamma rays or EMS. 60,000 seed samples were analysed in subsequent generations. Two induced mutants with reduced glucosinolate concentrations are now available besides 4 naturally-occurring sources with only little reduced yields. Recombination may give a high-yielding low erucic acid and low glucosinolate variety of B. juncea. (author)

  14. Breeding cultivars of barley and mustard containing biochemical mutants

    International Nuclear Information System (INIS)

    Oram, R.N.

    1990-01-01

    Full text: The inactivation of dominant and co-dominant alleles is becoming increasingly important in changing the composition of seed carbohydrates, protein, oil, fibre and secondary products to suit modern food and feed technologies. In barley, breeding lines adapted to south-eastern Australian conditions have been developed containing a waxy endosperm from the Japanese variety 'Sumire Mochi', the high lysine gene lys from cv. 'Hiproly' of Ethiopia, and the induced high lysine mutant gene lys 3a from 'Risoe 1508'. The improved mutant lines yield 12-34% less than the highest yielding feed barley. The lys and lys 3a alleles suppress the formation of prolamins, the waxy allele inhibits the formation of amylose. It seems difficult to modify the background genotype to fully compensate for the reduction of major storage carbohydrate or protein compounds. However, waxy barleys have uses in some human foods and a premium can be paid to producers. The grain of the provisionally-patented waxy cultivar Wasiro is suitable for pearling. It contains 5% β-glucan (soluble fibre) and therefore should be as effective as oat bran for reducing blood cholesterol. In Indian mustard (Brassica juncea), three cultivars differing in date of maturity, each containing the spontaneous mutant alleles for low erucic acid levels in the seed oil, have been developed to produce a high quality, mildly flavoured cooking/salad oil. The concentration of glucosinolates in the seed meal must be reduced to make it palatable and non-toxic to pigs and poultry. Three B. juncea lines were treated in up to four successive generations with gamma rays or EMS. 60,000 seed samples were analysed in subsequent generations. Two induced mutants with reduced glucosinolate concentrations are now available besides 4 naturally-occurring sources with only little reduced yields. Recombination may give a high-yielding low erucic acid and low glucosinolate variety of B. juncea. (author)

  15. Differential effects of lesion mimic mutants in barley on disease development by facultative pathogens

    Science.gov (United States)

    McGrann, Graham R. D.; Steed, , Andrew; Burt, Christopher; Nicholson, Paul; Brown, James K. M.

    2015-01-01

    Lesion mimic mutants display spontaneous necrotic spots and chlorotic leaves as a result of mis-regulated cell death programmes. Typically these mutants have increased resistance to biotrophic pathogens but their response to facultative fungi that cause necrotrophic diseases is less well studied. The effect of altered cell death regulation on the development of disease caused by Ramularia collo-cygni, Fusarium culmorum and Oculimacula yallundae was explored using a collection of barley necrotic (nec) lesion mimic mutants. nec8 mutants displayed lower levels of all three diseases compared to nec9 mutants, which had increased R. collo-cygni but decreased F. culmorum disease symptoms. nec1 mutants reduced disease development caused by both R. collo-cygni and F. culmorum. The severity of the nec1-induced lesion mimic phenotype and F. culmorum symptom development was reduced by mutation of the negative cell death regulator MLO. The significant reduction in R. collo-cygni symptoms caused by nec1 was completely abolished in the presence of the mlo-5 allele and both symptoms and fungal biomass were greater than in the wild-type. These results indicate that physiological pathways involved in regulation of cell death interact with one another in their effects on different fungal pathogens. PMID:25873675

  16. Development of functional spaghetti enriched in bioactive compounds using barley coarse fraction obtained by air classification.

    Science.gov (United States)

    Verardo, Vito; Gómez-Caravaca, Ana Maria; Messia, Maria Cristina; Marconi, Emanuele; Caboni, Maria Fiorenza

    2011-09-14

    Barley byproducts obtained by air classification have been used to produce a different barley functional spaghetti, which were compared to different commercial whole semolina samples. Total, insoluble, and soluble fiber and β-glucan contents of the barley spaghetti were found to be greater than those of commercial samples. Furthermore, it was proved that barley spaghetti reached the FDA requirements, which could allow these pastas to deserve the health claims "good source of dietary fiber" and "may reduce the risk of heart disease". When the barley coarse fraction was used, a flavan-3-ols enrichment and an increase of antioxidant activity were reported, while commercial samples showed the absence of flavan-3-ols and a higher presence of phenolic acids and tannins. Whole semolina commercial spaghetti had a significantly higher content of phenolic acids than semolina spaghetti samples. Besides, it was observed that when vital gluten was added to the spaghetti formulation, phenolic compounds were blocked in the gluten network and were partially released during the cooking process.

  17. Barley germination

    DEFF Research Database (Denmark)

    Daneri-Castro, Sergio N.; Svensson, Birte; Roberts, Thomas H.

    2016-01-01

    germination. Lastly, the application of metabolomics to barley grain germination provides essential data on biochemical processes, including insights into the formation of compounds that contribute to malt quality. To maximize the benefits of the 'omics' revolution to the malting industry, there is a need......Germination of barley grain is central to the malting industry and is a valuable model for cereal grain germination. Our current understanding of the complexity of germination at the molecular level is facilitated by access to genomic, transcriptomic, proteomic and metabolomic data. Here we review...... of germination in the context of industrial malting. For transcriptomics, recent advances in sequencing the barley genome allow next-generation sequencing approaches to reveal novel effects of variety and environment on germination. For proteomics, selection of the source tissue(s) and the protein extraction...

  18. Methods for the genetic improvement of quality and quantity in barley

    International Nuclear Information System (INIS)

    Persson, G.

    1984-01-01

    Improvements of endosperm protein in barley are apparently difficult to combine with high grain yield. The reasons are discussed and the breeding approaches are suggested by which satisfactory yields and good grain quality may be achieved. Considerations are also given to input requirements and stress tolerance. (author)

  19. Developing a Molecular Identification Assay of Old Landraces for the Genetic Authentication of Typical Agro-Food Products: The Case Study of the Barley ‘Agordino’

    Directory of Open Access Journals (Sweden)

    Gianni Barcaccia

    2017-01-01

    Full Text Available The orzo Agordino is a very old local variety of domesticated barley (Hordeum vulgare ssp. distichum L. that is native to the Agordo District, Province of Belluno, and is widespread in the Veneto Region, Italy. Seeds of this landrace are widely used for the preparation of very famous dishes of the dolomitic culinary tradition such as barley soup, bakery products and local beer. Understanding the genetic diversity and identity of the Agordino barley landrace is a key step to establish conservation and valorisation strategies of this local variety and also to provide molecular traceability tools useful to ascertain the authenticity of its derivatives. The gene pool of the Agordino barley landrace was reconstructed using 60 phenotypically representative individual plants and its genotypic relationships with commercial varieties were investigated using 21 pure lines widely cultivated in the Veneto Region. For genomic DNA analysis, following an initial screening of 14 mapped microsatellite (SSR loci, seven discriminant markers were selected on the basis of their genomic position across linkage groups and polymorphic marker alleles per locus. The genetic identity of the local barley landrace was determined by analysing all SSR markers in a single multi-locus PCR assay. Extent of genotypic variation within the Agordino barley landrace and the genotypic differentiation between the landrace individuals and the commercial varieties was determined. Then, as few as four highly informative SSR loci were selected and used to develop a molecular traceability system exploitable to verify the genetic authenticity of food products deriving from the Agordino landrace. This genetic authentication assay was validated using both DNA pools from individual Agordino barley plants and DNA samples from Agordino barley food products. On the whole, our data support the usefulness and robustness of this DNA-based diagnostic tool for the orzo Agordino identification, which

  20. Endosperm imprinting: a child custody battle?

    Science.gov (United States)

    Becraft, Philip W

    2012-02-07

    Endosperm gene imprinting has long been speculated to control nutrient allocation to seeds. For the first time, an imprinted gene directly involved in this process has been identified. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. Abnormal germling development by brown rust and powdery mildew on cer barley mutants

    NARCIS (Netherlands)

    Rubiales, D.; Ramirez, M.C.; Carver, T.L.W.; Niks, R.E.

    2001-01-01

    The barley leaf rust fungus forms appressoria over host leaf stomata and penetrates via the stomatal pore. High levels of avoidance to leaf rust fungi have been described in some wild accessions of Hordeum species where a prominent wax layer on the stomata inhibits triggering of fungal appressorium

  2. Fungal Endophytes of Wild Barley and their Effects on Diuraphis noxia Population Development

    Science.gov (United States)

    S.L. Clement; A. Dan Wilson; D.G. Lester; C.M. Davitt

    1997-01-01

    Laboratory experiments were conducted to compare the expression of Diuraphis noxia (Mordvilko) (Homoptera: Aphididae) resistance in four plant introduction (PI) lines of wild barley (Hordeum) infected with different species or strains of endophytic fungi (tribe Balansieae, family Clavicipitaceae, Neotyphodium gen. nov. [formerly...

  3. Changes in isovitexin-O-glycosylation during the development of young barley plants.

    Science.gov (United States)

    Brauch, Dominic; Porzel, Andrea; Schumann, Erika; Pillen, Klaus; Mock, Hans-Peter

    2018-04-01

    Phenylpropanoids are a class of plant natural products that have many biological functions, including stress defence. In barley, phenylpropanoids have been described as having protective properties against excess UV-B radiation and have been linked to resistance to pathogens. Although the phenylpropanoid composition of barley has recently been addressed in more detail, the biosynthesis and regulation of this pathway have not been fully established. Barley introgression lines, such as the S42IL-population offer a set of genetically diverse plants that enable the correlation of metabolic data to distinct genetic regions on the barley genome and, subsequently, identification of relevant genes. The phenylpropanoid profiles of the first and third leaf of barley seedlings in Scarlett and four members of the S42IL-population were obtained by LC-MS. Comparison of the leaf profiles revealed a change in the glycosylation pattern of the flavone-6-C-glucoside isovitexin in the elite cultivar Scarlett. The change was characterized by the stepwise decrease in isovitexin-7-O-glucoside (saponarin) and an increase in isovitexin-2″-O-β-D-glucoside content. The lines S42IL-101-, -177 and -178 were completely devoid of isovitexin-2″-O-β-D-glucoside. Parallel glucosyltransferase assays were consistent with the observed metabolic patterns. The genetic region responsible for this metabolic effect was located on chromosome 1H between 0.21 and 15.08 cM, encompassing 505 gene candidates in the genome of the sequenced cultivar Morex. Only one of these genes displayed sequence similarity with glucosyltransferases of plant secondary metabolism that possessed the characteristic PSPG motif. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. Proteomic Comparison of Basal Endosperm in Maize miniature1 Mutant and its Wild-type Mn1

    Directory of Open Access Journals (Sweden)

    Cecilia eSilva-Sanchez

    2013-06-01

    Full Text Available Developing endosperm in maize seed is a major site for biosynthesis and storage of starch and proteins, and of immense economic importance for its role in food, feed and biofuel production. The basal part of endosperm performs a major role in solute, water and nutrition acquisition from mother plant to sustain these functions. The miniature1 (mn1 mutation is a loss-of-function mutation of the Mn1-encoded cell wall invertase that is entirely expressed in the basal endosperm and is essential for many of the metabolic and signaling functions associated with metabolically released hexose sugars in developing endosperm. Here we report a comparative proteomic study between Mn1 and mn1 basal endosperm to better understand basis of pleiotropic effects on many diverse traits in the mutant. Specifically, we used iTRAQ based quantitative proteomics combined with Gene Ontology and bioinformatics to understand functional basis of the proteomic information. A total of 2518 proteins were identified from soluble and cell wall associated protein fractions; of these 131 proteins were observed to be differentially expressed in the two genotypes. The main functional groups of proteins that were significantly different were those involved in the carbohydrate metabolic and catabolic process, and cell homeostasis. The study constitutes the first proteomic analysis of basal endosperm cell layers in relation to endosperm growth and development in maize.

  5. The trafficking pathway of a wheat storage protein in transgenic rice endosperm.

    Science.gov (United States)

    Oszvald, Maria; Tamas, Laszlo; Shewry, Peter R; Tosi, Paola

    2014-04-01

    The trafficking of proteins in the endoplasmic reticulum (ER) of plant cells is a topic of considerable interest since this organelle serves as an entry point for proteins destined for other organelles, as well as for the ER itself. In the current work, transgenic rice was used to study the pattern and pathway of deposition of the wheat high molecular weight (HMW) glutenin sub-unit (GS) 1Dx5 within the rice endosperm using specific antibodies to determine whether it is deposited in the same or different protein bodies from the rice storage proteins, and whether it is located in the same or separate phases within these. The protein distribution and the expression pattern of HMW sub-unit 1Dx5 in transgenic rice endosperm at different stages of development were determined using light and electron microscopy after labelling with antibodies. The use of HMW-GS-specific antibodies showed that sub-unit 1Dx5 was expressed mainly in the sub-aleurone cells of the endosperm and that it was deposited in both types of protein body present in the rice endosperm: derived from the ER and containing prolamins, and derived from the vacuole and containing glutelins. In addition, new types of protein bodies were also formed within the endosperm cells. The results suggest that the HMW 1Dx5 protein could be trafficked by either the ER or vacuolar pathway, possibly depending on the stage of development, and that its accumulation in the rice endosperm could compromise the structural integrity of protein bodies and their segregation into two distinct populations in the mature endosperm.

  6. 21 CFR 73.315 - Corn endosperm oil.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Corn endosperm oil. 73.315 Section 73.315 Food and... ADDITIVES EXEMPT FROM CERTIFICATION Foods § 73.315 Corn endosperm oil. (a) Identity. (1) The color additive corn endosperm oil is a reddish-brown liquid composed chiefly of glycerides, fatty acids, sitosterols...

  7. Sugar transport by maize endosperm suspension cultures

    International Nuclear Information System (INIS)

    Felker, F.C.; Goodwin, J.C.

    1987-01-01

    To determine the mechanism of sugar uptake by suspension cultures derived from developing maize (Zea mays L.) endosperm, incorporation of radioactivity from 14 C-sugars by the tissue in the mid-log phase of growth was examined. Among the sugars tested was l'-deoxy-l'-fluorosucrose (FS), a derivative not hydrolyzed by invertase but recognized by sucrose carriers in other systems. At 40 mM, uptake of label from FS was 23% of that from sucrose, while uptake of label from L-glucose (used as a control for medium carry-over and adsorption) was 16% of that from sucrose. Uptake of label from sucrose did not increase at concentrations above 50 mM, possibly due to a rate-limiting requirement for extracellular hydrolysis. Kinetic analysis revealed both saturable and linear components of uptake for glucose and fructose. The rate of fructose uptake exceeded that of glucose at all concentrations. Fructose uptake at 20 mM was inhibited by NaN 3 , HgCl 2 , dinitrophenol, carbonyl cyanide m-chlorophenylhydrazone, and p-chloromercuribenzenesulfonic acid. Results suggest that sucrose is hydrolyzed prior to uptake, and that fructose is transported preferentially by a carrier sensitive to an external sulfhydryl group inhibitor. Metabolic activity is required for sugar uptake. The specificity of the hexose transporter is currently being investigated

  8. Protein and Carbohydrate Accumulation in Normal and High-Lysine Barley in Spike Culture

    DEFF Research Database (Denmark)

    Mather, D.E; Giese, Nanna Henriette

    1984-01-01

    Spikes of barley cv. Bomi and high-lysine mutants Riso 1508 and Riso 56 were cultured on liquid media at varying N and sucrose levels. Bomi accumulated N in response to increasing N levels in the medium and a higher level was reached than in spikes of intact plants. The distribution of N in salt......-soluble, hordein, and non-protein N fractions appeared to be normal. Endosperm dry weight and starch were lower than in intact plants and declined at higher N levels. A linear relationship was observed between starch content and the concentration of sucrose in the endosperm water. Uptake of culture medium...

  9. Effects of seed irradiation on the early development and mitochondrial RNA synthesis of 'Impala' barley

    Energy Technology Data Exchange (ETDEWEB)

    Baboth, E [Kerteszeti Kutato Intezet, Budapest (Hungary)

    1975-06-01

    The influence of fractionated ..gamma..-irradiation on barley seeds was investigated under outdoor and hothouse conditions. The doses were 250, 500, 1,000, and 2,000 rad. The resulting radiation effects were investigated from the point of view of molecular biology, i.e. studying the RNA synthesis of the mitochondria after /sup 14/C-labelling of uridine. The radiation influence on the length of the coleoptiles was another criterion. The irradiation findings are discussed in connection with the cultivation of better and more resistant plants for agriculture.

  10. Control of cell proliferation, endoreduplication, cell size, and cell death by the retinoblastoma-related pathway in maize endosperm

    KAUST Repository

    Sabelli, Paolo A.; Liu, Yan; Dante, Ricardo Augusto; Lizarraga, Lucina E.; Nguyen, Hong N.; Brown, Sara W.; Klingler, John; Yu, Jingjuan; LaBrant, Evan; Layton, Tracy M.; Feldman, Max; Larkins, Brian A.

    2013-01-01

    , and programmed cell death. Although manipulation of these processes could maximize grain yield, how they are regulated and integrated is poorly understood. We show that the Retinoblastoma-related (RBR) pathway controls key aspects of endosperm development

  11. Development of DArT-based PCR markers for selecting drought-tolerant spring barley.

    Science.gov (United States)

    Fiust, Anna; Rapacz, Marcin; Wójcik-Jagła, Magdalena; Tyrka, Mirosław

    2015-08-01

    The tolerance of spring barley (Hordeum vulgare L.) cultivars to spring drought is an important agronomic trait affecting crop yield and quality in Poland. Therefore, breeders require new molecular markers to select plants with lower spring drought susceptibility. With the advent of genomic selection technology, simple molecular tools may still be applicable to screen material for markers of the most important traits and in-depth genome scanning. In previous studies, diversity arrays technology (DArT)-based genetic maps were constructed for F2 populations of Polish fodder and malt barley elite breeding lines, and 15 and 18 quantitative trait loci (QTLs) related to spring drought tolerance were identified, respectively. In this paper, we show the results of a conversion of 30 DArT markers corresponding to 11 QTLs into simple sequence repeat (SSR) and sequence tagged site (STS) markers. Twenty-two polymorphic markers were obtained, including 13 DArT-based SSRs. Additionally, 31 SSR markers, located in close proximity to the DArT markers, were selected from the GrainGenes database and tested. Further analyses of 24 advanced breeding lines with different drought tolerances confirmed that five out of the 30 converted markers, as well as three out of the 31 additional SSR markers, were effective in marker-assisted selection for drought tolerance. The possible function of clones related to these markers in drought tolerance is discussed.

  12. A pathway-specific microarray analysis highlights the complex and co-ordinated transcriptional networks of the developing grain of field-grown barley

    DEFF Research Database (Denmark)

    Hansen, Michael; Friis, Carsten; Bowra, Steve

    2009-01-01

    The aim of the study was to describe the molecular and biochemical interactions associated with amino acid biosynthesis and storage protein accumulation in the developing grains of field-grown barley. Our strategy was to analyse the transcription of genes associated with the biosynthesis of stora...

  13. The influence of flooding on soil proportion and plant growth. 1. The influence on root development and growth of barley

    International Nuclear Information System (INIS)

    Sisworo, E.L.

    1975-01-01

    An experiment has been carried out to study the extent of root and shoot of barley exposed to flooding at various time of flooding. Several parameters were used in the experiment, namely the percentage of 86 Rb in the root system, dry weight of root as well as shoot, increase of leaf size, number of leaves and tillers and nitrogen content in leaf tissue. Radioactive 86 Rb-Cl was used in the experiment and injected into the plant 24 hours before harvest. The plants were harvested 2, 6, and 20 days after flooding. From the result obtained, it turned out that flooding conditions apparently reduced root development in the lower part of soil layer, while in the top layer a proper development of root was concentrated. Injury symptoms were mainly observed in the shoot; where leaf yellowing occured and started with the first leaf five days after flooding and subsequently reduced the number of leaves and tillers. (author)

  14. Luteibacter rhizovicinus MIMR1 promotes root development in barley (Hordeum vulgare L.) under laboratory conditions.

    Science.gov (United States)

    Guglielmetti, Simone; Basilico, Roberto; Taverniti, Valentina; Arioli, Stefania; Piagnani, Claudia; Bernacchi, Andrea

    2013-11-01

    In order to preserve environmental quality, alternative strategies to chemical-intensive agriculture are strongly needed. In this study, we characterized in vitro the potential plant growth promoting (PGP) properties of a gamma-proteobacterium, named MIMR1, originally isolated from apple shoots in micropropagation. The analysis of the 16S rRNA gene sequence allowed the taxonomic identification of MIMR1 as Luteibacter rhizovicinus. The PGP properties of MIMR1 were compared to Pseudomonas chlororaphis subsp. aurantiaca DSM 19603(T), which was selected as a reference PGP bacterium. By means of in vitro experiments, we showed that L. rhizovicinus MIMR1 and P. chlororaphis DSM 19603(T) have the ability to produce molecules able to chelate ferric ions and solubilize monocalcium phosphate. On the contrary, both strains were apparently unable to solubilize tricalcium phosphate. Furthermore, the ability to produce 3-indol acetic acid by MIMR1 was approximately three times higher than that of DSM 19603(T). By using fluorescent recombinants of strains MIMR1 and DSM 19603(T), we also demonstrated that both bacteria are able to abundantly proliferate and colonize the barley rhizosphere, preferentially localizing on root tips and in the rhizoplane. Finally, we observed a negative effect of DSM 19603(T) on barley seed germination and plant growth, whereas MIMR1, compared to the control, determined a significant increase of the weight of aerial part (+22 %), and the weight and length of roots (+53 and +32 %, respectively). The results obtained in this work make L. rhizovicinus MIMR1 a good candidate for possible use in the formulation of bio-fertilizers.

  15. Amylolytic strains of Lactobacillus plantarum isolated from barley ...

    African Journals Online (AJOL)

    ... naturally present in barley, and produced cell-bound and cell-free α-amylase at alkaline conditions. The two strains may be developed into starter cultures to facilitate the germination of barley and produce malt with a higher fermentable sugar content. Key words: Lactobacillus plantarum, starch hydrolysis, barley, malting ...

  16. Characterization of the imprinting and expression patterns of ZAG2 in maize endosperm and embryo

    Directory of Open Access Journals (Sweden)

    Chaoxian Liu

    2015-02-01

    Full Text Available ZAG2 has been identified as a maternally expressed imprinted gene in maize endosperm. Our study revealed that paternally inherited ZAG2 alleles were imprinted in maize endosperm and embryo at 14 days after pollination (DAP, and consistently imprinted in endosperm at 10, 12, 16, 18, 20, 22, 24, 26, and 28 DAP in reciprocal crosses between B73 and Mo17. ZAG2 alleles were also imprinted in reciprocal crosses between Zheng 58 and Chang 7-2 and between Huang C and 178. ZAG2 alleles exhibited differential imprinting in hybrids of 178 × Huang C and B73 × Mo17, while in other hybrids ZAG2 alleles exhibited binary imprinting. The tissue-specific expression pattern of ZAG2 showed that ZAG2 was expressed at a high level in immature ears, suggesting that ZAG2 plays important roles in not only kernel but ear development.

  17. The Swedish mutant barley collection

    International Nuclear Information System (INIS)

    1989-01-01

    Full text: The Swedish mutation research programme in barley began about 50 years ago and has mainly been carried out at Svaloev in co-operation with the institute of Genetics at the University of Lund. The collection has been produced from different Swedish high-yielding spring barley varieties, using the following mutagens: X-rays, neutrons, several organic chemical compounds such as ethyleneimine, several sulfonate derivatives and the inorganic chemical mutagen sodium azide. Nearly 10,000 barley mutants are stored in the Nordic Gene Bank and documented in databases developed by Udda Lundquist, Svaloev AB. The collection consists of the following nine categories with 94 different types of mutants: 1. Mutants with changes in the spike and spikelets; 2. Changes in culm length and culm composition; 3. Changes in growth types; 4. Physiological mutants; 5. Changes in awns; 6. Changes in seed size and shape; 7. Changes in leaf blades; 8. Changes in anthocyanin and colour; 9. Resistance to barley powdery mildew. Barley is one of the most thoroughly investigated crops in terms of induction of mutations and mutation genetics. So far, about half of the mutants stored at the Nordic Gene Bank, have been analysed genetically; They constitute, however, only a minority of the 94 different mutant types. The genetic analyses have given valuable insights into the mutation process but also into the genetic architecture of various characters. A number of mutants of two-row barley have been registered and commercially released. One of the earliest released, Mari, an early maturing, daylength neutral, straw stiff mutant, is still grown in Iceland. The Swedish mutation material has been used in Sweden, but also in other countries, such as Denmark, Germany, and USA, for various studies providing a better understanding of the barley genome. The collection will be immensely valuable for future molecular genetical analyses of clone mutant genes. (author)

  18. The Swedish mutant barley collection

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1989-07-01

    Full text: The Swedish mutation research programme in barley began about 50 years ago and has mainly been carried out at Svaloev in co-operation with the institute of Genetics at the University of Lund. The collection has been produced from different Swedish high-yielding spring barley varieties, using the following mutagens: X-rays, neutrons, several organic chemical compounds such as ethyleneimine, several sulfonate derivatives and the inorganic chemical mutagen sodium azide. Nearly 10,000 barley mutants are stored in the Nordic Gene Bank and documented in databases developed by Udda Lundquist, Svaloev AB. The collection consists of the following nine categories with 94 different types of mutants: 1. Mutants with changes in the spike and spikelets; 2. Changes in culm length and culm composition; 3. Changes in growth types; 4. Physiological mutants; 5. Changes in awns; 6. Changes in seed size and shape; 7. Changes in leaf blades; 8. Changes in anthocyanin and colour; 9. Resistance to barley powdery mildew. Barley is one of the most thoroughly investigated crops in terms of induction of mutations and mutation genetics. So far, about half of the mutants stored at the Nordic Gene Bank, have been analysed genetically; They constitute, however, only a minority of the 94 different mutant types. The genetic analyses have given valuable insights into the mutation process but also into the genetic architecture of various characters. A number of mutants of two-row barley have been registered and commercially released. One of the earliest released, Mari, an early maturing, daylength neutral, straw stiff mutant, is still grown in Iceland. The Swedish mutation material has been used in Sweden, but also in other countries, such as Denmark, Germany, and USA, for various studies providing a better understanding of the barley genome. The collection will be immensely valuable for future molecular genetical analyses of clone mutant genes. (author)

  19. Water uptake in barley grain: Physiology; genetics and industrial applications.

    Science.gov (United States)

    Cu, Suong; Collins, Helen M; Betts, Natalie S; March, Timothy J; Janusz, Agnieszka; Stewart, Doug C; Skadhauge, Birgitte; Eglinton, Jason; Kyriacou, Bianca; Little, Alan; Burton, Rachel A; Fincher, Geoffrey B

    2016-01-01

    Water uptake by mature barley grains initiates germination and is the first stage in the malting process. Here we have investigated the effects of starchy endosperm cell wall thickness on water uptake, together with the effects of varying amounts of the wall polysaccharide, (1,3;1,4)-β-glucan. In the latter case, we examined mutant barley lines from a mutant library and transgenic barley lines in which the (1,3;1,4)-β-glucan synthase gene, HvCslF6, was down-regulated by RNA interference. Neither cell wall thickness nor the levels of grain (1,3;1,4)-β-glucan were significantly correlated with water uptake but are likely to influence modification during malting. However, when a barley mapping population was phenotyped for rate of water uptake into grain, quantitative trait locus (QTL) analysis identified specific regions of chromosomes 4H, 5H and 7H that accounted for approximately 17%, 18% and 11%, respectively, of the phenotypic variation. These data indicate that variation in water uptake rates by elite malting cultivars of barley is genetically controlled and a number of candidate genes that might control the trait were identified under the QTL. The genomics data raise the possibility that the genetic variation in water uptake rates might be exploited by breeders for the benefit of the malting and brewing industries. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  20. Autoradiographic study on moisture distribution in pearl-barley and in rice grain

    International Nuclear Information System (INIS)

    Sakharov, Eh.V.; Koz'mina, E.P.; Troitskaya, E.Ya

    1975-01-01

    The dependence of some structural details of the pearl-barley and rice endosperm on the internal moisture distribution is found. The general scheme of the study is shown. The curves of the local moisture distribution in the pearly-barley and rice kernel are plotted according to the radiography data. Moisture distribution over the whole section of the rice kernel is relatively constant at 85 deg C after ten minutes of moisture. Whereas moisture of pearl-barley kernel is only approaching the center of kernel by the time the moisture content increases to 1.5-2%. The slow moisture transfer in the pearl-barley kernel makes the cooking period three times longer as that of the rice

  1. Variability of barley aleurone layer induced by X-rays

    Directory of Open Access Journals (Sweden)

    Romuald Kosina

    2015-05-01

    Full Text Available A series of Hordeum vulgare cultivars was irradiated by X-rays to induce mutations in endosperm. Many structural defects of endosperm were revealed in plants irradiated 8 DAF. Change of a cell cycle was especially frequent and this was visible in the form of clones of small or large cells in the aleurone layer. X-irradiation appeared as a successful tool in the study of development.

  2. The Role of α-Glucosidase in Germinating Barley Grains1[W][OA

    Science.gov (United States)

    Stanley, Duncan; Rejzek, Martin; Naested, Henrik; Smedley, Mark; Otero, Sofía; Fahy, Brendan; Thorpe, Frazer; Nash, Robert J.; Harwood, Wendy; Svensson, Birte; Denyer, Kay; Field, Robert A.; Smith, Alison M.

    2011-01-01

    The importance of α-glucosidase in the endosperm starch metabolism of barley (Hordeum vulgare) seedlings is poorly understood. The enzyme converts maltose to glucose (Glc), but in vitro studies indicate that it can also attack starch granules. To discover its role in vivo, we took complementary chemical-genetic and reverse-genetic approaches. We identified iminosugar inhibitors of a recombinant form of an α-glucosidase previously discovered in barley endosperm (ALPHA-GLUCOSIDASE97 [HvAGL97]), and applied four of them to germinating grains. All four decreased the Glc-to-maltose ratio in the endosperm 10 d after imbibition, implying inhibition of maltase activity. Three of the four inhibitors also reduced starch degradation and seedling growth, but the fourth did not affect these parameters. Inhibition of starch degradation was apparently not due to inhibition of amylases. Inhibition of seedling growth was primarily a direct effect of the inhibitors on roots and coleoptiles rather than an indirect effect of the inhibition of endosperm metabolism. It may reflect inhibition of glycoprotein-processing glucosidases in these organs. In transgenic seedlings carrying an RNA interference silencing cassette for HvAgl97, α-glucosidase activity was reduced by up to 50%. There was a large decrease in the Glc-to-maltose ratio in these lines but no effect on starch degradation or seedling growth. Our results suggest that the α-glucosidase HvAGL97 is the major endosperm enzyme catalyzing the conversion of maltose to Glc but is not required for starch degradation. However, the effects of three glucosidase inhibitors on starch degradation in the endosperm indicate the existence of unidentified glucosidase(s) required for this process. PMID:21098673

  3. Brewing with fractionated barley

    NARCIS (Netherlands)

    Donkelaar, van L.H.G.

    2016-01-01

    Brewing with fractionated barley

    Beer is a globally consumed beverage, which is produced from malted barley, water, hops and yeast. In recent years, the use of unmalted barley and exogenous enzymes have become more popular because they enable simpler processing and reduced environmental

  4. Expression patterns of HvCKX genes indicate their role in growth and reproductive development of barley.

    Directory of Open Access Journals (Sweden)

    Wojciech Zalewski

    Full Text Available Cytokinin oxidase/dehydrogenase proteins (CKX are encoded by a multigene family of CKX genes with a varying number of members depending on species. For some of the genes, spectacular effects on grain production in selected cereals have been observed. Despite the fact that partial or full length sequences of most HvCKX genes in barley (Hordeum vulgare have already been published, in most cases their specific biological functions have not been reported. Detailed expression patterns for five HvCKX genes in different organs/tissues of developing barley plants coupled with analysis of RNAi silent for two genes are presented to test the hypothesis that these expression profiles might indicate their function. Elevated expression for four of them - HvCKX1, HvCKX9, HvCKX4, and HvCKX11 - was found in developing kernels of wild-type plants compared to other tissues. HvCKX5 was mainly expressed in leaf tissue. Lower expression was noted for HvCKX1 in seedling roots and for HvCKX9 in leaves. The documented effect of RNAi silencing of HvCKX1 and a trend for HvCKX9 was higher plant productivity, and the trait was inherited through four generations. Higher plant yield was determined by higher numbers of seeds and spikes. Increased productivity was significantly greater in HvCKX1 silenced plants showing higher relative expression of HvCKX1 in developing kernels of wild-type plants compared to the expression of HvCKX9. Both HvCKX1 silenced T1 seedlings of cv. Golden Promise and the newly transformed breeding line STH7308 showed greater root mass, but this trait was not inherited in the next generation. Similarly HvCKX9 silenced T1 seedlings exhibited greater plant height without inheritance in the next generation. It is suggested that these effects were not inherited because of compensation by other genes co-ordinately regulating reproductive development. One line with untypically changed, inherited phenotype, which was selected from several dozen silenced lines

  5. Purification and characterization of a serine protease (CESP) from mature coconut endosperm

    Science.gov (United States)

    Panicker, Leelamma M; Usha, Rajamma; Roy, Samir; Mandal, Chhabinath

    2009-01-01

    Background In plants, proteases execute an important role in the overall process of protein turnover during seed development, germination and senescence. The limited knowledge on the proteolytic machinery that operates during seed development in coconut (Cocos nucifera L.) prompted us to search for proteases in the coconut endosperm. Findings We have identified and purified a coconut endosperm protease (CESP) to apparent homogeneity. CESP is a single polypeptide enzyme of approximate molecular mass of 68 kDa and possesses pH optimum of 8.5 for the hydrolysis of BAPNA. Studies relating to substrate specificity and pattern of inhibition by various protease inhibitors indicated that CESP is a serine protease with cleavage specificity to peptide bonds after arginine. Purified CESP was often autolysed to two polypeptides of 41.6 kDa (CESP1) and 26.7 kDa (CESP2) and is confirmed by immunochemistry. We have shown the expression of CESP in all varieties of coconut and in all stages of coconut endosperm development with maximum amount in fully matured coconut. Conclusion Since the involvement of proteases in the processing of pre-proteins and maintenance of intracellular protein levels in seeds are well known, we suspect this CESP might play an important role in the coconut endosperm development. However this need to be confirmed using further studies. PMID:19426537

  6. Spatio-Temporal Metabolite Profiling of the Barley Germination Process by MALDI MS Imaging.

    Directory of Open Access Journals (Sweden)

    Karin Gorzolka

    Full Text Available MALDI mass spectrometry imaging was performed to localize metabolites during the first seven days of the barley germination. Up to 100 mass signals were detected of which 85 signals were identified as 48 different metabolites with highly tissue-specific localizations. Oligosaccharides were observed in the endosperm and in parts of the developed embryo. Lipids in the endosperm co-localized in dependency on their fatty acid compositions with changes in the distributions of diacyl phosphatidylcholines during germination. 26 potentially antifungal hordatines were detected in the embryo with tissue-specific localizations of their glycosylated, hydroxylated, and O-methylated derivates. In order to reveal spatio-temporal patterns in local metabolite compositions, multiple MSI data sets from a time series were analyzed in one batch. This requires a new preprocessing strategy to achieve comparability between data sets as well as a new strategy for unsupervised clustering. The resulting spatial segmentation for each time point sample is visualized in an interactive cluster map and enables simultaneous interactive exploration of all time points. Using this new analysis approach and visualization tool germination-dependent developments of metabolite patterns with single MS position accuracy were discovered. This is the first study that presents metabolite profiling of a cereals' germination process over time by MALDI MSI with the identification of a large number of peaks of agronomically and industrially important compounds such as oligosaccharides, lipids and antifungal agents. Their detailed localization as well as the MS cluster analyses for on-tissue metabolite profile mapping revealed important information for the understanding of the germination process, which is of high scientific interest.

  7. A Genome Wide Association Study of arabinoxylan content in 2-row spring barley grain.

    Directory of Open Access Journals (Sweden)

    Ali Saleh Hassan

    Full Text Available In barley endosperm arabinoxylan (AX is the second most abundant cell wall polysaccharide and in wheat it is the most abundant polysaccharide in the starchy endosperm walls of the grain. AX is one of the main contributors to grain dietary fibre content providing several health benefits including cholesterol and glucose lowering effects, and antioxidant activities. Due to its complex structural features, AX might also affect the downstream applications of barley grain in malting and brewing. Using a high pressure liquid chromatography (HPLC method we quantified AX amounts in mature grain in 128 spring 2-row barley accessions. Amounts ranged from ~ 5.2 μg/g to ~ 9 μg/g. We used this data for a Genome Wide Association Study (GWAS that revealed three significant quantitative trait loci (QTL associated with grain AX levels which passed a false discovery threshold (FDR and are located on two of the seven barley chromosomes. Regions underlying the QTLs were scanned for genes likely to be involved in AX biosynthesis or turnover, and strong candidates, including glycosyltransferases from the GT43 and GT61 families and glycoside hydrolases from the GH10 family, were identified. Phylogenetic trees of selected gene families were built based on protein translations and were used to examine the relationship of the barley candidate genes to those in other species. Our data reaffirms the roles of existing genes thought to contribute to AX content, and identifies novel QTL (and candidate genes associated with them potentially influencing the AX content of barley grain. One potential outcome of this work is the deployment of highly associated single nucleotide polymorphisms markers in breeding programs to guide the modification of AX abundance in barley grain.

  8. Stomatal development in barley as a bioassay for cell differentation: its use with X-rays and gibberellic acid

    Energy Technology Data Exchange (ETDEWEB)

    Zeiger, E; Rafalowsky, J [Chile Univ., Santiago. Departamento de Biologia y Genetica

    1976-01-01

    A bioassay for cell differentiation during stomatal development in barley (Hordeum vulgare L.) has been defined. It uses cell kinetics analysis to follow the temporal course of cell divisions in the developmental sequence. The rate of displacement of the divisions along the stomatal rows provides a measure of differentiation. Physical factors affecting differentiation may be tested with intact seedlings. The bioassay showed that X-ray irradiation inhibited the divisions leading to stomatal formation. The inhibition kinetics was similar to the one observed in root meristems. Chemical substances are tested by culturing excised shoots in a synthetic medium. Detached leaves responded to sucrose and light with increasing rates of stomatal divisions. Gibberellic acid (GA/sub 3/) was assayed for its effects on the growth of the leaf and the differentiation of stomata. GA/sub 3/ increased the overall length of the leaves without affecting the rates of cell division. The treated cells responded with increased elongation rates and a precocious initiation and completion of cell enlargement. GA/sub 3/ had no specific effect on stomatal differentiation.

  9. Characterization of the Entire Cystatin Gene Family in Barley and Their Target Cathepsin L-Like Cysteine-Proteases, Partners in the Hordein Mobilization during Seed Germination1[W

    Science.gov (United States)

    Martinez, Manuel; Cambra, Ines; Carrillo, Laura; Diaz-Mendoza, Mercedes; Diaz, Isabel

    2009-01-01

    Plant cystatins are inhibitors of cysteine-proteases of the papain C1A and legumain C13 families. Cystatin data from multiple plant species have suggested that these inhibitors act as defense proteins against pests and pathogens and as regulators of protein turnover. In this study, we characterize the entire cystatin gene family from barley (Hordeum vulgare), which contain 13 nonredundant genes, and identify and characterize their target enzymes, the barley cathepsin L-like proteases. Cystatins and proteases were expressed and purified from Escherichia coli cultures. Each cystatin was found to have different inhibitory capability against barley cysteine-proteases in in vitro inhibitory assays using specific substrates. Real-time reverse transcription-polymerase chain reaction revealed that inhibitors and enzymes present a wide variation in their messenger RNA expression patterns. Their transcripts were mainly detected in developing and germinating seeds, and some of them were also expressed in leaves and roots. Subcellular localization of cystatins and cathepsin L-like proteases fused to green fluorescent protein demonstrated the presence of both protein families throughout the endoplasmic reticulum and the Golgi complex. Proteases and cystatins not only colocalized but also interacted in vivo in the plant cell, as revealed by bimolecular fluorescence complementation. The functional relationship between cystatins and cathepsin L-like proteases was inferred from their common implication as counterparts of mobilization of storage proteins upon barley seed germination. The opposite pattern of transcription expression in gibberellin-treated aleurones presented by inhibitors and enzymes allowed proteases to specifically degrade B, C, and D hordeins stored in the endosperm of barley seeds. PMID:19759340

  10. Protein disulfide isomerase-like protein 1-1 controls endosperm development through regulation of the amount and composition of seed proteins in rice.

    Directory of Open Access Journals (Sweden)

    Yeon Jeong Kim

    Full Text Available Protein disulfide isomerase (PDI is a chaperone protein involved in oxidative protein folding by acting as a catalyst and assisting folding in the endoplasmic reticulum (ER. A genome database search showed that rice contains 19 PDI-like genes. However, their functions are not clearly identified. This paper shows possible functions of rice PDI-like protein 1-1 (PDIL1-1 during seed development. Seeds of the T-DNA insertion PDIL1-1 mutant, PDIL1-1Δ, identified by genomic DNA PCR and western blot analysis, display a chalky phenotype and a thick aleurone layer. Protein content per seed was significantly lower and free sugar content higher in PDIL1-1Δ mutant seeds than in the wild type. Proteomic analysis of PDIL1-1Δ mutant seeds showed that PDIL1-1 is post-translationally regulated, and its loss causes accumulation of many types of seed proteins including glucose/starch metabolism- and ROS (reactive oxygen species scavenging-related proteins. In addition, PDIL1-1 strongly interacts with the cysteine protease OsCP1. Our data indicate that the opaque phenotype of PDIL1-1Δ mutant seeds results from production of irregular starch granules and protein body through loss of regulatory activity for various proteins involved in the synthesis of seed components.

  11. Integrated transcriptomics and proteomics analysis of storage protein composition in developing barley grain to improve nutritional profile

    DEFF Research Database (Denmark)

    Kaczmarczyk, Agnieszka Ewa; Dionisio, Giuseppe; Renaut, Jenny

    2012-01-01

    The aim of the study was to understand the molecular and biochemical mechanisms underpinning the effect of nitrogen (N) on barley (Hordeum vulgare) storage protein production (hordeins) during grain filling. Using a combination of advanced biochemistry methods, we could comprehensively describe c...

  12. Multi-method research strategy for understanding changes in storage protein composition in developing barley grain to improve nutritional profile

    DEFF Research Database (Denmark)

    Kaczmarczyk, Agnieszka Ewa

    Barley (Hordeum vulgare L.) is cultivated in a range of diverse environments and is widely utilised as feed for animal and as malt in brewing. Nitrogen (N) is a key macronutrient whch directly increases plant growth and is used as a fertiliser to meet the demands for higher yield. However...

  13. Starch and Free Sugars during Kernel Development of Bomi Barley and its High-Lysine Mutant 1508

    DEFF Research Database (Denmark)

    Kreis, Michael

    1978-01-01

    At maturity the high-lysine barley (Hordeum vulgare L.) Ris0 mutants 1508, 527 and 29 kernels contained about 20% less starch and twice as much free sugars as the parent varieties Bomi and Carlsberg II. An enhanched effect on starch reduction and free sugar accumulation was observed during kernel...

  14. Proteome analysis of dissected barley seed tissue during germination and radicle elongation

    DEFF Research Database (Denmark)

    Bønsager, Birgit Christine

    2007-01-01

    at the protein or the DNA level. In addition, germination of barley seeds is of interest for the brewing industry since this process corresponds to the steeping process that starts the industrial malting. In the present study a proteomics approach was employed to understand the initial changes in the water...... soluble protein composition of the barley seed upon imbibition and the following events that occur until to 72 h post imbibition (PI). 2D gel electrophoresis of proteins extracted from dissected barley seeds tissues during germination (0-24 h) and the subsequent radicle elongation (24-72 h) describes...... spatio-temporal variations in the protein patterns. Seeds from 8 time points (0, 4, 12, 24, 36, 52, 60, and 72 h PI) were dissected into embryo, aleurone layer and endosperm and small scale protein extractions enabled us to obtain good resolution 2D gels. The 2D gels were compared between the time points...

  15. Control of cell proliferation, endoreduplication, cell size, and cell death by the retinoblastoma-related pathway in maize endosperm

    KAUST Repository

    Sabelli, Paolo A.

    2013-04-22

    The endospermof cereal grains is one of the most valuable products of modern agriculture. Cereal endosperm development comprises different phases characterized by mitotic cell proliferation, endoreduplication, the accumulation of storage compounds, and programmed cell death. Although manipulation of these processes could maximize grain yield, how they are regulated and integrated is poorly understood. We show that the Retinoblastoma-related (RBR) pathway controls key aspects of endosperm development in maize. Down-regulation of RBR1 by RNAi resulted in up-regulation of RBR3-type genes, as well as the MINICHROMOSOME MAINTENANCE 2-7 gene family and PROLIFERATING CELL NUCLEAR ANTIGEN, which encode essential DNA replication factors. Both the mitotic and endoreduplication cell cycles were stimulated. Developing transgenic endosperm contained 42-58% more cells and ~70% more DNA than wild type, whereas there was a reduction in cell and nuclear sizes. In addition, cell death was enhanced. The DNA content of mature endosperm increased 43% upon RBR1 downregulation, whereas storage protein content and kernel weight were essentially not affected. Down-regulation of both RBR1 and CYCLIN DEPENDENT KINASE A (CDKA);1 indicated that CDKA;1 is epistatic to RBR1 and controls endoreduplication through an RBR1- dependent pathway. However, the repressive activity of RBR1 on downstream targets was independent from CDKA;1, suggesting diversification of RBR1 activities. Furthermore, RBR1 negatively regulated CDK activity, suggesting the presence of a feedback loop. These results indicate that the RBR1 pathway plays a major role in regulation of different processes during maize endosperm development and suggest the presence of tissue/organlevel regulation of endosperm/seed homeostasis.

  16. The release of cytochrome c and the regulation of the programmed cell death progress in the endosperm of winter wheat (Triticum aestivum L.) under waterlogging.

    Science.gov (United States)

    Qi, Yuan-Hong; Mao, Fang-Fang; Zhou, Zhu-Qing; Liu, Dong-Cheng; Min-Yu; Deng, Xiang-Yi; Li, Ji-Wei; Mei, Fang-Zhu

    2018-05-02

    It has been shown in mammalian systems that the mitochondria can play a key role in the regulation of apoptosis by releasing intermembrane proteins (such as cytochrome c) into the cytosol. Cytochrome c released from the mitochondria to the cytoplasm activates proteolytic enzyme cascades, leading to specific nuclear DNA degradation and cell death. This pathway is considered to be one of the important regulatory mechanisms of apoptosis. Previous studies have shown that endosperm cell development in wheat undergoes specialized programmed cell death (PCD) and that waterlogging stress accelerates the PCD process; however, little is known regarding the associated molecular mechanism. In this study, changes in mitochondrial structure, the release of cytochrome c, and gene expression were studied in the endosperm cells of the wheat (Triticum aestivum L.) cultivar "huamai 8" during PCD under different waterlogging durations. The results showed that waterlogging aggravated the degradation of mitochondrial structure, increased the mitochondrial permeability transition (MPT), and decreased mitochondrial transmembrane potential (ΔΨm), resulting in the advancement of the endosperm PCD process. In situ localization and western blotting of cytochrome c indicated that with the development of the endosperm cell, cytochrome c was gradually released from the mitochondria to the cytoplasm, and waterlogging stress led to an advancement and increase in the release of cytochrome c. In addition, waterlogging stress resulted in the increased expression of the voltage-dependent anion channel (VDAC) and adenine nucleotide translocator (ANT), suggesting that the mitochondrial permeability transition pore (MPTP) may be involved in endosperm PCD under waterlogging stress. The MPTP inhibitor cyclosporine A effectively suppressed cell death and cytochrome c release during wheat endosperm PCD. Our results indicate that the mitochondria play important roles in the PCD of endosperm cells and that

  17. PCR amplification and sequences of cDNA clones for the small and large subunits of ADP-glucose pyrophosphorylase from barley tissues.

    Science.gov (United States)

    Villand, P; Aalen, R; Olsen, O A; Lüthi, E; Lönneborg, A; Kleczkowski, L A

    1992-06-01

    Several cDNAs encoding the small and large subunit of ADP-glucose pyrophosphorylase (AGP) were isolated from total RNA of the starchy endosperm, roots and leaves of barley by polymerase chain reaction (PCR). Sets of degenerate oligonucleotide primers, based on previously published conserved amino acid sequences of plant AGP, were used for synthesis and amplification of the cDNAs. For either the endosperm, roots and leaves, the restriction analysis of PCR products (ca. 550 nucleotides each) has revealed heterogeneity, suggesting presence of three transcripts for AGP in the endosperm and roots, and up to two AGP transcripts in the leaf tissue. Based on the derived amino acid sequences, two clones from the endosperm, beps and bepl, were identified as coding for the small and large subunit of AGP, respectively, while a leaf transcript (blpl) encoded the putative large subunit of AGP. There was about 50% identity between the endosperm clones, and both of them were about 60% identical to the leaf cDNA. Northern blot analysis has indicated that beps and bepl are expressed in both the endosperm and roots, while blpl is detectable only in leaves. Application of the PCR technique in studies on gene structure and gene expression of plant AGP is discussed.

  18. The effects of gamma irradiation on the leaching of reducing sugars, inorganic phosphate and enzymes from barley seeds during germination in water

    International Nuclear Information System (INIS)

    Kurobane, I.; Yamaguchi, H.; Sander, C.; Nilan, R.A.

    1979-01-01

    Gamma irradiation enhanced the leaching of reducing sugars from barley seeds into the water in which the seeds were shaken. Treatments prior to shaking in water, such as overnight soaking in water at 5 0 C and subsequent germination in Petri dishes for 1 or 2 days at 20 0 C, showed pronounced effects on the leaching. The highest effect, which was obtained at 500 krad irradiation, was four times higher than that of the non-irradiated control. Gamma irradiation also stimulated the leaching of inorganic phosphate and slightly that of amylases from barley seeds. When seeds from which the embryos has been removed were shaken into water, no stimulating effect on the leaching of sugars was noted. These results, combined with the irradiation effect on the embryo, suggest that the stimulated leaching of reducing sugars is due to the extreme difference in sensitivity to gamma irradiation between the production of reducing sugars in the endosperm and the development and growth of the embryo. (author)

  19. Transgressive segregation for very low and high levels of basal resistance to powdery mildew in barley

    NARCIS (Netherlands)

    Aghnoum, R.; Niks, R.E.

    2011-01-01

    Basal resistance of barley to powdery mildew is a quantitatively inherited trait that limits the growth and sporulation of barley powdery mildew pathogen by a non-hypersensitive mechanism of defense. Two experimental barley lines were developed with a very high (ErBgh) and low (EsBgh) level of basal

  20. Integrated transcriptomics and proteomics analysis of storage protein composition in developing barley grain to improve nutritional profile

    DEFF Research Database (Denmark)

    Kaczmarczyk, Agnieszka Ewa; Dionisio, Giuseppe; Renaut, Jenny

    2012-01-01

    The aim of the study was to understand the molecular and biochemical mechanisms underpinning the effect of nitrogen (N) on barley (Hordeum vulgare) storage protein production (hordeins) during grain filling. Using a combination of advanced biochemistry methods, we could comprehensively describe......-regimes caused significant differences in both quantity and quality of the storage proteins transcripts. Principal Component Analysis of the amino acid (AA) profiles also indicated dissimilarity in individual AA percentages, correlated to hordein content. The abundance values of proteins of interest confirmed...

  1. Development and validation of a terrestrial biotic ligand model predicting the effect of cobalt on root growth of barley (Hordeum vulgare)

    International Nuclear Information System (INIS)

    Lock, K.; De Schamphelaere, K.A.C.; Becaus, S.; Criel, P.; Van Eeckhout, H.; Janssen, C.R.

    2007-01-01

    A Biotic Ligand Model was developed predicting the effect of cobalt on root growth of barley (Hordeum vulgare) in nutrient solutions. The extent to which Ca 2+ , Mg 2+ , Na + , K + ions and pH independently affect cobalt toxicity to barley was studied. With increasing activities of Mg 2+ , and to a lesser extent also K + , the 4-d EC50 Co2+ increased linearly, while Ca 2+ , Na + and H + activities did not affect Co 2+ toxicity. Stability constants for the binding of Co 2+ , Mg 2+ and K + to the biotic ligand were obtained: log K CoBL = 5.14, log K MgBL = 3.86 and log K KBL = 2.50. Limited validation of the model with one standard artificial soil and one standard field soil showed that the 4-d EC50 Co2+ could only be predicted within a factor of four from the observed values, indicating further refinement of the BLM is needed. - Biotic Ligand Models are not only a useful tool to assess metal toxicity in aquatic systems but can also be used for terrestrial plants

  2. Effect of barley grinding method and sodium polyacrylate supplement in the diet on the performance and stomach ulcer development of growing finishing pigs

    Directory of Open Access Journals (Sweden)

    Timo Alaviuhkola

    1993-12-01

    Full Text Available Two different grinding methods - rolling and hammer milling - as well as polyacrylate supplement in the diet were studied to evaluate their effect on the performance of pigs and the incidence of gastric lesions. The experiment was carried out in 2 x 2 factorial arrangement with a total of 160 pigs. The grist size of rolled barley was bigger than of hammermilled barley, but the difference in water-binding capacity was insignificant. No significant differences were observed in the performance traits of pigs fed either rolled or hammer-milled barley. The sodium polyacrylate supplement had no effect on the daily gain, feed:gain ratio or carcass quality of the pigs. Gastric ulcers and constrictions of the oesophageal opening of the stomach were more frequent in the groups fed hammer-milled barley than in the groups fed rolled barley, the difference being statistically significant (P

  3. Barley plants over-expressing the NAC transcription factor gene HvNAC005 show stunting and delay in development combined with early senescence

    DEFF Research Database (Denmark)

    Christiansen, Michael W; Matthewman, Colette; Podzimska-Sroka, Dagmara

    2016-01-01

    -expressing plants showed up-regulation of genes involved with secondary metabolism, hormone metabolism, stress, signalling, development, and transport. Up-regulation of senescence markers and hormone metabolism and signalling genes supports a role of HvNAC005 in the cross field of different hormone and signalling......The plant-specific NAC transcription factors have attracted particular attention because of their involvement in stress responses, senescence, and nutrient remobilization. The HvNAC005 gene of barley encodes a protein belonging to subgroup NAC-a6 of the NAC family. This study shows that HvNAC005...... pathways. Binding of HvNAC005 to promoter sequences of putative target genes containing the T[G/A]CGT core motif was shown by direct protein-DNA interactions of HvNAC005 with promoters for two of the up-regulated genes. In conclusion, HvNAC005 was shown to be a strong positive regulator of senescence...

  4. EFFECT OF ENDOSPERM HARDNESS ON AN ETHANOL PROCESS USING A GRANULAR STARCH HYDROLYZING ENZYME

    Energy Technology Data Exchange (ETDEWEB)

    Wang, P; W Liu, D B; Johnston, K D; Rausch, S J; Schmidt, M E; Tumbleson, V Singh

    2010-01-01

    Granular starch hydrolyzing enzymes (GSHE) can hydrolyze starch at low temperature (32°C). The dry grind process using GSHE (GSH process) has fewer unit operations and no changes in process conditions (pH 4.0 and 32°C) compared to the conventional process because it dispenses with the cooking and liquefaction step. In this study, the effects of endosperm hardness, protease, urea, and GSHE levels on GSH process were evaluated. Ground corn, soft endosperm, and hard endosperm were processed using two GSHE levels (0.1 and 0.4 mL per 100 g ground material) and four treatments of protease and urea addition. Soft and hard endosperm materials were obtained by grinding and sifting flaking grits from a dry milling pilot plant; classifications were confirmed using scanning electron microscopy. During 72 h of simultaneous granular starch hydrolysis and fermentation (GSHF), ethanol and glucose profiles were determined using HPLC. Soft endosperm resulted in higher final ethanol concentrations compared to ground corn or hard endosperm. Addition of urea increased final ethanol concentrations for soft and hard endosperm. Protease addition increased ethanol concentrations and fermentation rates for soft endosperm, hard endosperm, and ground corn. The effect of protease addition on ethanol concentrations and fermentation rates was most predominant for soft endosperm, less for hard endosperm, and least for ground corn. Samples (soft endosperm, hard endosperm, or corn) with protease resulted in higher (1.0% to 10.5% v/v) ethanol concentration compared to samples with urea. The GSH process with protease requires little or no urea addition. For fermentation of soft endosperm, GSHE dose can be reduced. Due to nutrients (lipids, minerals, and soluble proteins) present in corn that enhance yeast growth, ground corn fermented faster at the beginning than hard and soft endosperm.

  5. Construction of barley consensus map showing chromosomal ...

    African Journals Online (AJOL)

    In the past, it has been difficult to accurately determine the location of many types of barley molecular markers due to the lack of commonality between international barley linkage maps. In this study, a consensus map of barley was constructed from five different maps (OWB, VxHs, KxM, barley consensus 2 and barley ...

  6. Winter barley mutants created in the Ukraine

    International Nuclear Information System (INIS)

    Zayats, O.M.

