WorldWideScience

Sample records for barium titanate obtained

  1. Dielectric investigations of vanadium modified barium zirconium titanate ceramics obtained from mixed oxide method

    Energy Technology Data Exchange (ETDEWEB)

    Moura, F. [Laboratorio Interdisciplinar em Ceramica, Departamento de Fisico-Quimica, Instituto de Quimica Universidade Estadual Paulista, Bairro Quitandinha, CEP 14800-900, Araraquara, SP (Brazil); Simoes, A.Z. [Universidade Federal de Itajuba - Unifei - Campus Itabira, Rua Sao Paulo 377, Bairro Amazonas - Itabira-MG, CEP 35900-373 (Brazil)], E-mail: alezipo@yahoo.com; Aguiar, E.C.; Nogueira, I.C.; Zaghete, M.A.; Varela, J.A.; Longo, E. [Laboratorio Interdisciplinar em Ceramica, Departamento de Fisico-Quimica, Instituto de Quimica Universidade Estadual Paulista, Bairro Quitandinha, CEP 14800-900, Araraquara, SP (Brazil)

    2009-06-24

    Vanadium modified barium zirconium titanate ceramics Ba(Zr{sub 0.10}Ti{sub 0.90})O{sub 3}:2V (BZT:2V) were prepared from the mixed oxide method. According to X-ray diffraction analysis, addition of vanadium leads to ceramics free of secondary phases. Electrical characteristics reveal a dielectric permittivity at around 15,000 with low dielectric loss with a remnant polarization (P{sub r}) of 8 {mu}C/cm{sup 2} at 2 kV/cm. From the obtained results, we assume that vanadium substitution in the BZT lattice affects dielectric characteristics due to the electron-relaxation-mode in which carriers (polarons, protons, and so on) are coupled with existing dielectric modes.

  2. Dielectric investigations of vanadium modified barium zirconium titanate ceramics obtained from mixed oxide method

    International Nuclear Information System (INIS)

    Vanadium modified barium zirconium titanate ceramics Ba(Zr0.10Ti0.90)O3:2V (BZT:2V) were prepared from the mixed oxide method. According to X-ray diffraction analysis, addition of vanadium leads to ceramics free of secondary phases. Electrical characteristics reveal a dielectric permittivity at around 15,000 with low dielectric loss with a remnant polarization (Pr) of 8 μC/cm2 at 2 kV/cm. From the obtained results, we assume that vanadium substitution in the BZT lattice affects dielectric characteristics due to the electron-relaxation-mode in which carriers (polarons, protons, and so on) are coupled with existing dielectric modes.

  3. Doped barium titanate nanoparticles

    Indian Academy of Sciences (India)

    T K Kundu; A Jana; P Barik

    2008-06-01

    We have synthesized nickel (Ni) and iron (Fe) ion doped BaTiO3 nanoparticles through a chemical route using polyvinyl alcohol (PVA). The concentration of dopant varies from 0 to 2 mole% in the specimens. The results from X-ray diffractograms and transmission electron micrographs show that the particle diameters in the specimen lie in the range 24–40 nm. It is seen that the dielectric permittivity in doped specimens is enhanced by an order of magnitude compared to undoped barium titanate ceramics. The dielectric permittivity shows maxima at 0.3 mole% doping of Fe ion and 0.6 mole% of Ni ion. The unusual dielectric behaviour of the specimens is explained in terms of the change in crystalline structure of the specimens.

  4. Processing science of barium titanate

    Science.gov (United States)

    Aygun, Seymen Murat

    barium titanate phase formation. The exhaust gases emitted during the firing of barium titanate films were monitored using a residual gas analyzer (RGA) to investigate the effects of ramp rate and oxygen partial pressure. The dielectric properties including capacitor yield were correlated to the RGA data and microstructure. This information was used to tailor a thermal profile to obtain the optimum dielectric response. A ramp rate of 20°C/min and a pO2 of 10-13 atm resulted in a permittivity of 1500, a loss tangent of 0.035 and a 90% capacitor yield in 0.5 mm dot capacitors. Yield values above 90% represent a significant advantage over preexisting reports and can be attributed to an improved ability to control final porosity. Finally, the dramatic enhancement in film density was demonstrated by understanding the processing science relationships between organic removal, crystallization, and densification in chemical solution deposition. The in situ gas analysis was used to develop an each-layer-fired approach that provides for effective organic removal, thus pore elimination, larger grain sizes, and superior densification. The combination of large grain size and high density enabled reproducing bulk-like dielectric properties in a thin film. A room temperature permittivity of 3000, a 5 muF/cm2 capacitance density, and a dielectric tunability of 15:1 were achieved. By combining the data sets generated in this thesis with those of comparable literature reports, we were able to broadly rationalize scaling effects in polycrystalline thin films. We show that the same models successfully applied to bulk ceramic systems are appropriate for thin films, and that models involving parasitic interfacial layers are not needed. Developing better models for scaling effects were made possible solely by advancing our ability to synthesize materials thus eliminating artifacts and extrinsic effects.

  5. Obtaining the highly pure barium titanate nanocrystals by a new approach

    International Nuclear Information System (INIS)

    Purity and synthesis temperature of nanocrystals are key challenges facing the scientific community. Herein a novel solid-state approach to synthesize fine BaTiO3 nanocrystals with narrow size distribution using a high-speed ball-milling process is reported. In order to improve the kinetics of this reaction, the starting materials, BaCO3 and TiO2, were milled for 10 h before mixing and initiating the synthesis reaction. The contribution of this step to the BaTiO3 formation is analyzed by XRD diffractometry and FE-SEM techniques. It was found that the use of the mechanically activated starting materials favors the decomposition of BaCO3 at low temperatures and improves the Ba2+ diffusion through the formed BaTiO3 layer. In consequence, very fine BaTiO3 nanocrystals free from the secondary phases were obtained at a lower temperature in contrast to the previous works. - Highlights: • Very fine BaTiO3 nanocrystals were obtained at a lower temperature. • Method is able to obtain highly-pure BTO nanocrystals. • The approach is simple, and useful for large-scale production purposes

  6. Obtaining the highly pure barium titanate nanocrystals by a new approach

    Energy Technology Data Exchange (ETDEWEB)

    Ashiri, Rouholah, E-mail: ro_ashiri@yahoo.com; Heidary Moghadam, Ali; Ajami, Reza

    2015-11-05

    Purity and synthesis temperature of nanocrystals are key challenges facing the scientific community. Herein a novel solid-state approach to synthesize fine BaTiO{sub 3} nanocrystals with narrow size distribution using a high-speed ball-milling process is reported. In order to improve the kinetics of this reaction, the starting materials, BaCO{sub 3} and TiO{sub 2}, were milled for 10 h before mixing and initiating the synthesis reaction. The contribution of this step to the BaTiO{sub 3} formation is analyzed by XRD diffractometry and FE-SEM techniques. It was found that the use of the mechanically activated starting materials favors the decomposition of BaCO{sub 3} at low temperatures and improves the Ba{sup 2+} diffusion through the formed BaTiO{sub 3} layer. In consequence, very fine BaTiO{sub 3} nanocrystals free from the secondary phases were obtained at a lower temperature in contrast to the previous works. - Highlights: • Very fine BaTiO{sub 3} nanocrystals were obtained at a lower temperature. • Method is able to obtain highly-pure BTO nanocrystals. • The approach is simple, and useful for large-scale production purposes.

  7. Barium titanate thick films prepared by screen printing technique

    Directory of Open Access Journals (Sweden)

    Mirjana M. Vijatović

    2010-06-01

    Full Text Available The barium titanate (BaTiO3 thick films were prepared by screen printing technique using powders obtained by soft chemical route, modified Pechini process. Three different barium titanate powders were prepared: i pure, ii doped with lanthanum and iii doped with antimony. Pastes for screen printing were prepared using previously obtained powders. The thick films were deposited onto Al2O3 substrates and fired at 850°C together with electrode material (silver/palladium in the moving belt furnace in the air atmosphere. Measurements of thickness and roughness of barium titanate thick films were performed. The electrical properties of thick films such as dielectric constant, dielectric losses, Curie temperature, hysteresis loop were reported. The influence of different factors on electrical properties values was analyzed.

  8. Printed Barium Strontium Titanate capacitors on silicon

    International Nuclear Information System (INIS)

    In this paper, we show that Barium Strontium Titanate (BST) films can be prepared by inkjet printing of sol–gel precursors on platinized silicon substrate. Moreover, a functional variable capacitor working in the GHz range has been made without any lithography or etching steps. Finally, this technology requires 40 times less precursors than the standard sol–gel spin-coating technique. - Highlights: • Inkjet printing of Barium Strontium Titanate films • Deposition on silicon substrate • Inkjet printed silver top electrode • First ever BST films thinner than 1 μm RF functional variable capacitor that has required no lithography

  9. Printed Barium Strontium Titanate capacitors on silicon

    Energy Technology Data Exchange (ETDEWEB)

    Sette, Daniele [Univ. Grenoble Alpes, F-38000 Grenoble (France); CEA, LETI, MINATEC Campus, F-38054 Grenoble (France); Luxembourg Institute of Science and Technology LIST, Materials Research and Technology Department, L-4422 Belvaux (Luxembourg); Kovacova, Veronika [Univ. Grenoble Alpes, F-38000 Grenoble (France); CEA, LETI, MINATEC Campus, F-38054 Grenoble (France); Defay, Emmanuel, E-mail: emmanuel.defay@list.lu [Univ. Grenoble Alpes, F-38000 Grenoble (France); CEA, LETI, MINATEC Campus, F-38054 Grenoble (France); Luxembourg Institute of Science and Technology LIST, Materials Research and Technology Department, L-4422 Belvaux (Luxembourg)

    2015-08-31

    In this paper, we show that Barium Strontium Titanate (BST) films can be prepared by inkjet printing of sol–gel precursors on platinized silicon substrate. Moreover, a functional variable capacitor working in the GHz range has been made without any lithography or etching steps. Finally, this technology requires 40 times less precursors than the standard sol–gel spin-coating technique. - Highlights: • Inkjet printing of Barium Strontium Titanate films • Deposition on silicon substrate • Inkjet printed silver top electrode • First ever BST films thinner than 1 μm RF functional variable capacitor that has required no lithography.

  10. Impurities in barium titanate posistor ceramics

    Czech Academy of Sciences Publication Activity Database

    Korniyenko, S. M.; Bykov, I. P.; Glinchuk, M. J.; Laguta, V. V.; Belous, A. G.; Jastrabík, Lubomír

    2000-01-01

    Roč. 239, - (2000), s. 1209-1218. ISSN 0015-0193 Institutional research plan: CEZ:AV0Z1010914 Keywords : barium titanate phase transition * ESR * positive temperature coefficient of resistivity Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.547, year: 2000

  11. Microwave-hydrothermal synthesis of barium strontium titanate nanoparticles

    International Nuclear Information System (INIS)

    Research highlights: → Barium strontium titanate nanoparticles were obtained by the Hydrothemal microwave technique (HTMW) → This is a genuine technique to obtain nanoparticles at low temperature and short times → Barium strontium titanate free of carbonates with tetragonal structure was grown at 130 oC. - Abstract: Hydrothermal-microwave method (HTMW) was used to synthesize crystalline barium strontium titanate (Ba0.8Sr0.2TiO3) nanoparticles (BST) in the temperature range of 100-130 oC. The crystallization of BST with tetragonal structure was reached at all the synthesis temperatures along with the formation of BaCO3 as a minor impurity at lower syntheses temperatures. Typical FT-IR spectra for tetragonal (BST) nanoparticles presented well defined bands, indicating a substantial short-range order in the system. TG-DTA analyses confirmed the presence of lattice OH- groups, commonly found in materials obtained by HTMW process. FE/SEM revealed that lower syntheses temperatures led to a morphology that consisted of uniform grains while higher syntheses temperature consisted of big grains isolated and embedded in a matrix of small grains. TEM has shown BST nanoparticles with diameters between 40 and 80 nm. These results show that the HTMW synthesis route is rapid, cost effective, and could serve as an alternative to obtain BST nanoparticles.

  12. Anion and cation diffusion in barium titanate and strontium titanate

    International Nuclear Information System (INIS)

    Perovskite oxides show various interesting properties providing several technical applications. In many cases the defect chemistry is the key to understand and influence the material's properties. In this work the defect chemistry of barium titanate and strontium titanate is analysed by anion and cation diffusion experiments and subsequent time-of-flight secondary ion mass spectrometry (ToF-SIMS). The reoxidation equation for barium titanate used in multi-layer ceramic capacitors (MLCCs) is found out by a combination of different isotope exchange experiments and the analysis of the resulting tracer diffusion profiles. It is shown that the incorporation of oxygen from water vapour is faster by orders of magnitude than from molecular oxygen. Chemical analysis shows the samples contain various dopants leading to a complex defect chemistry. Dysprosium is the most important dopant, acting partially as a donor and partially as an acceptor in this effectively acceptor-doped material. TEM and EELS analysis show the inhomogeneous distribution of Dy in a core-shell microstructure. The oxygen partial pressure and temperature dependence of the oxygen tracer diffusion coefficients is analysed and explained by the complex defect chemistry of Dy-doped barium titanate. Additional fast diffusion profiles are attributed to fast diffusion along grain boundaries. In addition to the barium titanate ceramics from an important technical application, oxygen diffusion in cubic, nominally undoped BaTiO3 single crystals has been studied by means of 18O2/16O2 isotope exchange annealing and subsequent determination of the isotope profiles in the solid by ToF-SIMS. It is shown that a correct description of the diffusion profiles requires the analysis of the diffusion through the surface space-charge into the material's bulk. Surface exchange coefficients, space-charge potentials and bulk diffusion coefficients are analysed as a function of oxygen partial pressure and temperature. The data

  13. Barium strontium titanate powders prepared by spray pyrolysis

    International Nuclear Information System (INIS)

    Ultasonic spray pyrolysis (SP) has been investigated for the production of the barium strontium titanate (BST) powders from the polymeric precursors. The processing parameters, such as flux of aerosol and temperature profile inside the furnace, were optimized to obtain single phase BST. The powders were characterized by the methods of X-ray diffraction analysis, SEM, EDS and TEM. The obtained powders were submicronic, consisting of spherical, polycrystalline particles, with internal nanocrystalline structure. Crystallite size of 10 nm, calculated using Rietveld refinement, is in a good agreement with results of HRTEM

  14. Study of barium bismuth titanate prepared by mechanochemical synthesis

    Directory of Open Access Journals (Sweden)

    Lazarević Z.Ž.

    2009-01-01

    Full Text Available Barium-bismuth titanate, BaBi4Ti4O15 (BBT, a member of Aurivillius bismuth-based layer-structure perovskites, was prepared from stoichiometric amounts of barium titanate and bismuth titanate obtained via mechanochemical synthesis. Mechanochemical synthesis was performed in air atmosphere in a planetary ball mill. The reaction mechanism of BaBi4Ti4O15 and the preparation and characteristics of BBT ceramic powders were studied using XRD, Raman spectroscopy, particle analysis and SEM. The Bi-layered perovskite structure of BaBi4Ti4O15 ceramic forms at 1100 °C for 4 h without a pre-calcination step. The microstructure of BaBi4Ti4O15 exhibits plate-like grains typical for the Bi-layered structured material and spherical and polygonal grains. The Ba2+ addition leads to changes in the microstructure development, particularly in the change of the average grain size.

  15. The Novel Formation of Barium Titanate Nanodendrites

    Directory of Open Access Journals (Sweden)

    Chien-Jung Huang

    2014-01-01

    Full Text Available The barium titanate (BaTiO3 nanoparticles with novel dendrite-like structures have been successfully fabricated via a simple coprecipitation method, the so-called BaTiO3 nanodendrites (BTNDs. This method was remarkable, fast, simple, and scalable. The growth solution is prepared by barium chloride (BaCl2, titanium tetrachloride (TiCl4, and oxalic acid. The shape and size of BaTiO3 depend on the amount of added BaCl2 solvent. To investigate the influence of amount of BaCl2 on BTNDs, the amount of BaCl2 was varied in the range from 3 to 6 mL. The role of BaCl2 is found to have remarkable influence on the morphology, crystallite size, and formation of dendrite-like structures. The thickness and length of the central stem of BTND were ~300 nm and ~20 μm, respectively. The branchings were found to occur at irregular intervals along the main stem. Besides, the formation mechanism of BTND is proposed and discussed.

  16. Strain engineered barium strontium titanate for tunable thin film resonators

    Energy Technology Data Exchange (ETDEWEB)

    Khassaf, H.; Khakpash, N. [Department of Materials Science and Engineering and Institute of Materials Science, University of Connecticut, Storrs, Connecticut 06269 (United States); Sun, F. [Department of Physics, University of Connecticut, Storrs, Connecticut 06269 (United States); Sbrockey, N. M.; Tompa, G. S. [Structured Materials Industries, Inc., Piscataway, New Jersey 08854 (United States); Kalkur, T. S. [Department of Electrical and Computer Engineering, University of Colorado at Colorado Springs, Colorado Springs, Colorado 80918 (United States); Alpay, S. P., E-mail: p.alpay@ims.uconn.edu [Department of Materials Science and Engineering and Institute of Materials Science, University of Connecticut, Storrs, Connecticut 06269 (United States); Department of Physics, University of Connecticut, Storrs, Connecticut 06269 (United States)

    2014-05-19

    Piezoelectric properties of epitaxial (001) barium strontium titanate (BST) films are computed as functions of composition, misfit strain, and temperature using a non-linear thermodynamic model. Results show that through adjusting in-plane strains, a highly adaptive rhombohedral ferroelectric phase can be stabilized at room temperature with outstanding piezoelectric response exceeding those of lead based piezoceramics. Furthermore, by adjusting the composition and the in-plane misfit, an electrically tunable piezoelectric response can be obtained in the paraelectric state. These findings indicate that strain engineered BST films can be utilized in the development of electrically tunable and switchable surface and bulk acoustic wave resonators.

  17. Liquid-phase-deposited barium titanate thin films on silicon

    International Nuclear Information System (INIS)

    Using a mixture of hexafluorotitanic acid, barium nitrate and boric acid, high refractive index (1.54) barium titanate films can be deposited on silicon substrates. The deposited barium titanate films have featureless surfaces. The deposition temperature is near room temperature (800C). However, there are many fluorine and silicon incorporations in the films. The refractive index of the as-deposited film is 1.54. By current-voltage measurement, the leakage current of the as-deposited film with a thickness of 1000 A is about 9.48x10-7 A cm-2 at the electrical field intensity of 0.3 MV cm-1. By capacitance-voltage measurement, the effective oxide charge of the liquid-phase-deposited barium titanate film is 3.06x1011 cm-2 and the static dielectric constant is about 22. (author)

  18. Electron microscopy of barium bismuth titanate multilayer ceramics

    International Nuclear Information System (INIS)

    For a number of years bismuth containing compounds have been used with pre-calcined barium titanate to reduce the sintering temperature of the capacitor formulations. As reported earlier the backscattered electron (BSE) SEM micrographs of the bismuth containing barium titanate ceramic reveal that the grains having an average size of 1.2μm consist of a two phase structure consisting of relatively pure barium titanate grain cores surrounded by bismuth rich grain shells. The TEM and STEM studies along with the EDS analyses show that the bismuth concentration increases sharply as one steps towards the grain boundary with a maximum bismuth content at the grain boundary. It is the purpose of this work to investigate the distribution of bismuth in these formulations including the bismuth content, if any, at the ceramic metal interface as affected by the sintering temperature. The subsequent effect on the electrical resistivity of these ceramics in the multilayer configuration is reported

  19. Compact pulse forming line using barium titanate ceramic material

    Science.gov (United States)

    Kumar Sharma, Surender; Deb, P.; Shukla, R.; Prabaharan, T.; Shyam, A.

    2011-11-01

    Ceramic material has very high relative permittivity, so compact pulse forming line can be made using these materials. Barium titanate (BaTiO3) has a relative permittivity of 1200 so it is used for making compact pulse forming line (PFL). Barium titanate also has piezoelectric effects so it cracks during high voltages discharges due to stresses developed in it. Barium titanate is mixed with rubber which absorbs the piezoelectric stresses when the PFL is charged and regain its original shape after the discharge. A composite mixture of barium titanate with the neoprene rubber is prepared. The relative permittivity of the composite mixture is measured to be 85. A coaxial pulse forming line of inner diameter 120 mm, outer diameter 240 mm, and length 350 mm is made and the composite mixture of barium titanate and neoprene rubber is filled between the inner and outer cylinders. The PFL is charged up to 120 kV and discharged into 5 Ω load. The voltage pulse of 70 kV, 21 ns is measured across the load. The conventional PFL is made up of oil or plastics dielectrics with the relative permittivity of 2-10 [D. R. Linde, CRC Handbook of Chemistry and Physics, 90th ed. (CRC, 2009); Xia et al., Rev. Sci. Instrum. 79, 086113 (2008); Yang et al., Rev. Sci. Instrum. 81, 43303 (2010)], which increases the length of PFL. We have reported the compactness in length achieved due to increase in relative permittivity of composite mixture by adding barium titanate in neoprene rubber.

  20. Compact pulse forming line using barium titanate ceramic material.

    Science.gov (United States)

    Kumar Sharma, Surender; Deb, P; Shukla, R; Prabaharan, T; Shyam, A

    2011-11-01

    Ceramic material has very high relative permittivity, so compact pulse forming line can be made using these materials. Barium titanate (BaTiO(3)) has a relative permittivity of 1200 so it is used for making compact pulse forming line (PFL). Barium titanate also has piezoelectric effects so it cracks during high voltages discharges due to stresses developed in it. Barium titanate is mixed with rubber which absorbs the piezoelectric stresses when the PFL is charged and regain its original shape after the discharge. A composite mixture of barium titanate with the neoprene rubber is prepared. The relative permittivity of the composite mixture is measured to be 85. A coaxial pulse forming line of inner diameter 120 mm, outer diameter 240 mm, and length 350 mm is made and the composite mixture of barium titanate and neoprene rubber is filled between the inner and outer cylinders. The PFL is charged up to 120 kV and discharged into 5 Ω load. The voltage pulse of 70 kV, 21 ns is measured across the load. The conventional PFL is made up of oil or plastics dielectrics with the relative permittivity of 2-10 [D. R. Linde, CRC Handbook of Chemistry and Physics, 90th ed. (CRC, 2009); Xia et al., Rev. Sci. Instrum. 79, 086113 (2008); Yang et al., Rev. Sci. Instrum. 81, 43303 (2010)], which increases the length of PFL. We have reported the compactness in length achieved due to increase in relative permittivity of composite mixture by adding barium titanate in neoprene rubber. PMID:22129008

  1. Microwave absorption properties of barium titanate/epoxide resin composites

    International Nuclear Information System (INIS)

    Nano-barium titanate (BT) was prepared by a sol-gel method. The prepared powders were characterized by x-ray powder diffraction and transmission electron microscopy. The complex relative dielectric permittivity (ε = ε' - jε-prime) and magnetic permeability (μ = μ' - jμ-prime) of the BT powders were measured in the frequency range 8 ∼ 18 GHz. The BT/epoxide resin (EP) composite with different volume contents was investigated. The effects of thickness on the BT/EP composite were studied. It was found that an optimum thickness and contents of the absorber can yield the maximum reflection loss which could be obtained over a broad frequency region in the X and Ku bands. Our results indicate that BT could be a promising microwave absorption material

  2. Barium titanate inverted opals-synthesis, characterization, and optical properties

    Energy Technology Data Exchange (ETDEWEB)

    Soten, I.; Miguez, H.; Yang, S.M.; Petrov, S.; Coombs, N.; Tetreault, N.; Ozin, G.A. [Toronto Univ., ON (Canada). Dept. of Chemistry; Matsuura, N.; Ruda, H.E. [Toronto Univ., ON (Canada). Dept. of Metallurgy and Materials Science

    2002-01-01

    The engineering of cubic or tetragonal polymorphs of nanocrystalline barium titanate inverted opals has been achieved by thermally induced transformations. Optical characterization demonstrated photonic crystal behavior of the opals. The tuning of the ferroelectric-paraelectric transition around the Curie temperature is shown in this paper. (orig.)

  3. Barium titanate nanoparticles: promising multitasking vectors in nanomedicine

    Science.gov (United States)

    Graziana Genchi, Giada; Marino, Attilio; Rocca, Antonella; Mattoli, Virgilio; Ciofani, Gianni

    2016-06-01

    Ceramic materials based on perovskite-like oxides have traditionally been the object of intense interest for their applicability in electrical and electronic devices. Due to its high dielectric constant and piezoelectric features, barium titanate (BaTiO3) is probably one of the most studied compounds of this family. Recently, an increasing number of studies have been focused on the exploitation of barium titanate nanoparticles (BTNPs) in the biomedical field, owing to the high biocompatibility of BTNPs and their peculiar non-linear optical properties that have encouraged their use as nanocarriers for drug delivery and as label-free imaging probes. In this review, we summarize all the recent findings about these ‘smart’ nanoparticles, including the latest, most promising potential as nanotransducers for cell stimulation.

  4. HYBRID AND CHARACTERISTIC OF POLYANILINE- BARIUM TITANATE NANOCOMPOSITE PARTICLES

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Polyaniline-barium titanate (PAn-BaTiO3) ultrafine composite particles were prepared by the oxidative polymerization of aniline with H2O2 while barium titanate nanoparticles were synthesized with a sol-gel method. The infrared spectrogram shows that the polymerization of PAn in the hybrid process of PAn-BaTiO3 is similar with the polymeric process of pure aniline, and there is interaction of PAn and BaTiO3 in the PAn-BaTiO3. SEM and TEM results show that the average diameter of the composite particles is 1.50 μm and the diameters of BaTiO3 nanoparticles are 5-15 nm in the composite particle. The electrical conductivity of the ultrafine composite particles is transformable from 100 to 10-11S/cm by equilibrium doping or dedoping method using various concentration of HCl or NaOH solutions.

  5. Barium titanate nanoparticles: promising multitasking vectors in nanomedicine.

    Science.gov (United States)

    Genchi, Giada Graziana; Marino, Attilio; Rocca, Antonella; Mattoli, Virgilio; Ciofani, Gianni

    2016-06-10

    Ceramic materials based on perovskite-like oxides have traditionally been the object of intense interest for their applicability in electrical and electronic devices. Due to its high dielectric constant and piezoelectric features, barium titanate (BaTiO3) is probably one of the most studied compounds of this family. Recently, an increasing number of studies have been focused on the exploitation of barium titanate nanoparticles (BTNPs) in the biomedical field, owing to the high biocompatibility of BTNPs and their peculiar non-linear optical properties that have encouraged their use as nanocarriers for drug delivery and as label-free imaging probes. In this review, we summarize all the recent findings about these 'smart' nanoparticles, including the latest, most promising potential as nanotransducers for cell stimulation. PMID:27145888

  6. Dielectric Properties of Barium Titanate Prepared by Spark Plasma Sintering

    Czech Academy of Sciences Publication Activity Database

    Ctibor, Pavel; Sedláček, J.; Dopita, M.; Pala, Zdeněk

    Bratislava: Slovak Expert Group of Solid State Chemistry and Physics , 2011 - (Koman, M.; Mikloš, D.), s. 68-69 ISBN 978-80-8134-002-4. [Joint Seminar – Development of materials science in research and education (DMRSE)/21.th./. Kežmarské Žlaby (SK), 29.08.2011-02.09.2011] Institutional research plan: CEZ:AV0Z20430508 Keywords : spark plasma sintering * barium titanate * dielectric properties Subject RIV: JK - Corrosion ; Surface Treatment of Materials

  7. Anion and cation diffusion in barium titanate and strontium titanate; Anionen- und Kationendiffusion in Barium- und Strontiumtitanat

    Energy Technology Data Exchange (ETDEWEB)

    Kessel, Markus Franz

    2012-12-19

    Perovskite oxides show various interesting properties providing several technical applications. In many cases the defect chemistry is the key to understand and influence the material's properties. In this work the defect chemistry of barium titanate and strontium titanate is analysed by anion and cation diffusion experiments and subsequent time-of-flight secondary ion mass spectrometry (ToF-SIMS). The reoxidation equation for barium titanate used in multi-layer ceramic capacitors (MLCCs) is found out by a combination of different isotope exchange experiments and the analysis of the resulting tracer diffusion profiles. It is shown that the incorporation of oxygen from water vapour is faster by orders of magnitude than from molecular oxygen. Chemical analysis shows the samples contain various dopants leading to a complex defect chemistry. Dysprosium is the most important dopant, acting partially as a donor and partially as an acceptor in this effectively acceptor-doped material. TEM and EELS analysis show the inhomogeneous distribution of Dy in a core-shell microstructure. The oxygen partial pressure and temperature dependence of the oxygen tracer diffusion coefficients is analysed and explained by the complex defect chemistry of Dy-doped barium titanate. Additional fast diffusion profiles are attributed to fast diffusion along grain boundaries. In addition to the barium titanate ceramics from an important technical application, oxygen diffusion in cubic, nominally undoped BaTiO{sub 3} single crystals has been studied by means of {sup 18}O{sub 2}/{sup 16}O{sub 2} isotope exchange annealing and subsequent determination of the isotope profiles in the solid by ToF-SIMS. It is shown that a correct description of the diffusion profiles requires the analysis of the diffusion through the surface space-charge into the material's bulk. Surface exchange coefficients, space-charge potentials and bulk diffusion coefficients are analysed as a function of oxygen partial

  8. Enhanced flexoelectricity through residual ferroelectricity in barium strontium titanate

    International Nuclear Information System (INIS)

    Residual ferroelectricity is observed in barium strontium titanate ceramics over 30 °C above the global phase transition temperature, in the same temperature range in which anomalously large flexoelectric coefficients are reported. The application of a strain gradient leads to strain gradient-induced poling or flexoelectric poling. This was observed by the development of a remanent polarization in flexoelectric measurements, an induced d33 piezoelectric response even after the strain gradient was removed, and the production of an internal bias of 9 kV m−1. It is concluded that residual ferroelectric response considerably enhances the observed flexoelectric response

  9. A study of the microchemistry of nanocrystalline barium titanate with tetragonal and pseudocubic room temperature symmetries

    Science.gov (United States)

    Lacey, Robert A.

    The investigation of possible effects of undesired surface species on barium titanate, one of the most utilized ferroelectric ceramics, constitutes the focus of this work. Six commercial barium titanate powders from three manufacturers representing two different synthesis processes, with average particle sizes from 40 nm to 470 nm, were analyzed in this study. Four of the nanopowders exhibited pseudocubic room temperature symmetry. Diffuse Reflectance Infrared Fourier Transform (DRIFT) spectroscopic analysis of the nanopowders was conducted in ambient atmosphere at room temperature. High temperature DRIFT followed incorporating four avenues of analysis: moisture adsorption studies, deuterium oxide exchange studies, carbon dioxide adsorption studies, and high temperature analysis under dry air and UHP nitrogen atmospheres. At the highest temperature used in this study, 1173K, moisture and the accompanying incorporated protonic impurities were still present. The powders readily readsorbed moisture during rapid cooling, 170K/minute, to room temperature. The smallest powder, as received, formed spherical agglomerates up to 10 mum diameter. These sintered as separate units attaining diameters up to 60 mum during intermediate stage sintering. X-ray photoelectron spectroscopy indicated a surface contamination layer of 10 A to 18 A; 50--70% of which was barium carbonate, the balance being atmospheric adsorbed species. Samples cooled at 3K/minute after an 1173K calcine retained cubic symmetry as indicated with high temperature X-ray diffraction. However, spectral evidence was obtained indicating that upon the rapid cooling from the 1173K calcine, a reorientation to the room temperature tetragonal symmetry was observed. Further, SEM and TEM supported this finding with visual evidence of interfacial rearrangement including corroborating electron diffraction analysis. This data, therefore, substantiated the hypothesis that the cause of the room temperature pseudocubic

  10. Redox processes in highly yttrium-doped barium titanate

    International Nuclear Information System (INIS)

    The changes of microstructure occurring during oxidation of the reduced form of yttrium-doped barium titanate (Ba1-xYx?Ti1-x4+Tix3+O3) have been studied. Samples were sintered under reduction conditions at PO2=10-4Pa and oxidized by annealing at high temperatures (1150 and 1350 deg. C) in air. Depending on yttrium concentration, the oxidation of the reduced form of the yttrium-doped BaTiO3 caused precipitation of the phase Ba6Ti17O40 or the phases Ba6Ti17O40 and Y2Ti2O7. The precipitates had well-defined orientational relationships with the perovskite matrix. Oxidation of the reduced form of doped barium titanate results in formation of the phase Ba1-xYx?Ti1-x/44+(VTi-bar )x/4O3 responsible for increase in the resistance of outer grain layers, which lie between grain boundaries and grain

  11. Liquid-Phase Processing of Barium Titanate Thin Films

    Science.gov (United States)

    Harris, David Thomas

    Processing of thin films introduces strict limits on the thermal budget due to substrate stability and thermal expansion mismatch stresses. Barium titanate serves as a model system for the difficulty in producing high quality thin films because of sensitivity to stress, scale, and crystal quality. Thermal budget restriction leads to reduced crystal quality, density, and grain growth, depressing ferroelectric and nonlinear dielectric properties. Processing of barium titanate is typically performed at temperatures hundreds of degrees above compatibility with metalized substrates. In particular integration with silicon and other low thermal expansion substrates is desirable for reductions in costs and wider availability of technologies. In bulk metal and ceramic systems, sintering behavior has been encouraged by the addition of a liquid forming second phase, improving kinetics and promoting densification and grain growth at lower temperatures. This approach is also widespread in the multilayer ceramic capacitor industry. However only limited exploration of flux processing with refractory thin films has been performed despite offering improved dielectric properties for barium titanate films at lower temperatures. This dissertation explores physical vapor deposition of barium titanate thin films with addition of liquid forming fluxes. Flux systems studied include BaO-B2O3, Bi2O3-BaB2O 4, BaO-V2O5, CuO-BaO-B2O3, and BaO-B2O3 modified by Al, Si, V, and Li. Additions of BaO-B2O3 leads to densification and an increase in average grain size from 50 nm to over 300 nm after annealing at 900 °C. The ability to tune permittivity of the material improved from 20% to 70%. Development of high quality films enables engineering of ferroelectric phase stability using residual thermal expansion mismatch in polycrystalline films. The observed shifts to TC match thermodynamic calculations, expected strain from the thermal expansion coefficients, as well as x-ray diffract measurements

  12. Synthesis of barium-zinc-titanate ceramics

    Directory of Open Access Journals (Sweden)

    Obradović N.

    2012-01-01

    Full Text Available Mixtures of BaCO3, ZnO and TiO2 powders, with molar ratio of 1:2:4, were mechanically activated for 20, 40 and minutes in a planetary ball mill. The resulting powders were compacted into pellets and isothermally sintered at 1250°C for 2h with a heating rate of 10°C/min. X-ray diffraction analysis of obtained powders and sintered samples was performed in order to investigate changes of the phase composition. The microstructure of sintered samples was examined by scanning electron microscopy. The photoacoustic phase and amplitude spectra of sintered samples were measured as a function of the laser beam modulating frequency using a transmission detection configuration. Fitting of experimental data enabled determination of photoacoustic properties including thermal diffusivity. Based on the results obtained correlation between thermal diffusivity and experimental conditions, as well the samples microstructure characteristics, was discussed.

  13. Barium titanate core – gold shell nanoparticles for hyperthermia treatments

    Directory of Open Access Journals (Sweden)

    FarrokhTakin E

    2013-06-01

    Full Text Available Elmira FarrokhTakin,1,2 Gianni Ciofani,1 Gian Luigi Puleo,1 Giuseppe de Vito,3,4 Carlo Filippeschi,1 Barbara Mazzolai,1 Vincenzo Piazza,3 Virgilio Mattoli1 1Center for Micro-BioRobotics @SSSA, Fondazione Istituto Italiano di Tecnologia, Pontedera, Pisa, Italy; 2The Biorobotics Institute, Scuola Superiore Sant'Anna, Pontedera, Pisa, Italy; 3Center for Nanotechnology Innovation @NEST, Fondazione Istituto Italiano di Tecnologia, Pisa, Italy; 4NEST, Scuola Normale Superiore, Pisa, Italy Abstract: The development of new tools and devices to aid in treating cancer is a hot topic in biomedical research. The practice of using heat (hyperthermia to treat cancerous lesions has a long history dating back to ancient Greece. With deeper knowledge of the factors that cause cancer and the transmissive window of cells and tissues in the near-infrared region of the electromagnetic spectrum, hyperthermia applications have been able to incorporate the use of lasers. Photothermal therapy has been introduced as a selective and noninvasive treatment for cancer, in which exogenous photothermal agents are exploited to achieve the selective destruction of cancer cells. In this manuscript, we propose applications of barium titanate core–gold shell nanoparticles for hyperthermia treatment against cancer cells. We explored the effect of increasing concentrations of these nanoshells (0–100 µg/mL on human neuroblastoma SH-SY5Y cells, testing the internalization and intrinsic toxicity and validating the hyperthermic functionality of the particles through near infrared (NIR laser-induced thermoablation experiments. No significant changes were observed in cell viability up to nanoparticle concentrations of 50 µg/mL. Experiments upon stimulation with an NIR laser revealed the ability of the nanoshells to destroy human neuroblastoma cells. On the basis of these findings, barium titanate core–gold shell nanoparticles resulted in being suitable for hyperthermia treatment

  14. Bismuth titanate ceramics obtained by hot forging

    International Nuclear Information System (INIS)

    In this work, bismuth titanate samples were obtained from powder calcined at 800 deg C for 24 h through conventional sintering (OF) and hot-forging (HF) methods. The plate-like morphology grains were observed in ceramics obtained in both process. Samples produced by HF showed higher grain orientation, ≅ 90%. (author)

  15. Solvothermal synthesis and Curie temperature of monodispersed barium titanate nanoparticles

    International Nuclear Information System (INIS)

    Barium titanate (BaTiO3) nanoparticles with various particle sizes were prepared by a solvothermal method. X-ray powder diffraction (XRPD) patterns show that the as-prepared powders are of pure perovskite BaTiO3. Scanning electron microscopy (SEM) reveals that all the particles of BaTiO3 with different sizes are dispersed homogenously and have uniform size. The room temperature and in situ high temperature XRD analyses indicate that both the proportion of the tetragonal phase and the Curie temperature of BaTiO3 increase with increasing particles size. The effects of the reaction parameters, such as the concentration of reactants, the polarity of solvent, the reaction temperature and the amount of surfactant, on the size, morphology and uniformity of BaTiO3 nanoparticles are studied in detail.

  16. Barium titanate nanocomposite capacitor FY09 year end report.

    Energy Technology Data Exchange (ETDEWEB)

    Stevens, Tyler E.; DiAntonio, Christopher Brian; Yang, Pin; Chavez, Tom P.; Winter, Michael R.; Monson, Todd C.; Roesler, Alexander William; Fellows, Benjamin D.

    2009-11-01

    This late start RTBF project started the development of barium titanate (BTO)/glass nanocomposite capacitors for future and emerging energy storage applications. The long term goal of this work is to decrease the size, weight, and cost of ceramic capacitors while increasing their reliability. Ceramic-based nanocomposites have the potential to yield materials with enhanced permittivity, breakdown strength (BDS), and reduced strain, which can increase the energy density of capacitors and increase their shot life. Composites of BTO in glass will limit grain growth during device fabrication (preserving nanoparticle grain size and enhanced properties), resulting in devices with improved density, permittivity, BDS, and shot life. BTO will eliminate the issues associated with Pb toxicity and volatility as well as the variation in energy storage vs. temperature of PZT based devices. During the last six months of FY09 this work focused on developing syntheses for BTO nanoparticles and firing profiles for sintering BTO/glass composite capacitors.

  17. Ultrasonic de-agglomeration of barium titanate powder.

    Science.gov (United States)

    Marković, S; Mitrić, M; Starcević, G; Uskoković, D

    2008-01-01

    BaTiO3 (BT) powder, with average particle size of 1.4 microm, was synthesized by solid-state reaction. A high-intensity ultrasound irradiation (ultrasonication) was used to de-agglomerate micro-sized powder to nano-sized one. The crystal structure, crystallite size, morphology, particle size, particle size distribution, and specific surface area of the BT powder de-agglomerated for different ultrasonication times (0, 10, 60, and 180 min) were determined. It was found that the particles size of the BT powder was influenced by ultrasonic treatment, while its tetragonal structure was maintained. Therefore, ultrasonic irradiation can be proposed as an environmental-friendly, economical, and effective tool for the de-agglomeration of barium titanate powders. PMID:17845864

  18. Structural and functional characterization of barium zirconium titanate / epoxy composites

    Directory of Open Access Journals (Sweden)

    Filiberto González Garcia

    2011-12-01

    Full Text Available The dielectric behavior of composite materials (barium zirconium titanate / epoxy system was analyzed as a function of ceramic concentration. Structure and morphologic behavior of the composites was investigated by X-ray Diffraction (XRD, Fourier transformed infrared spectroscopy (FT-IR, Raman spectroscopy, field emission scanning electron microscopy (FE-SEM and transmission electron microscopy (TEM analyses. Composites were prepared by mixing the components and pouring them into suitable moulds. It was demonstrated that the amount of inorganic phase affects the morphology of the presented composites. XRD revealed the presence of a single phase while Raman scattering confirmed structural transitions as a function of ceramic concentration. Changes in the ceramic concentration affected Raman modes and the distribution of particles along into in epoxy matrix. Dielectric permittivity and dielectric losses were influenced by filler concentration.

  19. Effect of Nb on barium titanate prepared from citrate solutions

    Directory of Open Access Journals (Sweden)

    Stojanović Biljana D.

    2002-01-01

    Full Text Available The influence of the addition of dopants on the microstructure development and electrical properties of BaTiO3 doped with 0.2, 0.4, 0.6, 0.8 mol% of Nb and 0.01 mol% of Mn based compounds was studied. Doped barium titanate was prepared using the polymeric precursor method from citrate solutions. The powders calcined at 700°C for 4 hours were analysed by infrared (IR spectroscopy to verify the presence of carbonates, and by X-ray diffraction (XRD for phase formation. The phase composition, microstructure and dielectric properties show a strong dependence on the amount of added niobium.

  20. Study on a flexoelectric microphone using barium strontium titanate

    Science.gov (United States)

    Kwon, S. R.; Huang, W. B.; Zhang, S. J.; Yuan, F. G.; Jiang, X. N.

    2016-04-01

    In this study, a flexoelectric microphone was, for the first time, designed and fabricated in a bridge structure using barium strontium titanate (Ba0.65Sr0.35TiO3) ceramic and tested afterwards. The prototyped flexoelectric microphone consists of a 1.5 mm  ×  768 μm  ×  50 μm BST bridge structure and a silicon substrate with a cavity. The sensitivity and resonance frequency were designed to be 0.92 pC/Pa and 98.67 kHz, respectively. The signal to noise ratio was measured to be 74 dB. The results demonstrate that the flexoelectric microphone possesses high sensitivity and a wide working frequency range simultaneously, suggesting that flexoelectricity could be an excellent alternative sensing mechanism for microphone applications.

  1. Rapid synthesis of barium titanate microcubes using composite-hydroxides-mediated avenue

    Energy Technology Data Exchange (ETDEWEB)

    He, Xi; Ouyang, Jing, E-mail: jingouyang@csu.edu.cn; Jin, Jiao; Yang, Huaming, E-mail: hmyang@csu.edu.cn

    2014-04-01

    Highlights: • Barium titanate oxides microcubes can be synthesized within 1 min. • Composite-hydroxides-mediated strategy provided a possible large scale production. • BST obtained in the strategy showed fairly good crystallinity and tetragonality. - Abstract: This paper reports the rapid synthesis of barium titanate (BaTiO{sub 3}, BTO) microcubes via composite-hydroxides-mediated reaction within 1 min. X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersion spectrum (EDS) results confirmed both cubic and tetragonal lattices in the sample and the uniform microcubes with an average size of 1 μm. Ultraviolet–visible (UV–vis) spectrum indicated that the band gap of the BTO powder was 3.05 eV. Ferroelectric polarization vs. electric field (P–E) tests showed that the ferroelectric domains had formed in the as-synthesized BTO microcubes and sintered ceramics. BTO ceramics sintered at 1100 °C for 3 h showed fairly good tetragonality and possessed a maximum polarization of 0.21 μC/cm{sup 2}, indicating that the sintering temperature for the BTO powders prepared via this method was relatively low. The process and equipment reported herein provided a potential method for the rapid synthesis of titanate based perovskites.

  2. Impact of Biofield Treatment on Atomic and Structural Characteristics of Barium Titanate Powder

    OpenAIRE

    Trivedi, Mahendra; Nayak, Gopal

    2015-01-01

    Barium titanate, perovskite structure is known for its high dielectric constant and piezoelectric properties, which makes it interesting material for fabricating capacitors, transducer, actuator, and sensors. The perovskite crystal structure and lattice vibrations play a crucial role in its piezoelectric and ferroelectric behavior. In the present study, the barium titanate powder was subjected to biofield treatment. Further, the control and treated samples were characterized using X-ray diffr...

  3. Structural, microstructural and impedance spectroscopy study of functional ferroelectric ceramic materials based on barium titanate

    International Nuclear Information System (INIS)

    The differences between the physical properties of barium titanate BaTiO3 and newly obtained BaHfxTi1-xO3 were identified. These ceramics were prepared by solid-phase reaction from simple oxides and carbonates using the conventional method. The structure and morphology of investigated samples were characterised by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The application of impedance spectroscopy made possible to characterize of these materials in the terms of electrical properties

  4. Capacitively coupled electrolyte-conductivity sensor based on high-k material of barium strontium titanate

    OpenAIRE

    Huck, C.; Poghossian, A; Baecker, M; Chaudhuri, S.; Zander, W; Schubert, J.; Begoyan, V. K.; Buniatyan, V. V.; Wagner, Patrick Hermann; Schoening, M. J

    2014-01-01

    A miniaturized capacitively coupled contactless conductivity detection (C4D) sensor based on high-kperovskite oxide of barium strontium titanate (BST) has been implemented for the first time. The BST films(∼120 nm thick) of Ba0.25Sr0.75TiO3composition were prepared on a p-Si-SiO2-Pt structure by pulsed laserdeposition technique using BST targets fabricated by the self-propagating high-temperature synthesismethod. The Pt electrodes were buried into the SiO2layer to obtain a planar structure. F...

  5. Electrooptic and piezoelectric measurements in photorefractive barium titanate and strontium barium niobate

    International Nuclear Information System (INIS)

    The authors measured the low-frequency (''unclamped'') electrooptic and piezoelectric coefficients in undoped BaTiO/sub 3/ and Sr/sub x/Ba/sub 1-x/Nb/sub 2/O/sub 6/ (chi - 0.61) crystals using interferometric techniques. The contribution of the piezoelectric effect to the Pockels measurement is discussed. For an applied ac electric field in the range 0.1-200 V/cm, the electrooptic and piezoelectric effects are linear in the magnitude of of the applied field and independent of its frequency in the range of 10 Hz-100 kHz. The unclamped electrooptic coefficients of poled BaTiO/sub 3/ single crystals are r/sub 13/ = 19.5 +- 1 pm/V and r/sub 33/ = 97 +- 7 pm/V, and for strontium barium niobate are r/sub 13/ = 47 +- 5 pm/V and r/sub 33/ = 235 +- 21 pm/V, all measured at a wavelength of 514.5 nm and at T = 230C. For the barium titanate samples the measured Pockels coefficient r/sub c/ identical to r/sub 33/ - (n/sub 1//n/sub 3/)/sup 3/r/sub 13/ = 79 +- 6 pm/V in good agreement with the value r/sub c/ = 76 +- 7 pm/V computed from the above values of r/sub 13/ and r/sub 33/, where n/sub 1/ and n/sub 3/ are the ordinary and extraordinary indexes of refraction, respectively. The measured piezoelectric coefficient is d/sub 23/ = +28.7 +- 2 pm/V for barium titanate, and is d/sub 23/ = +24.6 +- 2 pm/V for strontium barium niobate. They also measured the photoreflective coupling of two optical beams in the crystals, and they show that the dependence of the coupling strength on beam polarization is in fair agreement with the measured values of the Pockels coefficients

  6. Dopant Behaviours of Sm2O3 on Microstructure and Properties of Barium Zirconium Titanate Ceramics

    Institute of Scientific and Technical Information of China (English)

    王永力; 李龙土; 齐建全; 桂治轮

    2001-01-01

    The effect of Sm2O3-dopant on the sintering characteristics and dielectric properties of barium zirconium titanate ceramics (BaZrxTi1-xO3) was investigated. It is shown that trace amount of Sm2O3 can greatly affect the grain growth and densification of barium zirconium titanate ceramics during sintering. At the same time, the dielectric peak at high temperature shifts to lower temperature and that at low temperature shifts to higher temperature. The two dielectric peaks overlap with each other when the Sm2O3-dopant content varies from 0.25% to 1%, and the maximum relative dielectric constant is greatly enhanced. These effects may be attributed to the substitution actions of the rare earth element in perovskite lattice. At the doping content of 0.75%, the dielectric constant maximum of 23570 can be obtained. By adopting some proper additives, an excellent Y5V dielective material is obtained, and the room temperature properties are as follows: relative dielectric constant εRT≥23,000, dielectric loss tgδ≤0.0075 and the breakdown strength under alternating field Eb≥5 kV·mm-1.

  7. Barium

    International Nuclear Information System (INIS)

    Present article is devoted to barium content in fluoride. In order to obtain the comprehensive view on barium distribution in fluorite 303 mono mineral fractions of various geologic deposits and ores of Kazakhstan, Uzbekistan, Tajikistan and some geologic deposits of Russia were analyzed. The barium content in fluorite of geologic deposits of various mineralogical and genetic type was defined. The basic statistical estimation of barium distribution in fluorite were evaluated.

  8. Properties of barium strontium titanate at millimeter wave frequencies

    Energy Technology Data Exchange (ETDEWEB)

    Osman, Nurul [Department of Physics, Universiti Putra Malaysia (Malaysia); Free, Charles [Department of Engineering and Design, University of Sussex (United Kingdom)

    2015-04-24

    The trend towards using higher millimetre-wave frequencies for communication systems has created a need for accurate characterization of materials to be used at these frequencies. Barium Strontium Titanate (BST) is a ferroelectric material whose permittivity is known to change as a function of applied electric field and have found varieties of application in electronic and communication field. In this work, new data on the properties of BST characterize using the free space technique at frequencies between 145 GHz and 155 GHz for both thick film and bulk samples are presented. The measurement data provided useful information on effective permittivity and loss tangent for all the BST samples. Data on the material transmission, reflection properties as well as loss will also be presented. The outcome of the work shows through practical measurement, that BST has a high permittivity with moderate losses and the results also shows that BST has suitable properties to be used as RAM for high frequency application.

  9. Properties of barium strontium titanate at millimeter wave frequencies

    International Nuclear Information System (INIS)

    The trend towards using higher millimetre-wave frequencies for communication systems has created a need for accurate characterization of materials to be used at these frequencies. Barium Strontium Titanate (BST) is a ferroelectric material whose permittivity is known to change as a function of applied electric field and have found varieties of application in electronic and communication field. In this work, new data on the properties of BST characterize using the free space technique at frequencies between 145 GHz and 155 GHz for both thick film and bulk samples are presented. The measurement data provided useful information on effective permittivity and loss tangent for all the BST samples. Data on the material transmission, reflection properties as well as loss will also be presented. The outcome of the work shows through practical measurement, that BST has a high permittivity with moderate losses and the results also shows that BST has suitable properties to be used as RAM for high frequency application

  10. Removal of uranyl ions from aqueous solutions using barium titanate

    International Nuclear Information System (INIS)

    Remediation of water sources contaminated with radioactive waste products is a major environmental issue that demands new and more efficient technologies. For this purpose, we report a highly efficient ion-exchange material for the removal of radioactive nuclides from aqueous solutions. The kinetic characteristics of adsorption of uranyl ions on the surface of barium titanate were investigated using a spectrophotometric method under a wide range of conditions. By controlling the pH it was possible to exert fine control over the speciation of uranium, and by optimizing the temperature and grain size of the exchanger, almost total removal was achieved in a matter of just hours. The highest efficiency (>90 % removal) was realized at high temperature (80 deg C). Moreover, the effect of competitive ion adsorption from a range of different cations and anions was quantified. Adsorption was found to follow first-order kinetics and both Freundlich and Langmuir isotherms could be applied to this system. The results of a mathematical treatment of the kinetic data combined with the observation that adsorption was independent of stirring speed and dependent on the ion-exchanger grain size, indicate that the dominant mechanism influencing adsorption is particle spreading. The adsorption behavior was not influenced by exposure to high-intensity gamma radiation, indicating potential for use of this ion-exchanger in systems containing radioactive material. These results will be of use in the development of uranium extraction systems for contaminated water sources. (author)

  11. Synthesis of nanosized barium titanate/epoxy resin composites and measurement of microwave absorption

    Indian Academy of Sciences (India)

    M Murugan; V K Kokate; M S Bapat; A M Sapkal

    2010-12-01

    Barium titanate/epoxy resin composites have been synthesized and tested for microwave absorption/transmission. Nanocrystalline barium titanate (BaTiO3 or BT) was synthesized by the hydrothermal method and the composites of BT/epoxy resin were fabricated as thin solid slabs of four different weight ratios. BT was obtained in the cubic phase with an average particle size of 21 nm, deduced from the X-ray diffraction data. The reflection loss (RL) and transmission loss (TL) of the composite materials were measured by the reflection/transmission method using a vector network analyser R&S: ZVA40, in the frequency range 8.0–18.5 GHz (X and Ku-bands). The RL was found to be better than −10 dB over wide frequency bands. The higher RL for lower concentration of BT could be due to increase in impedance matching effects. Low TL values indicate that the absorption by BT is quite low. This could be due to formation of BT in the cubic paraelectric phase.

  12. Electrical properties and microwave dielectric behavior of holmium substituted barium zirconium titanate ceramics

    International Nuclear Information System (INIS)

    Highlights: ► Ho3+ substituted BZT ceramics. ► Low loss microwave device. ► Electrical and microwave dielectric behavior. ► NTCR behavior for the fabrication of highly sensitive thermistor. - Abstract: Structural, microwave dielectric and electrical properties of (Ba1−xHox)(Zr0.52Ti0.48)O3 with the mole fraction of x = 0.1 and 0.2 have been investigated. The results obtained from these studies indicate the substitution of Ho-ions within the barium zirconium titanate. The microwave dielectric parameters were measured using the time domain reflectometry (TDR) method in the frequency range 10 MHz to 30 GHz. The dielectric constant as a function of temperature exhibited diffuse phase transition behavior for x = 0.1 Ho-substituted ceramics accompanied with lower value of dielectric constant. Complex impedance (Z∗) planes show frequency dependent behavior as the response for the grain resistance mechanisms. This mechanism has been represented by an RC equivalent circuit. Our results along with the observation of negative temperature coefficient of resistance (NTCR) upon Ho3+ ions substitution clearly suggest the design and development of novel microwave dielectric resonators based on barium zirconium titanate materials substituted with rare earth ions.

  13. Electrical properties and microwave dielectric behavior of holmium substituted barium zirconium titanate ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Sagar, Raghavendra [Department of Post Graduate Studies and Research in Materials Science, Gulbarga University, Gulbarga-585 106, Karnataka state (India); Hudge, Pravin [School of Physical Sciences, SRT Marathwada University, Nanded, Maharashtra state (India); Madolappa, Shivanand [Department of Post Graduate Studies and Research in Materials Science, Gulbarga University, Gulbarga-585 106, Karnataka state (India); Kumbharkhane, A.C. [School of Physical Sciences, SRT Marathwada University, Nanded, Maharashtra state (India); Raibagkar, R.L., E-mail: rlraibagkar@rediffmail.com [Department of Post Graduate Studies and Research in Materials Science, Gulbarga University, Gulbarga-585 106, Karnataka state (India)

    2012-10-05

    Highlights: Black-Right-Pointing-Pointer Ho{sup 3+} substituted BZT ceramics. Black-Right-Pointing-Pointer Low loss microwave device. Black-Right-Pointing-Pointer Electrical and microwave dielectric behavior. Black-Right-Pointing-Pointer NTCR behavior for the fabrication of highly sensitive thermistor. - Abstract: Structural, microwave dielectric and electrical properties of (Ba{sub 1-x}Ho{sub x})(Zr{sub 0.52}Ti{sub 0.48})O{sub 3} with the mole fraction of x = 0.1 and 0.2 have been investigated. The results obtained from these studies indicate the substitution of Ho-ions within the barium zirconium titanate. The microwave dielectric parameters were measured using the time domain reflectometry (TDR) method in the frequency range 10 MHz to 30 GHz. The dielectric constant as a function of temperature exhibited diffuse phase transition behavior for x = 0.1 Ho-substituted ceramics accompanied with lower value of dielectric constant. Complex impedance (Z{sup Asterisk-Operator }) planes show frequency dependent behavior as the response for the grain resistance mechanisms. This mechanism has been represented by an RC equivalent circuit. Our results along with the observation of negative temperature coefficient of resistance (NTCR) upon Ho{sup 3+} ions substitution clearly suggest the design and development of novel microwave dielectric resonators based on barium zirconium titanate materials substituted with rare earth ions.

  14. Dielectric properties of lead zirconate titanate thin films seeded with barium strontium titanate nanoparticles

    International Nuclear Information System (INIS)

    A low temperature synthetic method recently proposed by the authors was applied to the fabrication of lead zirconate titanate (PZT) thin films containing crystalline seeds of barium strontium titanate (BST) nanoparticles. PZT precursor and the BST particles were prepared with complex alkoxide methods. Precursor solution suspending the BST particles was spin-coated on Pt/Ti/SiO2/Si substrate to film thickness of 500-800 nm at particle concentrations of 0-25.1 mol%, and annealed at various temperatures. Seeding of BST particles prevented the formation of pyrochlore phases, which appeared at temperatures above 400 deg. C in unseeded PZT films, and induced crystallization of PZT into perovskite structures at 420 deg. C, which was more than 100 deg. C below the crystallization temperature of the unseeded PZT films. Measurement of dielectric properties at 1 kHz showed that the 25.1 mol% BST-seeded PZT films annealed at 450 deg. C had a dielectric constant as high as 300 with a dissipation factor of 0.05. Leakage current density of the film was less than 1x10-6 A/cm2 at applied electric field from 0 to 64 kV/cm

  15. The review of various synthesis methods of barium titanate with the enhanced dielectric properties

    Science.gov (United States)

    More, S. P.; Topare, R. J.

    2016-05-01

    The Barium Titanate is a very well known dielectric ceramic belongs to perovskite structure. It has very wide applications in the field of electronic, electro ceramic, electromechanical and electro-optical applications. Barium Titanate has very high dielectric constant as well as low dielectric loss. Substituted dielectrics are one of the most important technological compounds in modern electro ceramics. Its electrical properties can be tuned flexibly by a simple substitution technique. This has encouraged researchers to select a typical cation to be substituted at cationic sites. In the present paper, the review of various synthesis methods of Barium Titanate compound with the effect of different dopants, the grain size on the dielectric properties at various temperatures is discussed.

  16. Highly aligned arrays of high aspect ratio barium titanate nanowires via hydrothermal synthesis

    International Nuclear Information System (INIS)

    We report on the development of a hydrothermal synthesis procedure that results in the growth of highly aligned arrays of high aspect ratio barium titanate nanowires. Using a multiple step, scalable hydrothermal reaction, a textured titanium dioxide film is deposited on titanium foil upon which highly aligned nanowires are grown via homoepitaxy and converted to barium titanate. Scanning electron microscope images clearly illustrate the effect the textured film has on the degree of orientation of the nanowires. The alignment of nanowires is quantified by calculating the Herman's Orientation Factor, which reveals a 58% improvement in orientation as compared to growth in the absence of the textured film. The ferroelectric properties of barium titanate combined with the development of this scalable growth procedure provide a powerful route towards increasing the efficiency and performance of nanowire-based devices in future real-world applications such as sensing and power harvesting

  17. Electrical properties of niobium doped barium bismuth-titanate ceramics

    International Nuclear Information System (INIS)

    Highlights: ► Pure and doped BaBi4Ti4O15 were prepared via the solid-state reaction method. ► The grain size was suppressed in Nb-doped samples. ► The diffuseness of the dielectric peak increased with dopant concentration. ► Niobium affected on relaxor behavior of barium bismuth titanate ceramics. ► The conductivity change was noticed in doped samples. -- Abstract: BaBi4Ti4–5/4xNbxO15 (BBNTx, x = 0, 0.05, 0.15, 0.30) ceramics have been prepared by solid state method. XRD data indicate the formation of single-phase-layered perovskites for all compositions. SEM micrographs suggest that the grain size decreases with Nb doping. The effect of niobium doping on the dielectric and relaxor behavior of BaBi4Ti4O15 ceramics was investigated in a wide range of temperatures (20–777 °C) and frequencies (1.21 kHz to 1 MHz). Nb doping influences Tc decrease as well as the decrease of dielectric permittivity at Curie temperature. At room temperature, undoped BaBi4Ti4O15 exhibits dielectric constant of ∼204 at 100 kHz, that slightly increases with Nb doping. The conductivity of BBNT5 ceramics is found to be lower than that of other investigated compositions. The value of activation energy of σDC was found to be 0.89 eV, 1.01 eV, 0.93 eV and 0.71 eV for BBT, BBNT5, BBNT15 and BBNT30, respectively.

  18. Electrical properties of niobium doped barium bismuth-titanate ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Bobić, J.D., E-mail: jelenabobic@yahoo.com [Institute for Multidisciplinary Researches, Belgrade University, Kneza Viseslava 1, Belgrade (Serbia); Vijatović Petrović, M.M. [Institute for Multidisciplinary Researches, Belgrade University, Kneza Viseslava 1, Belgrade (Serbia); Banys, J. [Faculty of Physics, Vilnius University, 9 Sauletekio Str., Vilnius (Lithuania); Stojanović, B.D. [Institute for Multidisciplinary Researches, Belgrade University, Kneza Viseslava 1, Belgrade (Serbia)

    2012-08-15

    Highlights: ► Pure and doped BaBi{sub 4}Ti{sub 4}O{sub 15} were prepared via the solid-state reaction method. ► The grain size was suppressed in Nb-doped samples. ► The diffuseness of the dielectric peak increased with dopant concentration. ► Niobium affected on relaxor behavior of barium bismuth titanate ceramics. ► The conductivity change was noticed in doped samples. -- Abstract: BaBi{sub 4}Ti{sub 4–5/4x}Nb{sub x}O{sub 15} (BBNTx, x = 0, 0.05, 0.15, 0.30) ceramics have been prepared by solid state method. XRD data indicate the formation of single-phase-layered perovskites for all compositions. SEM micrographs suggest that the grain size decreases with Nb doping. The effect of niobium doping on the dielectric and relaxor behavior of BaBi{sub 4}Ti{sub 4}O{sub 15} ceramics was investigated in a wide range of temperatures (20–777 °C) and frequencies (1.21 kHz to 1 MHz). Nb doping influences T{sub c} decrease as well as the decrease of dielectric permittivity at Curie temperature. At room temperature, undoped BaBi{sub 4}Ti{sub 4}O{sub 15} exhibits dielectric constant of ∼204 at 100 kHz, that slightly increases with Nb doping. The conductivity of BBNT5 ceramics is found to be lower than that of other investigated compositions. The value of activation energy of σ{sub DC} was found to be 0.89 eV, 1.01 eV, 0.93 eV and 0.71 eV for BBT, BBNT5, BBNT15 and BBNT30, respectively.

  19. Sputtered Modified Barium Titanate for Thin-Film Capacitor Applications

    Directory of Open Access Journals (Sweden)

    Robert Mamazza

    2012-04-01

    Full Text Available New apparatus and a new process for the sputter deposition of modified barium titanate thin-films were developed. Films were deposited at temperatures up to 900 °C from a Ba0.96Ca0.04Ti0.82Zr0.18O3 (BCZTO target directly onto Si, Ni and Pt surfaces and characterized by X-ray diffraction (XRD, scanning electron microscopy (SEM and X-ray photoelectron spectroscopy (XPS. Film texture and crystallinity were found to depend on both deposition temperature and substrate: above 600 °C, the as-deposited films consisted of well-facetted crystallites with the cubic perovskite structure. A strongly textured Pt (111 underlayer enhanced the (001 orientation of BCZTO films deposited at 900 °C, 10 mtorr pressure and 10% oxygen in argon. Similar films deposited onto a Pt (111 textured film at 700 °C and directly onto (100 Si wafers showed relatively larger (011 and diminished intensity (00ℓ diffraction peaks. Sputter ambients containing oxygen caused the Ni underlayers to oxidize even at 700 °C: Raising the process temperature produced more diffraction peaks of NiO with increased intensities. Thin-film capacitors were fabricated using ~500 nm thick BCZTO dielectrics and both Pt and Ni top and bottom electrodes. Small signal capacitance measurements were carried out to determine capacitance and parallel resistance at low frequencies and from these data, the relative permittivity (er and resistivity (r of the dielectric films were calculated; values ranged from ~50 to >2,000, and from ~104 to ~1010 Ω∙cm, respectively.

  20. Synthesis and thermionic properties of tungsten–barium titanate composites

    International Nuclear Information System (INIS)

    Highlights: • W–BaTiO3 composites were readily synthesized using standard sintering methods. • Compositions in the range 20–80% by mass were studied. • The microstructure of the composites comprises W, BaTiO3, Ba4Ti12O27 and BaW04. • The Richardson work function was reduced from 4.5 eV for W to as little as 2.67 eV. • Post-emission surfaces were coated in a thin layer of Ba4Ti12O27 and BaW04. - Abstract: The potential of novel tungsten–barium titanate composites as thermionic emitters is explored. Composites ranging from 20% to 80% tungsten by mass were prepared by sintering in an Ar–H2 atmosphere. XRD and SEM studies indicate four major micro-constituents; W, BaTiO3, Ba4(Ti,Fe)12O27 and BaWO4. Richardson work functions (φR) and Richardson constants (AR) were determined using a Schottky diode arrangement at temperatures ranging from 1223 to 1473 K. Work functions ranged from 2.67 eV to 3.32 eV with a shallow minimum at 40% by mass W and were relatively constant (∼2.7–2.8 eV) in the range 30–70% by mass W. The decrease in work function was accompanied by a strong decrease in AR from 39.3 A cm−2 K−2 to 0.02 A cm−2 K−2 over the range 20–70% by mass W. The reduction in both φR and AR was associated with the major conversion of the surface to BaWO4 and Ba4Ti12O27 during the activation treatment before emission testing

  1. Structural and Mössbauer investigation on barium titanate-cobalt ferrite composites

    Science.gov (United States)

    Leonel, Liliam V.; Silva, Juliana B.; Albuquerque, Adriana S.; Ardisson, José D.; Macedo, Waldemar A. A.; Mohallem, Nelcy D. S.

    2012-11-01

    Perovskite and spinels oxides have received renewed attention due to the possibility of combining both structures in di-phase composites to obtain multifunctional materials. In this work, barium titanate (perovskite)-cobalt ferrite (spinel) composite powders with different microstructures were obtained from thermal treatment of amorphous precursors at 500-1100 °C. The precursors were prepared by combining coprecipitation and sol-gel routes. Lyophilization of ferrite prior to mixing was used as a strategy to control interphase reaction. Mössbauer spectroscopy showed that the dispersion of coprecipitated ferrite in a viscous BaTiO3 precursor gel resulted in superparamagnetic behavior and reduction of the local magnetic field of site [B].

  2. Dielectric properties of piezoelectric 3–0 composites of lithium ferrite/barium titanate

    Indian Academy of Sciences (India)

    P Sarah; S V Suryanarayana

    2003-12-01

    Piezoelectric 3–0 composite ceramics are prepared from a mixture of barium titanate and lithium ferrite phase constituents. Dielectric properties of composites are affected by a number of parameters that include electrical properties, size, shape and amount of constituent phases. The frequency dependent measurements can provide additional insight into mechanisms controlling electrical response. Frequency dependence of dielectric constant plots of lithium ferrite/barium titanate composites will be given and the relevance of trends seen in them will be discussed. Connectivity in composites developed is studied.

  3. Structure, dielectric and electrical properties of cerium doped barium zirconium titanate ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Feng Hongjun; Hou Jungang [Key Laboratory for Advanced Ceramic and Machining Technology of Ministry of Education, Tianjin University, Tianjin 300072 (China); Qu Yuanfang, E-mail: yfqu@tju.edu.cn [Key Laboratory for Advanced Ceramic and Machining Technology of Ministry of Education, Tianjin University, Tianjin 300072 (China); Shan Dan [Key Laboratory for Advanced Ceramic and Machining Technology of Ministry of Education, Tianjin University, Tianjin 300072 (China); Yao Guohua [Zhejiang Jiakang Electronics Co. Ltd., Jiaxing, Zhejiang 314000 (China)

    2012-01-25

    Highlights: Black-Right-Pointing-Pointer Rare-earth doped barium zirconate titanate (BZT) ceramics, Ba(Zr{sub 0.25}Ti{sub 0.75})O{sub 3} + xCeO{sub 2}, (x = 0-1.5 at%) were obtained by a solid state reaction route. Black-Right-Pointing-Pointer Morphological analysis on sintered samples by scanning electron microscopy shows that the addition of rare-earth ions affects the growth of the grain and remarkably changes the grain morphology. Black-Right-Pointing-Pointer The effect of rare-earth addition to BZT on dielectric and electrical properties is analyzed, demonstrating that the samples with x = 0.4 and x = 0.6 could be semiconducting in air atmosphere. - Abstract: Rare-earth doped barium zirconium titanate (BZT) ceramics, Ba(Zr{sub 0.25}Ti{sub 0.75})O{sub 3} + xCeO{sub 2}, (x = 0-1.5 at%) were obtained by a solid state reaction route. Perovskite-like single-phase compounds were confirmed from X-ray diffraction data and the lattice parameters were refined by the Rietveld method. It is found that, integrating with the lattice parameters and the distortion of crystal lattice, there is an alternation of substitution preference of cerium ions for the host cations in perovskite lattice. Morphological analysis on sintered samples by scanning electron microscopy shows that the addition of rare-earth ions affects the growth of the grain and remarkably changes the grain morphology. The effect of rare-earth addition to BZT on dielectric and electrical properties is analyzed. High values of dielectric tunability are obtained for cerium doped BZT. Especially, the experimental results on the effect of the contents of rare-earth addition on the resistivity of BZT ceramics were investigated, demonstrating that the samples with x = 0.4 and x = 0.6 could be semiconducting in air atmosphere.

