WorldWideScience

Sample records for barium sulfate particles

  1. Barium Sulfate

    Science.gov (United States)

    Barium sulfate is used to help doctors examine the esophagus (tube that connects the mouth and stomach), stomach, and ... pictures of the inside of the body). Barium sulfate is in a class of medications called radiopaque ...

  2. Long-term retention of /sup 133/Ba in the rat trachea following local administration as barium sulfate particles

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, S.; Patrick, G.

    1987-06-01

    Long-term retention of /sup 133/Ba in the trachea from intratracheally administered BaSO/sub 4/ particles was determined by both serial sacrifice and external scanning methods up to 6 months after injection. The amount of /sup 133/Ba retained 1 week after injection in the caudal region of the trachea, where the tip of the cannula had been at injection, was 0.41% of the initial dose. Thereafter the /sup 133/Ba was cleared exponentially with a mean half-time of 88 days, as determined from the autopsy samples. The cranial region of the trachea, including the site of the tracheostomy, contained /sup 133/Ba at 10 times the level in the caudal region 1 week after injection and was cleared with a half-time of 66 days. These clearance rates were confirmed by repeated external scanning over the trachea. The 133Ba was drained to the lymph nodes not only in the thoracic cavity but also in the cervical region, suggesting the possibility of lymphatic drainage from the trachea to the cervical lymph nodes.

  3. Economically dissolving barium sulfate scale with a chelating agent

    Energy Technology Data Exchange (ETDEWEB)

    Richardson, E.A.; Scheuerman, R.E.

    1977-06-21

    A composition is described for dissolving a barium sulfate scale from a subterranean or other relatively remote location into which fluid can be flowed. Fluid is flow-flowed into the remote location so that a stream of fluid contacts and flows along the surface of the scale. The composition and flow rate of the fluid are adjusted so that (1) the scale is contacted by a stream of aqueous solution in which each portion contains enough dissolved aminopolyacetic acid salt chelating agent to dissolve barium sulfate, and (2) substantially all upstream portions of the scale are contacted by a succession of portions of the aqueous liquid which are substantially unsaturated with respect to dissolved barium-chelant complex. (5 claims)

  4. The adhesiometer: a simple device to measure adherence of barium sulfate to intestinal mucosa.

    Science.gov (United States)

    Salomonowitz, E; Frick, M P; Cragg, A H; Lund, G

    1984-04-01

    A simple, inexpensive device assessing barium sulfate adherence to alimentary tract mucosa was tested in an animal study using pigs and dogs. Interaction of gastric, intestinal, and colonic mucosal lining with three different barium preparations was studied. In both pigs and dogs, barium adherence to gastric mucosa was significantly stronger when compared with colonic mucosa. PMID:6608230

  5. Novel Composite Materials for Chiral Separation from Cellulose and Barium Sulfate

    Directory of Open Access Journals (Sweden)

    Wei Chen

    2013-01-01

    Full Text Available Cellulose was dissolved in an aqueous solution of sodium hydroxide (NaOH and urea followed by the addition of barium sulfate (BaSO4 to yield the BaSO4/cellulose composite particles. The morphology, particle size, and BaSO4 content of the composite particles were adjusted by controlling the feed ratio of cellulose and BaSO4. The cellulose within the composite particles then reacted with 3,5-dimethylphenyl isocyanate. The resulting materials were utilized as the chiral stationary phases (CSPs whose enantioseparation capabilities were evaluated by various chiral analytes. Due to the mechanical enhancement effect of BaSO4, the composite particles could be applied to the chromatographic packing materials.

  6. Morphologies, mechanical properties and thermal stability of poly(lactic acid) toughened by precipitated barium sulfate

    Science.gov (United States)

    Yang, Jinian; Wang, Chuang; Shao, Kaiyun; Ding, Guoxin; Tao, Yulun; Zhu, Jinbo

    2015-11-01

    Poly(lactic acid) (PLA)-based composites were prepared by blending PLA with precipitated barium sulfate (BaSO4) modified with stearic acid. The morphologies, mechanical properties and thermal stability of samples with increased mass fraction of BaSO4 were investigated. Results showed that PLA was toughened and reinforced simultaneously by incorporation of precipitated BaSO4 particles. The highest impact toughness and elongation at break were both achieved at 15% BaSO4, while the elastic modulus increased monotonically with increasing BaSO4 loading. Little effect of BaSO4 on the thermal behavior of PLA was observed in the present case. However, the thermal stability of PLA/BaSO4 composites at high temperature was enhanced.

  7. The Precipitation Process of Liquid Wastes Containing Contaminant Am withBarium Sulfate

    International Nuclear Information System (INIS)

    The investigated of the reduction volume liquid wastes containing ofAmericium nuclide contaminant has been done. The reduction volume was done byadding barium sulfate coagulant. The experimental procedure that has beendone by adding regent of barium nitrate and natrium sulfate to the wasteswith its preadjusted pH, then by utilizing the jar test equipment was carriedout the fast stirring speed for 5 minutes and the gentle agitation for 30minutes, therefor its floc and supernatant will be formed. The resultedbarium sulfate floc will trap radionuclide in the wastes. The Variableinvestigated were: the concentration of barium sulfate, pH of the wastes, theflash mixing rate, the gentle agitation rate. The investigated barium sulfateconcentration variable was started from 100 ppm up to 800 ppm. Theinvestigated pH variable was started from pH 7 up to pH 13. The investigatedflash mixing rate were 75, 100, 125, 150, 175, 200, 225, 250 rpm. Theinvestigated gentle agitation variable were 20, 30, 40, 50 rpm. The bestresult which was represented by decontaminating factor (DF) was found frombarium sulfate concentration of 300 ppm and pH 11, and the flash mixing rateof 200 rpm and the gentle agitation rate of 20 rpm, with the separationefficiency = 97.2 %. (author)

  8. Evaluation of Radiation Dose Reduction during CT Scans Using Oxide Bismuth and Nano-Barium Sulfate Shields

    OpenAIRE

    Seoung, Youl-Hun

    2015-01-01

    The purpose of the present study was to evaluate radiation dose reduction and image quality during CT scanning by using a new dose reduction fiber sheet (DRFS) with commercially available bismuth shields. These DRFS were composed of nano-barium sulfate (BaSO4), filling the gaps left by the large oxide bismuth (Bi2O3) particle sizes. The radiation dose was measured five times at directionss of 12 o'clock from the center of the polymethyl methacrylate (PMMA) head phantom to calculate an average...

  9. HYBRID AND CHARACTERISTIC OF POLYANILINE- BARIUM TITANATE NANOCOMPOSITE PARTICLES

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Polyaniline-barium titanate (PAn-BaTiO3) ultrafine composite particles were prepared by the oxidative polymerization of aniline with H2O2 while barium titanate nanoparticles were synthesized with a sol-gel method. The infrared spectrogram shows that the polymerization of PAn in the hybrid process of PAn-BaTiO3 is similar with the polymeric process of pure aniline, and there is interaction of PAn and BaTiO3 in the PAn-BaTiO3. SEM and TEM results show that the average diameter of the composite particles is 1.50 μm and the diameters of BaTiO3 nanoparticles are 5-15 nm in the composite particle. The electrical conductivity of the ultrafine composite particles is transformable from 100 to 10-11S/cm by equilibrium doping or dedoping method using various concentration of HCl or NaOH solutions.

  10. Histological and radiographic evaluation of polymethylmethacrylate with two different concentrations of barium sulfate in a sheep vertebroplasty model.

    Science.gov (United States)

    Kobayashi, Naomi; Togawa, Daisuke; Fujishiro, Takaaki; Powell, Kimberly A; Turner, A Simon; Seim, Howard B; Bauer, Thomas W

    2005-10-01

    Percutaneous vertebral augmentation with PMMA has been widely performed and usually provides good pain relief and stabilization of fractured vertebrae. Adequate visualization of PMMA during injection is desirable to minimize cement extravasation, so contrast agents such as barium sulfate are commonly added to the PMMA. The aim of this study was to evaluate the differences of histology and radiographic visualization when different concentrations of barium sulfate are mixed with PMMA. Six sheep were utilized in this study. Three vertebrae of each animal were exposed via retroperitoneal approach, and a cavity was created and then filled with either 10% or 30% BaSO4/PMMA, or left empty. Vertebrae were harvested and analyzed radiographically and histologically 12 and 90 days after surgery. Average CT value of the 30% BaSO4/PMMA group was 2.4-fold higher than that of the 10% BaSO4/PMMA group. Foreign-body giant cells were recognized around BaSO4particles at 90 days in the 30% BaSO4 group, whereas few particles were recognized in the 10% group at 90 days, or in either group at 12 days. A very mild giant-cell reaction is induced by a higher concentration of BaSO4 in PMMA, but the marked improvement in cement visualization by increased BaSO4 may be important to minimize more serious complications of cement extravasation during PMMA injection.

  11. EDTA-type Polymer Based on Diazacrown Ether as the Solubilizer of Barium Sulfate to Water

    Institute of Scientific and Technical Information of China (English)

    Bo ZHOU; Jian Zhang LI; Chun Hong HE; Sheng Ying QIN

    2005-01-01

    The EDTA dianhydride reacted with diazacrown ethers to obtain the water-soluble EDTA-diazacrown ether polymers 1~3. The effects of crown ether ring in the polymer chains including its cavity size on the solubilization of barium sulfate to water were investigated by comparison with the crown ring-free analogue 4. The result shows that the polymer 2 is the efficient solubilizer of BaSO4 and the highest solubilization efficiency of the BaSO4 to water is up to 72.5%.

  12. Control on Crystal Forms of Ultrafine Barium Carbonate Particles and Study on its Mechanism

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    Barium carbonate particles were prepared by using homogeneous precipitation method and co-precipitation method respectively. Through adding different crystalline controlling modifiers, Barium carbonate particles in five different shapes including linear, needle-like, pillarlike, sphere-like and dumbbell-like were synthesized. These particles were characterized by SEM and XRD, and their synthetic mechanism was discussed in this paper.

  13. Preparation and Characterization of Nano-particle Substituted Barium Hexaferrite

    CERN Document Server

    Atassi, Yomen; Tally, Mohammad

    2014-01-01

    High density magnetic recording requires high coercivity magnetic media and small particle size. Barium hexaferrite has been considered as a leading candidate material because of its chemical stability, fairly large crystal anisotropy and suitable magnetic characteristics. In this work, we present the preparation of the hexagonal ferrite BaFe12O19 and one of its derivative; the Zn-Sn substituted hexaferrite by the chemical co-precipitation method. The main advantage of this method on the conventional glass-ceramic one, resides in providing a small enough particle size for magnetic recording. We demonstrate using the X-ray diffraction patterns that the particle size decreases when substituting the hexaferrite by the Zn-Sn combination. This may improve the magnetic properties of the hexaferrite as a medium for HD magnetic recording

  14. Contrast radiography in small bowel obstruction. A randomized trial of barium sulfate and a nonionic low-osmolar contrast medium

    International Nuclear Information System (INIS)

    Thirty-six adult patients clinically suspected of small bowel obstruction underwent small bowel contrast radiography with either barium sulfate or a nonionic low-osmolar contrast medium after randomization. Films were taken after 2, 4, and 8 hours and later when needed. No difference as regards visualization and diagnostic quality was found between the 2 media. It is concluded that a nonionic low-osmolar contrast medium is an alternative to barium sulfate for small bowel contrast radiography where small bowel obstruction is suspected. (orig.)

  15. Evaluation of Radiation Dose Reduction during CT Scans Using Oxide Bismuth and Nano-Barium Sulfate Shields

    CERN Document Server

    Seoung, Youl-Hun

    2015-01-01

    The purpose of the present study was to evaluate radiation dose reduction and image quality during CT scanning by using a new dose reduction fiber sheet (DRFS) with commercially available bismuth shields. These DRFS were composed of nano-barium sulfate (BaSO4), filling the gaps left by the large oxide bismuth (Bi2O3) particle sizes. The radiation dose was measured five times at directionss of 12 o'clock from the center of the polymethyl methacrylate (PMMA) head phantom to calculate an average value using a CT ionization chamber. The image quality measured CT transverse images of the PMMA head phantom depending on X-ray tube voltages and the type of shielding. Two regions of interest in CT transverse images were chosen from the right and left areas under the surface of the PMMA head phantom and from ion chamber holes located at directions of 12 o'clock from the center of the PMMA head phantom. The results of this study showed that the new DRFS shields could reduce dosages to 15.61%, 23.05%, and 22.71% more in ...

  16. Experimental design: application to the development of a treatment to inhibit the deposition of barium sulfate liable to be formed in enhanced oil recovery by waterflooding

    Energy Technology Data Exchange (ETDEWEB)

    Messaoudene, N. (Sonatrach, Boumerdes (Algeria)); Puech-Costes, E.; Maurette, M.T. (Toulouse-3 Univ., 31 (France)); Girou, A. (Institut National des Sciences Appliquees (INSA), 31 - Toulouse (France)); Roque, C. (Institut Francais du Petrole (IFP), 92 - Rueil-Malmaison (France))

    For technical and economic reasons, waterflooding is the most widely-used method in enhanced oil recovery. In many situations, unfortunately, the formation water is incompatible with the injection water. The deposits and corrosion induced by the various reactions of this incompatibility cause irreversible damage, which is especially dangerous for the reservoir rock and the downhole and surface production facilities. This study is concerned exclusively with barium sulfate deposits liable to occur in surface production facilities by the mixing of injection water loaded with sulfate (1300 mg.l[sup -1]) with a formation water with a high barium concentration (1200 mg.l[sup -1]). 6 refs., 6 figs., 7 tabs.

  17. Barium and strontium sulfate solid solution formation in relation to North Sea scaling problems

    International Nuclear Information System (INIS)

    This paper presents the results of laboratory experiments carried out to investigate barium sulphate and strontium sulphate solid solution formation in multi-pressure tapped cores. Two brines, one barium and strontium rich and the other sulphate rich, were mixed in a core plug. Pressure differentials were measured and the changing permeability distribution along the length of the core calculated. The morphology and chemical analysis of scaling crystals are presented based on Scanning electron Microsocpy (SEM) and Energy Dispersive X-ray Analysis (EDAX). The results show the large extent of permeability damage caused by (Ba, SR) SO/sub 4/ solid solution depositing on the rock pore surface. The rock permeability decline and morphology and size of the scaling crystals indicate the influence of the supersaturations of BaSO/sub 4/ and SrSO/sub 4/ as well as the concentration ratio of barium ions to strontium ions

  18. Bioabsorbable bone fixation plates for X-ray imaging diagnosis by a radiopaque layer of barium sulfate and poly(lactic-co-glycolic acid).

    Science.gov (United States)

    Choi, Sung Yoon; Hur, Woojune; Kim, Byeung Kyu; Shasteen, Catherine; Kim, Myung Hun; Choi, La Mee; Lee, Seung Ho; Park, Chun Gwon; Park, Min; Min, Hye Sook; Kim, Sukwha; Choi, Tae Hyun; Choy, Young Bin

    2015-04-01

    Bone fixation systems made of biodegradable polymers are radiolucent, making post-operative diagnosis with X-ray imaging a challenge. In this study, to allow X-ray visibility, we separately prepared a radiopaque layer and attached it to a bioabsorbable bone plate approved for clinical use (Inion, Finland). We employed barium sulfate as a radiopaque material due to the high X-ray attenuation coefficient of barium (2.196 cm(2) /g). The radiopaque layer was composed of a fine powder of barium sulfate bound to a biodegradable material, poly(lactic-co-glycolic acid) (PLGA), to allow layer degradation similar to the original Inion bone plate. In this study, we varied the mass ratio of barium sulfate and PLGA in the layer between 3:1 w/w and 10:1 w/w to modulate the degree and longevity of X-ray visibility. All radiopaque plates herein were visible via X-ray, both in vitro and in vivo, for up to 40 days. For all layer types, the radio-opacity decreased with time due to the swelling and degradation of PLGA, and the change in the layer shape was more apparent for layers with a higher PLGA content. The radiopaque plates released, at most, 0.5 mg of barium sulfate every 2 days in a simulated in vitro environment, which did not appear to affect the cytotoxicity. The radiopaque plates also exhibited good biocompatibility, similar to that of the Inion plate. Therefore, we concluded that the barium sulfate-based, biodegradable plate prepared in this work has the potential to be used as a fixation device with both X-ray visibility and biocompatibility.

  19. Effects of barium sulfate as a contrast medium to enterocutaneous fistulas

    International Nuclear Information System (INIS)

    Fistulation following thoracic and epigastric interventions are conservatively treated, as a rule, because of the high rate of complications expected from reoperation. With properly functioning anastomotic transit, insufficiencies usually undergo spontaneous healing, within four to six weeks. Enterocutaneous fistulae developed in 29 of 271 patients with intrathoracic oesophagastric or oesophagojejunal anastomosis. Syringeal ramification into pleural or abdominal cavities were eliminated by means of an absorbable contrast medium, before barium sulphate was orally administered to all patients. Thoracic fistulae were closed after 21.8 days on average, while 20.3 days was the average period required for closure of epigastric fistulae. Barium sulphate was found to stimulate fistular tissue granulation, so that obliteration of the fistular system occurred much sooner, as compared to conservative treatment. The patient's quality of life can thus be improved, and hospitalisation can be shortened. Neither locally delimited nor systemic complications were observed in any of the cases described. (author)

  20. Barium borosilicate glass - a potential matrix for immobilization of sulfate bearing high-level radioactive liquid waste

    International Nuclear Information System (INIS)

    Borosilicate glass formulations adopted worldwide for immobilization of high-level radioactive liquid waste (HLW) is not suitable for sulphate bearing HLW, because of its low solubility in such glass. A suitable glass matrix based on barium borosilicate has been developed for immobilization of sulphate bearing HLW. Various compositions based on different glass formulations were made to examine compatibility with waste oxide with around 10 wt% sulfate content. The vitrified waste product obtained from barium borosilicate glass matrix was extensively evaluated for its characteristic properties like homogeneity, chemical durability, glass transition temperature, thermal conductivity, impact strength, etc. using appropriate techniques. Process parameters like melt viscosity and pour temperature were also determined. It is found that SB-44 glass composition (SiO2: 30.5 wt%, B2O3: 20.0 wt%, Na2O: 9.5 wt% and BaO: 19.0 wt%) can be safely loaded with 21 wt% waste oxide without any phase separation. The other product qualities of SB-44 waste glass are also found to be on a par with internationally adopted waste glass matrices. This formulation has been successfully implemented in plant scale

  1. Numerical investigation of the influence of kinetics and shape factor on barium sulfate precipitation in a continuous stirred tank

    Institute of Scientific and Technical Information of China (English)

    Zheng WANG; ZaiSha MAO; Chao YANG; Qinghua ZHANG; Jingcai CHENG

    2009-01-01

    The effect of kinetics and shape factor on barium sulfate precipitation in a continuous stirred tank has been investigated numerically through solving the standard momentum and mass transport equations in combination with the moment equations for crystal population balance. The numerical method was validated with the literature data. The simulated results include the distribution of the local supersaturation ratio in the reactor, the mean crystal size, and the coefficient of variation. The simulation results show that the value of shape factor used in the model affected greatly the mean crystal size and the moments of the crystal size distribution. The influence of the kinetic expressions on the simulation is also analyzed. It is important to investigate the relationship of the shape factor with the precipitator type and other operation conditions to obtain reliable simulation results and suitable kinetic equations of crystal nucleation and growth rates.

  2. Laboratory studies of ice formation pathways from ammonium sulfate particles

    Directory of Open Access Journals (Sweden)

    M. E. Wise

    2008-08-01

    Full Text Available Cirrus clouds are composed of ice particles and their formation pathways have been studied extensively in the laboratory. The ability of ammonium sulfate particles to act as nuclei for cirrus clouds has been of particular importance because of their ubiquitous presence in the upper troposphere. The results of past laboratory experiments of homogeneous ice nucleation from ammonium sulfate particles show a wide range of freezing conditions. In the present study, a flow tube apparatus equipped with Fourier transform infrared spectroscopy was used to resolve these discrepancies. It was found that when ammonium sulfate particles were preconditioned at 100% relative humidity (RH prior to experimentation, the particles froze at conditions predicted by the homogeneous ice nucleation model developed by Koop et al. (2000. If the particles were not preconditioned at 100% RH, they froze at warmer temperatures and lower ice saturation ratios than predicted by Koop et al. (2000. In order to determine if a population of effloresced particles affected freezing conditions for particles that were not preconditioned at 100% RH, a series of depositional ice nucleation experiments were carried out on dry ammonium sulfate particles. For freezing temperatures between 215 and 231 K, ice nucleated on the particles at ice saturation ratios (Sice between 1 and 1.05. These conditions are much lower than predicted by Koop et al. (2000 and explain the differences in freezing conditions among preconditioning methods. In similar experiments, Abbatt et al. (2006 hypothesized that a small fraction of effloresced ammonium sulfate particles induced ice nucleation at Sice values lower than expected. The current study confirms the Abbatt et al. (2006 hypothesis and, to our knowledge, is the first study to directly observe ice nucleating onto freely flowing dry ammonium sulfate particles at Sice values approaching unity.

  3. Improvement of the thermal properties of a polystyrene via inclusion of barium hexaferrite particles

    Science.gov (United States)

    Hemeda, O. M.; El-Sayed, Adly H.; Tawfik, A.; Hamad, Mahmoud A.

    2016-07-01

    M-type barium hexaferrite (BaM) particles-polystyrene (PS) composite has been successfully synthesized. Fourier transform infrared spectra confirm the synthesis of the BaM-PS composite. Scanning electron microscopy shows that BaM particles are attached rather well to the PS matrix and have variable sizes and shapes. Differential and thermogravimetric analysis indicate that PS chains are well coupled within the BaM powder and the thermal stability of PS is enhanced by incorporating BaM in the PS matrix.

  4. A thermodynamic investigation of barium and calcium sulfate stability in sediments at an oceanic ridge axis (Juan de Fuca, ODP legs 139 and 169)

    OpenAIRE

    Monnin, Christophe; Balleur, Sabine; Goffé, Bruno

    2003-01-01

    We have used a new thermodynamic model of barium and calcium sulfate solubilities in multicomponent electrolyte solutions (Monnin, 1999) to investigate the stabilities of barite and anhydrite in seawater or in marine sediment porewaters at high temperature and pressure. As a further test supplementing those previously carried out during model development, we have calculated the temperature at which standard seawater becomes saturated with respect to anhydrite. The model predicts that, upon he...

  5. Influence of fuel ratios on auto combustion synthesis of barium ferrite nano particles

    Indian Academy of Sciences (India)

    D Bahadur; S Rajakumar; Ankit Kumar

    2006-01-01

    Single-domain barium ferrite nano particles have been synthesized with narrow particle-size distribution using an auto combustion technique. In this process, citric acid was used as a fuel. Ratios of cation to fuel were maintained variously at 1 : 1, 1 : 2 and 1 : 3. The pH was 7 in all cases. Of all three cases, a cation to citric acid ratio of 1 : 2 gives better yield in the formation of crystalline and single domain particles with a narrow range of size distribution. Most particles are in the range of 80 to 100 nm. Maximum magnetization and coercivity values are also greater for 1 : 2 ratios. These values measured at room temperature are found to be 55 emu/gram and 5000 Oe respectively. XPS and ESR studies support the results.

  6. Determination of carbon in amorphous carbon and uranium monocarbide by oxidation with lead(IV) oxide, copper(II) oxide or barium sulfate in an inert atmosphere

    International Nuclear Information System (INIS)

    Oxidation behavior was studied on amorphous carbon and carbon in uranium monocarbide when lead(IV) oxide, copper(II) oxide and barium sulfate were used as the oxidizing fluxes in helium. The amorphous carbon and the carbon in the carbide were completely extracted with lead oxide in 5 min at 10000C and in 8 min at 700 and 5000C, respectively. Carbon in two samples was quantitatively extracted at 10000C with copper oxide in 8 and 5 min, and with barium sulfate in 7 and 5 min, respectively. The rate of extraction of carbon with copper oxide decreased with decreasing temperature. It was found that the mixing ratio of the oxidizing flux to the amorphous carbon or carbide gave effect on the recovery of carbon. The conventional capillary-trap method which is used for the determination of carbon has a disadvantage that, when carbon dioxide is caught in a cold trap (liquid nitrogen), oxygen is also trapped. This disadvantage was eliminated when a stream of helium was used in place of oxygen. Carbon in the sample can be determined with lead oxide, copper oxide or barium sulfate by extracting carbon dioxide at 10000C for 10 min. (auth.)

  7. Curie temperature and magnetic properties of aluminum doped barium ferrite particles prepared by ball mill method

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Daming [Center for Magnetism and Magnetic Nanostructures, University of Colorado at Colorado Springs, 1420 Austin Bluffs Pkwy, Colorado Springs, Colorado 80918 (United States); College of Materials and Chemical Engineering, Hainan University, Haikou 570228, Hainan (China); Harward, Ian; Baptist, Joshua; Goldman, Sara; Celinski, Zbigniew [Center for Magnetism and Magnetic Nanostructures, University of Colorado at Colorado Springs, 1420 Austin Bluffs Pkwy, Colorado Springs, Colorado 80918 (United States)

    2015-12-01

    Barium ferrite has attracted considerable interest in the fields of permanent magnets and perpendicular magnetic recording due to its strong uniaxial anisotropy and high Curie temperature (T{sub c}). We prepared aluminum doped barium ferrite ceramics (BaAl{sub x}Fe{sub 12−x}O{sub 19}, 0≤x≤6) by the ball mill method. The powder was milled for 96 h, and after forming pellets, annealed for 48 h in air at 1000 °C. The X-ray diffraction (XRD) data show that there are only single hexagonal phases in the samples without any impurity phase. The crystal lattice constants, a and c, were calculated by Cohen's method. Both a and c decrease with increasing x, ranging from 0.588 nm and 2.318 nm to 0.573 nm and 2.294 nm, respectively. A Vibrating Sample Magnetometer (VSM) and Superconducting Quantum Interference Device (SQUID) were used to investigate T{sub c} and magnetic properties of BaFe{sub 12−x}Al{sub x}O{sub 19}. It is found that T{sub c} decreases with increasing x, from 425 °C to 298 °C. It is also found that the saturated magnetization (4πM{sub s}) decreases with increasing x, while the coercivity (H{sub c}) increases with the increase in x. The anisotropy field was also determined from the SQUID measurement. - Highlights: • The Curie temperature and magnetic properties of aluminum doped barium ferrite particles were studied systemically. • The relation between 4πM{sub s} and composition x at 50 K (both experimental value and theoretical calculation) was revealed. • Occupation number for spin up and spin down as a function of temperature was shown. • The relation between 4πM{sub s} and composition x from 50 K to room temperature was revealed.

  8. Curie temperature and magnetic properties of aluminum doped barium ferrite particles prepared by ball mill method

    International Nuclear Information System (INIS)

    Barium ferrite has attracted considerable interest in the fields of permanent magnets and perpendicular magnetic recording due to its strong uniaxial anisotropy and high Curie temperature (Tc). We prepared aluminum doped barium ferrite ceramics (BaAlxFe12−xO19, 0≤x≤6) by the ball mill method. The powder was milled for 96 h, and after forming pellets, annealed for 48 h in air at 1000 °C. The X-ray diffraction (XRD) data show that there are only single hexagonal phases in the samples without any impurity phase. The crystal lattice constants, a and c, were calculated by Cohen's method. Both a and c decrease with increasing x, ranging from 0.588 nm and 2.318 nm to 0.573 nm and 2.294 nm, respectively. A Vibrating Sample Magnetometer (VSM) and Superconducting Quantum Interference Device (SQUID) were used to investigate Tc and magnetic properties of BaFe12−xAlxO19. It is found that Tc decreases with increasing x, from 425 °C to 298 °C. It is also found that the saturated magnetization (4πMs) decreases with increasing x, while the coercivity (Hc) increases with the increase in x. The anisotropy field was also determined from the SQUID measurement. - Highlights: • The Curie temperature and magnetic properties of aluminum doped barium ferrite particles were studied systemically. • The relation between 4πMs and composition x at 50 K (both experimental value and theoretical calculation) was revealed. • Occupation number for spin up and spin down as a function of temperature was shown. • The relation between 4πMs and composition x from 50 K to room temperature was revealed

  9. Use of Different Barium Salts to Inhibit the Thaumasite Form of Sulfate Attack in Cement-based Materials

    Institute of Scientific and Technical Information of China (English)

    SU Ying; WEI Xiaochao; HUANG Jian; WANG Yingbin; HE Xingyang; WANG Xiongjue; MA Baoguo

    2016-01-01

    We investigated the effects of different barium compounds on the thaumasite form of sulphate attack (TSA) resistance of cement-based materials when they were used as admixtures in mortars. Moreover, we analyzed the inhibition mechanisms within different types of barium salts, namely BaCO3 and Ba(OH)2, on the thaumasite formation. The control cement mortar and mortars with barium salts to cement and limestone weight ratios of 0.5%, 1.0%, and 1.5% were immersed in 5% (by weight) MgSO4 solution at 5℃ to mimic TSA. Appearance, mass, and compressive strength of the mortar samples were monitored and measured to assess the general degradation extent of these samples. The products of sulphate attack were further analyzed by XRD, FTIR, and SEM, respectively. Experimental results show that different degradation extent is evident in all mortars cured in MgSO4 solution. However, barium salts can greatly inhibit such degradation. Barium in hydroxide form has better effectiveness in protection against TSA than carbonate form, which may be due to their solubility difference in alkaline cement pore solution, and the presence of these barium compounds can reduce the degree of TSA by comparison with the almost completely decomposed control samples.

  10. A study of the Arrhenius behavior of the co-precipitation of radium, barium and strontium sulfate

    International Nuclear Information System (INIS)

    Co-precipitation of radium, barium and strontium is an important process in many contexts, such as uranium mining, oil extraction and in the safety assessment of a final repository for used nuclear fuel. Co-precipitation to a solid solution is possible since radium, barium and strontium act as chemical analogues. In this work the co-precipitation of radium, barium and strontium was studied and the kinetic behavior of the co-precipitation process was investigated. It was shown that radium, barium and strontium co-precipitate congruently and that the precipitation followed an Arrhenius behavior and the Arrhenius parameters for the systems was determined. When studying the differences of the Arrhenius constants by using a student t test (95 % confidence interval) it was observed that the only significant difference in the activation energy, Ea, is between radium and barium and between radium and strontium respectively, the pure strontium having the larger activation energy in comparison. This is most likely coupled to the metal ion size; since the hydration waters are more strongly bound, which leads to them having a slower exchange rate, which in turn effects the rate of co-precipitation to the metal these reactions will be slower. (author)

  11. Fundamental study of positive contrast media of hepatic CT by micro-barium sulphate particles

    International Nuclear Information System (INIS)

    Hepatic computed tomography (CT) values associated with iv injection of micro-barium sulphate particles (BSP) were examined. Two ml/kg of 10 % solution of BSP 0.3 μ and 1.2 μ in size was iv injected into ten rats. The mean hepatic CT values immediately after injection of 0.3 and 1.2 μ BSP were 2.3 and 2.7 times higher, respectively, than those before that. The subsequent CT values decreased with time. The CT values 30 and 120 days after injection decreased to one half and one fifth of those immediately after that. Histological study of the liver found the enhancement of hepatic CT to be due to increased phagocytic activity of Kupffer cells in the periportal region. In addition, it should be suggested that CT values would decrease with decreasing not only BSP release from Kupffer cells into the extracellular space but also the number of Kupffer cells themselves. (Namekawa, K.)

  12. A Simple Method Based on the Application of a CCD Camera as a Sensor to Detect Low Concentrations of Barium Sulfate in Suspension

    Directory of Open Access Journals (Sweden)

    Joao Francisco Cajaiba da Silva

    2011-01-01

    Full Text Available The development of a simple, rapid and low cost method based on video image analysis and aimed at the detection of low concentrations of precipitated barium sulfate is described. The proposed system is basically composed of a webcam with a CCD sensor and a conventional dichroic lamp. For this purpose, software for processing and analyzing the digital images based on the RGB (Red, Green and Blue color system was developed. The proposed method had shown very good repeatability and linearity and also presented higher sensitivity than the standard turbidimetric method. The developed method is presented as a simple alternative for future applications in the study of precipitations of inorganic salts and also for detecting the crystallization of organic compounds.

  13. MR Colonography with fecal tagging: Barium vs. barium ferumoxsil

    DEFF Research Database (Denmark)

    Achiam, M.P.; Chabanova, E.; Logager, V.B.;

    2008-01-01

    and Methods. Twenty patients referred to CC underwent dark lumen MRC prior to the colonoscopy. Two groups of patients received two different oral contrast agents (barium sulfate and barium sulfate/ferumoxsil) as a laxative-free fecal tagging prior to the MRC. After MRC, the contrast agent was rated...... qualitatively (with the standard method using contrast-to-wall ratio) and subjectively (using a visual analog scale [VAS]) by three different blinded observers. Results. Evaluated both qualitatively and subjectively, the tagging efficiency of barium sulfate/ferumoxsil was significantly better (P ... barium sulfate alone. The VAS method for evaluating the tagging efficiency of contrast agents showed a high correlation (observer 11, r = 0.91) to the standard method using contrast-to-wall ratio and also a high interclass correlation (observer 11 and III = 0.89/0.85). MRC found I of 22 (5%) polyps

  14. Rapid determination of sodium sulfate content in tannin extract desulfurization solution by barium magnesium method%钡镁法快速测定栲胶脱硫液中硫酸钠的含量

    Institute of Scientific and Technical Information of China (English)

    李琼

    2011-01-01

    采用GB/T10535--1997仲裁法分析栲胶脱硫液中Na2SO。含量需3h。采用钡镁法以过量已知浓度钡镁混合液与Na2SO4作用生成硫酸钡沉淀,过量钡镁溶液用EDTA标准溶液回滴,只需0.5h,可快速测定硫酸钠含量:该法准确度、精密度也可满足生产要求。%The arbitration method of GB/T 10535--1997 for determination of sodium sulfate content in tannin extract desulfurization solutions needs 3 hours. By using excess known concentrations barium magnesium solutions and sodium sulfate to produce barium sulfate precipitation, and using EDTA to titrate the excessive barium magnesium solutions, the rapid determination of sodium sulfate content only needs 30 minutes. The accuracy and precision can also meet the production requirements.

  15. Template-Engaged Solid-State Synthesis of Barium Magnesium Silicate Yolk@Shell Particles and Their High Photoluminescence Efficiency.

    Science.gov (United States)

    Chen, Xuncai; Kim, Woo-Sik

    2016-05-17

    This study presents a new synthetic method for fabricating yolk@shell-structured barium magnesium silicate (BMS) particles through a template-engaged solid-state reaction. First, as the core template, (BaMg)CO3 spherical particles were prepared based on the coprecipitation of Ba(2+) and Mg(2+) . These core particles were then uniformly shelled with silica (SiO2 ) by using CTAB as the structure-directing template to form (BaMg)CO3 @SiO2 particles with a core@shell structure. The (BaMg)CO3 @SiO2 particles were then converted to yolk@shell barium magnesium silicate (BMS) particles by an interfacial solid-state reaction between the (BaMg)CO3 (core) and the SiO2 (shell) at 750 °C. During this interfacial solid-state reaction, Kirkendall diffusion contributed to the formation of yolk@shell BMS particles. Thus, the synthetic temperature for the (BaMg)SiO4 :Eu(3+) phosphor is significantly reduced from 1200 °C with the conventional method to 750 °C with the proposed method. In addition, the photoluminescence intensity of the yolk@shell (BaMg)SiO4 :Eu(3+) phosphor was found to be 9.8 times higher than that of the conventional (BaMg)SiO4 :Eu(3+) phosphor. The higher absorption of excitation light by the structure of the yolk@shell phosphor is induced by multiple light-reflection and -scattering events in the interstitial void between the yolk and the shell. When preparing the yolk@shell (BaMg)SiO4 :Eu(3+) phosphor, a hydrogen environment for the solid-state reaction results in higher photoluminescence efficiency than nitrogen and air environments. The proposed synthetic method can be easily extended to the synthesis of other yolk@shell multicomponent metal silicates. PMID:27059894

  16. Template-Engaged Solid-State Synthesis of Barium Magnesium Silicate Yolk@Shell Particles and Their High Photoluminescence Efficiency.

    Science.gov (United States)

    Chen, Xuncai; Kim, Woo-Sik

    2016-05-17

    This study presents a new synthetic method for fabricating yolk@shell-structured barium magnesium silicate (BMS) particles through a template-engaged solid-state reaction. First, as the core template, (BaMg)CO3 spherical particles were prepared based on the coprecipitation of Ba(2+) and Mg(2+) . These core particles were then uniformly shelled with silica (SiO2 ) by using CTAB as the structure-directing template to form (BaMg)CO3 @SiO2 particles with a core@shell structure. The (BaMg)CO3 @SiO2 particles were then converted to yolk@shell barium magnesium silicate (BMS) particles by an interfacial solid-state reaction between the (BaMg)CO3 (core) and the SiO2 (shell) at 750 °C. During this interfacial solid-state reaction, Kirkendall diffusion contributed to the formation of yolk@shell BMS particles. Thus, the synthetic temperature for the (BaMg)SiO4 :Eu(3+) phosphor is significantly reduced from 1200 °C with the conventional method to 750 °C with the proposed method. In addition, the photoluminescence intensity of the yolk@shell (BaMg)SiO4 :Eu(3+) phosphor was found to be 9.8 times higher than that of the conventional (BaMg)SiO4 :Eu(3+) phosphor. The higher absorption of excitation light by the structure of the yolk@shell phosphor is induced by multiple light-reflection and -scattering events in the interstitial void between the yolk and the shell. When preparing the yolk@shell (BaMg)SiO4 :Eu(3+) phosphor, a hydrogen environment for the solid-state reaction results in higher photoluminescence efficiency than nitrogen and air environments. The proposed synthetic method can be easily extended to the synthesis of other yolk@shell multicomponent metal silicates.

  17. An Instrument to Measure Aircraft Sulfate Particle Emissions Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Aerodyne is developing a sulfate detection instrument, based on the Tunable Infrared Laser Differential Absorption Spectrophotometer (TILDAS) technology and...

  18. Depositional ice nucleation on solid ammonium sulfate and glutaric acid particles

    Directory of Open Access Journals (Sweden)

    K. J. Baustian

    2010-03-01

    Full Text Available Heterogeneous ice nucleation on solid ammonium sulfate and glutaric acid particles was studied using optical microscopy and Raman spectroscopy. Optical microscopy was used to detect selective nucleation events as water vapor was slowly introduced into an environmental sample cell. Particles that nucleated ice were dried via sublimation and examined in detail using Raman spectroscopy. Depositional ice nucleation is highly selective and occurred preferentially on just a few ammonium sulfate and glutaric acid particles in each sample. For freezing temperatures between 214 K and 235 K an average ice saturation ratio of S = 1.10±0.07 for solid ammonium sulfate was observed. Over the same temperature range, S values observed for ice nucleation on glutaric acid particles increased from 1.2 at 235 K to 1.6 at 218 K. Experiments with externally mixed particles further show that ammonium sulfate is a more potent ice nucleus than glutaric acid. Our results suggest that heterogeneous nucleation on ammonium sulfate may be an important pathway for atmospheric ice nucleation and cirrus cloud formation when solid ammonium sulfate aerosol particles are available for ice formation. This pathway for ice formation may be particularly significant near the tropical tropopause region where sulfates are abundant and other species known to be good ice nuclei are depleted.

  19. Internally mixed soot, sulfates, and organic matter in aerosol particles from Mexico City

    Directory of Open Access Journals (Sweden)

    K. Adachi

    2008-11-01

    Full Text Available Soot particles, which are aggregated carbonaceous spherules with graphitic structures, are major aerosol constituents that result from burning of fossil fuel, biofuel, and biomass. Their properties commonly change through reaction with other particles or gases, resulting in complex internal mixtures. Using a transmission electron microscope (TEM for both imaging and chemical analysis, we measured ~8000 particles (25 samples with aerodynamic diameters from 0.05 to 0.3 μm that were collected in March 2006 from aircraft over Mexico City (MC and adjacent areas. Most particles are coated, consist of aggregates, or both. For example, almost all analyzed particles contain S and 70% also contain K, suggesting coagulation and condensation of sulfates and particles derived from biomass and biofuel burning. In the MC plumes, over half of all particles contained soot coated by organic matter and sulfates. The median value of the soot volume fraction in such coated particles is about 15%. In contrast to the assumptions used in many climate models, the soot particles did not become compact even when coated. Moreover, about 80% by volume of the particles consisting of organic matter with sulfate also contained soot, indicating the important role of soot in the formation of secondary aerosol particles. Coatings on soot particles can amplify their light absorption, and coagulation with sulfates changes their hygroscopic properties, resulting in shorter lifetimes. Through changes in their optical and hygroscopic properties, internally mixed soot particles have a greater effect on the regional climate of MC than uncoated soot particles.

  20. An Instrument to Measure Aircraft Sulfate Particle Emissions Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Aircraft particle emissions contribute a modest, but growing, portion of the overall particle emissions budget. Characterizing aircraft particle emissions is...

  1. Curie temperature and magnetic properties of aluminum doped barium ferrite particles prepared by ball mill method

    Science.gov (United States)

    Chen, Daming; Harward, Ian; Baptist, Joshua; Goldman, Sara; Celinski, Zbigniew

    2015-12-01

    Barium ferrite has attracted considerable interest in the fields of permanent magnets and perpendicular magnetic recording due to its strong uniaxial anisotropy and high Curie temperature (Tc). We prepared aluminum doped barium ferrite ceramics (BaAlxFe12-xO19, 0≤x≤6) by the ball mill method. The powder was milled for 96 h, and after forming pellets, annealed for 48 h in air at 1000 °C. The X-ray diffraction (XRD) data show that there are only single hexagonal phases in the samples without any impurity phase. The crystal lattice constants, a and c, were calculated by Cohen's method. Both a and c decrease with increasing x, ranging from 0.588 nm and 2.318 nm to 0.573 nm and 2.294 nm, respectively. A Vibrating Sample Magnetometer (VSM) and Superconducting Quantum Interference Device (SQUID) were used to investigate Tc and magnetic properties of BaFe12-xAlxO19. It is found that Tc decreases with increasing x, from 425 °C to 298 °C. It is also found that the saturated magnetization (4πMs) decreases with increasing x, while the coercivity (Hc) increases with the increase in x. The anisotropy field was also determined from the SQUID measurement.

  2. In-cloud sulfate addition to single particles resolved with sulfur isotope analysis during HCCT-2010

    Directory of Open Access Journals (Sweden)

    E. Harris

    2014-01-01

    Full Text Available In-cloud production of sulfate modifies the aerosol size distribution, with important implications for the magnitude of indirect and direct aerosol cooling and the impact of SO2 emissions on the environment. We investigate which sulfate sources dominate the in-cloud addition of sulfate to different particle classes as an air parcel passes through an orographic cloud. Sulfate aerosol, SO2 and H2SO4 were collected upwind, in-cloud and downwind of an orographic cloud for three cloud measurement events during the Hill Cap Cloud Thuringia campaign in Autumn, 2010 (HCCT-2010. Combined SEM and NanoSIMS analysis of single particles allowed the δ34S of particulate sulfate to be resolved for particle size and type. The most important in-cloud SO2 oxidation pathway at HCCT-2010 was aqueous oxidation catalysed by transition metal ions (TMI catalysis, which was shown with single particle isotope analyses to occur primarily in cloud droplets nucleated on coarse mineral dust. In contrast, direct uptake of H2SO4(g and ultrafine particulate were the most important sources modifying fine mineral dust, increasing its hygroscopicity and facilitating activation. Sulfate addition to "mixed" particles (secondary organic and inorganic aerosol and coated soot was dominated by in-cloud aqueous SO2 oxidation by H2O2 and direct uptake of H2SO4(g and ultrafine particle sulfate, depending on particle size mode and time of day. These results provide new insight into in-cloud sulfate production mechanisms, and show the importance of single particle measurements and models to accurately assess the environmental effects of cloud processing.

  3. In-cloud sulfate addition to single particles resolved with sulfur isotope analysis during HCCT-2010

    Science.gov (United States)

    Harris, E.; Sinha, B.; van Pinxteren, D.; Schneider, J.; Poulain, L.; Collett, J.; D'Anna, B.; Fahlbusch, B.; Foley, S.; Fomba, K. W.; George, C.; Gnauk, T.; Henning, S.; Lee, T.; Mertes, S.; Roth, A.; Stratmann, F.; Borrmann, S.; Hoppe, P.; Herrmann, H.

    2014-04-01

    In-cloud production of sulfate modifies aerosol size distribution, with important implications for the magnitude of indirect and direct aerosol cooling and the impact of SO2 emissions on the environment. We investigate which sulfate sources dominate the in-cloud addition of sulfate to different particle classes as an air parcel passes through an orographic cloud. Sulfate aerosol, SO2 and H2SO4 were collected upwind, in-cloud and downwind of an orographic cloud for three cloud measurement events during the Hill Cap Cloud Thuringia campaign in autumn 2010 (HCCT-2010). Combined SEM and NanoSIMS analysis of single particles allowed the δ34S of particulate sulfate to be resolved for particle size and type. The most important in-cloud SO2 oxidation pathway at HCCT-2010 was aqueous oxidation catalysed by transition metal ions (TMI catalysis), which was shown with single particle isotope analyses to occur primarily in cloud droplets nucleated on coarse mineral dust. In contrast, direct uptake of H2SO4 (g) and ultrafine particulate were the most important sources modifying fine mineral dust, increasing its hygroscopicity and facilitating activation. Sulfate addition to "mixed" particles (secondary organic and inorganic aerosol) and coated soot was dominated by in-cloud aqueous SO2 oxidation by H2O2 and direct uptake of H2SO4 (g) and ultrafine particle sulfate, depending on particle size mode and time of day. These results provide new insight into in-cloud sulfate production mechanisms, and show the importance of single particle measurements and models to accurately assess the environmental effects of cloud processing.

  4. STUDY ON MAGNETIZATION REVERSAL OF BARIUM FERRITE PARTICLES%钡铁氧体粒子反磁化研究

    Institute of Scientific and Technical Information of China (English)

    李晓红; 魏福林; 杨正

    2001-01-01

    A model of a chain of oblate ellipsoids is proposed for magnetization reversal of barium ferrite particles. The angular dependences of coercivity and critical field were calculated with the consideration of the uniaxial magnetocrystalline anisotropy, the shape anisotropy, the interaction anisotropy of the ellipsoids, as well as the number of ellipsoids. This model could be used to explain the magnetization reversal mechanism of the oriented Ba ferrite particulate media.%提出了钡铁氧体粒子反磁化的多扁椭球链模型,研究了形状各向异性、磁晶各向异性、层叠粒子数以及粒子间距对反磁化及其临界场、矫顽力的影响. 此模型可用来解释取向钡铁氧体磁粉介质的反磁化机理.

  5. Heterogeneous Nucleation and Growth of Barium Sulfate at Organic–Water Interfaces: Interplay between Surface Hydrophobicity and Ba 2+ Adsorption

    Energy Technology Data Exchange (ETDEWEB)

    Dai, Chong; Stack, Andrew G.; Koishi, Ayumi; Fernandez-Martinez, Alejandro; Lee, Sang Soo; Hu, Yandi

    2016-05-31

    Barium sulfate (BaSO4) is a common scale-forming mineral in natural and engineered systems, yet the rates and mechanisms of heterogeneous BaSO4 nucleation are not understood. To address these, we created idealized interfaces on which to study heterogeneous nucleation rates and mechanisms, which also are good models for organic–water interfaces: self-assembled thin films terminated with different functional groups (i.e., -COOH, -SH, or mixed -SH & COOH) coated on glass slides. BaSO4 precipitation on coatings from Barite-supersaturated solutions (saturation index, SI, = 1.1) was investigated using grazing-incidence small-angle X-ray scattering. After reaction for 1 h, a little amount of BaSO4 formed on hydrophilic bare and -COOH coated glasses. Meanwhile, BaSO4 nucleation was significantly promoted on hydrophobic -SH and mixed -SH & COOH coatings. This is because substrate hydrophobicity likely affected the interfacial energy and hence thermodynamic favorability of heterogeneous nucleation. The heterogeneous BaSO4 nucleation and growth kinetics were found to be affected by the amount of Ba2+ adsorption onto the substrate and incipient BaSO4 nuclei. The importance of Ba2+ adsorption was further corroborated by the finding that precipitation rate increased under [Ba2+]/[SO42–] concentration ratios >1. These observations suggest that thermodynamic favorability for nucleation is governed by substrate–water interfacial energy, while given favorable thermodynamics, the rate is governed by ion attachment to substrates and incipient nuclei.

  6. Eu-doped barium strontium silicate phosphor particles prepared from spray solution containing NH4Cl flux by spray pyrolysis

    International Nuclear Information System (INIS)

    Eu-doped barium strontium silicate phosphor particles with high photoluminescence intensity under long wavelength ultraviolet were prepared from the spray solution containing NH4Cl flux by spray pyrolysis. It was found that the addition of NH4Cl to the spray solution makes it possible to greatly improve the photoluminescence intensity of Ba1.488Sr0.5SiO4:Eu0.012 phosphor particles under long wavelength ultraviolet of 410 nm. The highest photoluminescence intensity, which was achieved when the NH4Cl content was 5 wt.%, was about 150% of Ba1.488Sr0.5SiO4:Eu0.012 particles prepared from the spray solution without flux material at the post-treatment temperature of 1050 deg. C. The particle size of Ba1.488Sr0.5SiO4:Eu0.012 phosphor particles were enlarged by using the NH4Cl flux in the spray solution because of the large grain growth which was identified from the sharpening of the XRD peaks. Adding the NH4Cl flux into the spray solution was found to lower the optimal post-treatment temperature at which the Ba1.488Sr0.5SiO4:Eu0.012 phosphor particles are fully crystallized and have the maximum photoluminescence intensity. The phosphor particles prepared from spray solution containing 5 wt.% NH4Cl flux had the maximum photoluminescence intensity at post-treatment temperature of 1100 deg. C

  7. Indoor-outdoor relationships of respirable sulfates and particles

    Science.gov (United States)

    Dockery, Douglas W.; Spengler, John D.

    Indoor and outdoor concentrations of respirable particulates and sulfates have been measured in 68 homes in six cities for at least 1 yr. A conservation of mass model was derived describing indoor concentrations in terms of outdoor concentrations, infiltration and indoor sources. The measured data were analysed to identify important building characteristics and to quantify their effect. The mean infiltration rate of outdoor fine particulates was found to be approximately 70%. Cigarette smoking was found to be the dominant indoor source of respirable particulates. Increased indoor concentrations of sulfates were found to be associated with smoking and also with gas stoves. The effect of full air conditioning of the building was to reduce infiltration of outdoor fine particulates by about one half, while preventing dilution and purging of internally generated pollutants. The model for indoor respirable particulate and sulfate levels was found to compare well with measurements.

  8. Observations of linear dependence between sulfate and nitrate in atmospheric particles

    Science.gov (United States)

    Kong, Lingdong; Yang, Yiwei; Zhang, Shuanqin; Zhao, Xi; Du, Huanhuan; Fu, Hongbo; Zhang, Shicheng; Cheng, Tiantao; Yang, Xin; Chen, Jianmin; Wu, Dui; Shen, Jiandong; Hong, Shengmao; Jiao, Li

    2014-01-01

    Hourly measurements of water-soluble inorganic ionic species in ambient atmospheric particles were conducted at Shanghai, Hangzhou, and Guangzhou sampling sites in China during the period of 2009-2011. The relation between sulfate and nitrate in particulate matter (PM10 and PM2.5) was examined based on these measurements. Results showed that the mass fraction of sulfate was strongly negatively correlated with that of nitrate in atmospheric particles on most of the sampling days, especially when sulfate and nitrate made up the vast majority of the total soluble anions and cations (Na+, K+, Ca2+, and Mg2+) made a small contribution to the total water-soluble ions, revealing that the formation mechanisms of sulfate and nitrate in the atmosphere are highly correlated, and there exists a significant negative correlation trend between sulfate and nitrate mass fractions in the atmospheric particles. We found that local meteorological conditions presented opposite influences on the mass fractions of sulfate and nitrate. Further analysis indicated that the two mass fractions were modulated by the neutralizing level of atmospheric aerosols, and the negative correlation could be found in acidic atmospheric particles. Strong negative correlation was usually observed on clear days, hazy days, foggy days, and respirable particulate air pollution days, whereas poor negative correlation was often observed during cloud, rain, snow, dust storm, and suspended dust events. The results can help to better understand the formation mechanisms of atmospheric sulfate and nitrate during air pollution episodes and to better explain field results of atmospheric chemistry concerning sulfate and nitrate.

  9. Comparison of Influenza Virus Particle Purification Using Magnetic Sulfated Cellulose Particles with an Established Centrifugation Method for Analytics.

    Science.gov (United States)

    Serve, Anja; Pieler, Michael Martin; Benndorf, Dirk; Rapp, Erdmann; Wolff, Michael Werner; Reichl, Udo

    2015-11-01

    A method for the purification of influenza virus particles using novel magnetic sulfated cellulose particles is presented and compared to an established centrifugation method for analytics. Therefore, purified influenza A virus particles from adherent and suspension MDCK host cell lines were characterized on the protein level with mass spectrometry to compare the viral and residual host cell proteins. Both methods allowed one to identify all 10 influenza A virus proteins, including low-abundance proteins like the matrix protein 2 and nonstructural protein 1, with a similar impurity level of host cell proteins. Compared to the centrifugation method, use of the novel magnetic sulfated cellulose particles reduced the influenza A virus particle purification time from 3.5 h to 30 min before mass spectrometry analysis.

  10. Beta-delayed particle emission from neutron-deficient tellurium, iodine, xenon, cesium and barium isotopes

    International Nuclear Information System (INIS)

    Using 58Ni, 63Cu(58Ni, xp yn) reactions and on-line mass separation the β-delayed proton and α-particle emission from neutron-deficient isotopes with 52113Xe, (protons), 114Cs (protons and α-particles) and 117Ba (protons). Coincidences between positons and β-delayed protons were recorded for 113Xe and 114Cs, yielding Qsub(EC)-Ssub(p) values of 7.92(15) and 8.73(15) MeV, respectively. The results are discussed within the statistical model. (orig.)

  11. Internally mixed soot, sulfates, and organic matter in aerosol particles from Mexico City

    Directory of Open Access Journals (Sweden)

    K. Adachi

    2008-05-01

    Full Text Available Soot particles are major aerosol constituents that result from emissions of burning of fossil fuel and biomass. Because they both absorb sunlight and contribute to cloud formation, they are an influence on climate on local, regional, and global scales. It is therefore important to evaluate their optical and hygroscopic properties and those effects on the radiation budget. Those properties commonly change through reaction with other particles or gases, resulting in complex internal mixtures. Using transmission electron microscopy, we measured ~8000 particles (25 samples with aerodynamic diameters from 0.05 to 0.3 μm that were collected in March 2006 from aircraft over Mexico City (MC and adjacent areas. More than 50% of the particles consist of internally mixed soot, organic matter, and sulfate. Imaging combined with chemical analysis of individual particles show that many are coated, consist of aggregates, or both. Coatings on soot particles can amplify their light absorption, and coagulation with sulfates changes their hygroscopic properties, resulting in shorter lifetime. Our results suggest that a mixture of materials from multiple sources such as vehicles, power plants, and biomass burning occurs in individual particles, thereby increasing their complexity. Through changes in their optical and hygroscopic properties, internally mixed soot particles have a greater effect on the regional climate than uncoated soot particles. Moreover, soot occurs in more than 60% of all particles in the MC plumes, suggesting its important role in the formation of secondary aerosol particles.

  12. Radiation dose in mass screening for gastric cancer with high-concentration barium sulphate compared with moderate-concentration barium sulphate

    International Nuclear Information System (INIS)

    Full text: Recently, high-concentration barium sulfate has been developed and is used in many medical facilities. This study compared radiation dose using high-concentration and moderate-concentration barium sulfate. The dose was evaluated with an experimental method using a gastric phantom and with a clinical examination. In the former, the dose and X-ray tube load were measured on the phantom with two concentrations of barium sulfate. In the latter, the fluoroscopic dose-area product (DAP), the radiographic DAP and their sum, the total DAP, were investigated in 150 subjects (112 males, 38 females) treated with both concentrations of barium sulfate. The effective dose was calculated by the software of PCXMC in every case. The results of the experimental evaluation indicated that the effective dose and X-ray tube load were greater with high-concentration barium sulfate than with moderate-concentration barium sulfate (p < 0.05). The results of the clinical evaluation indicated that the fluoroscopic DAP was greater with moderate-concentration barium sulfate than with high-concentration barium sulfate (p < 0.05), but the radiographic DAP was quite the reverse, so the total DAP and effective dose were almost same with both concentrations of barium sulfate. We conclude that high-concentration barium sulfate does not increase radiation dose in mass screening for gastric cancer.

  13. Enhanced dielectric properties of poly(vinylidene fluoride) composites filled with nano iron oxide-deposited barium titanate hybrid particles.

    Science.gov (United States)

    Zhang, Changhai; Chi, Qingguo; Dong, Jiufeng; Cui, Yang; Wang, Xuan; Liu, Lizhu; Lei, Qingquan

    2016-01-01

    We report enhancement of the dielectric permittivity of poly(vinylidene fluoride) (PVDF) generated by depositing magnetic iron oxide (Fe3O4) nanoparticles on the surface of barium titanate (BT) to fabricate BT-Fe3O4/PVDF composites. This process introduced an external magnetic field and the influences of external magnetic field on dielectric properties of composites were investigated systematically. The composites subjected to magnetic field treatment for 30 min at 60 °C exhibited the largest dielectric permittivity (385 at 100 Hz) when the BT-Fe3O4 concentration is approximately 33 vol.%. The BT-Fe3O4 suppressed the formation of a conducting path in the composite and induced low dielectric loss (0.3) and low conductivity (4.12 × 10(-9) S/cm) in the composite. Series-parallel model suggested that the enhanced dielectric permittivity of BT-Fe3O4/PVDF composites should arise from the ultrahigh permittivity of BT-Fe3O4 hybrid particles. However, the experimental results of the BT-Fe3O4/PVDF composites treated by magnetic field agree with percolation theory, which indicates that the enhanced dielectric properties of the BT-Fe3O4/PVDF composites originate from the interfacial polarization induced by the external magnetic field. This work provides a simple and effective way for preparing nanocomposites with enhanced dielectric properties for use in the electronics industry. PMID:27633958

  14. Enhanced dielectric properties of poly(vinylidene fluoride) composites filled with nano iron oxide-deposited barium titanate hybrid particles

    Science.gov (United States)

    Zhang, Changhai; Chi, Qingguo; Dong, Jiufeng; Cui, Yang; Wang, Xuan; Liu, Lizhu; Lei, Qingquan

    2016-09-01

    We report enhancement of the dielectric permittivity of poly(vinylidene fluoride) (PVDF) generated by depositing magnetic iron oxide (Fe3O4) nanoparticles on the surface of barium titanate (BT) to fabricate BT–Fe3O4/PVDF composites. This process introduced an external magnetic field and the influences of external magnetic field on dielectric properties of composites were investigated systematically. The composites subjected to magnetic field treatment for 30 min at 60 °C exhibited the largest dielectric permittivity (385 at 100 Hz) when the BT–Fe3O4 concentration is approximately 33 vol.%. The BT–Fe3O4 suppressed the formation of a conducting path in the composite and induced low dielectric loss (0.3) and low conductivity (4.12 × 10‑9 S/cm) in the composite. Series-parallel model suggested that the enhanced dielectric permittivity of BT–Fe3O4/PVDF composites should arise from the ultrahigh permittivity of BT–Fe3O4 hybrid particles. However, the experimental results of the BT–Fe3O4/PVDF composites treated by magnetic field agree with percolation theory, which indicates that the enhanced dielectric properties of the BT–Fe3O4/PVDF composites originate from the interfacial polarization induced by the external magnetic field. This work provides a simple and effective way for preparing nanocomposites with enhanced dielectric properties for use in the electronics industry.

  15. Enhanced dielectric properties of poly(vinylidene fluoride) composites filled with nano iron oxide-deposited barium titanate hybrid particles.

    Science.gov (United States)

    Zhang, Changhai; Chi, Qingguo; Dong, Jiufeng; Cui, Yang; Wang, Xuan; Liu, Lizhu; Lei, Qingquan

    2016-01-01

    We report enhancement of the dielectric permittivity of poly(vinylidene fluoride) (PVDF) generated by depositing magnetic iron oxide (Fe3O4) nanoparticles on the surface of barium titanate (BT) to fabricate BT-Fe3O4/PVDF composites. This process introduced an external magnetic field and the influences of external magnetic field on dielectric properties of composites were investigated systematically. The composites subjected to magnetic field treatment for 30 min at 60 °C exhibited the largest dielectric permittivity (385 at 100 Hz) when the BT-Fe3O4 concentration is approximately 33 vol.%. The BT-Fe3O4 suppressed the formation of a conducting path in the composite and induced low dielectric loss (0.3) and low conductivity (4.12 × 10(-9) S/cm) in the composite. Series-parallel model suggested that the enhanced dielectric permittivity of BT-Fe3O4/PVDF composites should arise from the ultrahigh permittivity of BT-Fe3O4 hybrid particles. However, the experimental results of the BT-Fe3O4/PVDF composites treated by magnetic field agree with percolation theory, which indicates that the enhanced dielectric properties of the BT-Fe3O4/PVDF composites originate from the interfacial polarization induced by the external magnetic field. This work provides a simple and effective way for preparing nanocomposites with enhanced dielectric properties for use in the electronics industry.

  16. Effect of sulfate and carbonate minerals on particle-size distributions in arid soils

    Science.gov (United States)

    Goossens, Dirk; Buck, Brenda J.; Teng, Yuazxin; Robins, Colin; Goldstein, Harland L.

    2014-01-01

    Arid soils pose unique problems during measurement and interpretation of particle-size distributions (PSDs) because they often contain high concentrations of water-soluble salts. This study investigates the effects of sulfate and carbonate minerals on grain-size analysis by comparing analyses in water, in which the minerals dissolve, and isopropanol (IPA), in which they do not. The presence of gypsum, in particular, substantially affects particle-size analysis once the concentration of gypsum in the sample exceeds the mineral’s solubility threshold. For smaller concentrations particle-size results are unaffected. This is because at concentrations above the solubility threshold fine particles cement together or bind to coarser particles or aggregates already present in the sample, or soluble mineral coatings enlarge grains. Formation of discrete crystallites exacerbates the problem. When soluble minerals are dissolved the original, insoluble grains will become partly or entirely liberated. Thus, removing soluble minerals will result in an increase in measured fine particles. Distortion of particle-size analysis is larger for sulfate minerals than for carbonate minerals because of the much higher solubility in water of the former. When possible, arid soils should be analyzed using a liquid in which the mineral grains do not dissolve, such as IPA, because the results will more accurately reflect the PSD under most arid soil field conditions. This is especially important when interpreting soil and environmental processes affected by particle size.

  17. Surface reaction characteristics at low temperature synthesis BaTiO 3 particles by barium hydroxide aqueous solution and titanium tetraisopropoxide

    Science.gov (United States)

    Zeng, Min

    2011-05-01

    Well-crystallized cubic phase BaTiO 3 particles were prepared by heating the mixture of barium hydroxide aqueous solution and titania derived from the hydrolysis of titanium isopropoxide (TTIP) at 328 K, 348 K or 368 K for 24 h. The morphology and size of obtained particles depended on the reaction temperature and the Ba(OH) 2/TTIP molar ratio. By the direct hydrolytic reaction of titanium tetraisopropoxide, the high surface area titania (TiO 2) was obtained. The surface adsorption characteristics of the titania particles had been studied with different electric charges OH - ions or H + ions. The formation mechanism and kinetics of BaTiO 3 were examined by measuring the concentration of [Ba 2+] ions in the solution during the heating process. The experimental results showed that the heterogeneous nucleation of BaTiO 3 occurred on the titania surface, according to the Avrami's equation.

  18. Suppression in droplet growth kinetics by the addition of organics to sulfate particles

    Science.gov (United States)

    Wong, Jenny P. S.; Liggio, John; Li, Shao-Meng; Nenes, Athanasios; Abbatt, Jonathan P. D.

    2014-11-01

    Aerosol-cloud interactions are affected by the rate at which water vapor condenses onto particles during cloud droplet growth. Changes in droplet growth rates can impact cloud droplet number and size distribution. The current study investigated droplet growth kinetics of acidic and neutral sulfate particles which contained various amounts and types of organic compounds, from model compounds (carbonyls) to complex mixtures (α-pinene secondary organic aerosol and diesel engine exhaust). In most cases, the formed droplet size distributions were shifted to smaller sizes relative to control experiments (pure sulfate particles), due to suppression in droplet growth rates in the cloud condensation nuclei counter. The shift to smaller droplets correlated with increasing amounts of organic material, with the largest effect observed for acidic seed particles at low relative humidity. For all organics incorporated onto acidic particles, formation of high molecular weight compounds was observed, probably by acid-catalyzed Aldol condensation reactions in the case of carbonyls. To test the reversibility of this process, carbonyl experiments were conducted with acidic particles exposed to higher relative humidity. High molecular weight compounds were not measured in this case and no shift in droplet sizes was observed, suggesting that high molecular weight compounds are the species affecting the rate of water uptake. While these results provide laboratory evidence that organic compounds can slow droplet growth rates, the modeled mass accommodation coefficient of water on these particles (α > 0.1) indicates that this effect is unlikely to significantly affect cloud properties, consistent with infrequent field observations of slower droplet growth rates.

  19. Co-precipitation of radium with barium and strontium sulfate and its impact on the fate of radium during treatment of produced water from unconventional gas extraction.

    Science.gov (United States)

    Zhang, Tieyuan; Gregory, Kelvin; Hammack, Richard W; Vidic, Radisav D

    2014-04-15

    Radium occurs in flowback and produced waters from hydraulic fracturing for unconventional gas extraction along with high concentrations of barium and strontium and elevated salinity. Radium is often removed from this wastewater by co-precipitation with barium or other alkaline earth metals. The distribution equation for Ra in the precipitate is derived from the equilibrium of the lattice replacement reaction (inclusion) between the Ra(2+) ion and the carrier ions (e.g., Ba(2+) and Sr(2+)) in aqueous and solid phases and is often applied to describe the fate of radium in these systems. Although the theoretical distribution coefficient for Ra-SrSO4 (Kd = 237) is much larger than that for Ra-BaSO4 (Kd = 1.54), previous studies have focused on Ra-BaSO4 equilibrium. This study evaluates the equilibria and kinetics of co-precipitation reactions in Ra-Ba-SO4 and Ra-Sr-SO4 binary systems and the Ra-Ba-Sr-SO4 ternary system under varying ionic strength (IS) conditions that are representative of brines generated during unconventional gas extraction. Results show that radium removal generally follows the theoretical distribution law in binary systems and is enhanced in the Ra-Ba-SO4 system and restrained in the Ra-Sr-SO4 system by high IS. However, the experimental distribution coefficient (Kd') varies widely and cannot be accurately described by the distribution equation, which depends on IS, kinetics of carrier precipitation and does not account for radium removal by adsorption. Radium removal in the ternary system is controlled by the co-precipitation of Ra-Ba-SO4, which is attributed to the rapid BaSO4 nucleation rate and closer ionic radii of Ra(2+) with Ba(2+) than with Sr(2+). Carrier (i.e., barite) recycling during water treatment was shown to be effective in enhancing radium removal even after co-precipitation was completed. Calculations based on experimental results show that Ra levels in the precipitate generated in centralized waste treatment facilities far

  20. Radioactive Barium Ion Trap Based on Metal-Organic Framework for Efficient and Irreversible Removal of Barium from Nuclear Wastewater.