    2001-01-01

    Full text: Increasing fodder and protein production is one of the objectives of the development of agriculture in Ukraine. Higher productivity of fodder crops, due to new highly productive varieties, is the means to meet this aim. Winter barley is an important crop for fodder purposes. The climate of the Ukraine is favourable for growing this crop. The areas used for the growth of winter barley are however, small (500,000-550,000 ha) and there is a shortage of good quality varieties. The main aim of the work was therefore to create new varieties of highly productive winter barley, of good quality. The new varieties and mutation lines of winter barley were created under the influence of water solutions of N-nitroso-N-methylurea (NMH - 0,012, 0,005%), N-nitroso-N-ethylurea (NEH - 0,05; 0.025; 0,012%) ethyleneimine (EI - 0,02; 0,01; 0,005%) on winter barley seeds of the varieties of local and foreign selections. On the basis of many years of investigations (1984-94) the following mutations were described: hard-grained, winter-hardiness, earliness, middle-maturity, late-maturity, wide and large leaves, narrow leaves, multinodal, great number of leaves, great number of flowers, strong stem (lodging resistant), tallness, semi-dwarfness, dwarfness, and high productivity. Particularly valuable are mutants with high productivity of green bulk. Their potential yield is 70 t/ha. As a result of the work two varieties of winter barley 'Shyrokolysty' and 'Kormovy' were released into the State register of plant varieties of the Ukraine. The other valuable mutant genotypes are used in cross breeding programmes. (author)

  7. Malting barley BRS Borema

    Directory of Open Access Journals (Sweden)

    Euclydes Minella

    2006-01-01

    Full Text Available BRS Borema is an early maturing, two-rowed spring barley registered in 2003 for commercial production inSouthern Brazil, bred by Embrapa Trigo. It combines good yield potential with superior malting quality and a reasonable levelof disease (net blotch, powdery mildew, leaf rust resistance. It is well-adapted to all major production regions of maltingbarley in Brazil.

  8. Induction and multiplication of callus from endosperm of Cycas ...

    African Journals Online (AJOL)

    The usage of medicinal plants in traditional medication has gained the attraction from global and local markets, mainly to cure diseases or simply for health maintenance. Callus cultures were initiated from the endosperm of the medicinal plant Cycas revoluta, cultured on half-strength Murashige and Skoog (MS) medium ...

  9. The effects of calcium regulation of endosperm reserve protein ...

    African Journals Online (AJOL)

    The effects of steep liquor calcium ion on sorghum endosperm reserve protein mobilization were evaluated using two improved Nigeria sorghum cultivars (ICSV 400 and KSV 8). The key protein modification factors evaluated were free amino nitrogen (FAN), total non protein nitrogen (TNPN) and soluble protein of cold water ...

  10. Microwave fixation enhances gluten fibril formation in wheat endosperm

    Science.gov (United States)

    The wheat storage proteins, primarily glutenin and gliadin, contribute unique functional properties in food products and play a critical role in determining the end-use quality of wheat. In the wheat endosperm these proteins form a proteinaceous matrix deposited among starch granules only to be brou...

  11. Normal and hetero-yellow endosperm grain sorghum as substitute ...

    African Journals Online (AJOL)

    housed in flat deck-type cages, 1,6 x 1 m, fitted with a self- feeder and an automatic water nipple. Temperatures in the ... adiabatic bomb calorimeter. Amino acid analyses, following acid hydrolysis in a .... the hetero-yellow endosperm type sorghum had the highest avarage daily gains (ADGs), whereas pigs fed the maize-.

  12. The Barley Chromosome 5 Linkage Map

    DEFF Research Database (Denmark)

    Jensen, J.; Jørgensen, Jørgen Helms

    1975-01-01

    The literature is surveyed for data on recombination between loci on chromosome 5 of barley; 13 loci fall into the category “mapped” loci, more than 20 into the category “associated” loci and nine into the category “loci once suggested to be on chromosome 5”. A procedure was developed...

  13. FRAKSINASI ENZIM LIPASE DARI ENDOSPERM KELAPA DENGAN METODE SALTING OUT (Lipase fractionation of Coconut Endosperm by Salting out Method

    Directory of Open Access Journals (Sweden)

    Moh. Su'i

    2014-02-01

    Full Text Available This research learns about fractionation of lipases activity from coconut endosperm by using ammonium sulphate of 0–15%; 15-30 %, 30–45 %, 45–60 %, 60–75 % and 75–90 %. The results showed that the fractions of 0–15% ; 30–45 %, 45–60 % and 60–75 % have lipase activity. Meanwhile, the highest activity was fractions of 60-75%. fractions of 15-30% and 75-90%  have no lipase enzym activity. Molecule weigh of lipase enzyme was 72 kDa. Keywords: Lipases, endosperm, coconut, fractionation, ammonium sulphate   ABSTRAK Penelitian ini mempelajari fraksinasi enzim lipase dari endosperm kelapa menggunakan ammonium sulfat. fraksinasi dilakukan dengan variasi konsentrasi ammonium sulfat 0–15% ; 15-30%; 30–45 %, 45–60 %, 60–75 % dan 75–90 %. Hasil penelitian menunjukkan bahwa enzim lipase terdapat pada fraksi 0–15% ; 30–45 %, 45–60 % dan fraksi 60–75 % dengan aktivitas enzim tertinggi pada fraksi 60-75%. Sedangkan fraksi 15-30% dan 75-90% tidak ada enzim lipase. Berat molekul enzim lipase pada semua fraksi 72 kDa. Kata kunci: Lipase, endosperm, fraksinasi, ammonium sulfat

  14. Improving zinc accumulation in cereal endosperm using HvMTP1, a transition metal transporter

    DEFF Research Database (Denmark)

    Menguer, Paloma K; Vincent, Thomas; Miller, Anthony J

    2018-01-01

    Zinc (Zn) is essential for all life forms, including humans. It is estimated that around two billion people are deficient in their Zn intake. Human dietary Zn intake relies heavily on plants, which in many developing countries consists mainly of cereals. The inner part of cereal grain......) vacuolar Zn transporter HvMTP1 was expressed under the control of the endosperm-specific D-hordein promoter. Transformed plants exhibited no significant change in growth but had higher total grain Zn concentration, as measured by ICP-OES, compared to parental controls. Compared with Zn, transformants had...

  15. Evaluation of Some Chemical Characteristics of barley Mutants induced by Gamma Irradiation

    International Nuclear Information System (INIS)

    Abdeldaiem, M.H.; Ali, H.G.M.

    2011-01-01

    This study aims to evaluate the antioxidant activity of acetonic extract from some barley mutations (P1, P2 and P3 varieties) induced by gamma irradiation as compared with local barley variety (Hordeum vulgare L.) as control. Barley samples were obtained from Plant Breeding Unit, Plant Research Department, Nuclear Research Centre, Atomic Energy Authority, Egypt. The measurements of the antioxidant activity using a radical scavenging capacity against 2,2-diphenyl-1-picrylhydrazyl (DPPH) and ?-carotene bleaching assay were assessed in the barley acetonic extract. Furthermore, amino acids composition of barley mutant samples was determined. The results indicated that the acetonic extract of barley varieties under investigation possess marked antioxidant and anti radical capacities. The data showed that the acetonic extract of barley mutant P1 possessed the higher antioxidant activity as compared with the antioxidant activities of acetonic extract from control and other barley mutant samples. Meanwhile, the flour of barley mutations under investigation contained trace elements of iron, copper and manganese. GC and mass analyses were used to identify the active compound of extract of control and mutant barley samples. The results illustrated that the main components of the control sample of barely extract was pentane, 3 methyl (47.73%) while gamma irradiation caused noticeable change in the relative percentage of some components of acetonic extract from barley mutant samples. Moreover, the results presented that changes were disappeared, and some compounds of the acetonic extract from mutant barley samples were appeared. Furthermore, the results exhibited that barley flour supplemented with wheat flour at 30% level produced acceptable cookies. Accordingly, the phenolic constituents of barley acetonic extract induced by gamma irradiation, especially samples of P1 mutant, may have a future role as ingredients in the development of functional foods.

  16. Dissection of Molecular Mechanisms Regulating Protein Body Formation in Maize Endosperm - DE-FG03-95-ER20183

    International Nuclear Information System (INIS)

    Larkins, Brian A.

    2003-01-01

    -kD proteins bind and assemble alpha-zeins in protein bodies. Additional evidence supporting this hypothesis was obtained by showing that the starchy endosperm mutant, Mucuronate, appears to result from a defective 16-kD gamma-zein protein. By deletion mutagenesis, we identified domains within an alpha-zein that cause it to interact with other zein proteins, particularly gamma-zeins. This allowed us to develop a minimal alpha-zein gene construct that can be used as a vector to target heterologous proteins, such as green fluorescent protein, into protein bodies. We characterized the nature of storage proteins synthesized in the endosperm using a genomics analysis of endosperm ESTs. This study identified several new storage proteins and demonstrated the existence of novel protein storage vacuoles. We used mRNA transcript profiling of eight different starchy endosperm (opaque) mutants (o1, o2, o5, o9, o11, Mucronate, Defective endosperm B30, and floury2) to identify patterns of gene expression that are consistently altered in all of them, or that are unique to each one of them. These mutants fall into two subgroups: one systematically manifests an ''unfolded protein'' response (fl2, Mc, DeB30) and the other (o1, o2, o5, o9, o11) does not. Genes encoding cytoskeletal proteins are generally up-regulated in all the mutants, and this may be associated with higher lysine contents in several of them

  17. An Integrated “Multi-Omics” Comparison of Embryo and Endosperm Tissue-Specific Features and Their Impact on Rice Seed Quality

    Directory of Open Access Journals (Sweden)

    Marc Galland

    2017-11-01

    Full Text Available Although rice is a key crop species, few studies have addressed both rice seed physiological and nutritional quality, especially at the tissue level. In this study, an exhaustive “multi-omics” dataset on the mature rice seed was obtained by combining transcriptomics, label-free shotgun proteomics and metabolomics from embryo and endosperm, independently. These high-throughput analyses provide a new insight on the tissue-specificity related to rice seed quality. Foremost, we pinpointed that extensive post-transcriptional regulations occur at the end of rice seed development such that the embryo proteome becomes much more diversified than the endosperm proteome. Secondly, we observed that survival in the dry state in each seed compartment depends on contrasted metabolic and enzymatic apparatus in the embryo and the endosperm, respectively. Thirdly, it was remarkable to identify two different sets of starch biosynthesis enzymes as well as seed storage proteins (glutelins in both embryo and endosperm consistently with the supernumerary embryo hypothesis origin of the endosperm. The presence of a putative new glutelin with a possible embryonic favored abundance is described here for the first time. Finally, we quantified the rate of mRNA translation into proteins. Consistently, the embryonic panel of protein translation initiation factors is much more diverse than that of the endosperm. This work emphasizes the value of tissue-specificity-centered “multi-omics” study in the seed to highlight new features even from well-characterized pathways. It paves the way for future studies of critical genetic determinants of rice seed physiological and nutritional quality.

  18. Nucleotide sequence of a cDNA coding for the barley seed protein CMa: an inhibitor of insect α-amylase

    DEFF Research Database (Denmark)

    Rasmussen, Søren Kjærsgård; Johansson, A.

    1992-01-01

    The primary structure of the insect alpha-amylase inhibitor CMa of barley seeds was deduced from a full-length cDNA clone pc43F6. Analysis of RNA from barley endosperm shows high levels 15 and 20 days after flowering. The cDNA predicts an amino acid sequence of 119 residues preceded by a signal...... peptide of 25 amino acids. Ala and Leu account for 55% of the signal peptide. CMa is 60-85% identical with alpha-amylase inhibitors of wheat, but shows less than 50% identity to trypsin inhibitors of barley and wheat. The 10 Cys residues are located in identical positions compared to the cereal inhibitor...

  19. Inherited phenotype instability of inflorescence and floral organ development in homeotic barley double mutants and its specific modification by auxin inhibitors and 2,4-D.

    Science.gov (United States)

    Šiukšta, Raimondas; Vaitkūnienė, Virginija; Kaselytė, Greta; Okockytė, Vaiva; Žukauskaitė, Justina; Žvingila, Donatas; Rančelis, Vytautas

    2015-03-01

    trends in the development of ectopic flower structures may be detected, from insignificant outgrowths on awns to flowers with sterile organs. Phenotypically unstable barley double mutants provide a highly promising genetic system for the investigation of gene expression modules and trend orders. © The Author 2015. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  20. Proteomic Analysis of the Endosperm Ontogeny of Jatropha curcas L. Seeds.

    Science.gov (United States)

    Shah, Mohibullah; Soares, Emanoella L; Carvalho, Paulo C; Soares, Arlete A; Domont, Gilberto B; Nogueira, Fábio C S; Campos, Francisco A P

    2015-06-05

    Seeds of Jatropha curcas L. represent a potential source of raw material for the production of biodiesel. However, this use is hampered by the lack of basic information on the biosynthetic pathways associated with synthesis of toxic diterpenes, fatty acids, and triacylglycerols, as well as the pattern of deposition of storage proteins during seed development. In this study, we performed an in-depth proteome analysis of the endosperm isolated from five developmental stages which resulted in the identification of 1517, 1256, 1033, 752, and 307 proteins, respectively, summing up 1760 different proteins. Proteins with similar label free quantitation expression pattern were grouped into five clusters. The biological significance of these identifications is discussed with special focus on the analysis of seed storage proteins, proteins involved in the metabolism of fatty acids, carbohydrates, toxic components and proteolytic processing. Although several enzymes belonging to the biosynthesis of diterpenoid precursors were identified, we were unable to find any terpene synthase/cyclase, indicating that the synthesis of phorbol esters, the main toxic diterpenes, does not occur in seeds. The strategy used enabled us to provide a first in depth proteome analysis of the developing endosperm of this biodiesel plant, providing an important glimpse into the enzymatic machinery devoted to the production of C and N sources to sustain seed development.

  1. Isolation of tissues and preservation of RNA from intact, germinated barley grain.

    Science.gov (United States)

    Betts, Natalie S; Berkowitz, Oliver; Liu, Ruijie; Collins, Helen M; Skadhauge, Birgitte; Dockter, Christoph; Burton, Rachel A; Whelan, James; Fincher, Geoffrey B

    2017-08-01

    Isolated barley (Hordeum vulgare L.) aleurone layers have been widely used as a model system for studying gene expression and hormonal regulation in germinating cereal grains. A serious technological limitation of this approach has been the inability to confidently extrapolate conclusions obtained from isolated tissues back to the whole grain, where the co-location of several living and non-living tissues results in complex tissue-tissue interactions and regulatory pathways coordinated across the multiple tissues. Here we have developed methods for isolating fragments of aleurone, starchy endosperm, embryo, scutellum, pericarp-testa, husk and crushed cell layers from germinated grain. An important step in the procedure involves the rapid fixation of the intact grain to freeze the transcriptional activity of individual tissues while dissection is effected for subsequent transcriptomic analyses. The developmental profiles of 19 611 gene transcripts were precisely defined in the purified tissues and in whole grain during the first 24 h of germination by RNA sequencing. Spatial and temporal patterns of transcription were validated against well-defined data on enzyme activities in both whole grain and isolated tissues. Transcript profiles of genes involved in mitochondrial assembly and function were used to validate the very early stages of germination, while the profiles of genes involved in starch and cell wall mobilisation matched existing data on activities of corresponding enzymes. The data will be broadly applicable for the interrogation of co-expression and differential expression patterns and for the identification of transcription factors that are important in the early stages of grain and seed germination. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.

  2. Effect of endosperm mutants on maize seed germination

    Directory of Open Access Journals (Sweden)

    Pajić Zorica

    2004-01-01

    Full Text Available The expression of genetic potential of yielding and quality of a certain genotype depends among other factors on seed quality. Seed is very important not only for the reproduction of the particular plant species, but also, for the contemporary plant production. Each part of maize seed (pericarp endosperm and germ has a specific function in the complex process of germination and emergence. The following three genotypes of different endosperm types were observed: ZPSC 42A (standard grain quality dent hybrid ZPSC 504 su (sweet maize hybrid with a sugary gene and ZPSyn.II sh2 (synthetic population with a shranken2 gene. Seed viability of the stated genotypes was determined by the accepted ISTA methods: standard method accelerating age and cold test. Obtained results point out to differences in the germination capacity of the observed genotypes. The greatest reduction of the germination capacity and the emergence rate was expressed by the application of the accelerating ageing method. Appeared differences are probably a result of the endosperm texture (type, grain weight, sugar content and pericarp thickens and composition.

  3. Mannanase production by the lettuce endosperm : Control by the embryo.

    Science.gov (United States)

    Halmer, P; Bewley, J D

    1979-01-01

    Endo-β-mannanase (EC 3.2.1.78) is produced and secreted by the cells of the endosperm of lettuce (lactuca sativa L.) "seeds" (achenes). In imbibed intact seeds, production is prevented by inhibitors. If the endosperm is incubated alone, these inhibitors can be removed by leaching, allowing mannanase production. Abscisic acid, a component of lettuce seeds, inhibits the production of mannanase in the isolated endosperm, and may be involved in regulation of mannanase production in intact seeds. During germination the inhibition is removed, beginning 4-8 h after red-light irradiation, which was given 4 h from sowing. The cotyledons participate in this process, and are controlled by events occuring in the axis within 4 h from red-light irradiation. This control by the axis apparently depends on the exchange of diffusible substances. Both benzyladenine and gibberellic acid can replace the influence of the axis if the latter is removed, and may therefore be involved in the control by the axis of the rest of the seed.

  4. Circadian oscillation of starch branching enzyme gene expression in the sorghum endosperm

    Energy Technology Data Exchange (ETDEWEB)

    Mutisya, J.; Sun, C.; Jansson, C.

    2009-08-31

    Expression of the three SBE genes, encoding starch branching enzymes, in the sorghum endosperm exhibited a diurnal rhythm during a 24-h cycle. Remarkably, the oscillation in SBE expression was maintained in cultured spikes after a 48-h dark treatment, also when fed a continuous solution of sucrose or abscisic acid. Our findings suggest that the rhythmicity in SBE expression in the endosperm is independent of cues from the photosynthetic source and that the oscillator resides within the endosperm itself.

  5. Barley HvPAPhy_a as transgene provides high and stable phytase activities in mature barley straw and in grains

    DEFF Research Database (Denmark)

    Holme, Inger; Dionisio, Giuseppe; Madsen, Claus Krogh

    2017-01-01

    The phytase purple acid phosphatase (HvPAPhy_a) expressed during barley seed development was evaluated as transgene for overexpression in barley. The phytase was expressed constitutively driven by the cauliflower mosaic virus 35S-promoter, and the phytase activity was measured in the mature grains......, the green leaves and in the dry mature vegetative plant parts left after harvest of the grains. The T2-generation of HvPAPhy_a transformed barley showed phytase activity increases up to 19-fold (29 000 phytase units (FTU) per kg in mature grains). Moreover, also in green leaves and mature dry straw, phytase...... activities were increased significantly by 110-fold (52 000 FTU/kg) and 57-fold (51 000 FTU/kg), respectively. The HvPAPhy_a-transformed barley plants with high phytase activities possess triple potential utilities for the improvement of phosphate bioavailability. First of all, the utilization of the mature...

  6. High-throughput Agrobacterium-mediated barley transformation

    Directory of Open Access Journals (Sweden)

    Snape John W

    2008-09-01

    Full Text Available Abstract Background Plant transformation is an invaluable tool for basic plant research, as well as a useful technique for the direct improvement of commercial crops. Barley (Hordeum vulgare is the fourth most abundant cereal crop in the world. It also provides a useful model for the study of wheat, which has a larger and more complex genome. Most existing barley transformation methodologies are either complex or have low ( Results A robust, simple and reproducible barley transformation protocol has been developed that yields average transformation efficiencies of 25%. This protocol is based on the infection of immature barley embryos with Agrobacterium strain AGL1, carrying vectors from the pBract series that contain the hpt gene (conferring hygromycin resistance as a selectable marker. Results of large scale experiments utilising the luc (firefly luciferase gene as a reporter are described. The method presented here has been used to produce hundreds of independent, transgenic plant lines and we show that a large proportion of these lines contain single copies of the luc gene. Conclusion This protocol demonstrates significant improvements in both efficiency and ease of use over existing barley transformation methods. This opens up opportunities for the development of functional genomics resources in barley.

  7. Genomic Prediction in Barley

    DEFF Research Database (Denmark)

    Edriss, Vahid; Cericola, Fabio; Jensen, Jens D

    2015-01-01

    to next generation. The main goal of this study was to see the potential of using genomic prediction in a commercial Barley breeding program. The data used in this study was from Nordic Seed company which is located in Denmark. Around 350 advanced lines were genotyped with 9K Barely chip from Illumina....... Traits used in this study were grain yield, plant height and heading date. Heading date is number days it takes after 1st June for plant to head. Heritabilities were 0.33, 0.44 and 0.48 for yield, height and heading, respectively for the average of nine plots. The GBLUP model was used for genomic...

  8. Enhanced quantitative resistance against fungal disease by combinatorial expression of different barley antifungal proteins in transgenic tobacco

    DEFF Research Database (Denmark)

    Jach, G; Görnhardt, B; Mundy, J

    1995-01-01

    cDNAs encoding three proteins from barley (Hordeum vulgare), a class-II chitinase (CHI), a class-II beta-1,3-glucanase (GLU) and a Type-I ribosome-inactivating protein (RIP) were expressed in tobacco plants under the control of the CaMV 35S-promoter. High-level expression of the transferred genes...... was detected in the transgenic plants by Northern and Western blot analysis. The leader peptides in CHI and GLU led to accumulation of these proteins in the intercellular space of tobacco leaves. RIP, which is naturally deposited in the cytosol of barley endosperm cells, was expressed either in its original...... cytosolic form or fused to a plant secretion peptide (spRIP). Fungal infection assays revealed that expression of the individual genes in each case resulted in an increased protection against the soilborne fungal pathogen Rhizoctonia solani, which infects a range of plant species including tobacco...

  9. Functional dissection of a napin gene promoter: identification of promoter elements required for embryo and endosperm-specific transcription.

    Science.gov (United States)

    Ellerström, M; Stålberg, K; Ezcurra, I; Rask, L

    1996-12-01

    The promoter region (-309 to +44) of the Brassica napus storage protein gene napA was studied in transgenic tobacco by successive 5' as well as internal deletions fused to the reporter gene GUS (beta-glucuronidase). The expression in the two main tissues of the seed, the endosperm and the embryo, was shown to be differentially regulated. This tissue-specific regulation within the seed was found to affect the developmental expression during seed development. The region between -309 to -152, which has a large effect on quantitative expression, was shown to harbour four elements regulating embryo and one regulating endosperm expression. This region also displayed enhancer activity. Deletion of eight bp from position -152 to position -144 totally abolished the activity of the napA promoter. This deletion disrupted a cis element with similarity to an ABA-responsive element (ABRE) overlapping with an E-box, demonstrating its crucial importance for quantitative expression. An internal deletion of the region -133 to -120, resulted in increased activity in both leaves and endosperm and a decreased activity in the embryo. Within this region, a cis element similar to the (CA)n element, found in other storage protein promoters, was identified. This suggest that the (CA)n element is important for conferring seed specificity by serving both as an activator and a repressor element.

  10. Conserved Transcriptional Regulatory Programs Underlying Rice and Barley Germination

    Science.gov (United States)

    Lin, Li; Tian, Shulan; Kaeppler, Shawn; Liu, Zongrang; An, Yong-Qiang (Charles)

    2014-01-01

    Germination is a biological process important to plant development and agricultural production. Barley and rice diverged 50 million years ago, but share a similar germination process. To gain insight into the conservation of their underlying gene regulatory programs, we compared transcriptomes of barley and rice at start, middle and end points of germination, and revealed that germination regulated barley and rice genes (BRs) diverged significantly in expression patterns and/or protein sequences. However, BRs with higher protein sequence similarity tended to have more conserved expression patterns. We identified and characterized 316 sets of conserved barley and rice genes (cBRs) with high similarity in both protein sequences and expression patterns, and provided a comprehensive depiction of the transcriptional regulatory program conserved in barley and rice germination at gene, pathway and systems levels. The cBRs encoded proteins involved in a variety of biological pathways and had a wide range of expression patterns. The cBRs encoding key regulatory components in signaling pathways often had diverse expression patterns. Early germination up-regulation of cell wall metabolic pathway and peroxidases, and late germination up-regulation of chromatin structure and remodeling pathways were conserved in both barley and rice. Protein sequence and expression pattern of a gene change quickly if it is not subjected to a functional constraint. Preserving germination-regulated expression patterns and protein sequences of those cBRs for 50 million years strongly suggests that the cBRs are functionally significant and equivalent in germination, and contribute to the ancient characteristics of germination preserved in barley and rice. The functional significance and equivalence of the cBR genes predicted here can serve as a foundation to further characterize their biological functions and facilitate bridging rice and barley germination research with greater confidence. PMID

  11. Association mapping of partitioning loci in barley

    Directory of Open Access Journals (Sweden)

    Mackay Ian J

    2008-02-01

    Full Text Available Abstract Background Association mapping, initially developed in human disease genetics, is now being applied to plant species. The model species Arabidopsis provided some of the first examples of association mapping in plants, identifying previously cloned flowering time genes, despite high population sub-structure. More recently, association genetics has been applied to barley, where breeding activity has resulted in a high degree of population sub-structure. A major genotypic division within barley is that between winter- and spring-sown varieties, which differ in their requirement for vernalization to promote subsequent flowering. To date, all attempts to validate association genetics in barley by identifying major flowering time loci that control vernalization requirement (VRN-H1 and VRN-H2 have failed. Here, we validate the use of association genetics in barley by identifying VRN-H1 and VRN-H2, despite their prominent role in determining population sub-structure. Results By taking barley as a typical inbreeding crop, and seasonal growth habit as a major partitioning phenotype, we develop an association mapping approach which successfully identifies VRN-H1 and VRN-H2, the underlying loci largely responsible for this agronomic division. We find a combination of Structured Association followed by Genomic Control to correct for population structure and inflation of the test statistic, resolved significant associations only with VRN-H1 and the VRN-H2 candidate genes, as well as two genes closely linked to VRN-H1 (HvCSFs1 and HvPHYC. Conclusion We show that, after employing appropriate statistical methods to correct for population sub-structure, the genome-wide partitioning effect of allelic status at VRN-H1 and VRN-H2 does not result in the high levels of spurious association expected to occur in highly structured samples. Furthermore, we demonstrate that both VRN-H1 and the candidate VRN-H2 genes can be identified using association mapping

  12. Transgenic Wheat, Barley and Oats: Future Prospects

    Science.gov (United States)

    Dunwell, Jim M.

    Following the success of transgenic maize and rice, methods have now been developed for the efficient introduction of genes into wheat, barley and oats. This review summarizes the present position in relation to these three species, and also uses information from field trial databases and the patent literature to assess the future trends in the exploitation of transgenic material. This analysis includes agronomic traits and also discusses opportunities in expanding areas such as biofuels and biopharming.

  13. Classification of Fusarium-Infected Korean Hulled Barley Using Near-Infrared Reflectance Spectroscopy and Partial Least Squares Discriminant Analysis

    Directory of Open Access Journals (Sweden)

    Jongguk Lim

    2017-09-01

    Full Text Available The purpose of this study is to use near-infrared reflectance (NIR spectroscopy equipment to nondestructively and rapidly discriminate Fusarium-infected hulled barley. Both normal hulled barley and Fusarium-infected hulled barley were scanned by using a NIR spectrometer with a wavelength range of 1175 to 2170 nm. Multiple mathematical pretreatments were applied to the reflectance spectra obtained for Fusarium discrimination and the multivariate analysis method of partial least squares discriminant analysis (PLS-DA was used for discriminant prediction. The PLS-DA prediction model developed by applying the second-order derivative pretreatment to the reflectance spectra obtained from the side of hulled barley without crease achieved 100% accuracy in discriminating the normal hulled barley and the Fusarium-infected hulled barley. These results demonstrated the feasibility of rapid discrimination of the Fusarium-infected hulled barley by combining multivariate analysis with the NIR spectroscopic technique, which is utilized as a nondestructive detection method.

  14. High protein mutants of winter fodder barley induced by radiation and chemical mutagens

    Energy Technology Data Exchange (ETDEWEB)

    Yankulov, M.; Genchev, K.; Nikolov, Kh.

    1982-01-01

    Several induced mutants of winter fodder barley with higher rpotein content are described. These mutants were produced by treating seeds of cvs. Vogelsaenger Gold, Ager and 468 with gamma-rays, sodium azide and ethyl methanesulfonate (alone and in combinations) and with ethylene and formamide. The gamma-ray induced mutants of winter fodder barley have 1-4% higher protein content. The mutant line 109 has, besides high protein content (17,37%), 5.96 lysine per 100 g protein, but its endosperm is wrinkeled. Mutants produced by chemical mutagens have 6-7% higher protein content than the initial cultivars. All induced mutants have 85-95 cm high stems, i.e. they are by 10-20 cm shorter than the initial cultivars. Some of these mutants are now resistant to the diseases Helminthosporium gramineum and Ustilago nuda. The recommended mutants could be successfully used in breeding programs for producing of higher protein content and quality in winter fodder barley.

  15. High protein mutants of winter fodder barley induced by radiation and chemical mutagens

    International Nuclear Information System (INIS)

    Yankulov, M.; Genchev, K.; Nikolov, Kh.

    1982-01-01

    Several induced mutants of winter fodder barley with higher rpotein content are described. These mutants were produced by treating seeds of cvs. Vogelsaenger Gold, Ager and 468 with gamma-rays, sodium azide and ethyl methanesulfonate (alone and in combinations) and with ethylene and formamide. The gamma-ray induced mutants of winter fodder barley have 1-4% higher protein content. The mutant line 109 has, besides high protein content (17,37%), 5.96 lysine per 100 g protein, but its endosperm is wrinkeled. Mutants produced by chemical mutagens have 6-7% higher protein content than the initial cultivars. All induced mutants have 85-95 cm high stems, i.e. they are by 10-20 cm shorter than the initial cultivars. Some of these mutants are now resistant to the diseases Helminthosporium gramineum and Ustilago nuda. The recommended mutants could be successfully used in breeding programs for producing of higher protein content and quality in winter fodder barley

  16. Archaeogenetic evidence of ancient nubian barley evolution from six to two-row indicates local adaptation.

    Directory of Open Access Journals (Sweden)

    Sarah A Palmer

    Full Text Available BACKGROUND: Archaeobotanical samples of barley (Hordeum vulgare L. found at Qasr Ibrim display a two-row phenotype that is unique to the region of archaeological sites upriver of the first cataract of the Nile, characterised by the development of distinctive lateral bracts. The phenotype occurs throughout all strata at Qasr Ibrim, which range in age from 3000 to a few hundred years. METHODOLOGY AND FINDINGS: We extracted ancient DNA from barley samples from the entire range of occupancy of the site, and studied the Vrs1 gene responsible for row number in extant barley. Surprisingly, we found a discord between the genotype and phenotype in all samples; all the barley had a genotype consistent with the six-row condition. These results indicate a six-row ancestry for the Qasr Ibrim barley, followed by a reassertion of the two-row condition. Modelling demonstrates that this sequence of evolutionary events requires a strong selection pressure. CONCLUSIONS: The two-row phenotype at Qasr Ibrim is caused by a different mechanism to that in extant barley. The strength of selection required for this mechanism to prevail indicates that the barley became locally adapted in the region in response to a local selection pressure. The consistency of the genotype/phenotype discord over time supports a scenario of adoption of this barley type by successive cultures, rather than the importation of new barley varieties associated with individual cultures.

  17. Effect of nitrogen fertilizer on distribution of starch granules in different regions of wheat endosperm

    Directory of Open Access Journals (Sweden)

    Fei Xiong

    2014-02-01

    Full Text Available This study provided visual evidence of a nitrogen effect on starch granules (SGs in wheat endosperm. Winter wheat (Titicum aestivum L. cultivar Xumai 30 was cultured under no nitrogen (control and 240 kg ha− 1 of nitrogen applied at the booting stage. The number, morphology, and size of A- and B-type SGs in subaleurone of dorsal endosperm (SDE, center of dorsal endosperm (CDE, modified aleurone (MA, subaleurone of ventral endosperm (SVE, and center of ventral endosperm (CVE were observed under light and electron microscopes. (1 The distribution of SGs in SDE was similar to that in SVE, the distributions of SGs in CDE and CVE were similar, but the distribution of SGs in MA was different from those in the other four endosperm regions. The number of SGs in the five endosperm regions was in the order SDE > CDE > SVE > CVE > MA. (2 Nitrogen increased the number of A- and B-type SGs in SDE and SVE. Nitrogen also increased the number of B-type SGs but decreased the number of A-type SGs in CDE and CVE. Nitrogen decreased the numbers of A-type and B-type SGs in MA. The results suggest that increased N fertilizer application mainly increased the numbers of small SGs and decreased the numbers of large SGs, but that the results varied in different regions of the wheat endosperm.

  18. Enumeration of fungi in barley

    CSIR Research Space (South Africa)

    Rabie, CJ

    1997-04-01

    Full Text Available Estimation of fungal contamination of barley grain is important as certain fungi can proliferate during the malting process. The following factors which may affect the enumeration of fungi were evaluated: dilution versus direct plating, pre...

  19. Molecular characterization of barley 3H semi-dwarf genes.

    Directory of Open Access Journals (Sweden)

    Haobing Li

    Full Text Available The barley chromosome 3H accommodates many semi-dwarfing genes. To characterize these genes, the two-rowed semi-dwarf Chinese barley landrace 'TX9425' was crossed with the Australian barley variety 'Franklin' to generate a doubled haploid (DH population, and major QTLs controlling plant height have been identified in our previous study. The major QTL derived from 'TX9425' was targeted to investigate the allelism of the semi-dwarf gene uzu in barley. Twelve sets of near-isogenic lines and a large NILF2 fine mapping population segregating only for the dwarfing gene from 'TX9425' were developed. The semi-dwarfing gene in 'TX9425' was located within a 2.8 cM region close to the centromere on chromosome 3H by fine mapping. Molecular cloning and sequence analyses showed that the 'TX9425'-derived allele contained a single nucleotide substitution from A to G at position 2612 of the HvBRI1 gene. This was apparently the same mutation as that reported in six-rowed uzu barley. Markers co-segregating with the QTL were developed from the sequence of the HvBRI1 gene and were validated in the 'TX9425'/'Franklin' DH population. The other major dwarfing QTL derived from the Franklin variety was distally located on chromosome 3HL and co-segregated with the sdw1 diagnostic marker hv20ox2. A third dwarfing gene, expressed only in winter-sown trials, was identified and located on chromosome 3HS. The effects and interactions of these dwarfing genes under different growing conditions are discussed. These results improve our understanding of the genetic mechanisms controlling semi-dwarf stature in barley and provide diagnostic markers for the selection of semi-dwarfness in barley breeding programs.

  20. Long branch-chains of amylopectin with B-type crystallinity in rice seed with inhibition of starch branching enzyme I and IIb resist in situ degradation and inhibit plant growth during seedling development : Degradation of rice starch with inhibition of SBEI/IIb during seedling development.

    Science.gov (United States)

    Pan, Ting; Lin, Lingshang; Wang, Juan; Liu, Qiaoquan; Wei, Cunxu

    2018-01-08

    Endosperm starch provides prime energy for cereal seedling growth. Cereal endosperm with repression of starch branching enzyme (SBE) has been widely studied for its high resistant starch content and health benefit. However, in barley and maize, the repression of SBE changes starch component and amylopectin structure which affects grain germination and seedling establishment. A high resistant starch rice line (TRS) has been developed through inhibiting SBEI/IIb, and its starch has very high resistance to in vitro hydrolysis and digestion. However, it is unclear whether the starch resists in situ degradation in seed and influences seedling growth after grain germination. In this study, TRS and its wild-type rice cultivar Te-qing (TQ) were used to investigate the seedling growth, starch property changes, and in situ starch degradation during seedling growth. The slow degradation of starch in TRS seed restrained the seedling growth. The starch components including amylose and amylopectin were simultaneously degraded in TQ seeds during seedling growth, but in TRS seeds, the amylose was degraded faster than amylopectin and the amylopectin long branch-chains with B-type crystallinity had high resistance to in situ degradation. TQ starch was gradually degraded from the proximal to distal region of embryo and from the outer to inner in endosperm. However, TRS endosperm contained polygonal, aggregate, elongated and hollow starch from inner to outer. The polygonal starch similar to TQ starch was completely degraded, and the other starches with long branch-chains of amylopectin and B-type crystallinity were degraded faster at the early stage of seedling growth but had high resistance to in situ degradation during TRS seedling growth. The B-type crystallinity and long branch-chains of amylopectin in TRS seed had high resistance to in situ degradation, which inhibited TRS seedling growth.

  1. Regrowth in Barley (Hordeum vulgare L.) and Rye (Secale cereale L.)

    DEFF Research Database (Denmark)

    Christiansen, J L; Jørgensen, Johannes Ravn; Jørnsgård, B

    1998-01-01

    Regrowth after cutting at four development stages, from heading to grain maturity, was investigated in a pot experiment containing three rye and four barley varieties (including 2 Hordeum spontaneum lines). Regrowth in the barley varieties decreased strongly from heading to grain maturity. Rye ge...

  2. A cathepsin F-like peptidase involved in barley grain protein mobilization, HvPap-1, is modulated by its own propeptide and by cystatins

    Science.gov (United States)

    Diaz, Isabel

    2012-01-01

    Among the C1A cysteine proteases, the plant cathepsin F-like group has been poorly studied. This paper describes the molecular and functional characterization of the HvPap-1 cathepsin F-like protein from barley. This peptidase is N-glycosylated and has to be processed to become active by its own propeptide being an important modulator of the peptidase activity. The expression pattern of its mRNA and protein suggest that it is involved in different proteolytic processes in the barley plant. HvPap-1 peptidase has been purified in Escherichia coli and the recombinant protein is able to degrade different substrates, including barley grain proteins (hordeins, albumins, and globulins) stored in the barley endosperm. It has been localized in protein bodies and vesicles of the embryo and it is induced in aleurones by gibberellin treatment. These three features support the implication of HvPap-1 in storage protein mobilization during grain germination. In addition, a complex regulation exerted by the barley cystatins, which are cysteine protease inhibitors, and by its own propeptide, is also described PMID:22791822

  3. Concerted suppression of all starch branching enzyme genes in barley produces amylose-only starch granules

    DEFF Research Database (Denmark)

    Carciofi, Massimiliano; Blennow, Per Gunnar Andreas; Jensen, Susanne Langgård

    2012-01-01

    is preferentially derived from amylose, which can be increased by suppressing amylopectin synthesis by silencing of starch branching enzymes (SBEs). However all the previous works attempting the production of high RS crops resulted in only partly increased amylose-content and/or significant yield loss. Results...... In this study we invented a new method for silencing of multiple genes. Using a chimeric RNAi hairpin we simultaneously suppressed all genes coding for starch branching enzymes (SBE I, SBE IIa, SBE IIb) in barley (Hordeum vulgare L.), resulting in production of amylose-only starch granules in the endosperm...... yield in a living organism. This was achieved by a new method of simultaneous suppression of the entire complement of genes encoding starch branching enzymes. We demonstrate that amylopectin is not essential for starch granule crystallinity and integrity. However the slower initial growth of shoots from...

  4. Proteomes of the barley aleurone layer: A model system for plant signalling and protein secretion

    DEFF Research Database (Denmark)

    Finnie, Christine; Andersen, Birgit; Shahpiri, Azar

    2011-01-01

    molecules in an isolated system. These properties have led to its use as a model system for the study of plant signalling and germination. More recently, proteome analysis of the aleurone layer has provided new insight into this unique tissue including identification of plasma membrane proteins and targeted...... analysis of germination-related changes and the thioredoxin system. Here, analysis of intracellular and secreted proteomes reveals features of the aleurone layer system that makes it promising for investigations of plant protein secretion mechanisms....... to gibberellic acid produced by the embryo, the aleurone layer synthesises hydrolases that are secreted to the endosperm for the degradation of storage products. The barley aleurone layer can be separated from the other seed tissues and maintained in culture, allowing the study of the effect of added signalling...

  5. Root hair mutants of barley

    International Nuclear Information System (INIS)

    Engvild, K.C.; Rasmussen, K.

    2005-01-01

    Barley mutants without root hairs or with short or reduced root hairs were isolated among M 2 seeds of 'Lux' barley (Hordeum vulgare L.) after acidified sodium azide mutagenesis. Root hair mutants are investigated intensively in Arabidopsis where about 40 genes are known. A few root hair mutants are known in maize, rice, barley and tomato. Many plants without root hairs grow quite well with good plant nutrition, and mutants have been used for investigations of uptake of strongly bound nutrients like phosphorus, iron, zinc and silicon. Seed of 'Lux' barley (Sejet Plant Breeding, Denmark) were soaked overnight, and then treated with 1.5-millimolarsodium azide in 0.1 molar sodium phosphate buffer, pH 3, for 2.5 hours according to the IAEA Manual on Mutation Breeding (2nd Ed.). After rinsing in tap water and air-drying, the M 2 seeds were sown in the field the same day. Spikes, 4-6 per M 1 plant, were harvested. The mutation frequency was similar to that obtained with other barley cultivars from which low-phytate mutants were isolated [5]. Seeds were germinated on black filter paper in tap water for 3 or 4 days before scoring for root hair mutants

  6. Identification and characterization of barley RNA-directed RNA polymerases

    DEFF Research Database (Denmark)

    Madsen, Christian Toft; Stephens, Jennifer; Hornyik, Csaba

    2009-01-01

    in dicot species. In this report, we identi!ed and characterized HvRDR1, HvRDR2 and HvRDR6 genes in the monocot plant barley (Hordeum vulgare). We analysed their expression under various biotic and abiotic stresses including fungal and viral infections, salicylic acid treatment as well as during plant...... development. The different classes and subclasses of barley RDRs displayed contrasting expression patterns during pathogen challenge and development suggesting their involvement in speci!c regulatory pathways. Their response to heat and salicylic acid treatment suggests a conserved pattern of expression...

  7. Ingestible roasted barley for contrast-enhanced photoacoustic imaging in animal and human subjects.

    Science.gov (United States)

    Wang, Depeng; Lee, Dong Hyeun; Huang, Haoyuan; Vu, Tri; Lim, Rachel Su Ann; Nyayapathi, Nikhila; Chitgupi, Upendra; Liu, Maggie; Geng, Jumin; Xia, Jun; Lovell, Jonathan F

    2018-08-01

    Photoacoustic computed tomography (PACT) is an emerging imaging modality. While many contrast agents have been developed for PACT, these typically cannot immediately be used in humans due to the lengthy regulatory process. We screened two hundred types of ingestible foodstuff samples for photoacoustic contrast with 1064 nm pulse laser excitation, and identified roasted barley as a promising candidate. Twenty brands of roasted barley were further screened to identify the one with the strongest contrast, presumably based on complex chemical modifications incurred during the roasting process. Individual roasted barley particles could be detected through 3.5 cm of chicken-breast tissue and through the whole hand of healthy human volunteers. With PACT, but not ultrasound imaging, a single grain of roasted barley was detected in a field of hundreds of non-roasted particles. Upon oral administration, roasted barley enabled imaging of the gut and peristalsis in mice. Prepared roasted barley tea could be detected through 2.5 cm chicken breast tissue. When barley tea was administered to humans, photoacoustic imaging visualized swallowing dynamics in healthy volunteers. Thus, roasted barley represents an edible foodstuff that should be considered for photoacoustic contrast imaging of swallowing and gut processes, with immediate potential for clinical translation. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. The α-Amylase Induction in Endosperm during Rice Seed Germination Is Caused by Gibberellin Synthesized in Epithelium1

    Science.gov (United States)

    Kaneko, Miyuki; Itoh, Hironori; Ueguchi-Tanaka, Miyako; Ashikari, Motoyuki; Matsuoka, Makoto

    2002-01-01

    We recently isolated two genes (OsGA3ox1 and OsGA3ox2) from rice (Oryza sativa) encoding 3β-hydroxylase, which catalyzes the final step of active gibberellin (GA) biosynthesis (H. Itoh, M. Ueguchi-Tanaka, N. Sentoku, H. Kitano, M. Matsuoka, M. Kobayashi [2001] Proc Natl Acad Sci USA 98: 8909–8914). Using these cloned cDNAs, we analyzed the temporal and spatial expression patterns of the 3β-hydroxylase genes and also an α-amylase gene (RAmy1A) during rice seed germination to investigate the relationship between GA biosynthesis and α-amylase expression. Northern-blot analyses revealed that RAmy1A expression in the embryo occurs before the induction of 3β-hydroxylase expression, whereas in the endosperm, a high level of RAmy1A expression occurs 1 to 2 d after the peak of OsGA3ox2 expression and only in the absence of uniconazol. Based on the analysis of an OsGA3ox2 null mutant (d18-Akibare dwarf), we determined that 3β-hydroxylase produced by OsGA3ox2 is important for the induction of RAmy1A expression and that the OsGA3ox1 product is not essential for α-amylase induction. The expression of OsGA3ox2 was localized to the shoot region and epithelium of the embryo, strongly suggesting that active GA biosynthesis occurs in these two regions. The synthesis of active GA in the epithelium is important for α-amylase expression in the endosperm, because an embryonic mutant defective in shoot formation, but which developed epithelium cells, induced α-amylase expression in the endosperm, whereas a mutant defective in epithelium development did not. PMID:11950975

  9. Distinct developmental defense activations in barley embryos identified by transcriptome profiling

    DEFF Research Database (Denmark)

    Nielsen, ME; Lok, F; Nielsen, Henrik Bjørn

    2006-01-01

    analyses of > 22,000 genes, which together with measurements of jasmonic acid and salicylic acid during embryo development provide new information on the initiation in the developing barley embryo of at least two distinct types of developmental defense activation (DDA). Early DDA is characterized by the up......-regulation of several PR genes is notable. Throughout barley embryo development, there are no indications of an increased biosynthesis of either jasmonic acid or salicylic acid. Collectively, the results help explain how the proposed DDA enables protection of the developing barley embryo and grain for purposes...

  10. Dissection of Molecular Mechanisms Regulating Protein Body Formation in Maize Endosperm - DE-FG03-95-ER20183 B139

    Energy Technology Data Exchange (ETDEWEB)

    Brian A. Larkins

    2003-03-21

    -kD proteins bind and assemble alpha-zeins in protein bodies. Additional evidence supporting this hypothesis was obtained by showing that the starchy endosperm mutant, Mucuronate, appears to result from a defective 16-kD gamma-zein protein. By deletion mutagenesis, we identified domains within an alpha-zein that cause it to interact with other zein proteins, particularly gamma-zeins. This allowed us to develop a minimal alpha-zein gene construct that can be used as a vector to target heterologous proteins, such as green fluorescent protein, into protein bodies. We characterized the nature of storage proteins synthesized in the endosperm using a genomics analysis of endosperm ESTs. This study identified several new storage proteins and demonstrated the existence of novel protein storage vacuoles. We used mRNA transcript profiling of eight different starchy endosperm (opaque) mutants (o1, o2, o5, o9, o11, Mucronate, Defective endosperm B30, and floury2) to identify patterns of gene expression that are consistently altered in all of them, or that are unique to each one of them. These mutants fall into two subgroups: one systematically manifests an ''unfolded protein'' response (fl2, Mc, DeB30) and the other (o1, o2, o5, o9, o11) does not. Genes encoding cytoskeletal proteins are generally up-regulated in all the mutants, and this may be associated with higher lysine contents in several of them.

  11. Enrichment and identification of the most abundant zinc binding proteins in developing barley grains by Zinc-IMAC capture and nano LC-MS/MS

    DEFF Research Database (Denmark)

    Dionisio, Giuseppe; Uddin, Mohammad Nasir; Vincze, Eva

    2018-01-01

    exhibited zinc binding. In the aleurone/subaleurone, zinc affinity captured proteins were late abundant embryogenesis proteins, dehydrins, many isoforms of non-specific lipid transfer proteins, and alpha amylase trypsin inhibitor. Conclusions: We have shown evidence that abundant barley grain proteins have......Background: Zinc accumulates in the embryo, aleurone, and subaleurone layers at different amounts in cereal grains. Our hypothesis is that zinc could be stored bound, not only to low MW metabolites/proteins, but also to high MW proteins as well. Methods: In order to identify the most abundant zinc...

  12. Growth performance, behaviour, forestomach development and meat quality of veal calves provided with barley grain or ground wheat straw for welfare purpose

    Directory of Open Access Journals (Sweden)

    Igino Andrighetto

    2010-01-01

    Full Text Available Two different feeding plans for veal calves were compared in the study: a traditional liquid diet supplemented with 250  g/calf/d of barley grain or with 250 g/calf/d of ground wheat straw. The two solid feeds had different chemical composi-  tion but a similar particle size obtained by grinding the straw in a mill with an 8-mm mesh screen. Twenty-four Polish  Friesian male calves were used in the study and they were housed in individual wooden stalls (0.83 x 1.80 m. The health  status of all the calves was satisfactory for the entire fattening period and no specific medical treatment was required  during the trial. Calves fed wheat straw showed a greater intake of solid feed (196 vs. 139 g/d; P  average daily gain (1288 vs. 1203 g/d; P  not affected by the type of solid feed and no milk refusal episodes were detected. The haemoglobin concentration was  similar in calves receiving the two feeding treatments despite the higher iron intake provided by the wheat straw through-  out the fattening period (2.12 vs. 1.15 g; P  calves’ metabolism. Feeding behaviour was affected by the provision of solid feeds. Eating and chewing were prolonged  in calves receiving ground wheat straw and the same solid feed reduced the frequency of oral stereotypies at the end of  the fattening period. At the slaughterhouse, no differences were observed between the feeding treatments as regards  carcass weight and dressing percentage. The calves fed ground wheat straw had a heavier weight of the empty omasum  (518 vs. 341 g; P  fed barley grain. The incidence of abomasal erosions, ulcers and scars was similar in both treatments; however the index  of abomasal damage, which considers the number and the seriousness of different type of lesions, was higher in calves  receiving barley grain. Therefore, the grinding of straw particles, as opposed to barley grain, can reduce the abrasive-  ness of roughage at the abomasum level. Visual evaluation of the

  13. The experience of induction of mutation on barley in Peru

    International Nuclear Information System (INIS)

    Romero Loli, M.; Pozo Cardenas, M.; Gomez Pando, L.

    1984-01-01

    Work on induced mutation of barley was started in 1978 under the Programme of Cereal Improvement. Barley was irradiated with gamma radiation at doses of 12, 15, 18, 21, and 24 Krad. Radiation doses of 18 and 21 Krad gave the highest frequency of albino and cloroticos mutants. Induced mutation is being carried out in different parts of the country to develop mutants having early germination property. These mutants will play an important role in the late cultivation in the mountain areas of Peru

  14. Targeted expression of HvHMA2 increases the mineral content of the inner endosperm in barley

    DEFF Research Database (Denmark)

    Noeparvar, Shahin; Darbani, Behrooz; Tauris, Birgitte

    2018-01-01

    Cereals are a major source of dietary energy and protein but are nutritionally poor in micronutrients. Zinc (Zn) biofortification of staple crops has been proposed as a promising strategy to combat the global challenge of human Zn-deficiency. The aim of this study was to improve the Zn content in...

  15. Genetic analysis on the competitive ability of barley ( Hordeum ...

    African Journals Online (AJOL)

    Genetic analysis on the competitive ability of barley ( Hordeum vulgare L.) recombinant inbred lines intercropped with oat ( Avena sativa L.) weeds. ... Furthermore, the commonly used herbicide price is soaring from time to time and out of the reach of the poor farmers in the developing countries. Therefore, this method is an ...

  16. Synthesis of the major storage protein, hordein, in barley

    DEFF Research Database (Denmark)

    Giese, Nanna Henriette; Andersen, B.; Doll, Hans

    1983-01-01

    A liquid culture system for culturing detached spikes of barley (Hordeum vulgare L.) at different nutritional levels was established. The synthesis of hordein polypeptides was studied by pulse-labeling with [14C]sucrose at different stages of development and nitrogen (N) nutrition. All polypeptides...

  17. Registration of Food Barley (Hordeum vulgare L.) Variety HB 1307 ...

    African Journals Online (AJOL)

    Six-rowed food type barley, HB 1307, was developed by Holetta Agricultural Research Center (HARC) from a cross between a landrace line and exotic germplasm (Awra gebs-1 x IBON93/91) and released in 2006 for mid and high altitude areas. The three consecutive years\\' (2002-2004) tests proved its superiority in grain ...

  18. Tocotrienols and tocopherols in colored-grain wheat, tritordeum and barley.

    Science.gov (United States)

    Lachman, Jaromír; Hejtmánková, Alena; Orsák, Matyáš; Popov, Marek; Martinek, Petr

    2018-02-01

    Colored-grain spring and winter wheat, spring tritordeum and barley (blue aleurone, purple pericarp, and yellow endosperm) from the harvests 2014 and 2015 were evaluated for tocol contents by HPLC-FD. Higher content of total tocols was found in spring wheat varieties compared with winter varieties. Four tocols (β-tocotrienol, α-tocotrienol, β-tocopherol, and α-tocopherol) were identified in wheat and tritordeum varieties. Dominant tocols in purple- and blue-grained wheat and yellow-grained tritordeum were α-tocopherol and β-tocotrienol, whereas spring barley varieties differed from wheat and tritordeum by high α-tocotrienol content. Tocol content was significantly affected by genotype and in a lesser extent in some varieties and lines also by rainfall and temperatures during crop year. Higher rainfall and lower temperatures caused in most varieties higher tocol contents. Purple- and blue-grained wheat lines with higher tocol, anthocyanin and phenolic acids with health benefits may be useful for breeding new varieties. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Free and esterified carotenoids in pigmented wheat, tritordeum and barley grains.

    Science.gov (United States)

    Paznocht, Luboš; Kotíková, Zora; Šulc, Miloslav; Lachman, Jaromír; Orsák, Matyáš; Eliášová, Marie; Martinek, Petr

    2018-02-01

    Carotenoids are important phytonutrients responsible for the yellow endosperm color in cereal grains. Five carotenoids, namely lutein, zeaxanthin, antheraxanthin, α- and β-carotene, were quantified by HPLC-DAD-MS in fourteen genotypes of wheat, barley and tritordeum harvested in Czechia in 2014 and 2015. The highest carotenoid contents were found in yellow-grained tritordeum HT 439 (12.16μg/gDW), followed by blue-grained wheat V1-131-15 (7.46μg/gDW), and yellow-grained wheat TA 4024 (7.04μg/gDW). Comparing carotenoid contents, blue varieties had lower whereas purple ones had the same or higher levels than conventional bread wheat. Lutein was the main carotenoid found in wheat and tritordeum while zeaxanthin dominated in barley. The majority of cereals contained considerable levels of esterified forms (up to 61%) of which lutein esters prevailed. It was assessed that cereal genotype determines the proportion of free and esterified forms. High temperatures and drought during the growing season promoted carotenoid biosynthesis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Effect of high temperature on grain filling period, yield, amylose content and activity of starch biosynthesis enzymes in endosperm of basmati rice.

    Science.gov (United States)

    Ahmed, Nisar; Tetlow, Ian J; Nawaz, Sehar; Iqbal, Ahsan; Mubin, Muhammad; Nawaz ul Rehman, Muhammad Shah; Butt, Aisha; Lightfoot, David A; Maekawa, Masahiko

    2015-08-30

    High temperature during grain filling affects yield, starch amylose content and activity of starch biosynthesis enzymes in basmati rice. To investigate the physiological mechanisms underpinning the effects of high temperature on rice grain, basmati rice was grown under two temperature conditions - 32 and 22 °C - during grain filling. High temperature decreased the grain filling period from 32 to 26 days, reducing yield by 6%, and caused a reduction in total starch (3.1%) and amylose content (22%). Measurable activities of key enzymes involved in sucrose to starch conversion, sucrose synthase, ADP-glucose pyrophosphorylase, starch phosphorylase and soluble starch synthase in endosperms developed at 32 °C were lower than those at 22 °C compared with similar ripening stage on an endosperm basis. In particular, granule-bound starch synthase (GBSS) activity was significantly lower than corresponding activity in endosperms developing at 22 °C during all developmental stages analyzed. Results suggest changes in amylose/amylopectin ratio observed in plants grown at 32 °C was attributable to a reduction in activity of GBSS, the sole enzyme responsible for amylose biosynthesis. © 2014 Society of Chemical Industry.

  1. Effect of salicylhydroxamic acid on endosperm strength and embryo growth of Lactuca sativa L. cv Waldmann's Green seeds

    Science.gov (United States)

    Brooks, C. A.; Mitchell, C. A.

    1988-01-01

    Salicylhydroxamic acid (SHAM) stimulated germination of photosensitive lettuce (Lactuca sativa L. cv Waldmann's Green) seeds in darkness. To determine whether SHAM acts on the embryo or the endosperm, we investigated separately effects of SHAM on growth potential of isolated embryos as well as on endosperm strength. Embryo growth potential was quantified by incubating decoated embryos in various concentrations of osmoticum and measuring subsequent radicle elongation. Growth potential of embryos isolated from seeds pretreated with 4 millimolar SHAM was equal to that of untreated controls. Rupture strength of endosperm tissue excised from seeds pretreated with SHAM was 33% less than that of controls in the micropylar region. To determine if the embryo must be in contact with the endosperm of SHAM to weaken the endosperm, some endosperms were incubated with SHAM only after dissection from seeds. Rupture strength of SHAM-treated, isolated endosperms in the micropylar region was 25% less than that of untreated controls. There was no difference in rupture strength in the cotyledonary region of endosperm isolated from seeds treated with SHAM in buffer or buffer alone. SHAM therefore stimulates germination not by enhancing embryo growth potential, but by weakening the micropylar region of the endosperm enclosing the embryo.