  4. Nonlinear photonic crystal waveguide structures based on barium titanate thin films and their optical properties

    Science.gov (United States)

    Liu, Zhifu; Lin, Pao-Tai; Wessels, Bruce W.; Yi, Fei; Ho, Seng-Tiong

    2007-05-01

    Nonlinear photonic crystal waveguide structures were fabricated from barium titanate thin films using nanolithography. A cascaded Bragg reflector using a strip waveguide was designed and analyzed. Both simulation and experimental results show that there is sufficient refractive index contrast to form a stop band by only etching through the Si3N4 strip layer. The band gap of the Bragg reflector can be engineered through control of the Bragg spacing, thickness, and etching depth of the strip layer. The transmission spectrum of the Bragg reflector waveguide was measured over the spectral range of 1500-1580nm. A 27nm wide stop band was obtained for a millimeter long sample. The nonlinear photonic crystal waveguides are potentially suitable as tunable filters, optical switches, and ultrawide bandwidth modulators.

  5. High temperature dielectric relaxation anomaly of Y3+ and Mn2+ doped barium strontium titanate ceramics

    Science.gov (United States)

    Yan, Shiguang; Mao, Chaoliang; Wang, Genshui; Yao, Chunhua; Cao, Fei; Dong, Xianlin

    2014-10-01

    Relaxation like dielectric anomaly is observed in Y3+ and Mn2+ doped barium strontium titanate ceramics when the temperature is over 450 K. Apart from the conventional dielectric relaxation analysis method with Debye or modified Debye equations, which is hard to give exact temperature dependence of the relaxation process, dielectric response in the form of complex impedance, assisted with Cole-Cole impedance model corrected equivalent circuits, is adopted to solve this problem and chase the polarization mechanism in this paper. Through this method, an excellent description to temperature dependence of the dielectric relaxation anomaly and its dominated factors are achieved. Further analysis reveals that the exponential decay of the Cole distribution parameter n with temperature is confirmed to be induced by the microscopic lattice distortion due to ions doping and the interaction between the defects. At last, a clear sight to polarization mechanism containing both the intrinsic dipolar polarization and extrinsic distributed oxygen vacancies hopping response under different temperature is obtained.

  6. A plasmonic modulator based on metal-insulator-metal waveguide with barium titanate core

    DEFF Research Database (Denmark)

    Babicheva, Viktoriia; Lavrinenko, Andrei

    2013-01-01

    We design a plasmonic modulator which can be utilized as a compact active device in photonic integrated circuits. The active material, barium titanate (BaTiO3), is sandwiched between metal plates and changes its refractive index under applied voltage. Some degree of switching of ferroelectric...

  7. Electronic structure of barium strontium titanate by soft-x-ray absorption spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Uehara, Y. [Mitsubishi Electric Co., Hyogo (Japan); Underwood, J.H.; Gullikson, E.M.; Perera, R.C.C. [Ernest Orlando Lawrence Berkeley National Lab., CA (United States)

    1997-04-01

    Perovskite-type titanates, such as Strontium Titanate (STO), Barium Titanate (BTO), and Lead Titanate (PTO) have been widely studied because they show good electric and optical properties. In recent years, thin films of Barium Strontium Titanate (BST) have been paid much attention as dielectrics of dynamic random access memory (DRAM) capacitors. BST is a better insulator with a higher dielectric constant than STO and can be controlled in a paraelectric phase with an appropriate ratio of Ba/Sr composition, however, few studies have been done on the electronic structure of the material. Studies of the electronic structure of such materials can be beneficial, both for fundamental physics research and for improving technological applications. BTO is a famous ferroelectric material with a tetragonal structure, in which Ti and Ba atoms are slightly displaced from the lattice points. On the other hand, BST keeps a paraelectric phase, which means that the atoms are still at the cubic lattice points. It should be of great interest to see how this difference of the local structure around Ti atoms between BTO and BST effects the electronic structure of these two materials. In this report, the authors present the Ti L{sub 2,3} absorption spectra of STO, BTO, and BST measured with very high accuracy in energy of the absorption features.

  8. Characterization of individual barium titanate nanorods and their assessment as building blocks of new circuit architectures

    International Nuclear Information System (INIS)

    In this work, we report on the integration of individual BaTiO3 nanorods into simple circuit architectures. Polycrystalline BaTiO3 nanorods were synthesized by electrophoretic deposition (EPD) of barium titanate sol into aluminium oxide (AAO) templates and subsequent annealing. Transmission electron microscopy (TEM) observations revealed the presence of slabs of hexagonal polymorphs intergrown within cubic grains, resulting from the local reducing atmosphere during the thermal treatment. Electrical measurements performed on individual BaTiO3 nanorods revealed resistivity values between 10 and 100 Ω cm, which is in good agreement with typical values reported in the past for oxygen-deficient barium titanate films. Consequently the presence of oxygen vacancies in their structure was indirectly validated. Some of these nanorods were tested as proof-of-concept humidity sensors. They showed reproducible responses towards different moisture concentrations, demonstrating that individual BaTiO3 nanorods may be integrated in complex circuit architectures with functional capacities.

  9. Characterization of individual barium titanate nanorods and their assessment as building blocks of new circuit architectures

    Science.gov (United States)

    Žagar, Kristina; Hernandez-Ramirez, Francisco; Prades, Joan Daniel; Morante, Joan Ramon; Rečnik, Aleksander; Čeh, Miran

    2011-09-01

    In this work, we report on the integration of individual BaTiO3 nanorods into simple circuit architectures. Polycrystalline BaTiO3 nanorods were synthesized by electrophoretic deposition (EPD) of barium titanate sol into aluminium oxide (AAO) templates and subsequent annealing. Transmission electron microscopy (TEM) observations revealed the presence of slabs of hexagonal polymorphs intergrown within cubic grains, resulting from the local reducing atmosphere during the thermal treatment. Electrical measurements performed on individual BaTiO3 nanorods revealed resistivity values between 10 and 100 Ω cm, which is in good agreement with typical values reported in the past for oxygen-deficient barium titanate films. Consequently the presence of oxygen vacancies in their structure was indirectly validated. Some of these nanorods were tested as proof-of-concept humidity sensors. They showed reproducible responses towards different moisture concentrations, demonstrating that individual BaTiO3 nanorods may be integrated in complex circuit architectures with functional capacities.

  10. Electrical Properties of Thin-Film Capacitors Fabricated Using High Temperature Sputtered Modified Barium Titanate

    OpenAIRE

    Robert Mamazza; Heinz Felzer; Martin Dubs; Glyn J. Reynolds; Martin Kratzer

    2012-01-01

    Simple thin-film capacitor stacks were fabricated from sputter-deposited doped barium titanate dielectric films with sputtered Pt and/or Ni electrodes and characterized electrically. Here, we report small signal, low frequency capacitance and parallel resistance data measured as a function of applied DC bias, polarization versus applied electric field strength and DC load/unload experiments. These capacitors exhibited significant leakage (in the range 8–210 μA/cm2) and dielectric loss. Measur...

  11. Barium strontium titanate thin film varactors for room-temperature microwave device applications

    International Nuclear Information System (INIS)

    Recent progress in the development of barium strontium titanate thin film varactors for room temperature tunable microwave devices applications is reviewed, with emphasis on efforts towards the improvement in the quality of BST thin films and the fabrication issues crucial for the performance of microwave devices based on BST varactors. The paper provides examples of tunable microwave devices employing BST varactors. Other thin film materials currently competing with BST thin films are discussed. Topics which deserve further investigation are suggested. (topical review)

  12. Comparison of barium titanate thin films prepared by inkjet printing and spin coating

    OpenAIRE

    Jelena Vukmirović; Djordjije Tripković; Branimir Bajac; Sanja Kojić; Goran M. Stojanović; Vladimir V. Srdić

    2015-01-01

    In this paper, barium titanate films were prepared by different deposition techniques (spin coating, office Epson inkjet printer and commercial Dimatix inkjet printer). As inkjet technique requires special rheological properties of inks the first part of the study deals with the preparation of inks, whereas the second part examines and compares structural characteristics of the deposited films. Inks were synthesized by sol-gel method and parameters such as viscosity, particle size and surface...

  13. Synthesis of Barium Titanate from Titanyl Acylate Precursor by Sol-precipitate Method

    International Nuclear Information System (INIS)

    Nanometersize barium titanates (BaTiO3:BT) powders can be obtained by sol-precipitate method in the presence of polyoxyethylene (20) sorbiton monooleate (Tween-80) as a polymeric surface modifier in a strong alkaline solution (pH > 13). FT-IR, TG/DTA, SEM and XRD were used to investigate the effects of the surfactant influence on the morphology of the obtained BaTiO3 powders. With adding surfactant, a slower rate of hydrolyzation is observed and the rate of condensation is slower. The addition of Tween-80 surfactant in general leads to the formation of smaller particle size of BaTi)3 (70-100 nm). Without adding surfactant, larger particle size of BaTiO3 (100-200 nm) was obtained. The nanometersize BaTiO3 powders were readily sintered at 1000-1200C. Raman-active modes of tetragonal phase BT were detected from Raman spectra of BaTiO3 between 8000C to 12000C.

  14. Effects of Dysprosium Oxide Doping on Microstructure and Properties of Barium Titanate Ceramic

    Institute of Scientific and Technical Information of China (English)

    Pu Yongping; Ren Huijun; Chen Wei; Chen Shoutian

    2005-01-01

    Different amounts of dysprosium oxide were incorporated into barium titanate powders synthesized by hydrothermal method. Relations of substitution behaviors and lattice parameters with solid-solubility were studied. Furthermore, the influences of dysprosium oxide doping fraction on grain size and dielectric properties of barium titanate ceramic, including dielectric constant and breakdown electric field strength, were investigated via scanning electron microscope, X-ray diffraction and electric property tester. The results show that dysprosium oxide can restrain abnormal grain growth during sintering and that fine-grained and high density of barium titanate ceramic can result in excellent dielectric properties. As mass fraction of dysprosium oxide is 0.6%, the lattice parameters of grain increase to the maximum because of the lowest vacancy concentration. The electric property parameters are cited as following: dielectric constant (25 ℃) reaches 4100, the change in relative dielectric constant with temperature is -10% to 10% within the range of -15~100 ℃, breakdown electric field strength (alternating current) achieves 3.2 kV·mm-1, which can be used in manufacturing high voltage ceramic capacitors.

  15. Extended phase homogeneity and electrical properties of barium calcium titanate prepared by the wet chemical methods

    International Nuclear Information System (INIS)

    Ca-substituted BaTiO3 with extended homogeneity range upto ∼50 mol% CaTiO3 have been prepared by three different chemical routes namely carbonate-oxalate (COBCT), gel-carbonate (GCBCT), and gel-to-crystallite conversion (GHBCT) followed by heat treatment above 1150 deg. C. X-ray powder diffraction (XRD) data show continuous decrease in the tetragonal unit cell parameters as well as c0/a0 ratio with CaTiO3 content, which are in accordance with the substitution of smaller sized Ca2+ ions at the barium sites. The microstructure as well as the dielectric properties are greatly influenced by the cationic ratio, α=(Ba+Ca)/Ti. The grain size decreases with CaTiO3 content for the stoichiometric samples (α=1), whereas ultrafine microstructure is observed in the case of off-stoichiometric samples (α>1) for the whole compositional range of CaTiO3 concentrations. Sharper εr-T characteristics at lower calcium content and broader εr-T with decreased εmax, in the higher calcium range are observed in the case of α=1. Whereas nanometer grained ceramics exhibiting diffuse εr-T characteristics are obtained in the case of α>1. The positive temperature coefficient of resistivity (PTCR) is realized for barium calcium titanate ceramics having 0.3 at.% Sb as the donor dopant for higher CaTiO3 (typically 30 mol%) containing samples (α=1), indicating that Ca2+ ions do not behave as acceptors if they were to substitute at the Ti4+ sites. Whereas the off-stoichiometric (α>1) ceramics retained high resistivity, indicative of the Ti-site occupancy for Ca2+ in fine grain ceramics

  16. Dielectric properties of micropatterns consisting of barium titanate single-crystalline nanocubes

    Science.gov (United States)

    Mimura, Ken-ichi; Kato, Kazumi

    2015-10-01

    Micropatterns of barium titanate nanocube (BT NC) assemblies were fabricated by dip-coating self-assembly using a micropatterned mold made of Si or polyimide (PI). The microstructure of the BT NC assembly in the micropatterned mold made of PI showed the closest packing structure. This result indicated that the polymer wall in the micropatterns is swollen by the organic solvent used in the dip-coating self-assembly process. As a result, this swelling might work effectively for the self-assembly of the NCs with high ordering assisted by capillary force. Moreover, it is clarified that the line-and-space-molds with a taper angle and a large width were more useful for the self-assembly of BT NCs in microtrenches selectively. The micropatterned mold made of PI could be removed by immersing in N-methyl-2-pyrrolidone at 65 °C. The ordered structure was not destroyed during the removal process. Micropatterned BT NC capacitor structures were obtained by this method after sintering at 850 °C. The interfaces of BT NCs were conjugated face-to-face, as shown by the obtained high-resolution transmission electron microscopy (HR-TEM) cross-sectional profiles. This process has a great potential for fabricating patterned assemblies directly on substrates. The dielectric properties of BT NC micropatterned assemblies in micropatterned molds made of Si were also characterized and compared with those of BT NC assemblies on Pt/Si substrates without micropatterning.

  17. Dielectric relaxation investigations in barium strontium titanate glass-ceramics: Thermally stimulated depolarization current technique

    International Nuclear Information System (INIS)

    Different dielectric relaxation processes in barium strontium titanate glass-ceramics have been investigated using the thermally stimulated depolarization current (TSDC) technique. The TSDC results obtained from the glass-ceramics polarized under various polarization conditions show the presence of two peaks designated as A and B in ascending order of temperature, respectively. The peak A is determined to be of dipole origin and assumed to be associated with a defect complex. In addition, the peak B is due to space-charge polarization arising from the interface between the crystalline phases and the glass matrix. It is supposed to be associated with the relaxation of oxygen vacancies. The TSDC characteristics demonstrate that the degree of crystallinity in glass-ceramics is a predominant factor in deciding the features of dielectric relaxation mechanisms. TSDC plots for the BST glass-ceramic samples sintered at various temperatures with the same polarization conditions. (copyright 2014 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  18. Single-step synthesis of well-crystallized and pure barium titanate nanoparticles in supercritical fluids

    Science.gov (United States)

    Reverón, Helen; Aymonier, Cyril; Loppinet-Serani, Anne; Elissalde, Catherine; Maglione, Mario; Cansell, François

    2005-08-01

    Single-step synthesis of ultra-fine barium titanate powder with a crystallinity as high as 90% and without barium carbonate contamination has been successfully performed under supercritical conditions using a continuous-flow reactor in the temperature range 150-380 °C at 16 MPa. To synthesize this bimetallic oxide, alkoxides, ethanol and water were used. The influence of the synthesis parameters on the BaTiO3 powder characteristics was investigated. The results show that the water to alkoxide precursor ratio, the reactor temperature and the Ba:Ti molar ratio of alkoxide precursor play a major role in the crystallization of pure and well-crystallized BaTiO3 nanoparticles. The continuous mode of operation without post-treatments for powder washing, drying or crystallization increase the industrial interest.

  19. Nanocrystalline barium zirconate titanate synthesized at low temperature by an aqueous co-precipitation technique

    International Nuclear Information System (INIS)

    Single-phase nanocrystalline powder of barium zirconium titanate, Ba(Zr xTi1-x)O3 (BZT), x = 0.10, 0.20 and 0.30, was synthesized at low-temperature using an aqueous co-precipitation technique. X-ray diffraction (XRD) of the as-precipitated powder showed single-phase BZT formation. The decrease in precipitant concentration resulted in impurity barium carbonate phase formation. Transmission electron microscopy studies of as-prepared powders showed an average particle size of 30 nm and the crystallite size from XRD was estimated to be 13 nm. The microstructural studies of sintered bodies showed an average grain size of 4 μm and the dielectric and ferroelectric behaviour of BZT with 10 mol.% Zr is reported

  20. Hydrothermal Synthesis and Processing of Barium Titanate Nanoparticles Embedded in Polymer Films.

    Science.gov (United States)

    Toomey, Michael D; Gao, Kai; Mendis, Gamini P; Slamovich, Elliott B; Howarter, John A

    2015-12-30

    Barium titanate nanoparticles embedded in flexible polymer films were synthesized using hydrothermal processing methods. The resulting films were characterized with respect to material composition, size distribution of nanoparticles, and spatial location of particles within the polymer film. Synthesis conditions were varied based on the mechanical properties of the polymer films, ratio of polymer to barium titanate precursors, and length of aging time between initial formulations of the solution to final processing of nanoparticles. Block copolymers of poly(styrene-co-maleic anhydride) (SMAh) were used to spatially separate titanium precursors based on specific chemical interactions with the maleic anhydride moiety. However, the glassy nature of this copolymer restricted mobility of the titanium precursors during hydrothermal processing. The addition of rubbery butadiene moieties, through mixing of the SMAh with poly(styrene-butadiene-styrene) (SBS) copolymer, increased the nanoparticle dispersion as a result of greater diffusivity of the titanium precursor via higher mobility of the polymer matrix. Additionally, an aminosilane was used as a means to retard cross-linking in polymer-metalorganic solutions, as the titanium precursor molecules were shown to react and form networks prior to hydrothermal processing. By adding small amounts of competing aminosilane, excessive cross-linking was prevented without significantly impacting the quality and composition of the final barium titanate nanoparticles. X-ray diffraction and X-ray photoelectron spectroscopy were used to verify nanoparticle compositions. Particle sizes within the polymer films were measured to be 108 ± 5 nm, 100 ± 6 nm, and 60 ± 5 nm under different synthetic conditions using electron microscopy. Flexibility of the films was assessed through measurement of the glass transition temperature using dynamic mechanical analysis. Dielectric permittivity was measured using an impedance analyzer. PMID

  1. Properties of composition sinter prepared from fibrous barium titanate and nanometer zirconia

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Fibrous Batium Titanate particles,30-50 μm long,prepared by a hydrothermal reaction,and the monoclinic phase and nanometer Zirconia,11.6 nm long were prepared by citric acid reaction respectively.Then,the two were composite sintered to produce a new functional material by making full use of crystal-axis orientation of fibers and the activity of nanometer powder.The analydid of composition and microstructure of the new material in terms of XRD and SEM.shows that the solid solution was formed between fibers and nanometer powder,and the distance between lattice(d value)of Barium Titanate changed.But the crystal-axis orientations of fibers remain unchanged.

  2. Development of a metrology method for composition and thickness of barium strontium titanate thin films

    International Nuclear Information System (INIS)

    Thin films of barium strontium titanate (BST) are being investigated as the charge storage dielectric in advanced memory devices, due to their promise for high dielectric constant. Since the capacitance of BST films is a function of both stoichiometry and thickness, implementation into manufacturing requires precise metrology methods to monitor both of these properties. This is no small challenge, considering the BST film thicknesses are 60 nm or less. A metrology method was developed based on X-ray Fluorescence and applied to the measurement of stoichiometry and thickness of BST thin films in a variety of applications

  3. Spectroscopic studies of Nb- and Hf-doped barium titanate crystals

    International Nuclear Information System (INIS)

    One studied the absorption spectra of barium titanate single crystals doped with niobium and hafnium, as well as, those of pure BaTiO3 single crystal. One detected peculiarities both under ferro-paraelectric phase transition at 120 deg C and in paraelectric phase within 150-170 deg C. One observed increase of intensity of λmax = 700 nm band within beyond 150-170 deg C range that was adequate to the increase of number of F-centres

  4. Comparison of barium titanate thin films prepared by inkjet printing and spin coating

    Directory of Open Access Journals (Sweden)

    Jelena Vukmirović

    2015-09-01

    Full Text Available In this paper, barium titanate films were prepared by different deposition techniques (spin coating, office Epson inkjet printer and commercial Dimatix inkjet printer. As inkjet technique requires special rheological properties of inks the first part of the study deals with the preparation of inks, whereas the second part examines and compares structural characteristics of the deposited films. Inks were synthesized by sol-gel method and parameters such as viscosity, particle size and surface tension were measured. Deposited films were examined by optical and scanning electron microscopy, XRD analysis and Raman spectroscopy. The findings consider advantages and disadvantages of the particular deposition techniques.

  5. Direct large-scale synthesis of perovskite barium strontium titanate nano-particles from solutions

    International Nuclear Information System (INIS)

    This paper reports a wet chemical synthesis technique for large-scale fabrication of perovskite barium strontium titanate nano-particles near room temperature and under ambient pressure. The process employs titanium alkoxide and alkali earth hydroxides as starting materials and involves very simple operation steps. Particle size and crystallinity of the particles are controllable by changing the processing parameters. Observations by X-ray diffraction, scanning electron microscopy and transmission electron microscopy TEM indicate that the particles are well-crystallized, chemically stoichiometric and ∼50nm in diameter. The nanoparticles can be sintered into ceramics at 1150 deg. C and show typical ferroelectric hysteresis loops

  6. Contribution of the irreversible displacement of domain walls to the piezoelectric effect in barium titanate and lead zirconate titanate ceramics

    CERN Document Server

    Damjanovic, D

    1997-01-01

    The contribution from the irreversible displacement of non-180 deg domain walls to the direct longitudinal piezoelectric d sub 3 sub 3 coefficient of BaTiO sub 3 and Pb(Zr, Ti)O sub 3 ceramics was determined quantitatively by using the Rayleigh law. Effects of the crystal structure and microstructure of the ceramics as well as the external d.c. pressure on the domain wall contribution to d sub 3 sub 3 were examined. In barium titanate, this domain wall contribution is large (up to 35% of the total d sub 3 sub 3 , under the experimental conditions used) and dependent on the external d.c. pressure in coarse grained ceramics, and much smaller and independent of the external d.c. pressure in fine-grained samples. The presence of internal stresses in fine-grained ceramics could account for the observed behaviour. The analysis shows that the domain-wall contribution to the d sub 3 sub 3 in lead zirconate titanate ceramics is large in compositions close to the morphotropic phase boundary that contain a mixture of te...

  7. Experimental investigation of the effect of titanium dioxide and barium titanate additives on DC transient currents in low density polyethylene

    DEFF Research Database (Denmark)

    Khalil, M.S; Henk, Peter O; Henriksen, Mogens;

    1988-01-01

    The effect of titanium dioxide as a semiconductive additive and barium titanate as a highly polar additive on the DC transient currents in low-density polyethylene is investigated. Experiments were made using thick specimens under a high electric field (>25×106 V/m) and a constant temperature of 40...

  8. Effect of dispersant on preparation of barium-strontium titanate powders through oxalate co-precipitation method

    International Nuclear Information System (INIS)

    The quantitative precipitation of barium-strontium titanyl oxalate: (Ba0.6Sr0.4TiO(C2O4)2.4H2O, BSTO) precursor powders were successfully prepared through oxalate co-precipitation method. The pyrolysis of BSTO at 800 deg. C/4 h produced the barium-strontium titanate (Ba0.6Sr0.4TiO3, BST) powders. Two kinds of dispersants namely ammonium salt of poly mathacrylic acid (PMAA-NH4) and polyethylene glycol (PEG) were added respectively during the co-precipitation procedure. The powders were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM), etc. Experimental results show that the addition of the dispersants reduced the productive rate of BST powders. The BSTO and BST powders obtained by aforementioned technique without dispersants were homogeneous with quasi-orbicular morphology. The particles grew into spindle shape with the effect of PEG. The morphology homogeneity was broke with small grains as well as large agglomerated particles concurrent when PMAA-NH4 was added. The mechanism of the effect of the two dispersants was investigated in detail

  9. A modified method for barium titanate nanoparticles synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Ashiri, R., E-mail: ro_ashiri@iaud.ac.ir [Department of Materials Science and Engineering, Dezful Branch, Islamic Azad University, P.O. Box 313, Dezful (Iran, Islamic Republic of); Nemati, Ali [Department of Materials Science and Engineering, Sharif University of Technology, P.O. Box 11365-9466, Tehran (Iran, Islamic Republic of); Sasani Ghamsari, M. [Solid State Lasers Research Group, Laser and Optics Research School, NSTRI, P.O. Box 11365-8486, Tehran (Iran, Islamic Republic of); Sanjabi, S. [Nanomaterials Group, Department of Materials Engineering, Tarbiat Modares University, P.O. Box 14115-143, Tehran (Iran, Islamic Republic of); Aalipour, M. [Department of Materials Science and Engineering, Sharif University of Technology, P.O. Box 11365-9466, Tehran (Iran, Islamic Republic of)

    2011-12-15

    Graphical abstract: TEM micrograph of BaTiO{sub 3} powders synthesized at 800 Degree-Sign C for 1 h and SAED pattern (inset) of BaTiO{sub 3} powders. In this research, a modified, cost efficient and quick sol-gel procedure was used for preparation of BaTiO{sub 3} nanoparticles. Highlights: Black-Right-Pointing-Pointer A modified process was used for preparation. Black-Right-Pointing-Pointer The modified process led to preparation of finer BaTiO{sub 3} nanoparticles in shorter period of time and lower temperature contrary to previous researches. Black-Right-Pointing-Pointer The proposed procedure seems to be more preferable for mass production. -- Abstract: In this research, a modified, cost effective sol-gel procedure applied to synthesize BaTiO{sub 3} nanoparticles. XRD and electron microscopy (SEM and TEM) applied for microstructural characterization of powders. The obtained results showed that the type of precursors, their ratio and the hydrolysis conditions had a great effect on time, temperature and therefore the costs of the synthesis process. By selection, utilization of optimized precursor's type, hydrolysis conditions, fine cubic BaTiO{sub 3} nanoparticles were synthesized at low temperature and in short time span (1 h calcination at 800 Degree-Sign C). The proposed procedure seems to be more preferable for mass production. The result indicated that the polymorphic transformation to tetragonal (ferroelectric characteristic) occurred at 900 Degree-Sign C, which might be an indication of being nanosized.

  10. Preparation, characterization, and manipulation of iron platinum, barium titanate, and vanadium oxide nanoparticles

    Science.gov (United States)

    Morris, William Homer, III

    2008-12-01

    New synthesis strategies for preparation of FePt, BaTiO 3, VO2, V2O3, V2O5 , and V6O13 nanoparticles are presented in this thesis. Electron microscopy, diffraction, elemental analysis, and physical property measurement studies confirm the composition and structure of the synthesized material. Also reported is size-selection of ferromagnetic nanoparticles by binding PEG (2000 MW) ligand to particle surfaces and fractionally precipitating more narrowed size cuts. Large (30--100 nm) ferromagnetic nanoparticles are prepared by employing vesicle templates. Barium titanate nanoparticles with an average diameter of 3.8 nm have been synthesized within inverse micelles. A variety of vanadium oxide compositions within the nanometer size regime have been prepared using sol-gel chemistry.

  11. Studies on gas sensing performance of pure and modified barium strontium titanate thick film resistors

    Indian Academy of Sciences (India)

    G H Jain; L A Patil; P P Patil; U P Mulik; K R Patil

    2007-02-01

    Barium strontium titanate ((Ba0.87Sr0.13)TiO3–BST) ceramic powder was prepared by mechanochemical process. The thick films of different thicknesses of BST were prepared by screen-printing technique and gas-sensing performance of these films was tested for various gases. The films showed highest response and selectivity to ammonia gas. The effect of film thickness on gas response was also studied. As prepared BST thick films were surface modified by dipping them into an aqueous solution of titanium chloride (TiCl3) for different intervals of time. Surface modification shifted response to H2S gas suppressing the responses to ammonia and other gases. The surface modification, using dipping process, altered the adsorbate–adsorbent interactions, which gave the unusual sensitivity and selectivity effect. Sensitivity, selectivity, thermal stability, response and recovery time of the sensor were measured and presented.

  12. Multi-parameter sensing using high-k oxide of barium strontium titanate

    Energy Technology Data Exchange (ETDEWEB)

    Huck, Christina; Poghossian, Arshak; Baecker, Matthias; Schoening, Michael J. [Institute of Nano- and Biotechnologies (INB), FH Aachen, 52428, Juelich (Germany); Peter Gruenberg Institute (PGI-8), Forschungszentrum Juelich GmbH, 52525, Juelich (Germany); Reisert, Steffen; Kramer, Friederike [Institute of Nano- and Biotechnologies (INB), FH Aachen, 52428, Juelich (Germany); Begoyan, Vardges K.; Buniatyan, Vahe V. [Department of Microelectronics and Biomedical Devices, State Engineering University of Armenia, 0009, Yerevan (Armenia)

    2015-06-15

    High-k perovskite oxide of barium strontium titanate (BST) represents a very attractive multi-functional transducer material for the development of (bio-)chemical sensors. In this work, a Si-based sensor chip containing Pt interdigitated electrodes covered with a thin BST layer (485 nm) has been developed for multi-parameter chemical sensing. The chip has been applied for the contactless measurement of the electrolyte conductivity, the detection of adsorbed charged macromolecules (positively charged polyelectrolytes of polyethylenimine) and the concentration of hydrogen peroxide (H{sub 2}O{sub 2}) vapor. The experimental results of functional testing of individual sensors are presented. The mechanism of the BST sensitivity to charged polyelectrolytes and H{sub 2}O{sub 2} vapor has been proposed and discussed. (copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  13. Multi-parameter sensing using high-k oxide of barium strontium titanate

    International Nuclear Information System (INIS)

    High-k perovskite oxide of barium strontium titanate (BST) represents a very attractive multi-functional transducer material for the development of (bio-)chemical sensors. In this work, a Si-based sensor chip containing Pt interdigitated electrodes covered with a thin BST layer (485 nm) has been developed for multi-parameter chemical sensing. The chip has been applied for the contactless measurement of the electrolyte conductivity, the detection of adsorbed charged macromolecules (positively charged polyelectrolytes of polyethylenimine) and the concentration of hydrogen peroxide (H2O2) vapor. The experimental results of functional testing of individual sensors are presented. The mechanism of the BST sensitivity to charged polyelectrolytes and H2O2 vapor has been proposed and discussed. (copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  14. Tuned sensitivity towards H2S and NH3 with Cu doped barium strontium titanate materials

    International Nuclear Information System (INIS)

    The different amount of Cu-doped Barium Strontium Titanate (BST) thick film materials have been tested for their gas-sensing performances towards NH3 and H2S under dry and 50% relative humidity (RH) background conditions. The optimum NH3 sensitivity was attained with 0.1mol% Cu-doped BST whereas the selective detection of H2S was highlighted using 5mol% Cu-doped BST material. No cross-sensitivity effects to CO, NO2, CH4 and SO2 were observed for all tested materials operated at their optimum temperature (200°C) under humid conditions (50% RH). The presence of humidity clearly enhances the gas sensitivity to NH3 and H2S detection

  15. Microstructural studies of nanocrystalline barium zirconium titanate (BZT) for piezoelectric applications

    International Nuclear Information System (INIS)

    Lead-free piezoelectric ceramics based on barium titanate (BaTiO3) with substitution of Zr4+ were prepared using sol-gel method. The Ba(ZrxTi1-x)O3, (BZT) powders with x = 0.0, 0.1, 0.2 and 0.3 were pressed into pellets and sintered at 1250 °C for 2 h. Focusing on the effect of Zr4+ substitutions into BaTiO3 perovskite system, the phase transition and microstructural properties of BZT ceramics were studied using XRD, SEM and EDX spectroscopy. All X-ray diffractograms were fitted using Pawley refinement model. The XRD diffractograms revealed the progressive phase transition from tetragonal to cubic phase as Zr content increased. The crystallite exhibited decreasing trend and was supported by shrinkage in grain size. The EDX analysis confirmed the successful substitution of Ti4+ with Zr4+ in BaTiO3 crystal

  16. Microstructural, dielectric and magnetic properties of multiferroic composite system barium strontium titanate – nickel cobalt ferrite

    International Nuclear Information System (INIS)

    Multiferroic composites (1-x) Ba0.95Sr0.05TiO3 + (x) Ni0.8Co0.2Fe2O4 (where x = 0.1, 0.2, 0.3, 0.4) has been prepared by solid state reaction method. X-ray diffraction analysis of the composite samples confirmed the presence of both barium strontium titanate (BST) and nickel cobalt ferrite (NCF) phases. FESEM images indicated the well dispersion of NCF grains among BST grains. Dielectric constant and loss of the composite samples decreases with increase in frequency following Maxwell-Wagner relaxation mechanism. Composite sample with highest ferrite content possesses highest values of remanent and saturation magnetization

  17. Study of a Flexible Low Profile Tunable Dipole Antenna Using Barium Strontium Titanate Varactors

    Science.gov (United States)

    Cure, David; Weller, Thomas; Miranda, Felix A.

    2014-01-01

    In this paper a flexible low profile dipole antenna using a frequency selective surface (FSS) with interdigital barium strontium titanate (BST) varactor-tuned unit cells is presented. The varactor chips were placed only along one dimension of the FSS to avoid the use of vias and simplify the DC bias network. The antenna uses overlapping metallic plates that resemble fish scales as a ground plane to improve the flexibility of the multi-material stack structure. The measured data of the antenna demonstrate tunability from 2.42 GHz to 2.66 GHz and 1.3 dB gain drop when using overlapping metallic plates instead of continuous ground plane. The total antenna thickness is approximately lambda/24.

  18. Microstructure and blue photoluminescence enhancement of silicon nanoporous pillar array embedded in ferroelectric barium strontium titanate

    International Nuclear Information System (INIS)

    A silicon nanoporous pillar array (Si-NPA) with micrometer/nanometer hierarchical structure was fabricated by hydrothermal etching, followed by spin-coating barium strontium titanate (BST) on Si-NPA substrate. The photoluminescence (PL) spectra of the Si-NPA and BST/Si-NPA thin film were investigated. The emission band of freshly prepared Si-NPA located at ∼630 nm, and a blueshift at ∼425 nm as well as degradation in intensity after annealing at 600 deg. C for 1 h was observed, which might be explained by a quantum confinement effect model. BST ferroelectric material provided a static-electric field and induced the excited carriers in Si-NPA to migrate toward the opposite direction and recombine in an interfacial oxide layer. Therefore, BST enhanced blue emission of Si-NPA as well as passivated Si-NPA

  19. Influence of processing parameters on the structure and properties of barium strontium titanate ceramics

    International Nuclear Information System (INIS)

    Barium strontium titanate (BST) with the molar formula (Ba0.8Sr0.2TiO3) has been prepared by two different processing methods: mixed-oxide (BST-MO) and reaction-sintering (BST-RS). X-ray powder diffraction study shows differences in grain size and crystal symmetry for both these ceramics. The former shows a tetragonal symmetry while the latter presents a cubic symmetry. The occurrence of polar micro-regions associated with the higher chemical non-homogeneous distribution of ion defects from the influence of the processing parameters is the main reason for the higher peak dielectric constant (Km), the higher remanent polarization (Pr), the higher coercive field (Ec), the higher peak current density (Jm), and the lower temperature of peak dielectric constant (Tm) in BST-MO ceramics

  20. Microstructural, dielectric and magnetic properties of multiferroic composite system barium strontium titanate – nickel cobalt ferrite

    Energy Technology Data Exchange (ETDEWEB)

    Pahuja, Poonam, E-mail: poonampahuja123@gmail.com; Tandon, R. P., E-mail: ram-tandon@hotmail.com [Department of Physics and Astrophysics, University of Delhi, Delhi-110007 (India)

    2015-05-15

    Multiferroic composites (1-x) Ba{sub 0.95}Sr{sub 0.05}TiO{sub 3} + (x) Ni{sub 0.8}Co{sub 0.2}Fe{sub 2}O{sub 4} (where x = 0.1, 0.2, 0.3, 0.4) has been prepared by solid state reaction method. X-ray diffraction analysis of the composite samples confirmed the presence of both barium strontium titanate (BST) and nickel cobalt ferrite (NCF) phases. FESEM images indicated the well dispersion of NCF grains among BST grains. Dielectric constant and loss of the composite samples decreases with increase in frequency following Maxwell-Wagner relaxation mechanism. Composite sample with highest ferrite content possesses highest values of remanent and saturation magnetization.

  1. Barium Titanate Nanoparticles: Highly Cytocompatible Dispersions in Glycol-chitosan and Doxorubicin Complexes for Cancer Therapy

    Directory of Open Access Journals (Sweden)

    Danti Serena

    2010-01-01

    Full Text Available Abstract In the latest years, innovative nanomaterials have attracted a dramatic and exponentially increasing interest, in particular for their potential applications in the biomedical field. In this paper, we reported our findings on the cytocompatibility of barium titanate nanoparticles (BTNPs, an extremely interesting ceramic material. A rational and systematic study of BTNP cytocompatibility was performed, using a dispersion method based on a non-covalent binding to glycol-chitosan, which demonstrated the optimal cytocompatibility of this nanomaterial even at high concentration (100 μg/ml. Moreover, we showed that the efficiency of doxorubicin, a widely used chemotherapy drug, is highly enhanced following the complexation with BTNPs. Our results suggest that innovative ceramic nanomaterials such as BTNPs can be realistically exploited as alternative cellular nanovectors.

  2. Ferroelectric domain pattern in barium titanate single crystals studied by means of digital holographic microscopy

    Science.gov (United States)

    Mokrý, Pavel; Psota, Pavel; Steiger, Kateřina; Václavík, Jan; Doleček, Roman; Vápenka, David; Lédl, Vít

    2016-06-01

    In this article, we report on the observation of a ferroelectric domain pattern in the whole volume of the ferroelectric barium titanate single crystal by means of digital holographic microscopy (DHM). Our particular implementation of DHM is based on the Mach–Zehnder interferometer and the numerical processing of data employs the angular spectrum method. A modification of the DHM technique, which allows a fast and accurate determination of the domain walls, i.e. narrow regions separating the antiparallel domains, is presented. Accuracy and sensitivity of the method are discussed. Using this approach, the determination of important geometric parameters of the ferroelectric domain patterns (such as domain spacing or the volume fraction of the anti-parallel domains) is possible. In addition to the earlier DHM studies of domain patterns in lithium niobate and lithium tantalate, our results indicate that the DHM is a convenient method to study a dynamic evolution of ferroelectric domain patterns in all perovskite single crystals.

  3. Poly (vinylidene fluoride-trifluoroethylene/barium titanate nanocomposite for ferroelectric nonvolatile memory devices

    Directory of Open Access Journals (Sweden)

    Uvais Valiyaneerilakkal

    2013-04-01

    Full Text Available The effect of barium titanate (BaTiO3 nanoparticles (particle size <100nm on the ferroelectric properties of poly (vinylidenefluoride-trifluoroethylene P(VDF-TrFE copolymer has been studied. Different concentrations of nanoparticles were added to P(VDF-TrFE using probe sonication, and uniform thin films were made. Polarisation - Electric field (P-E hysteresis analysis shows an increase in remnant polarization (Pr and decrease in coercive voltage (Vc. Piezo-response force microscopy analysis shows the switching capability of the polymer composite. The topography and surface roughness was studied using atomic force microscopy. It has been observed that this nanocomposite can be used for the fabrication of non-volatile ferroelectric memory devices.

  4. Study of grain boundary tunneling in barium-titanate ceramic films

    CERN Document Server

    Wong, H; Poon, M C

    1999-01-01

    The temperature and the electric-field dependences of the current-voltage characteristics and the low-frequency noise of barium-titanate ceramic films are studied. An abnormal field dependence is observed in the resistivity of BaTiO sub 3 materials with a small average grain size. In addition, experiments show that the low-frequency noise behaviors are governed by grain-boundary tunneling at room temperature and by trapping-detrapping of grain-boundary states at temperatures above the Curie point. Physical models for the new observations are developed. Results suggest that grain-boundary tunneling of carriers is as important as the double Schottky barrier in the current conduction in BaTiO sub 3 materials with small grain sizes.

  5. Optimized growth and dielectric properties of barium titanate thin films on polycrystalline Ni foils

    Institute of Scientific and Technical Information of China (English)

    Liang Wei-Zheng; Ji Yan-Da; Nan Tian-Xiang; Huang Jiang; Zeng Hui-Zhong; Du Hui; Chen Chong-Lin; Lin Yuan

    2012-01-01

    Barium titanate (BTO) thin films were deposited on polycrystalline Ni foils by using the polymer assisted deposition (PAD) technique.The growth conditions including ambient and annealing temperatures were carefully optimized based on thermal dynamic analysis to control the oxidation processing and interdiffusion.Crystal structures,surface morphologies,and dielectric performance were examined and compared for BTO thin films annealed under different temperatures.Correlations between the fabrication conditions,microstructures,and dielectric properties were discussed.BTO thin films fabricated under the optimized conditions show good crystalline structure and promising dielectric properties with εr ~ 400 and tanδ < 0.025 at 100 kHz.The data demonstrate that BTO films grown on polycrystalline Ni substrates by PAD are promising in device applications.

  6. Investigation of thickness effects on the dielectric constant barium strontium titanate thin films

    CERN Document Server

    Grattan, L J

    2002-01-01

    The collapse in dielectric constant at small thickness commonly observed in ferroelectric thin films was measured and investigated in barium strontium titanate (Ba sub 0 sub . sub 5 Sr sub 0 sub . sub 5 TiO sub 3). The possible mechanisms responsible for this effect are reviewed. Functional measurements were performed on BST thin films, of 7.5 to 950 nm, by incorporating them into capacitor structures with bottom electrodes of strontium ruthenate (SRO) and thermally- evaporated Au top electrodes. A discussion on thin film growth considerations, optimal PLD conditions and the measurement techniques employed in the project is presented. The experimentally determined dielectric constant - thickness profile was fitted using the series capacitor model assuming low dielectric constant interfacial layers in series with the bulk. Consideration of the case where the combined 'dead layer' thickness was close to the total BST thickness revealed that, for this system, the total 'dead layer' thickness had to be less than ...

  7. Blocking effect of crystal–glass interface in lanthanum doped barium strontium titanate glass–ceramics

    International Nuclear Information System (INIS)

    Graphical abstract: The blocking effect of the crystal–glass interface on the carrier transport behavior in the lanthanum doped barium strontium titanate glass–ceramics: preparation and characterization. - Highlights: • La2O3 addition promotes the crystallization of the major crystalline phase. • The Z″ and M″ peaks exist a significant mismatch for 0.5 mol% La2O3 addition. • The Z″ and M″ peaks separate obviously for 1.0 mol% La2O3 addition. • Crystallite impedance decreases while crystal–glass interface impedance increases. • La2O3 addition increases blocking factor of the crystal–glass interface. - Abstract: The microstructures and dielectric properties in La2O3-doped barium strontium titanate glass–ceramics have been investigated by scanning electron microscopy (SEM) and impedance spectroscopy. SEM analysis indicated that La2O3 additive decreases the average crystallite size. Impedance spectroscopy revealed that the positions of Z″ and M″ peaks are close for undoped samples. When La2O3 concentration is 0.5 mol%, the Z″ and M″ peaks show a significant mismatch. Furthermore, these peaks separate obviously for 1.0 mol% La2O3 addition. With increasing La2O3 concentration, the contribution of the crystallite impedance becomes smaller, while the contribution of the crystal–glass interface impedance becomes larger. More interestingly, it was found that La2O3 additive increases blocking factor of the crystal–glass interface in the temperature range of 250–450 °C. This may be attributed to a decrease of activation energy of the crystallite and an increase of the crystal–glass interface area

  8. Electrical Properties of Thin-Film Capacitors Fabricated Using High Temperature Sputtered Modified Barium Titanate

    Directory of Open Access Journals (Sweden)

    Robert Mamazza

    2012-04-01

    Full Text Available Simple thin-film capacitor stacks were fabricated from sputter-deposited doped barium titanate dielectric films with sputtered Pt and/or Ni electrodes and characterized electrically. Here, we report small signal, low frequency capacitance and parallel resistance data measured as a function of applied DC bias, polarization versus applied electric field strength and DC load/unload experiments. These capacitors exhibited significant leakage (in the range 8–210 μA/cm2 and dielectric loss. Measured breakdown strength for the sputtered doped barium titanate films was in the range 200 kV/cm −2 MV/cm. For all devices tested, we observed clear evidence for dielectric saturation at applied electric field strengths above 100 kV/cm: saturated polarization was in the range 8–15 μC/cm2. When cycled under DC conditions, the maximum energy density measured for any of the capacitors tested here was ~4.7 × 10−2 W-h/liter based on the volume of the dielectric material only. This corresponds to a specific energy of ~8 × 10−3 W-h/kg, again calculated on a dielectric-only basis. These results are compared to those reported by other authors and a simple theoretical treatment provided that quantifies the maximum energy that can be stored in these and similar devices as a function of dielectric strength and saturation polarization. Finally, a predictive model is developed to provide guidance on how to tailor the relative permittivities of high-k dielectrics in order to optimize their energy storage capacities.

  9. Impedance spectroscopy and mechanical response of porous nanophase hydroxyapatite-barium titanate composite.

    Science.gov (United States)

    Dubey, Ashutosh Kumar; Kakimoto, Ken-Ichi

    2016-06-01

    The present study aims to develop the porous nanophase hydroxyapatite (HA)-barium titanate (BT) composite with reasonable mechanical and electrical properties as an electrically-active prosthetic orthopedic implant alternate. The porous samples (densification ~40-70%) with varying amounts of BT (0, 25, 35 and 100vol.%) in HA were synthesized using optimal spark plasma sintering conditions, which revealed the thermochemical stability between both the phases. The reasonably good combination of functional properties such as compressive [(236.00±44.90)MPa] and flexural [(56.18±5.82) MPa] strengths, AC conductivity [7.62×10(-9)(ohm-cm)(-1) at 10kHz] and relative permittivity [15.20 at 10kHz] have been achieved with nanostructured HA-25vol.% BT composite as far as significant sample porosity (~30%) is concerned. Detailed impedance spectroscopic analysis was performed to reveal the electrical microstructure of developed porous samples. The resistance and capacitance values (at 500°C) of grain (RG, CG) and grain boundary (RGB, CGB) for the porous HA-25vol.% BT composite are (1.3×10(7) ohm, 3.1×10(-11)F) and (1.6×10(7) ohm, 5.9×10(-10)F), respectively. Almost similar value of activation energy (~1-1.5eV) for grain and grain boundary has been observed for all the samples. The mechanism of conduction is found to be same for porous monolithic HA as well as composite samples. Relaxation spectroscopic analyses suggest that both the localized as well as long range charge carrier translocations are responsible for conduction in these samples. The degree of polarization of porous samples has been assessed by measuring thermally stimulated depolarization current of the poled samples. The depolarization current is observed to depend on the heating rate. The maximum current density, measured for HA-25vol.% BT sample at a heating rate of 1°C/min is 2.7nA/cm(2). Formation of oxygen vacancies due to the reduced atmosphere sintering contribute to the space charge polarization

  10. Electromagnetic wave absorption properties of barium titanate/carbon nanotube hybrid nanocomposites

    International Nuclear Information System (INIS)

    Highlights: • BTO/CNT hybrid nanocomposites was prepared by sol–gel method. • BTO/CNT 60 wt.%, t = 1.1 mm showed a minimum reflection loss of ∼−56.5 dB. • Weight fraction and thickness can be manipulated for various absorption bands. - Abstract: Barium titanate/carbon nanotube (BTO/CNT) hybrid nanocomposites were fabricated by sol–gel method. The BTO/CNT hybrid nanomaterials were characterized using X-ray diffraction, transmission electron microscopy, field emission scanning electron microscopy, Raman and X-ray photoelectron spectroscopy. The BTO/CNT hybrid nanomaterials were then loaded in paraffin wax with different weight percentage, and pressed into toroidal shape with thickness of 1.0 mm to evaluate their complex permittivity and complex permeability using vector network analyzer. The reflection loss of the samples was calculated according to their measured complex permittivity and permeability. The minimum reflection loss of the BTO/CNT 60 wt.% hybrid nanocomposites sample with a thickness of 1.0 mm reached 29.6 dB (over 99.9% absorption) at 13.6 GHz, and also exhibited a wide response bandwidth where the frequency bandwidth of the reflection loss of less than −10 dB (over 90% absorption) was from 12.1 to 13.8 GHz. The BTO/CNT 60 wt.% hybrid nanocomposites with thickness of 1.1 mm showed a minimum reflection loss of ∼−56.5 dB (over 99.999% absorption) at 13.2 GHz and was the best absorber when compared with the other samples of different thickness. The reflection loss peak shifted to lower frequency and wider response bandwidth can be obtained as the thickness of the samples increased. The capability to modulate the absorption band of these samples to suit various applications in different frequency bands simply by manipulating their weight percentage and thickness indicates that these hybrid nanocomposites could be a promising electromagnetic wave absorber

  11. Optical behavior of Pr3+-doped barium titanate-calcium titanate material prepared by sol-gel method

    Science.gov (United States)

    Wang, Xiaoyan; Tang, Yanxue; He, Xiyun; Qiu, Pingsun; He, Qizhuang; Peng, Zifei; Sun, Dazhi

    2009-07-01

    Photoluminescence performances of Pr-doped alkaline-earth titanates (Ba,Ca)TiO3 (with rich barium) prepared by a solgel technique are investigated at room temperature. A relatively strong red luminescence is observed in (Ba0.80Ca0.20)TiO3 material when Pr-BaTiO3 material does not exhibit obvious red luminescence. The phenomenon is discussed with respect to the substitute of Ca and the two-photon luminescence effect. The red luminescence is enhanced by a fast thermal treatment. The wavelength range of luminescence near red and infrared light is broadened by the same process as well. These behaviors are ascribed to the randomization of distribution of Ca and Ba at A site in ABO3 perovskite structure. The experimental results provide not only a possible way to develop new materials with pastel visual impression, but also a potential technique to modify photoluminescence properties that can be controlled by external fields because the microscopic structure of BaTiO3, such as electric domains, can be changed by electric field, temperature, and so on.

  12. Low-Temperature Synthesis and Thermodynamic and Electrical Properties of Barium Titanate Nanorods

    Directory of Open Access Journals (Sweden)

    Florentina Maxim

    2015-01-01

    Full Text Available Studies regarding the morphology dependence of the perovskite-type oxides functional materials properties are of recent interest. With this aim, nanorods (NRs and nanocubes (NCs of barium titanate (BaTiO3 have been successfully synthesized via a hydrothermal route at temperature as low as 408 K, employing barium acetate, titanium isopropoxide, and sodium hydroxide as reagents without any surfactant or template. Scanning electron microscopy (SEM, transmission electron microscopy (TEM, and X-ray powder diffraction (XRD, used for the morphology and structure analyses, showed that the NRs were formed by an oriented attachment of the NCs building-blocks with 20 nm average crystallites size. The thermodynamic properties represented by the relative partial molar free energies, enthalpies, and entropies of the oxygen dissolution in the perovskite phase, as well as the equilibrium partial pressure of oxygen, indicated that NRs powders have lower oxygen vacancies concentration than the NCs. This NRs characteristic, together with higher tetragonallity of the structure, leads to the enhancement of the dielectric properties of BaTiO3 ceramics. The results presented in this work show indubitably the importance of the nanopowders morphology on the material properties.

  13. Size effects of 109° domain walls in rhombohedral barium titanate single crystals—A molecular statics analysis

    Energy Technology Data Exchange (ETDEWEB)

    Endres, Florian, E-mail: florian.endres@ltm.uni-erlangen.de; Steinmann, Paul, E-mail: paul.steinmann@ltm.uni-erlangen.de [Department of Mechanical Engineering, University of Erlangen - Nuremberg, Paul-Gordan Str. 3, 91052 Erlangen (Germany)

    2016-01-14

    Ferroelectric functional materials are of great interest in science and technology due to their electromechanically coupled material properties. Therefore, ferroelectrics, such as barium titanate, are modeled and simulated at the continuum scale as well as at the atomistic scale. Due to recent advancements in related manufacturing technologies the modeling and simulation of smart materials at the nanometer length scale is getting more important not only to predict but also fundamentally understand the complex material behavior of such materials. In this study, we analyze the size effects of 109° nanodomain walls in ferroelectric barium titanate single crystals in the rhombohedral phase using a recently proposed extended molecular statics algorithm. We study the impact of domain thicknesses on the spontaneous polarization, the coercive field, and the lattice constants. Moreover, we discuss how the electromechanical coupling of an applied electric field and the introduced strain in the converse piezoelectric effect is affected by the thickness of nanodomains.

  14. Size effects of 109° domain walls in rhombohedral barium titanate single crystals—A molecular statics analysis

    International Nuclear Information System (INIS)

    Ferroelectric functional materials are of great interest in science and technology due to their electromechanically coupled material properties. Therefore, ferroelectrics, such as barium titanate, are modeled and simulated at the continuum scale as well as at the atomistic scale. Due to recent advancements in related manufacturing technologies the modeling and simulation of smart materials at the nanometer length scale is getting more important not only to predict but also fundamentally understand the complex material behavior of such materials. In this study, we analyze the size effects of 109° nanodomain walls in ferroelectric barium titanate single crystals in the rhombohedral phase using a recently proposed extended molecular statics algorithm. We study the impact of domain thicknesses on the spontaneous polarization, the coercive field, and the lattice constants. Moreover, we discuss how the electromechanical coupling of an applied electric field and the introduced strain in the converse piezoelectric effect is affected by the thickness of nanodomains

  15. Size effects of 109° domain walls in rhombohedral barium titanate single crystals—A molecular statics analysis

    Science.gov (United States)

    Endres, Florian; Steinmann, Paul

    2016-01-01

    Ferroelectric functional materials are of great interest in science and technology due to their electromechanically coupled material properties. Therefore, ferroelectrics, such as barium titanate, are modeled and simulated at the continuum scale as well as at the atomistic scale. Due to recent advancements in related manufacturing technologies the modeling and simulation of smart materials at the nanometer length scale is getting more important not only to predict but also fundamentally understand the complex material behavior of such materials. In this study, we analyze the size effects of 109° nanodomain walls in ferroelectric barium titanate single crystals in the rhombohedral phase using a recently proposed extended molecular statics algorithm. We study the impact of domain thicknesses on the spontaneous polarization, the coercive field, and the lattice constants. Moreover, we discuss how the electromechanical coupling of an applied electric field and the introduced strain in the converse piezoelectric effect is affected by the thickness of nanodomains.

  16. Nanocomposite thin films for miniaturized multi-ayer ceramic capacitors prepared from barium titanate nanoparticle based hybrid solutions

    OpenAIRE

    Schneller, T.; Halder, S; Waser, R.; Pithan, C.; Dornseiffer, J.; Shiratori, Y; Houben, L.; Vyshnavi, N.; Majumber, S.B.

    2011-01-01

    In the present work a flexible approach for the wet chemical processing of nanocomposite functional thin films is demonstrated. Barium titanate (BTO) based nanocomposite thin films for future miniaturized multi-layer ceramic capacitors are chosen as model systems to introduce the concept of "hybrid solutions" which consist of stabile mixtures of reverse micelle derived BTO nanoparticle dispersions and conventional molecular precursor solutions of either the same (BTO:BTO) or a specifically di...

  17. Site-selective spectroscopy of the solid-state defect chemistry in erbium-doped barium titanate.

    Science.gov (United States)

    Bak, John D; Wright, John C

    2005-10-01

    Erbium-doped barium titanate crystals were studied by laser-induced fluorescence spectroscopy. Thirteen spectroscopically distinct erbium ion sites were found. The relative concentrations of the different sites changed as a function of the crystal and its preparation and treatment. One major site was present in all crystals. The site distribution was changed either by growing codoped crystals with donor (La3+) and acceptor (Sc3+) ions or by changing the temperature and partial pressure of the oxygen in the annealing atmosphere. Equilibrium calculations were done to simulate the defect distributions that result from the charge compensation of the erbium ions. Comparison with the observed dependence of the site spectral intensities indicated that the erbium enters the lattice on barium sites. We assigned the dominant site to an erbium ion on a barium site that is locally compensated by a barium vacancy, whereas the other lower-intensity sites corresponded to erbium ions that are locally compensated by an electron and a more complex center of an erbium, a barium vacancy, and a hole. The spectra of one sample showed that its defects were different and were characteristic of a sample that had not equilibrated. The new sites in this sample were assigned to erbium entering the lattice on a titanium site, which was then locally compensated by an oxygen vacancy or a hole. Heating equilibrated the sample and changed the erbium to a barium site. PMID:16853368

  18. Preparation of meta-stable phases of barium titanate by Sol-hydrothermal method

    International Nuclear Information System (INIS)

    Two low-cost chemical methods of sol–gel and the hydrothermal process have been strategically combined to fabricate barium titanate (BaTiO3) nanopowders. This method was tested for various synthesis temperatures (100 °C to 250 °C) employing barium dichloride (BaCl2) and titanium tetrachloride (TiCl4) as precursors and sodium hydroxide (NaOH) as mineralizer for synthesis of BaTiO3 nanopowders. The as-prepared BaTiO3 powders were investigated for structural characteristics using x-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The overall analysis indicates that the hydrothermal conditions create a gentle environment to promote the formation of crystalline phase directly from amorphous phase at the very low processing temperatures investigated. XRD analysis showed phase transitions from cubic - tetragonal - orthorhombic - rhombohedral with increasing synthesis temperature and calculated grain sizes were 34 – 38 nm (using the Scherrer formula). SEM and TEM analysis verified that the BaTiO3 nanopowders synthesized by this method were spherical in shape and about 114 - 170 nm in size. The particle distribution in both SEM and TEM shows that as the reaction temperature increases from 100 °C to 250 °C, the particles agglomerate. Selective area electron diffraction (SAED) shows that the particles are crystalline in nature. The study shows that choosing suitable precursor and optimizing pressure and temperature; different meta-stable (ferroelectric) phases of undoped BaTiO3 nanopowders can be stabilized by the sol-hydrothermal method

  19. Preparation of meta-stable phases of barium titanate by Sol-hydrothermal method

    Directory of Open Access Journals (Sweden)

    Mahalakshmi Selvaraj

    2015-11-01

    Full Text Available Two low-cost chemical methods of sol–gel and the hydrothermal process have been strategically combined to fabricate barium titanate (BaTiO3 nanopowders. This method was tested for various synthesis temperatures (100 °C to 250 °C employing barium dichloride (BaCl2 and titanium tetrachloride (TiCl4 as precursors and sodium hydroxide (NaOH as mineralizer for synthesis of BaTiO3 nanopowders. The as-prepared BaTiO3 powders were investigated for structural characteristics using x-ray diffraction (XRD, scanning electron microscopy (SEM and transmission electron microscopy (TEM. The overall analysis indicates that the hydrothermal conditions create a gentle environment to promote the formation of crystalline phase directly from amorphous phase at the very low processing temperatures investigated. XRD analysis showed phase transitions from cubic - tetragonal - orthorhombic - rhombohedral with increasing synthesis temperature and calculated grain sizes were 34 – 38 nm (using the Scherrer formula. SEM and TEM analysis verified that the BaTiO3 nanopowders synthesized by this method were spherical in shape and about 114 - 170 nm in size. The particle distribution in both SEM and TEM shows that as the reaction temperature increases from 100 °C to 250 °C, the particles agglomerate. Selective area electron diffraction (SAED shows that the particles are crystalline in nature. The study shows that choosing suitable precursor and optimizing pressure and temperature; different meta-stable (ferroelectric phases of undoped BaTiO3 nanopowders can be stabilized by the sol-hydrothermal method.

  20. Preparation of meta-stable phases of barium titanate by Sol-hydrothermal method

    Energy Technology Data Exchange (ETDEWEB)

    Selvaraj, Mahalakshmi [Department of Physics, R.D. Govt. Arts College, Tamilnadu, Sivaganga - 630561 (India); Department of Material Science, School of Chemistry, Madurai Kamaraj University, Tamilnadu Madurai-625 021 (India); Venkatachalapathy, V. [Department of Physics/Centre for Materials Science and Nanotechnology, University of Oslo, P.O Box 1048 Blindern, NO-0316 Oslo (Norway); Mayandi, J., E-mail: pearce@mtu.edu, E-mail: jeyanthinath@yahoo.co.in [Department of Material Science, School of Chemistry, Madurai Kamaraj University, Tamilnadu Madurai-625 021 (India); Department of Materials Science & Engineering, Michigan Technological University (United States); Karazhanov, S. [Department of Solar Energy, Institute for Energy Technology, P.O. Box 40, NO-2027 Kjeller (Norway); Pearce, J. M., E-mail: pearce@mtu.edu, E-mail: jeyanthinath@yahoo.co.in [Department of Materials Science & Engineering, Michigan Technological University (United States); Department of Electrical & Computer Engineering, Michigan Technological University (United States)

    2015-11-15

    Two low-cost chemical methods of sol–gel and the hydrothermal process have been strategically combined to fabricate barium titanate (BaTiO{sub 3}) nanopowders. This method was tested for various synthesis temperatures (100 °C to 250 °C) employing barium dichloride (BaCl{sub 2}) and titanium tetrachloride (TiCl{sub 4}) as precursors and sodium hydroxide (NaOH) as mineralizer for synthesis of BaTiO{sub 3} nanopowders. The as-prepared BaTiO{sub 3} powders were investigated for structural characteristics using x-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The overall analysis indicates that the hydrothermal conditions create a gentle environment to promote the formation of crystalline phase directly from amorphous phase at the very low processing temperatures investigated. XRD analysis showed phase transitions from cubic - tetragonal - orthorhombic - rhombohedral with increasing synthesis temperature and calculated grain sizes were 34 – 38 nm (using the Scherrer formula). SEM and TEM analysis verified that the BaTiO{sub 3} nanopowders synthesized by this method were spherical in shape and about 114 - 170 nm in size. The particle distribution in both SEM and TEM shows that as the reaction temperature increases from 100 °C to 250 °C, the particles agglomerate. Selective area electron diffraction (SAED) shows that the particles are crystalline in nature. The study shows that choosing suitable precursor and optimizing pressure and temperature; different meta-stable (ferroelectric) phases of undoped BaTiO{sub 3} nanopowders can be stabilized by the sol-hydrothermal method.

  1. Synthesis, characterization and thermochemistry of Cs-, Rb- and Sr-substituted barium aluminium titanate hollandites

    International Nuclear Information System (INIS)

    Highlights: • Cs-, Rb- and Sr-substituted barium titanate hollandites were synthesized using sol–gel methods. • Chemical compositions were determined by electron microprobe analyses. • Crystal structures were analyzed using powder synchrotron X-ray diffraction coupled with Rietveld refinements. • Enthalpies of formation were measured using high temperature oxide melt solution calorimetry. • Stability relations with respect to BaTiO3 and SrTiO3 perovskites and other oxides were determined. - Abstract: Titanate hollandites are of considerable interest for immobilization of radioactive Cs, its daughter product Ba and related radionuclides Rb and Sr. In this study, we synthesized three hollandites, Ba1.18Cs0.21Al2.44Ti5.53O16, Ba1.17Rb0.19Al2.46Ti5.53O16 and Ba1.14Sr0.10Al2.38Ti5.59O16, using sol–gel methods. Rietveld analysis of synchrotron XRD data shows that they adopt the tetragonal structure (space group I4/m), and their cell parameters increase with increasing cation size (Sr2+ → Rb+ → Cs+). Standard enthalpies of formation of these hollandites were determined from drop solution calorimetric measurements with lead borate as the solvent at 973 K. Their formation enthalpies are similar, consistent with the occurrence of extensive cation substitutions in hollandites. Further energetic analysis with respect to BaTiO3 and SrTiO3 perovskites and other oxides reveals decreased thermodynamic stability from Cs- to Rb- to Sr-hollandite. This trend is consistent with the phase assemblage observed in Synroc, where Cs+, Rb+ and Ba2+ enter into hollandite, whereas Sr2+ occurs in perovskite

  2. Ion-beam synthesis and the studies of nanocomposite multiferroics based on barium titanate

    International Nuclear Information System (INIS)

    Co+ and Fe+ ions were implanted into single-crystalline barium titanate (BaTiO3) with fluences of (0.5−1.5)x1017 ion/cm2 to synthesize new multiferroic materials. High-fluence 3d-ion implantation results in the formation of Co (or Fe) nanoparticles with sizes of 5-10 nm in the irradiated layer of BaTiO3. With increasing the fluence both Co- and Fe-implanted BaTiO3 samples reveal at first superparamagnetic, and then ferromagnetic properties at room temperature. The strong shift of ferromagnetic resonance line under dc electric field and magnetocapacitance effects were observed in Co-implanted BaTiO3. These observations are a good evidence of the magnetoelectric coupling in Co-implanted BaTiO3. Our investigations show that ion implantation can be used to synthesize multiferroic composite materials like Co:BaTiO3 and Fe:BaTiO3. (authors)

  3. Microstructural studies of nanocrystalline barium zirconium titanate (BZT) for piezoelectric applications

    Energy Technology Data Exchange (ETDEWEB)

    Jamil, Nor Huwaida Janil, E-mail: huwaidajamil@gmail.com; Izzuddin, Izura; Zainuddin, Zalita; Jumali, Mohammad Hafizuddin Haji, E-mail: hafizhj@ukm.edu.my [School of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan (Malaysia)

    2015-09-25

    Lead-free piezoelectric ceramics based on barium titanate (BaTiO{sub 3}) with substitution of Zr{sup 4+} were prepared using sol-gel method. The Ba(Zr{sub x}Ti{sub 1-x})O{sub 3}, (BZT) powders with x = 0.0, 0.1, 0.2 and 0.3 were pressed into pellets and sintered at 1250 °C for 2 h. Focusing on the effect of Zr{sup 4+} substitutions into BaTiO{sub 3} perovskite system, the phase transition and microstructural properties of BZT ceramics were studied using XRD, SEM and EDX spectroscopy. All X-ray diffractograms were fitted using Pawley refinement model. The XRD diffractograms revealed the progressive phase transition from tetragonal to cubic phase as Zr content increased. The crystallite exhibited decreasing trend and was supported by shrinkage in grain size. The EDX analysis confirmed the successful substitution of Ti{sup 4+} with Zr{sup 4+} in BaTiO3 crystal.

  4. Influence of lanthanum doping on the dielectric, ferroelectric and relaxor behaviour of barium bismuth titanate ceramics

    Science.gov (United States)

    Kumar, Sunil; Varma, K. B. R.

    2009-04-01

    Barium lanthanum bismuth titanate (Ba1-(3/2)xLaxBi4Ti4O15, x = 0-0.4) ceramics were fabricated using the powders synthesized via the solid-state reaction route. X-ray powder diffraction analysis confirmed the above compositions to be monophasic and belonged to the m = 4 member of the Aurivillius family of oxides. The effect of the partial presence of La3+ on Ba2+ sites on the microstructure, dielectric and relaxor behaviour of BaBi4Ti4O15 (BBT) ceramics was investigated. For the compositions pertaining to x = 0.3, Tm was frequency independent. Well-developed P(polarization)-E(electric field) hysteresis loops were observed at 150 °C for all the samples and the remanent polarization (2Pr) was improved from 6.3 µC cm-2 for pure BBT to 13.4 µC cm-2 for Ba0.7La0.2Bi4Ti4O15 ceramics. Dc conductivities and associated activation energies were evaluated using impedance spectroscopy.

  5. Elaboration and characterization of doped barium titanate films for gas sensing

    International Nuclear Information System (INIS)

    Barium titanate (BaTiO3) thick films were prepared from commercial powder to develop and optimize the film elaboration. Then, BaTiO3 was doped by strontium and iron to increase the conductivity by a double substitution on site A and B of the perovskite structure in view to develop semiconductor gas sensors. Film inks were prepared by mixing BT and BSTF powder with an organic vehicle, using a ratio of 50:50; 60:40, respectively and deposited on alumina substrates. The BT and BSTF films were sintered at 1100°C for 2h. The structural and physical properties of the films have been studied by using X-ray diffraction (XRD) and scanning electron microscope (SEM). The dielectric measurements showed a huge increase in the a.c. conductivity for the BSTF films, by a factor of 10000 at low frequency, when the temperature ranges from 25°C to 500°C

  6. Synthesis and In vitro Evaluation of Electrodeposited Barium Titanate Coating on Ti6Al4V.

    Science.gov (United States)

    Rahmati, Shahram; Basiriani, Mohammad Basir; Rafienia, Mohammad; Yaghini, Jaber; Raeisi, Keyvan

    2016-01-01

    Osseointegration has been the concern of implantology for many years. Researchers have used various ceramic coatings for this purpose; however, piezoelectric ceramics (e.g., barium titanate [BTO]) are a novel field of interest. In this regard, BTO (BaTiO3) coating was fabricated by electrophoretic deposition on Ti6Al4V medical alloy, using sol-gel-synthesized nanometer BTO powder. Structure and morphologies were studied using X-ray diffraction and scanning electron microscopy (SEM), respectively. Bioactivity response of coated samples was evaluated by SEM and inductively coupled plasma (ICP) analysis after immersion in simulated body fluid (SBF). Cell compatibility was also studied via MTT assay and SEM imaging. Results showed homogenous coating with cubic structure and crystallite size of about 41 nm. SEM images indicated apatite formation on the coating after 7 days of SBF immersion, and ICP analysis approved ions concentration decrement in SBF. Cells showed flattened morphology in intimate contact with coating after 7 days of culture. Altogether, coated samples demonstrated appropriate bioactivity and biocompatibility. PMID:27186538

  7. Study of the dielectric properties of barium titanate-polymer composites

    Energy Technology Data Exchange (ETDEWEB)

    Pant, H.C. [R and D Laboratory, Defence Laboratory, Camouflage Division, Defence Laboratory Ratanada Palace, Jodhpur 342011, Rajasthan (India); Patra, M.K. [R and D Laboratory, Defence Laboratory, Camouflage Division, Defence Laboratory Ratanada Palace, Jodhpur 342011, Rajasthan (India); Verma, Aditya [R and D Laboratory, Defence Laboratory, Camouflage Division, Defence Laboratory Ratanada Palace, Jodhpur 342011, Rajasthan (India); Vadera, S.R. [R and D Laboratory, Defence Laboratory, Camouflage Division, Defence Laboratory Ratanada Palace, Jodhpur 342011, Rajasthan (India); Kumar, N. [R and D Laboratory, Defence Laboratory, Camouflage Division, Defence Laboratory Ratanada Palace, Jodhpur 342011, Rajasthan (India)]. E-mail: nkjainjd@yahoo.com

    2006-07-15

    A comparative study of complex dielectric properties has been carried out at the X-band of microwave frequencies of composites of barium titanate (BaTiO{sub 3}) with two different polymer matrices: insulating polyaniline (PANI) powder (emeraldine base) and maleic resin. From these studies, it is observed that the composites of BaTiO{sub 3} with maleic resin show normal composite behavior and the dielectric constant follows the asymmetric Bruggeman model. In contrast, the composites of BaTiO{sub 3} with PANI show an unusual behavior wherein even at a low concentration of PANI (5 wt.%) there is a drastic reduction in the dielectric constant of BaTiO{sub 3}. This behavior of the dielectric constant is explained on the basis of coating of BaTiO{sub 3} particles by PANI which in turn is attributed to the highly surface adsorbing character. The materials have also been characterized using Fourier transform infrared spectroscopy, powder X-ray diffraction, scanning electron microscopy and optical microscopy studies.