    Science.gov (United States)

    Peng, Yaguang; Huang, Hongliang; Liu, Dahuan; Zhong, Chongli

    2016-04-01

    Highly efficient and irreversible capture of radioactive barium from aqueous media remains a serious task for nuclear waste disposal and environmental protection. To address this task, here we propose a concept of barium ion trap based on metal-organic framework (MOF) with a strong barium-chelating group (sulfate and sulfonic acid group) in the pore structures of MOFs. The functionalized MOF-based ion traps can remove >90% of the barium within the first 5 min, and the removal efficiency reaches 99% after equilibrium. Remarkably, the sulfate-group-functionalized ion trap demonstrates a high barium uptake capacity of 131.1 mg g(-1), which surpasses most of the reported sorbents and can selectively capture barium from nuclear wastewater, whereas the sulfonic-acid-group-functionalized ion trap exhibits ultrafast kinetics with a kinetic rate constant k2 of 27.77 g mg(-1) min(-1), which is 1-3 orders of magnitude higher than existing sorbents. Both of the two MOF-based ion traps can capture barium irreversibly. Our work proposes a new strategy to design barium adsorbent materials and provides a new perspective for removing radioactive barium and other radionuclides from nuclear wastewater for environment remediation. Besides, the concrete mechanisms of barium-sorbent interactions are also demonstrated in this contribution.

  1. Surface modification to produce hydrophobic nano-silica particles using sodium dodecyl sulfate as a modifier

    Science.gov (United States)

    Qiao, Bing; Liang, Yong; Wang, Ting-Jie; Jiang, Yanping

    2016-02-01

    Hydrophobic silica particles were prepared using the surfactant sodium dodecyl sulfate (SDS) as a modifier by a new route comprising three processes, namely, aqueous mixing, spray drying and thermal treatment. Since SDS dissolves in water, this route is free of an organic solvent and gave a perfect dispersion of SDS, that is, there was excellent contact between SDS and silica particles in the modification reaction. The hydrophobicity of the modified surface was verified by the contact angle of the nano-sized silica particles, which was 107°. The SDS grafting density reached 1.82 nm-2, which is near the highest value in the literature. The optimal parameters of the SDS/SiO2 ratio in the aqueous phase, process temperature and time of thermal treatment were determined to be 20%, 200 °C and 30 min, respectively. The grafting mechanism was studied by comparing the modification with that on same sized TiO2 particles, which indicated that the protons of the Brønsted acid sites on the surface of SiO2 reacted with SDS to give a carbocation which then formed a Si-O-C structure. This work showed that the hydrophilic surface of silica can be modified to be a hydrophobic surface by using a water soluble modifier SDS in a new modification route.

  2. Impact of organic coating on growth of ammonium sulfate particles: light extinction measurements relevant for the direct effect

    Science.gov (United States)

    Robinson, C. B.; Zarzana, K. J.; Hasenkopf, C. A.; Tolbert, M. A.

    2012-12-01

    Light extinction by particles is strongly dependent on chemical composition, particle size, and water uptake. Relative humidity affects extinction by causing changes in refractive index and particle size due to hygroscopic growth. The ability of particles to take up water depends on their composition and structure. In both laboratory and field studies, inorganic salts completely covered by an organic coating have been observed. The impact of this coating on water uptake is uncertain, and a systematic study that examines water uptake as a function of relative humidity is highly desirable. These data are critical to evaluate the aerosol direct effect on climate, which is one of the most uncertain aspects of future climate change. In this study, we probe the connection between aerosol composition, size and light extinction directly by measuring fRHext, the ratio of the extinction coefficient for humidified particles to the extinction coefficient for dry particles. Particles were composed of 1,2,6-hexanetriol and ammonium sulfate, a system that forms organic coatings around the inorganic core. A cavity ring-down aerosol extinction spectrometer at 532 nm is used to measure the optical growth factor as a function of relative humidity. The fRHext values for a range of %RH for pure ammonium sulfate, pure 1,2,6-hexanetriol, and ammonium sulfate particles with 1,2,6-hexanetriol coatings were measured. The coated particles are created using a method of liquid-liquid separation, where the particles are exposed to water vapor creating a RH% above their deliquescence RH%. The particles are then dried with a Nafion dryer to a RH% that is below the point where liquid-liquid phase separation is observed, but above the efflorescence RH%. Pure 1,2,6-hexanetriol takes up little water over the observed RH range of 45-65%, and therefore fRHext ~ 1. With pure ammonium sulfate for the same RH% range, the fRHext varied from 1.5 - 2, depending on the RH% and the particle size. For the

  3. Estimating health damage cost from secondary sulfate particles - a case study of Hunan Province,China

    Institute of Scientific and Technical Information of China (English)

    HAO Ji-ming; LI Ji; YE Xue-mei; ZHU Tian-le

    2003-01-01

    China's coal-dominated energy pattern has resulted in large amount of SO2 emissions. Estimate of the sulfur-related health damage cost is necessary to help perform systematic cost-benefit analysis and set national energy and emissions control priorities. Current researches were confined to gaseous SO2 in urban areas; however, secondary sulfate (SO42-) particles can exert serious impact in a wider region. Based on the concept of "intake fraction", CALPUFF long-range dispersion model and 180 sample emission sources, multiple regression equation was obtained with good correlation(r=0.85), which illustrates that populations were key parameters to determine intake fraction but source characteristics were insignificant. Based on the formula and the population distribution data, county-level intake fractions were mapped for Hunan Province(range: 1.1×10-6-3.2×10-6) of China. A combination of county-level SO2 emissions with the intake fractions yields a total 1.98 tons of sulfate(SO42-) inhalation, and resulting total health damage cost to be 0.76(willingness to pay approach) or 0.16(human capital approach) billion USD in 1997, about 2.1% or 0.45% of GDP in Hunan in 1997. Average health damage cost per ton of SO2 emission is 930(willingness to pay approach) or 200 USD(human capital approach). The results demonstrated that more stringent regulation should be forced.

  4. Cloud droplet activation of mixed organic-sulfate particles produced by the photooxidation of isoprene

    Directory of Open Access Journals (Sweden)

    S. M. King

    2010-04-01

    Full Text Available The cloud condensation nuclei (CCN properties of ammonium sulfate particles mixed with organic material condensed during the hydroxyl-radical-initiated photooxidation of isoprene (C5H8 were investigated in the continuous-flow Harvard Environmental Chamber. CCN activation curves were measured for organic particle mass concentrations of 0.5 to 10.0 μg m−3, NOx concentrations from under 0.4 ppbv up to 38 ppbv, particle mobility diameters from 70 to 150 nm, and thermodenuder temperatures from 25 to 100 °C. At 25 °C, the observed CCN activation curves were accurately described by a Köhler model having two internally mixed components, namely ammonium sulfate and secondary organic material. The modeled physicochemical parameters of the organic material were equivalent to an effective hygroscopicity parameter κORG of 0.10±0.03, regardless of the C5H8:NOx concentration ratio for the span of >200:0.4 to 50:38 (ppbv:ppbv. The volatilization curves (i.e., plots of the residual organic volume fraction against temperature were also similar for the span of investigated C5H8:NOx ratios, suggesting a broad similarity of particle chemical composition. This suggestion was supported by limited variance at 25 °C among the particle mass spectra. For example, the signal intensity at m/z 44 (which can result from the fragmentation of oxidized molecules believed to affect hygroscopicity and CCN properties varied weakly from 6 to 9% across the range of investigated conditions. In contradistinction to the results for 25 °C, conditioning up to 100 °C in the thermodenuder significantly reduced CCN activity. The altered CCN activity might be explained by chemical reactions (e.g., decomposition or oligomerization of the secondary organic material at elevated temperatures. The study's results at 25 °C, in conjunction with the results of

  5. Barium titanate particle model inquiry through effective permittivity measurements and boundary integral equation method based simulations of the BaTiO{sub 3}-epoxy resin composite material

    Energy Technology Data Exchange (ETDEWEB)

    Orlowska, S [Ecole Centrale de Lyon, Centre de Genie Electrique de Lyon, CNRS UMR 5005, 69134 Ecully (France); Beroual, A [Ecole Centrale de Lyon, Centre de Genie Electrique de Lyon, CNRS UMR 5005, 69134 Ecully (France); Fleszynski, J [Institute of Fundamental Electrotechnics and Electrotechnology, University of Technology of Wroclaw, Wroclaw (Poland)

    2002-10-21

    The heterogeneous mixture properties depend on its constituents' characteristics. We examine the effective permittivity of a two-phase composite material made of epoxy resin host matrix and barium titanate (BaTiO{sub 3}) filler for different volume fractions in the matrix. The task we undertake consists in finding a model of BaTiO{sub 3} particles through the computer simulations executed in PHI3D-electric field calculating package, based on the resolution of the Laplace equation using boundary integral equation method. With this aim in view we compare the measured results of the effective permittivity of the BaTiO{sub 3}-epoxy resin composite samples with the simulation results for different BaTiO{sub 3} particle geometric models and for the same experimental conditions, with regard to the given volume fraction of the powder in the matrix. The experimental results are obtained through the measurements with an impedance meter in the range of frequencies from 50 Hz to 1 MHz.

  6. The enhancement of photoluminescence characteristics of Eu-doped barium strontium silicate phosphor particles by co-doping materials

    International Nuclear Information System (INIS)

    Green light emitting (Ba,Sr)2SiO4:Eu phosphor particles with high photoluminescence intensity under long wavelength ultraviolet (UV) were prepared by spray pyrolysis from colloidal spray solution. Yttrium, cerium and holmium components were introduced as co-doping materials to improve the photoluminescence characteristics of (Ba,Sr)2SiO4:Eu phosphor particles in the spray pyrolysis. The photoluminescence intensities of co-doped (Ba,Sr)2SiO4:Eu phosphor particles were about 120∼143% of (Ba,Sr)2SiO4:Eu phosphor particles without co-dopant. The highest photoluminescence intensity was achieved when the doping concentration of yttrium was about 1.7 times of the doping concentration of europium. The photoluminescence intensity of the sieved phosphor particles using 20 μm sieve was comparable to that of the original (Ba,Sr)2SiO4:Eu phosphor particles

  7. Doped barium titanate nanoparticles

    Indian Academy of Sciences (India)

    T K Kundu; A Jana; P Barik

    2008-06-01

    We have synthesized nickel (Ni) and iron (Fe) ion doped BaTiO3 nanoparticles through a chemical route using polyvinyl alcohol (PVA). The concentration of dopant varies from 0 to 2 mole% in the specimens. The results from X-ray diffractograms and transmission electron micrographs show that the particle diameters in the specimen lie in the range 24–40 nm. It is seen that the dielectric permittivity in doped specimens is enhanced by an order of magnitude compared to undoped barium titanate ceramics. The dielectric permittivity shows maxima at 0.3 mole% doping of Fe ion and 0.6 mole% of Ni ion. The unusual dielectric behaviour of the specimens is explained in terms of the change in crystalline structure of the specimens.

  8. Synthesis and magnetic properties of barium-calcium hexaferrite particles prepared by sol-gel and microemulsion techniques

    Science.gov (United States)

    Jotania, R. B.; Khomane, R. B.; Chauhan, C. C.; Menon, S. K.; Kulkarni, B. D.

    The preparation of W-type hexaferrite particles with the composition BaCa 2Fe 16O 27 by microemulsion and a stearic acid sol-gel method with and without surfactant has been investigated at various sintering temperatures. The structural and magnetic characteristics have been studied by X-ray diffraction (XRD), a vibrating sample magnetometer (VSM), scanning electron microscopy (SEM), thermogravimetric analysis (TGA), differential scanning calorimetric (DSC) and Fourier transform infrared (FTIR) techniques. The effect of sintering temperature on the properties of BaCa 2Fe 16O 27 hexaferrites has been studied. The value of saturation magnetization ( Ms) depends on types of surfactant used. The sample prepared in the presence of polyoxyethylene (20) sorbitan monooleat (Tween 80) shows low saturation magnetization ( Ms=15.10 emu/g), whereas the other sample prepared in the presence of a surfactant cetyltrimethylammonium bromide (CTAB) exhibits high saturation magnetization ( Ms=24.60 emu/g) compared to the normal sample.

  9. Radioisotope analyzer of barium

    International Nuclear Information System (INIS)

    Principle of operation and construction of radioisotope barium sulphate analyzer type MZB-2 for fast determination of barium sulphate content in barite ores and enrichment products are described. The gauge equipped with Am-241 and a scintillation detector enables measurement of barium sulphate content in prepared samples of barite ores in the range 60% - 100% with the accuracy of 1%. The gauge is used in laboratories of barite mine and ore processing plant. 2 refs., 2 figs., 1 tab. (author)

  10. Comparision on Determination of Sulfate in Drinking Water by Barium chromate spectrophotometry and Ion Chromatography%铬酸钡分光光度法与离子色谱法测定生活饮用水中硫酸盐的比较

    Institute of Scientific and Technical Information of China (English)

    卡林; 陈玉柱; 邱陆军; 丁长春

    2012-01-01

    为比较铬酸钡分光光度法与离子色谱法测定水中硫酸盐是否存在显著性差异,分别使用两种方法测定淮安市两个集中式生活饮用水水源地的地表水中的硫酸盐含量。其结果显示,两种方法的精密度、准确度和测定结果无显著性差异,均可作为测定生活饮用水中硫酸盐的方法。%To compare the Barium chromate spectrophotometry and Ion Chromatography method for determination of Sulfate,we collected 4 surface-water samples from 2 areas in drinking water of Huaian and detected he fluoride content.The results indicated that there not distinctive differences in the precision,accuracy and determination results of Barium chromate spectrophotometry and Ion Chromatography method.So Sulfate content in drinking water could be determined by the two method.

  11. Synthesis and magnetic properties of barium-calcium hexaferrite particles prepared by sol-gel and microemulsion techniques

    Energy Technology Data Exchange (ETDEWEB)

    Jotania, R.B. [Department of Physics, Gujarat University, Ahmedabad 380 009, Gujarat (India)], E-mail: rbjotania@gmail.com; Khomane, R.B. [Chemical Engineering Division, National Chemical Laboratory, Pune 411008, Maharastra (India); Chauhan, C.C. [Department of Physics, Gujarat University, Ahmedabad 380 009, Gujarat (India); Menon, S.K. [Department of Chemistry, Gujarat University, Ahmedabad 380 009, Gujarat (India); Kulkarni, B.D. [Chemical Engineering Division, National Chemical Laboratory, Pune 411008, Maharastra (India)

    2008-03-15

    The preparation of W-type hexaferrite particles with the composition BaCa{sub 2}Fe{sub 16}O{sub 27} by microemulsion and a stearic acid sol-gel method with and without surfactant has been investigated at various sintering temperatures. The structural and magnetic characteristics have been studied by X-ray diffraction (XRD), a vibrating sample magnetometer (VSM), scanning electron microscopy (SEM), thermogravimetric analysis (TGA), differential scanning calorimetric (DSC) and Fourier transform infrared (FTIR) techniques. The effect of sintering temperature on the properties of BaCa{sub 2}Fe{sub 16}O{sub 27} hexaferrites has been studied. The value of saturation magnetization (M{sub s}) depends on types of surfactant used. The sample prepared in the presence of polyoxyethylene (20) sorbitan monooleat (Tween 80) shows low saturation magnetization (M{sub s}=15.10 emu/g), whereas the other sample prepared in the presence of a surfactant cetyltrimethylammonium bromide (CTAB) exhibits high saturation magnetization (M{sub s}=24.60 emu/g) compared to the normal sample.

  12. Effects of the physical state of tropospheric ammonium-sulfate-nitrate particles on global aerosol direct radiative forcing

    Directory of Open Access Journals (Sweden)

    S. T. Martin

    2004-01-01

    Full Text Available The effect of aqueous versus crystalline sulfate-nitrate-ammonium tropospheric particles on global aerosol direct radiative forcing is assessed. A global three-dimensional chemical transport model predicts sulfate, nitrate, and ammonium aerosol mass. An aerosol thermodynamics model is called twice, once for the upper side (US and once for lower side (LS of the hysteresis loop of particle phase. On the LS, the sulfate mass budget is 40% solid ammonium sulfate, 12% letovicite, 11% ammonium bisulfate, and 37% aqueous. The LS nitrate mass budget is 26% solid ammonium nitrate, 7% aqueous, and 67% gas-phase nitric acid release due to increased volatility upon crystallization. The LS ammonium budget is 45% solid ammonium sulfate, 10% letovicite, 6% ammonium bisulfate, 4% ammonium nitrate, 7% ammonia release due to increased volatility, and 28% aqueous. LS aerosol water mass partitions as 22% effloresced to the gas-phase and 78% remaining as aerosol mass. The predicted US/LS global fields of aerosol mass are employed in a Mie scattering model to generate global US/LS aerosol optical properties, including scattering efficiency, single scattering albedo, and asymmetry parameter. Global annual average LS optical depth and mass scattering efficiency are, respectively, 0.023 and 10.7 m2 (g SO4-2-1, which compare to US values of 0.030 and 13.9 m2 (g SO4-2-1. Radiative transport is computed, first for a base case having no aerosol and then for the two global fields corresponding to the US and LS of the hysteresis loop. Regional, global, seasonal, and annual averages of top-of-the-atmosphere aerosol radiative forcing on the LS and US (FL and FU, respectively, in W m-2 are calculated. Including both anthropogenic and natural emissions, we obtain global annual averages of FL=-0.750, FU=-0.930, and DFU,L=24% for full sky calculations without clouds and FL=-0.485, FU=-0.605, and DFU,L=25% when clouds are included. Regionally, DFU,L=48% over the USA, 55% over Europe

  13. Isotopic analysis of aerosol sulfate and nitrate during ITCT-2k2: Determination of different formation pathways as a function of particle size

    Science.gov (United States)

    Patris, N.; Cliff, S. S.; Quinn, P. K.; Kasem, M.; Thiemens, M. H.

    2007-12-01

    The triple isotopic composition of oxygen in sulfate and nitrate, and the sulfur isotopic composition of the sulfate fine fraction, have been measured on size-segregated aerosol samples collected at Trinidad Head, coastal California, alongside the ITCT-2k2 campaign in April-May 2002. The isotopic anomaly Δ17O = δ17O - 0.52 × δ18O has been determined in both sulfate and nitrate and was used as a specific tracer of the formation pathways of these species. Coarse mode sulfate in all samples exhibited a small but significant Δ17O anomaly indicating either uptake or in situ formation of secondary sulfate on sea spray. Non-sea-salt sulfate Δ17O in the coarse fraction is consistent with (1) either primarily coagulation of finer sulfate particles, when Δ17O is low in all size fractions, or (2) ozone-driven oxidation of SO2 within the sea spray, as observed in the relatively higher Δ17O in coarse particles compared to fine. It is proposed that triple-isotope measurements of sulfate oxygen can be used to quantify the budget of in situ sea spray nss-SO4 formation. The Δ17O measured in size-resolved nitrate revealed, for the first time, differences in the nitrate formation budget as a function of particle size in a given air mass. The coarse particle nitrate possessed a higher Δ17O, suggesting a relatively larger N2O5 hydrolysis contribution to the nitrate formation budget compared to fine particles where homogeneous formation is more important. We conclude that the complete isotope ratio analysis may provide a basis for future modeling of the formation and transformation processes of the soluble aerosol, based on direct observation of the mechanisms.

  14. 用数值模拟方法分析混合和导流筒对搅拌槽中沉淀硫酸钡的影响%Computational Fluid Dynamics Approach to the Effect of Mixing and Draft Tube on the Precipitation of Barium Sulfate in a Continuous Stirred Tank

    Institute of Scientific and Technical Information of China (English)

    王正; 毛在砂; 杨超; 沈湘黔

    2006-01-01

    The effect of mixing on the precipitation of barium sulfate in a continuous stirred tank is simulated numerically with different feeding location, feed concentration, impeller speed and residence time through solving the standard momentum and mass transport equations in combination with the moment equations for crystal population balance. The numerical method was validated with the literature data. The simulation results including the distribution of the local supersaturation ratio distribution in the precipitator, mean crystal size and coefficient of variation under different operating conditions compared well with experimental data in the literature. The effect of the presence of a draft tube on precipitation were also investigated, and it is suggested that the installation of a draft tube increased the mean crystal size, in general agreement with experimental work in the literature.

  15. Preparation of functional composite particles of salbutamol sulfate using a 4-fluid nozzle spray-drying technique.

    Science.gov (United States)

    Chen, Richer; Okamoto, Hirokazu; Danjo, Kazumi

    2008-03-01

    A previous study on spray-drying demonstrated that it could promote the solubility of poorly water-soluble drugs using water-soluble polymers. Here, the preparation of composite particles of salbutamol sulfate (Sb) with water-insoluble polymers, such as Eudragit RS (RS) or Eudragit RL (RL) as a carrier, was examined. Despite the water insolubility of both polymers, the permeability of water was low in the former but high in the latter. We attempted to prepare controlled release composite particles by exploiting the characteristics of these carriers. The composite particles of the three components (Sb, RS, and RL) were prepared using a 4-fluid nozzle spray-dryer, and their physico-chemical and dissolution properties were compared with physical mixtures. Examination of particle morphology by scanning electron microscopy (SEM) revealed that the particles from the spray-drying process had atomized to several microns and were spherical. Analysis by X-ray diffraction and differential scanning calorimetry revealed that diffraction peaks and heat of fusion of Sb in the spray-dried samples decreased, indicating that the drug was amorphous and formed a solid dispersion. FT-IR analysis suggested that the amino group of Sb and a carbonyl group of the polymers formed a hydrogen bond. A dissolution test of Sb-RS-RL particles prepared using the 4-fluid nozzle spray-drying method showed that release rates were depressed significantly compared to the physical mixture at pH 1.2 and 6.8, and the depression was greater when RS was used instead of RL, presumably because of the permeability difference. The compression of these particles into tablets revealed that desirable controlled released dosage forms could be prepared. In addition, Sb was used to simulate an anti-asthmatic drug. For this an Andersen cascade impactor for dry powder inhalers was used to investigate delivery to the lungs. PMID:18310932

  16. A NOVEL HYDROTHERMAL SYNTHESIS METHOD FOR BARIUM FERRITE

    Institute of Scientific and Technical Information of China (English)

    Kang Li; Hongchen Gu; Qun Wei

    2004-01-01

    In the present work, fine barium ferrite powder has been synthesized through a one-step hydrothermal process in an autoclave at [OH-]/[Cl-] ratio of 2:1 in the temperature range from 180 to 260 ℃ using barium chloride (BaCl2), ferrous chloride (FeCl2) and potassium nitrate (KNO3) as the starting materials. Both particle size and saturation magnetization (Ms) increase with increasing hydrothermal reaction temperature, while the intrinsic coercivity (iHc) peaks at 685 Oe at 230 ℃. Morphology progress from the barium ferrite precursor particles to the barium hexaferrite particles has been monitored with increasing hydrothermal reaction time at 230 ℃ in the autoclave.

  17. Acidic gases and nitrate and sulfate particles in the atmosphere in the city of Guadalajara, México.

    Science.gov (United States)

    Saldarriaga-Noreña, Hugo; Waliszewski, Stefan; Murillo-Tovar, Mario; Hernández-Mena, Leonel; de la Garza-Rodríguez, Iliana; Colunga-Urbina, Edith; Cuevas-Ordaz, Rosalva

    2012-05-01

    Atmospheric concentrations of nitrous acid, nitric acid, nitrate and sulfate particles were obtained in this study from April to June 2008 in the center of the city of Guadalajara, while concentrations of ozone, sulfur dioxide, nitrogen dioxide and meteorological parameters (temperature and relative humidity), were acquired by the Secretaría del Medio Ambiente para el Desarrollo Sustentable del Estado de Jalisco (SEMADES). The results showed that nitric acid (2.7 μg m(-3)) was 2.7 times higher than nitrous acid (1.0 μg m(-3)). The sulfur dioxide (SO(2)) concentration indicated an opposite trend to sulfate (SO(4) (2-)), with the average concentration of SO(2) (6.9 μg m(-3)) higher in almost the entire period of study. The sulfur conversion ratio (Fs, 24.9%) and nitrogen conversion ratio (Fn, 6.2%), were revealed to be similar to that reported in other urban areas during warm seasons. It is also noted that ozone is not the main oxidizer of nitrogen dioxide and sulfur dioxide. This determination was made by taking into account the slightly positively correlation determined for Fn (r(2) = 0.084) and Fs (r(2) = 0.092) with ozone that perhaps suggests there are other oxidizing species such as the radical OH, which are playing an important role in the processes of atmospheric oxidation in this area.

  18. Lower GI Series (Barium Enema)

    Science.gov (United States)

    ... barium into a bedpan or nearby toilet. A health care professional may give you an enema to flush out the rest of the barium. An x-ray technician and a radiologist perform a lower gastrointestinal (GI) series at a ...

  19. Parameterization of N2O5 reaction probabilities on the surface of particles containing ammonium, sulfate, and nitrate

    Directory of Open Access Journals (Sweden)

    K. M. Foley

    2007-11-01

    Full Text Available A comprehensive parameterization was developed for the heterogeneous reaction probability (γ of N2O5 as a function of temperature, relative humidity, particle composition, and phase state, for use in advanced air quality models. The reaction probabilities on aqueous NH4HSO4, (NH42SO4, and NH4NO3 were modeled statistically using data and uncertainty values compiled from seven different laboratory studies. A separate regression model was fit to laboratory data for dry NH4HSO4 and (NH42SO4 particles, yielding lower γ values than the corresponding aqueous parameterizations. The regression equations reproduced 79% of the laboratory data within a factor of two and 53% within a factor of 1.25. A fixed value was selected for γ on ice-containing particles based on a review of the literature. The combined parameterization was applied under atmospheric conditions representative of the eastern United States using 3-dimensional fields of temperature, relative humidity, sulfate, nitrate, and ammonium, obtained from a recent Community Multiscale Air Quality model simulation. The resulting spatial distributions of γ were contrasted with three other parameterizations that have been applied in air quality models in the past and with atmospheric observational determinations of γ. Our results highlight a critical need for more laboratory measurements of γ at low temperature and high relative humidity to improve model simulations of N2O5 hydrolysis during wintertime conditions.

  20. Effects of the physical state of tropospheric ammonium-sulfate-nitrate particles on global aerosol direct radiative forcing

    Directory of Open Access Journals (Sweden)

    S. T. Martin

    2003-10-01

    Full Text Available The effect of aqueous versus crystalline sulfate-nitrate-ammonium tropospheric particles on global aerosol direct radiative forcing is assessed. A global three-dimensional chemical transport model predicts sulfate, nitrate, and ammonium aerosol mass. An aerosol thermodynamics model is called twice, once for the upper side (US and once for lower side (LS of the hysteresis loop of particle phase. On the LS, the sulfate mass budget is 40% solid ammonium sulfate, 12% letovicite, 11% ammonium bisulfate, and 37% aqueous. The LS nitrate mass budget is 26% solid ammonium nitrate, 7% aqueous, and 67% gas-phase nitric acid release due to increased volatility upon crystallization. The LS ammonium budget is 45% solid ammonium sulfate, 10% letovicite, 6% ammonium bisulfate, 4% ammonium nitrate, 7% ammonia release due to increased volatility, and 28% aqueous. LS aerosol water mass partitions as 22% effloresced to the gas-phase and 78% remaining as aerosol mass. The predicted US/LS global fields of aerosol mass are employed in a Mie scattering model to generate global US/LS aerosol optical properties, including scattering efficiency, single scattering albedo, and asymmetry parameter. Global annual average LS optical depth and mass scattering efficiency are, respectively, 0.023 and 10.7 m2  (g SO42−−1, which compare to US values of 0.030 and 13.9 m2 (g SO42−−1. Radiative transport is computed, first for a base case having no aerosol and then for the two global fields corresponding to the US and LS of the hysteresis loop. Regional, global, seasonal, and annual averages of top-of-the-atmosphere aerosol radiative forcing on the LS and US (FL and FU, respectively, in W m2− are calculated. Including both anthropogenic and natural emissions, we obtain global annual averages of FL = −0.750, FU = −0.930, and

  1. Formation of Secondary Particulate Matter by Reactions of Gas Phase Hexanal with Sulfate Aerosol Particles

    Science.gov (United States)

    Zhang, J.

    2003-12-01

    The formation of secondary particulate matter from the atmospheric oxidation of organic compounds can significantly contribute to the particulate burden, but the formation of organic secondary particulate matter is poorly understood. One way of producing organic secondary particulate matter is the oxidation of hydrocarbons with seven or more carbon atoms to get products with low vapor pressure. However, several recent reports suggest that relatively low molecular weight carbonyls can enter the particle phase by undergoing heterogeneous reactions. This may be a very important mechanism for the formation of organic secondary particulate matter. Atmospheric aldehydes are important carbonyls in the gas phase, which form via the oxidation of hydrocarbons emitted from anthropogenic and biogenic sources. In this poster, we report the results on particle growth by the heterogeneous reactions of hexanal. A 5 L Continuous Stirred Tank Reactor (CSTR) is set up to conduct the reactions in the presence of seed aerosol particles of deliquesced ammonia bisulfate. Hexanal is added into CSTR by syringe pump, meanwhile the concentrations of hexanal are monitored with High Pressure Liquid Chromatograph (HPLC 1050). A differential Mobility Analyzer (TSI 3071) set to an appropriate voltage is employed to obtain monodisperse aerosols, and another DMA associated with a Condensation Nuclear Counter (TSI 7610) is used to measure the secondary particle size distribution by the reaction in CSTR. This permits the sensitive determination of particle growth due to the heterogeneous reaction, very little growth occurs when hexanal added alone. Results for the simultaneous addition of hexanal and alcohols will also be presented.

  2. On the regulation of climate: a sulfate particle feedback loop involving deep convection

    International Nuclear Information System (INIS)

    The authors propose a climate stabilizing feedback loop involving biogenic sulfur. The mechanism is similar to the CLAW hypothesis (Charlson et al., 1987) but does not require the active participation of the ocean biota. The magnitude of the feedback response in this loop is derived by convective transport of biogenic sulfur over tropical oceans into the middle and high troposphere. Once aloft, the sulfur is oxidized into low-volatile species which nucleate new particles that later subside back into the subtropical marine boundary layer (MBL) and serve as cloud condensation nuclei (CCN). The MBL clouds are susceptible to albedo modification by changes in CCN concentrations (Platnick and Twomey, 1995). The authors envision that as global temperatures rise the sea surface warms, convective mass transport of sulfur will rise and the increased mass of sulfur in the upper troposphere will lead to higher numbers of particles or a shift in the particle size distribution to larger sizes. In either case, there is an increase in the number of particles large enough to act as CCN in the air subsiding back into the MBL. The increase in CCN increases the cloud albedo, decreases the solar input to the surface and the temperature decreases. More measurements are needed to confirm whether the magnitude of increased sulfur carried through the loop as a function of increased sea surface temperature is sufficient to close the loop and regulate the climate. 45 refs., 1 fig

  3. 铝酸钡与氢氧化钡脱硫过程比较%Comparison of Barium Aluminate and Barium Hydroxide Desulfurization Process

    Institute of Scientific and Technical Information of China (English)

    张念炳; 黎志英; 丁彤

    2012-01-01

    The seed precipitation liquor was desulfurized with barium aluminate and barium hydroxide respectively. The desulfurization slag was characterized by XRD analysis, and the desulfurization process was compared. The results show that barium hydroxide exceeds barium aluminate with better desulfurization in terms of effect, speed and duration. In the desulfurization process with barium aluminate, 2BaO · Al2O3 · 5H2O is firstly produced in the reaction of barium aluminate with alkali, and then it reacts with sodium sulfate and sodium carbonate. To compare, Ba(OH)2 · 8H2O directly reacts with sodium sulfate and sodium carbonate in the desulfurization process with barium hydroxide. Both of desulfurization reaction processes can be described with "shrinking core model".%用铝酸钡和氢氧化钡对种分母液进行脱硫试验,对脱硫渣进行XRD分析,并比较脱硫过程.结果表明,氢氧化钡的脱硫效果更好,脱硫完成时间更短,速率更快;铝酸钡先与碱液反应生成2BaO·Al2O3·5H2O,再与硫碱和碳碱反应,而氢氧化钡直接与硫碱和碳碱反应,脱硫过程均可用未反应核模型描述.

  4. New barium tantalum sulphides

    International Nuclear Information System (INIS)

    The authors discuss a new barium tantalum sulphide, Ba3Ta2S8, prepared by sulphurization of a mixture of BaCO3 and Ta2O5. The electron and powder X-ray diffraction patterns of the compound are indexed on the basis of a monoclinic cell with lattice constants. A structure model is proposed. The refinement based on the powder X-ray diffraction intensities is performed

  5. Experimental Design: Application to the Development of a Treatment to Inhibit the Deposition of Barium Sulfate Liable to Be Formed in Enhanced Oil Recovery by Waterflooding Planification d'expériences : application à la mise au point d'un traitement inhibiteur du depôt de sulfate de baryum susceptible de se former en récupération assistée du pétrole par injection d'eau

    Directory of Open Access Journals (Sweden)

    Roque C.

    2006-11-01

    Full Text Available For technical and economic reasons, waterflooding is the most widely-used method in enhanced oil recovery [1]. In many situations, unfortunately, the formation water is incompatible with the injection water. The deposits and corrosion induced by the various reactions of this incompatibility cause irreversible damage, which is especially dangerous for the reservoir rock and the downhole and surface production facilities. This study is concerned exclusively with barium sulfate deposits liable to occur in surface production facilities by the mixing of injection water loaded with sulfate (1300 mg. 1 to the power of (-1 with a formation water with a high barium concentration (1200 mg. 1 to the power of (-1 [2]. Pour des raisons techniques et économiques, l'injection d'eau dans les réservoirs est la méthode la plus employée dans la récupération du pétrole. Malheureusement, dans bien des cas, l'eau en place dans le gisement est incompatible avec l'eau injectée. Les dépôts et les corrosions causés par les diverses réactions physico-chimiques de cette incompatibilité provoquent des dégradations irréversibles particulièrement dangereuses pour les installations de production de fond comme de surface et quelquefois pour la roche réservoir elle-même. Dans le cadre des travaux de recherche relatifs à l'inhibition des dépôts de sulfate sur le champ algérien de Tin Fouyé Tabankort, cette étude a eu pour objectif de sélectionner et d'adapter aux conditions spécifiques de la production un traitement de prévention des dépôts par injection d'un agent inhibiteur. Elle concerne exclusivement les dépôts de sulfate de baryum pouvant apparaître dans les installations de production par mélange d'eau d'injection très chargée en ion sulfate (1300 mg. 1 puissance(-1 avec une eau de gisement très concentrée en élément baryum (1200 mg. 1 puissance(-1. Une méthode expérimentale au laboratoire, faisant appel à des mesures de type

  6. Rare Isotope Insights into Supereruptions: Rare Sulfur and Triple Oxygen Isotope Geochemistry of Stratospheric Sulfate Aerosols Absorbed on Volcanic Ash Particles

    Science.gov (United States)

    Bindeman, I. N.; Eiler, J.; Wing, B.; Farquhar, J.

    2006-12-01

    We present analyses of stable isotopic ratios of 17O/16O, 18O/16O, 34S/32S, and 33S/32S, 36S/32S of sulfate leached from volcanic ash of a series of well-known volcanic eruptions. This list covers much of the diversity of sizes and the character of volcanic eruptions. Particular emphasis is paid to the Lava Creek Tuff of Yellowstone and we present wide geographic sample coverage for this unit. This global dataset spans a significant range in δ34S, δ18O, and Δ17O of sulfate (29, 30 and 3.3 permil respectively) with oxygen isotopes recording mass-independent fractionation and sulfur isotopes exhibiting mass-dependent behavior. These ranges are defined by the isotopic compositions of products of large caldera forming eruptions. Proximal ignimbrites and coarse ash typically do not contain sulfate. The presence of sulfate with Δ17O > 0.2 permil is characteristic of small distal ash particles, suggesting that sulfate aerosols were scavenged after they underwent atmospheric photochemical reactions. Additionally, sediments that embed ash layers either do not contain sulfate or contain minor sulfate with Δ17O near 0 permil, suggesting that the observed sulfate in ash is of volcanic origin. Mass-dependent sulfur isotopic compositions suggest that sulfate-forming reactions did not involve photolysis of SO2, unlike the situation inferred for some pre-2.3 Ga sulfates or hypothesized to occur during the formation of sulfate associated with plinian eruptions that pierce the ozone layer. However, sulfate in the products of caldera-forming eruptions display a large δ34S range and fractionation relationships that do not follow equilibrium slopes of 0.515 and 1.90 for 33S/32S vs. 34S/32S and 36S/32S vs. 34S/32S, respectively. This implies that the sulfur isotopic characteristics of these sulfates were not set by a single stage, high-temperature equilibrium process in the volcanic plum. The data presented here are consistent with a single stage kinetic fractionation of sulfur

  7. Comparison of calculated sulfate scattering efficiencies as estimated from size-resolved particle measurements at three national locations

    Science.gov (United States)

    Malm, William C.; Pitchford, Marc L.

    Size distributions and resulting optical properties of sulfur aerosols were investigated at three national parks by a Davis Rotating-drum Universal-size-cut Monitoring (DRUM) impactor. Sulfur size distribution measurements for 88, 177, and 315 consecutive time periods were made at Grand Canyon National Park during January and February 1988, Meadview, AZ during July, August, and September 1992, and at Shenandoah National Park during summer, 1990, respectively. The DRUM impactor is designed to collect aerosols with an aerodynamic diameter between 0.07 and 15.0 μm in eight size ranges. Focused beam particle-induced X-ray emission (PIXE) analysis of the aerosol deposits produces a time history of size-resolved elemental composition of varied temporal resolution. As part of the quality assurance protocol, an interagency monitoring of protected visual environments (IMPROVE) channel A sampler collecting 0-2.5 μm diameter particles was operated simultaneously alongside the DRUM sampler. During these sampling periods, the average sulfur mass, interpreted as ammonium sulfate, is 0.49, 2.30, and 10.36 μg m -3 at Grand Canyon, Meadview, and Shenandoah, respectively. The five drum stages were "inverted" using the Twomey (1975) scheme to give 486 size distributions, each made up of 72 discreet pairs of d C/dlog( D) and diameter ( D). From these distributions mass mean diameters ( Dg), geometric standard deviations ( σg), and mass scattering efficiencies ( em)) were calculated. The geometric mass mean diameters in ascending order were 0.21 μm at Meadview, 0.32 μm at Grand Canyon, and 0.42 μm at Shenandoah corresponding σg were 2.1, 2.3, and 1.9. Mie theory mass scattering efficiencies calculated from d C/dlog( D) distributions for the three locations were 2.05, 2.59, and 3.81 m 2 g -1, respectively. At Shenandoah, mass scattering efficiencies approached five but only when the mass median diameters were approximately 0.4 μm and σg were about 1.5. σg near 1.5 were

  8. Chondroitin sulfate

    Science.gov (United States)

    ... in combination with glucosamine sulfate, shark cartilage, and camphor. Some people also inject chondroitin sulfate into the ... in combination with glucosamine sulfate, shark cartilage, and camphor seems to reduce arthritis symptoms. However, any symptom ...

  9. On Barium Oxide Solubility in Barium-Containing Chloride Melts

    Science.gov (United States)

    Nikolaeva, Elena V.; Zakiryanova, Irina D.; Bovet, Andrey L.; Korzun, Iraida V.

    2016-08-01

    Oxide solubility in chloride melts depends on temperature and composition of molten solvent. The solubility of barium oxide in the solvents with barium chloride content is essentially higher than that in molten alkali chlorides. Spectral data demonstrate the existence of oxychloride ionic groupings in such melts. This work presents the results of the BaO solubility in two molten BaCl2-NaCl systems with different barium chloride content. The received data together with earlier published results revealed the main regularities of BaO solubility in molten BaO-BaCl2-MCl systems.

  10. New barium tantalum sulphides

    International Nuclear Information System (INIS)

    A new barium tantalum sulphide has been synthesized by the reaction of CS2 with a mixture of BaCO3 and Ta2O5. The chemical analysis of the compound was performed for 3 components (Ba, Ta and S), and the chemical composition was found to be BaTa2S5. The powder X-ray diffraction peaks were indexable on the basis of a hexagonal cell with lattices constants of a=3.32A, c=25.13A. However, the electron diffraction measurements show that the structure is more complex than that observed by powder X-ray diffraction. The compound indicates metallic behavior and Pauli paramagnetism

  11. Electromagnetic properties of carbon black and barium titanate composite materials

    Energy Technology Data Exchange (ETDEWEB)

    Wang Guiqin [School of Material Science and Engineering, Dalian University of Technology, Dalian 116023 (China)], E-mail: c2b2chen@163.com; Chen Xiaodong; Duan Yuping; Liu Shunhua [School of Material Science and Engineering, Dalian University of Technology, Dalian 116023 (China)

    2008-04-24

    Nanocrystalline carbon black/barium titanate compound particle (CP) was synthesized by sol-gel method. The phase structure and morphology of compound particle were investigated by X-ray diffraction (XRD), transmission electron microscope (TEM) and Raman spectrum measurements, the electroconductivity was test by trielectrode arrangement and the precursor powder was followed by differential scanning calorimetric measurements (DSC) and thermal gravimetric analysis (TGA). In addition, the complex relative permittivity and permeability of compound particle were investigated by reflection method. The compound particle/epoxide resin composite (CP/EP) with different contents of CP were measured. The results show barium titanate crystal is tetragonal phase and its grain is oval shape with 80-100 nm which was coated by carbon black film. As electromagnetic (EM) complex permittivity, permeability and reflection loss (RL) shown that the compound particle is mainly a kind of electric and dielectric lossy materials and exhibits excellent microwave absorption performance in the X- and Ku-bands.

  12. Abundance analysis of barium and mild barium stars

    CERN Document Server

    Smiljanic, R; Silva, L

    2007-01-01

    High signal to noise, high resolution spectra were obtained for a sample of normal, mild barium, and barium giants. Atmospheric parameters were determined from the FeI and FeII lines. Abundances for Na, Mg, Al, Si, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Sr, Y, Zr, Ba, La, Ce, Nd, Sm, Eu, and Gd, were determined from equivalent widths and model atmospheres in a differential analysis, with the red giant Eps Vir as the standard star. The different levels of s-process overabundances of barium and mild barium stars were earlier suggested to be related to the stellar metallicity. Contrary to this suggestion, we found in this work no evidence for barium and mild barium to have a different range in metallicity. However, comparing the ratio of abundances of heavy to light s-process elements, we found some evidence that they do not share the same neutron exposure parameter. The exact mechanism controlling this difference is still not clear. As a by-product of this analysis we identify two normal red giants misclass...

  13. Synthesis of Nanocrystalline Barium Ferrite in Ethanol/Water Media

    Institute of Scientific and Technical Information of China (English)

    M.Montazeri-Pour; A.Ataie

    2009-01-01

    Nanocrystalline particles of barium ferrite magnetic material have been prepared by co-precipitation route using aqueous and non-aqueous solutions of iron and barium chlorides with a Fe/Ba molar ratio of 11 and subsequent drying-annealing treatment. Water and ethanol/water mixture with volume ratio of 3:1 were used as solvents in the process. Coprecipitated powders were annealed at various temperatures for 1 h. FTIR (Fourier transform infrared spectroscopy), XRD (X-ray diffraction), DTA/TGA (differential thermal analy-sis/thermogravimetric analysis) and SEM (scanning electron microscopy) techniques were used to evaluate powder particle characteristics. DTA/TGA results confirmed by those obtained from XRD indicated that the formation of barium ferrite occurs in sample synthesized in ethanol/water solution at a relatively low temperature of 631℃. Nano-size particles of barium ferrite with mean particle size of almost 75 and 100 nm were observed in the SEM micrographs of the samples synthesized in ethanol/water solution after annealing at 700 and 800℃ for 1 h, respectively.

  14. NANOSCALE BARIUM HYDROSILICATES: CHOOSING THE SYNTHESIS TECHNOLOGY

    Directory of Open Access Journals (Sweden)

    GRISHINA Anna Nikolaevna

    2013-08-01

    Full Text Available Cement concretes are the most used materials in modern civil engineering. Due to that such materials draw great attention both in the Russian Federation and abroad. The possibility to enhance the manufacturability and operational properties of concretes results in significant reduction of overall operating costs. Many enhancement methods have been elaborated. Among them there is one based on introduction of calcium hydrosilicates into construction composition. The authors set up a hypothesis that similarity between properties and structures of different hydrosilicates (for example, alkaline earth metals and metals of the second group will provide similar increased operational characteristics. The specialists of Research and Educational Center «Nanotechnology» are developing cement composites nanomodification methods which include introduction of nanodimensional barium hydrosilicates particles. The synthesis of barium hydrosilicates particles can be done with the use of many technologies, different by energy consumption or performing complexity. Taking into account both these factors, one can assume that low-temperature sol-gel synthesis from diluted water solutions is the proper technology. The present paper shows that this assumption is correct. The selection of certain technology is made by the means of multiobjective optimization, which is in turn is performed by the means of linear scalarization. This method, while not always giving the Pareto optimal solutions, can be easily implemented. The particle size distribution is taken into consideration during selection of objectives and weights. It is shown that selected technology allows manufacturing nanoparticles with median size about 30 nm.

  15. Discovery of the Barium Isotopes

    OpenAIRE

    SHORE, A.; A. Fritsch; Ginepro, J. Q.; Heim, M.; Schuh, A.; Thoennessen, M

    2009-01-01

    Thirty-eight barium isotopes have so far been observed; the discovery of these isotopes is discussed. For each isotope a brief summary of the first refereed publication, including the production and identification method, is presented.

  16. Kinetics of thermal decomposition of barium zirconyl oxalate

    International Nuclear Information System (INIS)

    Kinetics of the thermal decomposition of anhydrous barium zirconyl oxalate and a carbonate intermediate have been studied. Decomposition of the anhydrous oxalate, though it could be explained based on a contracting-cube model, is quite complex. Kinetics of decomposition of the intermediate carbonate Ba2Zr2O5CO3 is greatly influenced by thermal effects during its formation. (α-t) curves are sigmoidal and obey a power law equation followed by first order decay. Presence of carbon in the vacuum-prepared carbonate has a strong deactivating effect. Decomposition of the carbonate is accompanied by growth in particle size of the product barium zirconate. (Author)

  17. Barium ferrite nanoparticles prepared by self-propagating low-temperature combustion method and its characterization

    Indian Academy of Sciences (India)

    P M Prithviraj Swamy; S Basavaraja; Vijayanand Havanoor; N V Srinivas Rao; R Nijagunappa; A Venkataraman

    2011-12-01

    The barium ferrite particles were prepared using a self-propagating low-temperature combustion method using polyethylene glycol (PEG) as a fuel. The process was investigated with simultaneous thermogravimetric-differential thermal analysis (TG–DTA). The crystalline structure, morphology and the magnetic properties of the barium ferrite particles were studied by means of X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and SQUID susceptometer. The results show that the ignition temperature of PEG is lower compared with other combustion methods and gives nanocrystalline barium ferrite.

  18. Direct shortwave forcing of climate by anthropogenic sulfate aerosol: Sensitivity to particle size, composition, and relative humidity

    Energy Technology Data Exchange (ETDEWEB)

    Nemesure, S.; Wagener, R.; Schwartz, S.E. [Brookhaven National Lab., Upton, New York (United States)

    1996-04-01

    Recent estimates of global or hemispheric average forcing of climate by anthropogenic sulfate aerosol due to scattering of shortwave radiation are uncertain by more than a factor of 2. This paper examines the sensitivity of forcing to these microphysical properties for the purposes of obtaining a better understanding of the properties required to reduce the uncertainty in the forcing.

  19. Barium light source method and apparatus

    Science.gov (United States)

    Curry, John J. (Inventor); MacDonagh-Dumler, Jeffrey (Inventor); Anderson, Heidi M. (Inventor); Lawler, James E. (Inventor)

    2002-01-01

    Visible light emission is obtained from a plasma containing elemental barium including neutral barium atoms and barium ion species. Neutral barium provides a strong green light emission in the center of the visible spectrum with a highly efficient conversion of electrical energy into visible light. By the selective excitation of barium ionic species, emission of visible light at longer and shorter wavelengths can be obtained simultaneously with the green emission from neutral barium, effectively providing light that is visually perceived as white. A discharge vessel contains the elemental barium and a buffer gas fill therein, and a discharge inducer is utilized to induce a desired discharge temperature and barium vapor pressure therein to produce from the barium vapor a visible light emission. The discharge can be induced utilizing a glow discharge between electrodes in the discharge vessel as well as by inductively or capacitively coupling RF energy into the plasma within the discharge vessel.

  20. Preparation of Nanoparticles of Barium Ferrite from Precipitation in Microemulsions

    International Nuclear Information System (INIS)

    Magnetic nanoparticles of barium ferrite (BaFe12O19) have been synthesized using a microemulsion mediated process. The aqueous cores of water-in-oil microemulsions were used as constrained microreactors for the precipitation of precursor carbonate and hydroxide particles. These precursors were then calcined at 925 deg. C for 12 h, during which time they were transformed to the hexagonal ferrite. The pH of reaction was varied between 5 and 12, and it was found that the fraction of non-magnetic hematite (α-Fe2O3) in the particles varied with the pH of reaction, thus affecting the magnetic properties of the particles. The same precursor particles were also prepared by bulk co-precipitation reaction for comparison. It was found that the microemulsion derived nanoparticles of barium ferrite had both higher intrinsic coercivity (Hc) and saturation magnetization (σs) than the particles derived from bulk co-precipitation. Particles were analyzed by electron microscopy, X-ray diffraction, differential thermal analysis (DTA), thermogravimetric analysis (TGA) and vibrating sample magnetometry (VSM). The best barium ferrite particles produced by the microemulsion synthesis method yielded an intrinsic coercivity of 4310 Oe and a saturation magnetization of 60.48 emu/g

  1. Barium swallow study in routine clinical practice: a prospective study in patients with chronic cough

    Directory of Open Access Journals (Sweden)

    Carlos Shuler Nin

    2013-12-01

    Full Text Available OBJECTIVE: To assess the routine use of barium swallow study in patients with chronic cough.METHODS: Between October of 2011 and March of 2012, 95 consecutive patients submitted to chest X-ray due to chronic cough (duration > 8 weeks were included in the study. For study purposes, additional images were obtained immediately after the oral administration of 5 mL of a 5% barium sulfate suspension. Two radiologists systematically evaluated all of the images in order to identify any pathological changes. Fisher's exact test and the chi-square test for categorical data were used in the comparisons.RESULTS: The images taken immediately after barium swallow revealed significant pathological conditions that were potentially related to chronic cough in 12 (12.6% of the 95 patients. These conditions, which included diaphragmatic hiatal hernia, esophageal neoplasm, achalasia, esophageal diverticulum, and abnormal esophageal dilatation, were not detected on the images taken without contrast. After appropriate treatment, the symptoms disappeared in 11 (91.6% of the patients, whereas the treatment was ineffective in 1 (8.4%. We observed no complications related to barium swallow, such as contrast aspiration.CONCLUSIONS: Barium swallow improved the detection of significant radiographic findings related to chronic cough in 11.5% of patients. These initial findings suggest that the routine use of barium swallow can significantly increase the sensitivity of chest X-rays in the detection of chronic cough-related etiologies.

  2. A Comparative Study on Magnetostructural Properties of Barium Hexaferrite Powders Prepared by Polyethylene Glycol

    Directory of Open Access Journals (Sweden)

    Zehra Durmus

    2014-01-01

    Full Text Available Nanocrystalline particles of barium hexaferrite were synthesized by a sol-gel combustion route using nitrate-citrate gels prepared from metal nitrates and citric acid solutions with Fe/Ba molar ratio 12. The present paper aims to study the effect of addition of polyethylene glycol (PEG solutions with different molecular weights (MW: 400, 2000, and 10.000 g/mol on magnetostructural properties of barium hexaferrite. The formation of the barium hexaferrite was inspected using X-ray diffraction (XRD analysis, Fourier transform infrared (FT-IR analysis, thermogravimetric (TGA analysis, scanning electron microscopy (SEM analysis and vibrating sample magnetometer (VSM analysis for magnetic measurements.

  3. Ice nucleation by surrogates for atmospheric mineral dust and mineral dust/sulfate particles at cirrus temperatures

    Directory of Open Access Journals (Sweden)

    C. M. Archuleta

    2005-01-01

    Full Text Available This study examines the potential role of some types of mineral dust and mineral dust with sulfuric acid coatings as heterogeneous ice nuclei at cirrus temperatures. Commercially-available nanoscale powder samples of aluminum oxide, alumina-silicate and iron oxide were used as surrogates for atmospheric mineral dust particles, with and without multilayer coverage of sulfuric acid. A sample of Asian dust aerosol particles was also studied. Measurements of ice nucleation were made using a continuous-flow ice-thermal diffusion chamber (CFDC operated to expose size-selected aerosol particles to temperatures between -45 and -60°C and a range of relative humidity above ice-saturated conditions. Pure metal oxide particles supported heterogeneous ice nucleation at lower relative humidities than those required to homogeneously freeze sulfuric acid solution particles at sizes larger than about 50 nm. The ice nucleation behavior of the same metal oxides coated with sulfuric acid indicate heterogeneous freezing at lower relative humidities than those calculated for homogeneous freezing of the diluted particle coatings. The effect of soluble coatings on the ice activation relative humidity varied with the respective uncoated core particle types, but for all types the heterogeneous freezing rates increased with particle size for the same thermodynamic conditions. For a selected size of 200 nm, the natural mineral dust particles were the most effective ice nuclei tested, supporting heterogeneous ice formation at an ice relative humidity of approximately 135%, irrespective of temperature. Modified homogeneous freezing parameterizations and theoretical formulations are shown to have application to the description of heterogeneous freezing of mineral dust-like particles with soluble coatings.

  4. Barium sulphate preparations for use in double contrast examination of the upper gastrointestinal tract

    International Nuclear Information System (INIS)

    Physical properties relevant to upper gastrointestinal radiology have been compared for five barium sulphate preparations and related to radiographic results. Evaluation of particles (size and stability) and whole suspension (dispersibility and fluidity) resulted in ranking of the preparations generally in accord with that based on radiological experience in double contrast examinations of the stomach. Experiments with extirpated pig stomach revealed a tendency for large particles in a low viscosity barium sulphate suspension to settle in mucosal grooves. This is believed to contribute to good radiographic definition of both the areae gastricae and small lesions. Particle size is therefore important and susceptibility to flocculation, a possible cause of random change in size during use, was assessed by measuring particle electrophoretic mobility under varying conditions; quantitative differences in suspension flow and dispersibility were also demonstrated. Fluidity and dispersibility together with rapid sedimentation of suitably sized particles resistant to flocculation underlie the successful use of low viscosity high density barium sulphate suspensions. (U.K.)

  5. CT-Guided Percutaneous Transthoracic Localization of Pulmonary Nodules Prior to Video-Assisted Thoracoscopic Surgery Using Barium Suspension

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Nyoung Keun; Park, Chang Min; Kang, Chang Hyun; Jeon, Yoon Kyung; Choo, Ji Yung; Lee, Hyun Ju; Goo, Jin Mo [Seoul National University College of Medicine, Seoul (Korea, Republic of)

    2012-11-15

    To describe our initial experience with CT-guided percutaneous barium marking for the localization of small pulmonary nodules prior to video-assisted thoracoscopic surgery (VATS). From October 2010 to April 2011, 10 consecutive patients (4 men and 6 women; mean age, 60 years) underwent CT-guided percutaneous barium marking for the localization of 10 small pulmonary nodules (mean size, 7.6 mm; range, 3-14 mm): 6 pure ground-glass nodules, 3 part-solid nodules, and 1 solid nodule. A 140% barium sulfate suspension (mean amount, 0.2 mL; range, 0.15-0.25 mL) was injected around the nodules with a 21-gauge needle. The technical details, surgical findings and pathologic features associated with barium localizations were evaluated. All nodules were marked within 3 mm (mean distance, 1.1 mm; range, 0-3 mm) from the barium ball (mean diameter, 9.6 mm; range, 8-16 mm) formed by the injected barium suspension. Pneumothorax occurred in two cases, for which one needed aspiration. However, there were no other complications. All barium balls were palpable during VATS and visible on intraoperative fluoroscopy, and were completely resected. Both the whitish barium balls and target nodules were identifiable in the frozen specimens. Pathology revealed one invasive adenocarcinoma, five adenocarcinoma-in-situ, two atypical adenomatous hyperplasias, and two benign lesions. In all cases, there were acute inflammations around the barium balls which did not hamper the histological diagnosis of the nodules. CT-guided percutaneous barium marking can be an effective, convenient and safe pre-operative localization procedure prior to VATS, enabling accurate resection and diagnosis of small or faint pulmonary nodules.

  6. Preparation of Barium Titanate Nanopowder through Thermal Decomposition of Peroxide Precursor and Its Formation Mechanism

    Institute of Scientific and Technical Information of China (English)

    PENG, Yangxi; CHEN, Qiyuan; LIU, Shijun

    2009-01-01

    H_2TiO_3 was dissolved in the mixture of hydrogen formed peroxide and ammonia under the pH range of 8-10 with a transparent yellow solution formed. When an equivalent mole of Ba~(2+) solution was added into the yellow solution, the precipitate produced was the peroxide precursor of barium titanate. The cubic nanopowder of barium titanate was obtained when the precipitate was washed, stoved, and then calcined at 600 ℃ for 1 h. The peroxide precursor of barium titanate and barium titanate nanopowder prepared were characterized to be BaTi(H_2O_2)_2O_3 by TGA-DTA, XRD, TEM, SEM, and XREDS. The peroxide precursor of barium titanate was determined to be BaTi(H_2O_2)_2O_3. The particle size of the barium titanate nanopowder, the calcined product of BaTi(H_2O_2)_2O_3, was in the range of 20-40 nm. A formation mechanism of the barium titanate nanopowder through thermal decomposition of its peroxide precursor was proposed and then validated.

  7. Radioisotope barium sulphate gauge MZB-2

    International Nuclear Information System (INIS)

    A method and the gauge for measuring content of barium sulphate are described. The gauge is intended for fast determination of barium sulphate in barite ore and in output products of the enrichment process. The measuring range 60-100% of BaSO4, accuracy ±1% and measuring time 60 s were reached. The barium sulphate gauge is used in barite mine ''Boguszow'' in Poland. (author)

  8. The problem of the barium stars

    Science.gov (United States)

    Bohm-Vitense, E.; Nemec, J.; Proffitt, C.

    1984-01-01

    Ultraviolet observations of barium stars and other cool stars with peculiar element abundances are reported. Those observations attempted to find hot white dwarf companions. Among six real barium stars studied, only Zeta Cap was found to have a white dwarf companion. Among seven mild, or marginal, barium stars studied, at least three were found to have hot subluminous companions. It is likely that all of them have white dwarf companions.

  9. Barium aspiration and alveolarisation of barium in an infant: A case report and review of management

    Directory of Open Access Journals (Sweden)

    Alan F. Isles

    2014-05-01

    Full Text Available We describe a case of bilateral inhalation and alveolarisation of barium in an infant following a barium swallow for investigation of dusky spells associated with feeds. A bronchoscopy subsequently revealed the presence of a mid-tracheal tracheo-oesophageal cleft. We review the literature on barium aspiration, its consequences and make recommendations for management.

  10. ONE CASE REPORT OF ACUTE POISONING BY BARIUM CARBONATE

    Institute of Scientific and Technical Information of China (English)

    GE Qin-min; BIAN Fan; WANG Shu-yun; SHEN Sheng-hui

    2009-01-01

    @@ Most barium poisoning cases were caused by oral intake by mistake. Recent years, barium carbonate poisoning has been rare to be reported. Here we reported a case of acute barium carbonate toxication taken orally on purpose.

  11. Barium ferrite powders prepared by milling and annealing

    Directory of Open Access Journals (Sweden)

    R. Nowosielski

    2007-05-01

    Full Text Available Purpose: Microstructure and magnetic properties analysis of barium ferrite powder obtained by milling and heat treatment.Design/methodology/approach: The milling process was carried out in a vibratory mill, which generated vibrations of the balls and milled material inside the container during which their collisions occur. After milling process the powders were annealed in electric chamber furnace. The X-ray diffraction methods were used for qualitative phase analysis of studied powder samples. The distribution of powder particles was determined by a laser particle analyzer. The magnetic hysteresis loops of examined powder material were measured by resonance vibrating sample magnetometer (R-VSM.Findings: The milling process of iron oxide and barium carbonate mixture causes decrease of the crystallite size of involved phases. The X-ray investigations of tested mixture milled for 30 hours and annealed at 950 °C enabled the identification of hard magnetic BaFe12O19 phase and also the presence of Fe2O3 phase in examined material. The Fe2O3 phase is a rest of BaCO3 dissociation in the presence of Fe2O3, which forms a compound of BaFe12O19. The best coercive force (HC for mixture of powders annealed at 950 °C for 10, 20 and 30 hours is 349 kA/m, 366 kA/m and 364 kA/m, respectively. The arithmetic mean of diameter of Fe2O3 and BaCO3 mixture powders after 30 hours of milling is about 6.0 μm.Practical implications: The barium ferrite powder obtained by milling and annealing can be suitable components to produce sintered and elastic magnets with polymer matrix.Originality/value: The results of tested barium ferrite investigations by different methods confirm their utility in the microstructure and magnetic properties analysis of powder materials.

  12. Effect of Sodium Dodecyl Sulfate Adsorption on the Behavior of Water inside Single Walled Carbon Nanotubes with Dissipative Particle Dynamics Simulation.

    Science.gov (United States)

    Vo, Minh D; Papavassiliou, Dimitrios V

    2016-01-01

    Dissipative particle dynamics (DPD) simulations were utilized to investigate the ability of sodium dodecyl sulfate (SDS) to adsorb inside a single-walled, arm-chair carbon nanotube (SWCNT), as well as the effect of surfactant on the properties of water inside the SWCNT. The diameter of the SWCNT varied from 1 to 5 nm. The radial and axial density profiles of water inside the SWCNTs were computed and compared with published molecular dynamics results. The average residence time and diffusivity were also calculated to show the size effect on mobility of water inside the SWCNT. It was found that nanotubes with diameter smaller than 3 nm do not allow SDS molecules to enter the SWCNT space. For larger SWCNT diameter, SDS adsorbed inside and outside the nanotube. When SDS was adsorbed in the hollow part of the SWCNT, the behavior of water inside the nanotube was found to be significantly changed. Both radial and axial density profiles of water inside the SWCNT fluctuated strongly and were different from those in bulk phase. In addition, SDS molecules increased the retention of water beads inside SWCNT (d ≥ 3nm) while water diffusivity was decreased. PMID:27092476

  13. Effect of Sodium Dodecyl Sulfate Adsorption on the Behavior of Water inside Single Walled Carbon Nanotubes with Dissipative Particle Dynamics Simulation

    Directory of Open Access Journals (Sweden)

    Minh D. Vo

    2016-04-01

    Full Text Available Dissipative particle dynamics (DPD simulations were utilized to investigate the ability of sodium dodecyl sulfate (SDS to adsorb inside a single-walled, arm-chair carbon nanotube (SWCNT, as well as the effect of surfactant on the properties of water inside the SWCNT. The diameter of the SWCNT varied from 1 to 5 nm. The radial and axial density profiles of water inside the SWCNTs were computed and compared with published molecular dynamics results. The average residence time and diffusivity were also calculated to show the size effect on mobility of water inside the SWCNT. It was found that nanotubes with diameter smaller than 3 nm do not allow SDS molecules to enter the SWCNT space. For larger SWCNT diameter, SDS adsorbed inside and outside the nanotube. When SDS was adsorbed in the hollow part of the SWCNT, the behavior of water inside the nanotube was found to be significantly changed. Both radial and axial density profiles of water inside the SWCNT fluctuated strongly and were different from those in bulk phase. In addition, SDS molecules increased the retention of water beads inside SWCNT (d ≥ 3nm while water diffusivity was decreased.

  14. Sulfur Isotopic Compositions of Individual Aerosol Particles from Below and Within Stratocumulus Clouds over the Southeast Pacific Ocean During VOCALS

    Science.gov (United States)

    Bose, M.; Anderson, J. R.; Twohy, C. H.; Williams, P.

    2012-12-01

    The VAMOS Ocean-Cloud-Atmosphere-Land Study Regional Experiment (VOCALS-Rex) was a large multi-national field experiment that collected data and samples from a region of the southeast Pacific with the world's largest stratocumulus cloud systems. Samples examined here are residues of cloud droplets and ambient particles from below the clouds collected during flights of the NCAR C-130 off the coast of Chile. Selected samples were studied using scanning electron microscopy (SEM) and secondary ion mass spectrometry (SIMS) in order to contribute to the understanding of the source of non-sea-salt sulfate in this region. Particles in the size range from 0.2 to 1μm diameter on holey and lacey carbon were characterized by SEM combined with energy dispersive spectrometry (EDS), thus identifying sulfur-containing particles. Subsequently, sulfur ion imaging of identified sea salt, ammonium sulfate and sodium sulfate particles was done with the Cameca Ametek NanoSIMS 50L at Arizona State University. A electrons were collected simultaneously at high mass resolution (m/Δm>10000). Each measurement typically consists of 5 to 8 frames (~5.4 min/frame). NIST barium sulfate and ammonium sulfate particles were used as isotopic standards. Preliminary analyses on a small pool of VOCALS individual particles show a wide range in sulfur isotopic compositions (δ34S = -56 to +41‰). In addition, the in-cloud particles are enriched in 32S, while the ambient particles exhibit 34S excesses. Isotopic data on a large inventory of particles is being currently acquired, which will be presented at the meeting. Data will be used to investigate sulfur sources (marine vs. continental) and the processing of aerosols through sulfate formation.