  2. Physiological basis of barley yield under near optimal and stress conditions

    Directory of Open Access Journals (Sweden)

    Pržulj Novo

    2004-01-01

    Full Text Available Average barley yield fall below its potential due to incidence of stresses. Water stress is the main environmental factor limiting yield. The component a priori more sensitive to most stresses is the amount of radiation absorbed. The effect of stresses influence on the total amount of radiation absorbed by barley crop during its vegetation and the photosynthetic efficiency of radiation conversion. Growth inhibition is accompanied by reductions in leaf and cell wall extensibility. Grain yield under drought conditions is source limited. Supply of assimilates to the developing inflorescence plays a critical role in establishing final grain number and grain size. Grain weight is negatively affected by drought, high temperature, and any other factors that may reduce grain filling duration and grain filling rate. Awns and glaucousness confer better performance of barley under drought stress conditions. Barley responds with an increased accumulation of a number of proteins when subjected to different stress inducing cell dehydration. Screening techniques that are able to identify desirable genotypes based on the evaluation of physiological traits related to stress evasion and stress resistance maybe useful in breeding barley for resistance to stress, particularly drought stress. Crop management and breeding can reduce the incidence of stress on yield. The effect of these practices is sustained by an understanding of their physiology. In this paper the physiological basis of the processes determining barley yield and the incidence of stresses on photosynthetic metabolism that determine grain yield of barley is discussed. .

  3. delta 6 Hexadecenoic acid is synthesized by the activity of a soluble delta 6 palmitoyl-acyl carrier protein desaturase in Thunbergia alata endosperm.

    Science.gov (United States)

    Cahoon, E B; Cranmer, A M; Shanklin, J; Ohlrogge, J B

    1994-11-04

    delta 6 Hexadecenoic acid (16:1 delta 6) composes more than 80% of the seed oil of Thunbergia alata. Studies were conducted to determine the biosynthetic origin of the double bond of this unusual fatty acid. Assays of fractions of developing T. alata seed endosperm with [1-14C]palmitoyl (16:0)-acyl carrier protein (ACP) revealed the presence of a soluble delta 6 desaturase activity. This activity was greatest when 16:0-ACP was provided as a substrate, whereas no desaturation of the coenzyme A ester of this fatty acid was detected. In addition, delta 6 16:0-ACP desaturase activity in T. alata endosperm extracts was dependent on the presence of ferredoxin and molecular oxygen and was stimulated by catalase. To further characterize this enzyme, a cDNA encoding a diverged acyl-ACP desaturase was isolated from a T. alata endosperm cDNA library using polymerase chain reaction with degenerate oligonucleotides corresponding to conserved amino acid sequences in delta 9 stearoyl (18:0)- and delta 4 16:0-ACP desaturases. The primary structure of the mature peptide encoded by this cDNA shares 66% identity with the mature castor delta 9 18:0-ACP desaturase and 57% identity with the mature coriander delta 4 16:0-ACP desaturase. Extracts of Escherichia coli that express the T. alata cDNA catalyzed the delta 6 desaturation of 16:0-ACP. These results demonstrate that 16:1 delta 6 in T. alata endosperm is formed by the activity of a soluble delta 6 16:0-ACP desaturase that is structurally related to the delta 9 18:0- and delta 4 16:0-ACP desaturases. Implications of this work to an understanding of active site structures of acyl-ACP desaturases are discussed.

  4. Isozyme differences in barley mutants

    Energy Technology Data Exchange (ETDEWEB)

    AI-Jibouri, A A.M.; Dham, K M [Department of Botany, Nuclear Research Centre, Baghdad (Iraq)

    1990-01-01

    Full text: Thirty mutants (M{sub 11}) of barley (Hordeum vulgare L.) induced by physical and chemical mutagens were analysed for isozyme composition using polyacrylamide gel electrophoresis. Results show that these mutants were different in the isozymes leucine aminopeptidase, esterase and peroxidase. The differences included the number of forms of each enzyme, relative mobility value and their intensity on the gel. Glutamate oxaloacetate transaminase isozyme was found in six molecular forms and these forms were similar in all mutants. (author)

  5. Isozyme differences in barley mutants

    International Nuclear Information System (INIS)

    AI-Jibouri, A.A.M.; Dham, K.M.

    1990-01-01

    Full text: Thirty mutants (M 11 ) of barley (Hordeum vulgare L.) induced by physical and chemical mutagens were analysed for isozyme composition using polyacrylamide gel electrophoresis. Results show that these mutants were different in the isozymes leucine aminopeptidase, esterase and peroxidase. The differences included the number of forms of each enzyme, relative mobility value and their intensity on the gel. Glutamate oxaloacetate transaminase isozyme was found in six molecular forms and these forms were similar in all mutants. (author)

  6. Comparison of agrobacterium mediated wheat and barley transformation with nucleoside diphosphate kinase 2 (NDPK2) gene

    International Nuclear Information System (INIS)

    Waheed, U.; Shah, M.M.; Smedley, M.; Harwood, W.

    2016-01-01

    An efficient and reliable transformation system is imperative for improvement of important crop species like barley and wheat. Wheat transformation is complex due to larger genome size and polyploidy while barley has a limitation of genotypic dependency. The objective of current study was to compare the relative transformation efficiency of wheat and barley using specific expression vector pBRACT 214-NDPK2 constructed through gateway cloning carrying Nucleoside Diphosphate Kinase 2 (NDPK2) gene. The vector was used to compare the transformation response in both crops using immature embryos through Agrobacterium mediated transformation. Both wheat and barley showed different responses towards callus induction and regeneration. Immature embryos of 1.5 to 2 mm in diameter was found optimum for wheat callus induction while 1 to 1.5 mm for barley. Both embryogenic and non-embryogenic calli were found in wheat with significantly greater tendency for embryogenecity in barley. The overall regeneration response was found different for all transformed wheat and barley cultivars. Wheat cultivars showed good response initially that drastically slowed down in later stages with the exception of Fielder that reached to the green shoots with good roots. The barley transformed lines showed good regeneration response as compared to wheat. PCR analysis of putative transformants using genomic DNA showed a maximum of 27% transformation efficiency in barely. No true transformation response was obtained in all cultivars of wheat used in this study. The protocol developed for wheat and barley transformation will greatly be helpful in crop improvement programme through genetic engineering especially in diploid relatives of cereals. (author)

  7. Mutation breeding in malting barley

    Energy Technology Data Exchange (ETDEWEB)

    Hiraki, Makoto; Sanada, Matsuyoshi

    1984-03-01

    The released varieties of malting barley through mutation breeding is more than ten in number, including foreign varieties. In Japan four varieties has been released so far. We started mutation breeding in 1956 together with cross breeding that we employed before. Until now, Gamma 4, Amagi Nijo 1 and Fuji Nijo 2 have been produced from the direct use of induced mutations and Nirasaki Nijo 8 from the indirect use of them. Mutation breeding has been used mainly in the partial improvement of agronomic characteristics since the selection for malting quality was very complicated. As the variety bred by induced mutation is usually equivalent to the original variety in malting quality, both this new variety and the original one could be cultivated in the same area without any problem on later malt production. Particularly when one farmer cultivates barley in an extensive acreage, he can harvest at the best time according to the different maturing time of each variety. From these points of view, mutation breeding is an efficient tool in malting barley breeding. Mutagens we have used so far are X-rays, ..gamma..-rays, neutron and chemicals such as dES. From our experience in selection, the low dose of radiation and chemical mutagens are more effective in selection of point mutation than the high dose of radiation which tends to produce many abnormal but few practical mutants. (author).

  8. Comparative energy content and amino acid digestibility of barley obtained from diverse sources fed to growing pigs

    Directory of Open Access Journals (Sweden)

    Hong Liang Wang

    2017-07-01

    Full Text Available Objective Two experiments were conducted to determine the content of digestible energy (DE and metabolizable energy (ME as well as the apparent ileal digestibility (AID and standardized ileal digestibility (SID of crude protein (CP and amino acids (AA in barley grains obtained from Australia, France or Canada. Methods In Exp. 1, 18 growing barrows (Duroc×Landrace×Yorkshire; 31.5±3.2 kg were individually placed in stainless-steel metabolism crates (1.4×0.7×0.6 m and randomly allotted to 1 of 3 test diets. In Exp. 2, eight crossbred pigs (30.9±1.8 kg were allotted to a replicate 3×4 Youden Square designed experiment with three periods and four diets. Two pigs received each diet during each test period. The diets included one nitrogen-free diet and three test diets. Results The relative amounts of gross energy (GE, CP, and all AA in the Canadian barley were higher than those in Australian and French barley while higher concentrations of neutral detergent fiber, acid detergent fiber, total dietary fiber, insoluble dietary fiber and β-glucan as well as lower concentrations of GE and ether extract were observed in the French barley compared with the other two barley sources. The DE and ME as well as the SID of histidine, isoleucine, leucine and phenylalanine in Canadian barley were higher (p<0.05 than those in French barley but did not differ from Australian barley. Conclusion Differences in the chemical composition, energy content and the SID and AID of AA were observed among barley sources obtained from three countries. The feeding value of barley from Canada and Australia was superior to barley obtained from France which is important information in developing feeding systems for growing pigs where imported grains are used.

  9. Barley HvPAPhy_a as transgene provides high and stable phytase activities in mature barley straw and in grains.

    Science.gov (United States)

    Holme, Inger Baeksted; Dionisio, Giuseppe; Madsen, Claus Krogh; Brinch-Pedersen, Henrik

    2017-04-01

    The phytase purple acid phosphatase (HvPAPhy_a) expressed during barley seed development was evaluated as transgene for overexpression in barley. The phytase was expressed constitutively driven by the cauliflower mosaic virus 35S-promoter, and the phytase activity was measured in the mature grains, the green leaves and in the dry mature vegetative plant parts left after harvest of the grains. The T 2 -generation of HvPAPhy_a transformed barley showed phytase activity increases up to 19-fold (29 000 phytase units (FTU) per kg in mature grains). Moreover, also in green leaves and mature dry straw, phytase activities were increased significantly by 110-fold (52 000 FTU/kg) and 57-fold (51 000 FTU/kg), respectively. The HvPAPhy_a-transformed barley plants with high phytase activities possess triple potential utilities for the improvement of phosphate bioavailability. First of all, the utilization of the mature grains as feed to increase the release of bio-available phosphate and minerals bound to the phytate of the grains; secondly, the utilization of the powdered straw either directly or phytase extracted hereof as a supplement to high phytate feed or food; and finally, the use of the stubble to be ploughed into the soil for mobilizing phytate-bound phosphate for plant growth. © 2016 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  10. Transgenic expression of phytase in wheat endosperm increases bioavailability of iron and zinc in grains.

    Science.gov (United States)

    Abid, Nabeela; Khatoon, Asia; Maqbool, Asma; Irfan, Muhammad; Bashir, Aftab; Asif, Irsa; Shahid, Muhammad; Saeed, Asma; Brinch-Pedersen, Henrik; Malik, Kauser A

    2017-02-01

    Phytate is a major constituent of wheat seeds and chelates metal ions, thus reducing their bioavailability and so the nutritional value of grains. Transgenic plants expressing heterologous phytase are expected to enhance degradation of phytic acid stored in seeds and are proposed to increase the in vitro bioavailability of mineral nutrients. Wheat transgenic plants expressing Aspergillus japonicus phytase gene (phyA) in wheat endosperm were developed till T 3 generation. The transgenic lines exhibited 18-99 % increase in phytase activity and 12-76 % reduction of phytic acid content in seeds. The minimum phytic acid content was observed in chapatti (Asian bread) as compared to flour and dough. The transcript profiling of phyA mRNA indicated twofold to ninefold higher expression as compared to non transgenic controls. There was no significant difference in grain nutrient composition of transgenic and non-transgenic seeds. In vitro bioavailability assay for iron and zinc in dough and chapatti of transgenic lines revealed a significant increase in iron and zinc contents. The development of nutritionally enhanced cereals is a step forward to combat nutrition deficiency for iron and zinc in malnourished human population, especially women and children.

  11. LINE'S OF MANUFACTURE OF KISSELS ON THE BASIS OF BUCKWHEAT AND BARLEY STARCH

    Directory of Open Access Journals (Sweden)

    J. J. Ermolaev

    2012-01-01

    Full Text Available This work is devoted to development of a production line of kissels on the basis of grechishny and barley крахмалов, allowing to use their structural and mechanical and chemical properties, investigating rheological characteristics of solutions buckwheat and barley крахмалов, to receive the dry granulated drinks on the basis of vegetative raw materials which will partially solve problems of equation of a food.

  12. Comparative metabolome analysis of wheat embryo and endosperm reveals the dynamic changes of metabolites during seed germination.

    Science.gov (United States)

    Han, Caixia; Zhen, Shoumin; Zhu, Gengrui; Bian, Yanwei; Yan, Yueming

    2017-06-01

    In this study, we performed the first comparative metabolomic analysis of the wheat embryo and endosperm during seed germination using GC-MS/MS. In total, 82 metabolites were identified in the embryo and endosperm. Principal component analysis (PCA), metabolite-metabolite correlation and hierarchical cluster analysis (HCA) revealed distinct dynamic changes in metabolites between the embryo and endosperm during seed germination. Generally, the metabolite changes in the embryo were much greater than those in the endosperm, suggesting that the embryo is more active than the endosperm during seed germination. Most amino acids were upregulated in both embryo and endosperm, while polysaccharides and organic acids associated with sugars were mainly downregulated in the embryo. Most of the sugars showed an upregulated trend in the endosperm, but significant changes in lipids occurred only in the embryo. Our results suggest that the embryo mobilises mainly protein and lipid metabolism, while the endosperm mobilises storage starch and minor protein metabolism during seed germination. The primary energy was generated mainly in the embryo by glycolysis during seed imbibition. The embryo containing most of the genetic information showed increased nucleotides during seed germination process, indicating more active transcription and translation metabolisms. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  13. Fermentation of the endosperm cell walls of monocotyledon and dicotyledon plant species: The relationship between cell wall characteristics and fermentability

    NARCIS (Netherlands)

    Laar, van H.; Tamminga, S.; Williams, B.A.; Verstegen, M.W.A.

    2000-01-01

    Cell walls from the endosperm of four monocotyledons (maize, wheat, rye, and rice) and four dicotyledons (soya bean, lupin, faba bean, and pea) seeds were studied to relate cell wall composition and structure with fermentation characteristics. Cell wall material was isolated from the endosperm of

  14. Modeling of the endosperm crush response profile of hard red spring wheat using a single kernel characterization system

    Science.gov (United States)

    When a wheat endosperm is crushed the force profile shows viscoelastic response and the modulus of elasticity is an important parameter that might have substantial influence on wheat milling. An experiment was performed to model endosperm crush response profile (ECRP) and to determine the modulus o...

  15. COMPARISON OF THE FROST RESISTANCE OF BARLEY ...

    African Journals Online (AJOL)

    Preferred Customer

    immediate recovery of the photosynthetic quantum yield after freezing. Landraces which showed the highest cold tolerance were found to acclimatize best. Key words/phrases: Barley, chlorophyll fluorescence, cold acclimation, Ethiopia, frost tolerance. INTRODUCTION. Barley (Hordeum vulgare L.) is a traditional crop.

  16. Development of a bifunctional xylanase-cellulase chimera with enhanced activity on rice and barley straws using a modular xylanase and an endoglucanase procured from camel rumen metagenome.

    Science.gov (United States)

    Khalili Ghadikolaei, Kamran; Akbari Noghabi, Kambiz; Shahbani Zahiri, Hossein

    2017-09-01

    The camel rumen metagenome is an untapped source of glycoside hydrolases. In this study, novel genes encoding for a modular xylanase (XylC) and a cellulase (CelC) were isolated from a camel rumen metagenome and expressed in Escherichia coli BL21 (DE3). XylC with xylanase (Xyn), CBM, and carbohydrate esterase (CE) domains was characterized as a β-1,4-endoxylanase with remarkable catalytic activity on oat-spelt xylan (K cat  = 2919 ± 57 s -1 ). The implication of XylC's modular structure in its high catalytic activity was analyzed by truncation and fusion construction with CelC. The resulting fusions including Cel-CBM, Cel-CBM-CE, and Xyn-CBM-Cel showed remarkable enhancement in CMCase activity with K cat values of 742 ± 12, 1289 ± 34.5, and 2799 ± 51 s -1 compared to CelC with a K cat of 422 ± 3.5 s -1 . It was also shown that the bifunctional Xyn-CBM-Cel with synergistic xylanase/cellulase activities was more efficient than XylC and CelC in hydrolysis of rice and barley straws.

  17. Baking quality parameters of wheat in relation to endosperm storage proteins

    Directory of Open Access Journals (Sweden)

    Daniela Horvat

    2012-01-01

    Full Text Available Wheat storage proteins of twelve winter wheat cultivars grown at the experimental field of the Agricultural Institute Osijek in 2009 were studied for their contribution to the baking quality. Composition of high molecular weight glutenin subunits (HMW-GS was analyzed by SDS-PAGE method, while the proportions of endosperm storage proteins were determined by RP-HPLC method. Regarding the proportion of storage proteins, results of the linear correlation (p<0.05 showed that protein (P and wet gluten (WG content were highly negatively correlated with albumins and globulins (AG and positively with α- gliadins (GLI. A strong negative correlation between AG and water absorption (WA capacity of flour was found, while α- GLI had positive influence on this property. Dough development time (DDT was positively significantly correlated with HMW-GS and negatively with AG. Degree of dough softening (DS was strongly positively affected by γ- GLI and gliadins to glutenins ratio (GLI/GLU and negatively by total GLU and HMW-GS. Dough energy (E and maximum resistance (RMAX were significantly positively affected by Glu-1 score and negatively by GLI/GLU ratio. Resistance to extensibility ratio (R/EXT was significantly negatively correlated with total GLI. Bread volume was significantly negatively influenced by AG.

  18. Fungal growth during malting of barley

    Directory of Open Access Journals (Sweden)

    Kocić-Tanackov Sunčica D.

    2005-01-01

    Full Text Available Fungi were isolated and identified in two samples of winter two-row barley (SSK3 and SSK6 harvested in 2003, Kragujevac location, during micromalting. Fungi were isolated and identified in barley before the micromalting, after the 1st, 2nd and 3rd day of steeping, the first day and after the germination after kilning and after malt degermination. The total fungi count was followed in both barley samples, during the mentioned phases. The total count of fungi was also determined in the steeping water, and the isolation and identification was performed after the steeping process. Change of the total count of fungi during barley micromalting was exponentional. During barley micromalting nine fungi genera were isolated: Phoma, Alternaria, Fusarium aspergillus, Cladosporium, Geotrichum, Scopulariopsis, Aureobasidium and Mucor. The most frequent genera were: Phoma, Alternaria and Fusarium. In water for steeping, five genera were identified: Geotrichum, Fusarium, Phoma Cladosporium and Mucor. The most frequent genera was Phoma.

  19. Engineering the provitamin A (beta-carotene) biosynthetic pathway into (carotenoid-free) rice endosperm.

    Science.gov (United States)

    Ye, X; Al-Babili, S; Klöti, A; Zhang, J; Lucca, P; Beyer, P; Potrykus, I

    2000-01-14

    Rice (Oryza sativa), a major staple food, is usually milled to remove the oil-rich aleurone layer that turns rancid upon storage, especially in tropical areas. The remaining edible part of rice grains, the endosperm, lacks several essential nutrients, such as provitamin A. Thus, predominant rice consumption promotes vitamin A deficiency, a serious public health problem in at least 26 countries, including highly populated areas of Asia, Africa, and Latin America. Recombinant DNA technology was used to improve its nutritional value in this respect. A combination of transgenes enabled biosynthesis of provitamin A in the endosperm.

  20. Preventive and Therapeutic Role of Functional Ingredients of Barley Grass for Chronic Diseases in Human Beings

    Directory of Open Access Journals (Sweden)

    Yawen Zeng

    2018-01-01

    Full Text Available Barley grass powder is the best functional food that provides nutrition and eliminates toxins from cells in human beings; however, its functional ingredients have played an important role as health benefit. In order to better cognize the preventive and therapeutic role of barley grass for chronic diseases, we carried out the systematic strategies for functional ingredients of barley grass, based on the comprehensive databases, especially the PubMed, Baidu, ISI Web of Science, and CNKI, between 2008 and 2017. Barley grass is rich in functional ingredients, such as gamma-aminobutyric acid (GABA, flavonoids, saponarin, lutonarin, superoxide dismutase (SOD, K, Ca, Se, tryptophan, chlorophyll, vitamins (A, B1, C, and E, dietary fiber, polysaccharide, alkaloid, metallothioneins, and polyphenols. Barley grass promotes sleep; has antidiabetic effect; regulates blood pressure; enhances immunity; protects liver; has anti-acne/detoxifying and antidepressant effects; improves gastrointestinal function; has anticancer, anti-inflammatory, antioxidant, hypolipidemic, and antigout effects; reduces hyperuricemia; prevents hypoxia, cardiovascular diseases, fatigue, and constipation; alleviates atopic dermatitis; is a calcium supplement; improves cognition; and so on. These results support that barley grass may be one of the best functional foods for preventive chronic diseases and the best raw material of modern diet structure in promoting the development of large health industry and further reveal that GABA, flavonoids, SOD, K-Ca, vitamins, and tryptophan mechanism of barley grass have preventive and therapeutic role for chronic diseases. This paper can be used as a scientific evidence for developing functional foods and novel drugs for barley grass for preventive chronic diseases.

  1. Dawn and Dusk Set States of the Circadian Oscillator in Sprouting Barley (Hordeum vulgare Seedlings.

    Directory of Open Access Journals (Sweden)

    Weiwei Deng

    Full Text Available The plant circadian clock is an internal timekeeper that coordinates biological processes with daily changes in the external environment. The transcript levels of clock genes, which oscillate to control circadian outputs, were examined during early seedling development in barley (Hordeum vulgare, a model for temperate cereal crops. Oscillations of clock gene transcript levels do not occur in barley seedlings grown in darkness or constant light but were observed with day-night cycles. A dark-to-light transition influenced transcript levels of some clock genes but triggered only weak oscillations of gene expression, whereas a light-to-dark transition triggered robust oscillations. Single light pulses of 6, 12 or 18 hours induced robust oscillations. The light-to-dark transition was the primary determinant of the timing of subsequent peaks of clock gene expression. After the light-to-dark transition the timing of peak transcript levels of clock gene also varied depending on the length of the preceding light pulse. Thus, a single photoperiod can trigger initiation of photoperiod-dependent circadian rhythms in barley seedlings. Photoperiod-specific rhythms of clock gene expression were observed in two week old barley plants. Changing the timing of dusk altered clock gene expression patterns within a single day, showing that alteration of circadian oscillator behaviour is amongst the most rapid molecular responses to changing photoperiod in barley. A barley EARLY FLOWERING3 mutant, which exhibits rapid photoperiod-insensitive flowering behaviour, does not establish clock rhythms in response to a single photoperiod. The data presented show that dawn and dusk cues are important signals for setting the state of the circadian oscillator during early development of barley and that the circadian oscillator of barley exhibits photoperiod-dependent oscillation states.

  2. Esterase Isoenzyme Variants in Barley

    DEFF Research Database (Denmark)

    Hvid, S.; Nielsen, G.

    1977-01-01

    Gene symbols are proposed for 27 esterase isoenzyme alleles representing 10 loci in barley. Two new esterase loci, Est 9 and Est 10, each with an active and a silent allele, and three new alleles in previously described loci were found. A few chemical and physical characteristics of the different...... esterase isoenzyme systems were studied. The heat inactivation temperature differed for the isoenzymes coded by most of the loci, whereas the substrate and inhibitor specificity of the isoenzymes was less distinct. A possible relationship between some of the systems is discussed....

  3. Resistance to Barley Leaf Stripe

    DEFF Research Database (Denmark)

    Nørgaard Knudsen, J. C.

    1986-01-01

    in well adapted Northwest European spring cultivars. Virulence matching two hitherto not overcome resistances was demonstrated. Differences in apparent race nonspecific or partial resistance were also present, changing the percentage of infected plants of susceptible genotypes from about 20 to 44 per cent.......Ten barley [Hordeum vulgare] genotypes were inoculated with twelve isolates of Pyrenophora graminea of diverse European and North African origin. Race specific resistance occurred. Four, possibly five, genetically different sources of race-specific resistance were found, three of them occurring...

  4. Unraveling regulation of the small heat shock proteins by the heat shock factor HvHsfB2c in barley: its implications in drought stress response and seed development.

    Science.gov (United States)

    Reddy, Palakolanu Sudhakar; Kavi Kishor, Polavarapu B; Seiler, Christiane; Kuhlmann, Markus; Eschen-Lippold, Lennart; Lee, Justin; Reddy, Malireddy K; Sreenivasulu, Nese

    2014-01-01

    The rapid increase in heat shock proteins upon exposure to damaging stresses and during plant development related to desiccation events reveal their dual importance in plant development and stress tolerance. Genome-wide sequence survey identified 20 non-redundant small heat shock proteins (sHsp) and 22 heat shock factor (Hsf) genes in barley. While all three major classes (A, B, C) of Hsfs are localized in nucleus, the 20 sHsp gene family members are localized in different cell organelles like cytoplasm, mitochondria, plastid and peroxisomes. Hsf and sHsp members are differentially regulated during drought and at different seed developmental stages suggesting the importance of chaperone role under drought as well as seed development. In silico cis-regulatory motif analysis of Hsf promoters showed an enrichment with abscisic acid responsive cis-elements (ABRE), implying regulatory role of ABA in mediating transcriptional response of HvsHsf genes. Gene regulatory network analysis identified HvHsfB2c as potential central regulator of the seed-specific expression of several HvsHsps including 17.5CI sHsp. These results indicate that HvHsfB2c is co-expressed in the central hub of small Hsps and therefore it may be regulating the expression of several HvsHsp subclasses HvHsp16.88-CI, HvHsp17.5-CI and HvHsp17.7-CI. The in vivo relevance of binding specificity of HvHsfB2C transcription factor to HSE-element present in the promoter of HvSHP17.5-CI under heat stress exposure is confirmed by gel shift and LUC-reporter assays. Further, we isolated 477 bp cDNA from barley encoding a 17.5 sHsp polypeptide, which was predominantly upregulated under drought stress treatments and also preferentially expressed in developing seeds. Recombinant HvsHsp17.5-CI protein was expressed in E. coli and purified to homogeneity, which displayed in vitro chaperone activity. The predicted structural model of HvsHsp-17.5-CI protein suggests that the α-crystallin domain is evolutionarily highly

  5. Unraveling regulation of the small heat shock proteins by the heat shock factor HvHsfB2c in barley: its implications in drought stress response and seed development.

    Directory of Open Access Journals (Sweden)

    Palakolanu Sudhakar Reddy

    Full Text Available The rapid increase in heat shock proteins upon exposure to damaging stresses and during plant development related to desiccation events reveal their dual importance in plant development and stress tolerance. Genome-wide sequence survey identified 20 non-redundant small heat shock proteins (sHsp and 22 heat shock factor (Hsf genes in barley. While all three major classes (A, B, C of Hsfs are localized in nucleus, the 20 sHsp gene family members are localized in different cell organelles like cytoplasm, mitochondria, plastid and peroxisomes. Hsf and sHsp members are differentially regulated during drought and at different seed developmental stages suggesting the importance of chaperone role under drought as well as seed development. In silico cis-regulatory motif analysis of Hsf promoters showed an enrichment with abscisic acid responsive cis-elements (ABRE, implying regulatory role of ABA in mediating transcriptional response of HvsHsf genes. Gene regulatory network analysis identified HvHsfB2c as potential central regulator of the seed-specific expression of several HvsHsps including 17.5CI sHsp. These results indicate that HvHsfB2c is co-expressed in the central hub of small Hsps and therefore it may be regulating the expression of several HvsHsp subclasses HvHsp16.88-CI, HvHsp17.5-CI and HvHsp17.7-CI. The in vivo relevance of binding specificity of HvHsfB2C transcription factor to HSE-element present in the promoter of HvSHP17.5-CI under heat stress exposure is confirmed by gel shift and LUC-reporter assays. Further, we isolated 477 bp cDNA from barley encoding a 17.5 sHsp polypeptide, which was predominantly upregulated under drought stress treatments and also preferentially expressed in developing seeds. Recombinant HvsHsp17.5-CI protein was expressed in E. coli and purified to homogeneity, which displayed in vitro chaperone activity. The predicted structural model of HvsHsp-17.5-CI protein suggests that the α-crystallin domain is

  6. Ethnobotany, diverse food uses, claimed health benefits and implications on conservation of barley landraces in North Eastern Ethiopia highlands

    Directory of Open Access Journals (Sweden)

    Sopade Peter A

    2011-06-01

    Full Text Available Abstract Background Barley is the number one food crop in the highland parts of North Eastern Ethiopia produced by subsistence farmers grown as landraces. Information on the ethnobotany, food utilization and maintenance of barley landraces is valuable to design and plan germplasm conservation strategies as well as to improve food utilization of barley. Methods A study, involving field visits and household interviews, was conducted in three administrative zones. Eleven districts from the three zones, five kebeles in each district and five households from each kebele were visited to gather information on the ethnobotany, the utilization of barley and how barley end-uses influence the maintenance of landrace diversity. Results According to farmers, barley is the "king of crops" and it is put for diverse uses with more than 20 types of barley dishes and beverages reportedly prepared in the study area. The products are prepared from either boiled/roasted whole grain, raw- and roasted-milled grain, or cracked grain as main, side, ceremonial, and recuperating dishes. The various barley traditional foods have perceived qualities and health benefits by the farmers. Fifteen diverse barley landraces were reported by farmers, and the ethnobotany of the landraces reflects key quantitative and qualitative traits. Some landraces that are preferred for their culinary qualities are being marginalized due to moisture shortage and soil degradation. Conclusions Farmers' preference of different landraces for various end-use qualities is one of the important factors that affect the decision process of landraces maintenance, which in turn affect genetic diversity. Further studies on improving maintenance of landraces, developing suitable varieties and improving the food utilization of barley including processing techniques could contribute to food security of the area.

  7. Ethnobotany, diverse food uses, claimed health benefits and implications on conservation of barley landraces in North Eastern Ethiopia highlands.

    Science.gov (United States)

    Shewayrga, Hailemichael; Sopade, Peter A

    2011-06-28

    Barley is the number one food crop in the highland parts of North Eastern Ethiopia produced by subsistence farmers grown as landraces. Information on the ethnobotany, food utilization and maintenance of barley landraces is valuable to design and plan germplasm conservation strategies as well as to improve food utilization of barley. A study, involving field visits and household interviews, was conducted in three administrative zones. Eleven districts from the three zones, five kebeles in each district and five households from each kebele were visited to gather information on the ethnobotany, the utilization of barley and how barley end-uses influence the maintenance of landrace diversity. According to farmers, barley is the "king of crops" and it is put for diverse uses with more than 20 types of barley dishes and beverages reportedly prepared in the study area. The products are prepared from either boiled/roasted whole grain, raw- and roasted-milled grain, or cracked grain as main, side, ceremonial, and recuperating dishes. The various barley traditional foods have perceived qualities and health benefits by the farmers. Fifteen diverse barley landraces were reported by farmers, and the ethnobotany of the landraces reflects key quantitative and qualitative traits. Some landraces that are preferred for their culinary qualities are being marginalized due to moisture shortage and soil degradation. Farmers' preference of different landraces for various end-use qualities is one of the important factors that affect the decision process of landraces maintenance, which in turn affect genetic diversity. Further studies on improving maintenance of landraces, developing suitable varieties and improving the food utilization of barley including processing techniques could contribute to food security of the area.

  8. Nutrient uptake by barley in six colombian soils

    OpenAIRE

    Madero Morales, Edgar Enrique; Amézquita, Edgar

    2010-01-01

    In Colombia, the increase of barley production is restricted by such factors as irregular rainfall, low temperatures, soil acidity, low fertility and disease, associated with improper soil management and scarse improve germoplasm, A suitable use of fertilizers is an alternative to face part of the problem by means of plant breeding in different terrain, tend to develop of low soil productivity tolerant cultivars. To arrive at appropiate recommendations for farmers, it was consider the quantit...

  9. Influence of instrument rigidity and specimen geometry on calculations of compressive strength properties of wheat endosperm

    Science.gov (United States)

    Endosperm texture is one of the most important quality features in wheat that defines milling energy requirements and the suitability of flour or semolina for the various food products such as pan breads, crackers, cakes, and pastas. Rooted in low molecular weight proteins known as puroindolines a a...

  10. EFFECT OF PHYSIOLOGICAL AGE AND GROWTH REGULATORS ON CALLUS BROWNING OF COCONUT ENDOSPERM CULTURE IN VITRO

    Directory of Open Access Journals (Sweden)

    LAZARUS AGUS SUKAMTO

    2011-01-01

    Full Text Available The possibility of physiological age and growth regulators affecting callus browning ofcoconut endosperm was investigated. Solid endosperm explants of four coconut fruits fromsame brunches of two coconut cultivars “Samoan Dwarf ” were grown on modified Murashigeand Skoog (MS formula with addition of 10 mg l putresine, 2.50 g l activated charcoal (AC,1.70 g l phytagel, 0, 10 , 10 , 10 , 10 M 2,4-dichlorophenoxyacetic acid (2,4-D or 4-amino-3,5,6-trichloropicolinic acid (Picloram combined with 10 M 6-benzylaminopurine (BA.Callogenesis occurred on 98.83% of explants. Callus browning between different physiologicalages (antipodal and micropylar tissues of coconut endosperm at 9, 26 and 31 weeks of culture(WOC was significantly different, but not at 16 and 21 WOC. Auxins of 2,4-D and Picloramdid not affect significantly callus browning of endosperm cultures. Auxin doses at 10 , 10 , and10 M decreased significantly callus browning at 9 and 16 WOC, respectively, but at 10 Mbrowning was less significant compared to other doses at 21 WOC. Auxin dose at 10 M causedless significant browning compared to other doses at 31 WOC. The addition of BA decreasedsignificantly callus browning at 9 WOC, but did not affect callus browning thereafter.

  11. Fermentation characteristics of polysaccharide fractions extracted from the cell walls of maize endosperm

    NARCIS (Netherlands)

    Laar, van H.; Tamminga, S.; Williams, B.A.; Verstegen, M.W.A.; Schols, H.A.

    2002-01-01

    Cell walls were extracted from maize endosperm and separated into different polysaccharide fractions by sequential extraction with solutions of saturated Ba(OH)2, demineralised water and 1 and 4 M KOH. Solubilised polysaccharides were collected after each extraction. Residues were collected

  12. A pharmacological study of Arabidopsis cell fusion between the persistent synergid and endosperm.

    Science.gov (United States)

    Motomura, Kazuki; Kawashima, Tomokazu; Berger, Frédéric; Kinoshita, Tetsu; Higashiyama, Tetsuya; Maruyama, Daisuke

    2018-01-29

    Cell fusion is a pivotal process in fertilization and multinucleate cell formation. A plant cell is ubiquitously surrounded by a hard cell wall, and very few cell fusions have been observed except for gamete fusions. We recently reported that the fertilized central cell (the endosperm) absorbs the persistent synergid, a highly differentiated cell necessary for pollen tube attraction. The synergid-endosperm fusion (SE fusion) appears to eliminate the persistent synergid from fertilized ovule in Arabidopsis thaliana Here, we analyzed the effects of various inhibitors on SE fusion in an in vitro culture system. Different from other cell fusions, neither disruption of actin polymerization nor protein secretion impaired SE fusion. However, transcriptional and translational inhibitors decreased the SE fusion success rate and also inhibited endosperm division. Failures of SE fusion and endosperm nuclear proliferation were also induced by roscovitine, an inhibitor of cyclin-dependent kinases (CDK). These data indicate unique aspects of SE fusion such as independence of filamentous actin support and the importance of CDK-mediated mitotic control. © 2018. Published by The Company of Biologists Ltd.

  13. Roles of Hydroxynitrile Glucosides in Barley

    DEFF Research Database (Denmark)

    Roelsgaard, Pernille Sølvhøj

    on barley (Hordeum vulgare). Barley accumulates five hydroxynitrile glucosides, including one cyanogenic glucoside, in the epidermal cell layer. Cyanogenic glucosides are classically known as hydrogen cyanide-releasing defense compounds which act against generalist insects and herbivores. However...... is proposed. The results obtained in this Ph.D. study provide a unique insight demonstrating that hydroxynitrile glucosides play a far more complex role in barley defense against and susceptibility to Bgh than previously described. Future studies can build on the platforms established in this study to provide...

  14. Genetic analysis of vitreous endosperms derived from homozygotic plants for opaque-2 gene in maize (Zea mays L.)

    International Nuclear Information System (INIS)

    Prioli, A.J.; Barbosa, H.M.; Sant'Anna, R.

    1980-01-01

    From experiments in which opaque-2 maize seeds were treated with gamma rays and ethil methanesulfonate, and their respective untreated controls, seeds with hard, vitreous endosperms were obtained. Some of these were completely vitreous, with no evidence of opaque endosperm tissue. Others had very small and few (one to three) areas of opaque tissue. Plants derived from completely vitreous endosperm seeds were self pollinated and crossed to an opaque-2 inbred. The segregation of vitreous to opaque seeds indicated that the normal allele at the opaque-2 locus was responsible for the vitreousity of the endosperm. Lysine content of the vitreous endosperm was comparable to that of normal endosperms. Plants derived from vitreous seeds with few and tiny spots of opaque tissue produced, upon selfing or crossing to the opaque-2 inbred, only opaque-2 seeds. It is concluded that: (a) induced mutation may not be an effective tool to obtain vitreous opaque-2 endosperm with high lysine content; and, (b) there are unknown genetic systems which severely modify the expression of the opaque-2 gene. (Author) [pt

  15. Abscisic acid and ethephon regulation of cellulase in the endosperm cap and radicle during lettuce seed germination.

    Science.gov (United States)

    Chen, Bingxian; Ma, Jun; Xu, Zhenjiang; Wang, Xiaofeng

    2016-10-01

    The purpose of this study was to investigate the role of cellulase in endosperm cap weakening and radicle elongation during lettuce (Lactuca sativa L.) seed germination. The application of abscisic acid (ABA) or ethephon inhibits or promotes germination, respectively, by affecting endosperm cap weakening and radicle elongation. Cellulase activities, and related protein and transcript abundances of two lettuce cellulase genes, LsCEL1 and LsCEL2, increase in the endosperm cap and radicle prior to radicle protrusion following imbibition in water. ABA or ethephon reduce or elevate, respectively, cellulase activity, and related protein and transcript abundances in the endosperm cap. Taken together, these observations suggest that cellulase plays a role in endosperm cap weakening and radicle elongation during lettuce seed germination, and that the regulation of cellulase in the endosperm cap by ABA and ethephon play a role in endosperm cap weakening. However, the influence of ABA and ethephon on radicle elongation may not be through their effects on cellulase. © 2016 Institute of Botany, Chinese Academy of Sciences.

  16. Development and Validation of a Reversed-Phase Liquid Chromatography Method for the Simultaneous Determination of Indole-3-Acetic Acid, Indole-3-Pyruvic Acid, and Abscisic Acid in Barley (Hordeum vulgare L.).

    Science.gov (United States)

    Nakurte, Ilva; Keisa, Anete; Rostoks, Nils

    2012-01-01

    A simple, sensitive, precise, and specific reverse HPLC method was developed and validated for the determination of plant hormones in barley (Hordeum vulgare L.). The method includes extraction in aqueous organic solvent followed by solid-phase extraction, sample evaporation, and reversed-phase HPLC analysis in a general purpose UV-visible (abscisic acid (ABA)) and fluorescence detection (indole-3-acetic acid (IAA) and indole-3-pyruvic acid (IPA)), high-performance liquid chromatography system. The separation was carried out on Zorbax Eclipse XDB C8 column (150  ×  4.6  mm I.D) with a mobile phase composed of methanol and 1% acetic acid (60 : 40 v/v) in isocratic mode at a flow rate of 1 ml min(-1). The detection was monitored at 270 nm (ABA) and at 282 nm (Ex) and 360 nm (Em) (IAA, IPA). The developed method was validated in terms of accuracy, precision, linearity, limit of detection, limit of quantification, and robustness. The determined validation parameters are in the commonly acceptable ranges for that kind of analysis.

  17. Development of mutants of local barley bakur (T. Hordeum vulgare. c v Bakkur L.) with good quantitative and qualitative traits under rainfed condition

    International Nuclear Information System (INIS)

    Saif, A. A.; Al-Shamiri, A. A.

    2012-12-01

    Seeds of local barley bakur were exposed to 150 Gy of gamma rays from cobalt 60 source irradiated seeds were planted in rows as M1.From M1 magnetized population plants , the main spike of each plants were collected, threshed and planted head to row method in 2008 winter season as M2. Evaluation of mutants was done for the increase in long spike and level of resistance to loading in compare with mother variety (untreated) resulted in selecting fifty mutated plants. These plants were planted as plant/ row method along with the mother variety and evaluated for grain yield and level of resistance for lodging which consequent y resulted in selecting of twenty four mutant lines which were varied in plant height long spike and yield. These lines were planted in the research farm during 2009 and the research farm during 2009 and 2011 winter season as M4 and M5 for two consecutive season resulted in selecting eight mutant lines which were distinguished of others in respect of level of resistance and increase of yield. These mutant lines were planted in plots in Kawkban and Bani-Mater locations during 2010 and 2011 seasons along with mother variety and improved variety Kawkban-1 which dominated in the region. Data were collected from the trail analyzed them separate y over each location. Results showed that the mutant line Al-e rra-B-008-15 was the best in grain yield and early maturity followed by Al-erra-B-008-20 and Al-erra-B-008-20. In the meantime these mutant line showed resistance to loading compare with other including the mother variety. There fore it can be recommended to register these mutants as a new varieties for Kawkaban Bain-Mater regions as well as for similar areas in the central and northern regions. This research summarizing results obtained from the trail conducted in both research farm and in farmer fields at Kawkaban and Bani-Mater locations. (Author)

  18. Resistance in winter barley against Ramularia leaf spot

    DEFF Research Database (Denmark)

    Hjortshøj, Rasmus Lund

    Ramularia leaf spot is an emerging disease in barley caused by R. collo-cygni. At present little is known about the resistance mechanisms carried out by the host plant to avoid disease development. Nor is the lifecycle of the fungus or its populations structure fully understood. To gain insight....... fulvum-tomato and S. tritici-wheat in order to find modelsystems to enhance interpretation of results from R. collo-cygni-barley interaction. Results from the mapping showed that resistance to Ramularia leaf spot is controlled by a number of QTL’s, some of which co-locate with other physiological traits....... The populations further segregated for physiological leaf spots, a phenomenon related to the leaf damage imposed by Rubellin, although, resistance to physiological leafspots appeared to come from the Ramularia leaf spot susceptible parent. The toxin assay further supported this result as the genotypes susceptible...

  19. Innate nonhost immunity in barley to different heterologous rust fungi is controlled by sets of resistance genes with different and overlapping specificities

    NARCIS (Netherlands)

    Jafary, H.; Szabo, L.J.; Niks, R.E.

    2006-01-01

    We developed an evolutionary relevant model system, barley-Puccini rust fungi, to study the inheritance and specificity of plant factors that determine to what extent innate nonhost immunity can be suppressed. A mapping population was developed from a cross between an experimental barley line

  20. Yield improvement in barley by using gamma-irradiation

    International Nuclear Information System (INIS)

    Benamer, Ibrahim Mohammed

    1990-01-01

    Breeding work for barley improvement in Libya is very rare. All varieties grown here are foreign varieties. Yield per hectare is low compared with other countries having similar climatic conditions. Productivity, lodging, disease resistance, drought and salt tolerance are the main characteristics that need to be improved. A mutation breeding programme for barley improvement was initiated at the Tajoura Nuclear Research Centre in 1983-1984. The objectives of this programme are the development of new lines that could be used directly or indirectly in the development of new varieties. The locally adapted barley (Hordeum vulgare L.) variety ''California Mariout'' was used as a parent material. Grains with 14% moisture were exposed to 200 Gy gamma-ray from 60 Co source at the Centre. Three experiments were conducted during 1986-1989. From the first experiment (1986-1987), 62 mutant lines were evaluated. From the second and third experiments (1987-1989), only seven mutant lines were evaluated. In the 1988-1989 experiment, the crop was irrigated and fertilised with 0, 100 and 200 kgN/ha. Lodging score was low in 0 kgN/ha and increased significantly by the increase in N level. None of the mutant lines more lodging resistant than the parent or the control. However, yield differences were significant and the application of 100 kgN/ha increased the grain yield

  1. SPRING BARLEY BREEDING FOR MALTING QUALITY

    Directory of Open Access Journals (Sweden)

    Alžbeta Žofajová

    2010-05-01

    Full Text Available The aim of this contribution is to illustrate the results of spring barley breeding for malting quality and point out an important position of variety in production of  qualitative  raw material for maltinq and beer  industry as well as the system of evaluation the qualitative parameters of breeding materials and adaptation of barley breeding programms to the  new requirements of  malting and beer industry. As an example of the results obtained most recently description is made of the Ezer, Levan, Donaris, Sladar spring barley varieties with very good malting quality and effective resistance to  powdery mildew.  Cultivation of these varieties  and malting barley production with  reduced use  of pesticidies is environmentally friedly alternative. doi:10.5219/50

  2. Metabolite profiling of somatic embryos of Cyclamen persicum in comparison to zygotic embryos, endosperm and testa

    Directory of Open Access Journals (Sweden)

    Traud eWinkelmann

    2015-08-01

    Full Text Available Somatic embryogenesis has been shown to be an efficient in vitro plant regeneration system for many crops such as the important ornamental plant Cyclamen persicum, for which this regeneration pathway of somatic embryogenesis is of interest for the vegetative propagation of parental lines as well as elite plants. However, somatic embryogenesis is not commercially used in many crops due to several unsolved problems, such as malformations, asynchronous development, deficiencies in maturation and germination of somatic embryos. In contrast, zygotic embryos in seeds develop and germinate without abnormalities in most cases. Instead of time-consuming and labor-intensive experiments involving tests of different in vitro culture conditions and plant growth regulator supplements, we follow a more directed approach. Zygotic embryos served as a reference and were compared to somatic embryos in metabolomic analyses allowing the future optimization of the in vitro system. The aims of this study were to detect differences in the metabolite profiles of torpedo stage somatic and zygotic embryos of C. persicum. Moreover, major metabolites in endosperm and testa were identified and quantified.Two sets of extracts of two to four biological replicates each were analyzed. In total 52 metabolites were identified and quantified in the different tissues. One of the most significant differences between somatic and zygotic embryos was that the proline concentration in the zygotic embryos was about 40 times higher than that found in somatic embryos. Epicatechin, a scavenger for reactive oxygen species, was found in highest abundance in the testa. Sucrose, the most abundant metabolite was detected in significantly higher concentrations in zygotic embryos. Also, a yet unknown trisaccharide, was significantly enriched in zygotic embryos.

  3. Cytosolic glutamine synthetase in barley

    DEFF Research Database (Denmark)

    Thomsen, Hanne Cecilie

    remobilisation from ageing plant parts. Thus, GS is highly involved in determining crop yield and NUE. The major objective of this PhD project was to investigate the NUE properties of transgenic barley designed to constitutively overexpress a GS1 isogene (HvGS1.1). These transgenic lines exhibited an increased...... for N demand. Of the GS isogenes, only the transcript levels of root HvGS1.1 increased when plants were transferred from high to low N. This change coincided with an increase in total GS activity. Pronounced diurnal variation was observed for root nitrate transporter genes and GS isogenes in both root...... fertilizer requirement. The enzyme glutamine synthetase (GS) has been a major topic in plant nitrogen research for decades due to its central role in plant N metabolism. The cytosolic version of this enzyme (GS1) plays an important role in relation to primary N assimilation as well as in relation to N...

  4. Genomic Regions Influencing Seminal Root Traits in Barley.

    Science.gov (United States)

    Robinson, Hannah; Hickey, Lee; Richard, Cecile; Mace, Emma; Kelly, Alison; Borrell, Andrew; Franckowiak, Jerome; Fox, Glen

    2016-03-01

    Water availability is a major limiting factor for crop production, making drought adaptation and its many component traits a desirable attribute of plant cultivars. Previous studies in cereal crops indicate that root traits expressed at early plant developmental stages, such as seminal root angle and root number, are associated with water extraction at different depths. Here, we conducted the first study to map seminal root traits in barley ( L.). Using a recently developed high-throughput phenotyping method, a panel of 30 barley genotypes and a doubled-haploid (DH) population (ND24260 × 'Flagship') comprising 330 lines genotyped with diversity array technology (DArT) markers were evaluated for seminal root angle (deviation from vertical) and root number under controlled environmental conditions. A high degree of phenotypic variation was observed in the panel of 30 genotypes: 13.5 to 82.2 and 3.6 to 6.9° for root angle and root number, respectively. A similar range was observed in the DH population: 16.4 to 70.5 and 3.6 to 6.5° for root angle and number, respectively. Seven quantitative trait loci (QTL) for seminal root traits (root angle, two QTL; root number, five QTL) were detected in the DH population. A major QTL influencing both root angle and root number (/) was positioned on chromosome 5HL. Across-species analysis identified 10 common genes underlying root trait QTL in barley, wheat ( L.), and sorghum [ (L.) Moench]. Here, we provide insight into seminal root phenotypes and provide a first look at the genetics controlling these traits in barley. Copyright © 2016 Crop Science Society of America.

  5. Genomic Regions Influencing Seminal Root Traits in Barley

    Directory of Open Access Journals (Sweden)

    Hannah Robinson

    2016-03-01

    Full Text Available Water availability is a major limiting factor for crop production, making drought adaptation and its many component traits a desirable attribute of plant cultivars. Previous studies in cereal crops indicate that root traits expressed at early plant developmental stages, such as seminal root angle and root number, are associated with water extraction at different depths. Here, we conducted the first study to map seminal root traits in barley ( L.. Using a recently developed high-throughput phenotyping method, a panel of 30 barley genotypes and a doubled-haploid (DH population (ND24260 × ‘Flagship’ comprising 330 lines genotyped with diversity array technology (DArT markers were evaluated for seminal root angle (deviation from vertical and root number under controlled environmental conditions. A high degree of phenotypic variation was observed in the panel of 30 genotypes: 13.5 to 82.2 and 3.6 to 6.9° for root angle and root number, respectively. A similar range was observed in the DH population: 16.4 to 70.5 and 3.6 to 6.5° for root angle and number, respectively. Seven quantitative trait loci (QTL for seminal root traits (root angle, two QTL; root number, five QTL were detected in the DH population. A major QTL influencing both root angle and root number (/ was positioned on chromosome 5HL. Across-species analysis identified 10 common genes underlying root trait QTL in barley, wheat ( L., and sorghum [ (L. Moench]. Here, we provide insight into seminal root phenotypes and provide a first look at the genetics controlling these traits in barley.

  6. Brassinosteroid enhances resistance to fusarium diseases of barley.

    Science.gov (United States)

    Ali, Shahin S; Kumar, G B Sunil; Khan, Mojibur; Doohan, Fiona M

    2013-12-01

    Fusarium pathogens are among the most damaging pathogens of cereals. These pathogens have the ability to attack the roots, seedlings, and flowering heads of barley and wheat plants with disease, resulting in yield loss and head blight disease and also resulting in the contamination of grain with mycotoxins harmful to human and animal health. There is increasing evidence that brassinosteroid (BR) hormones play an important role in plant defense against both biotic and abiotic stress agents and this study set out to determine if and how BR might affect Fusarium diseases of barley. Application of the epibrassinolide (epiBL) to heads of 'Lux' barley reduced the severity of Fusarium head blight (FHB) caused by Fusarium culmorum by 86% and reduced the FHB-associated loss in grain weight by 33%. Growth of plants in soil amended with epiBL resulted in a 28 and 35% reduction in Fusarium seedling blight (FSB) symptoms on the Lux and 'Akashinriki' barley, respectively. Microarray analysis was used to determine whether growth in epiBL-amended soil changed the transcriptional profile in stem base tissue during the early stages of FSB development. At 24 and 48 h post F. culmorum inoculation, there were 146 epiBL-responsive transcripts, the majority being from the 48-h time point (n = 118). Real-time reverse-transcription polymerase chain reaction analysis validated the results for eight transcripts, including five defense genes. The results of gene expression studies show that chromatin remodeling, hormonal signaling, photosynthesis, and pathogenesis-related genes are activated in plants as a result of growth in epiBL.

  7. Films based on oxidized starch and cellulose from barley.

    Science.gov (United States)

    El Halal, Shanise Lisie Mello; Colussi, Rosana; Deon, Vinícius Gonçalves; Pinto, Vânia Zanella; Villanova, Franciene Almeida; Carreño, Neftali Lenin Villarreal; Dias, Alvaro Renato Guerra; Zavareze, Elessandra da Rosa

    2015-11-20

    Starch and cellulose fibers were isolated from grains and the husk from barley, respectively. Biodegradable films of native starch or oxidized starches and glycerol with different concentrations of cellulose fibers (0%, 10% and 20%) were prepared. The films were characterized by morphological, mechanical, barrier, and thermal properties. Cellulose fibers isolated from the barley husk were obtained with 75% purity and high crystallinity. The morphology of the films of the oxidized starches, regardless of the fiber addition, was more homogeneous as compared to the film of the native starch. The addition of cellulose fibers in the films increased the tensile strength and decreased elongation. The water vapor permeability of the film of oxidized starch with 20% of cellulose fibers was lower than the without fibers. However the films with cellulose fibers had the highest decomposition with the initial temperature and thermal stability. The oxidized starch and cellulose fibers from barley have a good potential for use in packaging. The addition of cellulose fibers in starch films can contribute to the development of films more resistant that can be applied in food systems to maintain its integrity. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Unique and Conserved Features of the Barley Root Meristem

    Directory of Open Access Journals (Sweden)

    Gwendolyn K. Kirschner

    2017-07-01

    Full Text Available Plant root growth is enabled by root meristems that harbor the stem cell niches as a source of progenitors for the different root tissues. Understanding the root development of diverse plant species is important to be able to control root growth in order to gain better performances of crop plants. In this study, we analyzed the root meristem of the fourth most abundant crop plant, barley (Hordeum vulgare. Cell division studies revealed that the barley stem cell niche comprises a Quiescent Center (QC of around 30 cells with low mitotic activity. The surrounding stem cells contribute to root growth through the production of new cells that are displaced from the meristem, elongate and differentiate into specialized root tissues. The distal stem cells produce the root cap and lateral root cap cells, while cells lateral to the QC generate the epidermis, as it is typical for monocots. Endodermis and inner cortex are derived from one common initial lateral to the QC, while the outer cortex cell layers are derived from a distinct stem cell. In rice and Arabidopsis, meristem homeostasis is achieved through feedback signaling from differentiated cells involving peptides of the CLE family. Application of synthetic CLE40 orthologous peptide from barley promotes meristem cell differentiation, similar to rice and Arabidopsis. However, in contrast to Arabidopsis, the columella stem cells do not respond to the CLE40 peptide, indicating that distinct mechanisms control columella cell fate in monocot and dicot plants.

  9. Recombinant human proinsulin from transgenic corn endosperm: solvent screening and extraction studies

    Directory of Open Access Journals (Sweden)

    C. S. Farinas

    2007-09-01

    Full Text Available Recombinant pharmaceutical proteins are being produced in different systems such as bacteria and mammalian cell cultures. The use of transgenic plants as bioreactors has recently arisen as an alternative system offering many practical and economic advantages. However, finding an optimum strategy for the downstream processing (DSP of recombinant proteins from plants still remains a challenge. In this work, we studied the extraction of recombinant human proinsulin (rhProinsulin produced in the endosperm of transgenic corn seeds. An efficient extraction solvent was selected and the effects of temperature, solvent-to-solid ratio, time, and impeller rotational speed on the extraction were evaluated using an experimental design. After an extraction kinetics study, temperature was further evaluated to maximize rhProinsulin concentration in the extracts and to minimize the native corn components carbohydrates, phenolic compounds, and proteins. A high efficiency condition for extracting rhProinsulin with the selected solvent - 50 mM sodium bicarbonate buffer pH 10.0 and 5 mM DTT - was an extraction time of 2 h at a solvent-to-solid ratio of 10:1 and 25º C. The maximum rhProinsulin concentration in the extracts at that condition was 18.87 mg l-1 or 0.42% of the total soluble protein. These values are within the range in which the production of pharmaceutical proteins in plants can be competitive with other expression systems. The results presented provide information for the development of an additional production platform for the hormone insulin.

  10. A role for α-galactosidase in the degradation of the endosperm cell walls of lettuce seeds, cv. Grand Rapids.

    Science.gov (United States)

    Leung, D W; Bewley, J D

    1983-04-01

    Isolated endosperms of Grand Rapids lettuce (Lactuca sativa L.) seeds undergo extensive cell-wall degradation and sugars are released into the surrounding incubation medium. One sugar so released is galactose. α-Galactosidase (EC 3.2.122) is present at the same level in both dry and imbibed isolated endosperms and is responsible for the release of galactose. However, this enzyme does not act upon the native endosperm cell wall, but requires first its partial hydrolysis and the production of oligomers by the action of endo-β-mannanase (EC 3.2.1.787). Galactose is then cleaved from these oligomers, allowing their further subsequent hydrolysis by endo-β-mannanase. Thus α-galactosidase and endo-β-mannanase act cooperatively to effect the hydrolysis of the lettuce endosperm cell walls.

  11. HvWRKY10, HvWRKY19, and HvWRKY28 positively regulate Mla-triggered immunity and basal defense to barley powdery mildew

    Science.gov (United States)

    WRKY proteins represent a large family of transcription factors (TFs), involved in plant development and defense responses. So far, fifty-five unique barley TFs have been annotated that contain the WRKY domain; twenty-six of these are present on the Barley1 GeneChip. We analyzed time-course expres...