  8. Studies on electrophoretically deposited nanostructured barium titanate systems and carrier transport phenomena

    Science.gov (United States)

    Borah, Manjit; Mohanta, Dambarudhar

    2016-06-01

    We report on the development of nanostructured barium titanate (BaTiO3, BT) films on ~200-μm-thick Ag substrates by employing a cathodic electrophoretic deposition (EPD) technique, where solid-state-derived BT nanoparticles are used as the starting material. Structural, morphological and compositional analyses of the as-synthesized BT nanoparticles and films were performed by X-ray diffraction, electron microscopy and energy-dispersive spectroscopy studies. The synthesized nano-BT system has an average crystallite size of ~8.1 nm and a tetragonality ( c/ a) value ~1.003. To reveal current transport mechanism, the BT films possessing microporous structures and surrounded by homogeneously grown islands were assessed in a metal-insulator-metal (MIM) conformation. The forward current conduction was observed to be purely thermionic up to respective voltages of ~1.4 and 2.2 V as for the fresh and 3-day aged samples. On the other hand, direct tunneling (DT)-mediated Ohmic feature was witnessed at a comparatively higher voltage, beyond which Fowler-Nordheim tunneling (FN) dominates in the respective MIM junctions. The magnitude of current accompanied by FN process was observed to be stronger in reverse biasing than that of forward biasing case. The use of microporous BT films can offer new insights as regards regulated tunneling events meant for miniaturized nanoelectronic elements/components.

  9. Synthesis and In vitro Evaluation of Electrodeposited Barium Titanate Coating on Ti6Al4V

    Science.gov (United States)

    Rahmati, Shahram; Basiriani, Mohammad Basir; Rafienia, Mohammad; Yaghini, Jaber; Raeisi, Keyvan

    2016-01-01

    Osseointegration has been the concern of implantology for many years. Researchers have used various ceramic coatings for this purpose; however, piezoelectric ceramics (e.g., barium titanate [BTO]) are a novel field of interest. In this regard, BTO (BaTiO3) coating was fabricated by electrophoretic deposition on Ti6Al4V medical alloy, using sol-gel-synthesized nanometer BTO powder. Structure and morphologies were studied using X-ray diffraction and scanning electron microscopy (SEM), respectively. Bioactivity response of coated samples was evaluated by SEM and inductively coupled plasma (ICP) analysis after immersion in simulated body fluid (SBF). Cell compatibility was also studied via MTT assay and SEM imaging. Results showed homogenous coating with cubic structure and crystallite size of about 41 nm. SEM images indicated apatite formation on the coating after 7 days of SBF immersion, and ICP analysis approved ions concentration decrement in SBF. Cells showed flattened morphology in intimate contact with coating after 7 days of culture. Altogether, coated samples demonstrated appropriate bioactivity and biocompatibility. PMID:27186538

  10. A Search for the Electron EDM using Europium-Barium Titanates

    Science.gov (United States)

    Eckel, Stephen P.

    The discovery of a permanent electric dipole moment (EDM) of a fundamental particle would prove a great discovery in modern physics; such an EDM would violate two or three of the core symmetries of the fundamental forces of nature. Many models that go beyond the standard model of particle physics produce EDMs with magnitudes approaching the level detectable by the next generation of experiments. One possibility for such an experiment involves the use of a solid sample at low temperatures. In a paramagnetic material, the unpaired electrons, if they possess an EDM, can interact with the polarization of the sample and produce a magnetization that can be detected. This dissertation discusses an incarnation of such an experiment based on mixed europium-barium titanates. Such an experiment offers several advantages over other solid-state and atomic EDM searches including larger electron EDM induced interactions and the ability to measure without an applied electric field. This experiment has produced the world's best limit on the electron EDM to date from a solid sample, at |de| < 6.05 × 10-25 ecm (90% confidence limit). While this limit represents an improvement in the realm of solid-state experiments, it is not yet competitive with similar molecular and atomic experiments. However, there are many possibilities that could produce a superior solid-state experiment, and these will be discussed.

  11. Structure and ferroelectric properties of barium titanate films synthesized by sol-gel method

    Energy Technology Data Exchange (ETDEWEB)

    Xiao Shunhua, E-mail: xiaoshunhua@glite.edu.cn [College of Chemistry and Bioengineering, Guilin University of Technology, Guangxi Key Laboratory of Information Materials, Guilin 541004 (China); Jiang Weifen [Department of Mathematics and Information Science, North China Institute of Water Conservancy and Hydroelectric Power, Zhengzhou 450011 (China); Luo Kun [College of Materials Science and Engineering, Guilin University of Technology, Guilin 541004 (China); Xia Jinhong; Zhang Lin [College of Chemistry and Bioengineering, Guilin University of Technology, Guangxi Key Laboratory of Information Materials, Guilin 541004 (China)

    2011-06-15

    The barium strontium titanate (Ba{sub 0.7}Sr{sub 0.3}TiO{sub 3}, BST) thin films were synthesized by a sol-gel technique on a silicon nanoporous pillar array (Si-NPA) substrate. SEM observation reveals that the as-prepared BST thin film has uniformly covered the inherited pillar-like surface of the Si-NPA substrate. X-ray diffraction analysis indicates that the perovskite phase was able to be generated in the BST film when the annealing temperature was higher than 600 deg. C. The remnant polarization (Pr) and coercive field (Ec) values were also found to increase with the annealing temperature, with the maxima of 4.57 {mu}C cm{sup -2} for Pr and 7.61 kV mm{sup -1} for Ec at 800 deg. C, respectively. The measurement of leakage current density against voltage applied suggested that the BST films are excellent insulators along with fair resistance to breakdown, and the mechanism of leakage current was discussed.

  12. Effects of disorder on properties of non-conventionally prepared barium titanate

    International Nuclear Information System (INIS)

    Barium titanaten (BaTiO3) nanoparticles were prepared by non-conventional as well as conventional solid state reaction. A better response about the grain size distribution was obtained in the former. The former was then milled to get grains of successive reduced sizes. The defects induced within the samples were studies by positron annihilation spectroscopy. The effect of defects on dielectric property of sample with finest grains was measured. Dielectric stability with temperature was increased with decreasing grain size and the peak was shifted towards the lower value due to the enhancement of grain boundary defects generated due to milling for long time

  13. Synthesis, characterization and thermochemistry of Cs-, Rb- and Sr-substituted barium aluminium titanate hollandites

    Energy Technology Data Exchange (ETDEWEB)

    Xu, H., E-mail: hxu@lanl.gov [Earth and Environmental Sciences Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Wu, L. [Peter A. Rock Thermochemistry Laboratory and NEAT ORU, University of California at Davis, Davis, CA 95616 (United States); Zhu, J. [Los Alamos Neutron Science Center, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Navrotsky, A. [Peter A. Rock Thermochemistry Laboratory and NEAT ORU, University of California at Davis, Davis, CA 95616 (United States)

    2015-04-15

    Highlights: • Cs-, Rb- and Sr-substituted barium titanate hollandites were synthesized using sol–gel methods. • Chemical compositions were determined by electron microprobe analyses. • Crystal structures were analyzed using powder synchrotron X-ray diffraction coupled with Rietveld refinements. • Enthalpies of formation were measured using high temperature oxide melt solution calorimetry. • Stability relations with respect to BaTiO{sub 3} and SrTiO{sub 3} perovskites and other oxides were determined. - Abstract: Titanate hollandites are of considerable interest for immobilization of radioactive Cs, its daughter product Ba and related radionuclides Rb and Sr. In this study, we synthesized three hollandites, Ba{sub 1.18}Cs{sub 0.21}Al{sub 2.44}Ti{sub 5.53}O{sub 16}, Ba{sub 1.17}Rb{sub 0.19}Al{sub 2.46}Ti{sub 5.53}O{sub 16} and Ba{sub 1.14}Sr{sub 0.10}Al{sub 2.38}Ti{sub 5.59}O{sub 16}, using sol–gel methods. Rietveld analysis of synchrotron XRD data shows that they adopt the tetragonal structure (space group I4/m), and their cell parameters increase with increasing cation size (Sr{sup 2+} → Rb{sup +} → Cs{sup +}). Standard enthalpies of formation of these hollandites were determined from drop solution calorimetric measurements with lead borate as the solvent at 973 K. Their formation enthalpies are similar, consistent with the occurrence of extensive cation substitutions in hollandites. Further energetic analysis with respect to BaTiO{sub 3} and SrTiO{sub 3} perovskites and other oxides reveals decreased thermodynamic stability from Cs- to Rb- to Sr-hollandite. This trend is consistent with the phase assemblage observed in Synroc, where Cs{sup +}, Rb{sup +} and Ba{sup 2+} enter into hollandite, whereas Sr{sup 2+} occurs in perovskite.

  14. First-Principles Study of Lattice Dynamics, Structural Phase Transition, and Thermodynamic Properties of Barium Titanate

    Science.gov (United States)

    Zhang, Huai-Yong; Zeng, Zhao-Yi; Zhao, Ying-Qin; Lu, Qing; Cheng, Yan

    2016-08-01

    Lattice dynamics, structural phase transition, and the thermodynamic properties of barium titanate (BaTiO3) are investigated by using first-principles calculations within the density functional theory (DFT). It is found that the GGA-WC exchange-correlation functional can produce better results. The imaginary frequencies that indicate structural instability are observed for the cubic, tetragonal, and orthorhombic phases of BaTiO3 and no imaginary frequencies emerge in the rhombohedral phase. By examining the partial phonon density of states (PDOSs), we find that the main contribution to the imaginary frequencies is the distortions of the perovskite cage (Ti-O). On the basis of the site-symmetry consideration and group theory, we give the comparative phonon symmetry analysis in four phases, which is useful to analyze the role of different atomic displacements in the vibrational modes of different symmetry. The calculated optical phonon frequencies at Γ point for the four phases are in good agreement with other theoretical and experimental data. The pressure-induced phase transition of BaTiO3 among four phases and the thermodynamic properties of BaTiO3 in rhombohedral phase have been investigated within the quasi-harmonic approximation (QHA). The sequence of the pressure-induced phase transition is rhombohedral→orthorhombic→tetragonal→cubic, and the corresponding transition pressure is 5.17, 5.92, 6.65 GPa, respectively. At zero pressure, the thermal expansion coefficient αV, heat capacity CV, Grüneisen parameter γ, and bulk modulus B of the rhombohedral phase BaTiO3 are estimated from 0 K to 200 K.

  15. Influence of lanthanum doping on the dielectric, ferroelectric and relaxor behaviour of barium bismuth titanate ceramics

    International Nuclear Information System (INIS)

    Barium lanthanum bismuth titanate (Ba1-(3/2)xLaxBi4Ti4O15, x = 0-0.4) ceramics were fabricated using the powders synthesized via the solid-state reaction route. X-ray powder diffraction analysis confirmed the above compositions to be monophasic and belonged to the m = 4 member of the Aurivillius family of oxides. The effect of the partial presence of La3+ on Ba2+ sites on the microstructure, dielectric and relaxor behaviour of BaBi4Ti4O15 (BBT) ceramics was investigated. For the compositions pertaining to x ≤ 0.1, the dielectric constant at both room temperature and in the vicinity of the temperature of the dielectric maximum (Tm) of the parent phase (BBT) increased significantly with an increase in x while Tm remained almost constant. Tm shifted towards lower temperatures accompanied by a decrease in the magnitude of the dielectric maximum (εm) with an increase in the lanthanum content (0.1 m was found to decrease with an increase in lanthanum doping, and for compositions corresponding to x ≥ 0.3, Tm was frequency independent. Well-developed P(polarization)-E(electric field) hysteresis loops were observed at 150 0C for all the samples and the remanent polarization (2Pr) was improved from 6.3 μC cm-2 for pure BBT to 13.4 μC cm-2 for Ba0.7La0.2Bi4Ti4O15 ceramics. Dc conductivities and associated activation energies were evaluated using impedance spectroscopy.

  16. Enhanced photoelectrochemical properties of 100 MeV Si8+ ion irradiated barium titanate thin films

    International Nuclear Information System (INIS)

    Highlights: ► Effect of 100 MeV Si8+ ion irradiation on photoelectrochemical (PEC) properties of BaTiO3 thin films was studied. ► Films were deposited on Indium doped Tin Oxide (ITO) coated glass by sol–gel spin coating technique. ► Optimal irradiation fluence for best PEC response was 5 × 1011 ion cm−2. ► Maximum photocurrent density was observed to be 0.7 mA cm−2 at 0.4 V/SCE. ► Enhanced photo-conversion efficiency was due to maximum negative flatband potential, donor density and lowest resistivity. -- Abstract: Effects of high electronic energy deposition on the structure, surface topography, optical property and photoelectrochemical behavior of barium titanate (BaTiO3) thin films were investigated by irradiating films with 100 MeV Si8+ ions at different ion fluences in the range of 1 × 1011–2 × 1013 ions cm−2. BaTiO3 thin films were deposited on indium tin oxide coated glass substrate by sol gel spin coating method. Irradiation induced modifications in the films were analyzed using the results from XRD, SEM, cross sectional SEM, AFM and UV–Vis spectrometry. Maximum photocurrent density of 0.7 mA cm−2 at 0.4 V/SCE and applied bias hydrogen conversion efficiency (ABPE) of 0.73% was observed for BaTiO3 film irradiated at 5 × 1011 ions cm−2, which can be attributed to maximum negative value of the flatband potential and donor density and lowest resistivity

  17. Study of the effect of ionizing radiation on composites of wood flour in polypropylene matrix using barium titanate as coupling agent

    International Nuclear Information System (INIS)

    The purpose of this work was to study the effects of ionizing radiation on the properties of wood flour composites in polypropylene matrix, using barium titanate as a coupling agent and the reactive monomer tripropylene glycol diacrylate (TPDGA). An electron accelerator was used in the study as the radiation source. The physical properties of virgin compounds and of the polypropylene/wood flour composite, with and without barium titanate and TPDGA addition, were investigated. The composites were developed from the load treatment, which first consisted of incorporating additives to the wood flour reinforcement and after that, the fusion process of polypropylene and composite mixing in a 'calander'. Subsequently, the samples to be irradiated and submitted to thermal and mechanical assays were molded by injection. The mechanical properties (hardness, impact resistance and molten fluidity index (MFI)), as well as the thermal properties (HDT and Vicat) of the composites were determined. The investigated compositions consisted of polypropylene/wood flour, polypropylene/wood flour with barium titanate and polypropylene/wood flour with barium titanate and TPDGA, using different wood flour concentrations of 10 por cent, 15 por cent and 20 por cent in the polypropylene matrix. The samples were separated in groups and irradiated to doses of 10 kGy and 20 kGy in the samples of the essays of traction. Besides these doses, it was also used doses of 15 kGy and 25 kGy to be observed the behavior of the sample of the sample due to the increase of the radiation. These doses were chosen to show that with low doses the composite material presents reticulation, what represents a viable commercial option. There was a reduction of the flow rate for the composites containing wood flour, being this reduction more effective in the presence of TiBa. The superficial treatment using TPDGA monomer influence in the composite samples because it acted as a plastic additive becoming the sample

  18. Physical properties and electronic structure of a new barium titanate suboxide Ba1+δTi13−δO12 (δ = 0.11

    Directory of Open Access Journals (Sweden)

    Costel R. Rotundu

    2015-04-01

    Full Text Available The structure, transport, thermodynamic properties, x-ray absorption spectra (XAS, and electronic structure of a new barium titanate suboxide, Ba1+δTi13−δO12 (δ = 0.11, are reported. It is a paramagnetic poor metal with hole carriers dominating the transport. Fermi liquid behavior appears at low temperature. The oxidization state of Ti obtained by the XAS is consistent with the metallic Ti2+ state. Local density approximation band structure calculations reveal the material is near the Van Hove singularity. The pseudogap behavior in the Ti-d band and the strong hybridization between the Ti-d and O-p orbitals reflect the characteristics of the building blocks of the Ti13 semi-cluster and the TiO4 quasi-squares, respectively.

  19. Physical properties and electronic structure of a new barium titanate suboxide Ba1+δTi13−δO12 (δ = 0.11)

    International Nuclear Information System (INIS)

    The structure, transport, thermodynamic properties, x-ray absorption spectra (XAS), and electronic structure of a new barium titanate suboxide, Ba1+δTi13−δO12 (δ = 0.11), are reported. It is a paramagnetic poor metal with hole carriers dominating the transport. Fermi liquid behavior appears at low temperature. The oxidization state of Ti obtained by the XAS is consistent with the metallic Ti2+ state. Local density approximation band structure calculations reveal the material is near the Van Hove singularity. The pseudogap behavior in the Ti-d band and the strong hybridization between the Ti-d and O-p orbitals reflect the characteristics of the building blocks of the Ti13 semi-cluster and the TiO4 quasi-squares, respectively

  20. Zirconia doped barium titanate induced electroactive β polymorph in PVDF-HFP: high energy density and dielectric properties

    International Nuclear Information System (INIS)

    Zirconium-doped barium titanate (BZT-08, Ba(Ti0.92 Zr0.08)O3) particles were synthesized and PVDF-HFP-based composites were prepared by melt mixing to design materials with tunable dielectric and ferroelectric properties. Composites of PVDF-HFP and barium titanate (BT) particles were also prepared to realize the exceptional properties associated with the BZT-08-like stabilization of two ferroelectric phases, i.e. tetragonal and orthorhombic at room temperature. To facilitate the uniform dispersion and interfacial adhesion with the matrix, the particles were modified with (3-aminopropyl) triethoxysilane. The dependence of the dielectric and ferroelectric properties of the as-prepared composites were systematically investigated in this study with respect to a wide range of frequencies. The composites with BZT-08 exhibited the significantly high dielectric permittivity of ca. 26 (at 100 Hz) and a high energy density (2.7 J cm−3 measured on 100 μm thick film) at room temperature with respect to the control PVDF-HFP and PVDF-HFP/BT composites. Interestingly, the BZT-08 particles facilitated the electroactive β polymorph in the PVDF-HFP and enhanced polarization in the composites, leading to improved ferroelectric properties in the composites. (paper)

  1. Multicomponent doped barium strontium titanate thin films for tunable microwave applications

    Science.gov (United States)

    Alema, Fikadu Legesse

    In recent years there has been enormous progress in the development of barium strontium titanate (BST) films for tunable microwave applications. However, the properties of BST films still remain inferior compared to bulk materials, limiting their use for microwave technology. Understanding the film/substrate mismatch, microstructure, and stoichiometry of BST films and finding the necessary remedies are vital. In this work, BST films were deposited via radio frequency magnetron sputtering method and characterized both analytically and electrically with the aim of optimizing their properties. The stoichiometry, crystal structure, and phase purity of the films were studied by varying the oxygen partial pressure (OPP) and total gas pressure (TGP) in the chamber. A better stoichiometric match between film and target was achieved when the TGP is high (> 30 mTorr). However, the O2/Ar ratio should be adjusted as exceeding a threshold of 2 mTorr in OPP facilitates the formation of secondary phases. The growth of crystalline film on platinized substrates was achieved only with a lower temperature grown buffer layer, which acts as a seed layer by crystallizing when the temperature increases. Concurrent Mg/Nb doping has significantly improved the properties of BST thin films. The doped film has shown an average tunability of 53%, which is only ˜8 % lower than the value for the undoped film. This drop is associated with the Mg ions whose detrimental effects are partially compensated by Nb ions. Conversely, the doping has reduced the dielectric loss by ˜40 % leading to a higher figure of merit. Moreover, the two dopants ensure a charge neutrality condition which resulted in significant leakage current reduction. The presence of large amounts of empty shallow traps related to Nb Ti localize the free carriers injected from the contacts; thus increase the device control voltage substantially (>10 V). A combinatorial thin film synthesis method based on co-sputtering of two BST

  2. Characterization of barium titanate powder doped with sodium and potassium ions by using Rietveld refining; Caracterizacao do po de titanato de bario dopado com ions sodio e potasio com o refinamento de Rietveld

    Energy Technology Data Exchange (ETDEWEB)

    Andrade, M.C.; Assis, J.T.; Pereira, F.R., E-mail: mcalixto@iprj.uerj.b [Universidade do Estado do Rio de Janeiro (IPRJ/UERJ), Nova Friburgo, RJ (Brazil). Instituto Politecnico; Araujo, J.C. [Universidade do Estado do Rio de Janeiro (FFP/UERJ), Sao Goncalo, RJ (Brazil). Fac. de Formacao de Professores; Moreira, E.L.; Moraes, V.C.A.; Lopes, A.R. [Centro Brasileiro de Pesquisas Fisicas (CBPF/MCT), Rio de Janeiro, RJ (Brazil)

    2009-07-01

    A solid-reaction synthesis of doped barium titanate was done by employing barium carbonates, sodium, potassium and titanium oxides with classic procedures. Rietveld refining of X ray diffraction data of perovskite samples with tetragonal symmetry was applying and show good agreement. Besides, the treatment performed from 600 deg C produces nanocrystals of barium titanate with average size of 33 nm. The presence of endothermic peaks related to BaTiO{sub 3} formation at relatively low temperatures was determined by thermal analysis. A pseudo-Voigt Thompson-Cox-Hastings function was used to fit the standard samples of barium titanate. The Rietveld method has showed be efficient to detect the influences of temperature and doping on barium titanate microstructures. (author)

  3. Characterization and microstructure of highly preferred oriented lead barium titanate thin films on MgO (100) by sol-gel process

    International Nuclear Information System (INIS)

    Highly preferred oriented lead barium titanate (Pb1-x,Ba x)TiO3 thin film, with particular emphasis on (Pb0.5,Ba0.5)TiO3, can be obtained by spin-coating on MgO (100) substrate by using the precursor sol, which was synthesized from acetylacetone chelating with titanium isopropoxide and ethylene glycol as a solvent, in the sol-gel process. Film thickness, pyrolysis temperature and heating rate were studied systemically to investigate their influences on the formation of preferred oriented thin films. The highly preferred (001)/(100) oriented thin film could be obtained by the pyrolysis of wet film at 500 deg. C and annealing at 600 deg. C at a slow heating rate of 5 deg. C/min. It is confirmed that the tetragonal perovskite structure of the titanate ceramic decreases with an increase of Ba content in (Pb1-x,Ba x)TiO3. The (001)/(100) oriented films were synthesized from all compositions between x = 0.2 and x = 0.8, at a crystallization temperature of 600 deg. C. In particular, for the Ba content in the range of x = 0.5∼0.6, highly preferred (001)/(100) planes were observed

  4. Synthesis of barium titanate crystalline nanoparticles using hydrothermal microwave method; Obtencao de nanoparticulas cristalinas de titanato de bario usando metodo hidrotermal assistido por microondas

    Energy Technology Data Exchange (ETDEWEB)

    Souza, A.E.; Silva, R.A.; Teixeira, S.R. [Universidade Estadual Paulista (DFQB/FCT/UNESP), Presidente Prudente, SP (Brazil). Dept. de Fisica, Quimica e Biologia. Lab. de Compositos e Ceramicas Funcionais; Moreira, M.L. [Universidade Federal de Sao Carlos (LiEC/UFSCAR), SP (Brazil). Lab. Interdisciplinar de Eletroquimica e Ceramica; Volanti, D.P.; Longo, E. [Universidade Estadual Paulista (LiEC/UNESP), Araraquara, SP (Brazil). Lab. Interdisciplinar de Eletroquimica e Ceramica

    2009-07-01

    The hydrothermal microwave method (HTMW) was used in the synthesis of barium titanate (BaTiO{sub 3}) nanoparticles. The solution was prepared in deionized water by using titanium (IV) isopropoxide (C{sub 12}H{sub 28}O{sub 4}Ti), barium chloride (BaCl{sub 2}.2H{sub 2}O) and potassium hydroxide (KOH). Afterwards it was heated in an adapted conventional microwave oven. The system is composed of a temperature controller with thermocouple, a hermetic camera of reaction made of teflon, a manometer and a safety valve. The solution was heated to 140 deg C, at a 140 deg C/min heating rate, and maintained at this temperature for 40 minutes. The obtained ceramic powder was characterized by using X-ray diffraction (XRD) and field emission scanning electron microscopy (FE-SEM). The XRD data confirms the formation of a high crystalline ceramic material with perovskite structure. The FE-SEM images reveal morphologies with dimensions varying from 27 to 54 nm. (author)

  5. Brillouin light scattering study of transverse mode coupling in confined yttrium iron garnet/barium strontium titanate multiferroic

    International Nuclear Information System (INIS)

    Using the space-resolved Brillouin light scattering spectroscopy we study the transformation of dynamic magnetization patterns in a bilayer multiferroic structure. We show that in the comparison with a single yttrium iron garnet (YIG) film magnetization distribution is transformed in the bilayer structure due to the coupling of waves propagating both in an YIG film (magnetic layer) and in a barium strontium titanate slab (ferroelectric layer). We present a simple electrodynamic model using the numerical finite element method to show the transformation of eigenmode spectrum of confined multiferroic. In particular, we demonstrate that the control over the dynamic magnetization and the transformation of spatial profiles of transverse modes in magnetic film of the bilayer structure can be performed by the tuning of the wavevectors of transverse modes. The studied confined multiferroic stripe can be utilized for fabrication of integrated dual tunable functional devices for magnonic applications

  6. Tuned sensitivity towards H{sub 2}S and NH{sub 3} with Cu doped barium strontium titanate materials

    Energy Technology Data Exchange (ETDEWEB)

    Simion, C. E., E-mail: simion@infim.ro; Teodorescu, V. S.; Stănoiu, A. [National Institute of Materials Physics, Atomistilor 105bis, P.O. Box MG-7, 077125, Bucharest-Magurele (Romania); Sackmann, A. [AG Weimar, Institute of Physical and Theoretical Chemistry, University of Tübingen, Auf der Morgenstelle 15, D-72076 Tübingen (Germany); Ruşti, C. F.; Piticescu, R. M. [National R and D Institute for Non-ferrous and Rare Metals, 102 Biruintei Blvd, Ilfov (Romania)

    2014-11-05

    The different amount of Cu-doped Barium Strontium Titanate (BST) thick film materials have been tested for their gas-sensing performances towards NH{sub 3} and H{sub 2}S under dry and 50% relative humidity (RH) background conditions. The optimum NH{sub 3} sensitivity was attained with 0.1mol% Cu-doped BST whereas the selective detection of H{sub 2}S was highlighted using 5mol% Cu-doped BST material. No cross-sensitivity effects to CO, NO{sub 2}, CH{sub 4} and SO{sub 2} were observed for all tested materials operated at their optimum temperature (200°C) under humid conditions (50% RH). The presence of humidity clearly enhances the gas sensitivity to NH{sub 3} and H{sub 2}S detection.

  7. Photonic crystal cavity embedded barium strontium titanate thin-film rib waveguide prepared by focused ion beam etching

    International Nuclear Information System (INIS)

    A photonic crystal (PC) cavity embedded Ba0.7Sr0.3TiO3 (barium strontium titanate, or BST) rib waveguide, which functions as an optical filter at λ = 1550 nm, is designed using finite-difference time-domain (FDTD) simulation. The PC cavity is composed of two 5-row photonic crystal mirrors, which are formed by air holes (radii 250 nm) arranged in triangular lattice (periodicity 625 nm) in the BST matrix. Calculations suggested that the required cavity length should be 800 nm for the resonant peak to be situated at 1550 nm. Based on this design, PC cavities were fabricated on BST thin-film rib waveguides by focused ion beam etching with satisfactory results. The transmission spectra of the BST thin-film rib waveguides with PC cavities have been measured. The results agreed well with the FDTD simulation.

  8. Brillouin light scattering study of transverse mode coupling in confined yttrium iron garnet/barium strontium titanate multiferroic

    Energy Technology Data Exchange (ETDEWEB)

    Sadovnikov, A. V., E-mail: sadovnikovav@gmail.com; Nikitov, S. A. [Laboratory “Metamaterials,” Saratov State University, Saratov 410012 (Russian Federation); Kotel' nikov Institute of Radioengineering and Electronics, Russian Academy of Sciences, Moscow 125009 (Russian Federation); Beginin, E. N.; Bublikov, K. V.; Grishin, S. V.; Sheshukova, S. E.; Sharaevskii, Yu. P. [Laboratory “Metamaterials,” Saratov State University, Saratov 410012 (Russian Federation)

    2015-11-28

    Using the space-resolved Brillouin light scattering spectroscopy we study the transformation of dynamic magnetization patterns in a bilayer multiferroic structure. We show that in the comparison with a single yttrium iron garnet (YIG) film magnetization distribution is transformed in the bilayer structure due to the coupling of waves propagating both in an YIG film (magnetic layer) and in a barium strontium titanate slab (ferroelectric layer). We present a simple electrodynamic model using the numerical finite element method to show the transformation of eigenmode spectrum of confined multiferroic. In particular, we demonstrate that the control over the dynamic magnetization and the transformation of spatial profiles of transverse modes in magnetic film of the bilayer structure can be performed by the tuning of the wavevectors of transverse modes. The studied confined multiferroic stripe can be utilized for fabrication of integrated dual tunable functional devices for magnonic applications.

  9. Establishment of a radiochemical procedure for the obtainment strontium titanate

    International Nuclear Information System (INIS)

    A research that aims to develop radiochemical procedures for the separation and solidification of 137Cs and 90Sr from fission products solutions has been carried out at the Radiochemistry Division of IPEN-CNEN/SP. In a previous paper(1), a schematic outline of the process steps for the separation of 90Sr from fission products mixture was shown. In the present paper, the experimental conditions for solidification of strontium as strontium titanate have been studied. According to literature data, this compound offers the most suitable chemical form to use 90Sr as beta rays source. (author)

  10. Low-sintering condenser materials on the basis of barium titanate; Niedrig-sinternde Kondensatorwerkstoffe auf der Basis von Bariumtitanat

    Energy Technology Data Exchange (ETDEWEB)

    Naghib zadeh, Hamid

    2010-07-01

    The main objective of this work was the development of new barium titanate capacitor materials, which fully densified at a sintering temperature of 900 C and exhibit a high and almost temperature-independent dielectric constant as well as low dielectric loss. In order to decrease the sintering temperature of barium titanate from ca. 1300 C to 900 C, addition of various types of sintering aids have been tested. Li-containing sintering additives show the best result concerning densification and dielectric properties. By addition of 2 to 3 wt% (SrO-B{sub 2}O{sub 3}-Li{sub 2}O) -, (ZnO-B{sub 2}O{sub 3}-Li{sub 2}O) - or (LiF-SrCO{sub 3})-additive combinations to commercially available barium titanate powder 95 % of the theoretical density was achieved after sintering at 900 C. The sintered capacitor materials with the above mentioned additive combinations possess high dielectric constants from 1800 to 3590. It is well known that for a high temperature stability of dielectric constant the formation of core-shell structure in a fine-grained microstructure is required (average grain size < 1 {mu}m). For BaTiO{sub 3} samples contained 2 wt% LiF-SrCO{sub 3} is temperature coefficient of capacitance (TCC) relatively low. The TCC in temperature range between 0 C and 80 C is less than {+-} 15%. The formation of the core-shell structure in a fine-grained microstructure of this sample, which is required to have low TCC, was detected by TEM / EDX analyses. The significantly higher TCC for the BaTiO{sub 3} samples contained 3 wt% SrO-B{sub 2}O{sub 3}-Li{sub 2}O is due to the strong grain growth during sintering. To reduce the TCC in this sample Nb{sub 2}O{sub 5}-Co{sub 2}O{sub 3} was added. By addition of 1.5 wt% Nb{sub 2}O{sub 5}-Co{sub 2}O{sub 3} the temperature stability of the dielectric constant could be significantly improved as a result of the grain growth inhibition and the core-shell formation during sintering. For BaTiO{sub 3} samples contained ZnO-B{sub 2}O{sub 3}-Li

  11. Microstructure and dielectric properties of dysprosium-doped barium titanate ceramics Microestrutura e propriedades dielétricas de cerâmicas de titanato de bário dopado com disprósio

    OpenAIRE

    Pu, Y.; Chen, W.; Chen, S.; Hans T. Langhammer

    2005-01-01

    The substitution behavior and lattice parameter of barium titanate between solid_solubility with a dopant concentration in the range of 0.25 to 1.5 mol% are studied. The influences of dysprosium-doped fraction on the grain size and dielectric properties of barium titanate ceramic, including dielectric constant and breakdown electric field strength, are investigated via scanning electronic microscopy, X-ray diffraction and electric property tester. The results show that, at a dysprosium concen...

  12. Synthesis and characterization of barium titanate, doped with europium and neodymium

    International Nuclear Information System (INIS)

    This work aims at synthesize and characterize mixed oxides in Barium Titanium matrix in doping with Neodymium and Europium analyzing thermogravimetric curves, characteristic bands at infrared region of the polymer complex, which are intermediates to mixed oxides, and identify the formation thereof, and the crystallinity using XRD analysis

  13. Dynamic pyroelectric response of composite based on ferroelectric copolymer of poly(vinylidene fluoride-trifluoroethylene) and ferroelectric ceramics of barium lead zirconate titanate

    International Nuclear Information System (INIS)

    In this work, pyroelectric properties of composite films on the basis of poly(vinylidene fluoride-trifluoroethylene) copolymer with a various level of ferroelectric ceramics inclusions of barium lead zirconate titanate solid solution were investigated by the dynamic method. The composite films were prepared by the solvent cast method. The unusual spike-like dynamic response with a quasi-stationary component was observed. It is supposed that composite films may be effectively used for pyroelectric applications. (orig.)

  14. Dynamic pyroelectric response of composite based on ferroelectric copolymer of poly(vinylidene fluoride-trifluoroethylene) and ferroelectric ceramics of barium lead zirconate titanate

    Energy Technology Data Exchange (ETDEWEB)

    Solnyshkin, A.V. [Tver State University, Department of Condensed Matter Physics, Tver (Russian Federation); National Research University ' ' MIET' ' , Department of Intellectual Technical Systems, Zelenograd, Moscow (Russian Federation); Morsakov, I.M.; Bogomolov, A.A. [Tver State University, Department of Condensed Matter Physics, Tver (Russian Federation); Belov, A.N.; Vorobiev, M.I.; Shevyakov, V.I.; Silibin, M.V. [National Research University ' ' MIET' ' , Department of Intellectual Technical Systems, Zelenograd, Moscow (Russian Federation); Shvartsman, V.V. [University of Duisburg-Essen, Institute for Materials Science, Essen (Germany)

    2015-10-15

    In this work, pyroelectric properties of composite films on the basis of poly(vinylidene fluoride-trifluoroethylene) copolymer with a various level of ferroelectric ceramics inclusions of barium lead zirconate titanate solid solution were investigated by the dynamic method. The composite films were prepared by the solvent cast method. The unusual spike-like dynamic response with a quasi-stationary component was observed. It is supposed that composite films may be effectively used for pyroelectric applications. (orig.)

  15. Chemical composition and deformation-induced stresses in ferroelectric films of barium-strontium titanate

    International Nuclear Information System (INIS)

    Influence of the ratio of cationic components and inner deformation-induced stresses on critical temperature (Tc) and dielectric characteristics of ferroelectric films BaxSr1-xTiO3 grown on α-Al2O3 [1012] and LaAlO3 substrates was studied. Diagnosis by means of ion backscattering permitted ascertaining the deficiency of barium in the films near the surface layer, as well as differences in their structural quality

  16. A novel solvothermal route for obtaining strontium titanate nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Marquez-Herrera, A., E-mail: alfredo.marquez@uaslp.mx [Universidad Autonoma de San Luis Potosi, Departamento de Ingenieria Mecanica Administrativa, Coordinacion Academica Region Altiplano (COARA) (Mexico); Ovando-Medina, Victor M.; Corona-Rivera, Miguel A. [Universidad Autonoma de San Luis Potosi, Departamento de Ingenieria Quimica, Coordinacion Academica Region Altiplano (COARA) (Mexico); Hernandez-Rodriguez, E.; Zapata-Torres, M. [Centro de Investigacion en Ciencia Aplicada y Tecnologia Avanzada, Unidad Legaria IPN (Mexico); Campos-Gonzalez, E.; Guillen-Cervantes, A.; Zelaya-Angel, O.; Melendez-Lira, M. [CINVESTAV-IPN, Departamento de Fisica (Mexico)

    2013-04-15

    Strontium titanate (SrTiO{sub 3}) has attracted a lot of attention because of its possible applications in new microelectronic devices. It is a material with a high dielectric constant, low leakage current, and some of its properties can be changed by adding or modifying the concentration of a dopant, which can be used for a wide range of functional purposes, from simple capacitors to complicated microwave devices. Therefore, in this work, we report the development of a new route to synthesize SrTiO{sub 3} nanoparticles based on the solvothermal method by employing two precursor solutions: strontium chloride and titanium(IV) butoxide. Our route allows the production of cubic SrTiO{sub 3} nanoparticles with a narrow size distribution. The particle sizes range between 8 and 24 nm, forming agglomerates of SrTiO{sub 3} in the range of 128-229 nm. It was demonstrated that the Ti/Sr molar ratio employed into the precursor solution has an important effect onto the chemical composition of the resulting SrTiO{sub 3} nanoparticles: when using Ti/Sr < 1, the formation and incorporation of the SrCO{sub 3} compound into the nanoparticles was observed while with Ti/Sr {>=} 1 nanoparticles are free of contaminants. The as-prepared nanoparticles were characterized by energy-dispersive X-ray spectroscopy, X-ray diffraction, transmission electron microscopy, high-resolution TEM, selected area electron diffraction, scanning electron microscopy, and dynamic light scattering.

  17. Molecular structures of (3-aminopropyl)trialkoxysilane on hydroxylated barium titanate nanoparticle surfaces induced by different solvents and their effect on electrical properties of barium titanate based polymer nanocomposites

    Science.gov (United States)

    Fan, Yanyan; Wang, Guanyao; Huang, Xingyi; Bu, Jing; Sun, Xiaojin; Jiang, Pingkai

    2016-02-01

    Surface modification of nanoparticles by grafting silane coupling agents has proven to be a significant approach to improve the interfacial compatibility between inorganic filler and polymer matrix. However, the impact of grafted silane molecular structure after the nanoparticle surface modification, induced by the utilized solvents and the silane alkoxy groups, on the electrical properties of the corresponding nanocomposites, has been seldom investigated. Herein, the silanization on the surface of hydroxylated barium titanate (BT-OH) nanoparticles was introduced by using two kinds of trialkoxysilane, 3-aminopropyltriethoxysilane (AMEO) and 3-aminopropyltrimethoxysilane (AMMO), with different solvents (toluene and ethanol), respectively. Solid-state 13C, 29Si nuclear magnetic resonance (NMR) spectroscopy and high-resolution X-ray photoelectron spectroscopy (XPS) were employed to validate the structure differences of alkoxysilane attachment to the nanoparticles. The effect of alkoxysilane structure attached to the nanoparticle surface on the dielectric properties of the BT based poly(vinylidene fluoride) (PVDF) nanocomposites were investigated. The results reveal that the solvents used for BT nanoparticle surface modification exhibit a significant effect on the breakdown strength of the nanocomposites. Nevertheless, the alkoxy groups of silane show a marginal influence on the dielectric properties of the nanocomposites. These research results provide important insights into the fabrication of advanced polymer nanocomposites for dielectric applications.

  18. Sputter-etching characteristics of barium-strontium-titanate and bismuth-strontium-tantalate using a surface-wave high-density plasma reactor

    International Nuclear Information System (INIS)

    The etching of barium-strontium-titanate (BST) and bismuth-strontium-tantalate (SBT) deposited using a pulsed laser deposition technique has been investigated using a nonreactive (argon) surface-wave high-density plasma source. The etch rate of the rf-biased thin films was determined as a function of the self-bias voltage, of the magnetic field intensity and of the gas pressure. It was found that high etch rates with a good selectivity over resist can be achieved without any plasma chemistry, provided the plasma is operated in the very low pressure regime (i.e., below 1 mTorr). For SBT, etch rates as high as 3000 Aa/min with a selectivity of 0.2 over HPR-504 photoresist were obtained with self-bias voltages lower than 150 V. It is also found that even though BST and SBT present similar sputter-etching characteristics, SBT is etched about two times faster than BST as a result of the difference in the atomic density of each material

  19. Ferroelectric/Dielectric Double Gate Insulator Spin-Coated Using Barium Titanate Nanocrystals for an Indium Oxide Nanocrystal-Based Thin-Film Transistor.

    Science.gov (United States)

    Pham, Hien Thu; Yang, Jin Ho; Lee, Don-Sung; Lee, Byoung Hun; Jeong, Hyun-Dam

    2016-03-23

    Barium titanate nanocrystals (BT NCs) were prepared under solvothermal conditions at 200 °C for 24 h. The shape of the BT NCs was tuned from nanodot to nanocube upon changing the polarity of the alcohol solvent, varying the nanosize in the range of 14-22 nm. Oleic acid-passivated NCs showed good solubility in a nonpolar solvent. The effect of size and shape of the BT NCs on the ferroelectric properties was also studied. The maximum polarization value of 7.2 μC/cm(2) was obtained for the BT-5 NC thin film. Dielectric measurements of the films showed comparable dielectric constant values of BT NCs over 1-100 kHz without significant loss. Furthermore, the bottom gate In2O3 NC thin film transistors exhibited outstanding device performance with a field-effect mobility of 11.1 cm(2) V(-1) s(-1) at a low applied gate voltage with BT-5 NC/SiO2 as the gate dielectric. The low-density trapped state was observed at the interface between the In2O3 NC semiconductor and the BT-5 NCs/SiO2 dielectric film. Furthermore, compensation of the applied gate field by an electric dipole-induced dipole field within the BT-5 NC film was also observed. PMID:26927618

  20. Fabrication of Crack-Free Barium Titanate Thin Film with High Dielectric Constant Using Sub-Micrometric Scale Layer-by-Layer E-Jet Deposition

    Directory of Open Access Journals (Sweden)

    Junsheng Liang

    2016-01-01

    Full Text Available Dense and crack-free barium titanate (BaTiO3, BTO thin films with a thickness of less than 4 μm were prepared by using sub-micrometric scale, layer-by-layer electrohydrodynamic jet (E-jet deposition of the suspension ink which is composed of BTO nanopowder and BTO sol. Impacts of the jet height and line-to-line pitch of the deposition on the micro-structure of BTO thin films were investigated. Results show that crack-free BTO thin films can be prepared with 4 mm jet height and 300 μm line-to-line pitch in this work. Dielectric constant of the prepared BTO thin film was recorded as high as 2940 at 1 kHz at room temperature. Meanwhile, low dissipation factor of the BTO thin film of about 8.6% at 1 kHz was also obtained. The layer-by-layer E-jet deposition technique developed in this work has been proved to be a cost-effective, flexible and easy to control approach for the preparation of high-quality solid thin film.

  1. Wafer–to–wafer transfer process of barium strontium titanate for frequency tuning applications using laser pre-irradiation

    International Nuclear Information System (INIS)

    This paper describes laser-assisted film transfer technology for barium strontium titanate (BST) deposited on a sapphire substrate. BST is a promising ferroelectric material for varactors, which are required for frequency-tunable RF applications. However, the deposition temperature of BST (600 ∼ 700 °C) is too high for surface acoustic wave (SAW) substrates. In this study, BST grown on a sapphire substrate at 650 °C was transferred at low temperature (140 °C) to a borosilicate glass substrate as well as a LiTaO3 substrate. The transferred BST films were characterized as tunable capacitors. A key process in the BST film transfer technology is the laser pre-irradiation of a buffer Pt layer beneath BST from the backside of the sapphire substrate to weaken the BST-to-Pt adhesion. The mechanism of delamination at the BST/Pt interface is discussed using a simple 1D heat transfer model. (paper)

  2. Structure and Rheology of Poloxamine T1107 and Its Nanocomposite Hydrogels with Cyclodextrin-Modified Barium Titanate Nanoparticles.

    Science.gov (United States)

    Serra-Gómez, Rafael; Dreiss, Cécile A; González-Benito, Javier; González-Gaitano, Gustavo

    2016-06-28

    We report the preparation of a nanocomposite hydrogel based on a poloxamine gel matrix (Tetronic T1107) and cyclodextrin (CD)-modified barium titanate (BT) nanoparticles. The micellization and sol-gel behavior of pH-responsive block copolymer T1107 were fully characterized by small-angle neutron scattering (SANS), dynamic light scattering (DLS), and Fourier transform infrared attenuated total reflectance (FTIR-ATR) spectroscopy as a function of concentration, pH and temperature. SANS results reveal that spherical micelles in the low concentration regime present a dehydrated core and highly hydrated shell, with a small aggregation number and size, highly dependent on the degree of protonation of the central amine spacer. At high concentration, T1107 undergoes a sol-gel transition, which is inhibited at acidic pH. Nanocomposites were prepared by incorporating CD-modified BT of two different sizes (50 and 200 nm) in concentrated polymer solutions. Rheological measurements show a broadening of the gel region, as well as an improvement of the mechanical properties, as assessed by the shear elastic modulus, G' (up to 200% increase). Initial cytocompatibility studies of the nanocomposites show that the materials are nontoxic with viabilities over 70% for NIH3T3 fibroblast cell lines. Overall, the combination of Tetronics and modified BaTiO3 provides easily customizable systems with promising applications as soft piezoelectric materials. PMID:27245639

  3. Simulations of high permittivity materials for 7 T neuroimaging and evaluation of a new barium titanate-based dielectric.

    Science.gov (United States)

    Teeuwisse, W M; Brink, W M; Haines, K N; Webb, A G

    2012-04-01

    High permittivity "dielectric pads" have been shown to increase image quality at high magnetic fields in regions of low radiofrequency transmit efficiency. This article presents a series of electromagnetic simulations to determine the effects of pad size and geometry, relative permittivity value, as well as thickness on the transmit radiofrequency fields for neuroimaging at 7 T. For a 5-mm thick pad, there is virtually no effect on the transmit field for relative permittivity values lower than ∼90. Significant improvements are found for values between 90 and ∼180. If the relative permittivity is increased above ∼180 then areas of very low transmit efficiency are produced. For a 1-cm thick pad, the corresponding numbers are ∼60 and ∼120, respectively. Based upon the findings, a new material (barium titanate, relative permittivity ∼150) is used to produce thin (∼5 mm) dielectric pads which can easily be placed within a standard receive head array. Experimental measurements of transmit sensitivities, as well as acquisition of T(2) - and T 2*-weighted images show the promise of this approach. PMID:22287360

  4. An efficient approach to derive hydroxyl groups on the surface of barium titanate nanoparticles to improve its chemical modification ability.

    Science.gov (United States)

    Chang, Shinn-Jen; Liao, Wei-Sheng; Ciou, Ci-Jin; Lee, Jyh-Tsung; Li, Chia-Chen

    2009-01-15

    Highly hydroxylated barium titanate (BaTiO(3)) nanoparticles have been prepared via an easy and gentle approach which oxidizes BaTiO(3) nanoparticles using an aqueous solution of hydrogen peroxide (H(2)O(2)). The hydroxylated BaTiO(3) surface reacts with sodium oleate (SOA) to form oleophilic layers that greatly enhance the dispersion of BaTiO(3) nanoparticles in organic solvents such as tetrahydrofuran, toluene, and n-octane. The results of Fourier transform infrared spectroscopy confirmed that the major functional groups on the surface of H(2)O(2)-treated BaTiO(3) nanoparticles are hydroxyl groups which are chemically active, favoring chemical bonding with SOA. The results of transmission electron microscopy of SOA-modified BaTiO(3) nanoparticles suggested that the oleate molecules were bonded to the surfaces of nanoparticles and formed a homogeneous layer having a thickness of about 2 nm. Furthermore, the improved dispersion capability of the modified BaTiO(3) nanoparticles in organic solvents was verified through analytic results of its settling and rheological behaviors. PMID:18977001

  5. Fabrication and characterization of electrically tunable high-Tc superconducting resonators incorporating barium strontium titanate as a tuning material

    International Nuclear Information System (INIS)

    We have made the electrically tunable microstrip resonators by using both high-Tc superconducting and dielectric films. The two-pole resonators employ a dielectric barium strontium titanate film on their centre in the form of flip chip. The superconducting YBa2Cu3Oy (YBCO) and dielectric Ba0.1Sr0.9TiO3 were deposited on the CeO2-buffered sapphire substrate and LaAlO3 substrate, respectively, by a pulsed laser deposition technique. Variations of the relative permittivity, εr, and dielectric loss tangent, tan δ, of the Ba0.1Sr0.9TiO3 were studied as a function of the applied dc bias at liquid-nitrogen temperature. The tunability, defined as C(0V)/C(100 V), and loss tangent of the resonators were measured to be ∼1.9 and 1.5x10-2 (at 100 V), respectively. (author)

  6. pH-sensitive properties of barium strontium titanate (BST) thin films prepared by pulsed laser deposition technique

    Energy Technology Data Exchange (ETDEWEB)

    Buniatyan, Vahe V. [Department of Microelectronics and Biomedical Devices, State Engineering University of Armenia, Yerevan (Armenia); Institute of Nano- and Biotechnologies, Aachen University of Applied Sciences, Juelich (Germany); Abouzar, Maryam H.; Schoening, Michael J.; Poghossian, Arshak [Institute of Nano- and Biotechnologies, Aachen University of Applied Sciences, Juelich (Germany); Institute of Bio- and Nanosystems, Research Centre Juelich GmbH, Juelich (Germany); Martirosyan, Norayr W. [Department of Microelectronics and Biomedical Devices, State Engineering University of Armenia, Yerevan (Armenia); Schubert, Juergen [Institute of Bio- and Nanosystems, Research Centre Juelich GmbH, Juelich (Germany); Gevorgian, Spartak [Department of Microtechnology and Nanoscience, Chalmers University of Technology, Gothenburg (Sweden)

    2010-04-15

    pH-sensitive properties of barium strontium titanate (BST) high-k thin films as alternative gate material for field-effect capacitive (bio-)chemical sensors based on an electrolyte-insulator-semiconductor system have been investigated. The BST films of different compositions (Ba{sub 0.31}Sr{sub 0.69}TiO{sub 3}, Ba{sub 0.25}Sr{sub 0.75}TiO{sub 3} and Mg-doped Ba{sub 0.8}Sr{sub 0.2}Mg{sub 0.1}Ti{sub 0.9}O{sub 3}) were deposited by pulsed laser deposition technique from targets fabricated by self-propagating high-temperature synthesis. The realised sensors have been electrochemically characterised by means of impedance-spectroscopy, capacitance-voltage and constant-capacitance method. The sensors possess a Nernstian-like pH sensitivity in the concentration range between pH 3 and 11 with a response time of 5-10 s. An equivalent circuit model for the BST-based capacitive field-effect sensor is discussed. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  7. Synthesis and Characterization of Barium Titanate Powders by Sol-Gel Method

    International Nuclear Information System (INIS)

    BaTiO3 powders were prepared by the sol gel method starting from soluble precursors of barium and titanium. The synthesized powders were calcined for 2 h at different temperatures ranges from 800 to 1000 degree Celsius. Phase formation, crystal structure and crystallite size of the calcined powders were investigated using the x-ray diffraction (XRD). A scanning electron microscope (SEM) equipped with energy-dispersive x-ray spectroscopy (EDX) was used for determination of morphology and elemental composition. The XRD results showed that BaTiO3 transformed from the (pseudo)cubic to the ferroelectric tetragonal phase with increasing calcination temperature. The purity and crystallite size of BaTiO3 powders were found to increase with increasing calcination temperature in the range of 32 nm to 140 nm. Higher temperatures led to the particle growth and agglomeration. (author)

  8. Optical and dielectric study of strontium modified barium zirconium titanate ceramic prepared by high energy ball milling

    International Nuclear Information System (INIS)

    Highlights: • Submicron size strontium doped BZT ceramics were prepared by high energy ball milling. • Structural analysis was done by Reitveld refinement and Raman analysis. • Decrement in transition temperature and increment in diffusivity is observed with doping. • Remnant polarization decreases and coercive filed increases with doping. • Optical study was done by UV–vis spectroscopy and the optical band gap increases with doping. - Abstract: Strontium modified barium zirconium titanate with general formula Ba1−xSrxZr0.05Ti0.95O3 ceramics have been prepared by solid state and high energy ball milling technique. The X-ray diffraction and Rietveld refinement studies show that all the compositions have single phase symmetry. The composition BaZr0.05Ti0.95O3 shows orthorhombic symmetric with space group Amm2. The structure changes from orthorhombic to tetragonal with strontium doping up to x = 0.3 and with further addition, changes to cubic. The scanning electron micrographs show that the grain size decreases with increase in strontium content. The temperature dependent dielectric behavior shows three phase transition in the parent material which merges with an increase in Sr content. The transition temperature and dielectric constant decreases with an increase in Sr concentration. The phase transition becomes more diffused with increment in doping concentration. The ferroelectric behavior of the ceramics is studied by the hysteresis loop. The optical behavior is studied by the UV–visible spectroscopy and found that the optical band gap increases with Sr concentration

  9. Optical and dielectric study of strontium modified barium zirconium titanate ceramic prepared by high energy ball milling

    Energy Technology Data Exchange (ETDEWEB)

    Badapanda, T., E-mail: badapanda.tanmaya@gmail.com [Department of Physics, C.V. Raman College of Engineering, Bhubaneswar, Odisha 752054 (India); Sarangi, S.; Behera, B. [School of Physics, Sambalpur University, Jyoti Vihar, Sambalpur, Odisha 768019 (India); Parida, S. [Department of Physics, C.V. Raman College of Engineering, Bhubaneswar, Odisha 752054 (India); Saha, S.; Sinha, T.P. [Department of Physics, Bose Institute, Kolkata 700009 (India); Ranjan, Rajeev [Department of Materials Engineering, Indian Institute of Science, Bangalore 560012 (India); Sahoo, P.K. [School of Physical Science, National Institute of Science Education and Research (NISER), Bhubaneswar, Odisha (India)

    2015-10-05

    Highlights: • Submicron size strontium doped BZT ceramics were prepared by high energy ball milling. • Structural analysis was done by Reitveld refinement and Raman analysis. • Decrement in transition temperature and increment in diffusivity is observed with doping. • Remnant polarization decreases and coercive filed increases with doping. • Optical study was done by UV–vis spectroscopy and the optical band gap increases with doping. - Abstract: Strontium modified barium zirconium titanate with general formula Ba{sub 1−x}Sr{sub x}Zr{sub 0.05}Ti{sub 0.95}O{sub 3} ceramics have been prepared by solid state and high energy ball milling technique. The X-ray diffraction and Rietveld refinement studies show that all the compositions have single phase symmetry. The composition BaZr{sub 0.05}Ti{sub 0.95}O{sub 3} shows orthorhombic symmetric with space group Amm2. The structure changes from orthorhombic to tetragonal with strontium doping up to x = 0.3 and with further addition, changes to cubic. The scanning electron micrographs show that the grain size decreases with increase in strontium content. The temperature dependent dielectric behavior shows three phase transition in the parent material which merges with an increase in Sr content. The transition temperature and dielectric constant decreases with an increase in Sr concentration. The phase transition becomes more diffused with increment in doping concentration. The ferroelectric behavior of the ceramics is studied by the hysteresis loop. The optical behavior is studied by the UV–visible spectroscopy and found that the optical band gap increases with Sr concentration.

  10. Effect of sulfur hexafluoride gas and post-annealing treatment for inductively coupled plasma etched barium titanate thin films

    Science.gov (United States)

    Wang, Cong; Li, Yang; Yao, Zhao; Kim, Hong-Ki; Kim, Hyung-Jun; Kim, Nam-Young

    2014-09-01

    Aerosol deposition- (AD) derived barium titanate (BTO) micropatterns are etched via SF6/O2/Ar plasmas using inductively coupled plasma (ICP) etching technology. The reaction mechanisms of the sulfur hexafluoride on BTO thin films and the effects of annealing treatment are verified through X-ray photoelectron spectroscopy (XPS) analysis, which confirms the accumulation of reaction products on the etched surface due to the low volatility of the reaction products, such as Ba and Ti fluorides, and these residues could be completely removed by the post-annealing treatment. The exact peak positions and chemicals shifts of Ba 3d, Ti 2p, O 1 s, and F 1 s are deduced by fitting the XPS narrow-scan spectra on as-deposited, etched, and post-annealed BTO surfaces. Compared to the as-deposited BTOs, the etched Ba 3d 5/ 2 , Ba 3d 3/ 2 , Ti 2p 3/ 2 , Ti 2p 1/ 2 , and O 1 s peaks shift towards higher binding energy regions by amounts of 0.55, 0.45, 0.4, 0.35, and 0.85 eV, respectively. A comparison of the as-deposited film with the post-annealed film after etching revealed that there are no significant differences in the fitted XPS narrow-scan spectra except for the slight chemical shift in the O 1 s peak due to the oxygen vacancy compensation in O2-excessive atmosphere. It is inferred that the electrical properties of the etched BTO film can be restored by post-annealing treatment after the etching process. Moreover, the relative permittivity and loss tangent of the post-annealed BTO thin films are remarkably improved by 232% and 2,695%, respectively.

  11. Physical properties and electronic structure of a new barium titanate suboxide Ba{sub 1+δ}Ti{sub 13−δ}O{sub 12} (δ = 0.11)

    Energy Technology Data Exchange (ETDEWEB)

    Rotundu, Costel R.; Jiang, Shan; Ni, Ni [Department of Physics and Astronomy, University of California Los Angeles, Los Angeles, California 90095 (United States); CNSI, University of California Los Angeles, Los Angeles, California 90095 (United States); Deng, Xiaoyu; Kotliar, Gabriel [Department of Physics, Rutgers University, Piscataway, New Jersey 08854 (United States); Qian, Yiting; Hawthorn, David G. [Department of Physics and Astronomy, University of Waterloo, Waterloo N2L 3G1 (Canada); Khan, Saeed [UCLA Molecular Instrumentation Center, University of California Los Angeles, Los Angeles, California 90095 (United States)

    2015-04-01

    The structure, transport, thermodynamic properties, x-ray absorption spectra (XAS), and electronic structure of a new barium titanate suboxide, Ba{sub 1+δ}Ti{sub 13−δ}O{sub 12} (δ = 0.11), are reported. It is a paramagnetic poor metal with hole carriers dominating the transport. Fermi liquid behavior appears at low temperature. The oxidization state of Ti obtained by the XAS is consistent with the metallic Ti{sup 2+} state. Local density approximation band structure calculations reveal the material is near the Van Hove singularity. The pseudogap behavior in the Ti-d band and the strong hybridization between the Ti-d and O-p orbitals reflect the characteristics of the building blocks of the Ti{sub 13} semi-cluster and the TiO{sub 4} quasi-squares, respectively.

  12. Investigation of lead-free thin films based on barium titanate for electrocaloric devices

    International Nuclear Information System (INIS)

    Lead-free thin films were synthesized by sol-gel for possible use in solid- state coolers. Surface morphology of the layers was obtained by atomic force microscopy (AFM). Electrophysical properties were investigated by impedance spectroscopy

  13. Studies on Synthesis, Structural and Electrical Properties of Complex Oxide Thin Films: Barium Strontium Titanate and Lanthanum Strontium Nickelate

    Science.gov (United States)

    Podpirka, Adrian A.

    High performance miniaturized passives are of great importance for advanced nanoelectronic packages for several applications including efficient power delivery. Low cost thin film capacitors fabricated directly on package (and/or on-chip) are an attractive approach towards realizing such devices. This thesis aims to explore fundamental frequency dependent dielectric and insulating properties of thin film high-k dielectric constant in the perovskite and perovskite-related complex oxides. Throughout this thesis, we have successfully observed the role of structure, strain and oxygen stoichiometry on the dielectric properties of thin film complex oxides, allowing a greater understanding of processing conditions and polarization mechanisms. In the first section of the thesis, we explore novel processing methods in the conventional ferroelectric, barium strontium titanate, Ba1-xSr xTiO3 (BST), using ultraviolet enhanced oxidation techniques in order to achieve improvements in the dielectric properties. Using this method, we also explore the growth of BST on inexpensive non-noble metals such as Ni which presents technical challenges due to the ability to oxidize at high temperatures. We observe a significant lowering of the dielectric loss while also lowering the process temperature which allows us to maintain an intimate interface between the dielectric layer and the metal electrode. The second section of this thesis explores the novel dielectric material, Lanthanum Strontium Nickelate, La2-xSrxNiO4 (LSNO), which exhibits a colossal dielectric response. For the first time, we report on the colossal dielectric properties of polycrystalline and epitaxial thin film LSNO. We observe a significant polarization dependence on the microstructure due to the grain/grain boundary interaction with charged carriers. We next grew epitaxial films on various insulating oxide substrates in order to decouple the grain boundary interaction. Here we observed substrate dependent dielectric

  14. Simple oxalate precursor route for the preparation of brain-like shaped barium-strontium titanate: Ba0.6Sr0.4TiO3

    International Nuclear Information System (INIS)

    Through adding quantitative ammonia into a precursor solution containing stoichiometric quantities of Ba and Sr ions before the co-precipitation procedure, a simple oxalate co-precipitation method based one-step cation-exchange reaction between the stoichiometric solutions of oxalotitanic acid (HTO) and barium + strontium nitrate is investigated successfully for the quantitative precipitation of barium-strontium titanyl oxalate (BSTO): Ba0.6Sr0.4TiO(C2O4)2.4H2O precursor powders. The pyrolysis of BSTO at 800 deg. C/4 h in air produced the homogeneous brain-like shaped barium-strontium titanate (Ba0.6Sr0.4TiO3: BST) powders. The characterization studies were carried on the as-dried BSTO and calcined BST powders by various physicochemical techniques, IR, DSC/TGA, XRD, SEM, etc. It revealed that the BST powders are cubic, stoichiometric, highly pure, sub-micron-sized with nearly uniform size, brain-like shape and agglomerated nature

  15. Ferroelectric properties of barium strontium titanate thin films grown by RF co-sputtering

    International Nuclear Information System (INIS)

    In this work, we present the variation of the ferroelectric properties of Ba1-xSrxTiO3 films deposited on Pt/TiO2/SiO2/Si substrates by RF co-sputtering with 0≤x≤1. The co-sputtering was done using a single magnetron with BaTiO3/SrTiO3 targets in a pie mosaics configuration. Smooth and uniform films were obtained using the same conditions of growth and annealing temperature. The X-ray diffraction and EDS results show that the processes were managed to obtain crystalline materials with x from 0 to 1. The behaviour of P-E loops suggests that the ferroelectric properties of the films were tuned by changing the concentration of the cation. (copyright 2005 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  16. Ferroelectric properties of barium strontium titanate thin films grown by RF co-sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Zapata-Navarro, A.; Marquez-Herrera, A. [CICATA-IPN, Km. 14.5 Carretera Tampico-Puerto Ind. Altamira, Altamira Tamaulipas 89600 (Mexico); Cruz-Jauregui, M.P. [CCMC-UNAM, Km. 107 Carretera Tijuana-Ensenada, Ensenada B.C. 22800 (Mexico); Calzada, M.L. [ICMM (CSIC) Madrid, Cantoblanco Madrid 28049 (Spain)

    2005-08-01

    In this work, we present the variation of the ferroelectric properties of Ba{sub 1-x}Sr{sub x}TiO{sub 3} films deposited on Pt/TiO{sub 2}/SiO{sub 2}/Si substrates by RF co-sputtering with 0{<=}x{<=}1. The co-sputtering was done using a single magnetron with BaTiO{sub 3}/SrTiO{sub 3} targets in a pie mosaics configuration. Smooth and uniform films were obtained using the same conditions of growth and annealing temperature. The X-ray diffraction and EDS results show that the processes were managed to obtain crystalline materials with x from 0 to 1. The behaviour of P-E loops suggests that the ferroelectric properties of the films were tuned by changing the concentration of the cation. (copyright 2005 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  17. Pyro-paraelectric and flexocaloric effects in barium strontium titanate: A first principles approach

    Science.gov (United States)

    Patel, Satyanarayan; Chauhan, Aditya; Cuozzo, J.; Lisenkov, S.; Ponomareva, I.; Vaish, Rahul

    2016-04-01

    Inhomogeneous strain allows the manifestation of an unexplored component of stress-driven caloric effect (flexocaloric effect) and enhanced pyroelectric performance, obtainable significantly beyond the Curie point. A peak temperature change of 1.5 K (at 289 K) was predicted from first-principles-based simulations for Ba0.5Sr0.5TiO3 under the application of a strain gradient of 1.5 μm-1. Additionally, enhanced pyro-paraelectric coefficient (pyroelectric coefficient in paraelectric phase) and flexocaloric cooling 11 × 10-4 C m-2 K-1 and 1.02 K, respectively, could be obtained (at 330 K and 1.5 μm-1). A comparative analysis with prevailing literature indicates huge untapped potential and warrants further research.

  18. Adsorption of water-soluble polymers onto barium titanate and its effect on colloidal stability.

    OpenAIRE

    Laat, de, C.T.A.M.

    1995-01-01

    Ceramic products are usually made from powders which are processed into a green body, with a shape dictated by the final product. Organic binders are used to give the green product sufficient mechanical strength. A sintering process at high temperature converts the green body into the final ceramic product. In electronic ceramics, a high density and a homogeneous microstructure are required to obtain high quality products. For that purpose solid state sintering, in which no liquid phase is pr...

  19. Obtaining of a barium compound by combustion chemistry and their evaluation as Co adsorbent

    International Nuclear Information System (INIS)

    In this work, barium carbonate synthesized by chemical combustion method using a chemical precursor prepared by the combination of barium nitrate and urea as a fuel, with a 1:1 molar ratio in aqueous solution, the chemical precursor was heated to evaporate excess water, producing a homogeneous viscous liquid, that when heated to 900 centi grades for 5 minutes an exothermic reaction was produced very quickly and abruptly, forming a white powder final product, fine porous, little spongy, dry and crystalline ready to be used as material adsorbent. Additionally, the effect of water on the synthesis by chemical combustion was studied. Simultaneously, and with the purpose of comparing the advantages and disadvantages of the method by chemical combustion, barium carbonate was synthesized by precipitation method using barium nitrate salts and sodium carbonate. Synthesized barium carbonate, was characterized by X-ray diffraction, thermal gravimetric analysis, infrared spectrometry and scanning electron microscopy. We studied the adsorption capacity of Co present in aqueous solution by static tests on materials synthesized at room temperature using the neutron activation analysis. It was found that the synthesis by chemical combustion provides an interesting alternative compared to the synthesis by precipitation because it offers simplicity of synthesis and speed to have a good adsorbent material. It was found that the barium carbonate synthesized by the chemical combustion method using in their synthesis 1.0 ml of water, was the one who achieved the maximum adsorption capacity of 95.6% compared with the barium carbonate prepared by precipitation, which reached a capacity adsorption of 51.48%. (Author)

  20. Electrooptic modulation up to 40 GHz in a barium titanate thin film waveguide modulator

    Science.gov (United States)

    Tang, Pingsheng; Towner, D. J.; Hamano, T.; Meier, A. L.; Wessels, B. W.

    2004-11-01

    The high frequency operation of a low-voltage electrooptic modulator based on a strip-loaded BaTiO3 thin film waveguide structure has been demonstrated. The epitaxial BaTiO3 thin film on an MgO substrate forms a composite structure with a low effective dielectric constant of 20.8 at 40 GHz. A 3.9 V half-wave voltage with a 3.7 GHz 3-dB bandwidth and a 150 pm/V effective electrooptic coefficient is obtained for the 3.2mm-long modulator at 1.55 μm. Broadband modulation up to 40 GHz is measured with a calibrated detection system. Numerical simulations indicate that the BaTiO3 thin film modulator has the potential for a 3-dB operational bandwidth in excess of 40 GHz through optimized design.

  1. Synthesis of strontium substituted barium titanate nanoparticles by mechanical alloying and high power ultrasonication destruction

    Science.gov (United States)

    Yustanti, Erlina; Hafizah, Mas Ayu Elita; Manaf, Azwar

    2016-04-01

    This paper reports the particle and crystallite size characterizations of mechanically alloyed Ba(1-x)SrxTiO3 (BST) with x = 0.3 and 0.7 prepared with the assistance of a high-power sonicator. Analytical grade BaCO3, TiO2 and SrCO3 precursors with a purity of greater than 99 wt.% were mixed and milled using a planetary ball mill to a powder weight ratio of 10:1. Powders obtained after 20 hours of milling time were then sintered at 1200°C for 4 hours to form crystalline powders.These powders were further treated ultrasonically under a fixed 6.7 gr/l particle concentration in demineralized water for 1, 3, 5, 7 hours and a fixed ultrasonic irradiation time of 1 hour to the dispersion of 6.7; 20; 33.3 gr/l concentrations. As to the results of crystallite size characterization, it is demonstrated that the mean crystallite size of BST with x = 0.3 and 0.7 undergo a slight change after the first 1 hour irradiation time and then remain almost unchanged. This was in contrary to the particle size in which the mean particle size of BST with x = 0.3 increased from 765 nm to 1405 nm after 7 hours irradiation time, while that of x = 0.7 increased from 505 nm to 1298 nm after 3 hours and then reduced back to the initial size after 7 hours ultra sonication time. The increase in particle size was due to large of cohesive forces among fine particles. It is also demonstrated that the concentration of particles in a dispersion with anionic surfactant do not effective to reduce the particle sizes ultrasonically. Nanoparticles with the mean size respectively 40 and 10 times larger than their respective crystallite size were successfully obtained respectively in x = 0.3 and x = 0.7.

  2. Kinetic characterization of barium titanate-bismuth oxide-vanadium pentoxide glasses

    Science.gov (United States)

    Al-Syadi, Aref M.; Yousef, El Sayed; El-Desoky, M. M.; Al-Assiri, M. S.

    2014-06-01

    The glasses with the composition (80 - x)V2O5·20Bi2O3·xBaTiO3 with x = 2.5, 5, 7.5 and 10 mol % were prepared by a melting technique. The crystallization behavior and the microstructure of the glasses were investigated by using differential scanning calorimetry (DSC), X-ray diffraction (XRD) and scanning electron microscopy (SEM). The mean value of the activation energy of structural relaxation () decreased from 395 ± 3 to 369 ± 1.83 kJ/mol when BaTiO3 increased from 2.5 to 10 mol %. The activation energies obtained by the methods Kissinger and Ozawa were in the range from 213 ± 0.65 to 256 ± 1.23 kJ/mol. Different analysis methods were used to estimate the Avrami exponents. Their values range from 4.26 ± 0.6 to 2.62 ± 0.11 for the exothermic peak of the prepared glasses. Moreover, synthesized glasses-ceramic containing BaTi4O9 and Ba3TiV4O15 were estimated by using XRD.