  15. Processing science of barium titanate

    Science.gov (United States)

    Aygun, Seymen Murat

    Barium titanate and barium strontium titanate thin films were deposited on base metal foils via chemical solution deposition and radio frequency magnetron sputtering. The films were processed at elevated temperatures for densification and crystallization. Two unifying research goals underpin all experiments: (1) To improve our fundamental understanding of complex oxide processing science, and (2) to translate those improvements into materials with superior structural and electrical properties. The relationships linking dielectric response, grain size, and thermal budget for sputtered barium strontium titanate were illustrated. (Ba 0.6Sr0.4)TiO3 films were sputtered on nickel foils at temperatures ranging between 100-400°C. After the top electrode deposition, the films were co-fired at 900°C for densification and crystallization. The dielectric properties were observed to improve with increasing sputter temperature reaching a permittivity of 1800, a tunability of 10:1, and a loss tangent of less than 0.015 for the sample sputtered at 400°C. The data can be understood using a brick wall model incorporating a high permittivity grain interior with low permittivity grain boundary. However, this high permittivity value was achieved at a grain size of 80 nm, which is typically associated with strong suppression of the dielectric response. These results clearly show that conventional models that parameterize permittivity with crystal diameter or film thickness alone are insufficiently sophisticated. Better models are needed that incorporate the influence of microstructure and crystal structure. This thesis next explores the ability to tune microstructure and properties of chemically solution deposited BaTiO3 thin films by modulation of heat treatment thermal profiles and firing atmosphere composition. Barium titanate films were deposited on copper foils using hybrid-chelate chemistries. An in-situ gas analysis process was developed to probe the organic removal and the

  16. Laser cooling and trapping of barium

    NARCIS (Netherlands)

    De, Subhadeep

    2008-01-01

    Laser cooling and trapping of heavy alkaline-earth element barium have been demonstrated for the first time ever. For any possible cycling transition in barium that could provide strong cooling forces, the excited state has a very large branching probability to metastable states. Additional lasers a

  17. Synthesis of barium titanium oxide from barium sulphate and anatase. Study of equimolar mixtures under different atmospheres

    International Nuclear Information System (INIS)

    To enable the ceramization of a barium sulphate-rich radioactive waste the synthesis of barium titanium oxide is studied by using anatase and barium sulphate. As a function of the calcination atmosphere, helium (or air) and Ar/H2, two reactions are studied. A mechanism of barium titanium oxide synthesis in helium (or in air) is proposed

  18. Double contrast barium meal and acetylcysteine

    International Nuclear Information System (INIS)

    In a prospective double blind study, acetylcysteine, a local and systemic respiratory tract mucolytic agent, or a placebo, were given to 100 patients prior to a double contrast barium meal to decrease the gastric mucus viscosity and to make the mucus layer thinner, in order to permit barium to outline the furrows surrounding the areae gastricae instead of the overlying thick mucus. However, acetylcysteine failed to improve either visualization of the areae gastricae or the general quality of the double contrast barium meal. (orig.)

  19. Barium strontium titanate powders prepared by spray pyrolysis

    International Nuclear Information System (INIS)

    Ultasonic spray pyrolysis (SP) has been investigated for the production of the barium strontium titanate (BST) powders from the polymeric precursors. The processing parameters, such as flux of aerosol and temperature profile inside the furnace, were optimized to obtain single phase BST. The powders were characterized by the methods of X-ray diffraction analysis, SEM, EDS and TEM. The obtained powders were submicronic, consisting of spherical, polycrystalline particles, with internal nanocrystalline structure. Crystallite size of 10 nm, calculated using Rietveld refinement, is in a good agreement with results of HRTEM

  20. Studies on characterization, microstructures and magnetic properties of nano-size barium hexa-ferrite prepared through a hydrothermal precipitation-calcination route

    International Nuclear Information System (INIS)

    An attempt was made to prepare nano-size barium hexa-ferrite particles following a hydrothermal precipitation-calcination route using barium and iron nitrate solutions. During hydrothermal treatment at 180 deg. C (2 h precipitation time) barium carbonate and hematite phases were formed. This precursor was calcined at 800, 1000 and 1200 deg. C to determine the conditions for obtaining barium hexa-ferrite. The characterization studies on calcined products revealed that up to 800 deg. C, the major crystalline phases (barium carbonate and hematite) of the precursor were retained. At 1000 deg. C, formation of barium hexa-ferrite started and at 1200 deg. C, though most of the major peaks of X-ray diffractogram corresponded to barium hexa-ferrite, a number of peaks corresponding to hematite were also present. Some low intensity peaks for barium carbonate were observed. The average particle size was 40 nm. Saturation magnetization, remanence magnetization and coercivity were found to be 40.0, 21.6 emu g-1 and 2.87 kOe, respectively. The values obtained both for coercivity and magnetization for the present sample were lower than the reported bulk values which could be due to the fact that the sample prepared through the present technique was not mono-phasic

  1. Neutral Barium Cloud Evolution at Different Altitudes

    Institute of Scientific and Technical Information of China (English)

    李磊; 徐荣栏

    2002-01-01

    Considering the joint effects of diffusion, collision, oxidation and photoionization, we study the evolution of the barium cloud at different altitudes in the space plasma active experiment. The results present the variation of the loss rate, number density distribution and brightness of the barium cloud over the range from 120 to 260km.This can be divided into oxidation, oxidation plus photoionization and photoionization regions.

  2. Small barium rail gun for plasma injection.

    Science.gov (United States)

    Kiwamoto, Y

    1980-03-01

    A small rail gun with a barium electrode can be operated at higher than one shot per second to produce more than 2x10(16) barium ions with energy 10-20 eV. The operation of the gun takes advantage of the external magnetic field for cross-field plasma injection into a trap. Up to 7 kG of the magnetic field examined, the gun performance improves with the increased magnetic field strength.

  3. Bacterial Reduction Of Barium Sulphate By Sulphate-Reducing Bacteria

    Directory of Open Access Journals (Sweden)

    Luptáková Alena

    2015-12-01

    Full Text Available Acid mine drainage (AMD is a worldwide problem leading to contamination of water sources. AMD are characterized by low pH and high content of heavy metals and sulphates. The barium salts application presents one of the methods for the sulphates removing from AMD. Barium chloride, barium hydroxide and barium sulphide are used for the sulphates precipitation in the form of barium sulphate. Because of high investment costs of barium salts, barium sulphide is recycled from barium sulphate precipitates. It can be recycled by thermic or bacterial reduction of barium sulphate. The aim of our study was to verify experimentally the possibility of the bacterial transformation of BaSO4 to BaS by sulphate-reducing bacteria. Applied BaSO4 came from experiments of sulphates removal from Smolnik AMD using BaCl2.

  4. Unexpected finding of barium sulphate on the surface of a microspinal catheter

    International Nuclear Information System (INIS)

    During a study with a scanning electron microscope to evaluate the structure of microspinal catheter after its removal from subarachnoid space, we found an unusual case. The observation with the microscope of the tip of a catheter removed at the end of an operation for hip replacement in a old female showed the presence of grounded particles with a crystal shape covering the outer surface. Further analysis of this material with an Energy-Dispersive Spectrometer (EDS) showed that it was barium. The patient performed a large bowel barium enema 8 months earlier for a painful syndrome to the lower abdomen. Authors rule out the contamination from the skin and suggest two possible mechanisms of passage of barium from blood to cerebrospinal fluid (CSF) and so to the surface of the catheter

  5. Venous barium embolization, a rare, potentially fatal complication of barium enema: 2 case reports

    International Nuclear Information System (INIS)

    Venous embolization of barium has been recognized for 4 decades as one of the most dreaded complications of barium enema. Fortunately, the condition is extremely rare. In this report, the radiographic findings in 2 cases of venous embolization (one involving the portal vein and one systematic) are described, and ways to decrease the risk of this complication are discussed. (author)

  6. Thermochemical hydrogen production via a cycle using barium and sulfur - Reaction between barium sulfide and water

    Science.gov (United States)

    Ota, K.; Conger, W. L.

    1977-01-01

    The reaction between barium sulfide and water, a reaction found in several sulfur based thermochemical cycles, was investigated kinetically at 653-866 C. Gaseous products were hydrogen and hydrogen sulfide. The rate determining step for hydrogen formation was a surface reaction between barium sulfide and water. An expression was derived for the rate of hydrogen formation.

  7. Synthesis of barium mercaptides and application of antimony/barium mercaptides

    Institute of Scientific and Technical Information of China (English)

    瞿龙; 张露露; 舒万艮

    2001-01-01

    Mercaptoacetic acid, isooctyl thioglycolate and barium hydroxide used as start materials, barium bis (2-ethylhexyl thioglycolate) (Ba(2EHTG)2), barium thioglycolate (Ba(TG)) and barium bisthioglycolate (Ba(TG)2) were synthesized. Their optimum synthetic techniques were discussed, and some physicochemical data were reported. Infrared spectroscopy and elemental analysis methods were used to identify the structures. They were put into PVC plastic products together with antimony tris (2-ethylhexyl thioglycolate) (Sb(2EHTG)3) under the suitable compounding, and their heat stability to PVC was studied. It is shown that these barium mercaptides have remarkable synergisms with antimony mercaptides and the long-term stabilizing effect of organoantimony stabilizer can be effectively improved, reducing the amount of antimony compounds so as to avoid the decrease of its stabilizing effect.

  8. Chemical abundances and kinematics of barium stars

    Science.gov (United States)

    de Castro, D. B.; Pereira, C. B.; Roig, F.; Jilinski, E.; Drake, N. A.; Chavero, C.; Sales Silva, J. V.

    2016-07-01

    In this paper, we present an homogeneous analysis of photospheric abundances based on high-resolution spectroscopy of a sample of 182 barium stars and candidates. We determined atmospheric parameters, spectroscopic distances, stellar masses, ages, luminosities and scaleheight, radial velocities, abundances of the Na, Al, α-elements, iron-peak elements, and s-process elements Y, Zr, La, Ce, and Nd. We employed the local thermodynamic equilibrium model atmospheres of Kurucz and the spectral analysis code MOOG. We found that the metallicities, the temperatures and the surface gravities for barium stars cannot be represented by a single Gaussian distribution. The abundances of α-elements and iron peak elements are similar to those of field giants with the same metallicity. Sodium presents some degree of enrichment in more evolved stars that could be attributed to the NeNa cycle. As expected, the barium stars show overabundance of the elements created by the s-process. By measuring the mean heavy-element abundance pattern as given by the ratio [s/Fe], we found that the barium stars present several degrees of enrichment. We also obtained the [hs/ls] ratio by measuring the photospheric abundances of the Ba-peak and the Zr-peak elements. Our results indicated that the [s/Fe] and the [hs/ls] ratios are strongly anticorrelated with the metallicity. Our kinematical analysis showed that 90 per cent of the barium stars belong to the thin disc population. Based on their luminosities, none of the barium stars are luminous enough to be an asymptotic giant branch star, nor to become self-enriched in the s-process elements. Finally, we determined that the barium stars also follow an age-metallicity relation.

  9. Sulfate inhibition effect on sulfate reducing bacteria

    Directory of Open Access Journals (Sweden)

    Sulaiman Al Zuhair

    2008-12-01

    Full Text Available There is an increasing interest in the potential of bacterial sulfate reduction as an alternative method for sulfate removal from wastewater. Under anaerobic conditions, sulfate-reducing bacteria (SRB utilize sulfate to oxidize organic compounds and generate sulfide (S2-. SRB were successfully isolated from sludge samples obtained from a local petroleum refinery, and used for sulfate removal. The effects of initial sulfate concentration, temperature and pH on the rate of bacterial growth and anaerobic sulfate removal were investigated and the optimum conditions were identified. The experimental data were used to determine the parameters of two proposed kinetic model, which take into consideration substrate inhibition effect. Keywords: Sulfate Reducing Bacteria, Sulfate, Kinetic Model, Biotreatement, Inhibition Received: 31 August 2008 / Received in revised form: 18 September 2008, Accepted: 18 September 2008 Published online: 28 September 2008

  10. Synthesis and optical study of barium magnesium aluminate blue phosphors

    Energy Technology Data Exchange (ETDEWEB)

    Jeet, Suninder, E-mail: suninder.jeet@thapar.edu; Pandey, O. P., E-mail: oppandey@thapar.edu [School of Physics and Materials Science, Thapar University, Patiala (147003), Punjab (India); Sharma, Manoj, E-mail: manojnarad@sggswu.org [Department of Nanotechnology, Sri Guru Granth Sahib World University, Fatehgarh Sahib(146406), Punjab (India)

    2015-05-15

    Europium doped barium magnesium aluminate (BaMgAl{sub 10}O{sub 17}:Eu{sup 2+}) phosphor was prepared via solution combustion method at 550°C using urea as a fuel. Morphological and optical properties of the prepared sample was studied by X-ray diffraction (XRD), Transmission electron microscopy (TEM) and Photoluminescence spectroscopy (PL). XRD result showed the formation of pure phase BaMgAl{sub 10}O{sub 17}(JCPDS 26-0163) along with an additional phase BaAl{sub 2}O{sub 4}(JCPDS 01-082-1350). TEM image indicated the formation of faceted particles with average particle size 40 nm. From PL spectra, a broad emission band obtained at about 450 nm attributes to 4f{sup 6} 5d → 4f{sup 7} transition of Eu{sup 2+} which lies in the blue region of the visible spectrum.

  11. Microstructure of polymer composite with barium ferrite powder

    Directory of Open Access Journals (Sweden)

    R. Nowosielski

    2008-12-01

    Full Text Available Purpose: The aim of the paper is the microstructure characterization of commercial BaFe12O19 powder and its composite material in polymer matrix; XRD (X-Ray Diffraction and SEM (Scanning Electron Microscopy methods were applied.Design/methodology/approach: The Rietveld method appeared to be very useful in the verification of the qualitative phase composition and in the determination of phase abundance. Hill and Howard procedure was applied for quantitative phase analysis. The parameters of the individual diffraction line profiles were determined by PRO-FIT Toraya procedure. The morphology of barium ferrite powders and a fracture surface of the examined composite material was analyzed using the scanning electron microscope.Findings: The X-ray diffraction analysis enabled the identification of BaFe12O19 and Fe2O3 phases in examined material. Basing on Rietveld and Toraya methods the determination of lattice parameters, crystallite size and the lattice distortion was performed. Distribution of powders of barium ferrite in polymer matrix is irregular and powder particles are of irregular shapes and different sizes.Research limitations/implications: Maked researches are limited only to characterization the microstructure of commercial material, because obtained results will be helpful to prepare barium ferrite powders by mechanical alloying and subsequent annealing in the future. As prepared BaFe12O19 powders will be used as the starting material for magnets bonded with polymer material.Originality/value: The obtained results of investigations by different methods of structure analysis confirm their useful in the microstructure analysis of powder materials.

  12. Effects of barium chlorine treatment of uranium ore on /sup 222/Rn emanation and /sup 226/Ra leachability from mill tailings

    Energy Technology Data Exchange (ETDEWEB)

    Ibrahim, S.A.; Church, S.L.; Whicker, F.W.

    1985-01-01

    The purpose of this laboratory study was to investigate the effectiveness of barium chloride treatment of uranium ore on /sup 222/Rn emanation from mill tailings, /sup 226/Ra level in waste-water, and the leachability of radium from tailings. It has been shown that barium sulfate is an excellent carrier for radium and that barium sulfate crystals have high retention capacity for radon gas produced by radium trapped within the lattice. Ground uranium ore from a mine in Wyoming was mixed with water to form a 1:1 ratio before barium and potassium chlorides were added at concentrations of 0, 10, 25, 50, and 100 mg per liter of slurry. The ore was then subjected to a simulated mill process using sulfuric acid leaching. The liquid representing tailings pond water was separated and analyzed for /sup 226/Ra and the solid fraction, representing mill tailings, was tested for radon emanation and the leachability of radium by deionized water. This study suggests that barium treatment of uranium ore prior to sulfuric acid leaching could be effective in reducing radon emanation from tailings and also in reducing the /sup 226/Ra concentration of waste-water. Leachability of radium from treated tailings was markedly reduced.

  13. Biodegradation of BTEX and Other Petroleum Hydrocarbons by Enhanced and Controlled Sulfate Reduction

    Energy Technology Data Exchange (ETDEWEB)

    Song Jin

    2007-07-01

    High concentrations of sulfide in the groundwater at a field site near South Lovedale, OK, were inhibiting sulfate reducing bacteria (SRB) that are known to degrade contaminants including benzene, toluene, ethylbenzene, and m+p-xylenes (BTEX). Microcosms were established in the laboratory using groundwater and sediment collected from the field site and amended with various nutrient, substrate, and inhibitor treatments. All microcosms were initially amended with FeCl{sub 2} to induce FeS precipitation and, thereby, reduce sulfide concentrations. Complete removal of BTEX was observed within 39 days in treatments with various combinations of nutrient and substrate amendments. Results indicate that elevated concentration of sulfide is a limiting factor to BTEX biodegradation at this site, and that treating the groundwater with FeCl{sub 2} is an effective remedy to facilitate and enhance BTEX degradation by the indigenous SRB population. On another site in Moore, OK, studies were conducted to investigate barium in the groundwater. BTEX biodegradation by SRB is suspected to mobilize barium from its precipitants in groundwater. Data from microcosms demonstrated instantaneous precipitation of barium when sulfate was added; however, barium was detected redissolving for a short period and precipitating eventually, when active sulfate reduction was occurring and BTEX was degraded through the process. SEM elemental spectra of the evolved show that sulfur was not present, which may exclude BaSO{sub 4} and BaS as a possible precipitates. The XRD analysis suggests that barium probably ended in BaS complexing with other amorphous species. Results from this study suggest that SRB may be able to use the sulfate from barite (BaSO{sub 4}) as an electron acceptor, resulting in the release of free barium ions (Ba{sup 2+}), and re-precipitate it in BaS, which exposes more toxicity to human and ecological health.

  14. Coherent Dark Resonances in Atomic Barium

    CERN Document Server

    Dammalapati, U; Jungmann, K; Willmann, L

    2007-01-01

    The observation of dark-resonances in the two-electron atom barium and their influence on optical cooling is reported. In heavy alkali earth atoms, i.e. barium or radium, optical cooling can be achieved using n^1S_0-n^1P_1 transitions and optical repumping from the low lying n^1D_2 and n^3D_{1,2} states to which the atoms decay with a high branching ratio. The cooling and repumping transition have a common upper state. This leads to dark resonances and hence make optical cooling less inefficient. The experimental observations can be accurately modelled by the optical Bloch equations. Comparison with experimental results allows us to extract relevant parameters for effective laser cooling of barium.

  15. Refractory oxides containing aluminium and barium

    OpenAIRE

    Davies T.J.; Biedermann M.; Q-G. Chen; Emblem H. G.; Al-Douri W. A.

    1998-01-01

    Oxides containing aluminium and barium, optionally with chromium, are refractory with several possible industrial uses. A gel precursor of an oxide having the formula BaO.n(Al2xCr2yO3), where 1barium salt with a solution of an aluminium salt or a solution of an aluminium salt and a chromium III salt, then forming a gel which was fired to obtain the desired oxide. Filaments may be drawn as the gel is forming or extr...

  16. Electronic structure of nanograin barium titanate ceramics

    Institute of Scientific and Technical Information of China (English)

    DENG Xiangyun; WANG Xiaohui; LI Dejun; LI Longtu

    2007-01-01

    The density of states and band structure of 20 nm barium titanate(BaTiO3,BT)ceramics are investigated by first-principles calculation.The full potential linearized augmented plane wave(FLAPW)method is used and the exchange correlation effects are treated by the generalized gradient approximation(GGA).The results show that there is substantial hybridization between the Ti 3d and O 2p states in 20 nm BT ceramics and the interaction between barium and oxygen is typically ionic.

  17. Printed Barium Strontium Titanate capacitors on silicon

    Energy Technology Data Exchange (ETDEWEB)

    Sette, Daniele [Univ. Grenoble Alpes, F-38000 Grenoble (France); CEA, LETI, MINATEC Campus, F-38054 Grenoble (France); Luxembourg Institute of Science and Technology LIST, Materials Research and Technology Department, L-4422 Belvaux (Luxembourg); Kovacova, Veronika [Univ. Grenoble Alpes, F-38000 Grenoble (France); CEA, LETI, MINATEC Campus, F-38054 Grenoble (France); Defay, Emmanuel, E-mail: emmanuel.defay@list.lu [Univ. Grenoble Alpes, F-38000 Grenoble (France); CEA, LETI, MINATEC Campus, F-38054 Grenoble (France); Luxembourg Institute of Science and Technology LIST, Materials Research and Technology Department, L-4422 Belvaux (Luxembourg)

    2015-08-31

    In this paper, we show that Barium Strontium Titanate (BST) films can be prepared by inkjet printing of sol–gel precursors on platinized silicon substrate. Moreover, a functional variable capacitor working in the GHz range has been made without any lithography or etching steps. Finally, this technology requires 40 times less precursors than the standard sol–gel spin-coating technique. - Highlights: • Inkjet printing of Barium Strontium Titanate films • Deposition on silicon substrate • Inkjet printed silver top electrode • First ever BST films thinner than 1 μm RF functional variable capacitor that has required no lithography.

  18. Study of barium bismuth titanate prepared by mechanochemical synthesis

    Directory of Open Access Journals (Sweden)

    Lazarević Z.Ž.

    2009-01-01

    Full Text Available Barium-bismuth titanate, BaBi4Ti4O15 (BBT, a member of Aurivillius bismuth-based layer-structure perovskites, was prepared from stoichiometric amounts of barium titanate and bismuth titanate obtained via mechanochemical synthesis. Mechanochemical synthesis was performed in air atmosphere in a planetary ball mill. The reaction mechanism of BaBi4Ti4O15 and the preparation and characteristics of BBT ceramic powders were studied using XRD, Raman spectroscopy, particle analysis and SEM. The Bi-layered perovskite structure of BaBi4Ti4O15 ceramic forms at 1100 °C for 4 h without a pre-calcination step. The microstructure of BaBi4Ti4O15 exhibits plate-like grains typical for the Bi-layered structured material and spherical and polygonal grains. The Ba2+ addition leads to changes in the microstructure development, particularly in the change of the average grain size.

  19. Microstructure of composite material with powders of barium ferrite

    Directory of Open Access Journals (Sweden)

    R. Nowosielski

    2006-04-01

    Full Text Available Purpose: The aim of the present work is the microstructure characterization of commercial powder BaFe12O19 (as-prepared and composite material with BaFe12O19 powders and polymer matrix, using XRD (X-Ray Diffraction and SEM (Scanning Electron Microscopy methods.Design/methodology/approach: The morphology of barium ferrite powders and a fracture surface of the examined composite material was realized by using the scanning electron microscope. The methods of X-ray diffraction were used for the qualitative phase analysis. The parameters of diffraction line profiles were determined by PRO-FIT Toraya procedure.Findings: The X-ray diffraction analysis permitted on identification the BaFe12O19 and Fe2O3 phases in an examined material. Basing on Toraya method is determination of: lattice parameters, crystallite size (D and the lattice distortion (. Distribution of powders of barium ferrite in polymer matrix is irregular and powder particles have irregular shapes and dimensions.Research limitations/implications: For future research the X-ray analysis should be performed by the Rietveld method, which allows to characterization the microstructure of tested material and verification of its qualitative phase composition.Originality/value: The applied Toraya method of structure analysis appeared to be very useful in the microstructure analysis.

  20. Thermal decomposition of barium valerate in argon

    DEFF Research Database (Denmark)

    Torres, P.; Norby, Poul; Grivel, Jean-Claude

    2015-01-01

    The thermal decomposition of barium valerate (Ba(C4H9CO2)(2)/Ba-pentanoate) was studied in argon by means of thermogravimetry, differential thermal analysis, IR-spectroscopy, X-ray diffraction and hot-stage optical microscopy. Melting takes place in two different steps, at 200 degrees C and 280...

  1. 75 FR 19657 - Barium Chloride From China

    Science.gov (United States)

    2010-04-15

    ... Commission found that the domestic interested party group response to its notice of institution (74 FR 31757... COMMISSION Barium Chloride From China AGENCY: United States International Trade Commission. ACTION: Notice of... chloride from China. SUMMARY: The Commission hereby gives notice that it will proceed with a full...

  2. 75 FR 20625 - Barium Chloride From China

    Science.gov (United States)

    2010-04-20

    ... established a schedule for the conduct of this review (74 FR 62587, November 30, 2010). Subsequently, counsel... From the Federal Register Online via the Government Publishing Office INTERNATIONAL TRADE COMMISSION Barium Chloride From China AGENCY: United States International Trade Commission. ACTION:...

  3. Study of structural, ferromagnetic and ferroelectric properties of nanostructured barium doped Bismuth Ferrite

    International Nuclear Information System (INIS)

    Nanostructured multiferroic Bi(1−x)BaxFeO3x=0.0, 0.1, 0.2 were prepared by hydrothermal technique. All samples belonged to the rhombohedrally distorted perovskite structure. The morphology of the particles changed with the doping of barium. Effect of barium doping on the dielectric constant was studied over a wide frequency range of 1000 Hz–1 MHz. The activation energy due to relaxation and due to conduction was measured from the Cole Cole plot and the AC conductivity versus frequency plot respectively. The activation energy estimated from both the studies was close to each other. The activation energy also enhanced with the increase in the barium content. The magnetization at the highest available field (∼1.6 T) increased from 0.05 emu/g for the sample with x=0.0–12 emu/g for the sample with x=0.2. The magnetic measurements show a significant increase in magnetization around 400 °C. Remnant polarization for x=0.0 was negligible and it increased to 0.06 µC/cm2 for x=0.2. - Highlights: • Bismuth Ferrite nanostructures were synthesized by the hydrothermal technique. • Barium was doped in Bismuth site. • Morphology changed with doping. • Ferromagnetic, Ferroelectric and Dielectric properties enhanced with doping. • An unreported magnetic transition due to spin canting was observed near 550 °C

  4. Study of structural, ferromagnetic and ferroelectric properties of nanostructured barium doped Bismuth Ferrite

    Energy Technology Data Exchange (ETDEWEB)

    Chaudhuri, A., E-mail: arkac123@gmail.com [Department of Applied Science, Haldia Institute of Technology, Dist.- Purba Medinipur, Haldia- 721657, West Bengal (India); Department of Condensed Matter Physics and Material Science, S.N. Bose National Center for Basic Sciences, Block JD, Salt Lake, Kolkata 700098 (India); Mandal, K. [Department of Applied Science, Haldia Institute of Technology, Dist.- Purba Medinipur, Haldia- 721657, West Bengal (India); Department of Condensed Matter Physics and Material Science, S.N. Bose National Center for Basic Sciences, Block JD, Salt Lake, Kolkata 700098 (India)

    2014-03-15

    Nanostructured multiferroic Bi{sub (1−x)}Ba{sub x}FeO{sub 3}x=0.0, 0.1, 0.2 were prepared by hydrothermal technique. All samples belonged to the rhombohedrally distorted perovskite structure. The morphology of the particles changed with the doping of barium. Effect of barium doping on the dielectric constant was studied over a wide frequency range of 1000 Hz–1 MHz. The activation energy due to relaxation and due to conduction was measured from the Cole Cole plot and the AC conductivity versus frequency plot respectively. The activation energy estimated from both the studies was close to each other. The activation energy also enhanced with the increase in the barium content. The magnetization at the highest available field (∼1.6 T) increased from 0.05 emu/g for the sample with x=0.0–12 emu/g for the sample with x=0.2. The magnetic measurements show a significant increase in magnetization around 400 °C. Remnant polarization for x=0.0 was negligible and it increased to 0.06 µC/cm{sup 2} for x=0.2. - Highlights: • Bismuth Ferrite nanostructures were synthesized by the hydrothermal technique. • Barium was doped in Bismuth site. • Morphology changed with doping. • Ferromagnetic, Ferroelectric and Dielectric properties enhanced with doping. • An unreported magnetic transition due to spin canting was observed near 550 °C.

  5. Structural and functional characterization of barium zirconium titanate / epoxy composites

    Directory of Open Access Journals (Sweden)

    Filiberto González Garcia

    2011-12-01

    Full Text Available The dielectric behavior of composite materials (barium zirconium titanate / epoxy system was analyzed as a function of ceramic concentration. Structure and morphologic behavior of the composites was investigated by X-ray Diffraction (XRD, Fourier transformed infrared spectroscopy (FT-IR, Raman spectroscopy, field emission scanning electron microscopy (FE-SEM and transmission electron microscopy (TEM analyses. Composites were prepared by mixing the components and pouring them into suitable moulds. It was demonstrated that the amount of inorganic phase affects the morphology of the presented composites. XRD revealed the presence of a single phase while Raman scattering confirmed structural transitions as a function of ceramic concentration. Changes in the ceramic concentration affected Raman modes and the distribution of particles along into in epoxy matrix. Dielectric permittivity and dielectric losses were influenced by filler concentration.

  6. Barium carbonate as an agent to improve the electrical properties of neodymium-barium-copper system at high temperature

    Energy Technology Data Exchange (ETDEWEB)

    Fernandes, J.P. [Post-Graduate Program in Chemical Engineering, Universidade Federal de Santa Catarina (UFSC), Florianópolis, SC, 88040-900 (Brazil); Duarte, G.W. [Post-Graduate Program in Chemical Engineering, Universidade Federal de Santa Catarina (UFSC), Florianópolis, SC, 88040-900 (Brazil); Research Group in Technology and Information, Centro Universitário Barriga Verde (UNIBAVE), Santa Catarina, SC (Brazil); Caldart, C. [Post-Graduate Program in Science and Materials Engineering, Universidade do Extremo Sul Catarinense (UNESC), Criciúma, SC, 88806-000 (Brazil); Kniess, C.T. [Post-Graduate Program in Professional Master in Management, Universidade Nove de Julho, São Paulo, SP (Brazil); Montedo, O.R.K.; Rocha, M.R. [Post-Graduate Program in Science and Materials Engineering, Universidade do Extremo Sul Catarinense (UNESC), Criciúma, SC, 88806-000 (Brazil); Riella, H.G. [Post-Graduate Program in Chemical Engineering, Universidade Federal de Santa Catarina (UFSC), Florianópolis, SC, 88040-900 (Brazil); Fiori, M.A., E-mail: fiori@unochapeco.edu.br [Post-Graduate Program in Environmental Science, Universidade Comunitária da Região de Chapecó (UNOCHAPECÓ), Chapecó, SC, 89809-000 (Brazil); Post-Graduate Program in Technology and Management of the Innovation, Universidade Comunitária da Região de Chapecó (UNOCHAPECÓ), Chapecó, SC, 89809-000 (Brazil)

    2015-11-15

    Specialized ceramics are manufactured under special conditions and contain specific elements. They possess unique electrical and thermal properties and are frequently used by the electronics industry. Ceramics containing neodymium-barium-copper (NBC) exhibit high conductivities at low temperatures. NBC-based ceramics are typically combined with oxides, i.e., NBCo produced from neodymium oxide, barium oxide and copper oxide. This study presents NBC ceramics that were produced with barium carbonate, copper oxide and neodymium oxide (NBCa) as starting materials. These ceramics have good electrical conductivities at room temperature. Their conductivities are temperature dependent and related to the starting amount of barium carbonate (w%). - Highlights: • The new crystalline structure were obtained due presence of the barium carbonate. • The NBCa compound has excellent electrical conductivity at room temperature. • The grain crystalline morphology was modified by presence of the barium carbonate. • New Phases α and β were introduced by carbonate barium in the NBC compound.

  7. Formation of the natural sulfate aerosol

    Energy Technology Data Exchange (ETDEWEB)

    Kerminen, V.M.; Hillamo, R.; Maekinen, M.; Virkkula, A.; Maekelae, T.; Pakkanen, T. [Helsinki Univ. (Finland). Dept. of Physics

    1996-12-31

    Anthropogenic sulfate aerosol, together with particles from biomass burning, may significantly reduce the climatic warming due to man-made greenhouse gases. The radiative forcing of aerosol particles is based on their ability to scatter and absorb solar radiation (direct effect), and on their influences on cloud albedos and lifetimes (indirect effect). The direct aerosol effect depends strongly on the size, number and chemical composition of particles, being greatest for particles of 0.1-1 {mu}m in diameter. The indirect aerosol effect is dictated by the number of particles being able to act as cloud condensation nuclei (CCN). For sulfate particles, the minimum CCN size in tropospheric clouds is of the order of 0.05-0.2 {mu}m. To improve aerosol parameterizations in future climate models, it is required that (1) both primary and secondary sources of various particle types will be characterized at a greater accuracy, and (2) the influences of various atmospheric processes on the spatial and temporal distribution of these particles and their physico-chemical properties are known much better than at the present. In estimating the climatic forcing due to the sulfate particles, one of the major problems is to distinguish between sulfur from anthropogenic sources and that of natural origin. Global emissions of biogenic and anthropogenic sulfate pre-cursors are comparable in magnitude, but over regional scales either of these two source types may dominate. The current presentation is devoted to discussing the natural sulfate aerosol, including the formation of sulfur-derived particles in the marine environment, and the use of particulate methanesulfonic acid (MSA) as a tracer for the natural sulfate

  8. Hybrid Nd-Fe-B/barium ferrite magnetic materials with epoxy matrix

    OpenAIRE

    Stajčić Aleksandar P.; Stajić-Trošić Jasna T.; Aleksić Radoslav R.; Žák Tomáš; Lazić Nada L.; Stijepović Mirko Z.; Grujić Aleksandar S.

    2012-01-01

    Lately a great attention has been paid to the research of bonded hybrid composites with improved dynamic mechanical capacities capable of replacing bonded Nd-Fe-B magnetic materials, by using the cheaper (ferrite) materials instead of the Nd-Fe-B powder while retaining the satisfying values of the maximal magnetic energy. The objective of this study is to assess how different contents of Nd-Fe-B and/or barium ferrite particles can affect morphological, dynamic mechanical and magnetic pr...

  9. Hydrothermal Synthesis and Characterization of Europium-dop ed Barium Titanate Nano crys-tallites

    Institute of Scientific and Technical Information of China (English)

    Margarita Garca-Hernandez; Genevieve Chadeyron; Damien Boyer; Antonieta Garca-Murillo; Felipe Carrillo-Romo; Rachid Mahiou

    2013-01-01

    Barium titanate nanocrystallites were synthesized by a hydrothermal technique from barium chlo-ride and tetrabutyl titanate. Single-crystalline cubic perovskite BaTiO3 consisting of spherical particles with diameters ranging from 10 to 30 nm was easily achieved by this route. In order to study the influence of the syn-thesis process on the morphology and the optical properties, barium titanate was also prepared by a solid-state reaction. In this case, only the tetragonal phase which crystallizes above 900℃ was observed. High-temperature X-ray diffraction measurements were performed to investigate the crystallization temperatures as well as the particle sizes via the Scherrer formula. The lattice vibrations were evidenced by infrared spectroscopy. Eu3+was used as a structural probe, and the luminescence properties recorded from BaTiO3:Eu3+and elaborated by a solid-state reaction and hydrothermal process were compared. The reddish emission of the europium is increased by the nanometric particles.

  10. A study of the microchemistry of nanocrystalline barium titanate with tetragonal and pseudocubic room temperature symmetries

    Science.gov (United States)

    Lacey, Robert A.

    The investigation of possible effects of undesired surface species on barium titanate, one of the most utilized ferroelectric ceramics, constitutes the focus of this work. Six commercial barium titanate powders from three manufacturers representing two different synthesis processes, with average particle sizes from 40 nm to 470 nm, were analyzed in this study. Four of the nanopowders exhibited pseudocubic room temperature symmetry. Diffuse Reflectance Infrared Fourier Transform (DRIFT) spectroscopic analysis of the nanopowders was conducted in ambient atmosphere at room temperature. High temperature DRIFT followed incorporating four avenues of analysis: moisture adsorption studies, deuterium oxide exchange studies, carbon dioxide adsorption studies, and high temperature analysis under dry air and UHP nitrogen atmospheres. At the highest temperature used in this study, 1173K, moisture and the accompanying incorporated protonic impurities were still present. The powders readily readsorbed moisture during rapid cooling, 170K/minute, to room temperature. The smallest powder, as received, formed spherical agglomerates up to 10 mum diameter. These sintered as separate units attaining diameters up to 60 mum during intermediate stage sintering. X-ray photoelectron spectroscopy indicated a surface contamination layer of 10 A to 18 A; 50--70% of which was barium carbonate, the balance being atmospheric adsorbed species. Samples cooled at 3K/minute after an 1173K calcine retained cubic symmetry as indicated with high temperature X-ray diffraction. However, spectral evidence was obtained indicating that upon the rapid cooling from the 1173K calcine, a reorientation to the room temperature tetragonal symmetry was observed. Further, SEM and TEM supported this finding with visual evidence of interfacial rearrangement including corroborating electron diffraction analysis. This data, therefore, substantiated the hypothesis that the cause of the room temperature pseudocubic

  11. Synthesis and characterization of hard magnetic composite photocatalyst-Barium ferrite/silica/titania

    International Nuclear Information System (INIS)

    Hard magnetic composite photocatalytic particles-barium ferrite (magnetic core)/silica (intermediate layer)/titania (photoactive shell) (B/S/T) were prepared by wet-chemical methods. Anatase titania nanoparticles were directly coated on the silica-coated barium ferrite forming photoactive titania shell by hydrolysis and condensation of titanium n-butoxide. The prepared hard magnetic composite photocatalyst can be magnetically fluidized and recovered by an applied magnetic field enhancing both the separation and mixing efficiency for remediating fluids. The prepared composite particles were characterized with scanning electron microscopy (SEM), transmission electron microscopy (TEM), high resolution TEM (HRTEM), X-ray diffraction (XRD), energy dispersive spectroscopy (EDS), BET specific surface area measurement and inductively coupled plasma (ICP) spectroscopy. The photocatalytic activity of the synthesized composite particles was tested by photodegradation of Procion red MX-5B dye under UV illumination (302 nm) and compared with that of titania nanoparticles. The as-prepared composite particles were photoactive, with enhanced photocatalytic activity after the heat-treatment at 500 deg. C for 1 h. The reusability of the composite photocatalytic particles was also tested and the recycled composite particles presented the photocatalytic activity comparable to the fresh composite particles

  12. Production of translationally cold barium monohalide ions

    OpenAIRE

    DePalatis, M. V.; Chapman, M.S.

    2013-01-01

    We have produced sympathetically cooled barium monohalide ions BaX$^+$ (X = F, Cl, Br) by reacting trapped, laser cooled Ba$^+$ ions with room temperature gas phase neutral halogen-containing molecules. Reaction rates for two of these (SF$_6$ and CH$_3$Cl) have been measured and are in agreement with classical models. BaX$^+$ ions are promising candidates for cooling to the rovibrational ground state, and our method presents a straightforward way to produce these polar molecular ions.

  13. High-Jc YBCO films using precursors with barium concentration gradient in film thickness by TFA-MOD process

    International Nuclear Information System (INIS)

    YBa2Cu3O7-δ (YBCO) films were grown by using precursor films with barium concentration gradient in film thickness by an advanced metal organic deposition process using trifluoroacetates (TFA-MOD). We have reported previously that a lot of non-reacted particles such as Y- and Cu-oxides were remained for the YBCO film surface grown by the precursors using a starting solution with barium-poor (cation ratio as Y:Ba:Cu 1:1.5:3). Then, the barium concentration was increased in the film surface to complete the reaction among these Y and Cu residues and Ba and to increase the Y123 growth thickness for realizing higher Jc performance. Transmission electron microscopy (TEM) observation showed the increase of film thickness of YBCO grown by the precursors with barium concentration gradient in film thickness, indicating that the reaction between these Y and Cu-oxides and Ba proceeded to form Y123 phase. Consequently, higher Jc was obtained for the YBCO film by the precursors mentioned above than that of the YBCO film by the precursors with a constant concentration. Effects of barium concentration gradient in the precursors on the superconducting properties and microstructures in the YBCO film were discussed.

  14. Chemical abundances and kinematics of barium stars

    CERN Document Server

    de Castro, D B; Roig, F; Jilinski, E; Drake, N A; Chavero, C; Silva, J V Sales

    2016-01-01

    In this paper we present an homogeneous analysis of photospheric abundances based on high-resolution spectroscopy of a sample of 182 barium stars and candidates. We determined atmospheric parameters, spectroscopic distances, stellar masses, ages, luminosities and scale height, radial velocities, abundances of the Na, Al, $alpha$-elements, iron-peak elements, and s-process elements Y, Zr, La, Ce, and Nd. We employed the local-thermodynamic-equilibrium model atmospheres of Kurucz and the spectral analysis code {\\sc moog}. We found that the metallicities, the temperatures and the surface gravities for barium stars can not be represented by a single gaussian distribution. The abundances of $alpha$-elements and iron peak elements are similar to those of field giants with the same metallicity. Sodium presents some degree of enrichment in more evolved stars that could be attributed to the NeNa cycle. As expected, the barium stars show overabundance of the elements created by the s-process. By measuring the mean heav...

  15. Barium titanate core – gold shell nanoparticles for hyperthermia treatments

    Directory of Open Access Journals (Sweden)

    FarrokhTakin E

    2013-06-01

    Full Text Available Elmira FarrokhTakin,1,2 Gianni Ciofani,1 Gian Luigi Puleo,1 Giuseppe de Vito,3,4 Carlo Filippeschi,1 Barbara Mazzolai,1 Vincenzo Piazza,3 Virgilio Mattoli1 1Center for Micro-BioRobotics @SSSA, Fondazione Istituto Italiano di Tecnologia, Pontedera, Pisa, Italy; 2The Biorobotics Institute, Scuola Superiore Sant'Anna, Pontedera, Pisa, Italy; 3Center for Nanotechnology Innovation @NEST, Fondazione Istituto Italiano di Tecnologia, Pisa, Italy; 4NEST, Scuola Normale Superiore, Pisa, Italy Abstract: The development of new tools and devices to aid in treating cancer is a hot topic in biomedical research. The practice of using heat (hyperthermia to treat cancerous lesions has a long history dating back to ancient Greece. With deeper knowledge of the factors that cause cancer and the transmissive window of cells and tissues in the near-infrared region of the electromagnetic spectrum, hyperthermia applications have been able to incorporate the use of lasers. Photothermal therapy has been introduced as a selective and noninvasive treatment for cancer, in which exogenous photothermal agents are exploited to achieve the selective destruction of cancer cells. In this manuscript, we propose applications of barium titanate core–gold shell nanoparticles for hyperthermia treatment against cancer cells. We explored the effect of increasing concentrations of these nanoshells (0–100 µg/mL on human neuroblastoma SH-SY5Y cells, testing the internalization and intrinsic toxicity and validating the hyperthermic functionality of the particles through near infrared (NIR laser-induced thermoablation experiments. No significant changes were observed in cell viability up to nanoparticle concentrations of 50 µg/mL. Experiments upon stimulation with an NIR laser revealed the ability of the nanoshells to destroy human neuroblastoma cells. On the basis of these findings, barium titanate core–gold shell nanoparticles resulted in being suitable for hyperthermia treatment

  16. Lanthanide doped strontium-barium cesium halide scintillators

    Energy Technology Data Exchange (ETDEWEB)

    Bizarri, Gregory; Bourret-Courchesne, Edith; Derenzo, Stephen E.; Borade, Ramesh B.; Gundiah, Gautam; Yan, Zewu; Hanrahan, Stephen M.; Chaudhry, Anurag; Canning, Andrew

    2015-06-09

    The present invention provides for a composition comprising an inorganic scintillator comprising an optionally lanthanide-doped strontium-barium, optionally cesium, halide, useful for detecting nuclear material.

  17. Infrared Turbidimetric Titration Method for Sulfate Ions in Brackish Water

    Directory of Open Access Journals (Sweden)

    Benabadji Nouredine

    2012-12-01

    Full Text Available In this work an infrared turbidimetric titration method is described for the determination of sulfate ions in brackish water. A suspension of barium sulfate is produced in an aqueous solution and/or brackish water sample by the addition of barium chloride solution and the turbidity is monitored with the help of an immersed infrared sensor. The developed sensor utilizes an optical system to measure the evolution of turbidity during the titration. This sensor is a simple device designed in the laboratory, consisting of two infrared diodes (LED, the first is an emitter and the second is used as detector (receiver. The data acquisition system is made with the help of a dataloger made on the basis of the microcontroller 16F877/874 accompanied with adaptable software both of them are self made. Concentration over 60 µg/mL of sulfate expressed as, SO42- can be measured with high reproducibility, by this method without a preliminary treatment or dilution of the sample. The method determines SO42 - concentration of brackish water with RSD of < 1.2%.

  18. Characterisation of Ba(OH)(2)-Na2SO4-blast furnace slag cement-like composites for the immobilisation of sulfate bearing nuclear wastes

    OpenAIRE

    Mobasher, N.; Bernal, S. A.; Hussain, O.H.; Apperley, D.C.; Kinoshita, H.; Provis, J.L.

    2014-01-01

    Soluble sulfate ions in nuclear waste can have detrimental effects on cementitious wasteforms and disposal facilities based on Portland cement. As an alternative, Ba(OH)2–Na2SO4–blast furnace slag composites are studied for immobilisation of sulfate-bearing nuclear wastes. Calcium aluminosilicate hydrate (C–A–S–H) with some barium substitution is the main binder phase, with barium also present in the low solubility salts BaSO4 and BaCO3, along with Ba-substituted calcium sulfoaluminate hydrat...

  19. Study on the preparation and formation mechanism of barium sulphate nanoparticles modified by different organic acids

    Indian Academy of Sciences (India)

    Yuhua Shen; Chuanhao Li; Xuemei Zhu; Anjian Xie; Lingguang Qiu; Jinmiao Zhu

    2007-07-01

    This paper reports a simple method to prepare barium sulphate nanoparticles by use of tetradecanoic acid, hexadecanoic acid and stearic acid as modifier. The barium sulphate nanoparticles obtained are characterized by using Fourier transform infra-red spectroscopy (FT-IR), powder X-ray diffraction (XRD), transmission electron microscopy (TEM), dynamic laser light scatter (DLLS) and thermogravimetric analysis (TGA), respectively. The results show that the BaSO4 particles are all spherical and in the nano-scale. Our method has a better dispersion and controllable diameter dependent on the length of the chain of organic acid and the pH value of the system. A possible mechanism is also discussed.

  20. Barium hexaferrite/graphene oxide: controlled synthesis and characterization and investigation of its magnetic properties

    Science.gov (United States)

    Maddahfar, Mahnaz; Ramezani, Majid; Mostafa Hosseinpour-Mashkani, S.

    2016-08-01

    In the present study, barium hexaferrite nanocrystals (BaFe12O19) were successfully synthesized through the two-step sol-gel method in an aqueous solution in the presence of barium nitrate and iron (III) nitrate. Besides, the effect of the molar ratio of graphene oxide on the particle size and magnetic properties of final product was investigated. In this research, glucose plays a role as capping and chelating agent in the synthesis of BaFe12O19/graphene oxide. Moreover, it was found that the size, morphology, and magnetic properties of the final products could be greatly influenced by the molar ratio of graphene oxide. BaFe12O19/graphene oxide was characterized by using X-ray diffraction, scanning electron microscope, Fourier transform infrared spectroscopy, vibrating sample magnetometer, and energy-dispersive spectrometry.

  1. Investigation of neutron-deficient isotopes in the barium-region

    International Nuclear Information System (INIS)

    Bombarding targets of 106Cd, 108Cd and 110Cd with 16O ions of 52.5-66.0 MeV neutron deficient barium, cesium and xenon isotopes were produced and have been studied using excitation functions and neutron-gamma, proton-gamma, alpha-gamma and gamma-gamma coincidence measurements. Partial level schemes for 123Ba and 121Ba were proposed. A number of gamma transitions was assigned to the different product nuclei. The measured particle emission probabilities from the compound nuclei are compared with different evaporation models. The models mostly underestimate neutron emission and often overestimate the emission of alpha particles. (orig.)

  2. Synthesis of Barium Lithium Fluoride Nanocrystals Using Reverse Micelles as Microemulsion

    Institute of Scientific and Technical Information of China (English)

    Rui Nian HUA; De Min XIE; Chun Shan SHI

    2004-01-01

    Barium lithium fluoride nanocrystals were synthesized in cetyltrimethylammonium bromide (CTAB)/ 2-octanol/ water microemulsion systems. The impurity peaks in XRD patterns were not determined. The result of SEM confirmed that the average sizes and shape of the BaLiF3 nanocrystals. The formation of BaLiF3 and particles size were strongly affected by water content. With increasing water content and reaction times, the size of the particle increases. Meanwhile, the solvent was also found to play a key role in the synthesis of the BaLiF3 nanocrystals.

  3. Development and Demonstration of a Sulfate Precipitation Process for Hanford Waste Tank 241-AN-107

    Energy Technology Data Exchange (ETDEWEB)

    SK Fiskum; DE Kurath; BM Rapko

    2000-08-16

    A series of precipitation experiments were conducted on Hanford waste tank 241-AN-107 samples in an effort to remove sulfate from the matrix. Calcium nitrate was added directly to AN-107 sub-samples to yield several combinations of Ca:CO{sub 3} mole ratios spanning a range of 0:1 to 3:1 to remove carbonate as insoluble CaCO{sub 3}. Similarly barium nitrate was added directly to the AN-107 aliquots, or to the calcium pretreated AN-107 aliquots, giving of Ba:SO{sub 4} mole ratios spanning a range of 1:1 to 5:1 to precipitate sulfate as BaSO{sub 4}. Initial bulk carbonate removal was required for successful follow-on barium sulfate precipitation. A {ge} 1:1 mole ratio of Ca:CO{sub 3} was found to lower the carbonate concentration such that Ba would react preferentially with the sulfate. A follow-on 1:1 mole ratio of Ba:SO{sub 4} resulted in 70% sulfate removal. The experiment was scaled up with a 735-mL aliquot of AN-107 for more complete testing. Calcium carbonate and barium sulfate settling rates were determined and fates of selected cations, anions, and radionuclides were followed through the various process steps. Seventy percent of the sulfate was removed in the scale-up test while recovering 63% of the filtrate volume. Surprisingly, during the scale-up test a sub-sample of the CaCO{sub 3}/241-AN-107 slurry was found to lose fluidity upon standing for {le} 2 days. Metathesis with BaCO{sub 3} at ambient temperature was also evaluated using batch contacts at various BaCO{sub 3}:SO{sub 4} mole ratios with no measurable success.

  4. Development and Demonstration of a Sulfate Precipitation Process for Hanford Waste Tank 241-AN-107

    International Nuclear Information System (INIS)

    A series of precipitation experiments were conducted on Hanford waste tank 241-AN-107 samples in an effort to remove sulfate from the matrix. Calcium nitrate was added directly to AN-107 sub-samples to yield several combinations of Ca:CO3 mole ratios spanning a range of 0:1 to 3:1 to remove carbonate as insoluble CaCO3. Similarly barium nitrate was added directly to the AN-107 aliquots, or to the calcium pretreated AN-107 aliquots, giving of Ba:SO4 mole ratios spanning a range of 1:1 to 5:1 to precipitate sulfate as BaSO4. Initial bulk carbonate removal was required for successful follow-on barium sulfate precipitation. A ge 1:1 mole ratio of Ca:CO3 was found to lower the carbonate concentration such that Ba would react preferentially with the sulfate. A follow-on 1:1 mole ratio of Ba:SO4 resulted in 70% sulfate removal. The experiment was scaled up with a 735-mL aliquot of AN-107 for more complete testing. Calcium carbonate and barium sulfate settling rates were determined and fates of selected cations, anions, and radionuclides were followed through the various process steps. Seventy percent of the sulfate was removed in the scale-up test while recovering 63% of the filtrate volume. Surprisingly, during the scale-up test a sub-sample of the CaCO3/241-AN-107 slurry was found to lose fluidity upon standing for le 2 days. Metathesis with BaCO3 at ambient temperature was also evaluated using batch contacts at various BaCO3:SO4 mole ratios with no measurable success

  5. Determination of free barium in barium sulphate by atomic absorption spectrometry%火焰原子吸收光谱法测定硫酸钡中的游离钡

    Institute of Scientific and Technical Information of China (English)

    张博丽

    2012-01-01

    关于硫酸钡中游离钡的含量,国标中没有规定分析方法,随着硫酸钡用途的增加,游离钡的含量已成为硫酸钡产品中一个重要的杂质指标.提出了用火焰原子吸收分光光度法分析硫酸钡中的游离钡,并对溶解试样过程中酸度的控制、燃气的流量控制、助燃气的选择等影响因素进行了讨论.在波长553.6 nm、氧化亚氮作助燃气的条件下进行实验,计算得到的相对标准偏差为1.6%~3.5%,加标回收率为99.13%~ 100.07%,灵敏度为0.2,钡的检出限为0.2 mg/L,该方法具有低干扰性和高准确性的特点,测定结果令人满意,能够满足工业化生产要求.%There isn't analysis method for free barium of barium sulphate in national standards.With the increasing use of barium sulfate.free barium content has become one of the important impurity indexes of barium sulphate product.Free barium was analyzed by flame atomic absorption spectrometry (AAS).The influencing factors,such as the acidity when sample was dissolved, the gas flow, and selection of combustion-supporting gas, in experiment were discussed.The experiment was carried out under the conditions of the wavelength of 553.6 nm and with nitrous oxide as combustion-supporting gas.Through calculation relative standard deviation was at 1.6%~3.5% .standard sample recovery rates was at 99.13%~100.07% , sensitivity was 0.2,and barium detect limit was 0.2 mg/L.The deter-mination by AAS had the features of low interference and high accuracy.The experimental results were quite satisfactory and this method could meet the industrialized production requirements.

  6. Europium-doped barium bromide iodide

    Energy Technology Data Exchange (ETDEWEB)

    Gundiah, Gautam; Hanrahan, Stephen M.; Hollander, Fredrick J.; Bourret-Courchesne, Edith D.

    2009-10-21

    Single crystals of Ba0.96Eu0.04BrI (barium europium bromide iodide) were grown by the Bridgman technique. The title compound adopts the ordered PbCl2 structure [Braekken (1932). Z. Kristallogr. 83, 222-282]. All atoms occupy the fourfold special positions (4c, site symmetry m) of the space group Pnma with a statistical distribution of Ba and Eu. They lie on the mirror planes, perpendicular to the b axis at y = +-0.25. Each cation is coordinated by nine anions in a tricapped trigonal prismatic arrangement.

  7. Barium dithionate as an EPR dosemeter.

    Science.gov (United States)

    Baran, M P; Bugay, O A; Kolesnik, S P; Maksimenko, V M; Teslenko, V V; Petrenko, T L; Desrosiers, M F

    2006-01-01

    Electron paramagnetic resonance (EPR) dosimetry is growing in popularity and this success has encouraged the search for other dosimetric materials. Previous studies of gamma-irradiated barium dithionate (BaS(2)O(6) x 2H(2)O) have shown promise for its use as a radiation dosemeter. This work studies in greater detail several essential attributes of the system. Special attention has been directed to the study of EPR response dependences on microwave power, irradiation temperature, minimum detectable dose and post-irradiation stability. PMID:16565205

  8. Scattering lengths of calcium and barium isotopes

    OpenAIRE

    Dammalapati, U.; Willmann, L.; Knoop, S.

    2011-01-01

    We have calculated the s-wave scattering length of all the even isotopes of calcium (Ca) and barium (Ba), in order to investigate the prospect of Bose-Einstein condensation (BEC). For Ca we have used an accurate molecular potential based on detailed spectroscopic data. Our calculations show that Ca does not provide other isotopes alternative to the recently Bose condensed 40Ca that suffers strong losses because of a very large scattering length. For Ba we show by using a model potential that ...

  9. Barium enema findings of milk allergy in infants

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Gyoung Ju; Kim, Mi Jeong; Lee, Hee Jung [Keimyung University School of Medicine, Daegu (Korea, Republic of)

    2006-09-15

    We wanted to evaluate the barium enema findings of milk allergy in infants. Retrospective evaluation of the plain abdominal radiography and barium enema findings was performed in fifteen young infants suffering with milk allergy. The presence of gaseous distension, rectal gas, paralytic ileus and mechanical obstruction was evaluated on the plain radiography. The presence of spasm, a transitional zone, a reversed rectosigmoid index and mucosal irregularity was analyzed on the barium enema; the presence of barium retention was also evaluated on 24-hour-delayed plain radiography. Paralytic ileus was the most common finding on the plain radiography (93%). On the barium enema, continuous spasm of the colon, ranging from the rectum to the descending colon, was revealed in ten infants (67%). A transitional zone was observed in one infant and a reversed rectosigmoid index was revealed in four. Mucosal irregularity was observed in two infants. Barium retention was demonstrated in 11 of fifteen cases: throughout the entire colon (n = 3), from the rectum to the descending colon (n = 7), and up to the transverse colon (n = 1). The most common barium enema finding of milk allergy in infants was spasm of the distal colon. The other findings were a transitional zone, a reversed rectosigmoid index, mucosal irregularity and barium retention.

  10. Barium and radium migration in unconsolidated Canadian geological materials

    International Nuclear Information System (INIS)

    This report describes the results of laboratory studies on the distribution coefficients of radium and barium in samples of unconsolidated geologic materials. Graphs of Ksub(d) versus solution concentration for the respective elements showed constant Ksub(d) values in the low concentration range suggesting that, at low concentrations, a distribution coefficient is a valid means of representing the geochemical reactions of both barium and radium. The Ksub(d) values for barium range between 60 and 3500 ml/g. The values appear to be influenced by the amount of barium occurring naturally in the soil materials and thus there is little possiblility of using barium as an analog of radium in laboratory experiments. The Ksub(d) values of radium vary from 50 to 1000 ml/g indicating that a wide range of geological materials have a substantial capacity to retard the migration of radium

  11. On the suppression of superconducting phase formation in YBCO materials by templated synthesis in the presence of a sulfated biopolymer

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Elliott; Schnepp, Zoe [Centre for Organized Matter Chemistry, School of Chemistry, University of Bristol, Cantock' s Close, Bristol BS8 1TS (United Kingdom); Wimbush, Stuart C. [Department of Materials Science and Metallurgy, University of Cambridge, Pembroke Street, Cambridge CB2 3QZ (United Kingdom); Hall, Simon R. [Centre for Organized Matter Chemistry, School of Chemistry, University of Bristol, Cantock' s Close, Bristol BS8 1TS (United Kingdom)], E-mail: simon.hall@bristol.ac.uk

    2008-11-15

    The use of biopolymers as templates to control superconductor crystallization is a recent phenomenon and is generating a lot of interest both from the superconductor community and in materials chemistry circles. This work represents a critical finding in the use of such biopolymers, in particular the contraindicatory nature of sulfur when attempting to affect a morphologically controlled synthesis. Synthesis of superconducting nanoparticles was attempted using carrageenan as a morphological template. Reactive sulfate groups on the biopolymer prevent this, producing instead significant quantities of barium sulfate nanotapes. By substituting the biopolymer for structurally analogous, non-sulfated agar, we show that superconducting nanoparticles could be successfully synthesized.

  12. Structure and properties of barium ferrite powders prepared by milling and annealing

    Directory of Open Access Journals (Sweden)

    J. Wron

    2007-12-01

    Full Text Available Purpose: Microstructure and magnetic properties analysis of barium ferrite powder obtained by milling and heat treatmentDesign/methodology/approach: The milling process was carried out in a vibratory mill, which generated vibrations of the balls and milled material inside the container. After milling process the powders were annealed in electric chamber furnace. The X-ray diffraction methods were used for qualitative phase analysis of studied powder samples. The morphology of Fe2O3 and BaCO3 powders after milling was analyzed using the scanning electron microscopy (SEM method. The distribution of powder particles was determined by a laser particle analyzer. The magnetic hysteresis loops of examined powder material were measured by resonance vibrating sample magnetometer (R-VSM.Findings: The milling process of iron oxide and barium carbonate mixture causes decrease of the crystallite size of involved phases and leads to increase the content of Fe2O3 phase and decrease of BaCO3 content. Milling process causes enriching of surface layer of powder particles by Fe2O3. The X-ray investigations of tested mixture milled for 30 hours and annealed at 950°C enabled the identification of hard magnetic BaFe12O19 phase and also the presence of Fe2O3 phase in examined material. The Fe2O3 phase is a rest of BaCO3 dissociation in the presence of Fe2O3, which forms a compound of BaFe12O19. The best coercive force for the mixture of powders annealed at 950°C for 10, 20 and 30 hours is 349 kA/m, 366 kA/m and 364 kA/m, respectively. From morphology images and distribution of powder particle size it can be concluded, that the size of tested powder particles increases with increasing time of milling process. The increase of milling time up to 20 hours leads to joining of smaller particles in bigger ones; agglomerates are formed.Practical implications: The barium ferrite powder obtained by milling and annealing can be suitable component to produce sintered and

  13. Barium appendicitis: A single institution review in Japan

    Science.gov (United States)

    Katagiri, Hideki; Lefor, Alan Kawarai; Kubota, Tadao; Mizokami, Ken

    2016-01-01

    AIM To review clinical experience with barium appendicitis at a single institution. METHODS A retrospective review of patients admitted with a diagnosis of acute appendicitis, from January 1, 2013 to December 31, 2015 was performed. Age, gender, computed tomography (CT) scan findings if available, past history of barium studies, pathology, and the presence of perforation or the development of complications were reviewed. If the CT scan revealed high density material in the appendix, the maximum CT scan radiodensity of the material is measured in Hounsfield units (HU). Barium appendicitis is defined as: (1) patients diagnosed with acute appendicitis; (2) the patient has a history of a prior barium study; and (3) the CT scan shows high density material in the appendix. Patients who meet all three criteria are considered to have barium appendicitis. RESULTS In total, 396 patients were admitted with the diagnosis of acute appendicitis in the study period. Of these, 12 patients (3.0%) met the definition of barium appendicitis. Of these 12 patients, the median CT scan radiodensity of material in the appendix was 10000.8 HU, ranging from 3066 to 23423 HU (± 6288.2). In contrast, the median CT scan radiodensity of fecaliths in the appendix, excluding patients with barium appendicitis, was 393.1 HU, ranging from 98 to 2151 HU (± 382.0). The CT scan radiodensity of material in the appendices of patients with barium appendicitis was significantly higher than in patients with nonbarium fecaliths (P < 0.01). CONCLUSION Barium appendicitis is not rare in Japan. Measurement of the CT scan radiodensity of material in the appendix may differentiate barium appendicitis from routine appendicitis.

  14. High resolution studies of barium Rydberg states

    International Nuclear Information System (INIS)

    The subtle structure of Rydberg states of barium with orbital angular momentum 0, 1, 2 and 3 is investigated. Some aspects of atomic theory for a configuration with two valence electrons are reviewed. The Multi Channel Quantum Defect Theory (MQDT) is concisely introduced as a convenient way to describe interactions between Rydberg series. Three high-resolution UV studies are presented. The first two, presenting results on a transition in indium and europium serve as an illustration of the frequency doubling technique. The third study is of hyperfine structure and isotope shifts in low-lying p states in Sr and Ba. An extensive study of the 6snp and 6snf Rydberg states of barium is presented with particular emphasis on the 6snf states. It is shown that the level structure cannot be fully explained with the model introduced earlier. Rather an effective two-body spin-orbit interaction has to be introduced to account for the observed splittings, illustrating that high resolution studies on Rydberg states offer an unique opportunity to determine the importance of such effects. Finally, the 6sns and 6snd series are considered. The hyperfine induced isotope shift in the simple excitation spectra to 6sns 1S0 is discussed and attention is paid to series perturbers. It is shown that level mixing parameters can easily be extracted from the experimental data. (Auth.)

  15. The Novel Formation of Barium Titanate Nanodendrites

    Directory of Open Access Journals (Sweden)

    Chien-Jung Huang

    2014-01-01

    Full Text Available The barium titanate (BaTiO3 nanoparticles with novel dendrite-like structures have been successfully fabricated via a simple coprecipitation method, the so-called BaTiO3 nanodendrites (BTNDs. This method was remarkable, fast, simple, and scalable. The growth solution is prepared by barium chloride (BaCl2, titanium tetrachloride (TiCl4, and oxalic acid. The shape and size of BaTiO3 depend on the amount of added BaCl2 solvent. To investigate the influence of amount of BaCl2 on BTNDs, the amount of BaCl2 was varied in the range from 3 to 6 mL. The role of BaCl2 is found to have remarkable influence on the morphology, crystallite size, and formation of dendrite-like structures. The thickness and length of the central stem of BTND were ~300 nm and ~20 μm, respectively. The branchings were found to occur at irregular intervals along the main stem. Besides, the formation mechanism of BTND is proposed and discussed.

  16. Coprecipitation of europium with barium sulphate

    International Nuclear Information System (INIS)

    The distribution behaviour of the trivalent europium ion at a micro-component scale, between barium sulphate and aqueous solution, was studied at ambient temperature. Experiments were carried out using radioactive tracers. Results indicate an enrichment of the micro component in the solid phase relative to the solution. The effects of the concentrations of the micro and macro-elements on the coprecipitation have been examined. Europium distribution coefficient DEu increases from 1.1 ± 0.2 to 3.2 ± 0.4 when initial europium concentration decreases from more than 17 x 10-5 to 1.4 x 10-5 M, in sulphuric media with SO42- in excess or CBa2+/CSO42- Eu. The coprecipitation of europium with barium sulphate as a heterovalent solid-solution is described by heterogeneous model obeying the Doerner and Hoskins logarithmic partition law. The weaker partition coefficients lower than unity (λ = 0.25 when CEu(III) ∼ 1.4 x 10-5 M and λ = 0.13 when CBa2+/CSO42- -5 ≤ CEu(III) = 153.5 x 10-5 M) lead to crystals increasingly enriched in the trace element. (orig.)

  17. Novel thermally stable poly(vinyl chloride) composites for sulfate removal

    Energy Technology Data Exchange (ETDEWEB)

    Nadagouda, Mallikarjuna N., E-mail: Nadagouda.mallikarjuna@epa.gov [Water Supply and Water Resources Division, National Risk Management Research Laboratory U.S. Environmental Protection Agency, 26 W. Martin Luther King Drive Cincinnati, Ohio 45268 (United States); Pressman, Jonathan; White, Colin; Speth, Thomas F.; McCurry, Daniel L. [Water Supply and Water Resources Division, National Risk Management Research Laboratory U.S. Environmental Protection Agency, 26 W. Martin Luther King Drive Cincinnati, Ohio 45268 (United States)

    2011-04-15

    Graphical abstract: Barium carbonate and/or barium carbonate-loaded silica aero-gels dispersed polyvinyl chloride (PVC) composites were prepared by dissolving PVC in tetrahydrofuran (THF), dispersing BaCO{sub 3} and/or BaCO{sub 3}-loaded silica aero-gels, re-precipitating the PVC with water at room temperature. The PVC composites were then characterized using scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), X-ray mapping, X-ray diffraction (XRD), thermogravimetric analysis (TGA) and inductively coupled plasma mass spectrometry (ICP-MS) analysis. The obtained composites had better thermal properties than the control PVC. The composites were tested for sulfate removal and found to significantly reduce sulfate when compared with control PVC. - Abstract: BaCO{sub 3} dispersed PVC composites were prepared through a polymer re-precipitation method. The composites were tested for sulfate removal using rapid small scale column test (RSSCT) and found to significantly reduce sulfate concentration. The method was extended to synthesize barium carbonate-loaded silica aero-gels-polyvinyl chloride (PVC) polymer composites. The PVC composites were characterized using scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), X-ray mapping, X-ray diffraction (XRD), thermogravimetric analysis (TGA) and inductively coupled plasma mass spectrometry (ICP-MS) analysis. The method has advantages over conventional sulfate precipitation (sulfate removal process) using BaCO{sub 3} wherein clogging of the filter can be avoided. The method is environmentally friendly and does not interfere with natural organic matter as the conventional resin does. Some of the composites were thermally more stable as compared with the pure PVC discussed in the literature.