  12. Functional proteomics of barley and barley chloroplasts – strategies, methods and perspectives

    DEFF Research Database (Denmark)

    Petersen, Jørgen; Rogowska-Wrzesinska, Adelina; Jensen, Ole Nørregaard

    2013-01-01

    Barley (Hordeum vulgare) is an important cereal grain that is used in a range of products for animal and human consumption. Crop yield and seed quality has been optimized during decades by plant breeding programs supported by biotechnology and molecular biology techniques. The recently completed...... whole-genome sequencing of barley revealed approximately 26,100 open reading frames, which provides a foundation for detailed molecular studies of barley by functional genomics and proteomics approaches. Such studies will provide further insights into the mechanisms of, for example, drought and stress...... tolerance, micronutrient utilization, and photosynthesis in barley. In the present review we present the current state of proteomics research for investigations of barley chloroplasts, i.e., the organelle that contain the photosynthetic apparatus in the plant. We describe several different proteomics...

  13. Comparative energy content and amino acid digestibility of barley obtained from diverse sources fed to growing pigs.

    Science.gov (United States)

    Wang, Hong Liang; Shi, Meng; Xu, Xiao; Ma, Xiao Kang; Liu, Ling; Piao, Xiang Shu

    2017-07-01

    Two experiments were conducted to determine the content of digestible energy (DE) and metabolizable energy (ME) as well as the apparent ileal digestibility (AID) and standardized ileal digestibility (SID) of crude protein (CP) and amino acids (AA) in barley grains obtained from Australia, France or Canada. In Exp. 1, 18 growing barrows (Duroc×Landrace×Yorkshire; 31.5±3.2 kg) were individually placed in stainless-steel metabolism crates (1.4×0.7×0.6 m) and randomly allotted to 1 of 3 test diets. In Exp. 2, eight crossbred pigs (30.9±1.8 kg) were allotted to a replicate 3×4 Youden Square designed experiment with three periods and four diets. Two pigs received each diet during each test period. The diets included one nitrogen-free diet and three test diets. The relative amounts of gross energy (GE), CP, and all AA in the Canadian barley were higher than those in Australian and French barley while higher concentrations of neutral detergent fiber, acid detergent fiber, total dietary fiber, insoluble dietary fiber and β-glucan as well as lower concentrations of GE and ether extract were observed in the French barley compared with the other two barley sources. The DE and ME as well as the SID of histidine, isoleucine, leucine and phenylalanine in Canadian barley were higher (penergy content and the SID and AID of AA were observed among barley sources obtained from three countries. The feeding value of barley from Canada and Australia was superior to barley obtained from France which is important information in developing feeding systems for growing pigs where imported grains are used.

  14. Radiosensitivities of cultured barley of different type (Hordeum vulgare)

    International Nuclear Information System (INIS)

    Wang Cailian; Shen Mei; Xu Gang; Zhao Kongnan

    1990-01-01

    The dormant seeds (with 13% moisture) of 47 barley varieties were irradiated with various doses (0-40 krad) of 137 Cs γ-rays. The radiosensitivities of naked barley was significantly higher than that of hulled barley. The sensitive coefficients of seedling height were 0.04945 and 0.03667 for naked barley and hulled barley, respectively. The radiosensitivity of four-row naked barley was significantly higher than that of two-row hulled barley and six-row hulled barley. 47 varieties studied could be divided into five types with different radiosensitivities, i.e. extreme resistant, resistant, intermediate, sensitive and extreme sensitive. It was also found that the dose-effect curves of cell nucleus volume had a peal at 30 krad

  15. Mutagenic effects of endosperm of triticum aestivum implanted by heavy ion beams

    International Nuclear Information System (INIS)

    Xie Hongmei; Li Xinglin; Wei Zengquan; Xie Zhongkui

    2004-01-01

    75 MeV/u 16 O 8+ ions (degraded to 36 MeV/u) were used to implant into endosperm about 2.4 mm on top of the seeds. Germination started after a 'grafting' technique was employed. Chromosomal aberration frequency and micronucleus frequency of the root-tip cells in M 0 were measured. The results indicate that the frequencies were proportional to implanted dose. Antioxidant enzyme activity, MDA content and protein content of present generation M 0 were assayed. Farm culture was carried out in many generations. Short-stem and various variation of ear-type were obtained and the variation possess heredity. It showed that the endosperm implanted by the ions not only affected biological repair system, but also induced the mutation of offspring

  16. The breeding of new malting barley variety 'Yangpi No.2'

    International Nuclear Information System (INIS)

    Chen Xiulan; He Zhentian; Han Yuepeng; Wang Jinrong; Yang Hefeng

    2005-01-01

    'Yangpi No.2' barley pasted the examination of Jiangsu province in 2002, is the new spring two-rowed malting barley variety selected by which irradiation mutated the early-maturing of barley. The yield capacity of 'Yangpi No.2' barley is about 6750 kg/hm 2 , it had the characters of early-maturing, good agronomic characters, strong anti-adversity, high quality, and adapted well to everywhere in Jiangsu province. (authors)

  17. Effects of x-ray irradiation on the induction of. cap alpha. -amylase synthesis by gibberelic acid in the aleurone system of barley

    Energy Technology Data Exchange (ETDEWEB)

    Zellner, H

    1974-01-01

    The influence of ionizing radiation on a system without DNA replication and cell division was investigated with the aid of GA/sub 3/-induced ..cap alpha..-amylase synthesis in aleurone cells of barley. The reaction of the system was determined by dose effect curves (after irradiation of one half of the endosperms in rest) for the synthesis and secretion of ..cap alpha..-amylase, protein, and reducing sugars. The system proves to be highly radiation-resistant. The course of the synthesis of ..cap alpha..-amylase after X-ray irradiation with varying doses during enzyme synthesis suggests that transcription occurs in the middle of the lag-phase and is the most sensitive stage in enzyme synthesis, while translation alone is less sensitive to radiation.

  18. Mapping genes in barley for resistance to Puccinia coronata from couch grass and to P. striiformis from brome, wheat and barley

    NARCIS (Netherlands)

    Niks, R.E.; Alemu, Sisay K.; Marcel, T.C.; Heyzen, van Skye

    2015-01-01

    Barley (Hordeum vulgare L.) mapping populations have been developed that are useful to study the inheritance of quantitative resistance to adapted and unadapted rust fungi. In a recent host range study, we found that the parents of those mapping populations also differed in their resistance to

  19. Sprouted barley for dairy cows: Nutritional composition and digestibility

    Science.gov (United States)

    A 4-unit dual-flow continuous culture fermentor system was used to assess the effect of supplementing 7-d sprouted barley or barley grain with an haylage or pasture diet on nutrient digestibility and methane output. Barley grain was sprouted in climate controlled growth chambers, to be used as part ...

  20. Use of sodium hydroxide treated selenium deficient barley to induce vitamin E and selenium deficiency in yearling cattle.

    Science.gov (United States)

    Rice, D A; McMurray, C H

    1986-02-15

    Selenium deficient barley grown in Northern Ireland was treated with sodium hydroxide to deplete it of vitamin E. Housed cattle fed a complete diet based on this treated barley developed nutritional degenerative myopathy, showing that spontaneous myopathy in yearling cattle can be the result of vitamin E and selenium deficiency alone. The diet used is as effective and cheaper than others presently in use for inducing degenerative myopathy.

  1. OsbZIP58, a basic leucine zipper transcription factor, regulates starch biosynthesis in rice endosperm.

    Science.gov (United States)

    Wang, Jie-Chen; Xu, Heng; Zhu, Ying; Liu, Qiao-Quan; Cai, Xiu-Ling

    2013-08-01

    Starch composition and the amount in endosperm, both of which contribute dramatically to seed yield, cooking quality, and taste in cereals, are determined by a series of complex biochemical reactions. However, the mechanism regulating starch biosynthesis in cereal seeds is not well understood. This study showed that OsbZIP58, a bZIP transcription factor, is a key transcriptional regulator controlling starch synthesis in rice endosperm. OsbZIP58 was expressed mainly in endosperm during active starch synthesis. osbzip58 null mutants displayed abnormal seed morphology with altered starch accumulation in the white belly region and decreased amounts of total starch and amylose. Moreover, osbzip58 had a higher proportion of short chains and a lower proportion of intermediate chains of amylopectin. Furthermore, OsbZIP58 was shown to bind directly to the promoters of six starch-synthesizing genes, OsAGPL3, Wx, OsSSIIa, SBE1, OsBEIIb, and ISA2, and to regulate their expression. These findings indicate that OsbZIP58 functions as a key regulator of starch synthesis in rice seeds and provide new insights into seed quality control.

  2. Non-reciprocal Interspecies Hybridization Barriers in the Capsella Genus Are Established in the Endosperm.

    Directory of Open Access Journals (Sweden)

    Carolin A Rebernig

    2015-06-01

    Full Text Available The transition to selfing in Capsella rubella accompanies its recent divergence from the ancestral outcrossing C. grandiflora species about 100,000 years ago. Whether the change in mating system was accompanied by the evolution of additional reproductive barriers that enforced species divergence remained unknown. Here, we show that C. rubella and C. grandiflora are reproductively separated by an endosperm-based, non-reciprocal postzygotic hybridization barrier. While hybridizations of C. rubella maternal plants with C. grandiflora pollen donors resulted in complete seed abortion caused by endosperm cellularization failure, the reciprocal hybridization resulted in the formation of small seeds with precociously cellularized endosperm. Strikingly, the transcriptomic response of both hybridizations mimicked respectively the response of paternal and maternal excess hybridizations in Arabidopsis thaliana, suggesting unbalanced genome strength causes hybridization failure in both species. These results provide strong support for the theory that crosses between plants of different mating systems will be unbalanced, with the outcrosser behaving like a plant of increased ploidy, evoking a response that resembles an interploidy-type seed failure. Seed incompatilibity of C. rubella pollinated by C. grandiflora followed the Bateson-Dobzhansky-Muller model, involving negative genetic interaction of multiple paternal C. grandiflora loci with at least one maternal C. rubella locus. Given that both species only recently diverged, our data suggest that a fast evolving mechanism underlies the post-zygotic hybridization barrier(s separating both species.

  3. Comparative analysis the selenium concentration in grains of wheat and barley species

    International Nuclear Information System (INIS)

    Jalal, F.; Arif, M.; Munsif, F.; Ali, K.

    2016-01-01

    Macro and micro nutrients are essential for human health and growth development. It is reported that about three million people are suffering from nutrient deficiencies all over the world. Various sources are available like: vegetables, fruits, fish, meat and cereals to overcome these deficiencies. Among cereals, wheat and barley are main source to meet the requirement of this dietary element. Two year studies were conducted to investigate the Se concentration in grains of different wheat (T. aestivum L., T. turgidum L. and T. durum L.) and barley (H. spontaneum L. and H. vulgare L.) species originated from different parts of the world. Results indicated that the durum and emmer wheat grains contain higher Se level in both studied years (70.5 and 72.9 micro g kg-1 in 2012 and 74.1 and 73.2 microg kg-1 in 2013 respectively). Among H. spontaneum L. collected from six populations, Mahola population of barley showed remarkable variations in grain Se concentration ranged from 88.3-437.2 and 90.2-439.5 micro g kg-1 in 2012 and 2013 respectively. The information obtained from the findings helps in identifying the lines of wild barley that have more Se uptake and accumulation capability. According to the conclusion of the study that H. Spontaneum L. had greater genetic variation for Se as compare to other species of wheat and barley. (author)

  4. Spatio-temporal appearance of α-amylase and limit dextrinase in barley aleurone layer in response to gibberellic acid, abscisic acid and salicylic acid.

    Science.gov (United States)

    Shahpiri, Azar; Talaei, Nasim; Finnie, Christine

    2015-01-01

    Cereal seed germination involves mobilization of storage reserves in the starchy endosperm to support seedling growth. In response to gibberellin produced by the embryo the aleurone layer synthesizes hydrolases that are secreted to the endosperm for degradation of storage products. In this study analysis of intracellular protein accumulation and release from barley aleurone layers is presented for the important enzymes in starch degradation: α-amylase and limit dextrinase (LD). Proteins were visualized by immunoblotting in aleurone layers and culture supernatants from dissected aleurone layers incubated up to 72 h with either gibberellic acid (GA), abscisic acid (ABA) or salicylic acid (SA). The results show that α-amylase is secreted from aleurone layer treated with GA soon after synthesis but the release of LD to culture supernatants was significantly delayed and coincided with a general loss of proteins from aleurone layers. Release of LD was found to differ from that of amylase and was suggested to depend on programmed cell death (PCD). Despite detection of intracellular amylase in untreated aleurone layers or aleurone layers treated with ABA or SA, α-amylase was not released from these samples. Nevertheless, the release of α-amylase was observed from aleurone layers treated with GA+ABA or GA+SA. © 2014 Society of Chemical Industry.

  5. The Genetic Architecture of Barley Plant Stature

    Science.gov (United States)

    Alqudah, Ahmad M.; Koppolu, Ravi; Wolde, Gizaw M.; Graner, Andreas; Schnurbusch, Thorsten

    2016-01-01

    Plant stature in temperate cereals is predominantly controlled by tillering and plant height as complex agronomic traits, representing important determinants of grain yield. This study was designed to reveal the genetic basis of tillering at five developmental stages and plant height at harvest in 218 worldwide spring barley (Hordeum vulgare L.) accessions under greenhouse conditions. The accessions were structured based on row-type classes [two- vs. six-rowed] and photoperiod response [photoperiod-sensitive (Ppd-H1) vs. reduced photoperiod sensitivity (ppd-H1)]. Phenotypic analyses of both factors revealed profound between group effects on tiller development. To further verify the row-type effect on the studied traits, Six-rowed spike 1 (vrs1) mutants and their two-rowed progenitors were examined for tiller number per plant and plant height. Here, wild-type (Vrs1) plants were significantly taller and had more tillers than mutants suggesting a negative pleiotropic effect of this row-type locus on both traits. Our genome-wide association scans further revealed highly significant associations, thereby establishing a link between the genetic control of row-type, heading time, tillering, and plant height. We further show that associations for tillering and plant height are co-localized with chromosomal segments harboring known plant stature-related phytohormone and sugar-related genes. This work demonstrates the feasibility of the GWAS approach for identifying putative candidate genes for improving plant architecture. PMID:27446200

  6. Zinc blotting assay for detection of zinc binding prolamin in barley (Hordeum vulgare) grain

    DEFF Research Database (Denmark)

    Uddin, Mohammad Nasir; Nielsen, Ane Langkilde-Lauesen; Vincze, Eva

    2014-01-01

    In plants, zinc is commonly found bound to proteins. In barley (Hordeum vulgare), major storage proteins are alcohol-soluble prolamins known as hordeins, and some of them have the potential to bind or store zinc. 65Zn overlay and blotting techniques have been widely used for detecting zinc......-binding protein. However, to our knowledge so far this zinc blotting assay has never been applied to detect a prolamin fraction in barley grains. A radioactive zinc (65ZnCl2) blotting technique was optimized to detect zinc-binding prolamins, followed by development of an easy-to-follow nonradioactive colorimetric...... zinc blotting method with a zinc-sensing dye, dithizone. Hordeins were extracted from mature barley grain, separated by SDS-PAGE, blotted on a membrane, renatured, overlaid, and probed with zinc; subsequently, zinc-binding specificity of certain proteins was detected either by autoradiography or color...

  7. SPRING BARLEY BREEDING FOR MALTING QUALITY

    OpenAIRE

    Alžbeta Žofajová; Jozef Gubiš; Ľudovít Sleziak; Klára Križanová; Vratislav Psota

    2010-01-01

    The aim of this contribution is to illustrate the results of spring barley breeding for malting quality and point out an important position of variety in production of  qualitative  raw material for maltinq and beer  industry as well as the system of evaluation the qualitative parameters of breeding materials and adaptation of barley breeding programms to the  new requirements of  malting and beer industry. As an example of the results obtained most recently descripti...

  8. Barley Transformation Using Agrobacterium-Mediated Techniques

    Science.gov (United States)

    Harwood, Wendy A.; Bartlett, Joanne G.; Alves, Silvia C.; Perry, Matthew; Smedley, Mark A.; Leyland, Nicola; Snape, John W.

    Methods for the transformation of barley using Agrobacterium-mediated techniques have been available for the past 10 years. Agrobacterium offers a number of advantages over biolistic-mediated techniques in terms of efficiency and the quality of the transformed plants produced. This chapter describes a simple system for the transformation of barley based on the infection of immature embryos with Agrobacterium tumefaciens followed by the selection of transgenic tissue on media containing the antibiotic hygromycin. The method can lead to the production of large numbers of fertile, independent transgenic lines. It is therefore ideal for studies of gene function in a cereal crop system.

  9. Barley seed proteomics from spots to structures

    DEFF Research Database (Denmark)

    Finnie, Christine; Svensson, Birte

    2009-01-01

    forms on 2D-gels. Specific protein families, including peroxidases and alpha-amylases have been subjected to in-depth analysis resulting in characterisation of different isozymes, post-translational. modifications and processing. A functional proteomics study focusing on the seed thioredoxin system has...... with information from rice and other cereals facilitate identification of barley proteins. Several hundred barley seed proteins are identified and lower abundance proteins including membrane proteins are now being analysed. In the present review we focus on variation in protein profiles of seed tissues during...

  10. Catalase activity of a crude enzyme preparation from iron-chlorotic barley (Hordeum vulgaris) seedlings

    Energy Technology Data Exchange (ETDEWEB)

    Kotaka, S; Krueger, A P; Andriese, P C

    1964-12-19

    An attempt is made to investigate the effect of Fe-EDTA on catalase activity of the enzyme preparation from iron-chlorotic barley. It has been observed that the addition of iron in the form of iron-potassium-ethylene-tetraacetate to cell-free extracts prepared from barley seedlings which had developed chlorosis produced a marked increase in the catalase activity of the extracts. Results are presented which indicate that the pattern of increase in catalase activity is related to the extent of chlorosis. 7 references, 3 figures.

  11. Degradation of the endosperm cell walls of Lactuca sativa L., cv. grand rapids in relation to the mobilisation of proteins and the production of hydrolytic enzymes in the axis, cotyledons and endosperm.

    Science.gov (United States)

    Leung, D W; Reid, J S; Bewley, J D

    1979-01-01

    The timing of changes in total nitrogen and soluble amino nitrogen content, and in the activities of proteinase (pH 7.0), isocitrate lyase, catalase, phytase, phosphatase (pH 5.0), α-galactosidase and β-mannosidase were studied in extracts from the cotyledons, axis and endosperms of germinating and germinated light-promoted lettuce seeds. The largest amount of total nitrogen (2.7% seed dry weight) occurs within the cotyledons, as storage protein. As this decreases the total nitrogen content of the axis increases and the soluble amino nitrogen in the cotyledons and axis increases. Proteinase activity in the cotyledons increases coincidentally with the depletion of total nitrogen therein. Enzymes for phytate mobilisation and for gluconeogenesis of hydrolysed lipids increase in activity in the cotyledons as the appropriate stored reserves decline. Beta-mannosidase, an enzyme involved in the hydrolysis of oligo-mannans released by the action of endo-β-mannase on mannan reserves in the endosperm, arises within the cotyledons. This indicates that complete hydrolysis of mannans to the monomer does not occur within the endosperm. Mobilisation of all cotyledon reserves occurs after the endosperm has been degraded, providing further evidence that the endosperm is an early source of food reserves for the growing embryo.

  12. Objectives and results of barley breeding in Australia

    International Nuclear Information System (INIS)

    Sparrow, D.H.B.

    1990-01-01

    An important current development in Australian barley improvement is the release of semi-dwarf cultivars. These are derived from Abed Deba, Triumph or Aapo which are believed to have an allelic series of mutant genes. A common problem with these genes is their association with relatively late maturity and small grain, limiting current cultivars to rainfall areas above 450mm per annum. The first release 'Skiff' (S.A., N.S.W. 1988) is to be followed by selections from 'Forrest' x 'Aapo' in Western Australia and 'Grimmett' x 'Triumph' in Queensland, whilst 'Triumph' is already being grown in Tasmania. (author)

  13. Association Mapping of Malting Quality Quantitative Trait Loci in Winter Barley: Positive Signals from Small Germplasm Arrays

    Directory of Open Access Journals (Sweden)

    Lucía Gutiérrez

    2011-11-01

    Full Text Available Malting quality comprises one of the most economically relevant set of traits in barley ( L.. It is a complex phenotype, expensive and difficult to measure, that would benefit from a marker-assisted selection strategy. Malting quality is a target of the U.S. Barley Coordinated Agricultural Project (CAP and development of winter habit malting barley varieties is a key objective of the U.S. barley research community. The objective of this work was to detect quantitative trait loci (QTL for malting quality traits in a winter breeding program that is a component of the U.S. Barley CAP. We studied the association between five malting quality traits and 3072 single nucleotide polymorphisms (SNPs from the barley oligonucleotide pool assay (BOPA 1 and 2, assayed in advanced inbred lines from the Oregon State University (OSU breeding program from three germplasm arrays (CAP I, CAP II, and CAP III. After comparing 16 models we selected a structured association model with posterior probabilities inferred from software STRUCTURE (QK approach to use on all germplasm arrays. Most of the marker-trait associations are germplasm- and environment-specific and close to previously mapped genes and QTL relevant for malt and beer quality. We found alleles fixed by random genetic drift, novel unmasked alleles, and genetic-background interaction. In a relatively small population size study we provide strong evidence for detecting true QTL.

  14. Transport and metabolism of a sucrose analog (1'-fluorosucrose) into Zea mays L. Endosperm without invertase hydrolysis

    International Nuclear Information System (INIS)

    Schmalstig, J.G.; Hitz, W.D.

    1987-01-01

    1'-fluorosucrose (FS), a sucrose analog resistant to hydrolysis by invertase, was transported from husk leaves into maize (Zea mays L.) kernels with the same magnitude and kinetics as sucrose. 14 C-Label from [ 14 C]FS and [ 14 C]sucrose in separate experiments was distributed similarly between the pedicel, endosperm, and embryo with time. FS passed through maternal tissue and was adsorbed intact into the endosperm where it was metabolized and used in synthesis of sucrose and methanol-chloroform-water insolubles. Accumulation of [ 14 C]sucrose from supplied [ 14 C]glucosyl-FS indicated that the glucose moiety from the breakdown of sucrose (here FS), which normally occurs in the process of starch synthesis in maize endosperm, was available to the pool of substrates for resynthesis of sucrose. Uptake of FS into maize endosperm without hydrolysis suggest that despite the presence of invertase in maternal tissues and the hydrolysis of a large percentage of sucrose unloaded form the phloem, hexoses are not specifically needed for uptake into maize endosperm

  15. The effect of intercropping on weed infestation of a spring barley crop cultivated in monoculture

    Directory of Open Access Journals (Sweden)

    Ewa Kwiecińska-Poppe

    2012-12-01

    Full Text Available This paper presents the results of a study carried out in the years 2005-2007 in the Bezek Experimental Farm near the city of Chełm, Poland, on heavy mixed rendzina soil. The effect of intercropping, using red clover (cv. Dajana and white clover (cv. Astra, on weed infestation of a spring barley crop was studied. The species composition of weeds in the spring barley crop changed to a small extent under the influence of the application of clover intercropping, whereas the population size of particular species showed large fluctuations. In the spring barley crop with the red clover intercrop, Sonchus arvensis occurred in greatest numbers among dicotyledonous weed species. In the barley crop with white clover and without intercrop, Viola arvensis and Sonchus arvensis were the dominant dicotyledonous species. Setaria pumila was the dominant monocotyledonous species in all the treatments. Intercropping using red and white clover clearly limited the growth and development of weeds. The red clover intercrop in the spring barley crop better reduced the infestation with dicotyledonous weeds and also significantly reduced the number of monocotyledonous weeds and the total number of weeds, whereas the white clover intercrop limited only the number of monocotyledonous weeds. The application of the herbicide Chwastox Extra 300 SL significantly reduced the fresh weight of weeds found in the spring barley crop. The presence of the intercrop resulted in different total numbers of weeds in particular treatments. Intercropping distinctly limited the occurrence of the following weed species: Sonchus arvensis, Fallopia convolvulus, Melandrium album, Amaranthus retroflexus, Veronica arvensis and Medicago lupulina. The investigated intercrop species also reduced the biomass of weeds. The application of the herbicide did not differentiate the number of monocotyledonous weeds, which resulted from the application of Chwastox Extra 300 SL that controls only

  16. Inhibition of barley grain germination by light

    NARCIS (Netherlands)

    Roth-Bejerano, N.; Meulen, R.M. van der; Wang, M.

    1996-01-01

    Intact grains of barley (Hordeum distichum cv. Triumph) germinated rapidly in the dark or when exposed to brief daily light breaks in the temperature range 15-25°C, although germination proceeded less rapidly at low temperatures. Prolonged illumination (16 h/day) or continuous light inhibited

  17. The barley Jip23b gene

    DEFF Research Database (Denmark)

    Müller-Uri, Frieder; Cameron-Mills, Verena; Mundy, John

    2002-01-01

    The barley gene (Jip23) encoding a 23,000-Da protein of unknown function was isolated and shown to be induced by jasmonate methyl ester (MeJA) in leaves. 5'upstream Jip23 sequence was isolated and fused to the beta-glucuronidase gene (GUS), and this reporter was introduced by particle bombardment...

  18. Barley Breeding for Quality Improvement in Tunisia

    African Journals Online (AJOL)

    TOSHIBA

    2012-11-06

    Nov 6, 2012 ... sub-humid environment at Beja and a semi-arid one at Kef. Heading date ... State of art showed that barley was a main food crop in. North Africa for ... rably to many other food grains (wheat, rye, and oats) and played a .... rates both analysis of variance (ANOVA) and principal component analysis (PCA) into ...

  19. Chromosome aberration assays in barley (Hordeum vulgare)

    Energy Technology Data Exchange (ETDEWEB)

    Constantin, M J [Univ. of Tennessee, Knoxville; Nilan, R A

    1982-01-01

    Barley is an exceellent organism for studies of induced chromosome aberrations because of its few (2n = 2x = 14) relatively large chromosomes. Root-tip and shoot-tip cells have been used extensively for the study of ionizing radiation-induced chromosome aberrations. The general procedures are well known, the technology is simple and easy to learn, and the assays are relatively quick and inexpensive. Both root tips and shoot tips can be used for the study of chemical mutagens as well as ionizing radiations. Pollen mother cells are well suited for studying the effects of mutagens on meiotic chromosomes. The literature review for the Gene-Tox Program reported on 61 chemicals tested for their effects on barley chromosomes. Of these, 90% were reported to be either positive or positive dose-related, while 7% were negative and 3% were questionable. Barley assays based on chromosomal aberrations are useful to detect the clastogenic potency of chemicals under laboratory conditions. Indications are that the data from barley can be used to corroborate data obtained from other organisms. Among the classes of chemicals assayed were: alcohols and phenols; alkaloids; epoxides; alkyl sulfates; amides and sulfonamides; aromatic amines; aryl halides; aziridines; alkenes; carbamates; hydroazides; nitroaromatics; nitrosamides; nitrosources; phenothiazines; and polycyclic aromatic hydrocarbons.

  20. Technical note: In situ ruminal starch disappearance kinetics of hull-less barley, hulled barley, and corn grains.

    Science.gov (United States)

    Ferreira, G; Yang, Y; Teets, C L; Brooks, W S; Griffey, C A

    2018-07-01

    The objective of this study was to compare ruminal starch disappearance rates of hull-less barley, hulled barley, and corn grains. Five different genotypes were used for each of the 2 barley types. In addition, each of these genotypes was grown in 2 different locations and years, resulting 10 independent barley samples for each of the 2 barley grain types. Five different genotypes of corn grain were obtained from a commercial seed company. After being ground to pass through a 4-mm screen of a cutter mill, 3.6 g of each grain was placed into a porous bag, which was then incubated in the rumen of 2 ruminally cannulated cows for 0, 4, 8, 12, 24, and 48 h. Corn grains had greater instant ruminal starch disappearances than barley grains (22.4 and 8.2%, respectively). Instant ruminal starch disappearances did not differ between hulled and hull-less barley grains. Ruminal starch fractional disappearance rates were greatest for hulled barley grains, moderate for hull-less barley grains, and lowest for corn grains (15.3, 13.9, and 7.1%/h, respectively). Ruminal starch half-life was shortest for hulled and hull-less barley grains (4.4 h) and longest for corn grains (6.6 h). Ruminal starch half-life did not differ between hulled barley and hull-less barley grains. In conclusion, using a holistic experimental design and statistical analysis, this study showed that starch from hull-less barley grains has a ruminal half-life similar to that of hulled barley grains and shorter than that of corn grains. Copyright © 2018 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  1. Barley yellow dwarf virus: Luteoviridae or Tombusviridae?

    Science.gov (United States)

    Miller, W Allen; Liu, Sijun; Beckett, Randy

    2002-07-01

    Summary Barley yellow dwarf virus (BYDV), the most economically important virus of small grains, features highly specialised relationships with its aphid vectors, a plethora of novel translation mechanisms mediated by long-distance RNA interactions, and an ambiguous taxonomic status. The structural and movement proteins of BYDV that confer aphid transmission and phloem-limitation properties resemble those of the Luteoviridae, the family in which BYDV is classified. In contrast, many genes and cis-acting signals involved in replication and gene expression most closely resemble those of the Tombusviridae. BYDV is in genus Luteovirus, family Luteoviridae. BYDV includes at least two serotypes or viruses: BYDV-PAV and BYDV-MAV. The former BYDV-RPV is now Cereal yellow dwarf virus-RPV (CYDV-RPV). CYDV is in genus Polerovirus, family Luteoviridae. Genus Luteovirus shares many features with family Tombusviridae. Physical properties: approximately 25 nm icosahedral (T = 3) virions. One major (22 kDa) and one minor (50-55 kDa) coat protein. 5.6-5.8 kb positive sense RNA genome with no 5'-cap and no poly(A) tail. Most grasses. Most important in oats, barley and wheat. Also infects maize and rice. Yellowing and dwarfing in barley, stunting in wheat; reddening, yellowing and blasting in oats. Some isolates cause leaf notching and curling. Key attractions: Model for the study of circulative transmission of aphid-transmitted viruses. Plethora of unusual translation mechanisms. Evidence of recombination in recent evolutionary history creates taxonomic ambiguity. Economically important virus of wheat, barley and oats, worldwide. Useful websites/meetings: International symposium: 'Barley Yellow Dwarf Disease: Recent Advances and Future Strategies', CIMMYT, El Batan, Mexico, 1-5 September 2002, http://www.cimmyt.cgiar.org/Research/wheat/Conf_BYD_02/invitation.htm http://www.cimmyt.org/Research/wheat/BYDVNEWS/htm/BYDVNEWS.htm Aphid transmission animation: http://www.ppws.vt.edu/~sforza/tmv/bydv_aph.html.

  2. miR172 down-regulates the translation of cleistogamy 1 in barley

    Science.gov (United States)

    Floret opening in barley is induced by the swelling of the lodicule, a trait under the control of the cleistogamy1 (cly1) gene. The product of cly1 is a member of the APETALA2 (AP2) transcription factor family, which inhibits lodicule development. A sequence polymorphism at the miR172 target site wi...

  3. Identification of QTLs for powdery mildew and scald resistance in barley

    NARCIS (Netherlands)

    Shtaya, M.J.Y.; Marcel, T.C.; Sillero, J.C.; Niks, R.E.; Rubiales, D.

    2006-01-01

    A population of 103 recombinant inbred lines (RILs, F9-derived lines) developed from the two-row spring barley cross L94 × `Vada¿ was evaluated under field conditions for resistance against powdery mildew (Blumeria graminis f.sp. hordei) and scald (Rhynchosporium secalis). Apart from the major

  4. Registration of ‘Kardia’, a Two-Rowed Spring Food Barley

    Science.gov (United States)

    ‘Kardia’ (Reg. No. XXXX, XXXX), a two-rowed spring food barley (Hordeum vulgare L.) developed by the USDA-ARS, Aberdeen, ID, in cooperation with the University of Idaho Agricultural Experiment Station, was released in 2015. Kardia is derived from the cross of ‘03AH3054 / 98Ab12019’ and was advanced...

  5. Lipid and sugar profiles of various barley cultivars (Hordeum vulgare

    Directory of Open Access Journals (Sweden)

    Pastor Kristian A.

    2015-01-01

    Full Text Available The lipid components and soluble sugars in flour samples of different cultivars of barley (Hordeum vulgare, involving winter malting barley, winter forage barley, spring barley, and hulless barley, were identified. Fatty acids were extracted from flour samples with n-hexane, and derivatized into volatile methyl esters, using TMSH (trimethylsulfonium hydroxide in methanol. Soluble sugars were extracted from defatted and dried samples of barley flour with 96% ethanol, and further derivatized into the corresponding trimethylsilyl (TMS oximes, using hydroxylamine hydrochloride solution and BSTFA (N,O-bis-(trimethylsilyl-trifluoroacetamide. The hexane and alcoholic extracts of barley cultivars were analyzed by GC-MS system. Lipid and sugar compositions were very similar in all barley cultivars. Therefore, multivariate analysis was applied to numerical values of automatically integrated areas of the identified fatty acid methyl esters and TMS oximes of soluble sugars. The application of hierarchical cluster analysis showed a great similarity between the investigated flour samples of barley cultivars, according to their fatty acid content (0.96. Also, significant, but somewhat less similarity was observed regarding the content of soluble sugars (0.70. These preliminary results indicate the possibility of distinguishing flour made of barley, regardless of the variety, from flours made of other cereal species, just by the analysis of the contents of fatty acids and soluble sugars.[Projekat Ministarstva nauke Republike Srbije, br. TR 31066

  6. Nitrogen and phosphorus compounds in the aleurone grains of Iris pseudoacorus endosperm and Pisum sativum cotyledons

    Directory of Open Access Journals (Sweden)

    Ligia Konopska

    2015-01-01

    Full Text Available Aleurone grains from Iris pseudoacorus endosperm and Pisum sativum cotyledons were isolated partly according to Tombs's method (1967. Nitrogen compounds content was determined in them by Kjeldahl's micromethod, and in the particular fractions after Thiman and Laloraya (1960. Mainly protein N was detected in the aleurone grains, constituting 14.8 and 15.2 per cent of the dry mass of pea and Iris seeds, respectively. Moreover, phosphorus compounds were fractionated according to Holden and Pirie (1955. Analyses demonstrated the presence in aleurone grains of inorganic P, acid-soluble organophosphorus compounds, phospholipids and RNA.

  7. The nutritional property of endosperm starch and its contribution to the health benefits of whole grain foods.

    Science.gov (United States)

    Zhang, Genyi; Hamaker, Bruce R

    2017-12-12

    Purported health benefits of whole grain foods in lowering risk of obesity, type 2 diabetes, cardiovascular disease, and cancer are supported by epidemiological studies and scientific researches. Bioactive components including dietary fibers, phytochemicals, and various micronutrients present in the bran and germ are commonly considered as the basis for such benefits. Endosperm starch, as the major constituent of whole grains providing glucose to the body, has been less investigated regarding its nutritional property and contribution to the value of whole grain foods. Nutritional quality of starch is associated with its rate of digestion and glucose absorption. In whole grain foods, starch digestion and glucose delivery may vary depending on the form in which the food is delivered, some with starch being rapidly and others slowly digested. Furthermore, there are other inherent factors in whole grain products, such as phenolic compounds and dietary fibers, that may moderate glycemic profiles. A good understanding of the nutritional properties of whole grain starch is important to the development of food processing technologies to maximize their health benefits.

  8. Pollination with gamma-irradiated pollen and seed development in kiwifruit (Actinidia deliciosa var. deliciosa)

    International Nuclear Information System (INIS)

    Musial, K.

    1997-01-01

    Full text. The effects of pollen irradiation at 70 and 90 kr on seed set were studied in Actinidia deliciosa var. deliciosa. Pollination with irradiated pollen affected seed development and contents. Rising irradiation doses increased the percentages of empty seeds and decreased the percentages of seeds containing embryos with endosperm. Moreover, pollination with heavily irradiated pollen led to the formation of seeds containing the endosperm only. Embryo and endosperm size was also strongly influenced by irradiated pollen. The length of endosperms was reduced at all levels of pollen irradiation compared to the non-irradiated controls; the embryo development was conspicuously retarded. Cells in endosperm resulting from the treatments differed in the presence and number of starch grains. (author)

  9. A fermented barley and soybean formula enhances skin hydration.

    Science.gov (United States)

    Lee, Sein; Kim, Jong-Eun; Suk, Sujin; Kwon, Oh Wook; Park, Gaeun; Lim, Tae-Gyu; Seo, Sang Gwon; Kim, Jong Rhan; Kim, Dae Eung; Lee, Miyeong; Chung, Dae Kyun; Jeon, Jong Eun; Cho, Dong Woon; Hurh, Byung Serk; Kim, Sun Yeou; Lee, Ki Won

    2015-09-01

    Skin hydration is one of the primary aims of beauty and anti-aging treatments. Barley (Hordeum vulgare) and soybean (Glycine max) are major food crops, but can also be used as ingredients for the maintenance of skin health. We developed a natural product-based skin treatment using a barley and soybean formula (BS) incorporating yeast fermentation, and evaluated its skin hydration effects as a dietary supplement in a clinical study. Participants ingested a placebo- (n = 33) or BS- (3 g/day) containing drink (n = 32) for 8 weeks. A significant increase in hydration in the BS group as compared to the placebo group was observed on the faces of subjects after 4 and 8 weeks, and on the forearm after 4 weeks. Decreases in stratum corneum (SC) thickness were also observed on the face and forearm. BS enhanced hyaluronan (HA) and skin barrier function in vitro and reduced Hyal2 expression in human dermal fibroblasts (HDF). BS also recovered ultraviolet (UV) B-induced downregulation of HA in HaCaT cells. These results suggest that BS has promising potential for development as a health functional food to enhance skin health.

  10. An Integrated Resource for Barley Linkage Map and Malting Quality QTL Alignment

    Directory of Open Access Journals (Sweden)

    Péter Szűcs

    2009-07-01

    Full Text Available Barley ( L. is an economically important model plant for genetics research. Barley is currently served by an increasingly comprehensive set of tools for genetic analysis that have recently been augmented by high-density genetic linkage maps built with gene-based single nucleotide polymorphisms (SNPs. These SNP-based maps need to be aligned with earlier generation maps, which were used for quantitative trait locus (QTL detection, by integrating multiple types of markers into a single map. A 2383 locus linkage map was developed using the Oregon Wolfe Barley (OWB Mapping Population to allow such alignments. The map is based on 1472 SNP, 722 DArT, and 189 prior markers which include morphological, simple sequence repeat (SSR, Restriction Fragment Length Polymorphism (RFLP, and sequence tagged site (STS loci. This new OWB map forms, therefore, a useful bridge between high-density SNP-only maps and prior QTL reports. The application of this bridge concept is shown using malting-quality QTLs from multiple mapping populations, as reported in the literature. This is the first step toward developing a Barley QTL Community Curation workbook for all types of QTLs and maps, on the GrainGenes website. The OWB-related resources are available at OWB Data and GrainGenes Tools (OWB-DGGT (.

  11. Barley grain for ruminants: A global treasure or tragedy

    Directory of Open Access Journals (Sweden)

    Nikkhah Akbar

    2012-07-01

    Full Text Available Abstract Barley grain (Hordeum vulgare L. is characterized by a thick fibrous coat, a high level of ß-glucans and simply-arranged starch granules. World production of barley is about 30 % of that of corn. In comparison with corn, barley has more protein, methionine, lysine, cysteine and tryptophan. For ruminants, barley is the third most readily degradable cereal behind oats and wheat. Due to its more rapid starch fermentation rate compared with corn, barley also provides a more synchronous release of energy and nitrogen, thereby improving microbial nutrient assimilation. As a result, feeding barley can reduce the need for feeding protected protein sources. However, this benefit is only realized if rumen acidity is maintained within an optimal range (e.g., > 5.8 to 6.0; below this range, microbial maintenance requirements and wastage increase. With a low pH, microbial endotoxines cause pro-inflammatory responses that can weaken immunity and shorten animal longevity. Thus, mismanagement in barley processing and feeding may make a tragedy from this treasure or pearl of cereal grains. Steam-rolling of barley may improve feed efficiency and post-rumen starch digestion. However, it is doubtful if such processing can improve milk production and feed intake. Due to the need to process barley less extensively than other cereals (as long as the pericarp is broken, consistent and global standards for feeding and processing barley could be feasibly established. In high-starch diets, barley feeding reduces the need for capacious small intestinal starch assimilation, subsequently reducing hindgut starch use and fecal nutrient loss. With its nutritional exclusivities underlined, barley use will be a factual art that can either matchlessly profit or harm rumen microbes, cattle production, farm economics and the environment.

  12. Detection of Ustilago nuda (Jensen) Rostrup in winter barley seed

    OpenAIRE

    Ignjatov Maja; Petrović Dragana; Vujaković Milka; Taški-Ajduković Ksenija; Nikolić Zorica; Jovičić Dušica

    2011-01-01

    Barley is one of the most important cereals grown in our agroecological conditions. The causal agent of loose smut on barley Ustilago nuda (Jensen) Rostrup occurs frequently as varieties susceptible to this pathogen are present in the production. Disease symptoms are manifested on barley head (spike). Parasite is transmitted by seed (seedborne) and stays in the embryo tissue of the infected kernel as dormant mycelium. Recommended method for detection of U. nuda is given by ISTA Rules (method ...

  13. Physiological responses in barley to applications of lanthanum

    International Nuclear Information System (INIS)

    Reddy, N.; Maheswaran, J.; Peverill, K.; Meehan, B.

    1998-01-01

    Full text: Chinese research and glasshouse investigations carried out in Victoria by the authors have shown that several plant species, when treated with Rare Earth Elements (REEs), retain greater amounts of moisture under water stressed conditions. The physiological adaptation of the plant to retain moisture in response to REE treatment however, has not been investigated. A glasshouse trial is currently in progress to study the physiological and agronomic responses of barley (cv. Schooner) grown in pots to application of lanthanum (0, 5 and 10 kg/ha), at a concentration of 0.05%, under well-watered (field capacity) and water-deficit (25 - 30% field capacity) conditions. Lanthanum was applied both directly to the soil and as a foliar spray. The physiological measurements include, photosynthetic rate, leaf water potential, osmotic potential, relative water content, stomatal conductance and water use efficiency. Measured agronomic parameters include plant height, tiller production, leaf area development, total grain weight, total biomass, root and shoot ratio and harvest index. Analysis of plant tissue for N, P, K, Ca, Mg, Zn and La to study the relationship between application of REE and nutrient uptake is also being carried out. The paper discusses physiological and agronomic changes in barley plants in response to treatment with lanthanum, under conditions of water stress

  14. Effect of heat stress on the pattern of protein synthesis in wheat endosperm

    International Nuclear Information System (INIS)

    Inwood, W.; Bernardin, J.

    1990-01-01

    The exposure of detached wheat heads (T. aestivum L. cv Cheyenne) to elevated temperatures resulted not only in the induction of a typical set of high and low molecular weight heat shock proteins (hsps), but also in a differential effect on the synthesis of wheat storage proteins in endosperm tissue when monitored by SDS PAGE of 35 S-labeled polypeptides. The synthesis of hsps in the endosperm had a rapid onset, reached a maximum rate within the first 2 hours at 40 degree C, and then steadily decreased during the next four hours. When heads were returned to 25 degree C after 3 hours at 40 degree C, hsp synthesis did not cease abruptly, but gradually declined over the next several hours. High molecular weight glutenin protein synthesis was drastically reduced with the same time course as heat shock protein synthesis was induced at 40 degree C. Conversely, the synthesis of gliadin proteins remained at a high level at 40 degree C. The synthesis rates for glutenin and gliadin proteins remained at low and high levels, respectively, for as long as the elevated temperature was maintained up to 7 hours

  15. Phosphorylation of glyoxysomal malate synthase from castor oil seed endosperm and cucumber cotyledon

    International Nuclear Information System (INIS)

    Yang, Y.P; Randall, D.D.

    1989-01-01

    Glyoxysomal malate synthase (MS) was purified to apparent homogeneity from 3-d germinating castor oil seed endosperm by a relatively simple procedure including two sucrose density gradient centrifugations. Antibodies raised to the caster oil seed MS crossreacted with MS from cucumber cotyledon. MS was phosphorylated in both tissues in an MgATP dependent reaction. The phosphorylation pattern was similar for both enzymes and both enzymes were inhibited by NaF, NaMo, (NH 4 )SO 4 , glyoxylate and high concentration of MgCl 2 (60 mM), but was not inhibited by NaCl and malate. Further characterization of the phosphorylation of MS from castor oil seed endosperms showed that the 5S form of MS is the form which is labelled by 32 P. The addition of exogenous alkaline phosphatase to MS not only decreased enzyme activity, but could also dephosphorylate phospho-MS. The relationship between dephosphorylation of MS and the decrease of MS activity is currently under investigation

  16. Implementation of biochemical screening to improve baking quality of barley

    DEFF Research Database (Denmark)

    Vincze, Éva; Dionisio, Giuseppe; Aaslo, Per

    2011-01-01

    Barley (Hordeum vulgare) has the potential to offer considerable human nutritional benefits, especially as supplement to wheat-based breads. Under current commercial baking conditions it is not possible to introduce more that 20% barley flour to the wheat bread without negative impact on the phys......Barley (Hordeum vulgare) has the potential to offer considerable human nutritional benefits, especially as supplement to wheat-based breads. Under current commercial baking conditions it is not possible to introduce more that 20% barley flour to the wheat bread without negative impact...... on the physical chemical properties of the bread products due to the poor baking properties of barley flour. As a consequence, the nutritional advantages of barley are not fully exploited. The inferior leavening and baking properties of barley can, in part, be attributed to the physical properties of the storage...... proteins. Changing the storage protein composition can lessen this problem. Our working hypothesis was that exploiting the substantial genetic variation within the gene pool for storage proteins could enable improving the baking qualities of barley flour. We characterised forty-nine barley cultivars...

  17. Cisgenic barley with improved phytase activity

    DEFF Research Database (Denmark)

    Holme, Inger; Dionisio, Giuseppe; Brinch-Pedersen, Henrik

    2010-01-01

    copies of the genomic phytase gene and the selection gene to identify segregation between the two genes. Presently, we have identified two cisgenic T1 plants without vector backbone and selection gene but with an extra copy of the genomic phytase gene....... are accordingly very similar to those generated by conventional breeding. The cisgenesis concept allows for the introduction of extra gene copies of a particular gene to accentuate the trait. We are using a barley purple acid phosphatase expressed during grain filling as candidate gene for cisgenesis. A genomic...... barley lambda library has been used to isolate the genomic clone of this phytase including 2.3 kb of the promoter region and 600 bp of the terminator region. The clone has been inserted into a cisgenic Agrobacterium vector where both the gene of interest and the selection gene are flanked by their own T...

  18. Biosorption of nickel with barley straw.

    Science.gov (United States)

    Thevannan, Ayyasamy; Mungroo, Rubeena; Niu, Catherine Hui

    2010-03-01

    Wastewater containing nickel sulphate generated from a nickel plating industry is of great concern. In the present work, biosorption of nickel by barley straw from nickel sulphate solution was investigated. Nickel uptake at room temperature (23+/-0.5 degrees C) was very sensitive to solution pH, showing a better uptake value at a pH of 4.85+/-0.10 among the tested values. The nickel biosorption isotherm fitted well the Langmuir equation. When the ionic strength (IS) of the solution was increased from less than 0.02-0.6M, nickel uptake was reduced to 12% of that obtained at IS of less than 0.02 M. Barley straw showed a higher nickel uptake (0.61 mmol/g) than acid washed crab shells (0.04 mmol/g), demonstrating its potential as an adsorbent for removal of nickel. Copyright (c) 2009 Elsevier Ltd. All rights reserved.

  19. 454 sequencing of pooled BAC clones on chromosome 3H of barley

    Directory of Open Access Journals (Sweden)

    Yamaji Nami

    2011-05-01

    Full Text Available Abstract Background Genome sequencing of barley has been delayed due to its large genome size (ca. 5,000Mbp. Among the fast sequencing systems, 454 liquid phase pyrosequencing provides the longest reads and is the most promising method for BAC clones. Here we report the results of pooled sequencing of BAC clones selected with ESTs genetically mapped to chromosome 3H. Results We sequenced pooled barley BAC clones using a 454 parallel genome sequencer. A PCR screening system based on primer sets derived from genetically mapped ESTs on chromosome 3H was used for clone selection in a BAC library developed from cultivar "Haruna Nijo". The DNA samples of 10 or 20 BAC clones were pooled and used for shotgun library development. The homology between contig sequences generated in each pooled library and mapped EST sequences was studied. The number of contigs assigned on chromosome 3H was 372. Their lengths ranged from 1,230 bp to 58,322 bp with an average 14,891 bp. Of these contigs, 240 showed homology and colinearity with the genome sequence of rice chromosome 1. A contig annotation browser supplemented with query search by unique sequence or genetic map position was developed. The identified contigs can be annotated with barley cDNAs and reference sequences on the browser. Homology analysis of these contigs with rice genes indicated that 1,239 rice genes can be assigned to barley contigs by the simple comparison of sequence lengths in both species. Of these genes, 492 are assigned to rice chromosome 1. Conclusions We demonstrate the efficiency of sequencing gene rich regions from barley chromosome 3H, with special reference to syntenic relationships with rice chromosome 1.

  20. A functional genomics approach to understand the control and regulation of storage protein biosynthesis in barley grain

    DEFF Research Database (Denmark)

    Vincze, É; Hansen, M; Bowra, S

    2008-01-01

    assembled in our laboratory. To identify coregulated genes, a distance matrix was constructed and we identified three clusters corresponding to the early, middle and late seed development. The gene expression pattern associated with the clusters was investigated using pathway specific analysis with specific......The aim of the study was to obtain an insight into amino acid and storage protein metabolism in the developing barley grain at the molecular level. Our strategy was to analyse the transcriptome of relevant pathways in developing grains of field grown barley using a grain specific microarray...... pathways in the barley grain. The study described here could provide a strong complement to existing knowledge assisting further  understanding of seed development and thereby provide a foundation for plant breeding towards storage protein with improved nutritional quality....

  1. Radiation induced early maturing mutants in barley

    International Nuclear Information System (INIS)

    Kumar, R.; Chauhan, S.V.S.; Sharma, R.P.

    1978-01-01

    In M 2 generation, two early maturing plants were screened from a single spike progeny of a plant obtained from 20 kR of gamma-ray irradiation of a six-rowed barley (Hordeum vulgare L. var. Jyoti). Their true breeding nature was confirmed in M 3 generation. These mutants flower and mature 38 and 22 days earlier than those of control. (auth.)

  2. Search for endophytic diazotrophs in barley seeds

    Directory of Open Access Journals (Sweden)

    Myriam S. Zawoznik

    2014-06-01

    Full Text Available Eight endophytic isolates assigned to Pseudomonas, Azospirillum, and Bacillus genera according to pheno-genotypic features were retrieved from barley seeds under selective pressure for nitrogen-fixers. Genetic relationships among related isolates were investigated through RAPD. Six isolates displayed nitrogen-fixing ability, while all could biosynthesize indolacetic acid in vitro and showed no antibiosis effects against Azospirillum brasilense Az39, a recognized PGPR.

  3. Molecular Features of Wheat Endosperm Arabinoxylan Inclusion in Functional Bread

    Science.gov (United States)

    Li, Weili; Hu, Hui; Wang, Qi; Brennan, Charles J.

    2013-01-01

    Arabinoxylan (AX) is a major dietary fibre component found in a variety of cereals. Numerous health benefits of arabinoxylans have been reported to be associated with their solubility and molecular features. The current study reports the development of a functional bread using a combination of AX-enriched material (AEM) and optimal commercial endoxylanase. The total AX content of bread was increased to 8.2 g per 100 g available carbohydrates. The extractability of AX in breads with and without endoxylanase was determined. The results demonstrate that water-extractable AX (WE-AX) increased progressively through the bread making process. The application of endoxylanase also increased WE-AX content. The presence of 360 ppm of endoxylanase had positive effects on the bread characteristics in terms of bread volume and firmness by converting the water unextractable (WU)-AX to WE-AX. In addition, the molecular weight (Mw) distribution of the WE-AX of bread with and without endoxylanase was characterized by size-exclusion chromatography. The results show that as the portion of WE-AX increased, the amount of high Mw WE-AX (higher than 100 kDa) decreased, whereas the amount of low Mw WE-AX (lower than 100 kDa) increased from 33.2% to 44.2% through the baking process. The low Mw WE-AX further increased to 75.5% with the application of the optimal endoxylanase (360 ppm). PMID:28239111

  4. Molecular Features of Wheat Endosperm Arabinoxylan Inclusion in Functional Bread

    Directory of Open Access Journals (Sweden)

    Weili Li

    2013-06-01

    Full Text Available Arabinoxylan (AX is a major dietary fibre component found in a variety of cereals. Numerous health benefits of arabinoxylans have been reported to be associated with their solubility and molecular features. The current study reports the development of a functional bread using a combination of AX-enriched material (AEM and optimal commercial endoxylanase. The total AX content of bread was increased to 8.2 g per 100 g available carbohydrates. The extractability of AX in breads with and without endoxylanase was determined. The results demonstrate that water-extractable AX (WE-AX increased progressively through the bread making process. The application of endoxylanase also increased WE-AX content. The presence of 360 ppm of endoxylanase had positive effects on the bread characteristics in terms of bread volume and firmness by converting the water unextractable (WU-AX to WE-AX. In addition, the molecular weight (Mw distribution of the WE-AX of bread with and without endoxylanase was characterized by size-exclusion chromatography. The results show that as the portion of WE-AX increased, the amount of high Mw WE-AX (higher than 100 kDa decreased, whereas the amount of low Mw WE-AX (lower than 100 kDa increased from 33.2% to 44.2% through the baking process. The low Mw WE-AX further increased to 75.5% with the application of the optimal endoxylanase (360 ppm.

  5. Radiosensitivity study of cultured barley (hordeum vulgare)

    International Nuclear Information System (INIS)

    Wang Cailian; Shen Mei; Xu Gang; Zhao Kongnan; Chen Qiufang

    1991-07-01

    For studying the radioactivity, forty seven varieties of dormant barley seeds were irradiated with various doses (0 ∼ 400 Gy) of 137 Cs γ-rays. The results showed that the dose-effects relations of seedling growth inhibition could be fitted by an equation of F(D) = 1 - (1 - e -a 1 D ) N , and the dose-effects of cell-nucleus, the frequency of root tip cell with chromosome aberations and peroxidase isoenzyme band could be expressed by a linear regression equation Y = A + B · X. The radioactivity of naked barley was much higher than of covered barley. According to different radiosensitivities the varieties studied could be divided into five types i.e. extreme resistant, resistant, intermediate, sensitive, and extreme sensitive. The results also showed that there was close relationship between the DNA content of cell-nucleus, peroxidase isoenzyme zymogram and radioactivity. The radiosensitivty was proportional to the DNA content. The volume of cell-nucleus varied inversly as D 50 of nucleus volume and no obvious correlation with the D 50 of seedling growth inhibition

  6. Spatio-temporal changes in germination and radical elongation of barley seeds tracked by proteome analysis of dissected embryo, aleurone layer and endosperm tissues

    DEFF Research Database (Denmark)

    Bønsager, Birgit Christine; Finnie, Christine; Roepstorff, P.

    2007-01-01

    proteins to appear (at 4 h PI). Other early changes were observed that affected spots containing desiccation stress-associated late embryogenesis abundant and abscisic acid (ABA)-induced proteins. From 12 h PI proteins characteristic for desiccation stress disappeared rapidly, as did a putative embryonic...

  7. Evolutionary history of barley cultivation in Europe revealed by genetic analysis of extant landraces

    Directory of Open Access Journals (Sweden)

    Jones Huw

    2011-11-01

    Full Text Available Abstract Background Understanding the evolution of cultivated barley is important for two reasons. First, the evolutionary relationships between different landraces might provide information on the spread and subsequent development of barley cultivation, including the adaptation of the crop to new environments and its response to human selection. Second, evolutionary information would enable landraces with similar traits but different genetic backgrounds to be identified, providing alternative strategies for the introduction of these traits into modern germplasm. Results The evolutionary relationships between 651 barley landraces were inferred from the genotypes for 24 microsatellites. The landraces could be divided into nine populations, each with a different geographical distribution. Comparisons with ear row number, caryopsis structure, seasonal growth habit and flowering time revealed a degree of association between population structure and phenotype, and analysis of climate variables indicated that the landraces are adapted, at least to some extent, to their environment. Human selection and/or environmental adaptation may therefore have played a role in the origin and/or maintenance of one or more of the barley landrace populations. There was also evidence that at least some of the population structure derived from geographical partitioning set up during the initial spread of barley cultivation into Europe, or reflected the later introduction of novel varieties. In particular, three closely-related populations were made up almost entirely of plants with the daylength nonresponsive version of the photoperiod response gene PPD-H1, conferring adaptation to the long annual growth season of northern Europe. These three populations probably originated in the eastern Fertile Crescent and entered Europe after the initial spread of agriculture. Conclusions The discovery of population structure, combined with knowledge of associated phenotypes and

  8. Barley yellow dwarf virus in barley crops in Tunisia: prevalence and molecular characterization

    OpenAIRE

    Asma NAJAR; Imen HAMDI; Arvind VARSANI

    2017-01-01

    A field survey was conducted in Tunisia in the North-Eastern regions (Bizerte, CapBon and Zaghouan), the North-Western region (Kef) and the Central-Eastern region (Kairouan) during the 2011/2012 growing season, in order to determine the incidence and the geographic distribution of Barley yellow dwarf virus (BYDVs) in barley fields. Tissue blot immunoassays (TBIA) showed that BYDV was most common in Zaghouan (incidence 14%), Cap Bon (14%) and Bizerte (35%), in randomly collected samples from t...

  9. Determination of Endosperm Protein Secondary Structure in Hard Wheat Breeding Lines using Synchrotron Infrared Microspectroscopy

    International Nuclear Information System (INIS)

    Bonwell, E.; Fisher, T.; Fritz, A.; Wetzel, D.