  3. Structural and dielectric properties of barium strontium titanate produced by high temperature hydrothermal method

    International Nuclear Information System (INIS)

    The preparation procedure, structural and dielectric properties of hydrothermally derived BaxSr1-xTiO3 (BST) were studied. BST with initial Ba compositions of 75, 80, 85 and 90 mol.% were prepared by a high temperature hydrothermal synthesis. The obtained powders were pressed into pellet, cold isostatically pressed and sintered at 1200 deg. C for 3 hours. The phase compositions and lattice parameters of the as prepared powders and sintered samples were analysed using X-ray diffractometry. A fitting software was used to analyse the XRD spectra to separate different phases. It was found that BST powder produced by the high temperature hydrothermal possessed a two-phase structure. This structure became more homogeneous during sintering due to interdiffusion but a small amount of minor phase can still be traced. Samples underwent an abnormal grain growth, whereby some grains grow faster than the other due to the presence of two-phase structure. The grain size increased with increasing Ba amount. Dielectric constant and polarisation increased with increasing Ba content but it was also affected by the electronic state and grain size of the compositions

  4. Effect of Fe3+ substitution on structural, optical and magnetic properties of barium titanate ceramics

    International Nuclear Information System (INIS)

    Multiferroic BaTi1−xFexO3 (0≤x≤0.12) materials were synthesized using the solid-state reaction method. The influence of Fe on the crystalline structure, the electronic structure, the optical properties and the magnetic property of BaTi1−xFexO3 samples were investigated. The obtained X-ray diffraction patterns, Raman and UV–vis spectra showed that the structure of the material sensitively depends on Fe dopant content, x, and transforms gradually from the tetragonal (P4mm) phase to the hexagonal (P63/mmc) one with increasing x. The photoluminescence emission of BaTi1−xFexO3 was attributed to structural disorder. All of the samples exhibit both ferroelectricity and ferromagnetism at room temperature. The relaxor like behavior was observed for all samples. The magnetization at a magnetic field of 1 T abnormally depends on x, increases up to 0.1 then decreases monotonously afterward. This anomaly in the magnetic behavior can be explained in terms of the changes in the oxidation state of ions such as the Fe3+-to-Fe4+ and/or Ti4+-to-Ti3+ change induced by oxygen vacancies. The substitution of Fe into Ti sites also causes the changes in the conductivity of the material and impurity (acceptor) levels in the band gap, which can be evident from the absorption spectra, and time-dependent leakage current measured at room temperature

  5. Epitaxially-Grown Europium-Doped Barium Titanate Films on Various Substrates for Red Emission.

    Science.gov (United States)

    Hwang, Kyu-Seog; Jeon, Young-Sun; Lee, Young-Hwan; Hwangbo, Seung; Kim, Jin-Tae

    2015-10-01

    Intense red photoluminescence under ultraviolet excitation was observed in epitaxially-grown europium-doped perovskite BaTiO3 thin films deposited on the SrTiO3 (100), MgO (100) and sapphire (0001) substrates using metal carboxylate complexes. Precursor films prepared by spin coating were pyrolyzed at 250 °C for 120 min in argon, followed by final annealing at 850 °C for 60 min in argon. Crystallinity and epitaxy of the films were analyzed by X-ray diffraction θ-2θ scan and pole-figure analysis. Photoluminescence of the thin films at room temperature under 254 nm was confirmed by a fluorescent spectrophotometer. The obtained epitaxial BaTiO3 thin films on the SrTiO3 (100) and MgO (100) substrates show an intense red-emission lines at 615 nm corresponding to the (5)D0 --> (7)F2 transitions on Eu(3+) with broad bands at 595 and 650 nm. PMID:26726427

  6. Investigation of resistive switching in barium strontium titanate thin films for memory applications

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Wan

    2010-11-17

    Resistive random access memory (RRAM) has attracted much attention due to its low power consumption, high speed operation, non-readout disturbance and high density integration potential and is regarded as one of the most promising candidates for the next generation non-volatile memory. The resistive switching behavior of Mn-doped BaSrTiO{sub 3} (BST) thin films with different crystalline properties was investigated within this dissertation. The laser fluence dependence was checked in order to optimize the RRAM properties. Although the film epitaxial quality was improved by reducing the laser energy during deposition process, the yields fluctuated and only 3% RRAM devices with highest epitaxial quality of BST film shows resistive switching behavior instead of 67% for the samples with worse film quality. It gives a clue that the best thin film quality does not result in the best switching performance, and it is a clear evidence of the importance of the defects to obtain resistive switching phenomena. The bipolar resistive switching behavior was studied with epitaxial BST thin films on SRO/STO. Compared to Pt top electrode, the yield, endurance and reliability were strongly improved for the samples with W top electrode. Whereas the samples with Pt top electrode show a fast drop of the resistance for both high and low resistance states, the devices with W top electrode can be switched for 10{sup 4} times without any obvious degradation. The resistance degradation for devices with Pt top electrode may result from the diffusion of oxygen along the Pt grain boundaries during cycling whereas for W top electrode the reversible oxidation and reduction of a WO{sub x} layer, present at the interface between W top electrode and BST film, attributes to the improved switching property. The transition from bipolar to unipolar resistive switching in polycrystalline BST thin films was observed. A forming process which induces a metallic low resistance state is prerequisite for the

  7. Investigation of resistive switching in barium strontium titanate thin films for memory applications

    International Nuclear Information System (INIS)

    Resistive random access memory (RRAM) has attracted much attention due to its low power consumption, high speed operation, non-readout disturbance and high density integration potential and is regarded as one of the most promising candidates for the next generation non-volatile memory. The resistive switching behavior of Mn-doped BaSrTiO3 (BST) thin films with different crystalline properties was investigated within this dissertation. The laser fluence dependence was checked in order to optimize the RRAM properties. Although the film epitaxial quality was improved by reducing the laser energy during deposition process, the yields fluctuated and only 3% RRAM devices with highest epitaxial quality of BST film shows resistive switching behavior instead of 67% for the samples with worse film quality. It gives a clue that the best thin film quality does not result in the best switching performance, and it is a clear evidence of the importance of the defects to obtain resistive switching phenomena. The bipolar resistive switching behavior was studied with epitaxial BST thin films on SRO/STO. Compared to Pt top electrode, the yield, endurance and reliability were strongly improved for the samples with W top electrode. Whereas the samples with Pt top electrode show a fast drop of the resistance for both high and low resistance states, the devices with W top electrode can be switched for 104 times without any obvious degradation. The resistance degradation for devices with Pt top electrode may result from the diffusion of oxygen along the Pt grain boundaries during cycling whereas for W top electrode the reversible oxidation and reduction of a WOx layer, present at the interface between W top electrode and BST film, attributes to the improved switching property. The transition from bipolar to unipolar resistive switching in polycrystalline BST thin films was observed. A forming process which induces a metallic low resistance state is prerequisite for the observation of

  8. Short-range order and fractal cluster structure of aggregates of barium titanate microparticles in a composite based on cyano-ethyl ester of polyvinyl alcohol

    Science.gov (United States)

    Krasovskii, A. N.; Novikov, D. V.; Vasina, E. S.; Matveichikova, P. V.; Sychev, M. M.; Rozhkova, N. N.

    2015-12-01

    The distribution of barium titanate (BaTiO3) microparticles in the matrix of cyano-ethyl ester of polyvinyl alcohol and the change in the surface energy upon introduction of shungite carbon nanoclusters into the dielectric composite have been investigated using the methods of scanning electron microscopy and contact angles. The computer processing of the electron microscopy data has demonstrated that the introduction of 0.04% shungite carbon nanoparticles into the composite leads to a decrease in the spatial homogeneity of the quasi-lattice and to an increase in the local density distribution of BaTiO3 microparticles, as well as in the correlation length corresponding to the formation of an infinite cluster of BaTiO3 particles. It has been found that, in this case, the surface energy and dielectric permittivity of the composite extremely increase.

  9. Synthesis of nanoparticles of barium strontium titanate using hydrothermal microwave method; Sintese de nanoparticulas de titanato de bario estroncio utilizando o metodo hidrotermal assistido por microondas

    Energy Technology Data Exchange (ETDEWEB)

    Silva, R.A.; Souza, A.E.; Teixeira, S.R. [Universidade Estadual Paulista (DFQB/FCT/UNESP), Presidente Prudente, SP (Brazil). Fac. de Ciencia e Tecnologia. Dept. de Fisica, Quimica e Biologia; Moreira, M.L.; Volanti, D.P. [Universidade Federal de Sao Carlos (LiEC/UFSCAR), SP (Brazil). Lab. Interdisciplinar de Eletroquimica e Ceramica; Longo, E. [Universidade Estadual Paulista (UNESP/LiEC), Araraquara, SP (Brazil). Lab. Interdisciplinar de Eletroquimica e Ceramica

    2009-07-01

    Nanoparticles of barium strontium titanate Ba{sub x}Sr{sub 1}-{sub x}TiO{sub 3} (BST) had been prepared, with x = 0.5, using the hydrothermal method attended by microwaves (HTMW). A solution was prepared using deionized water, barium chloride (BaCl{sub 2}.2H{sub 2}O), strontium chloride (SrCl{sub 2}.6H{sub 2}O), titanium (IV) isopropoxide (C{sub 12}H28O{sub 4}Ti) and potassium hydroxide (KOH). Afterward the solution was heated to 140 deg C in a microwave oven, at a heating rate of 140 deg C/min, and maintained at this temperature for 40 min, under a pressure of 3 to 4 bar. X-ray diffraction (DRX) and field emission scanning electron microscopy (FE-SEM) had been used in the particles characterization. DRX was used to identify the crystallized phases and the images taken from (FE-SEM) show that the material has a wide particle-size distribution with most of them between 10 and 30 nm. (author)

  10. Synthesis and characterization of lead zirconate titanate powders obtained by the oxidant peroxo method

    International Nuclear Information System (INIS)

    Lead zirconate titanate (PbZr1-xTixO3) was synthesized by the 'oxidant peroxo method (OPM)' with 'x' between 0.25 and 0.50. Titanium metal was dissolved into a hydrogen peroxide/ammonia aqueous solution, followed by the addition of lead and zirconium nitrate solution. The amorphous precipitated precursor obtained was crystallized by heat treatment between 400 and 1000 deg. C. Images of transmission microscopy showed spherical particles with average diameter between 20 and 60 nm, and the presence of necks between particles treated at 700 deg. C. All of the unpressed powders were characterized by X-ray diffractometry and FT-Raman spectroscopy. Powder samples with 'x' up to 0.35 showed rhombohedral structure when treated at temperatures higher than 500 deg. C, and tetragonal structure when 'x' was higher than 0.40. Analysis of XRD and Raman spectroscopy of the precursor powders showed amorphous-like structures, however powders treated at 400 deg. C showed a structure identified as an intermediate pyrochlore phase, independently of the Zr and Ti mole ratio

  11. Synthesis and characterization of lead zirconate titanate powders obtained by the oxidant peroxo method

    Energy Technology Data Exchange (ETDEWEB)

    Camargo, Emerson R. [LIEC-Laboratorio Interdisciplinar de Eletroquimica e Ceramica, Department of Chemistry, UFSCar-Federal University of Sao Carlos, Rod. Washington Luis km 235, CP 676, Sao Carlos SP, 13565-905 (Brazil)], E-mail: camargo@ufscar.br; Leite, Edson R. [LIEC-Laboratorio Interdisciplinar de Eletroquimica e Ceramica, Department of Chemistry, UFSCar-Federal University of Sao Carlos, Rod. Washington Luis km 235, CP 676, Sao Carlos SP, 13565-905 (Brazil)], E-mail: derl@power.ufscar.br; Longo, Elson [Department of Biochemistry, Chemistry Institute of Araraquara, UNESP, Sao Paulo State University Rua Francisco Degni, CP 355 Araraquara SP, 14801-907 Brazil (Brazil)], E-mail: elson@iq.unesp.br

    2009-02-05

    Lead zirconate titanate (PbZr{sub 1-x}Ti{sub x}O{sub 3}) was synthesized by the 'oxidant peroxo method (OPM)' with 'x' between 0.25 and 0.50. Titanium metal was dissolved into a hydrogen peroxide/ammonia aqueous solution, followed by the addition of lead and zirconium nitrate solution. The amorphous precipitated precursor obtained was crystallized by heat treatment between 400 and 1000 deg. C. Images of transmission microscopy showed spherical particles with average diameter between 20 and 60 nm, and the presence of necks between particles treated at 700 deg. C. All of the unpressed powders were characterized by X-ray diffractometry and FT-Raman spectroscopy. Powder samples with 'x' up to 0.35 showed rhombohedral structure when treated at temperatures higher than 500 deg. C, and tetragonal structure when 'x' was higher than 0.40. Analysis of XRD and Raman spectroscopy of the precursor powders showed amorphous-like structures, however powders treated at 400 deg. C showed a structure identified as an intermediate pyrochlore phase, independently of the Zr and Ti mole ratio.

  12. Influence of sintering temperature on microstructures and energy-storage properties of barium strontium titanate glass-ceramics prepared by sol-gel process

    International Nuclear Information System (INIS)

    The sol-gel processing, microstructures, dielectric properties and energy-storage properties of barium strontium titanate glass-ceramics over the sintering temperature range of 1000-1150 C were studied. Through the X-ray diffraction result, it is revealed that the crystallinity increases as the sintering temperature increased from 1000 to 1080 C and has reached a steady-state regime above 1100 C. Scanning electron microscopy images showed that with the increase of sintering temperature, the crystal size increased. Dielectric measurements revealed that the increase in the sintering temperature resulted in a significant increase in the dielectric constant, a strong sharpness of the temperature-dependent dielectric response and a pronounced decrease of the temperature of the dielectric maximum. The correlation between charge spreading behavior and activation energies of crystal and glass was discussed by the employment of the impedance spectroscopy studies. As a result of polarization-electric field hysteresis loops, both the charged and discharged densities increased with increasing sintering temperature. And the maximum value of energy storage efficiency was found to occur at 1130 C. Finally, the dependence of released energy and power densities calculated from the discharged current-time (I-t) curves on the sintering temperature was studied. The relationship between the energy storage properties and microstructure was correlated. Polarization-electric field hysteresis loops for the BST glass-ceramics sintered at different temperatures. (copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  13. Improvement in crystallization and electrical properties of barium strontium titanate thin films by gold doping using metal-organic deposition method

    International Nuclear Information System (INIS)

    The effect of gold (Au) on the crystallization, dielectric constant and leakage current density of barium strontium titanate (BST) thin films was investigated. BST thin films with various gold concentrations were prepared via a metal-organic deposition process. The X-ray diffraction shows enhanced crystallization as well as expanded lattice constants for the gold-doped BST films. Thermal analysis reveals that the gold dopant induces more complete decomposition of precursor for the doped films than those of undoped ones. The leakage current density of BST films is greatly reduced by the gold dopant over a range of biases (1-5 V). The distribution of gold was confirmed by electron energy loss spectroscopy and found to be inside the BST grains, not in the grain-boundaries. Gold acted as a catalyst, inducing the nucleation of crystallites and improving the crystallinity of the structure. Its addition is shown to be associated to the improvement of the electrical properties of BST films

  14. Influence of sintering temperature on microstructures and energy-storage properties of barium strontium titanate glass-ceramics prepared by sol-gel process

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Jia; Zhang, Yong; Song, Xiaozhen; Zhang, Qian; Yang, Dongliang; Chen, Yongzhou [Beijing Key Laboratory of Fine Ceramics, State Key Laboratory of New Ceramics and Fine Processing, Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing, 100084 (China)

    2015-12-15

    The sol-gel processing, microstructures, dielectric properties and energy-storage properties of barium strontium titanate glass-ceramics over the sintering temperature range of 1000-1150 C were studied. Through the X-ray diffraction result, it is revealed that the crystallinity increases as the sintering temperature increased from 1000 to 1080 C and has reached a steady-state regime above 1100 C. Scanning electron microscopy images showed that with the increase of sintering temperature, the crystal size increased. Dielectric measurements revealed that the increase in the sintering temperature resulted in a significant increase in the dielectric constant, a strong sharpness of the temperature-dependent dielectric response and a pronounced decrease of the temperature of the dielectric maximum. The correlation between charge spreading behavior and activation energies of crystal and glass was discussed by the employment of the impedance spectroscopy studies. As a result of polarization-electric field hysteresis loops, both the charged and discharged densities increased with increasing sintering temperature. And the maximum value of energy storage efficiency was found to occur at 1130 C. Finally, the dependence of released energy and power densities calculated from the discharged current-time (I-t) curves on the sintering temperature was studied. The relationship between the energy storage properties and microstructure was correlated. Polarization-electric field hysteresis loops for the BST glass-ceramics sintered at different temperatures. (copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  15. Effect of annealing time, weight pressure and cobalt doping on the electrical and magnetic behavior of barium titanate

    Science.gov (United States)

    Samuvel, K.; Ramachandran, K.

    2016-05-01

    BaTi0.5CO0.5O3 (BTCO) nanoparticles were prepared by the solid state reaction technique using different starting materials and the microstructure examined by XRD, FESEM, BDS and VSM. X-ray diffraction and electron diffraction patterns showed that the nanoparticles were the tetragonal BTCO phase. The BTCO nanoparticles prepared from the starting materials of as prepared titanium-oxide, Cobalt -oxide and barium carbonate have spherical grain morphology, an average size of 65 nm and a fairly narrow size distribution. The nano-scale presence and the formation of the tetragonal perovskite phase as well as the crystallinity were detected using the mentioned techniques. Dielectric properties of the samples were measured at different frequencies. Broadband dielectric spectroscopy is applied to investigate the electrical properties of disordered perovskite-like ceramics in a wide temperature range. The doped BTCO samples exhibited low loss factor at 1 kHz and 1 MHz frequencies respectively.

  16. INFLUENCE OF REOXIDATION ON SILICA-CONTAINING BARIUM TITANATE CERAMICS FOR PTCR THERMISTORS PREPARED BY TAPE CASTING

    Directory of Open Access Journals (Sweden)

    Jianqiao Liu

    2016-03-01

    Full Text Available Silica-containing barium-rich BaTiO₃ ceramics for thermistors with a positive temperature coefficient of resistance are prepared by a tape-casting technique. The ceramics are sintered in a reducing atmosphere at low temperatures of 1175-1225°C. The influences of reoxidation are investigated after the reduced ceramics are reoxidized in air at 700-900°C. An anomalous correlation is illustrated between room temperature resistivity and reoxidation temperature. The anomaly results from the ferroelectricity rebuilding mechanism, which includes the spontaneous polarization theory and the ferroelectricity degradation caused by oxygen vacancies. The acceptor-state densities are estimated from the temperature-dependent resistivity. A critical temperature of 750-800°C is concluded for the grain boundary reoxidation.

  17. Participation of MicroRNA-34a and RANKL on bone repair induced by poly(vinylidene-trifluoroethylene)/barium titanate membrane.

    Science.gov (United States)

    Lopes, Helena B; Ferraz, Emanuela P; Almeida, Adriana L G; Florio, Pedro; Gimenes, Rossano; Rosa, Adalberto L; Beloti, Marcio M

    2016-09-01

    The poly(vinylidene-trifluoroethylene)/barium titanate (PVDF) membrane enhances in vitro osteoblast differentiation and in vivo bone repair. Here, we hypothesized that this higher bone repair could be also due to bone resorption inhibition mediated by a microRNA (miR)/RANKL circuit. To test our hypothesis, the large-scale miR expression of bone tissue grown on PVDF and polytetrafluoroethylene (PTFE) membranes was evaluated to identify potential RANKL-targeted miRs modulated by PVDF. The animal model used was rat calvarial defects implanted with either PVDF or PTFE. At 4 and 8 weeks, the bone tissue grown on membranes was submitted to a large-scale analysis of miRs by microarray. The expression of miR-34a and some of its targets, including RANKL, were evaluated by real-time polimerase chain reaction and osteoclast activity was detected by tartrate-resistant acid phosphatase (TRAP) staining. Among more than 250 miRs, twelve, including miR-34a, were simultaneously higher expressed (≥2 fold) at 4 and 8 weeks on PVDF. The higher expression of miR-34a was concomitant with a reduced expression of all its evaluated targets, including RANKL. Additionally, more TRAP-positive cells were observed in bone tissue grown on PTFE compared with PVDF in both time points. In conclusion, our results suggest that the higher bone formation induced by PVDF could be, at least in part, triggered by a miR-34a increase and RANKL decrease, which may inhibit osteoclast differentiation and activity, and bone resorption. PMID:27312544

  18. Effect of working pressure and annealing temperature on microstructure and surface chemical composition of barium strontium titanate films grown by pulsed laser deposition

    Indian Academy of Sciences (India)

    Zahra Saroukhani; Nemat Tahmasebi; Seyed Mohammad Mahdavi; Ali Nemati

    2015-10-01

    Barium strontium titanate (BST, Ba1−SrTiO3) thin films have been extensively used in many dielectric devices such as dynamic random access memories (DRAMs). To optimize its characteristics, a microstructural control is essential. In this paper, Ba0.6Sr0.4TiO3 thin film has been deposited on the SiO2/Si substrate by the pulsed laser deposition (PLD) technique at three different oxygen working pressures of 100, 220 and 350 mTorr. Then the deposited thin films at 100 mTorr oxygen pressure were annealed for 50 min in oxygen ambient at three different temperatures: 650, 720 and 800°C. The effect of oxygen working pressure during laser ablation and thermal treatment on the films was investigated by using X-ray diffraction (XRD), atomic force microscopy (AFM) and scanning electron microscopy (SEM) analysis methods. X-ray photoelectron spectroscopy analysis was used to determine the surface chemical composition of the samples. The results indicate that the deposited BST film at low working pressure (100 mTorr) in PLD chamber shows a lower surface roughness than other working pressures (220 and 350 mTorr). The as-deposited films show an amorphous structure and would turn into polycrystalline structure at annealing temperature above 650°C. Increase of temperature would cause the formation of cubic and per-ovskite phases, improvement in crystalline peaks and also result in the decomposition of BST at high temperature (above 800°C). In addition, rising of temperature leads to the increase in size of grains and clusters. Therefore more roughness was found at higher temperatures as a result of a more heterogeneous growth and less tensions.

  19. Optical properties of Er{sup 3+}-doped strontium barium niobate nanocrystals obtained by thermal treatment in glass

    Energy Technology Data Exchange (ETDEWEB)

    Haro-Gonzalez, P. [Dep. of Fisica Fundamental Experimental, Electronica y Sistemas, Universidad de La Laguna Avda Astrofisico Franscisco Sanchez, 38206 La Laguna, S/C de Tenerife (Spain)], E-mail: patharo@ull.es; Lahoz, F. [Dep. of Fisica Fundamental Experimental, Electronica y Sistemas, Universidad de La Laguna Avda Astrofisico Franscisco Sanchez, 38206 La Laguna, S/C de Tenerife (Spain); Gonzalez-Platas, J. [Dep. of Fisica Fundamental II, Universidad de La Laguna, 38206 La Laguna, S/C de Tenerife (Spain); Caceres, J.M. [Dep. of Edafologia y Geologia, Universidad de La Laguna, 38206 La Laguna, S/C de Tenerife (Spain); Gonzalez-Perez, S. [Dep. of Fisica Fundamental Experimental, Electronica y Sistemas, Universidad de La Laguna Avda Astrofisico Franscisco Sanchez, 38206 La Laguna, S/C de Tenerife (Spain); Marrero-Lopez, D. [Dep. of Quimica Inorganica, Universidad de La Laguna, 38206 La Laguna, S/C de Tenerife (Spain); Capuj, N. [Dep. of Fisica Basica, Universidad de La Laguna, 38206 La Laguna, S/C de Tenerife (Spain); Martin, I.R. [Dep. of Fisica Fundamental Experimental, Electronica y Sistemas, Universidad de La Laguna Avda Astrofisico Franscisco Sanchez, 38206 La Laguna, S/C de Tenerife (Spain)

    2008-05-15

    Measurements of the optical properties of Er{sup 3+} ions in strontium barium niobate glass and glass ceramics have been carried out. The glasses have been fabricated using a melt-quenching method, and the glass ceramic samples have been obtained from the glass precursor by a thermal treatment. The ceramic samples formed by a glassy phase, and a crystalline phase contains nanocrystals of Sr{sub 1-x}Ba{sub x}Nb{sub 2}O{sub 6} (SBN) doped with Er{sup 3+} ions with a mean size of {approx}50 nm, as confirmed with XRD. Green up-conversion emission has been obtained under excitation at 800 nm, and the temporal evolution of this emission has been reported with the purpose of determining the involved up-conversion mechanism. These optical measures have confirmed that the Er{sup 3+} ions have been incorporated into the SBN matrix, after a thermal treatment, which produced an increment of the up-conversion efficiency.

  20. Study of the effect of ionizing radiation on composites of wood flour in polypropylene matrix using barium titanate as coupling agent; Estudo do efeito da radiacao ionizante em compositos de polipropileno/po de madeira usando titanato de bario como agente de acoplagem

    Energy Technology Data Exchange (ETDEWEB)

    Ulloa, Maritza Eliza Perez

    2007-07-01

    The purpose of this work was to study the effects of ionizing radiation on the properties of wood flour composites in polypropylene matrix, using barium titanate as a coupling agent and the reactive monomer tripropylene glycol diacrylate (TPDGA). An electron accelerator was used in the study as the radiation source. The physical properties of virgin compounds and of the polypropylene/wood flour composite, with and without barium titanate and TPDGA addition, were investigated. The composites were developed from the load treatment, which first consisted of incorporating additives to the wood flour reinforcement and after that, the fusion process of polypropylene and composite mixing in a 'calander'. Subsequently, the samples to be irradiated and submitted to thermal and mechanical assays were molded by injection. The mechanical properties (hardness, impact resistance and molten fluidity index (MFI)), as well as the thermal properties (HDT and Vicat) of the composites were determined. The investigated compositions consisted of polypropylene/wood flour, polypropylene/wood flour with barium titanate and polypropylene/wood flour with barium titanate and TPDGA, using different wood flour concentrations of 10 por cent, 15 por cent and 20 por cent in the polypropylene matrix. The samples were separated in groups and irradiated to doses of 10 kGy and 20 kGy in the samples of the essays of traction. Besides these doses, it was also used doses of 15 kGy and 25 kGy to be observed the behavior of the sample of the sample due to the increase of the radiation. These doses were chosen to show that with low doses the composite material presents reticulation, what represents a viable commercial option. There was a reduction of the flow rate for the composites containing wood flour, being this reduction more effective in the presence of TiBa. The superficial treatment using TPDGA monomer influence in the composite samples because it acted as a plastic additive becoming the

  1. Crystallization resistance of barium titanate zirconate ultrathin films from aqueous CSD: a study of cause and effect

    OpenAIRE

    Hardy, An; Van Elshocht, Sven; Knaepen, Werner; D'Haen, Jan; Conard, Thierry; Brijs, Bert; Vandervorst, Wilfred; Pourtois, Geoffrey; Kittl, Jorge; Detavernier, Christophe; Heyns, Marc; Van Bael, Marlies; Van den Rul, Heidi; Mullens, Jules

    2009-01-01

    Ultrathin BaZr0.8Ti0.2O3 films (t < 30 nm) on SiOx/Si substrates were obtained by means of aqueous chemical solution deposition (CSD). Though the precursor crystallized into cubic perovskite powder at 600 degrees C, ultrathin films only crystallized at 950 to 1000 degrees C, even after addition of excess Ba to compensate for loss of Ba. Films with thickness above 100 nm, on the other hand, crystallized readily around 650 degrees C. The crystallization is related to film thickness, affecting t...

  2. Quasi-rapid thermal annealing studies on barium strontium titanate thin films deposited on fused silica substrates

    Energy Technology Data Exchange (ETDEWEB)

    Venkata Saravanan, K., E-mail: vsk@ua.pt; James Raju, K.C., E-mail: kcjrsp@uohyd.ernet.in

    2013-09-15

    Highlights: •Nano-crystalline BST films were obtained on amorphous fused silica substrates. •Crystallization was induced by quasi-RTA, a cost effective approach. •No evidence of residual strain or surface layer was observed in the annealed films. •Dielectric properties @10 GHz were measured using split post dielectric resonator. •Crystallization result in higher density, conductivity, dielectric const. and tan δ. -- Abstract: Thin films of (Ba{sub 0.5},Sr{sub 0.5})TiO{sub 3} (BST5) were deposited at ambient temperature on fused silica substrates by RF magnetron sputtering technique. Nano-crystalline films were obtained upon quasi-rapid thermal annealing (Q-RTA) at temperatures ⩾800 °C for 60 s. The influence of Q-RTA temperature on the structural, morphological, optical and microwave dielectric properties of BST5 thin films have been investigated. The as-deposited and Q-RTA films annealed up to 700 °C were amorphous in nature. On increasing the Q-RTA temperature to 800 °C and above resulted in an amorphous–crystalline phase transition in the films. All the crystalline films show similar full width at half maxima (FWHM) and hence, similar crystallite size of about 12 ± 1 nm. The amorphous–crystalline transition was accompanied by a decrease in the optical band gap from 4.5 to 3.6 and increase in the refractive index from 1.9 to 2.2 as well as in the microwave dielectric constant from 40 to 262. The Root Mean Square roughness (RMS{sub roughness}) as measured from AFM show an increase from 0.6 nm to 5.6 nm with an increase in Q-RTA temperature from 400 °C to 1000 °C.

  3. Correlation between nanostructural and electrical properties of barium titanate-based glass-ceramic nano-composites

    International Nuclear Information System (INIS)

    Highlights: → Glasses have been transformed into nanomaterials by annealing at crystallization temperature. → Glass-ceramic nano-composites are important because of their new physical. → Grain sizes are the most significant structural parameter in electronic nanocrystalline phases. → These phases are very high electrical conductivity. → Hence, glass-ceramic nanocrystals are expected to be used, as gas sensors. - Abstract: Glasses in the system BaTiO3-V2O5-Bi2O3 have been transformed into glass-ceramic nano-composites by annealing at crystallization temperature Tcr determined from DSC thermograms. After annealing they consist of small crystallites embedded in glassy matrix. The crystallization temperature Tcr increases with increasing BaTiO3 content. XRD and TEM of the glass-ceramic nano-composites show that nanocrystals were embedded in the glassy matrix with an average grain size of 25 nm. The resulting materials exhibit much higher electrical conductivity than the initial glasses. It was postulated that the major role in the conductivity enhancement of these nanomaterials is played by the developed interfacial regions between crystalline and amorphous phases, in which the concentration of V4+-V5+ pairs responsible for electron hopping, has higher than values that inside the glassy matrix. The experimental results were discussed in terms of a model proposed in this work and based on a 'core-shell' concept. From the best fits, reasonable values of various small polaron hopping (SPH) parameters were obtained. The conduction was attributed to non-adiabatic hopping of small polaron.

  4. Effect of rare earth substitution on properties of barium strontium titanate ceramic and its multiferroic composite with nickel cobalt ferrite

    International Nuclear Information System (INIS)

    Highlights: • Rare earth ions Dy3+, Gd3+ and Sm3+ have been substituted in Ba0.95Sr0.05TiO3 (BST). • Ni0.8Co0.2Fe2O4 has been used as ferrimagnetic phase to obtain composites. • Substitution of these ions increases dielectric constant of BST and composites. • Magnetoelectric coefficient of composites increases on substitution of these ions. - Abstract: Effect of substitution of rare earth ions (Dy3+, Gd3+ and Sm3+) on various properties of Ba0.95Sr0.05TiO3 (BST) i.e. the composition Ba0.95−1.5xSr0.05RxTiO3 (where x = 0.00, 0.01, 0.02, 0.03 and R are rare earths Dy, Gd, Sm) and that of their multiferroic composite with Ni0.8Co0.2Fe2O4 (NCF) has been studied. Shifting of peaks corresponding to different compositions in the X-ray diffraction pattern confirmed the substitution of rare earth ions at both Ba2+ and Ti4+ sites in BST. It is clear from scanning electron microscopy (SEM) images that rare earth substitution in BST increases its grain size in both pure and composite samples. Substitution of rare earth ions results in increase in value of dielectric constant of pure and composite samples. Sm substitution in BST significantly decreases its Curie temperature. Dy substituted pure and composite samples possess superior ferroelectric properties as confirmed by polarization vs electric field (P–E) loops. Composite samples containing Dy, Gd and Sm substituted BST as ferroelectric phase possess lower values of remanent and saturation magnetizations in comparison to composite sample containing pure BST as ferroelectric phase (BSTC). Rare earth substituted composite samples possess higher value of magnetoelectric coefficient as compared to that for BSTC

  5. Effect of Fe{sup 3+} substitution on structural, optical and magnetic properties of barium titanate ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Dang, N.V.; Dung, N.T. [Department of Physics and Technology, Thai Nguyen University of Science, Thai Nguyen City (Viet Nam); Phong, P.T., E-mail: ptphong.nh@khanhhoa.edu.vn [Department of Natural Sciences, Nha Trang Pedagogic College, 1- Nguyen Chanh Street, Nha Trang City, Khanh Hoa Province (Viet Nam); Department of Advanced Materials Chemistry, Dongguk University-Gyeongju, 707 Suckjang-dong, Gyeongju-Si, Gyeongbuk 780-714 (Korea, Republic of); Lee, In-Ja, E-mail: lij@dongguk.ac.kr [Department of Advanced Materials Chemistry, Dongguk University-Gyeongju, 707 Suckjang-dong, Gyeongju-Si, Gyeongbuk 780-714 (Korea, Republic of)

    2015-01-15

    Multiferroic BaTi{sub 1−x}Fe{sub x}O{sub 3} (0≤x≤0.12) materials were synthesized using the solid-state reaction method. The influence of Fe on the crystalline structure, the electronic structure, the optical properties and the magnetic property of BaTi{sub 1−x}Fe{sub x}O{sub 3} samples were investigated. The obtained X-ray diffraction patterns, Raman and UV–vis spectra showed that the structure of the material sensitively depends on Fe dopant content, x, and transforms gradually from the tetragonal (P4mm) phase to the hexagonal (P6{sub 3}/mmc) one with increasing x. The photoluminescence emission of BaTi{sub 1−x}Fe{sub x}O{sub 3} was attributed to structural disorder. All of the samples exhibit both ferroelectricity and ferromagnetism at room temperature. The relaxor like behavior was observed for all samples. The magnetization at a magnetic field of 1 T abnormally depends on x, increases up to 0.1 then decreases monotonously afterward. This anomaly in the magnetic behavior can be explained in terms of the changes in the oxidation state of ions such as the Fe{sup 3+}-to-Fe{sup 4+} and/or Ti{sup 4+}-to-Ti{sup 3+} change induced by oxygen vacancies. The substitution of Fe into Ti sites also causes the changes in the conductivity of the material and impurity (acceptor) levels in the band gap, which can be evident from the absorption spectra, and time-dependent leakage current measured at room temperature.

  6. Effect of rare earth substitution on properties of barium strontium titanate ceramic and its multiferroic composite with nickel cobalt ferrite

    Energy Technology Data Exchange (ETDEWEB)

    Pahuja, Poonam [Department of Physics and Astrophysics, University of Delhi, Delhi 110007 (India); Kotnala, R.K. [National Physical Laboratory, Delhi 110012 (India); Tandon, R.P., E-mail: rt241150@gmail.com [Department of Physics and Astrophysics, University of Delhi, Delhi 110007 (India)

    2014-12-25

    Highlights: • Rare earth ions Dy{sup 3+}, Gd{sup 3+} and Sm{sup 3+} have been substituted in Ba{sub 0.95}Sr{sub 0.05}TiO{sub 3} (BST). • Ni{sub 0.8}Co{sub 0.2}Fe{sub 2}O{sub 4} has been used as ferrimagnetic phase to obtain composites. • Substitution of these ions increases dielectric constant of BST and composites. • Magnetoelectric coefficient of composites increases on substitution of these ions. - Abstract: Effect of substitution of rare earth ions (Dy{sup 3+}, Gd{sup 3+} and Sm{sup 3+}) on various properties of Ba{sub 0.95}Sr{sub 0.05}TiO{sub 3} (BST) i.e. the composition Ba{sub 0.95−1.5x}Sr{sub 0.05}R{sub x}TiO{sub 3} (where x = 0.00, 0.01, 0.02, 0.03 and R are rare earths Dy, Gd, Sm) and that of their multiferroic composite with Ni{sub 0.8}Co{sub 0.2}Fe{sub 2}O{sub 4} (NCF) has been studied. Shifting of peaks corresponding to different compositions in the X-ray diffraction pattern confirmed the substitution of rare earth ions at both Ba{sup 2+} and Ti{sup 4+} sites in BST. It is clear from scanning electron microscopy (SEM) images that rare earth substitution in BST increases its grain size in both pure and composite samples. Substitution of rare earth ions results in increase in value of dielectric constant of pure and composite samples. Sm substitution in BST significantly decreases its Curie temperature. Dy substituted pure and composite samples possess superior ferroelectric properties as confirmed by polarization vs electric field (P–E) loops. Composite samples containing Dy, Gd and Sm substituted BST as ferroelectric phase possess lower values of remanent and saturation magnetizations in comparison to composite sample containing pure BST as ferroelectric phase (BSTC). Rare earth substituted composite samples possess higher value of magnetoelectric coefficient as compared to that for BSTC.

  7. Microstructure and dielectric properties of dysprosium-doped barium titanate ceramics Microestrutura e propriedades dielétricas de cerâmicas de titanato de bário dopado com disprósio

    Directory of Open Access Journals (Sweden)

    Y. Pu

    2005-09-01

    Full Text Available The substitution behavior and lattice parameter of barium titanate between solid_solubility with a dopant concentration in the range of 0.25 to 1.5 mol% are studied. The influences of dysprosium-doped fraction on the grain size and dielectric properties of barium titanate ceramic, including dielectric constant and breakdown electric field strength, are investigated via scanning electronic microscopy, X-ray diffraction and electric property tester. The results show that, at a dysprosium concentration of 0.75 mol%, the abnormal grain growth is inhibited and the lattice parameters of grain rise up to the maximum because of the lowest vacancy concentration. In addition, the finegrain and high density of barium titanate ceramic result in its excellent dielectric properties. The relative dielectric constant (25 °C reaches to 4100. The temperature coefficient of the capacitance varies from -10 to 10% within the temperature range of -15 °C -100 °C, and the breakdown electric field strength (alternating current achieves 3.2 kV/mm. These data suggest that our barium titanate could be used in the manufacture of high voltage ceramic capacitors.Foram estudados o comportamento da substituição e o parâmetro de rede de titanato de bário da solubilidade sólida com uma concentração de dopante na faixa 0,25-1,5 mol%. As influências da fração do dopante disprósio no tamanho de grão e nas propriedades dielétricas da cerâmica de titanato de bário, incluindo constante dielétrica e rigidez dielétrica foram investigadas por meio de microscopia eletrônica de varredura, difração de raios X e teste de propriedades elétricas. Os resultados mostram que a uma concentração de disprósio de 0,75 mol% o crescimento anormal de grão é inibido e os parâmetros de rede aumentam até um máximo devido a menor concentração de vacâncias. Além disso, as cerâmicas de grãos pequenos e alta densidade resultam em excelentes propriedades dielétricas. A

  8. Synthesis and characterization of barium titanate, doped with europium and neodymium; Sintese e caracterizacao de titanato de bario, dopados com europio e neodimio

    Energy Technology Data Exchange (ETDEWEB)

    Sousa, Fernanda L.C.; Cabral, Alciney M.; Silva, Ademir O.; Oliveiro, Joao B.L., E-mail: nanda_louise@yahoo.com.br [Universidade Federal do Rio Grande do Norte (UFRN), Natal (Brazil). Instituto de Quimica

    2013-07-01

    This work aims at synthesize and characterize mixed oxides in Barium Titanium matrix in doping with Neodymium and Europium analyzing thermogravimetric curves, characteristic bands at infrared region of the polymer complex, which are intermediates to mixed oxides, and identify the formation thereof, and the crystallinity using XRD analysis.

  9. Barium enema

    Science.gov (United States)

    Barium enema is a special x-ray of the large intestine, which includes the colon and rectum. ... to a bag that holds a liquid containing barium sulfate. This is a contrast material that highlights ...

  10. Barium Sulfate

    Science.gov (United States)

    Barium sulfate is used to help doctors examine the esophagus (tube that connects the mouth and stomach), ... dimensional pictures of the inside of the body). Barium sulfate is in a class of medications called ...

  11. Nanofibers obtained by electrospinning of BaTiO3 particles dispersed in polyvinyl alcohol and ethylcellulose

    Energy Technology Data Exchange (ETDEWEB)

    Avila, Humar A.; Reboredo, Maria M.; Castro, Miriam; Parra, Rodrigo, E-mail: havila@fi.mdp.edu.ar [Instituto de Investigaciones en Ciencia y Tecnologia de Materiales - INTEMA, Consejo Nacional de Investigaciones Cientificas y Tecnicas - CONICET, Universidad Nacional de Mar del Plata - UNMdP, Mar del Plata (Argentina)

    2013-11-01

    Barium titanate particles (100-300 nm) synthesized by hydrothermal method were dispersed in both polyvinyl alcohol (PVA) and ethylcellulose (EC) solutions. These suspensions were processed by electrospinning. When no particles were added, homogeneous polymeric nanofibers were obtained. Under certain conditions, polymeric suspensions of barium titanate particles were electrospun generating polymeric fibers with BT particles. The effect of a surfactant was also assessed over the formation of nanofibers. The BaTiO{sub 3} particles synthesized by hydrothermal method were characterized by X-Ray diffraction (XRD), field emission-scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM) and Raman spectroscopy. Fibers were characterized by scanning electron microscopy (SEM). (author)

  12. Time-resolved X-ray absorption spectroscopy for the study of solid state reactions: synthesis of nanocrystalline barium titanate and thermal decomposition of ammonium hexachlorometallate compounds; Zeitaufgeloeste Roentgenabsorptionspektroskopie zur Untersuchung von Festkoerperreaktionen: Synthese von nanokristallinem Bariumtitanat und thermische Zersetzung von Ammoniumhexachlorometallat-Verbindungen

    Energy Technology Data Exchange (ETDEWEB)

    Rumpf, H.

    2001-07-01

    This report presents investigations on the mechanism of two different types of solid-state reactions: At first, barium titanate nanopowders were prepared through a combined polymerization and pyrolysis of a metallo-organic precursor. The mean particle size d{sub m} could be adjusted by choosing appropriate reaction temperatures and tempering atmospheres. In the present in situ study of this particular solid-phase reaction, X-ray absorption near edge structure (XANES) spectroscopy at the Ti K and Ba L{sub 3}-edges was applied in the preparation route of BaTiO{sub 3} nanopowders. A pronounced distortion of the lattice symmetry was found to occur in very fine BaTiO{sub 3} nanopowders (d{sub m} < 20 nm). Secondly, in situ XANES investigations were carried out at the Cl K, Pd L{sub 3}, Rh L{sub 3}, and Pt L{sub 3}-edges to study the mechanism of the thermal decomposition of ammonium hexachlorometallates. The results exceed structural information obtained by in situ X-ray diffraction methods and thermal analysis. Feff8 multiple scattering simulations have been carried out to disclose new intermediate phases of unknown reference compounds. (orig.)

  13. Synthesis of BaTiO3 powder from barium titanyl oxalate (BTO) precursor employing microwave heating technique

    Indian Academy of Sciences (India)

    Y S Malghe; A V Gurjar; S R Dharwadkar

    2004-06-01

    Cubic barium titanate (BaTiO3) powder was synthesized by heating barium titanyl oxalate hydrate, BaTiO(C2O4)$_{2}\\cdot$4H2O (BTO) precursor in microwave heating system in air at 500°C. Heating BTO in microwave above 600°C yielded tetragonal form of BaTiO3. Experiments repeated in silicon carbide furnace showed that BaTiO3 was formed only above 700°C. The product obtained was cubic.

  14. Barium light source method and apparatus

    Science.gov (United States)

    Curry, John J. (Inventor); MacDonagh-Dumler, Jeffrey (Inventor); Anderson, Heidi M. (Inventor); Lawler, James E. (Inventor)

    2002-01-01

    Visible light emission is obtained from a plasma containing elemental barium including neutral barium atoms and barium ion species. Neutral barium provides a strong green light emission in the center of the visible spectrum with a highly efficient conversion of electrical energy into visible light. By the selective excitation of barium ionic species, emission of visible light at longer and shorter wavelengths can be obtained simultaneously with the green emission from neutral barium, effectively providing light that is visually perceived as white. A discharge vessel contains the elemental barium and a buffer gas fill therein, and a discharge inducer is utilized to induce a desired discharge temperature and barium vapor pressure therein to produce from the barium vapor a visible light emission. The discharge can be induced utilizing a glow discharge between electrodes in the discharge vessel as well as by inductively or capacitively coupling RF energy into the plasma within the discharge vessel.

  15. Effects of surrounding powder in sintering process on the properties of Sb and Mn- doped barium-strontium titanate PTCR ceramics

    Directory of Open Access Journals (Sweden)

    Pornsuda Bomlai

    2006-05-01

    Full Text Available In this research, the effects of surrounding powder used during sintering of Sb and Mn doped bariumstrontium titanate (BST ceramics were studied. The ceramic samples were prepared by a conventional mixed-oxide method and placed on different powders during sintering. Phase formation, microstructure and PTCR behavior of the samples were then observed. Microstructures and PTCR behavior varied with the type of surrounding powder, whereas the crystal structure did not change. The surrounding powder has more effects on the shape of the grain than on the size. The grain size of samples was in the range of 5-20 μm. The most uniform grain size and the highest increase of the ratio of ρmax/ρRT were found to be about 106 for samples which had been sintered on Sb-doped BST powder. This value was an order of magnitude greater than for samples sintered on a powder of the equivalent composition to that of the sample pellet.

  16. Tungsten Bronze Barium Neodymium Titanate (Ba6-3nNd8+2nTi18O54): An Intrinsic Nanostructured Material and Its Defect Distribution.

    Science.gov (United States)

    Azough, Feridoon; Cernik, Robert Joseph; Schaffer, Bernhard; Kepaptsoglou, Demie; Ramasse, Quentin Mathieu; Bigatti, Marco; Ali, Amir; MacLaren, Ian; Barthel, Juri; Molinari, Marco; Baran, Jakub Dominik; Parker, Stephen Charles; Freer, Robert

    2016-04-01

    We investigated the structure of the tungsten bronze barium neodymium titanates Ba6-3nNd8+2nTi18O54, which are exploited as microwave dielectric ceramics. They form a complex nanostructure, which resembles a nanofilm with stacking layers of ∼12 Å thickness. The synthesized samples of Ba6-3nNd8+2nTi18O54 (n = 0, 0.3, 0.4, 0.5) are characterized by pentagonal and tetragonal columns, where the A cations are distributed in three symmetrically inequivalent sites. Synchrotron X-ray diffraction and electron energy loss spectroscopy allowed for quantitative analysis of the site occupancy, which determines the defect distribution. This is corroborated by density functional theory calculations. Pentagonal columns are dominated by Ba, and tetragonal columns are dominated by Nd, although specific Nd sites exhibit significant concentrations of Ba. The data indicated significant elongation of the Ba columns in the pentagonal positions and of the Nd columns in tetragonal positions involving a zigzag arrangement of atoms along the b lattice direction. We found that the preferred Ba substitution occurs at Nd[3]/[4] followed by Nd[2] and Nd[1]/[5] sites, which is significantly different to that proposed in earlier studies. Our results on the Ba6-3nNd8+2nTi18O54 "perovskite" superstructure and its defect distribution are particularly valuable in those applications where the optimization of material properties of oxides is imperative; these include not only microwave ceramics but also thermoelectric materials, where the nanostructure and the distribution of the dopants will reduce the thermal conductivity. PMID:26998674

  17. Barium calcium hydroxyapatite solid solutions

    International Nuclear Information System (INIS)

    The replacement of calcium by barium in the hydroxyapatite structure by solid-state reaction at different temperatures and by precipitation from an aqueous system has been investigated by X-ray diffraction and i.r. absorption analyses. The products obtained by solid-state reaction at 1200 deg C are solid solutions over the range of barium concentration 60 to 100 atom %. The lattice dimensions and the i.r. frequencies of the solid solutions vary linearly with the atom % of barium. Only small amounts of barium can be incorporated in hydroxyapatite by precipitation from the aqueous system. (author)

  18. Synthesis of 0.1% & 0.2% neodymium doped barium zirconium titanate (BaZr0.2Ti0.8O3) and study of their dielectric behaviour

    International Nuclear Information System (INIS)

    Efforts have been made to ease process of producing widely used multilayered ceramics of Barium Zirconium Titanium Oxides and study their dielectric behaviour and structural properties. For this purpose, adequate proportions of Barium Carbonate, Zirconium Oxide and Titanium Oxide were taken and hand milled for 2 hours. Neodymium composition of the order of 0.1% and 0.2% was used for doping to weight percentage of BaZr0.2Ti0.8O3. The samples were authenticated using raw data obtained from Bruker AXS D8 advance Copper KL alpha source XRD equipment. Further, the samples were studied for their phase transition, composition, single phase perovskite structure using XRD technique. The technique has also been applied to know formation of stable homogeneous solid solution from XRD parameters. The other physical parameters like the morphology, micro structural information, crystal arrangements and topography have also been observed through SEM. The SEM has revealed information related to grain size development and composition of sample with fine agglomerates. For complete study of the compounds the atomic and weight composition has also been examined by Electron Dispersive Spectroscopy patterns. The comparison has been made with other works on ceramics at various frequencies and has yielded very interesting results

  19. Observed Barium Emission Rates

    Science.gov (United States)

    Stenbaek-Nielsen, H. C.; Wescott, E. M.; Hallinan, T. J.

    1993-01-01

    The barium releases from the CRRES satellite have provided an opportunity for verifying theoretically calculated barium ion and neutral emission rates. Spectra of the five Caribbean releases in the summer of 1991 were taken with a spectrograph on board a U.S. Air Force jet aircraft. Because the line of sight release densities are not known, only relative rates could be obtained. The observed relative rates agree well with the theoretically calculated rates and, together with other observations, confirm the earlier detailed theoretical emission rates. The calculated emission rates can thus with good accuracy be used with photometric observations. It has been postulated that charge exchange between neutral barium and oxygen ions represents a significant source for ionization. If so. it should be associated with emissions at 4957.15 A and 5013.00 A, but these emissions were not detected.

  20. The influences of mole composition of strontium (x) on properties of barium strontium titanate (Ba1−xSrxTiO3) prepared by solid state reaction method

    International Nuclear Information System (INIS)

    Barium Strontium Titanate (Ba1-xSrxTiO3) or BST was prepared by solid state reaction method. Raw materials are BaCO3, SrCO3, and TiO2. Those materials are mixed for 8 h, pressed, and sintered at temperature 1200°C for 2 h. Mole composition of Sr (x) was varied to study its influences on structural, morphological, and electrical properties of BST. Variation of (x) are x = 0; x = 0.1; and x = 0.5. XRD patterns showed a single phase of BST, which mean that mixture of raw materials was homogenous. Crystal structure was influenced by x. BaTiO3 and Ba0.9Ti0.1TiO3 have tetragonal crystal structure, while Ba0.5Sr0.5TiO3 is cubic. The diffraction angle shifted to right side (angle larger) as the increases of x. Crystalline size of BaTiO3, Ba0.9Sr0.1TiO3, and Ba0.5Sr0.5TiO3 are 38.13 nm; 38.62 nm; and 37.13 nm, respectively. SEM images showed that there are still of pores which were influenced by x. Ba0.9Sr0.1TiO3 has densest surface (pores are few and small in size). Sawyer Tower circuit showed that BaTiO3 and Ba0.9Sr0.1 TiO3 is ferroelectric, while Ba0.5Sr0.5TiO3 is paraelectric. The dielectric constants of BaTiO3, Ba0.9Sr0.1TiO3 and Ba0.5Sr0.5TiO3 at frequency of 1 KHz are 156; 196; and 83, respectively. Ba0.9Sr0.1TiO3 has relatively highest dielectric constant. It is considered that Ba0.9Sr0.1TiO3 has densest surface

  1. The influences of mole composition of strontium (x) on properties of barium strontium titanate (Ba{sub 1−x}Sr{sub x}TiO{sub 3}) prepared by solid state reaction method

    Energy Technology Data Exchange (ETDEWEB)

    Sandi, Dianisa Khoirum; Supriyanto, Agus; Iriani, Yofentina, E-mail: yopen-2005@yahoo.com [Physics Department, Faculty of Mathematics and Natural Science, Sebelas Maret University (Indonesia); Jamaluddin, Anif [Physics Department, Faculty of Teacher Training and Education, Sebelas Maret University (Indonesia)

    2016-02-08

    Barium Strontium Titanate (Ba{sub 1-x}Sr{sub x}TiO{sub 3}) or BST was prepared by solid state reaction method. Raw materials are BaCO{sub 3}, SrCO{sub 3}, and TiO{sub 2}. Those materials are mixed for 8 h, pressed, and sintered at temperature 1200°C for 2 h. Mole composition of Sr (x) was varied to study its influences on structural, morphological, and electrical properties of BST. Variation of (x) are x = 0; x = 0.1; and x = 0.5. XRD patterns showed a single phase of BST, which mean that mixture of raw materials was homogenous. Crystal structure was influenced by x. BaTiO{sub 3} and Ba{sub 0.9}Ti{sub 0.1}TiO{sub 3} have tetragonal crystal structure, while Ba{sub 0.5}Sr{sub 0.5}TiO{sub 3} is cubic. The diffraction angle shifted to right side (angle larger) as the increases of x. Crystalline size of BaTiO{sub 3}, Ba{sub 0.9}Sr{sub 0.1}TiO{sub 3}, and Ba{sub 0.5}Sr{sub 0.5}TiO{sub 3} are 38.13 nm; 38.62 nm; and 37.13 nm, respectively. SEM images showed that there are still of pores which were influenced by x. Ba{sub 0.9}Sr{sub 0.1}TiO{sub 3} has densest surface (pores are few and small in size). Sawyer Tower circuit showed that BaTiO{sub 3} and Ba{sub 0.9}Sr{sub 0.1} TiO{sub 3} is ferroelectric, while Ba{sub 0.5}Sr{sub 0.5}TiO{sub 3} is paraelectric. The dielectric constants of BaTiO{sub 3}, Ba{sub 0.9}Sr{sub 0.1}TiO{sub 3} and Ba{sub 0.5}Sr{sub 0.5}TiO{sub 3} at frequency of 1 KHz are 156; 196; and 83, respectively. Ba{sub 0.9}Sr{sub 0.1}TiO{sub 3} has relatively highest dielectric constant. It is considered that Ba{sub 0.9}Sr{sub 0.1}TiO{sub 3} has densest surface.

  2. Barium Sulfate

    Science.gov (United States)

    ... using x-rays or computed tomography (CAT scan, CT scan; a type of body scan that uses ... be clearly seen by x-ray examination or CT scan. ... more times before an x-ray examination or CT scan.If you are using a barium sulfate ...

  3. Characteristics of 5 mol% Ce3+-doped barium titanate nanowires prepared by a combined route involving sol–gel chemistry and polycarbonate membrane-templated process

    International Nuclear Information System (INIS)

    Ba0.95Ce0.05Ti0.9875O3 nanowires were fabricated by sol–gel method using as template a polycarbonate membrane with channels of 100 nm diameter. FE-SEM analyses showed that continuous gel wires of length up to 17 µm and an average diameter of 81 nm, were obtained. After calcination at 700 °C for 1 h, these green 1D nanostructures were converted into well-crystallised wires with an average diameter of 59.7 nm, as high-resolution transmission electron microscopy and selected area electron diffraction indicated. The piezoelectric activity of the Ba0.95Ce0.05Ti0.9875O3 nanowires was investigated using piezoresponse force microscopy (PFM) correlated with atomic force microscopy. The results of PFM measurements indicated that the wires exhibit a significant fraction of ferroelectric domains larger than the grains size and a good piezoelectric response

  4. Barium adsorption on the (110) and (111) molybdenum faces

    Energy Technology Data Exchange (ETDEWEB)

    Azizov, U.V.; Sabirov, S.T.; Dzhalilov, S.T. (Tashkentskij Gosudarstvennyj Univ. (USSR))

    1982-07-01

    Barium adsorption on Mo faces (110) and (111) was investigated by thermoemission and Cs surface ionization methods to obtain a more broad representation of barium adsorption at higher temperatures of cathode. Experiments show that the substrate temperature increase at a constant barium concentration results in the formation of small barium islands. At that, barium is under similar energy conditions in the small islands formed on the face (110) independent of relative areas of the islands.

  5. Barium titanate polymer nanocomposites for flexible electronics

    Czech Academy of Sciences Publication Activity Database

    Piana, Francesco; Paruzel, Bartosz; Pfleger, Jiří

    Dresden : Leibniz-Institut für Polymerforschung Dresden e. V, 2014. P70. ISBN 978-3-9816007-1-1. [ECNP International Conference on Nanostructured Polymers and Nanocomposites /8./. 16.09.2014-19.09.2014, Dresden] R&D Projects: GA ČR GAP208/10/0941 Institutional support: RVO:61389013 Keywords : organic electronic * high-k dielectrics * poly(4-vinylphenol) Subject RIV: CF - Physical ; Theoretical Chemistry

  6. Flexoelectricity in barium strontium titanate thin film

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Seol Ryung; Huang, Wenbin; Yuan, Fuh-Gwo; Jiang, Xiaoning, E-mail: xjiang5@ncsu.edu [Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, North Carolina 27695 (United States); Shu, Longlong [Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, North Carolina 27695 (United States); Electronic Materials Research Laboratory, International Center for Dielectric Research, Xi' an Jiao Tong University, Xi' an, Shaanxi 710049 (China); Maria, Jon-Paul [Department of Material Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695 (United States)

    2014-10-06

    Flexoelectricity, the linear coupling between the strain gradient and the induced electric polarization, has been intensively studied as an alternative to piezoelectricity. Especially, it is of interest to develop flexoelectric devices on micro/nano scales due to the inherent scaling effect of flexoelectric effect. Ba{sub 0.7}Sr{sub 0.3}TiO{sub 3} thin film with a thickness of 130 nm was fabricated on a silicon wafer using a RF magnetron sputtering process. The flexoelectric coefficients of the prepared thin films were determined experimentally. It was revealed that the thin films possessed a transverse flexoelectric coefficient of 24.5 μC/m at Curie temperature (∼28 °C) and 17.44 μC/m at 41 °C. The measured flexoelectric coefficients are comparable to that of bulk BST ceramics, which are reported to be 10–100 μC/m. This result suggests that the flexoelectric thin film structures can be effectively used for micro/nano-sensing devices.

  7. Abundance analysis of barium and mild barium stars

    CERN Document Server

    Smiljanic, R; Silva, L

    2007-01-01

    High signal to noise, high resolution spectra were obtained for a sample of normal, mild barium, and barium giants. Atmospheric parameters were determined from the FeI and FeII lines. Abundances for Na, Mg, Al, Si, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Sr, Y, Zr, Ba, La, Ce, Nd, Sm, Eu, and Gd, were determined from equivalent widths and model atmospheres in a differential analysis, with the red giant Eps Vir as the standard star. The different levels of s-process overabundances of barium and mild barium stars were earlier suggested to be related to the stellar metallicity. Contrary to this suggestion, we found in this work no evidence for barium and mild barium to have a different range in metallicity. However, comparing the ratio of abundances of heavy to light s-process elements, we found some evidence that they do not share the same neutron exposure parameter. The exact mechanism controlling this difference is still not clear. As a by-product of this analysis we identify two normal red giants misclass...

  8. Oxygen octahedral rotation mapping in calcium titanate/strontium titanate superlattices by transmission electron microscopy

    Science.gov (United States)

    Stone, Greg; Ciston, Jim; Haislmaier, Ryan; Vanleeuwen, Brian; Alem, Nasim; Schlom, Darrell; Gopalan, Venkatraman

    2014-03-01

    We report the investigation of oxygen octahedral rotation mapping in calcium titanate/barium titanate superlattices epitaxially grown on LSAT (001) with transmission electron microscopy. Analysis of the images shows induced antiphase rotations of the oxygen octahedral the strontium titanate layers that is absent in the bulk material at room temperature. These rotations play a key role in breaking the centrosymmetry of the material leading to polar properties as seen by second harmonic generation. We also map the local position of the cations to provide a complete picture of any relative local displacements and the oxygen-cation-oxygen bond angles.

  9. Study of Maxwell–Wagner (M–W) relaxation behavior and hysteresis observed in bismuth titanate layered structure obtained by solution combustion synthesis using dextrose as fuel

    Energy Technology Data Exchange (ETDEWEB)

    Subohi, Oroosa, E-mail: oroosa@gmail.com [Department of Physics, Maulana Azad National Institute of Technology, Bhopal 462051, M.P. (India); Shastri, Lokesh [Department of Physics, Maulana Azad National Institute of Technology, Bhopal 462051, M.P. (India); Kumar, G.S. [Department of Physics, Osmania University, Hyderabad 500007, A.P. (India); Malik, M.M.; Kurchania, Rajnish [Department of Physics, Maulana Azad National Institute of Technology, Bhopal 462051, M.P. (India)

    2014-01-01

    Graphical abstract: X-ray diffraction studies show that phase formation and crystallinity was reached only after calcinations at 800 °C. Dielectric constant versus temperature curve shows ferroelectric to paraelectric transition temperature (T{sub c}) to be 650 °C. Complex impedance curves show deviation from Debye behavior. The material shows a thin PE Loop with low remnant polarization due to high conductivity in the as prepared sample. - Highlights: • Bi{sub 4}Ti{sub 3}O{sub 12} is synthesized using solution combustion technique with dextrose as fuel. • Dextrose has high reducing capacity (+24) and generates more no. of moles of gases. • Impedance studies show that the sample follows Maxwell–Wagner relaxation behavior. • Shows lower remnant polarization due to higher c-axis ratio. - Abstract: Structural, dielectric and ferroelectric properties of bismuth titanate (Bi{sub 4}Ti{sub 3}O{sub 12}) obtained by solution combustion technique using dextrose as fuel is studied extensively in this paper. Dextrose is used as fuel as it has high reducing valancy and generates more number of moles of gases during the reaction. X-ray diffraction studies show that phase formation and crystallinity was reached only after calcinations at 800 °C. Dielectric constant versus temperature curve shows ferroelectric to paraelectric transition temperature (T{sub c}) to be 650 °C. The dielectric loss is very less (tan δ < 1) at lower temperatures but increases around T{sub c} due to structural changes in the sample. Complex impedance curves show deviation from Debye behavior. The material shows a thin PE Loop with low remnant polarization due to high conductivity in the as prepared sample.

  10. Study of Maxwell–Wagner (M–W) relaxation behavior and hysteresis observed in bismuth titanate layered structure obtained by solution combustion synthesis using dextrose as fuel

    International Nuclear Information System (INIS)

    Graphical abstract: X-ray diffraction studies show that phase formation and crystallinity was reached only after calcinations at 800 °C. Dielectric constant versus temperature curve shows ferroelectric to paraelectric transition temperature (Tc) to be 650 °C. Complex impedance curves show deviation from Debye behavior. The material shows a thin PE Loop with low remnant polarization due to high conductivity in the as prepared sample. - Highlights: • Bi4Ti3O12 is synthesized using solution combustion technique with dextrose as fuel. • Dextrose has high reducing capacity (+24) and generates more no. of moles of gases. • Impedance studies show that the sample follows Maxwell–Wagner relaxation behavior. • Shows lower remnant polarization due to higher c-axis ratio. - Abstract: Structural, dielectric and ferroelectric properties of bismuth titanate (Bi4Ti3O12) obtained by solution combustion technique using dextrose as fuel is studied extensively in this paper. Dextrose is used as fuel as it has high reducing valancy and generates more number of moles of gases during the reaction. X-ray diffraction studies show that phase formation and crystallinity was reached only after calcinations at 800 °C. Dielectric constant versus temperature curve shows ferroelectric to paraelectric transition temperature (Tc) to be 650 °C. The dielectric loss is very less (tan δ < 1) at lower temperatures but increases around Tc due to structural changes in the sample. Complex impedance curves show deviation from Debye behavior. The material shows a thin PE Loop with low remnant polarization due to high conductivity in the as prepared sample

  11. BARIUM RECOVERY PROCESS

    Science.gov (United States)

    Blanco, R.E.

    1959-07-21

    A method of separating barium from nuclear fission products is described. In accordance with the invention, barium may be recovered from an acidic solution of neutron-irradiated fissionable material by carrying ihe barium cut of solution as a sulfate with lead as a carrier and then dissolving the barium-containing precipitate in an aqueous solution of an aliphatic diamine chelating reagent. The barium values together with certain other metallic values present in the diamine solution are then absorbed onto a cation exchange resin and the barium is selectively eluted from the resin bed with concentrated nitric acid.

  12. Barium enema (image)

    Science.gov (United States)

    A barium enema is performed to examine the walls of the colon. During the procedure, a well lubricated enema tube is inserted gently into the rectum. The barium, a radiopaque (shows up on X-ray) contrast ...

  13. Emission-adsorption properties of carbide and boride phase of coatings obtained by the method of direct electron-beam evaporation in the barium-containing flow

    International Nuclear Information System (INIS)

    Emission-adsorption properties of TiCsub(0.72), TiB2 and Nb2C coatings on molybdenum obtained by direct electron-beam evaporation are studied by the thermoemission method in the flow of the standard saturated aluminate cathode evaporation products. The Mo-electrode emission is suppressed most of all when applying the TiCsub(0.72) coating

  14. Diurnal variations of Titan

    Science.gov (United States)

    Cui, J.; Galand, M.; Yelle, R. V.; Vuitton, V.; Wahlund, J.-E.; Lavvas, P. P.; Mueller-Wodarg, I. C. F.; Kasprzak, W. T.; Waite, J. H.

    2009-04-01

    We present our analysis of the diurnal variations of Titan's ionosphere (between 1,000 and 1,400 km) based on a sample of Ion Neutral Mass Spectrometer (INMS) measurements in the Open Source Ion (OSI) mode obtained from 8 close encounters of the Cassini spacecraft with Titan. Though there is an overall ion depletion well beyond the terminator, the ion content on Titan's nightside is still appreciable, with a density plateau of ~700 cm-3 below ~1,300 km. Such a plateau is associated with the combination of distinct diurnal variations of light and heavy ions. Light ions (e.g. CH5+, HCNH+, C2H5+) show strong diurnal variation, with clear bite-outs in their nightside distributions. In contrast, heavy ions (e.g. c-C3H3+, C2H3CNH+, C6H7+) present modest diurnal variation, with significant densities observed on the nightside. We propose that the distinctions between light and heavy ions are associated with their different chemical loss pathways, with the former primarily through "fast" ion-neutral chemistry and the latter through "slow" electron dissociative recombination. The INMS data suggest day-to-night transport as an important source of ions on Titan's nightside, to be distinguished from the conventional scenario of auroral ionization by magnetospheric particles as the only ionizing source on the nightside. This is supported by the strong correlation between the observed night-to-day ion density ratios and the associated ion lifetimes. We construct a time-dependent ion chemistry model to investigate the effects of day-to-night transport on the ionospheric structures of Titan. The predicted diurnal variation has similar general characteristics to those observed, with some apparent discrepancies which could be reconciled by imposing fast horizontal thermal winds in Titan's upper atmosphere.

  15. Barium carbonate as an agent to improve the electrical properties of neodymium-barium-copper system at high temperature

    International Nuclear Information System (INIS)

    Specialized ceramics are manufactured under special conditions and contain specific elements. They possess unique electrical and thermal properties and are frequently used by the electronics industry. Ceramics containing neodymium-barium-copper (NBC) exhibit high conductivities at low temperatures. NBC-based ceramics are typically combined with oxides, i.e., NBCo produced from neodymium oxide, barium oxide and copper oxide. This study presents NBC ceramics that were produced with barium carbonate, copper oxide and neodymium oxide (NBCa) as starting materials. These ceramics have good electrical conductivities at room temperature. Their conductivities are temperature dependent and related to the starting amount of barium carbonate (w%). - Highlights: • The new crystalline structure were obtained due presence of the barium carbonate. • The NBCa compound has excellent electrical conductivity at room temperature. • The grain crystalline morphology was modified by presence of the barium carbonate. • New Phases α and β were introduced by carbonate barium in the NBC compound

  16. Barium carbonate as an agent to improve the electrical properties of neodymium-barium-copper system at high temperature

    Energy Technology Data Exchange (ETDEWEB)

    Fernandes, J.P. [Post-Graduate Program in Chemical Engineering, Universidade Federal de Santa Catarina (UFSC), Florianópolis, SC, 88040-900 (Brazil); Duarte, G.W. [Post-Graduate Program in Chemical Engineering, Universidade Federal de Santa Catarina (UFSC), Florianópolis, SC, 88040-900 (Brazil); Research Group in Technology and Information, Centro Universitário Barriga Verde (UNIBAVE), Santa Catarina, SC (Brazil); Caldart, C. [Post-Graduate Program in Science and Materials Engineering, Universidade do Extremo Sul Catarinense (UNESC), Criciúma, SC, 88806-000 (Brazil); Kniess, C.T. [Post-Graduate Program in Professional Master in Management, Universidade Nove de Julho, São Paulo, SP (Brazil); Montedo, O.R.K.; Rocha, M.R. [Post-Graduate Program in Science and Materials Engineering, Universidade do Extremo Sul Catarinense (UNESC), Criciúma, SC, 88806-000 (Brazil); Riella, H.G. [Post-Graduate Program in Chemical Engineering, Universidade Federal de Santa Catarina (UFSC), Florianópolis, SC, 88040-900 (Brazil); Fiori, M.A., E-mail: fiori@unochapeco.edu.br [Post-Graduate Program in Environmental Science, Universidade Comunitária da Região de Chapecó (UNOCHAPECÓ), Chapecó, SC, 89809-000 (Brazil); Post-Graduate Program in Technology and Management of the Innovation, Universidade Comunitária da Região de Chapecó (UNOCHAPECÓ), Chapecó, SC, 89809-000 (Brazil)

    2015-11-15

    Specialized ceramics are manufactured under special conditions and contain specific elements. They possess unique electrical and thermal properties and are frequently used by the electronics industry. Ceramics containing neodymium-barium-copper (NBC) exhibit high conductivities at low temperatures. NBC-based ceramics are typically combined with oxides, i.e., NBCo produced from neodymium oxide, barium oxide and copper oxide. This study presents NBC ceramics that were produced with barium carbonate, copper oxide and neodymium oxide (NBCa) as starting materials. These ceramics have good electrical conductivities at room temperature. Their conductivities are temperature dependent and related to the starting amount of barium carbonate (w%). - Highlights: • The new crystalline structure were obtained due presence of the barium carbonate. • The NBCa compound has excellent electrical conductivity at room temperature. • The grain crystalline morphology was modified by presence of the barium carbonate. • New Phases α and β were introduced by carbonate barium in the NBC compound.