  18. Radium and barium removal through blending hydraulic fracturing fluids with acid mine drainage.

    Science.gov (United States)

    Kondash, Andrew J; Warner, Nathaniel R; Lahav, Ori; Vengosh, Avner

    2014-01-21

    Wastewaters generated during hydraulic fracturing of the Marcellus Shale typically contain high concentrations of salts, naturally occurring radioactive material (NORM), and metals, such as barium, that pose environmental and public health risks upon inadequate treatment and disposal. In addition, fresh water scarcity in dry regions or during periods of drought could limit shale gas development. This paper explores the possibility of using alternative water sources and their impact on NORM levels through blending acid mine drainage (AMD) effluent with recycled hydraulic fracturing flowback fluids (HFFFs). We conducted a series of laboratory experiments in which the chemistry and NORM of different mix proportions of AMD and HFFF were examined after reacting for 48 h. The experimental data combined with geochemical modeling and X-ray diffraction analysis suggest that several ions, including sulfate, iron, barium, strontium, and a large portion of radium (60-100%), precipitated into newly formed solids composed mainly of Sr barite within the first ∼ 10 h of mixing. The results imply that blending AMD and HFFF could be an effective management practice for both remediation of the high NORM in the Marcellus HFFF wastewater and beneficial utilization of AMD that is currently contaminating waterways in northeastern U.S.A. PMID:24367969

  19. Strengthening mechanism of steels treated by barium-bearing alloys

    Institute of Scientific and Technical Information of China (English)

    Zhouhua Jiang; Yang Liu

    2008-01-01

    The deoxidation, desulfurization, dephosphorization, microstructure, and mechanical properties of steels treated by barium-bearing alloys were investigated in laboratory and by industrial tests. The results show that barium takes part in the deoxidation reaction at the beginning of the experiments, generating oxide and sulfide compound inclusions, which easily float up from the molten steel, leading to the rapid reduction of total oxygen content to a very low level. The desulfurization and dephosphorization capabilities of calcium-bearing alloys increase with the addition of barium. The results of OM and SEM observations and mechanical property tests show that the structure of the steel treated by barium-bearing alloys is refined remarkably, the iamellar thickness of pearlitic structure decreases, and the pearlitic morphology shows clustering distribution. Less barium exists in steel substrate and the enrichment of barium-bearing precipitated phase mostly occurs in grain boundary and phase boundary, which can prevent the movement of grain boundary and dislocation during the heat treatment and the deformation processes. Therefore, the strength and toughness of barium-treated steels are improved by the effect of grain-boundary strengthening and nail-prick dislocation.

  20. Designed microstructures in textured barium hexaferrite

    Science.gov (United States)

    Hovis, David Brian

    It is a fundamental principle of materials science that the microstructure of a material defines its properties and ultimately its performance for a given application. A prime example of this can be found in the large conch shell Strombus gigas, which has an intricate microstructure extending across five distinct length scales. This microstructure gives extraordinary damage tolerance to the shell. The structure of Strombus gigas cannot be replicated in a modern engineering ceramic with any existing processing technique, so new processing techniques must be developed to apply this structure to a model material. Barium hexaferrite was chosen as a model material to create microstructures reminiscent of Strombus gigas and evaluate its structure-property relations. This work describes novel processing methods to produce textured barium hexaferrite with no coupling between the sample geometry and the texture direction. This technique, combining magnetic field-assisted gelcasting with templated grain growth, also allows multilayer samples to be fabricated with different texture directions in adjacent layers. The effects of adding either B2O3 or excess BaCO 3 on the densification and grain growth of barium hexaferrite was studied. The texture produced using this technique was assessed using orientation imaging microscopy (OIM) at Oak Ridge National Laboratory. These measurements showed peak textures as high as 60 MRD and sharp interfaces between layers cast with different texture directions. The effect of oxygen on the quality of gelcasting is also discussed, and it is shown that with proper mold design, it is possible to gelcast multiple layers with differing texture directions without delamination. Monolithic and multilayer samples were produced and tested in four point bending to measure the strength and work of fracture. Modulus measurements, made with the ultrasonic pulse-echo technique, show clear signs of microcracking in both the isotropic and textured samples

  1. Influência do sulfato de bário nas características de cerâmica vermelha incorporada com resíduo oleoso inertizado Influence of barium sulfate on the characteristics of red ceramic incorporated with oily waste

    Directory of Open Access Journals (Sweden)

    F. A. N. Silva

    2006-03-01

    scanning electron microscopy (SEM. This was done to make it possible the identification of chemical elements as well as second phase particles. The results showed that the incorporation of this encapsulated petroleum waste induced changes in both, the chemical composition and the microstructure of the ceramic material.

  2. Quantitation of sulfate and thiosulfate in clinical samples by ion chromatography.

    Science.gov (United States)

    Cole, D E; Evrovski, J

    1997-11-21

    For assay of serum sulfate, quantitation by ion conductimetry after separation by anion-exchange chromatography is the method of choice. In comparison to classical barium precipitation methods, chromatographic methods demonstrate increased precision, specificity and sensitivity, and they may be superior to spectrophotometric methods that rely on organic cation precipitation of sulfate. The increased sensitivity and specificity, as well as the inherent capacity of chromatographic methods for simultaneous determination of other anions, has led to its increasing use in the determination of excreted sulfate in clinical profiles of urinary anion composition. Ion chromatography can also be used to quantitate free sulfate in other clinical samples, including cerebrospinal fluid, sweat, saliva, breast milk and human tissues. Finally, ion chromatography shows promise as a more precise and sensitive method for measurement of total acid-labile sulfoesters and thiosulfate.

  3. Intermediate milling energy optimization to enhance the characteristics of barium hexaferrite magnetic nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Hodaei, A.; Ataie, A., E-mail: aataie@ut.ac.ir; Mostafavi, E.

    2015-08-15

    Highlights: • Nano-sized BaFe{sub 12}O{sub 19} was successfully synthesized via a solid-state reaction. • Intermediate milling energy was optimized to improve BaFe{sub 12}O{sub 19} properties. • Minimum total energy of 93.7 kJ/g was necessary for formation of BaFe{sub 12}O{sub 19}. • Deviation from the optimum milling energy deteriorates the magnetic properties. - Abstract: Nano-sized barium hexaferrite particles were synthesized by mechanical activation of BaCO{sub 3} and Fe{sub 2}O{sub 3} powders mixture as starting materials. The effects of mechanical milling energy on the phase composition, morphology, thermal behavior and magnetic properties of the samples were systematically investigated by employing X-ray diffractometer, field emission scanning electron microscopy, differential thermal/thermo gravimetry analysis and vibrating sample magnetometer, respectively. The milling energy was calculated at five different levels using collision model. It was found that there is an optimum milling energy value for obtaining barium hexaferrite phase. The results revealed that applying a minimum total milling energy of 93.7 kJ/g was necessary for formation of almost single barium hexaferrite at a relatively low calcination temperature of 800 °C. FESEM micrograph of the above sample exhibited nano-size particles with a mean particle size of 80 nm. Further increase in milling energy leads to dramatic decrease in phase purity as well as magnetic characteristics of the samples. By increasing the milling energy from 93.7 to 671.9 kJ/g, saturation magnetization (M{sub s}) decreased from 22.5 to 0.39 emu/g, and also coercivity (H{sub c}) decreased from 4.28 to 1.46 kOe.

  4. Intermediate milling energy optimization to enhance the characteristics of barium hexaferrite magnetic nanoparticles

    International Nuclear Information System (INIS)

    Highlights: • Nano-sized BaFe12O19 was successfully synthesized via a solid-state reaction. • Intermediate milling energy was optimized to improve BaFe12O19 properties. • Minimum total energy of 93.7 kJ/g was necessary for formation of BaFe12O19. • Deviation from the optimum milling energy deteriorates the magnetic properties. - Abstract: Nano-sized barium hexaferrite particles were synthesized by mechanical activation of BaCO3 and Fe2O3 powders mixture as starting materials. The effects of mechanical milling energy on the phase composition, morphology, thermal behavior and magnetic properties of the samples were systematically investigated by employing X-ray diffractometer, field emission scanning electron microscopy, differential thermal/thermo gravimetry analysis and vibrating sample magnetometer, respectively. The milling energy was calculated at five different levels using collision model. It was found that there is an optimum milling energy value for obtaining barium hexaferrite phase. The results revealed that applying a minimum total milling energy of 93.7 kJ/g was necessary for formation of almost single barium hexaferrite at a relatively low calcination temperature of 800 °C. FESEM micrograph of the above sample exhibited nano-size particles with a mean particle size of 80 nm. Further increase in milling energy leads to dramatic decrease in phase purity as well as magnetic characteristics of the samples. By increasing the milling energy from 93.7 to 671.9 kJ/g, saturation magnetization (Ms) decreased from 22.5 to 0.39 emu/g, and also coercivity (Hc) decreased from 4.28 to 1.46 kOe

  5. Removal of uranyl ions from aqueous solutions using barium titanate

    International Nuclear Information System (INIS)

    Remediation of water sources contaminated with radioactive waste products is a major environmental issue that demands new and more efficient technologies. For this purpose, we report a highly efficient ion-exchange material for the removal of radioactive nuclides from aqueous solutions. The kinetic characteristics of adsorption of uranyl ions on the surface of barium titanate were investigated using a spectrophotometric method under a wide range of conditions. By controlling the pH it was possible to exert fine control over the speciation of uranium, and by optimizing the temperature and grain size of the exchanger, almost total removal was achieved in a matter of just hours. The highest efficiency (>90 % removal) was realized at high temperature (80 deg C). Moreover, the effect of competitive ion adsorption from a range of different cations and anions was quantified. Adsorption was found to follow first-order kinetics and both Freundlich and Langmuir isotherms could be applied to this system. The results of a mathematical treatment of the kinetic data combined with the observation that adsorption was independent of stirring speed and dependent on the ion-exchanger grain size, indicate that the dominant mechanism influencing adsorption is particle spreading. The adsorption behavior was not influenced by exposure to high-intensity gamma radiation, indicating potential for use of this ion-exchanger in systems containing radioactive material. These results will be of use in the development of uranium extraction systems for contaminated water sources. (author)

  6. Combustion synthesis, characterization and luminescence properties of barium aluminate phosphor

    Institute of Scientific and Technical Information of China (English)

    AH Wako; FB Dejene; HC Swart

    2014-01-01

    The blue-green emitting Eu2+and Nd3+ doped polycrystalline barium aluminate (BaAl2O4:Eu2+,Nd3+) phosphor, was pre-pared by a solution-combustion method at 500 ºC without a post-annealing process. The characteristic variation in the structural and luminescence properties of the as-prepared samples was evaluated with regards to a change in the Ba/Al molar ratio from 0.1:1 to 1.4:1. The morphologies and the phase structures of the products were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS), while the optical properties were investigated using ultra-violet (UV) and photoluminescence (PL) spectroscopy, respectively. The XRD and TEM results revealed that the average crystallite size of the BaAl2O4:Eu2+,Nd3+ phosphor was about 70 nm. The broad-band UV-excited luminescence of the phosphors was observed atλmax=500 nm due to transitions from the 4f65d1 to the 4f7 configuration of the Eu2+ ion. The PL results indi-cated that the main peaks in the emission and excitation spectrum of phosphor particles slightly shifted to the short wavelength due to the changes in the crystal field due to the structure changes caused by the variation in the quantity of the Ba ions in the host lattice.

  7. Chemical composition of Eu2+ luminescence in the barium hexaaluminates

    International Nuclear Information System (INIS)

    This paper consists of two parts. In the first part the chemical composition of two kinds of barium hexaaluminate (one poor and one rich in barium) is explained using the local electroneutrality concept. In the second part a reinvestigation of the Eu2+ luminescence in these compounds is reported. The emission spectrum of each of the two compounds shows a blue and a green emission bank. The blue emission bank is ascribed to Eu2+ ions at barium sites, whereas the green emission band is identified with Eu2+ ions incorporated at aluminum sites within spinel blocks of the structure

  8. Barium concentration in grain of Aegilops and Triticum species

    Directory of Open Access Journals (Sweden)

    Denčić Srbislav S.

    2015-01-01

    Full Text Available The aim of this study was to evaluate the concentration of barium in grain of various Aegilops and Triticum species with different genomes. The studied species differed significantly with respect to the concentration of barium. The grain of wild diploid Aegilops speltoides, the donor of B genome, contained significantly higher Ba concentration than all other analyzed genotypes. Wild and cultivated tetraploid wheats (Triticum diciccoides, Triticum dicoccon, Triticum turgidum and Triticum durum had the lowest Ba concentration in grain. The modern cultivated hexaploid varieties presented substantial variation in grain concentration of barium. The highest Ba concentration (3.42 mg/kg occurred in Serbian winter wheat variety Panonnia.

  9. The ceric sulfate dosimeter

    DEFF Research Database (Denmark)

    Bjergbakke, Erling

    1970-01-01

    The process employed for the determination of absorbed dose is the reduction of ceric ions to cerous ions in a solution of ceric sulfate and cerous sulfate in 0.8N sulfuric acid: Ce4+→Ce 3+ The absorbed dose is derived from the difference in ceric ion concentration before and after irradiation...

  10. Research on Rule of Barium Carbonate Scaling by Cold Finger Experiment%冷指实验研究碳酸钡结垢规律

    Institute of Scientific and Technical Information of China (English)

    刘振; 王丽玲

    2014-01-01

    The main component of scale is calcium carbonate, the rest of which includes barium carbonate, barium sulfate, magnesium salt, strontium sulfate and so on. Many researchers at home and abroad have studied the rules of calcium carbonate scaling, less on barium carbonate scaling. In this paper, through controlling ion concentration, reaction temperature, pH value, reaction time, stirring rate and supersaturation of solution,effects of these parameters on barium carbonate scaling were investigated by cold finger experiment. The results show that the growth rate of barium carbonate scaling increases with the increasing of temperature, decreases with the increasing of flow rate, and is the slowest when the pH value is 9. However, ion concentration has little influence on the growth rate of barium carbonate scaling. The cold finger experiment to study the rules of barium carbonate scaling is a relative new method, the research results can provide theory basis for decaling and scale prevention of oil field.%污垢中的主要成分是碳酸钙,还有碳酸钡、硫酸钡、镁盐、硫酸锶等。国内外学者对碳酸钙结垢规律的研究很多,对碳酸钡的研究相对较少一些。通过冷指实验,控制离子浓度、反应温度、pH 值、反应时间和搅拌速度以及溶液的过饱和度,以研究这些参数对碳酸钡结垢的影响。结果表明,碳酸钡垢的生长速率随着温度的增加而增加,随着流速的增加而减小,pH 为9时最小,浓度对其生长速率的影响不甚明显。利用冷指实验研究碳酸钡结垢规律是一种较新的方法,其研究成果为油田除垢防垢提供一定的理论依据。

  11. Structure of barium sodium trimetaphosphate trihydrate

    Energy Technology Data Exchange (ETDEWEB)

    Averbuch-Pouchot, M.T.; Durif, A.

    1987-03-15

    BaNaP/sub 3/O/sub 9/ . 3H/sub 2/O, M/sub r/=451.29, triclinic, Panti 1, a=7.067(3), b=9.071(3), c=9.906(4) A, ..cap alpha..=116.46(5), ..beta..=95.97(5), ..gamma..=74.03(5)/sup 0/, V=546.4 A/sup 3/, Z=2, D/sub m/ not measured, D/sub x/=2.743 Mg m/sup -3/, lambda(Mo K..cap alpha..)=0.7107 A, ..mu..=4.28 mm/sup -1/, F(000)=428, T=293 K, R=0.028 for 3775 independent reflexions. The P/sub 3/O/sub 9/ ring anions and the water molecules build up a three-dimensional network through hydrogen bonds. Inside this network barium and sodium have respectively nine- and sevenfold coordinations.

  12. Analysis of europium doped luminescent barium thioaluminate

    Institute of Scientific and Technical Information of China (English)

    张东璞; 喻志农; 薛唯; 章婷; 丁瞾; 王武育

    2010-01-01

    Europium-doped barium thioaluminate sputtering target was synthesized by powder sintering method and thin film was deposited by radio frequency(RF) sputtering.X-ray diffractometer(XRD) pattern indicated that the main compound of the target was BaAl4S7.Oxygen was the main impurity which led to the formation of BaAl2O4.It was shown that both BaAl4S7 and BaAl2S4 were contained in the as-grown thin films and a 471.7 nm emission peak in the PL spectra appeared due to a combination of BaAl4S7:Eu2+ and BaAl2S4:Eu2...

  13. Chemical abundance analysis of 19 barium stars

    CERN Document Server

    Yang, G C; Spite, M; Chen, Y Q; Zhao, G; Zhang, B; Liu, G Q; Liu, Y J; Liu, N; Deng, L C; Spite, F; Hill, V; Zhang, C X

    2016-01-01

    We aim at deriving accurate atmospheric parameters and chemical abundances of 19 barium (Ba) stars, including both strong and mild Ba stars, based on the high signal-to-noise ratio and high resolution Echelle spectra obtained from the 2.16 m telescope at Xinglong station of National Astronomical Observatories, Chinese Academy of Sciences. The chemical abundances of the sample stars were obtained from an LTE, plane-parallel and line-blanketed atmospheric model by inputting the atmospheric parameters (effective temperatures, surface gravities, metallicity and microturbulent velocity) and equivalent widths of stellar absorption lines. These samples of Ba stars are giants indicated by atmospheric parameters, metallicities and kinematic analysis about UVW velocity. Chemical abundances of 17 elements were obtained for these Ba stars. Their light elements (O, Na, Mg, Al, Si, Ca, Sc, Ti, V, Cr, Mn and Ni) are similar to the solar abundances. Our samples of Ba stars show obvious overabundances of neutron-capture (n-ca...

  14. A novel barium polymeric membrane sensor for selective determination of barium and sulphate ions based on the complex ion associate barium(II)-Rose Bengal as neutral ionophore

    Energy Technology Data Exchange (ETDEWEB)

    Othman, A.M. [Genetic Engineering and Biotechnology Research Institute (GEBRI), Minufiya University, Sadat City (Egypt); El-Shahawi, M.S. [Chemistry Department, Faculty of Science at Damiatta, Mansoura University, Damiatta, Dumyat 34517 (Egypt)]. E-mail: mohammad_el_shahawi@yahoo.co.uk; Abdel-Azeem, M. [Chemistry Department, Faculty of Science at Damiatta, Mansoura University, Damiatta, Dumyat 34517 (Egypt)

    2006-01-12

    A simple, long life, rapid response and sensitive barium(II)-PVC membrane sensor that typically follows Nernstian behavior has been developed for the assay of barium(II) ions. The developed sensor has been made by incorporating the complex ion associate of barium(II)-Rose Bengal (Ba-RB) as an ionophore into a plasticized PVC matrix. The sensor is stable and exhibited fast potential response of 20 s and gave a good linear response with a Nernstian slope of 28.5 {+-} 0.4 mV/decade of activity within the concentration range 5 x 10{sup -5} to 10{sup -1} M over a wide range of pH 4.5-10.0 for barium(II) ions. The developed sensor showed comparatively good selectivity for barium(II) ions with respect to other alkali, alkaline earth, transition and heavy metal ions. The plasticizer o-nitrophenyloctyl ether controlled significantly the calibration slope and the lifetime of the fabricated sensor. The proposed sensor was used successfully for the analysis of barium(II) ions in wastewater samples and in lithophone pigment with excellent recovery percentages in the range 98.9-99.8 {+-} 1.6%. The determination of sulphate in fresh and potable water samples with the developed sensor has been also achieved successfully. The described sensor provides a reliable means with good correlation with the data obtained by atomic absorption spectrometry (AAS) and other spectrophotometric methods for the analysis of trace amounts of barium(II) and/or sulphate ions in different matrices.

  15. A novel barium polymeric membrane sensor for selective determination of barium and sulphate ions based on the complex ion associate barium(II)-Rose Bengal as neutral ionophore

    International Nuclear Information System (INIS)

    A simple, long life, rapid response and sensitive barium(II)-PVC membrane sensor that typically follows Nernstian behavior has been developed for the assay of barium(II) ions. The developed sensor has been made by incorporating the complex ion associate of barium(II)-Rose Bengal (Ba-RB) as an ionophore into a plasticized PVC matrix. The sensor is stable and exhibited fast potential response of 20 s and gave a good linear response with a Nernstian slope of 28.5 ± 0.4 mV/decade of activity within the concentration range 5 x 10-5 to 10-1 M over a wide range of pH 4.5-10.0 for barium(II) ions. The developed sensor showed comparatively good selectivity for barium(II) ions with respect to other alkali, alkaline earth, transition and heavy metal ions. The plasticizer o-nitrophenyloctyl ether controlled significantly the calibration slope and the lifetime of the fabricated sensor. The proposed sensor was used successfully for the analysis of barium(II) ions in wastewater samples and in lithophone pigment with excellent recovery percentages in the range 98.9-99.8 ± 1.6%. The determination of sulphate in fresh and potable water samples with the developed sensor has been also achieved successfully. The described sensor provides a reliable means with good correlation with the data obtained by atomic absorption spectrometry (AAS) and other spectrophotometric methods for the analysis of trace amounts of barium(II) and/or sulphate ions in different matrices

  16. Direct Sulfation of Limestone

    DEFF Research Database (Denmark)

    Hu, Guilin; Dam-Johansen, Kim; Wedel, Stig

    2007-01-01

    %) becomes negligible. In the temperature interval from 723 K to 973 K, an apparent activation energy of about 104 kJ/mol is observed for the direct sulfation of limestone. At low temperatures and low conversions, the sulfation process is most likely under mixed control by chemical reaction and solid-state...... diffusion. The nucleation and crystal grain growth of the solid product, and this mixed control mechanism provide satisfactory explanations of the various phenomena related to the direct sulfation of limestone, such as porosity in the product layer, the variation of the apparent reaction orders of SO2, O-2......The direct sulfation of limestone was studied in a laboratory fixed-bed reactor. It is found that the direct sulfation of limestone involves nucleation and crystal grain growth of the solid product (anhydrite). At 823 K and at low-conversions (less than about 0.5 %), the influences of SO2, O-2...

  17. Low temperature preparation of nanocrystalline solid solution of strontium barium niobate by chemical process

    Indian Academy of Sciences (India)

    Asit B Panda; Amita Pathak; Panchanan Pramanik

    2002-11-01

    SrBa1–Nb2O6 (with = 0.4, 0.5 and 0.6) powders have been prepared by thermolysis of aqueous precursor solutions consisting of triethanolamine (TEA), niobium tartarate and, EDTA complexes of strontium and barium ions. Complete evaporation of the precursor solution by heating at ∼ 200°C, yields in a fluffy, mesoporous carbon rich precursor material, which on calcination at 750°C/2 h has resulted in the pure SBN powders. The crystallite and average particle sizes are found to be around 15 nm and 20 nm, respectively.

  18. Comparison of barium titanate thin films prepared by inkjet printing and spin coating

    Directory of Open Access Journals (Sweden)

    Jelena Vukmirović

    2015-09-01

    Full Text Available In this paper, barium titanate films were prepared by different deposition techniques (spin coating, office Epson inkjet printer and commercial Dimatix inkjet printer. As inkjet technique requires special rheological properties of inks the first part of the study deals with the preparation of inks, whereas the second part examines and compares structural characteristics of the deposited films. Inks were synthesized by sol-gel method and parameters such as viscosity, particle size and surface tension were measured. Deposited films were examined by optical and scanning electron microscopy, XRD analysis and Raman spectroscopy. The findings consider advantages and disadvantages of the particular deposition techniques.

  19. The Karlsruhe 4π barium fluoride detector

    International Nuclear Information System (INIS)

    A new experimental approach has been implemented for accurate measurements of neutron capture cross sections in the energy range from 5 to 200 keV. The Karlsruhe 4π Barium Fluoride Detector consists of 42 crystals shaped as hexagonal and pentagonal truncated pyramids forming a spherical shell with 10 cm inner radius and 15 cm thickness. All crystals are supplied with reflector and photomultiplier, thus representing independent gamma-ray detectors. Each detector module covers the same solid angle with respect to a gamma-ray source located in the centre. The energy resolution of the 4π detector is 14% at 662 keV and 7% at 2.5 MeV gamma-ray energy, the overall time reslution is 500 ps and the peak efficiency 90% at 1 MeV. The detector allows to register capture cascades with 95% probability above a threshold energy of 2.5 MeV in the sum energy spectrum. Neutrons are produced via the 7Li(p,n)7Be reaction using the pulsed proton beam of a Van de Graaff accelerator. The neutron spectrum can be taylored according to the experimental requirements in an energy range from 5 to 200 keV by choosing appropriate proton energies. A collimated neutron beam is passing through the detector and hits the sample in the centre. The energy of captured neutrons is determined via time of flight, the primary flight path being 77 cm. The combination of short primary flight path, a 10 cm inner radius of the spherical BaF2 shell, and the low capture cross section of barium allows to discriminate background due to capture of sample scattered neutrons in the scintillator by time of flight, leaving part of the neutron energy range completely undisturbed. (orig./HSI)

  20. Upper gastrointestinal barium evaluation of duodenal pathology: A pictorial review

    Institute of Scientific and Technical Information of China (English)

    Pankaj; Gupta; Uma; Debi; Saroj; Kant; Sinha; Kaushal; Kishor

    2014-01-01

    Like other parts of the gastrointestinal tract(GIT), duodenum is subject to a variety of lesions both congenital and acquired. However, unlike other parts of the GIT viz. esophagus, rest of the small intestine and large intestine, barium evaluation of duodenal lesions is technically more challenging and hence not frequently reported. With significant advances in computed tomography technology, a thorough evaluation including intraluminal, mural and extramural is feasible in a single non-invasive examination. Notwithstanding, barium evaluation still remains the initial and sometimes the only imaging study in several parts of the world. Hence,a thorough acquaintance with the morphology of various duodenal lesions on upper gastrointestinal barium examination is essential in guiding further evaluation. We reviewed our experience with various common and uncommon barium findings in duodenal abnormalities.

  1. Liquid-phase-deposited barium titanate thin films on silicon

    International Nuclear Information System (INIS)

    Using a mixture of hexafluorotitanic acid, barium nitrate and boric acid, high refractive index (1.54) barium titanate films can be deposited on silicon substrates. The deposited barium titanate films have featureless surfaces. The deposition temperature is near room temperature (800C). However, there are many fluorine and silicon incorporations in the films. The refractive index of the as-deposited film is 1.54. By current-voltage measurement, the leakage current of the as-deposited film with a thickness of 1000 A is about 9.48x10-7 A cm-2 at the electrical field intensity of 0.3 MV cm-1. By capacitance-voltage measurement, the effective oxide charge of the liquid-phase-deposited barium titanate film is 3.06x1011 cm-2 and the static dielectric constant is about 22. (author)

  2. Peritonite por bário Barium peritonitis

    Directory of Open Access Journals (Sweden)

    Gerson Alves Pereira Júnior

    1999-10-01

    Full Text Available We report a case of a 49 years-old man who underwent a barium meal examination for an epigastric pain. A perforated gastric ulcer with barium extravasation into peritoneal cavity was seen on X-rays. During an emergency laparotomy, a perforated pyloric ulcer was noted, along with barium contamination in the peritoneal cavity. The ulcer was closed with an omental patch and an extensive peritoneal lavage with saline was performed. During the postoperative period, the patient developed signs of peritonitis and underwent a new laparotomy was at the 9th day showing a subfrenic abscess with a large barium contamination. The patient presented septic shock and multiple organ failure. dying on the 21th day.

  3. Oriented nucleation and growth of anhydrite during direct sulfation of limestone

    DEFF Research Database (Denmark)

    Hu, Guilin; Dam-Johansen, Kim; Wedel, Stig

    2008-01-01

    The direct sulfation of limestone (Iceland Spar) was studied at 973 K in a fixed-bed reactor. Scanning electron microscopy examinations of the sulfated limestone particles show that the sulfation process involves oriented nucleation and growth of the solid product, anhydrite. The reason...

  4. Electrorheological behavior of rare earth-doped barium titanate suspensions

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Doping Y, La, Ce into barium titanate is found to be able to improve its electrorheological (ER) effect in DC electrical field. The yield stress of a typical doped barium titanate/silicone oil suspension is approximately 3.2 -*7〗kPa at 3.5 -*7〗kV/mm, which is 10 times larger than that of pure barium titanate/silicone oil suspensions. The ER effect increases with the decrease of ionic radius of rare earth (RE) dopant when RE concentration remains constant, and the suspensions exhibit a relatively high shear stress when Y, La, Ce mole fractions are 15%, 10%~15%, and 5%, respectively. Dielectric measurements show that the suitable doping with RE element increases dielectric loss of barium titanate and causes very marked dielectric relaxation at low frequency. By measuring X-ray diffraction patterns of doped barium titanate, it is considered that the occurrence of lattice distortion or defects may be responsible for the change of dielectric properties which results in the improvement of ER effect of barium titanate in DC electrical field.

  5. Lifetime Measurement for 6snp Rydberg States of Barium

    Institute of Scientific and Technical Information of China (English)

    SHEN Li; WANG Lei; YANG Hai-Feng; LIU Xiao-Jun; LIU Hong-Ping

    2011-01-01

    @@ We present a simple and efficient method for measuring the atomic lifetimes in order of tens of microseconds and demonstrate it in the lifetime determination of barium Rydberg states.This method extracts the lifetime information from the time-of-flight spectrum directly, which is much more efficient than other methods such as the time-delayed field ionization and the traditional laser induced fluorescence.The lifetimes determined with our method for barium Rydberg 6snp(n=37-59)series are well coincident with the values deduced from the absolute oscillator strengths of barium which were given in the literature [J.Phys.B 14(1981)4489, 29(1996)655]on experiments.%We present a simple and efficient method for measuring the atomic lifetimes in order of tens of microseconds and demonstrate it in the lifetime determination of barium Rydberg states. This method extracts the lifetime information from the time-of-flight spectrum directly, which is much more efficient than other methods such as the time-delayed field ionization and the traditional laser induced fluorescence. The lifetimes determined with our method for barium Rydberg 6snp (n=37-59) series are well coincident with the values deduced from the absolute oscillator strengths of barium which were given in the literature [J. Phys. B 14 (1981) 4489, 29 (1996) 655] onexperiments.

  6. Hydrothermal Synthesis and Processing of Barium Titanate Nanoparticles Embedded in Polymer Films.

    Science.gov (United States)

    Toomey, Michael D; Gao, Kai; Mendis, Gamini P; Slamovich, Elliott B; Howarter, John A

    2015-12-30

    Barium titanate nanoparticles embedded in flexible polymer films were synthesized using hydrothermal processing methods. The resulting films were characterized with respect to material composition, size distribution of nanoparticles, and spatial location of particles within the polymer film. Synthesis conditions were varied based on the mechanical properties of the polymer films, ratio of polymer to barium titanate precursors, and length of aging time between initial formulations of the solution to final processing of nanoparticles. Block copolymers of poly(styrene-co-maleic anhydride) (SMAh) were used to spatially separate titanium precursors based on specific chemical interactions with the maleic anhydride moiety. However, the glassy nature of this copolymer restricted mobility of the titanium precursors during hydrothermal processing. The addition of rubbery butadiene moieties, through mixing of the SMAh with poly(styrene-butadiene-styrene) (SBS) copolymer, increased the nanoparticle dispersion as a result of greater diffusivity of the titanium precursor via higher mobility of the polymer matrix. Additionally, an aminosilane was used as a means to retard cross-linking in polymer-metalorganic solutions, as the titanium precursor molecules were shown to react and form networks prior to hydrothermal processing. By adding small amounts of competing aminosilane, excessive cross-linking was prevented without significantly impacting the quality and composition of the final barium titanate nanoparticles. X-ray diffraction and X-ray photoelectron spectroscopy were used to verify nanoparticle compositions. Particle sizes within the polymer films were measured to be 108 ± 5 nm, 100 ± 6 nm, and 60 ± 5 nm under different synthetic conditions using electron microscopy. Flexibility of the films was assessed through measurement of the glass transition temperature using dynamic mechanical analysis. Dielectric permittivity was measured using an impedance analyzer. PMID

  7. Flux growth and liquid-phase epitaxy of $Mn{6+}$-doped barium sulfate

    NARCIS (Netherlands)

    Ehrentraut, D.; Romanyuk, Y.E.; Pollnau, M.; Shim, K. B.

    2004-01-01

    We investigated the conditions for the growth of $Mn^{6+}$-doped from the ternary eutectic NaCl-KCl-CsCl solvent at temperatures of 480-600 $^{o}$C. The doping complex ion $MnO^{2-}_{4}$ can easily substitute the $SO^{2-}_{4}$ complex ion in $BaSO_{4}$ with its orthorhombic space group Pnma. The gro

  8. Performance study on a new type of strontium and barium scale inhibitor TH-607B for oil fields%一种新型油田用钡锶阻垢剂TH-607B的性能研究

    Institute of Scientific and Technical Information of China (English)

    贺茂才; 孙群峰; 田忠伟; 刘见; 高灿柱

    2012-01-01

    针对油田生产中结垢严重,尤其是锶、钡垢难以解决的问题,研制了一种新型油田用钡锶阻垢剂TH-607B.通过与多种常规油田阻垢剂的阻垢性能进行对比,研究了其抑制碳酸钙、硫酸钙、硫酸钡、硫酸锶垢的情况.通过考察各种条件对TH-607B的阻垢率的影响,探究了TH-607B对油田水中钡、锶阻垢的适用范围.试验结果表明,TH-607B在高温、高盐、低pH或高pH下均具有良好的阻钡锶垢能力;其良好的耐高温、耐盐性、宽pH范围适应性将使其具有广泛的应用.现场应用表明,TH-607B对油田水结垢和腐蚀问题起到很大改善作用,阻垢率达90%以上.%Due to the serious scaling problem in oil fields,especially strontium and barium scaling,a new type of barium and strontium scale inhibitor TH-607B for oil fields is developed. TH-607B is compared with several conventional scale inhibitors used in oil field. Inhibition scale performance of TH-607B and several scale inhibitors for calcium carbonate, calcium sulfate, barium sulfate and strontium sulfate is studied. The inhibition efficiency is measured according to Trade Standard SY/ T 5673-1993. The factors affecting the inhibiting rate of barium sulfate and strontium sulfate are studied. The experimental results demonstrate that TH-607B has good inhibition scale effect on barium sulfate and strontium sulfate under high temperature, high salts, high pH or low pH conditions. It will have extensive application because of its good performance in circumstance of high temperature, high salts and wide pH range. The practical application of TH-607B oil fields indicates that TH-607B has good inhibition scale and corrosion effect. The scale inhibiting rate can be over 90%.

  9. Leachability of barium-radium sulphate sludges

    International Nuclear Information System (INIS)

    This paper presents results from the first phase of a research program designed to examine the leachability of radium-226 from barium-radium sulphate sludges. Batch leaching tests were performed. Results showed that liquid:solid contact time was relatively unimportant; radium in the sludge was stable in the presence of deionized water with a slight increase in the amount leached per gram of sludge occurring at higher liquid:solid ratios. Not unexpectedly, low and high values of leachant pH increased radium leaching. Both monovalent and divalent salt solutions also increased leaching; however, dissolved radium-226 activity levels in the leachate decreased as leachant molarity increased. For divalent salts this can be explained by the common ion effect; for monovalent salts it is opposite to results expected from solubility considerations. The interpretation of all results is complicated by the fact that in most tests, the amount of radium-226 present in the leachate was lower than the calculated contribution from the mother liquour present with the sludge. This apparent ability of the sludge to absorb radium from solution may be related to dissolution and reprecipitation of the sludge during the leaching tests

  10. Validation of an in situ solidification/stabilization technique for hazardous barium and cyanide waste for safe disposal into a secured landfill.

    Science.gov (United States)

    Vaidya, Rucha; Kodam, Kisan; Ghole, Vikram; Surya Mohan Rao, K

    2010-09-01

    The aim of the present study was to devise and validate an appropriate treatment process for disposal of hazardous barium and cyanide waste into a landfill at a Common Hazardous Waste Treatment Storage Disposal Facility (CHWTSDF). The waste was generated during the process of hardening of steel components and contains cyanide (reactive) and barium (toxic) as major contaminants. In the present study chemical fixation of the contaminants was carried out. The cyanide was treated by alkali chlorination with calcium hypochlorite and barium by precipitation with sodium sulfate as barium sulfate. The pretreated mixture was then solidified and stabilized by binding with a combination of slag cement, ordinary Portland cement and fly ash, molded into blocks (5 x 5 x 5 cm) and cured for a period of 3, 7 and 28 days. The final experiments were conducted with 18 recipe mixtures of waste + additive:binder (W:B) ratios. The W:B ratios were taken as 80:20, 70:30 and 50:50. The optimum proportions of additives and binders were finalized on the basis of the criteria of unconfined compressive strength and leachability. The leachability studies were conducted using the Toxicity Characteristic Leaching Procedure. The blocks were analyzed for various physical and leachable chemical parameters at the end of each curing period. Based on the results of the analysis, two recipe mixtures, with compositions - 50% of [waste + (120 g Ca(OCl)(2) + 290 g Na(2)SO(4)) kg(-1) of waste] + 50% of binders, were validated for in situ stabilization into a secured landfill of CHWTSDF. PMID:20430516

  11. The diagnostic value of barium enema in acute appendicitis

    International Nuclear Information System (INIS)

    Acute appendicitis is the most common acute surgical condition of the abdomen. When the clinical presentation is atypical, barium enema has proven to be safe and useful in confirming the diagnosis and reducing the negative surgical exploration. However, the performance of barium enema in acute appendicitis has known contraindication primarily because of fear of leakage by perforation of the inflamed appendix. This study using barium enema as a diagnostic aid in acute appendicitis with atypical clinical presentation was performed to further support the previously noted efficacy and safety of this procedure. The results were as followings: 1. In case of acute appendicitis with atypical clinical presentation, the use of barium enema as a diagnostic aid increased the accuracy of diagnosis and decreased the negative surgical exploration. In women between 11 to 50 years old age, especially, it played important role differentiating appendicitis from nonsurgical acute abdomen. 2. The results of the study were 92.31% in sensitivity, 7.69% in false positive, 6.9% in false negative, and 10.26% in negative appendectomy. 3. None of case of leakage of barium by perforation of the inflamed appendix was noted, therefore, barium enema was thought to be safe as a diagnostic aid in acute appendicitis. 4. A simple partial or non filling of appendix without other associated positive finding could not exclude appendicitis, therefore, close clinical observation was necessary. 5. The positive findings of barium enema and their sensitivity were as followings: 1. Non filling of appendix: 90% 2. Partial filling of appendix: 91.7% 3. Displacement or a local impression on terminal ileum: 100%

  12. Preparation and Characterization on Nano-Sized Barium Titanate Powder Doped with Lanthanum by Sol-Gel Process

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The nano-sized BaTiO3:La3+ powders were prepared by sol-gel process using butyl phthalate, barium acetate and lanthanum oxide as raw material, and these samples were tested by means of TG-DTA, XRD and SEM. The results indicate that with the annealing temperature and the doped concentration rising, the powders' particle sizes will increase and decrease respectively. When annealing temperature is 900 ℃ and doped concentration is 7%, the phase is cubic without other phases, and the particle size of power is 43.34 nm.

  13. Influence of the preparation methods on the structure and magnetic properties of nanosized Al-substituted barium hexaferrite powders

    Science.gov (United States)

    Peneva, P.; Koutzarova, T.; Kolev, S.; Ghelev, Ch.; Vertruyen, B.; Henrist, C.; Closet, R.; Cloots, R.; Zaleski, A.

    2016-03-01

    We report studies on the correlation between the method of preparation, microstructure and magnetic properties of nanosized monodomain Al-substituted barium hexaferrite (BaAlFe11O19) powders. The powders were obtained by the co-precipitation and single microemulsion methods. The particles in the samples had a size between 80 nm and 135 nm depending on the synthesis conditions. The value of the saturation magnetization Ms measured was very high, namely, 66.12 emu/g. The hysteresis loop was very narrow, with the coercivity Hc being 163 Oe, which indicated that the particles were in a near-superparamagnetic state.

  14. Effect of additive particles on mechanical, thermal, and cell functioning properties of poly(methyl methacrylate cement

    Directory of Open Access Journals (Sweden)

    Khandaker M

    2014-05-01

    Full Text Available Morshed Khandaker,1 Melville B Vaughan,2 Tracy L Morris,3 Jeremiah J White,1 Zhaotong Meng1 1Department of Engineering and Physics, 2Department of Biology, 3Department of Mathematics and Statistics, University of Central Oklahoma, Edmond, OK, USA Abstract: The most common bone cement material used clinically today for orthopedic surgery is poly(methyl methacrylate (PMMA. Conventional PMMA bone cement has several mechanical, thermal, and biological disadvantages. To overcome these problems, researchers have investigated combinations of PMMA bone cement and several bioactive particles (micrometers to nanometers in size, such as magnesium oxide, hydroxyapatite, chitosan, barium sulfate, and silica. A study comparing the effect of these individual additives on the mechanical, thermal, and cell functional properties of PMMA would be important to enable selection of suitable additives and design improved PMMA cement for orthopedic applications. Therefore, the goal of this study was to determine the effect of inclusion of magnesium oxide, hydroxyapatite, chitosan, barium sulfate, and silica additives in PMMA on the mechanical, thermal, and cell functional performance of PMMA. American Society for Testing and Materials standard three-point bend flexural and fracture tests were conducted to determine the flexural strength, flexural modulus, and fracture toughness of the different PMMA samples. A custom-made temperature measurement system was used to determine maximum curing temperature and the time needed for each PMMA sample to reach its maximum curing temperature. Osteoblast adhesion and proliferation experiments were performed to determine cell viability using the different PMMA cements. We found that flexural strength and fracture toughness were significantly greater for PMMA specimens that incorporated silica than for the other specimens. All additives prolonged the time taken to reach maximum curing temperature and significantly improved cell

  15. Remarkable magnetic enhancement of type-M hexaferrite of barium in polystyrene polymer

    Directory of Open Access Journals (Sweden)

    Adly H. El-Sayed

    2015-10-01

    Full Text Available We demonstrate that the promising effect of inclusion of single magnetic-domain type-M hexaferrite of barium (BaM particles in polystyrene (PS polymer (BaM/PS weight ratio = 2/1. The results show that the coercivity of BaM particles remarkably increases from 714 to 3772 Oe and remanence increases from 2.07 to 5.41 emu.g−1 when they embedded into PS. Moreover, magnetic coercivity and squareness of the BaM-PS are significantly larger, and is comparable with corresponding values of other BaM-polymer composites. Therefore, BaM-PS composite enforce itself as the modern potential materials with tendency of replacing existing composite materials in several applications.

  16. Microstructure and magnetic properties of Al-doped barium ferrite with sodium citrate as chelate agent

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Daming, E-mail: chendaming1986@gmail.com [State Key Laboratory of Electronic Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054 (China); Liu, Yingli, E-mail: lyl@uestc.edu.cn [State Key Laboratory of Electronic Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054 (China); Li, Yuanxun; Yang, Kai; Zhang, Huaiwu [State Key Laboratory of Electronic Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054 (China)

    2013-07-15

    In this paper, M-type Al-doped barium ferrites were successfully synthesized using sodium citrate (SC) as the chelate agent by a chemical process complemented by a suitable thermal treatment of the precursor. It was found in TGA/DTA and XRD analysis that the crystallization and formation of single phase BaM had completed before 860 °C. The XRD data also confirmed Al substituting into Fe sites. Meanwhile, it can be seen from the SEM images that the particle size and morphology were not affected by Al doping. However, Al substitution played an important role on the magnetic properties. The saturation magnetization (M{sub s}) of BaAl{sub x}Fe{sub 12−x}O{sub 19} decreased from 51.43 emu/g for the sample with x=0 to 28.32 emu/g at x=1.5. The anisotropy field (H{sub a}), however, increased from 16.21 kOe to 25.01 kOe. In addition, M{sub s} increased with enhancing the ratio of SC/Ba{sup 2+}(molar ratio), reaching a maximum when SC/Ba{sup 2+} was 13. - Highlights: ► Doped barium ferrite was successfully synthesized using sodium citrate as chelate agent. ► Sodium citrate allows the mixing of metal cations in the as-synthesized barium ferrite. ► The radio of Sodium citrate/Ba{sup 2+} pay an important effect on magnetic properties.

  17. Nanosized barium hexaferrite in novolac phenolic resin as microwave absorber for X-band application

    Energy Technology Data Exchange (ETDEWEB)

    Ozah, S.; Bhattacharyya, N.S., E-mail: nidhisbhatta@gmail.com

    2013-09-15

    Nanosized barium ferrite (BaFe{sub 12}O{sub 19}) with Novolac phenolic resin (NPR) is developed as a magnetic absorber for application in the frequency range 8.2–12.4 GHz. The absorption is studied by modifying the microstructural properties of the ferrite inclusion with annealing temperature and its content in the composite. Transmission electron microscopy and X-ray diffraction pattern confirms the formation of hexagonal structure of barium ferrite. The crystallite size of the barium ferrite particles is in nano-range and increases with annealing temperature. The BaFe{sub 12}O{sub 19}/NPR composite is prepared with different weight percentage of ferrite inclusions. The complex permittivity and complex permeability is measured at X-band and found to increase with annealing temperature and contents of ferrite inclusion. Theoretical study of reflection loss gives that 2 mm absorber samples are showing the best results for X-band application. Reflection loss measurement of the samples shows absorption peak of −24.61 dB at 10.26 GHz for 30 wt%, −28.39 dB at 9.98 GHz for 40 wt% and −37.06 dB at 9.5 GHz for 50 wt% of BaFe{sub 12}O{sub 19} in NPR matrix. - Highlights: • BaFe{sub 12}O{sub 19}/NPR composite is developed as microwave absorbing material. • The maximal absorption is optimized with thickness using TLM. • Calculated reflection loss of 50 wt% for 2 mm thickness is 41.05 dB at 9.95 GHz. • Measured reflection loss of 50 wt% for 2 mm thickness is 37.06 dB at 9.5 GHz.

  18. Occupational doses in pediatric barium meal procedures

    International Nuclear Information System (INIS)

    Ionizing radiation has become an indispensable tool when it comes to diagnosis and therapy. However, its use should happen in a rational manner, taking into account the risks to which the staff is being exposed. Barium meal (BM), or upper gastrointestinal (GI) studies, using fluoroscopy, are widely used for gastroesophageal reflux disease diagnostic in children and professionals are required to stay inside the examination room to position and immobilize pediatric patients during the procedure. Therefore, it is very important that proffessionals strictly follow the technical standards of radiation protection. According to the ICRP and the NCRP recommendations, the annual limit equivalent doses for eyes, thyroid and hands are, espectively, 20 mSv, 150 mSv and 500 mSv. Based on those data, the aim of the current study is to estimate the annual equivalent dose for eyes, thyroid and hands of professionals who perform BM procedures in children. This was done using properly package LiF:Mg,Cu,P thermoluminescent dosimeters in 37 procedures; 2 pairs were positioned near each staff´s eye, 2 pairs on each professional´s neck (on and under the lead protector) and 2 pairs on both staff´s hands. The range of the estimative annual equivalent doses, for eyes, thyroid and hands, are, respectively: 14 – 36 mSv, 7 – 22 mSv and 14 – 58 mSv. Only the closest staff to the patient exceeded the annual equivalent doses in the eyes (around 80% higher than the limit set by ICRP). However, the results from this study, for hands and thyroid, compared to similar studies, show higher values. Therefore, the optimization implementation is necessary, so that the radiation levels can be reduced. (authors)

  19. Barium titanate thick films prepared by screen printing technique

    Directory of Open Access Journals (Sweden)

    Mirjana M. Vijatović

    2010-06-01

    Full Text Available The barium titanate (BaTiO3 thick films were prepared by screen printing technique using powders obtained by soft chemical route, modified Pechini process. Three different barium titanate powders were prepared: i pure, ii doped with lanthanum and iii doped with antimony. Pastes for screen printing were prepared using previously obtained powders. The thick films were deposited onto Al2O3 substrates and fired at 850°C together with electrode material (silver/palladium in the moving belt furnace in the air atmosphere. Measurements of thickness and roughness of barium titanate thick films were performed. The electrical properties of thick films such as dielectric constant, dielectric losses, Curie temperature, hysteresis loop were reported. The influence of different factors on electrical properties values was analyzed.

  20. Deoxidation Behavior of Alloys Bearing Barium in Molten Steel

    Institute of Scientific and Technical Information of China (English)

    LI Yang; JIANG Zhou-hua; JIANG Mao-fa; WANG Jun-wen; GU Wen-bing

    2003-01-01

    The deoxidation behaviors of alloys bearing barium in pipe steel were researched with MgO crucible under argon atmosphere in MoSi2 furnace at 1 873 K. The total oxygen contents of molten steel, the distribution, size and morphology of deoxidation products in the steel were surveyed. The metamorphic mechanism for deoxidation products of alloy bearing barium was also discussed. The results show that applying alloy bearing barium to the pipe steel, very low total oxygen contents can be obtained, and deoxidation products, which easily float up from molten steel, can be changed into globular shape and uniformly distributed in steel. The equilibrium time of total oxygen is about 25 min, and the terminal total oxygen contents range from 0.002 0 % to 0.002 2 % after treating with SiCa wire. The best deoxidizers are SiAlBaCa and SiAlBaCaSr.

  1. Compact pulse forming line using barium titanate ceramic material.

    Science.gov (United States)

    Kumar Sharma, Surender; Deb, P; Shukla, R; Prabaharan, T; Shyam, A

    2011-11-01

    Ceramic material has very high relative permittivity, so compact pulse forming line can be made using these materials. Barium titanate (BaTiO(3)) has a relative permittivity of 1200 so it is used for making compact pulse forming line (PFL). Barium titanate also has piezoelectric effects so it cracks during high voltages discharges due to stresses developed in it. Barium titanate is mixed with rubber which absorbs the piezoelectric stresses when the PFL is charged and regain its original shape after the discharge. A composite mixture of barium titanate with the neoprene rubber is prepared. The relative permittivity of the composite mixture is measured to be 85. A coaxial pulse forming line of inner diameter 120 mm, outer diameter 240 mm, and length 350 mm is made and the composite mixture of barium titanate and neoprene rubber is filled between the inner and outer cylinders. The PFL is charged up to 120 kV and discharged into 5 Ω load. The voltage pulse of 70 kV, 21 ns is measured across the load. The conventional PFL is made up of oil or plastics dielectrics with the relative permittivity of 2-10 [D. R. Linde, CRC Handbook of Chemistry and Physics, 90th ed. (CRC, 2009); Xia et al., Rev. Sci. Instrum. 79, 086113 (2008); Yang et al., Rev. Sci. Instrum. 81, 43303 (2010)], which increases the length of PFL. We have reported the compactness in length achieved due to increase in relative permittivity of composite mixture by adding barium titanate in neoprene rubber. PMID:22129008

  2. 75 FR 36629 - Barium Chloride From the People's Republic of China: Continuation of Antidumping Duty Order

    Science.gov (United States)

    2010-06-28

    ... International Trade Administration Barium Chloride From the People's Republic of China: Continuation of... China: Final Results of Expedited Third Sunset Review of Antidumping Duty Order, 74 FR 55814 (October 29... Barium Chloride From China, 75 FR 33824 (June 15, 2010), and Barium Chloride from China (Inv. No....

  3. Photoionization and Photoelectric Loading of Barium Ion Traps

    OpenAIRE

    Steele, A. V.; Churchill, L. R.; Griffin, P. F.; Chapman, M. S.

    2007-01-01

    Simple and effective techniques for loading barium ions into linear Paul traps are demonstrated. Two-step photoionization of neutral barium is achieved using a weak intercombination line (6s2 1S0 6s6p 3P1, 791 nm) followed by excitation above the ionization threshold using a nitrogen gas laser (337 nm). Isotopic selectivity is achieved by using a near Doppler-free geometry for excitation of the triplet 6s6p 3P1 state. Additionally, we report a particularly simple and efficient trap loading t...

  4. Equations of state for barium in high-pressure phases

    International Nuclear Information System (INIS)

    The universal equation of state with an arbitrary reference point presented by the author (Fang Zheng-Hua 1998 Phys. Rev. B 50 16 238) is applied successfully to the analysis of the experimental compression data of barium in different structural phases (I, II, and V). The comparison given in this paper shows that this equation suits for the isothermal compression behaviour of barium in the high-pressure phases (II and V) better than the Birch-Murnaghan equation. The applicability of equations of state for solids in high-pressure phases is also discussed. (author)

  5. Photoionization and Photoelectric Loading of Barium Ion Traps

    CERN Document Server

    Steele, A V; Churchill, L R; Griffin, P F

    2007-01-01

    Simple and effective techniques for loading barium ions into linear Paul traps are demonstrated. Two-step photoionization of neutral barium is achieved using a weak intercombination line (6s2 1S0 6s6p 3P1, 791 nm) followed by excitation above the ionization threshold using a nitrogen gas laser (337 nm). Isotopic selectivity is achieved by using a near Doppler-free geometry for excitation of the triplet 6s6p 3P1 state. Additionally, we report a particularly simple and efficient trap loading technique that employs an in-expensive UV epoxy curing lamp to generate photoelectrons.

  6. Esophageal intramural pseudodiverticulosis characterized by barium esophagography: a case report

    LENUS (Irish Health Repository)

    O'Connor, Owen J

    2010-05-21

    Abstract Introduction Esophageal intramural pseudodiverticulosis is a rare condition characterized by the dilatation of the submucosal glands. Case presentation We present a case of esophageal intramural pseudodiverticulosis in a 72-year-old Caucasian man who presented with dysphagia and with a background history of alcohol abuse. An upper gastrointestinal endoscopy of our patient showed an esophageal stricture with abnormal mucosal appearances, but no malignant cells were seen at biopsy. Appearances on a barium esophagram were pathognomonic for esophageal intramural pseudodiverticulosis. Conclusion We demonstrate the enduring usefulness of barium esophagography in the characterization of abnormal mucosal appearances at endoscopy.

  7. Influence of preparation route and slip casting conditions on titania and barium titanate ceramics

    Institute of Scientific and Technical Information of China (English)

    Arvind K.Nikumbh; Parag V.Adhyapak

    2012-01-01

    Titania (TiO2) and barium titanate (BaTiO3) were synthesized using three different dicarboxylates,which included oxalate,malate and tartarate.These powders were characterized by X-ray powder diffraction,scanning electron micrographs,BET specific surface area and particle size distribution.Their properties depended to a great extent on the nature of the precursor.The titania and barium titanate powders obtained from the tartarate precursor were found to be good for slip casting.Slips of these oxides with different solids contents were prepared at different pH values using both distilled water and ethanol as the dispersing agent and also with and without deflocculant.The theological behaviors of the suspensions were then determined,and the slip,green and sedimentation bulk densities were measured.The minimum viscosities were observed at pH 8.2 for the TiO2-water and pH 10.2 for the BaTiO3-water system.

  8. Synthesis of nanosized barium titanate/epoxy resin composites and measurement of microwave absorption

    Indian Academy of Sciences (India)

    M Murugan; V K Kokate; M S Bapat; A M Sapkal

    2010-12-01

    Barium titanate/epoxy resin composites have been synthesized and tested for microwave absorption/transmission. Nanocrystalline barium titanate (BaTiO3 or BT) was synthesized by the hydrothermal method and the composites of BT/epoxy resin were fabricated as thin solid slabs of four different weight ratios. BT was obtained in the cubic phase with an average particle size of 21 nm, deduced from the X-ray diffraction data. The reflection loss (RL) and transmission loss (TL) of the composite materials were measured by the reflection/transmission method using a vector network analyser R&S: ZVA40, in the frequency range 8.0–18.5 GHz (X and Ku-bands). The RL was found to be better than −10 dB over wide frequency bands. The higher RL for lower concentration of BT could be due to increase in impedance matching effects. Low TL values indicate that the absorption by BT is quite low. This could be due to formation of BT in the cubic paraelectric phase.

  9. Crystal structure of tris­(piperidinium) hydrogen sulfate sulfate

    OpenAIRE

    Lukianova, Tamara J.; Kinzhybalo, Vasyl; Pietraszko, Adam

    2015-01-01

    A novel mixed hydrogen sulfate–sulfate piperidinium salt comprises three protonated piperidinium cations, one hydrogen sulfate anion and one sulfate anion in the asymmetric unit. Strong hydrogen bonds exist between the cations and the anions giving rise to a three-dimensional structure.

  10. Characterization of trace metals on soot aerosol particles with the SP-AMS: detection and quantification

    Science.gov (United States)

    Carbone, S.; Onasch, T.; Saarikoski, S.; Timonen, H.; Saarnio, K.; Sueper, D.; Rönkkö, T.; Pirjola, L.; Häyrinen, A.; Worsnop, D.; Hillamo, R.

    2015-11-01

    A method to detect and quantify mass concentrations of trace metals on soot particles by the Aerodyne soot-particle aerosol mass spectrometer (SP-AMS) was developed and evaluated in this study. The generation of monodisperse Regal black (RB) test particles with trace amounts of 13 different metals (Na, Al, Ca, V, Cr, Mn, Fe, Ni, Cu, Zn, Rb, Sr and Ba) allowed for the determination of the relative ionization efficiency of each metal relative to black carbon (RIEmeas). The observed RIEmeas / RIEtheory values were larger than unity for Na, Rb, Ca, Sr and Ba due to thermal surface ionization (TSI) on the surface of the laser-heated RB particles. Values closer to unity were obtained for the transition metals Zn, Cu, V and Cr. Mn, Fe, and Ni presented the lowest RIEmeas / RIEtheory ratios and highest deviation from unity. The latter discrepancy is unexplained; however it may be related to problems with our calibration method and/or the formation of metal complexes that were not successfully quantified. The response of the metals to the laser power was investigated and the results indicated that a minimum pump laser current of 0.6 A was needed in order to vaporize the metals and the refractory black carbon (rBC). Isotopic patterns of metals were resolved from high-resolution mass spectra, and the mass-weighted size distributions for each individual metal ion were obtained using the high-resolution particle time-of-flight (HR-PToF) method. The RIEmeas values obtained in this study were applied to the data of emission measurements in a heavy-fuel-oil-fired heating station. Emission measurements revealed a large number of trace metals, including evidence for metal oxides and metallic salts, such as vanadium sulfate, calcium sulfate, iron sulfate and barium sulfate, which were identified in the SP-AMS high-resolution mass spectra. SP-AMS measurements of Ba, Fe, and V agreed with ICP-MS analyzed filter samples within a factor of 2 when emitted rBC mass loadings were elevated.

  11. Hydrazine Sulfate (PDQ)

    Science.gov (United States)

    ... use of hydrazine sulfate as a complementary or alternative treatment for cancer? It has been known since the early 1900s ... of CAM therapies originally considered to be purely alternative approaches are finding a place in cancer treatment—not as cures, but as complementary therapies that ...

  12. Chemical abundance analysis of 19 barium stars

    Science.gov (United States)

    Yang, Guo-Chao; Liang, Yan-Chun; Spite, Monique; Chen, Yu-Qin; Zhao, Gang; Zhang, Bo; Liu, Guo-Qing; Liu, Yu-Juan; Liu, Nian; Deng, Li-Cai; Spite, Francois; Hill, Vanessa; Zhang, Cai-Xia

    2016-01-01

    We aim at deriving accurate atmospheric parameters and chemical abundances of 19 barium (Ba) stars, including both strong and mild Ba stars, based on the high signal-to-noise ratio and high resolution Echelle spectra obtained from the 2.16 m telescope at Xinglong station of National Astronomical Observatories, Chinese Academy of Sciences. The chemical abundances of the sample stars were obtained from an LTE, plane-parallel and line-blanketed atmospheric model by inputting the atmospheric parameters (effective temperatures Teff, surface gravities log g, metallicity [Fe/H] and microturbulence velocity ξt) and equivalent widths of stellar absorption lines. These samples of Ba stars are giants as indicated by atmospheric parameters, metallicities and kinematic analysis about UVW velocity. Chemical abundances of 17 elements were obtained for these Ba stars. Their Na, Al, α- and iron-peak elements (O, Na, Mg, Al, Si, Ca, Sc, Ti, V, Cr, Mn, Ni) are similar to the solar abundances. Our samples of Ba stars show obvious overabundances of neutron-capture (n-capture) process elements relative to the Sun. Their median abundances of [Ba/Fe], [La/Fe] and [Eu/Fe] are 0.54, 0.65 and 0.40, respectively. The Y I and Zr I abundances are lower than Ba, La and Eu, but higher than the α- and iron-peak elements for the strong Ba stars and similar to the iron-peak elements for the mild stars. There exists a positive correlation between Ba intensity and [Ba/Fe]. For the n-capture elements (Y, Zr, Ba, La), there is an anti-correlation between their [X/Fe] and [Fe/H]. We identify nine of our sample stars as strong Ba stars with [Ba/Fe] >0.6 where seven of them have Ba intensity Ba=2-5, one has Ba=1.5 and another one has Ba=1.0. The remaining ten stars are classified as mild Ba stars with 0.17<[Ba/Fe] <0.54.

  13. Preparation of meta-stable phases of barium titanate by Sol-hydrothermal method

    Energy Technology Data Exchange (ETDEWEB)

    Selvaraj, Mahalakshmi [Department of Physics, R.D. Govt. Arts College, Tamilnadu, Sivaganga - 630561 (India); Department of Material Science, School of Chemistry, Madurai Kamaraj University, Tamilnadu Madurai-625 021 (India); Venkatachalapathy, V. [Department of Physics/Centre for Materials Science and Nanotechnology, University of Oslo, P.O Box 1048 Blindern, NO-0316 Oslo (Norway); Mayandi, J., E-mail: pearce@mtu.edu, E-mail: jeyanthinath@yahoo.co.in [Department of Material Science, School of Chemistry, Madurai Kamaraj University, Tamilnadu Madurai-625 021 (India); Department of Materials Science & Engineering, Michigan Technological University (United States); Karazhanov, S. [Department of Solar Energy, Institute for Energy Technology, P.O. Box 40, NO-2027 Kjeller (Norway); Pearce, J. M., E-mail: pearce@mtu.edu, E-mail: jeyanthinath@yahoo.co.in [Department of Materials Science & Engineering, Michigan Technological University (United States); Department of Electrical & Computer Engineering, Michigan Technological University (United States)

    2015-11-15

    Two low-cost chemical methods of sol–gel and the hydrothermal process have been strategically combined to fabricate barium titanate (BaTiO{sub 3}) nanopowders. This method was tested for various synthesis temperatures (100 °C to 250 °C) employing barium dichloride (BaCl{sub 2}) and titanium tetrachloride (TiCl{sub 4}) as precursors and sodium hydroxide (NaOH) as mineralizer for synthesis of BaTiO{sub 3} nanopowders. The as-prepared BaTiO{sub 3} powders were investigated for structural characteristics using x-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The overall analysis indicates that the hydrothermal conditions create a gentle environment to promote the formation of crystalline phase directly from amorphous phase at the very low processing temperatures investigated. XRD analysis showed phase transitions from cubic - tetragonal - orthorhombic - rhombohedral with increasing synthesis temperature and calculated grain sizes were 34 – 38 nm (using the Scherrer formula). SEM and TEM analysis verified that the BaTiO{sub 3} nanopowders synthesized by this method were spherical in shape and about 114 - 170 nm in size. The particle distribution in both SEM and TEM shows that as the reaction temperature increases from 100 °C to 250 °C, the particles agglomerate. Selective area electron diffraction (SAED) shows that the particles are crystalline in nature. The study shows that choosing suitable precursor and optimizing pressure and temperature; different meta-stable (ferroelectric) phases of undoped BaTiO{sub 3} nanopowders can be stabilized by the sol-hydrothermal method.

  14. Preparation of meta-stable phases of barium titanate by Sol-hydrothermal method

    Directory of Open Access Journals (Sweden)

    Mahalakshmi Selvaraj

    2015-11-01

    Full Text Available Two low-cost chemical methods of sol–gel and the hydrothermal process have been strategically combined to fabricate barium titanate (BaTiO3 nanopowders. This method was tested for various synthesis temperatures (100 °C to 250 °C employing barium dichloride (BaCl2 and titanium tetrachloride (TiCl4 as precursors and sodium hydroxide (NaOH as mineralizer for synthesis of BaTiO3 nanopowders. The as-prepared BaTiO3 powders were investigated for structural characteristics using x-ray diffraction (XRD, scanning electron microscopy (SEM and transmission electron microscopy (TEM. The overall analysis indicates that the hydrothermal conditions create a gentle environment to promote the formation of crystalline phase directly from amorphous phase at the very low processing temperatures investigated. XRD analysis showed phase transitions from cubic - tetragonal - orthorhombic - rhombohedral with increasing synthesis temperature and calculated grain sizes were 34 – 38 nm (using the Scherrer formula. SEM and TEM analysis verified that the BaTiO3 nanopowders synthesized by this method were spherical in shape and about 114 - 170 nm in size. The particle distribution in both SEM and TEM shows that as the reaction temperature increases from 100 °C to 250 °C, the particles agglomerate. Selective area electron diffraction (SAED shows that the particles are crystalline in nature. The study shows that choosing suitable precursor and optimizing pressure and temperature; different meta-stable (ferroelectric phases of undoped BaTiO3 nanopowders can be stabilized by the sol-hydrothermal method.