    2008-01-01

    One molecular aspect of mature hard wheat protein quality for breadmaking is the relative amount of endosperm protein in the a-helix form compared with that in other secondary structure forms including β-sheet. Modeling of a-helix and β-sheet absorption bands that contribute to the amide I band at 1650 cm-1 was applied to more than 1500 spectra in this study. The microscopic view of wheat endosperm is dominated by many large starch granules with protein in between. The spectrum produced from in situ microspectroscopy of this mixture is dominated by carbohydrate bands from the large starch granules that fill up the field. The high spatial resolution achievable with synchrotron infrared microspectroscopy enables revealing good in situ spectra of the protein located interstitially. Synchrotron infrared microspectroscopic mapping of 4 μm thick frozen sections of endosperm in the subaleurone region provides spectra from a large number of pixels. Pixels with protein-dominated spectra are sorted out from among adjacent pixels to minimize the starch absorption and scattering contributions. Subsequent data treatment to extract information from the amide I band requires a high signal to noise ratio. Although spectral interference of the carbohydrate band on the amide band is not a problem, the scattering produced by the large starch granules diminishes the signal to noise ratio throughout the spectrum. High density mapping was done on beamlines U2B and U10B at the National Synchrotron Light Source at Brookhaven National Laboratory, Upton, NY. Mapping with a single masked spot size of 5.5 μm diameter or confocal 5 μm x 5 μm spot size, respectively, on the two beamlines used produced spectra for new breeding lines under current consideration. Appropriate data treatment allows calculation of a numerical estimate of the a-helix population relative to other secondary protein structures from the position and shape of the amide I absorption band. Current breeding lines show a

  10. NASA crop calendars: Wheat, barley, oats, rye, sorghum, soybeans, corn

    Science.gov (United States)

    Stuckey, M. R.; Anderson, E. N.

    1975-01-01

    Crop calenders used to determine when Earth Resources Technology Satellite ERTS data would provide the most accurate wheat acreage information and to minimize the amount of ground verified information needed are presented. Since barley, oats, and rye are considered 'confusion crops, i.e., hard to differentiate from wheat in ERTS imagery, specific dates are estimated for these crops in the following stages of development: (1) seed-bed operation, (2) planting or seeding, (3) intermediate growth, (4) dormancy, (5) development of crop to full ground cover, (6) heading or tasseling, and flowering, (7) harvesting, and (8) posting-harvest operations. Dormancy dates are included for fall-snow crops. A synopsis is given of each states' growing conditions, special cropping practices, and other characteristics which are helpful in identifying crops from ERTS imagery.

  11. Lysine metabolism in antisense C-hordein barley grains

    DEFF Research Database (Denmark)

    Schmidt, Daiana; Rizzi, Vanessa; Gaziola, Salete A

    2015-01-01

    The grain proteins of barley are deficient in lysine and threonine due to their low concentrations in the major storage protein class, the hordeins, especially in the C-hordein subgroup. Previously produced antisense C-hordein transgenic barley lines have an improved amino acid composition, with ...

  12. Revisit to Ethiopian traditional barley-based food

    Directory of Open Access Journals (Sweden)

    Jemal Mohammed

    2016-06-01

    Full Text Available Barley is the number one food crop in the highland parts of North Eastern Ethiopia produced by subsistence farmers grown as landraces. Barley producers in Ethiopia have given it the name gebs ye ehil nigus, which means barley is the king of crops, due to its suitability for preparing many of the known Ethiopians traditional dishes. Various barley foods and drinks play an important role in the socioeconomic and cultural life of Ethiopians, but detailed descriptions related to their preparation and their socioeconomic and cultural roles are not well-recorded and documented like most of the Ethiopian cultural foods. Foods such as ingera, kita, dabo, kolo, genfo, beso, chuko, shamet, tihlo, kinch, and shorba are the most commonly known traditional Ethiopian barley-based foods. These products are prepared from either roasted whole grain, raw and roasted-milled grain, or cracked grain as main, side, ceremonial, and recuperating dishes. The various barley-based traditional foods have perceived qualities and health benefits by the consumers. For example, genfo is served to breast-feeding mothers with the belief that it enhances breast milk production and serves as a good substitute for breast milk. Beso is claimed to be a remedy for gastritis, while genfo and kinche are used to heal broken bones and fractures. Considering the Western consumers' trend on functional foods and health benefits of barley, Ethiopian traditional barley-based foods are worth studying as functional foods, which can be appealing to Western consumers.

  13. Molecular characterization of barley ( Hordeum vulgare L.) genome ...

    African Journals Online (AJOL)

    The present work aimed to select drought tolerant barley (Hordeum vulgare L.) cultivars through identification of stress genes responsible for drought tolerance. Several barley genotypes were tested for drought resistance using specific molecular markers, nine out of all the genotypes were chosen for this study; five out of ...

  14. Combining unmalted barley and pearling gives good quality brewing

    NARCIS (Netherlands)

    Donkelaar, van Laura H.G.; Hageman, Jos A.; Oguz, Serhat; Noordman, Tom R.; Boom, Remko M.; Goot, van der Atze Jan

    2016-01-01

    Brewing with unmalted barley can reduce the use of raw materials, thereby increasing the efficiency of the brewing process. However, unmalted barley contains several undesired components for brewing and has a low enzymatic activity. Pearling, an abrasive milling method, has been proposed as a

  15. (GPx) activity in young barley seedlings enriched with selenium

    African Journals Online (AJOL)

    AJB_YOMI

    2011-09-21

    Sep 21, 2011 ... E-mail: guzx@njau.edu.cn. Tel/Fax: +86. 25 84396293. have been used for animal feeds and beer malts. Recently, young barley seedlings have been used as food material for people in Asian countries such as China,. Japan, and Korea. Young barley seedlings are rich in dietary fiber, chlorophyll, carotene ...

  16. stability analysis of food barley genotypes in northern ethiopia

    African Journals Online (AJOL)

    ACSS

    interaction and stability for barley grain yield and yield related traits in the growing ... that the environments were diverse; causing most of the variation in grain yield. ... component axes IPCA1, IPCA2 and IPCA3, which explained 58.06, 27.11 and ..... AMMI analysis of variance for grain yield (t ha-1) of food barley genotypes ...

  17. 7 CFR 801.3 - Tolerances for barley pearlers.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 7 2010-01-01 2010-01-01 false Tolerances for barley pearlers. 801.3 Section 801.3 Agriculture Regulations of the Department of Agriculture (Continued) GRAIN INSPECTION, PACKERS AND STOCKYARD... FOR GRAIN INSPECTION EQUIPMENT § 801.3 Tolerances for barley pearlers. The maintenance tolerances for...

  18. Study of the Behavior of Some Spring Barley Lines with Two Rows Created at A.R.D.S Turda Regarding Production Capacity and Quality

    Directory of Open Access Journals (Sweden)

    Ioana PORUMB

    2017-05-01

    Full Text Available The spring barley is a variety of a superior quality for brewing compared with the feed barley due to several reasons. Research was conducted in the field of breeding of spring barley with two rows, within ARDS Turda, during 2013-2015. The trials were comparatively developed, and included 25 variants. The biological material was represented by four  autochthonous genotypes: Turdeana, Daciana Romaniţa (A.R.D.S. Turda, and Adina (A.R.D.S. Suceava. The spring barley lines created by the S.C.D.A. Turda, meet the requirements of the beer industry in terms of protein content, starch, M.M.B. and germination energy.

  19. Genotypic differences in proembryoid development and green plantlets regeneration through androgenesis in barley varieties Diferenças genotípicas no desenvolvimento de pró-embrióides e regeneração de plântulas verdes via androgênese em genótipo de cevada

    Directory of Open Access Journals (Sweden)

    Paula Wiethölter

    2008-02-01

    Full Text Available The development of in vitro haploid plants followed by spontaneous or induced genome duplication allows to achieve, in one generation, the recovery of total homozygosis. The efficiency of the haplodiploidization process through in vitro anther culture of barley is variable among genotypes. This study was aimed at determining the androgenetic response of nine barley genotypes from the breeding program of Embrapa Trigo, analysing proembryoid development and green plantlets regeneration in anthers cultivated in vitro. Cultivar 'BR2' presented the highest average of proembryoids (104/anther and 'MN698' presented the highest average of green plantlets (0,41/anther. There was a significant variation among the average values of barley genotypes for embryo formation and green plantlets regeneration, making possible the selection to combine androgenetic capacity and good agronomic traits.A obtenção, na cevada, de plantas haplóides in vitro e a posterior duplicação natural ou artificial do genoma permitem alcançar a homozigose completa, em uma geração. A eficiência da haplodiploidização pela cultura de anteras é variável entre os genótipos. Foi avaliada a resposta androgenética através da formação de pró-embrióides e da regeneração de plântulas verdes em nove cultivares do programa de melhoramento de cevada da Embrapa Trigo, em anteras cultivadas in vitro. A cultivar "BR2" apresentou maior média de pró-embrióides (104/antera, enquanto "MN698" mostrou a maior média de plântulas verdes (0,41/antera. Houve variação significativa entre os valores médios dos genótipos em relação à formação de pró-embrióides e à regeneração de plântulas verdes, indicando a possibilidade de seleção para combinar a capacidade androgenética com boas características agronômicas.

  20. The molecular biology and biochemistry of rice endosperm α-globulin

    International Nuclear Information System (INIS)

    Shorrosh, B.S.

    1989-01-01

    The author's first objective was to isolate a cDNA clone that encodes the rice endosperm α-globulin. Purified antibodies against a rice storage protein, α-globulin, were used to screen a λgt11 cDNA expression library constructed from immature rice seed endosperm. The cDNA insert of clone 4A1 (identified by antibody screening) was used as a probe to identify long cDNA inserts in the library. The deduced amino acid sequence of clone A3-12 cDNA insert (identified by cDNA screening) contained the amino acid sequences of three cyanogen bromide peptides fragment of α-globulin. The calculated molecular weight and amino acid composition of the deduced amino acid sequence were similar to the α-globulin protein. Northern blot analysis indicated that mRNA of one size, approximately 1.0 kb, is expressed. Southern genomic blot analysis revealed one band with EcoRI or Hind III digestion. Cell-free translation and immunoprecipitation showed that the initial translation product is approximately 2,000 daltons larger than the mature protein. The amino acid sequence of α-globulin revealed limited regions of similarities with wheat storage proteins. The author concludes that the cDNA insert in clone A3-12 contained the entire coding region of α-globulin protein and that α-globulin is encoded by a single gene. My second objective was to inhibit the degradation of α-globulin in the salt extract of rice flour. The salt extract of rice flour contained an acid protease whose optimal pH was 3 for 3 H-casein hydrolysis. A polypeptide with molecular weight of 20,000 was immunologically reactive with α-globulin antibodies and is produced by limited proteolysis in the extract. Pepstatin inhibited the proteolysis of 3H-casein and slowed the proteolysis of α-globulin

  1. Improved evidence-based genome-scale metabolic models for maize leaf, embryo, and endosperm

    Energy Technology Data Exchange (ETDEWEB)

    Seaver, Samuel M. D.; Bradbury, Louis M. T.; Frelin, Océane; Zarecki, Raphy; Ruppin, Eytan; Hanson, Andrew D.; Henry, Christopher S.

    2015-03-10

    There is a growing demand for genome-scale metabolic reconstructions for plants, fueled by the need to understand the metabolic basis of crop yield and by progress in genome and transcriptome sequencing. Methods are also required to enable the interpretation of plant transcriptome data to study how cellular metabolic activity varies under different growth conditions or even within different organs, tissues, and developmental stages. Such methods depend extensively on the accuracy with which genes have been mapped to the biochemical reactions in the plant metabolic pathways. Errors in these mappings lead to metabolic reconstructions with an inflated number of reactions and possible generation of unreliable metabolic phenotype predictions. Here we introduce a new evidence-based genome-scale metabolic reconstruction of maize, with significant improvements in the quality of the gene-reaction associations included within our model. We also present a new approach for applying our model to predict active metabolic genes based on transcriptome data. This method includes a minimal set of reactions associated with low expression genes to enable activity of a maximum number of reactions associated with high expression genes. We apply this method to construct an organ-specific model for the maize leaf, and tissue specific models for maize embryo and endosperm cells. We validate our models using fluxomics data for the endosperm and embryo, demonstrating an improved capacity of our models to fit the available fluxomics data. All models are publicly available via the DOE Systems Biology Knowledgebase and PlantSEED, and our new method is generally applicable for analysis transcript profiles from any plant, paving the way for further in silico studies with a wide variety of plant genomes.

  2. Fermented Dough Characteristics of Wheat-barley-hemp Composites. Comparison of Two Dosages of Barley and Hemp Wholemeal/Flour

    Directory of Open Access Journals (Sweden)

    Marie Hrušková

    2016-01-01

    Full Text Available Wheat flour substitution by barley one led to shortening of fermentation and leavening times (about 14–57% and 35–83%, respectively as well as to lessening of dough volumes (about 25–75%, based on lowered protein quality (Zeleny value. Addition of barley flour affected specific bread volume; diminishing for wheat-barley blends 70:30 and 50:50 reached 30% and 43%, respectively. Volume of bread prepared from wheat-barley blend 70:30 enhanced by dehulled hemp wholemeal was the highest within the tested tri-composites set, achieving 130% of wheat-barley control; other hemp products caused the parameter decrease (from 8 to 33%. Within a group of bakery products containing 50% of barley flour, hulled hemp wholemeal partially supressed negative effect of barley flour – specific bread volumes increased about ca 15%. Commercial fine hemp flour samples demonstrated a reversal influence – its addition resulted into lower buns size than wheat-barley control (about 3–34%. Between wheat flour and both groups of flour tri-composites, PCA confirmed differences in dough and bread technological quality. Specific bread volume could be predicted according to maturograph dough elasticity, dough or bread OTG volumes.

  3. SSH analysis of endosperm transcripts and characterization of heat stress regulated expressed sequence tags in bread wheat

    Directory of Open Access Journals (Sweden)

    Suneha Goswami

    2016-08-01

    Full Text Available Heat stress is one of the major problems in agriculturally important cereal crops, especially wheat. Here, we have constructed a subtracted cDNA library from the endosperm of HS-treated (42°C for 2 h wheat cv. HD2985 by suppression subtractive hybridization (SSH. We identified ~550 recombinant clones ranging from 200 to 500 bp with an average size of 300 bp. Sanger’s sequencing was performed with 205 positive clones to generate the differentially expressed sequence tags (ESTs. Most of the ESTs were observed to be localized on the long arm of chromosome 2A and associated with heat stress tolerance and metabolic pathways. Identified ESTs were BLAST search using Ensemble, TriFLD and TIGR databases and the predicted CDS were translated and aligned with the protein sequences available in pfam and InterProScan 5 databases to predict the differentially expressed proteins (DEPs. We observed eight different types of post-translational modifications (PTMs in the DEPs corresponds to the cloned ESTs—147 sites with phosphorylation, 21 sites with sumoylation, 237 with palmitoylation, 96 sites with S-nitrosylation, 3066 calpain cleavage sites, and 103 tyrosine nitration sites, predicted to sense the heat stress and regulate the expression of stress genes. Twelve DEPs were observed to have transmembrane helixes (TMH in their structure, predicted to play the role of sensors of HS. Quantitative Real-Time PCR of randomly selected ESTs showed very high relative expression of HSP17 under HS; up-regulation was observed more in wheat cv. HD2985 (thermotolerant, as compared to HD2329 (thermosusceptible during grain-filling. The abundance of transcripts was further validated through northern blot analysis. The ESTs and their corresponding DEPs can be used as molecular marker for screening or targeted precision breeding program. PTMs identified in the DEPs can be used to elucidate the thermotolerance mechanism of wheat – a novel step towards the development of

  4. Expression of Nudix hydrolase genes in barley under UV irradiation

    Science.gov (United States)

    Tanaka, Sayuri; Sugimoto, Manabu; Kihara, Makoto

    Seed storage and cultivation should be necessary to self-supply foods when astronauts would stay and investigate during long-term space travel and habitation in the bases on the Moon and Mars. Thought the sunlight is the most importance to plants, both as the ultimate energy source and as an environmental signal regulating growth and development, UV presenting the sunlight can damage many aspects of plant processes at the physiological and DNA level. Especially UV-C, which is eliminated by the stratospheric ozone layer, is suspected to be extremely harmful and give a deadly injury to plants in space. However, the defense mechanism against UV-C irradiation damage in plant cells has not been clear. In this study, we investigated the expression of Nudix hydrolases, which defense plants from biotic / abiotic stress, in barley under UV irradiation. The genes encoding the amino acid sequences, which show homology to those of 28 kinds of Nudix hydrolases in Arabidopsis thaliana, were identified in the barley full-length cDNA library. BLAST analysis showed 14 kinds of barley genes (HvNUDX1-14), which encode the Nudix motif sequence. A phylogenetic tree showed that HvNUDX1, HvNUDX7, HvNUDX9 and HvNUDX11 belonged to the ADP-ribose pyrophosphohydrolase, ADP-sugar pyrophosphohydrolase, NAD(P)H pyrophosphohydrolase and FAD pyrophosphohydrolase subfamilies, respectively, HvNUDX3, HvNUDX6, and HvNUDX8 belonged to the Ap _{n}A pyrophosphohydrolase subfamilies, HvNUDX5 and HvNUDX14 belonged to the coenzyme A pyrophosphohydrolase subfamilies, HvNUDX12 and HvNUDX13 belonged to the Ap _{4}A pyrophosphohydrolase subfamilies. Induction of HvNUDX genes by UV-A (340nm), UV-B (312nm), and UV-C (260nm) were analyzed by quantitative RT-PCR. The results showed that HvNUDX4 was induced by UV-A and UV-B, HvNUDX6 was induced by UV-B and UV-C, and HvNUDX7 and HvNUDX14 were induced by UV-C, significantly. Our results suggest that the response of HvNUDXs to UV irradiation is different by UV

  5. Genomic Prediction of Barley Hybrid Performance

    Directory of Open Access Journals (Sweden)

    Norman Philipp

    2016-07-01

    Full Text Available Hybrid breeding in barley ( L. offers great opportunities to accelerate the rate of genetic improvement and to boost yield stability. A crucial requirement consists of the efficient selection of superior hybrid combinations. We used comprehensive phenotypic and genomic data from a commercial breeding program with the goal of examining the potential to predict the hybrid performances. The phenotypic data were comprised of replicated grain yield trials for 385 two-way and 408 three-way hybrids evaluated in up to 47 environments. The parental lines were genotyped using a 3k single nucleotide polymorphism (SNP array based on an Illumina Infinium assay. We implemented ridge regression best linear unbiased prediction modeling for additive and dominance effects and evaluated the prediction ability using five-fold cross validations. The prediction ability of hybrid performances based on general combining ability (GCA effects was moderate, amounting to 0.56 and 0.48 for two- and three-way hybrids, respectively. The potential of GCA-based hybrid prediction requires that both parental components have been evaluated in a hybrid background. This is not necessary for genomic prediction for which we also observed moderate cross-validated prediction abilities of 0.51 and 0.58 for two- and three-way hybrids, respectively. This exemplifies the potential of genomic prediction in hybrid barley. Interestingly, prediction ability using the two-way hybrids as training population and the three-way hybrids as test population or vice versa was low, presumably, because of the different genetic makeup of the parental source populations. Consequently, further research is needed to optimize genomic prediction approaches combining different source populations in barley.

  6. The adsorption of α-amylase on barley proteins affects the in vitro digestion of starch in barley flour.

    Science.gov (United States)

    Yu, Wenwen; Zou, Wei; Dhital, Sushil; Wu, Peng; Gidley, Michael J; Fox, Glen P; Gilbert, Robert G

    2018-02-15

    The conversion of barley starch to sugars is a complex enzymic process. Most previous work concerned the biotechnical aspect of in situ barley enzymes. However, the interactions among the macromolecular substrates and their effects on enzymic catalysis has been little examined. Here, we explore the mechanisms whereby interactions of protein and starch in barley flour affect the kinetics of enzymatic hydrolysis of starch in an in vitro system, using digestion rate data and structural analysis by confocal microscopy. The degradation kinetics of both uncooked barley flour and of purified starches are found to be two-step sequential processes. Barley proteins, especially the water-soluble component, are found to retard the digestion of starch degraded by α-amylase: the enzyme binds with water-insoluble protein and with starch granules, leading to reduced starch hydrolysis. These findings are of potential industrial value in both the brewing and food industries. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Dynamic Allocation of Sugars in Barley

    Science.gov (United States)

    Cumberbatch, L. C.; Crowell, A. S.; Fallin, B. A.; Howell, C. R.; Reid, C. D.; Weisenberger, A. G.; Lee, S. J.; McKisson, J. E.

    2014-03-01

    Allocation of carbon and nitrogen is a key factor for plant productivity. Measurements are carried out by tracing 11C-tagged sugars using positron emission tomography and coincidence counting. We study the mechanisms of carbon allocation and transport from carbohydrate sources (leaves) to sinks (stem, shoot, roots) under various environmental conditions such as soil nutrient levels and atmospheric CO2 concentration. The data are analyzed using a transfer function analysis technique to model transport and allocation in barley plants. The experimental technique will be described and preliminary results presented. This work was supported in part by USDOE Grant No. DE-FG02-97-ER41033 and DE-SC0005057.

  8. The Barley Chromosome 5 Linkage Map

    DEFF Research Database (Denmark)

    Jensen, J.; Jørgensen, Jørgen Helms

    1975-01-01

    The distances between nine loci on barley chromosome 5 have been studied in five two-point tests, three three-point tests, and one four-point test. Our previous chromosome 5 linkage map, which contained eleven loci mapped from literature data (Jensen and Jørgensen 1975), is extended with four loci......-position is fixed on the map by a locus (necl), which has a good marker gene located centrally in the linkage group. The positions of the other loci are their distances in centimorgans from the 0-position; loci in the direction of the short chromosome arm are assigned positive values and those...

  9. Radiation induced desynaptic mutants in barley

    International Nuclear Information System (INIS)

    Srivastava, H.M.

    1974-01-01

    Spontaneous occurrence of asynapsis and desynapsis has been frequently reported in a number of crop plants (Beadle 1930, 1933; Beasley and Brown 1942; Li et al. 1945; Magoon et al. 1961; Miller 1963) and other angiospermic texa (Calarier 1955; Chennaveraiah and Krisnappa 1968; Ehrenberg 1949; Johnson 1941, 1944; Roy and Jha 1958). However, there are only a few reports of induced asynapsis or desynapsis (Gottschalk and Baquar 1971; Martini and Bozzini 1966). The present paper deals with the morphology and meiotic behavior of gamma-ray induced barley mutants showing high degree of desynapsis resulting in partial to complete sterility. (author)

  10. Characterization and Ectopic Expression of CoWRI1, an AP2/EREBP Domain-Containing Transcription Factor from Coconut (Cocos nucifera L.) Endosperm, Changes the Seeds Oil Content in Transgenic Arabidopsis thaliana and Rice (Oryza sativa L.).

    Science.gov (United States)

    Sun, RuHao; Ye, Rongjian; Gao, Lingchao; Zhang, Lin; Wang, Rui; Mao, Ting; Zheng, Yusheng; Li, Dongdong; Lin, Yongjun

    2017-01-01

    Coconut ( Cocos nucifera L.) is a key tropical crop and a member of the monocotyledonous family Arecaceae ( Palmaceae ). Few genes and related metabolic processes involved in coconut endosperm development have been investigated. In this study, a new member of the WRI1 gene family was isolated from coconut endosperm and was named CoWRI1 . Its transcriptional activities and interactions with the acetyl-CoA carboxylase ( BCCP2 ) promoter of CoWRI1 were confirmed by the yeast two-hybrid and yeast one-hybrid approaches, respectively. Functional characterization was carried out through seed-specific expression in Arabidopsis and endosperm-specific expression in rice. In transgenic Arabidopsis , high over-expressions of CoWRI1 in seven independent T2 lines were detected by quantitative real-time PCR. The relative mRNA accumulation of genes encoding enzymes involved in either fatty acid biosynthesis or triacylglycerols assembly (BCCP2, KASI, MAT, ENR, FATA, and GPDH) were also assayed in mature seeds. Furthermore, lipid and fatty acids C16:0 and C18:0 significantly increased. In two homozygous T2 transgenic rice lines (G5 and G2), different CoWRI1 expression levels were detected, but no CoWRI1 transcripts were detected in the wild type. Analyses of the seed oil content, starch content, and total protein content indicated that the two T2 transgenic lines showed a significant increase ( P oil content. The transgenic lines also showed a significant increase in starch content, whereas total protein content decreased significantly. Further analysis of the fatty acid composition revealed that palmitic acid (C16:0) and linolenic acid (C18:3) increased significantly in the seeds of the transgenic rice lines, but oleic acid (C18:1) levels significantly declined.

  11. Influence of sulfur dioxide and ozone on vegetation of bean and barley plants under different soil moisture conditions

    Energy Technology Data Exchange (ETDEWEB)

    Markowski, A; Grzesiak, S

    1974-01-01

    The effects of toxic gases on extent of injuries to assimilating surface, dry weight yields, and generative development in bean and barley were studied in three successive phases of vegetation under conditions of optimum soil moisture and of drought just above the wilting point. Experiments with ozone and sulfur dioxide on bean and SO/sub 2/ on barley demonstrate that the susceptibility of plants to toxic gases decrease under drought conditions that cause a temporary dehydration of tissues. Determinations of sulfate sulfur contents in different plant organs show that a lower hydration of tissues is accompanied by lower adsorption of sulfur dioxide.

  12. Transcriptome study of storage protein genes of field-grown barley in response to inorganic nitrogen fertilizers

    DEFF Research Database (Denmark)

    Hansen, Michael; Bowra, Steve; Lange, Mette

    2010-01-01

    The storage proteins of barley, in terms of both amino acid profile and quantity, are traits strongly influenced by the amount of nitrogen applied. Given this, we performed a developmental expression analysis of the genes from barley grains grown under field conditions to further our understanding...... profile under different N regimes. Reviewing the expression of the storage protein homologues within the families revealed markedly different temporal profiles; for example, some alleles were expressed very early in development. Furthermore, the differential temporal expression of the homologues suggested...

  13. Specific patterns of gene space organisation revealed in wheat by using the combination of barley and wheat genomic resources

    Directory of Open Access Journals (Sweden)

    Waugh Robbie

    2010-12-01

    Full Text Available Abstract Background Because of its size, allohexaploid nature and high repeat content, the wheat genome has always been perceived as too complex for efficient molecular studies. We recently constructed the first physical map of a wheat chromosome (3B. However gene mapping is still laborious in wheat because of high redundancy between the three homoeologous genomes. In contrast, in the closely related diploid species, barley, numerous gene-based markers have been developed. This study aims at combining the unique genomic resources developed in wheat and barley to decipher the organisation of gene space on wheat chromosome 3B. Results Three dimensional pools of the minimal tiling path of wheat chromosome 3B physical map were hybridised to a barley Agilent 15K expression microarray. This led to the fine mapping of 738 barley orthologous genes on wheat chromosome 3B. In addition, comparative analyses revealed that 68% of the genes identified were syntenic between the wheat chromosome 3B and barley chromosome 3 H and 59% between wheat chromosome 3B and rice chromosome 1, together with some wheat-specific rearrangements. Finally, it indicated an increasing gradient of gene density from the centromere to the telomeres positively correlated with the number of genes clustered in islands on wheat chromosome 3B. Conclusion Our study shows that novel structural genomics resources now available in wheat and barley can be combined efficiently to overcome specific problems of genetic anchoring of physical contigs in wheat and to perform high-resolution comparative analyses with rice for deciphering the organisation of the wheat gene space.

  14. Combinatorial Pooling Enables Selective Sequencing of the Barley Gene Space

    Science.gov (United States)

    Lonardi, Stefano; Duma, Denisa; Alpert, Matthew; Cordero, Francesca; Beccuti, Marco; Bhat, Prasanna R.; Wu, Yonghui; Ciardo, Gianfranco; Alsaihati, Burair; Ma, Yaqin; Wanamaker, Steve; Resnik, Josh; Bozdag, Serdar; Luo, Ming-Cheng; Close, Timothy J.

    2013-01-01

    For the vast majority of species – including many economically or ecologically important organisms, progress in biological research is hampered due to the lack of a reference genome sequence. Despite recent advances in sequencing technologies, several factors still limit the availability of such a critical resource. At the same time, many research groups and international consortia have already produced BAC libraries and physical maps and now are in a position to proceed with the development of whole-genome sequences organized around a physical map anchored to a genetic map. We propose a BAC-by-BAC sequencing protocol that combines combinatorial pooling design and second-generation sequencing technology to efficiently approach denovo selective genome sequencing. We show that combinatorial pooling is a cost-effective and practical alternative to exhaustive DNA barcoding when preparing sequencing libraries for hundreds or thousands of DNA samples, such as in this case gene-bearing minimum-tiling-path BAC clones. The novelty of the protocol hinges on the computational ability to efficiently compare hundred millions of short reads and assign them to the correct BAC clones (deconvolution) so that the assembly can be carried out clone-by-clone. Experimental results on simulated data for the rice genome show that the deconvolution is very accurate, and the resulting BAC assemblies have high quality. Results on real data for a gene-rich subset of the barley genome confirm that the deconvolution is accurate and the BAC assemblies have good quality. While our method cannot provide the level of completeness that one would achieve with a comprehensive whole-genome sequencing project, we show that it is quite successful in reconstructing the gene sequences within BACs. In the case of plants such as barley, this level of sequence knowledge is sufficient to support critical end-point objectives such as map-based cloning and marker-assisted breeding. PMID:23592960

  15. Combinatorial pooling enables selective sequencing of the barley gene space.

    Directory of Open Access Journals (Sweden)

    Stefano Lonardi

    2013-04-01

    Full Text Available For the vast majority of species - including many economically or ecologically important organisms, progress in biological research is hampered due to the lack of a reference genome sequence. Despite recent advances in sequencing technologies, several factors still limit the availability of such a critical resource. At the same time, many research groups and international consortia have already produced BAC libraries and physical maps and now are in a position to proceed with the development of whole-genome sequences organized around a physical map anchored to a genetic map. We propose a BAC-by-BAC sequencing protocol that combines combinatorial pooling design and second-generation sequencing technology to efficiently approach denovo selective genome sequencing. We show that combinatorial pooling is a cost-effective and practical alternative to exhaustive DNA barcoding when preparing sequencing libraries for hundreds or thousands of DNA samples, such as in this case gene-bearing minimum-tiling-path BAC clones. The novelty of the protocol hinges on the computational ability to efficiently compare hundred millions of short reads and assign them to the correct BAC clones (deconvolution so that the assembly can be carried out clone-by-clone. Experimental results on simulated data for the rice genome show that the deconvolution is very accurate, and the resulting BAC assemblies have high quality. Results on real data for a gene-rich subset of the barley genome confirm that the deconvolution is accurate and the BAC assemblies have good quality. While our method cannot provide the level of completeness that one would achieve with a comprehensive whole-genome sequencing project, we show that it is quite successful in reconstructing the gene sequences within BACs. In the case of plants such as barley, this level of sequence knowledge is sufficient to support critical end-point objectives such as map-based cloning and marker-assisted breeding.

  16. Combinatorial pooling enables selective sequencing of the barley gene space.

    Science.gov (United States)

    Lonardi, Stefano; Duma, Denisa; Alpert, Matthew; Cordero, Francesca; Beccuti, Marco; Bhat, Prasanna R; Wu, Yonghui; Ciardo, Gianfranco; Alsaihati, Burair; Ma, Yaqin; Wanamaker, Steve; Resnik, Josh; Bozdag, Serdar; Luo, Ming-Cheng; Close, Timothy J

    2013-04-01

    For the vast majority of species - including many economically or ecologically important organisms, progress in biological research is hampered due to the lack of a reference genome sequence. Despite recent advances in sequencing technologies, several factors still limit the availability of such a critical resource. At the same time, many research groups and international consortia have already produced BAC libraries and physical maps and now are in a position to proceed with the development of whole-genome sequences organized around a physical map anchored to a genetic map. We propose a BAC-by-BAC sequencing protocol that combines combinatorial pooling design and second-generation sequencing technology to efficiently approach denovo selective genome sequencing. We show that combinatorial pooling is a cost-effective and practical alternative to exhaustive DNA barcoding when preparing sequencing libraries for hundreds or thousands of DNA samples, such as in this case gene-bearing minimum-tiling-path BAC clones. The novelty of the protocol hinges on the computational ability to efficiently compare hundred millions of short reads and assign them to the correct BAC clones (deconvolution) so that the assembly can be carried out clone-by-clone. Experimental results on simulated data for the rice genome show that the deconvolution is very accurate, and the resulting BAC assemblies have high quality. Results on real data for a gene-rich subset of the barley genome confirm that the deconvolution is accurate and the BAC assemblies have good quality. While our method cannot provide the level of completeness that one would achieve with a comprehensive whole-genome sequencing project, we show that it is quite successful in reconstructing the gene sequences within BACs. In the case of plants such as barley, this level of sequence knowledge is sufficient to support critical end-point objectives such as map-based cloning and marker-assisted breeding.

  17. The Importance of Barley Varieties in terms of Production, Marketing and Processing

    Directory of Open Access Journals (Sweden)

    Rahmi Taşcı

    2017-08-01

    Full Text Available In this study, it is aimed to investigate the criteria affecting the marketing of barley in the stages of barley production, marketing and processing in Konya province. In the study; survey results were used which get from mixed feed (37 items and malt factory (1 item, traders (50 items purchasing and selling barley, and agricultural enterprises (107 items including barley production in agricultural activities operating in Konya province. It was determined that barley varieties were not an important criterion in the selling price, while the hectoliter and other plant species do not mix into barley are the main criteria considered by agricultural enterprises to affect the sale of barley. The most important criteria that traders keep in mind when buying barley is hectoliter of barley, which is followed by moisture, colour and foreign matter confusion rate of barley. The most important criteria that factories take into consideration when purchasing barley is determined as the moisture content of the barley, followed by the hectoliter of barley and the rate of foreign matter contamination. For the malt industry; Barley variety is a very important factor in the purchase criteria, followed by barley humidity and colour.

  18. Characterization of volatile aroma compounds in different brewing barley cultivars.

    Science.gov (United States)

    Dong, Liang; Hou, Yingmin; Li, Feng; Piao, Yongzhe; Zhang, Xiao; Zhang, Xiaoyu; Li, Cheng; Zhao, Changxin

    2015-03-30

    Beer is a popular alcoholic malt beverage resulting from fermentation of the aqueous extract of malted barley with hops. The aroma of brewing barley impacts the flavor of beer indirectly, because some flavor compounds or their precursors in beer come from the barley. The objectives of this research were to study volatile profiles and to characterize odor-active compounds of brewing barley in order to determine the variability of the aroma composition among different brewing barley cultivars. Forty-one volatiles comprising aldehydes, ketones, alcohols, organic acids, aromatic compounds and furans were identified using solid phase microextraction combined with gas chromatography/mass spectrometry, among which aldehydes, alcohols and ketones were quantitatively in greatest abundance. Quantitative measurements performed by means of solvent extraction and calculation of odor activity values revealed that acetaldehyde, 2-methylpropanal, 3-methylbutanal, 2-methylbutanal, hexanal, heptanal, octanal, nonanal, 3-methyl-1-butanol, cyclopentanol, 2,3-butanedione, 2,3-pentanedione, 2-heptanone, acetic acid, ethyl acetate, 2-pentylfuran and benzeneacetaldehyde, whose concentrations exceeded their odor thresholds, could be considered as odor-active compounds of brewing barley. Principal component analysis was employed to evaluate the differences among cultivars. The results demonstrated that the volatile profile based on the concentrations of aroma compounds enabled good differentiation of most barley cultivars. © 2014 Society of Chemical Industry.

  19. Useful mutations in Iraqi black barley

    International Nuclear Information System (INIS)

    Ibrahim, I.F.

    1989-01-01

    Full text: Barley (Hordeum vulgare L.) is an important fodder crop in Iraq, with a cultivated area of about 1 392 375 ha and a total production of about 838500 t. The 2-row black barley ''LBB'' is the most desirable one in semi-arid zone in northern part of Iraq, because of its drought tolerance and high protein content. However, this cultivar is susceptible to powdery mildew, and lodges. Gamma rays and EMS were used to induce mutations in ''LBB'' and its hybrid with A rivat''. Nine mutants with improved lodging were selected during the first six generations. Five mutants INRC-BB-1, INRC-BB-3, INRC-BBR-4A, INRC-HB-552 and INRC-HB-553 were resistant to powdery mildew while 2 mutants INRC-BBH-1 and INRC-HBR-3 were moderately resistant. Two mutants INRC-BB-123 and INRC-HBR-3 were also resistant to drought under 350-400 mm rainfall. Three mutants INRC-BB-1, INRC-HBR-3 and INRC-HBR-88 exceeded their original variety in seed weight per spike and TKW. (author)

  20. Genetic dissection of photoperiod response based on GWAS of pre-anthesis phase duration in spring barley.

    Directory of Open Access Journals (Sweden)

    Ahmad M Alqudah

    Full Text Available Heading time is a complex trait, and natural variation in photoperiod responses is a major factor controlling time to heading, adaptation and grain yield. In barley, previous heading time studies have been mainly conducted under field conditions to measure total days to heading. We followed a novel approach and studied the natural variation of time to heading in a world-wide spring barley collection (218 accessions, comprising of 95 photoperiod-sensitive (Ppd-H1 and 123 accessions with reduced photoperiod sensitivity (ppd-H1 to long-day (LD through dissecting pre-anthesis development into four major stages and sub-phases. The study was conducted under greenhouse (GH conditions (LD; 16/8 h; ∼20/∼16°C day/night. Genotyping was performed using a genome-wide high density 9K single nucleotide polymorphisms (SNPs chip which assayed 7842 SNPs. We used the barley physical map to identify candidate genes underlying genome-wide association scans (GWAS. GWAS for pre-anthesis stages/sub-phases in each photoperiod group provided great power for partitioning genetic effects on floral initiation and heading time. In addition to major genes known to regulate heading time under field conditions, several novel QTL with medium to high effects, including new QTL having major effects on developmental stages/sub-phases were found to be associated in this study. For example, highly associated SNPs tagged the physical regions around HvCO1 (barley CONSTANS1 and BFL (BARLEY FLORICAULA/LEAFY genes. Based upon our GWAS analysis, we propose a new genetic network model for each photoperiod group, which includes several newly identified genes, such as several HvCO-like genes, belonging to different heading time pathways in barley.

  1. Radiation after-effects in daughter generations of barley grown under conditions of enhanced radioactive background

    International Nuclear Information System (INIS)

    Popova, O.N.; Shershunova, V.I.; Taskaev, A.I.

    1978-01-01

    Stimulation of growth and development was observed in the first daughter generation of barley plants grown under conditions simulating an enhanced radioactive background. The stimulatory effect was partially reproduced in the second generation, and signs of depression of initial growth of plants were found in the third generation. A great number of alterations and their regular occurrence allow to refer them to lingering modifications originating under the effect of a radiation factor on vegetating plants

  2. γ-ray radiation decontamination of barley plant powder

    International Nuclear Information System (INIS)

    Zhao Xiaojun; Fu Junjie; Wang Zhiping; Zhang Guobin

    2007-01-01

    Radiation decontamination of barley plant powder by 60 Co γ-rays and the effect on its components were studied. Results showed that irradiation was very effective in killing the microorganisms in barley plant powder. The irradiation did not cause obvious changes of the major components of protein, total sugar, free amino acid, crude fiber, but 35% loss of vitamin E was observed after 10kGy irradiation. It is suggested that 7.5-10kGy irradiation is good enough for decontamination of the barley plant powder. (authors)

  3. Oligosaccharide binding to barley alpha-amylase 1

    DEFF Research Database (Denmark)

    Robert, X.; Haser, R.; Mori, H.

    2005-01-01

    Enzymatic subsite mapping earlier predicted 10 binding subsites in the active site substrate binding cleft of barley alpha-amylase isozymes. The three-dimensional structures of the oligosaccharide complexes with barley alpha-amylase isozyme 1 (AMY1) described here give for the first time a thorough...... in barley alpha-amylase isozyme 2 (AMY2), and the sugar binding modes are compared between the two isozymes. The "sugar tongs" surface binding site discovered in the AMY1-thio-DP4 complex is confirmed in the present work. A site that putatively serves as an entrance for the substrate to the active site...

  4. INVITRO DIGESTIBILITY OF PROTEIN FROM BARLEY AND OTHER CEREALS

    DEFF Research Database (Denmark)

    Buchmann, N. B.

    1979-01-01

    An in vitro method for measuring barley protein digestibility is presented. Samples were first incubated with pepsin in HCl; pancreatin was then added concomitantly with a bacteriostatic borate buffer. After TCA-precipitation, soluble nitrogen was measured. The digestion was unaffected...... by accumulated free amino acids. There were no free amino acids following pepsin treatment, but the essential ones were well liberated by pancreatin. Results for barley grown in the field or in pots, and for decortified barley fractions agreed with true digestibility values determined with rats. Of these samples...... digestibility depended on the type of enzyme and on the enzyme-to-substrate ratio....

  5. Involvement of reactive oxygen species in endosperm cap weakening and embryo elongation growth during lettuce seed germination

    Science.gov (United States)

    Zhang, Yu; Chen, Bingxian; Xu, Zhenjiang; Shi, Zhaowan; Chen, Shanli; Huang, Xi; Chen, Jianxun; Wang, Xiaofeng

    2014-01-01

    Endosperm cap (CAP) weakening and embryo elongation growth are prerequisites for the completion of lettuce seed germination. Although it has been proposed that the cell wall loosening underlying these processes results from an enzymatic mechanism, it is still unclear which enzymes are involved. Here it is shown that reactive oxygen species (ROS), which are non-enzymatic factors, may be involved in the two processes. In Guasihong lettuce seeds imbibed in water, O2·– and H2O2 accumulated and peroxidase activity increased in the CAP, whereas its puncture force decreased. In addition, in the radicle, the increase in embryo growth potential was accompanied by accumulation of O2·– and an increase in peroxidase activity. Imbibing seeds in 0.3% sodium dichloroisocyanurate (SDIC) reduced endosperm viability and the levels of O2·–, H2O2, and peroxidase activity in the CAP, whereas the decrease in its puncture force was inhibited. However, in the embryo, SDIC did not affect the accumulation of O2·–, peroxidase activity, and the embryo growth potential. As a result, SDIC caused atypical germination, in which the endosperm ruptured at the boundary between the CAP and lateral endosperm. ROS scavengers and ROS generation inhibitors inhibited the CAP weakening and also decreased the embryo growth potential, thus decreasing the percentage of seed germination. Exogenous ROS and ROS generation inducers increased the percentage of CAP rupture to some extent, and the addition of H2O2 to 0.3% SDIC enabled some seeds to undergo typical germination. PMID:24744430

  6. An Endosperm-Associated Cuticle Is Required for Arabidopsis Seed Viability, Dormancy and Early Control of Germination.

    Directory of Open Access Journals (Sweden)

    Julien De Giorgi

    2015-12-01

    Full Text Available Cuticular layers and seeds are prominent plant adaptations to terrestrial life that appeared early and late during plant evolution, respectively. The cuticle is a waterproof film covering plant aerial organs preventing excessive water loss and protecting against biotic and abiotic stresses. Cutin, consisting of crosslinked fatty acid monomers, is the most abundant and studied cuticular component. Seeds are dry, metabolically inert structures promoting plant dispersal by keeping the plant embryo in an arrested protected state. In Arabidopsis thaliana seeds, the embryo is surrounded by a single cell endosperm layer itself surrounded by a seed coat layer, the testa. Whole genome analyses lead us to identify cutin biosynthesis genes as regulatory targets of the phytohormones gibberellins (GA and abscisic acid (ABA signaling pathways that control seed germination. Cutin-containing layers are present in seed coats of numerous species, including Arabidopsis, where they regulate permeability to outer compounds. However, the role of cutin in mature seed physiology and germination remains poorly understood. Here we identify in mature seeds a thick cuticular film covering the entire outer surface of the endosperm. This seed cuticle is defective in cutin-deficient bodyguard1 seeds, which is associated with alterations in endospermic permeability. Furthermore, mutants affected in cutin biosynthesis display low seed dormancy and viability levels, which correlates with higher levels of seed lipid oxidative stress. Upon seed imbibition cutin biosynthesis genes are essential to prevent endosperm cellular expansion and testa rupture in response to low GA synthesis. Taken together, our findings suggest that in the course of land plant evolution cuticular structures were co-opted to achieve key physiological seed properties.

  7. Functional Analysis of Barley Powdery Mildew Effector Candidates and Identification of their Barley Targets

    DEFF Research Database (Denmark)

    Ahmed, Ali Abdurehim

    The genome of barley powdery mildew fungus (Blumeria graminis f. sp. hordei, Bgh) encodes around 500 Candidate Secreted Effector Proteins (CSEPs), which are believed to be delivered to the barley cells either to interfere with plant defence and/or promote nutrient uptake. So far, little is known...... about the function of many CSEPs in virulence and the identities of their host targets. In this PhD study, we investigated the function of nine CSEPs and found that CSEP0081, CSEP0105, CSEP0162 and CSEP0254 act as effectors by promoting the Bgh infection success. Independent silencing of these CSEPs...... proteins (sHsps), Hsp16.9 and Hsp17.5, were identified as interactors for both CSEP0105 and CSEP0162. These interactions were confirmed in planta by BiFC and co-localization studies. Small heat shock proteins are highly conserved ATP-independent chaperones that protect the cell from stress-induced protein...

  8. A Simple Method for Assessing Severity of Common Root Rot on Barley

    Directory of Open Access Journals (Sweden)

    Mohammad Imad Eddin Arabi

    2013-12-01

    Full Text Available Common root rot caused by Cochliobolus sativus is a serious disease of barley. A simple and reliable method for assessing this disease would enhance our capacity in identifying resistance sources and developing resistant barley cultivars. In searching for such a method, a conidial suspension of C. sativus was dropped onto sterilized elongated subcrown internodes and incubated in sandwich filter paper using polyethylene transparent envelopes. Initial disease symptoms were easily detected after 48h of inoculation. Highly significant correlation coefficients were found in each experiment (A, B and C between sandwich filter paper and seedling assays, indicating that this testing procedure was reliable. The method presented facilitates a rapid pre-selection under uniform conditions which is of importance from a breeder’s point of view.

  9. Effect of induced lodging on grain yield and quality of brewing barley

    Directory of Open Access Journals (Sweden)

    Eduardo Caierão

    2006-01-01

    Full Text Available Lodging is one of the main factors of constraint to grain yield stability in barley. The objective of this study wasto evaluate the effects of lodging on agronomic and qualitative traits, when induced at different stages of the crop development.The trial was carried out in Victor Graeff, RS, using a randomized complete block design with four replications and 3 factors:year, lodging date and lodging intensity. The analyzed parameters were grain yield (GY, kernel plumpness (KP, germination(G, and score of lodging at harvest (SLH. No significant interaction was observed for GY and G. The effects of inducedlodging at the booting and physiologic maturity stages were distinct for GY, KP and G. Unlike G, the variables GY and KPwere not significantly affected by lodging intensity. Quantitative and qualitative losses in barley can be predicted based onlodging.

  10. Cloning and Characterization of Purple Acid Phosphatase Phytases from Wheat, Barley, Maize and Rice

    DEFF Research Database (Denmark)

    Dionisio, Giuseppe; Madsen, Claus Krogh; Holm, Preben Bach

    2011-01-01

    development and germination. In wheat, it was demonstrated that a and b isogene expression is driven by different promoters (approximately 31% identity). TaPAPhy_a/b promoter reporter gene expression in transgenic grains and peptide mapping of TaPAPhy purified from wheat bran and germinating grains confirmed......Barley (Hordeum vulgare) and wheat (Triticum aestivum) possess significant phytase activity in the mature grains. Maize (Zea mays) and rice (Oryza sativa) possess little or virtually no preformed phytase activity in the mature grain and depend fully on de novo synthesis during germination. Here......, it is demonstrated that wheat, barley, maize, and rice all possess purple acid phosphatase (PAP) genes that, expressed in Pichia pastoris, give fully functional phytases (PAPhys) with very similar enzyme kinetics. Preformed wheat PAPhy was localized to the protein crystalloid of the aleurone vacuole. Phylogenetic...

  11. Element distribution of the barley plant grown in an agar slice suspended culture

    International Nuclear Information System (INIS)

    Makino-Nakanishi, Tomoko; Matsumoto, Satoshi

    1991-01-01

    An agar slice suspended culture was devised for the further study of the barley root. The roots were placed into an agar covered with a nylon cloth and suspended in a water culture vessel. Barley roots grown in the agar developed hardly any root hair. The element contents of the root grown in the agar culture and that in the water culture were measured by neutron activation analysis. The concentrations of K, Mg and Cl in the root grown in the agar were about half of these grown in the water. Na and Mn concentrations were the same and Ca concentration was slightly higher when grown in the agar. The agar system is expected to provide more information to study the root hair. (author)

  12. Effect of phytase supplementation to barley-canola meal and barley-soybean meal diets on phosphorus and calcium balance in growing pigs

    NARCIS (Netherlands)

    Sauer, W.C.; Cervantes, M.; He, J.M.M.; Schulze, H.

    2003-01-01

    Two metabolism experiments were carried out, to determine the effect of microbial phytase addition to barley-canola meal and barley-soybean meal diets on P and Ca balance in growing. pigs; In experiment 1, six barrows (29.6kg: initial LW) were fed a barley-canola meal diet, without or. with phytase

  13. Induced mutations for disease resistance in wheat and barley

    International Nuclear Information System (INIS)

    Hanis, M.; Hanisova, A.; Knytl, V.; Cerny, J.; Benc, S.

    1977-01-01

    The induction of mutations in cultivars of wheat (Triticum aestivum), barley (Hordeum vulgare), and field beans (Phaseolus vulgaris) has been part of the breeding programme at the Plant Breeding Station at Stupice since 1960. A total of 26 cultivars or selections of winter wheat, 4 cultivars or selections of spring wheat, 2 cultivars of field beans, and 43 selections of spring barley have been treated since 1960. A total of 140 mutant lines of wheat and 37 mutant lines of barley with improved disease resistance of a race-specific type have been obtained. Several mutation programme derived cultivars have been registered in Czechoslovakia (''Diamant'', ''Ametyst'', ''Favorit'', ''Hana'', ''Rapid'', and ''Atlas'' in barley, and ''Alfa'' in field beans), but none of them is a mutation for disease resistance. A series of mutants have been used in crossing programmes. Approaches to improve the efficiency of mutation breeding for disease resistance are suggested. (author)

  14. Barley starch bioengineering for high phosphate and amylose

    DEFF Research Database (Denmark)

    Blennow, Per Gunnar Andreas; Carciofi, Massimiliano; Shaik, Shahnoor Sultana

    2011-01-01

    Starch is a biological polymer that can be industrially produced in massive amounts in a very pure form. Cereals is the main source for starch production and any improvement of the starch fraction can have a tremendous impact in food and feed applications. Barley ranks number four among cereal...... crops and barley is a genetically very well characterized. Aiming at producing new starch qualities in the cereal system, we used RNAi and overexpression strategies to produce pure amylose and high-phosphate starch, respectively, using the barley kernel as a polymer factory. By simultaneous silencing...... of the three genes encoding the starch-branching enzymes SBEI, SBEIIa, and SBEIIb using a triple RNAi chimeric hairpin construct we generated a virtually amylopectin-free barley. The grains of the transgenic lines were shrunken and had a yield of around 80% of the control line. The starch granules were...

  15. Application of proteomics to investigate barley-Fusarium graminearum interaction

    DEFF Research Database (Denmark)

    Yang, Fen

    in plants under low N and iv) proteomes of uninfected plants were similar under two N levels. Correlation of level of proteolysis induced by the fungus with measurement of Fusarium-damaged kernels, fungal biomass and mycotoxin levels indicated that FHB was more severe in barley with low N. In Chapter 3......, the molecular mechanisms of barley defense to Fusarium graminearum at the early infection stage were studied. Antibodies against barley β-amylases were shown to be the markers for infection at proteome level and for selection of the time for proteome analysis before extensive degradation caused by the fungus...... the disease. Due to the advantages of gel-based proteomics that differentially expressed proteins involved in the interaction can be directly detected by comparing protein profiles displayed on 2-D gels, it is used as a tool for studying the barley- Fusarium graminearum interaction form three different...

  16. Effects of irradiated barley on fattening quail (Coturnix coturnix japonica)

    International Nuclear Information System (INIS)

    Dahlhelm, H.

    1999-01-01

    For the feeding experiments reported, barley grains irradiated at doses of 2, 10, and 100 kGy were used as a diet. The results obtained revealed no significant effects in the parameters analysed. (orig./CB) [de

  17. Serine:glyoxylate aminotransferase mutant of barley

    International Nuclear Information System (INIS)

    Blackwell, R.; Murray, A.; Joy, K.; Lea, P.

    1987-01-01

    A photorespiratory mutant of barley (LaPr 85/84), deficient in both of the major peaks of serine:glyoxylate aminotransferase activity detected in the wild type, also lacks serine:pyruvate and asparagine:glyoxylate aminotransferase activities. Genetic analysis of the mutation demonstrated that these three activities are all carried on the same enzyme. The mutant, when placed in air, accumulated a large pool of serine, showed the expected rate (50%) of ammonia release during photorespiration but produced CO 2 at twice the wild type rate when it was fed [ 14 C] glyoxylate. Compared with the wild type, LaPr 85/84 exhibited abnormal transient changes in chlorophyll a fluorescence when the CO 2 concentration of the air was altered, indicating that the rates of the fluorescence quenching mechanisms were affected in vivo by the lack of this enzyme

  18. The spontaneous chlorophyll mutation frequency in barley

    DEFF Research Database (Denmark)

    Jørgensen, Jørgen Helms; Jensen, Hans Peter

    1986-01-01

    A total of 1866 barley plants were progeny tested in the greenhouse. Twenty-five plants segregated for newly arisen, spontaneous chlorophyll mutant genes. Among the total of 470,129 seedlings screened there were 79 mutants (1.7 .+-. 0.6 .times. 10-4). The data are added to data from three similar...... materials and the resulting estimate of the chlorophyll mutant frequency is 1.6 .times. 10-4 in about 1.43 million seedlings. The estimate of the chlorophyll mutation rate per generation is close to 67.3 .times. 10-4 per diploid genome or in the order of 6 .times. 10-7 per locus and haploid genome....

  19. The Localization of Eceriferum Loci in Barley

    DEFF Research Database (Denmark)

    Søgaard, Bodil

    1974-01-01

    Three different 3-point tests have been made for gene distances on chromosome 1 in barley (Hordeum vulgare L.). In all cases eceriferum, cer-f9, and albina, ac2, were examined with erectoides as the third gene. The erectoides, ert, genes are ert-a23, ert-d33 and ert-m40, respectively. The analyses...... have been carried through to F3. The experiments demonstrated the following sequence of the five genes: cer-f9 — ac2 — ert-d33 — ert-a23 — ert-m40 and the following distances: cer-f9 — ac2 = 2.3 %, ac2 — ert-a23 = 8.5 %, ac2 — ert-d33 = 2.5 % and ac2 — ert-m40 = 12.8 %. The cer-f9 — ac2 distance, which...

  20. Cisgenic barley with improved phytase activity

    DEFF Research Database (Denmark)

    Holme, Inger; Dionisio, Giuseppe; Brinch-Pedersen, Henrik

    2012-01-01

    phytase gene (HvPAPhy_a) expressed during grain filling to evaluate the cisgenesis concept in barley. The marker gene elimination method was used to obtain marker-free plant lines. Here, the gene of interest and the selection gene are flanked by their own T-DNA borders to allow unlinked integration...... of the two genes. We analysed the transformants for co-transformation efficiency, increased phytase activities in the grain, integration of the kanamycin resistance gene of the vector-backbone and segregation between the HvPAPhy_a insert and the hygromycin resistance gene. The frequencies of the four......PAPhy_a insert for further analysis. Seeds from plants homozygous for the insert showed 2.6- and 2.8-fold increases in phytase activities and the activity levels were stable over the three generations analysed. In one of the selected lines, the flanking sequences from both the left and right T-DNA borders were...

  1. Cisgenic Barley with Improved Phytase Activity

    DEFF Research Database (Denmark)

    Holme, Inger; Dionisio, Giuseppe; Brinch-Pedersen, Henrik

    2010-01-01

    barley lambda library has been used to isolate the genomic clone of this phytase including 2.3 kb of the promoter region and 600 bp of the terminator region. The clone has been inserted into a cisgenic Agrobacterium vector where both the gene of interest and the selection gene are flanked by their own T......-DNA borders in order to promote integration of the two genes at unlinked places in the plant genome. Transformed T0 plants show increases in the phytase activity of mature seeds from 1,400 in wild type to 8,950 FTU/kg in T0 plants. T1 plants of each transformant are currently screened with PCR for extra...... copies of the genomic phytase gene and the selection gene to identify segregation between the two genes. Presently, we have identified two cisgenic T1 plants without vector backbone and selection gene but with an extra copy of the genomic phytase gene....

  2. Cisgenic barley with improved phytase activity

    DEFF Research Database (Denmark)

    Holme, Inger; Dionisio, Giuseppe; Brinch-Pedersen, Henrik

    2010-01-01

    barley lambda library has been used to isolate the genomic clone of this phytase including 2.3 kb of the promoter region and 600 bp of the terminator region. The clone has been inserted into a cisgenic Agrobacterium vector where both the gene of interest and the selection gene are flanked by their own T......-DNA borders in order to promote integration of the two genes at unlinked places in the plant genome. Transformed T0 plants show increases in the phytase activity of mature seeds from 1,400 in wild type to 8,950 FTU/kg in T0 plants. T1 plants of each transformant are currently screened with PCR for extra...... copies of the genomic phytase gene and the selection gene to identify segregation between the two genes. Presently, we have identified two cisgenic T1 plants without vector backbone and selection gene but with an extra copy of the genomic phytase gene....