  17. Radioisotope analyzer of barium

    International Nuclear Information System (INIS)

    Principle of operation and construction of radioisotope barium sulphate analyzer type MZB-2 for fast determination of barium sulphate content in barite ores and enrichment products are described. The gauge equipped with Am-241 and a scintillation detector enables measurement of barium sulphate content in prepared samples of barite ores in the range 60% - 100% with the accuracy of 1%. The gauge is used in laboratories of barite mine and ore processing plant. 2 refs., 2 figs., 1 tab. (author)

  18. Obtaining of a barium compound by combustion chemistry and their evaluation as Co adsorbent; Obtencion de un compuesto de bario por combustion quimica y su evaluacion como adsorbente de Co

    Energy Technology Data Exchange (ETDEWEB)

    Rosas G, N. [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico)

    2008-07-01

    In this work, barium carbonate synthesized by chemical combustion method using a chemical precursor prepared by the combination of barium nitrate and urea as a fuel, with a 1:1 molar ratio in aqueous solution, the chemical precursor was heated to evaporate excess water, producing a homogeneous viscous liquid, that when heated to 900 centi grades for 5 minutes an exothermic reaction was produced very quickly and abruptly, forming a white powder final product, fine porous, little spongy, dry and crystalline ready to be used as material adsorbent. Additionally, the effect of water on the synthesis by chemical combustion was studied. Simultaneously, and with the purpose of comparing the advantages and disadvantages of the method by chemical combustion, barium carbonate was synthesized by precipitation method using barium nitrate salts and sodium carbonate. Synthesized barium carbonate, was characterized by X-ray diffraction, thermal gravimetric analysis, infrared spectrometry and scanning electron microscopy. We studied the adsorption capacity of Co present in aqueous solution by static tests on materials synthesized at room temperature using the neutron activation analysis. It was found that the synthesis by chemical combustion provides an interesting alternative compared to the synthesis by precipitation because it offers simplicity of synthesis and speed to have a good adsorbent material. It was found that the barium carbonate synthesized by the chemical combustion method using in their synthesis 1.0 ml of water, was the one who achieved the maximum adsorption capacity of 95.6% compared with the barium carbonate prepared by precipitation, which reached a capacity adsorption of 51.48%. (Author)

  19. Tailored Barium Swallow Study

    Science.gov (United States)

    ... View Denver Pollen Count You are here: Programs & Services > Tests We Offer > Imaging Tests Tailored Barium Swallow Study The TBS is a special study that is completed in radiology. The test evaluates the mouth and the throat ...

  20. Synthesis of double perxenate of lanthanum and barium

    International Nuclear Information System (INIS)

    Synthesis of double perxenate of lanthanum and barium on the basis of sodium perxenate and lanthanum and barium acetates, is described. The obtained compound is characterized by means of element analysis, x-ray-electron-, IR- and RS-spectroscopy. Its thermal stability and water solubility are determined

  1. Chemical abundances and kinematics of barium stars

    Science.gov (United States)

    de Castro, D. B.; Pereira, C. B.; Roig, F.; Jilinski, E.; Drake, N. A.; Chavero, C.; Silva, J. V. Sales

    2016-04-01

    In this paper we present an homogeneous analysis of photospheric abundances based on high-resolution spectroscopy of a sample of 182 barium stars and candidates. We determined atmospheric parameters, spectroscopic distances, stellar masses, ages, luminosities and scale height, radial velocities, abundances of the Na, Al, alpha-elements, iron-peak elements, and s-process elements Y, Zr, La, Ce, and Nd. We employed the local-thermodynamic-equilibrium model atmospheres of Kurucz and the spectral analysis code MOOG. We found that the metallicities, the temperatures and the surface gravities for barium stars can not be represented by a single gaussian distribution. The abundances of alpha-elements and iron peak elements are similar to those of field giants with the same metallicity. Sodium presents some degree of enrichment in more evolved stars that could be attributed to the NeNa cycle. As expected, the barium stars show overabundance of the elements created by the s-process. By measuring the mean heavy-element abundance pattern as given by the ratio [s/Fe], we found that the barium stars present several degrees of enrichment. We also obtained the [hs/ls] ratio by measuring the photospheric abundances of the Ba-peak and the Zr-peak elements. Our results indicated that the [s/Fe] and the [hs/ls] ratios are strongly anti-correlated with the metallicity. Our kinematical analysis showed that 90% of the barium stars belong to the thin disk population. Based on their luminosities, none of the barium stars are luminous enough to be an AGB star, nor to become self-enriched in the s-process elements. Finally, we determined that the barium stars also follow an age-metallicity relation.

  2. Chemical abundances and kinematics of barium stars

    Science.gov (United States)

    de Castro, D. B.; Pereira, C. B.; Roig, F.; Jilinski, E.; Drake, N. A.; Chavero, C.; Sales Silva, J. V.

    2016-07-01

    In this paper, we present an homogeneous analysis of photospheric abundances based on high-resolution spectroscopy of a sample of 182 barium stars and candidates. We determined atmospheric parameters, spectroscopic distances, stellar masses, ages, luminosities and scaleheight, radial velocities, abundances of the Na, Al, α-elements, iron-peak elements, and s-process elements Y, Zr, La, Ce, and Nd. We employed the local thermodynamic equilibrium model atmospheres of Kurucz and the spectral analysis code MOOG. We found that the metallicities, the temperatures and the surface gravities for barium stars cannot be represented by a single Gaussian distribution. The abundances of α-elements and iron peak elements are similar to those of field giants with the same metallicity. Sodium presents some degree of enrichment in more evolved stars that could be attributed to the NeNa cycle. As expected, the barium stars show overabundance of the elements created by the s-process. By measuring the mean heavy-element abundance pattern as given by the ratio [s/Fe], we found that the barium stars present several degrees of enrichment. We also obtained the [hs/ls] ratio by measuring the photospheric abundances of the Ba-peak and the Zr-peak elements. Our results indicated that the [s/Fe] and the [hs/ls] ratios are strongly anticorrelated with the metallicity. Our kinematical analysis showed that 90 per cent of the barium stars belong to the thin disc population. Based on their luminosities, none of the barium stars are luminous enough to be an asymptotic giant branch star, nor to become self-enriched in the s-process elements. Finally, we determined that the barium stars also follow an age-metallicity relation.

  3. Lower GI Series (Barium Enema)

    Science.gov (United States)

    ... barium into a bedpan or nearby toilet. A health care professional may give you an enema to flush out the rest of the barium. An x-ray technician and a radiologist perform a lower gastrointestinal (GI) series at a ...

  4. Titan Aerial Daughtercraft Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Saturn's giant moon Titan has become one of the most fascinating bodies in the Solar System. Titan is the richest laboratory in the solar system for studying...

  5. Titan Haze

    Science.gov (United States)

    Anderson, Carrie M.; West, Robert; Lavvas, Panayotis

    2011-01-01

    The Titan haze exerts a dominating influence on surface visibility and atmospheric radiative heating at optical and near-infrared wavelengths and our desire to understand surface composition and atmospheric dynamics provides a strong motivation to study the properties of the haze. Prior to the Cassini/Huygens missions the haze was known to be global in extent, with a hemispheric contrast asymmetry, with a complicated structure in the polar vortex region poleward of about 55 deg latitude, and with a distinct layer near 370 km altitude outside of the polar vortex at the time of the Voyager 2 flyby. The haze particles measured by the Pioneer and Voyager spacecraft were both highly polarizing and strongly forward scattering, a combination that seems to require an aggregation of small (several tens of nm radius) primary particles. These same properties were seen in the Cassini orbiter and Huygens Probe data. The most extensive set of optical measurements were made inside the atmosphere by the Descent Imager/Spectral Radiometer (DISR) instrument on the Huygens Probe. At the probe location as determined by the DISR measurements the average haze particle contained about 3000 primary particles whose radius is about 40 nm. Three distinct vertical regions were seen in the DISR data with differing particle properties. Refractive indices of the particles in the main haze layer resemble those reported by Khare et al. between O.3S and about 0.7 micron but are more absorbing than the Khare et al. results between 0.7 micron and the long-wavelength limit of the DISR spectra at 1.6 micron. These and other results are described by Tomasko et al., and a broader summary of results was given by Tomasko and West,. New data continue to stream in from the Cassini spacecraft. New data analyses and new laboratory and model results continue to move the field forward. Titan's 'detached' haze layer suffered a dramatic drop in altitude near equinox in 2009 with implications for the circulation

  6. The Climate of Titan

    Science.gov (United States)

    Mitchell, Jonathan L.; Lora, Juan M.

    2016-06-01

    Over the past decade, the Cassini-Huygens mission to the Saturn system has revolutionized our understanding of Titan and its climate. Veiled in a thick organic haze, Titan's visible appearance belies an active, seasonal weather cycle operating in the lower atmosphere. Here we review the climate of Titan, as gleaned from observations and models. Titan's cold surface temperatures (˜90 K) allow methane to form clouds and precipitation analogously to Earth's hydrologic cycle. Because of Titan's slow rotation and small size, its atmospheric circulation falls into a regime resembling Earth's tropics, with weak horizontal temperature gradients. A general overview of how Titan's atmosphere responds to seasonal forcing is provided by estimating a number of climate-related timescales. Titan lacks a global ocean, but methane is cold-trapped at the poles in large seas, and models indicate that weak baroclinic storms form at the boundary of Titan's wet and dry regions. Titan's saturated troposphere is a substantial reservoir of methane, supplied by deep convection from the summer poles. A significant seasonal cycle, first revealed by observations of clouds, causes Titan's convergence zone to migrate deep into the summer hemispheres, but its connection to polar convection remains undetermined. Models suggest that downwelling of air at the winter pole communicates upper-level radiative cooling, reducing the stability of the middle troposphere and priming the atmosphere for spring and summer storms when sunlight returns to Titan's lakes. Despite great gains in our understanding of Titan, many challenges remain. The greatest mystery is how Titan is able to retain an abundance of atmospheric methane with only limited surface liquids, while methane is being irreversibly destroyed by photochemistry. A related mystery is how Titan is able to hide all the ethane that is produced in this process. Future studies will need to consider the interactions between Titan's atmosphere, surface

  7. Characteristics of 5 mol% Ce{sup 3+}-doped barium titanate nanowires prepared by a combined route involving sol–gel chemistry and polycarbonate membrane-templated process

    Energy Technology Data Exchange (ETDEWEB)

    Vasilescu, Catalina-Andreea [University POLITEHNICA of Bucharest, Department of Oxide Materials Science and Engineering (Romania); Trupina, Lucian [National Institute of Materials Physics (Romania); Vasile, Bogdan Stefan [University POLITEHNICA of Bucharest, Department of Oxide Materials Science and Engineering (Romania); Trusca, Roxana [S.C. METAV–Research & Development Bucharest (Romania); Cernea, Marin [National Institute of Materials Physics (Romania); Ianculescu, Adelina-Carmen, E-mail: a-ianculescu@yahoo.com [University POLITEHNICA of Bucharest, Department of Oxide Materials Science and Engineering (Romania)

    2015-11-15

    Ba{sub 0.95}Ce{sub 0.05}Ti{sub 0.9875}O{sub 3} nanowires were fabricated by sol–gel method using as template a polycarbonate membrane with channels of 100 nm diameter. FE-SEM analyses showed that continuous gel wires of length up to 17 µm and an average diameter of 81 nm, were obtained. After calcination at 700 °C for 1 h, these green 1D nanostructures were converted into well-crystallised wires with an average diameter of 59.7 nm, as high-resolution transmission electron microscopy and selected area electron diffraction indicated. The piezoelectric activity of the Ba{sub 0.95}Ce{sub 0.05}Ti{sub 0.9875}O{sub 3} nanowires was investigated using piezoresponse force microscopy (PFM) correlated with atomic force microscopy. The results of PFM measurements indicated that the wires exhibit a significant fraction of ferroelectric domains larger than the grains size and a good piezoelectric response.

  8. Diurnal variations of Titan's ionosphere

    Science.gov (United States)

    Cui, J.; Galand, M.; Yelle, R. V.; Vuitton, V.; Wahlund, J.-E.; Lavvas, P. P.; Müller-Wodarg, I. C. F.; Cravens, T. E.; Kasprzak, W. T.; Waite, J. H.

    2009-06-01

    We present our analysis of the diurnal variations of Titan's ionosphere (between 1000 and 1300 km) based on a sample of Ion Neutral Mass Spectrometer (INMS) measurements in the Open Source Ion (OSI) mode obtained from eight close encounters of the Cassini spacecraft with Titan. Although there is an overall ion depletion well beyond the terminator, the ion content on Titan's nightside is still appreciable, with a density plateau of ˜700 cm-3 below ˜1300 km. Such a plateau is a combined result of significant depletion of light ions and modest depletion of heavy ones on Titan's nightside. We propose that the distinctions between the diurnal variations of light and heavy ions are associated with their different chemical loss pathways, with the former primarily through “fast” ion-neutral chemistry and the latter through “slow” electron dissociative recombination. The strong correlation between the observed night-to-day ion density ratios and the associated ion lifetimes suggests a scenario in which the ions created on Titan's dayside may survive well to the nightside. The observed asymmetry between the dawn and dusk ion density profiles also supports such an interpretation. We construct a time-dependent ion chemistry model to investigate the effect of ion survival associated with solid body rotation alone as well as superrotating horizontal winds. For long-lived ions, the predicted diurnal variations have similar general characteristics to those observed. However, for short-lived ions, the model densities on the nightside are significantly lower than the observed values. This implies that electron precipitation from Saturn's magnetosphere may be an additional and important contributor to the densities of the short-lived ions observed on Titan's nightside.

  9. Ion cyclotron waves at Titan

    Science.gov (United States)

    Russell, C. T.; Wei, H. Y.; Cowee, M. M.; Neubauer, F. M.; Dougherty, M. K.

    2016-03-01

    During the interaction of Titan's thick atmosphere with the ambient plasma, it was expected that ion cyclotron waves would be generated by the free energy of the highly anisotropic velocity distribution of the freshly ionized atmospheric particles created in the interaction. However, ion cyclotron waves are rarely observed near Titan, due to the long growth times of waves associated with the major ion species from Titan's ionosphere, such as CH4+ and N2+. In the over 100 Titan flybys obtained by Cassini to date, there are only two wave events, for just a few minutes during T63 flyby and for tens of minutes during T98 flyby. These waves occur near the gyrofrequencies of proton and singly ionized molecular hydrogen. They are left-handed, elliptically polarized, and propagate nearly parallel to the field lines. Hybrid simulations are performed to understand the wave growth under various conditions in the Titan environment. The simulations using the plasma and field conditions during T63 show that pickup protons with densities ranging from 0.01 cm-3 to 0.02 cm-3 and singly ionized molecular hydrogens with densities ranging from 0.015 cm-3 to 0.25 cm-3 can drive ion cyclotron waves with amplitudes of ~0.02 nT and of ~0.04 nT within appropriate growth times at Titan, respectively. Since the T98 waves were seen farther upstream than the T63 waves, it is possible that the instability was stronger and grew faster on T98 than T63.

  10. Barium titanate core – gold shell nanoparticles for hyperthermia treatments

    OpenAIRE

    FarrokhTakin E; Ciofani G; Puleo GL; de Vito G; Filippeschi C; Mazzolai B; Piazza V; Mattoli V

    2013-01-01

    Elmira FarrokhTakin,1,2 Gianni Ciofani,1 Gian Luigi Puleo,1 Giuseppe de Vito,3,4 Carlo Filippeschi,1 Barbara Mazzolai,1 Vincenzo Piazza,3 Virgilio Mattoli1 1Center for Micro-BioRobotics @SSSA, Fondazione Istituto Italiano di Tecnologia, Pontedera, Pisa, Italy; 2The Biorobotics Institute, Scuola Superiore Sant'Anna, Pontedera, Pisa, Italy; 3Center for Nanotechnology Innovation @NEST, Fondazione Istituto Italiano di Tecnologia, Pisa, Italy; 4NEST, Scuola Normale Superiore, Pisa, Italy ...

  11. Mobility of ferroelastic domain walls in barium titanate

    Czech Academy of Sciences Publication Activity Database

    Hlinka, Jiří

    2007-01-01

    Roč. 349, - (2007), s. 49-54. ISSN 0015-0193 R&D Projects: GA ČR GA202/06/0411 Institutional research plan: CEZ:AV0Z10100520 Keywords : ferroelectric and ferroelastic domains * BaTiO 3 * Ginzburg-Landau theory * mobility Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.427, year: 2007

  12. Study of dielectric properties of Ca doped barium titanate ceramics

    Science.gov (United States)

    Pradhan, S. K.; Kumar, Amit; Sinha, A. N.; Kour, P.

    2016-05-01

    Ba1-xCax Zr0.52Ti0.48 O3 ceramics was prepared by sol gel method. The crystallite size was in nano scale range. The dielectric constant was increased with increase in Ca2+ concentration in the sample. The dielectric loss was decreased with increase in ca concentration in the sample. The ac conductivity of the sample was increased with increase in Ca2+ concentration in the sample. The ac conductivity of the sample follows Johnscher power law. AC conductivity analysis shows that the interactions between neighbouring dipoles were decreased with the increase in Ca2+ concentration in the sample.

  13. Preparation and characterization of barium titanate stannate solid solutions

    Energy Technology Data Exchange (ETDEWEB)

    Horchidan, Nadejda, E-mail: NHorchidan@stoner.phys.uaic.ro [Department of Physics, ' Al. I. Cuza' University, Bv. Carol 11, Iasi 700506 (Romania); Ianculescu, Adelina C. [Department of Oxide Materials Science and Engineering, Polytechnics University, 1-7 Gh. Polizu, P.O. Box 12-134, 011061 Bucharest (Romania); Curecheriu, Lavinia P.; Tudorache, Florin [Department of Physics, ' Al. I. Cuza' University, Bv. Carol 11, Iasi 700506 (Romania); Musteata, Valentina [Institute of Macromolecular Chemistry ' Petru Poni' , Aleea Grigore Ghica Voda 41A, 700487 Iasi (Romania); Stoleriu, Stefania [Department of Oxide Materials Science and Engineering, Polytechnics University, 1-7 Gh. Polizu, P.O. Box 12-134, 011061 Bucharest (Romania); Dragan, Nicolae; Crisan, Dorel [Institute of Physical Chemistry ' Ilie Murgulescu' , Lab. of Oxide Materials Science, 202 Splaiul Independentei, 060021 Bucharest (Romania); Tascu, Sorin; Mitoseriu, Liliana [Department of Physics, ' Al. I. Cuza' University, Bv. Carol 11, Iasi 700506 (Romania)

    2011-04-07

    Research highlights: > BaSnxTi1-xO3 (x = 0; 0.05; 0.1; 0.15; 0.2) ceramics were prepared by solid state reaction and sintered at 13000C for 4h. > The phase purity, structural parameters and microstructural characteristics were investigated. > The dielectric properties were studied as function of temperature and frequency and empirical parameters {eta} and {delta} were calcutate. > The non-linear dielectric properties (tunability) of the samples were studied at room temperature. > By increasing the Sn addition, the {epsilon}(E) dependence tends to reduce its hysteresis behaviour. - Abstract: BaSn{sub x}Ti{sub 1-x}O{sub 3} (x = 0; 0.05; 0.1; 0.15; 0.2) solid solutions were prepared via conventional solid state reaction and sintered at 1300 {sup o}C for 4 h, resulting in dense single phase ceramics with homogeneous microstructures. Tetragonal symmetry for x {<=} 0.1, cubic for x = 0.2 and a superposition of tetragonal and cubic for x = 0.15 compositions were found by X-ray diffraction analysis. The temperature and frequency dependence of the complex dielectric constant and dc tunability were determined. A transformation from normal ferroelectric to relaxor with diffuse phase transition was observed with increasing the Sn concentration. All the investigated compositions show a relative tunability between 0.55 (for x = 0.2) and 0.74 (for x = 0.1), at a field amplitude of E = 20 kV/cm.

  14. Hot sputtering of barium strontium titanate on nickel foils

    International Nuclear Information System (INIS)

    The relationships linking temperature and voltage dependent dielectric response, grain size, and thermal budget during synthesis are illustrated. In doing so, it was found that maximizing thermal budgets within experimental bounds leads to electrical properties comparable to the best literature reports irrespective of the processing technique or microstructure. The optimal film properties include a bulk transition temperature, a room temperature permittivity of 1800, a voltage tuning ratio of 10:1 at 450 kV/cm, and a loss tangent less than 1.5% at 450 kV/cm. The sample set illustrates the well-known relationship between permittivity and crystal dimension, and the onset of a transition temperature shifts at very fine grain sizes. A brick wall model incorporating a high permittivity grain and a low permittivity grain boundary is used to interpret the dielectric data. However, the data show that high permittivity and tunability values can be achieved at grain sizes or film thicknesses that many reports associate with dramatic reductions in the dielectric response. These differences are discussed in terms of crystal quality and maximum processing temperature. The results collectively suggest that scaling effects in ferroelectric thin films are in many cases the result of low thermal budgets and the consequently high degree of structural imperfection and are not from the existence of low permittivity phases at the dielectric-electrode interface

  15. Microstructure tuning and magnetism switching of ferroelectric barium titanate

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Wenliang [Key Laboratory of Polar Materials and Devices, Ministry of Education, Department of Electronic Engineering, East China Normal University, Shanghai 200241 (China); Deng, Hongmei [Instrumental Analysis and Research Center, Institute of Materials, Shanghai University, 99 Shangda Road, Shanghai 200444 (China); Ding, Nuofan; Yu, Lu [Key Laboratory of Polar Materials and Devices, Ministry of Education, Department of Electronic Engineering, East China Normal University, Shanghai 200241 (China); Yue, Fangyu, E-mail: fyyue@ee.ecnu.edu.cn [Key Laboratory of Polar Materials and Devices, Ministry of Education, Department of Electronic Engineering, East China Normal University, Shanghai 200241 (China); Yang, Pingxiong, E-mail: pxyang@ee.ecnu.edu.cn [Key Laboratory of Polar Materials and Devices, Ministry of Education, Department of Electronic Engineering, East China Normal University, Shanghai 200241 (China); Chu, Junhao [Key Laboratory of Polar Materials and Devices, Ministry of Education, Department of Electronic Engineering, East China Normal University, Shanghai 200241 (China)

    2015-09-15

    Single-crystal and polycrystal BaTiO{sub 3} (BTO) materials synthesized by the physical and chemical methods, respectively, have been studied based on microstructural characterizations and magnetic measurements. The results of X-ray diffraction and Raman scatting spectra show that a single crystal tetragonal to polycrystalline pseudo-cubic structure transformation occurs in BTO ferroelectrics, dependent of growth conditions and interface effects. High-resolution transmission electron microscope data indicate that the as-prepared BTO/SrTiO{sub 3} (001) and BTO/SrRuO{sub 3}/SrTiO{sub 3} (001) heterostructures are highly c-axis oriented with atomic sharp interfaces. Lattice defects (i.e., edge-type misfit dislocations and stacking faults) in the heterostructures could be identified clearly and showed tunable with the variations of interface strain. Furthermore, the effects of vacancy defects on magnetic properties of BTO are discussed, which shows a diamagnetism–ferromagnetism switching as intrinsic vacancies increase. This work opens up a possible avenue to prepare magnetic BTO ferroelectrics. - Highlights: • Structure of BTO is tunable, depending on growth conditions and interface strain. • STEM–EDX data indicate the presence of lattice defects in BTO ferroelectrics. • BTO magnetism could be controlled by defects showing dia-ferromagnetism switching. • BTO with more vacancies shows RTFM, as evidence of vacancy magnetism effects.

  16. Microstructure tuning and magnetism switching of ferroelectric barium titanate

    International Nuclear Information System (INIS)

    Single-crystal and polycrystal BaTiO3 (BTO) materials synthesized by the physical and chemical methods, respectively, have been studied based on microstructural characterizations and magnetic measurements. The results of X-ray diffraction and Raman scatting spectra show that a single crystal tetragonal to polycrystalline pseudo-cubic structure transformation occurs in BTO ferroelectrics, dependent of growth conditions and interface effects. High-resolution transmission electron microscope data indicate that the as-prepared BTO/SrTiO3 (001) and BTO/SrRuO3/SrTiO3 (001) heterostructures are highly c-axis oriented with atomic sharp interfaces. Lattice defects (i.e., edge-type misfit dislocations and stacking faults) in the heterostructures could be identified clearly and showed tunable with the variations of interface strain. Furthermore, the effects of vacancy defects on magnetic properties of BTO are discussed, which shows a diamagnetism–ferromagnetism switching as intrinsic vacancies increase. This work opens up a possible avenue to prepare magnetic BTO ferroelectrics. - Highlights: • Structure of BTO is tunable, depending on growth conditions and interface strain. • STEM–EDX data indicate the presence of lattice defects in BTO ferroelectrics. • BTO magnetism could be controlled by defects showing dia-ferromagnetism switching. • BTO with more vacancies shows RTFM, as evidence of vacancy magnetism effects

  17. Ferroelastic domain walls in barium titanate - quantitative phenomenological model

    Czech Academy of Sciences Publication Activity Database

    Hlinka, Jiří; Márton, Pavel

    2009-01-01

    Roč. 101, č. 1 (2009), s. 50-62. ISSN 1058-4587 R&D Projects: GA ČR GA202/06/0411; GA ČR(CZ) GD202/05/H003; GA AV ČR 1ET300100401 Institutional research plan: CEZ:AV0Z10100520 Keywords : ferroelectric and ferroelastic domains * BaTiO 3 * Ginzburg-Landau theory Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.329, year: 2009

  18. New barium tantalum sulphides

    International Nuclear Information System (INIS)

    The authors discuss a new barium tantalum sulphide, Ba3Ta2S8, prepared by sulphurization of a mixture of BaCO3 and Ta2O5. The electron and powder X-ray diffraction patterns of the compound are indexed on the basis of a monoclinic cell with lattice constants. A structure model is proposed. The refinement based on the powder X-ray diffraction intensities is performed

  19. A green synthesis of a layered titanate, potassium lithium titanate; lower temperature solid-state reaction and improved materials performance

    International Nuclear Information System (INIS)

    A layered titanate, potassium lithium titanate, with the size range from 0.1 to 30 µm was prepared to show the effects of the particle size on the materials performance. The potassium lithium titanate was prepared by solid-state reaction as reported previously, where the reaction temperature was varied. The reported temperature for the titanate preparation was higher than 800 °C, though 600 °C is good enough to obtain single-phase potassium lithium titanate. The lower temperature synthesis is cost effective and the product exhibit better performance as photocatalysts due to surface reactivity. - Graphical abstract: Finite particle of a layered titanate, potassium lithium titanate, was prepared by solid-state reaction at lower temperature to show modified materials performance. Display Omitted - Highlights: • Potassium lithium titanate was prepared by solid-state reaction. • Lower temperature reaction resulted in smaller sized particles of titanate. • 600 °C was good enough to obtain single phased potassium lithium titanate. • The product exhibited better performance as photocatalyst

  20. Future Titan Missions

    Science.gov (United States)

    Waite, J. H.; Coustenis, A.; Lorenz, R.; Lunine, J.; Stofan, E.

    2012-04-01

    New discoveries about Titan from the Cassini-Huygens mission have led to a broad range of mission class studies for future missions, ranging from NASA Discovery class to International Flagship class. Three consistent science themes emerge and serve as a framework for discussing the various mission concepts: Goal A: Explore Titan, an Earth-Like System - How does Titan function as a system? How are the similarities and differences with Earth, and other solar system bodies, a result of the interplay of the geology, hydrology, meteorology, and aeronomy present in the Titan system?; Goal B: Examine Titan’s Organic Inventory—A Path to Prebiological Molecules - What is the complexity of Titan’s organic chemistry in the atmosphere, within its lakes, on its surface, and in its putative subsurface water ocean and how does this inventory differ from known abiotic organic material in meteorites and therefore contribute to our understanding of the origin of life in the Solar System?; and Goal C: Explore Enceladus and Saturn’s magnetosphere—clues to Titan’s origin and evolution - What is the exchange of energy and material with the Saturn magnetosphere and solar wind? What is the source of geysers on Enceladus? Does complex chemistry occur in the geyser source? Within this scientific framework the presentation will overview the Titan Explorer, Titan AND Enceladus Mission, Titan Saturn System Mission, Titan Mare Explorer, and Titan Submersible. Future timelines and plans will be discussed.

  1. MOCVD growth of barium-strontium titanate films using newly developed barium and strontium precursors

    International Nuclear Information System (INIS)

    We report on metal-organic chemical vapor deposition (MOCVD) of the BaxSr1-xTiO3 (BST) films (with x ∼ 0.5) on SrTiO3 substrates. This research comprises the development of new chemical precursors, modification of the MOCVD apparatus towards stoichiometric oxide growth and undesirable phase suppression, as well as establishing optimum growth conditions. The grown BST films were characterized by the set of experimental techniques, including high-resolution X-ray diffraction (HRXRD) and high-resolution scanning electron microscopy. The newly synthesized organo-metallic precursors exhibit better properties than the available precursors and, in particular, show low melting points of about 80 oC. By using these precursors, we succeeded to grow sub-micron thick BST films of high crystalline quality. Optimum growth temperature was found to be 740 oC. The symmetric and asymmetric HRXRD profiles, as well as wide-angle X-ray diffraction scans, taken from the films grown under optimal conditions, reveal epitaxial orientation relations between the film and the substrate.

  2. Titan from Cassini-Huygens

    CERN Document Server

    Brown, Robert H; Waite, J. Hunter

    2010-01-01

    This book reviews our current knowledge of Saturn's largest moon Titan featuring the latest results obtained by the Cassini-Huygens mission. A global author team addresses Titan’s origin and evolution, internal structure, surface geology, the atmosphere and ionosphere as well as magnetospheric interactions. The book closes with an outlook beyond the Cassini-Huygens mission. Colorfully illustrated, this book will serve as a reference to researchers as well as an introduction for students.

  3. Barium zirconate base ceramics

    International Nuclear Information System (INIS)

    The chemical corrosion at high temperatures is a serious problem in the refractory materials field, leading to degradation and bath contamination by elements of the refractory. The main objective of this work was to search for ceramics that could present higher resistance to chemical attack by aggressive molten oxides. The general behaviour of a ceramic material based on barium zirconate (Ba Zr O3) with the addition of different amounts of liquid phase former was investigated. The densification behaviour occurred during different heat treatments, as well as the microstructure development, as a function of the additives and their reactions with the main phase, were observed and are discussed. (author)

  4. Synthesis, photoluminescence and magnetic properties of barium vanadate nanoflowers

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Jing [Department of Applied Physics, Chongqing University, 174 Shapingba Street, Chongqing 400044 (China); Chongqing University of Science and Technology, Chongqing 401331 (China); Hu, Chenguo, E-mail: hucg@cqu.edu.cn [Department of Applied Physics, Chongqing University, 174 Shapingba Street, Chongqing 400044 (China); Xi, Yi [Department of Applied Physics, Chongqing University, 174 Shapingba Street, Chongqing 400044 (China); Peng, Chen [School of Physical Science and Technology, Southwest University, Chongqing 400715 (China); Wan, Buyong; He, Xiaoshan [Department of Applied Physics, Chongqing University, 174 Shapingba Street, Chongqing 400044 (China)

    2011-06-15

    Graphical abstract: The flower-shaped barium vanadate was obtained for the first time. The photoluminescence and magnetic properties of the barium vanadate nanoflowers were investigated at room temperature. Research highlights: {yields} In the paper, the flower-shaped barium vanadate were obtained for the first time. The CHM method used here is new and simple for preparation of barium vanadate. {yields} The photoluminescence and magnetic properties of the barium vanadate nanoflowers were investigated at room temperature. The strong bluish-green emission was observed. {yields} The ferromagnetic behavior of the barium vanadate nanoflowers was found with saturation magnetization of about 83.50 x 10{sup -3} emu/g, coercivity of 18.89 Oe and remnant magnetization of 4.63 x 10{sup -3} emu/g. {yields} The mechanisms of PL and magnetic property of barium vanadate nanoflowers have been discussed. -- Abstract: The flower-shaped barium vanadate has been obtained by the composite hydroxide mediated (CHM) method from V{sub 2}O{sub 5} and BaCl{sub 2} at 200 {sup o}C for 13 h. XRD and XPS spectrum of the as-synthesized sample indicate it is hexagonal Ba{sub 3}V{sub 2}O{sub 8} with small amount of Ba{sub 3}VO{sub 4.8} coexistence. Scan electron microscope and transmission electron microscope display that the flower-shaped crystals are composed of nanosheets with thickness of {approx}20 nm. The UV-visible spectrum shows that the barium vanadate sample has two optical gaps (3.85 eV and 3.12 eV). Photoluminescence spectrum of the barium vanadate flowers exhibits a visible light emission centered at 492 and 525 nm which might be attributed to VO{sub 4} tetrahedron with T{sub d} symmetry in Ba{sub 3}V{sub 2}O{sub 8}. The ferromagnetic behavior of the barium vanadate nanoflowers has been found with saturation magnetization of about 83.50 x 10{sup -3} emu/g, coercivity of 18.89 Oe and remnant magnetization of 4.63 x 10{sup -3} emu/g, which is mainly due to the presence of a non

  5. Exfoliation and thermal transformations of Nb-substituted layered titanates

    DEFF Research Database (Denmark)

    Song, H.; Sjåstad, Anja O.; Fjellvåg, Helmer;

    2011-01-01

    Single-layer Nb-substituted titanate nanosheets of ca. 1 nm thickness were obtained by exfoliating tetrabutylammonium (TBA)-intercalated Nb-substituted titanates in water. AFM images and turbidity measurements reveal that the exfoliated nanosheets crack and corrugate when sonicated. Upon heating,...

  6. Characterization of internal boundary layer capacitors based upon barium titanate and strontium titanate

    Energy Technology Data Exchange (ETDEWEB)

    Park, Hyun Duk

    1981-01-01

    The nature of ceramic microstructure and the electrical properties of individual grains and junctions was determined by STEM, microprobe analysis and microscale electrical measurements. The chemical compositions of the resistive boundary regions were different from those of the grains. Additives were concentrated in the boundary regions, forming resistive layers. Limited diffusion of the counterdopants into the grain subsurface formed an interfacial compensation layer between the insulating intergranular layer and the semiconducting grains. The electrical behavior of this intermediate layer was found to be similar to that of a depletion layer. Ceramic microstructures were approximated by a three-layer n-c-i-c-n model and representive equivalent circuit, which was used to explain the voltage dependence of the dielectric constant and dispersion behavior. Calculated properties were in good agreement with experimental values. Fine grain microstructures developed by liquid phase sintering techniques, were suitable for high dielectric constant multilayer capacitors, based upon internal boundary layer phenomena, and these capacitors had stable dielectric characteristics.

  7. Surface studies of barium and barium oxide on tungsten and its application to understanding the mechanism of operation of an impregnated tungsten cathode

    Science.gov (United States)

    Forman, R.

    1976-01-01

    Surface studies have been made of multilayer and monolayer films of barium and barium oxide on a tungsten substrate. The purpose of the investigation was to synthesize the surface conditions that exist on an activated impregnated tungsten cathode and obtain a better understanding of the mechanism of operation of such cathodes. The techniques employed in these measurements were Auger spectroscopy and work-function measurements. The results of this study show that the surface of an impregnated cathode is identical to that observed for a synthesized monolayer or partial monolayer of barium on oxidized tungsten by evaluating Auger spectra and work-function measurements. Data obtained from desorption studies of barium monolayers on a tungsten substrate in conjunction with Auger and work-function results have been interpreted to show that throughout most of its life an impreganated cathode has a partial monolayer, rather than a monolayer, of barium on its surface.

  8. MR Colonography with fecal tagging: Barium vs. barium ferumoxsil

    DEFF Research Database (Denmark)

    Achiam, M.P.; Chabanova, E.; Logager, V.B.; Thomsen, H.S.; Rosenberg, J.

    2008-01-01

    . Materials and Methods. Twenty patients referred to CC underwent dark lumen MRC prior to the colonoscopy. Two groups of patients received two different oral contrast agents (barium sulfate and barium sulfate/ferumoxsil) as a laxative-free fecal tagging prior to the MRC. After MRC, the contrast agent was...... rated qualitatively (with the standard method using contrast-to-wall ratio) and subjectively (using a visual analog scale [VAS]) by three different blinded observers. Results. Evaluated both qualitatively and subjectively, the tagging efficiency of barium sulfate/ferumoxsil was significantly better (P...... <.05) than barium sulfate alone. The VAS method for evaluating the tagging efficiency of contrast agents showed a high correlation (observer 11, r = 0.91) to the standard method using contrast-to-wall ratio and also a high interclass correlation (observer 11 and III = 0.89/0.85). MRC found I of 22 (5...

  9. New barium tantalum sulphides

    International Nuclear Information System (INIS)

    A new barium tantalum sulphide has been synthesized by the reaction of CS2 with a mixture of BaCO3 and Ta2O5. The chemical analysis of the compound was performed for 3 components (Ba, Ta and S), and the chemical composition was found to be BaTa2S5. The powder X-ray diffraction peaks were indexable on the basis of a hexagonal cell with lattices constants of a=3.32A, c=25.13A. However, the electron diffraction measurements show that the structure is more complex than that observed by powder X-ray diffraction. The compound indicates metallic behavior and Pauli paramagnetism

  10. A novel barium polymeric membrane sensor for selective determination of barium and sulphate ions based on the complex ion associate barium(II)-Rose Bengal as neutral ionophore

    Energy Technology Data Exchange (ETDEWEB)

    Othman, A.M. [Genetic Engineering and Biotechnology Research Institute (GEBRI), Minufiya University, Sadat City (Egypt); El-Shahawi, M.S. [Chemistry Department, Faculty of Science at Damiatta, Mansoura University, Damiatta, Dumyat 34517 (Egypt)]. E-mail: mohammad_el_shahawi@yahoo.co.uk; Abdel-Azeem, M. [Chemistry Department, Faculty of Science at Damiatta, Mansoura University, Damiatta, Dumyat 34517 (Egypt)

    2006-01-12

    A simple, long life, rapid response and sensitive barium(II)-PVC membrane sensor that typically follows Nernstian behavior has been developed for the assay of barium(II) ions. The developed sensor has been made by incorporating the complex ion associate of barium(II)-Rose Bengal (Ba-RB) as an ionophore into a plasticized PVC matrix. The sensor is stable and exhibited fast potential response of 20 s and gave a good linear response with a Nernstian slope of 28.5 {+-} 0.4 mV/decade of activity within the concentration range 5 x 10{sup -5} to 10{sup -1} M over a wide range of pH 4.5-10.0 for barium(II) ions. The developed sensor showed comparatively good selectivity for barium(II) ions with respect to other alkali, alkaline earth, transition and heavy metal ions. The plasticizer o-nitrophenyloctyl ether controlled significantly the calibration slope and the lifetime of the fabricated sensor. The proposed sensor was used successfully for the analysis of barium(II) ions in wastewater samples and in lithophone pigment with excellent recovery percentages in the range 98.9-99.8 {+-} 1.6%. The determination of sulphate in fresh and potable water samples with the developed sensor has been also achieved successfully. The described sensor provides a reliable means with good correlation with the data obtained by atomic absorption spectrometry (AAS) and other spectrophotometric methods for the analysis of trace amounts of barium(II) and/or sulphate ions in different matrices.

  11. A novel barium polymeric membrane sensor for selective determination of barium and sulphate ions based on the complex ion associate barium(II)-Rose Bengal as neutral ionophore

    International Nuclear Information System (INIS)

    A simple, long life, rapid response and sensitive barium(II)-PVC membrane sensor that typically follows Nernstian behavior has been developed for the assay of barium(II) ions. The developed sensor has been made by incorporating the complex ion associate of barium(II)-Rose Bengal (Ba-RB) as an ionophore into a plasticized PVC matrix. The sensor is stable and exhibited fast potential response of 20 s and gave a good linear response with a Nernstian slope of 28.5 ± 0.4 mV/decade of activity within the concentration range 5 x 10-5 to 10-1 M over a wide range of pH 4.5-10.0 for barium(II) ions. The developed sensor showed comparatively good selectivity for barium(II) ions with respect to other alkali, alkaline earth, transition and heavy metal ions. The plasticizer o-nitrophenyloctyl ether controlled significantly the calibration slope and the lifetime of the fabricated sensor. The proposed sensor was used successfully for the analysis of barium(II) ions in wastewater samples and in lithophone pigment with excellent recovery percentages in the range 98.9-99.8 ± 1.6%. The determination of sulphate in fresh and potable water samples with the developed sensor has been also achieved successfully. The described sensor provides a reliable means with good correlation with the data obtained by atomic absorption spectrometry (AAS) and other spectrophotometric methods for the analysis of trace amounts of barium(II) and/or sulphate ions in different matrices

  12. Titan's organic chemistry

    Science.gov (United States)

    Sagan, C.; Thompson, W. R.; Khare, B. N.

    1985-01-01

    Voyager discovered nine simple organic molecules in the atmosphere of Titan. Complex organic solids, called tholins, produced by irradiation of the simulated Titanian atmosphere, are consistent with measured properties of Titan from ultraviolet to microwave frequencies and are the likely main constituents of the observed red aerosols. The tholins contain many of the organic building blocks central to life on earth. At least 100-m, and possibly kms thicknesses of complex organics have been produced on Titan during the age of the solar system, and may exist today as submarine deposits beneath an extensive ocean of simple hydrocarbons.

  13. Barium hexaferrite nanoparticles: Synthesis and magnetic properties

    Energy Technology Data Exchange (ETDEWEB)

    Martirosyan, K.S., E-mail: karen.martirosyan@utb.edu [Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX 77204 (United States); Texas Center for Superconductivity, University of Houston, Houston, TX 77204 (United States); Department of Electrical and Computer Engineering, University of Houston, Houston, TX 77204 (United States); Galstyan, E. [Texas Center for Superconductivity, University of Houston, Houston, TX 77204 (United States); Hossain, S.M.; Wang Yiju [Department of Electrical and Computer Engineering, University of Houston, Houston, TX 77204 (United States); Litvinov, D. [Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX 77204 (United States); Texas Center for Superconductivity, University of Houston, Houston, TX 77204 (United States); Department of Electrical and Computer Engineering, University of Houston, Houston, TX 77204 (United States)

    2011-01-15

    Carbon combustion synthesis is applied to rapid and energy efficient fabrication of crystalline barium hexaferrite nanoparticles with the average particle size of 50-100 nm. In this method, the exothermic oxidation of carbon nanoparticles with an average size of 5 nm with a surface area of 80 m{sup 2}/g generates a self-propagating thermal wave with maximum temperatures of up to 1000 deg. C. The thermal front rapidly propagates through the mixture of solid reactants converting it to the hexagonal barium ferrite. Carbon is not incorporated in the product and is emitted from the reaction zone as a gaseous CO{sub 2}. The activation energy for carbon combustion synthesis of BaFe{sub 12}O{sub 19} was estimated to be 98 kJ/mol. A complete conversion to hexagonal barium ferrite is obtained for carbon concentration exceeding 11 wt.%. The magnetic properties H{sub c}{approx}3000 Oe and M{sub s}{approx}50.3 emu/g of the compact sintered ferrites compare well with those produced by other synthesis methods.

  14. Barium hexaferrite nanoparticles: Synthesis and magnetic properties

    International Nuclear Information System (INIS)

    Carbon combustion synthesis is applied to rapid and energy efficient fabrication of crystalline barium hexaferrite nanoparticles with the average particle size of 50-100 nm. In this method, the exothermic oxidation of carbon nanoparticles with an average size of 5 nm with a surface area of 80 m2/g generates a self-propagating thermal wave with maximum temperatures of up to 1000 deg. C. The thermal front rapidly propagates through the mixture of solid reactants converting it to the hexagonal barium ferrite. Carbon is not incorporated in the product and is emitted from the reaction zone as a gaseous CO2. The activation energy for carbon combustion synthesis of BaFe12O19 was estimated to be 98 kJ/mol. A complete conversion to hexagonal barium ferrite is obtained for carbon concentration exceeding 11 wt.%. The magnetic properties Hc∼3000 Oe and Ms∼50.3 emu/g of the compact sintered ferrites compare well with those produced by other synthesis methods.

  15. Barium aluminate cement: its application

    International Nuclear Information System (INIS)

    The technology of manufacturing barium aluminate cement from barium sulfate and alumina, using a rotary kiln for firing the clinker is described. The method of granulation of the homogenized charge was used. Conditions of using the ''to mud'' method in industry were indicated. The physical and chemical properties of barium aluminate cement are determined and the quality of several batches of cement prepared on a semi-industrial scale and their suitability for making highly refractory concretes are tested. The optimal composition of the concretes is determined as a function of the mixing water and barium aluminate cement contents. Several experimental batches of concretes were used in the linings of furnaces in the steel industry. The suitability of these cements for use in fields other than steelmaking is examined. It is established that calcium aluminate cement has certain limited applications

  16. Discovery of the Barium Isotopes

    OpenAIRE

    SHORE, A.; A. Fritsch; Ginepro, J. Q.; Heim, M.; Schuh, A.; Thoennessen, M

    2009-01-01

    Thirty-eight barium isotopes have so far been observed; the discovery of these isotopes is discussed. For each isotope a brief summary of the first refereed publication, including the production and identification method, is presented.

  17. Titans of Service

    OpenAIRE

    Lindberg-Repo, Kirsti Helena; Dube, Apramey

    2014-01-01

    TITANS OF SERVICE combines theory with practical insights, examples and references from experts. Bringing together 14 service experts, this book offers the most up-to-date knowledge from this field of academia in the U.S., Europe and Asia. In addition to offering theoretical insights, practical guidance and examples, this book also gives an overview of the current and future role of services. Titans of Service provides a framework for thinking about ways in which new knowledge on services is ...

  18. Titan's surface and atmosphere

    Science.gov (United States)

    Hayes, Alexander G.; Soderblom, Jason M.; Ádámkovics, Máté

    2016-05-01

    Since its arrival in late 2004, the NASA/ESA Cassini-Huygens mission to Saturn has revealed Titan to be a world that is both strange and familiar. Titan is the only extraterrestrial body known to support standing bodies of stable liquid on its surface and, along with Earth and early Mars, is one of three places in the Solar System known to have had an active hydrologic cycle. With atmospheric pressures of 1.5 bar and temperatures of 90-95 K at the surface, methane and ethane condense out of Titan's nitrogen-dominated atmosphere and flow as liquids on the surface. Despite vast differences in environmental conditions and materials from Earth, Titan's methane-based hydrologic cycle drives climatic and geologic processes which generate landforms that are strikingly similar to their terrestrial counterparts, including vast equatorial dunes, well-organized channel networks that route material through erosional and depositional landscapes, and lakes and seas of liquid hydrocarbons. These similarities make Titan a natural laboratory for studying the processes that shape terrestrial landscapes and drive climates, probing extreme conditions impossible to recreate in earthbound laboratories. Titan's exotic environment ensures that even rudimentary measurements of atmospheric/surface interactions, such as wind-wave generation or aeolian dune development, provide valuable data to anchor physical models.

  19. The TITAN reversed-field-pinch fusion reactor study

    International Nuclear Information System (INIS)

    This report discusses the following topics: overview of titan-2 design; titan-2 fusion-power-core engineering; titan-2 divertor engineering; titan-2 tritium systems; titan-2 safety design and radioactive-waste disposal; and titan-2 maintenance procedures

  20. The TITAN reversed-field-pinch fusion reactor study

    Energy Technology Data Exchange (ETDEWEB)

    1990-01-01

    This report discusses the following topics: overview of titan-2 design; titan-2 fusion-power-core engineering; titan-2 divertor engineering; titan-2 tritium systems; titan-2 safety design and radioactive-waste disposal; and titan-2 maintenance procedures.

  1. Witnessing Springtime on Titan

    Science.gov (United States)

    Kohler, Susanna

    2016-02-01

    Have you ever wondered what springtime is like on Saturns largest moon, Titan? A team of researchers has analyzed a decade of data from the Cassini spacecraft to determine how Titans gradual progression through seasons has affected its temperatures.Observing the Saturn SystemThough Titan orbits Saturn once every ~16 days, it is Saturns ~30-year march around the Sun that sets Titans seasons: each traditional season on Titan spans roughly 7.5 years. Thus, when the Cassini spacecraft first arrived at Saturn in 2004 to study the giant planet and its ring system and moons, Titans northern hemisphere was in early winter. A decade later, the season in the northern hemisphere had advanced to late spring.A team scientists led by Donald Jennings (Goddard Space Flight Center) has now used data from the Composite Infrared Spectrometer (CIRS) on board Cassini to analyze the evolution of Titans surface temperature between 2004 and 2014.Changing of SeasonsSurface brightness temperatures (with errors) on Titan are shown in blue for five time periods between 2004 and 2014. The location of maximum temperature migrates from 19S to 16N over the decade. Two climate models are also shown in green (high thermal inertia) and red (low thermal inertia). [Jennings et al. 2016]CIRS uses the decreased opacity of Titans atmosphere at 19 m to detect infrared emission from Titans surface at this wavelength. From this data, Jennings and collaborators determine Titans surface temperature for five time intervals between 2004 and 2014. They bin the data into 10 latitude bins that span from the south pole (90S) to the north pole (90N).The authors find that the maximum temperature on the moon stays stable over the ten-year period at 94 K, or a chilly -240F). But as time passes, the latitude with the warmest temperature shifts from 19S to 16N, marking the transition from early winter to late spring. Over the decade of monitoring, the surface temperature near the south pole decreased by ~2 K, and that

  2. Preparation of barium hexaferrite powders using oxidized steel scales waste

    Science.gov (United States)

    Septiani, Ardita; Idayanti, Novrita; Kristiantoro, Tony

    2016-02-01

    Research on preparation of barium hexaferrite powders has been done using Hot Strip Mill scales as raw materials. Hot Strip Mill scales are oxidized steel scales waste from steel industrial process. The method used for preparing the barium hexaferrite powders was solid state reaction method. Oxidized steel scales were milled using ball mill for 10 hours, then screened through a 250 mesh sieve to obtain powders with maximum size of 63 µm. Powders were roasted at 600°C temperature for 4 hours to obtain hematite (Fe2O3) phase. Roasted powders were then mixed with barium carbonate, and were subsequently milled for 16 hours. After mixing, powders were calcined with an increasing rate of 10°C/min and maintained at 1100°C for 3 hours. Calcination process was performed to acquire barium hexaferrite phase. X-ray Diffraction (XRD) characterization in conjunction with RIR analysis showed that 85 wt. % of barium hexaferrite is formed. The magnetic properties of powders were characterized using Permagraph. It is found the value of remanent induction is 1.09 kG, coercivity of 2.043 kOe, and the maximum energy product of 0.25 MGOe.

  3. Cryovolcanic features on Titan's surface as revealed by the Cassini Titan Radar Mapper

    Science.gov (United States)

    Lopes, R.M.C.; Mitchell, K.L.; Stofan, E.R.; Lunine, J.I.; Lorenz, R.; Paganelli, F.; Kirk, R.L.; Wood, C.A.; Wall, S.D.; Robshaw, L.E.; Fortes, A.D.; Neish, C.D.; Radebaugh, J.; Reffet, E.; Ostro, S.J.; Elachi, C.; Allison, M.D.; Anderson, Y.; Boehmer, R.; Boubin, G.; Callahan, P.; Encrenaz, P.; Flamini, E.; Francescetti, G.; Gim, Y.; Hamilton, G.; Hensley, S.; Janssen, M.A.; Johnson, W.T.K.; Kelleher, K.; Muhleman, D.O.; Ori, G.; Orosei, R.; Picardi, G.; Posa, F.; Roth, L.E.; Seu, R.; Shaffer, S.; Soderblom, L.A.; Stiles, B.; Vetrella, S.; West, R.D.; Wye, L.; Zebker, H.A.

    2007-01-01

    The Cassini Titan Radar Mapper obtained Synthetic Aperture Radar images of Titan's surface during four fly-bys during the mission's first year. These images show that Titan's surface is very complex geologically, showing evidence of major planetary geologic processes, including cryovolcanism. This paper discusses the variety of cryovolcanic features identified from SAR images, their possible origin, and their geologic context. The features which we identify as cryovolcanic in origin include a large (180 km diameter) volcanic construct (dome or shield), several extensive flows, and three calderas which appear to be the source of flows. The composition of the cryomagma on Titan is still unknown, but constraints on rheological properties can be estimated using flow thickness. Rheological properties of one flow were estimated and appear inconsistent with ammonia-water slurries, and possibly more consistent with ammonia-water-methanol slurries. The extent of cryovolcanism on Titan is still not known, as only a small fraction of the surface has been imaged at sufficient resolution. Energetic considerations suggest that cryovolcanism may have been a dominant process in the resurfacing of Titan. ?? 2006 Elsevier Inc.

  4. TALISE: Titan Lake In-situ Sampling Propelled Explorer

    Science.gov (United States)

    Urdampilleta, I.; Prieto-Ballesteros, O.; Rebolo, R.; Sancho, J.

    2012-09-01

    Titan is the largest satellite of Saturn System, the only one in the Solar System with a significant atmosphere. About 95% is nitrogen, approximately 3% is methane, and the remaining 2% percent consists of hydrogen, little vapour water, other hydrocarbons, and possibly argon. Hydrocarbons may rain down on the surface, forming enclosed seas, lakes, and ponds. Radar images obtained appear to show lakes of liquid hydrocarbon (such as methane and ethane) in Titan's northern latitudes. The chemical composition of the lakes of Titan is still not well determined. The detection of other compounds and the investigation of influence of both, photochemistry and the atmosphere on the chemical composition of liquids of Titan lakes remain challenging in the absence of in situ measurements. Therefore, it is next step to understand the Titan lakes environment, its relationship with the climate behavior, the surrounding solid substrate and analyze the organic inventory including the possibility of prebiotic compounds.

  5. Ceria and strontium titanate based electrodes

    DEFF Research Database (Denmark)

    2010-01-01

    A ceramic anode structure obtainable by a process comprising the steps of: (a) providing a slurry by dispersing a powder of an electronically conductive phase and by adding a binder to the dispersion, in which said powder is selected from the group consisting of niobium-doped strontium titanate, ...

  6. Weather on Titan

    Science.gov (United States)

    Griffith, C. A.; Hall, J. L.; Geballe, T. R.

    2000-10-01

    Titan's atmosphere potentially sports a cycle similar to the hydrologic one on Earth with clouds, rain and seas, but with methane playing the terrestrial role of water. Over the past ten years many independent efforts indicated no strong evidence for cloudiness until some unique spectra were analyzed in 1998 (Griffith et al.). These surprising observations displayed enhanced fluxes of 14-200% on two nights at precisely the wavelengths (windows) that sense Titan's lower altitude where clouds might reside. The morphology of these enhancements in all 4 windows observed indicate that clouds covered ~6-9% of Titan's surface and existed at ~15 km altitude. Here I discuss new observations recorded in 1999 aimed to further characterize Titan's clouds. While we find no evidence for a massive cloud system similar to the one observed previously, 1%-4% fluctuations in flux occur daily. These modulations, similar in wavelength and morphology to the more pronounced ones observed earlier, suggest the presence of clouds covering <=1% of Titan's disk. The variations are too small to have been detected by most prior measurements. Repeated observations, spaced 30 minutes apart, indicate a temporal variability observable in the time scale of a couple of hours. The cloud heights hint that convection governs their evolutions. Their short lives point to the presence of rain. C. A. Griffith and J. L. Hall are supported by the NASA Planetary Astronomy Program NAG5-6790.

  7. Constraints on Titan rotation from Cassini radar

    Science.gov (United States)

    Bills, B. G.; Stiles, B. W.; Kirk, R. L.

    2014-12-01

    We give an update on efforts to model the rotation of Titan, subject to constraints from Cassini radar observations. The data we are currently using includes 670 tie-points, each of which is a pair of inertial positions of a single surface point, relative to the center of mass of Titan, and the corresponding pair of observation times. The positional accuracy is of order 1 km, in each Cartesian component. A reasonably good fit to the observations is obtained with a simple model which has a fixed spin pole and a rotation rate which is a sum of a constant value and a single sinusoidal oscillation. A better fit is obtained if we insist that Titan should behave as a synchronous rotator, in the dynamical sense of keeping its axis of least inertia oriented toward Saturn. At the level of accuracy required to fit the Cassini radar data, synchronous rotation is notably different than having a uniform rate of rotation. In this case, we need to model time variations in the orbital mean longitude, which is the longitude of periapse, plus the mean anomaly. That angle varies on a wide range of times scales, including Titan's periapse precession period (703 years), Saturn's heliocentric orbital period (29.47 years), perturbations from relatively large satellites Iapetus (79.3 days), and a 4:3 mean motion resonant interaction with Hyperion (640 and 6850 days), and a linear increase at Titan's mean orbital period (15.9455 day). Our rotation model for Titan has 4 free parameters. Two of them specify the orientation of the fixed spin pole, and the other two are the effective free libration period and viscous damping time. Our dynamical model includes a damped forced longitudinal libration, in which gravitational torques attempt to align the axis of least inertia with the instantaneous direction to Saturn. For a rigid tri-axial body, with Titan's moments of inertia, the free oscillation period for longitudinal librations would be 850 days. For a decoupled elastic shell, the effective

  8. Microscopic insight into nuclear structure properties of proton-rich barium isotopes

    International Nuclear Information System (INIS)

    Variation after projection (VAP) calculations with Hartree-Bogoliubov (HB) Ansatz have been carried out for A=120-136 barium isotopes. In this framework, the yrast spectra with Jmaxπ=10+, B(E2) transition probabilities, quadrupole (β2) and hexadecapole (β4) deformation parameters for even-even barium isotopes have been obtained. The results of the calculation give an indication that it is important to include the hexadecapole-hexadecapole component of the two-body interaction for obtaining various nuclear structure quantities in these barium isotopes. (author)

  9. Nanocrystals formation on Ho3+ doped strontium barium niobate glass

    International Nuclear Information System (INIS)

    The study of two different methods to obtain strontium barium niobate nanocrystals immersed in a glass matrix has been carried out. Ho2O3-doped SrO-BaO-Nb2O5-B2O3 glasses were fabricated using the melt quenching method. Glass ceramic samples were obtained from the precursor glass by thermal treatment in a furnace and by laser irradiation. These glass ceramic samples are formed by a glassy phase and a crystalline phase of strontium barium niobate nanocrystals. This structure was confirmed by X-ray diffraction and Atomic Force Microscope images. The incorporation of Ho3+ ions in the strontium barium niobate nanocrystals were corroborated by optical measurements, which produced an increment in the luminescence intensity compared to the precursor glass. - Research Highlights: →Ho doped strontium barium niobate nanocrystals have been obtained. →XRD, AFM and optical measurements corroborate the formation of SBN. →A laser irradiation technique has been carried out successfully.

  10. Chemical abundance analysis of 19 barium stars

    CERN Document Server

    Yang, G C; Spite, M; Chen, Y Q; Zhao, G; Zhang, B; Liu, G Q; Liu, Y J; Liu, N; Deng, L C; Spite, F; Hill, V; Zhang, C X

    2016-01-01

    We aim at deriving accurate atmospheric parameters and chemical abundances of 19 barium (Ba) stars, including both strong and mild Ba stars, based on the high signal-to-noise ratio and high resolution Echelle spectra obtained from the 2.16 m telescope at Xinglong station of National Astronomical Observatories, Chinese Academy of Sciences. The chemical abundances of the sample stars were obtained from an LTE, plane-parallel and line-blanketed atmospheric model by inputting the atmospheric parameters (effective temperatures, surface gravities, metallicity and microturbulent velocity) and equivalent widths of stellar absorption lines. These samples of Ba stars are giants indicated by atmospheric parameters, metallicities and kinematic analysis about UVW velocity. Chemical abundances of 17 elements were obtained for these Ba stars. Their light elements (O, Na, Mg, Al, Si, Ca, Sc, Ti, V, Cr, Mn and Ni) are similar to the solar abundances. Our samples of Ba stars show obvious overabundances of neutron-capture (n-ca...

  11. CNO and F abundances in the barium star HD 123396

    CERN Document Server

    Alves-Brito, Alan; Yong, David; Meléndez, Jorge; Vásquez, Sergio

    2011-01-01

    [Abridged] Barium stars are moderately rare chemically peculiar objects which are believed to be the result of the pollution of an otherwise normal star by material from an evolved companion on the asymptotic giant branch (AGB). We aim to derive carbon, nitrogen, oxygen, and fluorine abundances for the first time from infrared spectra of the barium red giant star HD 123396 to quantitatively test AGB nucleosynthesis models for producing barium stars via mass accretion. High-resolution and high S/N infrared spectra were obtained using the Phoenix spectrograph mounted at the Gemini South telescope. The abundances were obtained through spectrum synthesis of individual atomic and molecular lines, using the MOOG stellar line analysis program together with Kurucz's stellar atmosphere models. The analysis was classical, using 1D stellar models and spectral synthesis under the assumption of local thermodynamic equilibrium. We confirm that HD 123396 is a metal-deficient barium star ([Fe/H] = -1.05), with A(C) = 7.88, A...

  12. Photon attenuation characteristics of barium enriched cement

    International Nuclear Information System (INIS)

    Nuclear radiations are widely used in several applications of nuclear sciences, medicine and industry. In the design and construction of installations housing high intensity radioactive sources and other radiation generating equipment, a variety of shielding materials are used to minimise the exposure to the individuals. Among the materials used, lead is best known for radiation shielding due to its high density and atomic number. However, in construction of radiation facilities, lead in the form of bricks or slabs cannot be substituted for cement as building material. As an alternative, barium enriched cement, which apart from better compressive strength, smoother surface finish and high abrasive resistance, offers adequate shielding to gamma radiations. In the present work, attenuation properties of commercial as well as barium enriched cements have been studied and compared with that of lead for photons of 662 and 1250 keV emitted from 137Cs and 60Co, respectively. Although photon attenuation data can be obtained by mixture rule theoretically, it is necessary to determine this data experimentally before use

  13. Simulations of Titan's paleoclimate

    CERN Document Server

    Lora, Juan M; Russell, Joellen L; Hayes, Alexander G

    2014-01-01

    We investigate the effects of varying Saturn's orbit on the atmospheric circulation and surface methane distribution of Titan. Using a new general circulation model of Titan's atmosphere, we simulate its climate under four characteristic configurations of orbital parameters that correspond to snapshots over the past 42 kyr, capturing the amplitude range of long-period cyclic variations in eccentricity and longitude of perihelion. The model, which covers pressures from the surface to 0.5 mbar, reproduces the present-day temperature profile and tropospheric superrotation. In all four simulations, the atmosphere efficiently transports methane poleward, drying out the low- and mid-latitudes, indicating that these regions have been desert-like for at least tens of thousands of years. Though circulation patterns are not significantly different, the amount of surface methane that builds up over either pole strongly depends on the insolation distribution; in the present-day, methane builds up preferentially in the no...

  14. Organic chemistry on Titan

    Science.gov (United States)

    Chang, S.; Scattergood, T.; Aronowitz, S.; Flores, J.

    1979-01-01

    Features taken from various models of Titan's atmosphere are combined in a working composite model that provides environmental constraints within which different pathways for organic chemical synthesis are determined. Experimental results and theoretical modeling suggest that the organic chemistry of the satellite is dominated by two processes: photochemistry and energetic particle bombardment. Photochemical reactions of CH4 in the upper atmosphere can account for the presence of C2 hydrocarbons. Reactions initiated at various levels of the atmosphere by cosmic rays, Saturn 'wind', and solar wind particle bombardment of a CH4-N2 atmospheric mixture can account for the UV-visible absorbing stratospheric haze, the reddish appearance of the satellite, and some of the C2 hydrocarbons. In the lower atmosphere photochemical processes will be important if surface temperatures are sufficiently high for gaseous NH3 to exist. It is concluded that the surface of Titan may contain ancient or recent organic matter (or both) produced in the atmosphere.

  15. Titan's Eccentricity Tides

    Science.gov (United States)

    Iess, L.; Jacobson, R.; Ducci, M.; Stevenson, D. J.; Lunine, J. I.; Armstrong, J. W.; Asmar, S.; Racioppa, P.; Rappaport, N. J.; Tortora, P.

    2011-12-01

    The large eccentricity (e=0.03) of Titan's orbit causes significant variations in the tidal field from Saturn and induces periodic stresses in the satellite body at the orbital period (about 16 days). Peak-to-peak variations of the tidal field (from pericenter to apocenter) are about 18% (6e). If Titan hosts a liquid layer (such as an internal ocean), the gravity field would exhibit significant periodic variations. The response of the body to fast variations of the external, perturbing field is controlled by the Love numbers, defined for each spherical harmonic as the ratio between the perturbed and perturbing potential. For Titan the largest effect is by far on the quadrupole field, and the corresponding Love number is indicated by k2 (assumed to be identical for all degree 2 harmonics). Models of Titan's interior generally envisage a core made up of silicates, surrounded by a layer of high pressure ice, possibly a liquid water or water-ammonia ocean, and an ice-I outer shell, with variations associated with the dehydration state of the core or the presence of mixed rock-ice layers. Previous analysis of Titan's tidal response [1] shows that k2 depends crucially on the presence or absence of an internal ocean. k2 was found to vary from about 0.03 for a purely rocky interior to 0.48 for a rigid rocky core surrounded by an ocean and a thin (20 km) ice shell. A large k2 entails changes in the satellite's quadrupole coefficients by a few percent, enough to be detected by accurate range rate measurements of the Cassini spacecraft. So far, of the many Cassini's flybys of Titan, six were used for gravity measurements. During gravity flybys the spacecraft is tracked from the antennas of NASA's Deep Space Network using microwave links at X- and Ka-band frequencies. A state-of-the-art instrumentation enables range rate measurements accurate to 10-50 micron/s at integration times of 60 s. The first four flybys provided the static gravity field and the moment of inertia factor

  16. Thermal stability of titanate nanorods and titania nanowires formed from titanate nanotubes by heating

    International Nuclear Information System (INIS)

    The structure of titanate nanowires was studied by a combination of powder X-ray diffraction (XRD) and 3D precession electron diffraction. Titania nanowires and titanate nanorods were prepared by heating of titanate nanotubes. The structure of final product depended on heating conditions. Titanium nanotubes heated in air at a temperature of 850 °C decomposed into three phases — Na2Ti6O13 (nanorods) and two phases of TiO2 — anatase and rutile. At higher temperatures the anatase form of TiO2 transforms into rutile and the nanorods change into rutile nanoparticles. By contrast, in the vacuum only anatase phases of TiO2 were obtained by heating at 900 °C. The anatase transformation into rutile began only after a longer time of heating at 1000 °C. For the description of anisotropic XRD line broadening in the total powder pattern fitting by the program MSTRUCT a model of nanorods with elliptical base was included in the software. The model parameters — rod length, axis size of the elliptical base, the ellipse flattening parameter and twist of the base could be refined. Variation of particle shapes with temperature was found. - Highlights: • Titanate nanotubes changed to particles of TiO2 and nanorods of Na2Ti6O13 at 850 °C. • With heating time and temperature nanorods transformed to rutile nanoparticles. • X-ray diffraction powder pattern fitting indicated an elliptical shape of nanorod base. • No transition of titanate nanotubes to Na2Ti6O13 was found after heating in vacuum. • Heating of titanate nanotubes in vacuum leads to appearance of anatase nanowires

  17. Thermal stability of titanate nanorods and titania nanowires formed from titanate nanotubes by heating

    Energy Technology Data Exchange (ETDEWEB)

    Brunatova, Tereza; Matej, Zdenek [Charles University, Faculty of Mathematics and Physics, Dept. of Condensed Matter Physics, Prague (Czech Republic); Oleynikov, Peter [Stockholm University, Dept. of Materials and Environmental Chemistry, SE-106 91 Stockholm (Sweden); Vesely, Josef [Charles University, Faculty of Mathematics and Physics, Dept. of Physics of Materials, Prague (Czech Republic); Danis, Stanislav [Charles University, Faculty of Mathematics and Physics, Dept. of Condensed Matter Physics, Prague (Czech Republic); Popelkova, Daniela [Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, Prague (Czech Republic); Kuzel, Radomir, E-mail: kuzel@karlov.mff.cuni.cz [Charles University, Faculty of Mathematics and Physics, Dept. of Condensed Matter Physics, Prague (Czech Republic)

    2014-12-15

    The structure of titanate nanowires was studied by a combination of powder X-ray diffraction (XRD) and 3D precession electron diffraction. Titania nanowires and titanate nanorods were prepared by heating of titanate nanotubes. The structure of final product depended on heating conditions. Titanium nanotubes heated in air at a temperature of 850 °C decomposed into three phases — Na{sub 2}Ti{sub 6}O{sub 13} (nanorods) and two phases of TiO{sub 2} — anatase and rutile. At higher temperatures the anatase form of TiO{sub 2} transforms into rutile and the nanorods change into rutile nanoparticles. By contrast, in the vacuum only anatase phases of TiO{sub 2} were obtained by heating at 900 °C. The anatase transformation into rutile began only after a longer time of heating at 1000 °C. For the description of anisotropic XRD line broadening in the total powder pattern fitting by the program MSTRUCT a model of nanorods with elliptical base was included in the software. The model parameters — rod length, axis size of the elliptical base, the ellipse flattening parameter and twist of the base could be refined. Variation of particle shapes with temperature was found. - Highlights: • Titanate nanotubes changed to particles of TiO{sub 2} and nanorods of Na{sub 2}Ti{sub 6}O{sub 13} at 850 °C. • With heating time and temperature nanorods transformed to rutile nanoparticles. • X-ray diffraction powder pattern fitting indicated an elliptical shape of nanorod base. • No transition of titanate nanotubes to Na{sub 2}Ti{sub 6}O{sub 13} was found after heating in vacuum. • Heating of titanate nanotubes in vacuum leads to appearance of anatase nanowires.

  18. The problem of the barium stars

    Science.gov (United States)

    Bohm-Vitense, E.; Nemec, J.; Proffitt, C.

    1984-01-01

    Ultraviolet observations of barium stars and other cool stars with peculiar element abundances are reported. Those observations attempted to find hot white dwarf companions. Among six real barium stars studied, only Zeta Cap was found to have a white dwarf companion. Among seven mild, or marginal, barium stars studied, at least three were found to have hot subluminous companions. It is likely that all of them have white dwarf companions.

  19. Radioisotope barium sulphate gauge MZB-2

    International Nuclear Information System (INIS)

    A method and the gauge for measuring content of barium sulphate are described. The gauge is intended for fast determination of barium sulphate in barite ore and in output products of the enrichment process. The measuring range 60-100% of BaSO4, accuracy ±1% and measuring time 60 s were reached. The barium sulphate gauge is used in barite mine ''Boguszow'' in Poland. (author)

  20. Landscape Evolution of Titan

    Science.gov (United States)

    Moore, Jeffrey

    2012-01-01

    Titan may have acquired its massive atmosphere relatively recently in solar system history. The warming sun may have been key to generating Titan's atmosphere over time, starting from a thin atmosphere with condensed surface volatiles like Triton, with increased luminosity releasing methane, and then large amounts of nitrogen (perhaps suddenly), into the atmosphere. This thick atmosphere, initially with much more methane than at present, resulted in global fluvial erosion that has over time retreated towards the poles with the removal of methane from the atmosphere. Basement rock, as manifested by bright, rough, ridges, scarps, crenulated blocks, or aligned massifs, mostly appears within 30 degrees of the equator. This landscape was intensely eroded by fluvial processes as evidenced by numerous valley systems, fan-like depositional features and regularly-spaced ridges (crenulated terrain). Much of this bedrock landscape, however, is mantled by dunes, suggesting that fluvial erosion no longer dominates in equatorial regions. High midlatitude regions on Titan exhibit dissected sedimentary plains at a number of localities, suggesting deposition (perhaps by sediment eroded from equatorial regions) followed by erosion. The polar regions are mainly dominated by deposits of fluvial and lacustrine sediment. Fluvial processes are active in polar areas as evidenced by alkane lakes and occasional cloud cover.