  15. CNO and F abundances in the barium star HD 123396

    CERN Document Server

    Alves-Brito, Alan; Yong, David; Meléndez, Jorge; Vásquez, Sergio

    2011-01-01

    [Abridged] Barium stars are moderately rare chemically peculiar objects which are believed to be the result of the pollution of an otherwise normal star by material from an evolved companion on the asymptotic giant branch (AGB). We aim to derive carbon, nitrogen, oxygen, and fluorine abundances for the first time from infrared spectra of the barium red giant star HD 123396 to quantitatively test AGB nucleosynthesis models for producing barium stars via mass accretion. High-resolution and high S/N infrared spectra were obtained using the Phoenix spectrograph mounted at the Gemini South telescope. The abundances were obtained through spectrum synthesis of individual atomic and molecular lines, using the MOOG stellar line analysis program together with Kurucz's stellar atmosphere models. The analysis was classical, using 1D stellar models and spectral synthesis under the assumption of local thermodynamic equilibrium. We confirm that HD 123396 is a metal-deficient barium star ([Fe/H] = -1.05), with A(C) = 7.88, A...

  16. Removal of barium and radium from groundwater. Environmental research brief

    International Nuclear Information System (INIS)

    A research project was undertaken to investigate processes for removing barium and radium from drinking water. Special emphasis was placed on ion exchange processes that can be used without adding large concentrations of sodium to the water. The wastes from radium and barium removal processes were also characterized, and processes suitable for treatment of ion-exchange brines were evaluated. The report discusses two ion-exchange processes that can be used for barium and radium removal accompanied by either partial or no hardness removal. The calcium-form, strong-acid ion-exchange resin can be used for barium and radium removal without significant change in hardness or the concentration of other salts. This resin can be regenerated with CaC12 brine. The radium-selective complexer (RSC) will remove radium without altering hardness or other salt concentration. The capacity of this resin for waters with low total dissolved solids (TDS) (<1000 to 2000 mg/L TDS) is in excess of 30,000 pCi/dry g; however, if the TDS is increased to about 40,000 mg/L, the capacity drops to 200 to 300 pCi/dry g. Thus using this resin to remove radium from spent brine does not appear feasible

  17. H2O2-Promoted Size Growth of Sulfated TiO2 Nanocrystals

    Institute of Scientific and Technical Information of China (English)

    YAN You-Jun; QIU Xiao-Qing; WANG Hui; LI Li-Ping; LI Guang-She

    2008-01-01

    Anatase nanoparticles modified by sulfate groups were synthesized using hydrother- mal method. The particles were controlled to large sizes by simply adjusting the amount of H2O2, in which HOO- ions replaced the surface sulfate groups and reduced the steric effect to promote the grain growth. The size-induced microstructural changes of the as-prepared nanoparticles were characterized using powder XRD, FT-IR, TG, and UV-vis analyses. The sulfate groups existed on anatase surface in unidentate and bidentate coordination forms. With the particle size reduction, bandgap energies of the as-prepared anatase nanoparticles decreased, and the desorption temperature of sulfate groups shifted towards lower temperatures.

  18. Attainment of barium hexa ferrite nanoparticles by a Pechini method;Obtencao de nanoparticulas de hexaferrita de bario pelo metodo Pechini

    Energy Technology Data Exchange (ETDEWEB)

    Galvao, Sheila B.; Timoteo, Flavio Junior J.; Machado, Tercio G.; Souto, Kesia K.O.; Floreoto, Neide T.; Paskocimas, Carlos A., E-mail: sheilabernhard@ufrnet.b [Universidade Federal do Rio Grande do Norte (UFRN), Natal, RN (Brazil). Programa de Pos Graduacao em Ciencia e Engenharia dos Materiais

    2009-07-01

    The barium hexa ferrites (BaFe{sub 12}O{sub 19}) are used as a compound of materials applied in electronic devices, as medical devices, satellites, dada servers systems, wireless systems and others. The general properties are strongly related to the microstructure and morphology, and the particles size decrease results in advantages to the majority applications, mainly the high-tech thumbnail devices. These magnetic ceramic materials, with perovskite structure, are traditionally prepared my conventional oxide mixture synthesis. In this work was studied the nanoparticle synthesis of BaFe{sub 12}O{sub 19} by the precursors polymeric method (Pechini), using as precursors the barium carbonate and the iron nitrate, under different thermal treatment conditions. The samples were characterized by XRD, Raman spectroscopy, SEM, BET, DTA and TGA. The results presented the attainment of a monophasic powder with particles size around 100 nm. (author)

  19. Calibration and measurement uncertainties of a continuous-flow cloud condensation nuclei counter (DMT-CCNC: CCN activation of ammonium sulfate and sodium chloride aerosol particles in theory and experiment

    Directory of Open Access Journals (Sweden)

    D. Rose

    2007-06-01

    Full Text Available Experimental and theoretical uncertainties in the measurement of cloud condensation nuclei (CCN with a continuous-flow thermal-gradient CCN counter from Droplet Measurement Technologies (DMT-CCNC have been assessed by model calculations and calibration experiments with ammonium sulfate and sodium chloride aerosol particles in the diameter range of 20–220 nm. Experiments have been performed in the laboratory and during field measurement campaigns, extending over a period of more than one year and covering a wide range of operating conditions (650–1020 hPa ambient pressure, 0.5–1.0 L min−1 aerosol flow rate, 20–30°C inlet temperature, 4–34 K m−1 temperature gradient. For each set of conditions, the effective water vapor supersaturation (Seff in the CCNC was determined from the measured CCN activation spectra and Köhler model calculations.

    High measurement precision was achieved under stable laboratory conditions, where relative variations of Seff in the CCNC were generally less than ±2%. During field measurements, however, the relative variability increased up to ±5–7%, which can be mostly attributed to variations of the CCNC column top temperature with ambient temperature.

    To assess the accuracy of the Köhler models used to calculate Seff, we have performed a comprehensive comparison and uncertainty analysis of the various Köhler models and thermodynamic parameterizations commonly used in CCN studies. For the relevant supersaturation range (0.05–2%, the relative deviations between different modeling approaches were as high as 25% for (NH42SO4 and 16% for NaCl. The deviations were mostly caused by the different parameterizations for the activity of water in aqueous solutions of (NH42SO4 and NaCl (activity parameterization, osmotic coefficient, and van't Hoff

  20. Radiation damage in barium fluoride detector materials

    Energy Technology Data Exchange (ETDEWEB)

    Levey, P.W.; Kierstead, J.A.; Woody, C.L.

    1988-01-01

    To develop radiation hard detectors, particularly for high energy physics studies, radiation damage is being studied in BaF/sub 2/, both undoped and doped with La, Ce, Nd, Eu, Gd and Tm. Some dopants reduce radiation damage. In La doped BaF/sub 2/ they reduce the unwanted long lifetime luminescence which interferes with the short-lived fluorescence used to detect particles. Radiation induced coloring is being studied with facilities for making optical measurements before, during and after irradiation with /sup 60/C0 gamma rays. Doses of 10/sup 6/ rad, or less, create only ionization induced charge transfer effects since lattice atom displacement damage is negligible at these doses. All crystals studied exhibit color center formation, between approximately 200 and 800 nm, during irradiation and color center decay after irradiation. Thus only measurements made during irradiation show the total absorption present in a radiation field. Both undoped and La doped BaF/sub 2/ develop damage at minimum detectable levels in the UV---which is important for particle detectors. For particle detector applications these studies must be extended to high dose irradiations with particles energetic enough to cause lattice atom displacement damage. In principle, the reduction in damage provided by dopants could apply to other applications requiring radiation damage resistant materials.

  1. Dielectric property of polyimide/barium titanate composites and its influence factors (Ⅱ)

    Institute of Scientific and Technical Information of China (English)

    Weidong LIU; Baoku ZHU; Shuhui XIE; Zhikang XU

    2008-01-01

    Using poly(amic acid) (PAA) as a precursor followed by thermal imidization, the polyimide/barium titanate composite films were successfully prepared by a direct mixing method and in situ process. The influence of processing factors, such as particle size, distribution mode and polymerization method on dielectric prop-erties was studied. Results revealed that the dielectric constant (ε) of the composite film increased by using bigger fillers or employing in situ polymerization and bimodal distribution. When the composite film contain-ing 50 Vol-% of BaTiO3 with size in 100 nm was pre-pared via in situ process, its dielectric constant reached 45 at 10 kHz.

  2. Poly (vinylidene fluoride-trifluoroethylene/barium titanate nanocomposite for ferroelectric nonvolatile memory devices

    Directory of Open Access Journals (Sweden)

    Uvais Valiyaneerilakkal

    2013-04-01

    Full Text Available The effect of barium titanate (BaTiO3 nanoparticles (particle size <100nm on the ferroelectric properties of poly (vinylidenefluoride-trifluoroethylene P(VDF-TrFE copolymer has been studied. Different concentrations of nanoparticles were added to P(VDF-TrFE using probe sonication, and uniform thin films were made. Polarisation - Electric field (P-E hysteresis analysis shows an increase in remnant polarization (Pr and decrease in coercive voltage (Vc. Piezo-response force microscopy analysis shows the switching capability of the polymer composite. The topography and surface roughness was studied using atomic force microscopy. It has been observed that this nanocomposite can be used for the fabrication of non-volatile ferroelectric memory devices.

  3. Synthesis and Characterization of Barium Titanate Powders by Sol-Gel Method

    International Nuclear Information System (INIS)

    BaTiO3 powders were prepared by the sol gel method starting from soluble precursors of barium and titanium. The synthesized powders were calcined for 2 h at different temperatures ranges from 800 to 1000 degree Celsius. Phase formation, crystal structure and crystallite size of the calcined powders were investigated using the x-ray diffraction (XRD). A scanning electron microscope (SEM) equipped with energy-dispersive x-ray spectroscopy (EDX) was used for determination of morphology and elemental composition. The XRD results showed that BaTiO3 transformed from the (pseudo)cubic to the ferroelectric tetragonal phase with increasing calcination temperature. The purity and crystallite size of BaTiO3 powders were found to increase with increasing calcination temperature in the range of 32 nm to 140 nm. Higher temperatures led to the particle growth and agglomeration. (author)

  4. Nonaqueous cold extrusion as a route for yttrium barium copper oxide wires

    International Nuclear Information System (INIS)

    Yttrium barium copper oxide (YBCO) superconducting wires of diameter 0.2 to 1 mm in the form of spirals up to 50 cm long were made by a novel nonaqueous cold extrusion technique. Finely ground YBCO powder having a set particle size distribution was intimately mixed with a polypropylene compound and extruded manually into wires which were heat-treated at controlled rates followed by oxygen annealing at 940 C for 10 h. These wires are superconducting with a Tc of 89.5 K, the XRD pattern exhibiting an orthorhombic single phase. Current density at zero field was measured to be 223 A/cm2. The surface morphology of the extruded wires and microstructure of the polished cross section of the sintered wires are also presented

  5. Barium fluoride whispering-gallery-mode disk-resonator with one billion quality-factor.

    Science.gov (United States)

    Lin, Guoping; Diallo, Souleymane; Henriet, Rémi; Jacquot, Maxime; Chembo, Yanne K

    2014-10-15

    We demonstrate a monolithic optical whispering-gallery-mode resonator fabricated with barium fluoride (BaF₂) with an ultra-high quality (Q) factor above 10⁹ at 1550 nm, and measured with both the linewidth and cavity-ring-down methods. Vertical scanning optical profilometry shows that the root mean square surface roughness of 2 nm is achieved for our mm-size disk. To the best of our knowledge, we show for the first time that one billion Q-factor is achievable by precision polishing in relatively soft crystals with mohs hardness of 3. We show that complex thermo-optical dynamics can take place in these resonators. Beside usual applications in nonlinear optics and microwave photonics, high-energy particle scintillation detection utilizing monolithic BaF₂ resonators potentially becomes feasible. PMID:25361142

  6. Properties of composition sinter prepared from fibrous barium titanate and nanometer zirconia

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Fibrous Batium Titanate particles,30-50 μm long,prepared by a hydrothermal reaction,and the monoclinic phase and nanometer Zirconia,11.6 nm long were prepared by citric acid reaction respectively.Then,the two were composite sintered to produce a new functional material by making full use of crystal-axis orientation of fibers and the activity of nanometer powder.The analydid of composition and microstructure of the new material in terms of XRD and SEM.shows that the solid solution was formed between fibers and nanometer powder,and the distance between lattice(d value)of Barium Titanate changed.But the crystal-axis orientations of fibers remain unchanged.

  7. Barium fluoride whispering-gallery-mode disk-resonator with one billion quality-factor

    CERN Document Server

    Lin, Guoping; Henriet, Rémi; Jacquot, Maxime; Chembo, Yanne K

    2015-01-01

    We demonstrate a monolithic optical whispering gallery mode resonator fabricated with barium fluoride (BaF$_2$) with an ultra-high quality ($Q$) factor above $10^9$ at $1550$ nm, and measured with both the linewidth and cavity-ring-down methods. Vertical scanning optical profilometry shows that the root mean square surface roughness of $2$ nm is achieved for our mm-size disk. To the best of our knowledge, we show for the first time that one billion $Q$-factor is achievable by precision polishing in relatively soft crystals with mohs hardness of ~$3$. We show that complex thermo-optical dynamics can take place in these resonators. Beside usual applications in nonlinear optics and microwave photonics, high energy particle scintillation detection utilizing monolithic BaF$_2$ resonators potentially becomes feasible.

  8. Off limits: sulfate below the sulfate-methane transition

    Science.gov (United States)

    Brunner, Benjamin; Arnold, Gail; Røy, Hans; Müller, Inigo; Jørgensen, Bo

    2016-07-01

    One of the most intriguing recent discoveries in biogeochemistry is the ubiquity of cryptic sulfur cycling. From subglacial lakes to marine oxygen minimum zones, and in marine sediments, cryptic sulfur cycling - the simultaneous sulfate consumption and production - has been observed. Though this process does not leave an imprint in the sulfur budget of the ambient environment - thus the term cryptic - it may have a massive impact on other element cycles and fundamentally change our understanding of biogeochemical processes in the subsurface. Classically, the sulfate-methane transition (SMT) in marine sediments is considered to be the boundary that delimits sulfate reduction from methanogenesis as the predominant terminal pathway of organic matter mineralization. Two sediment cores from Aarhus Bay, Denmark reveal the constant presence of sulfate (generally 0.1 to 0.2 mM) below the SMT. The sulfur and oxygen isotope signature of this deep sulfate (34S = 18.9‰, 18O = 7.7‰) was close to the isotope signature of bottom-seawater collected from the sampling site (34S = 19.8‰, 18O = 7.3‰). In one of the cores, oxygen isotope values of sulfate at the transition from the base of the SMT to the deep sulfate pool (18O = 4.5‰ to 6.8‰) were distinctly lighter than the deep sulfate pool. Our findings are consistent with a scenario where sulfate enriched in 34S and 18O is removed at the base of the SMT and replaced with isotopically light sulfate below. Here, we explore scenarios that explain this observation, ranging from sampling artifacts, such as contamination with seawater or auto-oxidation of sulfide - to the potential of sulfate generation in a section of the sediment column where sulfate is expected to be absent which enables reductive sulfur cycling, creating the conditions under which sulfate respiration can persist in the methanic zone.

  9. Study of the Influence Between Barium Ions and Calcium Ions on Morphology and Size of Coprecipitation in Microemulsion

    Science.gov (United States)

    Wang, Nong; Meng, Qing Luo

    2015-03-01

    In this paper, we systematically drew a series of inverse-microemulsion quasi-ternary system phase diagrams of OP-10+C8H17OH+C6H12+brine (CaCl2/BaCl2) by adjusting the ratio of CaCl2 and BaCl2. On this basis, microemulsions have been prepared with seven different molar ratios of Ca2+/Ba2+, and calcium carbonate and barium carbonate coprecipitation products were obtained by reaction with an equimolar amount of sodium carbonate. The influence of barium ion to morphology and composition of nanometer calcium carbonate were studied. These samples were characterized by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD). The SEM photographs indicated that when the content of Ca2+ was higher, some incomplete large cube of coprecipitation particles were formed in solution, but with the content of Ba2+ increased gradually, they formed a large number of small spherical particles, with the further increase of Ba2+ concentration, the particles mainly had structures of irregular polyhedron eventually. The measurement results of FTIR and XRD indicated that CaCO3 coprecipitation products gradually changed from calcite to the vaterite, eventually turned into being aragonite with the further increase of Ba2+ concentration.

  10. Dielectric properties of lead zirconate titanate thin films seeded with barium strontium titanate nanoparticles

    International Nuclear Information System (INIS)

    A low temperature synthetic method recently proposed by the authors was applied to the fabrication of lead zirconate titanate (PZT) thin films containing crystalline seeds of barium strontium titanate (BST) nanoparticles. PZT precursor and the BST particles were prepared with complex alkoxide methods. Precursor solution suspending the BST particles was spin-coated on Pt/Ti/SiO2/Si substrate to film thickness of 500-800 nm at particle concentrations of 0-25.1 mol%, and annealed at various temperatures. Seeding of BST particles prevented the formation of pyrochlore phases, which appeared at temperatures above 400 deg. C in unseeded PZT films, and induced crystallization of PZT into perovskite structures at 420 deg. C, which was more than 100 deg. C below the crystallization temperature of the unseeded PZT films. Measurement of dielectric properties at 1 kHz showed that the 25.1 mol% BST-seeded PZT films annealed at 450 deg. C had a dielectric constant as high as 300 with a dissipation factor of 0.05. Leakage current density of the film was less than 1x10-6 A/cm2 at applied electric field from 0 to 64 kV/cm

  11. Crystal structure of tris­(piperidinium) hydrogen sulfate sulfate

    OpenAIRE

    Tamara J. Lukianova; Vasyl Kinzhybalo; Adam Pietraszko

    2015-01-01

    In the title molecular salt, 3C5H12N+·HSO4−·SO42−, each cation adopts a chair conformation. In the crystal, the hydrogen sulfate ion is connected to the sulfate ion by a strong O—H...O hydrogen bond. The packing also features a number of N—H...O hydrogen bonds, which lead to a three-dimensional network structure. The hydrogen sulfate anion accepts four hydrogen bonds from two cations, whereas the sulfate ion, as an acceptor, binds to five separate piperidinium cations, forming seven hydrogen ...

  12. Design, testing, fabrication and launch support of a liquid chemical barium release payload (utilizing the liquid fluorine-barium salt/hydrazine system)

    Science.gov (United States)

    Stokes, C. S.; Smith, E. W.; Murphy, W. J.

    1972-01-01

    A payload was designed which included a cryogenic oxidizer tank, a fuel tank, and burner section. Release of 30 lb of chemicals was planned to occur in 2 seconds at the optimum oxidizer to fuel ratio. The chemicals consisted of 17 lb of liquid fluorine oxidizer and 13 lb of hydrazine-barium salt fuel mixture. The fuel mixture was 17% barium chloride, 16% barium nitrate, and 67% hydrazine, and contained 2.6 lb of available barium. Two significant problem areas were resolved during the program: explosive valve development and burner operation. The release payload was flight tested, from Wallops Island, Virginia. The release took place at an altitude of approximately 260 km. The release produced a luminous cloud which expanded very rapidly, disappearing to the human eye in about 20 seconds. Barium ion concentration slowly increased over a wide area of sky until measurements were discontinued at sunrise (about 30 minutes).

  13. The crystal growth of barium flouride in aqueous solution

    Science.gov (United States)

    Barone, J. P.; Svrjcek, D.; Nancollas, G. H.

    1983-06-01

    The kinetics of growth of barium flouride seed crystals were investigated in aqueous solution at 25°C using a constant composition method, in which the supersaturation and ionic strength were maintained constant by the addition of titrants consisting of barium nitrate and potassium flouride solutions. The rates of reaction, studied over a range of supersaturation (σ ≈ 0.4 to 1.0), were interpreted in terms of crystal growth models. A spiral growth mechanism best describes the data, and scanning electron microscopy indicates a three-dimensional growth. In the presence of inorganic additives such as phosphate, however, induction periods precede a morphological two-dimensional crystallization. Coulter Counter results show little crystal agglomeration.

  14. Electromagnetic properties of photodefinable barium ferrite polymer composites

    Directory of Open Access Journals (Sweden)

    Olusegun Sholiyi

    2014-07-01

    Full Text Available This article reports the magnetic and microwave properties of a Barium ferrite powder suspended in a polymer matrix. The sizes for Barium hexaferrite powder are 3–6 μm for coarse and 0.8–1.0 μm for the fine powder. Ratios 1:1 and 3:1 (by mass of ferrite to SU8 samples were characterized and analyzed for predicting the necessary combinations of these powders with SU8 2000 Negative photoresist. The magnetization properties of these materials were equally determined and were analyzed using Vibrating Sample Magnetometer (VSM. The Thru, Reflect, Line (TRL calibration technique was employed in determining complex relative permittivity and permeability of the powders and composites with SU8 between 26.5 and 40 GHz.

  15. Barium titanate nanoparticles: promising multitasking vectors in nanomedicine

    Science.gov (United States)

    Graziana Genchi, Giada; Marino, Attilio; Rocca, Antonella; Mattoli, Virgilio; Ciofani, Gianni

    2016-06-01

    Ceramic materials based on perovskite-like oxides have traditionally been the object of intense interest for their applicability in electrical and electronic devices. Due to its high dielectric constant and piezoelectric features, barium titanate (BaTiO3) is probably one of the most studied compounds of this family. Recently, an increasing number of studies have been focused on the exploitation of barium titanate nanoparticles (BTNPs) in the biomedical field, owing to the high biocompatibility of BTNPs and their peculiar non-linear optical properties that have encouraged their use as nanocarriers for drug delivery and as label-free imaging probes. In this review, we summarize all the recent findings about these ‘smart’ nanoparticles, including the latest, most promising potential as nanotransducers for cell stimulation.

  16. Thermophysical properties of americium-containing barium plutonate

    International Nuclear Information System (INIS)

    Polycrystalline specimens of americium-containing barium plutonate have been prepared by mixing the appropriate amounts of (Pu0.91Am0.09)O2 and BaCO3 powders followed by reacting and sintering at 1600 K under the flowing gas atmosphere of dry-air. The sintered specimens had a single phase of orthorhombic perovskite structure and were crack-free. Elastic moduli were determined from longitudinal and shear sound velocities. Debye temperature was also determined from sound velocities and lattice parameter measurements. Thermal conductivity was calculated from measured density at room temperature, literature values of heat capacity and thermal diffusivity measured by laser flash method in vacuum. Thermal conductivity of americium-containing barium plutonate was roughly independent of temperature and registered almost the same magnitude as that of BaPuO3 and BaUO3. (author)

  17. Thermoelectric power of barium up to 8 GPa

    Energy Technology Data Exchange (ETDEWEB)

    Ramani, G.; Divakar, C.; Singh, A.K.

    1987-01-15

    The present measurements indicate that the thermoelectric power (TEP) of barium at room temperature and pressure is 15 ..mu..V K/sup -1/, and decreases with increasing pressure, reaching about 4 ..mu..V K/sup -1/ just before the bcc..-->..hcp transition. The TEP shows a discontinuous increase at the bcc..-->..hcp transition beyond which it continues to decrease with increasing pressure.

  18. Acute barium intoxication following ingestion of soap water solution

    Directory of Open Access Journals (Sweden)

    Nandita Joshi

    2012-01-01

    Full Text Available We present a rare case in which a young girl ingested a solution of a hair-removing soap. The ingestion resulted in profound hypokalemia and severe acidosis leading to flaccid paralysis, respiratory arrest and ventricular arrhythmias. Ultimately the patient made complete recovery. The soapwas found to contain barium sulfide. The degree of paralysis and acidosis appeared to be directly related to serum potassium levels.

  19. Role of intensive milling in the processing of barium ferrite/magnetite/iron hybrid magnetic nano-composites via partial reduction of barium ferrite

    International Nuclear Information System (INIS)

    In this research a mixture of barium ferrite and graphite was milled for different periods of time and then heat treated at different temperatures. The effects of milling time and heat treatment temperature on the phase composition, thermal behavior, morphology and magnetic properties of the samples have been investigated using X-ray diffraction, differential thermal analysis, high resolution transmission electron microscopy and vibrating sample magnetometer techniques, respectively. X-ray diffraction results revealed that BaFe12O19/Fe3O4 nanocomposites form after a 20 h milling due to the partial reduction of BaFe12O19. High resolution transmission electron microscope images of a 40 h milled sample showed agglomerated structure consisting of nanoparticles with a mean particle size of 30 nm. Thermal analysis of the samples via differential thermal analysis indicated that for un-milled samples, heat treatment up to 900 °C did not result in α-Fe formation, while for a 20 h milled sample heat treatment at 700 °C resulted in reduction process progress to the formation of α-Fe. Wustite was disappeared in an X-ray diffraction pattern of a heat treated sample at 850 °C, by increasing the milling time from 20 to 40 h. By increasing the milling time, the structure of heat treated samples becomes magnetically softer due to an increase in saturation magnetization and a decrease in coercivity. Saturation magnetization and coercivity of a sample milled for 20 h and heat treated at 850 °C were 126.3 emu/g and 149.5 Oe which by increasing the milling time to 40 h, alter to 169.1 emu/g and 24.3 Oe, respectively. High coercivity values of milled and heat treated samples were attributed to the nano-scale formed iron particles. - Graphical abstract: Display Omitted - Highlights: • Barium ferrite and graphite were treated mechano-thermally. • Increasing milling time increases reduction progress after heat treatment. • Composites including iron nano-crystals forms by

  20. Role of intensive milling in the processing of barium ferrite/magnetite/iron hybrid magnetic nano-composites via partial reduction of barium ferrite

    Energy Technology Data Exchange (ETDEWEB)

    Molaei, M.J., E-mail: mj.molaee@merc.ac.ir [Materials and Energy Research Center, P.O. Box: 31787-316, Karaj (Iran, Islamic Republic of); Delft Chem Tech, Faculty of Applied Sciences, Delft University of Technology, Julianalaan 136, 2628 BL Delft (Netherlands); Ataie, A.; Raygan, S. [School of Metallurgy and Materials Engineering, College of Engineering, University of Tehran, P.O. Box: 14395-553, Tehran (Iran, Islamic Republic of); Picken, S.J. [Delft Chem Tech, Faculty of Applied Sciences, Delft University of Technology, Julianalaan 136, 2628 BL Delft (Netherlands)

    2015-03-15

    In this research a mixture of barium ferrite and graphite was milled for different periods of time and then heat treated at different temperatures. The effects of milling time and heat treatment temperature on the phase composition, thermal behavior, morphology and magnetic properties of the samples have been investigated using X-ray diffraction, differential thermal analysis, high resolution transmission electron microscopy and vibrating sample magnetometer techniques, respectively. X-ray diffraction results revealed that BaFe{sub 12}O{sub 19}/Fe{sub 3}O{sub 4} nanocomposites form after a 20 h milling due to the partial reduction of BaFe{sub 12}O{sub 19}. High resolution transmission electron microscope images of a 40 h milled sample showed agglomerated structure consisting of nanoparticles with a mean particle size of 30 nm. Thermal analysis of the samples via differential thermal analysis indicated that for un-milled samples, heat treatment up to 900 °C did not result in α-Fe formation, while for a 20 h milled sample heat treatment at 700 °C resulted in reduction process progress to the formation of α-Fe. Wustite was disappeared in an X-ray diffraction pattern of a heat treated sample at 850 °C, by increasing the milling time from 20 to 40 h. By increasing the milling time, the structure of heat treated samples becomes magnetically softer due to an increase in saturation magnetization and a decrease in coercivity. Saturation magnetization and coercivity of a sample milled for 20 h and heat treated at 850 °C were 126.3 emu/g and 149.5 Oe which by increasing the milling time to 40 h, alter to 169.1 emu/g and 24.3 Oe, respectively. High coercivity values of milled and heat treated samples were attributed to the nano-scale formed iron particles. - Graphical abstract: Display Omitted - Highlights: • Barium ferrite and graphite were treated mechano-thermally. • Increasing milling time increases reduction progress after heat treatment. • Composites

  1. Role of hexadecapole interaction in proton rich barium isotopes

    International Nuclear Information System (INIS)

    From the systematic analysis of the experimental data on proton rich barium isotopes, it is observed that nuclei in the region z ≥ 50 and N≤82 are the transitional nuclei as they show a shape transition from spherical to deformed shape. An interesting feature of the observed yrast spectra in barium isotopic mass chain is the systematic variation of E2+, E4+ and E6+ excitation energy states from 120Ba to 136Ba. It is observed that these states follow a systematic decreasing trend as move away from 136Ba towards 120Ba. The isotopes 120-128Ba can be taken to be quasi-deformed nuclei having E4+/E2+ ratio larger than 2.7. Based on the systematics of low-lying states and the experimental data of quadrupole moments and B(E2) transition probabilities, the stable barium isotopes range from the approximately spherical 138Ba to l30Ba which is close to the deformed 120-128Ba isotopes. The purpose of the paper is to determine the importance of octupole-octupole and hexadecapole- hexadecapole parts of the two body interaction in reproducing the observed nuclear structure properties of 120-136Ba isotopes

  2. Microwave-hydrothermal synthesis of barium strontium titanate nanoparticles

    International Nuclear Information System (INIS)

    Research highlights: → Barium strontium titanate nanoparticles were obtained by the Hydrothemal microwave technique (HTMW) → This is a genuine technique to obtain nanoparticles at low temperature and short times → Barium strontium titanate free of carbonates with tetragonal structure was grown at 130 oC. - Abstract: Hydrothermal-microwave method (HTMW) was used to synthesize crystalline barium strontium titanate (Ba0.8Sr0.2TiO3) nanoparticles (BST) in the temperature range of 100-130 oC. The crystallization of BST with tetragonal structure was reached at all the synthesis temperatures along with the formation of BaCO3 as a minor impurity at lower syntheses temperatures. Typical FT-IR spectra for tetragonal (BST) nanoparticles presented well defined bands, indicating a substantial short-range order in the system. TG-DTA analyses confirmed the presence of lattice OH- groups, commonly found in materials obtained by HTMW process. FE/SEM revealed that lower syntheses temperatures led to a morphology that consisted of uniform grains while higher syntheses temperature consisted of big grains isolated and embedded in a matrix of small grains. TEM has shown BST nanoparticles with diameters between 40 and 80 nm. These results show that the HTMW synthesis route is rapid, cost effective, and could serve as an alternative to obtain BST nanoparticles.

  3. Obtaining Highly Crystalline Barium Sulphate Nanoparticles via Chemical Precipitation and Quenching in Absence of Polymer Stabilizers

    Directory of Open Access Journals (Sweden)

    Ángela B. Sifontes

    2015-01-01

    Full Text Available Here we report the synthesis of barium sulphate (BaSO4 nanoparticles from Ba(OH2/BaCl2 solutions by a combined method of precipitation and quenching in absence of polymer stabilizers. Transmission electron microscopy (HRTEM, Fourier transforms infrared spectroscopy (FTIR, and X-ray diffraction (XRD were employed to characterize the particles. The Scherrer formula was applied to estimate the particle size using the width of the diffraction peaks. The obtained results indicate that the synthesized material is mainly composed of nanocrystalline barite, with nearly spherical morphology, and diameters ranging from 4 to 92 nm. The lattice images of nanoparticles were clearly observed by HRTEM, indicating a high degree of crystallinity and phase purity. In addition, agglomerates with diameters between 20 and 300 nm were observed in both lattice images and dynamic light scattering measurements. The latter allowed obtaining the particle size distribution, the evolution of the aggregate size in time of BaSO4 in aqueous solutions, and the sedimentation rate of these solutions from turbidimetry measurements. A short discussion on the possible medical applications is presented.

  4. Simplified assessment of segmental gastrointestinal transit time with orally small amount of barium

    International Nuclear Information System (INIS)

    Objective: To determine the effectiveness and advantage of small amount of barium in the measurement of gastrointestinal transmission function in comparison with radio-opaque pallets. Methods: Protocal 1: 8 healthy volunteers (male 6, female 2) with average age 40 ± 6.1 were subjected to the examination of radio-opaque pellets and small amount of barium with the interval of 1 week. Protocol 2: 30 healthy volunteers in group 1 (male 8, female 22) with average age 42.5 ± 8.1 and 50 patients with chronic functional constipation in group 2 (male 11, female 39) with average age 45.7 ± 7.8 were subjected to the small amount of barium examination. The small amount of barium was made by 30 g barium dissolved in 200 ml breakfast. After taking breakfast which contains barium, objectives were followed with abdominal X-ray at 4, 8, 12, 24, 48, 72, 96 h until the barium was evacuated totally. Results: Small amount of barium presented actual chyme or stool transit. The transit time of radio-opaque pallets through the whole gastrointestinal tract was significantly shorter than that of barium (37 ± 8 h vs. 47 ± 10 h, P < 0.05) in healthy people. The transit times of barium in constipation patients were markedly prolonged in colon (61.1 ± 22 vs. 37.3 ± 11, P < 0.01) and rectum (10.8 ± 3.7 vs. 2.3 ± 0.8 h, P < 0.01) compared with unconstipated volunteers. Transit times in individual gastrointestinal segments were also recorded by using small amount of barium, which allowed identifying the subtypes of constipation. Conclusion: The small amount barium examination is a convenient and low cost method to provide the most useful and reliable information on the transmission function of different gastrointestinal segments and able to classify the subtypes of slow transit constipation

  5. Barium and Tc-poor S stars: Binary masqueraders among carbon stars

    OpenAIRE

    Jorissen, A; Van Eck, S.

    1997-01-01

    The current understanding of the origin of barium and S stars is reviewed, based on new orbital elements and binary frequencies. The following questions are addressed: (i) Is binarity a necessary condition to produce a barium star? (ii) What is the mass transfer mode (wind accretion or RLOF?) responsible for their formation? (iii) Do barium stars form as dwarfs or as giants? (iv) Do barium stars evolve into Tc-poor S stars? (v) What is the relative frequency of Tc-rich and Tc-poor S stars?

  6. High Resolution Computed Tomography Appearences of late sequelae of Barium Aspiration in an asymptomatic young child

    International Nuclear Information System (INIS)

    Barium aspiration is a well-known complication of upper gastro-intestinal studies. Consequences of aspiration are generally insignificant and leave no permanent changes in the lung parenchyma. However, large quantities of high density barium, if aspirated, lead to silent interstitial changes and fibrosis. High-resolution computed tomography HRCT appearances of lung changes have been demonstrated in adults; few such reports are available in the pediatric literature. We report a case of a child who aspirated barium 3 months before this presentation. The HRCT appearances of barium aspiration are presented with a review of the literature. (author)

  7. Effects of powdered versus liquid barium on the viscosity of fluids used in modified swallow studies

    Energy Technology Data Exchange (ETDEWEB)

    Baron, J.; Alexander, T. [Univ. of Alberta, Dept. of Radiology, Edmonton, Alberta (Canada)

    2003-06-01

    To determine if the viscosity of thickened juice mixtures used in modified barium swallow studies significantly changes with the addition of powdered barium. We also describe a test formulation created using liquid barium, which has a negligible effect on juice viscosity. The viscosities of water and standardized honey- and nectar-consistency juices mixed with different amounts of powdered barium were measured by timing the laminar flow of a given initial hydrostatic head of fluid under gravity though an orifice of fixed diameter. Standardized juices were then mixed with a liquid formulation of barium and with measured quantities of water to produce viscosities that more closely equated with those of the standardized juices. With the addition of powdered barium, viscosity increased in all fluids, most markedly with the nectar-consistency juice. Liquid barium formulations maintained the viscosities of the original thickened juices. Rendering juices radio-opaque with barium powder results in dramatic increases in the viscosity of the resulting mixture and compromises diagnostic accuracy. Liquid barium preparations have the advantage that they can be rapidly and accurately dispensed by syringe, and their use does not significantly increase the viscosity of the preparation. (author)

  8. Enhanced transdermal delivery of salbutamol sulfate via ethosomes

    OpenAIRE

    Bendas, Ehab R.; Tadros, Mina I.

    2007-01-01

    The main objective of the present work was to compare the transdermal delivery of salbutamol sulfate (SS), a hydrophilic drug used as a bronchodilator, from ethosomes and classic liposomes containing different cholesterol and dicetylphosphate concentrations. All the systems were characterized for shape, particle size, and entrapment efficiency percentage, by image analysis optical microscopy or transmission electron microscopy, laser diffraction, and ultracentrifugation, respectively. In vitr...

  9. Functionalized synchrotron in-line phase-contrast computed tomography: a novel approach for simultaneous quantification of structural alterations and localization of barium-labelled alveolar macrophages within mouse lung samples

    Energy Technology Data Exchange (ETDEWEB)

    Dullin, Christian, E-mail: christian.dullin@med.uni-goettingen.de [University Medical Center Göttingen, Robert Koch Strasse 40, 37075 Göttingen (Germany); Monego, Simeone dal [Cluster in Biomedicine, AREA Science Park Basovizza, Trieste (Italy); Larsson, Emanuel [Elettra Sincrotrone Trieste, Strada Statale 14, km 163.5 in AREA Science Park, 34149 Basovizza (Trieste) (Italy); University of Trieste, Trieste (Italy); Linköping University, SE-581 83 Linkoeping (Sweden); Mohammadi, Sara [Elettra Sincrotrone Trieste, Strada Statale 14, km 163.5 in AREA Science Park, 34149 Basovizza (Trieste) (Italy); Krenkel, Martin [University of Göttingen, Göttingen (Germany); Garrovo, Chiara; Biffi, Stefania [IRCCS Burlo Garofolo, Trieste (Italy); Lorenzon, Andrea [Cluster in Biomedicine, AREA Science Park Basovizza, Trieste (Italy); Markus, Andrea [University Medical Center Göttingen, Robert Koch Strasse 40, 37075 Göttingen (Germany); Napp, Joanna [University Medical Center Göttingen, Robert Koch Strasse 40, 37075 Göttingen (Germany); Max Planck Institute for Experimental Medicine, Hermann-Rein-Strasse 3, 37075 Göttingen (Germany); University Medical Center Göttingen, Robert Koch Strasse 40, 37075 Göttingen (Germany); Salditt, Tim [University of Göttingen, Göttingen (Germany); Accardo, Agostino [University of Trieste, Trieste (Italy); Alves, Frauke [University Medical Center Göttingen, Robert Koch Strasse 40, 37075 Göttingen (Germany); Max Planck Institute for Experimental Medicine, Hermann-Rein-Strasse 3, 37075 Göttingen (Germany); University Medical Center Göttingen, Robert Koch Strasse 40, 37075 Göttingen (Germany); Tromba, Giuliana [Elettra Sincrotrone Trieste, Strada Statale 14, km 163.5 in AREA Science Park, 34149 Basovizza (Trieste) (Italy)

    2015-01-01

    This study presents an approach to increase the sensitivity of lung computed tomography (CT) imaging by utilizing in-line phase contrast CT in combination with single-distance phase-retrieval algorithms and a dedicated image-processing regime. As demonstrated here, functional CT imaging can be achieved for the assessment of both structural alterations in asthmatic mouse lung tissue and the accumulation pattern of instilled barium-sulfate-labelled macrophages in comparison with healthy controls. Functionalized computed tomography (CT) in combination with labelled cells is virtually non-existent due to the limited sensitivity of X-ray-absorption-based imaging, but would be highly desirable to realise cell tracking studies in entire organisms. In this study we applied in-line free propagation X-ray phase-contrast CT (XPCT) in an allergic asthma mouse model to assess structural changes as well as the biodistribution of barium-labelled macrophages in lung tissue. Alveolar macrophages that were barium-sulfate-loaded and fluorescent-labelled were instilled intratracheally into asthmatic and control mice. Mice were sacrificed after 24 h, lungs were kept in situ, inflated with air and scanned utilizing XPCT at the SYRMEP beamline (Elettra Synchrotron Light Source, Italy). Single-distance phase retrieval was used to generate data sets with ten times greater contrast-to-noise ratio than absorption-based CT (in our setup), thus allowing to depict and quantify structural hallmarks of asthmatic lungs such as reduced air volume, obstruction of airways and increased soft-tissue content. Furthermore, we found a higher concentration as well as a specific accumulation of the barium-labelled macrophages in asthmatic lung tissue. It is believe that XPCT will be beneficial in preclinical asthma research for both the assessment of therapeutic response as well as the analysis of the role of the recruitment of macrophages to inflammatory sites.

  10. Functionalized synchrotron in-line phase-contrast computed tomography: a novel approach for simultaneous quantification of structural alterations and localization of barium-labelled alveolar macrophages within mouse lung samples

    International Nuclear Information System (INIS)

    This study presents an approach to increase the sensitivity of lung computed tomography (CT) imaging by utilizing in-line phase contrast CT in combination with single-distance phase-retrieval algorithms and a dedicated image-processing regime. As demonstrated here, functional CT imaging can be achieved for the assessment of both structural alterations in asthmatic mouse lung tissue and the accumulation pattern of instilled barium-sulfate-labelled macrophages in comparison with healthy controls. Functionalized computed tomography (CT) in combination with labelled cells is virtually non-existent due to the limited sensitivity of X-ray-absorption-based imaging, but would be highly desirable to realise cell tracking studies in entire organisms. In this study we applied in-line free propagation X-ray phase-contrast CT (XPCT) in an allergic asthma mouse model to assess structural changes as well as the biodistribution of barium-labelled macrophages in lung tissue. Alveolar macrophages that were barium-sulfate-loaded and fluorescent-labelled were instilled intratracheally into asthmatic and control mice. Mice were sacrificed after 24 h, lungs were kept in situ, inflated with air and scanned utilizing XPCT at the SYRMEP beamline (Elettra Synchrotron Light Source, Italy). Single-distance phase retrieval was used to generate data sets with ten times greater contrast-to-noise ratio than absorption-based CT (in our setup), thus allowing to depict and quantify structural hallmarks of asthmatic lungs such as reduced air volume, obstruction of airways and increased soft-tissue content. Furthermore, we found a higher concentration as well as a specific accumulation of the barium-labelled macrophages in asthmatic lung tissue. It is believe that XPCT will be beneficial in preclinical asthma research for both the assessment of therapeutic response as well as the analysis of the role of the recruitment of macrophages to inflammatory sites

  11. BARIUM SULPHATE ABSORPTION AND THE SERUM DIAGNOSIS OF SYPHILIS.

    Science.gov (United States)

    Noguchi, H; Bronfenbrenner, J

    1911-02-01

    The so-called syphilitic antibodies can be removed from a serum by means of absorption with barium sulphate. The removal is due either to an adsorption or a mechanical absorption. The activity of the syphilitic antibodies is thereby unimpaired. The readiness with which the absorption is accomplished with barium sulphate varies considerably with different syphilitic sera. That barium sulphate exerts the same absorbing effect upon non-syphilitic serum components is made evident by the interfering property which the latter manifest in the absorption experiment of the syphilitic antibodies. The selective removal of the serum components, other than the syphilitic antibodies, by means of barium sulphate absorption is, therefore, impossible. On the other hand, a partial removal of these components, with but little removal of the syphilitic antibodies, may be effected when the content of a given serum is poor in syphilitic antibodies and comparatively rich in the indifferent serum components. But this is impossible if the conditions are reversed. The main reasons why some negative syphilitic sera may be so modified by the barium sulphate treatment as to give positive reactions, are explained below, but these apply only to those methods in which inactivated serum is employed. The inactivation reduces the antibody content to about one-fourth to one-fifth of the original. When the serum is very rich in antibodies, this does not affect the result of the fixation test. But when the amount of the antibodies is small, the process of inactivation creates conditions quite unexpected. It may produce such a condition that a given amount of the serum contains, after inactivation, only one or two antibody units, while the other serum components remain undiminished. Here one must not lose sight of the vital fact that these apparently indifferent serum constituents are not at all indifferent in the fixation processes. They may possess affinities which are similar to those of complement

  12. Suppression of the exaggerated growth of barium ferrite nanoparticles from solution using a partial substitution of Sc{sup 3+} for Fe{sup 3+}

    Energy Technology Data Exchange (ETDEWEB)

    Lisjak, Darja, E-mail: darja.lisjak@ijs.si; Bukovec, Mitja [Jožef Stefan Institute, Department for Materials Synthesis (Slovenia); Zupan, Klementina [University of Ljubljana, Faculty for Chemistry and Chemical Technology (Slovenia)

    2016-02-15

    The effect of the substitution of Sc{sup 3+} for Fe{sup 3+} in barium ferrite on the size of the resulting nanoparticles was studied. These nanoparticles, with the nominal compositions BaFe{sub 12}O{sub 19} and BaFe{sub 11.5}Sc{sub 0.5}O{sub 19}, were synthesized hydrothermally at 90–240 °C or by coprecipitation under reflux at 140 °C. The precursors were obtained using (co)precipitation at room temperature. The sizes and morphologies of the precursors and nanoparticles were inspected with transmission electron microscopy, while their structures were confirmed with a combination of X-ray powder and electron diffraction. The samples’ compositions were analyzed with energy-dispersive X-ray spectroscopy. The evolution of the particle size and its distribution with the synthesis temperature and time were studied in pure and Sc-substituted barium ferrite and correlated with the evolution of the magnetic properties. The Sc substitution in the barium ferrite results in the formation of magnetic nanoparticles with applicable magnetic properties and in a significant reduction of the exaggerated particle growth. This was explained on the basis of the reaction kinetics.

  13. Influence of La-Co substitution on the structure and magnetic properties of low-temperature sintered M-type barium ferrites

    Institute of Scientific and Technical Information of China (English)

    李颉; 张怀武; 李强; 李元勋; 郁国良

    2013-01-01

    La-Co substituted M-type barium ferrites (BaM) were prepared by traditional solid state method and sintered at low tem-perature (1173 K). X-ray diffraction (XRD), scanning electron microscopy (SEM) and vibrating sample magnetometer (VSM) were employed to investigate the influence of La-Co on the structure and magnetic properties of the samples. By sintering at 1173 K for 6 h in air, single phase M-type barium ferrites with chemical composition of Ba(LaCo)xFe12-2xO19 (x=0.0-0.5) were formed. M-H curves showed that the magnetic properties of barium ferrites were obviously effected by La-Co substitution. The saturation magnetization (Ms) and coercivity (Hc) reached the maximum value of 65.15 Am2/kg and 4165 Oe, respectively. This behavior was attributed to the sites of La-Co substitutions and the particles size. SEM revealed that the shape of ferrite particles was influenced by La-Co substitution.

  14. Study on Suface Modification of Barium Carbonate Powders with Stearic Acid%硬脂酸对碳酸钡表面改性的研究

    Institute of Scientific and Technical Information of China (English)

    刘铭; 霍冀川; 刘树信

    2011-01-01

    采用硬脂酸对碳酸钡进行表面改性,研究改性剂用量、改性温度和改性时间等因素对碳酸钡表面改性的影响.采用粒度分析、红外光谱、热重分析、扫描电镜、X射线衍射及润湿性实验对改性前后的碳酸钡进行表征.结果表明:在硬脂酸用量为1.5%(质量分数),改性温度为80℃,改性时间为30 min的条件下制备的产品性能优良,活化指数达99.2%.碳酸钡经硬脂酸改性后,粒度由4.56 μm减小至4.19 μm;硬脂酸在碳酸钡表面发生吸附键合,形成新的化学键;改性后的碳酸钡表面性质由亲水变为疏水.%The surface modification of barium carbonate powders by stearic acid was investigated. The impact of modifier dosage, modification temperature and modification time on the surface modification of barium carbonate powders were studied. The unmodified and modified barium carbonate were both tested with the particle size distribution, FTIR, TG-DSC, SEM, XRD and the experiments of wettability. The results showed that the products with excellent modification effect as well as 99.2% activation exponential were prepared in the conditions of 80 ℃, with 1.5% stearic acid added (mass fraction) and stirring for 30 min. The particle size of barium carbonate reduced from 4.56 u.m to 4.19 μm. The stearic acid molecules occurred adsorbing bond on the surface of barium carbonate, forming new chemical bonds, and the surface property of barium carbonatemodified with stearic acid was changed from hydrophilicity tohydrophobicity.

  15. Acid Sulfate Alteration in Gusev Crater, Mars

    Science.gov (United States)

    Morris, R. V.; Ming, D. W.; Catalano, J. G.

    2016-01-01

    The Mars Exploration Rover (MER) Spirit landed on the Gusev Crater plains west of the Columbia Hills in January, 2004, during the Martian summer (sol 0; sol = 1 Martian day = 24 hr 40 min). Spirit explored the Columbia Hills of Gusev Crater in the vicinity of Home Plate at the onset on its second winter (sol approximately 900) until the onset of its fourth winter (sol approximately 2170). At that time, Spirit became mired in a deposit of fined-grained and sulfate-rich soil with dust-covered solar panels and unfavorable pointing of the solar arrays toward the sun. Spirit has not communicated with the Earth since sol 2210 (January, 2011). Like its twin rover Opportunity, which landed on the opposite side of Mars at Meridiani Planum, Spirit has an Alpha Particle X-Ray Spectrometer (APXS) instrument for chemical analyses and a Moessbauer spectrometer (MB) for measurement of iron redox state, mineralogical speciation, and quantitative distribution among oxidation (Fe(3+)/sigma Fe) and coordination (octahedral versus tetrahedral) states and mineralogical speciation (e.g., olivine, pyroxene, ilmenite, carbonate, and sulfate). The concentration of SO3 in Gusev rocks and soils varies from approximately 1 to approximately 34 wt%. Because the APXS instrument does not detect low atomic number elements (e.g., H and C), major-element oxide concentrations are normalized to sum to 100 wt%, i.e., contributions of H2O, CO2, NO2, etc. to the bulk composition care not considered. The majority of Gusev samples have approximately 6 plus or minus 5 wt% SO3, but there is a group of samples with high SO3 concentrations (approximately 30 wt%) and high total iron concentrations (approximately 20 wt%). There is also a group with low total Fe and SO3 concentrations that is also characterized by high SiO2 concentrations (greater than 70 wt%). The trend labeled "Basaltic Soil" is interpreted as mixtures in variable proportions between unaltered igneous material and oxidized and SO3-rich basaltic

  16. Interaction of PACls with sulfate

    Institute of Scientific and Technical Information of China (English)

    XU Yi; WANG Dong-Sheng; TANG Hong-Xiao

    2004-01-01

    This article discusses the influential factors on Al13 separation considering the interaction of sulfate with various polyaluminum chloride(PACl). The experimental results showed that the basicity(B=[OH]/[Al]), the concentration of PACl and Al/SO4 ratio exhibited significant roles in the PACl-sulfate reaction. It indicated that different species in various PACl underwent different reaction pathway with sulfate. The Alc, colloidal species, formed precipitation quickly with sulfate, while Alb, oligomers and polymers, undergoes slow crystallization. And Ala, monomers, reacts with sulfate to form soluble complexes. The kinetic difference of reaction made it possible to realize the separation of Alb and further purification. The decrease of Ala resulted in the limit of ferron method was also mentioned.

  17. Nanofibers obtained by electrospinning of BaTiO3 particles dispersed in polyvinyl alcohol and ethylcellulose

    Energy Technology Data Exchange (ETDEWEB)

    Avila, Humar A.; Reboredo, Maria M.; Castro, Miriam; Parra, Rodrigo, E-mail: havila@fi.mdp.edu.ar [Instituto de Investigaciones en Ciencia y Tecnologia de Materiales - INTEMA, Consejo Nacional de Investigaciones Cientificas y Tecnicas - CONICET, Universidad Nacional de Mar del Plata - UNMdP, Mar del Plata (Argentina)

    2013-11-01

    Barium titanate particles (100-300 nm) synthesized by hydrothermal method were dispersed in both polyvinyl alcohol (PVA) and ethylcellulose (EC) solutions. These suspensions were processed by electrospinning. When no particles were added, homogeneous polymeric nanofibers were obtained. Under certain conditions, polymeric suspensions of barium titanate particles were electrospun generating polymeric fibers with BT particles. The effect of a surfactant was also assessed over the formation of nanofibers. The BaTiO{sub 3} particles synthesized by hydrothermal method were characterized by X-Ray diffraction (XRD), field emission-scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM) and Raman spectroscopy. Fibers were characterized by scanning electron microscopy (SEM). (author)

  18. Tungsten and barium transport in the internal plasma of hollow cathodes

    Science.gov (United States)

    Polk, James E.; Mikellides, Ioannis G.; Katz, Ira; Capece, Angela M.

    2009-06-01

    The effect of tungsten erosion, transport, and redeposition on the operation of dispenser hollow cathodes was investigated in detailed examinations of the discharge cathode inserts from 8200 h and 30 352 h ion engine wear tests. Erosion and subsequent redeposition of tungsten in the electron emission zone at the downstream end of the insert reduce the porosity of the tungsten matrix, preventing the flow of barium from the interior. This inhibits the interfacial reactions of the barium-calcium-aluminate impregnant with the tungsten in the pores. A numerical model of barium transport in the internal xenon discharge plasma shows that the barium required to reduce the work function in the emission zone can be supplied from upstream through the gas phase. Barium that flows out of the pores of the tungsten insert is rapidly ionized in the xenon discharge and pushed back to the emitter surface by the electric field and drag from the xenon ion flow. This barium ion flux is sufficient to maintain a barium surface coverage at the downstream end greater than 0.6, even if local barium production at that point is inhibited by tungsten deposits. The model also shows that the neutral barium pressure exceeds the equilibrium vapor pressure of the impregnant decomposition reaction over much of the insert length, so the reactions are suppressed. Only a small region upstream of the zone blocked by tungsten deposits is active and supplies the required barium. These results indicate that hollow cathode failure models based on barium depletion rates in vacuum dispenser cathodes are very conservative.

  19. The impact of dust on sulfate aerosol, CN and CCN during an East Asian dust storm

    Directory of Open Access Journals (Sweden)

    P. T. Manktelow

    2010-01-01

    Full Text Available A global model of aerosol microphysics is used to simulate a large East Asian dust storm during the ACE-Asia experiment. We use the model together with size resolved measurements of aerosol number concentration and composition to examine how dust modified the production of sulfate aerosol and the particle size distribution in East Asian outflow. Simulated size distributions and mass concentrations of dust, sub- and super-micron sulfate agree well with observations from the C-130 aircraft. Modeled mass concentrations of fine sulfate (Dp<1.3 μm decrease by ~10% due to uptake of sulfur species onto super-micron dust. We estimate that dust enhanced the mass concentration of coarse sulfate (Dp>1.0 μm by more than an order of magnitude, but total sulfate concentrations increase by less than 2% because decreases in fine sulfate have a compensating effect. Our analysis shows that the sulfate associated with dust can be explained largely by the uptake of H2SO4 rather than reaction of SO2 on the dust surface, which we assume is suppressed once the particles are coated in sulfate. We suggest that many previous model investigations significantly overestimated SO2 oxidation on East Asian dust, possibly due to the neglect of surface saturation effects. We extend previous model experiments by examining how dust modified existing particle concentrations in Asian outflow. Total particle concentrations (condensation nuclei, CN modeled in the dust-pollution plume are reduced by up to 20%, but we predict that dust led to less than 10% depletion in particles large enough to act as cloud condensation nuclei (CCN. Our analysis suggests that E. Asian dust storms have only a minor impact on sulfate particles present at climate-relevant sizes.

  20. The impact of dust on sulfate aerosol, CN and CCN during an East Asian dust storm

    Directory of Open Access Journals (Sweden)

    P. T. Manktelow

    2009-07-01

    Full Text Available A global model of aerosol microphysics is used to simulate a large East Asian dust storm during the ACE-Asia experiment. We use the model together with size resolved measurements of aerosol number concentration and composition to examine how dust modified the production of sulfate aerosol and the particle size distribution in East Asian outflow. Simulated size distributions and mass concentrations of dust, sub- and super-micron sulfate agree well with observations from the C-130 aircraft. Modelled mass concentrations of fine sulfate (Dp<1.3 μm decrease by ~10% due to uptake of sulfur species onto super-micron dust. We estimate that dust enhanced the mass concentration of coarse sulfate (Dp<1.0 μm by more than an order of magnitude, but total sulfate concentrations increase by less than 2% because decreases in fine sulfate have a compensating effect. Our analysis shows that the sulfate associated with dust can be explained largely by the uptake of H2SO4 rather than reaction of SO2 on the dust surface, which we assume is suppressed once the particles are coated in sulfate. We suggest that many previous model investigations significantly overestimated SO2 oxidation on East Asian dust, possibly due to the neglect of surface saturation effects. We extend previous model experiments by examining how dust modified existing particle concentrations in Asian outflow. Total particle concentrations modelled in the dust-pollution plume are reduced by up to 20%, but we predict that dust led to less than 10% depletion in particles large enough to act as cloud condensation nuclei. Our analysis suggests that E. Asian dust storms have only a minor impact on sulfate particles present at climate-relevant sizes.

  1. Biogenic, anthropogenic and sea salt sulfate size-segregated aerosols in the Arctic summer

    Science.gov (United States)

    Ghahremaninezhad, Roghayeh; Norman, Ann-Lise; Abbatt, Jonathan P. D.; Levasseur, Maurice; Thomas, Jennie L.

    2016-04-01

    Size-segregated aerosol sulfate concentrations were measured on board the Canadian Coast Guard Ship (CCGS) Amundsen in the Arctic during July 2014. The objective of this study was to utilize the isotopic composition of sulfate to address the contribution of anthropogenic and biogenic sources of aerosols to the growth of the different aerosol size fractions in the Arctic atmosphere. Non-sea-salt sulfate is divided into biogenic and anthropogenic sulfate using stable isotope apportionment techniques. A considerable amount of the average sulfate concentration in the fine aerosols with a diameter 63 %), which is higher than in previous Arctic studies measuring above the ocean during fall ( 30 %) (Norman et al., 1999). The anthropogenic sulfate concentration was less than that of biogenic sulfate, with potential sources being long-range transport and, more locally, the Amundsen's emissions. Despite attempts to minimize the influence of ship stack emissions, evidence from larger-sized particles demonstrates a contribution from local pollution. A comparison of δ34S values for SO2 and fine aerosols was used to show that gas-to-particle conversion likely occurred during most sampling periods. δ34S values for SO2 and fine aerosols were similar, suggesting the same source for SO2 and aerosol sulfate, except for two samples with a relatively high anthropogenic fraction in particles Arctic Ocean during the productive summer months.

  2. Sources of Size Segregated Sulfate Aerosols in the Arctic Summer

    Science.gov (United States)

    Ghahremaninezhadgharelar, R.; Norman, A. L.; Abbatt, J.; Levasseur, M.

    2015-12-01

    Aerosols drive significant radiative forcing and affect Arctic climate. Despite the importance of these particles in Arctic climate change, there are some key uncertainties in the estimation of their effects and sources. Aerosols in six size fractions between Ship (CCGS) Amundsen in the Arctic, during July 2014. A cascade impactor fitted to a high volume sampler was used for this study and was modified to permit collection of SO2 after aerosols were removed from the gas stream. The isotopic composition of sulfate aerosols and SO2 was measured and apportionment calculations have been performed to quantify the contribution of biogenic as well as anthropogenic sources to the growth of different aerosol size fractions in the atmosphere. The presence of sea salt sulfate aerosols was especially high in coarse mode aerosols as expected. The contribution of biogenic sulfate concentration in this study was higher than anthropogenic sulfate. Around 70% of fine aerosols (Arctic climate. Despite the importance of these particles in Arctic climate change, there are some key uncertainties in the estimation of their effects and sources. Aerosols in six size fractions between Ship (CCGS) Amundsen in the Arctic, during July 2014. A cascade impactor fitted to a high volume sampler was used for this study and was modified to permit collection of SO2 after aerosols were removed from the gas stream. The isotopic composition of sulfate aerosols and SO2 was measured and apportionment calculations have been performed to quantify the contribution of biogenic as well as anthropogenic sources to the growth of different aerosol size fractions in the atmosphere. The presence of sea salt sulfate aerosols was especially high in coarse mode aerosols as expected. The contribution of biogenic sulfate concentration in this study was higher than anthropogenic sulfate. Around 70% of fine aerosols (<0.49 μm) and 86% of SO2 were from biogenic sources. Concentrations of biogenic sulfate for fine

  3. Anion and cation diffusion in barium titanate and strontium titanate

    International Nuclear Information System (INIS)

    Perovskite oxides show various interesting properties providing several technical applications. In many cases the defect chemistry is the key to understand and influence the material's properties. In this work the defect chemistry of barium titanate and strontium titanate is analysed by anion and cation diffusion experiments and subsequent time-of-flight secondary ion mass spectrometry (ToF-SIMS). The reoxidation equation for barium titanate used in multi-layer ceramic capacitors (MLCCs) is found out by a combination of different isotope exchange experiments and the analysis of the resulting tracer diffusion profiles. It is shown that the incorporation of oxygen from water vapour is faster by orders of magnitude than from molecular oxygen. Chemical analysis shows the samples contain various dopants leading to a complex defect chemistry. Dysprosium is the most important dopant, acting partially as a donor and partially as an acceptor in this effectively acceptor-doped material. TEM and EELS analysis show the inhomogeneous distribution of Dy in a core-shell microstructure. The oxygen partial pressure and temperature dependence of the oxygen tracer diffusion coefficients is analysed and explained by the complex defect chemistry of Dy-doped barium titanate. Additional fast diffusion profiles are attributed to fast diffusion along grain boundaries. In addition to the barium titanate ceramics from an important technical application, oxygen diffusion in cubic, nominally undoped BaTiO3 single crystals has been studied by means of 18O2/16O2 isotope exchange annealing and subsequent determination of the isotope profiles in the solid by ToF-SIMS. It is shown that a correct description of the diffusion profiles requires the analysis of the diffusion through the surface space-charge into the material's bulk. Surface exchange coefficients, space-charge potentials and bulk diffusion coefficients are analysed as a function of oxygen partial pressure and temperature. The data

  4. Biological sulfate removal from acrylic fiber manufacturing wastewater using a two-stage UASB reactor

    Institute of Scientific and Technical Information of China (English)

    Jin Li; Jun Wang; Zhaokun Luan; Zhongguang Ji; Lian Yu

    2012-01-01

    A two-stage UASB reactor was employed to remove sulfate from acrylic fiber manufacturing wastewater.Mesophilic operation (35±0.5℃) was performed with hydraulic retention time (HRT) varied between 28 and 40 hr.Mixed liquor suspended solids (MLSS)in the reactor was maintained about 8000 mg/L.The results indicated that sulfate removal was enhanced with increasing the ratio of COD/SO42-.At low COD/SO42-,the growth of the sulfate-reducing bacteria (SRB) was carbon-limited.The optimal sulfate removal efficiencies were 75% when the HRT was no less than 38 hr.Sulfidogenesis mainly happened in the sulfate-reducing stage,while methanogenesis in the methane-producing stage.Microbes in sulfate-reducing stage performed granulation better than that in methaneproducing stage.Higher extracellular polymeric substances (EPS) content in sulfate-reducing stage helped to adhere and connect the flocculent sludge particles together.SRB accounted for about 31% both in sulfate-reducing stage and methane-producing stage at COD/SO42- ratio of 0.5,while it dropped dramatically from 34% in sulfate-reducing stage to 10% in methane-producing stage corresponding to the COD/SO42- ratio of 4.7.SRB and MPA were predominant in sulfate-reducing stage and methane-producing stage respectively.

  5. Synthesis and characterization of nickel/barium hexa-aluminate composite coatings

    Indian Academy of Sciences (India)

    Dinesh Kumar; Sampada Gurav; Vikram Jayaram; Sanjay Kumar Biswas

    2012-11-01

    Electrodeposition of nickel/barium hexa-aluminate (Ni/BHA) composite coatings has been carried out from a Watt’s bath on mild steel substrate. BHA powders with plate habit were synthesized by solution combustion synthesis followed by heat treatment to ensure complete conversion to the hexa-aluminate phase. Heat treated material was characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) combined with X-ray analysis. The dispersion behaviour and stability of BHA suspensions with cationic and anionic surfactants at room temperature were studied by dynamic light scattering under different pH. The influence of BHA concentration in the electrolytic bath, deposition temperature, pH, current density and duty cycle on particle incorporation in the coatings were studied and conditions for maximum particle incorporation were established. Coatings with a roughness of about 0.4 m were produced by using this technique. Effect of BHA content on microhardness was also investigated. A reasonably good thickness of the coatings was achieved in a given set of conditions.

  6. A Search for the Electron EDM using Europium-Barium Titanates

    Science.gov (United States)

    Eckel, Stephen P.

    The discovery of a permanent electric dipole moment (EDM) of a fundamental particle would prove a great discovery in modern physics; such an EDM would violate two or three of the core symmetries of the fundamental forces of nature. Many models that go beyond the standard model of particle physics produce EDMs with magnitudes approaching the level detectable by the next generation of experiments. One possibility for such an experiment involves the use of a solid sample at low temperatures. In a paramagnetic material, the unpaired electrons, if they possess an EDM, can interact with the polarization of the sample and produce a magnetization that can be detected. This dissertation discusses an incarnation of such an experiment based on mixed europium-barium titanates. Such an experiment offers several advantages over other solid-state and atomic EDM searches including larger electron EDM induced interactions and the ability to measure without an applied electric field. This experiment has produced the world's best limit on the electron EDM to date from a solid sample, at |de| < 6.05 × 10-25 ecm (90% confidence limit). While this limit represents an improvement in the realm of solid-state experiments, it is not yet competitive with similar molecular and atomic experiments. However, there are many possibilities that could produce a superior solid-state experiment, and these will be discussed.

  7. Barium Swallow Findings in the Evaluation of Patients with Dysphagia

    Directory of Open Access Journals (Sweden)

    Amirhosein Hashemi Attar

    2011-05-01

    Full Text Available Background/Objective: Dysphagia is a subjective"nsensation of difficulty in swallowing that has a wide"nrange of etiologies from psychosomatic disorders"nto high grade neoplasms. In this study we evaluated"nbarium swallow findings of patients with dysphagia."nPatients and Methods: We evaluated 200 patients"n(117 men, 83 women; mean age, 49.6 years with"ncomplaint of dysphagia. Fluoroscopic barium"nswallow was done for all the patients and they were"nreviewed for primary peristalsis (presence or absence,"nAbstracts"nS62 Iran J Radiol 2011, 8 (Supp.1"nAbstracts"nimpaired lower esophageal sphincter, esophageal dilatation, delayed emptying of barium, nonperistaltic contractions, stricture and filling defects. Clinical and in some cases endoscopic or manometric follow up was done for all patients."nResults: We had 134 (67% normal barium swallow"nexams with uncomplicated clinical courses. Sixty"nsix patients (33% had abnormal imaging findings"nincluding stricture in 24 patients (12%, filling defect"nin 12 patients (6% and mucosal abnormality in 14"n(7% patients (six cases of mucosal irregularity, three"ncases of mucosal ulceration and five cases of mucosal"nherniation, Bird's beak sign in three patients (1.5%,"ntertiary spasm in six patients (3% and hiatal hernia in"nseven patients (3.5%."nConclusion: In the majority of patients with dysphagia,"nbarium swallow is the only paraclinical study needed"nto plan proper treatment. If radiographic findings are"nequivocal, endoscopy or manometry may be required"nfor more certain diagnosis.