  3. Application of proteomics to investigate barley-Fusarium graminearum interaction

    OpenAIRE

    Yang, Fen; Finnie, Christine; Jacobsen, Susanne

    2011-01-01

    Due to the great loss of barley grain yield and quality in addition to mycotoxins contamination caused by Fusarium head blight (FHB), it is essential to understand the molecular interaction between barley and Fusarium graminearum, one of the primary Fusarium species causing FHB, in order to control the disease. Due to the advantages of gel-based proteomics that differentially expressed proteins involved in the interaction can be directly detected by comparing protein profiles displayed on 2-D...

  4. Determination of Four Major Saponins in Skin and Endosperm of Seeds of Horse Chestnut (Aesculus Hippocastanum L.) Using High Performance Liquid Chromatography with Positive Confirmation by Thin Layer Chromatography.

    Science.gov (United States)

    Abudayeh, Zead Helmi Mahmoud; Al Azzam, Khaldun Mohammad; Naddaf, Ahmad; Karpiuk, Uliana Vladimirovna; Kislichenko, Viktoria Sergeevna

    2015-11-01

    To separate and quantify four major saponins in the extracts of the skin and the endosperm of seeds of horse chestnut (Aesculus hippocastanum L.) using ultrasonic solvent extraction followed by a high performance liquid chromatography-diode array detector (HPLC-DAD) with positive confirmation by thin layer chromatography (TLC). The saponins: escin Ia, escin Ib, isoescin Ia and isoescin Ib were extracted using ultrasonic extraction method. The optimized extraction conditions were: 70% methanol as extraction solvent, 80 °C as extraction temperature, and the extraction time was achieved in 4 hours. The HPLC conditions used: Zorbax SB-ODS-(150 mm × 2.1 mm, 3 μm) column, acetonitrile and 0.10% phosphoric acid solution (39:61 v/v) as mobile phase, flow rate was 0.5 mL min(-1) at 210 nm and 230 nm detection. The injection volume was 10 μL, and the separation was carried out isothermally at 30 °C in a heated chamber. The results indicated that the developed HPLC method is simple, sensitive and reliable. Moreover, the content of escins in seeds decreased by more than 30% in endosperm and by more than 40% in skin upon storage for two years. This assay can be readily utilized as a quality control method for horse chestnut and other related medicinal plants.

  5. ALTERATIONS IN BARLEY PROTEOME UPON FUNGAL INFECTION AND TRICYCLAZOLE TREATMENT

    Directory of Open Access Journals (Sweden)

    Manoj Kumar a,b

    2017-04-01

    Full Text Available The barley proteome was investigated upon fungal infection and subsequent treatment by tricyclazole (TCZ, which is known to have applications in spot blotch disease management in barley.Significantly enhanced chlorophyll content was recorded in TCZ treated plants. The disease severity was significantly reduced after TCZ application in pathogen inoculated plants by reducing the appressoria formation at infection site in barley leaves. Two-dimensional gel electrophoresis (2-DE revealed the expression profile of proteins from (I control plants (healthy barley leaves; application with sterile water,(II plants after foliar application of TCZ (100 µg/ml, (III plants inoculated with B. sorokiniana and (IV plants treated with TCZ (72 h after B. sorokiniana inoculation. A set of 33 proteins expressed differentially after TCZ treatment. Out of this 19 had known functions, while others were unknown or hypothetical proteins. These differentially expressed proteins were related to redox-activity and gene expression, electron transfer,cell division and chromosome partitioning, cell envelop biogenesis, energy metabolism and conversion, respiration and pathogenesis related functions in the barley plants. The study provides a platform and documents the proteins that might be involved in disease management in barley following TCZ application. It is expected that the study will provide boost in understanding proteome regulation upon fungal infection and subsequent anti-fungal treatment and will attract researchers for further validation leading to better pest management.

  6. Proanthocyanidins in seed coat tegmen and endospermic cap inhibit seed germination in Sapium sebiferum.

    Science.gov (United States)

    Shah, Faheem Afzal; Ni, Jun; Chen, Jing; Wang, Qiaojian; Liu, Wenbo; Chen, Xue; Tang, Caiguo; Fu, Songling; Wu, Lifang

    2018-01-01

    Sapium sebiferum , an ornamental and bio-energetic plant, is propagated by seed. Its seed coat contains germination inhibitors and takes a long time to stratify for germination. In this study, we discovered that the S. sebiferum seed coat (especially the tegmen) and endospermic cap (ESC) contained high levels of proanthocyanidins (PAs). Seed coat and ESC removal induced seed germination, whereas exogenous application with seed coat extract (SCE) or PAs significantly inhibited this process, suggesting that PAs in the seed coat played a major role in regulating seed germination in S. sebiferum . We further investigated how SCE affected the expression of the seed-germination-related genes. The results showed that treatment with SCE upregulated the transcription level of the dormancy-related gene, gibberellins (GAs) suppressing genes, abscisic acid (ABA) biosynthesis and signalling genes. SCE decreased the transcript levels of ABA catabolic genes, GAs biosynthesis genes, reactive oxygen species genes and nitrates-signalling genes. Exogenous application of nordihydroguaiaretic acid, gibberellic acid, hydrogen peroxide and potassium nitrate recovered seed germination in seed-coat-extract supplemented medium. In this study, we highlighted the role of PAs, and their interactions with the other germination regulators, in the regulation of seed dormancy in S. sebiferum .

  7. Proanthocyanidins in seed coat tegmen and endospermic cap inhibit seed germination in Sapium sebiferum

    Directory of Open Access Journals (Sweden)

    Faheem Afzal Shah

    2018-04-01

    Full Text Available Sapium sebiferum, an ornamental and bio-energetic plant, is propagated by seed. Its seed coat contains germination inhibitors and takes a long time to stratify for germination. In this study, we discovered that the S. sebiferum seed coat (especially the tegmen and endospermic cap (ESC contained high levels of proanthocyanidins (PAs. Seed coat and ESC removal induced seed germination, whereas exogenous application with seed coat extract (SCE or PAs significantly inhibited this process, suggesting that PAs in the seed coat played a major role in regulating seed germination in S. sebiferum. We further investigated how SCE affected the expression of the seed-germination-related genes. The results showed that treatment with SCE upregulated the transcription level of the dormancy-related gene, gibberellins (GAs suppressing genes, abscisic acid (ABA biosynthesis and signalling genes. SCE decreased the transcript levels of ABA catabolic genes, GAs biosynthesis genes, reactive oxygen species genes and nitrates-signalling genes. Exogenous application of nordihydroguaiaretic acid, gibberellic acid, hydrogen peroxide and potassium nitrate recovered seed germination in seed-coat-extract supplemented medium. In this study, we highlighted the role of PAs, and their interactions with the other germination regulators, in the regulation of seed dormancy in S. sebiferum.

  8. Salinity alters the protein composition of rice endosperm and the physicochemical properties of rice flour.

    Science.gov (United States)

    Baxter, Graeme; Zhao, Jian; Blanchard, Christopher

    2011-09-01

    Salinity is one of the major threats to production of rice and other agricultural crops worldwide. Although numerous studies have shown that salinity can severely reduce rice yield, little is known about its impact on the chemical composition, processing and sensory characteristics of rice. The objective of the current study was to investigate the effect of salinity on the pasting and textural properties of rice flour as well as on the protein content and composition of rice endosperm. Rice grown under saline conditions had significantly lower yields but substantially higher protein content. The increase in protein content was mainly attributed to increases in the amount of glutelin, with lesser contributions from albumin. Salinity also altered the relative proportions of the individual peptides within the glutelin fraction. Flours obtained from rice grown under saline conditions showed significantly higher pasting temperatures, but lower peak and breakdown viscosities. Rice gels prepared from the flour showed significantly higher hardness and adhesiveness values, compared to the freshwater controls. Salinity can significantly affect the pasting and textural characteristics of rice flour. Although some of the effects could be attributed to changes in protein content of the rice flour, especially the increased glutelin level, the impact of salinity on the physicochemical properties of rice is rather complex and may involve the interrelated effects of other rice components such as starch and lipids. Copyright © 2011 Society of Chemical Industry.

  9. High voltage electric field effects on structure and biological characteristics of barley seeds

    Energy Technology Data Exchange (ETDEWEB)

    Khazaei, J. [Tehran Univ., Tehran (Iran, Islamic Republic of). Dept. of Agrotechnology, Univ. College of Abouraihan; Aliabadi, E. [Tehran Univ., Tehran (Iran, Islamic Republic of). Dept. of Crop Production Horticulture, Univ. College of Aburaihan; Shayegani, A.A. [Tehran Univ., Tehran (Iran, Islamic Republic of). Univ. College of Engineering

    2010-07-01

    Electric biostimulation of seeds is a pre-sowing treatment in which an electric field is applied to seeds to increase germination of non standard seeds. This paper reported on a study that examined the effects of AC electric field and exposure time on the structure and biological characteristics of barley seeds. The objective was to determine the potential to accelerate seed germination, plant growth and root development by the electric field strength and exposure time. Makooei cultivar barley seeds were used in this study. The effect of electric field strength (at 2, 4, 9, and 14 kV/m) and exposure time (at 15, 45, 80, and 150 min) on seed germination was studied along with height of seedling, length or root, height of stem, length of leaves, earliness, dry weight and wet weight of seedling. The treated seeds were stored for a month in a refrigerator at 5 degrees C prior to the germination experiments. The initial germination percent of the seed was 81 per cent. The treatment of barley seeds in an AC electric field had a positive effect on all investigated parameters. The germination percent of the treated seed increased to 94.5 per cent . The seeds exposed for long periods of time (45 to 150 min) showed better germination than the seeds exposed to lower exposure times. Dry and wet weights of seedling increased 143.4 per cent and 45.7 per cent, respectively.

  10. Fusarium and mycotoxin spectra in Swiss barley are affected by various cropping techniques.

    Science.gov (United States)

    Schöneberg, Torsten; Martin, Charlotte; Wettstein, Felix E; Bucheli, Thomas D; Mascher, Fabio; Bertossa, Mario; Musa, Tomke; Keller, Beat; Vogelgsang, Susanne

    2016-10-01

    Fusarium head blight is one of the most important cereal diseases worldwide. Cereals differ in terms of the main occurring Fusarium species and the infection is influenced by various factors, such as weather and cropping measures. Little is known about Fusarium species in barley in Switzerland, hence harvest samples from growers were collected in 2013 and 2014, along with information on respective cropping factors. The incidence of different Fusarium species was obtained by using a seed health test and mycotoxins were quantified by LC-MS/MS. With these techniques, the most dominant species, F. graminearum, and the most prominent mycotoxin, deoxynivalenol (DON), were identified. Between the three main Swiss cropping systems, Organic, Extenso and Proof of ecological performance, we observed differences with the lowest incidence and toxin accumulation in organically cultivated barley. Hence, we hypothesise that this finding was based on an array of growing techniques within a given cropping system. We observed that barley samples from fields with maize as previous crop had a substantially higher F. graminearum incidence and elevated DON accumulation compared with other previous crops. Furthermore, the use of reduced tillage led to a higher disease incidence and toxin content compared with samples from ploughed fields. Further factors increasing Fusarium infection were high nitrogen fertilisation as well as the application of fungicides and growth regulators. Results from the current study can be used to develop optimised cropping systems that reduce the risks of mycotoxin contamination.

  11. Barley disease susceptibility factor RACB acts in epidermal cell polarity and positioning of the nucleus.

    Science.gov (United States)

    Scheler, Björn; Schnepf, Vera; Galgenmüller, Carolina; Ranf, Stefanie; Hückelhoven, Ralph

    2016-05-01

    RHO GTPases are regulators of cell polarity and immunity in eukaryotes. In plants, RHO-like RAC/ROP GTPases are regulators of cell shaping, hormone responses, and responses to microbial pathogens. The barley (Hordeum vulgare L.) RAC/ROP protein RACB is required for full susceptibility to penetration by Blumeria graminis f.sp. hordei (Bgh), the barley powdery mildew fungus. Disease susceptibility factors often control host immune responses. Here we show that RACB does not interfere with early microbe-associated molecular pattern-triggered immune responses such as the oxidative burst or activation of mitogen-activated protein kinases. RACB also supports rather than restricts expression of defence-related genes in barley. Instead, silencing of RACB expression by RNAi leads to defects in cell polarity. In particular, initiation and maintenance of root hair growth and development of stomatal subsidiary cells by asymmetric cell division is affected by silencing expression of RACB. Nucleus migration is a common factor of developmental cell polarity and cell-autonomous interaction with Bgh RACB is required for positioning of the nucleus near the site of attack from Bgh We therefore suggest that Bgh profits from RACB's function in cell polarity rather than from immunity-regulating functions of RACB. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  12. Genomic Prediction of Seed Quality Traits Using Advanced Barley Breeding Lines

    Science.gov (United States)

    Nielsen, Nanna Hellum; Jahoor, Ahmed; Jensen, Jens Due; Orabi, Jihad; Cericola, Fabio; Edriss, Vahid; Jensen, Just

    2016-01-01

    Genomic selection was recently introduced in plant breeding. The objective of this study was to develop genomic prediction for important seed quality parameters in spring barley. The aim was to predict breeding values without expensive phenotyping of large sets of lines. A total number of 309 advanced spring barley lines tested at two locations each with three replicates were phenotyped and each line was genotyped by Illumina iSelect 9Kbarley chip. The population originated from two different breeding sets, which were phenotyped in two different years. Phenotypic measurements considered were: seed size, protein content, protein yield, test weight and ergosterol content. A leave-one-out cross-validation strategy revealed high prediction accuracies ranging between 0.40 and 0.83. Prediction across breeding sets resulted in reduced accuracies compared to the leave-one-out strategy. Furthermore, predicting across full and half-sib-families resulted in reduced prediction accuracies. Additionally, predictions were performed using reduced marker sets and reduced training population sets. In conclusion, using less than 200 lines in the training set can result in low prediction accuracy, and the accuracy will then be highly dependent on the family structure of the selected training set. However, the results also indicate that relatively small training sets (200 lines) are sufficient for genomic prediction in commercial barley breeding. In addition, our results indicate a minimum marker set of 1,000 to decrease the risk of low prediction accuracy for some traits or some families. PMID:27783639

  13. Genomic Prediction of Seed Quality Traits Using Advanced Barley Breeding Lines.

    Directory of Open Access Journals (Sweden)

    Nanna Hellum Nielsen

    Full Text Available Genomic selection was recently introduced in plant breeding. The objective of this study was to develop genomic prediction for important seed quality parameters in spring barley. The aim was to predict breeding values without expensive phenotyping of large sets of lines. A total number of 309 advanced spring barley lines tested at two locations each with three replicates were phenotyped and each line was genotyped by Illumina iSelect 9Kbarley chip. The population originated from two different breeding sets, which were phenotyped in two different years. Phenotypic measurements considered were: seed size, protein content, protein yield, test weight and ergosterol content. A leave-one-out cross-validation strategy revealed high prediction accuracies ranging between 0.40 and 0.83. Prediction across breeding sets resulted in reduced accuracies compared to the leave-one-out strategy. Furthermore, predicting across full and half-sib-families resulted in reduced prediction accuracies. Additionally, predictions were performed using reduced marker sets and reduced training population sets. In conclusion, using less than 200 lines in the training set can result in low prediction accuracy, and the accuracy will then be highly dependent on the family structure of the selected training set. However, the results also indicate that relatively small training sets (200 lines are sufficient for genomic prediction in commercial barley breeding. In addition, our results indicate a minimum marker set of 1,000 to decrease the risk of low prediction accuracy for some traits or some families.

  14. The barley anion channel, HvALMT1, has multiple roles in guard cell physiology and grain metabolism.

    Science.gov (United States)

    Xu, Muyun; Gruber, Benjamin D; Delhaize, Emmanuel; White, Rosemary G; James, Richard A; You, Jiangfeng; Yang, Zhenming; Ryan, Peter R

    2015-01-01

    The barley (Hordeum vulgare) gene HvALMT1 encodes an anion channel in guard cells and in certain root tissues indicating that it may perform multiple roles. The protein localizes to the plasma membrane and facilitates malate efflux from cells when constitutively expressed in barley plants and Xenopus oocytes. This study investigated the function of HvALMT1 further by identifying its tissue-specific expression and by generating and characterizing RNAi lines with reduced HvALMT1 expression. We show that transgenic plants with 18-30% of wild-type HvALMT1 expression had impaired guard cell function. They maintained higher stomatal conductance in low light intensity and lost water more rapidly from excised leaves than the null segregant control plants. Tissue-specific expression of HvALMT1 was investigated in developing grain and during germination using transgenic barley lines expressing the green fluorescent protein (GFP) with the HvALMT1 promoter. We found that HvALMT1 is expressed in the nucellar projection, the aleurone layer and the scutellum of developing barley grain. Malate release measured from isolated aleurone layers prepared from imbibed grain was significantly lower in the RNAi barley plants compared with control plants. These data provide molecular and physiological evidence that HvALMT1 functions in guard cells, in grain development and during germination. We propose that HvALMT1 releases malate and perhaps other anions from guard cells to promote stomatal closure. The likely roles of HvALMT1 during seed development and grain germination are also discussed. © 2014 Scandinavian Plant Physiology Society.

  15. Nematode assemblages in the rhizosphere of spring barley (Hordeum vulgare L.) depended on fertilisation and plant growth phase

    DEFF Research Database (Denmark)

    Madsen, Mette Vestergård

    2004-01-01

    rhizosphere; nitrogen and phosphorus fertilisation; nematode assemblages; plant parasites; barley......rhizosphere; nitrogen and phosphorus fertilisation; nematode assemblages; plant parasites; barley...

  16. Barley polyamine oxidase: Characterisation and analysis of the cofactor and the N-terminal amino acid sequence

    DEFF Research Database (Denmark)

    Radova, A.; Sebela, M.; Galuszka, P.

    2001-01-01

    This paper reports the first purification method developed for the isolation of an homogeneous polyamine oxidase (PAO) from etiolated barley seedlings. The crude enzyme preparation was obtained after initial precipitation of the extract with protamine sulphate and ammonium sulphate. The enzyme...... was further confirmed by measuring the fluorescence spectra, Barley PAO is an acidic protein (pI 5.4) containing 3% of neutral sugars: its molecular mass determined by SDS-PAGE was 56 kDa, whilst gel permeation chromatography revealed the higher value of 76 kDa. The N-terminal amino acid sequence of barley...... PAO shows a high degree of similarity to that of maize PAO and to several other flavoprotein oxidases. The polyamines spermine and spermidine were the only two substrates of the enzyme with K-m values 4 x 10(-5) and 3 x 10(-5) M and pH optima of 5.0 and 6.0, respectively. Barley polyamine oxidase...

  17. Improving phenolic bioactive-linked anti-hyperglycemic functions of dark germinated barley sprouts (Hordeum vulgare L.) using seed elicitation strategy.

    Science.gov (United States)

    Ramakrishna, Ramnarain; Sarkar, Dipayan; Manduri, Avani; Iyer, Shreyas Ganesan; Shetty, Kalidas

    2017-10-01

    Sprouts of cereal grains, such as barley ( Hordeum vulgare L.), are a good source of beneficial phenolic bioactives. Such health relevant phenolic bioactives of cereal sprouts can be targeted to manage chronic hyperglycemia and oxidative stress commonly associated with type 2 diabetes (T2D). Therefore improving phenolic bioactives by stimulating plant endogenous defense responses such as protective pentose phosphate pathway (PPP) during sprouting has significant merit. Based on this metabolic rationale, this study aimed to enhance phenolic bioactives and associated antioxidant and anti-hyperglycemic functions in dark germinated barley sprouts using exogenous elicitor treatments. Dark-germinated sprouts of two malting barley cultivars (Pinnacle and Celebration), treated with chitosan oligosaccharide (COS) and marine protein hydrolysate (GP), were evaluated. Total soluble phenolic content (TSP), phenolic acid profiles, total antioxidant activity (TA) and in vitro inhibitory activities of hyperglycemia relevant α-amylase and α-glucosidase enzymes of the dark germinated barley sprouts were evaluated at day 2, 4, and 6 post elicitor treatments. Overall, TSP content, TA, and α-amylase inhibitory activity of dark germinated barley sprouts decreased, while α-glucosidase inhibitory activity and gallic acid content increased from day 2 to day 6. Among barley cultivars, high phenolic antioxidant-linked anti-hyperglycemic bioactives were observed in Celebration. Furthermore, GP and COS seed elicitor treatments in selective doses improved T2D relevant phenolic-linked anti-hyperglycemic bioactives of barley spouts at day 6. Therefore, such seed elicitation approach can be strategically used to develop bioactive enriched functional food ingredients from cereal sprouts targeting chronic hyperglycemia and oxidative stress linked to T2D.

  18. The Effects of Reduced Gluten Barley Diet on Humoral and Cell-Mediated Systemic Immune Responses of Gluten-Sensitive Rhesus Macaques

    Directory of Open Access Journals (Sweden)

    Karol Sestak

    2015-03-01

    Full Text Available Celiac disease (CD affects approximately 1% of the general population while an estimated additional 6% suffers from a recently characterized, rapidly emerging, similar disease, referred to as non-celiac gluten sensitivity (NCGS. The only effective treatment of CD and NCGS requires removal of gluten sources from the diet. Since required adherence to a gluten-free diet (GFD is difficult to accomplish, efforts to develop alternative treatments have been intensifying in recent years. In this study, the non-human primate model of CD/NCGS, e.g., gluten-sensitive rhesus macaque, was utilized with the objective to evaluate the treatment potential of reduced gluten cereals using a reduced gluten (RG; 1% of normal gluten barley mutant as a model. Conventional and RG barleys were used for the formulation of experimental chows and fed to gluten-sensitive (GS and control macaques to determine if RG barley causes a remission of dietary gluten-induced clinical and immune responses in GS macaques. The impacts of the RG barley diet were compared with the impacts of the conventional barley-containing chow and the GFD. Although remission of the anti-gliadin antibody (AGA serum responses and an improvement of clinical diarrhea were noted after switching the conventional to the RG barley diet, production of inflammatory cytokines, e.g., interferon-gamma (IFN-γ, tumor necrosis factor (TNF and interleukin-8 (IL-8 by peripheral CD4+ T helper lymphocytes, persisted during the RG chow treatment and were partially abolished only upon re-administration of the GFD. It was concluded that the RG barley diet might be used for the partial improvement of gluten-induced disease but its therapeutic value still requires upgrading—by co-administration of additional treatments.

  19. The effects of reduced gluten barley diet on humoral and cell-mediated systemic immune responses of gluten-sensitive rhesus macaques.

    Science.gov (United States)

    Sestak, Karol; Thwin, Hazel; Dufour, Jason; Aye, Pyone P; Liu, David X; Moehs, Charles P

    2015-03-06

    Celiac disease (CD) affects approximately 1% of the general population while an estimated additional 6% suffers from a recently characterized, rapidly emerging, similar disease, referred to as non-celiac gluten sensitivity (NCGS). The only effective treatment of CD and NCGS requires removal of gluten sources from the diet. Since required adherence to a gluten-free diet (GFD) is difficult to accomplish, efforts to develop alternative treatments have been intensifying in recent years. In this study, the non-human primate model of CD/NCGS, e.g., gluten-sensitive rhesus macaque, was utilized with the objective to evaluate the treatment potential of reduced gluten cereals using a reduced gluten (RG; 1% of normal gluten) barley mutant as a model. Conventional and RG barleys were used for the formulation of experimental chows and fed to gluten-sensitive (GS) and control macaques to determine if RG barley causes a remission of dietary gluten-induced clinical and immune responses in GS macaques. The impacts of the RG barley diet were compared with the impacts of the conventional barley-containing chow and the GFD. Although remission of the anti-gliadin antibody (AGA) serum responses and an improvement of clinical diarrhea were noted after switching the conventional to the RG barley diet, production of inflammatory cytokines, e.g., interferon-gamma (IFN-γ), tumor necrosis factor (TNF) and interleukin-8 (IL-8) by peripheral CD4+ T helper lymphocytes, persisted during the RG chow treatment and were partially abolished only upon re-administration of the GFD. It was concluded that the RG barley diet might be used for the partial improvement of gluten-induced disease but its therapeutic value still requires upgrading-by co-administration of additional treatments.

  20. Transcriptional regulatory programs underlying barley germination and regulatory functions of Gibberellin and abscisic acid

    Science.gov (United States)

    2011-01-01

    germination. Those genes and metabolic pathways are likely to be important parts of transcriptional regulatory networks underlying GA and ABA regulation of seed germination and seedling growth. Conclusions The studies developed a model depicting transcriptional regulatory programs underlying barley germination and GA and ABA regulation of germination at gene, pathway and systems levels, and established a standard transcriptome reference for further integration with various -omics and biological data to illustrate biological networks underlying seed germination. The studies also generated a great amount of systems biological evidence for previously proposed hypotheses, and developed a number of new hypotheses on transcriptional regulation of seed germination for further experimental validation. PMID:21668981

  1. Transcriptional regulatory programs underlying barley germination and regulatory functions of Gibberellin and abscisic acid

    Directory of Open Access Journals (Sweden)

    Lin Li

    2011-06-01

    -regulated by both GA and seed germination. Those genes and metabolic pathways are likely to be important parts of transcriptional regulatory networks underlying GA and ABA regulation of seed germination and seedling growth. Conclusions The studies developed a model depicting transcriptional regulatory programs underlying barley germination and GA and ABA regulation of germination at gene, pathway and systems levels, and established a standard transcriptome reference for further integration with various -omics and biological data to illustrate biological networks underlying seed germination. The studies also generated a great amount of systems biological evidence for previously proposed hypotheses, and developed a number of new hypotheses on transcriptional regulation of seed germination for further experimental validation.

  2. PEMANFAATAN FRAKSI KAYA ASAM LAURAT HASIL HIDROLISIS DARI ENDOSPERM KELAPA MENGGUNAKAN LIPASE ENDOGENEUS SEBAGAI PENGAWET SUSU KEDELAI KEMASAN (Utilization of High Lauric Fraction that Produced from Coconut Endosperm Using Lipase Endogenous as Preservation of Soybean Milk Packaging

    Directory of Open Access Journals (Sweden)

    Moh. Su'i

    2016-10-01

    Full Text Available Results of previous studies show that the high lauric fraction isolated from coconut endosperm is able to inhibit pathogenic and non-pathogenic bacteria. This research aims to study the addition of high lauric fraction that hydrolysed of coconut endosperm of the storability of soy milk packaging. High lauric fraction isolated from coconut milk, then the fraction analized of the fatty acid composition with gas chromatography (GC and then used as a preservative soy milk. The fraction is added to the soy milk with concentrations of 0, 10, 15 and 20%, then stored for 3 days. Every day is observed until soy milk damaged. The results showed that the fraction isolated from coconut milk contains 50.45% lauric acid, 17.52% myristic acid, 7.02% palmitic acid, 6.46% capric acid, 5.52% caprylic acid, 5.12% linoleic acid, 1.89% oleic acid, and 0.11% caproic acid. The addition of lauric acid-rich fraction of 20% were able to preserve soy milk for 2 days with a total microbe 1.00 x 104 cfu/ml, free fatty acids 0.12 m mol/ml, pH 5.05 and a balanced aroma 4 (nice. Keywords: Coconut, lauric acid, soy milk, storage ABSTRAK Hasil penelitian sebelumnya menunjukkan bahwa fraksi kaya asam laurat hasil isolasi dari endosperm kelapa mampu menghambat bakteri patogen dan non patogen. Penelitian ini bertujuan mempelajari penambahan fraksi kaya asam laurat hasil hidrolisis dari endosperm kelapa terhadap daya simpan susu kedelai kemasan. Fraksi yang kaya asam laurat diisolasi dari santan kelapa kemudian fraksi tersebut diuji komposisi asam lemaknya menggunakan chromatografi gas (GC dan selanjutnya digunakan sebagai bahan pengawet susu kedelai. Fraksi kaya asam laurat ditambahkan ke dalam susu kedelai dengan konsentrasi 0, 10, 15 dan 20%, kemudian disimpan selama 3 hari. Setiap hari dilakukan pengamatan hingga susu mengalami kerusakan. Hasil penelitian menunjukkan bahwa fraksi hasil isolasi dari santan kelapa mengandung asam laurat 50,45%, asam miristat 17,52%, asam palmitat

  3. Purification and partial amino-acid sequence of gibberellin 20-oxidase from Cucurbita maxima L. endosperm.

    Science.gov (United States)

    Lange, T

    1994-01-01

    Gibberellin (GA) 20-oxidase was purified to apparent homogeneity from Cucurbita maxima endosperm by fractionated ammonium-sulphate precipitation, gel-filtration chromatography and anion-exchange and hydrophobic-interaction high-performance liquid chromatography (HPLC). Average purification after the last step was 55-fold with 3.9% of the activity recovered. The purest single fraction was enriched 101-fold with 0.2% overall recovery. Apparent relative molecular mass of the enzyme was 45 kDa, as determined by gel-filtration HPLC and sodium dodecyl sulphate-polyacrylamide gel electrophoresis, indicating that GA 20-oxidase is probably a monomeric enzyme. The purified enzyme degraded on two-dimensional gel electrophoresis, giving two protein spots: a major one corresponding to a molecular mass of 30 kDa and a minor one at 45 kDa. The isoelectric point for both was 5.4. The amino-acid sequences of the amino-terminus of the purified enzyme and of two peptides from a tryptic digest were determined. The purified enzyme catalysed the sequential conversion of [14C]GA12 to [14C]GA15, [14C]GA24 and [14C]GA25, showing that carbon atom 20 was oxidised to the corresponding alcohol, aldehyde and carboxylic acid in three consecutive reactions. [14C]Gibberellin A53 was similarly converted to [14C]GA44, [14C]GA19, [14C]GA17 and small amounts of a fourth product, which was preliminarily identified as [14C]GA20, a C19-gibberellin. All GAs except [14C]GA20 were identified by combined gas chromatography-mass spectrometry. The cofactor requirements in the absence of dithiothreitol were essentially as in its presence (Lange et al., Planta 195, 98-107, 1994), except that ascorbate was essential for enzyme activity and the optimal concentration of catalase was lower.

  4. Detection of QTLs for seedling characteristics in barley (Hordeum vulgare L.) grown under hydroponic culture condition.

    Science.gov (United States)

    Wang, Qifei; Sun, Genlou; Ren, Xifeng; Wang, Jibin; Du, Binbin; Li, Chengdao; Sun, Dongfa

    2017-11-07

    Seedling characteristics play significant roles in the growth and development of barley (Hordeum vulgare L.), including stable stand establishment, water and nutrients uptake, biotic resistance and abiotic stresses, and can influence yield and quality. However, the genetic mechanisms underlying seedling characteristics in barley are largely unknown and little research has been done. In the present work, 21 seedling-related characteristics are assessed in a barley double haploid (DH) population, grown under hydroponic conditions. Of them, leaf age (LAG), shoot height (SH), maximum root length (MRL), main root number (MRN) and seedling fresh weight (SFW) were investigated at the 13th, 20th, 27th, and 34th day after germination. The objectives were to identify quantitative trait loci (QTLs) underlying these seedling characteristics using a high-density linkage map and to reveal the QTL expression pattern by comparing the QTLs among four different seedling growth stages. A total of 70 QTLs were distributed over all chromosomes except 4H, and, individually, accounted for 5.01%-77.78% of phenotypic variation. Out of the 70 detected QTLs, 23 showed a major effect on 14 seedling-related characteristics. Ten co-localized chromosomal regions on 2H (five regions), 3H (two regions) and 7H (three regions) involved 39 QTLs (55.71%), each simultaneously influenced more than one trait. Meanwhile, 9 co-localized genomic regions involving 22 QTLs for five seedling characteristics (LAG, SH, MRL, MRN and SFW) at the 13th, 20th, 27th and 34th day-old seedling were common for two or more growth stages of seedling. QTL in the vicinity of Vrs1 locus on chromosome 2H with the favorable alleles from Huadamai 6 was found to have the largest main effects on multiple seedling-related traits. Six QTL cluster regions associated with 16 seedling-related characteristics were observed on chromosome 2H, 3H and 7H. The majority of the 29 regions identified for five seedling characteristics were

  5. Sanitary state and yielding of spring barley as dependent on soil tillage method

    Directory of Open Access Journals (Sweden)

    Tomasz P. Kurowski

    2012-12-01

    Full Text Available The effects of traditional tillage cultivation (control treatment, no tillage (instead of tillage the soil was loosened with scruff, and direct sowing (with a special drill into unploughed soil on the health of spring barley cultivar. Klimek were compared in three-field crop rotation (field bean, winter wheat, spring barley in an experiment performed in the years 1997-1999 on the soil of a good wheat complex. The results of phytopathological observations carried out over the vegetation season are presented in the form of an injury index. The following diseases were recorded on spring barley: net blotch (Drechslera teres - net type and spot type, powdery mildew (Blumeria graminis, leaf blotch (Rhynchosporium secalis, eyespot (Tapesia yallundae and foot rot (fungal complex. Tillage system had no a significant influence on the occurrence of both types of net blotch. The intensity of powdery mildew and leaf blotch was the highest in the case of traditional tillage cultivation, and the lowest - in that of no tillage. Direct sowing was conductive to the development of eyespot, and no tillage - to foot rot. Fungi of the genus Fusarium, mainly F. culmorum, and the species Bipolaris sorokiniana, were isolated most frequently from infested stem bases. The weather conditions differed during spring barley grown in the three years analyzed. Mean air temperature in 1997 and 1998 was similar to the many-year average for the city of Olsztyn and its surroundings (13.8°C. In the vegetation season 1999 mean air temperature reached 14.6°C, and was considerably higher than the many-year average. Taking into account total precipitation and distribution in the three-year experimental cycle, 1997 and 1998 can be considered average, and 1999 - wet.The weather conditions had a significant effect on the intensity of all diseases observed on spring barley. The highest yield grain was obtained in the case of traditional tillage cultivation (on average 3.06 t·ha-1 for the

  6. Diversity in boron toxicity tolerance of Australian barley (Hordeum vulgare L.) genotypes.

    Science.gov (United States)

    Hayes, Julie E; Pallotta, Margaret; Garcia, Melissa; Öz, Mehmet Tufan; Rongala, Jay; Sutton, Tim

    2015-09-26

    Boron (B) is an important micronutrient for plant growth, but is toxic when levels are too high. This commonly occurs in environments with alkaline soils and relatively low rainfall, including many of the cereal growing regions of southern Australia. Four major genetic loci controlling tolerance to high soil B have been identified in the landrace barley, Sahara 3771. Genes underlying two of the loci encode the B transporters HvBot1 and HvNIP2;1. We investigated sequence and expression level diversity in HvBot1 and HvNIP2;1 across barley germplasm, and identified five novel coding sequence alleles for HvBot1. Lines were identified containing either single or multiple copies of the Sahara HvBot1 allele. We established that only the tandemly duplicated Sahara allele conferred B tolerance, and this duplicated allele was found only in a set of nine lines accessioned in Australian collections as Sahara 3763-3771. HvNIP2;1 coding sequences were highly conserved across barley germplasm. We identified the likely causative SNP in the 5'UTR of Sahara HvNIP2;1, and propose that the creation of a small upstream open reading frame interferes with HvNIP2;1 translation in Sahara 3771. Similar to HvBot1, the tolerant HvNIP2;1 allele was unique to the Sahara barley accessions. We identified a new source of the 2H B tolerance allele controlling leaf symptom development, in the landrace Ethiopia 756. Ethiopia 756, as well as the cultivar Sloop Vic which carries both the 2H and HvBot1 B tolerance alleles derived from Sahara 3771, may be valuable as alternative parents in breeding programs targeted to high soil B environments. There is significant diversity in B toxicity tolerance among contemporary Australian barley varieties but this is not related to variation at any of the four known B tolerance loci, indicating that novel, as yet undiscovered, sources of tolerance exist.

  7. Fungal Distribution and Varieties Resistance to Kernel Discoloration in Korean Two-rowed Barley

    OpenAIRE

    Sang-Hyun Shin; Eun-Jo Seo; Jae-Seong Choi; JungKwan Lee; Jong-Chul Park; Chun-Sik Kang

    2013-01-01

    Barley kernel discoloration (KD) leads to substantial loss in value through downgrading and discounting of malting barley. The objective of this research is to investigate fungal distribution and varieties resistance to KD in Korean two-rowed barley. Several fungal organisms including Alternaria spp., Fusarium spp., Aspergillus spp., Epicoccum spp. and Rhizopus spp. were isolated from Korean two-rowed barley representing KD. The symptoms of KD were brown and black discolorations o...

  8. Fusarium infection and trichothecenes in barley and its comparison with wheat

    NARCIS (Netherlands)

    Janssen, Esmee; Liu, C.; Fels, van der H.J.

    2018-01-01

    Barley is a small-grain cereal that can be infected by Fusarium spp. resulting in reduced quality and safety of harvested barley (products). Barley and other small-grain cereals are commonly studied together for Fusarium infection and related mycotoxin contamination, since the infection and its

  9. Interaction between powdery mildew and barley with ¤mlo5¤ mildew resistance

    DEFF Research Database (Denmark)

    Lyngkjær, M.F.; Østergård, Hanne

    1998-01-01

    Powdery mildew infection of barley with the mlo5 barley powdery mildew resistance gene was examined, using near-isogenic barley lines, with and without mlo5 resistance, and two near-isogenic powdery mildew isolates, HL3/5 and GE3 with high (virulent) or low (avirulent) penetration efficiency...

  10. Long-term reconstitution of dry barley increased phosphorus digestibility in pigs

    DEFF Research Database (Denmark)

    Ton Nu, Mai Anh; Blaabjerg, Karoline; Poulsen, Hanne Damgaard

    of reconstitution compared to dry stored barley on phosphorus (P) digestibility in pigs. Materials and Methods: Dry barley (13% moisture; phytate P, 1.7 g/kg DM) was rolled and stored directly or reconstituted with water to produce rolled barley with 35% moisture that was stored in air-tight conditions. After 49...

  11. Effects of Net Blotch ( Pyrenophora teres ) on Malt Barley Yield and ...

    African Journals Online (AJOL)

    Barley (Hordeum vulgare L.) production is constrained by diseases such as net blotch caused by Pyrenophora teres Drechsl. The objectives of this study were to assess the effects of net blotch disease on malt barley yield and grain quality under natural infection. Four malt barley varieties (Beka, HB 120, HB 52 and Holker), ...

  12. Detection of Ustilago nuda (Jensen Rostrup in winter barley seed

    Directory of Open Access Journals (Sweden)

    Ignjatov Maja

    2011-01-01

    Full Text Available Barley is one of the most important cereals grown in our agroecological conditions. The causal agent of loose smut on barley Ustilago nuda (Jensen Rostrup occurs frequently as varieties susceptible to this pathogen are present in the production. Disease symptoms are manifested on barley head (spike. Parasite is transmitted by seed (seedborne and stays in the embryo tissue of the infected kernel as dormant mycelium. Recommended method for detection of U. nuda is given by ISTA Rules (method 7-013. In tests, nine samples (weighing 120 g each of naturally infected barley seed (about 1000 seeds, depending on the absolute mass of seed were examined, observed and described using a Zeiss microscope with sub stage illumination with magnification range x 40 or higher. Mycelium of the fungus approximately 3 μ thick, golden brown in colour was detected and visible without a stain. The percentage of infected embryos in the examined samples of barley seeds ranged from 0.8% to 5.2%.

  13. Aggressiveness of powdery mildew on 'ml-o'- resistant barley

    International Nuclear Information System (INIS)

    Andersen, Lars

    1990-01-01

    The ml-o genes in barley are important sources in breeding for resistance against the barley powdery mildew fungus (Erysiphe graminis). The resistance mechanism is a rapid formation of a large callose containing cell wall apposition at the site of the pathogen's infection attempt. This reduces the chances of infection to almost nil in all epidermal cells, except in the small subsidiary cells, in which appositions are rarely formed. Small mildew colonies from infections in subsidiary cells may be seen on the otherwise resistant leaf. This is described by the infection type 0/(4). Mildew isolate HL 3 selected by SCHWARZBACH has increased aggressiveness. No ml-o-virulent isolates are known. However, ml-o-resistant varieties when grown extensively in Europe, will introduce field selection for mildew pathotypes with aggressiveness or virulence to ml-o resistance. Studies on increased aggressiveness require new methods. The material comprises two powdery mildew isolates: GE 3 without ml-o aggressiveness and the aggressive HL 3/5; and two near-isogenic barley lines in Carlsberg II: Riso 5678(R) with the recessive mutant resistance gene ml-o5 and Riso 5678(S) with the wild-type gene for susceptibility. Latent period and disease efficiency show no significant differences between the two isolates on the susceptible barley line (S) but the isolates differ from each other on the resistant barley line

  14. Simultaneous Detection of Barley Virus Diseases in Korea

    Directory of Open Access Journals (Sweden)

    Bong-Choon Lee

    2017-12-01

    Full Text Available Barley mild mosaic virus (BaMMV, Barley yellow mosaic virus (BaYMV and Barley yellow dwarf virus (BYDV have been identified as an important causative agents for an economically important disease of winter barley in Korea. In this study, a multiplex reverse transcription polymerase chain reaction (mRT-PCR method was used for the simultaneous detection. Three sets of virus-specific primers targeted to the capsid protein coding genes of BaMMV, BaYMV and BYDV were used to amplify fragments that were 594 bp, 461 bp, and 290 bp, respectively. Several sets of primers for each target virus were evaluated for their sensitivity and specificity by multiplex RT-PCR. The optimum primer concentrations and RT-PCR conditions were determined for the multiplex RT-PCR. The mRT-PCR assay was found to be a better and rapid virus diagnostic tool of specific barley diseases and potential for investigating the epidemiology of these viral diseases.

  15. The project of mutation breeding in barley (first report)

    International Nuclear Information System (INIS)

    2010-01-01

    Barley is a second main crop with the production of 7 million tons per year and 3,5 million hectare cultivation area in Turkey. Because of wateer deficiency, cereals cultivated in Central Anatolian region. Barley is well adapted to dry farming system besides it is basic food for animal husbandry and main raw material for brewery industry. the main problems in barley production are drought disease epidemic and increasing salinity gradually. Main purposes of our project is to increase resistance and tolerence to this stress factors. In order to reach to our aim we have been using mutation breeding techniques and conventional breeding methods. This Project has been started with irradiation of barley seeds with different gamma ray doses. After that resistant and tolerant mutant has been selected most of these mutanys have resistance and tolerance to different disease and stress conditions. During the selection procedure, hydroponics and tissue culture techniques have been applied to improve the selection efficiency. Up to now, promising barley mutant lines 71 that have earliness (30 days) than parents and because of that reason that escape from drought period. Disease tests of our mutant lines have been conducted under controlled conditions and tolerant lines have been determined under the high the high epidemic conditions. Salt tolerance studies have been applied under hydroponics conditions and salt tolerant mutant have been determined under 180-200mMolNaCl concentration. All mutant lines are carried out to preliminary yield trials for their evaluation

  16. Identification of a Phytase Gene in Barley (Hordeum vulgare L.)

    Science.gov (United States)

    Dai, Fei; Qiu, Long; Ye, Lingzhen; Wu, Dezhi; Zhou, Meixue; Zhang, Guoping

    2011-01-01

    Background Endogenous phytase plays a crucial role in phytate degradation and is thus closely related to nutrient efficiency in barley products. The understanding of genetic information of phytase in barley can provide a useful tool for breeding new barley varieties with high phytase activity. Methodology/Principal Findings Quantitative trait loci (QTL) analysis for phytase activity was conducted using a doubled haploid population. Phytase protein was purified and identified by the LC-ESI MS/MS Shotgun method. Purple acid phosphatase (PAP) gene was sequenced and the position was compared with the QTL controlling phytase activity. A major QTL for phytase activity was mapped to chromosome 5 H in barley. The gene controlling phytase activity in the region was named as mqPhy. The gene HvPAP a was mapped to the same position as mqPhy, supporting the colinearity between HvPAP a and mqPhy. Conclusions/Significance It is the first report on QTLs for phytase activity and the results showed that HvPAP a, which shares a same position with the QTL, is a major phytase gene in barley grains. PMID:21533044

  17. Identification of a phytase gene in barley (Hordeum vulgare L..

    Directory of Open Access Journals (Sweden)

    Fei Dai

    Full Text Available BACKGROUND: Endogenous phytase plays a crucial role in phytate degradation and is thus closely related to nutrient efficiency in barley products. The understanding of genetic information of phytase in barley can provide a useful tool for breeding new barley varieties with high phytase activity. METHODOLOGY/PRINCIPAL FINDINGS: Quantitative trait loci (QTL analysis for phytase activity was conducted using a doubled haploid population. Phytase protein was purified and identified by the LC-ESI MS/MS Shotgun method. Purple acid phosphatase (PAP gene was sequenced and the position was compared with the QTL controlling phytase activity. A major QTL for phytase activity was mapped to chromosome 5 H in barley. The gene controlling phytase activity in the region was named as mqPhy. The gene HvPAP a was mapped to the same position as mqPhy, supporting the colinearity between HvPAP a and mqPhy. CONCLUSIONS/SIGNIFICANCE: It is the first report on QTLs for phytase activity and the results showed that HvPAP a, which shares a same position with the QTL, is a major phytase gene in barley grains.

  18. Transglycosylation by barley α-amylase 1

    DEFF Research Database (Denmark)

    Mótyán, János A.; Fazekas, Erika; Mori, Haruhide

    2011-01-01

    The transglycosylation activity of barley α-amylase 1 (AMY1) and active site AMY1 subsite mutant enzymes was investigated. We report here the transferase ability of the V47A, V47F, V47D and S48Y single mutants and V47K/S48G and V47G/S48D double mutant AMY1 enzymes in which the replaced amino acids...... play important role in substrate binding at subsites at −3 through −5. Although mutation increases the transglycosylation activity of enzymes, in the presence of acceptors the difference between wild type and mutants is not so significant. Oligomer transfer reactions of AMY1 wild type and its mutants...... as donor. 4-Methylumbelliferyl-α-d-maltoside, -maltotrioside, -maltotetraoside and -maltopentaoside have been synthesized. Products were identified by MALDI-TOF MS. 1H and 13C NMR analyses showed that AMY1 V47F preserved the stereo- and regioselectivity. The produced MU-α-d-MOSs of degree of polymerization...

  19. 11C-methionine translocation in barley

    International Nuclear Information System (INIS)

    Nakanishi, Hiromi; Bughio, Naimatullah; Shigeta Ishioka, Noriko

    2000-01-01

    11 C-methionine was supplied to barley plants through a single leaf or via the roots and real time 11 C movement was monitored using a PETIS (positron emitting tracer imaging system). In Fe-deficient plants, 11 C-methionine was translocated from the tip of the absorbing leaf to the discrimination center' at the basal part of the shoot and then retranslocated to all the chlorotic leaves, while a negligible amount was retranslocated to the roots. In Fe-sufficient plants, methionine was translocated from the absorbing leaf to the discrimination center and then only to the newest leaf on the main shoot. A negligible amount was also retranslocated to the roots. Although, in Fe-sufficient plants, methionine translocation was observed from absorbing roots to shoots, in Fe-deficient plants, only a little amount was translocated from roots to shoots. In conclusion, methionine from the upper portion of a plant is not used as a precursor of mugineic acid under Fe-deficiency conditions. (author)

  20. Chemical weed control in barley (hordeum vulgare)

    International Nuclear Information System (INIS)

    Sarwar, M.; Hassan, S.W.; Abid, A.A.

    2008-01-01

    Effect of two different pre-emergence herbicides i.e. Terbutryn (lgron-500FW) A, 1.01.25 kg a.t. ha/sup -1/ and Flurochloridone (Racer-25 CS) a 0.31, 0.37, 0.44, 0.50 and 0.56 Kg a.i. ha/sup -1/ on weeds and yield of barley wad studied under field conditions hb/sup -1/. All the herbicides significantly reduce the dry weight of weed Maximum reduction (70%) was observed in terbutryn a 1.0 Kg a.i. ha/sup -1/ Growth and yield parameters like number of spike lets per spike. Number of grams per spike. 1000-grain weight. Biological yield. Grain yield straw yield and harvest index showed significant response to various herbicides doses under study. Application of Flurochloridone (Racer-25 (CS) a 0.44 kg a.i. ha/sup -1/ and Terbutryn (lgran-500 FW) a 1.0 kg a.i). The data further revealed that in general all herbicide application treatments exhibited superior performance in respect of growth and yield over control. (author)

  1. Yield and competition in barley variety mixtures

    Directory of Open Access Journals (Sweden)

    Kari Jokinen

    1991-09-01

    Full Text Available Competition between spring barley varieties and yield performance of two-, three and four-variety mixtures were studied in two replacement series field experiments. In the first experiment, repeated in three successive years (1983 —85 the components were the six-row varieties Agneta, Arra, Hja-673 and Porno. In the second experiment (1984, including two nitrogen doses (50 and 100 kgN/ha, both six-row (Agneta, Pomo and two-row (Ida, Kustaa varieties were used. Arra in the first and Agneta in the second experiment were the most competitive varieties. The results suggested that the fast growth of Arra at the beginning promoted its competitive ability. Increase in available nitrogen usually strengthened the competitiveness of Agneta. The observed competitive differences between varieties were not related to the earliness of a variety, neither to the morphological characters (two- and six-row varieties nor to the grain yield of a variety grown alone. The competitive ability was not always a stable character, the dominant suppression relationship varying from one environment to another (e.g. growing season, nitrogen dose. The observed overyielding was not statistically significant. The ratio of actual to expected yield and the relative yield total of several mixtures exceeded slightly one. As a conclusion, the yield advantage of mixtures was marginal. As a rule, the mixtures were not more stable than monocultures as determined by the coefficient of variation. However, the yield of some mixtures varied less than the yield of the most stable monoculture.

  2. Barley yellow dwarf virus in barley crops in Tunisia: prevalence and molecular characterization

    Directory of Open Access Journals (Sweden)

    Asma NAJAR

    2017-05-01

    Full Text Available A field survey was conducted in Tunisia in the North-Eastern regions (Bizerte, CapBon and Zaghouan, the North-Western region (Kef and the Central-Eastern region (Kairouan during the 2011/2012 growing season, in order to determine the incidence and the geographic distribution of Barley yellow dwarf virus (BYDVs in barley fields. Tissue blot immunoassays (TBIA showed that BYDV was most common in Zaghouan (incidence 14%, Cap Bon (14% and Bizerte (35%, in randomly collected samples from these three locations.Among the different BYDVs identified, BYDV-PAV (64% was the most common followed by BYDV-MAV (16% and CYDV-RPV (3%. The coat protein gene sequences of six isolates collected from different regions shared >98% pairwise similarity. In comparisons with other BYDV sequences from around the world, the Tunisian sequences shared greatest homology with isolates 109 and ASL1 from the United States of America and Germany (≈97%, and <90% with all other isolate sequences available in public databases.

  3. Comparative virulence of Pyrenophora teres f. teres from Syria and Tunisia and screening for resistance sources in barley: implications for breeding.

    Science.gov (United States)

    Bouajila, A; Zoghlami, N; Al Ahmed, M; Baum, M; Ghorbel, A; Nazari, K

    2011-11-01

    The aim of this study is to investigate the pathogenic diversity and virulence groups among Pyrenophora teres f. teres isolates, sampled from Syria and Tunisia, and to identify the most effective source of resistance in barley that could be used in breeding programmes to control net blotch in both countries. One hundred and four isolates of P. teres f. teres were collected from barley in different agroecological zones of Tunisia and Syria. Their virulence was evaluated using 14 barley genotypes as differential hosts. The UPGMA clustering identified high pathogenic variability; the isolates were clustered onto 20 pathotypes that were sheltered under three virulence groups, with high, intermediate and low disease scores. According to susceptibility/resistance frequencies and mean disease ratings, CI05401 cultivar ranked as the best differential when inoculated with the Syrian isolates. However, CI09214 cultivar was classified as the best effective source of resistance in Tunisia. All P. teres f. teres isolates were differentially pathogenic. CI09214 and CI05401 cultivars were released as the most effective sources of resistance in Syria and Tunisia. National and international barley breeding programmes that seek to develop resistance against P. teres f. teres in barley should strongly benefit from this study. This resistance cannot be achieved without the proper knowledge of the pathogen virulence spectrum and the sources of host resistance. © 2011 The Authors. Letters in Applied Microbiology © 2011 The Society for Applied Microbiology.

  4. A proteomics study of barley powdery mildew haustoria.

    Science.gov (United States)

    Godfrey, Dale; Zhang, Ziguo; Saalbach, Gerhard; Thordal-Christensen, Hans

    2009-06-01

    A number of fungal and oomycete plant pathogens of major economic importance feed on their hosts by means of haustoria, which they place inside living plant cells. The underlying mechanisms are poorly understood, partly due to difficulty in preparing haustoria. We have therefore developed a procedure for isolating haustoria from the barley powdery mildew fungus (Blumeria graminis f.sp. hordei, Bgh). We subsequently aimed to understand the molecular mechanisms of haustoria through a study of their proteome. Extracted proteins were digested using trypsin, separated by LC, and analysed by MS/MS. Searches of a custom Bgh EST sequence database and the NCBI-NR fungal protein database, using the MS/MS data, identified 204 haustoria proteins. The majority of the proteins appear to have roles in protein metabolic pathways and biological energy production. Surprisingly, pyruvate decarboxylase (PDC), involved in alcoholic fermentation and commonly abundant in fungi and plants, was absent in our Bgh proteome data set. A sequence encoding this enzyme was also absent in our EST sequence database. Significantly, BLAST searches of the recently available Bgh genome sequence data also failed to identify a sequence encoding this enzyme, strongly indicating that Bgh does not have a gene for PDC.

  5. Improvement of quinoa and barley through induced mutations and biotechnology

    International Nuclear Information System (INIS)

    Siles, A.Z.; Miranda, L.S.

    2001-01-01

    The main cropping problems in the Bolivian highlands are the long growing period of barley, high degree of environmental influence on the performance of quinoa, and low soil moisture at sowing time, leading to low germination rate and poor stands, and frost or chilling damages. The program aimed to establish protocols for induction of mutations with X rays and chemical mutagens (NaN 3 , MNH, EMS) in quinoa, barley, native forage species and forest plants and to obtain mutant lines, especially in barley and quinoa; and to establish callus regeneration in quinoa and micropropagation of kenua (Polilepis). The project is still in its study stages, hence further evaluations are needed before firm conclusions are drawn. (author)

  6. Occurrence of barley leaf disease and control strategies in Denmark

    DEFF Research Database (Denmark)

    Jørgensen, Lise Nistrup; Ørum, Jens Erik; Heick, Thies Marten

    Barley (Hordeum vulgare) is one of the major crops in Denmark and of special importance for malting and for pig feed. In 2016, the crop was grown covering a total area of 700,000 ha; approximately 25% of arable area in Denmark. To ensure high yield of around 60 dt ha-1, disease-tolerant cultivars...... have proven to be quite effective against all leaf diseases, aside from brown rust and mildew. Denmark has a national record system for pesticide usages. All farmers upload their fungicide use by crop, creating a good basis for assessing the differences in use pattern across different regions...... and fungicide treatments are required. Each year, barley cultivars are assessed for susceptibility towards leaf diseases in national observation plots. The most predominant fungal leaf diseases in Denmark are barley scald (Rhynchosporium secalis), net blotch (Pyrenophora teres), brown rust (Puccinia hordei...

  7. Regeneration of the Barley Zygote in In Vitro Cultured Ovules

    DEFF Research Database (Denmark)

    Holme, Inger B; Brinch-Pedersen, Henrik; Lange, Mette

    2010-01-01

    In vitro cultures of zygotes and small embryos carry a lot of potential for studying plant embryogenesis and are also highly relevant for plant biotechnology. Several years ago we established an in vitro ovule culture technique for barley that allows the regeneration of plants from zygotes (Holm et...... culture ability in immature embryo culture i.e. Femina, Salome and Corniche. Barley spikes were emasculated and hand pollinated 3 days after emasculation. In barley, fertilization takes place one hour after pollination and ovules with fertilized egg cells could therefore be isolated one hour after...... pollination. Ovules were grown for 3 weeks on a culture medium where after embryos could be isolated and transferred to regeneration medium. An average of 1.2 green plantlets per ovule could be regenerated from 50 % of the isolated ovules. No genotypic differences were found on embryo induction...

  8. Nitrogen acquisition by pea and barley and the effect of their crop residues on available nitrogen for subsequent crops

    DEFF Research Database (Denmark)

    Jensen, E.S.

    1996-01-01

    Nitrogen acquisition by field pea (Pisum sativum L.) and spring barley (Hordeum vulgare L.) grown on a sandy loam soil and availability of N in three subsequent sequences of a cropping system were studied in an outdoor pot experiment. The effect of crop residues on the N availability was evaluated....... The dry matter production and total N uptake of a spring barley crop following pea or barley, with a period of unplanted soil in the autumn/winter, were significantly higher after pea than after barley. The barley crop following pea and barley recovered 11% of the pea and 8% of the barley residue N...

  9. PHYSIOLOGICAL AND AGROECOLOGICAL ASPECTS OF CADMIUM INTERACTIONS WITH BARLEY PLANTS: AN OVERVIEW

    Directory of Open Access Journals (Sweden)

    A VASSILEV

    2003-07-01

    Full Text Available This work is a review of author’s previous publications, unpublished results as well as available literature on barley responses to Cd contamination. The physiological backgrounds of the acute Cd toxicity in barley plants are briefly described. Some data characterizing the chronic Cd toxicity in barley have been also provided in relation to its possible use for seed production and Cd phytoextraction on Cd-contaminated agricultural soils. Information about the main physiological factors limiting growth of Cd-exposed barley plants and grain yield, seedling quality as well as Cd phytoextraction capacity of barley grown in Cd-contaminated soils is presented.