  1. Quantitative evaluation of the aluminium titanate formation

    International Nuclear Information System (INIS)

    Samples of aluminium titanate were obtained under isothermal sintering condition in equimolar Al2 O3 Ti O2 powder mixtures at different soaking time intervals. The formation of Al2 Ti O5 and the effect of Si O2 additive in the reaction and densification were analysed. Quantitative evaluation of Al2 Ti O5 was performed by the Rietveld method and by using an internal standard. Both methods were considered appropriated for the presented purpose. (author)

  2. ONE CASE REPORT OF ACUTE POISONING BY BARIUM CARBONATE

    Institute of Scientific and Technical Information of China (English)

    GE Qin-min; BIAN Fan; WANG Shu-yun; SHEN Sheng-hui

    2009-01-01

    @@ Most barium poisoning cases were caused by oral intake by mistake. Recent years, barium carbonate poisoning has been rare to be reported. Here we reported a case of acute barium carbonate toxication taken orally on purpose.

  3. Application of TITAN for Simulation of Particle Streaming in a Duct

    Science.gov (United States)

    Royston, Katherine; Haghighat, Alireza; Yi, Ce

    2016-02-01

    The TITAN hybrid deterministic transport code is applied to the simulation of particle streaming in a nuclear power plant duct. A simple model is used consisting of a concrete duct emerging from the pressure vessel with an isotropic surface source with a U-235 fission spectrum located at the pressure vessel end. Multiple methods of simulating the duct using the TITAN code are considered to demonstrate the flexibility of the code and the advantages of TITAN's algorithms. These methods include a discrete ordinates (SN) calculation, a characteristics method calculation, and the use of a fictitious quadrature set with simplified ray-tracing. The TITAN code's results are compared with MCNP5 solutions. While all TITAN solutions are obtained in a shorter computation time than the MCNP5 solution, the TITAN solution with the fictitious quadrature set shows the largest speedup.

  4. Theoretical isotope shifts in neutral barium

    CERN Document Server

    Nazé, Cédric; Godefroid, Michel

    2015-01-01

    The present work deals with a set of problems in isotope shifts of neutral barium spectral lines. Some well known transitions ($6s^2~^1S_0-6s6p~^{1,3}P^o_1$ and $6s^2~^1S_0-6p^2~^3P_0$) are first investigated. Values of the changes in the nuclear mean-square charge radius are deduced from the available experimental isotope shifts using our ab initio electronic factors. The three sets $\\{ \\delta\\langle r^2\\rangle^{A,A'}\\} $ obtained from these lines are consistent with each other. The combination of the available nuclear mean-square radii with our electronic factors for the $6s5d~^3D_{1,2} -6s6p~^{1}P^o_1$ transitions produces isotope shift values in conflict with the laser spectroscopy measurements of Dammalapati et al. (Eur. Phys. J. D 53, 1 (2009)).

  5. Barium hexaferrite ferrofluids - preparation and physical properties

    Science.gov (United States)

    Müller, R.; Hiergeist, R.; Steinmetz, H.; Ayoub, N.; Fujisaki, M.; Schüppel, W.

    1999-07-01

    Barium hexaferrite BaFe 12-2 xTi xCo xO 19 ferrofluids have been prepared for the first time using oleic acid as surfactant and Isopar M ® as carrier liquid. The initial susceptibility versus temperature for zero-field cooling of the ferrofluid was obtained by a vibrating sample magnetometer. TEM pictures of the fluid show isolated particles and only small agglomerates and a mean particle diameter of approx. 8 nm. Numerical calculations of the magneto-viscous effect, based on the local-equilibrium magnetic state model, clearly show the benefit for Ba-ferrite ferrofluids resulting from the high uniaxial anisotropy compared to magnetite ferrofluids. Rheological measurements were performed with a rotational-type viscometer with magnetic field perpendicular to the hydrodynamic vortex axis.

  6. Síntese e caracterização da cerâmica PZT dopada com íons bário Synthesis and characterization of barium-doped PZT ceramics

    Directory of Open Access Journals (Sweden)

    G. Gasparotto

    2003-04-01

    Full Text Available Pós de titanato zirconato de chumbo (PZT puros e dopados com bário foram obtidos pelo método de precursores poliméricos, conformados uniaxialmente, na forma de cilindros, utilizando 15 MPa, e prensados isostaticamente à 210MPa. Com o objetivo de estudar o comportamento de sinterização os compactos foram divididos em dois lotes. Sendo um sinterizado em um forno acoplado a um dilatômetro até a temperatura de 1300 °C e o outro sinterizado em forno tipo mufla, em sistema fechado, na temperatura de 1100 °C por 4 horas. Verificou-se que a adição do íon bário influencia na cinética de sinterização, na densificação final, na microestrutura e nas propriedades elétricas da cerâmica. A adição de bário aumenta a concentração da fase tetragonal no PZT, em função da substituição do chumbo por bário na rede perovskita. As amostras dopadas com concentrações maiores que 5,0 mol % em bário apresentaram segregação de PbO no contorno de grão, inibindo seu crescimento.Pure and barium doped lead zirconate titanate powders were obtained by the polymeric precursor method, uniaxially conformed in cylinders form using 15 MPa and pressing isostatically at 210 MPa. In order to study the sintering behaviour, the compacts were divided in two parts. One part was sintered in a dilatometer furnace till 1300 °C and the other one sintered in muffle furnace in the temperature of 1100 °C for 4 hours. It was verified that the addition of barium influences on the sintering kinetics, on the final density, microstructure and electric properties of the ceramics. The addition of barium increases the concentration of the tetragonal phase of PZT due to the substitution of lead by barium in the perovskite lattice. The samples doped with barium concentrations higher than 5.0 mol % leads to the segregation of PbO in the grain boundary, inhibiting grain growth.

  7. Tracing of energetic particles in the vicinity of Titan

    Science.gov (United States)

    Regoli, Leonardo; Jones, Geraint; Krupp, Norbert; Coates, Andrew; Roussos, Elias; Kotova, Anna; Feyerabend, Moritz

    2014-05-01

    We present results from the application of a particle tracing software specifically developed to study the interaction of Titan with the surrounding magnetospheric plasma. By combining the output of hybrid plasma code simulations with the tracing software itself, we aim to further study the different ionization processes occurring at Titan with special emphasis on the role played by energetic ions and electrons. The tracing software is used to simulate the trajectories of particles entering the Titan environment from different positions with energy ranges similar to those observed by the Cassini MIMI/LEMMS detector and with different pitch angle distributions and thus be able to estimate the amount of particles that interact with the moon's atmosphere and those that escape the system due to magnetic and electric field perturbations or charge-exchange with the high-altitude exosphere. Additionally, a comparison of the results obtained with the observational data available from the CAPS, and MIMI instruments allows us to validate the results of the tracing software for those regions of Titan not sampled by Cassini at a given flyby. For this initial study, we show the first maps of allowed energetic electron and ion access (as a function of energy) at Titan's exobase, when magnetic and electric field disturbances in a reference Titan interaction region are considered. Similar maps will be used as input for ionization and energy deposition calculation in future steps of this project.

  8. Barium Depletion in Hollow Cathode Emitters

    Science.gov (United States)

    Polk, James E.; Capece, Angela M.; Mikellides, Ioannis G.; Katz, Ira

    2009-01-01

    The effect of tungsten erosion, transport and redeposition on the operation of dispenser hollow cathodes was investigated in detailed examinations of the discharge cathode inserts from an 8200 hour and a 30,352 hour ion engine wear test. Erosion and subsequent re-deposition of tungsten in the electron emission zone at the downstream end of the insert reduces the porosity of the tungsten matrix, preventing the ow of barium from the interior. This inhibits the interfacial reactions of the barium-calcium-aluminate impregnant with the tungsten in the pores. A numerical model of barium transport in the internal xenon discharge plasma shows that the barium required to reduce the work function in the emission zone can be supplied from upstream through the gas phase. Barium that flows out of the pores of the tungsten insert is rapidly ionized in the xenon discharge and pushed back to the emitter surface by the electric field and drag from the xenon ion flow. This barium ion flux is sufficient to maintain a barium surface coverage at the downstream end greater than 0.6, even if local barium production at that point is inhibited by tungsten deposits. The model also shows that the neutral barium pressure exceeds the equilibrium vapor pressure of the impregnant decomposition reaction over much of the insert length, so the reactions are suppressed. Only a small region upstream of the zone blocked by tungsten deposits is active and supplies the required barium. These results indicate that hollow cathode failure models based on barium depletion rates in vacuum dispenser cathodes are very conservative.

  9. Synthesis of nanosized sodium titanates

    Science.gov (United States)

    Hobbs, David T.; Taylor-Pashow, Kathryn M. L.; Elvington, Mark C.

    2015-09-29

    Methods directed to the synthesis and peroxide-modification of nanosized monosodium titanate are described. Methods include combination of reactants at a low concentration to a solution including a nonionic surfactant. The nanosized monosodium titanate can exhibit high selectivity for sorbing various metallic ions.

  10. A Numerical Study of Micrometeoroids Entering Titan's Atmosphere

    Science.gov (United States)

    Templeton, M.; Kress, M. E.

    2011-01-01

    A study using numerical integration techniques has been performed to analyze the temperature profiles of micrometeors entering the atmosphere of Saturn s moon Titan. Due to Titan's low gravity and dense atmosphere, arriving meteoroids experience a significant cushioning effect compared to those entering the Earth's atmosphere. Temperature profiles are presented as a function of time and altitude for a number of different meteoroid sizes and entry velocities, at an entry angle of 45. Titan's micrometeoroids require several minutes to reach peak heating (ranging from 200 to 1200 K), which occurs at an altitude of about 600 km. Gentle heating may allow for gradual evaporation of volatile components over a wide range of altitudes. Computer simulations have been performed using the Cassini/Huygens atmospheric data for Titan. Keywords micrometeoroid Titan atmosphere 1 Introduction On Earth, incoming micrometeoroids (100 m diameter) are slowed by collisions with air molecules in a relatively compact atmosphere, resulting in extremely rapid deceleration and a short heating pulse, often accompanied by brilliant meteor displays. On Titan, lower gravity leads to an atmospheric scale height that is much larger than on Earth. Thus, deceleration of meteors is less rapid and these particles undergo more gradual heating. This study uses techniques similar to those used for Earth meteoroid studies [1], exchanging Earth s planetary characteristics (e.g., mass and atmospheric profile) for those of Titan. Cassini/Huygens atmospheric data for Titan were obtained from the NASA Planetary Atmospheres Data Node [4]. The objectives of this study were 1) to model atmospheric heating of meteoroids for a range of micrometeor entry velocities for Titan, 2) to determine peak heating temperatures and rates for micrometeoroids entering Titan s atmosphere, and 3) to create a general simulation environment that can be extended to incorporate additional parameters and variables, including different

  11. Barium methylphosphonates: synthesis, characterization and mutual interconversions

    Czech Academy of Sciences Publication Activity Database

    Beneš, L.; Melánová, Klára; Svoboda, Jan; Zima, Vítězslav

    Strasbourg: University of Strasbourg, Francie, 2015. P64. [ISIC18 International Symposium on Intercalation Compounds. 31.05.2015-04.06.2015, Strasbourg] R&D Projects: GA ČR(CZ) GA14-13368S Institutional support: RVO:61389013 Keywords : hydrates of barium methylphosphonate * barium hydrogen methylphosphonate * powder X-ray diffraction Subject RIV: CA - Inorganic Chemistry

  12. Titan Airship Surveyor

    Science.gov (United States)

    Kerzhanovich, V.; Yavrouian, A.; Cutts, J.; Colozza, A.; Fairbrother, D.

    2001-01-01

    Saturn's moon Titan is considered to be one of the prime candidates for studying prebiotic materials - the substances that precede the formation of life but have disappeared from the Earth as a result of the evolution of life. A unique combination of a dense, predominantly nitrogen, atmosphere (more than four times that of the Earth), low gravity (six times less than on the Earth) and small temperature variations makes Titan the almost ideal planet for studies with lighter-than-air aerial platforms (aerobots). Moreover, since methane clouds and photochemical haze obscure the surface, low-altitude aerial platforms are the only practical means that can provide global mapping of the Titan surface at visible and infrared wavelengths. One major challenge in Titan exploration is the extremely cold atmosphere (approx. 90 K). However, current material technology the capability to operate aerobots at these very low temperatures. A second challenge is the remoteness from the Sun (10 AU) that makes the nuclear (radioisotopic) energy the only practical source of power. A third challenge is remoteness from the Earth (approx. 10 AU, two-way light-time approx. 160 min) which imposes restrictions on data rates and makes impractical any meaningful real-time control. A small-size airship (approx. 25 cu m) can carry a payload approximately 100 kg. A Stirling engine coupled to a radioisotope heat source would be the prime choice for producing both mechanical and electrical power for sensing, control, and communications. The cold atmospheric temperature makes Stirling machines especially effective. With the radioisotope power source the airship may fly with speed approximately 5 m/s for a year or more providing an excellent platform for in situ atmosphere measurements and a high-resolution remote sensing with unlimited access on a global scale. In a station-keeping mode the airship can be used for in situ studies on the surface by winching down an instrument package. Floating above the

  13. Tracing the gas composition of Titan's atmosphere with Herschel : Advances and Discoveries

    Science.gov (United States)

    Rengel, Miriam; Moreno, Raphael; Courtin, Régis; Lellouch, Emmanuel; Sagawa, Hideo; Hartogh, Paul; Swinyard, Bruce; Lara, Luisa; Feuchtgruber, Helmut; Jarchow, Christopher; Fulton, Trevor; Cernicharo, José; Bockelée-Morvan, Dominique; Biver, Nicolás; Banaszkiewicz, Marek; González, Armando

    2014-11-01

    The nitrogen-dominated atmosphere of Titan exhibits a great diversity and complexity of molecules and high organic material abundances. The origin of Titan atmosphere is poorly understood and its chemistry is rather complicated. In the framework of the Herschel guaranteed time key programme "Water and Related Chemistry in the Solar System" (Hartogh et al 2009), we carried out observations of the atmosphere of Titan with HIFI, PACS and SPIRE onboard Herschel (Rengel et al. 2014; Courtin et al. 2011, Moreno et al. 2011, 2012). Here we will review key results and discoveries on the atmosphere of Titan obtained with Herschel:-an inventory of species detected including some isotopes from a new survey between 51 and 671 microns.-the determination of the abundance of trace constituents and comparisons with previous efforts.-the unexpected detection of hydrogen isocyanide (HNC), a specie not previously identified in Titan's atmosphere, and the measurement of 16O/18O ratio in CO in Titan for the first time published.-the determination of the vertical profile of water vapor over the 100-450 km altitude range, distribution which does not follow previous predictions and allows to strength an Enceladus' activity as the source for the current water on Titan.With the advent of Herschel, these advances and discoveries allow a further characterization of the complex atmosphere of Titan and help to advance the study of the abundance distribution and the investigation of a variety of processes in Titan atmosphere.

  14. Fabrication and electrical characterization of 15% yttrium-doped barium zirconate-nitrate freeze drying method combined with vacuum heating

    International Nuclear Information System (INIS)

    Research highlights: → Very fine 15% yttrium-doped barium zirconate powder of particle size about 30 nm was obtained by synthesizing at 500 deg. C in vacuum from powder mixed by the nitrate freeze-drying method. → Large and homogeneous grains of 15% yttrium-doped barium zirconate were easily obtained using the synthesized powder. → Grain boundary resistance was not inversely proportional to the grain size as theoretically expected. → Specific grain boundary conductivity varies with samples because impurities and/or evaporation loss of barium oxide might affect the grain-boundary resistance in 15% yttrium-doped barium zirconate. - Abstract: We applied a nitrate freeze-drying method to obtain a fine synthesized powder of 15% yttrium-doped barium zirconate. Fine 15% yttrium-doped barium zirconate powder of particle size about 30 nm was obtained by synthesizing at 500 deg. C in vacuum from a powder mixed by the nitrate freeze-drying method. However, we could not obtain such fine powder by synthesizing in air. Using the powder synthesized in vacuum, large and homogeneous grains of 15% yttrium-doped barium zirconate were easily obtained after sintering. Then, the bulk and grain boundary resistance were evaluated by AC 2-terminal measurement of sample in the form of bar and pellet and DC 4-terminal measurement of bar-shape sample. The grain boundary resistance was not inversely proportional to the grain size as theoretically expected. We concluded that specific grain boundary conductivity varies with samples. Some impurities, evaporation loss of barium oxide and/or other unexpected reasons might affect the grain boundary resistance in 15% yttrium-doped barium zirconate.

  15. Touchdown on Titan

    Science.gov (United States)

    Morring, Frank, Jr.

    2004-01-01

    Europe's Huygens probe is on target for a Dec. 25 separation from the Cassini Saturn orbiter that has carried it like a baby for more than seven years. The probe will spend three weeks coasting to a plunge into Titan's thick atmosphere on the morning of Jan. 14. If all goes as planned, the 349-kg. Huygens will spend more than 2 hr. descending by parachute to the mysterious surface of the planet-sized moon, and hopefully devote yet more time to broadcasting data after it lands. Before the day is over, Huygens is programmed to beam about 30 megabytes of data - including some 1,100 images-back to Earth through Cassini, a trip that will take some 75 min. to complete over the 1- billion-km. distance that separates the two planets. Within that data should be answers to questions that date back to 1655, when Dutch astronomer Christiaan Huygens found the moon with a homemade telescope and named it for the family of giants the ancient Greeks believed once ruled the earth. In the Solar System, there is no other world like Titan, with a nitrogen and methane atmospheric and a cold, hidden surface darker than Earth under the full Moon.

  16. Tunable dielectric properties of Barium Magnesium Niobate (BMN) doped Barium Strontium Titanate (BST) thin films by magnetron sputtering

    Science.gov (United States)

    Alema, Fikadu; Reinholz, Aaron; Pokhodnya, Konstantin

    2013-03-01

    We report on the tunable dielectric properties of Mg and Nb co-doped Ba0.45Sr0.55TiO3 (BST) thin film prepared by the magnetron sputtering using BST target (pure and doped with BaMg0.33Nb0.67O3 (BMN)) on Pt/TiO2/SiO2/Al2O3 4'' wafers at 700 °C under oxygen atmosphere. The electrical measurements are conducted on 2432 metal-ferroelectric-metal capacitors using Pt as the top and bottom electrode. The crystalline structure, microstructure, and surface morphology of the films are analyzed and correlated to the films dielectric properties. The BMN doped and undoped BST films have shown tunabilities of 48% and 52%; and leakage current densities of 2.2x10-6 A/cm2 and 3.7x10-5 A/cm2, respectively at 0.5 MV/cm bias field. The results indicate that the BMN doped film exhibits a lower leakage current with no significant decrease in tunability. Due to similar electronegativity and ionic radii, it was suggested that both Mg2+ (accepter-type) and Nb5+ (donor-type) dopants substitutTi4+ ion in BST. The improvement in the film dielectric losses and leakage current with insignificant loss of tunability is attributed to the adversary effects of Mg2+ and Nb5+ in BST.

  17. DC electrical resistivity and magnetic studies in Yttrium Barium Copper oxide/barium titanate composite thin films

    International Nuclear Information System (INIS)

    YBCO + BaTiO3 composite thin film is synthesized by pulsed laser deposition. Fluctuations on the electrical conductivity were investigated for zero fields. The logarithmic plots of excess conductivity and reduced temperature reveals two distinct regions namely mean field region and short wave fluctuation region. Dimensionality crossover occurs from 3D to 2D at temperature above the transition temperature. The contribution of weak link effect is calculated. The phase formation and grain alignments were analyzed by X-ray diffraction and scanning electron microscopy techniques. Enhancement of flux pinning increases the critical current density in the composite and develops strong pinning force in the material.

  18. Synthesis of Nano-sized Barium Titanate Powder by Solid-state Reaction between Barium Carbonate and Titania

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Size control of BaTiO3 in solid-state reaction between BaCO3 and TiO2 was demonstrated by varying the size of TiO2 and milling conditions of BaCO3. The smaller TiO2 particles had higher surface area, resulting in faster initial reaction. The mechanically milled BaCO3 particles accelerated the diffusion process and decreased the calcinations temperature. It can be deduced from the results that the size control is possible and nano-sized BaTiO3 particles with about 60 nm can be synthesized by using the conventional solid-state reaction between BaCO3 and TiO2.

  19. Scanning electron and tunneling microscopy of palladium-barium emitters

    International Nuclear Information System (INIS)

    The results of study of metal-alloyed palladium-barium emitters' of modern very high frequency high-powered electronic vacuum tubes by scanning electron microscopy (SEM) and scanning tunneling microscopy/spectroscopy (STM/STS) are presented. Since the Pd/Ba foil surface is fairly smooth and is not oxidized in air STM/STS investigations are carried out in air in normal laboratory environment. SEM and STM images show that the emitter surface has a complex porous structure. The cathode surface study by STS in tunneling gap modulation mode allowed to take a map of phase distribution with various work function values and high lateral resolution. Obtained images demonstrate the presence of three phases on the Pd/Ba emitter surface, viz. barium-oxygen compounds, intermetallic, and palladium. As it is seen from presented STS image the phase with a low work function value (barium oxides) is concentrated along boundaries of the substance inclusions with work function corresponding to the intemetallic compound Pd5Ba. This supports the model of low work function areas obtained via Ba segregation from the intermetallic compound and oxidation. The presented methods may be used in the Pd/Ba cathode manufacturing process for increasing the yield of electronic devices in microwave tube production and optimize the emitters' characteristics

  20. A new double contrast barium enema

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jun Sang; Cho, Won Sik; Lee, Sung Woo; Lee, Mun Gyu; Jeon, Jeong Dong; Jaun, Woo Ki; Han, Chung Yul [Inje College Paik Hospital, Pusan (Korea, Republic of)

    1987-12-15

    A new technic of the barium enema was proposed for the better colonic double contrast study with the average 204ml of 50w/v% barium, applied to 109 serial patients. The barium was introduced to sigmoid colon, and then pushed to a mid transverse colon by the air insufflation through an enema syringe, a new device. An advance to cecum is accomplished by the air insufflation and/or the position change of the patient. The barium transfer method was developed for the best spot film exposure, through colon, by the position change of the patient, the tilting of the x-ray table and the air insufflation with the enema syringe. The mean angle of the x-ray table tilted was -10 .deg. at the beginning the barium enema till the barium sent past the splenic flexure, -15 . deg. for the best lateral view of rectum and -18 .deg. for the bet prone PA view of rectosigmoid colon. This was a simple, better and economic double contrast barium enema for the cooperative patients.

  1. Barium ferrite powders prepared by milling and annealing

    Directory of Open Access Journals (Sweden)

    R. Nowosielski

    2007-05-01

    Full Text Available Purpose: Microstructure and magnetic properties analysis of barium ferrite powder obtained by milling and heat treatment.Design/methodology/approach: The milling process was carried out in a vibratory mill, which generated vibrations of the balls and milled material inside the container during which their collisions occur. After milling process the powders were annealed in electric chamber furnace. The X-ray diffraction methods were used for qualitative phase analysis of studied powder samples. The distribution of powder particles was determined by a laser particle analyzer. The magnetic hysteresis loops of examined powder material were measured by resonance vibrating sample magnetometer (R-VSM.Findings: The milling process of iron oxide and barium carbonate mixture causes decrease of the crystallite size of involved phases. The X-ray investigations of tested mixture milled for 30 hours and annealed at 950 °C enabled the identification of hard magnetic BaFe12O19 phase and also the presence of Fe2O3 phase in examined material. The Fe2O3 phase is a rest of BaCO3 dissociation in the presence of Fe2O3, which forms a compound of BaFe12O19. The best coercive force (HC for mixture of powders annealed at 950 °C for 10, 20 and 30 hours is 349 kA/m, 366 kA/m and 364 kA/m, respectively. The arithmetic mean of diameter of Fe2O3 and BaCO3 mixture powders after 30 hours of milling is about 6.0 μm.Practical implications: The barium ferrite powder obtained by milling and annealing can be suitable components to produce sintered and elastic magnets with polymer matrix.Originality/value: The results of tested barium ferrite investigations by different methods confirm their utility in the microstructure and magnetic properties analysis of powder materials.

  2. Virtual colonoscopy with electron beam CT: correlation with barium enema, colonoscopy and pathology

    International Nuclear Information System (INIS)

    To perform virtual colonoscopy using electron beam tomography(EBT) in patients in whom a colonic mass was present, and to compare the results with those obtained using barium enema, colonoscopy and gross pathologic specimens. Materials and Methods : Ten patients in whom colonic masses were diagnosed by either barium enema or colonoscopy were involved in this study. There were nine cases of adenocarcinoma and one of tubulovillous adenoma. Using EBT preoperative abdominopelvic CT scans were performed. Axial scans were then three-dimensionally reconstructed to produce virtual colonoscopic images and were compared with barium enema, colonoscopy and gross pathologic specimens. Virtual colonoscopic images of the masses were classified as either 1)polyploid, 2)sessile,3)fungating, or 4)annular constrictive. We also determined whether ulcers were present within the lesions and whether there was obstruction. Results : After virtual colonoscopy, two lesions were classified as polyploid, one as sessile, five as fungating and two as annular constrictive. Virtual colonoscopic images showed good correlation with the findings of barium enema, colonoscopy and gross pathologic specimens. Three of six ulcerative lesions were observed on colonoscopy; in seven adenocarcinomas with partial or total luminal obstruction, virtual colonoscopy visualized the colon beyond the obstructed sites. In one case, barium contrast failed to pass through the obstructed portion and in six cases, the colonoscope similarly failed. Conclusion : Virtual colonoscopies correlated well with barium enema, colonoscopy and gross pathologic specimens. They provide three dimensional images of colonic masses and are helpful for the evaluation of obstructive lesions

  3. Barium swallow study in routine clinical practice: a prospective study in patients with chronic cough

    Directory of Open Access Journals (Sweden)

    Carlos Shuler Nin

    2013-12-01

    Full Text Available OBJECTIVE: To assess the routine use of barium swallow study in patients with chronic cough.METHODS: Between October of 2011 and March of 2012, 95 consecutive patients submitted to chest X-ray due to chronic cough (duration > 8 weeks were included in the study. For study purposes, additional images were obtained immediately after the oral administration of 5 mL of a 5% barium sulfate suspension. Two radiologists systematically evaluated all of the images in order to identify any pathological changes. Fisher's exact test and the chi-square test for categorical data were used in the comparisons.RESULTS: The images taken immediately after barium swallow revealed significant pathological conditions that were potentially related to chronic cough in 12 (12.6% of the 95 patients. These conditions, which included diaphragmatic hiatal hernia, esophageal neoplasm, achalasia, esophageal diverticulum, and abnormal esophageal dilatation, were not detected on the images taken without contrast. After appropriate treatment, the symptoms disappeared in 11 (91.6% of the patients, whereas the treatment was ineffective in 1 (8.4%. We observed no complications related to barium swallow, such as contrast aspiration.CONCLUSIONS: Barium swallow improved the detection of significant radiographic findings related to chronic cough in 11.5% of patients. These initial findings suggest that the routine use of barium swallow can significantly increase the sensitivity of chest X-rays in the detection of chronic cough-related etiologies.

  4. Synthesis of barium titanium oxide from barium sulphate and anatase. Study of equimolar mixtures under different atmospheres

    International Nuclear Information System (INIS)

    To enable the ceramization of a barium sulphate-rich radioactive waste the synthesis of barium titanium oxide is studied by using anatase and barium sulphate. As a function of the calcination atmosphere, helium (or air) and Ar/H2, two reactions are studied. A mechanism of barium titanium oxide synthesis in helium (or in air) is proposed

  5. Double contrast barium meal and acetylcysteine

    International Nuclear Information System (INIS)

    In a prospective double blind study, acetylcysteine, a local and systemic respiratory tract mucolytic agent, or a placebo, were given to 100 patients prior to a double contrast barium meal to decrease the gastric mucus viscosity and to make the mucus layer thinner, in order to permit barium to outline the furrows surrounding the areae gastricae instead of the overlying thick mucus. However, acetylcysteine failed to improve either visualization of the areae gastricae or the general quality of the double contrast barium meal. (orig.)

  6. Seasonal Changes in Titan's Meteorology

    Science.gov (United States)

    Turtle, E. P.; DelGenio, A. D.; Barbara, J. M.; Perry, J. E.; Schaller, E. L.; McEwen, A. S.; West, R. A.; Ray, T. L.

    2011-01-01

    The Cassini Imaging Science Subsystem has observed Titan for 1/4 Titan year, and we report here the first evidence of seasonal shifts in preferred locations of tropospheric methane clouds. South \\polar convective cloud activity, common in late southern summer, has become rare. North \\polar and northern mid \\latitude clouds appeared during the approach to the northern spring equinox in August 2009. Recent observations have shown extensive cloud systems at low latitudes. In contrast, southern mid \\latitude and subtropical clouds have appeared sporadically throughout the mission, exhibiting little seasonality to date. These differences in behavior suggest that Titan s clouds, and thus its general circulation, are influenced by both the rapid temperature response of a low \\thermal \\inertia surface and the much longer radiative timescale of Titan s cold thick troposphere. North \\polar clouds are often seen near lakes and seas, suggesting that local increases in methane concentration and/or lifting generated by surface roughness gradients may promote cloud formation. Citation

  7. Titan atmospheric models intercomparison

    Science.gov (United States)

    Pernot, P.

    2008-09-01

    Several groups over the world have developed independently models of the photochemistry of Titan. The Cassini mission reveals daily that the chemical complexity is beyond our expectations e. g. observation of heavy positive and negative ions..., and the models are updated accordingly. At this stage, there is no consensus on the various input parameters, and it becomes increasingly difficult to compare outputs form different models. An ISSI team of experts of those models will be gathered shortly to proceed to an intercomparison, i.e. to assess how the models behave, given identical sets of inputs (collectively defined). Expected discrepancies will have to be elucidated and reduced. This intercomparison will also be an occasion to estimate explicitly the importance of various physicalchemical processes on model predictions versus observations. More robust and validated models are expected from this study for the interpretation of Titanrelated data.

  8. The TITAN magnet configuration

    International Nuclear Information System (INIS)

    The TITAN study uses copper-alloy ohmic-heating coils (OHC) to startup inductively a reversed-field-pinch (RFP) fusion reactor. The plasma equilibrium is maintained with a pair of superconducting equilibrium-field coils (EFCs). A second pair of copper EFCs provides the necessary trimming of the equilibrium field during plasma transients. A compact toroidal-field-coil (TFC) set is provided by an integrated blanket/coil (IBC). The IBC concept also is applied to the toroidal-field divertor coils. Steady-state operation is achieved with oscillating-field current drive, which oscillates at low amplitude and frequency the OHCs, EFCs, the TFCs, and divertor coils about their steady-state currents. An integrated magnet design, which uses low-field, low technology coils, and the related design basis is given. 18 refs

  9. The Determination Of Titan's Rotational State From Cassini SAR Images

    Science.gov (United States)

    Persi Del Marmo, P.; Iess, L.; Picardi, G.; Seu, R.; Bertotti, B.

    2007-12-01

    SAR images acquired by the spacecraft Cassini in overlapping strips have been used to determine the vectorial angular velocity of Titan. The method entails the tracking of surface landmarks at different times (and mean anomalies). Cassini radar observations have provided so far 14 high resolution image pairs of the same portion of Titan surface, spanning a period from 2004 to 2007. Each image is referenced both in an inertial frame and in the IAU, Titan-centric, body-fixed reference frame. This referencing is quite precise, as the position of Cassini relative to Titan is known with an accuracy smaller than 100 m during each flyby. The IAU body-fixed frame assumes a spin axis different from the actual one. Therefore, in this putative frame a landmark appears at different geographic coordinates in the two observations. By correlating the two images of the same surface region, one gets a two-dimensional vector, which retains information about the true spin axis. This vector provides the magnitude and direction of the displacement to be applied to a reference point of each image in order to produce maximum correlation. The correlation results therefore in a new Titan-centric, inertial referencing of the images, R(t1) and R(t2). The spin axis s is then obtained by requiring that [R(t2) - R(t1)] s = 0 for each overlapping image pairs. Due to experimental errors (dominated by image correlation errors and inaccuracies in the spacecraft orbit relative to Titan) the left hand sides cannot be simultaneously zeroed and the spin axis must be determined by means of a least square procedure. The magnitude of the angular velocity is then derived from the angle between the vectors R(t1) and R(t2) and the known time difference between the two observations. Our analysis indicates that the Titan pole coordinates are consistent with the occupancy of the fourth Cassini state. The uncertainties are obtained assuming a realistic error of 250 m in the reconstruction of the inertially

  10. The TITAN reversed-field-pinch fusion reactor study

    Energy Technology Data Exchange (ETDEWEB)

    1990-01-01

    This report discusses research on the titan-1 fusion power core. The major topics covered are: titan-1 fusion-power-core engineering; titan-1 divertor engineering; titan-1 tritium systems; titan-1 safety design and radioactive-waste disposal; and titan-1 maintenance procedures.

  11. The TITAN reversed-field-pinch fusion reactor study

    International Nuclear Information System (INIS)

    This report discusses research on the titan-1 fusion power core. The major topics covered are: titan-1 fusion-power-core engineering; titan-1 divertor engineering; titan-1 tritium systems; titan-1 safety design and radioactive-waste disposal; and titan-1 maintenance procedures

  12. Synthesis and structural characterization of Ce-doped bismuth titanate

    International Nuclear Information System (INIS)

    Ce-modified bismuth titanate nanopowders Bi4-xCexTi3O12 (x ≤ 1) have been synthesized using a coprecipitation method. DTA/TG, FTIR, XRD, SEM/EDS and BET methods were used in order to investigate the effect of Ce-substitution on the structure, morphology and sinterability of the obtained powders. The phase structure investigation revealed that after calcinations at 600 deg. C powder without Ce addition exhibited pure bismuth titanate phase; however, powders with Ce (x = 0.25, 0.5 and 0.75) had bismuth titanate pyrochlore phase as the second phase. The strongest effect of Ce addition on the structure was noted for the powder with the highest amount of Ce (x = 1) having a cubic pyrochlore structure. The presence of pure pyrochlore phase was explained by its stabilization due to the incorporation of cerium ions in titanate structure. Ce-modified bismuth titanate ceramic had a density over 95% of theoretical density and the fracture in transgranular manner most probably due to preferable distribution of Ce in boundary region

  13. Microstructure and magnetic properties of commercial barium ferrite powders

    Directory of Open Access Journals (Sweden)

    R. Nowosielski

    2007-01-01

    Full Text Available Purpose: Microstructural and magnetic properties analysis of commercial barium ferrite powder BaFe12O19.Design/methodology/approach: The X-ray diffraction methods were utilized not only for qualitative andquantitative phase analysis of studied powder sample, but also for the determination of lattice parameters, crystallitesize and the lattice distortion. The Rietveld method was used in the verification of the qualitative phase compositionand in the determination of phase abundance. Hill and Howard procedure was applied for quantitative phaseanalysis. The parameters of the individual diffraction line profiles were determined by PRO-FIT Toraya procedure.The morphology of barium ferrite powders was analyzed using the scanning electron miroscopy (SEM method.The distribution of powder particles was determined by a laser particle analyzer. Moreover, the magnetic hysteresisloop of examined powder material were measured by resonance vibrating sample magnetometer (R-VSM.Findings: The X-ray diffraction analysis revealed the presence of hexagonal BaFe12O19 and rhombohedralFe2O3 phases in examined powder samples. The barium ferrite phase appeared to be the main component of thesamples (97.8 wt.%. The crystallite size of BaFe12O19 phase is above 100 nm. The size of studied powders isin the range from 0.2 μm to 40.5 μm. The arithmetic mean diameter of BaFe12O19 powders population is 10.335μm. The SEM images showed irregular shape and size of powder particles. The coercive force (HC obtainedfrom hysteresis loop has a value about 159 kA/m.Practical implications: Structure analysis of commercial barium ferrite powder is helpful to prepare thismaterial by laboratory methods.Originality/value: The obtained results of investigations by different methods of structure characterizationconfirm their utility in the microstructure analysis of powder materials.

  14. Barium Isotopes in Single Presolar Grains

    Science.gov (United States)

    Pellin, M. J.; Davis, A. M.; Savina, M. R.; Kashiv, Y.; Clayton, R. N.; Lewis, R. S.; Amari, S.

    2001-01-01

    Barium isotopic compositions of single presolar grains were measured by laser ablation laser resonant ionization mass spectrometry and the implications of the data for stellar processes are discussed. Additional information is contained in the original extended abstract.

  15. Stability of Ice/Rock Mixtures with Application to a Partially Differentiated Titan

    CERN Document Server

    O'Rourke, Joseph G

    2012-01-01

    Titan's moment of inertia, calculated assuming hydrostatic equilibrium from gravity field data obtained during the Cassini-Huygens mission, implies an internal mass distribution that may be incompatible with complete differentiation. This suggests that Titan may have a mixed ice/rock core, possibly consistent with slow accretion in a gas-starved disk, which may initially spare Titan from widespread ice melting and subsequent differentiation. A partially differentiated Titan, however, must still efficiently remove radiogenic heat over geologic time. We argue that compositional heterogeneity in the major Saturnian satellites indicates that Titan formed from planetesimals with disparate densities. The resulting compositional anomalies would quickly redistribute to form a vertical density gradient that would oppose thermal convection. We use elements of the theory of double-diffusive convection to create a parameterized model for the thermal evolution of ice/rock mixtures with a stabilizing compositional gradient...

  16. Laboratory Studies of Hydrocarbon Nucleation on Tholin Particles and Thin Organic Films: Application to Titan's Atmosphere

    Science.gov (United States)

    Curtis, Daniel B.; Glandorf, David L.; Toon, Owen B.; Tolbert, Margaret A.; McKay, Christopher P.; Khare, Bishun N.

    2001-01-01

    Titan, Saturn's largest satellite, has a thick nitrogen/methane atmosphere. In Titan's lower atmosphere, methane is saturated or supersaturated with respect to nucleation and may form clouds. To better characterize the properties of Titan's methane clouds we have measured the saturation ratio required to obtain butane nucleation, S (sub crit), on Titan tholin material and organic films. We find a critical saturation ratio for butane on tholin particles of S (sub crit) = 1.40, suggesting high supersaturations are required for nucleation. If methane is similar to butane, we expect high supersaturations of methane as well. This could favor the formation of a small number of large particles, consistent with recent measurements of methane rain on Titan.

  17. Are Titan's Lakes Liquid-filled?

    OpenAIRE

    L. Mitchell, K.; Paillou, Philippe; W. Stiles, B.; Zebker, H.; Mitri, G.; Lunine, J. I.; Wall, S.; Lorenz, R. D.; M. C. Lopes, R.; Hensley, S.; R. Stofan, E.; L. Kirk, R.; J. Ostro, S.; Paganelli, F.

    2007-01-01

    SAR imagery obtained during Cassini's T16 Titan fly-by revealed numerous radar-dark features at > ~70° N, interpreted to be lakes [1] on the basis of their low radar reflectivity, morphology and consistency with predictions [2]. Later fly-bys revealed more lakes, and also overlapped with previous scenes, facilitating multi-angle, multi-temporal studies, with several more such opportunities over the coming months. Here we introduce our efforts to understand the nature of the lakes using such s...

  18. An experimental study on barium peritonitis in rats

    International Nuclear Information System (INIS)

    Barium sulfate is universally used contrast media in gastrointestinal roentgenology, and spillage of barium into peritoneal cavity can occur. The references on effect of barium sulfate in the peritoneal cavity have been scattered and the results are varied. In 80 rats, body weight of 130 gm to 150 gm, sterile pure barium, sterile commercial barium, intestinal content, and mixed pure barium and intestinal content were experimentally injected into the peritoneal cavity. Consecutive weekly laparotomy and microscopic examination were done for 4 weeks. The results are as followings: 1. Mind inflammatory reaction and mild adhesion after sterile pure barium injection. 2. Mild inflammatory reaction and moderate adhesion after sterile commercial barium injection. 3. Acute peritonitis and abscess formation after intestinal content injection. 4. High mortality due to severe acute peritonitis, and severe adhesion in survivors after injection of both pure barium and intestinal content.

  19. Bacterial Reduction Of Barium Sulphate By Sulphate-Reducing Bacteria

    Directory of Open Access Journals (Sweden)

    Luptáková Alena

    2015-12-01

    Full Text Available Acid mine drainage (AMD is a worldwide problem leading to contamination of water sources. AMD are characterized by low pH and high content of heavy metals and sulphates. The barium salts application presents one of the methods for the sulphates removing from AMD. Barium chloride, barium hydroxide and barium sulphide are used for the sulphates precipitation in the form of barium sulphate. Because of high investment costs of barium salts, barium sulphide is recycled from barium sulphate precipitates. It can be recycled by thermic or bacterial reduction of barium sulphate. The aim of our study was to verify experimentally the possibility of the bacterial transformation of BaSO4 to BaS by sulphate-reducing bacteria. Applied BaSO4 came from experiments of sulphates removal from Smolnik AMD using BaCl2.

  20. FTIR reflectance spectra of zirconium titanate based dielectric ceramics

    International Nuclear Information System (INIS)

    A series of tin doped zirconium titanate compositions has been analyzed for dielectric characteristics using Far IR reflectance data. The trends in quality factor data were found to be as expected. In these experiments, infrared reflectivity measurements have been obtained on ZrxTiySnzO4 (x + y + z = 2) compositions. The reflection spectra of the system are analyzed

  1. Titan Montgolfiere Terrestrial Test Bed Project

    Data.gov (United States)

    National Aeronautics and Space Administration — With the Titan Saturn System Mission, NASA is proposing to send a Montgolfiere balloon to probe the atmosphere of Titan. To better plan this mission and create a...

  2. Titan Montgolfiere Terrestrial Test Bed Project

    Data.gov (United States)

    National Aeronautics and Space Administration — With the Titan Saturn System Mission, NASA is proposing to send a Montgolfiere balloon to probe the atmosphere of Titan. In order to better plan this mission and...

  3. Growth conditions effect on growth strips in barium-strontium niobate crystals

    International Nuclear Information System (INIS)

    The growth bands appeared due to a change of the instantaneous growth rate are studied in the crystals of solid solution of barium and strontium niobates obtained by the method of Chokhral'skii. Instability of thermal conditions in the crystallization front leading to a change of the instantaneous growth rate is caused by several factors: insufficient accuracy in keeping the operating temperature, the presence of convection, displacement of crystallization front in an inhomogeneous thermal field, for instance when crystal rotates. Considered are the ways of diminiching the temperature vibrations in a melt and found are the conditions for obtaining optically homogeneous monocrystals of barium-strontium niobate

  4. Venous barium embolization, a rare, potentially fatal complication of barium enema: 2 case reports

    International Nuclear Information System (INIS)

    Venous embolization of barium has been recognized for 4 decades as one of the most dreaded complications of barium enema. Fortunately, the condition is extremely rare. In this report, the radiographic findings in 2 cases of venous embolization (one involving the portal vein and one systematic) are described, and ways to decrease the risk of this complication are discussed. (author)

  5. Thermochemical hydrogen production via a cycle using barium and sulfur - Reaction between barium sulfide and water

    Science.gov (United States)

    Ota, K.; Conger, W. L.

    1977-01-01

    The reaction between barium sulfide and water, a reaction found in several sulfur based thermochemical cycles, was investigated kinetically at 653-866 C. Gaseous products were hydrogen and hydrogen sulfide. The rate determining step for hydrogen formation was a surface reaction between barium sulfide and water. An expression was derived for the rate of hydrogen formation.

  6. Synthesis of barium mercaptides and application of antimony/barium mercaptides

    Institute of Scientific and Technical Information of China (English)

    瞿龙; 张露露; 舒万艮

    2001-01-01

    Mercaptoacetic acid, isooctyl thioglycolate and barium hydroxide used as start materials, barium bis (2-ethylhexyl thioglycolate) (Ba(2EHTG)2), barium thioglycolate (Ba(TG)) and barium bisthioglycolate (Ba(TG)2) were synthesized. Their optimum synthetic techniques were discussed, and some physicochemical data were reported. Infrared spectroscopy and elemental analysis methods were used to identify the structures. They were put into PVC plastic products together with antimony tris (2-ethylhexyl thioglycolate) (Sb(2EHTG)3) under the suitable compounding, and their heat stability to PVC was studied. It is shown that these barium mercaptides have remarkable synergisms with antimony mercaptides and the long-term stabilizing effect of organoantimony stabilizer can be effectively improved, reducing the amount of antimony compounds so as to avoid the decrease of its stabilizing effect.

  7. Organic chemistry on Titan: Surface interactions

    Science.gov (United States)

    Thompson, W. Reid; Sagan, Carl

    1992-01-01

    The interaction of Titan's organic sediments with the surface (solubility in nonpolar fluids) is discussed. How Titan's sediments can be exposed to an aqueous medium for short, but perhaps significant, periods of time is also discussed. Interactions with hydrocarbons and with volcanic magmas are considered. The alteration of Titan's organic sediments over geologic time by the impacts of meteorites and comets is discussed.

  8. Structural and electromechanical properties of bismuth-strontium titanate ceramics

    International Nuclear Information System (INIS)

    Bismuth-strontium titanate ceramics were obtained by conventional sinterization method (without orientation of grains - OF) and hot-forging (with oriented grains - HF). The physics, dielectrics and plutocracies properties these ceramics were compared. At piezoelectric characterization, the Kt values were higher in ceramics obtained by hot-forging (HF) when compared to ceramics obtained by OF, which indicates the high anisotropy of these materials. (author)

  9. Structure of Titan's evaporites

    Science.gov (United States)

    Cordier, D.; Cornet, T.; Barnes, J. W.; MacKenzie, S. M.; Le Bahers, T.; Nna-Mvondo, D.; Rannou, P.; Ferreira, A. G.

    2016-05-01

    Numerous geological features that could be evaporitic in origin have been identified on the surface of Titan. Although they seem to be water-ice poor, their main properties - chemical composition, thickness, stratification - are essentially unknown. In this paper, which follows on a previous one focusing on the surface composition (Cordier, D., Barnes, J.W., Ferreira, A.G. [2013b]. Icarus 226(2),1431-1437), we provide some answers to these questions derived from a new model. This model, based on the up-to-date thermodynamic theory known as "PC-SAFT", has been validated with available laboratory measurements and specifically developed for our purpose. 1-D models confirm the possibility of an acetylene and/or butane enriched central layer of evaporitic deposit. The estimated thickness of this acetylene-butane layer could explain the strong RADAR brightness of the evaporites. The 2-D computations indicate an accumulation of poorly soluble species at the deposit's margin. Among these species, HCN or aerosols similar to tholins could play a dominant role. Our model predicts the existence of chemically trimodal "bathtub rings" which is consistent with what it is observed at the south polar lake Ontario Lacus. This work also provides plausible explanations to the lack of evaporites in the south polar region and to the high radar reflectivity of dry lakebeds.

  10. Structure of Titan's evaporites

    CERN Document Server

    Cordier, D; Barnes, J W; MacKenzie, S M; Bahers, T Le; Nna-Mvondo, D; Rannou, P; Ferreira, A G

    2015-01-01

    Numerous geological features that could be evaporitic in origin have been identified on the surface of Titan. Although they seem to be water-ice poor, their main properties -chemical composition, thickness, stratification- are essentially unknown. In this paper, which follows on a previous one focusing on the surface composition (Cordier et al., 2013), we provide some answers to these questions derived from a new model. This model, based on the up-to-date thermodynamic theory known as "PC-SAFT", has been validated with available laboratory measurements and specifically developed for our purpose. 1-D models confirm the possibility of an acetylene and/or butane enriched central layer of evaporitic deposit. The estimated thickness of this acetylene-butane layer could explain the strong RADAR brightness of the evaporites. The 2-D computations indicate an accumulation of poorly soluble species at the deposit's margin. Among these species, HCN or aerosols similar to tholins could play a dominant role. Our model pre...

  11. Large Particle Titanate Sorbents

    Energy Technology Data Exchange (ETDEWEB)

    Taylor-Pashow, K. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-10-08

    This research project was aimed at developing a synthesis technique for producing large particle size monosodium titanate (MST) to benefit high level waste (HLW) processing at the Savannah River Site (SRS). Two applications were targeted, first increasing the size of the powdered MST used in batch contact processing to improve the filtration performance of the material, and second preparing a form of MST suitable for deployment in a column configuration. Increasing the particle size should lead to improvements in filtration flux, and decreased frequency of filter cleaning leading to improved throughput. Deployment of MST in a column configuration would allow for movement from a batch process to a more continuous process. Modifications to the typical MST synthesis led to an increase in the average particle size. Filtration testing on dead-end filters showed improved filtration rates with the larger particle material; however, no improvement in filtration rate was realized on a crossflow filter. In order to produce materials suitable for column deployment several approaches were examined. First, attempts were made to coat zirconium oxide microspheres (196 µm) with a layer of MST. This proved largely unsuccessful. An alternate approach was then taken synthesizing a porous monolith of MST which could be used as a column. Several parameters were tested, and conditions were found that were able to produce a continuous structure versus an agglomeration of particles. This monolith material showed Sr uptake comparable to that of previously evaluated samples of engineered MST in batch contact testing.

  12. Skylab-barium alpha and beta L = 6 field-line tracing experiments

    International Nuclear Information System (INIS)

    Events SKYLAB-BARIUM ALPHA (27 November 1973) and BETA (4 December 1973) were shaped-charge barium field-line tracing experiments near L approximately equal to 6, conducted jointly by the Los Alamos Scientific Laboratory and the University of Alaska Geophysical Institute. Image-orthicon and pulsed intensified auroral cameras provided data for triangulating the fast ion streaks. Using the POGO 10-68, epoch 1965.0, field-line model with Mead-Fairfield corrections for the outer field, the triangulated positions of the fast ion streak were projected down to the 100 km altitude northern conjugate surface. The projected positions moved toward magnetic east with a velocity of 725 m/sec for both SKYLAB-BARIUM ALPHA and BETA. Assuming only an E x B/B2 force, this drift velocity is consistent with an electric field toward magnetic south of 39 mV/m. Radiometric analysis of the filtered, intensified auroral camera records gave observed peak radiance values of about 2 x 10-11 watts/cm2-Sr in the 455.4 nm line of Ba+. The barium in the portion of the ion streak for which radiometric data were obtained had initial injection velocities of 9.5 to 13.5 km/sec in both events. This portion of the ion streak for both SKYLAB-BARIUM ALPHA and BETA contained approximately 4 x 1023 ions compared to the 6.4 x 1024 atoms contained in the barium liner. Ion inventory estimates are based on a solution of the statistical equilibrium equations. Corrections have been made in the ion inventory calculations for Doppler shifts of the solar spectrum as received in the rest frame of the high-velocity barium ions

  13. Multiwavelength Studies For Titan's Atmospheric Composition Analysis

    Science.gov (United States)

    Benilan, Yves; Sebbar, E. Es; Fray, N.; Gazeau, M.; Jolly, A.; Schwell, M.; Guillemin, J.

    2009-09-01

    Titan's atmosphere mainly made of nitrogen and methane is rich in organic molecules. Hydrocarbons are formed from the photolytic dissociation of CH4 and nitriles are created by dissociation of N2 followed by reactions with hydrocarbons. In order to understand the physicochemical mechanisms responsible for the evolution of Titan's atmosphere, photochemical models are built. The latter need constrains for vertical profiles of organic compounds from the high thermosphere down to the low stratosphere as well as photodissociation rates. Those profiles over the entire atmosphere can be retrieved from Cassini observations, in particular by limb sounding, coupling infrared and ultraviolet spectroscopy. However, in order to interpret those data obtained by the ultraviolet (UVIS) and infrared (CIRS) spectrometers on board Cassini's spacecraft, precise spectroscopic parameters and their dependence on temperature are needed. We will review the current knowledge in this field of planetary spectroscopy and point out the lack of spectroscopic parameters of already detected species, especially for radiative transfer calculations at low temperature. We will focus our talk on the Cyanogen molecule (C2N2) which has been observed in Titan atmosphere in the FIR domain around 230 cm-1. We will present the latest spectroscopic studies we have performed on this molecule. Those studies cover the entire spectrum from the mid- infrared and to the vacuum ultraviolet. Integrated band intensities have been determined for all bands in the infrared. In the ultraviolet domain, we have determined absolute cross sections from 350 down to 80 nm covering six orders of magnitude absorptions. We will also show how temperature can influence VUV absorption coefficients and the implications on the interpretation of UVIS observations.

  14. K-shell fluorescence yields of barium and lanthanum

    International Nuclear Information System (INIS)

    K-shell fluorescence yields for barium and lanthanum have been measured adopting simple 2π geometrical configuration and employing a weak 57Co radioactive source. A scintillation spectrometer with an NaI(Tl) detector of dimensions 44.5 mm diameterx50 mm thickness was employed for the detection and measurement of radiation. The results obtained are in good agreement with the best-fitted values of and also with the other experimental values, indicating that our simple method can be extended to determine fluorescence parameters of high Z materials.

  15. Magnetic and structural investigations on barium hexaferrite ferrofluids

    Science.gov (United States)

    Müller, R.; Hiergeist, R.; Gawalek, W.; Hoell, A.; Wiedenmann, A.

    2002-11-01

    Barium hexaferrite BaFe 12-2 xTi xCo xO 19 ferrofluids have been prepared using oleic acid as surfactant and Isopar M ® or dodecane as carrier liquid. The ferrite particles were prepared by glass crystallization. Hysteresis parameters, the initial susceptibility versus temperature and the magnetic particle size were obtained by VSM. Ferrofluids with a partly deuterated carrier liquid were investigated by small angle neutron scattering (SANS). SANS curves lead to a bimodal size distribution consisting of single magnetic particles with an organic shell and aggregated particles with an incomplete organic layer.

  16. The Titan Saturn System Mission

    Science.gov (United States)

    Coustenis, A.; Lunine, J.; Lebreton, J.; Matson, D.; Erd, C.; Reh, K.; Beauchamp, P.; Lorenz, R.; Waite, H.; Sotin, C.; Tssm Jsdt, T.

    2008-12-01

    A mission to return to Titan after Cassini-Huygens is a high priority for exploration. Recent Cassini-Huygens discoveries have revolutionized our understanding of the Titan system, rich in organics, containing a vast subsurface ocean of liquid water, surface repositories of organic compounds, and having the energy sources necessary to drive chemical evolution. With these recent discoveries, interest in Titan as the next scientific target in the outer Solar System is strongly reinforced. Cassini's discovery of active geysers on Enceladus adds an important second target in the Saturn system. The mission concept consists of a NASA-provided orbiter and an ESA-provided probe/lander and a Montgolfiere. The mission would launch on an Atlas 551 around 2020, travelling to Saturn on an SEP gravity assist trajectory, and reaching Saturn about 9.5 years later. The flight system would go into orbit around Saturn for about 2 years. During the first Titan flyby, the orbiter would release the lander to target a large northern polar sea, Kraken Mare, and the balloon system to a mid latitude region. During the tour phase, TSSM will perform Saturn system and Enceladus science, with at least 5 Enceladus flybys. Instruments aboard the orbiter will map Titan's surface at 50 m resolution in the 5 micron window, provide a global data set of topography and sound the immediate subsurface, sample complex organics, provide detailed observations of the atmosphere, and quantify the interaction of Titan with the Saturn magnetosphere. A subset of the instruments would provide spectra, imaging, plume sampling and particles and fields data on Enceladus. Instruments aboard the balloon will acquire high resolution vistas of the surface of Titan as the balloon cruises at 10 km altitude, as well as make compositional measurements of the surface, detailed sounding of crustal layering, and chemical measurements of aerosols. A magnetometer, will permit sensitive detection of induced or intrinsic fields

  17. Lithium titanate pebbles reprocessing by wet chemistry

    International Nuclear Information System (INIS)

    An original dissolution method for irradiated Li2TiO3 in aqueous H2O2 was developed. One could easily obtain fine Li2TiO3 powders from the solution through drying and calcination. Li2TiO3 pebbles (size ∼0.6 mm, above 90% TD) were obtained from the 'reprocessed' powders. These solutions were also suitable for the formation of a sol emulsion in 2-ethyl-hexanol-1, from which gelled microspheres of lithium titanate could be obtained. Locally prepared Li2TiO3 reprocessed and supplied pebble batches were tested for tritium release by temperature programmed desorption (TPD) methods in He + 0.1%H2 (R-gas) after their short irradiations in a thermal neutron flux. The relative TPD data were compared. A qualitative correlation was developed between peak characteristics and pebble microstructure

  18. Studies on characterization, microstructures and magnetic properties of nano-size barium hexa-ferrite prepared through a hydrothermal precipitation-calcination route

    International Nuclear Information System (INIS)

    An attempt was made to prepare nano-size barium hexa-ferrite particles following a hydrothermal precipitation-calcination route using barium and iron nitrate solutions. During hydrothermal treatment at 180 deg. C (2 h precipitation time) barium carbonate and hematite phases were formed. This precursor was calcined at 800, 1000 and 1200 deg. C to determine the conditions for obtaining barium hexa-ferrite. The characterization studies on calcined products revealed that up to 800 deg. C, the major crystalline phases (barium carbonate and hematite) of the precursor were retained. At 1000 deg. C, formation of barium hexa-ferrite started and at 1200 deg. C, though most of the major peaks of X-ray diffractogram corresponded to barium hexa-ferrite, a number of peaks corresponding to hematite were also present. Some low intensity peaks for barium carbonate were observed. The average particle size was 40 nm. Saturation magnetization, remanence magnetization and coercivity were found to be 40.0, 21.6 emu g-1 and 2.87 kOe, respectively. The values obtained both for coercivity and magnetization for the present sample were lower than the reported bulk values which could be due to the fact that the sample prepared through the present technique was not mono-phasic

  19. Determination of barium in surface and ground waters at Centro Experimental Aramar area

    International Nuclear Information System (INIS)

    Barium can be found in waters up to 1 mg L-1 and came from natural sources such as sedimentary rocks erosion rich in feldspar and barite. Also anthropogenic activities can release this element such as oil and gas industry, agricultural defensives, chemical industry and waste disposal. At high doses, barium can be harmful to human central nervous system and can also cause high blood pressure, heart problems, fatigue and anxiety. The water potability defined by Brazilian's Ministry of Healthy sets barium concentration up to 0.7 mg L-1 and official regulation defines the same limit of this element to superficial waters (according CONAMA resolution 357/2005) and ground waters (Sao Paulo state regulation). In this work, barium was analyzed monthly in superficial waters from 4 different sampling locations, located in a ratio of 10-km-long from Centro Experimental Aramar (CEA) at Ipanema River, during one year, in order to evaluate the river in different conditions (seasons, temperature and rain period). The ground water was collected every six months. The analytical technique applied was ICP OES and the method conditions were optimized: wavelength, linearity, signal background ratio, detection and quantification limits. Data obtained in this work will contribute to evaluate the presence of barium at CEA region and nearby in order to compare it with current Brazilian regulations. (author)

  20. Determination of barium in surface and ground waters at Centro Experimental Aramar area

    Energy Technology Data Exchange (ETDEWEB)

    Matoso, Erika, E-mail: ematoso@hotmail.com [Centro Tecnologico da Marinha em Sao Paulo (CEA/CTMS), Ipero, SP (Brazil). Centro Experimental Aramar; Cadore, Solange, E-mail: cadore@iqm.unicamp.br [Universidade Estadual de Campinas (UNICAMP), SP (Brazil). Instituto de Quimica. Departamento de Quimica Analica

    2015-07-01

    Barium can be found in waters up to 1 mg L{sup -1} and came from natural sources such as sedimentary rocks erosion rich in feldspar and barite. Also anthropogenic activities can release this element such as oil and gas industry, agricultural defensives, chemical industry and waste disposal. At high doses, barium can be harmful to human central nervous system and can also cause high blood pressure, heart problems, fatigue and anxiety. The water potability defined by Brazilian's Ministry of Healthy sets barium concentration up to 0.7 mg L{sup -1} and official regulation defines the same limit of this element to superficial waters (according CONAMA resolution 357/2005) and ground waters (Sao Paulo state regulation). In this work, barium was analyzed monthly in superficial waters from 4 different sampling locations, located in a ratio of 10-km-long from Centro Experimental Aramar (CEA) at Ipanema River, during one year, in order to evaluate the river in different conditions (seasons, temperature and rain period). The ground water was collected every six months. The analytical technique applied was ICP OES and the method conditions were optimized: wavelength, linearity, signal background ratio, detection and quantification limits. Data obtained in this work will contribute to evaluate the presence of barium at CEA region and nearby in order to compare it with current Brazilian regulations. (author)

  1. Microstructure of polymer composite with barium ferrite powder

    Directory of Open Access Journals (Sweden)

    R. Nowosielski

    2008-12-01

    Full Text Available Purpose: The aim of the paper is the microstructure characterization of commercial BaFe12O19 powder and its composite material in polymer matrix; XRD (X-Ray Diffraction and SEM (Scanning Electron Microscopy methods were applied.Design/methodology/approach: The Rietveld method appeared to be very useful in the verification of the qualitative phase composition and in the determination of phase abundance. Hill and Howard procedure was applied for quantitative phase analysis. The parameters of the individual diffraction line profiles were determined by PRO-FIT Toraya procedure. The morphology of barium ferrite powders and a fracture surface of the examined composite material was analyzed using the scanning electron microscope.Findings: The X-ray diffraction analysis enabled the identification of BaFe12O19 and Fe2O3 phases in examined material. Basing on Rietveld and Toraya methods the determination of lattice parameters, crystallite size and the lattice distortion was performed. Distribution of powders of barium ferrite in polymer matrix is irregular and powder particles are of irregular shapes and different sizes.Research limitations/implications: Maked researches are limited only to characterization the microstructure of commercial material, because obtained results will be helpful to prepare barium ferrite powders by mechanical alloying and subsequent annealing in the future. As prepared BaFe12O19 powders will be used as the starting material for magnets bonded with polymer material.Originality/value: The obtained results of investigations by different methods of structure analysis confirm their useful in the microstructure analysis of powder materials.

  2. Magnetic properties of barium ferrite dispersed within polystyrene-butadiene-styrene block copolymers.

    Science.gov (United States)

    Chipara, M; Skomski, R; Ali, N; Hui, D; Sellmyer, D J

    2009-06-01

    Magnetic properties of nanocomposite materials obtained by dispersing barium ferrite nanoparticles within polystyrene-butadiene-styrene block copolymer, in the temperature range, 300 to 500 K are reported. The temperature dependence of the magnetization at saturation, averaged uniaxial magnetocrystalline anisotropy, and coercive field of thick films are analyzed. A "matrix effect" was noticed within the glass transition range of the hard component (polystyrene) of the polymeric matrix. The reported modifications of the magnetic properties were assigned to the competition between the magnetic and mechanical reorientation of nanoparticles within the polymeric matrix. Such modifications were not observed in barium ferrite dispersed in cement. PMID:19504902

  3. The structural properties of barium cobalt hexaferrite powder prepared by a simple heat treatment method

    Science.gov (United States)

    Chauhan, Chetna; Jotania, Rajshree

    2016-05-01

    The W-type barium hexaferrite was prepared using a simple heat treatment method. The precursor was calcinated at 650°C for 3 hours and then slowly cooled to room temperature in order to obtain barium cobalt hexaferrite powder. The prepared powder was characterised by different experimental techniques like XRD, FTIR and SEM. The X-ray diffractogram of the sample shows W-and M phases. The particle size calculated by Debye Scherrer formula. The FTIR spectra of the sample was taken at room temperature by using KBr pallet method which confirms the formation of hexaferrite phase. The morphological study on the hexaferrite powder was carried out by SEM analysis.

  4. Synthesis, characterization and thermostability of barium β-diketonate with tetraethylenepentamine ligand

    Institute of Scientific and Technical Information of China (English)

    2012-01-01

    The metal-organic chemical vapor deposition (MOCVD) technique is a promising process for high-temperature superconductor YBa2Cu3O7-δ(YBCO) preparation. In this technique, it is a challenge to obtain barium precursors with high volatility. In addition, the purity, evaporation characteristics and thermostability of adopted precursors in the whole process would decide the quality and reproducible results of YBCO film. In the present report, the barium precursor containing 2,2,6,6-tetramethylheptane-3,5-dionate...

  5. Spectroscopy of Ba and Ba$^+$ deposits in solid xenon for barium tagging in nEXO

    CERN Document Server

    Mong, B; Walton, T; Chambers, C; Craycraft, A; Benitez-Medina, C; Hall, K; Fairbank, W; Albert, J B; Auty, D J; Barbeau, P S; Basque, V; Beck, D; Breidenbach, M; Brunner, T; Cao, G F; Cleveland, B; Coon, M; Daniels, T; Daugherty, S J; DeVoe, R; Didberidze, T; Dilling, J; Dolinski, M J; Dunford, M; Fabris, L; Farine, J; Feldmeier, W; Fierlinger, P; Fudenberg, D; Giroux, G; Gornea, R; Graham, K; Gratta, G; Heffner, M; Hughes, M; Jiang, X S; Johnson, T N; Johnston, S; Karelin, A; Kaufman, L J; Killick, R; Koffas, T; Kravitz, S; Krucken, R; Kuchenkov, A; Kumar, K S; Leonard, D S; Licciardi, C; Lin, Y H; Ling, J; MacLellan, R; Marino, M G; Moore, D; Odian, A; Ostrovskiy, I; Piepke, A; Pocar, A; Retiere, F; Rowson, P C; Rozo, M P; Schubert, A; Sinclair, D; Smith, E; Stekhanov, V; Tarka, M; Tolba, T; Twelker, K; Vuilleumier, J -L; Walton, J; Weber, M; Wen, L J; Wichoski, U; Yang, L; Yen, Y -R; Zhao, Y B

    2014-01-01

    Progress on a method of barium tagging for the nEXO double beta decay experiment is reported. Absorption and emission spectra for deposits of barium atoms and ions in solid xenon matrices are presented. Excitation spectra for prominent emission lines, temperature dependence and bleaching of the fluorescence reveal the existence of different matrix sites. A regular series of sharp lines observed in Ba$^+$ deposits is identified with some type of barium hydride molecule. Lower limits for the fluorescence quantum efficiency of the principal Ba emission transition are reported. Under current conditions, an image of $\\le10^4$ Ba atoms can be obtained. Prospects for imaging single Ba atoms in solid xenon are discussed.

  6. Improved thermal stability and wettability behavior of thermoplastic polyurethane / barium metaborate composites

    International Nuclear Information System (INIS)

    In this paper, it was targeted to the enhance thermal stability and wettability behavior of thermoplastic polyurethane (TPU) by adding barium metaborate. TPU-Barium metaborate composites were prepared by adding various proportions of barium metaborate to TPU. The chemical structures of the composites were characterised by fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD) analysis. All prepared composites have extremely high Tg and thermal stability as determined from DSC and TGA analysis. All composite materials have the Tg ranging from 15 to 35 °C. The surface morphologies of the composites were investigated by a scanning electron microscopy. Mechanical properties of the samples were characterized with stress-strain test. Hydrophobicity of the samples was determined by the contact angle measurements. The obtained results proved that thermal, hydrophobic and mechanical properties were improved. (author)

  7. Improved thermal stability and wettability behavior of thermoplastic polyurethane / barium metaborate composites

    Energy Technology Data Exchange (ETDEWEB)

    Baştürka, Emre; Madakbaş, Seyfullah; Kahraman, Memet Vezir, E-mail: smadakbas@marmara.edu.tr [Department of Chemistry, Marmara University, Istanbul (Turkey)

    2016-03-15

    In this paper, it was targeted to the enhance thermal stability and wettability behavior of thermoplastic polyurethane (TPU) by adding barium metaborate. TPU-Barium metaborate composites were prepared by adding various proportions of barium metaborate to TPU. The chemical structures of the composites were characterised by fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD) analysis. All prepared composites have extremely high Tg and thermal stability as determined from DSC and TGA analysis. All composite materials have the Tg ranging from 15 to 35 °C. The surface morphologies of the composites were investigated by a scanning electron microscopy. Mechanical properties of the samples were characterized with stress-strain test. Hydrophobicity of the samples was determined by the contact angle measurements. The obtained results proved that thermal, hydrophobic and mechanical properties were improved. (author)

  8. 40 CFR 721.10011 - Barium calcium manganese strontium oxide.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Barium calcium manganese strontium... Specific Chemical Substances § 721.10011 Barium calcium manganese strontium oxide. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as barium...

  9. Coprecipitation of iron and silver with barium fluoride

    International Nuclear Information System (INIS)

    Distribution of trace contaminants of iron and silver at coprecipitation of barium fluoride is studied in present work. It is defined that iron almost completely coprecipitated with barium fluoride in wide range of ph 5.5-12. Silver coprecipitated with barium fluoride in ph range 4-7. The value of coprecipitation varies from 94% to 100%.

  10. Recrystallization of 223Ra with barium sulfate

    International Nuclear Information System (INIS)

    In this work, the kinetics of barium sulfate recrystallization has been studied in acidic 0.01 mol dm-3 sodium sulfate solution using 223Ra and 133Ba tracers at very low total radium concentration, i.e. less than 10-13 mol dm-3. It was found that the system follows the homogeneous recrystallization model and that recrystallization rates, inferred by the decrease of 223Ra and 133Ba in the aqueous solution, are fast. Therefore, even at very low concentrations, below the solubility limit, radium will be retained by barium sulfate-a mineral present in the deep underground repository. (author)

  11. Hubble Observes Surface of Titan

    Science.gov (United States)

    1994-01-01

    Scientists for the first time have made images of the surface of Saturn's giant, haze-shrouded moon, Titan. They mapped light and dark features over the surface of the satellite during nearly a complete 16-day rotation. One prominent bright area they discovered is a surface feature 2,500 miles across, about the size of the continent of Australia.Titan, larger than Mercury and slightly smaller than Mars, is the only body in the solar system, other than Earth, that may have oceans and rainfall on its surface, albeit oceans and rain of ethane-methane rather than water. Scientists suspect that Titan's present environment -- although colder than minus 289 degrees Fahrenheit, so cold that water ice would be as hard as granite -- might be similar to that on Earth billions of years ago, before life began pumping oxygen into the atmosphere.Peter H. Smith of the University of Arizona Lunar and Planetary Laboratory and his team took the images with the Hubble Space Telescope during 14 observing runs between Oct. 4 - 18. Smith announced the team's first results last week at the 26th annual meeting of the American Astronomical Society Division for Planetary Sciences in Bethesda, Md. Co-investigators on the team are Mark Lemmon, a doctoral candidate with the UA Lunar and Planetary Laboratory; John Caldwell of York University, Canada; Larry Sromovsky of the University of Wisconsin; and Michael Allison of the Goddard Institute for Space Studies, New York City.Titan's atmosphere, about four times as dense as Earth's atmosphere, is primarily nitrogen laced with such poisonous substances as methane and ethane. This thick, orange, hydrocarbon haze was impenetrable to cameras aboard the Pioneer and Voyager spacecraft that flew by the Saturn system in the late 1970s and early 1980s. The haze is formed as methane in the atmosphere is destroyed by sunlight. The hydrocarbons produced by this methane destruction form a smog similar to that found over large cities, but is much thicker

  12. Organic chemistry in Titan's atmosphere

    Science.gov (United States)

    Scattergood, T.