  8. A barium-rich binary central star in Abell 70

    CERN Document Server

    Boffin, Henri M J; Frew, D J; Acker, A; Köppen, J; Moffat, A F J; Parker, Q A

    2011-01-01

    We have found the central star of Abell 70 (PN G038.1-25.4, hereafter A 70) to be a binary consisting of a G8 IV-V secondary and a hot white dwarf. The secondary shows enhanced Ba II and Sr II features, firmly classifying it as a barium star. The nebula is found to have Type-I chemical abundances with helium and nitrogen enrichment, which combined with future abundance studies of the central star, will establish A 70 as a unique laboratory for studying s-process AGB nucleosynthesis.

  9. Strain engineered barium strontium titanate for tunable thin film resonators

    Energy Technology Data Exchange (ETDEWEB)

    Khassaf, H.; Khakpash, N. [Department of Materials Science and Engineering and Institute of Materials Science, University of Connecticut, Storrs, Connecticut 06269 (United States); Sun, F. [Department of Physics, University of Connecticut, Storrs, Connecticut 06269 (United States); Sbrockey, N. M.; Tompa, G. S. [Structured Materials Industries, Inc., Piscataway, New Jersey 08854 (United States); Kalkur, T. S. [Department of Electrical and Computer Engineering, University of Colorado at Colorado Springs, Colorado Springs, Colorado 80918 (United States); Alpay, S. P., E-mail: p.alpay@ims.uconn.edu [Department of Materials Science and Engineering and Institute of Materials Science, University of Connecticut, Storrs, Connecticut 06269 (United States); Department of Physics, University of Connecticut, Storrs, Connecticut 06269 (United States)

    2014-05-19

    Piezoelectric properties of epitaxial (001) barium strontium titanate (BST) films are computed as functions of composition, misfit strain, and temperature using a non-linear thermodynamic model. Results show that through adjusting in-plane strains, a highly adaptive rhombohedral ferroelectric phase can be stabilized at room temperature with outstanding piezoelectric response exceeding those of lead based piezoceramics. Furthermore, by adjusting the composition and the in-plane misfit, an electrically tunable piezoelectric response can be obtained in the paraelectric state. These findings indicate that strain engineered BST films can be utilized in the development of electrically tunable and switchable surface and bulk acoustic wave resonators.

  10. K-shell fluorescence yields of barium and lanthanum

    International Nuclear Information System (INIS)

    K-shell fluorescence yields for barium and lanthanum have been measured adopting simple 2π geometrical configuration and employing a weak 57Co radioactive source. A scintillation spectrometer with an NaI(Tl) detector of dimensions 44.5 mm diameterx50 mm thickness was employed for the detection and measurement of radiation. The results obtained are in good agreement with the best-fitted values of and also with the other experimental values, indicating that our simple method can be extended to determine fluorescence parameters of high Z materials.

  11. The Kerr nonlinearity of the beta-barium borate crystal

    DEFF Research Database (Denmark)

    Bache, Morten; Guo, Hairun; Zhou, Binbin;

    2013-01-01

    A popular crystal for ultrafast cascading experiments is beta-barium-borate (β-BaB2O4, BBO). It has a decent quadratic nonlinear coefficient, and because the crystal is anisotropie it can be birefringence phase-matched for type I (oo → e) second-harmonic generation (SHG). For femtosecond...... experiments BBO is popular because of low dispersion and a high damage threshold. The main attractive property of ultrafast cascading is that the induced cascading nonlinearity nI 2, casc can be negative, i.e. generate a self-defocusing Kerr-like nonlinearity. However, the material Kerr nonlinearity nI 2...

  12. The Kerr nonlinearity of the beta-barium borate crystal

    OpenAIRE

    Bache, Morten; Guo, Hairun; Zhou, Binbin; Zeng, Xianglong

    2013-01-01

    A popular crystal for ultrafast cascading experiments is beta-barium-borate (β-BaB2O4, BBO). It has a decent quadratic nonlinear coefficient, and because the crystal is anisotropie it can be birefringence phase-matched for type I (oo → e) second-harmonic generation (SHG). For femtosecond experiments BBO is popular because of low dispersion and a high damage threshold. The main attractive property of ultrafast cascading is that the induced cascading nonlinearity nI 2, casc can be negative, i.e...

  13. Investigation on the effects of milling atmosphere on synthesis of barium ferrite/magnetite nanocomposite

    NARCIS (Netherlands)

    Molaei, M.J.; Ataie, A.; Raygan, S.; Picken,n S.J.

    2011-01-01

    In this research, barium ferrite /magnetite nanocomposites synthesized via a mechano-chemical route. Graphite was used in order to reduce hematite content of barium ferrite to magnetite to produce a magnetic nanocomposite. The effects of processing conditions on the powder characteristics were inves

  14. Acute respiratory failure caused by aspiration of high density barium: A case report

    International Nuclear Information System (INIS)

    Accidental aspiration of barium contrast medium during the upper gastrointestinal study can occur in patients with swallowing disorder, especially in the elderly patients. We experienced a case of respiratory failure followed by death within a few hours in 85 year-old patient after barium aspiration

  15. New efficient catalyst for ammonia synthesis: barium-promoted cobalt on carbon

    DEFF Research Database (Denmark)

    Hagen, Stefan; Barfod, Rasmus; Fehrmann, Rasmus;

    2002-01-01

    Barium-promoted cobalt catalysts supported on carbon exhibit higher ammonia activities at synthesis temperatures than the commercial, multipromoted iron catalyst and also a lower ammonia......Barium-promoted cobalt catalysts supported on carbon exhibit higher ammonia activities at synthesis temperatures than the commercial, multipromoted iron catalyst and also a lower ammonia...

  16. Anion and cation diffusion in barium titanate and strontium titanate; Anionen- und Kationendiffusion in Barium- und Strontiumtitanat

    Energy Technology Data Exchange (ETDEWEB)

    Kessel, Markus Franz

    2012-12-19

    Perovskite oxides show various interesting properties providing several technical applications. In many cases the defect chemistry is the key to understand and influence the material's properties. In this work the defect chemistry of barium titanate and strontium titanate is analysed by anion and cation diffusion experiments and subsequent time-of-flight secondary ion mass spectrometry (ToF-SIMS). The reoxidation equation for barium titanate used in multi-layer ceramic capacitors (MLCCs) is found out by a combination of different isotope exchange experiments and the analysis of the resulting tracer diffusion profiles. It is shown that the incorporation of oxygen from water vapour is faster by orders of magnitude than from molecular oxygen. Chemical analysis shows the samples contain various dopants leading to a complex defect chemistry. Dysprosium is the most important dopant, acting partially as a donor and partially as an acceptor in this effectively acceptor-doped material. TEM and EELS analysis show the inhomogeneous distribution of Dy in a core-shell microstructure. The oxygen partial pressure and temperature dependence of the oxygen tracer diffusion coefficients is analysed and explained by the complex defect chemistry of Dy-doped barium titanate. Additional fast diffusion profiles are attributed to fast diffusion along grain boundaries. In addition to the barium titanate ceramics from an important technical application, oxygen diffusion in cubic, nominally undoped BaTiO{sub 3} single crystals has been studied by means of {sup 18}O{sub 2}/{sup 16}O{sub 2} isotope exchange annealing and subsequent determination of the isotope profiles in the solid by ToF-SIMS. It is shown that a correct description of the diffusion profiles requires the analysis of the diffusion through the surface space-charge into the material's bulk. Surface exchange coefficients, space-charge potentials and bulk diffusion coefficients are analysed as a function of oxygen partial

  17. Separation of chloride and sulfate ions in univalent and divalent cation forms from aqueous streams.

    Science.gov (United States)

    Bader, M S

    2000-04-28

    The precipitation and separation of chloride and sulfate in several cation forms (sodium, potassium, magnesium, calcium, strontium, and barium) from aqueous streams were studied using isopropylamine (IPA) and ethylamine (EA) as precipitation solvents. The precipitation fractions (P) of the tested chloride salts at 5000 and 10,000 ppm by both IPA and EA over the studied range of solvents volume ratio (V(R)) were relatively identical (18-60%) and their small variations were within their experimental uncertainty. The P of combined sulfate at 1000 ppm (56-99.5%) and chloride at 5000 ppm (28-62%) in the form of calcium by IPA over the studied range of V(R) were appreciably higher than the P of sulfate (10-98.5%) from calcium sulfate in the absence of calcium chloride, or the P of chloride (18-58%) from calcium chloride in the absence of calcium sulfate. The P of chloride from oil-field-produced waters at 106,654 ppm (20-88%) by both IPA and EA were higher than the P of chloride from diluted produced water at 20,000 (17-68%) and 10,000 ppm (16-65%) over the studied range of V(R). The small amounts of sulfate present in the produced waters (e.g., 435 ppm) were completely removed at V(R) of 0.1 (the first stage of precipitation). Consistency tests performed on the acquired data indicated a good level of experimental consistency. Two model equations (2-Suffix and 3-Suffix) derived from thermodynamic principles of solid-liquid equilibrium (SLE) criteria were employed to correlate the acquired data. While both equations were adequate for correlating the precipitation data, the 3-Suffix equation was more accurate.

  18. Sulfated compounds from marine organisms.

    Science.gov (United States)

    Kornprobst, J M; Sallenave, C; Barnathan, G

    1998-01-01

    More than 500 sulfated compounds have been isolated from marine organisms so far but most of them originate from two phyla only, Spongia and Echinodermata. The sulfated compounds are presented according to the phyla they have been identified from and to their chemical structures. Biological activities, when available, are also given. Macromolecules have also been included in this review but without structural details. PMID:9530808

  19. New Technique for Barium Daughter Ion Identification in a Liquid Xe-136 Double Beta Decay Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Fairbank, William [Colorado State Univ., Fort Collins, CO (United States)

    2016-06-08

    This work addresses long-standing issues of fundamental interest in elementary particle physics. The most important outcome of this work is a new limit on neutrinoless double beta decay. This is an extremely rare and long sought after type of radioactive decay. If discovered, it would require changes in the standard model of the elementary constituents of matter, and would prove that neutrinos and antineutrinos are the same, a revolutionary concept in particle physics. Neutrinos are major components of the matter in the universe that are so small and so weakly interacting with other matter that their masses have not yet been discovered. A discovery of neutrinoless double beta decay could help determine the neutrino masses. An important outcome of the work on this project was the Colorado State University role in operating the EXO-200 neutrinoless double beta decay experiment and in analysis of the data from this experiment. One type of double beta decay of the isotope 136Xe, the two-neutrino variety, was discovered in this work. Although the other type of double beta decay, the neutrinoless variety, was not yet discovered in this work, a world’s best sensitivity of 1.9x1025 year half-life was obtained. This result rules out a previous claim of a positive result in a different isotope. This work also establishes that the masses of the neutrinos, are less than one millionth of that of electrons. A unique EXO-200 analysis, in which the CSU group had a leading role, has established for the first time ever in a liquid noble gas the fraction of daughter atoms from alpha and beta decay that are ionized. This result has important impact on other pending studies, including nucleon decay and barium tagging. Novel additional discoveries include multiphoton ionization of liquid xenon with UV pulsed lasers, which may find application in calibration of future noble liquid detectors, and studies of association and dissociation reactions of Ba+ ions in gaseous xenon. Through

  20. Ruthenium and hafnium abundances in giant and dwarf barium stars

    CERN Document Server

    Allen, D M

    2007-01-01

    We present abundances for Ru and Hf, compare them to abundances of other heavy elements, and discuss the problems found in determining Ru and Hf abundances with laboratory gf-values in the spectra of barium stars. We determined Ru and Hf abundances in a sample of giant and dwarf barium stars, by the spectral synthesis of two RuI (4080.574A and 4757.856A) and two HfII (4080.437A and 4093.155A) transitions. The stellar spectra were observed with FEROS/ESO, and the stellar atmospheric parameters lie in the range 4300 < Teff/K < 6500, -1.2 < [Fe/H] <= 0 and 1.4 <= log g < 4.6. The HfII 4080A and the RuI 4758A observed transitions result in a unreasonably high solar abundance, given certain known uncertainties, when fitted with laboratory gf-values. For these two transitions we determined empirical gf-values by fitting the observed line profiles of the spectra of the Sun and Arcturus. For the sample stars, this procedure resulted in a good agreement of Ru and Hf abundances given by the two availa...

  1. Materials Synthesis Of Barium Hexa ferrite Used Local Natural Resources

    International Nuclear Information System (INIS)

    The magnetic materials of barium hexa ferrites, Ba O.6Fe2O3 successfully synthesized by powder metallurgy method used local natural resources from materials waste of steel fabrication (HSM, CRM), waste of polymer fabrication (LK) as well as iron sands (PBA). These waste as well as iron sands were the main resources of iron oxide, Fe2O3. The barium oxide used in this experiments are from BaCO3 product of Merck, and BaCO4 which is commercially available in the market as barite. Phase identification by x-ray diffraction technique show the synthesized magnetic materials are agreed with the available commercial product, (SUMI). The energy product maximum (BH)max measured by vibrating sample magnetometer (VSM) for the samples used HSM-, CRM- and BaCO3 as basic materials are 1.141 MGOe and 1.136 MGOe while SUMI is 1.142 MGOe. However for the samples made from LK-, PBA- used of BaCO3 or CRM- with barite, the energy product maximum (BH)max are relatively lower than commercial product

  2. Redox processes in highly yttrium-doped barium titanate

    International Nuclear Information System (INIS)

    The changes of microstructure occurring during oxidation of the reduced form of yttrium-doped barium titanate (Ba1-xYx?Ti1-x4+Tix3+O3) have been studied. Samples were sintered under reduction conditions at PO2=10-4Pa and oxidized by annealing at high temperatures (1150 and 1350 deg. C) in air. Depending on yttrium concentration, the oxidation of the reduced form of the yttrium-doped BaTiO3 caused precipitation of the phase Ba6Ti17O40 or the phases Ba6Ti17O40 and Y2Ti2O7. The precipitates had well-defined orientational relationships with the perovskite matrix. Oxidation of the reduced form of doped barium titanate results in formation of the phase Ba1-xYx?Ti1-x/44+(VTi-bar )x/4O3 responsible for increase in the resistance of outer grain layers, which lie between grain boundaries and grain

  3. Thermal expansion behaviour of barium and strontium zirconium phosphates

    Indian Academy of Sciences (India)

    P Srikari Tantri; K Geetha; A M Umarji; Sheela K Ramasesha

    2000-12-01

    Ba1.5–SrZr4P5SiO24 compounds with = 0, 0.25, 0.5, 0.75, 1.0, 1.25 and 1.5, belonging to the low thermal expansion NZP family were synthesized by the solid state reaction method. The XRD pattern could be completely indexed with respect to R$\\bar{3}$ space group indicating the ordering of vacancy at the divalent cation octahedral sites. The microstructure and bulk thermal expansion coefficient from room temperature to 800°C of the sintered samples have been studied. All the samples show very low coefficient of thermal expansion (CTE), with = 0 samples showing negative expansion. A small substitution of strontium in the pure barium compound changes the sign of CTE. Similarly, = 1.5 sample (pure strontium) shows a positive CTE and a small substitution of barium changes its sign. = 1.0 and 1.25 samples have almost constant CTE over the entire temperature range. The low thermal expansion of these samples can be attributed to the ordering of the ions in the crystal structure of these materials.

  4. 21 CFR 558.364 - Neomycin sulfate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Neomycin sulfate. 558.364 Section 558.364 Food and... in Animal Feeds § 558.364 Neomycin sulfate. (a) Approvals. Type A medicated article: 325 grams per.... (c) (d) Conditions of use. Neomycin sulfate is used as follows: Neomycin Sulfate...

  5. 21 CFR 184.1307 - Ferric sulfate.

    Science.gov (United States)

    2010-04-01

    ... Substances Affirmed as GRAS § 184.1307 Ferric sulfate. (a) Ferric sulfate (iron (III) sulfate, Fe2(SO4)3 CAS Reg. No. 10028-22-5) is a yellow substance that may be prepared by oxidizing iron (II) sulfate or by treating ferric oxide or ferric hydroxide with sulfuric acid. (b) The ingredient must be of a...

  6. Production of potassium manganate and barium manganate from spent zinc-MnO2 dry cells via fusion with potassium hydroxide

    Science.gov (United States)

    da Rocha, Renan Azevedo; Quintanilha, Carolina Leão; Lanxin, Thayná Viana; Afonso, Júlio Carlos; Vianna, Cláudio Augusto; Gante, Valdir; Mantovano, José Luiz

    2014-12-01

    This work describes a route for extracting manganese and zinc from spent zinc-manganese dioxide dry cells via fusion of the electroactive components with potassium hydroxide to form potassium manganate (K2MnO4) and soluble zincates. The fused mass was dissolved in aqueous KOH and the insoluble matter was separated. Under the best optimal conditions, 70-78 wt% of manganese was solubilized as K2MnO4 whereas 30-44 wt% of zinc was solubilized as [Zn(OH)4]2- ions. Lead was the only minor component dissolved in detectable amounts. Manganese was isolated by a one-step precipitation procedure as barium manganate (BaMnO4) or via crystallization of K2MnO4. Lead and excess barium were isolated as sulfate by adding K2SO4. Zinc was precipitated as hydroxide after neutralizing the alkaline solution with H2SO4. pH control is essential to avoid decomposition of manganate ions and for the sequential precipitation of leached elements. K2SO4 was partially recovered as by-product after partial evaporation of the neutralized solution.

  7. 21 CFR 524.1484e - Neomycin sulfate and polymyxin B sulfate ophthalmic solution.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Neomycin sulfate and polymyxin B sulfate... DOSAGE FORM NEW ANIMAL DRUGS § 524.1484e Neomycin sulfate and polymyxin B sulfate ophthalmic solution. (a) Specifications. Each milliliter of the ophthalmic preparation contains 5.0 milligrams neomycin sulfate...

  8. Functionalized synchrotron in-line phase-contrast computed tomography: a novel approach for simultaneous quantification of structural alterations and localization of barium-labelled alveolar macrophages within mouse lung samples.

    Science.gov (United States)

    Dullin, Christian; dal Monego, Simeone; Larsson, Emanuel; Mohammadi, Sara; Krenkel, Martin; Garrovo, Chiara; Biffi, Stefania; Lorenzon, Andrea; Markus, Andrea; Napp, Joanna; Salditt, Tim; Accardo, Agostino; Alves, Frauke; Tromba, Giuliana

    2015-01-01

    Functionalized computed tomography (CT) in combination with labelled cells is virtually non-existent due to the limited sensitivity of X-ray-absorption-based imaging, but would be highly desirable to realise cell tracking studies in entire organisms. In this study we applied in-line free propagation X-ray phase-contrast CT (XPCT) in an allergic asthma mouse model to assess structural changes as well as the biodistribution of barium-labelled macrophages in lung tissue. Alveolar macrophages that were barium-sulfate-loaded and fluorescent-labelled were instilled intratracheally into asthmatic and control mice. Mice were sacrificed after 24 h, lungs were kept in situ, inflated with air and scanned utilizing XPCT at the SYRMEP beamline (Elettra Synchrotron Light Source, Italy). Single-distance phase retrieval was used to generate data sets with ten times greater contrast-to-noise ratio than absorption-based CT (in our setup), thus allowing to depict and quantify structural hallmarks of asthmatic lungs such as reduced air volume, obstruction of airways and increased soft-tissue content. Furthermore, we found a higher concentration as well as a specific accumulation of the barium-labelled macrophages in asthmatic lung tissue. It is believe that XPCT will be beneficial in preclinical asthma research for both the assessment of therapeutic response as well as the analysis of the role of the recruitment of macrophages to inflammatory sites. PMID:25537601

  9. Bio-based barium alginate film: Preparation, flame retardancy and thermal degradation behavior.

    Science.gov (United States)

    Liu, Yun; Zhang, Chuan-Jie; Zhao, Jin-Chao; Guo, Yi; Zhu, Ping; Wang, De-Yi

    2016-03-30

    A bio-based barium alginate film was prepared via a facile ionic exchange and casting approach. Its flammability, thermal degradation and pyrolysis behaviors, thermal degradation mechanism were studied systemically by limiting oxygen index (LOI), vertical burning (UL-94), microscale combustion calorimetry (MCC), thermogravimetric analysis (TGA) coupled with Fourier transform infrared analysis (FTIR) and pyrolysis-gas chromatography-mass spectrometry (Py-GC-MS). It showed that barium alginate film had much higher LOI value (52.0%) than that of sodium alginate film (24.5%). Moreover, barium alginate film passed the UL-94 V-0 rating, while the sodium alginate film showed no classification. Importantly, peak of heat release rate (PHRR) of barium alginate film in MCC test was much lower than that of sodium alginate film, suggested that introduction of barium ion into alginate film significantly decreased release of combustible gases. TG-FTIR and Py-GC-MS results indicated that barium alginate produced much less flammable products than that of sodium alginate in whole thermal degradation procedure. Finally, a possible degradation mechanism of barium alginate had been proposed. PMID:26794953

  10. Preparation and properties of yttria doped tetragonal zirconia polycrystal/Sr-doped barium hexaferrite ceramic composites

    International Nuclear Information System (INIS)

    Highlights: • The 3Y-TZP/Sr-doped barium ferrite composites were prepared. • The saturation magnetization was improved by 15% with Sr-doping. • The dispersion coefficient p could reflect the microscopic lattice variation. • The composite with x = 0.5 had the maximum fracture toughness of 8.3 MPa m1/2. - Abstract: The effects of substitution of Ba2+ by Sr2+ on the magnetic property of barium ferrite and addition barium ferrite secondary phase to the 3 mol% yttria-doped tetragonal zirconia polycrystal (3Y-TZP) matrix on the mechanical property of composites were investigated. The Sr-doped barium ferrite (Ba1−xSrxFe12O19, x = 0, 0.25, 0.50 and 0.75) was synthesized by solid-state reaction in advance. Then 3Y-TZP/20 wt% Sr-doped barium ferrite composites were prepared by means of conventional ceramic method. It was found that a moderate amount of Sr added to barium ferrite could boost the saturation magnetization by 15% compared with the composites without Sr-doping. Besides, the composite with x = 0.50 possessed the best mechanical properties, such as 11.5 GPa for Vickers hardness and 8.3 MPa m1/2 for fracture toughness, respectively. It was demonstrated that magnetic and mechanical properties of the composites could be harmonized by the incorporation of barium ferrite secondary phase

  11. Bio-based barium alginate film: Preparation, flame retardancy and thermal degradation behavior.

    Science.gov (United States)

    Liu, Yun; Zhang, Chuan-Jie; Zhao, Jin-Chao; Guo, Yi; Zhu, Ping; Wang, De-Yi

    2016-03-30

    A bio-based barium alginate film was prepared via a facile ionic exchange and casting approach. Its flammability, thermal degradation and pyrolysis behaviors, thermal degradation mechanism were studied systemically by limiting oxygen index (LOI), vertical burning (UL-94), microscale combustion calorimetry (MCC), thermogravimetric analysis (TGA) coupled with Fourier transform infrared analysis (FTIR) and pyrolysis-gas chromatography-mass spectrometry (Py-GC-MS). It showed that barium alginate film had much higher LOI value (52.0%) than that of sodium alginate film (24.5%). Moreover, barium alginate film passed the UL-94 V-0 rating, while the sodium alginate film showed no classification. Importantly, peak of heat release rate (PHRR) of barium alginate film in MCC test was much lower than that of sodium alginate film, suggested that introduction of barium ion into alginate film significantly decreased release of combustible gases. TG-FTIR and Py-GC-MS results indicated that barium alginate produced much less flammable products than that of sodium alginate in whole thermal degradation procedure. Finally, a possible degradation mechanism of barium alginate had been proposed.

  12. Wideband and enhanced microwave absorption performance of doped barium ferrite

    Energy Technology Data Exchange (ETDEWEB)

    Meng, Pingyuan; Xiong, Kun [State Key Laboratory Cultivation Base for Nonmetal Composites and Functional Materials, School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang 621010 (China); Ju, Kui [Guizhou Institute of Metallurgy and Chemical Engineering, Guiyang 550002 (China); Li, Shengnan [State Key Laboratory Cultivation Base for Nonmetal Composites and Functional Materials, School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang 621010 (China); Xu, Guangliang, E-mail: xuguangliang@swust.edu.cn [State Key Laboratory Cultivation Base for Nonmetal Composites and Functional Materials, School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang 621010 (China)

    2015-07-01

    To achieve stronger microwave attenuation and larger bandwidth in electromagnetic absorber, the nickel ions (Ni{sup 2+}) and manganese ions (Mn{sup 2+}) were employed to partially replace the cobalt ions (Co{sup 2+}) in BaCoTiFe{sub 10}O{sub 19}, and the doped barium hexaferrite (Ba(MnNi){sub 0.2}Co{sub 0.6}TiFe{sub 10}O{sub 19} and Ba(MnNi){sub 0.25}Co{sub 0.5}TiFe{sub 10}O{sub 19}) powders were synthesized via the sol–gel combustion method. Subsequently, the microwave absorbing composites were prepared by mixing the ferrite powders with the paraffin. The X-ray diffraction (XRD) patterns of the doped ferrites confirmed the formation of the M-type barium ferrite, and no other types of barium ferrite could be found. Based on the electromagnetic parameters measured by the vector net-analyzer, it was found that the composite (Ba(MnNi){sub 0.2}Co{sub 0.6}TiFe{sub 10}O{sub 19}) possessed a minimum reflection loss of −52.8 dB at 13.4 GHz with a matching thickness of 1.8 mm and the bandwidth below −15 dB was 5.8 GHz. Moreover, the maximum attenuation of Ba(MnNi){sub 0.25}Co{sub 0.5}TiFe{sub 10}O{sub 19} could reach −69 dB when its thickness was 1.8 mm, and also the bandwidth less than −20 dB was ranging from 13.2 GHz to 18 GHz. Thus, Ba(MnNi){sub 0.2}Co{sub 0.6}TiFe{sub 10}O{sub 19} and Ba(MnNi){sub 0.25}Co{sub 0.5}TiFe{sub 10}O{sub 19} could be the good microwave absorbers, which have great potentials to be applied in the high frequency fields of the microwave absorbing materials. - Highlights: • The Co was first time substituted by Mn–Ni in ferrites. • The substituted ferrites had good microwave absorption. • The doped ferrites had broad bandwidth and low reflection loss.

  13. High aerosol acidity despite declining atmospheric sulfate concentrations over the past 15 years

    Science.gov (United States)

    Weber, Rodney J.; Guo, Hongyu; Russell, Armistead G.; Nenes, Athanasios

    2016-04-01

    Particle acidity affects aerosol concentrations, chemical composition and toxicity. Sulfate is often the main acid component of aerosols, and largely determines the acidity of fine particles under 2.5 μm in diameter, PM2.5. Over the past 15 years, atmospheric sulfate concentrations in the southeastern United States have decreased by 70%, whereas ammonia concentrations have been steady. Similar trends are occurring in many regions globally. Aerosol ammonium nitrate concentrations were assumed to increase to compensate for decreasing sulfate, which would result from increasing neutrality. Here we use observed gas and aerosol composition, humidity, and temperature data collected at a rural southeastern US site in June and July 2013 (ref. ), and a thermodynamic model that predicts pH and the gas-particle equilibrium concentrations of inorganic species from the observations to show that PM2.5 at the site is acidic. pH buffering by partitioning of ammonia between the gas and particle phases produced a relatively constant particle pH of 0-2 throughout the 15 years of decreasing atmospheric sulfate concentrations, and little change in particle ammonium nitrate concentrations. We conclude that the reductions in aerosol acidity widely anticipated from sulfur reductions, and expected acidity-related health and climate benefits, are unlikely to occur until atmospheric sulfate concentrations reach near pre-anthropogenic levels.

  14. Impacts of Sulfate Seed Acidity and Water Content on Isoprene Secondary Organic Aerosol Formation.

    Science.gov (United States)

    Wong, Jenny P S; Lee, Alex K Y; Abbatt, Jonathan P D

    2015-11-17

    The effects of particle-phase water and the acidity of pre-existing sulfate seed particles on the formation of isoprene secondary organic aerosol (SOA) was investigated. SOA was generated from the photo-oxidation of isoprene in a flow tube reactor at 70% relative humidity (RH) and room temperature in the presence of three different sulfate seeds (effloresced and deliquesced ammonium sulfate and ammonium bisulfate) under low NOx conditions. High OH exposure conditions lead to little isoprene epoxydiol (IEPOX) SOA being generated. The primary result is that particle-phase water had the largest effect on the amount of SOA formed, with 60% more SOA formation occurring with deliquesced ammonium sulfate seeds as compared to that on effloresced ones. The additional organic material was highly oxidized. Although the amount of SOA formed did not exhibit a dependence on the range of seed particle acidity examined, perhaps because of the low amount of IEPOX SOA, the levels of high-molecular-weight material increased with acidity. While the uptake of organics was partially reversible under drying, the results nevertheless indicate that particle-phase water enhanced the amount of organic aerosol material formed and that the RH cycling of sulfate particles may mediate the extent of isoprene SOA formation in the atmosphere. PMID:26460477

  15. FY-15 Progress Report on Cleanup of irradiated SHINE Target Solutions Containing 140g-U/L Uranyl Sulfate

    Energy Technology Data Exchange (ETDEWEB)

    Bennett, Megan E. [Argonne National Lab. (ANL), Argonne, IL (United States); Bowers, Delbert L. [Argonne National Lab. (ANL), Argonne, IL (United States); Vandegrift, George F. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2015-09-01

    During FY 2012 and 2013, a process was developed to convert the SHINE Target Solution (STS) of irradiated uranyl sulfate (140 g U/L) to uranyl nitrate. This process is necessary so that the uranium solution can be processed by the UREX (Uranium Extraction) separation process, which will remove impurities from the uranium so that it can be recycled. The uranyl sulfate solution must contain <0.02 M SO42- so that the uranium will be extractable into the UREXsolvent. In addition, it is desired that the barium content be below 0.0007 M, as this is the limit in the Resource Conservation and Recovery Act (RCRA).

  16. Study of the dielectric properties of barium titanate-polymer composites

    Energy Technology Data Exchange (ETDEWEB)

    Pant, H.C. [R and D Laboratory, Defence Laboratory, Camouflage Division, Defence Laboratory Ratanada Palace, Jodhpur 342011, Rajasthan (India); Patra, M.K. [R and D Laboratory, Defence Laboratory, Camouflage Division, Defence Laboratory Ratanada Palace, Jodhpur 342011, Rajasthan (India); Verma, Aditya [R and D Laboratory, Defence Laboratory, Camouflage Division, Defence Laboratory Ratanada Palace, Jodhpur 342011, Rajasthan (India); Vadera, S.R. [R and D Laboratory, Defence Laboratory, Camouflage Division, Defence Laboratory Ratanada Palace, Jodhpur 342011, Rajasthan (India); Kumar, N. [R and D Laboratory, Defence Laboratory, Camouflage Division, Defence Laboratory Ratanada Palace, Jodhpur 342011, Rajasthan (India)]. E-mail: nkjainjd@yahoo.com

    2006-07-15

    A comparative study of complex dielectric properties has been carried out at the X-band of microwave frequencies of composites of barium titanate (BaTiO{sub 3}) with two different polymer matrices: insulating polyaniline (PANI) powder (emeraldine base) and maleic resin. From these studies, it is observed that the composites of BaTiO{sub 3} with maleic resin show normal composite behavior and the dielectric constant follows the asymmetric Bruggeman model. In contrast, the composites of BaTiO{sub 3} with PANI show an unusual behavior wherein even at a low concentration of PANI (5 wt.%) there is a drastic reduction in the dielectric constant of BaTiO{sub 3}. This behavior of the dielectric constant is explained on the basis of coating of BaTiO{sub 3} particles by PANI which in turn is attributed to the highly surface adsorbing character. The materials have also been characterized using Fourier transform infrared spectroscopy, powder X-ray diffraction, scanning electron microscopy and optical microscopy studies.

  17. Preparation, characterization, biological activity, and transport study of polystyrene based calcium–barium phosphate composite membrane

    Energy Technology Data Exchange (ETDEWEB)

    Khan, Mohammad Mujahid Ali; Rafiuddin,, E-mail: rafi_amu@rediffmail.com

    2013-10-15

    Calcium–barium phosphate (CBP) composite membrane with 25% polystyrene was prepared by co-precipitation method. Scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier transformed infrared (FTIR), and Thermogravimetric analysis (TGA) were used to characterize the membrane. The membrane was found to be crystalline in nature with consistent arrangement of particles and no indication of visible cracks. The electrical potentials measured across the composite membrane in contact with univalent electrolytes (KCl, NaCl and LiCl), have been found to increase with decrease in concentrations. Thus the membrane was found to be cation-selective. Transport properties of developed membranes may be utilized for the efficient desalination of saline water and more importantly demineralization process. The antibacterial study of this composite membrane shows good results for killing the disease causing bacteria along with waste water treatment. Highlights: • Transport properties of composite membrane are evaluated. • The composite membrane was found to be stable in all media. • TMS method is used for electrochemical characterization. • The membrane was found to be cation selective. • The order of surface charge density was found to be LiCl < NaCl < KCl.

  18. Microscopic insight into nuclear structure properties of proton-rich barium isotopes

    International Nuclear Information System (INIS)

    Variation after projection (VAP) calculations with Hartree-Bogoliubov (HB) Ansatz have been carried out for A=120-136 barium isotopes. In this framework, the yrast spectra with Jmaxπ=10+, B(E2) transition probabilities, quadrupole (β2) and hexadecapole (β4) deformation parameters for even-even barium isotopes have been obtained. The results of the calculation give an indication that it is important to include the hexadecapole-hexadecapole component of the two-body interaction for obtaining various nuclear structure quantities in these barium isotopes. (author)

  19. Application of barium fluoride for sulfur selective extraction at X-ray spectroscopic analysis of steel

    International Nuclear Information System (INIS)

    In order to increase the sensitivity of X-ray spectroscopic identification of sulphur in steels the application of barium fluoride for selective extraction of sulphate ions was proposed by authors of present work. The influence of concentration of sulphate ions, iron, nickel, chromium and titanium cations as well as acidity of solutions on the coefficient of distribution of sulphate ions in the system barium fluoride-water was studied. The distribution coefficients were calculated, the completeness of extraction was calculated as well. It is defined that sulphate ions from solutions containing cations of heavy metals and other anions can be extracted by means of barium fluoride.

  20. Influence of acid catalysts on the structural and magnetic properties of nanocrystalline barium ferrite prepared by sol-gel method

    International Nuclear Information System (INIS)

    BaFe12O19 powders with nanocrystalline size were prepared by sol-gel techniques. Nitric, hydrochloric, acetic and stearic acid were used to improve the magnetic properties. Amorphous gels were formed with Fe/Ba molar ratio of 10.5. Then powders were obtained by subsequent heat treatment at 800-1000 deg. C for 1 h. Barium ferrite powder was also synthesized by solid state reaction at 1210 deg. C. X-ray diffraction, scanning electron microscopy and transmission electron microscopy (TEM) experiments were conducted to evaluate structural properties of the samples. The value of the effective magnetic susceptibility was measured. The results show that the magnetoplumbite structure was formed in all of the powders. The TEM observation showed that the minimum particle size (20 nm) was produced with the stearic acid catalyst. The highest value of the effective magnetic susceptibility was achieved also using stearic acid

  1. Concentrations of lead, cadmium and barium in urban garden-grown vegetables: the impact of soil variables.

    Science.gov (United States)

    McBride, Murray B; Shayler, Hannah A; Spliethoff, Henry M; Mitchell, Rebecca G; Marquez-Bravo, Lydia G; Ferenz, Gretchen S; Russell-Anelli, Jonathan M; Casey, Linda; Bachman, Sharon

    2014-11-01

    Paired vegetable/soil samples from New York City and Buffalo, NY, gardens were analyzed for lead (Pb), cadmium (Cd) and barium (Ba). Vegetable aluminum (Al) was measured to assess soil adherence. Soil and vegetable metal concentrations did not correlate; vegetable concentrations varied by crop type. Pb was below health-based guidance values (EU standards) in virtually all fruits. 47% of root crops and 9% of leafy greens exceeded guidance values; over half the vegetables exceeded the 95th percentile of market-basket concentrations for Pb. Vegetable Pb correlated with Al; soil particle adherence/incorporation was more important than Pb uptake via roots. Cd was similar to market-basket concentrations and below guidance values in nearly all samples. Vegetable Ba was much higher than Pb or Cd, although soil Ba was lower than soil Pb. The poor relationship between vegetable and soil metal concentrations is attributable to particulate contamination of vegetables and soil characteristics that influence phytoavailability. PMID:25163429

  2. Concentrations of lead, cadmium and barium in urban garden-grown vegetables: the impact of soil variables.

    Science.gov (United States)

    McBride, Murray B; Shayler, Hannah A; Spliethoff, Henry M; Mitchell, Rebecca G; Marquez-Bravo, Lydia G; Ferenz, Gretchen S; Russell-Anelli, Jonathan M; Casey, Linda; Bachman, Sharon

    2014-11-01

    Paired vegetable/soil samples from New York City and Buffalo, NY, gardens were analyzed for lead (Pb), cadmium (Cd) and barium (Ba). Vegetable aluminum (Al) was measured to assess soil adherence. Soil and vegetable metal concentrations did not correlate; vegetable concentrations varied by crop type. Pb was below health-based guidance values (EU standards) in virtually all fruits. 47% of root crops and 9% of leafy greens exceeded guidance values; over half the vegetables exceeded the 95th percentile of market-basket concentrations for Pb. Vegetable Pb correlated with Al; soil particle adherence/incorporation was more important than Pb uptake via roots. Cd was similar to market-basket concentrations and below guidance values in nearly all samples. Vegetable Ba was much higher than Pb or Cd, although soil Ba was lower than soil Pb. The poor relationship between vegetable and soil metal concentrations is attributable to particulate contamination of vegetables and soil characteristics that influence phytoavailability.

  3. Stark effect in Rydberg states of helium and barium

    International Nuclear Information System (INIS)

    This thesis, which deals with the effect of an electric field up to moderate field strengths on atoms with two valence electrons outside closed shells, in casu helium and barium, contains chapter in which the linear Stark effect in the 1 snp 1,3p Rydberg states of helium (n around 40) has been studied in a CW laser-atomic beam experiment. The evolution of the angular momentum manifolds into the n-mixing regime was followed and avoided level crossings were observed. Stark manifolds were also calculated by diagonalization of the complete energy matrix in the presence of an electric field. It turned out to be necessary to include up to five n-values in the calculations already at moderate values of the field to reproduce the data within the experimental accuracy (a few MHz), especially in the regime of the avoided crossings. (author). 147 refs.; 30 figs.; 8 tabs

  4. Effect of Nb on barium titanate prepared from citrate solutions

    Directory of Open Access Journals (Sweden)

    Stojanović Biljana D.

    2002-01-01

    Full Text Available The influence of the addition of dopants on the microstructure development and electrical properties of BaTiO3 doped with 0.2, 0.4, 0.6, 0.8 mol% of Nb and 0.01 mol% of Mn based compounds was studied. Doped barium titanate was prepared using the polymeric precursor method from citrate solutions. The powders calcined at 700°C for 4 hours were analysed by infrared (IR spectroscopy to verify the presence of carbonates, and by X-ray diffraction (XRD for phase formation. The phase composition, microstructure and dielectric properties show a strong dependence on the amount of added niobium.

  5. A buffer gas cooled beam of barium monohydride

    Science.gov (United States)

    Iwata, Geoffrey; Tarallo, Marco; Zelevinsky, Tanya

    2016-05-01

    Significant advances in direct laser cooling of diatomic molecules have opened up a wide array of molecular species to precision studies spanning many-body physics, quantum collisions and ultracold dissociation. We present a cryogenic beam source of barium monohydride (BaH), and study laser ablation of solid precursor targets as well as helium buffer gas cooling dynamics. Additionally, we cover progress towards a molecular magneto-optical trap, with spectroscopic studies of relevant cooling transitions in the B2 Σ <--X2 Σ manifold in laser ablated molecules, including resolution of hyperfine structure and precision measurements of the vibrational Frank-Condon factors. Finally, we examine the feasibility of photo dissociation of trapped BaH molecules to yield optically accessible samples of ultracold hydrogen.

  6. Optical-induced absorption tunability of Barium Strontium Titanate film

    Science.gov (United States)

    Luo, Chunya; Ji, Jie; Yue, Jin; Rao, Yunkun; Yao, Gang; Li, Dan; Zeng, Ying; Li, Renkui; Xiao, Longsheng; Liu, Xinxing; Yao, Jianquan; Ling, Furi

    2016-10-01

    The absorption tunability of 100 nm thickness of ferroelectric Barium Strontium Titanate (Ba0.5Sr0.5TiO3) thin films with different densities of pumped optical field is measured by terahertz time-domain spectroscopy in the range of 0.2 THz - 1.2 THz at 19 °C. Experimental results show that the absorption coefficient of BST film is approximately at 5000 cm-1-20000 cm-1 in the range of 0.2 THz - 1.2 THz and the absorption coefficient reached up to 16% when we applied the optical field up to 600 mW. The theoretical calculations reveal that increasing photoexcitation fluences is responsible for the increasing of transmission change in the conduction current density cause the absorption coefficient varied.

  7. Infrared Spectroscopic Characterization of Calcium and Barium Hydrazone Complexes

    Directory of Open Access Journals (Sweden)

    *A. Adeniyi

    2013-06-01

    Full Text Available Hydrazones have attracted considerable interest on account of their biological activities. Introduction of calcium and barium metal ions into m- and p-nitrobenzoic hydrazones is expected to modify these biological properties for enhanced activity and versatility. The ligands were synthesized from the parent acids. The complexes have been characterized using C, H and N microanalyses and IR spectrometry. The IR spectral data of the ligands and complexes revealed bonding via the C=O and C=N groups. The suggested metal to ligand stoichiometries are: [M (m-NBHx]Cl2.yH2O, x, y = 1 and 4 for M = Ca; x, y = 2 and 3 for M = Ba respectively. [M(p-NBHx]Cl2.yH2O, x, y = 1 and 12 for M = Ca; x, y = 1 and 3 for M = Ba respectively. The structural deductions are tentative pending future X-ray structural studies.

  8. Nonlinear optical properties of calcium barium niobate epitaxial thin films.

    Science.gov (United States)

    Bancelin, Stéphane; Vigne, Sébastien; Hossain, Nadir; Chaker, Mohammed; Légaré, François

    2016-07-25

    We investigate the potential of epitaxial calcium barium niobate (CBN) thin film grown by pulsed laser deposition for optical frequency conversion. Using second harmonic generation (SHG), we analyze the polarization response of the generated signal to determine the ratios d15 / d32 and d33 / d32 of the three independent components of the second-order nonlinear susceptibility tensor in CBN thin film. In addition, a detailed comparison to the signal intensity obtained in a y-cut quartz allows us to measure the absolute value of these components in CBN thin film: d15 = 5 ± 2 pm / V, d32 = 3.1 ± 0.6 pm / V and d33 = 9 ± 2 pm / V. PMID:27464195

  9. Pulsating aurora induced by upper atmospheric barium releases

    Science.gov (United States)

    Deehr, C.; Romick, G.

    1977-01-01

    The paper reports the apparent generation of pulsating aurora by explosive releases of barium vapor near 250 km altitude. This effect occurred only when the explosions were in the path of precipitating electrons associated with the visible aurora. Each explosive charge was a standard 1.5 kg thermite mixture of Ba and CuO with an excess of Ba metal which was vaporized and dispersed by the thermite explosion. Traces of Sr, Na, and Li were added to some of the charges, and monitoring was achieved by ground-based spectrophotometric observations. On March 28, 1976, an increase in emission at 5577 A and at 4278 A was observed in association with the first two bursts, these emissions pulsating with roughly a 10 sec period for approximately 60 to 100 sec after the burst.

  10. Bronchography in dogs. Comparative study with two barium sulphate solutions

    International Nuclear Information System (INIS)

    Two solutions of barium sulphate, 60 and 30% w/v, were compared with the ''overflow'' Bronchographic method. Two groups of eight healthy adult does of both sexes, weighing 7 to 18 kg were used for the study. The dogs were anaesthetised with thiopentone sodium 2% (20 mg/kg iv). After intubation, each dog received contrast medium by a catheter connected to a syringe, in a 9 mi dose. Two series of two x-rays plates were taken in left lateral recumbent, 3 and 6 min after administering the contrast medium and in ventrodorsal projection, 30 sec. later. The x-ray plates obtained were analysed and compared intra and inter group considering the advance speed of the contrast medium, the radiographic density and outlines. Adverse reactions were controlled

  11. Study on a flexoelectric microphone using barium strontium titanate

    Science.gov (United States)

    Kwon, S. R.; Huang, W. B.; Zhang, S. J.; Yuan, F. G.; Jiang, X. N.

    2016-04-01

    In this study, a flexoelectric microphone was, for the first time, designed and fabricated in a bridge structure using barium strontium titanate (Ba0.65Sr0.35TiO3) ceramic and tested afterwards. The prototyped flexoelectric microphone consists of a 1.5 mm  ×  768 μm  ×  50 μm BST bridge structure and a silicon substrate with a cavity. The sensitivity and resonance frequency were designed to be 0.92 pC/Pa and 98.67 kHz, respectively. The signal to noise ratio was measured to be 74 dB. The results demonstrate that the flexoelectric microphone possesses high sensitivity and a wide working frequency range simultaneously, suggesting that flexoelectricity could be an excellent alternative sensing mechanism for microphone applications.

  12. Olivine Weathering aud Sulfate Formation Under Cryogenic Conditions

    Science.gov (United States)

    Niles, Paul B.; Golden, D. C.; Michalski, J.

    2013-01-01

    sulfur-rich volcanism, and sulfur-rich surface deposits also makes it very likely that sulfate aerosols have also been an important component of the martian atmosphere. Thus mixtures of ice, dust, and sulfate aerosols are likely to have been common on the martian surface. Given the fact that it is not difficult to achieve surface temperatures above -40degC on Mars throughout its history, it seems likely that sulfate formation on Mars is controlled by the availability of sulfate aerosols and not by the martian climate. The current polar regions of Mars and Earth provide interesting analogs. Large regions of sulfaterich material have been detected on and around the modern north polar region of Mars. The prevalence of ice-dust mixtures in this region and the existence of sulfates within the ice cap itself are strong evidence for the origin of the sulfates from inside the ice deposits. In addition sulfates have been found in ice deposits in Greenland and Mount Fuji on Earth that have been attributed to forming within the ice deposit. These sulfates can form either through interaction with dust particles in the atmosphere or through weathering inside the ice itself.

  13. Barium and carbon fluxes in the Canadian Arctic Archipelago

    Science.gov (United States)

    Thomas, Helmuth; Shadwick, Elizabeth; Dehairs, Frank; Lansard, Bruno; Mucci, Alfonso; Navez, Jacques; Gratton, Yves; Prowe, Friederike; Chierici, Melissa; Fransson, Agneta; Papakyriakou, Tim N.; Sternberg, Erika; Miller, Lisa A.; Tremblay, Jean-ÉRic; Monnin, Christophe

    2011-09-01

    The seasonal and spatial variability of dissolved Barium (Ba) in the Amundsen Gulf, southeastern Beaufort Sea, was monitored over a full year from September 2007 to September 2008. Dissolved Ba displays a nutrient-type behavior: the maximum water column concentration is located below the surface layer. The highest Ba concentrations are typically observed at river mouths, the lowest concentrations are found in water masses of Atlantic origin. Barium concentrations decrease eastward through the Canadian Arctic Archipelago. Barite (BaSO4) saturation is reached at the maximum dissolved Ba concentrations in the subsurface layer, whereas the rest of the water column is undersaturated. A three end-member mixing model comprising freshwater from sea-ice melt and rivers, as well as upper halocline water, is used to establish their relative contributions to the Ba concentrations in the upper water column of the Amundsen Gulf. Based on water column and riverine Ba contributions, we assess the depletion of dissolved Ba by formation and sinking of biologically bound Ba (bio-Ba), from which we derive an estimate of the carbon export production. In the upper 50 m of the water column of the Amundsen Gulf, riverine Ba accounts for up to 15% of the available dissolved Ba inventory, of which up to 20% is depleted by bio-Ba formation and export. Since riverine inputs and Ba export occur concurrently, the seasonal variability of dissolved Ba in the upper water column is moderate. Assuming a fixed organic carbon to bio-Ba flux ratio, carbon export out of the surface layer is estimated at 1.8 ± 0.45 mol C m-2 yr-1. Finally, we propose a climatological carbon budget for the Amundsen Gulf based on recent literature data and our findings, the latter bridging the surface and subsurface water carbon cycles.

  14. Brillouin function characteristics for La-Co substituted barium hexaferrites

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Chuanjian, E-mail: wcjuestc2005@gmail.com, E-mail: ksun@uestc.edu.cn; Yu, Zhong; Sun, Ke, E-mail: wcjuestc2005@gmail.com, E-mail: ksun@uestc.edu.cn; Guo, Rongdi; Jiang, Xiaona; Lan, Zhongwen [State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054 (China); Yang, Yan [Department of Communication and Engineering, Chengdu Technological University, Chengdu 611730 (China)

    2015-09-14

    La-Co substituted barium hexaferrites with the chemical formula of Ba{sub 1−x}La{sub x}Fe{sub 12−x}Co{sub x}O{sub 19} (x = 0.0, 0.1, 0.3, and 0.5), prepared by a conventional ceramic method, were systematically investigated by Raman spectra, X-ray photoelectron spectroscopy, Rietveld refinement of X-ray diffraction patterns, and vibrating sample magnetometer. The result manifests that all the compounds are crystallized in magnetoplumbite hexagonal structure. Trivalent cobalt ions prevailingly occupy the 2a, 4f{sub 1}, and 12k sites. According to Néel model of collinear-spin ferrimagnetism, the molecular-field coefficients ω{sub bf2}, ω{sub kf1}, ω{sub af1}, ω{sub kf2}, and ω{sub bk} of La-Co substituted barium hexaferrites have been calculated using the nonlinear fitting method, and the magnetic moment of five sublattices (2a, 2b, 4f{sub 1}, 4f{sub 2}, and 12k) versus temperature T has been also investigated. The fitting results are coincided well with the experimental data. Moreover, with the increase of La-Co substitution amount x, the molecular-field coefficients ω{sub bf2} and ω{sub af1} decrease constantly, while the molecular-field coefficients ω{sub kf1}, ω{sub kf2}, and ω{sub bk} show a slight change.

  15. Acid Sulfate Alteration on Mars

    Science.gov (United States)

    Ming, D. W.; Morris, R. V.

    2016-01-01

    A variety of mineralogical and geochemical indicators for aqueous alteration on Mars have been identified by a combination of surface and orbital robotic missions, telescopic observations, characterization of Martian meteorites, and laboratory and terrestrial analog studies. Acid sulfate alteration has been identified at all three landing sites visited by NASA rover missions (Spirit, Opportunity, and Curiosity). Spirit landed in Gusev crater in 2004 and discovered Fe-sulfates and materials that have been extensively leached by acid sulfate solutions. Opportunity landing on the plains of Meridiani Planum also in 2004 where the rover encountered large abundances of jarosite and hematite in sedimentary rocks. Curiosity landed in Gale crater in 2012 and has characterized fluvial, deltaic, and lacustrine sediments. Jarosite and hematite were discovered in some of the lacustrine sediments. The high elemental abundance of sulfur in surface materials is obvious evidence that sulfate has played a major role in aqueous processes at all landing sites on Mars. The sulfate-rich outcrop at Meridiani Planum has an SO3 content of up to 25 wt.%. The interiors of rocks and outcrops on the Columbia Hills within Gusev crater have up to 8 wt.% SO3. Soils at both sites generally have between 5 to 14 wt.% SO3, and several soils in Gusev crater contain around 30 wt.% SO3. After normalization of major element compositions to a SO3-free basis, the bulk compositions of these materials are basaltic, with a few exceptions in Gusev crater and in lacustrine mudstones in Gale crater. These observations suggest that materials encountered by the rovers were derived from basaltic precursors by acid sulfate alteration under nearly isochemical conditions (i.e., minimal leaching). There are several cases, however, where acid sulfate alteration minerals (jarosite and hematite) formed in open hydrologic systems, e.g., in Gale crater lacustrine mudstones. Several hypotheses have been suggested for the

  16. Studies on Sulfation of Lycium barbarum Polysaccharides

    Institute of Scientific and Technical Information of China (English)

    YI,Jian-Ping; YAN,Hong; ZHONG,Ru-Gang

    2004-01-01

    @@ Polysaccharides can anti-virus, such as human immunodeficiency virus (HIV-1),[1] herpes simplex virus (HSV-1,HSV-2) and cytomegalovirus. Some of them are sulfates, e.g. dextran sulfate, heparin, sulfonation of chitosan and sulfated derivatives of Lentinan. Our results showed that sulfated derivatives of Lycium barbarum polysaccharides (LBP)have anti-HIV activity. Because the anti-HIV activity of LBP was deeply dependent on the molecular weight, the sulfation pattern and glycosidic branches besides degree of sulfation (DS), so we emphasized our work on the factors of DS.

  17. New insights into the early stages of silica-controlled barium carbonate crystallisation

    Science.gov (United States)

    Eiblmeier, Josef; Schürmann, Ulrich; Kienle, Lorenz; Gebauer, Denis; Kunz, Werner; Kellermeier, Matthias

    2014-11-01

    Recent work has demonstrated that the dynamic interplay between silica and carbonate during co-precipitation can result in the self-assembly of unusual, highly complex crystal architectures with morphologies and textures resembling those typically displayed by biogenic minerals. These so-called biomorphs were shown to be composed of uniform elongated carbonate nanoparticles that are arranged according to a specific order over mesoscopic scales. In the present study, we have investigated the circumstances leading to the continuous formation and stabilisation of such well-defined nanometric building units in these inorganic systems. For this purpose, in situ potentiometric titration measurements were carried out in order to monitor and quantify the influence of silica on both the nucleation and early growth stages of barium carbonate crystallisation in alkaline media at constant pH. Complementarily, the nature and composition of particles occurring at different times in samples under various conditions were characterised ex situ by means of high-resolution electron microscopy and elemental analysis. The collected data clearly evidence that added silica affects carbonate crystallisation from the very beginning (i.e. already prior to, during, and shortly after nucleation), eventually arresting growth on the nanoscale by cementation of BaCO3 particles within a siliceous matrix. Our findings thus shed light on the fundamental processes driving bottom-up self-organisation in silica-carbonate materials and, for the first time, provide direct experimental proof that silicate species are responsible for the miniaturisation of carbonate crystals during growth of biomorphs, hence confirming previously discussed theoretical models for their formation mechanism.Recent work has demonstrated that the dynamic interplay between silica and carbonate during co-precipitation can result in the self-assembly of unusual, highly complex crystal architectures with morphologies and textures

  18. Preparation and characterization of magnetic chitosan particles for hyperthermia application

    International Nuclear Information System (INIS)

    The size and shape of magnetic chitosan particles were found to be dependent on both the barium ferrite/chitosan (BF/C) ratio and viscosity of a chitosan solution. The saturation magnetization of magnetic chitosan particles varied directly with the BF/C ratio, while coercivity remained almost constant. Notably, incorporated chitosan was shown to exert substantial activity with regard to low cytotoxicity and high heating rate

  19. Isotopic Zonation Within Sulfate Evaporite Mineral Crystals Reveal Quantitative Paleoenvironment Details

    Science.gov (United States)

    Coleman, M.; Rhorssen, M.; Mielke, R. E.

    2008-12-01

    Isotopic variations measured within a single crystal of hydrated magnesium sulfate are greater than 30 permil for delta 2-H, almost 10 permil for δ18O in water of hydration; and greater than 3 permil in sulfate oxygen. These results are interpreted to indicate the relative humidity of the system during evaporation (15 to 20 percent in this test case) and constrain the volume of water involved. The theoretical basis of this system is the isotopic fractionation between the species in solution and those precipitated as evaporite salts. Precipitation preferentially accumulates more of the heavy isotopes of sulfur and oxygen in mineral sulfate, relative to sulfate in solution. During the course of mineral growth this leads to successive depletion of the respective heavier isotopes in the residual brine reflected in a parallel trend in successive precipitates or even in successive zones within a single crystal. The change in isotopic composition at any one time during the process, relative to the initial value, can be described by an isotopic version of the Rayleigh Fractionation equation, depending only on the extent of the completion of the process and the relevant fractionation factor. Evaporation preferentially removes isotopically lighter hydrogen and oxygen leading to successive extents of enrichment in the respective heavier isotopes in the residual water. However, the relative effects on hydrogen and oxygen isotopes differs as function of relative humidity [1]. ALL OF THESE CHANGES ARE PRESERVED IN THE MINERAL ISOTOPE COMPOSITIONS. We precipitated barium sulfate from epsomite or gypsum samples, which was reduced at 1450°C in the presence of graphite and glassy carbon in a Finnigan TC/EA to produce CO for O isotopic analysis in a Finnigan 253 mass spectrometer, while a separate subsample was oxidized to SO2 in a Costech Elemental Analyzer. However, to make progress with this approach we needed to make a large number of measurements of hydration water and so we

  20. Characterization and growth dynamics of barium titanate crystallite on nanometer scale

    Institute of Scientific and Technical Information of China (English)

    Sen Wang; Yue Zhang; Zhen Ji; Yousong Gu; Yunhua Huang; Cheng Zhou

    2005-01-01

    Barium titanate powder on nanometer scale was synthesized by means of co-precipitation. The thermal mass loss, crystal grain growth and phase transition of the barium titanate nanometer powder were investigated by TG (Thermogravimetric)-DTA (Differential scanning calorimetric) and XRD (X-ray powder diffractometer) at different heat treatment temperatures. The results show that amorphous barium titanate powder can transfer into tetragonal symmetry structure after heat treatment. When the heat treatment temperature is below 900℃, the grains grow rapidly because the activation energy at low temperature is greatly less than that at high temperature. By controlling theheat treatment temperature, the optimization of the barium titanate crystallite size and formation of tetragonal phase can be realized.

  1. A study of magneto-crystalline alignment in sintered barium hexaferrite fabricated by powder injection molding

    Energy Technology Data Exchange (ETDEWEB)

    Zlatkov, B.S. [FOTEC Forschungs- und Technologietransfer GmbH, Viktor Kaplan-Strasse 2, 2700 Wiener Neustadt (Austria); Nikolic, M.V. [Institute for Multidisciplinary Research, Kneza Viseslava 1, 11000 Beograd (Serbia)], E-mail: mariavesna@cms.bg.ac.yu; Aleksic, O. [Institute for Multidisciplinary Research, Kneza Viseslava 1, 11000 Beograd (Serbia); Danninger, H.; Halwax, E. [Institute of Chemical Technologies and Analytics, Getreidemarkt 9/164, 1060 Wien (Austria)

    2009-02-15

    Barium hexaferrite permanent magnets were produced by powder injection molding. Starting barium hexaferrite powder was prepared from a Fe{sub 2}O{sub 3} and BaCO{sub 3} powder mixture by calcination followed by milling. The feedstock for powder injection molding was prepared by mixing barium hexaferrite powder with a low viscosity binder. Magnetic alignment was achieved by applying a high intensity magnetic field to the melted feedstock during the injection process. Green samples (with and without magnetic alignment) were subjected to solvent debinding and subsequent thermal debinding followed by sintering. Sintering conditions were optimized in order to achieve a maximum energy product value. Magneto-crystalline aligning in barium hexaferrite was studied on both green and sintered samples using X-ray diffraction, scanning electron microscope (SEM) and magnetic measurements (hysteresisgraphs). All measurements were made both in a parallel and perpendicular direction to the aligning magnetic field. The obtained results confirmed magneto-crystalline alignment.

  2. A sulfate conundrum: Dissolved sulfates of deep-saline brines and carbonate-associated sulfates

    Science.gov (United States)

    Labotka, Dana M.; Panno, Samuel V.; Locke, Randall A.

    2016-10-01

    Sulfates in deeply circulating brines and carbonate-associated sulfates (CAS) within sedimentary units of the Cambrian strata in the Illinois Basin record a complex history. Dissolved sulfate within the Mt. Simon Sandstone brines exhibits average δ34SSO4 values of 35.4‰ and δ18OSO4 values of 14.6‰ and appears to be related to Cambrian seawater sulfate, either original seawater or sourced from evaporite deposits such as those in the Michigan Basin. Theoretical and empirical relationships based on stable oxygen isotope fractionation suggest that sulfate within the lower depths of the Mt. Simon brines has experienced a long period of isolation, possibly several tens of millions of years. Comparison with brines from other stratigraphic units shows the Mt. Simon brines are geochemically unique. Dissolved sulfate from brines within the Ironton-Galesville Sandstone averages 22.7‰ for δ34SSO4 values and 13.0‰ for δ18OSO4 values. The Ironton-Galesville brine has mixed with younger groundwater, possibly of Ordovician to Devonian age and younger. The Eau Claire Formation lies between the Mt. Simon and Ironton-Galesville Sandstones. The carbonate units of the Eau Claire and stratigraphically equivalent Bonneterre Formation contain CAS that appears isotopically related to the Late Pennsylvanian-Early Permian Mississippi Valley-type ore pulses that deposited large sulfide minerals in the Viburnum Trend/Old Lead Belt ore districts. The δ34SCAS values range from 21.3‰ to 9.3‰, and δ18OCAS values range from +1.4‰ to -2.6‰ and show a strong covariance (R2 = 0.94). The largely wholesale replacement of Cambrian seawater sulfate signatures in these dolomites does not appear to have affected the sulfate signatures in the Mt. Simon brines even though these sulfide deposits are found in the stratigraphically equivalent Lamotte Sandstone to the southwest. On the basis of this and previous studies, greater fluid densities of the Mt. Simon brines may have prevented the

  3. Changes in Sulfate Aerosol Associated with Aqueous Chemistry, Heterogeneous Reactions on Aerosol and Nucleation

    Science.gov (United States)

    Penner, J. E.; Herzoa, M.

    2002-12-01

    Changes in sulfate aerosol size distribution and production rates may result from changes in the chemical pathways associated with sulfate formation. Sulfate aerosol formation is the result of homogeneous gas-phase reaction of SO2 and in-cloud oxidation of SO2 by both ozone and peroxides. In addition, sulfate may form in reactions with dust and sea-salt. Here, we examine these reactions using the GRANTOUR global aerosol-chemistry model. The sulfate formed by reaction with dust and sea salt aerosols represents approximately 5% and 4%, respectively, of total sulfate while that formed in aqueous reactions in clouds represents approximately 55%. Gas-phase production of H2 SO4 results in the nucleation of new particles which coagulate with themselves and with other aerosols. We report the increase in aerosol number concentration associated with nucleation of new particles. We also discuss the changes in the sulfate aerosol size distribution associated with these pathways in both the present-day and pre-industrial atmosphere. The consequences of including such size distribution changes for aerosol forcing are discussed.

  4. Study of the immunoisolating effects of barium-alginate microencapsulation on rat islets allograft survival

    Institute of Scientific and Technical Information of China (English)

    Mei Zhang; Chao Liu; Cuiping Liu; Youwen Qin; Zhaosun Zhen

    2005-01-01

    Objective: To evaluate the immunoisolating effects of barium-alginate microencapsulation on islets allograft survival. Methods: The nonmicroencapsulated and microencapsulated islets were transplanted under the kidney capsule or intraperitoneally into Wistar rat with STZ-induced diabetes. The blood glucose and insulin secretion of grafts were observed. Graft function was tested by oral rats was associated with normal glucose and insulin profiles in response to OGTT. Conclusion: Microencapsulation with barium-alginate membrane can prolong islet survival and protect islets against allorejection.

  5. Kinetics of barium sulphate reaction crystallization in crystallizers with internal circulation

    OpenAIRE

    Koralewska, J.; Piotrowski, K; B. Wierzbowska; A. Matynia

    2008-01-01

    Kinetic calculation results describing the observed nucleation and growth rates of barium sulphate crystals precipitated in an integrated reaction-crystallization process in a barium sulphate-ammonium chloride-water system are presented and analyzed. The scope of experiments included two continuous model DTM-type crystallizers (Draft Tube Magma) with internal circulation of the suspension forced by a liquid jet-pump device responsible for stable and intensive enough ascending/descending flow ...

  6. Impact of Biofield Treatment on Atomic and Structural Characteristics of Barium Titanate Powder

    OpenAIRE

    Trivedi, Mahendra; Nayak, Gopal

    2015-01-01

    Barium titanate, perovskite structure is known for its high dielectric constant and piezoelectric properties, which makes it interesting material for fabricating capacitors, transducer, actuator, and sensors. The perovskite crystal structure and lattice vibrations play a crucial role in its piezoelectric and ferroelectric behavior. In the present study, the barium titanate powder was subjected to biofield treatment. Further, the control and treated samples were characterized using X-ray diffr...

  7. Sulfation of thyroid hormone by estrogen sulfotransferase

    NARCIS (Netherlands)

    M.H.A. Kester (Monique); T.J. Visser (Ton); C.H. van Dijk (Caren); D. Tibboel (Dick); A.M. Hood (Margaret); N.J. Rose; W. Meinl; U. Pabel; H. Glatt; C.N. Falany; M.W. Coughtrie

    1999-01-01

    textabstractSulfation is one of the pathways by which thyroid hormone is inactivated. Iodothyronine sulfate concentrations are very high in human fetal blood and amniotic fluid, suggesting important production of these conjugates in utero. Human estrogen sulfotransferas

  8. Synthesis of nonstoichiometric M-type barium ferrite nanobelt by spark plasma sintering method

    Institute of Scientific and Technical Information of China (English)

    ZHAO Wenyu; ZHANG Qingjie; TANG Xinfeng; CHENG Haibin

    2005-01-01

    This study investigated the feasibility of ultrafast crystallization of M-type barium ferrite when the coprecipitation precursors in stoichiometric proportions as BaFe12O19, Fe(OH)3 and BaCO3 nanoparticles, had been heated by spark plasma sintering (SPS) process. The results show that SPS method may realize the ultrafast crystallization of M-type barium ferrite, absolutely prevent the crystallization of intermediate phase α-Fe2O3, and significantly decrease the crystallization temperature of M-type barium ferrite. The sintered samples obtained at 800℃ by sintering the precursors for 10 minutes are a kind of multiphase ferrites composed of major phase M-type barium ferrite and trace amount of BaFe0.24Fe0.76O2.88. It is discovered that M-type barium ferrites in the holes of the sintered samples are in nanobelt microstructure about 100-300 nm in width and several micrometers in length. These M-type barium ferrite nanobelts are non-stoichiometric and may be expressed as BaFe12+Xo19+1.5x (-4.77≤x≤6.50). Their composistions suggest completely random Fe-rich or Ba-rich domains.

  9. Metabolic Flexibility of Sulfate-Reducing Bacteria

    OpenAIRE

    Plugge, Caroline M.; Zhang, Weiwen; Scholten, Johannes C. M.; Stams, Alfons J. M.