  10. Performance of spring barley varieties and variety mixtures as affected by manure application and their order in an organic crop rotation

    DEFF Research Database (Denmark)

    Askegaard, Margrethe; Thomsen, Ingrid Kaag; Berntsen, Jørgen

    2011-01-01

    In order to obtain a high and stable yield of organic spring barley, production should be optimized according to the specific environment. To test the performance of spring barley varieties under varying cropping conditions, a field experiment was carried out in 2003 and 2004 in a six-field mixed...... with low manure input than others, variety mixtures that give a robust and stable organic production may potentially be developed....... organic crop rotation. We investigated the choice of variety, the order in a rotation, and the application of manure (slurry and farmyard manure; 0 to 120 total-N ha−1) on grain yields of six selected varieties with different characteristics grown in either pure stands or in two spring barley mixtures...

  11. MICROBIOLIZATION WITH TRICHODERMA SPP., COMBINED OR NOT WITH POLYMER, ON THE HEALTH, GERMINATION AND VIGOR OF BLACK OATS AND BARLEY SEEDS

    Directory of Open Access Journals (Sweden)

    E. R. Baseggio

    2017-12-01

    Full Text Available The use of bioprotectors in the coating of seeds is increasing, and these become an alternative for the use of chemical fungicides. The aim of this work was to evaluate the use of Trichoderma spp., with or without polymerization, in the control of pathogens associated with black oats (Avena strigosa and barley (Hordeum vulgare seeds of the cultivars 'Comum' (black oats and BRS Cauê (barley, 2014 crop. After asepsis and dried of the seeds, the treatments were applied, using a dose of 5 mL of Trichoderma spp. kg-1 and 10 mL of seed polymer kg-1 of seeds. Sanity tests; germination; germination and emergency rate index; length of seedling (shoot and root; and fresh and dry weight were performed. The coating of oat and barley seeds with Trichoderma spp. was efficient in the control of pathogens, as well as increased the germination and development of the seedlings for both cultures evaluated.

  12. Biotin Carboxyl Carrier Protein in Barley Chloroplast Membranes

    DEFF Research Database (Denmark)

    Kannangara, C. G.; Jense, C J

    1975-01-01

    Biotin localized in barley chloroplast lamellae is covalently bound to a single protein with an approximate molecular weight of 21000. It contains one mole of biotin per mole of protein and functions as a carboxyl carrier in the acetyl-CoA carboxylase reaction. The protein was obtained by solubil...... by solubilization of the lamellae in phenol/acetic acid/8 M urea. Feeding barley seedlings with [14C]-biotin revealed that the vitamin is not degraded into respiratory substrates by the plant, but is specifically incorporated into biotin carboxyl carrier protein....

  13. Analysis of Pregerminated Barley Using Hyperspectral Image Analysis

    DEFF Research Database (Denmark)

    Arngren, Morten; Hansen, Per Waaben; Eriksen, Birger

    2011-01-01

    imaging system in a mathematical modeling framework to identify pregerminated barley at an early stage of approximately 12 h of pregermination. Our model only assigns pregermination as the cause for a single kernel’s lack of germination and is unable to identify dormancy, kernel damage etc. The analysis...... is based on more than 750 Rosalina barley kernels being pregerminated at 8 different durations between 0 and 60 h based on the BRF method. Regerminating the kernels reveals a grouping of the pregerminated kernels into three categories: normal, delayed and limited germination. Our model employs a supervised...

  14. Effect of irradiation on the malting quality of barley

    International Nuclear Information System (INIS)

    Avtar, S.; Tejinder, S.; Bains, G.S.

    1985-01-01

    Two six-row barley cultivars, DL 70 and C164 were subjected to Co 60 gamma irradiation in the range of 0 to 250 Krad and malted with and without gibberellic acid treatment. Barley irradiated with doses up to 75 Krad produced normal malts when compared to the controls. Irradiation doses of 125 and 250 Krad significantly increased the malt yields but considerably decreased the α-amylase activity. Gibberellic acid significantly increased the enzyme activity and degree of modification of the irradiated and the control malts. (author)

  15. Identification of barley and rye varieties using matrix- assisted laser desorption/ionisation time-of-flight mass spectrometry with neural networks

    DEFF Research Database (Denmark)

    Bloch, H.A.; Petersen, Marianne Kjerstine; Sperotto, Maria Maddalena

    2001-01-01

    developed, which combines analysis of alcohol-soluble wheat proteins (gliadins) using matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry with neural networks. Here we have applied the same method for the identification of both barley (Hordeum vulgare L.) and rye (Secale cereale L.......) varieties. For barley, 95% of the mass spectra were correctly classified. This is an encouraging result, since in earlier experiments only a grouping into subsets of varieties was possible. However, the method was not useful in the classification of rye, due to the strong similarity between mass spectra...

  16. The germinlike protein GLP4 exhibits superoxide dismutase activity and is an important component of quantitative resistance in wheat and barley

    DEFF Research Database (Denmark)

    Christensen, Anders Bentsen; Thordal-Christensen, Hans; Zimmermann, Grit

    2004-01-01

    Germinlike proteins (GLP) are encoded in plants by a gene family with proposed functions in plant development and defense. Genes of GLP subfamily 4 of barley (HvGLP4, formerly referred to as HvOxOLP) and the wheat orthologue TaGLP4 (formerly referred to as TaGLP2a) were previously found...... overexpression of TaGLP4 and HvGLP4 enhanced resistance against B. graminis in wheat and barley, whereas transient silencing by RNA interference reduced basal resistance in both cereals. The effect of GLP4 overexpression or silencing was strongly influenced by the genotype of the plant. The data suggest...

  17. Supplementation of Reduced Gluten Barley Diet with Oral Prolyl Endopeptidase Effectively Abrogates Enteropathy-Associated Changes in Gluten-Sensitive Macaques

    Directory of Open Access Journals (Sweden)

    Karol Sestak

    2016-06-01

    Full Text Available Celiac disease (CD is an autoimmune disorder that affects approximately three million people in the United States. Furthermore, non-celiac gluten sensitivity (NCGS affects an estimated additional 6% of the population, e.g., 20 million in the U.S. The only effective treatment of CD and NCGS requires complete removal of gluten sources from the diet. While required adherence to a gluten-free diet (GFD is extremely difficult to accomplish, efforts to develop additional supportive treatments are needed. To facilitate these efforts, we developed a gluten-sensitive (GS rhesus macaque model to study the effects of novel therapies. Recently reported results from phase one of this project suggest that partial improvement—but not remission—of gluten-induced disease can be accomplished by 100-fold reduction of dietary gluten, i.e., 200 ppm—by replacement of conventional dietary sources of gluten with a mutant, reduced gluten (RG barley (lys3a-derived source. The main focus of this (phase two study was to determine if the inflammatory effects of the residual gluten in lys3a mutant barley grain could be further reduced by oral supplementation with a prolylendopeptidase (PE. Results reveal that PE supplementation of RG barley diet induces more complete immunological, histopathological and clinical remission than RG barley diet alone. The combined effects of RG barley diet and PE supplementation resulted in a further decrease of inflammatory mediators IFN-γ and TNF secretion by peripheral lymphocytes, as well as decreased plasma anti-gliadin and anti-intestinal tissue transglutaminase (TG2 antibodies, diminished active caspase production in small intestinal mucosa, and eliminated clinical diarrhea—all comparable with a gluten-free diet induced remission. In summary, the beneficial results of a combined RG barley and PE administration in GS macaques may warrant the investigation of similar synergistic approaches.

  18. Giemsa C-banding of Barley Chromosomes. IV. Chromosomal Constitution of Autotetraploid Barley

    DEFF Research Database (Denmark)

    Linde-Laursen, Ib

    1984-01-01

    The progeny of an autotetraploid barley plant (C1) consisted of 45 tetraploids and 33 aneuploids. Giemsa C-banding was used to identify each of the chromosomes in 20 euploid and 31 aneuploid C2--seedlings, and in 11 C3--offspring of aneuploid C2--plants. The euploid C2--seedlings all had four...... homologues of each of the chromosomes. The aneuploid C2--seedlings were fairly equally distributed on hypo-and hyperploids, and on the seven chromosome groups. This suggests that a particular chromosome is lost or gained at random in gametes and embryos. The 11 C3--seedlings comprised seven true euploids......, one seedling with 2n=28 having an extra chromosome 6 and missing one chromosome 3, and three seedlings with 2n=29. The chromosomal composition of aneuploid C3--seedlings did not reflect that of their aneuploid C2--parents with respect to missing or extra chromosomes. Two hypohexaploid C2--seedlings...

  19. Mutations in Barley Row Type Genes Have Pleiotropic Effects on Shoot Branching.

    Directory of Open Access Journals (Sweden)

    Corinna Brit Liller

    Full Text Available Cereal crop yield is determined by different yield components such as seed weight, seed number per spike and the tiller number and spikes. Negative correlations between these traits are often attributed to resource limitation. However, recent evidence suggests that the same genes or regulatory modules can regulate both inflorescence branching and tillering. It is therefore important to explore the role of genetic correlations between different yield components in small grain cereals. In this work, we studied pleiotropic effects of row type genes on seed size, seed number per spike, thousand grain weight, and tillering in barley to better understand the genetic correlations between individual yield components. Allelic mutants of nine different row type loci (36 mutants, in the original spring barley varieties Barke, Bonus and Foma and introgressed in the spring barley cultivar Bowman, were phenotyped under greenhouse and outdoor conditions. We identified two main mutant groups characterized by their relationships between seed and tillering parameters. The first group comprises all mutants with an increased number of seeds and significant change in tiller number at early development (group 1a or reduced tillering only at full maturity (group 1b. Mutants in the second group are characterized by a reduction in seeds per spike and tiller number, thus exhibiting positive correlations between seed and tiller number. Reduced tillering at full maturity (group 1b is likely due to resource limitations. In contrast, altered tillering at early development (groups 1a and 2 suggests that the same genes or regulatory modules affect inflorescence and shoot branching. Understanding the genetic bases of the trade-offs between these traits is important for the genetic manipulation of individual yield components.

  20. Desenvolvimento de populações duplo-haplóides de cevada cervejeira associadas à atividade das enzimas (1-3, 1-4-β-glucanases Development of doubled-haploids populations in malting barley associated to activity of enzymes (1-3, 1-4-β-glucanases

    Directory of Open Access Journals (Sweden)

    Janaína Endres Georg-Kraemer

    2011-05-01

    Full Text Available Populações duplo-haplóides apresentam especial vantagem para análises genéticas, uma vez que a informação que elas oferecem pode ser maximizada, devido ao fato que todos os locos encontram-se em homozigose. O objetivo deste trabalho foi o desenvolvimento de duas populações duplo-haplóides (DHs de cevada (Hordeum vulgare ssp. vulgare L. segregantes para a atividade das enzimas (1-3, 1-4-β-glucanases, através da técnica de cultura de anteras. Foram realizados dois cruzamentos com cultivares contrastantes para esta característica. As cultivares parentais selecionadas foram 'MN 698' e 'CEV 97047', para o desenvolvimento da população "malte verde" (MV, e 'Embrapa 127' e 'CEV 96025' para o desenvolvimento da população "malte seco" (MS. Foram cultivadas 10.734 anteras da população MS e 4.139 anteras da população MV. A população MV produziu 50% mais plântulas verdes quando comparada à população MS, refletindo a importância do genótipo na resposta à cultura de anteras e na regeneração. A maioria das plantas adultas duplo-haplóides foi obtida através da duplicação espontânea in vitro do genoma haplóide, ocorrendo em 66% das plantas da população MS e 76% das plantas da população MV. Também foram observadas, em menor frequência, plantas haplóides, triplóides e tetraplóides. Através da técnica de cultura de anteras, foram desenvolvidas 204 linhagens duplo-haplóides, das quais 72 linhagens são da população "malte seco" e 132 linhagens são da população "malte verde". Este material constitui um importante germoplasma para o melhoramento genético da cevada.Doubled haploid populations offer special advantages in genetic analyses, since the information they provide may be maximized due to the fact that all loci are homozygous. The aim of this study was to develop two barley (Hordeum vulgare ssp.vulgare L. doubled-haploid (DHs populations segregating to (1-3, 1-4-β-glucanases activity, utilizing the anther

  1. (QTLs) for γ- aminobutyric acid content in grain of barley

    African Journals Online (AJOL)

    Yomi

    2012-01-24

    Jan 24, 2012 ... protein content, while Schooner is a hull two-rowed cultivar malting barley with low ... being kept at 20°C for 4~8 min, the mixture was heated in a boiling water bath for ..... John Wiley & Sons, Inc. Hobokwen, New Jersey. Nie C ...

  2. Hydrothermal liquefaction of barley straw to bio-crude oil

    DEFF Research Database (Denmark)

    Zhu, Zhe; Rosendahl, Lasse; Toor, Saqib

    2015-01-01

    Hydrothermal liquefaction (HTL) of barley straw with K2CO3 at different temperatures (280–400 C) was conducted and compared to optimize its process conditions; the aqueous phase as a co-product from this process was recycled to explore the feasibility of implementing wastewater reuse for bio...

  3. Variation in In Vitro Digestibility of Barley Protein

    DEFF Research Database (Denmark)

    Buchmann, N. B.

    1979-01-01

    impaired digestibilities; these findings were partially verified in a repeated field trial, but were not confirmed in vivo. In vitro digestibilities of barleys grown in pots at various N-levels were positively correlated with protein or hordein content. In vitro digestibility was negatively correlated...

  4. The Mutation Frequency in Different Spike Categories in Barley

    DEFF Research Database (Denmark)

    Frydenberg, O.; Doll, Hans; Sandfær, J.

    1964-01-01

    After gamma irradiation of barley seeds, a comparison has been made between the chlorophyll-mutant frequencies in X1 spikes that had multicellular bud meristems in the seeds at the time of treatment (denoted as pre-formed spikes) and X1 spikes having no recognizable meristems at the time...

  5. Wheat and barley exposure to nanoceria: Implications for agricultural productivity

    Science.gov (United States)

    The impacts of man-made nanomaterials on agricultural productivity are not yet well understood. A soil microcosm study was performed to assess the physiological, phenological, and yield responses of wheat (Triticum aestivum) and barley (Hordeum vulgare L.) exposed to nanoceria (n...

  6. 108-110 Registration of Guta Barley (Hordeium vulgare L.)

    African Journals Online (AJOL)

    adoption potential by the local farmers. Keywords: Guta; Barley (Hordeium vulgare L); Yield ... evaluated along with Aruso and Shage as the local and standard variety, respectively at altitudinal range of 2400- ... 6. Farmers Evaluation of the Variety. To evaluate the perception and preferences of the local farmers, farmers' ...

  7. The proteomic analysis of barley albumins and globulins

    Czech Academy of Sciences Publication Activity Database

    Laštovičková, Markéta; Bobálová, Janette

    2008-01-01

    Roč. 102, č. 15 (2008), s709-s711 ISSN 1803-2389. [Meeting on Chemistry and Life /4./. Brno, 09.09.2008-11.09.2008] R&D Projects: GA MŠk 1M0570 Institutional research plan: CEZ:AV0Z40310501 Keywords : barley * albumins * globulins Subject RIV: CB - Analytical Chemistry, Separation

  8. Wheat and barley seed systems in Ethiopia and Syria

    NARCIS (Netherlands)

    Bishaw, Z.

    2004-01-01

    Keywords: Wheat,Triticumspp., Barley,Hordeumvulgare L., Seed Systems, Formal Seed Sector, Informal Seed Sector, National Seed Program, Seed Source, Seed Selection, Seed Management, Seed Quality,

  9. Spatial aggregation of pathotypes of barley powdery mildew

    DEFF Research Database (Denmark)

    O'Hara, R.B.; Brown, J.K.M.

    1997-01-01

    Aggregation in the distribution of pathotypes of Erysiphe graminis f.sp. hordei, the barley powdery mildew pathogen, was investigated in field plots of 'Golden Promise', 'Proctor' and 'Tyra'. 'Golden Promise' and 'Proctor' have no effective mildew resistance alleles, whereas 'Tyra' has Mla1, which...

  10. Two barley yellow dwarf luteovirus serotypes associated with ...

    African Journals Online (AJOL)

    Barley yellow dwarf luteovirus (BYDV) serotypes PAV and RPV were identified from irrigated wheat (Triticum aestivum L.) samples from three provinces of Zambia by double antibody sandwich enzyme-linked immunosorbent assay using polyclonal and monoclonal antisera. Nine wheat cultivars were surveyed in 11 wheat ...

  11. Evaluation of genetic diversity in barley ( Hordeum vulgare L.) from ...

    African Journals Online (AJOL)

    This study aimed to determine the genetic diversity and relationships among barley varieties (Hordeum vulgare L.) growing at Wollo Highland areas by using hordein and agro-morphological traits. Twenty (20) varieties were laid down in randomized complete block design (RCBD) design with three replications; they were ...

  12. Genetic diversity in barley landraces (Hordeum vulgare L. subsp.

    Indian Academy of Sciences (India)

    Genetic diversity in barley landraces (Hordeum vulgare L. subsp. vulgare) originated from Crescent Fertile region as detected by seed storage proteins. RIM MZID FARHAT CHIBANI RAYDA BEN AYED MOHSEN HANANA JOELLE BREIDI RABIH KABALAN SAMIH EL-HAJJ HASSAN MACHLAB AHMED REBAI LAMIS ...

  13. Transcriptome of barley under three different heavy metal stress reaction

    Czech Academy of Sciences Publication Activity Database

    Kintlová, Martina; Blavet, Nicolas; Cegan, R.; Hobza, Roman

    2017-01-01

    Roč. 13, SEP (2017), s. 15-17 ISSN 2213-5960 R&D Projects: GA ČR GBP501/12/G090 Institutional support: RVO:61389030 Keywords : plants * Barley * RNA-Seq * Transcriptome * Heavy metal * Copper * Zinc * Cadmium Subject RIV: EB - Genetics ; Molecular Biology OBOR OECD: Plant sciences, botany

  14. A weed suppressive index for spring barley (Hordeum vulgare) varieties

    DEFF Research Database (Denmark)

    Hansen, P K; Kristensen, K; Willas, J

    2008-01-01

    A screening programme for crop variety competitiveness would ideally be based on only a few, non-destructive measurements of key growth traits. In this study we measured the weed suppressive ability of 79 varieties of spring barley in two ways: (i) directly, by weed coverage assessments under wee...

  15. Zinc biofortification of cereals: rice differs from wheat and barley

    NARCIS (Netherlands)

    Stomph, T.J.; Jiang, W.; Struik, P.C.

    2009-01-01

    In their review, mainly focused on bread wheat (Triticum aestivum), durum wheat (Triticum durum) and barley (Hordeum vulgare), Palmgren et al. 1 M.G. Palmgren et al., Zinc biofortification of cereals: problems and solutions, Trends Plant Sci. 13 (2008), pp. 464–473. Article | PDF (905 K) | View

  16. Diversity in Indian barley (Hordeum vulgare) cultivars and ...

    Indian Academy of Sciences (India)

    tinguish varieties of crop plants and establish their purity as a prerequisite for any ... of genetic material in germplasm collection and as a general guide for the choice ... Sixty-nine barley cultivars were grown under field condi- tions in three ...

  17. Wheat and barley differently affect porcine intestinal microbiota

    DEFF Research Database (Denmark)

    Weiss, Eva; Aumiller, Tobias; Spindler, Hanns K

    2016-01-01

    Diet influences the porcine intestinal microbial ecosystem. Barrows were fitted with ileal T-cannulas to compare short-term effects of eight different wheat or barley genotypes and period-to-period effects on seven bacterial groups in ileal digesta and faeces by qPCR. Within genotypes of wheat an...

  18. Leaf rust of cultivated barley: pathology and control.

    Science.gov (United States)

    Park, Robert F; Golegaonkar, Prashant G; Derevnina, Lida; Sandhu, Karanjeet S; Karaoglu, Haydar; Elmansour, Huda M; Dracatos, Peter M; Singh, Davinder

    2015-01-01

    Leaf rust of barley is caused by the macrocyclic, heteroecious rust pathogen Puccinia hordei, with aecia reported from selected species of the genera Ornithogalum, Leopoldia, and Dipcadi, and uredinia and telia occurring on Hordeum vulgare, H. vulgare ssp. spontaneum, Hordeum bulbosum, and Hordeum murinum, on which distinct parasitic specialization occurs. Although Puccinia hordei is sporadic in its occurrence, it is probably the most common and widely distributed rust disease of barley. Leaf rust has increased in importance in recent decades in temperate barley-growing regions, presumably because of more intensive agricultural practices. Although total crop loss does not occur, under epidemic conditions yield reductions of up to 62% have been reported in susceptible varieties. Leaf rust is primarily controlled by the use of resistant cultivars, and, to date, 21 seedling resistance genes and two adult plant resistance (APR) genes have been identified. Virulence has been detected for most seedling resistance genes but is unknown for the APR genes Rph20 and Rph23. Other potentially new sources of APR have been reported, and additivity has been described for some of these resistances. Approaches to achieving durable resistance to leaf rust in barley are discussed.

  19. Classification and salt tolerance analysis of barley varieties

    NARCIS (Netherlands)

    Katerji, N.; Hoorn, van J.W.; Hamdy, A.; Mastrorilli, M.; Fares, C.; Ceccarelli, S.; Grando, S.; Oweis, T.

    2006-01-01

    Six varieties of barley (Hordeum vulgare), five of which were provided by ICARDA, were tested in a green house experiment for their salt tolerance. Afterwards the ICARDA variety Melusine, selected from this experiment for its combination of high yield and salt tolerance, was compared in a lysimeter

  20. Detection of nitrogen deficiency QTL in juvenile wild barley introgression lines growing in a hydroponic system

    Directory of Open Access Journals (Sweden)

    Hoffmann Astrid

    2012-10-01

    Full Text Available Abstract Background In this report we studied the genetic regulation of juvenile development of wild barley introgression lines (S42ILs under two contrasting hydroponic nitrogen (N supplies. Ten shoot and root related traits were examined among 42 S42ILs and the recurrent parent ‘Scarlett’. The traits included tiller number, leaf number, plant height, leaf and root length, leaf to root length ratio, shoots and root dry weight, shoot to root weight ratio, and chlorophyll content. Our aims were (1 to test the suitability of a hydroponic system for early detection of favourable S42ILs, (2 to locate quantitative trait loci (QTL that control the examined traits, (3 to identify favourable wild barley alleles that improve trait performances in regard to N treatment and, finally, (4 to validate the identified QTL through comparison with previously reported QTL originating from the same parental cross. Results The phenotypic data were analysed in a mixed model association study to detect QTL. The post-hoc Dunnett test identified 28 S42ILs that revealed significant (P Hsp effects for tiller number, leaf number, leaf length, plant height and leaf to root ratio on the long arm of chromosome 7H. These QTL correspond to QTL for ears per plant and plant height that were previously detected in field trials conducted with the same S42ILs or with the S42 population. Conclusion Our results suggest that the QTL we identified under hydroponic N cultivation partly correspond to QTL detected in field experiments. Due to this finding, screening of plants in early developmental stages grown in a hydroponic system may be a fast and cost effective method for early QTL detection and marker-assisted allelic selection, potentially speeding up elite barley breeding programs.

  1. Barley grain constituents, starch composition, and structure affect starch in vitro enzymatic hydrolysis.

    Science.gov (United States)

    Asare, Eric K; Jaiswal, Sarita; Maley, Jason; Båga, Monica; Sammynaiken, Ramaswami; Rossnagel, Brian G; Chibbar, Ravindra N

    2011-05-11

    The relationship between starch physical properties and enzymatic hydrolysis was determined using ten different hulless barley genotypes with variable carbohydrate composition. The ten barley genotypes included one normal starch (CDC McGwire), three increased amylose starches (SH99250, SH99073, and SB94893), and six waxy starches (CDC Alamo, CDC Fibar, CDC Candle, Waxy Betzes, CDC Rattan, and SB94912). Total starch concentration positively influenced thousand grain weight (TGW) (r(2) = 0.70, p starch concentration (r(2) = -0.80, p hydrolysis of pure starch (r(2) = -0.67, p starch concentration (r(2) = 0.46, p starch (RS) in meal and pure starch samples. The rate of starch hydrolysis was high in pure starch samples as compared to meal samples. Enzymatic hydrolysis rate both in meal and pure starch samples followed the order waxy > normal > increased amylose. Rapidly digestible starch (RDS) increased with a decrease in amylose concentration. Atomic force microscopy (AFM) analysis revealed a higher polydispersity index of amylose in CDC McGwire and increased amylose genotypes which could contribute to their reduced enzymatic hydrolysis, compared to waxy starch genotypes. Increased β-glucan and dietary fiber concentration also reduced the enzymatic hydrolysis of meal samples. An average linkage cluster analysis dendrogram revealed that variation in amylose concentration significantly (p starch concentration in meal and pure starch samples. RS is also associated with B-type granules (5-15 μm) and the amylopectin F-III (19-36 DP) fraction. In conclusion, the results suggest that barley genotype SH99250 with less decrease in grain weight in comparison to that of other increased amylose genotypes (SH99073 and SH94893) could be a promising genotype to develop cultivars with increased amylose grain starch without compromising grain weight and yield.

  2. High-throughput phenotyping to detect drought tolerance QTL in wild barley introgression lines.

    Directory of Open Access Journals (Sweden)

    Nora Honsdorf

    Full Text Available Drought is one of the most severe stresses, endangering crop yields worldwide. In order to select drought tolerant genotypes, access to exotic germplasm and efficient phenotyping protocols are needed. In this study the high-throughput phenotyping platform "The Plant Accelerator", Adelaide, Australia, was used to screen a set of 47 juvenile (six week old wild barley introgression lines (S42ILs for drought stress responses. The kinetics of growth development was evaluated under early drought stress and well watered treatments. High correlation (r=0.98 between image based biomass estimates and actual biomass was demonstrated, and the suitability of the system to accurately and non-destructively estimate biomass was validated. Subsequently, quantitative trait loci (QTL were located, which contributed to the genetic control of growth under drought stress. In total, 44 QTL for eleven out of 14 investigated traits were mapped, which for example controlled growth rate and water use efficiency. The correspondence of those QTL with QTL previously identified in field trials is shown. For instance, six out of eight QTL controlling plant height were also found in previous field and glasshouse studies with the same introgression lines. This indicates that phenotyping juvenile plants may assist in predicting adult plant performance. In addition, favorable wild barley alleles for growth and biomass parameters were detected, for instance, a QTL that increased biomass by approximately 36%. In particular, introgression line S42IL-121 revealed improved growth under drought stress compared to the control Scarlett. The introgression line showed a similar behavior in previous field experiments, indicating that S42IL-121 may be an attractive donor for breeding of drought tolerant barley cultivars.

  3. High-throughput phenotyping to detect drought tolerance QTL in wild barley introgression lines

    KAUST Repository

    Honsdorf, Nora

    2014-05-13

    Drought is one of the most severe stresses, endangering crop yields worldwide. In order to select drought tolerant genotypes, access to exotic germplasm and efficient phenotyping protocols are needed. In this study the high-throughput phenotyping platform "The Plant Accelerator", Adelaide, Australia, was used to screen a set of 47 juvenile (six week old) wild barley introgression lines (S42ILs) for drought stress responses. The kinetics of growth development was evaluated under early drought stress and well watered treatments. High correlation (r = 0.98) between image based biomass estimates and actual biomass was demonstrated, and the suitability of the system to accurately and non-destructively estimate biomass was validated. Subsequently, quantitative trait loci (QTL) were located, which contributed to the genetic control of growth under drought stress. In total, 44 QTL for eleven out of 14 investigated traits were mapped, which for example controlled growth rate and water use efficiency. The correspondence of those QTL with QTL previously identified in field trials is shown. For instance, six out of eight QTL controlling plant height were also found in previous field and glasshouse studies with the same introgression lines. This indicates that phenotyping juvenile plants may assist in predicting adult plant performance. In addition, favorable wild barley alleles for growth and biomass parameters were detected, for instance, a QTL that increased biomass by approximately 36%. In particular, introgression line S42IL-121 revealed improved growth under drought stress compared to the control Scarlett. The introgression line showed a similar behavior in previous field experiments, indicating that S42IL-121 may be an attractive donor for breeding of drought tolerant barley cultivars. © 2014 Honsdorf et al.

  4. Comparative transcriptome profiling of two Tibetan wild barley genotypes in responses to low potassium.

    Directory of Open Access Journals (Sweden)

    Jianbin Zeng

    Full Text Available Potassium (K deficiency is one of the major factors affecting crop growth and productivity. Development of low-K tolerant crops is an effective approach to solve the nutritional deficiency in agricultural production. Tibetan annual wild barley is rich in genetic diversity and can grow normally under poor soils, including low-K supply. However, the molecular mechanism about low K tolerance is still poorly understood. In this study, Illumina RNA-Sequencing was performed using two Tibetan wild barley genotypes differing in low K tolerance (XZ153, tolerant and XZ141, sensitive, to determine the genotypic difference in transcriptome profiling. We identified a total of 692 differentially expressed genes (DEGs in two genotypes at 6 h and 48 h after low-K treatment, including transcription factors, transporters and kinases, oxidative stress and hormone signaling related genes. Meanwhile, 294 low-K tolerant associated DEGs were assigned to transporter and antioxidant activities, stimulus response, and other gene ontology (GO, which were mainly involved in starch and sucrose metabolism, lipid metabolism and ethylene biosynthesis. Finally, a hypothetical model of low-K tolerance mechanism in XZ153 was presented. It may be concluded that wild barley accession XZ153 has a higher capability of K absorption and use efficiency than XZ141 under low K stress. A rapid response to low K stress in XZ153 is attributed to its more K uptake and accumulation in plants, resulting in higher low K tolerance. The ethylene response pathway may account for the genotypic difference in low-K tolerance.

  5. Structural modeling and molecular simulation analysis of HvAP2/EREBP from barley.

    Science.gov (United States)

    Pandey, Bharati; Sharma, Pradeep; Tyagi, Chetna; Goyal, Sukriti; Grover, Abhinav; Sharma, Indu

    2016-06-01

    AP2/ERF transcription factors play a critical role in plant development and stress adaptation. This study reports the three-dimensional ab initio-based model of AP2/EREBP protein of barley and its interaction with DNA. Full-length coding sequence of HvAP2/EREBP gene isolated from two Indian barley cultivars, RD 2503 and RD 31, was used to model the protein. Of five protein models obtained, the one with lowest C-score was chosen for further analysis. The N- and C-terminal regions of HvAP2 protein were found to be highly disordered. The dynamic properties of AP2/EREBP and its interaction with DNA were investigated by molecular dynamics simulation. Analysis of trajectories from simulation yielded the equilibrated conformation between 2-10ns for protein and 7-15ns for protein-DNA complex. We established relationship between DNA having GCC box and DNA-binding domain of HvAP2/EREBP was established by modeling 11-base-pair-long nucleotide sequence and HvAP2/EREBP protein using ab initio method. Analysis of protein-DNA interaction showed that a β-sheet motif constituting amino acid residues THR105, ARG100, ARG93, and ARG83 seems to play important role in stabilizing the complex as they form strong hydrogen bond interactions with the DNA motif. Taken together, this study provides first-hand comprehensive information detailing structural conformation and interactions of HvAP2/EREBP proteins in barley. The study intensifies the role of computational approaches for preliminary examination of unknown proteins in the absence of experimental information. It also provides molecular insight into protein-DNA binding for understanding and enhancing abiotic stress resistance for improving the water use efficiency in crop plants.

  6. Interchromosomal Transfer of Immune Regulation During Infection of Barley with the Powdery Mildew Pathogen

    Directory of Open Access Journals (Sweden)

    Priyanka Surana

    2017-10-01

    Full Text Available Powdery mildew pathogens colonize over 9500 plant species, causing critical yield loss. The Ascomycete fungus, Blumeria graminis f. sp. hordei (Bgh, causes powdery mildew disease in barley (Hordeum vulgare L.. Successful infection begins with penetration of host epidermal cells, culminating in haustorial feeding structures, facilitating delivery of fungal effectors to the plant and exchange of nutrients from host to pathogen. We used expression Quantitative Trait Locus (eQTL analysis to dissect the temporal control of immunity-associated gene expression in a doubled haploid barley population challenged with Bgh. Two highly significant regions possessing trans eQTL were identified near the telomeric ends of chromosomes (Chr 2HL and 1HS. Within these regions reside diverse resistance loci derived from barley landrace H. laevigatum (MlLa and H. vulgare cv. Algerian (Mla1, which associate with the altered expression of 961 and 3296 genes during fungal penetration of the host and haustorial development, respectively. Regulatory control of transcript levels for 299 of the 961 genes is reprioritized from MlLa on 2HL to Mla1 on 1HS as infection progresses, with 292 of the 299 alternating the allele responsible for higher expression, including Adaptin Protein-2 subunit μ AP2M and Vesicle Associated Membrane Protein VAMP72 subfamily members VAMP721/722. AP2M mediates effector-triggered immunity (ETI via endocytosis of plasma membrane receptor components. VAMP721/722 and SNAP33 form a Soluble N-ethylmaleimide-sensitive factor Attachment Protein REceptor (SNARE complex with SYP121 (PEN1, which is engaged in pathogen associated molecular pattern (PAMP-triggered immunity via exocytosis. We postulate that genes regulated by alternate chromosomal positions are repurposed as part of a conserved immune complex to respond to different pathogen attack scenarios.

  7. Interchromosomal Transfer of Immune Regulation During Infection of Barley with the Powdery Mildew Pathogen

    Science.gov (United States)

    Surana, Priyanka; Xu, Ruo; Fuerst, Gregory; Chapman, Antony V. E.; Nettleton, Dan; Wise, Roger P.

    2017-01-01

    Powdery mildew pathogens colonize over 9500 plant species, causing critical yield loss. The Ascomycete fungus, Blumeria graminis f. sp. hordei (Bgh), causes powdery mildew disease in barley (Hordeum vulgare L.). Successful infection begins with penetration of host epidermal cells, culminating in haustorial feeding structures, facilitating delivery of fungal effectors to the plant and exchange of nutrients from host to pathogen. We used expression Quantitative Trait Locus (eQTL) analysis to dissect the temporal control of immunity-associated gene expression in a doubled haploid barley population challenged with Bgh. Two highly significant regions possessing trans eQTL were identified near the telomeric ends of chromosomes (Chr) 2HL and 1HS. Within these regions reside diverse resistance loci derived from barley landrace H. laevigatum (MlLa) and H. vulgare cv. Algerian (Mla1), which associate with the altered expression of 961 and 3296 genes during fungal penetration of the host and haustorial development, respectively. Regulatory control of transcript levels for 299 of the 961 genes is reprioritized from MlLa on 2HL to Mla1 on 1HS as infection progresses, with 292 of the 299 alternating the allele responsible for higher expression, including Adaptin Protein-2 subunit μ AP2M and Vesicle Associated Membrane Protein VAMP72 subfamily members VAMP721/722. AP2M mediates effector-triggered immunity (ETI) via endocytosis of plasma membrane receptor components. VAMP721/722 and SNAP33 form a Soluble N-ethylmaleimide-sensitive factor Attachment Protein REceptor (SNARE) complex with SYP121 (PEN1), which is engaged in pathogen associated molecular pattern (PAMP)-triggered immunity via exocytosis. We postulate that genes regulated by alternate chromosomal positions are repurposed as part of a conserved immune complex to respond to different pathogen attack scenarios. PMID:28790145

  8. Effects of extrusion variables on the properties of waxy hulless barley extrudates.

    Science.gov (United States)

    Köksel, Hamit; Ryu, Gy-Hyung; Başman, Arzu; Demiralp, Hande; Ng, Perry K W

    2004-02-01

    The objective of this research was to investigate the extrudability of waxy hulless barley flour under various extrusion conditions. Waxy hulless barley flour was processed in a laboratory-scale corotating twin-screw extruder with different levels of feed moisture content (22.3, 26.8, and 30.7%) and die temperature (130, 150, and 170 degrees C) to develop a snack food with high beta-glucan content. The effects of extrusion condition variables (screw configuration, moisture, and temperature) on the system variables (pressure and specific mechanical energy), the extrudate physical properties (sectional expansion index, bulk density), starch gelatinization, pasting properties (cold peak viscosity, trough viscosity, and final viscosity), and beta-glucan contents were determined. Results were evaluated by using response surface methodology. Increased extrusion temperature and feed moisture content resulted in decreases in exit die pressure and specific mechanical energy values. For extrudates extruded under low shear screw configuration (LS), increased barrel temperature decreased sectional expansion index (SEI) values at both low and high moisture contents. The feed moisture seems to have an inverse relationship with SEI over the range studied. Bulk density was higher at higher moisture contents, for both low and high barrel temperatures, for samples extruded under high shear screw configuration (HS) and LS. Cold peak viscosities (CV) were observed in all samples. The CV increased with the increase in extrusion temperature and feed moisture content. Although beta-glucan contents of the LS extrudates were comparable to that of barley flour sample, HS samples had generally lower beta-glucan contents. The extrusion cooking technique seems to be promising for the production of snack foods with high beta-glucan content, especially using LS conditions.

  9. Detection of nitrogen deficiency QTL in juvenile wild barley introgression lines growing in a hydroponic system.

    Science.gov (United States)

    Hoffmann, Astrid; Maurer, Andreas; Pillen, Klaus

    2012-10-20

    In this report we studied the genetic regulation of juvenile development of wild barley introgression lines (S42ILs) under two contrasting hydroponic nitrogen (N) supplies. Ten shoot and root related traits were examined among 42 S42ILs and the recurrent parent 'Scarlett'. The traits included tiller number, leaf number, plant height, leaf and root length, leaf to root length ratio, shoots and root dry weight, shoot to root weight ratio, and chlorophyll content. Our aims were (1) to test the suitability of a hydroponic system for early detection of favourable S42ILs, (2) to locate quantitative trait loci (QTL) that control the examined traits, (3) to identify favourable wild barley alleles that improve trait performances in regard to N treatment and, finally, (4) to validate the identified QTL through comparison with previously reported QTL originating from the same parental cross. The phenotypic data were analysed in a mixed model association study to detect QTL. The post-hoc Dunnett test identified 28 S42ILs that revealed significant (P hydroponic N study corresponded to QTL that were also detected in field trials with adult plants of a similar S42IL set or of the original S42 population. For instance, S42IL-135, -136 and -137, revealed increasing Hsp effects for tiller number, leaf number, leaf length, plant height and leaf to root ratio on the long arm of chromosome 7H. These QTL correspond to QTL for ears per plant and plant height that were previously detected in field trials conducted with the same S42ILs or with the S42 population. Our results suggest that the QTL we identified under hydroponic N cultivation partly correspond to QTL detected in field experiments. Due to this finding, screening of plants in early developmental stages grown in a hydroponic system may be a fast and cost effective method for early QTL detection and marker-assisted allelic selection, potentially speeding up elite barley breeding programs.

  10. Transcriptome analysis of trichothecene-induced gene expression in barley.

    Science.gov (United States)

    Boddu, Jayanand; Cho, Seungho; Muehlbauer, Gary J

    2007-11-01

    Fusarium head blight, caused primarily by Fusarium graminearum, is a major disease problem on barley (Hordeum vulgare L.). Trichothecene mycotoxins produced by the fungus during infection increase the aggressiveness of the fungus and promote infection in wheat (Triticum aestivum L.). Loss-of-function mutations in the TRI5 gene in F. graminearum result in the inability to synthesize trichothecenes and in reduced virulence on wheat. We examined the impact of pathogen-derived trichothecenes on virulence and the transcriptional differences in barley spikes infected with a trichothecene-producing wild-type strain and a loss-of-function tri5 trichothecene nonproducing mutant. Disease severity, fungal biomass, and floret necrosis and bleaching were reduced in spikes inoculated with the tri5 mutant strain compared with the wild-type strain, indicating that the inability to synthesize trichothecenes results in reduced virulence in barley. We detected 63 transcripts that were induced during trichothecene accumulation, including genes encoding putative trichothecene detoxification and transport proteins, ubiquitination-related proteins, programmed cell death-related proteins, transcription factors, and cytochrome P450s. We also detected 414 gene transcripts that were designated as basal defense response genes largely independent of trichothecene accumulation. Our results show that barley exhibits a specific response to trichothecene accumulation that can be separated from the basal defense response. We propose that barley responds to trichothecene accumulation by inducing at least two general responses. One response is the induction of genes encoding trichothecene detoxification and transport activities that may reduce the impact of trichothecenes. The other response is to induce genes encoding proteins associated with ubiquitination and cell death which may promote successful establishment of the disease.

  11. Inheritance of resistance to barley yellow dwarf virus detected by northern blot analysis

    International Nuclear Information System (INIS)

    Lorens, G.F.; Falk, B.W.; Qualset, C.O.

    1989-01-01

    Development of wheat (Triticum aestivum L.) cultivars tolerant to the barley yellow dwarf virus disease (BYD) has been limited by lack of precision in rating plants for response to infection, usually done by visual scoring of plant symptoms under field conditions. Other methodologies have been developed to study the host/pathogen relationship and to assess resistance or susceptibility. In this study northern dot blot analysis was used to determine barley yellow dwarf virus (BYDV) RNA concentrations of six wheat cultivars that differed in visual BYD symptom expression. Plants were infected with the NYPAV (PAV) isolate of BYDV in the greenhouse. At several dates after inoculation crude plant extracts were blotted on nitrocellulose and hybridized with a 32 P-labeled probe of the pPA8 cDNA clone of BYDV. The distribution of PRC for the F 2 population was compared to the distribution of BYD visual symptom scores for 403 F 2 plants of a similar F 2 population of NS 879/4 x Seri 82 under field conditions. The results were qualitatively similar, suggesting that northern dot blot analysis to measure PRC may be useful in understanding the genetics of resistance to BYD. This technique, when incorporated into breeding programs, could be important in the development of highly tolerant wheat cultivars with reduced losses to BYD

  12. Evaluation of drought tolerance and yield capacity of barley (hordeum vulgare) genotypes under irrigated and water-stressed conditions

    International Nuclear Information System (INIS)

    Khokhar, M.I.; Silva, J.A.T.D

    2012-01-01

    Twelve barley genotypes developed through different selection methods were evaluated under drought and irrigated conditions. The results of a correlation matrix revealed highly significant associations between Grain Yield (Yp) and Mean Productivity (MP), Stress Tolerance Index (STI), Geometric Mean Productivity (GMP) and Yield Index (Yi) under irrigated conditions while the Mean Productivity (MP), Yield Stability Index (Yi), Stress Tolerance Index (STI), Geometric Mean Productivity (GMP) and Yield Index (Yi) had a high response under stressed condition. Based on a principal component analysis, Geometric Mean Productivity (GMP), Mean Productivity (MP) and Stress Tolerance Index (STI) were considered to be the best parameters for selection of drought-tolerant genotypes. The 2-row barley genotypes B-07023 and B-07021 performed better in yield response under drought conditions and were more stable under stress conditions. Furthermore, drought stress reduced the yield of some genotypes while others were tolerant to drought, suggesting genetic variability in this material for drought tolerance. (author)

  13. Progress in the evaluation, use in breeding, and genetic analysis of semi-dwarf mutants of barley

    International Nuclear Information System (INIS)

    Ullrich, S.E.; Muir, C.E.; Washington State Univ., Pullman

    1984-01-01

    Breeding for reduced height in barley (Hordeum vulgare L.) to primarily reduce lodging susceptibility is ongoing in the Washington State University barley breeding program. Two semi-dwarf winter and spring cultivars have been released and a number of advanced lines are being considered for release. Several semi-dwarf sources are utilized, including those from induced mutants in 'Jotun', 'Piroline' and 'Valticky'. In addition, over 200 putative mutants have been selected in the past four years from M 2 sodium azide-treated populations of local cultivars and advanced lines. These are evaluated in the pedigree breeding program and some have been incorporated into male sterile facilitated recurrent selection populations developed for reduced height. The inheritance of dwarfism in one mutant in the cultivar 'Advance' was determined to be controlled by a single recessive gene. (author)

  14. Enrichment and identification of integral membrane proteins from barley aleurone layers by reversed-phase chromatography, SDS-PAGE and LC-MS/MS

    DEFF Research Database (Denmark)

    Hynek, Radovan; Svensson, Birte; Nørregaard Jensen, Ole

    2006-01-01

    was developed, comprising batch reversed-phase chromatography with stepwise elution of hydrophobic proteins by 2-propanol. Proteins in the most hydrophobic fraction were separated by SDS-PAGE and identified by LC-MS/MS and barley EST sequence database search. The method was efficient for enrichment of integral...

  15. Scale-up of ethanol production from winter barley by the EDGE (enhanced dry grind enzymatic) process in fermentors up to 300 liters

    Science.gov (United States)

    A fermentation process, which was designated the EDGE (enhanced dry grind enzymatic) process, has recently been developed for barley ethanol production. In the EDGE process, in addition to the enzymes normally required for starch hydrolysis, commercial Beta-glucanases were used to hydrolyze (1,3)(1,...

  16. Free and Bound Phenolic Compound Content and Antioxidant Activity of Different Cultivated Blue Highland Barley Varieties from the Qinghai-Tibet Plateau.

    Science.gov (United States)

    Yang, Xi-Juan; Dang, Bin; Fan, Ming-Tao

    2018-04-11

    , while chlorogenic acid, vanillic acid, ferulic acid and quercetin were the main contributors to the free radical scavenging capacity in the bound phenol extract. The study results show that the blue highland barley grains have rich phenolic compounds and high antioxidant activity, as well as significant varietal differences. The free and bound phenolic extracts in the blue hulless barley grains have an equivalent proportion in the total phenol, and co-exist in two forms. They can be used as a potential valuable source of natural antioxidants, and can aid in enhancing the development and daily consumption of foods relating to blue highland barley.

  17. Allelopathic effects of barley straw on germination and seedling growth of corn, sugar beet and sunflower

    Directory of Open Access Journals (Sweden)

    mohamad taghi naseri poor yazdi

    2009-06-01

    Full Text Available Allelopathic effects of barley straw and root on germination and growth of maize, sugar beet, and sunflower were investigated under glasshouse and laboratory experiments in Faculty of Agriculture, Ferdowsi University of Mashhad in 2006. The glasshouse experiment was designed based on randomized complete block design with three replications, treatments included: 0, 200, 400, 600 g/m² of grounded barley straw and also 0 and 50 g/m2 barley root. A laboratory experiment was carried out in order to study the effect of different concentrations of barley water extracts on germination and seedling characteristics of corn, sugar beet and sunflower. Treatments in laboratory trial included 0, 33, 50 and 100 percent of barley extracts. Results showed that leaf area of corn was significantly affected by barley straw treatments. Shoot dry matter and seed weight per plant in corn , leaf and tuber weight in sugar beet and leaf , stem weights , plant per plant in corn , leaf and tuber weight in sugar beet and leaf, stem weights, plant height, head diameter, head weight and seed weight in sunflower were significantly higher in treatment of 50g/m² barley roots. Crop seed germination decreased with increasing the amount of barley straw. The best germination response to barley extract was observed in corn. Maize radicle weight was significantly decreased with increasing concentration of barley water extract.

  18. Production of ethanol from winter barley by the EDGE (enhanced dry grind enzymatic process

    Directory of Open Access Journals (Sweden)

    Kurantz M

    2010-04-01

    Full Text Available Abstract Background US legislation requires the use of advanced biofuels to be made from non-food feedstocks. However, commercialization of lignocellulosic ethanol technology is more complex than expected and is therefore running behind schedule. This is creating a demand for non-food, but more easily converted, starch-based feedstocks other than corn that can fill the gap until the second generation technologies are commercially viable. Winter barley is such a feedstock but its mash has very high viscosity due to its high content of β-glucans. This fact, along with a lower starch content than corn, makes ethanol production at the commercial scale a real challenge. Results A new fermentation process for ethanol production from Thoroughbred, a winter barley variety with a high starch content, was developed. The new process was designated the EDGE (enhanced dry grind enzymatic process. In this process, in addition to the normal starch-converting enzymes, two accessory enzymes were used to solve the β-glucan problem. First, β-glucanases were used to hydrolyze the β-glucans to oligomeric fractions, thus significantly reducing the viscosity to allow good mixing for the distribution of the yeast and nutrients. Next, β-glucosidase was used to complete the β-glucan hydrolysis and to generate glucose, which was subsequently fermented in order to produce additional ethanol. While β-glucanases have been previously used to improve barley ethanol production by lowering viscosity, this is the first full report on the benefits of adding β-glucosidases to increase the ethanol yield. Conclusions In the EDGE process, 30% of total dry solids could be used to produce 15% v/v ethanol. Under optimum conditions an ethanol yield of 402 L/MT (dry basis or 2.17 gallons/53 lb bushel of barley with 15% moisture was achieved. The distillers dried grains with solubles (DDGS co-product had extremely low β-glucan (below 0.2% making it suitable for use in both ruminant

  19. Improvement of the nutritional quality of barley and spring wheat: A review of the FAO/SIDA/SAREC project

    International Nuclear Information System (INIS)

    Hayes, I.D.

    1984-01-01

    The main aim of the joint FAO/SIDA/SAREC project was to develop new varieties of barley and spring wheat adapted to conditions in developing countries and with increased protein and lysine contents of the grain. Six premier research institutes in Egypt, Ethiopia, India, Iran, Pakistan and Turkey co-operated in the project under the technical leadership of Svaloev AB, formerly the Swedish Seed Association, during the period 1974 to 1981. Barley lines having grain with high protein and high lysine contents derived from Hiproly, Risoe 1508 and B1 were used as donors and backcrossed at Svaloev into adapted breeding material provided by breeders in the participating countries. Backcrosses and other progenies selected for homozygosity of the lysine genes on the basis of their protein content and dye-binding capacity (DBC) were distributed to the participants who continued selection in their own environments. A similar programme was initiated for wheat, based largely on Atlas 66, Nap Hal and Rageni as donors of high protein and lysine, but the expression of high lysine was very weakly inherited and selection was abandoned in 1978. It has proved extremely difficult, and so far impossible, to find high yielding lines with desirable agronomic characters combined with increased protein and lysine contents. Evidence of positive improvement in protein production per unit area was obtained in both wheat and barley in India. Under the aegis of the project over 14,000 lines of wheat and nearly 21,000 lines of barley, which included around 6,000 mutant progenies, were screened for protein content and DBC values at Svaloev, but no new prospective donors were identified that were superior to those already available. Conclusions are drawn concerning the benefit of the project and suggestions are made for further action. (author)

  20. The proteins of the grape (Vitis vinifera L.) seed endosperm: fractionation and identification of the major components.

    Science.gov (United States)

    Gazzola, Diana; Vincenzi, Simone; Gastaldon, Luca; Tolin, Serena; Pasini, Gabriella; Curioni, Andrea

    2014-07-15

    In the present study, grape (Vitis vinifera L.) seed endosperm proteins were characterized after sequential fractionation, according to a modified Osborne procedure. The salt-soluble fraction (albumins and globulins) comprised the majority (58.4%) of the total extracted protein. The protein fractions analysed by SDS-PAGE showed similar bands, indicating different solubility of the same protein components. SDS-PAGE in non-reducing and reducing conditions revealed the polypeptide composition of the protein bands. The main polypeptides, which were similar in all the grape varieties analysed, were identified by LC-MS/MS as homologous to the 11S globulin-like seed storage proteins of other plant species, while a monomeric 43 kDa protein presented high homology with the 7S globulins of legume seeds. The results provide new insights about the identity, structure and polypeptide composition of the grape seed storage proteins. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Isolation and characterization of the messenger RNA and the gene coding for a proline-rich zein from corn endosperm

    International Nuclear Information System (INIS)

    Wang, S.Z.

    1985-01-01

    Gamma-zein, a proline-rich protein from corn endosperm, was investigated at the molecular level. Immunological and electrophoretic data indicated that gamma-zein was deposited into protein bodies in corn endosperm. Both isolated polysomes and poly(A) + mRNA were found to direct into vitro synthesis of gamma-zein in a wheat germ system. In vitro synthesized gamma-zein was immunoprecipitated from the total in vitro translation products. A cDNA expression library was constructed by reverse transcription of total poly(A) + mRNA using pUC8 plasmid as vector and E. coli strain DH1 as host. The library was screened for the expression of gamma-zein and alpha-zein by specific antibodies. The library was also screened with 32 P-labeled gamma-zein and alpha-zein cDNA probes. The results indicated that gamma-zein and its fragments were readily expressed in E. coli while alpha-zein was not. Seven independently selected clones, six of which were selected by antibody and one by a cDNA probe, were sequenced. A comparison of sequence information from seven clones revealed that their overlapping regions were identical. This suggests that gamma-zein is encoded by a single gene. This finding is in conflict with what was expected on the basis of extensive charge heterogeneity of gamma-zein in isoelectric focusing. Individual bands cut from an IEF gel were rerun and shown to give several bands suggesting that the charge heterogeneity of gamma-zein may be an artifact. Sequence information of gamma-zein indicated that the gene encodes a mature protein whose primary structure includes 204 amino acids and has a molecular weight of 21,824 daltons

  2. Analysis of enzyme production by submerged culture of Aspergillus oryzae using whole barley.

    Science.gov (United States)

    Masuda, Susumu; Kikuchi, Kaori; Matsumoto, Yuko; Sugimoto, Toshikazu; Shoji, Hiroshi; Tanabe, Masayuki

    2009-10-01

    We have reported on high enzyme production by submerged culture of Aspergillus kawachii using barley with the husk (whole barley). To elucidate the mechanism underlying this high enzyme production, we performed a detailed analysis. Aspergillus oryzae RIB40 was submerged-cultured using whole barley and milled whole barley. Enzyme production was analyzed in terms of changes in medium components and gene expression levels. When whole barley was used, high production of glucoamylase and alpha-amylase and high gene expression levels of these enzymes were observed. Low ammonium concentrations were maintained with nitrate ion uptake continuing into the late stage using whole barley. These findings suggest that the sustainability of nitrogen metabolism is related to high enzyme production, and that a mechanism other than that associated with the conventional amylase expression system is involved in this relationship.

  3. Inheritance analysis and mapping of quantitative trait loci (QTL controlling individual anthocyanin compounds in purple barley (Hordeum vulgare L. grains.

    Directory of Open Access Journals (Sweden)

    Xiao-Wei Zhang

    Full Text Available Anthocyanin-rich barley can have great potential in promoting human health and in developing nutraceuticals and functional foods. As different anthocyanin compounds have different antioxidant activities, breeding cultivars with pre-designed anthocyanin compositions could be highly desirable. Working toward this possibility, we assessed and reported for the first time the genetic control of individual anthocyanin compounds in barley. Of the ten anthocyanins assessed, two, peonidin-3-glucoside (P3G and cyanidin-3-glucoside (C3G, were major components in the purple pericarp barley genotype RUSSIA68. Quantitative trait locus (QTL mapping showed that both anthocyanin compounds were the interactive products of two loci, one located on chromosome arm 2HL and the other on 7HS. However, the two different anthocyanin components seem to be controlled by different interactions between the two loci. The effects of the 7HS locus on P3G and C3G were difficult to detect without removing the effect of the 2HL locus. At least one copy of the 2HL alleles from the purple pericarp parent was required for the synthesis of P3G. This does not seem to be the case for the production of C3G which was produced in each of all the different allele combinations between the two loci. Typical maternal effect was also observed in the inheritance of purple pericarp grains in barley. The varied values of different compounds, coupled with their different genetic controls, highlight the need for targeting individual anthocyanins in crop breeding and food processing.

  4. Barley (Hordeum vulgare) circadian clock genes can respond rapidly to temperature in an EARLY FLOWERING 3-dependent manner

    Science.gov (United States)

    Ford, Brett; Deng, Weiwei; Clausen, Jenni; Oliver, Sandra; Boden, Scott; Hemming, Megan; Trevaskis, Ben

    2016-01-01

    An increase in global temperatures will impact future crop yields. In the cereal crops wheat and barley, high temperatures accelerate reproductive development, reducing the number of grains per plant and final grain yield. Despite this relationship between temperature and cereal yield, it is not clear what genes and molecular pathways mediate the developmental response to increased temperatures. The plant circadian clock can respond to changes in temperature and is important for photoperiod-dependent flowering, and so is a potential mechanism controlling temperature responses in cereal crops. This study examines the relationship between temperature, the circadian clock, and the expression of flowering-time genes in barley (Hordeum vulgare), a crop model for temperate cereals. Transcript levels of barley core circadian clock genes were assayed over a range of temperatures. Transcript levels of core clock genes CCA1, GI, PRR59, PRR73, PRR95, and LUX are increased at higher temperatures. CCA1 and PRR73 respond rapidly to a decrease in temperature whereas GI and PRR59 respond rapidly to an increase in temperature. The response of GI and the PRR genes to changes in temperature is lost in the elf3 mutant indicating that their response to temperature may be dependent on a functional ELF3 gene. PMID:27580625

  5. Creation of the first ultra-low gluten barley (Hordeum vulgare L.) for coeliac and gluten-intolerant populations.

    Science.gov (United States)

    Tanner, Gregory J; Blundell, Malcolm J; Colgrave, Michelle L; Howitt, Crispin A

    2016-04-01

    Coeliac disease is a well-defined condition that is estimated to affect approximately 1% of the population worldwide. Noncoeliac gluten sensitivity is a condition that is less well defined, but is estimated to affect up to 10% of the population, and is often self-diagnosed. At present, the only remedy for both conditions is a lifelong gluten-free diet. A gluten-free diet is often expensive, high in fat and low in fibre, which in themselves can lead to adverse health outcomes. Thus, there is an opportunity to use novel plant breeding strategies to develop alternative gluten-free grains. In this work, we describe the breeding and characterization of a novel ultra-low gluten (ULG) barley variety in which the hordein (gluten) content was reduced to below 5 ppm. This was achieved using traditional breeding strategies to combine three recessive alleles, which act independently of each other to lower the hordein content in the parental varieties. The grain of the initial variety was shrunken compared to wild-type barleys. We implemented a breeding strategy to improve the grain size to near wild-type levels and demonstrated that the grains can be malted and brewed successfully. The ULG barley has the potential to provide novel healthy foods and beverages for those who require a gluten-free diet. © 2015 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  6. HvPap-1 C1A Protease Participates Differentially in the Barley Response to a Pathogen and an Herbivore

    Directory of Open Access Journals (Sweden)

    Mercedes Diaz-Mendoza

    2017-09-01

    Full Text Available Co-evolutionary processes in plant–pathogen/herbivore systems indicate that protease inhibitors have a particular value in biotic interactions. However, little is known about the defensive role of their targets, the plant proteases. C1A cysteine proteases are the most abundant enzymes responsible for the proteolytic activity during different processes like germination, development and senescence in plants. To identify and characterize C1A cysteine proteases of barley with a potential role in defense, mRNA and protein expression patterns were analyzed in response to biotics stresses. A barley cysteine protease, HvPap-1, previously related to abiotic stresses and grain germination, was particularly induced by flagellin or chitosan elicitation, and biotic stresses such as the phytopathogenic fungus Magnaporthe oryzae or the phytophagous mite Tetranychus urticae. To elucidate the in vivo participation of this enzyme in defense, transformed barley plants overexpressing or silencing HvPap-1 encoding gene were subjected to M. oryzae infection or T. urticae infestation. Whereas overexpressing plants were less susceptible to the fungus than silencing plants, the opposite behavior occurred to the mite. This unexpected result highlights the complexity of the regulatory events leading to the response to a particular biotic stress.