    1982-01-01

    Laboratory photochemical simulations and other types of chemical simulations are discussed. The chemistry of methane, which is the major known constituent of Titan's atmosphere was examined with stress on what can be learned from photochemistry and particle irradiation. The composition of dust that comprises the haze layer was determined. Isotope fractionation in planetary atmospheres is also discussed.

  13. Statistical analysis of the energetic ion and ENA data for the Titan environment

    Science.gov (United States)

    Garnier, P.; Dandouras, I.; Toublanc, D.; Roelof, E. C.; Brandt, P. C.; Mitchell, D. G.; Krimigis, S. M.; Krupp, N.; Hamilton, D. C.; Wahlund, J.-E.

    2010-12-01

    The MIMI experiment (Magnetosphere Imaging Instrument) onboard Cassini is dedicated to the study of energetic particles, with in particular LEMMS analyzing charged particles, or the INCA detector which can image the Energetic Neutral Atoms produced by charge exchange collisions between cold neutrals and energetic ions. The MIMI experiment is thus well adapted to the study of the interaction between the Titan nitrogen rich atmosphere and the energetic Saturnian magnetospheric plasma. We analyze here the energetic protons at the Titan orbit crossings before January 2008 (MIMI-LEMMS data; 27-255 keV), which are very dynamic, with tri-modal flux spectra and probably quasi-isotropic pitch angle distributions. We provide statistical parameters for the proton fluxes, leading to estimates of the average energy deposition into Titan's atmosphere, before we discuss the possible influence of Titan on the magnetopause. We then analyze the H ENA images (24-55 keV) during the Titan flybys before June 2006 to obtain a better diagnostic of the Titan interaction: the ENAs variability is mostly related to the magnetospheric variability (the exosphere being roughly stable) or the distance from the moon, the ENAs halo around Titan is very stable (corresponding to a lower limit for ENAs emission at the exobase), and strong asymmetries are observed, due to finite gyroradii effects for the parent ions.

  14. Structure and properties of hard-magnetic barium, strontium and lead ferrites

    International Nuclear Information System (INIS)

    Structure and properties of compact articles of magnetically hard barium, strontium and lead ferrites produced by self-propagating high-temperature synthesis (SHS) are under study. Ferrites of carious structural defect density and internal microstresses are obtained by varying ferritizing (burning) temperature and comminution time. It is states that powder activity has a favourable effect on electromagnetic and mechanical properties of ferrites

  15. Medical radiation shielding effect by composition of barium compounds

    International Nuclear Information System (INIS)

    Highlight: ► Radiation shielding sheet was manufactured using BaSO4 and a combination of tourmaline, tungsten, silicon and rubber polymer. ► The particle packing of barium tends to be related to the tensile strength. ► The tensile strength was most excellent in the sheets containing rubber. ► The shielding ability of the tungsten and silicon combination with BaSO4 was the same as that of a 0.3 mm lead equivalent. - Abstract: Shielding aprons were manufactured from barium sulfate as a potential substitute for the lead aprons used most commonly for medical radiation shielding. Six types of radiation shielding sheets made from a combination of tungsten, molybdenum, rubber and silicon with a barium sulfate base were manufactured, and their transmission doses were compared with those of a lead standard. In the process of producing the radiation shielding sheets, the particle packing and porosity of the materials, appropriate weight-average molecular weight to number-average molecular weight ratio and tensile strength were investigated to determine the optimal mixing process. The transmission dose was measured by applying a lead equivalent test method () of X-ray protective supplies in the Korea Industrial Standard. The transmission doses of the lead standard with a thickness of 0.05, 0.1, 0.15, 0.2, 0.25, 0.3 and 0.35 mm, as well as the six types of radiation shielding sheet were obtained at a tube voltage of 50, 80, 100, 120 and 150 kVp. According to the results, the combination of barium, tungsten, molybdenum and silicon recorded a dose of a 0.3 mm lead equivalent and its particle packing and porosity were 28–36% and 12–22%, respectively. Nevertheless, satisfactory shielding ability could be obtained with a porosity >20% and particle packing of 30%. Therefore, it is a potential replacement for lead sheet and can be considered a proper medical radiation shielding sheet with good economic feasibility.

  16. Enterogastroesophageal reflux during barium enema: Report of a case

    International Nuclear Information System (INIS)

    Enterogastric reflux during barium enema examination has been ascribed to various causes including incompetence of the ilepcecal valve, shunt, fistula, excessive barium etc. Recently we have encountered a case of complete enterogastroesphageal regurgitation during barium enema examination performed for the reduction of the ileocolic intuosusception in 6 months old baby. The regurgitation occurred only in the first of two barium enema examinations conducted at one month interval for recurring intussusception. The barium-saline solution used in the present study was not more than 350 ml in quantity. No organic or physical causes of such a complete regurgitation could be determined

  17. Structural Characteristics & Dielectric Properties of Tantalum Oxide Doped Barium Titanate Based Materials

    Directory of Open Access Journals (Sweden)

    Rubayyat Mahbub

    2012-11-01

    Full Text Available In this research, the causal relationship between the dielectric properties and the structural characteristics of 0.5 & 1.0 mol% Ta2O5 doped BaTiO3 based ceramic materials were investigated under different sintering conditions. Dielectric properties and microstructure of BaTio3 ceramics were significantly influenced by the addition of a small amount of Ta2O5. Dielectric properties were investigated by measuring the dielectric constant (k as a function of temperature and frequency. Percent theoretical density (%TD above 90% was achieved for 0.5 and 1.0 mol% Ta2O5 doped BaTiO3. It was observed that the grain size decreased markedly above a doping concentration of 0·5 mol% Ta2O5. Although fine grain size down to 200-300nm was attained, grain sizes in the range of 1-1.8µm showed the most alluring properties. The fine-grain quality and high density of the Ta2O5 doped BaTiO3 ceramic resulted in tenfold increase of dielectric constant. Stable value of dielectric constant as high as 13000-14000 was found in the temperature range of  55 to 80°C, for 1.0 mol% Ta2O5 doped samples with corresponding shift of Curie point to ~82°C. Experiments divulged that incorporation of a proper content of Ta2O5 in BaTiO3 could control the grain growth, shift the Curie temperature and hence significantly improve the dielectric property of the BaTiO3 ceramics.

  18. Magnetoelectric effect in cobalt ferrite–barium titanate composites and their electrical properties

    Indian Academy of Sciences (India)

    R P Mahajan; K K Patankar; M B Kothale; S C Chaudhari; V L Mathe; S A Patil

    2002-05-01

    CoFe2O4–BaTiO3 composites were prepared using conventional ceramic double sintering process with various compositions. Presence of two phases in the composites was confirmed using X-ray diffraction. The dc resistivity and thermoemf as a function of temperature in the temperature range 300 K to 600 K were measured. Variation of dielectric constant (') with frequency in the range 100 Hz to 1 MHz and also with temperature at a fixed frequency of 1 kHz was studied. The ac conductivity was derived from dielectric constant (') and loss tangent (tan ). The nature of conduction is discussed on the basis of small polaron hopping model. The static value of magnetoelectric conversion factor has been studied as a function of magnetic field.

  19. Conductivity, dielectric behaviour and magnetoelectric effect in copper ferrite–barium titanate composites

    Indian Academy of Sciences (India)

    R P Mahajan; K K Patankar; M B Kothale; S A Patil

    2000-08-01

    Composites of CuFe2O4 and BaTiO3 were prepared using a conventional ceramic double sintering process. The presence of both phases was confirmed by X-ray diffraction. The variations of resistivity and thermo emf with temperature in these samples were studied. All the composites showed -type behaviour. The variation of dielectric constant (') in the frequency range 100 Hz to 1 MHz and with temperature at constant frequency were studied. The conduction phenomenon was explained on the basis of a small polaronhopping model. Also confirmation of this phenomenon was made with the help of a.c. conductivity measurements. The static value of the magnetoelectric conversion factor, i.e. d.c. (ME)H was studied as a function of intensity of the magnetic field. The maximum value of ME coefficient was observed for 75% ferroelectric phase composite.

  20. Characterization of Bismuth-Sodium-Barium-Titanate Electro ceramics Synthesized by Mechanical Alloying

    International Nuclear Information System (INIS)

    In this study, the synthesis of BNBT6 electro ceramics by milling was evaluated. The chemical composition, structural analysis, and particle size evolution of the as-milled powders were studied by X-ray florescence analyzer (XRF), X-ray diffractometer (XRD), and transmission electron microscopy (TEM), respectively. The chemical composition assessment indicated that the amount of impurities is negligible. The structural analysis revealed that the crystallite size was decreased to nano-size scales and the amorphization process was developed. It was found that perovskite and pyrochlore phases were nucleated at initial stages of milling and after sufficient milling times, BNBT phase prevailed over the other phases. (author)

  1. Surface chemical states of barium zirconate titanate thin films prepared by chemical solution deposition

    International Nuclear Information System (INIS)

    Ba(Zr0.05Ti0.95)O3 (BZT) thin films grown on Pt/Ti/SiO2/Si(1 0 0) substrates were prepared by chemical solution deposition. The structural and surface morphology of BZT thin films has been studied by X-ray diffraction (XRD) and scanning electron microscope (SEM). The results showed that the random oriented BZT thin film grown on Pt/Ti/SiO2/Si(1 0 0) substrate with a perovskite phase. The SEM surface image showed that the BZT thin film was crack-free. And the average grain size and thickness of the BZT film are 35 and 400 nm, respectively. Furthermore, the chemical states and chemical composition of the films were determined by X-ray photoelectron spectroscopy (XPS) near the surface. The XPS results show that Ba, Ti, and Zr exist mainly in the forms of BZT perovskite structure.

  2. Intragranular heterojunctions formed by ordered coalescence of strontium and barium titanate nanocrystals

    International Nuclear Information System (INIS)

    Crystal growth by nanocrystal-assembly plays an important role in the synthesis and preparation of nanostructural materials. In most cases, this crystal-growth mechanism is reported to occur in unary nanocrystal systems and in solution environment. Here, we report a new observation of grain growth by ordered coalescence of nanocrystals occurring in SrTiO3–BaTiO3 binary system during solid-state sintering, which also results in unique oxide heterostructures inside coarsened grains in bulk polycrystalline materials

  3. Structure and phase transition behavior of strontium modified barium zirconium titanate

    International Nuclear Information System (INIS)

    Pervoskite ceramics with composition Ba1-xSrxZr0.05Ti0.95O3 (x= 0.1, 0.2, 0.3, 0.4 and 0.5) have been prepared by high energy ball milling. X-ray diffraction (XRD) patterns confirm that the all the compositions are in single phase. The composition shows tetragonal symmetry upto x=0.3 and with further increase in Sr content the structure changes to cubic. The temperature dependent dielectric behavior shows three phase transition in the parent material which merges with increase in Sr content. The transition temperature and dielectric constant decreases with increase in Sr concentration. The phase transition becomes more diffused with increment in doping concentration. The ferroelectric behavior of the ceramics is studied by the hysteresis loop

  4. Grain size and boundary-related effects on the properties of nanocrystalline barium titanate ceramics

    Czech Academy of Sciences Publication Activity Database

    Buscaglia, V.; Buscaglia, M. T.; Viviani, M.; Mitoseriu, L.; Nanni, P.; Trefiletti, V.; Piaggio, P.; Gregora, Ivan; Ostapchuk, Tetyana; Pokorný, Jan; Petzelt, Jan

    2006-01-01

    Roč. 26, - (2006), s. 2889-2898. ISSN 0955-2219 R&D Projects: GA MŠk OC 525.20 Institutional research plan: CEZ:AV0Z10100520 Keywords : grain size * grain boundaries * spectroscopy * dielectric properties * BaTiO 3 Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.576, year: 2006

  5. STRUCTURAL CHARACTERISTICS & DIELECTRIC PROPERTIES OF TANTALUM OXIDE DOPED BARIUM TITANATE BASED MATERIALS

    Directory of Open Access Journals (Sweden)

    Md. Fakhrul Islam

    2013-01-01

    Full Text Available In this research, the causal relationship between the dielectric properties and the structural characteristics of 0.5 & 1.0 mole % Ta2O5 doped BaTiO3 based ceramic materials were investigated under different sintering conditions. Dielectric properties and microstructure of BaTio3 ceramics were significantly influenced by the addition of a small amount of Ta2O5. Dielectric properties were investigated by measuring the dielectric constant (k as a function of temperature and frequency. Percent theoretical density (%TD above 90 % was achieved for 0.5 and 1.0 mole %Ta2O5 doped BaTiO3. It was observed that the grain size decreased markedly above a doping concentration of 0.5 mole % Ta2O5. Although fine grain size down to 200 - 300 nm was attained, grain sizes in the range of 1-1.8µm showed the most alluring properties. The fine-grain quality and high density of the Ta2O5 doped BaTiO3 ceramic resulted in tenfold increase of dielectric constant. Stable value of dielectric constant as high as 13000 - 14000 was found in the temperature range of 55 to 80 °C, for 1.0 mole % Ta2O5 doped samples with corresponding shift of Curie point to ~82 °C. Experiments divulged that incorporation of a proper content of Ta2O5 in BaTiO3 could control the grain growth, shift the Curie temperature and hence significantly improve the dielectric property of the BaTiO3 ceramics.

  6. Combinatorial bulk ceramic magnetoelectric composite libraries of strontium hexaferrite and barium titanate.

    Science.gov (United States)

    Pullar, Robert C

    2012-07-01

    Bulk ceramic combinatorial libraries were produced via a novel, high-throughput (HT) process, in the form of polycrystalline strips with a gradient composition along the length of the library. Step gradient ceramic composite libraries with 10 mol % steps of SrFe12O19-BaTiO3 (SrM-BT) were made and characterized using HT methods, as a proof of principle of the combinatorial bulk ceramic process, and sintered via HT thermal processing. It was found that the SrM-BT libraries sintered at 1175 °C had the optimum morphology and density. The compositional, electrical and magnetic properties of this library were analyzed, and it was found that the SrM and BT phases did not react and remained discrete. The combinatorial synthesis method produced a relatively linear variation in composition. The magnetization of the library followed the measured compositions very well, as did the low frequency permittivity values of most compositions in the library. However, with high SrM content of ≥80 mol %, the samples became increasingly conductive, and no reliable dielectric measurements could be made. Such conductivity would also greatly inhibit any ferroelectricity and magnetoelectric coupling with these composites with high levels of the SrM hexagonal ferrite. PMID:22676556

  7. Direct-write inkjet printing for fabrication of barium strontium titanate-based tunable circuits

    International Nuclear Information System (INIS)

    Tunable capacitors with up to 30% tuning and a loss tangent (tanδ) less than 0.002 at 1 MHz were fabricated from Ba0.6Sr0.4TiO3 (BST) films using inkjet-printed liquid metalorganic precursors. BST films of various thicknesses were produced by printing multiple stacks of the individual inkjet-printed layers. The dielectric constant of the printed films increased as a function of thickness. The largest dielectric constant, 1000, and the highest tunability, 30%, were measured on a 420 nm thick film, the thickest film studied in this work. Spray-printed silver contacts were employed and demonstrated good adhesion and good electrical contact to the inkjet-printed BST films. This also demonstrated proof of principle for direct-write printing of metal contacts onto BST films from metalorganic sources

  8. Influence of Tm-doping on microstructure and luminescence behavior of barium strontium titanate thick films

    Energy Technology Data Exchange (ETDEWEB)

    Wang Jingyang [School of Materials Science and Engineering, Hubei University, Wuhan, 430062 (China); Zhang Tianjin, E-mail: tj65zhang@yahoo.com.cn [School of Materials Science and Engineering, Hubei University, Wuhan, 430062 (China); Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei University, Wuhan, 430062 (China); Pan Ruikun; Ma Zhijun; Wang Jinzhao [School of Materials Science and Engineering, Hubei University, Wuhan, 430062 (China)

    2012-01-15

    Tm-doped Ba{sub 0.8}Sr{sub 0.2}TiO{sub 3} thick films were prepared by the screen-printing technique on the alumina substrate. The microstructure of the Tm-doped BST thick films was characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and Raman spectroscopy, respectively. All the samples showed a typical perovskite polycrystalline structure when sintered at 1260 Degree-Sign C. The substitution behavior of Tm{sup 3+} ion in BST was found to change with increasing the Tm{sup 3+} concentration. The observed Tm-related red emission reaches the maximum at 0.2 mol% Tm{sup 3+} concentration. The effects of concentration quenching on the luminescence intensity were discussed.

  9. Cyclodextrin-grafted barium titanate nanoparticles for improved dispersion and stabilization in water-based systems

    Energy Technology Data Exchange (ETDEWEB)

    Serra-Gómez, R. [Universidad de Navarra, Departamento de Química y Edafología (Spain); Martinez-Tarifa, J. M. [Universidad Carlos III de Madrid, Departamento de Ingeniería Eléctrica (Spain); González-Benito, J. [Universidad Carlos III de Madrid, Departamento de Ciencia e Ingeniería de Materiales e Ingeniería Química, IQMAAB (Spain); González-Gaitano, G., E-mail: gaitano@unav.es [Universidad de Navarra, Departamento de Química y Edafología (Spain)

    2016-01-15

    Ceramic nanoparticles with piezoelectric properties, such as BaTiO{sub 3} (BT), constitute a promising approach in the fields of nanocomposite materials and biomaterials. In the latter case, to be successful in their preparation, the drawback of their fast aggregation and practically null stability in water has to be overcome. The objective of this investigation has been the surface functionalization of BaTiO{sub 3} nanoparticles with cyclodextrins (CDs) as a way to break the aggregation and improve the stability of the nanoparticles in water solution, preventing and minimizing their fast precipitation. As a secondary goal, we have achieved extra-functionality of the nanoparticles, bestowed from the hydrophobic cavity of the macrocycle, which is able to lodge guest molecules that can form inclusion complexes with the oligosaccharide. The nanoparticle functionalization has been fully tracked and characterized, and the cytotoxicity of the modified nanoparticles with fibroblasts and pre-osteoblasts cell lines has been assessed with excellent results in a wide range of concentrations. The modified nanoparticles were found to be suitable for the easy preparation of nanocomposite hydrogels, via dispersion in hydrophilic polymers of typical use in biomedical applications (PEG, Pluronics, and PEO), and further processed in the form of films via water casting, showing very good results in terms of homogeneity in the dispersion of the filler. Likewise, as examples of application and with the aim of exploring a different range of nanocomposites, rhodamine B was included in the macrocycles as a model molecule, and films prepared from a thermoplastic matrix (EVA) via high-energy ball milling have been tested by impedance spectroscopy to discuss their dielectric properties, which indicated that even small modifications in the surface of the nanoparticles generate a different kind of interaction with the polymeric matrix. The CD-modified nanoparticles are thus suitable for easy preparation of the water-based nanocomposites either as hydrogels or as nanocomposites based on thermoplastic matrices.

  10. Cyclodextrin-grafted barium titanate nanoparticles for improved dispersion and stabilization in water-based systems

    International Nuclear Information System (INIS)

    Ceramic nanoparticles with piezoelectric properties, such as BaTiO3 (BT), constitute a promising approach in the fields of nanocomposite materials and biomaterials. In the latter case, to be successful in their preparation, the drawback of their fast aggregation and practically null stability in water has to be overcome. The objective of this investigation has been the surface functionalization of BaTiO3 nanoparticles with cyclodextrins (CDs) as a way to break the aggregation and improve the stability of the nanoparticles in water solution, preventing and minimizing their fast precipitation. As a secondary goal, we have achieved extra-functionality of the nanoparticles, bestowed from the hydrophobic cavity of the macrocycle, which is able to lodge guest molecules that can form inclusion complexes with the oligosaccharide. The nanoparticle functionalization has been fully tracked and characterized, and the cytotoxicity of the modified nanoparticles with fibroblasts and pre-osteoblasts cell lines has been assessed with excellent results in a wide range of concentrations. The modified nanoparticles were found to be suitable for the easy preparation of nanocomposite hydrogels, via dispersion in hydrophilic polymers of typical use in biomedical applications (PEG, Pluronics, and PEO), and further processed in the form of films via water casting, showing very good results in terms of homogeneity in the dispersion of the filler. Likewise, as examples of application and with the aim of exploring a different range of nanocomposites, rhodamine B was included in the macrocycles as a model molecule, and films prepared from a thermoplastic matrix (EVA) via high-energy ball milling have been tested by impedance spectroscopy to discuss their dielectric properties, which indicated that even small modifications in the surface of the nanoparticles generate a different kind of interaction with the polymeric matrix. The CD-modified nanoparticles are thus suitable for easy preparation of the water-based nanocomposites either as hydrogels or as nanocomposites based on thermoplastic matrices.

  11. Nanocrystalline barium titanate films on flexible plastic substrates via pulsed laser annealing

    Science.gov (United States)

    Tsagarakis, Evangelos D.; Lew, Connie; Thompson, Michael O.; Giannelis, Emmanuel P.

    2006-11-01

    The drive towards ubiquitous electronics requires fundamental shifts in our approach to microelectronic fabrication as well as advances in materials and processing technologies. For large area electronics, low cost manufacturing, including roll-to-roll and printing technologies, will be required. These techniques present continuing challenges to develop processing technologies compatible with the low thermal budgets required for flexible polymeric substrates. The authors report here the deposition and dielectric properties of nanocrystalline BaTiO3 films on polyethylene terephthalate utilizing laser annealing as part of their effort to develop methods and tools for depositing various functional coatings and films on flexible substrates.

  12. Interfacial diffusion in a MOCVD grown barium titanate film[Metal Organic Chemical Vapor Deposition

    Energy Technology Data Exchange (ETDEWEB)

    Datta, A.; Chattopadhyay, S.; Richter, A.G.; Kmetko, J.; Lee, C.B.

    2000-07-01

    A combination of two nondestructive techniques, Grazing Incidence X-ray Reflectivity and High Resolution X-ray Diffraction, is used to study (at around 10{angstrom} resolution) the composition profile across a 500{angstrom} thick film of BaTiO{sub 3} grown epitaxially on (100) MgO by MOCVD. Results form both studies indicate diffusion of Mg to about 250{angstrom} into the film at film-substrate interface, consistent with the diffuse ferroelectric phase transition observed in this film. The lattice parameter a shows a progressive decrease as the authors move into the film from the interface, and an anomalously low value in the Mg-free portion of the film.

  13. Residual carbon detection in barium titanate ceramics by nuclear reaction technique

    International Nuclear Information System (INIS)

    Residual carbon content in BaTiO3 ceramics synthesized by the citric resin route has been evaluated by the 12C(d,p)13C nuclear reaction technique. The C content inside ceramics sintered at 1400oC is about 50 ppm in weight. The surface layer (0.4 μm) exhibits a concentration of several hundreds or thousands ppm with two origins for the detected carbon: atmospheric contamination carbon adsorbed at the surface, which has been roughly evaluated, and material intrinsic carbon: its concentration depends mainly on the sintering conditions, shape of ceramic pieces and sintering temperature. (author)

  14. Plasticizer Effect on Rheological Behaviour of Screen Printing Pastes Based on Barium Titanate Nanopowder

    Science.gov (United States)

    Dulina, I.; Umerova, S.; Ragulya, A.

    2015-04-01

    The dependence of rheological behaviour of pastes based on BaTiO3 nanopowder vs. plasticizer content has been investigated. All pastes prepared for research can be divided into groups by structure types and viscosity. Such a grouping has been explained by different interaction between nanoparticles and binder in the pastes. Particles with molecules of binder form clusters - the representative units in the volume of paste where particles are uniformly distributed. Plasticizer adding effects on binder molecule conformation and change clusters size. Bond strength between clusters can be specified with rheopexy in the area of low shear stress and low strain rates. Rheopexy degree increasing authenticates interaction intensification between clusters. Rheopexy structure destruction leads to separate clusters formation and initiation of the pseudoplastic flow stage. The end of pseudoplastic flow corresponds to structure with clusters assembled into separated layers. Further shear stress increasing leads to inter-clusters bonds appear which can be deformed elastically and the temporary local linkage is possible. Such a phenomenon fully discloses the features of thixotropic structure destruction in plasticized pastes.

  15. Laser crystallisation during pulsed laser deposition of barium titanate thin films at low temperatures

    Science.gov (United States)

    Gottmann, J.; Vosseler, B.; Kreutz, E. W.

    2002-09-01

    Using a high dielectric material as substitute for SiO xN y in dielectric film capacitors of dynamic memories (DRAM) allows a significantly higher integration density and a reduction of the die size, even with planar capacitors. BaTiO 3 is such a material. A dielectric constant of ɛr>1000 has been achieved in thin films, made by pulsed laser deposition (PLD). For applications in microelectronic memories it is necessary to produce crystalline, defect-free and oriented BaTiO 3 thin films at substrate temperatures, TSsitu laser crystallisation crystalline BaTiO 3 films can be deposited at substrate temperatures of TS=360-440 °C showing a dielectric constant of up to ɛr=1200. The ferroelectric and dielectric properties of the films are determined by C- V and P- V impedance measurements and correlated to the chemical and structural properties, as determined by X-ray photoemission spectroscopy, X-ray diffraction, micro Raman spectroscopy and scanning electron microscopy.

  16. Electrical characterization of zirconium substituted barium titanate using complex impedance spectroscopy

    Indian Academy of Sciences (India)

    Priyanka; A K Jha

    2013-02-01

    This paper reports complex impedance analysis of polycrystalline complex perovskite structured BaZr0.025Ti0.975O3 prepared by solid state reaction method. XRD analysis reveals the formation of single phase perovskite structure. SEM has been used to investigate grain morphology of the material. Impedance plots have been used as a tool to analyse electrical properties of the sample as a function of frequency and temperature. Bulk resistance is observed to decrease with an increase in temperature showing a typical negative temperature coefficient of resistance (NTCR) type behaviour. Nyquist (Cole–Cole) plots show both inter and intra grain boundary effects. Relaxation time is found to decrease with increasing temperature and it obeys the Arrhenius relationship. The variation of d.c. and a.c. conductivity as a function of temperature is also reported.

  17. Near-field terahertz imaging of ferroelectric domains in barium titanate

    Czech Academy of Sciences Publication Activity Database

    Berta, Milan; Kadlec, Filip

    2010-01-01

    Roč. 83, 10-11 (2010), 985-993. ISSN 0141-1594 R&D Projects: GA MŠk LC512 Institutional research plan: CEZ:AV0Z10100520 Keywords : singular value decomposition * domain structure imaging * near-field terahertz microscopy * subwavelength resolution Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.006, year: 2010

  18. Synthesis, Microstructure and the Crystalline Structure of the Barium Titanate Ceramics Doped with Lanthanum

    Directory of Open Access Journals (Sweden)

    Wodecka-Duś B.

    2013-12-01

    Full Text Available W prezentowanej pracy przeprowadzono badania ceramiki BaTiO3 i Ba1-xLąxTi1-x/4O3 (BLT dla koncentracji z prze- działu 0,001< x <0,004 (0,l-0,4mol.% La. Ceramikę BLT wytworzono z mieszaniny prostych tlenków La203, TiOi i BaCOj (wszystkie o czystości 99,9+%, Aldrich Chemical Co. Proszki ceramiczne otrzymano metodą konwencjonalną w stanie stałym (metodą MOM i poddano badaniu mikrostruktury i struktury krystalicznej. Mieszaniny proszków poddano analizie termicznej. Wyniki analizy termicznej określiły optymalną temperaturę syntezy oraz procesy zachodzące podczas ogrzewania proszków. Następnie proszki formowano w dyski pod ciśnieniem 300MPa w matrycach ze stali nierdzewnej o średnicy 10 mm. Syntezę przeprowadzono w Ts =950°C t =2godz. Ostatnim krokiem technologii było bezciśnieniowe spiekanie metodą swobodnego spiekania w T = 1350^ przez / =2 godziny. Morfologię otrzymanego materiału ceramicznego obserwowano metodą skaningowej mikroskopii elektronowej. Ceramikę BLT badano również pod względem składu chemicznego metodą EDS. Analizę strukturalną przeprowadzono metodą dyfrakcji rentgenowskiej. Badania mikrostruktury i struktury krystalicznej ceramiki przeprowadzono w temperaturze pokojowej. Badania EDS potwierdziły zachowanie stechiometrii otrzymanych próbek według wzoru chemicznego. Rentgenowska analiza dyfrakcyjna potwierdziły wytworzenie pożądanej struktury krystalicznej zarówno czystej ceramiki BaTiOj jak i z domieszką Lau. Otrzymana ceramika wykazuje strukturę typu perowskitu A BO? o symetrii tetragonalnej P4 mm. Stwierdzono, że wraz ze wzrostem stężenia La3* w BaTiOj następuje zmniejszenie wielkości ziam krystalicznych, zmniejszenie średniego wymiaru krystalitów, zmniejszenie objętości komórki elementarnej oraz wzrost obliczonej rentgenowskiej gęstości.

  19. Highly efficient visible light mediated azo dye degradation through barium titanate decorated reduced graphene oxide sheets

    Science.gov (United States)

    Rastogi, Monisha; Kushwaha, H. S.; Vaish, Rahul

    2016-03-01

    This study investigates BaTiO3 decorated reduced graphene oxide sheets as a potential visible light active catalyst for dye degradation (Rhodamine B). The composites were prepared through conventional hydrothermal synthesis technique using hydrazine as a reducing agent. A number of techniques have been employed to affirm the morphology, composition and photocatalytic properties of the composites; these include UV-visible spectrophotoscopy that assisted in quantifying the concentration difference of Rhodamine B. The phase homogeneity of the composites was examined through x-ray powder diffraction (XRD) and high resolution transmission electron microscopy (HRTEM) was employed to confirm the orientation of the BaTiO3 particles over the reduced graphene oxide sheets. Photoluminescence (PL) emission spectra assisted in determining the surface structure and excited state of the catalyst. Fourier transformed-infrared (FTIR) spectra investigated the vibrations and adsorption peak of the composites, thereby ascertaining the formation of reduced graphene oxide. In addition, diffuse reflectance spectroscopy (DRS) demonstrated an enhanced absorption in the visible region. The experimental investigations revealed that graphene oxide acted as charge collector and simultaneously facilitated surface adsorption and photo-sensitization. It could be deduced that BaTiO3-reduced graphene oxide composites are of significant interest the field of water purification through solar photocatalysis. [Figure not available: see fulltext.

  20. Infrared spectroscopic, x-ray, and nanoscale characterization of strontium titanate thin films

    Energy Technology Data Exchange (ETDEWEB)

    Webb, J.D.; Moutinho, H.R.; Kazmerski, L.L. [National Renewable Energy Lab., Golden, CO (United States); Mueller, C.H.; Rivkin, T.V.; Treece, R.E. [Superconducting Core Technologies, Inc., Golden, CO (United States); Dalberth, M.; Rogers, C.T. [Colorado Univ., Boulder, CO (United States). Dept. of Physics

    1996-04-01

    Attenuated total reflectance (ATR) measurements were performed using Fourier transform infrared (FTIR) spectroscopy in the ATR mode with a thallium iodobromide (KRS-5) crystal to measure the frequencies of the {nu}{sub 3} and {nu}{sub 4} phonon absorption bands in thin strontium titanate films deposited on single-crystal yttrium-barium copper oxide (YBCO), lanthanum aluminate, magnesium oxide, and strontium titanate substrates. The KRS-5 crystal enabled FTIR-ATR measurements to be made at frequencies above 400 cm{sup {minus}1}. Atomic force microscopy (AFM) and X-ray diffraction (XRD) measurements were also made to further characterize the films. The measurements were repeated on single-crystal specimens of strontium titanate and the substrates for comparison. Softening in the frequency of the {nu}{sub 4} transverse optical phonon in the lattice- mismatched films below the established value of 544 cm{sup {minus}1} is indicative of the highly textured, polycrystalline ceramic nature of the films and is consistent with the XRD and AFM results.

  1. 75 FR 19657 - Barium Chloride From China

    Science.gov (United States)

    2010-04-15

    ... Commission found that the domestic interested party group response to its notice of institution (74 FR 31757... COMMISSION Barium Chloride From China AGENCY: United States International Trade Commission. ACTION: Notice of Commission determination to conduct a full five-year review concerning the antidumping duty order on...

  2. 75 FR 20625 - Barium Chloride From China

    Science.gov (United States)

    2010-04-20

    ... established a schedule for the conduct of this review (74 FR 62587, November 30, 2010). Subsequently, counsel... From the Federal Register Online via the Government Publishing Office INTERNATIONAL TRADE COMMISSION Barium Chloride From China AGENCY: United States International Trade Commission. ACTION:...

  3. Thermal decomposition of barium valerate in argon

    DEFF Research Database (Denmark)

    Torres, P.; Norby, Poul; Grivel, Jean-Claude

    2015-01-01

    The thermal decomposition of barium valerate (Ba(C4H9CO2)(2)/Ba-pentanoate) was studied in argon by means of thermogravimetry, differential thermal analysis, IR-spectroscopy, X-ray diffraction and hot-stage optical microscopy. Melting takes place in two different steps, at 200 degrees C and 280...

  4. Adsorption of Pb(II) present in aqueous solution on calcium, strontium and barium hydroxy apatites

    International Nuclear Information System (INIS)

    Calcium, strontium and barium hydroxy apatites were successfully synthesized by chemical precipitation method, the obtained powders were characterized by the techniques of X-ray diffraction (XRD), scanning electron microscopy (Sem), semi-quantitative elemental analysis (EDS), infrared spectroscopy (IR), and N2 physisorption studies, complementary to these analytical techniques, was determined the surface fractal dimension (Df), and the amount of surface active sites of the materials, in order to know application as ceramic for water remediation. The ability of Pb(II) ion adsorption present in aqueous solution on the hydroxy apatites synthesized by batch type experiments was studied as a function of contact time, concentration of the adsorbate and temperature. The maximum lead adsorption efficiencies obtained were 0.31, 0.32 and 0.26 mg/g for calcium, strontium and barium hydroxy apatites respectively, achieved an equilibrium time of 20 minutes in the three solid-liquid systems studied. Experimental data were adequately adjusted at the adsorption kinetic model pseudo-second order, for the three cases. Moreover, experimental data of the strontium and calcium hydroxy apatites were adjusted to the Langmuir adsorption isotherm, indicating that the adsorption was through a monolayer, whereas barium hydroxyapatite was adjusted to the Freundlich adsorption isotherm, indicating a multilayer adsorption. The thermodynamic parameters obtained during adsorption studies as a function of temperature showed physisorption, exothermic and spontaneous processes respectively. The results showed that the calcium hydroxyapatite, strontium and barium are an alternative for the Pb(II) ion adsorption present in wastewaters. (Author)

  5. Lattice constant prediction of defective rare earth titanate perovskites

    International Nuclear Information System (INIS)

    Engineering defective structures in an attempt to modify properties is an established technique in materials chemistry, yet, no models exist which can predict the structure of perovskite compounds containing extrinsic point defects such as vacancies. An empirically derived predictive model, based solely on chemical composition and published ionic radii has been developed. Effective vacancy sizes were derived both empirically from an existing model for pseudocubic lattice-constants, as well as experimentally, from average bond lengths calculated from neutron diffraction data. Compounds of lanthanum-doped barium titanate and strontium-doped magnesium titanate were synthesized with vacancies engineered on the A and B sites. Effective vacancy sizes were then used in empirical models to predict changes in lattice constants. Experimentally refined bond lengths used in the derivation of an effective vacancy size seemed to overestimate the effect of the point defects. Conversely, using calculated vacancy sizes, derived from a previously reported predictive model, showed significant improvements in the prediction of the pseudocubic perovskite lattice. - Graphical abstract: Atomistic model of Sr0.3Nd0.7Mg0.35Ti0.65O3 and Rietveld refinement of neutron diffraction data. - Highlights: • Defective perovskites were synthesized using the organic steric entrapment method. • Oxygen tilt systems were solved through X-ray, electron, and neutron diffraction. • An effective vacancy size for the cations was calculated from experimental bond lengths. • Discrepancies between Shannon radii and experimental measurements are explored. • An empirical model for predicting apc, with an absolute error of 0.20%, was developed

  6. Chemical abundance analysis of 19 barium stars

    Science.gov (United States)

    Yang, Guo-Chao; Liang, Yan-Chun; Spite, Monique; Chen, Yu-Qin; Zhao, Gang; Zhang, Bo; Liu, Guo-Qing; Liu, Yu-Juan; Liu, Nian; Deng, Li-Cai; Spite, Francois; Hill, Vanessa; Zhang, Cai-Xia

    2016-01-01

    We aim at deriving accurate atmospheric parameters and chemical abundances of 19 barium (Ba) stars, including both strong and mild Ba stars, based on the high signal-to-noise ratio and high resolution Echelle spectra obtained from the 2.16 m telescope at Xinglong station of National Astronomical Observatories, Chinese Academy of Sciences. The chemical abundances of the sample stars were obtained from an LTE, plane-parallel and line-blanketed atmospheric model by inputting the atmospheric parameters (effective temperatures Teff, surface gravities log g, metallicity [Fe/H] and microturbulence velocity ξt) and equivalent widths of stellar absorption lines. These samples of Ba stars are giants as indicated by atmospheric parameters, metallicities and kinematic analysis about UVW velocity. Chemical abundances of 17 elements were obtained for these Ba stars. Their Na, Al, α- and iron-peak elements (O, Na, Mg, Al, Si, Ca, Sc, Ti, V, Cr, Mn, Ni) are similar to the solar abundances. Our samples of Ba stars show obvious overabundances of neutron-capture (n-capture) process elements relative to the Sun. Their median abundances of [Ba/Fe], [La/Fe] and [Eu/Fe] are 0.54, 0.65 and 0.40, respectively. The Y I and Zr I abundances are lower than Ba, La and Eu, but higher than the α- and iron-peak elements for the strong Ba stars and similar to the iron-peak elements for the mild stars. There exists a positive correlation between Ba intensity and [Ba/Fe]. For the n-capture elements (Y, Zr, Ba, La), there is an anti-correlation between their [X/Fe] and [Fe/H]. We identify nine of our sample stars as strong Ba stars with [Ba/Fe] >0.6 where seven of them have Ba intensity Ba=2-5, one has Ba=1.5 and another one has Ba=1.0. The remaining ten stars are classified as mild Ba stars with 0.17<[Ba/Fe] <0.54.

  7. Sources of Pressure in Titan's Plasma Environment

    CERN Document Server

    Achilleos, N; Bertucci, C; Guio, P; Romanelli, N; Sergis, N

    2013-01-01

    In order to analyze varying plasma conditions upstream of Titan, we have combined a physical model of Saturn's plasmadisk with a geometrical model of the oscillating current sheet. During modeled oscillation phases where Titan is furthest from the current sheet, the main sources of plasma pressure in the near-Titan space are the magnetic pressure and, for disturbed conditions, the hot plasma pressure. When Titan is at the center of the sheet, the main source is the dynamic pressure associated with Saturn's cold, subcorotating plasma. Total pressure at Titan (dynamic plus thermal plus magnetic) typically increases by a factor of five as the current sheet center is approached. The predicted incident plasma flow direction deviates from the orbital plane of Titan by < 10 deg. These results suggest a correlation between the location of magnetic pressure maxima and the oscillation phase of the plasmasheet.

  8. Constraints on Titan's rotation from Cassini mission radar data

    Science.gov (United States)

    Bills, Bruce; Stiles, Bryan W.; Hayes, Alexander

    2015-05-01

    We present results of a new analysis of the rotational kinematics of Titan, as constrained by Cassini radar data, extending over the entire currently available set of flyby encounters. Our analysis provides a good constraint on the current orientation of the spin pole, but does not have sufficient accuracy and duration to clearly see the expected spin pole precession. In contrast, we do clearly see temporal variations in the spin rate, which are driven by gravitational torques which attempt to keep the prime meridian oriented toward Saturn.Titan is a synchronous rotator. At lowest order, that means that the rotational and orbital motions are synchronized. At the level of accuracy required to fit the Cassini radar data, we can see that synchronous rotation and uniform rotation are not quite the same thing. Our best fitting model has a fixed pole, and a rotation rate which varies with time, so as to keep Titan's prime meridian oriented towards Saturn, as the orbit varies.A gravitational torque on the tri-axial figure of Titan attempts to keep the axis of least inertia oriented toward Saturn. The main effect is to synchronize the orbit and rotation periods, as seen in inertial space. The response of the rotation angle, to periodic changes in orbital mean longitude, is modeled as a damped, forced harmonic oscillator. This acts as a low-pass filter. The rotation angle accurately tracks orbital variations at periods longer than the free libration period, but is unable to follow higher frequency variations.The mean longitude of Titan's orbit varies on a wide range of time scales. The largest variations are at Saturn's orbital period (29.46 years), and are due to solar torques. There are also variations at periods of 640 and 5800 days, due to resonant interaction with Hyperion.For a rigid body, with moments of inertia estimated from observed gravity, the free libration period for Titan would be 850 days. The best fit to the radar data is obtained with a libration period of

  9. TiME - The Titan Mare Explorer

    Science.gov (United States)

    Stofan, E.; Lorenz, R.; Lunine, J.; Bierhaus, E. B.; Clark, B.; Mahaffy, P. R.; Ravine, M.

    The Titan Mare Explorer (TiME) is a Discovery-class mission concept that underwent a detailed Phase A study in 2011-2012. The mission would splashdown a capsule on Titan's ethane sea Ligeia Mare as early as the summer of 2023, and would spend multiple Titan days performing science measurements and transmitting data directly back to Earth. This paper reviews briefly the mission concept.

  10. Amino acidis derived from Titan tholins

    Science.gov (United States)

    Khare, Bishun N.; Sagan, Carl; Ogino, Hiroshi; Nagy, Bartholomew; Er, Cevat

    1986-01-01

    The production of amino acids by acid treatment of Titan tholin is experimentally investigated. The synthesis of Titan tholin and the derivatization of amino acids to N-trifluoroacetyl isopropyl esters are described. The gas chromatography/mass spectroscopy analysis of the Titan tholins reveals the presence of glycine, alpha and beta alainine, and aspartic acid, and the total yield of amino acids is about 0.01.

  11. Titan Montgolfiere Buoyancy Modulation System Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Titan is ideally suited for balloon exploration due to its low gravity and dense atmosphere. Current NASA mission architectures baseline Montgolfiere balloon...

  12. The Global Energy Balance of Titan

    Science.gov (United States)

    Li, Liming; Nixon, Conor A.; Achterberg, Richard K.; Smith, Mark A.; Gorius, Nicolas J. P.; Jiang, Xun; Conrath, Barney J.; Gierasch, Peter J.; Simon-Miller, Amy A.; Flasar, F. Michael; Baines, Kevin H.; Ingersoll, Andrew P.; West, Robert A.; Vasavada, Ashwin R.; Ewald, Shawn P.

    2011-01-01

    We report the first measurement of the global emitted power of Titan. Longterm (2004-2010) observations conducted by the Composite Infrared Spectrometer (CIRS) onboard Cassini reveal that the total emitted power by Titan is (2.84 plus or minus 0.01) x 10(exp 8) watts. Together with previous measurements of the global absorbed solar power of Titan, the CIRS measurements indicate that the global energy budget of Titan is in equilibrium within measurement error. The uncertainty in the absorbed solar energy places an upper limit on the energy imbalance of 5.3%.

  13. Correlations between VIMS and RADAR data over the surface of Titan: Implications for Titan's surface properties

    Science.gov (United States)

    Tosi, F.; Orosei, R.; Seu, R.; Coradini, A.; Lunine, J. I.; Filacchione, G.; Capaccioni, F.; Cerroni, P.; Flamini, E.; Brown, R. H.; Cruikshank, D. P.; Lopes, R. M.

    2010-12-01

    We present new results combining the VIMS and RADAR medium resolution data on Titan’s surface. In RADAR data we consider two geophysical quantities: the normalized backscatter cross-section obtained from the scatterometer measurement, corrected for the incidence angle, and the calibrated antenna temperature determined from the radiometer measurement, as found in publicly available data products. In VIMS data, combining spatial and spectral information, we have selected some atmospheric windows in the spectral range between 2 and 5 μm, providing the best optical depth to measure surface reflectance. The two RADAR parameters are combined with VIMS data, with estimated errors, to produce an aggregate data set, that we process using multivariate classification methods to identify homogeneous taxonomic units in the multivariate space of the samples. Such units in fact reveal compositional trends in the surface, that are likely related to different abundances of simple ices and/or hydrocarbons. Our analysis relies on the G-mode method, which has been successfully used in the past for the classification of such diverse data sets as lunar rock samples, asteroids and planetary surfaces. Due to the large number of data of Titan, the classification work proceeds in several steps. In a previous work (Tosi et al., 2010), we analyzed the data acquired in Titan flybys: T3, T4, T8, T13 and T16, covering mostly the major bright and dark features seen around the equator, combined with VIMS infrared data, in order to validate the classification method. Now we focus on flybys: T23, T25, T28, T30, and T43, covering also regions of Titan located at higher latitudes, and partly including the polar regions. The obtained results are generally in agreement with previous work devoted both to the analysis of the scatterometry data through physical models and to the correlation between SAR and radiometry data at a high resolution scale. This classification can be expanded and refined as new

  14. Hydrothermal synthesis of sodium titanate nanotubes

    International Nuclear Information System (INIS)

    From suspension of nanoparticles TiO2 in concentrated water solution of NaOH were prepared by hydrothermal synthesis sodium titanates particles with different shapes. Influence of synthesis duration under temperature 180 grad C on the change of particles shapes was observed. The result of experiment showed that one day synthesis resulted to obtained product with high content of nanotubes, but the extension of this period led to the transformation of product's shape into stripes. From the results of experiment follows that as a precursor for TiO2 nanotubes preparation may be used only products of hydrothermal synthesis, which duration of pressure synthesis was not longer than 24 hours. (authors)

  15. Investigation of sintering kinetics of magnesium titanate

    Directory of Open Access Journals (Sweden)

    Petrović V.V.

    2013-01-01

    Full Text Available Obtaining new materials including sintered electronic materials using different procedures is the consequence of long complex and expensive experimental work. However, the dynamics of expansive development of electronic devices requires fast development of new materials, especially sintered oxide materials. The recent rapid development of electronics is among other things due to development and improvement of new components based on titanate ceramics. Research in this work has included an experimental study of the synthesis of dielectric ceramics in the system MgCO3 - TiO2. Starting powders were mechanically activated by milling in a high energy planetary mill for different times. Samples were prepared for isothermal sintering at 1100ºC by dual pressing of powders into cylindrical samples in a hydraulic press.

  16. Electrical and magnetic properties of a series of ternary barium metal ruthenates: Ba3MRu2O9 (M=Fe, Co, Ni, Cu, and In)

    Science.gov (United States)

    Rijssenbeek, J. T.; Matl, P.; Batlogg, B.; Ong, N. P.; Cava, R. J.

    1998-10-01

    The resistivities and magnetic susceptibilities of the Ba3MRu2O9 series of compounds, with M=Fe, Co, Ni, Cu, and In, are reported. All compounds have regular or distorted versions of the hexagonal barium titanate structure, consisting of chains of face-sharing RuO6 octahedra interconnected by corner-sharing MO6 octahedra. The compounds are semiconductors with ρ>0.1 Ω cm at ambient temperature. The magnetic susceptibilities below 400 K show that the 3d elements display local moments, and that the variants with M=Co, Ni, and Cu have magnetic transitions near 100 K.

  17. Titan Imagery with Keck AO during and after Probe Entry

    Energy Technology Data Exchange (ETDEWEB)

    de Pater, I; Adamkovics, M; Bouchez, A H; Brown, M E; Gibbard, S G; Marchis, F; Roe, H G; Schaller, E L; Young, E

    2006-02-03

    We present adaptive optics data from the 10-m W.M. Keck telescope that were taken during the time the Huygens probe descended through Titan's atmosphere, and on the days following touch-down. The spatial resolution of the images is typically {approx}0.04-inch, or {approx}240 km on Titan (60 km/pixel). No probe entry signal was detected at levels exceeding 0.8 {micro}Jy (3-{sigma}) per pixel (0.01-inch), which although within the range of predicted flux levels, cannot constrain any models. We present data on Titan's surface, troposphere and stratosphere during the days following probe entry, when the solar phase angle varied from 0.05{sup o} up to 0.8{sup o}, with the Sun in the West. Contrary to expectation, the data often showed the East side to be brightest. Adding data obtained with Keck and Gemini over the past few years reveals that the East-West asymmetry can be explained by a combination of the solar phase angle effect together with a general preponderance of haze on Titan's East or morning hemisphere. The troposphere was characterized by quiescent weather; only a few small clouds were present near the south pole, at typical altitudes of 30-40 km. While stratospheric haze was prominent over the northern hemisphere, tropospheric haze dominated the south, from the S. pole up to latitudes of {approx} -45{sup o}. An intriguing observation is that obtained at 1.22 {micro}m, which revealed haze in the form of a collar at -60{sup o}, in contrast to the polar haze cap as usually seen. A comparison of narrow band JHK images of Titan's surface with that obtained by Cassini ISS shows a striking resemblance in small-scale features. After a decent attempt to remove the atmosphere from the images, the surface contrast between dark and bright areas may be larger at 2 {micro}m than at 1.6 and 1.3 {micro}m. If true, this could imply that the dark areas on Titan's surface are covered by a coarser grained frost than the bright areas, and/or that there

  18. Review on optical constants of Titan aerosols: Experimental results and modeling/observational data

    Science.gov (United States)

    Brassé, Coralie; Muñoz, Olga; Coll, Patrice; Raulin, François

    2014-05-01

    During the last years many studies have been performed to improve the experimental database of optical constants of Titan aerosols. Indeed, the determination of the optical constants of these particles is essential to quantify their capacity to absorb and to scatter solar radiation, and thus to evaluate their role on Titan's radiative balance and climate. The study of optical properties is also crucial to analyze and to better interpret many of Titan's observational data, in particular those acquired during the Cassini-Huygens mission. One way to determine Titan aerosols optical constant is to measure the optical constants of analogues of Titan complex organic material synthesized in the laboratory, usually named Titan's tholins (Sagan and Khare, 1979). But the optical constants depend on the chemical composition, the size and the shape of particles (Raulin et al., 2012). Those three parameters result from the experimental conditions such as energy source, gas mixing ratio, gas pressure, flow rate and irradiation time (Cable et al., 2012). Besides the determination of the refractive index in the laboratory, there are others methods using theoretical models or observational data. Nevertheless, theoretical models are based on laboratory data or/and observational data. The visible - near infrared spectral region of optical constants has been widely studied with laboratory analogues. Comparison of the obtained results suggest that tholins synthesized by Tran et al. (2003) and Majhoub et al. (2012) are the best representative of Titan aerosols with regards to their refractive indexes in this spectral region. The mid-infrared spectral range has been studied only by Imanaka et al. (2012) and slightly by Tran et al. (2003). In that spectral range, Titan tholins do not exhibit the features displayed by Kim and Courtin (2013) from Titan's observations. For spectral region of wavelengths smaller than 0.20µm or higher than 25µm, only the data from Khare et al. (1984) are

  19. Geologic Features on Titan's Surface as Revealed by the Cassini Titan Radar Mapper

    Science.gov (United States)

    Lopes, R. M.; Stofan, E.; Elachi, C.; Kirk, R.; Lorenz, R.; Lunine, J.; Mitchell, K. L.; Ori, G. G.; Paganelli, F.; Soderblom, L.; Wall, S.; Wood, C.

    2005-12-01

    The Cassini Titan Radar Mapper is one of the prime investigations to explore Titan's surface from orbit. Because of its almost opaque atmosphere, microwave remote sensing contributes uniquely to that investigation. The Titan Radar Mapper operates as a passive radiometer, scatterometer, altimeter, and synthetic aperture radar (SAR). We review the diversity of geologic features revealed using SAR during four fly-bys (Ta: October 2004, T3: February 2005, T7: September 2005, and T8: October 2005) and their context. Early SAR images from Ta and T3 reveal that Titan is very geologically complex (see Elachi et al., 2005, Science 13, 970-4). A variety of landforms and surface units were characterized morphologically and mapped, based on brightness variations, general planform shape and texture. Significant differences were seen in the geology between the Ta swath (centered at ~ 50N, 80W) and the T3 swath (centered at ~ 30N, 70W). The units in the Ta swath appear relatively young and no impact craters could be unambiguously identified. A variety of features which we argue to be cryovolcanic in origin were seen, including extensive flows, paterae, and a circular feature (Ganesa Macula) interpreted as a volcanic dome. We interpret radar-bright braided and sinuous channels and associated deposits to be fluvial in origin. Five distinct units were mapped in Ta, including a dark mottled unit that may represent the presence of surface liquids. The T3 swath displayed many of the same units seen in Ta, except for cryovolcanic features which are absent or indistinct. Among the new features in T3 are a large impact (440 km diameter) basin, a smaller (80 km diameter) crater, and dark lineated streaks, nicknamed "cat scratches" that are thought to be aeolian in origin. The dominant unit in T3 is a bright mottled unit that may contain ubiquitous small (less than 10 km across) topographic features. Groups of material that appear to be hills are more common in the T3 data than Ta. Based on

  20. Radioactive Barium Ion Trap Based on Metal-Organic Framework for Efficient and Irreversible Removal of Barium from Nuclear Wastewater.

    Science.gov (United States)

    Peng, Yaguang; Huang, Hongliang; Liu, Dahuan; Zhong, Chongli

    2016-04-01

    Highly efficient and irreversible capture of radioactive barium from aqueous media remains a serious task for nuclear waste disposal and environmental protection. To address this task, here we propose a concept of barium ion trap based on metal-organic framework (MOF) with a strong barium-chelating group (sulfate and sulfonic acid group) in the pore structures of MOFs. The functionalized MOF-based ion traps can remove >90% of the barium within the first 5 min, and the removal efficiency reaches 99% after equilibrium. Remarkably, the sulfate-group-functionalized ion trap demonstrates a high barium uptake capacity of 131.1 mg g(-1), which surpasses most of the reported sorbents and can selectively capture barium from nuclear wastewater, whereas the sulfonic-acid-group-functionalized ion trap exhibits ultrafast kinetics with a kinetic rate constant k2 of 27.77 g mg(-1) min(-1), which is 1-3 orders of magnitude higher than existing sorbents. Both of the two MOF-based ion traps can capture barium irreversibly. Our work proposes a new strategy to design barium adsorbent materials and provides a new perspective for removing radioactive barium and other radionuclides from nuclear wastewater for environment remediation. Besides, the concrete mechanisms of barium-sorbent interactions are also demonstrated in this contribution. PMID:26999358

  1. Prospects for Barium Tagging in Gaseous Xenon

    International Nuclear Information System (INIS)

    Tagging events with the coincident detection of a barium ion would greatly reduce the background for a neutrino-less double beta decay search in xenon. This paper describes progress towards realizing this goal. It outlines a source that can produce large quantities of Ba++ in gas, shows that this can be extracted to vacuum, and demonstrates a mechanism by which the Ba++ can be efficiently converted to Ba+ as required for laser identification.

  2. Production of translationally cold barium monohalide ions

    OpenAIRE

    DePalatis, M. V.; Chapman, M.S.

    2013-01-01

    We have produced sympathetically cooled barium monohalide ions BaX$^+$ (X = F, Cl, Br) by reacting trapped, laser cooled Ba$^+$ ions with room temperature gas phase neutral halogen-containing molecules. Reaction rates for two of these (SF$_6$ and CH$_3$Cl) have been measured and are in agreement with classical models. BaX$^+$ ions are promising candidates for cooling to the rovibrational ground state, and our method presents a straightforward way to produce these polar molecular ions.

  3. In Situ Measurements of the Size and Density of Titan Aerosol Analogues

    CERN Document Server

    Horst, Sarah M

    2013-01-01

    The organic haze produced from complex CH4/N2 chemistry in the atmosphere of Titan plays an important role in processes that occur in the atmosphere and on its surface. The haze particles act as condensation nuclei and are therefore involved in Titan's methane hydrological cycle. They also may behave like sediment on Titan's surface and participate in both fluvial and aeolian processes. Models that seek to understand these processes require information about the physical properties of the particles including their size and density. Although measurements obtained by Cassini-Huygens have placed constraints on the size of the haze particles, their densities remain unknown. We have conducted a series of Titan atmosphere simulation experiments and measured the size, number density, and particle density of Titan aerosol analogues, or tholins, for CH4 concentrations from 0.01% to 10% using two different energy sources, spark discharge and UV. We find that the densities currently in use by many Titan models are highe...

  4. IN SITU MEASUREMENTS OF THE SIZE AND DENSITY OF TITAN AEROSOL ANALOGS

    International Nuclear Information System (INIS)

    The organic haze produced from complex CH4/N2 chemistry in the atmosphere of Titan plays an important role in processes that occur in the atmosphere and on its surface. The haze particles act as condensation nuclei and are therefore involved in Titan's methane hydrological cycle. They also may behave like sediment on Titan's surface and participate in both fluvial and aeolian processes. Models that seek to understand these processes require information about the physical properties of the particles including their size and density. Although measurements obtained by Cassini-Huygens have placed constraints on the size of the haze particles, their densities remain unknown. We have conducted a series of Titan atmosphere simulation experiments and measured the size, number density, and particle density of Titan aerosol analogs, or tholins, for CH4 concentrations from 0.01% to 10% using two different energy sources, spark discharge and UV. We find that the densities currently in use by many Titan models are higher than the measured densities of our tholins.

  5. IN SITU MEASUREMENTS OF THE SIZE AND DENSITY OF TITAN AEROSOL ANALOGS

    Energy Technology Data Exchange (ETDEWEB)

    Hoerst, S. M.; Tolbert, M. A, E-mail: sarah.horst@colorado.edu [Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, CO (United States)

    2013-06-10

    The organic haze produced from complex CH{sub 4}/N{sub 2} chemistry in the atmosphere of Titan plays an important role in processes that occur in the atmosphere and on its surface. The haze particles act as condensation nuclei and are therefore involved in Titan's methane hydrological cycle. They also may behave like sediment on Titan's surface and participate in both fluvial and aeolian processes. Models that seek to understand these processes require information about the physical properties of the particles including their size and density. Although measurements obtained by Cassini-Huygens have placed constraints on the size of the haze particles, their densities remain unknown. We have conducted a series of Titan atmosphere simulation experiments and measured the size, number density, and particle density of Titan aerosol analogs, or tholins, for CH{sub 4} concentrations from 0.01% to 10% using two different energy sources, spark discharge and UV. We find that the densities currently in use by many Titan models are higher than the measured densities of our tholins.

  6. Chemical abundances and kinematics of barium stars

    CERN Document Server

    de Castro, D B; Roig, F; Jilinski, E; Drake, N A; Chavero, C; Silva, J V Sales

    2016-01-01

    In this paper we present an homogeneous analysis of photospheric abundances based on high-resolution spectroscopy of a sample of 182 barium stars and candidates. We determined atmospheric parameters, spectroscopic distances, stellar masses, ages, luminosities and scale height, radial velocities, abundances of the Na, Al, $alpha$-elements, iron-peak elements, and s-process elements Y, Zr, La, Ce, and Nd. We employed the local-thermodynamic-equilibrium model atmospheres of Kurucz and the spectral analysis code {\\sc moog}. We found that the metallicities, the temperatures and the surface gravities for barium stars can not be represented by a single gaussian distribution. The abundances of $alpha$-elements and iron peak elements are similar to those of field giants with the same metallicity. Sodium presents some degree of enrichment in more evolved stars that could be attributed to the NeNa cycle. As expected, the barium stars show overabundance of the elements created by the s-process. By measuring the mean heav...

  7. Activity and stability studies of titanates and titanate-carbon nanotubes supported Ag anode catalysts for direct methanol fuel cell

    Science.gov (United States)

    Mohamed, Mohamed Mokhtar; Khairy, M.; Eid, Salah

    2016-02-01

    Titanate-SWCNT; synthesized via exploiting the interaction between TiO2 anatase with oxygen functionalized SWCNT, supported Ag nanoparticles and Ag/titanate are characterized using XRD, TEM-EDX-SAED, N2 adsorption, Photoluminescence, Raman and FTIR spectroscopy. These samples are tested for methanol electrooxidation via using cyclic voltammetry (CV) and impedance measurements. It is shown that Ag/titanate nanotubes exhibited superior electrocatalytic performance for methanol oxidation (4.2 mA cm-2) than titanate-SWCNT, Ag/titanate-SWCNT and titanate. This study reveals the existence of a strong metal-support interaction in Ag/titanate as explored via formation of Ti-O-Ag bond at 896 cm-1 and increasing surface area and pore volume (103 m2 g-1, 0.21 cm3 g-1) compared to Ag/titanate-SWCNT (71 m2 g-1, 0.175 cm3 g-1) that suffers perturbation and defects following incorporation of SWCNT and Ag. Embedding Ag preferably in SWCNT rather than titanate in Ag/titanate-SWCNT disturbs the electron transfer compared to Ag/titanate. Charge transfer resistance depicted from Nyquist impedance plots is found in the order of titanate > Ag/titanate-SWCNT > titanate-SWCNT > Ag/titanate. Accordingly, Ag/titanate indicates a slower current degradation over time compared to rest of catalysts. Conductivity measurements indicate that it follows the order Ag/titanate > Ag/titanate-SWCNT > titanate > titanate-SWCNT declaring that SWCNT affects seriously the conductivity of Ag(titanate) due to perturbations caused in titanate and sinking of electrons committed by Ago through SWCNT.

  8. Modified strontium titanates: From defect chemistry to SOFC anodes

    DEFF Research Database (Denmark)

    Verbraeken, M.C.; Ramos, Tania; Agersted, Karsten;

    2015-01-01

    and amount of substituent, but also perovskite defect chemistry, distinguishing between A-site deficiency (A1-xBO3) and cation-stoichiometry (ABO3+δ). Literature suggests distinct differences in the materials properties between the latter two compositional approaches. After discussing the defect...... chemistry of modified strontium titanates, this paper reviews three different A-site deficient donor (La, Y, Nb) substituted strontium titanates for their electrical behaviour and fuel cell performance. Promising performances in both electrolyte as well as anode supported cell designs have been obtained......, when using hydrogen as fuel. Performances are retained after numerous redox cycles. Long term stability in sulphur and carbon containing fuels still needs to be explored in greater detail. This journal is...

  9. The Lakes and Seas of Titan

    Science.gov (United States)

    Hayes, Alexander G.

    2016-06-01

    Analogous to Earth's water cycle, Titan's methane-based hydrologic cycle supports standing bodies of liquid and drives processes that result in common morphologic features including dunes, channels, lakes, and seas. Like lakes on Earth and early Mars, Titan's lakes and seas preserve a record of its climate and surface evolution. Unlike on Earth, the volume of liquid exposed on Titan's surface is only a small fraction of the atmospheric reservoir. The volume and bulk composition of the seas can constrain the age and nature of atmospheric methane, as well as its interaction with surface reservoirs. Similarly, the morphology of lacustrine basins chronicles the history of the polar landscape over multiple temporal and spatial scales. The distribution of trace species, such as noble gases and higher-order hydrocarbons and nitriles, can address Titan's origin and the potential for both prebiotic and biotic processes. Accordingly, Titan's lakes and seas represent a compelling target for exploration.

  10. Interaction of Titan's ionosphere with Saturn's magnetosphere.

    Science.gov (United States)

    Coates, Andrew J

    2009-02-28

    Titan is the only Moon in the Solar System with a significant permanent atmosphere. Within this nitrogen-methane atmosphere, an ionosphere forms. Titan has no significant magnetic dipole moment, and is usually located inside Saturn's magnetosphere. Atmospheric particles are ionized both by sunlight and by particles from Saturn's magnetosphere, mainly electrons, which reach the top of the atmosphere. So far, the Cassini spacecraft has made over 45 close flybys of Titan, allowing measurements in the ionosphere and the surrounding magnetosphere under different conditions. Here we review how Titan's ionosphere and Saturn's magnetosphere interact, using measurements from Cassini low-energy particle detectors. In particular, we discuss ionization processes and ionospheric photoelectrons, including their effect on ion escape from the ionosphere. We also discuss one of the unexpected discoveries in Titan's ionosphere, the existence of extremely heavy negative ions up to 10000amu at 950km altitude. PMID:19073464

  11. Near-infrared spectral mapping of Titan's mountains and channels

    Science.gov (United States)

    Barnes, J.W.; Radebaugh, J.; Brown, R.H.; Wall, S.; Soderblom, L.; Lunine, J.; Burr, D.; Sotin, C.; Le, Mouelic S.; Rodriguez, S.; Buratti, B.J.; Clark, R.; Baines, K.H.; Jaumann, R.; Nicholson, P.D.; Kirk, R.L.; Lopes, R.; Lorenz, R.D.; Mitchell, Ken; Wood, C.A.

    2007-01-01

    We investigate the spectral reflectance properties of channels and mountain ranges on Titan using data from Cassini's Visual and Infrared Mapping Spectrometer (VIMS) obtained during the T9 encounter (26 December 2005). We identify the location of channels and mountains using synthetic aperture radar maps obtained from Cassini's RADAR instrument during the T13 (30 April 2006) flyby. Channels are evident even in VIMS imaging with spatial resolution coarser than the channel size. The channels share spectral characteristics with Titan's dark blue terrain (e.g., the Huygens landing site) that is consistent with an enhancement in water ice content relative to the rest of Titan. We use this fact to measure widths of ???1 km for the largest channels. Comparison of the data sets shows that in our study area within the equatorial bright spectral unit east of Xanadu, mountains are darker and bluer than surrounding smooth terrain. These results are consistent with the equatorial bright terrain possessing a veneer of material that is thinner in the regions where there are mountains and streambeds that have likely undergone more recent and extensive erosion. We suggest a model for the geographic relationship of the dark blue, dark brown, and equatorial bright spectral units based on our findings. Copyright 2007 by the American Geophysical Union.

  12. Ethyl cyanide on Titan: Spectroscopic detection and mapping using ALMA

    CERN Document Server

    Cordiner, M A; Nixon, C A; Irwin, P G J; Teanby, N A; Charnley, S B; Mumma, M J; Kisiel, Z; Serigano, J; Kuan, Y -J; Chuang, Y -L; Wang, K -S

    2014-01-01

    We report the first spectroscopic detection of ethyl cyanide (C$_2$H$_5$CN) in Titan's atmosphere, obtained using spectrally and spatially resolved observations of multiple emission lines with the Atacama Large Millimeter/submillimeter array (ALMA). The presence of C$_2$H$_5$CN in Titan's ionosphere was previously inferred from Cassini ion mass spectrometry measurements of C$_2$H$_5$CNH$^+$. Here we report the detection of 27 rotational lines from C$_2$H$_5$CN (in 19 separate emission features detected at $>3\\sigma$ confidence), in the frequency range 222-241 GHz. Simultaneous detections of multiple emission lines from HC$_3$N, CH$_3$CN and CH$_3$CCH were also obtained. In contrast to HC$_3$N, CH$_3$CN and CH$_3$CCH, which peak in Titan's northern (spring) hemisphere, the emission from C$_2$H$_5$CN is found to be concentrated in the southern (autumn) hemisphere, suggesting a distinctly different chemistry for this species, consistent with a relatively short chemical lifetime for C$_2$H$_5$CN. Radiative transf...

  13. CASSINI VIMS OBSERVATIONS SHOW ETHANE IS PRESENT IN TITAN'S RAINFALL

    International Nuclear Information System (INIS)

    Observations obtained over two years by the Cassini Imaging Science Subsystem suggest that rain showers fall on the surface. Using measurements obtained by the Visual Infrared Mapping Spectrometer, we identify the main component of the rain to be ethane, with methane as an additional component. We observe five or six probable rainfall events, at least one of which follows a brief equatorial cloud appearance, suggesting that frequent rainstorms occur on Titan. The rainfall evaporates, sublimates, or infiltrates on timescales of months, and in some cases it is associated with fluvial features but not with their creation or alteration. Thus, Titan exhibits frequent 'gentle rainfall' instead of, or in addition to, more catastrophic events that cut rivers and lay down large fluvial deposits. Freezing rain may also be present, and the standing liquid may exist as puddles interspersed with patches of frost. The extensive dune deposits found in the equatorial regions of Titan imply multi-season arid conditions there, which are consistent with small, but possibly frequent, amounts of rain, in analogy to terrestrial deserts.

  14. Gamma-ray shielding and structural properties of barium-bismuth-borosilicate glasses

    Science.gov (United States)

    Bootjomchai, Cherdsak; Laopaiboon, Jintana; Yenchai, Chadet; Laopaiboon, Raewat

    2012-07-01

    The attenuation coefficients of barium-bismuth-borosilicate glasses have been measured for gamma-ray photon energies of 662, 1173 and 1332 keV using a narrow beam transmission geometry. These coefficients were then used to obtain the values of mass attenuation coefficients, effective atomic number, effective electron density and mean free path. Good agreement has been observed between experimental and theoretical values of these parameters. From the obtained results it is reported here that from the barium-bismuth-borosilicate glasses are better shields to gamma-radiations in comparison to the standard radiation shielding concretes from the shielding point of view. The molar volume, FTIR and acoustic investigations have been used to study the structural properties of the prepared glass system. The obtained results reveal that the formation of non-bridging oxygens occurs at higher concentration of Bi2O3.

  15. Titan as the Abode of Life

    Science.gov (United States)

    Mckay, Christopher P.

    2016-01-01

    Titan is the only world we know other than Earth that has a liquid on its surface. It has a thick atmosphere composed of nitrogen and methane with a thick organic haze. There are lakes, rain, and clouds of methane and ethane. Here, we address the question of carbon-based life living in Titan liquids. Photochemically produced organics, particularly acetylene, in Titan's atmosphere could be a source of biological energy when reacted with atmospheric hydrogen. Light levels on the surface of Titan are more than adequate for photosynthesis but the biochemical limitations due to the few elements available in the environment may lead only to simple ecosystems that only consume atmospheric nutrients. Life on Titan may make use of the trace metals and other inorganic elements produced by meteorites as they ablate in the atmosphere. It is conceivable that H2O molecules on Titan could be used in a biochemistry that is rooted in hydrogen bonds in a way that metals are used in enzymes by life on Earth. Previous theoretical work has shown possible membrane structures in Titan liquids, azotosomes, composed of small organic nitrogen compounds, such as acrylonitrile. The search for a plausible information molecule for life in Titan liquids remains an open research topic - polyethers have been considered and shown to be insoluble at Titan temperatures. Possible search strategies for life on Titan include looking for unusual concentrations of certain molecules reflecting biological selection. Homochirality is a special and powerful example of such biology selection. Environmentally, a depletion of hydrogen in the lower atmosphere may be a sign of metabolism. A discovery of life in liquid methane and ethane would be our first compelling indication that the Universe is full of diverse and wondrous life forms.