    2011-01-01

    Dissimilatory sulfate-reducing prokaryotes (SRB) are a very diverse group of anaerobic bacteria that are omnipresent in nature and play an imperative role in the global cycling of carbon and sulfur. In anoxic marine sediments sulfate reduction accounts for up to 50% of the entire organic mineralization in coastal and shelf ecosystems where sulfate diffuses several meters deep into the sediment. As a consequence, SRB would be expected in the sulfate-containing upper sediment layers, whereas me...

  10. Sulfate reduction and methanogenesis in marine sediments

    Science.gov (United States)

    Oremland, R. S.; Taylor, B. F.

    1978-01-01

    Methanogenesis and sulfate-reduction were followed in laboratory incubations of sediments taken from tropical seagrass beds. Methanogenesis and sulfate-reduction occurred simultaneously in sediments incubated under N2, thereby indicating that the two processes are not mutually exclusive. Sediments incubated under an atmosphere of H2 developed negative pressures due to the oxidation of H2 by sulfate-respiring bacteria. H2 also stimulated methanogenesis, but methanogenic bacteria could not compete for H2 with the sulfate-respiring bacteria.

  11. Influence of stoichiometry on phase constitution, thermal behavior and magnetic properties of Ba-hexaferrite particles prepared via SHS route

    International Nuclear Information System (INIS)

    Barium hexaferrite magnetic particles were synthesized via self-propagating high temperature synthesis (SHS) route by thermal initiation of compact mixed powders of iron, iron oxide and barium nitrate using various Fe(total)/Ba molar ratios of 9-12. As-SHS treated and post synthesis specimens were characterized by X-ray powder diffraction, VSM, DTA/TGA and SEM. DTA/TGA studies revealed that the formation temperature of barium hexaferrite decreased by increasing of Fe/Ba molar ratio. VSM measurement also indicated that saturation magnetization (Ms) and coercivity (Hc) of the annealed specimens increased by increasing of Fe/Ba molar ratio. XRD results confirmed by those obtained from DTA/TGA and VSM, indicated that the Fe/Ba molar ratio of 12 is favorable for the formation of single-phase barium hexaferrite

  12. Sulfate-reducing prokaryotes in river floodplains

    NARCIS (Netherlands)

    Miletto, M.

    2007-01-01

    This thesis constitutes a pioneer attempt at elucidating the ecology of sulfate-reducing prokaryotes in river floodplains. These are non-typical sulfate-reducing environmental settings, given the generally low sulfate concentration that characterize freshwater habitats, and river flow regulation tha

  13. 21 CFR 182.1125 - Aluminum sulfate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Aluminum sulfate. 182.1125 Section 182.1125 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... Substances § 182.1125 Aluminum sulfate. (a) Product. Aluminum sulfate. (b) Conditions of use. This...

  14. 21 CFR 582.1125 - Aluminum sulfate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Aluminum sulfate. 582.1125 Section 582.1125 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1125 Aluminum sulfate. (a) Product. Aluminum sulfate. (b) Conditions of use. This...

  15. 21 CFR 582.1643 - Potassium sulfate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Potassium sulfate. 582.1643 Section 582.1643 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1643 Potassium sulfate. (a) Product. Potassium sulfate. (b) Conditions of use....

  16. 21 CFR 184.1643 - Potassium sulfate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Potassium sulfate. 184.1643 Section 184.1643 Food... Specific Substances Affirmed as GRAS § 184.1643 Potassium sulfate. (a) Potassium sulfate (K2SO4, CAS Reg... having a bitter, saline taste. It is prepared by the neutralization of sulfuric acid with...

  17. 21 CFR 186.1797 - Sodium sulfate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Sodium sulfate. 186.1797 Section 186.1797 Food and... Substances Affirmed as GRAS § 186.1797 Sodium sulfate. (a) Sodium sulfate (Na2SO4, CAS Reg. No. 7757-82-6... crystalline powder. It is prepared by the neutralization of sulfuric acid with sodium hydroxide. (b)...

  18. 21 CFR 184.1443 - Magnesium sulfate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Magnesium sulfate. 184.1443 Section 184.1443 Food... Specific Substances Affirmed as GRAS § 184.1443 Magnesium sulfate. (a) Magnesium sulfate (MgSO4·7H2O, CAS... magnesium oxide, hydroxide, or carbonate with sulfuric acid and evaporating the solution to...

  19. 21 CFR 582.5443 - Magnesium sulfate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Magnesium sulfate. 582.5443 Section 582.5443 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Supplements 1 § 582.5443 Magnesium sulfate. (a) Product. Magnesium sulfate. (b) Conditions of use....

  20. 21 CFR 524.960 - Flumethasone, neomycin sulfate, and polymyxin B sulfate ophthalmic solutions.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Flumethasone, neomycin sulfate, and polymyxin B... TOPICAL DOSAGE FORM NEW ANIMAL DRUGS § 524.960 Flumethasone, neomycin sulfate, and polymyxin B sulfate... flumethasone, 5.0 milligrams neomycin sulfate (3.5 milligrams neomycin base), and 10,000 units of polymyxin...

  1. Excess Barium as a Paleoproductivity Proxy: A Reevaluation

    Science.gov (United States)

    Eagle, M.; Paytan, A.

    2001-12-01

    Marine barite may serve as a proxy to reconstruct past export production (Dymond, 1992). In most studies sedimentary barite accumulation is not measured directly, instead a parameter termed excess barium (Baexs), also referred to as biogenic barium, is used to estimate the barite content. Baexs is defined as the total Ba concentration in the sediment minus the Ba associated with terrigenous material. Baexs is calculated by normalization to a constant Ba/Al ratio, typically the average shale ratio. This application assumes that (1) all the Ba besides the fraction associated with terrigenous Al is in the form of barite (the phase related to productivity) (2) the Ba/Alshale is constant in space and time (3) all of the Al is associated with terrigenous matter. If these assumptions are invalidated however, this approach lead to significant errors in calculating export production rates. To test the validity of the use of Baexs as a proxy for barite we compared the Baexs in a wide range of core top sediments from different oceanic settings to the barite content in the same cores. We found that Baexs frequently overestimated the Ba fraction associated with barite and in several cases significant Baexs was measured in the cores where no barite was observed. We have also used a sequential leaching protocol (Collier and Edmond 1984) to determine Ba association with organic matter, carbonates, Fe-Mn hydroxides and silicates. While terrigenous Ba remains an important fraction, in our samples 25-95% of non-barite Ba was derived from other fractions, with Fe-Mn oxides contributing the most Ba. In addition we found that the Ba/Al ratio in the silicate fraction of our samples varied considerably from site to site. The above results suggest that at least two of the underlying assumptions for employing Baexs to reconstruct paleoproductivity are not always valid and previously published data from (Murray and Leinen 1993) indicate that the third assumption may also not hold in every

  2. Enthalpy of formation of (In, Gd)-doped barium cerate

    Energy Technology Data Exchange (ETDEWEB)

    Matskevich, N.I., E-mail: nata.matskevich@yandex.ru [Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk (Russian Federation); Karlsruhe Institute of Technology, Institute of Solid State Physics, D-76334 Karlsruhe (Germany); Wolf, Th. [Karlsruhe Institute of Technology, Institute of Solid State Physics, D-76334 Karlsruhe (Germany); Adelmann, P.; Semerikova, A.N.; Anyfrieva, O.I. [Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk (Russian Federation)

    2015-09-10

    Highlights: • BaCe{sub 0.7}Gd{sub 0.2}In{sub 0.1}O{sub 2.85} was prepared by solid-state reaction. • The standard formation enthalpy was determined. • The stabilization energy (Δ{sub st}H°) was calculated. • Δ{sub st}H° of BaCe{sub 0.7}Gd{sub 0.2}In{sub 0.1}O{sub 2.85} is higher than BaCe{sub 0.7}Nd{sub 0.2}In{sub 0.1}O{sub 2.85} and BaCeO{sub 3}. - Abstract: Solution enthalpies of barium cerate doped by gadolinium and indium and a mixture of BaCl{sub 2} + 0.7CeCl{sub 3} + 2GdCl{sub 3} + 0.1InCl{sub 3} have been measured in 1 mol dm{sup −3} HCl with 0.1 mol dm{sup −3} KI. For the first time the standard molar formation enthalpy of BaCe{sub 0.7}Gd{sub 0.2}In{sub 0.1}O{sub 2.85} has been determined by solution calorimetry as follows: Δ{sub f}H° (298.15 K) = −1615.84 ± 9.01 kJ mol{sup −1}. The stabilization energy for above-mentioned compound has been calculated as well. It has been shown that barium cerate doped gadolinium and indium has higher stabilization energy than BaCe{sub 0.7}Nd{sub 0.2}In{sub 0.1}O{sub 2.85} and BaCeO{sub 3}. The reaction enthalpy with CO{sub 2} interaction has been calculated for BaCe{sub 0.7}Gd{sub 0.2}In{sub 0.1}O{sub 2.85}.

  3. Precipitation of barium flouride microcrystals from electrolytic solutions: The influence of the composition of the precipitating solutions

    Science.gov (United States)

    Kolar, Z.; Binsma, J. J. M.; Subotić, B.

    1984-02-01

    The composition, shape and size of the particles obtained by precipitation in aqueous solutions of various barium salts (chloride, nitrate and acetate) with various fluorides (ammonium, sodium and hydrogen) have been studied by X-ray powder diffraction analysis and scanning electron microscopy. From Ba(NO 3) 2 in combination with NH 4F or NaF and from Ba(C 2H 3O 2) 2 in combination with NH 4F, NaF or HF, precipitates of pure cubic-BaF 2 (β-BaF 2) are obtained. The shape and size of β-BaF 2 particles depend on the combination of the compounds used for the precipitation and their concentrations. It appears that only when (equal volumes of) solutions of Ba(NO 3) 2 (0.125 mol dm -3) or Ba(C 2H 3O 2) 2 (0.125 and 0.150 mol dm -3) and NH 4F (0.250 or 0.300 mol dm -3) are mixed particles are formed as more or less regular cubes with smooth faces. These crystals are suitable to be used in studies of the transport of ions from crystals to the solution and vice versa with the aid of radioactive tracers ("heterogeneous isotopic exchange" studies).

  4. Synthesis of nanoparticles of barium strontium titanate using hydrothermal microwave method; Sintese de nanoparticulas de titanato de bario estroncio utilizando o metodo hidrotermal assistido por microondas

    Energy Technology Data Exchange (ETDEWEB)

    Silva, R.A.; Souza, A.E.; Teixeira, S.R. [Universidade Estadual Paulista (DFQB/FCT/UNESP), Presidente Prudente, SP (Brazil). Fac. de Ciencia e Tecnologia. Dept. de Fisica, Quimica e Biologia; Moreira, M.L.; Volanti, D.P. [Universidade Federal de Sao Carlos (LiEC/UFSCAR), SP (Brazil). Lab. Interdisciplinar de Eletroquimica e Ceramica; Longo, E. [Universidade Estadual Paulista (UNESP/LiEC), Araraquara, SP (Brazil). Lab. Interdisciplinar de Eletroquimica e Ceramica

    2009-07-01

    Nanoparticles of barium strontium titanate Ba{sub x}Sr{sub 1}-{sub x}TiO{sub 3} (BST) had been prepared, with x = 0.5, using the hydrothermal method attended by microwaves (HTMW). A solution was prepared using deionized water, barium chloride (BaCl{sub 2}.2H{sub 2}O), strontium chloride (SrCl{sub 2}.6H{sub 2}O), titanium (IV) isopropoxide (C{sub 12}H28O{sub 4}Ti) and potassium hydroxide (KOH). Afterward the solution was heated to 140 deg C in a microwave oven, at a heating rate of 140 deg C/min, and maintained at this temperature for 40 min, under a pressure of 3 to 4 bar. X-ray diffraction (DRX) and field emission scanning electron microscopy (FE-SEM) had been used in the particles characterization. DRX was used to identify the crystallized phases and the images taken from (FE-SEM) show that the material has a wide particle-size distribution with most of them between 10 and 30 nm. (author)

  5. Bis(triethanolaminenickel(II sulfate

    Directory of Open Access Journals (Sweden)

    Hong-Xu Guo

    2009-07-01

    Full Text Available The title compound, [Ni(C6H15NO32]SO4, contains two triethanolamine (TEA ligands bound to an Ni2+ metal centre, which lies on a crystallographic inversion centre, and one sulfate anion located on a twofold rotation axis such that the asymmetric unit contains one-half molecule of the cation and of the anion. The triethanolamine ligands coordinate via each axial N atom and two of the three O atoms, while the third arm of the ligand has the hydroxyl group pointing away from the metal centre. The sulfate anions are hydrogen bonded to the coordinated hydroxyl groups and also to the free arm, forming a two-dimensional supramolecular hydrogen-bonded network expanding parallel to (010.

  6. Tris(ethylenediaminecobalt(II sulfate

    Directory of Open Access Journals (Sweden)

    Bunlawee Yotnoi

    2010-06-01

    Full Text Available The structure of the title compound, [CoII(C2H8N23]SO4, the cobalt example of [M(C2H8N23]SO4, is reported. The Co and S atoms are located at the 2d and 2c Wyckoff sites (point symmetry 32, respectively. The Co atom is coordinated by six N atoms of three chelating ethylenediamine molecules generated from half of the ethylenediamine molecule in the asymmetric unit. The O atoms of the sulfate anion are disordered mostly over two crystallographic sites. The third disorder site of O (site symmetry 3 has a site occupancy approaching zero. The H atoms of the ethylenediamine molecules interact with the sulfate anions via intermolecular N—H...O hydrogen-bonding interactions.

  7. The influence of temperature on limestone sulfation and attrition under fluidized bed combustion conditions

    Energy Technology Data Exchange (ETDEWEB)

    Montagnaro, Fabio [Dipartimento di Chimica - Universita degli Studi di Napoli Federico II, Complesso Universitario del Monte di Sant' Angelo, 80126 Napoli (Italy); Salatino, Piero [Istituto di Ricerche sulla Combustione - CNR, Piazzale Vincenzo Tecchio 80, 80125 Napoli (Italy); Dipartimento di Ingegneria Chimica - Universita degli Studi di Napoli Federico II, Piazzale Vincenzo Tecchio 80, 80125 Napoli (Italy); Scala, Fabrizio [Istituto di Ricerche sulla Combustione - CNR, Piazzale Vincenzo Tecchio 80, 80125 Napoli (Italy)

    2010-04-15

    The influence of temperature on attrition of two limestones during desulfurization in a fluidized bed reactor was investigated. Differences in the microstructure of the two limestones were reflected by a different thickness of the sulfate shell formed upon sulfation and by a different value of the ultimate calcium conversion degree. Particle attrition and fragmentation were fairly small under moderately bubbling fluidization conditions for both limestones. An increase of temperature from 850 C to 900 C led to an increase of the attrition rate, most likely because of a particle weakening effect caused by a faster CO{sub 2} evolution during calcination. This weakening effect, however, was not sufficiently strong to enhance particle fragmentation in the bed. The progress of sulfation, associated to the build-up of a hard sulfate shell around the particles, led in any case to a decrease of the extent of attrition. Sulfation at 900 C was less effective than at 850 C, and this was shown to be related to the porosimetric features of the different samples. (author)

  8. The role of sulfate aerosol in the formation of cloudiness over the sea

    Science.gov (United States)

    Aloyan, A. E.; Yermakov, A. N.; Arutyunyan, V. O.

    2016-07-01

    We estimate the impact of sulfate aerosols on cloudiness formation over the sea in the middle troposphere and the involvement of these particles in the formation of polar stratospheric clouds (PSCs) in the lower stratosphere. The first of these problems is solved using a combined model of moist convection and the formation of cloudiness and sulfate aerosols in the troposphere and lower stratosphere over the sea, incorporating natural emissions of sulfur-containing compounds. We have found that a significant source of condensation nuclei in the troposphere is the photochemical transformation of biogenic dimethyl sulfide (in addition to NaCl). The results of numerical experiments indicate that the absence of sulfate aerosols hinders the cloudiness formation over the sea in the middle and upper troposphere. The problem of sulfate aerosol involvement in the formation of supercooled ternary solutions (STSs) (PSC Type Ib) in the lower stratosphere is solved using a mathematical model of global transport of multicomponent gas pollutants and aerosols in the atmosphere. Using the combined model, numerical experiments were performed for the winter season in both hemispheres. Sulfate aerosols were found to really participate in the formation of STS particles. Without their participation, the formation of STS particles in the lower stratosphere would be hindered. We present the results of numerical calculations and discuss the distribution of concentrations of gaseous nitric and sulfuric acids, as well as mass concentrations of these components in STS particles.

  9. Mechanism of Phase Transformation and Formation of Barium Hexaferrite Doped with Rare-Earths in Sol-Gel Process

    Institute of Scientific and Technical Information of China (English)

    甘树才; 洪广言; 张军; 车平; 唐娟

    2003-01-01

    The phase-transformation in sol-gel preparation of barium hexaferrite and the formation of barium hexaferrite doped with La3+ were studied by chemical phase analysis, X-ray diffraction and infrared spectrometry analysis. The experimental results show that phase transformation reactions of FeCO3, Fe2O3 and BaFe2O4, barium hexaferrite and γ-Fe2O3 take place in the heat treatment of gel. While the doping lanthanide ion replace barium ion, an equivalent quantity of Fe3+ are reduced to Fe2+ to maintain the charge equilibrium.

  10. Barium oxide, calcium oxide, magnesia, and alkali oxide free glass

    Science.gov (United States)

    Lu, Peizhen Kathy; Mahapatra, Manoj Kumar

    2013-09-24

    A glass composition consisting essentially of about 10-45 mole percent of SrO; about 35-75 mole percent SiO.sub.2; one or more compounds from the group of compounds consisting of La.sub.2O.sub.3, Al.sub.2O.sub.3, B.sub.2O.sub.3, and Ni; the La.sub.2O.sub.3 less than about 20 mole percent; the Al.sub.2O.sub.3 less than about 25 mole percent; the B.sub.2O.sub.3 less than about 15 mole percent; and the Ni less than about 5 mole percent. Preferably, the glass is substantially free of barium oxide, calcium oxide, magnesia, and alkali oxide. Preferably, the glass is used as a seal in a solid oxide fuel/electrolyzer cell (SOFC) stack. The SOFC stack comprises a plurality of SOFCs connected by one or more interconnect and manifold materials and sealed by the glass. Preferably, each SOFC comprises an anode, a cathode, and a solid electrolyte.

  11. Colonic diverticulosis: evaluation with double contrast barium enema

    International Nuclear Information System (INIS)

    To evaluate the pattern of colonic diverticulosis according to age and sex, and recent trend. The authors retrospectively reviewed 120 cases of colonic diverticulosis in 1,020 patients who had undergone a double contrast barium enema examination between January 1st, 1993, and December 31st, 1995, and analyzed the frequency, size, multiplicity and anatomical site, according to age and sex. Diverticulum size was classified into one of three groups : less than 5mm, 5-10mm, over 10mm in diameter. The overall incidence of colonic diverticulosis was 120 cases among 1,020 patients(11.8%) with an incidence 5.3 times higher in males than in females. Peak incidence was in the fifth decade, with 19 cases (15.8%) among males, and after the sixth decade, with four cases(3.3%) among females. Mean age was 57.7 years. Diverticulum size of 5-10mm in diameter was predominant (2% of cases); average diameter was 5-6mm. The incidence of colonic diverticulosis was 5.1 times more frequent in the right colon (101 cases) than in the left (20 cases). The overall incidence of colonic diverticulosis has continually increased; in addition it has also recently increased slightly in left-sided colon. This is thought to be due to various factors, both congenital and acquired, including longer life with good health care, constipation, irritable bowel syndrome, stress and the tendency of eating patterns to more closely resemble those of the west

  12. Abundance analysis of s-process enhanced barium stars

    Science.gov (United States)

    Mahanta, Upakul; Karinkuzhi, Drisya; Goswami, Aruna; Duorah, Kalpana

    2016-08-01

    Detailed chemical composition studies of stars with enhanced abundances of neutron-capture elements can provide observational constraints for neutron-capture nucleosynthesis studies and clues for understanding their contribution to the Galactic chemical enrichment. We present abundance results from high-resolution spectral analyses of a sample of four chemically peculiar stars characterized by s-process enhancement. High-Resolution spectra (R ˜42000) of these objects spanning a wavelength range from 4000 to 6800 Å, are taken from the ELODIE archive. We have estimated the stellar atmospheric parameters, the effective temperature Teff, the surface gravity log g, and metallicity [Fe/H] from local thermodynamic equilibrium analysis using model atmospheres. We report estimates of elemental abundances for several neutron-capture elements, Sr, Y, Zr, Ba, La, Ce, Pr, Nd, Sm, Eu and Dy. While HD 49641 and HD 58368 show [Ba/Fe] ≥ 1.16 the other two objects HD 119650 and HD 191010 are found to be mild barium stars with [Ba/Fe] ˜ 0.4. The derived abundances of the elements are interpreted on the basis of existing theories for understanding their origin and evolution.

  13. Structural and magnetic properties of barium-gadolinium hexaferrites

    Energy Technology Data Exchange (ETDEWEB)

    Litsardakis, G. [Department of Electrical and Computer Engineering, Aristotle University of Thessaloniki, Thessaloniki 54124 (Greece)]. E-mail: Lits@eng.auth.gr; Manolakis, I. [Department of Electrical and Computer Engineering, Aristotle University of Thessaloniki, Thessaloniki 54124 (Greece); Serletis, C. [Department of Physics, Aristotle University of Thessaloniki, Thessaloniki 54124 (Greece); Efthimiadis, K.G. [Department of Physics, Aristotle University of Thessaloniki, Thessaloniki 54124 (Greece)

    2007-03-15

    A series of Gd-substituted M-type barium hexaferrites has been prepared by the ceramic route, according to the formula (Ba{sub 1-x}Gd{sub x})O.5.25Fe{sub 2}O{sub 3} (x=0-0.30). XRD analysis revealed that all the samples present primarily an M-type structure. Samples x=0 and x=0.05 are single-phase. Hematite (Fe{sub 2}O{sub 3}) and GdFeO{sub 3} were detected in the remaining samples. Coercivity (H{sub c}) shows remarkably high values, {approx}293kA/m for x=0.20 and 0.30 with a maximum of 322kA/m for x=0.25. Specific saturation magnetization ({sigma}{sub sat}) of the samples presents a small increase up to x=0.10. The microstructure examination indicates that Gd may act as a grain growth inhibitor.

  14. Nanoscale inhomogeneities in yttrium-barium-copper-oxide (YBCO) superconductors

    Science.gov (United States)

    Islam, Zahirul; Sinha, S. K.; Lang, J. C.; Liu, X.; Haskel, D.; Moss, S. C.; Srajer, G.; Veal, B. W.; Wermeille, D.; Lee, D. R.; Haeffner, D. R.; Welp, U.; Wochner, P.

    2004-03-01

    X-ray diffraction studies at the Advanced Photon Source reveal that nanoscale inhomogeneities, electronic or structural in origin, form in yttrium-barium-copper-oxide (YBa_2Cu_3O_6+x) superconductors and coexist with the superconducting (SC) state. Diffuse scattering from these inhomogeneous superstructures is due to atomic displacements with respect to equilibrium lattice sites (Z. Islam et al. Phys. Rev. B 66, 92501 (2002)), that are characterized by a wavevector of the form q=(q_x,0,0), where qx varies with hole doping from 2 unit cells (along shorter Cu-O-Cu direction) for very low doping to 4 unit cells at optimal doping. Interestingly, while these superstructures are 3-dimensionally ordered when the SC state is weakened (e.g., at x=0.4), as the doping increases, they become quasi 1D with correlation lengths comparable to SC coherence lengths in these cuprates. Recent first-principles calculations (D. de Fontaine et al., to be published) for the x=0.63 compound show that atomic displacements consistent with experimental data can be the result of ordering of O vacancies in YBCO. Models for various superstructures and their role in the phase diagram will be discussed.

  15. Properties of barium strontium titanate at millimeter wave frequencies

    Energy Technology Data Exchange (ETDEWEB)

    Osman, Nurul [Department of Physics, Universiti Putra Malaysia (Malaysia); Free, Charles [Department of Engineering and Design, University of Sussex (United Kingdom)

    2015-04-24

    The trend towards using higher millimetre-wave frequencies for communication systems has created a need for accurate characterization of materials to be used at these frequencies. Barium Strontium Titanate (BST) is a ferroelectric material whose permittivity is known to change as a function of applied electric field and have found varieties of application in electronic and communication field. In this work, new data on the properties of BST characterize using the free space technique at frequencies between 145 GHz and 155 GHz for both thick film and bulk samples are presented. The measurement data provided useful information on effective permittivity and loss tangent for all the BST samples. Data on the material transmission, reflection properties as well as loss will also be presented. The outcome of the work shows through practical measurement, that BST has a high permittivity with moderate losses and the results also shows that BST has suitable properties to be used as RAM for high frequency application.

  16. Properties of barium strontium titanate at millimeter wave frequencies

    International Nuclear Information System (INIS)

    The trend towards using higher millimetre-wave frequencies for communication systems has created a need for accurate characterization of materials to be used at these frequencies. Barium Strontium Titanate (BST) is a ferroelectric material whose permittivity is known to change as a function of applied electric field and have found varieties of application in electronic and communication field. In this work, new data on the properties of BST characterize using the free space technique at frequencies between 145 GHz and 155 GHz for both thick film and bulk samples are presented. The measurement data provided useful information on effective permittivity and loss tangent for all the BST samples. Data on the material transmission, reflection properties as well as loss will also be presented. The outcome of the work shows through practical measurement, that BST has a high permittivity with moderate losses and the results also shows that BST has suitable properties to be used as RAM for high frequency application

  17. Colonic diverticulosis: evaluation with double contrast barium enema

    Energy Technology Data Exchange (ETDEWEB)

    Ko, Jae Kook; Lee, Jong Koo; Yun, Eun Joo; Moon, Hee Jung; Shin, Hyun Ja [Korea Veterans Hospital, Seoul (Korea, Republic of)

    1997-02-01

    To evaluate the pattern of colonic diverticulosis according to age and sex, and recent trend. The authors retrospectively reviewed 120 cases of colonic diverticulosis in 1,020 patients who had undergone a double contrast barium enema examination between January 1st, 1993, and December 31st, 1995, and analyzed the frequency, size, multiplicity and anatomical site, according to age and sex. Diverticulum size was classified into one of three groups : less than 5mm, 5-10mm, over 10mm in diameter. The overall incidence of colonic diverticulosis was 120 cases among 1,020 patients(11.8%) with an incidence 5.3 times higher in males than in females. Peak incidence was in the fifth decade, with 19 cases (15.8%) among males, and after the sixth decade, with four cases(3.3%) among females. Mean age was 57.7 years. Diverticulum size of 5-10mm in diameter was predominant (2% of cases); average diameter was 5-6mm. The incidence of colonic diverticulosis was 5.1 times more frequent in the right colon (101 cases) than in the left (20 cases). The overall incidence of colonic diverticulosis has continually increased; in addition it has also recently increased slightly in left-sided colon. This is thought to be due to various factors, both congenital and acquired, including longer life with good health care, constipation, irritable bowel syndrome, stress and the tendency of eating patterns to more closely resemble those of the west.

  18. Barium in landscape components of the western Transbaikal region

    Science.gov (United States)

    Kashin, V. K.

    2015-10-01

    Barium concentrations in parent materials, soils, and plants of the forest-steppe, steppe, and dry steppe landscapes of the Transbaikal region have been studied. The average concentration of this element in rocks and soils of this region exceeds its clarke by 1.8-2.1 times. A positive correlation between the contents of Ba in soils, soil-forming rocks, and plants has been found. The concentration of Ba in soils does not correlate with the soil pH and humus content. Distribution patterns of Ba in the soil profiles have been characterized. With respect to the coefficient of the biological uptake by plants, Ba is assigned to the group of low accumulation (0.55-0.65) for mineral soils and of strong accumulation (6.0) for alluvial bog soils. Average concentrations of Ba in the steppe, meadow, and cultivated vegetation of the region are 1.9-2.3 times higher in comparison with the average concentration of this element in plants of the continents. The biological migration of Ba is most active in meadow landscapes, whereas steppe landscapes are characterized by the least active biological migration of this element.

  19. Abundance analysis of s-process enhanced barium stars

    CERN Document Server

    Mahanta, Upakul; Goswami, Aruna; Duorah, Kalpana

    2016-01-01

    Detailed chemical composition studies of stars with enhanced abundances of neutron-capture elements can provide observational constraints for neutron-capture nucleosynthesis studies and clues for understanding their contribution to the Galactic chemical enrichment. We present abundance results from high-resolution spectral analyses of a sample of four chemically peculiar stars characterized by s-process enhancement. High-Resolution spectra (R ~ 42000) of these objects spanning a wavelength range from 4000 to 6800 A, are taken from the ELODIE archive. We have estimated the stellar atmospheric parameters, the effective temperature T_eff, the surface gravity log g, and metallicity [Fe/H] from local thermodynamic equilibrium analysis using model atmospheres. We report estimates of elemental abundances for several neutron-capture elements, Sr, Y, Zr, Ba, La, Ce, Pr, Nd, Sm, Eu and Dy. While HD 49641 and HD 58368 show [Ba/Fe] > 1.16 the other two objects HD 119650 and HD 191010 are found to be mild barium stars wit...

  20. Sulfates on Mars: Indicators of Aqueous Processes

    Science.gov (United States)

    Bishop, Janice L.; Lane, Melissa D.; Dyar, M. Darby; Brown, Adrian J.

    2006-01-01

    Recent analyses by MER instruments at Meridiani Planum and Gusev crater and the OMEGA instrument on Mars Express have provided detailed information about the presence of sulfates on Mars [1,2,3]. We are evaluating these recent data in an integrated multi-disciplinary study of visible-near-infrared, mid-IR and Mossbauer spectra of several sulfate minerals and sulfate-rich analog sites. Our analyses suggest that hydrated iron sulfates may account for features observed in Mossbauer and mid-IR spectra of Martian soils [4]. The sulfate minerals kieserite, gypsum and other hydrated sulfates have been identified in OMEGA spectra in the layered terrains in Valles Marineris and Terra Meridiani [2]. These recent discoveries emphasize the importance of studying sulfate minerals as tracers of aqueous processes. The sulfate-rich rock outcrops observed in Meridiani Planum may have formed in an acidic environment similar to acid rock drainage environments on Earth [5]. Because microorganisms typically are involved in the oxidation of sulfides to sulfates in terrestrial sites, sulfate-rich rock outcrops on Mars may be a good location to search for evidence of past life on that planet. Whether or not life evolved on Mars, following the trail of sulfate minerals will lead to a better understanding of aqueous processes and chemical weathering.

  1. Gastrointestinal tract labeling for MDCT of abdomen: Comparison of low density barium and low density barium in combination with water

    Energy Technology Data Exchange (ETDEWEB)

    Gulati, Kavita; Shah, Zarine K.; Sainani, Nisha; Uppot, Raul; Sahani, Dushyant V. [Massachusetts General Hospital and Harvard Medical School, Department of Abdominal Imaging and Intervention, Boston, MA (United States)

    2008-05-15

    The purpose of the study was to compare the quality of stomach and small bowel marking/labeling using 1,350 ml of low-density barium alone (Volumen) with 900 ml of low-density barium and 450 ml of water for 16-MDCT scans of the abdomen and pelvis and assess cost benefits with the two protocols. In this IRB approved study, 80 consecutive patients scheduled for routine CECT (contrast-enhanced CT) of the abdomen-pelvis were studied. Patients were randomized into two groups and were administered either 1,350 ml of VoLumen (two bottles at 20-min intervals, one half bottle at 50 min and the last half on the table) or 900 ml of Volumen (two bottles at 20-min intervals and 450 ml water on the table). Portal venous phase scanning (detector collimation = 0.625 mm, speed = 18.75 mm, thickness = 5 mm) was subsequently performed. Images were reconstructed in axial and coronal plane at the CT console. Two blinded readers used a pre-designed template to assess distension and wall characteristics of the stomach and small bowel on a 5-point scale. Median scores with the two protocols were compared using the Wilcoxon rank sum test. The stomach and small bowel labeling was rated fair to optimal in all patients and did not differ significantly in the two protocols. The mean scores for distension of the small bowel and stomach were comparable. Inter-observer agreement for bowel labeling was found to be excellent (k 0.81). With the use of coronal images there was increased reader confidence in tracing the small bowel with both protocols. Acceptance for two bottles of Volumen and water was greater among patients as compared to three bottles of VoLumen. Use of two bottles of Volumen and water combination cost less than three bottles of Volumen. Stomach and small bowel labeling with administration of 900 ml of Volumen followed by 450 ml of water is cost effective and compares well to 1,350 ml of Volumen alone. (orig.)

  2. Sulfate transport in toad skin

    DEFF Research Database (Denmark)

    Larsen, Erik Hviid; Simonsen, K

    1988-01-01

    -circuited preparations resulted in a significant stimulation of the passive Cl- and SO2(-4) permeabilities. 6. It is suggested that SO2(-4) and Cl- ions are transported along the same pathway of the m.r. cells. Depending on the transport mode of the apical Cl- transport system, electro-diffusion, active transport......1. In short-circuited toad skin preparations exposed bilaterally to NaCl-Ringer's containing 1 mM SO2(-4), influx of sulfate was larger than efflux showing that the skin is capable of transporting sulfate actively in an inward direction. 2. This active transport was not abolished by substituting...... apical Na+ for K+. 3. Following voltage activation of the passive Cl- permeability of the mitochondria-rich (m.r.) cells sulfate flux-ratio increased to a value predicted from the Ussing flux-ratio equation for a monovalent anion. 4. In such skins, which were shown to exhibit vanishingly small leakage...

  3. Skylab-barium alpha and beta L = 6 field-line tracing experiments

    International Nuclear Information System (INIS)

    Events SKYLAB-BARIUM ALPHA (27 November 1973) and BETA (4 December 1973) were shaped-charge barium field-line tracing experiments near L approximately equal to 6, conducted jointly by the Los Alamos Scientific Laboratory and the University of Alaska Geophysical Institute. Image-orthicon and pulsed intensified auroral cameras provided data for triangulating the fast ion streaks. Using the POGO 10-68, epoch 1965.0, field-line model with Mead-Fairfield corrections for the outer field, the triangulated positions of the fast ion streak were projected down to the 100 km altitude northern conjugate surface. The projected positions moved toward magnetic east with a velocity of 725 m/sec for both SKYLAB-BARIUM ALPHA and BETA. Assuming only an E x B/B2 force, this drift velocity is consistent with an electric field toward magnetic south of 39 mV/m. Radiometric analysis of the filtered, intensified auroral camera records gave observed peak radiance values of about 2 x 10-11 watts/cm2-Sr in the 455.4 nm line of Ba+. The barium in the portion of the ion streak for which radiometric data were obtained had initial injection velocities of 9.5 to 13.5 km/sec in both events. This portion of the ion streak for both SKYLAB-BARIUM ALPHA and BETA contained approximately 4 x 1023 ions compared to the 6.4 x 1024 atoms contained in the barium liner. Ion inventory estimates are based on a solution of the statistical equilibrium equations. Corrections have been made in the ion inventory calculations for Doppler shifts of the solar spectrum as received in the rest frame of the high-velocity barium ions

  4. Accelerating the transit time of barium sulphate suspensions in small bowel examinations

    International Nuclear Information System (INIS)

    Purpose: To determine whether hyperosmolar and effervescent agents proven individually to accelerate transit time in the barium small bowel examination have an additive effect when combined, surpassing that of either agent alone. Materials and methods: One hundred and forty-nine patients were randomised to four groups. Three hundred milliliters of barium sulphate alone was given to the first group. Fifteen milliliters of iodinated hyperosmolar contrast agent (Gastrografin, meglumine/sodium diatrizoate, Schering) was given in addition to barium sulphate to the second group while six packets of effervescent granules (Carbex, Ferring) were added for the third group. The final group was given a combination of both additives and barium sulphate. The time taken following ingestion for the contrast column to reach the caecum, as assessed by frequent interval fluoroscopy, was recorded. A subgroup of 32 patients were selected randomly from the four groups, 8 from each and assessed for quality of examination. Statistical assessments were made using Kruskal-Wallis and Mann-Whitney tests. Results: One hundred and nineteen patients were analysed after exclusions. The addition of accelerant to barium sulphate, both individually and in combination significantly reduced the small bowel transit time (p < 0.001). No significant difference existed between the additives when used with barium alone. The combined group had significantly faster transit times compared to the hyperosmolar group (p = 0.02). Differences between combined and effervescent groups tended towards significance (p = 0.09). No significant difference existed between groups when examination quality was assessed. Conclusion: These results suggest that the addition of combined effervescent and hyperosmolar agents to the barium suspension may significantly shorten the small bowel transit time without adversely affecting examination quality. This has implications for patient acceptability of the examination as well as

  5. An 8-year review of barium studies in the diagnosis of gastroparesis

    Energy Technology Data Exchange (ETDEWEB)

    Levin, A.A. [Department of Radiology, Hospital of University of Pennsylvania, Philadelphia, PA (United States); Levine, M.S. [Department of Radiology, Hospital of University of Pennsylvania, Philadelphia, PA (United States)], E-mail: marc.levine@uphs.upenn.edu; Rubesin, S.E.; Laufer, I. [Department of Radiology, Hospital of University of Pennsylvania, Philadelphia, PA (United States)

    2008-04-15

    Aim: To determine the utility of barium studies for diagnosing gastroparesis in patients with nausea, vomiting, or other related symptoms. Materials and methods: Radiology files revealed gastroparesis without gastric outlet obstruction on upper gastrointestinal tract barium studies in 50 patients with nausea, vomiting, and other related symptoms. Original reports and images were reviewed to determine whether gastric peristalsis was decreased/absent and to investigate gastric dilatation, fluid or debris, and delayed emptying of barium. Twenty patients (40%) had nuclear gastric emptying studies. Medical records were reviewed to determine the presentation, treatment, and course. The diagnosis of gastroparesis was considered accurate if patients with gastroparesis on barium studies responded to treatment. Results: Forty-six patients (92%) had predisposing factors for gastroparesis, including narcotics and diabetes. Forty-five patients (90%) presented with nausea or vomiting, and 40 patients (80%) had one or more other symptoms, including bloating, early satiety, postprandial fullness, and abdominal pain. Barium studies revealed decreased gastric peristalsis in 46 (92%) of the 50 patients and absent peristalsis in four (8%); 46 patients (92%) had additional findings, including gastric dilatation in 30 (60%), delayed emptying of barium in 27 (54%), debris in 28 (56%; bezoars in three), and retained fluid in 13 (26%). Thirteen (65%) of 20 patients with nuclear gastric emptying studies had delayed emptying of solids and seven (35%) had normal emptying. Thirty-five (83%) of 42 patients treated for gastroparesis had symptomatic improvement versus two (25%) of eight patients not treated. Conclusion: Patients with nausea, vomiting, or other related symptoms who have gastroparesis without gastric outlet obstruction on barium studies can be treated for this condition on the basis of the clinical and radiographic findings.

  6. Preparation and properties of yttria doped tetragonal zirconia polycrystal/Sr-doped barium hexaferrite ceramic composites

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Shanshan; Zhang, Chao; Guo, Ruisong, E-mail: rsguo@tju.edu.cn; Liu, Lan; Yang, Yuexia; Li, Kehang

    2015-03-15

    Highlights: • The 3Y-TZP/Sr-doped barium ferrite composites were prepared. • The saturation magnetization was improved by 15% with Sr-doping. • The dispersion coefficient p could reflect the microscopic lattice variation. • The composite with x = 0.5 had the maximum fracture toughness of 8.3 MPa m{sup 1/2}. - Abstract: The effects of substitution of Ba{sup 2+} by Sr{sup 2+} on the magnetic property of barium ferrite and addition barium ferrite secondary phase to the 3 mol% yttria-doped tetragonal zirconia polycrystal (3Y-TZP) matrix on the mechanical property of composites were investigated. The Sr-doped barium ferrite (Ba{sub 1−x}Sr{sub x}Fe{sub 12}O{sub 19}, x = 0, 0.25, 0.50 and 0.75) was synthesized by solid-state reaction in advance. Then 3Y-TZP/20 wt% Sr-doped barium ferrite composites were prepared by means of conventional ceramic method. It was found that a moderate amount of Sr added to barium ferrite could boost the saturation magnetization by 15% compared with the composites without Sr-doping. Besides, the composite with x = 0.50 possessed the best mechanical properties, such as 11.5 GPa for Vickers hardness and 8.3 MPa m{sup 1/2} for fracture toughness, respectively. It was demonstrated that magnetic and mechanical properties of the composites could be harmonized by the incorporation of barium ferrite secondary phase.

  7. Obtaining of a barium compound by combustion chemistry and their evaluation as Co adsorbent

    International Nuclear Information System (INIS)

    In this work, barium carbonate synthesized by chemical combustion method using a chemical precursor prepared by the combination of barium nitrate and urea as a fuel, with a 1:1 molar ratio in aqueous solution, the chemical precursor was heated to evaporate excess water, producing a homogeneous viscous liquid, that when heated to 900 centi grades for 5 minutes an exothermic reaction was produced very quickly and abruptly, forming a white powder final product, fine porous, little spongy, dry and crystalline ready to be used as material adsorbent. Additionally, the effect of water on the synthesis by chemical combustion was studied. Simultaneously, and with the purpose of comparing the advantages and disadvantages of the method by chemical combustion, barium carbonate was synthesized by precipitation method using barium nitrate salts and sodium carbonate. Synthesized barium carbonate, was characterized by X-ray diffraction, thermal gravimetric analysis, infrared spectrometry and scanning electron microscopy. We studied the adsorption capacity of Co present in aqueous solution by static tests on materials synthesized at room temperature using the neutron activation analysis. It was found that the synthesis by chemical combustion provides an interesting alternative compared to the synthesis by precipitation because it offers simplicity of synthesis and speed to have a good adsorbent material. It was found that the barium carbonate synthesized by the chemical combustion method using in their synthesis 1.0 ml of water, was the one who achieved the maximum adsorption capacity of 95.6% compared with the barium carbonate prepared by precipitation, which reached a capacity adsorption of 51.48%. (Author)

  8. 氯化钡除杂制取高纯氢氧化钡%Preparation of high purity barium hydroxide by impurity - removed barium chloride

    Institute of Scientific and Technical Information of China (English)

    翁贤芬; 毛逢银; 何琳; 李莉

    2009-01-01

    Removal technology of strontium and iron from crude barium chloride raw material were studied.Optimization of process conditions of strontium and iron removal were discussed.When crude barium chloride stiring and dissolving the mixture at 60 ℃ for 40 min,impurities of stromtium and calcuim can be removed and mass fraction of strontium in the obatined solid barium chloride was below 1×10-4.Then add oxydol (H2O2) at proportion of 100 g raw materials per 8 mL H2O2,and add active carbon and small quantity of sodium hydroxide.Finally,iron could be get rid of when pH was controlled below 10.Mass fraction of iron in barium hydroxide product was less than 1×10-5 when using the iron - removed barium chaloride as raw material.Therefore,purified barium chloride by this method can be used to produce purity barium hydroxide.%研究了粗氯化钡原料中锶和铁杂质的脱除工艺,探讨了脱除锶和铁的优化工艺条件.在粗氯化钡原料中加入去离子水,液固质量比为0.25: 1,在60 ℃下搅拌溶解40 min,可除去锶和钙杂质,所得氯化钡固体中锶质量分数低于1×10-4.在氯化钡溶液中加入双氧水,每100 g原料中加入双氧水8 mL,加入活性炭和少量氢氧化钠,控制pH低于10时,可除去铁杂质,用除铁后的氯化钡制取氢氧化钡,产品中铁质量分数低于1×10-5.用除杂后的氯化钡可制得高纯氢氧化钡.

  9. New Technique for Barium Daughter Ion Identification in a Liquid Xe-136 Double Beta Decay Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Fairbank, William [Colorado State Univ., Fort Collins, CO (United States)

    2016-06-08

    This work addresses long-standing issues of fundamental interest in elementary particle physics. The most important outcome of this work is a new limit on neutrinoless double beta decay. This is an extremely rare and long sought after type of radioactive decay. If discovered, it would require changes in the standard model of the elementary constituents of matter, and would prove that neutrinos and antineutrinos are the same, a revolutionary concept in particle physics. Neutrinos are major components of the matter in the universe that are so small and so weakly interacting with other matter that their masses have not yet been discovered. A discovery of neutrinoless double beta decay could help determine the neutrino masses. An important outcome of the work on this project was the Colorado State University role in operating the EXO-200 neutrinoless double beta decay experiment and in analysis of the data from this experiment. One type of double beta decay of the isotope 136Xe, the two-neutrino variety, was discovered in this work. Although the other type of double beta decay, the neutrinoless variety, was not yet discovered in this work, a world’s best sensitivity of 1.9x1025 year half-life was obtained. This result rules out a previous claim of a positive result in a different isotope. This work also establishes that the masses of the neutrinos, are less than one millionth of that of electrons. A unique EXO-200 analysis, in which the CSU group had a leading role, has established for the first time ever in a liquid noble gas the fraction of daughter atoms from alpha and beta decay that are ionized. This result has important impact on other pending studies, including nucleon decay and barium tagging. Novel additional discoveries include multiphoton ionization of liquid xenon with UV pulsed lasers, which may find application in calibration of future noble liquid detectors, and studies of association and dissociation reactions of Ba

  10. Mössbauer and X-ray diffraction study of Co2+–Si4+ substituted M-type barium hexaferrite BaFe12−2xSoxSixO19±γ

    International Nuclear Information System (INIS)

    Using X-ray powder diffractions, Mössbauer spectroscopy, and magnetic measurements, the effect of dopants (Co2++Si4+) on the fine structure and magnetic properties of M-type barium hexaferrite prepared by hydroxide and carbonate precipitations has been studied. It has been shown that the magnetic properties of M-type barium hexaferrite can be controlled by heterovalent substitution 2Fe3+→So2++Si4+. - Highlights: ► In the range x=0–0.3, homogeneous solid solutions BaFe12−2xCoxSixO19±γ are formed. ► Only Fe3+ions in the high-spin state present in the homogeneous region. ► So2+, Si4+ ions prefer to occupy crystallographic positions 12k, 4f1 respectively. ► Substitution 2Fe3+→So2++Si4+ decreases particle size and coercivity.

  11. Characterisation of Ba(OH){sub 2}–Na{sub 2}SO{sub 4}–blast furnace slag cement-like composites for the immobilisation of sulfate bearing nuclear wastes

    Energy Technology Data Exchange (ETDEWEB)

    Mobasher, Neda; Bernal, Susan A.; Hussain, Oday H. [Immobilisation Science Laboratory, Department of Materials Science and Engineering, The University of Sheffield, Sheffield S1 3JD (United Kingdom); Apperley, David C. [Solid-State NMR Group, Department of Chemistry, Durham University, Durham DH1 3LE (United Kingdom); Kinoshita, Hajime [Immobilisation Science Laboratory, Department of Materials Science and Engineering, The University of Sheffield, Sheffield S1 3JD (United Kingdom); Provis, John L., E-mail: j.provis@sheffield.ac.uk [Immobilisation Science Laboratory, Department of Materials Science and Engineering, The University of Sheffield, Sheffield S1 3JD (United Kingdom)

    2014-12-15

    Soluble sulfate ions in nuclear waste can have detrimental effects on cementitious wasteforms and disposal facilities based on Portland cement. As an alternative, Ba(OH){sub 2}–Na{sub 2}SO{sub 4}–blast furnace slag composites are studied for immobilisation of sulfate-bearing nuclear wastes. Calcium aluminosilicate hydrate (C–A–S–H) with some barium substitution is the main binder phase, with barium also present in the low solubility salts BaSO{sub 4} and BaCO{sub 3}, along with Ba-substituted calcium sulfoaluminate hydrates, and a hydrotalcite-type layered double hydroxide. This reaction product assemblage indicates that Ba(OH){sub 2} and Na{sub 2}SO{sub 4} act as alkaline activators and control the reaction of the slag in addition to forming insoluble BaSO{sub 4}, and this restricts sulfate availability for further reaction as long as sufficient Ba(OH){sub 2} is added. An increased content of Ba(OH){sub 2} promotes a higher degree of reaction, and the formation of a highly cross-linked C–A–S–H gel. These Ba(OH){sub 2}–Na{sub 2}SO{sub 4}–blast furnace slag composite binders could be effective in the immobilisation of sulfate-bearing nuclear wastes.

  12. Why Is the Climate Forcing of Sulfate Aerosols So Uncertain?

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Sulfate aerosol particles have strong scattering effect on the solar radiation transfer which results in increasing the planet albedo and, hence, tend to cool the earth-atmosphere system. Also, aerosols can act as the cloud condensation nuclei (CCN) which tend to increase the albedo of clouds and cool the global warming. The ARPEGE-Climat version 3 AGCM with FMR radiation scheme is used to estimate the direct and indirect radiative forcing of sulfate aerosols. For minimizing the uncertainties in assessing this kind of cooling effect, all kinds of factors are analyzed which have been mixed in the assessment process and may lead to the different results of the radiative forcing of aerosols. It is noticed that one of the uncertainties to assess the climate forcing of aerosols by GCM results from the different definition of radiative forcing that was used. In order to clarify this vague idea, the off-line case for considering no feedbacks and on-line case for including all the feedbacks have been used for assessment. The direct forcing of sulfate aerosols in off-line case is -0.57 W/m2 and -0.38 W/m2 for the clear sky and all sky respectively. The value of on-line case appears to be a little larger than that in off-line case chiefly due to the feedback of clouds. The indirect forcing of sulfate aerosols in off-line case is -1.4 W / m2 and -1.0 W / m2 in on-line case. The radiative forcing of sulfate aerosols has obvious regional characteristics. There is a larger negative radiative forcing over North America, Europe and East Asia. If the direct and indirect forcing are added together, it is enough to offset the positive radiative forcing induced by the greenhouse gases in these regions.

  13. Spectroscopic (multi-energy) CT distinguishes iodine and barium contrast material in MICE

    International Nuclear Information System (INIS)

    Spectral CT differs from dual-energy CT by using a conventional X-ray tube and a photon-counting detector. We wished to produce 3D spectroscopic images of mice that distinguished calcium, iodine and barium. We developed a desktop spectral CT, dubbed MARS, based around the Medipix2 photon-counting energy-discriminating detector. The single conventional X-ray tube operated at constant voltage (75 kVp) and constant current (150 μA). We anaesthetised with ketamine six black mice (C57BL/6). We introduced iodinated contrast material and barium sulphate into the vascular system, alimentary tract and respiratory tract as we euthanised them. The mice were preserved in resin and imaged at four detector energy levels from 12 keV to 42 keV to include the K-edges of iodine (33.0 keV) and barium (37.4 keV). Principal component analysis was applied to reconstructed images to identify components with independent energy response, then displayed in 2D and 3D. Iodinated and barium contrast material was spectrally distinct from soft tissue and bone in all six mice. Calcium, iodine and barium were displayed as separate channels on 3D colour images at <55 μm isotropic voxels. Spectral CT distinguishes contrast agents with K-edges only 4 keV apart. Multi-contrast imaging and molecular CT are potential future applications. (orig.)

  14. SALT reveals the barium central star of the planetary nebula Hen 2-39

    CERN Document Server

    Miszalski, B; Jones, D; Karakas, A I; Köppen, J; Tyndall, A A; Mohamed, S S; Rodríguez-Gil, P; Santander-García, M

    2013-01-01

    Classical barium stars are binary systems which consist of a late-type giant enriched in carbon and slow neutron capture (s-process) elements and an evolved white dwarf (WD) that is invisible at optical wavelengths. The youngest observed barium stars are surrounded by planetary nebulae (PNe), ejected soon after the wind accretion of polluted material when the WD was in its preceeding asymptotic giant branch (AGB) phase. Such systems are rare but powerful laboratories for studying AGB nucleosynthesis as we can measure the chemical abundances of both the polluted star and the nebula ejected by the polluter. Here we present evidence for a barium star in the PN Hen 2-39. The polluted giant is very similar to that found in WeBo 1. It is a cool (Teff=4250 +/- 150 K) giant enhanced in carbon ([C/H]=0.42 +/- 0.02 dex) and barium ([Ba/Fe]=1.50 +/- 0.25 dex). A spectral type of C-R3 C_24 nominally places Hen 2-39 amongst the peculiar early R-type carbon stars, however the barium enhancement and likely binary status mea...

  15. Determination of barium in surface and ground waters at Centro Experimental Aramar area

    Energy Technology Data Exchange (ETDEWEB)

    Matoso, Erika, E-mail: ematoso@hotmail.com [Centro Tecnologico da Marinha em Sao Paulo (CEA/CTMS), Ipero, SP (Brazil). Centro Experimental Aramar; Cadore, Solange, E-mail: cadore@iqm.unicamp.br [Universidade Estadual de Campinas (UNICAMP), SP (Brazil). Instituto de Quimica. Departamento de Quimica Analica

    2015-07-01

    Barium can be found in waters up to 1 mg L{sup -1} and came from natural sources such as sedimentary rocks erosion rich in feldspar and barite. Also anthropogenic activities can release this element such as oil and gas industry, agricultural defensives, chemical industry and waste disposal. At high doses, barium can be harmful to human central nervous system and can also cause high blood pressure, heart problems, fatigue and anxiety. The water potability defined by Brazilian's Ministry of Healthy sets barium concentration up to 0.7 mg L{sup -1} and official regulation defines the same limit of this element to superficial waters (according CONAMA resolution 357/2005) and ground waters (Sao Paulo state regulation). In this work, barium was analyzed monthly in superficial waters from 4 different sampling locations, located in a ratio of 10-km-long from Centro Experimental Aramar (CEA) at Ipanema River, during one year, in order to evaluate the river in different conditions (seasons, temperature and rain period). The ground water was collected every six months. The analytical technique applied was ICP OES and the method conditions were optimized: wavelength, linearity, signal background ratio, detection and quantification limits. Data obtained in this work will contribute to evaluate the presence of barium at CEA region and nearby in order to compare it with current Brazilian regulations. (author)

  16. Spectroscopic (multi-energy) CT distinguishes iodine and barium contrast material in MICE

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, N.G. [University of Otago, Department of Radiology, Christchurch (New Zealand); Butler, A.P. [University of Otago, Department of Radiology, Christchurch (New Zealand); University of Canterbury, Physics and Astronomy, Christchurch (New Zealand); Scott, N.J.A. [University of Otago, Department of Medicine, Christchurch (New Zealand); Cook, N.J. [Christchurch Hospital, Medical Physics and Bioengineering, Christchurch (New Zealand); Butzer, J.S. [Karlsruhe Institute of Technology, Physics Department, Karlsruhe (Germany); Schleich, N. [University of Canterbury, Physics and Astronomy, Christchurch (New Zealand); Christchurch Hospital, Medical Physics and Bioengineering, Christchurch (New Zealand); Firsching, M. [Friedrich Alexander University, Physics Department, Erlangen (Germany); Grasset, R.; Ruiter, N. de [University of Canterbury, Hitlab NZ, Christchurch (New Zealand); Campbell, M. [European Organisation for Nuclear Research, Physics Section, Geneva (Switzerland); Butler, P.H. [University of Canterbury, Physics and Astronomy, Christchurch (New Zealand)

    2010-09-15

    Spectral CT differs from dual-energy CT by using a conventional X-ray tube and a photon-counting detector. We wished to produce 3D spectroscopic images of mice that distinguished calcium, iodine and barium. We developed a desktop spectral CT, dubbed MARS, based around the Medipix2 photon-counting energy-discriminating detector. The single conventional X-ray tube operated at constant voltage (75 kVp) and constant current (150 {mu}A). We anaesthetised with ketamine six black mice (C57BL/6). We introduced iodinated contrast material and barium sulphate into the vascular system, alimentary tract and respiratory tract as we euthanised them. The mice were preserved in resin and imaged at four detector energy levels from 12 keV to 42 keV to include the K-edges of iodine (33.0 keV) and barium (37.4 keV). Principal component analysis was applied to reconstructed images to identify components with independent energy response, then displayed in 2D and 3D. Iodinated and barium contrast material was spectrally distinct from soft tissue and bone in all six mice. Calcium, iodine and barium were displayed as separate channels on 3D colour images at <55 {mu}m isotropic voxels. Spectral CT distinguishes contrast agents with K-edges only 4 keV apart. Multi-contrast imaging and molecular CT are potential future applications. (orig.)

  17. High pressure–low temperature phase diagram of barium: Simplicity versus complexity

    Energy Technology Data Exchange (ETDEWEB)

    Desgreniers, Serge [Laboratoire de Physique des Solides Denses, Université d' Ottawa, Ottawa, Ontario K1N 6N5 (Canada); Tse, John S., E-mail: John.Tse@usask.ca [Department of Physics and Engineering Physics, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5B2 (Canada); State Key Laboratory of Superhard Materials, Jilin University, 130012 Changchun (China); Matsuoka, Takahiro [SPring-8/JASRI, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198 (Japan); Department of Electrical, Electronic and Computer Engineering, Gifu University, 1-1 Yanagido, Gifu 501-1193 (Japan); Ohishi, Yasuo [SPring-8/JASRI, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198 (Japan); Li, Quan; Ma, Yanming [State Key Laboratory of Superhard Materials, Jilin University, 130012 Changchun (China)

    2015-11-30

    Barium holds a distinctive position among all elements studied upon densification. Indeed, it was the first example shown to violate the long-standing notion that high compression of simple metals should preserve or yield close-packed structures. From modest pressure conditions at room temperature, barium transforms at higher pressures from its simple structures to the extraordinarily complex atomic arrangements of the incommensurate and self-hosting Ba-IV phases. By a detailed mapping of the pressure/temperature structures of barium, we demonstrate the existence of another crystalline arrangement of barium, Ba-VI, at low temperature and high pressure. The simple structure of Ba-VI is unlike that of complex Ba-IV, the phase encountered in a similar pressure range at room temperature. First-principles calculations predict Ba-VI to be stable at high pressure and superconductive. The results illustrate the complexity of the low temperature-high pressure phase diagram of barium and the significant effect of temperature on structural phase transformations.

  18. Comparison of normal and asthmatic subjects' responses to sulfate pollutant aerosols

    Energy Technology Data Exchange (ETDEWEB)

    Utell, M.J.; Morrow, P.E.; Hyde, R.W.

    1980-01-01

    Epidemiological studies support an association between elevated levels of sulfates and acute respiratory disease. To determine if these pollutants produce airway hyperreactivity, 16 normal and 17 asthmatic subjects inhaled a control NaCl aerosol and the following sulfates: ammonium sulfate, sodium bisulfate, ammonium bisulfate, and sulfuric acid. A Lovelace generator produced particles with an average MMAD of approx. 1.0 ..mu..m (sigma/sub g/ approx. = 2.0) and concentrations of 0.1 and 1.0 mg/m/sup 3/. By double-blind randomization, all subjects breathed these aerosols for a 16-minute period. To determine if sulfate inhalation caused increased reactivity to a known bronchoconstrictor, all subjects inhaled carbachol following each 16-minute exposure. Before, during, and after exposure, pulmonary function studies were performed. When compared to NaCl, sulfate (1 mg/m/sup 3/) produced significant reductions in airway conductance and flow rates in asthmatics. The two most sensitive asthmatics demonstrated changes even at 0.1 mg/m/sup 3/ sulfate. To a far more significant degree, the bronchoconstrictor action of carbachol was potentiated by sulfates more or less in relation to their acidity in normals and asthmatics.

  19. FIRST DIRECT EVIDENCE THAT BARIUM DWARFS HAVE WHITE DWARF COMPANIONS

    International Nuclear Information System (INIS)

    Barium II (Ba) stars are chemically peculiar F-, G-, and K-type objects that show enhanced abundances of s-process elements. Since s-process nucleosynthesis is unlikely to take place in stars prior to the advanced asymptotic giant branch (AGB) stage, the prevailing hypothesis is that each present Ba star was contaminated by an AGB companion which is now a white dwarf (WD). Unless the initial mass ratio of such a binary was fairly close to unity, the receiving star is thus at least as likely to be a dwarf as a giant. So although most known Ba stars appear to be giants, the hypothesis requires that Ba dwarfs be comparably plentiful and moreover that they should all have WD companions. However, despite dedicated searches with the IUE satellite, no WD companions have been directly detected to date among the classical Ba dwarfs, even though some 90% of those stars are spectroscopic binaries, so the contamination hypothesis is therefore presently in some jeopardy. In this paper, we analyze recent deep, near-UV and far-UV Galaxy Evolution Explorer (GALEX) exposures of four of the brightest of the class (HD 2454, 15360, 26367, and 221531), together with archived GALEX data for two newly recognized Ba dwarfs: HD 34654 and HD 114520 (which also prove to be spectroscopic binaries). The GALEX observations of the Ba dwarfs as a group show a significant far-UV excess compared to a control sample of normal F-type dwarfs. We suggest that this ensemble far-UV excess constitutes the first direct evidence that Ba dwarfs have WD companions.

  20. Radiation doses to children during modified barium swallow studies

    International Nuclear Information System (INIS)

    There are minimal data on radiation doses to infants and children undergoing a modified barium swallow (MBS) study. To document screening times, dose area product (DAP) and effective doses to children undergoing MBS and to determine factors associated with increased screening times and effective dose. Fluoroscopic data (screening time, DAP, kVp) for 90 consecutive MBS studies using pulse fluoroscopy were prospectively recorded; effective dose was calculated and data were analyzed for effects of behavior, number of swallow presentations, swallowing dysfunction and medical problems. Mean effective dose for the entire group was 0.0826 ± 0.0544 mSv, screening time 2.48 ± 0.81 min, and DAP 28.79 ± 41.72 cGy cm2. Significant differences were found across three age groups (≤1.0, >1.0-3.0 and >3.0 years) for effective dose (mean 0.1188, 0.0651 and 0.0529 mSv, respectively; P < 0.001), but not for screening time or DAP. Effective dose was correlated with screening time (P 0.007), DAP (P < 0.001), number of swallow presentations (P = 0.007), lower age (P = 0.017), female gender (P = 0.004), and height (P < 0.001). Screening time was correlated with total number of swallow presentations (P < 0.001) and DAP (P < 0.001). Screening times, DAP, effective dose, and child and procedural factors associated with higher effective doses are presented for children undergoing MBS studies. (orig.)

  1. Radiation doses to children during modified barium swallow studies

    Energy Technology Data Exchange (ETDEWEB)

    Weir, Kelly A. [University of Queensland, Discipline of Paediatrics and Child Health, School of Medicine, Herston, Queensland (Australia); McMahon, Sandra M. [SpeechNet Speech Pathology Services, Brisbane (Australia); Long, Gillian; Bunch, Judith A. [Royal Children' s Hospital, Department of Medical Imaging, Herston (Australia); Pandeya, Nirmala [Queensland Institute of Medical Research, Herston (Australia); Coakley, Kerry S. [Biomedical Technology Services, Royal Brisbane and Women' s Hospital, Herston (Australia); Chang, Anne B. [Royal Children' s Hospital, Department of Respiratory Medicine, Herston (Australia)

    2007-03-15

    There are minimal data on radiation doses to infants and children undergoing a modified barium swallow (MBS) study. To document screening times, dose area product (DAP) and effective doses to children undergoing MBS and to determine factors associated with increased screening times and effective dose. Fluoroscopic data (screening time, DAP, kVp) for 90 consecutive MBS studies using pulse fluoroscopy were prospectively recorded; effective dose was calculated and data were analyzed for effects of behavior, number of swallow presentations, swallowing dysfunction and medical problems. Mean effective dose for the entire group was 0.0826 {+-} 0.0544 mSv, screening time 2.48 {+-} 0.81 min, and DAP 28.79 {+-} 41.72 cGy cm{sup 2}. Significant differences were found across three age groups ({<=}1.0, >1.0-3.0 and >3.0 years) for effective dose (mean 0.1188, 0.0651 and 0.0529 mSv, respectively; P < 0.001), but not for screening time or DAP. Effective dose was correlated with screening time (P = 0.007), DAP (P < 0.001), number of swallow presentations (P = 0.007), lower age (P = 0.017), female gender (P = 0.004), and height (P < 0.001). Screening time was correlated with total number of swallow presentations (P < 0.001) and DAP (P < 0.001). Screening times, DAP, effective dose, and child and procedural factors associated with higher effective doses are presented for children undergoing MBS studies. (orig.)

  2. Sputtered Modified Barium Titanate for Thin-Film Capacitor Applications

    Directory of Open Access Journals (Sweden)

    Robert Mamazza

    2012-04-01

    Full Text Available New apparatus and a new process for the sputter deposition of modified barium titanate thin-films were developed. Films were deposited at temperatures up to 900 °C from a Ba0.96Ca0.04Ti0.82Zr0.18O3 (BCZTO target directly onto Si, Ni and Pt surfaces and characterized by X-ray diffraction (XRD, scanning electron microscopy (SEM and X-ray photoelectron spectroscopy (XPS. Film texture and crystallinity were found to depend on both deposition temperature and substrate: above 600 °C, the as-deposited films consisted of well-facetted crystallites with the cubic perovskite structure. A strongly textured Pt (111 underlayer enhanced the (001 orientation of BCZTO films deposited at 900 °C, 10 mtorr pressure and 10% oxygen in argon. Similar films deposited onto a Pt (111 textured film at 700 °C and directly onto (100 Si wafers showed relatively larger (011 and diminished intensity (00ℓ diffraction peaks. Sputter ambients containing oxygen caused the Ni underlayers to oxidize even at 700 °C: Raising the process temperature produced more diffraction peaks of NiO with increased intensities. Thin-film capacitors were fabricated using ~500 nm thick BCZTO dielectrics and both Pt and Ni top and bottom electrodes. Small signal capacitance measurements were carried out to determine capacitance and parallel resistance at low frequencies and from these data, the relative permittivity (er and resistivity (r of the dielectric films were calculated; values ranged from ~50 to >2,000, and from ~104 to ~1010 Ω∙cm, respectively.

  3. Atmospheric black carbon and sulfate concentrations in Northeast Greenland

    Science.gov (United States)

    Massling, A.; Nielsen, I. E.; Kristensen, D.; Christensen, J. H.; Sørensen, L. L.; Jensen, B.; Nguyen, Q. T.; Nøjgaard, J. K.; Glasius, M.; Skov, H.