  7. Distribution Map and Community Characteristics of Weeds in Barley Fields of Ardabil Province

    OpenAIRE

    B. Soheili; M. Minbashi; D. Hasanpanah; N. Razmi

    2013-01-01

    Surveying weeds of irrigated barley fields is one of the most important practices in weed management. Based on cultivated areas irrigated barley in all counties of Ardabil province during six years (2000-2005), 46 sample barley fields were selected and weed species were counted in each sampling point and population indices were calculated with Thomas method. By using specific furmula the density, frequency and uniformity of each weed species in fields were calculated. In each field longitude,...

  8. Characterization of Resistance to Cephus cinctus (Hymenoptera: Cephidae) in Barley Germplasm.

    Science.gov (United States)

    Varella, Andrea C; Talbert, Luther E; Achhami, Buddhi B; Blake, Nancy K; Hofland, Megan L; Sherman, Jamie D; Lamb, Peggy F; Reddy, Gadi V P; Weaver, David K

    2018-04-02

    Most barley cultivars have some degree of resistance to the wheat stem sawfly (WSS), Cephus cinctus Norton (Hymenoptera: Cephidae). Damage caused by WSS is currently observed in fields of barley grown in the Northern Great Plains, but the impact of WSS damage among cultivars due to genetic differences within the barley germplasm is not known. Specifically, little is known about the mechanisms underlying WSS resistance in barley. We characterized WSS resistance in a subset of the spring barley CAP (Coordinated Agricultural Project) germplasm panel containing 193 current and historically important breeding lines from six North American breeding programs. Panel lines were grown in WSS infested fields for two consecutive years. Lines were characterized for stem solidness, stem cutting, WSS infestation (antixenosis), larval mortality (antibiosis), and parasitism (indirect plant defense). Variation in resistance to WSS in barley was compared to observations made for solid-stemmed resistant and hollow-stemmed susceptible wheat lines. Results indicate that both antibiosis and antixenosis are involved in the resistance of barley to the WSS, but antibiosis seems to be more prevalent. Almost all of the barley lines had greater larval mortality than the hollow-stemmed wheat lines, and only a few barley lines had mortality as low as that observed in the solid-stemmed wheat line. Since barley lines lack solid stems, it is apparent that barley has a different form of antibiosis. Our results provide information for use of barley in rotation to control the WSS and may provide a basis for identification of new approaches for improving WSS resistance in wheat.

  9. Characterization of cereal β-glucan extracts from oat and barley and quantification of proteinaceous matter.

    Directory of Open Access Journals (Sweden)

    Claudia Zielke

    Full Text Available An extraction method for mixed-linkage β-glucan from oat and barley was developed in order to minimize the effect of extraction on the β-glucan structure. β-Glucan were characterized in terms of molecular size and molar mass distributions using asymmetric flow field-flow fractionation (AF4 coupled to multiangle light scattering (MALS, differential refractive index (dRI and fluorescence (FL detection. The carbohydrate composition of the extracts was analysed using polysaccharide analysis by carbohydrate gel electrophoresis (PACE and high-performance anion-exchange chromatography (HPAEC. Whether there were any proteinaceous moieties linked to β-glucan was also examined. Purified extracts contained 65% and 53% β-glucan for oats and barley, respectively. The main impurities were degradation products of starch. The extracts contained high molecular weight β-glucan (105-108 g/mol and large sizes (root-mean-square radii from 20 to 140 nm. No proteins covalently bound to β-glucan were detected; therefore, any suggested functionality of proteins regarding the health benefits of β-glucan can be discounted.

  10. Studies on induced partially resistant mutants of barley against powdery mildew

    International Nuclear Information System (INIS)

    Roebbelen, G.; Abdel-Hafez, A.G.; Reinhold, M.; Kwon, H.J.; Neuhaus-Steinmetz, J.P.; Heun, M.

    1983-01-01

    After mutagenic seed treatment of three partially resistant cultivars of spring barley with EMS and NaN 3 , 45 mutants in a first and 16 in a second experiment were selected in the M 2 -M 4 generations. The screening was done alternatively under natural infection in the field or controlled infection with a single pathotype in the greenhouse. These mutants exhibited a higher resistance and a higher susceptibility, respectively, than the initial cultivars Asse, Bomi and Vada. Some mutants expressed their altered resistance behaviour particularly during certain stages of development. High-level resistance was conditioned by mutation in the ml-o locus in three cases. For several Bomi mutants pathotype specificity with and without reversed ranking was proven as well as pathotype non-specificity in comparison with the reaction of the original cultivar. In 14 cases studied the inheritance of the involved mutants was monogenic recessive. The laevigatum locus responsible for the intermediate mildew resistance of Bomi was not affected by the mutations. Detection of groups of allelic mutants showed that there are at least two regions in the barley genome in which mutations for mildew resistance can occur rather frequently. In total, the past ten years of this mutation research have given convincing evidence that the strategies of mutant screening applied have yielded promising new material both for breeding and for progress in basic understanding of host-pathogen interactions. (author)

  11. Molecular Chemical Structure of Barley Proteins Revealed by Ultra-Spatially Resolved Synchrotron Light Sourced FTIR Microspectroscopy: Comparison of Barley Varieties

    International Nuclear Information System (INIS)

    Yu, P.

    2007-01-01

    Barley protein structure affects the barley quality, fermentation, and degradation behavior in both humans and animals among other factors such as protein matrix. Publications show various biological differences among barley varieties such as Valier and Harrington, which have significantly different degradation behaviors. The objectives of this study were to reveal the molecular structure of barley protein, comparing various varieties (Dolly, Valier, Harrington, LP955, AC Metcalfe, and Sisler), and quantify protein structure profiles using Gaussian and Lorentzian methods of multi-component peak modeling by using the ultra-spatially resolved synchrotron light sourced Fourier transform infrared microspectroscopy (SFTIRM). The items of the protein molecular structure revealed included protein structure α-helices, β-sheets, and others such as β-turns and random coils. The experiment was performed at the National Synchrotron Light Source in Brookhaven National Laboratory (BNL, US Department of Energy, NY). The results showed that with the SFTIRM, the molecular structure of barley protein could be revealed. Barley protein structures exhibited significant differences among the varieties in terms of proportion and ratio of model-fitted α-helices, β-sheets, and others. By using multi-component peaks modeling at protein amide I region of 1710-1576 cm -1 , the results show that barley protein consisted of approximately 18-34% of α-helices, 14-25% of β-sheets, and 44-69% others. AC Metcalfe, Sisler, and LP955 consisted of higher (P 0.05). The ratio of α-helices to others (0.3 to 1.0, P < 0.05) and that of β-sheets to others (0.2 to 0.8, P < 0.05) were different among the barley varieties. It needs to be pointed out that using a multi-peak modeling for protein structure analysis is only for making relative estimates and not exact determinations and only for the comparison purpose between varieties. The principal component analysis showed that protein amide I Fourier

  12. Leaf senescence and nutrient remobilisation in barley and wheat

    DEFF Research Database (Denmark)

    Gregersen, P L; Holm, P B; Krupinska, K

    2008-01-01

    Extensive studies have been undertaken on senescence processes in barley and wheat and their importance for the nitrogen use efficiency of these crop plants. During the senescence processes, proteins are degraded and nutrients are re-mobilised from senescing leaves to other organs, especially...... of chloroplasts is summarised. Rubisco is thought to be released from chloroplasts into vesicles containing stroma material (RCB = Rubisco-containing bodies). These vesicles may then take different routes for their degradation. Transcriptome analyses on barley and wheat senescence have identified genes involved...... in degradative, metabolic and regulatory processes that could be used in future strategies aimed at modifying the senescence process. The breeding of crops for characters related to senescence processes, e.g. higher yields and better nutrient use efficiency, is complex. Such breeding has to cope with the dilemma...

  13. Methods of scoring induced chromosome structural changes in barley

    International Nuclear Information System (INIS)

    Nicoleff, H.; Gecheff, K.

    1976-01-01

    In barley, a material widely used in mutation and chromosomal aberration studies, the method most frequently used for scoring induced chromosomal changes is still anaphase analysis. In this paper, data obtained after treatment of barley with gamma-rays and ethyleneimine (EI) and comparative scoring of aberrations in metaphase and anaphase are reported and discussed. It is evident that the metaphase aberrations induced by gamma-rays and ethyleneimine, due probably to their specific location, showed a differential manifestation during anaphase. Thus, after treatment with ethyleneimine a great portion of the induced aberrations, being located preferentially at the centromere regions, gave no scorable bridges, and an apparent excess of fragments was observed at anaphase. After gamma-irradiation the differences between metaphase and anaphase scoring were mainly due to a large portion of fragments escaping detection

  14. Suppression of Zn stress on barley by irradiated chitosan

    Energy Technology Data Exchange (ETDEWEB)

    Nagasawa, N.; Mitomo, H. [Gunma Univ., Faculty of Engineering, Department of Biological and Chemical Engineering, Kiryu, Gunma (Japan); Ha, P.T.L. [Nuclear Research Institute, Dalat (Viet Nam); Watanabe, S.; Ito, T.; Takeshita, H.; Yoshii, F.; Kume, T. [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment

    2001-03-01

    Chitosan was irradiated up to 1000 kGy in solid state. Irradiation of chitosan caused the reduction of molecular weight. The molecular weight of the chitosan reduced from ca. 4 x 10{sup 5} to ca. 6 x 10{sup 3} by irradiation at 1000 kGy. For the barley growth promotion, irradiated chitosan showed the significant effect and 1000 kGy irradiated chitosan improved 20% of growth. Using the positron emitting tracer imaging system (PETIS), the effect of chitosan on uptake and transportation of {sup 62}Zn in barley were investigated. It was found that the transportation of Zn from root to shoot and the damage of plant by Zn were suppressed with irradiated chitosan. (author)

  15. Suppression of Zn stress on barley by irradiated chitosan

    International Nuclear Information System (INIS)

    Nagasawa, N.; Mitomo, H.; Ha, P.T.L.; Watanabe, S.; Ito, T.; Takeshita, H.; Yoshii, F.; Kume, T.

    2001-01-01

    Chitosan was irradiated up to 1000 kGy in solid state. Irradiation of chitosan caused the reduction of molecular weight. The molecular weight of the chitosan reduced from ca. 4 x 10 5 to ca. 6 x 10 3 by irradiation at 1000 kGy. For the barley growth promotion, irradiated chitosan showed the significant effect and 1000 kGy irradiated chitosan improved 20% of growth. Using the positron emitting tracer imaging system (PETIS), the effect of chitosan on uptake and transportation of 62 Zn in barley were investigated. It was found that the transportation of Zn from root to shoot and the damage of plant by Zn were suppressed with irradiated chitosan. (author)

  16. Uptake and distribution of 232U in peas and barley

    International Nuclear Information System (INIS)

    Schreckhise, R.G.; Cline, J.F.

    1980-01-01

    The uptake of 232 U from soil and its distribution in peas and barley were examined under conditions which isolated root uptake from deposition on aboveground plant parts. Aboveground plant parts were harvested at maturity and analyzed for 232 U content by alpha-energy-analysis. The ratio of concentration (CR) of 232 U in the dry barley seeds to dry soil was 1.6 x 10 -4 while the CR values of the stem/leaf to dry soil fraction was 3.6 x 10 -3 . The Cr values for the pea seed, stem/pod and leaf components were 5.4 x 10 -4 , 3.3 x 10 -3 and 1.7 x 10 -2 , respectively. This indicates that the CR values used in certain radiological dose-assessment models may be high by about a factor of 100 when evaluating the consumption of seeds of legumes or cereal grains by man. (author)

  17. Drivers of Phosphorus Uptake by Barley Following Secondary Resource Application

    OpenAIRE

    Brod, Eva; Øgaard, Anne K. Falk; Krogstad, Tore; Haraldsen, Trond; Frossard, Emmanuel; Oberson, Astrid

    2016-01-01

    Minable rock phosphate is a finite resource. Replacing mineral phosphorus (P) fertilizer with P-rich secondary resources is one way to manage P more efficiently, but the importance of physicochemical and microbial soil processes induced by secondary resources for plant P uptake is still poorly understood. Using radioactive-labeling techniques, the fertilization effects of dairy manure, fish sludge, meat bone meal, and wood ash were studied as P uptake by barley after 44 days and compared with...

  18. Drivers of phosphorus uptake by barley following secondary resource application

    OpenAIRE

    Eva eBrod; Eva eBrod; Anne Falk Øgaard; Tore eKrogstad; Trond Knapp Haraldsen; Emmanuel eFrossard; Astrid eOberson

    2016-01-01

    Minable rock phosphate is a finite resource. Replacing mineral phosphorus (P) fertilizer with P-rich secondary resources is one way to manage P more efficiently, but the importance of physicochemical and microbial soil processes induced by secondary resources for plant P uptake are still poorly understood. Using radioactive labelling techniques, the fertilization effects of dairy manure, fish sludge, meat bone meal and wood ash were studied as P uptake by barley after 44 days and compared wit...

  19. Drivers of Phosphorus Uptake by Barley Following Secondary Resource Application

    OpenAIRE

    Brod, Eva; Øgaard, Anne K. Falk; Krogstad, Tore; Haraldsen, Trond; Frossard, Emmanuel; Oberson, Astrid

    2016-01-01

    Minable rock phosphate is a finite resource. Replacing mineral phosphorus (P) fertilizer with P-rich secondary resources is one way to manage P more efficiently, but the importance of physicochemical and microbial soil processes induced by secondary resources for plant P uptake is still poorly understood. Using radioactive-labeling techniques, the fertilization effects of dairy manure, fish sludge, meat bone meal, and wood ash were studied as P uptake by barley after 44 days and compared with...

  20. Drivers of phosphorus uptake by barley following secondary resource application

    Directory of Open Access Journals (Sweden)

    Eva eBrod

    2016-05-01

    Full Text Available Minable rock phosphate is a finite resource. Replacing mineral phosphorus (P fertilizer with P-rich secondary resources is one way to manage P more efficiently, but the importance of physicochemical and microbial soil processes induced by secondary resources for plant P uptake are still poorly understood. Using radioactive labelling techniques, the fertilization effects of dairy manure, fish sludge, meat bone meal and wood ash were studied as P uptake by barley after 44 days and compared with those of water-soluble mineral P (MinP and an unfertilized control (NoP in a pot experiment with an agricultural soil containing little available P at two soil pH levels, approximately pH 5.3 (unlimed soil and pH 6.2 (limed soil. In a parallel incubation experiment, the effects of the secondary resources on physicochemical and microbial soil processes were studied. The results showed that the relative agronomic efficiency compared with MinP decreased in the order: manure ≥ fish sludge ≥ wood ash ≥ meat bone meal. The solubility of inorganic P in secondary resources was the main driver for P uptake by barley (Hordeum vulgare. The effects of secondary resources on physicochemical and microbial soil processes were of little overall importance. Application of organic carbon with manure resulted in microbial P immobilisation and decreased uptake by barley of P derived from the soil. On both soils, P uptake by barley was best explained by a positive linear relationship with the H2O + NaHCO3-soluble inorganic P fraction in fertilizers, or by a linear negative relationship with the HCl-soluble inorganic P fraction in fertilizers.

  1. Drivers of Phosphorus Uptake by Barley Following Secondary Resource Application

    Science.gov (United States)

    Brod, Eva; Øgaard, Anne Falk; Krogstad, Tore; Haraldsen, Trond Knapp; Frossard, Emmanuel; Oberson, Astrid

    2016-01-01

    Minable rock phosphate is a finite resource. Replacing mineral phosphorus (P) fertilizer with P-rich secondary resources is one way to manage P more efficiently, but the importance of physicochemical and microbial soil processes induced by secondary resources for plant P uptake is still poorly understood. Using radioactive-labeling techniques, the fertilization effects of dairy manure, fish sludge, meat bone meal, and wood ash were studied as P uptake by barley after 44 days and compared with those of water-soluble mineral P (MinP) and an unfertilized control (NoP) in a pot experiment with an agricultural soil containing little available P at two soil pH levels, approximately pH 5.3 (unlimed soil) and pH 6.2 (limed soil). In a parallel incubation experiment, the effects of the secondary resources on physicochemical and microbial soil processes were studied. The results showed that the relative agronomic efficiency compared with MinP decreased in the order: manure ≥fish sludge ≥wood ash ≥meat bone meal. The solubility of inorganic P in secondary resources was the main driver for P uptake by barley (Hordeum vulgare). The effects of secondary resources on physicochemical and microbial soil processes were of little overall importance. Application of organic carbon with manure resulted in microbial P immobilization and decreased uptake by barley of P derived from the soil. On both soils, P uptake by barley was best explained by a positive linear relationship with the H2O + NaHCO3-soluble inorganic P fraction in fertilizers or by a linear negative relationship with the HCl-soluble inorganic P fraction in fertilizers. PMID:27243015

  2. The Barley Grain Thioredoxin System – an Update

    Directory of Open Access Journals (Sweden)

    Per eHägglund

    2013-05-01

    Full Text Available Thioredoxin reduces disulfide bonds and play numerous important functions in plants. In cereal seeds, cytosolic h-type thioredoxin facilitates the release of energy reserves during the germination process and is recycled by NADPH-dependent thioredoxin reductase. This review presents a summary of the research conducted during the last ten years to elucidate the structure and function of the barley seed thioredoxin system at the molecular level combined with proteomic approaches to identify target proteins.

  3. The breeding of new malting barley variety 'yangpi NO.3'

    International Nuclear Information System (INIS)

    Wang Jinrong; Chen Xiulan; He Zhentian; Han Yuepeng; Wang Jianhua; Zhang Rong

    2009-01-01

    'Yangpi No 3' is a spring and two-rowed new malting barley variety. It was selected by the radiation-induced mutations. Its yield was about 6750 kg/hm 2 and the maturity was slightly later. The variety is with good agronomic traits, strong resistance, top quality and planted mainly in Huainan of Jiangsu Province. It had been qualified by Crop Variety Evaluation Committee of Jiangsu Province in Feb, 2009(200901). (authors)

  4. Linking stomatal traits and expression of slow anion channel genes HvSLAH1 2 HvSLAC1 with grain yield for increasing salinity tolerance in barley

    Directory of Open Access Journals (Sweden)

    Xiaohui eLiu

    2014-11-01

    Full Text Available Soil salinity is an environmental and agricultural problem in many parts of the world. One of the keys to breeding barley for adaptation to salinity lies in a better understanding of the genetic control of stomatal regulation. We have employed a range of physiological and molecular techniques (stomata assay, gas exchange, phylogenetic analysis, QTL analysis, and gene expression to investigate stomatal behaviour and genotypic variation in barley cultivars and a genetic population in four experimental trials. A set of relatively efficient and reliable methods were developed for the characterisation of stomatal behaviour of large numbers of varieties and genetic lines. Furthermore, we have found a large genetic variation of gas exchange and stomatal traits in barley in response to salinity stress. Salt-tolerant CM72 showed significantly larger stomatal aperture in 200 mM NaCl treatment than that of salt-sensitive Gairdner. Stomatal traits such as aperture width/length were found to significantly correlate with grain yield in salt treatment. Phenotypic characterisation and QTL analysis of a segregating double haploid population of the CM72/Gairdner resulted in the identification of significant stomatal traits-related QTLs for salt tolerance. Moreover, expression analysis of the slow anion channel genes HvSLAH1 and HvSLAC1 demonstrated that their up-regulation is linked to high barley grain yield in the field.

  5. Structure, morphology and functionality of acetylated and oxidised barley starches.

    Science.gov (United States)

    El Halal, Shanise Lisie Mello; Colussi, Rosana; Pinto, Vânia Zanella; Bartz, Josiane; Radunz, Marjana; Carreño, Neftali Lenin Villarreal; Dias, Alvaro Renato Guerra; Zavareze, Elessandra da Rosa

    2015-02-01

    Acetylation and oxidation are chemical modifications which alter the properties of starch. The degree of modification of acetylated and oxidized starches is dependent on the catalyst and active chlorine concentrations, respectively. The objective of this study was to evaluate the effect of acetylation and oxidation on the structural, morphological, physical-chemical, thermal and pasting properties of barley starch. Barley starches were acetylated at different catalyst levels (11%, 17%, and 23% of NaOH solution) and oxidized at different sodium hypochlorite concentrations (1.0%, 1.5%, and 2.0% of active chlorine). Fourier-transformed infrared spectroscopy (FTIR), X-ray diffractograms, thermal, morphological, and pasting properties, swelling power and solubility of starches were evaluated. The degree of substitution (DS) of the acetylated starches increased with the rise in catalyst concentration. The percentage of carbonyl (CO) and carboxyl (COOH) groups in oxidized starches also increased with the rise of active chlorine level. The presence of hydrophobic acetyl groups, carbonyl and carboxyl groups caused a partial disorganization and depolymerization of starch granules. The structural, morphological and functional changes in acetylated and oxidized starches varied according to reaction conditions. Acetylation makes barley starch more hydrophobic by the insertion of acetyl groups. Also the oxidation promotes low retrogradation and viscosity. All these characteristics are important for biodegradable film production. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. New NS varieties of six-rowed winter barley

    Directory of Open Access Journals (Sweden)

    Pržulj Novo

    2009-01-01

    Full Text Available The paper describes the characteristics of several new NS varieties of winter six-rowed barley released in Serbia between 2004 and 2007. These are Somborac, Ozren, Javor, Novosadski 773, Sremac and Leotar. In the official variety trials in the country, all six of these varieties outyielded the check variety, and the margins were as follows: Somborac - 3.4%, Ozren - 5.0%, Javor - 7.3%, Novosadski 773 - 3.4%, Sremac - 7.4%, and Leotar - 7.2%. Yield levels in absolute terms depended on the variety as well as year. All six-rowed NS varieties headed earlier than the check and had better resistance to lodging than the check has. The test weight of the new varieties was 70.2-73.8 kg/hl and the 1000-grain weight 33.4-50.2 g. The cellulose content was 4.4-4.8%, the fat content 1.4%, and the protein content 13.3-14.6%. The high variability of the new NS varieties of winter six-rowed barley makes it possible to choose the most suitable genotype for each barley-growing area in the country. .

  7. Variation in the agronomic and morphological traits in spring barley

    Directory of Open Access Journals (Sweden)

    N. Dyulgerov

    2017-12-01

    Full Text Available Abstract. The study was conducted to examine the variation in the agronomic and morphological traits in spring barley. For this purpose, 22 lines from the ICARDA High Input Barley Program for favorable environment and 3 check varieties (Rihane-03, VMorales and Veslets were tested in an alpha-lattice design with two replications at the Institute of Agriculture – Karnobat, Bulgaria in 2014 and 2015 growing season. The traits days to heading, plant height, number of tillers per plant, flag leaf length, flag leaf width, spike length, awn length, peduncle length, spikelet number per spike, grain number per spike, grain weight per spike, 1000 grains weight, grain yield, powdery mildew (Erysiphe graminis f. sp. hordei, net blotch (Pyrenophora teres f. teres and stripe rust (Puccinia striiformis f. sp. hordei infection were studied. Significant differences between lines for all studied traits were found. The number of fertile tillers per plant was significantly positively correlated with grain yield. Lines expressed higher grain yields, shorter stem, better tolerance to net blotch and stripe rust than Bulgarian check variety Veslets were identified. These genotypes can, therefore, be used as parents for the improvement of spring barley.

  8. Genetic analysis of aluminum tolerance in Brazilian barleys

    Directory of Open Access Journals (Sweden)

    Minella Euclydes

    2002-01-01

    Full Text Available Aluminum (Al toxicity is a major factor limiting barley growth in acid soils, and genotypes with adequate level of tolerance are needed for improving barley adaptation in Brazil. To study the inheritance of Al tolerance in Brazilian barleys, cultivars Antarctica 1, BR 1 and FM 404 were crossed to sensitive Kearney and PFC 8026, and intercrossed. Parental, F1, F2 and F6 generations were grown in nutrient solution containing 0.03, 0.05 and 0.07 mM of Al and classified for tolerance by the root tip hematoxylin staining assay. Tolerant by sensitive F2 progenies segregated three tolerant to one sensitive, fitting the 3:1 ratio expected for a single gene. The F6 populations segregated one tolerant to one sensitive also fitting a monogenic ratio. The F2 seedlings from crosses among tolerant genotypes scored the same as the parents. Since the population size used would allow detection of recombination as low as 7%, the complete absence of Al sensitive recombinants suggests that tolerance in these cultivars is most probably, controlled by the same gene. Thus, the potential for improving Al tolerance through recombination of these genotypes is very low and different gene sources should be evaluated.

  9. Proteomic analysis of barley response during early spot blotch infection

    International Nuclear Information System (INIS)

    Al-Daoude, A.; Jawhar, M.; Shoaib, A.; Arabi, M.I.E.

    2015-01-01

    Spot blotch (SB), caused by the fungus Cochliobolus sativus, is a common foliar disease of barley worldwide, but little is known about the host response to infection at the protein level. In this study, a systematic shotgun proteomics approach was chosen to document the early barley response to C. sativus infection. Overall, 28 protein spots were consistently observed as differential in the proteome profiles of the challenged and unchallenged plants. After tryptic digestion, MALDI-TOF/MS analysis and MASCOT database searching identified proteins associated with the defense response including resistance proteins, putative hydrolase, proteinase, kinase and general metabolism and transport proteins. These afford important functions in host resistance and pathogen's inhibition in plants. One of the identified products is a putative NBS-LRR protein which is considered one of the major plant disease resistance proteins identified to date. This work indicates that, in combination with functional genomics, response of barley to challenge by C. sativus involved the recruitment of proteins from various defense pathways.(author)

  10. The effect of lanthanum applications on drought tolerance in barley

    International Nuclear Information System (INIS)

    Buckingham, S.; Maheswaran, J.; Peverill, K.; Meehan, B.; Stokes, J.

    1998-01-01

    Full text: Glasshouse investigations carried out by the authors on both perlite and soil, have repeatedly shown that several plant species, when treated with lanthanum, retain greater amounts of moisture under water stressed conditions. Dry matter increases under water stress have been observed in some cases. Barley plants watered to 50% field capacity, and show-ing signs of water stress, yielded 18% more dry matter when treated with 5 kg/ha and 10 kg/ha of lanthanum than control plants (P<0.05). The results of these experiments suggest that increased dry matter production in crops under periods of water stress, is likely when previously treated with lanthanum. Consequently, it is conceivable that lanthanum may have potential as an agent that induces drought tolerance in grain crops, grown in low rainfall areas. Subsequent field trials using barley as a test crop at Walpeup, in the Mallee region of Victoria have shown that in a below average rainfall year, combined soil and foliar applications of lanthanum can significantly increase grain yield. This effect was not evident when barley grown on the same soil type was treated with lanthanum under above average rainfall conditions

  11. BarleyBase—an expression profiling database for plant genomics

    Science.gov (United States)

    Shen, Lishuang; Gong, Jian; Caldo, Rico A.; Nettleton, Dan; Cook, Dianne; Wise, Roger P.; Dickerson, Julie A.

    2005-01-01

    BarleyBase (BB) (www.barleybase.org) is an online database for plant microarrays with integrated tools for data visualization and statistical analysis. BB houses raw and normalized expression data from the two publicly available Affymetrix genome arrays, Barley1 and Arabidopsis ATH1 with plans to include the new Affymetrix 61K wheat, maize, soybean and rice arrays, as they become available. BB contains a broad set of query and display options at all data levels, ranging from experiments to individual hybridizations to probe sets down to individual probes. Users can perform cross-experiment queries on probe sets based on observed expression profiles and/or based on known biological information. Probe set queries are integrated with visualization and analysis tools such as the R statistical toolbox, data filters and a large variety of plot types. Controlled vocabularies for gene and plant ontologies, as well as interconnecting links to physical or genetic map and other genomic data in PlantGDB, Gramene and GrainGenes, allow users to perform EST alignments and gene function prediction using Barley1 exemplar sequences, thus, enhancing cross-species comparison. PMID:15608273

  12. Transcriptome Comparative Profiling of Barley eibi1 Mutant Reveals Pleiotropic Effects of HvABCG31 Gene on Cuticle Biogenesis and Stress Responsive Pathways

    Directory of Open Access Journals (Sweden)

    Eviatar Nevo

    2013-10-01

    Full Text Available Wild barley eibi1 mutant with HvABCG31 gene mutation has low capacity to retain leaf water, a phenotype associated with reduced cutin deposition and a thin cuticle. To better understand how such a mutant plant survives, we performed a genome-wide gene expression analysis. The leaf transcriptomes between the near-isogenic lines eibi1 and the wild type were compared using the 22-k Barley1 Affymetrix microarray. We found that the pleiotropic effect of the single gene HvABCG31 mutation was linked to the co-regulation of metabolic processes and stress-related system. The cuticle development involved cytochrome P450 family members and fatty acid metabolism pathways were significantly up-regulated by the HvABCG31 mutation, which might be anticipated to reduce the levels of cutin monomers or wax and display conspicuous cuticle defects. The candidate genes for responses to stress were induced by eibi1 mutant through activating the jasmonate pathway. The down-regulation of co-expressed enzyme genes responsible for DNA methylation and histone deacetylation also suggested that HvABCG31 mutation may affect the epigenetic regulation for barley development. Comparison of transcriptomic profiling of barley under biotic and abiotic stresses revealed that the functions of HvABCG31 gene to high-water loss rate might be different from other osmotic stresses of gene mutations in barley. The transcriptional profiling of the HvABCG31 mutation provided candidate genes for further investigation of the physiological and developmental changes caused by the mutant.

  13. Molecular analysis of endo-β-mannanase genes upon seed imbibition suggest a cross-talk between radicle and micropylar endosperm during germination of Arabidopsis thaliana

    Science.gov (United States)

    Iglesias-Fernández, Raquel; del Carmen Rodríguez-Gacio, María; Barrero-Sicilia, Cristina; Carbonero, Pilar

    2011-01-01

    The endo-β-mannanase (MAN) family is represented in the Arabidopsis genome by eight members, all with canonical signal peptides and only half of them being expressed in germinating seeds. The transcripts of these genes were localized in the radicle and micropylar endosperm (ME) before radicle protrusion and this expression disappears as soon as the endosperm is broken by the emerging radicle tip. However, only three of these MAN genes, AtMAN5, AtMAN7 and especially AtMAN6 influence the germination time (t50) as assessed by the analysis of the corresponding knock-out lines. The data suggest a possible interaction between embryo and ME regarding the role of MAN during the Arabidopsis germination process. PMID:21301215

  14. Transcriptome reprogramming due to the introduction of a barley telosome into bread wheat affects more barley genes than wheat.

    Science.gov (United States)

    Rey, Elodie; Abrouk, Michael; Keeble-Gagnère, Gabriel; Karafiátová, Miroslava; Vrána, Jan; Balzergue, Sandrine; Soubigou-Taconnat, Ludivine; Brunaud, Véronique; Martin-Magniette, Marie-Laure; Endo, Takashi R; Bartoš, Jan; Appels, Rudi; Doležel, Jaroslav

    2018-03-06

    Despite a long history, the production of useful alien introgression lines in wheat remains difficult mainly due to linkage drag and incomplete genetic compensation. In addition, little is known about the molecular mechanisms underlying the impact of foreign chromatin on plant phenotype. Here, a comparison of the transcriptomes of barley, wheat and a wheat-barley 7HL addition line allowed the transcriptional impact both on 7HL genes of a non-native genetic background and on the wheat gene complement as a result of the presence of 7HL to be assessed. Some 42% (389/923) of the 7HL genes assayed were differentially transcribed, which was the case for only 3% (960/35 301) of the wheat gene complement. The absence of any transcript in the addition line of a suite of chromosome 7A genes implied the presence of a 36 Mbp deletion at the distal end of the 7AL arm; this deletion was found to be in common across the full set of Chinese Spring/Betzes barley addition lines. The remaining differentially transcribed wheat genes were distributed across the whole genome. The up-regulated barley genes were mostly located in the proximal part of the 7HL arm, while the down-regulated ones were concentrated in the distal part; as a result, genes encoding basal cellular functions tended to be transcribed, while those encoding specific functions were suppressed. An insight has been gained into gene transcription in an alien introgression line, thereby providing a basis for understanding the interactions between wheat and exotic genes in introgression materials. © 2018 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  15. Regulation of FA and TAG biosynthesis pathway genes in endosperms and embryos of high and low oil content genotypes of Jatropha curcas L.

    Science.gov (United States)

    Sood, Archit; Chauhan, Rajinder Singh

    2015-09-01

    The rising demand for biofuels has raised concerns about selecting alternate and promising renewable energy crops which do not compete with food supply. Jatropha (Jatropha curcas L.), a non-edible energy crop of the family euphorbiaceae, has the potential of providing biodiesel feedstock due to the presence of high proportion of unsaturated fatty acids (75%) in seed oil which is mainly accumulated in endosperm and embryo. The molecular basis of seed oil biosynthesis machinery has been studied in J. curcas, however, what genetic differences contribute to differential oil biosynthesis and accumulation in genotypes varying for oil content is poorly understood. We investigated expression profile of 18 FA and TAG biosynthetic pathway genes in different developmental stages of embryo and endosperm from high (42%) and low (30%) oil content genotypes grown at two geographical locations. Most of the genes showed relatively higher expression in endosperms of high oil content genotype, whereas no significant difference was observed in endosperms versus embryos of low oil content genotype. The promoter regions of key genes from FA and TAG biosynthetic pathways as well as other genes implicated in oil accumulation were analyzed for regulatory elements and transcription factors specific to oil or lipid accumulation in plants such as Dof, CBF (LEC1), SORLIP, GATA and Skn-1_motif etc. Identification of key genes from oil biosynthesis and regulatory elements specific to oil deposition will be useful not only in dissecting the molecular basis of high oil content but also improving seed oil content through transgenic or molecular breeding approaches. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  16. Myrigalone A Inhibits Lepidium sativum Seed Germination by Interference with Gibberellin Metabolism and Apoplastic Superoxide Production Required for Embryo Extension Growth and Endosperm Rupture

    Czech Academy of Sciences Publication Activity Database

    Oracz, K.; Voegele, A.; Tarkowská, Danuše; Jacquemoud, D.; Turečková, Veronika; Urbanová, Terezie; Strnad, Miroslav; Sliwinska, E.; Leubner-Metzger, G.

    2012-01-01

    Roč. 53, č. 1 (2012), s. 81-95 ISSN 0032-0781 R&D Projects: GA AV ČR KAN200380801; GA MŠk ED0007/01/01; GA ČR GD522/08/H003 Keywords : Embryo cell extension growth * Endoreduplication * Endosperm rupture * Gibberellin metabolism * Lepidium sativum * Myrica gale * Phytotoxicity * Reactive oxygen species Subject RIV: EF - Botanics Impact factor: 4.134, year: 2012

  17. Cloning and functional expression of a cDNA encoding stearoyl-ACP Δ9-desaturase from the endosperm of coconut (Cocos nucifera L.).

    Science.gov (United States)

    Gao, Lingchao; Sun, Ruhao; Liang, Yuanxue; Zhang, Mengdan; Zheng, Yusheng; Li, Dongdong

    2014-10-01

    Coconut (Cocos nucifera L.) is an economically tropical fruit tree with special fatty acid compositions. The stearoyl-acyl carrier protein (ACP) desaturase (SAD) plays a key role in the properties of the majority of cellular glycerolipids. In this paper, a full-length cDNA of a stearoyl-acyl carrier protein desaturase, designated CocoFAD, was isolated from cDNA library prepared from the endosperm of coconut (C. nucifera L.). An 1176 bp cDNA from overlapped PCR products containing ORF encoding a 391-amino acid (aa) protein was obtained. The coded protein was virtually identical and shared the homology to other Δ9-desaturase plant sequences (greater than 80% as similarity to that of Elaeis guineensis Jacq). The real-time fluorescent quantitative PCR result indicated that the yield of CocoFAD was the highest in the endosperm of 8-month-old coconut and leaf, and the yield was reduced to 50% of the highest level in the endosperm of 15-month-old coconut. The coding region showed heterologous expression in strain INVSc1 of yeast (Saccharomyces cerevisiae). GC-MS analysis showed that the levels of palmitoleic acid (16:1) and oleic acid (18:1) were improved significantly; meanwhile stearic acid (18:0) was reduced. These results indicated that the plastidial Δ9 desaturase from the endosperm of coconut was involved in the biosynthesis of hexadecenoic acid and octadecenoic acid, which was similar with other plants. These results may be valuable for understanding the mechanism of fatty acid metabolism and the genetic improvement of CocoFAD gene in palm plants in the future. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Loose smut of barley grown in three types of farming

    Directory of Open Access Journals (Sweden)

    T. Nedelcheva

    2016-09-01

    Full Text Available Abstract. Over the period of 2014-2015, on the experimental field of the Institute of Agriculture in Karnobat, Bulgaria, was set a field trial with twenty cultivars of barley – 15 two-row: Obzor, Emon, Perun, Orfey, Lardeya, Asparuh, Kuber, Zagorets, Imeon, Sayra, Devinya, Sitara, Krami, Vicky, Potok; 3 four-row: Veslets, Aheloy 2, Tamaris; and 2 six-row cultivars – IZ Bori and Bozhin. All the cultivars were grown in three types of farming: conventional, organic and biodynamic. In conventional farming were applied pesticides and nitrogen fertilization. In the organic production were not used pesticides, mineral and organic fertilizers; and in biodynamic farming was applied biodynamic compost prepared from manure and biodynamic preparations (also organic. In conventional farming, the seeds were disinfected before sowing with Kinto plus (Triticonazole 20 g/l + Prochloraz 60 g/l, at a rate of 150 ml/100 kg seeds. In organic and biodynamic farming were used nondisinfected seeds. In the phenophase of full maturity of barley was conducted monitoring survey for plants infected with loose smut in all 2 the trial variants, the number of infected plants per m were counted and the infection rates were calculated. Infected plants of Tamaris grown in the three types of farming underwent microscopic analysis and measurement of 100 teliospores from each variant. The aim of this experiment was to investigate varietal susceptibility of barley to Ustilago nuda, grown in three types of farming, and to establish if the growing method affects the size of the teliospores of the pathogen. With two-row barley were found plants of Lardeya, Kuber, Devinya, Krami and Vicky infected with Ustilago nuda. Krami manifested the lowest resistance in the three types of farming. With four-row barley, Tamaris was found to be highly susceptible and Veslets was poorly resistant. Both cultivars expressed weaker susceptibility in conventional and biodynamic farming and stronger in

  19. Molecular phylogeography of domesticated barley traces expansion of agriculture in the Old World.

    Science.gov (United States)

    Saisho, Daisuke; Purugganan, Michael D

    2007-11-01

    Barley (Hordeum vulgare ssp. vulgare) was first cultivated 10,500 years ago in the Fertile Crescent and is one of the founder crops of Eurasian agriculture. Phylogeographic analysis of five nuclear loci and morphological assessment of two traits in >250 domesticated barley accessions reveal that landraces found in South and East Asia are genetically distinct from those in Europe and North Africa. A Bayesian population structure assessment method indicates that barley accessions are subdivided into six clusters and that barley landraces from 10 different geographical regions of Eurasia and North Africa show distinct patterns of distribution across these clusters. Using haplotype frequency data, it appears that the Europe/North Africa landraces are most similar to the Near East population (F ST = 0.15) as well as to wild barley (F ST = 0.11) and are strongly differentiated from all other Asian populations (F ST = 0.34-0.74). A neighbor-joining analysis using these F ST estimates also supports a division between European, North African, and Near East barley types from more easterly Asian accessions. There is also differentiation in the presence of a naked caryopsis and spikelet row number between eastern and western barley accessions. The data support the differential migration of barley from two domestication events that led to the origin of barley--one in the Fertile Crescent and another farther east, possibly at the eastern edge of the Iranian Plateau--with European and North African barley largely originating from the former and much of Asian barley arising from the latter. This suggests that cultural diffusion or independent innovation is responsible for the expansion of agriculture to areas of South and East Asia during the Neolithic revolution.

  20. Development and Validation of a Reversed-Phase Liquid Chromatography Method for the Simultaneous Determination of Indole-3-Acetic Acid, Indole-3-Pyruvic Acid, and Abscisic Acid in Barley (Hordeum vulgare L.

    Directory of Open Access Journals (Sweden)

    Ilva Nakurte

    2012-01-01

     mm I.D with a mobile phase composed of methanol and 1% acetic acid (60 : 40 v/v in isocratic mode at a flow rate of 1 ml min-1. The detection was monitored at 270 nm (ABA and at 282 nm (Ex and 360 nm (Em (IAA, IPA. The developed method was validated in terms of accuracy, precision, linearity, limit of detection, limit of quantification, and robustness. The determined validation parameters are in the commonly acceptable ranges for that kind of analysis.

  1. Endosperm and whole grain rye breads are characterized by low post-prandial insulin response and a beneficial blood glucose profile

    Directory of Open Access Journals (Sweden)

    Östman Elin M

    2009-09-01

    Full Text Available Abstract Background Rye products have previously been shown to induce comparatively low post-prandial insulin responses; irrespectively of their glycaemic indices (GI. However, the mechanism behind this lowered insulin demand remains unknown. An improved insulin economy might contribute to the benefits seen in epidemiological studies with whole grain diets on metabolic risk factors and weight regulation. The objective of this study was to explore the mechanism for a reduced post-prandial insulin demand with rye products. Methods 12 healthy subjects were given flour based rye products made from endosperm, whole grain or bran, produced with different methods (baking, simulated sour-dough baking and boiling as breakfasts in random order in a cross-over design. White wheat bread (WWB was used as a reference. Blood glucose, serum insulin, plasma ghrelin and subjective satiety were measured during 180 minutes. To evaluate the course of post-meal glycaemia, a measure of the glycaemic profile (GP was introduced defined as the duration for the incremental post-prandial blood glucose response divided with the blood glucose incremental peak (min/mM. Results The study shows that whole grain rye breads and endosperm rye products induced significantly (p Conclusion Our study shows that endosperm and wholegrain rye products induce low acute insulinaemic responses and improved glycaemic profiles. The results also suggest that the rye products possess beneficial appetite regulating properties. Further studies are needed to identify the unknown property or bioactive component(s responsible for these beneficial metabolic features of rye.

  2. The composite water and solute transport of barley (Hordeum vulgare) roots: effect of suberized barriers.

    Science.gov (United States)

    Ranathunge, Kosala; Kim, Yangmin X; Wassmann, Friedrich; Kreszies, Tino; Zeisler, Viktoria; Schreiber, Lukas

    2017-03-01

    Roots have complex anatomical structures, and certain localized cell layers develop suberized apoplastic barriers. The size and tightness of these barriers depend on the growth conditions and on the age of the root. Such complex anatomical structures result in a composite water and solute transport in roots. Development of apoplastic barriers along barley seminal roots was detected using various staining methods, and the suberin amounts in the apical and basal zones were analysed using gas chromatography-mass spectometry (GC-MS). The hydraulic conductivity of roots ( Lp r ) and of cortical cells ( Lp c ) was measured using root and cell pressure probes. When grown in hydroponics, barley roots did not form an exodermis, even at their basal zones. However, they developed an endodermis. Endodermal Casparian bands first appeared as 'dots' as early as at 20 mm from the apex, whereas a patchy suberin lamellae appeared at 60 mm. The endodermal suberin accounted for the total suberin of the roots. The absolute amount in the basal zone was significantly higher than in the apical zone, which was inversely proportional to the Lp r . Comparison of Lp r and Lp c suggested that cell to cell pathways dominate for water transport in roots. However, the calculation of Lp r from Lp c showed that at least 26 % of water transport occurs through the apoplast. Roots had different solute permeabilities ( P sr ) and reflection coefficients ( σ sr ) for the solutes used. The σ sr was below unity for the solutes, which have virtually zero permeability for semi-permeable membranes. Suberized endodermis significantly reduces Lp r of seminal roots. The water and solute transport across barley roots is composite in nature and they do not behave like ideal osmometers. The composite transport model should be extended by adding components arranged in series (cortex, endodermis) in addition to the currently included components arranged in parallel (apoplastic, cell to cell pathways). © The

  3. 76 FR 61287 - Request for Public Comment on the United States Standards for Barley

    Science.gov (United States)

    2011-10-04

    ... barley marketing and define U.S. barley quality in the domestic and global marketplace. The standards define commonly used industry terms; contain basic principles governing the application of standards... standards using approved methodologies and can be applied at any point in the marketing chain. Furthermore...

  4. Demarcation of mutant-carrying regions in barley plants after ethylmethane-sulfonate seed treatment

    DEFF Research Database (Denmark)

    Jacobsen, P.

    1966-01-01

    The branching pattern of the barley plant is analyzed and the anatomical structure of the resting barley embryo studied in longitudinal and cross-sections as well as by dissection techniques. The frequency and distribution of ethylmethane-sulfonate induced chloroplast and morphological seedling...

  5. Effect of microwave freeze drying on quality and energy supply in drying of barley grass.

    Science.gov (United States)

    Cao, Xiaohuang; Zhang, Min; Mujumdar, Arun S; Zhong, Qifeng; Wang, Zhushang

    2018-03-01

    Young barley grass leaves are well-known for containing the antioxidant substances flavonoid and chlorophyll. However, low product quality and energy efficiency exist with respect to the dehydration of barley grass leaves. To improve energy supply and the quality of barley grass, microwave heating instead of contact heat was applied for the freeze drying of barley grass at a pilot scale at 1, 1.5 and 2 W g -1 , respectively; After drying, energy supply and quality parameters of color, moisture content, chlorophyll, flavonoids, odors of dried barley grass were determined to evaluate the feasibility of the study. Microwave freeze drying (MFD) allowed a low energy supply and high contents of chlorophyll and flavonoids. A lightness value of 60.0, a green value of -11.5 and an energy supply of 0.61 kW h -1  g -1 were observed in 1.5 W g -1 MFD; whereas drying time (7 h) decreased by 42% compared to contact heating. Maximum content of flavonoid and chlorophyll was 11.7 and 12.8 g kg -1 barley grass. Microwave heating leads to an odor change larger than that for contact heating observed for the freeze drying of barley grass. MFD retains chlorophyll and flavonoids, as well as colors and odors of samples, and also decreases energy consumption in the freeze drying of barley grass. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  6. The draft genome of Tibetan hulless barley reveals adaptive patterns to the high stressful Tibetan Plateau.

    Science.gov (United States)

    Zeng, Xingquan; Long, Hai; Wang, Zhuo; Zhao, Shancen; Tang, Yawei; Huang, Zhiyong; Wang, Yulin; Xu, Qijun; Mao, Likai; Deng, Guangbing; Yao, Xiaoming; Li, Xiangfeng; Bai, Lijun; Yuan, Hongjun; Pan, Zhifen; Liu, Renjian; Chen, Xin; WangMu, QiMei; Chen, Ming; Yu, Lili; Liang, Junjun; DunZhu, DaWa; Zheng, Yuan; Yu, Shuiyang; LuoBu, ZhaXi; Guang, Xuanmin; Li, Jiang; Deng, Cao; Hu, Wushu; Chen, Chunhai; TaBa, XiongNu; Gao, Liyun; Lv, Xiaodan; Abu, Yuval Ben; Fang, Xiaodong; Nevo, Eviatar; Yu, Maoqun; Wang, Jun; Tashi, Nyima

    2015-01-27

    The Tibetan hulless barley (Hordeum vulgare L. var. nudum), also called "Qingke" in Chinese and "Ne" in Tibetan, is the staple food for Tibetans and an important livestock feed in the Tibetan Plateau. The diploid nature and adaptation to diverse environments of the highland give it unique resources for genetic research and crop improvement. Here we produced a 3.89-Gb draft assembly of Tibetan hulless barley with 36,151 predicted protein-coding genes. Comparative analyses revealed the divergence times and synteny between barley and other representative Poaceae genomes. The expansion of the gene family related to stress responses was found in Tibetan hulless barley. Resequencing of 10 barley accessions uncovered high levels of genetic variation in Tibetan wild barley and genetic divergence between Tibetan and non-Tibetan barley genomes. Selective sweep analyses demonstrate adaptive correlations of genes under selection with extensive environmental variables. Our results not only construct a genomic framework for crop improvement but also provide evolutionary insights of highland adaptation of Tibetan hulless barley.

  7. Microarray Analysis of Late Response to Boron Toxicity in Barley (Hordeum vulgare L.) Leaves

    NARCIS (Netherlands)

    Oz, M.T.; Yilmaz, R.; Eyidogan, F.; Graaff, de L.H.; Yucel, M.; Oktem, H.A.

    2009-01-01

    DNA microarrays, being high-density and high-throughput, allow quantitative analyses of thousands of genes and their expression patterns in parallel. In this study, Barley1 GereChip was used to investigate transcriptome changes associated with boron (B) toxicity in a sensitive barley cultivar

  8. Standardized ileal digestibility of amino acids in eight genotypes of barley fed to growing pigs

    DEFF Research Database (Denmark)

    Spindler, H K; Mosenthin, R; Rosenfelder, Pia

    2016-01-01

    . In conclusion, a comprehensive database on chemical composition and SID of CP and AA in eight current barley genotypes has been made available. However, as present SID values are lower compared to feed tables, adjustments are required to minimize the risk of overestimating the actual protein value of barley...

  9. Effect of pulsed electric field on the germination of barley seeds

    DEFF Research Database (Denmark)

    Dymek, Katarzyna; Dejmek, Petr; Panarese, Valentina

    2012-01-01

    This study explores metabolic responses of germinating barley seeds upon the application of pulsed electric fields (PEF). Malting barley seeds were steeped in aerated water for 24 h and PEF-treated at varying voltages (0 (control), 110, 160, 240, 320, 400 and 480 V). The seeds were then allowed...

  10. Complex Interspecific Hybridization in Barley (Hordeum vulgare L.) and the Possible Occurrence of Apomixis

    DEFF Research Database (Denmark)

    Bothmer, R. von; Bengtsson, M.; Flink, J.

    1988-01-01

    Several complex hybrids were produced from the combination [(Hordeum lechleri, 6 .times. .times. H. procerum, 6 .times.) .times. H. vulgare, 2 .times.]. Crosses with six diploid barley lines resulted in triple hybrids, most of which had a full complement of barley chromosomes (no. 1-7), but were...

  11. Transformation of barley (Hordeum vulgare L.) by Agrobacterium tumefaciens infection of in vitro cultured ovules

    DEFF Research Database (Denmark)

    Holme, Inger; Brinch-Pedersen, Henrik; Lange, Mette

    2012-01-01

    Agrobacterium-mediated transformation of in vitro cultured barley ovules is an attractive alternative to well-established barley transformation methods of immature embryos. The ovule culture system can be used for transformation with and without selection and has successfully been used to transfo...

  12. NAC Transcription Factors of Barley (Hordeum vulgare L.) and their Involvement in Leaf Senescence

    DEFF Research Database (Denmark)

    Wagner, Michael

    parts of the senescence process. The specific aims of this study were therefore (1) to establish and characterise the NAC transcription factors of the model cereal crop barley (Hordeum vulgare L.) (2) to identify and study putative barley NAC transcription factors involved in the regulation of leaf...

  13. Investigation of the effect of nitrogen on severity of Fusarium Head Blight in barley

    DEFF Research Database (Denmark)

    Yang, Fen; Jensen, J.D.; Spliid, N.H.

    2010-01-01

    The effect of nitrogen on Fusarium Head Blight (FHB) in a susceptible barley cultivar was investigated using gel-based proteomics. Barley grown with either 15 or 100 kg ha(-1)N fertilizer was inoculated with Fusarium graminearum (Fg). The storage protein fraction did not change significantly...

  14. Dilute-acid pretreatment of barley straw for biological hydrogen production using Caldicellulosiruptor saccharolyticus

    NARCIS (Netherlands)

    Panagiotopoulos, I.A.; Bakker, R.R.C.; Vrije, de G.J.; Claassen, P.A.M.; Koukios, E.G.

    2012-01-01

    The main objective of this study was to use the fermentability test to investigate the feasibility of applying various dilute acids in the pretreatment of barley straw for biological hydrogen production. At a fixed acid loading of 1% (w/w dry matter) 28-32% of barley straw was converted to soluble

  15. Matrix attachment regions (MARs) enhance transformation frequencies and reduce variance of transgene expression in barley

    DEFF Research Database (Denmark)

    Petersen, K.; Leah, R.; Knudsen, S.

    2002-01-01

    -MAR from petunia revealed that only the P1-MAR had specific binding affinity for barley nuclear matrices. The barley transformation frequency with the uidA reporter gene was increased 2-fold when the gene was flanked with either the P1-MAR or TBS-MAR, while the gene copy number was strongly reduced...

  16. High-resolution mapping of the barley Ryd3 locus controlling tolerance to BYDV

    NARCIS (Netherlands)

    Lüpken, T.; Stein, N.; Perovic, D.; Habekuss, A.; Serfling, A.; Krämer, I.; Hähnel, U.; Steuernagel, B.; Scholz, U.; Ariyadasa, R.; Martis, M.; Mayer, K.; Niks, R.E.; Collins, N.C.; Friedt, W.; Ordon, F.

    2014-01-01

    Barley yellow dwarf disease (BYD) is transmitted by aphids and is caused by different strains of Barley yellow dwarf virus (BYDV) and Cereal yellow dwarf virus (CYDV). Economically it is one of the most important diseases of cereals worldwide. Besides chemical control of the vector, growing of

  17. Linkage disequilibrium mapping of morphological, resistance, and other agronomically relevant traits in modern spring barley cultivars

    NARCIS (Netherlands)

    Kraakman, A.T.W.; Martinez, F.; Mussiraliev, B.; Eeuwijk, van F.A.; Niks, R.E.

    2006-01-01

    A set of 148 modern spring barley cultivars was explored for the extent of linkage disequilibrium (LD) between genes governing traits and nearby marker alleles. Associations of agronomically relevant traits (days to heading, plant height), resistance traits (leaf rust, barley yellow dwarf virus

  18. Lysine Rich Proteins in the Salt-Soluble Protein Fraction of Barley

    DEFF Research Database (Denmark)

    Ingversen, J.; Køie, B.

    1973-01-01

    Fractionation of the protein complex from Emir barley showed that the salt-soluble fraction accounts for 44% of the total lysine content but only for 2.......Fractionation of the protein complex from Emir barley showed that the salt-soluble fraction accounts for 44% of the total lysine content but only for 2....

  19. Growth and yield of barley (Hordeum vulgare L.) as affected by ...

    African Journals Online (AJOL)

    Bheema

    (2003) reported that about 65% of grain yield variability in barley was attributed to ... of those of the respective non-stressed environments (Cantero-Martínez et ... production stability of barley (Fekadu and Skjelvåg, 2002) and nitrogen and phosphorus are .... of SAS version 9.1 for analysis of variance of non-orthogonal data.

  20. Is auxin involved in the induction of genetic instability in barley homeotic double mutants?

    Science.gov (United States)

    Šiukšta, Raimondas; Vaitkūnienė, Virginija; Rančelis, Vytautas

    2018-02-01

    The triggers of genetic instability in barley homeotic double mutants are tweaky spike -type mutations associated with an auxin imbalance in separate spike phytomeres. Barley homeotic tweaky spike;Hooded (tw;Hd) double mutants are characterized by an inherited instability of spike and flower development, which is absent in the single parental constituents. The aim of the present study was to show that the trigger of genetic instability in the double mutants is the tw mutations, which are associated with an auxin imbalance in the developing spikes. Their pleiotropic effects on genes related to spike/flower development may cause the genetic instability of double mutants. The study of four double-mutant groups composed of different mutant alleles showed that the instability arose only if the mutant allele tw was a constituent of the double mutants. Application of auxin inhibitors and 2,4-dichlorophenoxyacetic acid (2,4-D) demonstrated the relationship of the instability of the double mutants and the phenotype of the tw mutants to auxin imbalance. 2,4-D induced phenocopies of the tw mutation in wild-type plants and rescued the phenotypes of three allelic tw mutants. The differential display (dd-PCR) method allowed the identification of several putative candidate genes in tw that may be responsible for the initiation of instability in the double mutants by pleiotropic variations of their expression in the tw mutant associated with auxin imbalance in the developing spikes. The results of the present study linked the genetic instability of homeotic double mutants with an auxin imbalance caused by one of the constituents (tw). The genetic instability of the double mutants in relation to auxin imbalance was studied for the first time. A matrocliny on instability expression was also observed.