  16. Lanthanide doped strontium-barium cesium halide scintillators

    Science.gov (United States)

    Bizarri, Gregory; Bourret-Courchesne, Edith; Derenzo, Stephen E.; Borade, Ramesh B.; Gundiah, Gautam; Yan, Zewu; Hanrahan, Stephen M.; Chaudhry, Anurag; Canning, Andrew

    2015-06-09

    The present invention provides for a composition comprising an inorganic scintillator comprising an optionally lanthanide-doped strontium-barium, optionally cesium, halide, useful for detecting nuclear material.

  17. A Revised Sensitivity Model for Cassini INMS: Results at Titan

    Science.gov (United States)

    Teolis, B. D.; Niemann, H. B.; Waite, J. H.; Gell, D. A.; Perryman, R. S.; Kasprzak, W. T.; Mandt, K. E.; Yelle, R. V.; Lee, A. Y.; Pelletier, F. J.; Miller, G. P.; Young, D. T.; Bell, J. M.; Magee, B. A.; Patrick, E. L.; Grimes, J.; Fletcher, G. G.; Vuitton, V.

    2015-07-01

    Cassini Ion Neutral Mass Spectrometer (INMS) measurements from roughly a hundred Titan encounters over the Cassini mission yield neutral and ion densities systematically lower, by factors approximately 2 to 3, than estimates from several other spacecraft systems, including the Attitude and Articulation Control System, and Navigation system. In this paper we present a new INMS instrument sensitivity model, obtained by re-analyzing (1) the capture and transmission of neutral gas through the instrument, and (2) the detector gain reduction during pre-launch testing. By correcting for an under-estimation of gas leakage out of the instrument into space by the original calibration model, and adjusting for the gain change, the new model brings INMS densities into much closer agreement with the other Cassini systems. Accordingly, the INMS ion densities are revised upward by a constant detector sensitivity correction factor of 1.55±21 %, while the neutral sensitivities have a complex instrument pointing direction dependence, due (mostly) to the effect of the INMS vent and antechamber-to-closed source tube. In the special case of on-ram pointing the neutral densities are revised upward by a constant factor of 2.2±23 %. The corrected neutral and ion sensitivities given here are applicable to all previously published INMS results at Titan, Enceladus and elsewhere in the Saturn system. The new model gives reliable densities at high ram angles, in some cases above 90 degrees, thereby expanding the list of Titan flybys from which INMS densities may be extracted. We apply the model to obtain accurate densities from several off-ram Titan flybys which gave unusual neutral density vs. altitude profiles, or unreasonably high densities, with the original calibration.

  18. Spasmolytic effect of peppermint oil in barium during double-contrast barium enema compared with Buscopan

    Energy Technology Data Exchange (ETDEWEB)

    Asao, T.; Kuwano, H.; Ide, M.; Hirayama, I.; Nakamura, J.-I.; Fujita, K.-I.; Horiuti, R

    2003-04-01

    AIM: To evaluate the efficacy of peppermint oil in barium as a spasmolytic agent during a double-contrast barium enema (DCBE). MATERIALS AND METHODS: A total of 383 DCBEs with positive results from occult blood tests were assessed. Patients were assigned to one of four groups: peppermint in barium (n=91), peppermint in tube (n=90), Buscopan (n=105), or no treatment (n=97). After a screening sigmoidoscopy, the DCBEs were performed using air as a distending gas. In the Buscopan group, the DCBE was performed with an intramuscular injection of 20 mg Buscopan at the start of the examination. Patients in the no-treatment group underwent DCBE without any spasmolytic agent. A peppermint oil preparation (30 ml) was mixed in the barium solution for patients in the peppermint-in-barium group, and the same dose of peppermint oil was included in the enema tube in the peppermint-in-tube group. The presence of spasm on a series of spot films was evaluated without information about the type of spasmolytic agent used. RESULTS: The percentage of patients in the four groups (no treatment, Buscopan, peppermint in tube, and peppermint in barium) with absence of spasm in the entire colon on the series of spot films was 13.4, 38.1, 41.8, and 37.8%, respectively. In the group using peppermint oil or Buscopan, the rate of patients with non-spasm examination was higher than that in no-treatment group (p<0.0005). Peppermint oil had the same spasmolytic effect as the systemic administration of Buscopan in the transverse and descending colon. Peppermint oil had a stronger effect in the caecum and the ascending colon than a Buscopan injection (p<0.005). There was no advantage to placing peppermint oil in the enema tube over mixing it in the barium solution. A total of 157 polyps were found during the DCBE procedures, and no differences were observed in the number of lesions among the four groups. Peppermint oil did not impair image quality. CONCLUSION: Barium solution mixed with peppermint oil

  19. Topography on Titan : New Results on Large and Small Scales

    Science.gov (United States)

    Lorenz, R. D.; Cassini Radar Team

    2011-12-01

    Although topographic coverage of Titan is and will remain sparse, some significant results have been obtained from global, regional and local measurements, via stereo, radarclinometry (shape-from-shading), autostereo (deviation from an assumed symmetric shape due to the inclined incidence), altimetry and SARtopo (monopulse) techniques. The global ellipsoidal shape (Zebker et al., 2009) provides important geophysical constraints on the interior. Hypsometry (Lorenz et al., 2011) provides insight into the balance of constructional and erosive processes and the strength of the lithosphere. Some local observations to be summarized in the talk include the measurement of mountains, the quantification of slopes that divert dunes and that drive fluid flow in river networks, as well as depth measurement of several impact craters and the assessment of candidate cryovolcanic structures. A recent new observation is a long altimetry pass T77 along the equator at the western edge of Xanadu, acquired both to constrain Titan's global shape and to understand the surface slopes and properties that may maintain the striking contrast between the dune fields of Shangri-La and the rugged and radiometrically anomalous Xanadu region. T77 also featured a SAR observation of the Ksa impact structure (discovered in SAR on T17), allowing a stereo DEM to be constructed. A feature shared by Earth and Titan is the ephemeral topography of liquids on the surface. Titan's lakes and seas likely vary in depth on geological (Myr-Gyr) and astronomical (~10 kyr) timescales : the depth of Ontario Lacus has been observed to vary on a seasonal timescale (~1 m/yr). Periodic changes of the order of 0.2-5m may occur diurnally, forced by Saturn gravitational tides. Finally, waves may be generated, at least during the windy season (which for Titan's north may be just about to begin) which can be constrained by radar and optical scattering measurements. Looking to the future, a Phase A study of the Titan Mare

  20. Barium-Dispenser Thermionic Cathode

    Science.gov (United States)

    Wintucky, Edwin G.; Green, M.; Feinleib, M.

    1989-01-01

    Improved reservoir cathode serves as intense source of electrons required for high-frequency and often high-output-power, linear-beam tubes, for which long operating lifetime important consideration. High emission-current densities obtained through use of emitting surface of relatively-low effective work function and narrow work-function distribution, consisting of coat of W/Os deposited by sputtering. Lower operating temperatures and enhanced electron emission consequently possible.

  1. Aerosol growth in Titan's ionosphere.

    Science.gov (United States)

    Lavvas, Panayotis; Yelle, Roger V; Koskinen, Tommi; Bazin, Axel; Vuitton, Véronique; Vigren, Erik; Galand, Marina; Wellbrock, Anne; Coates, Andrew J; Wahlund, Jan-Erik; Crary, Frank J; Snowden, Darci

    2013-02-19

    Photochemically produced aerosols are common among the atmospheres of our solar system and beyond. Observations and models have shown that photochemical aerosols have direct consequences on atmospheric properties as well as important astrobiological ramifications, but the mechanisms involved in their formation remain unclear. Here we show that the formation of aerosols in Titan's upper atmosphere is directly related to ion processes, and we provide a complete interpretation of observed mass spectra by the Cassini instruments from small to large masses. Because all planetary atmospheres possess ionospheres, we anticipate that the mechanisms identified here will be efficient in other environments as well, modulated by the chemical complexity of each atmosphere. PMID:23382231

  2. Synthesis and optical study of barium magnesium aluminate blue phosphors

    International Nuclear Information System (INIS)

    Europium doped barium magnesium aluminate (BaMgAl10O17:Eu2+) phosphor was prepared via solution combustion method at 550°C using urea as a fuel. Morphological and optical properties of the prepared sample was studied by X-ray diffraction (XRD), Transmission electron microscopy (TEM) and Photoluminescence spectroscopy (PL). XRD result showed the formation of pure phase BaMgAl10O17(JCPDS 26-0163) along with an additional phase BaAl2O4(JCPDS 01-082-1350). TEM image indicated the formation of faceted particles with average particle size 40 nm. From PL spectra, a broad emission band obtained at about 450 nm attributes to 4f6 5d → 4f7 transition of Eu2+ which lies in the blue region of the visible spectrum

  3. Nonlinear optical properties of calcium barium niobate epitaxial thin films.

    Science.gov (United States)

    Bancelin, Stéphane; Vigne, Sébastien; Hossain, Nadir; Chaker, Mohammed; Légaré, François

    2016-07-25

    We investigate the potential of epitaxial calcium barium niobate (CBN) thin film grown by pulsed laser deposition for optical frequency conversion. Using second harmonic generation (SHG), we analyze the polarization response of the generated signal to determine the ratios d15 / d32 and d33 / d32 of the three independent components of the second-order nonlinear susceptibility tensor in CBN thin film. In addition, a detailed comparison to the signal intensity obtained in a y-cut quartz allows us to measure the absolute value of these components in CBN thin film: d15 = 5 ± 2 pm / V, d32 = 3.1 ± 0.6 pm / V and d33 = 9 ± 2 pm / V. PMID:27464195

  4. Synthesis and optical study of barium magnesium aluminate blue phosphors

    Energy Technology Data Exchange (ETDEWEB)

    Jeet, Suninder, E-mail: suninder.jeet@thapar.edu; Pandey, O. P., E-mail: oppandey@thapar.edu [School of Physics and Materials Science, Thapar University, Patiala (147003), Punjab (India); Sharma, Manoj, E-mail: manojnarad@sggswu.org [Department of Nanotechnology, Sri Guru Granth Sahib World University, Fatehgarh Sahib(146406), Punjab (India)

    2015-05-15

    Europium doped barium magnesium aluminate (BaMgAl{sub 10}O{sub 17}:Eu{sup 2+}) phosphor was prepared via solution combustion method at 550°C using urea as a fuel. Morphological and optical properties of the prepared sample was studied by X-ray diffraction (XRD), Transmission electron microscopy (TEM) and Photoluminescence spectroscopy (PL). XRD result showed the formation of pure phase BaMgAl{sub 10}O{sub 17}(JCPDS 26-0163) along with an additional phase BaAl{sub 2}O{sub 4}(JCPDS 01-082-1350). TEM image indicated the formation of faceted particles with average particle size 40 nm. From PL spectra, a broad emission band obtained at about 450 nm attributes to 4f{sup 6} 5d → 4f{sup 7} transition of Eu{sup 2+} which lies in the blue region of the visible spectrum.

  5. Bronchography in dogs. Comparative study with two barium sulphate solutions

    International Nuclear Information System (INIS)

    Two solutions of barium sulphate, 60 and 30% w/v, were compared with the ''overflow'' Bronchographic method. Two groups of eight healthy adult does of both sexes, weighing 7 to 18 kg were used for the study. The dogs were anaesthetised with thiopentone sodium 2% (20 mg/kg iv). After intubation, each dog received contrast medium by a catheter connected to a syringe, in a 9 mi dose. Two series of two x-rays plates were taken in left lateral recumbent, 3 and 6 min after administering the contrast medium and in ventrodorsal projection, 30 sec. later. The x-ray plates obtained were analysed and compared intra and inter group considering the advance speed of the contrast medium, the radiographic density and outlines. Adverse reactions were controlled

  6. Ionoluminescence of trivalent rare-earth-doped strontium barium niobate

    Energy Technology Data Exchange (ETDEWEB)

    Calvo del Castillo, H. [Departamento de Geologia y Geoquimica, Universidad Autonoma de Madrid, Modulo C-VI, Campus de Cantoblanco, 28049 Cantoblanco, Madrid (Spain); Universidad Nacional Automoma de Mexico, Instituto de Fisica, 04510 Ciudad Universitaria, Mexico D.F. (Mexico); Ruvalcaba, J.L. [Universidad Nacional Automoma de Mexico, Instituto de Fisica, 04510 Ciudad Universitaria, Mexico D.F. (Mexico); Bettinelli, M.; Speghini, A. [Dipartimento Scientifico e Tecnologico, Universita di Verona and INSTM, UdR Verona, Ca Vignal, Strada Le Grazie 15, I-37134 Verona (Italy); Barboza Flores, M. [Centro de Investigacion en Fisica, Universidad de Sonora, Hermosillo, Sonora (Mexico); Calderon, T. [Departamento de Geologia y Geoquimica, Universidad Autonoma de Madrid, Modulo C-VI, Campus de Cantoblanco, 28049 Cantoblanco, Madrid (Spain)], E-mail: tomas.calderon@uam.es; Jaque, D.; Garcia Sole, J. [Departamento de Fisica de Materiales, Universidad Autonoma de Madrid, 28049 Cantoblanco, Madrid (Spain)

    2008-05-15

    Ionoluminescence spectra for different rare-earth ion (Pr{sup 3+} and Eu{sup 3+})-activated Sr{sub x}Ba{sub 1-x}Nb{sub 2}O{sub 6} strontium barium niobate crystals (x=0.33 and 0.60) have been induced with a 3 MeV proton beam for a variety of beam current intensities (45, 40 and 20 nA). The proton-beam induced luminescent spectra have shown features associated with the presence of the rare-earth ion and some spectral features mostly related to the host crystal, which appear only for high beam current intensities. We have compared the ionoluminescence results to those obtained under UV light excitation (photoluminescence technique) where a direct excitation of the band gap would occur.

  7. Three-Dimensional Views of Titan

    Science.gov (United States)

    Kirk, R. L.; Howington-Kraus, E.; Redding, B. L.; Becker, T. L.; Lee, E. M.; Stiles, B. W.; Hensley, S.; Cassini RADAR Team

    2009-04-01

    By the end of its four-year prime mission, Cassini obtained 300-1500 m resolution synthetic aperture radar images of the surface of Titan during 19 flybys, with ~2% of the surface imaged two or more times. Most image pairs have different viewing directions, and thus contain stereo parallax that encodes information about Titan's surface relief over distances of ~1 km and greater. Our first step toward extracting quantitative topographic information was our development of rigorous "sensor models" that allowed the stereo systems previously used at the USGS and JPL to map Venus with Magellan images to be used for Titan mapping. The second major step toward extensive topomapping of Titan has been the reprocessing of the RADAR images based on an improved model of the satellite's rotation. Whereas the original images (except for a few pairs obtained at similar orbital phase, some of which we have mapped previously) were offset by as much as 30 km, the new versions align much better. The remaining misalignments, typically adjustment of the spacecraft trajectories before mapping. The stereo coverage includes a large portion of Titan's north polar lake country, a continuous traverse of high resolution data from the lakes to mid-southern latitudes, and widely distributed smaller areas (more than 20 in all). Many of these areas are viewed and illuminated from very different directions, making image matching difficult, but we find that is possible to produce digital topographic models (DTMs) even from opposite-side image pairs by a combination of automatic image matching and interactive editing. We are collecting DTMs of all usable image pairs and will present the most interesting results. The first six areas mapped may be summarized as follows. T25-T28-T29 We have mapped the 200x100 km overlap between the T25 and T28 images, covering parts of Titan's largest north polar sea, Kraken Mare. The most basic discovery is that the darkest areas occupy the topographic lows, consistent

  8. The dependence of the crystal structure of YBa{sub 2}Cu{sub 3}O{sub 7-x} on the starting barium compounds

    Energy Technology Data Exchange (ETDEWEB)

    Agostino, Angelo; Volpe, Paolo; Benzi, Paola [Dipartimento di Chimica Generale ed Organica Applicata, Universita di Torino, Torino (Italy); Istituto Nazionale di Fisica della Materia, Genova (Italy)]. E-mail: benzi@ch.unito.it; Rizzi, Nicoletta [Dipartimento di Chimica Generale ed Organica Applicata, Universita di Torino, Torino (Italy)

    2002-06-01

    A comparative study of the processing of powders to obtain the high-T{sub c} YBa{sub 2}Cu{sub 3}O{sub 7-x} superconductor has been made. The effects of the starting barium compound and the preparation procedure on compositional homogeneity have been investigated. Our results show that the co-precipitation method using barium nitrate is a simple and convenient sintering method. (author)

  9. TITAN: a computer program for accident occurrence frequency analyses by component Monte Carlo simulation

    International Nuclear Information System (INIS)

    In a plant system consisting of complex equipments and components for a reprocessing facility, there might be grace time between an initiating event and a resultant serious accident, allowing operating personnel to take remedial actions, thus, terminating the ongoing accident sequence. A component Monte Carlo simulation computer program TITAN has been developed to analyze such a complex reliability model including the grace time without any difficulty to obtain an accident occurrence frequency. Firstly, basic methods for the component Monte Carlo simulation is introduced to obtain an accident occurrence frequency, and then, the basic performance such as precision, convergence, and parallelization of calculation, is shown through calculation of a prototype accident sequence model. As an example to illustrate applicability to a real scale plant model, a red oil explosion in a German reprocessing plant model is simulated to show that TITAN can give an accident occurrence frequency with relatively good accuracy. Moreover, results of uncertainty analyses by TITAN are rendered to show another performance, and a proposal is made for introducing of a new input-data format to adapt the component Monte Carlo simulation. The present paper describes the calculational method, performance, applicability to a real scale, and new proposal for the TITAN code. In the Appendixes, a conventional analytical method is shown to avoid complex and laborious calculation to obtain a strict solution of accident occurrence frequency, compared with Monte Carlo method. The user's manual and the list/structure of program are also contained in the Appendixes to facilitate TITAN computer program usage. (author)

  10. Titan's Obliquity as evidence for a subsurface ocean?

    OpenAIRE

    Baland, Rose-Marie; Van Hoolst, Tim; Yseboodt, Marie; Karatekin, Ozgur

    2011-01-01

    On the basis of gravity and radar observations with the Cassini spacecraft, the moment of inertia of Titan and the orientation of Titan's rotation axis have been estimated in recent studies. According to the observed orientation, Titan is close to the Cassini state. However, the observed obliquity is inconsistent with the estimate of the moment of inertia for an entirely solid Titan occupying the Cassini state. We propose a new Cassini state model for Titan in which we assume the presence of ...

  11. AFM studies of swift heavy ion and electron irradiated mixed barium strontium borate nonlinear optical crystal

    International Nuclear Information System (INIS)

    Single crystals of novel nonlinear optical material of mixed barium strontium borate is grown in our laboratory by employing the low-temperature solution technique. Equal proportion (1:1 molar ratio) of AR grade barium borate and strontium borate are mixed together in double distilled water to prepare a supersaturated solution. The solution is allowed to evaporate at constant temperature (30 deg. C) in a Petri dish for about a week which resulted in the formation of seed crystals. These seed crystals are used to grow larger crystals by suspending them using fine silk thread in the supersaturated mother solution. The solution is allowed to evaporate at constant temperature. This resulted in the growth of good transparent crystals of dimension 15 mmx10 mmx1 mm after about one month. These crystals show good second harmonic generation (SHG) efficiency. The mixed barium strontium borate crystal is found to be a promising nonlinear optical crystal, which possibly can be used for fabrication of photonic devices. The single crystals of mixed barium strontium borate are irradiated by 120 MeV Ag+13 swift heavy ions (SHI) of fluence 5x1011 ions/cm2 at Nuclear Science Centre, New Delhi and also by electrons of 8 MeV energy with a fluence 5.7x109/cm2 using Microtron accelerator at Mangalore University. Surface morphology studies of these crystals are carried out using atomic force microscope. The AFM topographical images of these SHI/electron irradiated single crystals of mixed barium strontium borate are obtained from different frames of the sample taken at different magnifications using atomic force microscope. An attempt is made to explain the surface damage caused due to SHI/electron irradiation using the observed AFM images

  12. Inorganic Ion Exchange Materials Based on Titanate: Synthesis, Characterization and Sorption Behaviour Of Zirconium Titanate for Some Hazardous Metal Ions from Aqueous Waste Solution

    International Nuclear Information System (INIS)

    Zr(IV) titanate, as inorganic ion exchange material, has been synthesized by addition of zirconium oxychloride dissolved in demineralized water (DMW) to titanium tetrachloride (TiCl4) dissolved in 4M HCl at Zr/Ti molar ratio of 1:1. This material was characterized using X-ray (XRD and XRF), IR, TGA-DTA and scanning electron microscopy. The data obtained proposed that the chemical formula of Zr(IV) titanate may be written as (ZrO2)(TiO2)2 7.14H2O. On the basis of distribution studies, the material has been found to be highly selective for Pb(II). Thermodynamic parameters (i.e. (ΔG*, (ΔS* and (ΔH*) have also been calculated for the adsorption of Cu2+, Zn2+, Cd2+or Pb2+ ions on Zr(IV) titanate showing that the overall adsorption process is spontaneous and endothermic

  13. Midterm Summary of Japan-US Fusion Cooperation Program TITAN

    International Nuclear Information System (INIS)

    Japan-US cooperation program TITAN (Tritium, Irradiation and Thermofluid for America and Nippon) started in April 2007 as 6-year project. This is the summary report at the midterm of the project. Historical overview of the Japan-US cooperation programs and direction of the TITAN project in its second half are presented in addition to the technical highlights. Blankets are component systems whose principal functions are extraction of heat and tritium. Thus it is crucial to clarify the potentiality for controlling heat and tritium flow throughout the first wall, blanket and out-of-vessel recovery systems. The TITAN project continues the JUPITER-II activity but extends its scope including the first wall and the recovery systems with the title of 'Tritium and thermofluid control for magnetic and inertial confinement systems'. The objective of the program is to clarify the mechanisms of tritium and heat transfer throughout the first-wall, the blanket and the heat/tritium recovery systems under specific conditions to fusion such as irradiation, high heat flux, circulation and high magnetic fields. Based on integrated models, the breeding, transfer, inventory of tritium and heat extraction properties will be evaluated for some representative liquid breeder blankets and the necessary database will be obtained for focused research in the future.

  14. Determining Titan surface topography from Cassini SAR data

    Science.gov (United States)

    Stiles, Bryan W.; Hensley, Scott; Gim, Yonggyu; Bates, David M.; Kirk, Randolph L.; Hayes, Alex; Radebaugh, Jani; Lorenz, Ralph D.; Mitchell, Karl L.; Callahan, Philip S.; Zebker, Howard; Johnson, William T.K.; Wall, Stephen D.; Lunine, Jonathan I.; Wood, Charles A.; Janssen, Michael; Pelletier, Frederic; West, Richard D.; Veeramacheneni, Chandini

    2009-01-01

    A technique, referred to as SARTopo, has been developed for obtaining surface height estimates with 10 km horizontal resolution and 75 m vertical resolution of the surface of Titan along each Cassini Synthetic Aperture Radar (SAR) swath. We describe the technique and present maps of the co-located data sets. A global map and regional maps of Xanadu and the northern hemisphere hydrocarbon lakes district are included in the results. A strength of the technique is that it provides topographic information co-located with SAR imagery. Having a topographic context vastly improves the interpretability of the SAR imagery and is essential for understanding Titan. SARTopo is capable of estimating surface heights for most of the SAR-imaged surface of Titan. Currently nearly 30% of the surface is within 100 km of a SARTopo height profile. Other competing techniques provide orders of magnitude less coverage. We validate the SARTopo technique through comparison with known geomorphological features such as mountain ranges and craters, and by comparison with co-located nadir altimetry, including a 3000 km strip that had been observed by SAR a month earlier. In this area, the SARTopo and nadir altimetry data sets are co-located tightly (within 5-10 km for one 500 km section), have similar resolution, and as expected agree closely in surface height. Furthermore the region contains prominent high spatial resolution topography, so it provides an excellent test of the resolution and precision of both techniques.

  15. Barium enema carried out by digital luminescent radiography (DLR) and conventional screen-film system combinations

    International Nuclear Information System (INIS)

    120 double-contrast barium enemas were obtained by both digital luminescent radiography (DLR) and conventional screen-film systems, the digital exposure dose being 50% of the conventional one. In DLR two differently post processed images were obtained from one X-ray exposure: a display with low spatial frequency enhancement was processed to look like a conventional radiograph and was complemented by a display with high spatial frequency enhancement. Analysing the results statistically DLR proved to be diagnostically equivalent to conventional radiography despite the reduction in exposure dose and a slightly diminished image quality. High spatial frequency enhancement did not provide further diagnostic information and is therefore superfluous in barium enemas. (orig.)

  16. Effect of heat treatment on the phase composition, structure and magnetic properties of M-type barium hexaferrite

    International Nuclear Information System (INIS)

    Effect of the heat treatment of carbonate-hydroxide precipitates on the phase composition, structure and magnetic properties of M-type barium hexaferrite has been investigated using the Mőssbauer spectroscopy, X-ray phase analysis and magnetic measurements. The distribution of Fe3+ ions over structural sites of barium hexaferrite with different degree of ferritizations has been defined. The conditions of single-domain behavior of barium hexaferrite nanoparticles in the magnetic field have been discussed. Obtained results explain the formation of magnetic structure during the synthesis of barium hexaferrite. This information could further be used for optimizing conditions for synthesis of nanosized barium hexaferrite with high-level properties. - Highlights: • In the T=973–1273 K range, BaFe12O19 (BHF) phase are formed from precipitates. • Fe3+ ions prefer to occupy 12k,2a,2b (at 1073 K) and 4f1,4f2 (at 1273 K) sites. • The most favorable magnetic structure for high Ms forms at T=1073 K. • The presence of 5–10% of α-Fe2O3 phase can improve magnetic properties of BHF

  17. High-Jc YBCO films using precursors with barium concentration gradient in film thickness by TFA-MOD process

    International Nuclear Information System (INIS)

    YBa2Cu3O7-δ (YBCO) films were grown by using precursor films with barium concentration gradient in film thickness by an advanced metal organic deposition process using trifluoroacetates (TFA-MOD). We have reported previously that a lot of non-reacted particles such as Y- and Cu-oxides were remained for the YBCO film surface grown by the precursors using a starting solution with barium-poor (cation ratio as Y:Ba:Cu 1:1.5:3). Then, the barium concentration was increased in the film surface to complete the reaction among these Y and Cu residues and Ba and to increase the Y123 growth thickness for realizing higher Jc performance. Transmission electron microscopy (TEM) observation showed the increase of film thickness of YBCO grown by the precursors with barium concentration gradient in film thickness, indicating that the reaction between these Y and Cu-oxides and Ba proceeded to form Y123 phase. Consequently, higher Jc was obtained for the YBCO film by the precursors mentioned above than that of the YBCO film by the precursors with a constant concentration. Effects of barium concentration gradient in the precursors on the superconducting properties and microstructures in the YBCO film were discussed.

  18. Mapping and Characterization of ``Cat Scratches" on Titan

    Science.gov (United States)

    Boubin, G. M.; Reffet, E. G.; Lunine, J.; Radebaugh, J.; Lopes, R. M.; Cassini RADAR Team

    2005-08-01

    During the T3 Cassini spacecraft flyby on 15 February 2005, an image swath of the 5 degrees N, 125 degrees W to 5 degrees N, 10 degrees W region of Titan was obtained by the RADAR mapper operating in synthetic aperture mode (SAR)[1]. In many parts of the swath, big fields of large, longitudinal black stripes known as ``cat scratches" appear. They range in size from 1-10 km wide and from 10-100 km long, and are roughly E-W in orientation, with some variations. These features have the same RADAR properties as dunes on Earth, in particular in contrast, form, length and width. In the west part of the swath, the cat scratches look like snow dunes in Antarctica called megadunes [2] which need a strong, constant wind and a specific surface slope to be formed. In the east part they are similar to longitudinal sand dunes [3]. We seek to understand if Titan's surface is a good candidate for dune formation. In order to make dunes, there must be supply of material and wind. Materials could be fine organic or impact ejecta particles. Our study consists of making precise descriptions, measurements, and maps of the cat scratch fields and comparing these with models of Titan's winds [4], erosion [5] and surface properties [6] in terms of dune formation [3]. The presence of such scratches, and other features like possible wind streaks, would constrain the wind profile, topography and relief, origin and nature of transported particles, and weather on Titan. Acknowledgements: The authors acknowledge the support of LPL and thank the Cassini RADAR team. References: [1] Spaceborne Radar Observations NASA, JPL; [2] Frezotti e.a. Snow megadunes in Antartica. 2002; [3] Greeley and Iversen Wind as a geological process; [4] Tokano. Icarus. 2002; [5] Lorenz and Lunine. Icarus. 1995; [6] Lorenz e.a. Prediction of aeolian features on planets. 1995.

  19. Titan the earth-like moon

    CERN Document Server

    Coustenis, Athena

    1999-01-01

    This is the first book to deal with Titan, one of the most mysterious bodies in the solar system. The largest satellite of the giant planet Saturn, Titan is itself larger than the planet Mercury, and is unique in being the only known moon with a thick atmosphere. In addition, its atmosphere bears a startling resemblance to the Earth's, but is much colder.The American and European space agencies, NASA and ESA, have recently combined efforts to send a huge robot spacecraft to orbit Saturn and land on Titan. This book provides the background to this, the greatest deep space venture of our time, a

  20. Titan's organic chemistry: Results of simulation experiments

    Science.gov (United States)

    Sagan, Carl; Thompson, W. Reid; Khare, Bishun N.

    1992-01-01

    Recent low pressure continuous low plasma discharge simulations of the auroral electron driven organic chemistry in Titan's mesosphere are reviewed. These simulations yielded results in good accord with Voyager observations of gas phase organic species. Optical constants of the brownish solid tholins produced in similar experiments are in good accord with Voyager observations of the Titan haze. Titan tholins are rich in prebiotic organic constituents; the Huygens entry probe may shed light on some of the processes that led to the origin of life on Earth.

  1. Effect of TiO2 on the optical, structural and crystallization behavior of barium borate glasses

    Science.gov (United States)

    Marzouk, M. A.; ElBatal, F. H.; ElBatal, H. A.

    2016-07-01

    Collective characterizations of prepared binary barium borate glass (50 mol % BaO - 50 mol % B2O3) together with samples containing increasing added TiO2 contents (5% → 30%) were carried out by optical and FT infrared absorption measurements. FT infrared and X-ray diffraction analysis were done for heat treated glass - ceramic derivatives prepared through two step regime process. Optical spectra of the glasses reveal the presence of titanium ions mainly in the tetravalent state imparting additional UV band beside strong UV absorption due to trace iron impurity. IR spectral studies indicate the presence of triangular and tetrahedral borate groups through the modification of BaO to some BO3 to BO4 groups beside the presence of titanium ions as interfering or overlapping TiO4 or Bsbnd Osbnd Ti groupings in the glassy network. Crystalline X-ray diffraction results indicate the separation of crystalline barium borate of the composition (2BaO.5 B2O3) as a main constituent together with some crystalline alkali titanates confirming the role of TiO2 of both as nucleating agent beside acting as structural forming through reaction with alkali oxides to form crystalline titanates. The optical band gap values reveal progressive decrease and increase of Urbach energy with TiO2 content and the same for the refractive index values and all these parameters are correlated with the proposed changes in the glass constitution with the introduction of TiO2. The additional thermal expansion measurements indicate the peculiar characteristic negative expansion up to 300 °C and after which an increase in the coefficient of thermal expansion is identified with the increase in temperature. The thermal parameters are also correlated with the modification of the glass structure by the introduction of titanium ions.

  2. BST thin films obtained by PLD for applications in electronics

    International Nuclear Information System (INIS)

    Barium strontium titanate (BST) bulk ceramic with composition Ba0.5Sr0.5TiO3 was produced by solid-state reaction and was used as target for PLD thin film deposition. A Nd-YAG laser, working at 5-10 Hz and different wavelengths has been used. Thin films of stoichiometric BST were deposited on alumina substrate with the thickness between 400 and 500 nm. An aditional annealing was carried out at 800 deg. C for 6 h. XRD and SEM were used for sample characterization. Capacity measurements were performed versus temperature at 100 kHz in a large temperature range. A diffuse ferroelectric-paraelectric phase transition with T C = -72 deg. C for the BST thin film was determined. A 5% tunability was measured in the transition region

  3. Barium enema findings of milk allergy in infants

    International Nuclear Information System (INIS)

    We wanted to evaluate the barium enema findings of milk allergy in infants. Retrospective evaluation of the plain abdominal radiography and barium enema findings was performed in fifteen young infants suffering with milk allergy. The presence of gaseous distension, rectal gas, paralytic ileus and mechanical obstruction was evaluated on the plain radiography. The presence of spasm, a transitional zone, a reversed rectosigmoid index and mucosal irregularity was analyzed on the barium enema; the presence of barium retention was also evaluated on 24-hour-delayed plain radiography. Paralytic ileus was the most common finding on the plain radiography (93%). On the barium enema, continuous spasm of the colon, ranging from the rectum to the descending colon, was revealed in ten infants (67%). A transitional zone was observed in one infant and a reversed rectosigmoid index was revealed in four. Mucosal irregularity was observed in two infants. Barium retention was demonstrated in 11 of fifteen cases: throughout the entire colon (n = 3), from the rectum to the descending colon (n = 7), and up to the transverse colon (n = 1). The most common barium enema finding of milk allergy in infants was spasm of the distal colon. The other findings were a transitional zone, a reversed rectosigmoid index, mucosal irregularity and barium retention

  4. BARIUM IN TEETH AS INDICATOR OF BODY BURDEN

    Science.gov (United States)

    A study was conducted to determine the biological availability of naturally occurring barium in a municipal drinking water by the analysis of barium in deciduous teeth of children. The grade school children of two Illinois towns were chosen for the study. The towns were chosen ba...

  5. Growth and study of barium oxalate single crystals in agar gel

    Indian Academy of Sciences (India)

    P V Dalal; K B Saraf

    2006-10-01

    Barium oxalate was grown in agar gel at ambient temperature. The effect of various parameters like gel concentration, gel setting time and concentration of the reactants on the growth of these crystals was studied. Prismatic platy shaped spherulites and dendrites were obtained. The grown crystals were characterized by X-ray powder diffractometry, infrared spectroscopy, thermogravimetric and differential thermal analysis. An attempt is made to explain the spherulitic growth mechanism.

  6. Neutron Beam Tests of Barium Fluoride Crystal for Dark Matter Direct Detection

    CERN Document Server

    Guo, Cong; Wang, Zhimin; Bao, Jie; Dai, Changjiang; Guan, Mengyun; Liu, Jinchang; Li, Zuhao; Ren, Jie; Ruan, Xichao; Yang, Changgen; Yu, Zeyuan; Zhong, Weili

    2016-01-01

    In order to test the capabilities of Barium Fluoride (BaF2) Crystal for dark matter direct detection, nuclear recoils are studied with mono-energetic neutron beam. The energy spectra of nuclear recoils, quenching factors for elastic scattering neutrons and discrimination capability between neutron inelastic scattering events and {\\gamma} events are obtained for various recoil energies of the F content in BaF2.

  7. Titan Mare Explorer (TiME) : A Discovery Mission to Titan's Hydrocarbon Seas

    Science.gov (United States)

    Lorenz, Ralph D.; Stofan, Ellen; T. H. E. Time Team

    2010-05-01

    The discovery of lakes in Titan's high latitudes confirmed the expectation that liquid hydrocarbons exist on the surface of the haze-shrouded moon. The lakes fill through drainage of subsurface runoff and/or intersection with the subsurface alkanofer, providing the first evidence for an active condensable-liquid hydrological cycle on another planetary body. The unique nature of Titan's methane cycle, along with the prebiotic chemistry and implications for habitability of Titan's lakes, make the lakes of the highest scientific priority for in situ investigation. The Titan Mare Explorer mission is an ASRG (Advanced Stirling Radioisotope Generator)-powered mission to a lake on Titan. The mission would be the first exploration of a planetary sea beyond Earth, would demonstrate the ASRG both in deep space and a non-terrestrial atmosphere environment, and pioneer low-cost outer planet missions. The scientific objectives of the mission are to: determine the chemistry of a Titan lake to constrain Titan's methane cycle; determine the depth of a Titan lake; characterize physical properties of liquids; determine how the local meteorology over the lakes ties to the global cycling of methane; and analyze the morphology of lake surfaces, and if possible, shorelines, in order to constrain the kinetics of liquids and better understand the origin and evolution of Titan lakes. The focused scientific goals, combined with the new ASRG technology and the unique mission design, allows for a new class of mission at much lower cost than previous outer planet exploration has required.

  8. Colour centres in barium hexaaluminate (phase I)

    International Nuclear Information System (INIS)

    Colour centres produced by X-ray irradiation of barium hexaaluminate (phase I) with β-alumina structure are studied by electron paramagnetic resonance, optical absorption, and thermally stimulated luminescence. It is shown that in addition to the F+ centres characteristic of β-alumina phases, this compound presents other colour centres such as F, O-, and possibly V-type centres. The stability of these defects is investigated by means of thermal bleaching experiments and thermally stimulated luminescence. An alternative model to the generally accepted one is proposed, for the F+ centres, together with a mechanism of defect formation. (author)

  9. Short-cavity squeezing in barium

    Science.gov (United States)

    Hope, D. M.; Bachor, H-A.; Manson, P. J.; Mcclelland, D. E.

    1992-01-01

    Broadband phase sensitive noise and squeezing were experimentally observed in a system of barium atoms interacting with a single mode of a short optical cavity. Squeezing of 13 +/- 3 percent was observed. A maximum possible squeezing of 45 +/- 8 percent could be inferred for out experimental conditions, after correction for measured loss factors. Noise reductions below the quantum limit were found over a range of detection frequencies 60-170 MHz and were best for high cavity transmission and large optical depths. The amount of squeezing observed is consistent with theoretical predictions from a full quantum statistical model of the system.

  10. Duodenal diverticula demonstrated by barium examination

    Energy Technology Data Exchange (ETDEWEB)

    Christiansen, T.; Thommesen, P.

    An investigation for biliary tract calculi and food-stimulated gastro-oesophageal reflux was carried out in 37 patients with duodenal diverticula demonstrated by barium examination. Sixty per cent of the diverticula were located in the descending part of the duodenum. Biliary tract calculi were demonstrated in 38 per cent and food-stimulated gastro-oesophageal reflux in 81 per cent of the patients. The detection of a duodenal diverticulum should result in a supplementary investigation for gallstones and gastrooesophageal reflux and its sequelae.

  11. Barium dithionate as an EPR dosemeter.

    Science.gov (United States)

    Baran, M P; Bugay, O A; Kolesnik, S P; Maksimenko, V M; Teslenko, V V; Petrenko, T L; Desrosiers, M F

    2006-01-01

    Electron paramagnetic resonance (EPR) dosimetry is growing in popularity and this success has encouraged the search for other dosimetric materials. Previous studies of gamma-irradiated barium dithionate (BaS(2)O(6) x 2H(2)O) have shown promise for its use as a radiation dosemeter. This work studies in greater detail several essential attributes of the system. Special attention has been directed to the study of EPR response dependences on microwave power, irradiation temperature, minimum detectable dose and post-irradiation stability. PMID:16565205

  12. Scattering lengths of calcium and barium isotopes

    OpenAIRE

    Dammalapati, U.; Willmann, L.; Knoop, S.

    2011-01-01

    We have calculated the s-wave scattering length of all the even isotopes of calcium (Ca) and barium (Ba), in order to investigate the prospect of Bose-Einstein condensation (BEC). For Ca we have used an accurate molecular potential based on detailed spectroscopic data. Our calculations show that Ca does not provide other isotopes alternative to the recently Bose condensed 40Ca that suffers strong losses because of a very large scattering length. For Ba we show by using a model potential that ...

  13. TSSM: The in situ exploration of Titan

    Science.gov (United States)

    Coustenis, A.; Lunine, J. I.; Lebreton, J. P.; Matson, D.; Reh, K.; Beauchamp, P.; Erd, C.

    2008-09-01

    The Titan Saturn System Mission (TSSM) mission was born when NASA and ESA decided to collaborate on two missions independently selected by each agency: the Titan and Enceladus mission (TandEM), and Titan Explorer, a 2007 Flagship study. TandEM, the Titan and Enceladus mission, was proposed as an L-class (large) mission in response to ESA's Cosmic Vision 2015-2025 Call. The mission concept is to perform remote and in situ investigations of Titan primarily, but also of Enceladus and Saturn's magentosphere. The two satellites are tied together by location and properties, whose remarkable natures have been partly revealed by the ongoing Cassini-Huygens mission. These bodies still hold mysteries requiring a complete exploration using a variety of vehicles and instruments. TSSM will study Titan as a system, including its upper atmosphere, the interactions with the magnetosphere, the neutral atmosphere, surface, interior, origin and evolution, as well as the astrobiological potential of Titan. It is an ambitious mission because its targets are two of the most exciting and challenging bodies in the Solar System. It is designed to build on but exceed the scientific and technological accomplishments of the Cassini- Huygens mission, exploring Titan and Enceladus in ways that are not currently possible (full close-up and in situ coverage over long periods of time for Titan, several close flybys of Enceladus). One overarching goal of the TSSM mission is to explore in situ the atmosphere and surface of Titan. In the current mission architecture, TSSM consists of an orbiter (under NASA's responsibility) with a large host of instruments which would perform several Enceladus and Titan flybys before stabilizing in an orbit around Titan alone, therein delivering in situ elements (a Montgolfière, or hot air balloon, and a probe/lander). The latter are being studied by ESA. The balloon will circumnavigate Titan above the equator at an altitude of about 10 km for several months. The

  14. Sintering characteristics of La/Nd doped Bi4Ti3O12 bismuth titanate ceramics

    Directory of Open Access Journals (Sweden)

    Islam Aminul Md.

    2015-01-01

    Full Text Available A good understanding about the properties of La/Nd doped Bismuth Titanate (BIT ceramics at high temperature is very important as the new materials being developed based on the BIT. Pure BIT, La doped (BLT, Nd doped (BNT and La and Nd co-doped BIT (BLNT powders were synthesized by solid state reaction method. Prepared powders were calcined at different temperatures and structural properties measured by XRD. For pure BIT better crystal quality was obtained at 750 0C and for both BLT and BNT better result obtained at 800 0C. Calcined powders were formed into pellets and sintered at different temperatures and its dielectric properties were characterized. Optimum sintering temperature for both BLT and BNT showed was 850 0C and La and Nd co-doped bismuth titanate (BLNT revealed optimum sintering temperature of 950 0C. Therefore, optimum sintering temperature of bismuth titanate was increased due to La and Nd doping.

  15. Barium cardiotoxicity: Relationship between ultrastructural damage and mechanical effects.

    Science.gov (United States)

    Delfino, G; Amerini, S; Mugelli, A

    1988-01-01

    The ultrastructural damage in guinea-pig ventricular strips caused by barium was analysed. At a concentration of 1 mmol/litre, barium chloride caused a dramatic increase in the developed tension associated with the onset of automaticity. The ultrastructural analysis demonstrated that barium caused notable and consistent alterations which affected most myocyte components. Various degenerative aspects were observed in mitochondria and in the contractile apparatus. Glycogen deposits were completely depleted. Preparations driven at 4 Hz (i.e. the rate of spontaneous firing of barium-treated preparations) showed moderate ultrastructural alterations, thus demonstrating that the increase in the rate of beating is not the only determinant of the observed damage. These results suggest that the myocardial toxicity of barium is due not only to the well-known modifications in membrane permeability, but possibly also to alterations in cell function. PMID:20702358

  16. Barium and radium migration in unconsolidated Canadian geological materials

    International Nuclear Information System (INIS)

    This report describes the results of laboratory studies on the distribution coefficients of radium and barium in samples of unconsolidated geologic materials. Graphs of Ksub(d) versus solution concentration for the respective elements showed constant Ksub(d) values in the low concentration range suggesting that, at low concentrations, a distribution coefficient is a valid means of representing the geochemical reactions of both barium and radium. The Ksub(d) values for barium range between 60 and 3500 ml/g. The values appear to be influenced by the amount of barium occurring naturally in the soil materials and thus there is little possiblility of using barium as an analog of radium in laboratory experiments. The Ksub(d) values of radium vary from 50 to 1000 ml/g indicating that a wide range of geological materials have a substantial capacity to retard the migration of radium

  17. Titan's Atmospheric Dynamics and Meteorology

    Science.gov (United States)

    Flasar, F. M.; Baines, K. H.; Bird, M. K.; Tokano, T.; West, R. A.

    2008-01-01

    Titan, after Venus, is the second example of an atmosphere with a global cyclostrophic circulation in the solar system, but a circulation that has a strong seasonal modulation in the middle atmosphere. Direct measurement of Titan's winds, particularly observations tracking the Huygens probe at 10degS, indicate that the zonal winds are generally in the sense of the satellites rotation. They become cyclostrophic approx. 35 km above the surface and generally increase with altitude, with the exception of a sharp minimum centered near 75 km, where the wind velocity decreases to nearly zero. Zonal winds derived from the temperature field retrieved from Cassini measurements, using the thermal wind equation, indicate a strong winter circumpolar vortex, with maximum winds at mid northern latitudes of 190 ms-' near 300 km. Above this level, the vortex decays. Curiously, the zonal winds and temperatures are symmetric about a pole that is offset from the surface pole by approx.4 degrees. The cause of this is not well understood, but it may reflect the response of a cyclostrophic circulation to the offset between the equator, where the distance to the rotation axis is greatest, and the solar equator. The mean meridional circulation can be inferred from the temperature field and the meridional distribution of organic molecules and condensates and hazes. Both the warm temperatures in the north polar region near 400 km and the enhanced concentration of several organic molecules suggests subsidence there during winter and early spring. Stratospheric condensates are localized at high northern latitudes, with a sharp cut-off near 50degN. Titan's winter polar vortex appears to share many of the same characteristics of winter vortices on Earth-the ozone holes. Global mapping of temperatures, winds, and composition in he troposphere, by contrast, is incomplete. The few suitable discrete clouds that have bee found for tracking indicate smaller velocities than aloft, consistent with the

  18. Cross sections of barium isotopes in the interaction of 60 MeV/nucleon 18O with 238U

    International Nuclear Information System (INIS)

    Barium isotopes were produced by 60 MeV/u 18O ion bombardment of natural uranium via 238U (18O, X) reactions. Ba sources were prepared by radiochemical separation, and measured by a HPGe detector. The cumulative cross sections were obtained by analysis of measured time sequence γ-ray spectra. A double peak phenomenon in Ba isotope distribution was observed. (author)

  19. Cyanide Soap? Dissolved material in Titan's Seas

    Science.gov (United States)

    Lorenz, R. D.; Lunine, J. I.; Neish, C. D.

    2011-10-01

    Although it is evident that Titan's lakes and seas are dominated by ethane, methane, nitrogen, and (in some models) propane, there is divergence on the predicted relative abundance of minor constituents such as nitriles and C-4 alkanes. Nitriles such as hydrogen cyanide and acetonitrile, which have a significant dipole moment, may have a disproportionate influence on the dielectric properties of Titan seas and may act to solvate polar molecules such as water ice. The hypothesis is offered that such salvation may act to enhance the otherwise negligible solubility of water ice bedrock in liquid hydrocarbons. Such enhanced solubility may permit solution erosion as a formation mechanism for the widespread pits and apparently karstic lakes on Titan. Prospects for testing this hypothesis in the laboratory, and with measurements on Titan, will be discussed.

  20. Titanic või turist? / Karin Paulus

    Index Scriptorium Estoniae

    Paulus, Karin, 1975-

    2006-01-01

    Tallinnas Tartu maanteel asuva endise Turisti poe (arhitektid Peep Jänes, Henno Sepmann) asemele tahavad hoone omanikud ehitada kõrghoone nimega Titanic. Hoone ajutine võtmine muinsuskaitse alla on põhjustanud kohtuvaidluse

  1. High resolution studies of barium Rydberg states

    International Nuclear Information System (INIS)

    The subtle structure of Rydberg states of barium with orbital angular momentum 0, 1, 2 and 3 is investigated. Some aspects of atomic theory for a configuration with two valence electrons are reviewed. The Multi Channel Quantum Defect Theory (MQDT) is concisely introduced as a convenient way to describe interactions between Rydberg series. Three high-resolution UV studies are presented. The first two, presenting results on a transition in indium and europium serve as an illustration of the frequency doubling technique. The third study is of hyperfine structure and isotope shifts in low-lying p states in Sr and Ba. An extensive study of the 6snp and 6snf Rydberg states of barium is presented with particular emphasis on the 6snf states. It is shown that the level structure cannot be fully explained with the model introduced earlier. Rather an effective two-body spin-orbit interaction has to be introduced to account for the observed splittings, illustrating that high resolution studies on Rydberg states offer an unique opportunity to determine the importance of such effects. Finally, the 6sns and 6snd series are considered. The hyperfine induced isotope shift in the simple excitation spectra to 6sns 1S0 is discussed and attention is paid to series perturbers. It is shown that level mixing parameters can easily be extracted from the experimental data. (Auth.)

  2. NANOSCALE BARIUM HYDROSILICATES: CHOOSING THE SYNTHESIS TECHNOLOGY

    Directory of Open Access Journals (Sweden)

    GRISHINA Anna Nikolaevna

    2013-08-01

    Full Text Available Cement concretes are the most used materials in modern civil engineering. Due to that such materials draw great attention both in the Russian Federation and abroad. The possibility to enhance the manufacturability and operational properties of concretes results in significant reduction of overall operating costs. Many enhancement methods have been elaborated. Among them there is one based on introduction of calcium hydrosilicates into construction composition. The authors set up a hypothesis that similarity between properties and structures of different hydrosilicates (for example, alkaline earth metals and metals of the second group will provide similar increased operational characteristics. The specialists of Research and Educational Center «Nanotechnology» are developing cement composites nanomodification methods which include introduction of nanodimensional barium hydrosilicates particles. The synthesis of barium hydrosilicates particles can be done with the use of many technologies, different by energy consumption or performing complexity. Taking into account both these factors, one can assume that low-temperature sol-gel synthesis from diluted water solutions is the proper technology. The present paper shows that this assumption is correct. The selection of certain technology is made by the means of multiobjective optimization, which is in turn is performed by the means of linear scalarization. This method, while not always giving the Pareto optimal solutions, can be easily implemented. The particle size distribution is taken into consideration during selection of objectives and weights. It is shown that selected technology allows manufacturing nanoparticles with median size about 30 nm.

  3. Coprecipitation of europium with barium sulphate

    International Nuclear Information System (INIS)

    The distribution behaviour of the trivalent europium ion at a micro-component scale, between barium sulphate and aqueous solution, was studied at ambient temperature. Experiments were carried out using radioactive tracers. Results indicate an enrichment of the micro component in the solid phase relative to the solution. The effects of the concentrations of the micro and macro-elements on the coprecipitation have been examined. Europium distribution coefficient DEu increases from 1.1 ± 0.2 to 3.2 ± 0.4 when initial europium concentration decreases from more than 17 x 10-5 to 1.4 x 10-5 M, in sulphuric media with SO42- in excess or CBa2+/CSO42- Eu. The coprecipitation of europium with barium sulphate as a heterovalent solid-solution is described by heterogeneous model obeying the Doerner and Hoskins logarithmic partition law. The weaker partition coefficients lower than unity (λ = 0.25 when CEu(III) ∼ 1.4 x 10-5 M and λ = 0.13 when CBa2+/CSO42- -5 ≤ CEu(III) = 153.5 x 10-5 M) lead to crystals increasingly enriched in the trace element. (orig.)

  4. Huygens will soon set off for Titan

    Science.gov (United States)

    1997-09-01

    When it parachutes slowly down to the surface of Titan, in November 2004, Huygens will unmask the most enigmatic object in the Solar System. Baffled and tantalized, space scientists don't know how this moon of Saturn acquired a dense atmosphere, which is rich in nitrogen like the Earth's air but also possesses many carbon compounds. The scientists can't say whether the surface of Titan is solid or liquid, or a bit of each. But many are convinced that Titan offers them their best chance of discovering what the Earth and its chemistry were like, before life began. A heat shield will protect Huygens as it slams into Titan's atmosphere at 20,000 kilometres per second. A succession of parachutes will adjust Titan's speed of descent through the atmosphere. Radio signals from the probe will convey the results to the Cassini orbiter, for relaying tothe Earth, and will also reveal how Huygens and its parachute are blown about by the winds of Titan, during the descent. Huygens carries six sets of instruments devised by multinational teams of scientists in Europe and the USA. They will analyse the chemical composition of the haze that hides Titan's surface. They will gauge the weather of Titan during Huygens' descent, and image the clouds and the surface. A surface science package will report the true nature of Titan's surface. A televised launch Cassini-Huygens will be launched by a NASA Titan IVB rocket from the Cape Canaveral Air Station in Florida. The earliest launch date is 6 October, but this is now likely to slip, to allow for the repair of minor damage to insulation within the Huygens probe (see ESA Press Release Nr 27-97). Provided the launch occurs before 4 November, there will be no delay in the arrival at Saturn and Titan. ESA will provide a live TV transmission, free of charge, for European news organizations and other organizations wishing to receive it. Live pictures of the launch will be accompanied by interviews with scientists and engineers of ESA's Huygens

  5. Parallel contingency statistics with Titan.

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, David C.; Pebay, Philippe Pierre

    2009-09-01

    This report summarizes existing statistical engines in VTK/Titan and presents the recently parallelized contingency statistics engine. It is a sequel to [PT08] and [BPRT09] which studied the parallel descriptive, correlative, multi-correlative, and principal component analysis engines. The ease of use of this new parallel engines is illustrated by the means of C++ code snippets. Furthermore, this report justifies the design of these engines with parallel scalability in mind; however, the very nature of contingency tables prevent this new engine from exhibiting optimal parallel speed-up as the aforementioned engines do. This report therefore discusses the design trade-offs we made and study performance with up to 200 processors.

  6. Cassini UVIS observations of Titan nightglow spectra

    OpenAIRE

    Ajello, Joseph M.; West, Robert A.; Gustin, Jacques; Larsen, Kristopher; Stewart, A. Ian F.; Esposito, Larry W.; Mcclintock, William E.; Holsclaw, Gregory M.; Bradley, E. Todd

    2012-01-01

    In this paper we present the first nightside EUV and FUV airglow limb spectra of Titan showing molecular emissions. The Cassini Ultraviolet Imaging Spectrograph (UVIS) observed photon emissions of Titan's day and night limb-airglow and disk-airglow on multiple occasions, including during an eclipse observation. The 71 airglow observations analyzed in this paper show EUV (600-1150 Å) and FUV (1150-1900 Å) atomic multiplet lines and band emissions arising from either photoelectron induced fluor...

  7. Co2 On Titan's Surface

    Science.gov (United States)

    McCord, Thomas B.; Combe, J.; Hayne, P.; Hansen, G. B.

    2007-10-01

    Evidence is reported for the presence of CO2 on the surface of Titan from the Cassini VIMS (an imaging visual and IR spectrometer) data (McCord et al., 2006, 2007). CO2 can be expected on Titan from basic planetary evolution models. It was also suggested as a plausible spectral component for bright material near the Huygens landing site (Rodriguez et al., 2006), based on structure in the 1.59-µm region. Hartung et al. (2006) searched for CO2 in one hemisphere, but they were able only to set an upper limit on the possible spatial coverage by pure CO2. Barnes et al., (2006) suggested CO2 as a possible candidate material for a 5-µm-bright region, named Tsegihi, based on the high 5-µm reflectance. However, these results are not inconsistent with our report. The evidence we report is three-fold: 1) A weak absorption near 4.9 µm in the 5-µm methane window for the Tui Regio region; 2) The spectral contrast between the 2.7- and 2.8-µm methane subwindows for the regions exhibiting the 4.9-µm absorption, with stronger absorption correlating with stronger contrast; and 3) the overall shape of the CO2 spectrum (for several grain-sizes) is consistent with the spectrum of one of the fundamental surface spectral components, as deduced by spectral mixture analysis modeling. The Tui Regio feature exhibits the strongest evidence in all three categories. Studies of this feature's morphology and albedo markings have suggested to some that it may be an active cryovolcanic feature (Barnes et al., 2006). If so, CO2 could be erupting and depositing as a frost. This likely happened elsewhere and at other times. Thus, CO2 could be a major constituent of the surface, but over time it may be mixed with other constituents, such as spectrally neutral organics raining from the atmosphere, thereby reducing the strength of its spectral signature.

  8. The Chemical Evolution of Titan's Atmosphere

    Science.gov (United States)

    Kaiser, Ralf I.

    2010-11-01

    Astrochemistry or Astrochemical Dynamics presents a newly emerging, interdisciplinary and innovative field comprising scientists in chemistry, physics, biology, astronomy, and planetary chemistry. The prime directive of Astrochemical Dynamics is to understand the origin and chemical evolution of the interstellar medium and of our Solar System. Here, the arrival of the Cassini-Huygens probe at Saturn's moon Titan - the only Solar System body besides Earth and Venus with a solid surface and thick atmosphere - in 2004 opened up a new chapter in the history of Solar System exploration. Titan's most prominent optically visible features are the aerosol-based haze layers, which give Titan its orange-brownish color. However, the underlying chemical processes, which initiate the haze formation, have been the least understood to date. This talk reviews recent laboratory studies on the role of polyacetylenes (polyynes) and (hetero)aromatic molecules like the phenyl radical, benzene, and pyridine in the formation of Titan's organic haze layers utilizing crossed molecular beam experiments. Those investigations provide key concepts on the formation mechanisms of unsaturated hydrocarbon molecules - in particular polyynes and aromatic compounds - together with their hydrogen deficient precursors from the "bottom up" in the atmosphere of Saturn's moon Titan. A brief outline to future research directions tackling also the heterogeneous chemistry on Titan and in hydrocarbon-rich atmospheres in the outer Solar System in general will also be presented.

  9. Study on the preparation and formation mechanism of barium sulphate nanoparticles modified by different organic acids

    Indian Academy of Sciences (India)

    Yuhua Shen; Chuanhao Li; Xuemei Zhu; Anjian Xie; Lingguang Qiu; Jinmiao Zhu

    2007-07-01

    This paper reports a simple method to prepare barium sulphate nanoparticles by use of tetradecanoic acid, hexadecanoic acid and stearic acid as modifier. The barium sulphate nanoparticles obtained are characterized by using Fourier transform infra-red spectroscopy (FT-IR), powder X-ray diffraction (XRD), transmission electron microscopy (TEM), dynamic laser light scatter (DLLS) and thermogravimetric analysis (TGA), respectively. The results show that the BaSO4 particles are all spherical and in the nano-scale. Our method has a better dispersion and controllable diameter dependent on the length of the chain of organic acid and the pH value of the system. A possible mechanism is also discussed.

  10. Synthesis and Fluorescence of Europium-Doped Barium Fluoride Cubic Nanocolumns

    Institute of Scientific and Technical Information of China (English)

    连洪州; 刘洁; 叶泽人; 石春山

    2004-01-01

    Europium-doped barium fluoride cubic nanocolumns were synthesized from the quaternary water in oil reverse microemulsions. In this process, the aqueous cores of water/cetyl trimethyl ammonium bromide(CTAB)/n-butanol/n-octane reverse microemulsions were used as microreactors for the precipitation of europium doped barium fluoride. XRD analysis shows that under the dopant concentration of 0.06%(molar fraction), the products are single phase. The result products are cubic column-like with about 30~50 nm edge length of cross section, and about 200 nm of length obtained from the transmission electron microscopy(TEM), and atomic force microscopy(AFM). Under the 0.06%(molar fraction) of dopant concentration, the fluorescence of Eu2+ and Eu3+ under the 589 of excitation wavelength is observed.

  11. Human Internal Contamination with Strontium-90 Titanate

    International Nuclear Information System (INIS)

    Strontium-90 has been used in multikilocurie quantities recently as a heat source for thermoelectric generators. The titanate was carefully selected for this purpose as the chemical form which best met requirements including inertness to corrosive attack in the event of accidental release to the environment. An industrial accidental exposure of one worker on 26 June 1963 to strontium-90 titanate powder, originally in the form of particles of about 120 μm and less, provided an opportunity to attempt the assessment of the human body burden of this supposedly highly insoluble compound. Because of the physical and biological behaviour of the particles, it was assumed that the actual particle size which was dispersed and ingested and/or inhaled by the exposed person was in the range of 1 to 30 μm. Three techniques were used to estimate the body burden. Whole-body radiation counting carried out by Dr. Charles H. Miller at Argonne National Laboratory, which only gave an upper limit because of the non-specific Bremsstrahlung spectrum from strontium-90, yttrium-90 indicated an initial total-body burden of 4.8 μc. The second method, total urinary and faecal output collection, totalled 5.0 for the first 20 d. Combining that amount with an estimate of the amount retained in the body, an initial total-body burden of 5.2 μc was obtained. The third technique, blood radioactivity determination, indicated an initial total-body burden of 6 μc. The ratio of faecal to urinary output in the first 20 d was 15 to 1, and 94% of the total strontium-90 excretion was via the gastro-intestinal tract. It is of interest, however, that a significant fraction was evidently soluble. By the 20th post-incident day, it was estimated that the retained body burden was only 5% of the total intake. Methods used in that period to enhance faecal excretion by MgSO4 and urinary excretion by a combination of Ca-gluconate and NH4CI are described. Subsequent excretion patterns and the current estimate of

  12. Exploring the Seas of Titan: The Titan Mare Explorer (TiME) Mission

    Science.gov (United States)

    Stofan, E. R.; Lunine, J. I.; Lorenz, R. D.; Aharonson, O.; Bierhaus, E.; Clark, B.; Griffith, C.; Harri, A.-M.; Karkoschka, E.; Kirk, R.; Kantsiper, B.; Mahaffy, P.; Newman, C.; Ravine, M.; Trainer, M.; Waite, H.; Zarnecki, J.

    2010-03-01

    The Titan Mare Explorer (TiME) is a Discovery-class mission that would constrain Titan’s active methane cycle as well as its intriguing prebiotic organic chemistry by providing in situ measurements from the surface of a Titan sea.

  13. Constraining the Role of Seas and Lakes in Titan's Climate: The Titan Mare Explorer Mission

    Science.gov (United States)

    Stofan, E. R.; Lunine, J. I.; Lorenz, R. D.; Aharonson, O.; Bierhaus, E.; Clark, B.; Griffith, C.; Harri, A. M.; Karkoschka, E.; Kirk, R.; Mahaffy, P.; Newman, C.; Ravine, M.; Trainer, M.; Turtle, E.; Waite, H.; Yelland, M.; Zarnecki, J.; Hayes, A.

    2012-06-01

    Lakes and seas on Titan provide the first evidence for an extraterrestrial active liquid cycle and play a key role in its climate. Constraints on Titan's methane cycle, analogous to Earth’s hydrologic cycle, can be made through in situ measurements.

  14. Titan's 2 micron Surface Albedo and Haze Optical Depth in 1996-2004

    Energy Technology Data Exchange (ETDEWEB)

    Gibbard, S; de Pater, I; Macintosh, B; Roe, H; Max, C; Young, E; McKay, C

    2004-05-04

    We observed Titan in 1996-2004 with high-resolution 2 {micro}m speckle and adaptive optics imaging at the W.M. Keck Observatory. By observing in a 2 {micro}m broadband filter we obtain images that have contributions from both Titan's surface and atmosphere. We have modeled Titan's atmosphere using a plane-parallel radiative transfer code that has been corrected to agree with 3-D Monte Carlo predictions. We find that Titan's surface albedo ranges from {le} 0:02 in the darkest equatorial region of the trailing hemisphere to {approx_equal} 0:1 in the brightest areas of the leading hemisphere. Over the past quarter of a Saturnian year haze optical depth in Titan's Southern hemisphere has decreased substantially from a value of 0.48 in 1996 down to 0.18 in 2004, while the northern haze has been increasing over the past few years. As a result of these changes, in 2004 the North/South haze asymmetry at K' band has disappeared.

  15. Numerical study on lithium titanate battery thermal response under adiabatic condition

    International Nuclear Information System (INIS)

    Highlights: • The thermal behavior of lithium titanate battery during cycling was investigated. • The temperature rate in charging was less than that of discharging in the cycling. • The temperature difference was less than 0.02 °C at 0.5 C in adiabatic condition. • The temperature distribution and thermal runaway of the battery were predicted. - Abstract: To analyze the thermal behavior of 945 mA h lithium titanate battery during charging and discharging processes, the experimental and numerical studies are performed in this work. The cathode and anode of the 945 mA h lithium titanate soft package battery are the lithium nickel–cobalt–manganese-oxide and lithium titanate, respectively. In the experiment, an Accelerating Rate Calorimeter combined with battery cycler is employed to investigate the electrochemical–thermal behavior during charge–discharge cycling under the adiabatic condition. In numerical simulation, one electrochemical-thermal model is adopted to predict the thermal response and validated with the experimental results. From both experimental and simulated results, the profile of potential and current, the heat generation, the temperature, the temperature changing rate and the temperature distribution in the cell are obtained and thermal runaway is predicted. The analysis of the electrochemical and thermal behavior is beneficial for the commercial application of lithium titanate battery in the fields of electric vehicles and hybrid electric vehicles

  16. Crystallinity and electrical properties of neodymium-substituted bismuth titanate thin films

    International Nuclear Information System (INIS)

    We report on the properties of Nd-substituted bismuth titanate Bi4-xNd xTi3O12 (BNdT) thin films for ferroelectric non-volatile memory applications. The Nd-substituted bismuth titanate thin films fabricated by modified chemical solution deposition technique showed much improved properties compared to pure bismuth titanate. A pyrochlore free crystalline phase was obtained at a low annealing temperature of 640 deg. C and grain size was found to be considerably increased as the annealing temperature increased. The film properties were found to be strongly dependent on the Nd content and annealing temperatures. The measured dielectric constant of BNdT thin films was in the range 172-130 for Bi4-xNd xTi3O12 with x 0.0-0.75. Ferroelectric properties of Nd-substituted bismuth titanate thin films were significantly improved compared to pure bismuth titanate. For example, the observed 2P r and E c for Bi3.25Nd0.75Ti3O12, annealed at 680 deg. C, were 38 μC/cm2 and 98 kV/cm, respectively. The improved microstructural and ferroelectric properties of BNdT thin films suggest their suitability for high density ferroelectric random access memory applications

  17. Solubility and stability of barium arsenate and barium hydrogen arsenate at 25oC

    International Nuclear Information System (INIS)

    The inconsistency among current thermodynamic data of Ba3(AsO4)2(c) and BaHAsO4.H2O(c) led the authors to obtain independent solubility data of barium arsenate by both precipitation and dissolution experiments. Low and neutral pH (3.63-7.43) favored the formation of BaHAsO4.H2O(c). Both BaHAsO4.H2O(c) and Ba3(AsO4)2(c) formed at the neutral pH conditions (7.47, 7.66), whereas Ba3(AsO4)2(c) was the only solid phase precipitated at high pH (13.03, 13.10). The Ba3(AsO4)2(c) precipitate acquired at 50oC appeared as small leafy crystal, while the Ba3(AsO4)2(c) solid precipitated at 25oC comprised granular aggregate with some smaller crystal clusters. XRD and SEM analyses of Ba3(AsO4)2(c) and BaHAsO4.H2O(c) indicated that the solids were indistinguishable before and after the dissolution experiments. In the present work, the solubility products (Ksp) for Ba3(AsO4)2(c) and BaHAsO4.H2O(c) were determined to be 10-23.53(10-23.01 to 10-24.00) and 10-5.60(10-5.23 to 10-5.89), respectively. ΔGfo for Ba3(AsO4)2(c) and BaHAsO4.H2O(c) were calculated to be -3113.40 and -1544.47kJ/mol, respectively. There was no difference between the solubility products of the leafy and the granular Ba3(AsO4)2(c) solids

  18. Do all barium stars have a white dwarf companion?

    Science.gov (United States)

    Dominy, J. F.; Lambert, D. L.

    1983-01-01

    International Ultraviolet Explorer short-wavelength, low-dispersion spectra were analyzed for four barium, two mild barium, and one R-type carbon star in order to test the hypothesis that the barium and related giants are produced by mass transfer from a companion now present as a white dwarf. An earlier tentative identification of a white dwarf companion to the mild barium star Zeta Cyg is confirmed. For the other stars, no ultraviolet excess attributable to a white dwarf is seen. Limits are set on the bolometric magnitude and age of a possible white dwarf companion. Since the barium stars do not have obvious progenitors among main-sequence and subgiant stars, mass transfer must be presumed to occur when the mass-gaining star is already on the giant branch. This restriction, and the white dwarf's minimum age, which is greater than 8 x 10 to the 8th yr, determined for several stars, effectively eliminates the hypothesis that mass transfer from an asymptotic giant branch star creates a barium star. Speculations are presented on alternative methods of producing a barium star in a binary system.

  19. Have Titan's North-Polar Lakes Changed?

    Science.gov (United States)

    Wall, Stephen D.; Hayes, A.; Elachi, C.; Stofan, E.; Paillou, P.; Formico, T.; Mitchell, K.; Casarano, D.; Notarnicola, C.

    2012-10-01

    Cassini's RADAR instrument acquired a SAR swath over Titan's north polar lakes on May 22, 2012 , providing repeat images of a number of the smaller lakes. Previous coverage of these lakes was obtained on various passes in 2006 and 2007. Among the principal objectives of the Cassini mission is to monitor the liquid in the lakes with the approach of northern summer. Evidence of change in the lakes' levels might consist of shoreline changes, changes in radar backscatter (e.g. as penetration increases or dry spots appear), or combinations of these. We have chosen ten lakes and lake complexes for study, ranging from -4 to -100 km largest dimension. Visual comparison of repeat images is complicated by the dissimilar imaging geometry and (in some cases) resolution, and by SAR speckle. There are ambiguous cases that require further study, but at this writing we cannot identify certain changes. Ambiguous cases will be analyzed by using electromagnetic models, which can also take into account different acquisition geometry. Further analysis will be carried out exploiting electromagnetic scattering models and inversion approaches (e.g., Bayesian) to provide estimate of the lake parameters and any related changes. Parts of the research described in this paper were carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration.

  20. Dissolution on Titan and on Earth: Towards the age of Titan's karstic landscapes

    CERN Document Server

    Cornet, Thomas; Bahers, Tangui Le; Bourgeois, Olivier; Fleurant, Cyril; Mouélic, Stéphane Le; Altobelli, Nicolas

    2015-01-01

    Titan's polar surface is dotted with hundreds of lacustrine depressions. Based on the hypothesis that they are karstic in origin, we aim at determining the efficiency of surface dissolution as a landshaping process on Titan, in a comparative planetology perspective with the Earth as reference. Our approach is based on the calculation of solutional denudation rates and allow inference of formation timescales for topographic depressions developed by chemical erosion on both planetary bodies. The model depends on the solubility of solids in liquids, the density of solids and liquids, and the average annual net rainfall rates. We compute and compare the denudation rates of pure solid organics in liquid hydrocarbons and of minerals in liquid water over Titan and Earth timescales. We then investigate the denudation rates of a superficial organic layer in liquid methane over one Titan year. At this timescale, such a layer on Titan would behave like salts or carbonates on Earth depending on its composition, which mea...