    2015-08-01

    Measurements of equivalent black carbon (EBC) in aerosols at the high Arctic field site Villum Research Station (VRS) at Station Nord in North Greenland showed a seasonal variation in EBC concentrations with a maximum in winter and spring at ground level. Average measured concentrations were about 0.067 ± 0.071 for the winter and 0.011 ± 0.009 for the summer period. These data were obtained using a multi-angle absorption photometer (MAAP). A similar seasonal pattern was found for sulfate concentrations with a maximum level during winter and spring analyzed by ion chromatography. Here, measured average concentrations were about 0.485 ± 0.397 for the winter and 0.112 ± 0.072 for the summer period. A correlation between EBC and sulfate concentrations was observed over the years 2011 to 2013 stating a correlation coefficient of R2 = 0.72. This finding gives the hint that most likely transport of primary emitted BC particles to the Arctic was accompanied by aging of the aerosols through condensational processes. BC and sulfate are known to have only partly similar sources with respect to their transport pathways when reaching the high Arctic. Aging processes may have led to the formation of secondary inorganic matter and further transport of BC particles as cloud processing and further washout of particles is less likely based on the typically observed transport patterns of air masses arriving at VRS. Additionally, concentrations of EC (elemental carbon) based on a thermo-optical method were determined and compared to EBC measurements. EBC measurements were generally higher, but a correlation between EC and EBC resulted in a correlation coefficient of R2 = 0.64. Model estimates of the climate forcing due to BC in the Arctic are based on contributions of long-range transported BC during spring and summer. The measured concentrations were here compared with model results obtained by the Danish Eulerian Hemispheric Model, DEHM. Good agreement between measured and

  4. Evaluating Deterioration of Concrete by Sulfate Attack

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Effects of factors such as water to cement ratio, fly ash and silica fume on the resistance of concrete to sulfate attack were investigated by dry-wet cycles and immersion method. The index of the resistance to sulfate attack was used to evaluate the deterioration degree of concrete damaged by sulfate. The relationship between the resistance of concrete to sulfate attack and its permeability/porosity were analyzed as well as its responding mechanism. Results show that the depth of sulfate crystal attack from surface to inner of concrete can be reduced by decreasing w/c and addition of combining fly ash with silica fume. The variation of relative elastic modulus ratio and relative flexural strength ratio of various specimens before and after being subjected to sulfate attack was compared.

  5. Electrorheological Particles Composed of PolyanilineCore and BaTiO3 Layer Shell

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Composite particles consisting of polyaniline(PAn) core and barium titanate (BaTiO3) layer shell were synthesized.The PAn-BaTiO3 composites particles were characterized with TEM and XRD.The dielectric behavior of particles was tested and the electrorheological(ER) behavior of the suspensions of PAn/BaTiO3 particles in chlorinated paraffin oil with a 20vol% was investigated under DC electric field.The results show that the ER effect of composite particle is far stronger than that of pure polyaniline and barium titanate which were synthesized by the same method.pH and thickness of BaTiO3 have an important influence on the ER effects.

  6. Use of the barium enema in the diagnosis of necrotizing enterocolitis

    Energy Technology Data Exchange (ETDEWEB)

    Uken, P.; Smith, W.; Franken, E.A.; Frey, E.; Sato, Y.; Ellerbroek, C.

    1988-01-01

    Necrotizing enterocolitis (NEC) is associated with considerable morbidity and mortality in infants. The diagnosis relies heavily upon radiographic and clinical features. Failure to accurately diagnose NEC is associated with a risk of complications and death, however overdiagnosis also causes both morbidity and mortality as well as excessive medical costs. This report documents the use of barium enema to evaluate suspected clinical or radiographic NEC in 31 premature infants with ambiguous clinical and radiographic signs. The enema was normal in 26 infants and no treatment for NEC was given. Only one of these infants developed signs of NEC subsequent to the examination. Five infants had radiographic evidence of colitis including small ulcerations, spasm, intramural extravasation of barium and mucosal irregularity. Two of the five positive cases are pathologically documented. The barium enema can represent a significant improvement in the specificity of the diagnosis of NEC. Its greatest value is in the exclusion of NEC in ambiguous cases.

  7. Highly aligned arrays of high aspect ratio barium titanate nanowires via hydrothermal synthesis

    International Nuclear Information System (INIS)

    We report on the development of a hydrothermal synthesis procedure that results in the growth of highly aligned arrays of high aspect ratio barium titanate nanowires. Using a multiple step, scalable hydrothermal reaction, a textured titanium dioxide film is deposited on titanium foil upon which highly aligned nanowires are grown via homoepitaxy and converted to barium titanate. Scanning electron microscope images clearly illustrate the effect the textured film has on the degree of orientation of the nanowires. The alignment of nanowires is quantified by calculating the Herman's Orientation Factor, which reveals a 58% improvement in orientation as compared to growth in the absence of the textured film. The ferroelectric properties of barium titanate combined with the development of this scalable growth procedure provide a powerful route towards increasing the efficiency and performance of nanowire-based devices in future real-world applications such as sensing and power harvesting

  8. TiO2 ceramic varistor modified with tantalum and barium

    International Nuclear Information System (INIS)

    The non-linear current (I)-voltage (V) characteristics of titanium dioxide doped with small quantities of tantalum and barium (99.9 TiO2 + 0.1 Ta and 99.4 TiO2 + 0.1 Ta + 0.5 Ba, all are in at.%) were investigated. These samples have the non-linear coefficient (α) values of (20-30) with high breakdown voltages (E B ∼ 400-700 V mm-1). The pentavalent tantalum acts as donor and increases the electronic conductivity. The higher electrical conductivity and decrease in the breakdown field strength with barium addition is attributed to higher density. The acceptor like surface states formed by barium ions segregate to grain boundaries due size misfit to thereby modifying the electrical barrier characteristics of grain boundaries

  9. Improved thermal stability and wettability behavior of thermoplastic polyurethane / barium metaborate composites

    Energy Technology Data Exchange (ETDEWEB)

    Baştürka, Emre; Madakbaş, Seyfullah; Kahraman, Memet Vezir, E-mail: smadakbas@marmara.edu.tr [Department of Chemistry, Marmara University, Istanbul (Turkey)

    2016-03-15

    In this paper, it was targeted to the enhance thermal stability and wettability behavior of thermoplastic polyurethane (TPU) by adding barium metaborate. TPU-Barium metaborate composites were prepared by adding various proportions of barium metaborate to TPU. The chemical structures of the composites were characterised by fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD) analysis. All prepared composites have extremely high Tg and thermal stability as determined from DSC and TGA analysis. All composite materials have the Tg ranging from 15 to 35 °C. The surface morphologies of the composites were investigated by a scanning electron microscopy. Mechanical properties of the samples were characterized with stress-strain test. Hydrophobicity of the samples was determined by the contact angle measurements. The obtained results proved that thermal, hydrophobic and mechanical properties were improved. (author)

  10. Improved thermal stability and wettability behavior of thermoplastic polyurethane / barium metaborate composites

    International Nuclear Information System (INIS)

    In this paper, it was targeted to the enhance thermal stability and wettability behavior of thermoplastic polyurethane (TPU) by adding barium metaborate. TPU-Barium metaborate composites were prepared by adding various proportions of barium metaborate to TPU. The chemical structures of the composites were characterised by fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD) analysis. All prepared composites have extremely high Tg and thermal stability as determined from DSC and TGA analysis. All composite materials have the Tg ranging from 15 to 35 °C. The surface morphologies of the composites were investigated by a scanning electron microscopy. Mechanical properties of the samples were characterized with stress-strain test. Hydrophobicity of the samples was determined by the contact angle measurements. The obtained results proved that thermal, hydrophobic and mechanical properties were improved. (author)

  11. Plasma irregularities caused by cycloid bunching of the CRRES G-2 barium release

    Science.gov (United States)

    Bernhardt, P. A.; Huba, J. D.; Pongratz, M. B.; Simons, D. J.; Wolcott, J. H.

    1993-01-01

    The Combined Release and Radiation Effects Satellite (CRRES) spacecraft carried a number of barium thermite canisters for release into the upper atmosphere. The barium release labeled G-2 showed evidence of curved irregularities not aligned with the ambient magnetic field B. The newly discovered curved structures can be explained by a process called cycloid bunching. Cycloid bunching occurs when plasma is created by photoionization of a neutral cloud injected at high velocity perpendicular to B. If the injection velocity is much larger than the expansion speed of the cloud, the ion trail will form a cycloid that has irregularities spaced by the product of the perpendicular injection speed and the ion gyroperiod, Images of the solar-illuminated barium ions are compared with the results of a three-dimensional kinetic simulation. Cycloid bunching is shown to be responsible for the rapid generation of both curved and field-aligned irregularities in the CRRES G-2 experiment.

  12. Therapeutic barium enema for bleeding colonic diverticula:Four case series and review of the literature

    Institute of Scientific and Technical Information of China (English)

    Jun-ichi Iwamoto; Yuji Mizokami; Koichi Shimokobe; Takeshi Matsuoka; Yasushi Matsuzaki

    2008-01-01

    The prevalence of diverticular diseases of the colon, including severe and persistent bleeding in Eastern countries, has increased in the last decades. The bleeding from colonic diverticula is the most common cause of acute lower gastrointestinal bleeding. Herein, we report four cases of severe and persistent bleeding of colonic diverticular disease that could be treated with a high concentration barium enema. These four cases showed a similar pattern of bleeding whose source could not be identified. Colonoscopy revealed fresh blood in the entire colon and many diverticula were noted throughout the colon. No active bleeding source was identified, but large adherent clots in some diverticula were noted. After endoscopic and angiographic therapies failed, therapeutic barium enema stopped the severe bleeding. These patients remained free of re-bleeding in the follow-up period (range 17-35 mo) after the therapy. We report the four case series of therapeutic barium enema and reviewed the literature pertinent to this procedure.

  13. Individual-specific transgenerational marking of fish populations based on a barium dual-isotope procedure.

    Science.gov (United States)

    Huelga-Suarez, Gonzalo; Moldovan, Mariella; Garcia-Valiente, America; Garcia-Vazquez, Eva; Alonso, J Ignacio Garcia

    2012-01-01

    The present study focuses on the development and evaluation of an individual-specific transgenerational marking procedure using two enriched barium isotopes, (135)Ba and (137)Ba, mixed at a given and selectable molar ratio. The method is based on the deconvolution of the isotope patterns found in the sample into four molar contribution factors: natural xenon (Xe nat), natural barium (Ba nat), Ba135, and Ba137. The ratio of molar contributions between Ba137 and Ba135 is constant and independent of the contribution of natural barium in the sample. This procedure was tested in brown trout ( Salmo trutta ) kept in captivity. Trout were injected with three different Ba137/Ba135 isotopic signatures ca. 7 months and 7 days before spawning to compare the efficiency of the marking procedure at long and short term, respectively. The barium isotopic profiles were measured in the offspring by means of inductively coupled plasma mass spectrometry. Each of the three different isotopic signatures was unequivocally identified in the offspring in both whole eggs and larvae. For 9 month old offspring, the characteristic barium isotope signatures could also be detected in the otoliths even in the presence of a high and variable amount of barium of natural isotope abundance. In conclusion, it can be stated that the proposed dual-isotope marking is inheritable and can be detected after both long-term and short-term marking. Furthermore, the dual-isotope marking can be made individual-specific, so that it allows identification of offspring from a single individual or a group of individuals within a given fish group.

  14. Barium hydrogen phosphate/gelatin composites versus gelatin-free barium hydrogen phosphate: synthesis and characterization of properties.

    Science.gov (United States)

    Gashti, Mazeyar Parvinzadeh; Burgener, Matthias; Stir, Manuela; Hulliger, Jürg

    2014-10-01

    Recently, attention has been spent on crystal growth of phosphate compounds in gels for studying the mechanism of in vitro crystallization processes. Here, we present a gel-based approach for the synthesis of barium hydrogen phosphate (BHP) crystals using single and double diffusion techniques in gelatin. The composite crystals were compared with analytical grade BHP powder, single and polycrystalline BHP materials using Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), scanning pyroelectric microscopy (SPEM), optical microscopy (OM), thermal gravimetric analysis (TGA) and X-ray diffraction (XRD). FTIR spectra showed surface adsorption of gelatin molecules by using BHP stacked sheets due to CH2 stretching, CH2 bending and amide I vibrations are found in a gelatin content of about 2% determined by dissolution. SEM shows various crystal morphologies of the BHP/gelatin composites forming bundled micro-flakes to irregular bundled needles and spheres different from gel-free crystals. The variety in morphology depends on the ion concentration, pH of gel as well as the method of crystal growth. SPEM investigation of BHP/gelatin aggregates revealed polar domains showing alteration of the polarization. Moreover, BHP/gelatin composite crystals showed a higher thermal stability in comparison with analytical grade BHP or/and BHP single crystals due to strong interactions between gelatin and BHP. The XRD diffraction analysis demonstrated that the single and double diffusion techniques in gelatin led to the formation of orthorhombic BHP. This study demonstrates that gelatin is a useful high molecular weight biomacromolecule for controlling the crystallization of a composite material by producing a variety of morphological forms. PMID:24996024

  15. Reduction of orthophosphates loss in agricultural soil by nano calcium sulfate.

    Science.gov (United States)

    Chen, Dong; Szostak, Paul; Wei, Zongsu; Xiao, Ruiyang

    2016-01-01

    Nutrient loss from soil, especially phosphorous (P) from farmlands to natural water bodies via surface runoff or infiltration, have caused significant eutrophication problems. This is because dissolved orthophosphates are usually the limiting nutrient for algal blooms. Currently, available techniques to control eutrophication are surprisingly scarce. Calcium sulfate or gypsum is a common soil amendment and has a strong complexation to orthophosphates. The results showed that calcium sulfate reduced the amount of water extractable P (WEP) through soil incubation tests, suggesting less P loss from farmlands. A greater decrease in WEP occurred with a greater dosage of calcium sulfate. Compared to conventional coarse calcium sulfate, nano calcium sulfate further reduced WEP by providing a much greater specific surface area, higher solubility, better contact with the fertilizer and the soil particles, and superior dispersibility. The enhancement of the nano calcium sulfate for WEP reduction is more apparent for a pellet- than a powdered- fertilizer. At the dosage of Ca/P weight ratio of 2.8, the WEP decreased by 31±5% with the nano calcium sulfate compared to 20±5% decrease with the coarse calcium sulfate when the pellet fertilizer was used. Computation of the chemical equilibrium speciation shows that calcium hydroxyapatite has the lowest solubility. However, other mineral phases such as hydroxydicalcium phosphate, dicalcium phosphate dihydrate, octacalcium phosphate, and tricalcium phosphate might form preceding to calcium hydroxyapatite. Since calcium sulfate is the major product of the flue gas desulfurization (FGD) process, this study demonstrates a potential beneficial reuse and reduction of the solid FGD waste. PMID:26372940

  16. Atmospheric black carbon and sulfate concentrations in Northeast Greenland

    Directory of Open Access Journals (Sweden)

    A. Massling

    2015-04-01

    Full Text Available Measurements of Black Carbon (BC in aerosols at the high Arctic field site Villum Research Station (VRS at Station Nord in North Greenland showed a seasonal variation in BC concentrations with a maximum in winter and spring at ground level. The data was obtained using a Multi Angle Absorption Photometer (MAAP. A similar seasonal pattern was found for sulfate concentrations with a maximum level during winter and spring analyzed by ion chromatography. A correlation between BC and sulfate concentrations was observed over the years 2011 to 2013. This finding gives the hint that most likely transport of primary emitted BC particles to the Arctic was accompanied by aging of the aerosols through condensational processes. This process may have led to the formation of secondary inorganic matter and further transport of BC particles as cloud processing and further washout of particles is less likely based on the typically observed transport patterns of air masses arriving at VRS. Additionally, concentrations of EC (elemental carbon based on a thermo-optical method were determined and compared to BC measurements. Model estimates of the climate forcing due to BC in the Arctic are based on contributions of long-range transported BC during spring and summer. The measured concentrations were here compared with model results obtained by the Danish Hemispheric Model, DEHM. Good agreement between measured and modeled concentrations of both BC and sulfate was observed. The dominant source is found to be combustion of fossil fuel with biomass burning as a minor though significant source. During winter and spring the Arctic atmosphere is known to be impacted by long-range transport of BC and associated with the Arctic haze phenomenon.

  17. Calcium barium niobate as a functional material for broadband optical frequency conversion.

    Science.gov (United States)

    Sheng, Yan; Chen, Xin; Lukasiewicz, Tadeusz; Swirkowicz, Marek; Koynov, Kaloian; Krolikowski, Wieslaw

    2014-03-15

    We demonstrate the application of as-grown calcium barium niobate (CBN) crystal with random-sized ferroelectric domains as a broadband frequency converter. The frequency conversion process is similar to broadband harmonic generation in commonly used strontium barium niobate (SBN) crystal, but results in higher conversion efficiency reflecting a larger effective nonlinear coefficient of the CBN crystal. We also analyzed the polarization properties of the emitted radiation and determined the ratio of d32 and d33 components of the second-order susceptibility tensor of the CBN crystal. PMID:24690779

  18. Study of the microstructural transformations of borate glass and barium metaborate crystals induced by femtosecond laser

    Institute of Scientific and Technical Information of China (English)

    Chen Bin; Yu Bing-Kun; Yan Xiao-Na; Qiu Jian-Rong; Jiang Xiong-Wei; Zhu Cong-Shan

    2004-01-01

    This paper describes the microstructural transformations of borate glass and barium metaborate crystals induced by femtosecond laser. Such structural transformations were verified by Raman spectroscopy. The borate glass is transformed into low temperature (LT) phase of barium metaborate (BaB2O4) crystals after being irradiated for 10 min by a femtosecond laser. In addition, after 20 min of irradiation, high temperature (HT) phase of BaB2O4 crystals is also produced. Further studies demonstrate that LT phase BaB2O4 crystals are formed in the HT phase BaB2O4 crystals after femtosecond laser irradiation for 10 s.

  19. Temperature-Dependent Raman Spectra and Microstructure of Barium Metaborate Crystals and Its Melts

    Institute of Scientific and Technical Information of China (English)

    尤静林; 蒋国昌; 侯怀宇; 吴永全; 陈辉; 徐匡迪

    2002-01-01

    We have measured the Raman spectra of β- and α-barium metaborate in crystal and liquid states from room temperature to 1873K, with a semiconductor laser as the laser source, coupled with a time-resolved detection system to eliminate the dense thermal emission background when temperature was considerably high.Temperature-dependent Raman spectra can clearly indicate that the phase transformation from β- to α-barium metaborate has been completed during 1273 - 1300 K. Variations of different kinds of microstructure units with temperature are identified and discussed.

  20. Synthesis, characterization and thermostability of barium β-diketonate with tetraethylenepentamine ligand

    Institute of Scientific and Technical Information of China (English)

    2012-01-01

    The metal-organic chemical vapor deposition (MOCVD) technique is a promising process for high-temperature superconductor YBa2Cu3O7-δ(YBCO) preparation. In this technique, it is a challenge to obtain barium precursors with high volatility. In addition, the purity, evaporation characteristics and thermostability of adopted precursors in the whole process would decide the quality and reproducible results of YBCO film. In the present report, the barium precursor containing 2,2,6,6-tetramethylheptane-3,5-dionate...

  1. Chemical composition of nanomodified composite binder with nano- and microsized barium silicate

    Directory of Open Access Journals (Sweden)

    KOROLEV Evgenij Valerjevich

    2014-08-01

    Full Text Available There are several possibilities to improve cement-based binders. In particular, many properties of cement stone can be enhanced by means of micro- and nanoscale modification. In a number of previous works we had shown that application of barium hydrosilicates leads to such improvement. The present article is devoted to the investigation of the chemical composition of the cement stone which is modified by means of addition of barium hydrosilicates. The modification was performed on different scales: micro- and nanoscale; the results of simultaneous multi-scale modification are also presented. The examination was carried out with help of different modern research techniques – FT IR spectroscopy, differential thermal analysis and X-ray phase analysis. Identification of the new phases and comparative quantitative assessment of their content are performed. It is found that the use of nano- and micro-sized barium hydrosilicates as additives leads to reduction of portlandite by 27...28%; by means of multi-scale modification it is possible to reduce the content of portlandite much more (by 83.3%. Due to addition of nano- and micro-sized barium-based modifiers both the amount of calcium hydrosilicates in reaction products is enlarged, and structure of the mentioned hydrosilicates is changed (the formation of a fine-grained structure of hydration products takes place. Micro-sized barium hydrosilicates are chemically active additives and promote the formation of an additional quantity of calcium hydrosilicates of type CSH (I. The use of nanoscale barium hydrosilicates promotes the formation of CSH (I and CSH (II calcium hydrosilicates, and also both riversidite and xonotlite. As a result of simultaneous application of nano- and micro-sized barium hydrosilicates the content of CSH (II increases. This can be confirmed by means of differential thermal and X-ray analysis. The amount of CSH (I, riversidite and various tobermorites is also increases. It is

  2. Physical states and properties of barium titanate films in a plane electric field

    Science.gov (United States)

    Shirokov, V. B.; Kalinchuk, V. V.; Shakhovoi, R. A.; Yuzyuk, Yu. I.

    2016-07-01

    The influence of a plane electric field on the phase states of barium titanate thin films under the conditions of forced deformation has been studied. The field dependence of a complete set of material constants has been taken in the region of the c-phase, where polarization losses are absent. The material constants are calculated using equations of the piezoelectric effect derived by linearizing the nonlinear equations of state from the phenomenological; theory for barium titanate. It has been shown that there is a critical value of the field at which the electromechanical coupling coefficient reaches a maximum.

  3. Barium meal examination of infants under four months of age presenting with vomiting

    Energy Technology Data Exchange (ETDEWEB)

    Arthur, R.J.; Ziervogel, M.A.; Azmy, A.F.

    1984-02-01

    One hundred barium meal examinations performed on infants of less than 4 months of age are reviewed. All the infants presented with vomiting as a major symptom and the diagnosis remained in doubt following the initial clinical assessment. Fifty seven per cent of the examinations showed an abnormality of which 45% were throught to be significant. Hypertrophic pyloric stenosis was demonstrated in 23 infants. Other abnormalities included hiatus hernia, gastrooesophageal reflux, and duodenal abnormalities. The value of barium meal examinations in this group of infants is emphasised.

  4. Magnetic properties of barium ferrite dispersed within polystyrene-butadiene-styrene block copolymers.

    Science.gov (United States)

    Chipara, M; Skomski, R; Ali, N; Hui, D; Sellmyer, D J

    2009-06-01

    Magnetic properties of nanocomposite materials obtained by dispersing barium ferrite nanoparticles within polystyrene-butadiene-styrene block copolymer, in the temperature range, 300 to 500 K are reported. The temperature dependence of the magnetization at saturation, averaged uniaxial magnetocrystalline anisotropy, and coercive field of thick films are analyzed. A "matrix effect" was noticed within the glass transition range of the hard component (polystyrene) of the polymeric matrix. The reported modifications of the magnetic properties were assigned to the competition between the magnetic and mechanical reorientation of nanoparticles within the polymeric matrix. Such modifications were not observed in barium ferrite dispersed in cement. PMID:19504902

  5. Effects of oleic acid on the high threshold barium current in seabass Dicentrarchus labrax ventricular myocytes

    OpenAIRE

    Chatelier, Aurelien; Imbert, Nathalie; Zambonino, Jose-luis; McKenzie, David; Bois, P.

    2006-01-01

    The present study employed a patch clamp technique in isolated seabass ventricular myocytes to investigate the hypothesis that oleic acid (OA), a mono-unsaturated fatty acid, can exert direct effects upon whole-cell barium currents. Acute application of free OA caused a dose-dependent depression of the whole-cell barium current that was evoked by a voltage step to 0 mV from a holding potential of -80 mV. The derived 50% inhibitory concentration (IC50) was 12.49 +/- 0.27 mu mol l(-1). At a con...

  6. The structural and magnetic properties of barium ferrite powders prepared by the sol-gel method

    Institute of Scientific and Technical Information of China (English)

    Li Jie; Zhang Huai-Wu; Li Yuan-Xun; Liu Ying-Li; Ma Yan-Bing

    2012-01-01

    In this paper,M-type hexagonal barium ferrite powders are synthesized using the sol-gel method.A dried precursor heated in air is analyzed in the temperature range from 50 to 1200 ℃ using thermo-gravimetric analysis and differential scanning calorimetry. The effects of the additives and the cacinating temperature on the magnetic properties are investigated,and the results show that single-phase barium ferrite powders can be formed. After heat-treating at 950 ℃ for 4h with 3 wt% additive,the coercivity and saturation magnetization are found to be 440 Oe and 57.9 emu/g,respectively.

  7. Dielectric properties of piezoelectric 3–0 composites of lithium ferrite/barium titanate

    Indian Academy of Sciences (India)

    P Sarah; S V Suryanarayana

    2003-12-01

    Piezoelectric 3–0 composite ceramics are prepared from a mixture of barium titanate and lithium ferrite phase constituents. Dielectric properties of composites are affected by a number of parameters that include electrical properties, size, shape and amount of constituent phases. The frequency dependent measurements can provide additional insight into mechanisms controlling electrical response. Frequency dependence of dielectric constant plots of lithium ferrite/barium titanate composites will be given and the relevance of trends seen in them will be discussed. Connectivity in composites developed is studied.

  8. Features of Raman amplification in KGW and barium nitrate crystals at excitation by femtosecond pulses

    International Nuclear Information System (INIS)

    Measurements of Raman amplification in KGd(WO4)2 (KGW) and barium nitrate crystals at femtosecond excitation demonstrate spectral transformation of amplification band with change of pump parameters. The half-height amplification bandwidth of up to 45 nm (650 cm-1) what is 5 times larger than the pumping pulse spectral band 8.5 nm (130 cm-1) was observed for KGW crystal. Implementation of impulsive excitation for the low-frequency vibrations allows estimations of the dephasing times and linewidths for the 87 and 83 cm-1 Raman lines in KGW and barium nitrate

  9. Modeling of ferric sulfate decomposition and sulfation of potassium chloride during grate‐firing of biomass

    DEFF Research Database (Denmark)

    Wu, Hao; Jespersen, Jacob Boll; Jappe Frandsen, Flemming;

    2013-01-01

    Ferric sulfate is used as an additive in biomass combustion to convert the released potassium chloride to the less harmful potassium sulfate. The decomposition of ferric sulfate is studied in a fast heating rate thermogravimetric analyzer and a volumetric reaction model is proposed to describe th...

  10. Growth rate controlled barium partitioning in calcite and aragonite

    Science.gov (United States)

    Goetschl, Katja Elisabeth; Mavromatis, Vasileios; Baldermann, Andre; Purgstaller, Bettina; Dietzel, Martin

    2016-04-01

    The barium (Ba) content and the Ba/Ca molar ratios in biogenic and abiotic carbonates have been widely used from the scientific community as a geochemical proxy especially in marine and early diagenetic settings. The Ba content of carbonate minerals has been earlier associated to changes in oceanic circulation that may have been caused by upwelling, changes in weathering regimes and river-runoff as well as melt water discharge. The physicochemical controls of Ba ion incorporation in the two most abundant CaCO3 polymorphs found in Earth's surface environments, i.e. calcite and aragonite, have adequately been studied only for calcite. These earlier studies (i.e. [1]) suggest that at increasing growth rate, Ba partitioning in calcite is increasing as well. In contrast, to date the effect of growth rate on the partitioning of Ba in aragonite remains questionable, despite the fact that this mineral phase is the predominant carbonate-forming polymorph in shallow marine environments. To shed light on the mechanisms controlling Ba ion uptake in carbonates in this study we performed steady-state Ba co-precipitation experiments with calcite and aragonite at 25°C. The obtained results for the partitioning of Ba in calcite are in good agreement with those reported earlier by [1], whereas those for aragonite indicate a reduction of Ba partitioning at elevated aragonite growth rates, with the partitioning coefficient value between solid and fluid to be approaching the unity. This finding is good agreement with the formation of a solid solution in the aragonite-witherite system, owing to the isostructural crystallography of the two mineral phases. Moreover, our data set provides new insights that are required for reconstructing the evolution of the Ba content of pristine marine versus diagenetically altered carbonate minerals commonly occurring in marine subfloor settings, as the thermodynamically less stable aragonite will transform to calcite enriched in Ba, whilst affecting

  11. Synthesis and catalytic activity of polysaccharide templated nanocrystalline sulfated zirconia

    Energy Technology Data Exchange (ETDEWEB)

    Sherly, K. B.; Rakesh, K. [Mahatma Gandhi University Regional Research Center in Chemistry, Department of Chemistry, Mar Athanasius College, Kothamangalam-686666, Kerala (India)

    2014-01-28

    Nanoscaled materials are of great interest due to their unique enhanced optical, electrical and magnetic properties. Sulfate-promoted zirconia has been shown to exhibit super acidic behavior and high activity for acid catalyzed reactions. Nanocrystalline zirconia was prepared in the presence of polysaccharide template by interaction between ZrOCl{sub 2}⋅8H{sub 2}O and chitosan template. The interaction was carried out in aqueous phase, followed by the removal of templates by calcination at optimum temperature and sulfation. The structural and textural features were characterized by powder XRD, TG, SEM and TEM. XRD patterns showed the peaks of the diffractogram were in agreement with the theoretical data of zirconia with the catalytically active tetragonal phase and average crystalline size of the particles was found to be 9 nm, which was confirmed by TEM. TPD using ammonia as probe, FTIR and BET surface area analysis were used for analyzing surface features like acidity and porosity. The BET surface area analysis showed the sample had moderately high surface area. FTIR was used to find the type species attached to the surface of zirconia. UV-DRS found the band gap of the zirconia was found to be 2.8 eV. The benzylation of o-xylene was carried out batchwise in atmospheric pressure and 433K temperature using sulfated zirconia as catalyst.

  12. Regeneration of barium carbonate from barium sulphide in a pilot-scale bubbling column reactor and utilization for acid mine drainage.

    Science.gov (United States)

    Mulopo, J; Zvimba, J N; Swanepoel, H; Bologo, L T; Maree, J

    2012-01-01

    Batch regeneration of barium carbonate (BaCO(3)) from barium sulphide (BaS) slurries by passing CO(2) gas into a pilot-scale bubbling column reactor under ambient conditions was used to assess the technical feasibility of BaCO(3) recovery in the Alkali Barium Calcium (ABC) desalination process and its use for sulphate removal from high sulphate Acid Mine Drainage (AMD). The effect of key process parameters, such as BaS slurry concentration and CO(2) flow rate on the carbonation, as well as the extent of sulphate removal from AMD using the recovered BaCO(3) were investigated. It was observed that the carbonation reaction rate for BaCO(3) regeneration in a bubbling column reactor significantly increased with increase in carbon dioxide (CO(2)) flow rate whereas the BaS slurry content within the range 5-10% slurry content did not significantly affect the carbonation rate. The CO(2) flow rate also had an impact on the BaCO(3) morphology. The BaCO(3) recovered from the pilot-scale bubbling column reactor demonstrated effective sulphate removal ability during AMD treatment compared with commercial BaCO(3). PMID:22233912

  13. Particle Pollution

    Science.gov (United States)

    ... Your Health Particle Pollution Public Health Issues Particle Pollution Recommend on Facebook Tweet Share Compartir Particle pollution ... see them in the air. Where does particle pollution come from? Particle pollution can come from two ...

  14. Effects of magnetic pre-alignment of nano-powders on formation of high textured barium hexa-ferrite quasi-single crystals via a magnetic forming and liquid participation sintering route

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Junliang, E-mail: liujunliang@yzu.edu.cn [Key Laboratory of Environmental Materials and Engineering of Jiangsu Province, School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002 (China); Zeng, Yanwei [State Key Laboratory of Materials-Oriented Chemical Engineering, School of Materials Science and Engineering, Nanjing Tech University, Nanjing 210009 (China); Zhang, Xingkai [Key Laboratory of Environmental Materials and Engineering of Jiangsu Province, School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002 (China); Zhang, Ming [Key Laboratory of Environmental Materials and Engineering of Jiangsu Province, School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002 (China); Testing Center of Yangzhou University, Yangzhou 225002 (China)

    2015-05-15

    Highly textured barium hexa-ferrite quasi-single crystal with narrow ferromagnetic resonance line-width is believed to be a potential gyromagnetic material for self-biased microwave devices. To fabricate barium hexa-ferrite quasi-single crystal with a high grain orientation degree, a magnetic forming and liquid participation sintering route has been developed. In this paper, the effects of the pre-alignment of the starting nano-powders on the formation of barium quasi-single crystal structures have been investigated. The results indicated that: the crystallites with large sizes and small specific surfaces were easily aligned for they got higher driving forces and lower resistances during magnetic forming. The average restricting magnetic field was about 4.647 kOe to overcome the average friction barrier between crystallites. The pre-aligned crystallites in magnetic forming acted as the “crystal seeds” for oriented growth of the un-aligned crystallites during liquid participation sintering to achieve a high grain orientation. To effectively promote the grain orientation degrees of the sintered pellets, the grain orientation degrees of the green compacts must be higher than a limited value of 15.0%. Barium hexa-ferrite quasi-single crystal with a high grain orientation degree of 98.6% was successfully fabricated after sintering the green compact with its grain orientation degree of 51.1%. - Highlights: • Aligned particles acted as “crystal seeds” for un-aligned ones' oriented growth. • Magnetic field of 4.647 kOe was needed to overcome crystallites' friction barrier. • GOD dramatically increased after sintering if starting GOD exceeded to 15.0%. • Quasi-single crystal was prepared by sintering green compact with GOD of 51.1%.

  15. Scintillation properties of lead sulfate

    International Nuclear Information System (INIS)

    We report on the scintillation properties of lead sulfate (PbSO4), a scintillator that show promise as a high energy photon detector. It physical properties are well suited for gamma detection, as its has a density of 6.4 gm/cm3, a 1/e attenuation length for 511 keV photons of 1.2 cm, is not affected by air or moisture, and is cut and polished easily. In 99.998% pure PbSO4 crystals at room temperature excited by 511 keV annihilation photons, the fluorescence decay lifetime contains significant fast components having 1.8 ns (5%) and 19 ns (36%) decay times, but with longer components having 95 ns (36%) and 425 ns (23%) decays times. The peak emission wavelength is 335 nm, which is transmitted by borosilicate glass windowed photomultiplier tubes. The total scintillation light output increases with decreasing temperature fro 3,200 photons/MeV at +45 degrees C to 4, 900 photons/MeV at room temperature (+25 degrees C) and 68,500 photons/MeV at -145 degrees C. In an imperfect, 3 mm cube of a naturally occurring mineral form of PbSO4 (anglesite) at room temperature, a 511 keV photopeak is seen with a total light output of 60% that BGO. There are significant sample to sample variations of the light output among anglesite samples, so the light output of lead sulfate may improve when large synthetic crystals become available. 10 refs

  16. Gaseous Sulfate Solubility in Glass: Experimental Method

    Energy Technology Data Exchange (ETDEWEB)

    Bliss, Mary

    2013-11-30

    Sulfate solubility in glass is a key parameter in many commercial glasses and nuclear waste glasses. This report summarizes key publications specific to sulfate solubility experimental methods and the underlying physical chemistry calculations. The published methods and experimental data are used to verify the calculations in this report and are expanded to a range of current technical interest. The calculations and experimental methods described in this report will guide several experiments on sulfate solubility and saturation for the Hanford Waste Treatment Plant Enhanced Waste Glass Models effort. There are several tables of sulfate gas equilibrium values at high temperature to guide experimental gas mixing and to achieve desired SO3 levels. This report also describes the necessary equipment and best practices to perform sulfate saturation experiments for molten glasses. Results and findings will be published when experimental work is finished and this report is validated from the data obtained.

  17. The Balance Between Reactivity and Stability of Modified Oxide Surfaces Illustrated by the Behavior of Sulfated Zirconia Catalysts

    OpenAIRE

    Klose-Schubert, B.; Jentoft, R.; Jentoft, F.

    2011-01-01

    The stability of a series of sulfated zirconia catalysts, promoted with up to 2 wt% iron or manganese, in their calcined state was investigated. Phase composition, nature of surface sulfate species, degree of hydroxylation, and butane isomerization activity changed during aging over months in various atmospheres and during milling. The metastability of small oxide particles is discussed, including literature data on alumina, titania and other oxides. Catalytically active fractions of a materi...

  18. Synthesis and characterization of barium titanate, doped with europium and neodymium

    International Nuclear Information System (INIS)

    This work aims at synthesize and characterize mixed oxides in Barium Titanium matrix in doping with Neodymium and Europium analyzing thermogravimetric curves, characteristic bands at infrared region of the polymer complex, which are intermediates to mixed oxides, and identify the formation thereof, and the crystallinity using XRD analysis

  19. Seasonal variability in the input of lead, barium and indium to Law Dome, Antarctica

    DEFF Research Database (Denmark)

    Burn-Nunes...[], L.J.; Vallelonga, Paul Travis; Loss, R.D.;

    2011-01-01

    Lead (Pb) isotopic compositions and concentrations, and barium (Ba) and indium (In) concentrations have been determined at monthly resolution in five Law Dome (coastal Eastern Antarctica) ice core sections dated from similar to 1757 AD to similar to 1898 AD. 'Natural' background Pb concentrations...

  20. A plasmonic modulator based on metal-insulator-metal waveguide with barium titanate core

    DEFF Research Database (Denmark)

    Babicheva, Viktoriia; Lavrinenko, Andrei

    2013-01-01

    We design a plasmonic modulator which can be utilized as a compact active device in photonic integrated circuits. The active material, barium titanate (BaTiO3), is sandwiched between metal plates and changes its refractive index under applied voltage. Some degree of switching of ferroelectric...

  1. Diffuse X-ray scattering and far infrared absorption of barium and lead β" aluminas

    DEFF Research Database (Denmark)

    Hayes, W.; Kjær, Kristian; Pratt, F. L.;

    1985-01-01

    The authors have carried out high-momentum-resolution studies in diffuse X-ray scattering of barium and lead B" aluminas in the temperature range 20-700 degrees C. They have also measured the vibrational spectra of these compounds between 2K and 300K in the energy range 10-100 cm-1. The results...

  2. Adsorption of Pb(II) present in aqueous solution on calcium, strontium and barium hydroxy apatites

    International Nuclear Information System (INIS)

    Calcium, strontium and barium hydroxy apatites were successfully synthesized by chemical precipitation method, the obtained powders were characterized by the techniques of X-ray diffraction (XRD), scanning electron microscopy (Sem), semi-quantitative elemental analysis (EDS), infrared spectroscopy (IR), and N2 physisorption studies, complementary to these analytical techniques, was determined the surface fractal dimension (Df), and the amount of surface active sites of the materials, in order to know application as ceramic for water remediation. The ability of Pb(II) ion adsorption present in aqueous solution on the hydroxy apatites synthesized by batch type experiments was studied as a function of contact time, concentration of the adsorbate and temperature. The maximum lead adsorption efficiencies obtained were 0.31, 0.32 and 0.26 mg/g for calcium, strontium and barium hydroxy apatites respectively, achieved an equilibrium time of 20 minutes in the three solid-liquid systems studied. Experimental data were adequately adjusted at the adsorption kinetic model pseudo-second order, for the three cases. Moreover, experimental data of the strontium and calcium hydroxy apatites were adjusted to the Langmuir adsorption isotherm, indicating that the adsorption was through a monolayer, whereas barium hydroxyapatite was adjusted to the Freundlich adsorption isotherm, indicating a multilayer adsorption. The thermodynamic parameters obtained during adsorption studies as a function of temperature showed physisorption, exothermic and spontaneous processes respectively. The results showed that the calcium hydroxyapatite, strontium and barium are an alternative for the Pb(II) ion adsorption present in wastewaters. (Author)

  3. A comparison of radiographer and radiologist reports on radiographer conducted barium enemas

    International Nuclear Information System (INIS)

    Purpose: To compare radiographer and radiologist reports on radiographer conducted barium enemas. Method: Two specially trained, experienced radiographers performed barium enemas and prepared provisional reports without consulting radiologists. Later, formal radiologist reports were issued. The reports of each were compared and correlated with clinical findings derived from case note review. Results:Seven hundred and eighty eight patients had barium enemas. Males numbered 295 (37.5%) and females 493 (62.5%). Patients ages ranged from 17 to 95 years (mean 62). The radiologist reported 244 as normal, 432 as diverticular change, 70 with polyps (31 of which had co-existent diverticular disease), 31 with carcinomas and 12 with colitis (three of which had co-existent diverticular disease). Taking the radiologist reports as gold-standard radiographer reports were concordant in 753 (95.5%). There were 35 (4.5%) discordant radiographer reports of these 19 were false-positive diagnoses of polyps and six false positive diagnoses of diverticular change. There were seven false-negative diagnoses of polyps (only one of these was found to have a polyp at follow-up endoscopy). There was one false-negative diagnosis of colitis and two false-negative reports of diverticular change. On follow up there were no false negative diagnoses of carcinoma by either radiographer or radiologist. There was one concordant false-positive diagnosis of carcinoma. Conclusion:Radiographers with specialized training can report barium enemas to a high standard

  4. Spectroscopic (multi-energy) CT distinguishes iodine and barium contrast material in MICE

    CERN Document Server

    Anderson, NG; Firsching, M; de Ruiter, N; Schleich, N; Butzer, J S; Cook, N J; Grasset, R; Campbell, M; Scott, N J A; Anderson, N G

    2010-01-01

    Spectral CT differs from dual-energy CT by using a conventional X-ray tube and a photon-counting detector. We wished to produce 3D spectroscopic images of mice that distinguished calcium, iodine and barium. We developed a desktop spectral CT, dubbed MARS, based around the Medipix2 photon-counting energy-discriminating detector. The single conventional X-ray tube operated at constant voltage (75 kVp) and constant current (150 A mu A). We anaesthetised with ketamine six black mice (C57BL/6). We introduced iodinated contrast material and barium sulphate into the vascular system, alimentary tract and respiratory tract as we euthanised them. The mice were preserved in resin and imaged at four detector energy levels from 12 keV to 42 keV to include the K-edges of iodine (33.0 keV) and barium (37.4 keV). Principal component analysis was applied to reconstructed images to identify components with independent energy response, then displayed in 2D and 3D. Iodinated and barium contrast material was spectrally distinct f...

  5. Physical and biological dosimetry at the barium sulphate-culture medium interface

    International Nuclear Information System (INIS)

    The present study suggests that a thin layer of Barium sulphate suspension forms an interface with tissues which results in high dose regions on both sides of the BSS-tissue interface when irradiated with 250 kVp X rays. The magnitude of dose increase depends on the density of the BSS. (U.K.)

  6. Assessment of barium sulphate formation and inhibition at surfaces with synchrotron X-ray diffraction (SXRD)

    International Nuclear Information System (INIS)

    The precipitation of barium sulphate from aqueous supersaturated solutions is a well-known problem in the oil industry often referred to as 'scaling'. The formation and growth of barite on surfaces during the oil extraction process can result in malfunctions within the oil facilities and serious damage to the equipment. The formation of barium sulphate at surfaces remains an important topic of research with the focus being on understanding the mechanisms of formation and means of control. In situ synchrotron X-ray diffraction (SXRD) was used to investigate the formation of barium sulphate on a stainless steel surface. The effect of Poly-phosphinocarboxylic acid (PPCA) and Diethylenetriamine-penta-methylenephosphonic acid (DETPMP) which are two commercial inhibitors for barium sulphate was examined. The in situ SXRD measurements allowed the identification of the crystal faces of the deposited barite in the absence and presence of the two inhibitors. The preferential effect of the inhibitors on some crystal planes is reported and the practical significance discussed.

  7. Performance of cement solidification with barium for high activity liquid waste including sulphate

    International Nuclear Information System (INIS)

    The target liquid waste to be solidified is generated from PWR primary loop spent resin treatment with sulphate acid, so, its main constituent is sodium sulphate and the activity of this liquid is relatively high. Waste form of this liquid waste is considered to be a candidate for the subsurface disposal. The disposed waste including sulphate is anticipated to rise a concentration of sulphate ion in the ground water around the disposal facility and it may cause degradation of materials such as cement and bentonite layer and comprise the disposal facility. There could be two approaches to avoid this problem, the strong design of the disposal facility and the minimization of sulphaste ion migration from the solidified waste. In this study, the latter approach was examined. In order to keep the low concentration of sulphate ion in the ground water, it is effective to make barium sulphate by adding barium compound into the liquid waste in solidification. However, adding equivalent amount of barium compound with sulphate ion causes difficulty of mixing, because production of barium sulphate causes high viscosity. In this study, mixing condition after and before adding cement into the liquid waste was estimated. The mixing condition was set with consideration to keep anion concentration low in the ground water and of mixing easily enough in practical operation. Long term leaching behavior of the simulated solidified waste was also analyzed by PHREEQC. And the concentration of the constitution affected to the disposal facility was estimated be low enough in the ground water. (author)

  8. Barium versus Nonbarium Stimuli: Differences in Taste Intensity, Chemesthesis, and Swallowing Behavior in Healthy Adult Women

    Science.gov (United States)

    Nagy, Ahmed; Steele, Catriona M.; Pelletier, Cathy A.

    2014-01-01

    Purpose: The authors examined the impact of barium on the perceived taste intensity of 7 different liquid tastant stimuli and the modulatory effect that these differences in perceived taste intensity have on swallowing behaviors. Method: Participants were 80 healthy women, stratified by age group (60) and genetic taste status…

  9. Low temperature phase barium borate: A new optical limiter in continuous wave and nano pulsed regime

    Science.gov (United States)

    Babeela, C.; Girisun, T. C. Sabari

    2015-11-01

    Low temperature phase barium borate was synthesized by hydrothermal method. XRD analysis confirms the formation of γ-BBO or hydrated barium polyborate (Ba3B6O9(OH)6) which crystallizes in monoclinic system in the P2/c space group. The molecular structure analysis shows the presence of dominant BO4 unit and the hydrated nature of material. γ-BBO exhibits sharp absorption edge at 202 nm and highly transparency in the UV-Visible-NIR region. The peak at 347 nm in the emission spectrum is due to the presence of self-trapped exciton. The third order nonlinear optical properties and limiting behavior of low temperature barium borate in both pulsed and continuous wave regime were studied. The effective 2PA absorption coefficient of γ-BBO under ns pulse excitation is estimated to be 0.38 × 10-10 m/W. The nonlinear absorption coefficient, refractive index and optical susceptibility of the material in cw regime were found to be in the order of 10-5 m W-1, 10-12 m2 W-1, 10-6 esu respectively. In both regimes, low temperature phase barium borate exhibits better optical limiting properties than high temperature phase β-BBO.

  10. Barium borosilicate glass as a matrix for the uptake of dyes

    International Nuclear Information System (INIS)

    Barium borosilicate (BBS) and sodium borosilicate (SBS) glass samples, prepared by the conventional melt-quench method, were used for the uptake of Rhodamine 6G dye from aqueous solution. The experimental conditions were optimized to get maximum uptake and was found to be 0.4 mg of dye per gram of BBS glass sample. For the same network former to modifier ratio, barium borosilicate glasses are found to have improved extent of uptake for the dye molecules from aqueous solutions compared to sodium borosilicate glasses. Based on 29Si MAS NMR studies on these glasses, it is inferred that significantly higher number of non-bridging oxygen atoms present in barium borosilicate glasses compared to sodium borosilicate glasses is responsible for its improved uptake of Rhodamine 6G dye. 11B MAS NMR studies have confirmed the simultaneous existence of boron in BO3 and BO4 configurations in both barium borosilicate and sodium borosilicate glasses. The luminescence studies have established that the dye molecule is incorporated into the glass matrix through ion exchange mechanism by replacing the exchangeable ions like Na+/Ba2+ attached with the non-bridging oxygen atoms present in the glass.

  11. Modeling of sulfation of potassium chloride by ferric sulfate addition during grate-firing of biomass

    DEFF Research Database (Denmark)

    Wu, Hao; Jespersen, Jacob Boll; Aho, Martti;

    2013-01-01

    -scale tube reactor. It is revealed that approximately 40% of the sulfur is released as SO3, the remaining fraction being released as SO2. The proposed decomposition model of ferric sulfate is combined with a detailed gas phase kinetic model of KCl sulfation, and a simplified model of K2SO4 condensation...... harmful K2SO4. In the present study the decomposition of ferric sulfate is studied in a fast-heating rate thermogravimetric analyzer (TGA), and a kinetic model is proposed to describe the decomposition process. The yields of SO2 and SO3 from ferric sulfate decomposition are investigated in a laboratory...... in order to simulate the sulfation of KCl by ferric sulfate addition during grate-firing of biomass. The simulation results show good agreements with the experimental data obtained in a pilot-scale biomass grate-firing reactor, where different amounts of ferric sulfate was injected on the grate...

  12. Metabolic Flexibility of Sulfate Reducing Bacteria

    Directory of Open Access Journals (Sweden)

    Caroline M. Plugge

    2011-05-01

    Full Text Available Dissimilatory sulfate-reducing prokaryotes (SRB are a very diverse group of anaerobic bacteria that are omnipresent in nature and play an imperative role in the global cycling of carbon and sulfur. In anoxic marine sediments sulfate reduction accounts for up to 50% of the entire organic mineralization in coastal and shelf ecosystems where sulfate diffuses several meters deep into the sediment. As a consequence, SRB would be expected in the sulfate-containing upper sediment layers, whereas methanogenic Archaea would be expected to succeed in the deeper sulfate-depleted layers of the sediment. Where sediments are high in organic matter, sulfate is depleted at shallow sediment depths, and biogenic methane production will occur. In the absence of sulfate, many SRB ferment organic acids and alcohols, producing hydrogen, acetate, and carbon dioxide, and may even rely on hydrogen- and acetate-scavenging methanogens to convert organic compounds to methane. SRB can establish two different life styles, and these can be termed as sulfidogenic and acetogenic, hydrogenogenic metabolism. The advantage of having different metabolic capabilities is that it raises the chance of survival in environments when electron acceptors become depleted. In marine sediments, SRB and methanogens do not compete but rather complement each other in the degradation of organic matter.Also in freshwater ecosystems with sulfate concentrations of only 10-200 μM, sulfate is consumed efficiently within the top several cm of the sediments. Here, many of the δ-Proteobacteria present have the genetic machinery to perform dissimilatory sulfate reduction, yet they have an acetogenic, hydrogenogenic way of life.In this review we evaluate the physiology and metabolic mode of SRB in relation with their environment.

  13. Relative importance of nitrate and sulfate aerosol production mechanisms in urban atmospheres

    International Nuclear Information System (INIS)

    The relative importance of the various sulfate and nitrate aerosol production mechanisms is calculated for different atmospheric conditions. The calculation scheme used to determine the rates of nitrate and sulfate production, based on the concept that vapor transfer to the aerosols and nitrate and sulfate formation within the aerosols are coupled kinetic processes, considers sulfate formation by ozone and hydrogen peroxide oxidation and catalytic oxidation in the presence of soot, iron and manganese of sulfite solutions and sulfuric acid condensation and nitrate formation by the liquid-phase oxidation of dissolved nitrogen oxides for different initial gas concentrations and particle compositions and sizes. It is found that sulfate production is higher under daytime conditions, primarily proceeding by mechanisms involving sulfuric acid and hydrogen peroxide, while at night oxidation processes on the surface of the aerosol film are more important. Nitrate tends to decrease nighttime sulfate production due to an increase in aerosol acidity and nitrate production is found to be higher under nighttime conditions and in the winter

  14. Possible discovery of the r-process characteristics in the abundances of metal-rich barium stars

    CERN Document Server

    Cui, W Y; Shi, J R; Zhao, G; Wang, W J; Niu, P

    2014-01-01

    We study the abundance distributions of a sample of metal-rich barium stars provided by Pereira et al. (2011) to investigate the s- and r-process nucleosynthesis in the metal-rich environment. We compared the theoretical results predicted by a parametric model with the observed abundances of the metal-rich barium stars. We found that six barium stars have a significant r-process characteristic, and we divided the barium stars into two groups: the r-rich barium stars ($C_r>5.0$, [La/Nd]\\,$<0$) and normal barium stars. The behavior of the r-rich barium stars seems more like that of the metal-poor r-rich and CEMP-r/s stars. We suggest that the most possible formation mechanism for these stars is the s-process pollution, although their abundance patterns can be fitted very well when the pre-enrichment hypothesis is included. The fact that we can not explain them well using the s-process nucleosynthesis alone may be due to our incomplete knowledge on the production of Nd, Eu, and other relevant elements by the ...

  15. Inhibition of sulfate reducing bacteria in aquifer sediment by iron nanoparticles.

    Science.gov (United States)

    Kumar, Naresh; Omoregie, Enoma O; Rose, Jerome; Masion, Armand; Lloyd, Jonathan R; Diels, Ludo; Bastiaens, Leen

    2014-03-15

    Batch microcosms were setup to determine the impact of different sized zero valent iron (Fe(0)) particles on microbial sulfate reduction during the in situ bio-precipitation of metals. The microcosms were constructed with aquifer sediment and groundwater from a low pH (3.1), heavy-metal contaminated aquifer. Nano (nFe(0)), micro (mFe(0)) and granular (gFe(0)) sized Fe(0) particles were added to separate microcosms. Additionally, selected microcosms were also amended with glycerol as a C-source for sulfate-reducing bacteria. In addition to metal removal, Fe(0) in microcosms also raised the pH from 3.1 to 6.5, and decreased the oxidation redox potential from initial values of 249 to -226 mV, providing more favorable conditions for microbial sulfate reduction. mFe(0) and gFe(0) in combination with glycerol were found to enhance microbial sulfate reduction. However, no sulfate reduction occurred in the controls without Fe(0) or in the microcosm amended with nFe(0). A separate dose test confirmed the inhibition for sulfate reduction in presence of nFe(0). Hydrogen produced by Fe(0) was not capable of supporting microbial sulfate reduction as a lone electron donor in this study. Microbial analysis revealed that the addition of Fe(0) and glycerol shifted the microbial community towards Desulfosporosinus sp. from a population initially dominated by low pH and metal-resisting Acidithiobacillus ferrooxidans.

  16. Raman Spectroscopic Study Of The Dehydration Of Sulfates Using An Acoustic Levitator

    Science.gov (United States)

    Brotton, Stephen; Kaiser, R.

    2012-10-01

    The martian orbiters, landers, and rovers identified water-bearing sulfates on the martian surface. Furthermore, the Galileo mission suggests that hydrated salts such as magnesium sulfate are present on the surface of Europa and Ganymede. To understand the hydrologic history of Mars and some of Jupiter’s and Saturn’s moons, future missions need to identify in situ the hydration states of sulfates including magnesium sulfate (MgSO4 • nH2O n = 7, 6, . . ., 0), gypsum (CaSO4 • 2H2O), bassanite (CaSO4 • 0.5H2O) and anhydrite (CaSO4). Raman spectroscopy is ideally suited for this purpose, since the Raman spectrum for each different degree of hydration is unique. To obtain laboratory Raman spectra for comparison with the in situ measurements, we have developed a novel apparatus combining an acoustic levitator and a pressure-compatible process chamber. Particles with diameters between 10 µm and a few mm can be levitated at the pressure nodes of the ultrasonic standing wave. The chamber is interfaced to complimentary FTIR and Raman spectroscopic probes to characterize any chemical and physical modifications of the levitated particles. The particles can be heated to well-defined temperatures between 300 K and 1000 K using a carbon dioxide laser; the temperature of the particle will be probed via its black-body spectrum. The present apparatus enables (i) the production of high particle temperatures, (ii) precise measurement of the temperature, and (iii) accurate control of the environmental conditions (gas pressure and composition) within the chamber. Using this apparatus, we have studied the dehydration of sulfates including gypsum and epsomite (MgSO4 • 7H2O) in an anhydrous nitrogen atmosphere. We will present spectra showing the variation of the Raman spectra as gypsum, for example, is dehydrated to form anhydrite.

  17. The influence of different black carbon and sulfate mixing methods on their optical and radiative properties

    Science.gov (United States)

    Zhang, Hua; Zhou, Chen; Wang, Zhili; Zhao, Shuyun; Li, Jiangnan

    2015-08-01

    Three different internal mixing methods (Core-Shell, Maxwell-Garnett, and Bruggeman) and one external mixing method are used to study the impact of mixing methods of black carbon (BC) with sulfate aerosol on their optical properties, radiative flux, and heating rate. The optical properties of a mixture of BC and sulfate aerosol particles are considered for three typical bands. The results show that mixing methods, the volume ratio of BC to sulfate, and relative humidity have a strong influence on the optical properties of mixed aerosols. Compared to internal mixing, external mixing underestimates the particle mass absorption coefficient by 20-70% and the particle mass scattering coefficient by up to 50%, whereas it overestimates the particle single scattering albedo by 20-50% in most cases. However, the asymmetry parameter is strongly sensitive to the equivalent particle radius, but is only weakly sensitive to the different mixing methods. Of the internal methods, there is less than 2% difference in all optical properties between the Maxwell-Garnett and Bruggeman methods in all bands; however, the differences between the Core-Shell and Maxwell-Garnett/Bruggeman methods are usually larger than 15% in the ultraviolet and visible bands. A sensitivity test is conducted with the Beijing Climate Center Radiation transfer model (BCC-RAD) using a simulated BC concentration that is typical of east-central China and a sulfate volume ratio of 75%. The results show that the internal mixing methods could reduce the radiative flux more effectively because they produce a higher absorption. The annual mean instantaneous radiative force due to BC-sulfate aerosol is about -3.18 W/m2 for the external method and -6.91 W/m2 for the internal methods at the surface, and -3.03/-1.56/-1.85 W/m2 for the external/Core-Shell/(Maxwell-Garnett/Bruggeman) methods, respectively, at the tropopause.

  18. Preparation of Nd-doped barium cerate through different routes

    DEFF Research Database (Denmark)

    Chen, F.L.; Toft Sørensen, O.; Meng, G.Y.;

    1997-01-01

    BaCe0.9Nd0.1O3-delta was prepared through different routes: oxalate coprecipitation (OF), carbonate-oxide mixed by ball-milling (COB) and carbonate-oxide mixed by mortar/pestle (COM). The reaction process studied by DTA-TG and XRD showed that calcination of the precursor powders at T greater than...... density and open porosity indicated that the calcination temperature had a major influence on the sintering process for all the three routes. The calcined powders from OP and COB had small particle size, large surface area and good sinterability, while those from COM had large particle size, small surface...

  19. Influence of barium substitution on bioactivity, thermal and physico-mechanical properties of bioactive glass

    Energy Technology Data Exchange (ETDEWEB)

    Arepalli, Sampath Kumar, E-mail: askumar.rs.cer11@iitbhu.ac.in; Tripathi, Himanshu; Vyas, Vikash Kumar; Jain, Shubham; Suman, Shyam Kumar; Pyare, Ram; Singh, S.P., E-mail: spsinghceram@gmail.com

    2015-04-01

    Barium with low concentration in the glasses acts as a muscle stimulant and is found in human teeth. We have made a primary study by substituting barium in the bioactive glass. The chemical composition containing (46.1 − X) SiO{sub 2−}–24.3 Na{sub 2}O–26.9 CaO–2.6 P{sub 2}O{sub 5}, where X = 0, 0.4, 0.8, 1.2 and 1.6 mol% of BaO was chosen and melted in an electric furnace at 1400 ± 5 °C. The glasses were characterized to determine their use in biomedical applications. The nucleation and crystallization regimes were determined by DTA and the controlled crystallization was carried out by suitable heat treatment. The crystalline phase formed was identified by using XRD technique. Bioactivity of these glasses was assessed by immersion in simulated body fluid (SBF) for various time periods. The formation of hydroxy carbonate apatite (HCA) layer was identified by FTIR spectrometry, scanning electron microscope (SEM) and XRD which showed the presence of HCA as the main phase in all tested bioactive glass samples. Flexural strength and densities of bioactive glasses have been measured and found to increase with increasing the barium content. The human blood compatibility of the samples was evaluated and found to be pertinent. - Highlights: • In vitro bioactivity of soda-lime–baria-phospho-silicate glass was investigated. • HCA formed on surface of glasses was confirmed by XRD, SEM and FTIR spectrometry. • Mechanical properties of glasses were found to increase with barium addition. • Hemolysis showed that 1.2 mol% BaO bioactive glass exhibited better biocompatibility. • Barium substituted bioactive glasses can be used as bone implants.

  20. AFM studies of swift heavy ion and electron irradiated mixed barium strontium borate nonlinear optical crystal

    International Nuclear Information System (INIS)

    Single crystals of novel nonlinear optical material of mixed barium strontium borate is grown in our laboratory by employing the low-temperature solution technique. Equal proportion (1:1 molar ratio) of AR grade barium borate and strontium borate are mixed together in double distilled water to prepare a supersaturated solution. The solution is allowed to evaporate at constant temperature (30 deg. C) in a Petri dish for about a week which resulted in the formation of seed crystals. These seed crystals are used to grow larger crystals by suspending them using fine silk thread in the supersaturated mother solution. The solution is allowed to evaporate at constant temperature. This resulted in the growth of good transparent crystals of dimension 15 mmx10 mmx1 mm after about one month. These crystals show good second harmonic generation (SHG) efficiency. The mixed barium strontium borate crystal is found to be a promising nonlinear optical crystal, which possibly can be used for fabrication of photonic devices. The single crystals of mixed barium strontium borate are irradiated by 120 MeV Ag+13 swift heavy ions (SHI) of fluence 5x1011 ions/cm2 at Nuclear Science Centre, New Delhi and also by electrons of 8 MeV energy with a fluence 5.7x109/cm2 using Microtron accelerator at Mangalore University. Surface morphology studies of these crystals are carried out using atomic force microscope. The AFM topographical images of these SHI/electron irradiated single crystals of mixed barium strontium borate are obtained from different frames of the sample taken at different magnifications using atomic force microscope. An attempt is made to explain the surface damage caused due to SHI/electron irradiation using the observed AFM images

  1. Effect of preparation conditions on fractal structure and phase transformations in the synthesis of nanoscale M-type barium hexaferrite

    International Nuclear Information System (INIS)

    The conditions of the synthesis of carbonate-hydroxide precursors (pH of FeOOH precipitation and heat treatment regimes) were studied in terms of their effect on the fractal structure and physical-chemical properties of precursors. Phase transformations which occur during the synthesis of nanosize M-type barium hexaferrite (BHF) were studied as well. The first structural level of precursors' aggregation for mass fractals, the correlation between fractal dimension and precursors' activity during the synthesis of BHF were determined. Synthesis parameters for the precursors with the optimal fractal structure were determined. These data permit an enhancement of the filtration coefficient of the precipitates by a factor of 4-5, obtaining substantial decrease in the temperature required for synthesis of a single-phase BHF, and monodispersed plate-like nanoparticles (60 nm diameter) with the shape anisotropy and good magnetic characteristics (saturation magnetization (Ms)=68,7 emu/g and coercitivity (Hc)=5440 Oe). - Highlights: → The nanosize M-type BHF obtained by precipitation of hydroxicarbonates technique. → Optimal fractal structure of a precursor for nanosize M-type BHF has been determined. → The precursor precipitated at pH 4.3 allows getting monodisperse particles of BHF.

  2. First order reversal curves analysis of the temperature effect on magnetic interactions in barium ferrite with La-Co addition

    International Nuclear Information System (INIS)

    First order reversal curves (FORCs) distributions are a powerful tool for investigating hysteresis and interactions in magnetic systems and have been widely applied. La-Co substitution in barium hexaferrites has also been extensively studied. The most effective substitution to improve the magnetic properties (coercive field and energy product) is given by x=y=0.2 in the formula Ba1-xLaxFe12-yCoyO19. In this work, this stoichiometry is initially used to obtain a state where more than one phase is present. The magnetic behavior as a function of temperature was studied in order to have an insight into the magnetic interactions that originate a decrease in the magnetic performance of Ba hexaferrite magnets. The sample was structurally characterized by X-ray diffraction (XRD) and magnetically studied in a SQUID magnetometer. FORC distributions were used to study the dependence of the magnetic interactions with the temperature. FORC diagrams performed on the sample at different temperatures exhibit similar characteristics, such as the spread in the hc-hu plane and a spread out of the hc-axes. These features are interpreted in terms of exchange-interacting particles and dipolar interactions, respectively. As the temperature decreases, stronger interactions are noticed among hard and soft phases.

  3. THERMAL DECOMPOSITION MECHANISM OF BARIUM BENZOATE%苯甲酸钡的热分解机理

    Institute of Scientific and Technical Information of China (English)

    张克立; 袁继兵; 袁良杰; 孙聚堂

    1999-01-01

    Barium benzoate was synthesized in semi-solid phase reaction. The complex was characterized by elemental analysis, IR, X-ray powder diffraction. It is layered structure, monoclinic system. The mechanism of thermal decomposition for barium benzoate was studied by using TG, DTA, IR and gas chromatography-mass spectrometer. The thermal decompositon of barium benzoate in nitrogen proceeded in one stage: it decomposed to form BaCO3 and organic compounds. The organic compounds obtained from decomposition reaction are mainly benzophenone, triphenylmethane and so on.

  4. CT colonography: optimisation, diagnostic performance and patient acceptability of reduced-laxative regimens using barium-based faecal tagging

    OpenAIRE

    Stuart A Taylor; Slater, Andrew; Burling, David N.; Tam, Emily; Greenhalgh, Rebecca; Gartner, Louise; Scarth, Julia; Pearce, Robert; Bassett, Paul; Halligan, Steve

    2007-01-01

    To establish the optimum barium-based reduced-laxative tagging regimen prior to CT colonography (CTC). Ninety-five subjects underwent reduced-laxative (13 g senna/18 g magnesium citrate) CTC prior to same-day colonoscopy and were randomised to one of four tagging regimens using 20 ml 40%w/v barium sulphate: regimen A: four doses, B: three doses, C: three doses plus 220 ml 2.1% barium sulphate, or D: three doses plus 15 ml diatriazoate megluamine. Patient experience was assessed immediately af...

  5. Short-range order and fractal cluster structure of aggregates of barium titanate microparticles in a composite based on cyano-ethyl ester of polyvinyl alcohol

    Science.gov (United States)

    Krasovskii, A. N.; Novikov, D. V.; Vasina, E. S.; Matveichikova, P. V.; Sychev, M. M.; Rozhkova, N. N.

    2015-12-01

    The distribution of barium titanate (BaTiO3) microparticles in the matrix of cyano-ethyl ester of polyvinyl alcohol and the change in the surface energy upon introduction of shungite carbon nanoclusters into the dielectric composite have been investigated using the methods of scanning electron microscopy and contact angles. The computer processing of the electron microscopy data has demonstrated that the introduction of 0.04% shungite carbon nanoparticles into the composite leads to a decrease in the spatial homogeneity of the quasi-lattice and to an increase in the local density distribution of BaTiO3 microparticles, as well as in the correlation length corresponding to the formation of an infinite cluster of BaTiO3 particles. It has been found that, in this case, the surface energy and dielectric permittivity of the composite extremely increase.

  6. Synthesis of Nano-sized Barium Titanate Powder by Solid-state Reaction between Barium Carbonate and Titania

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Size control of BaTiO3 in solid-state reaction between BaCO3 and TiO2 was demonstrated by varying the size of TiO2 and milling conditions of BaCO3. The smaller TiO2 particles had higher surface area, resulting in faster initial reaction. The mechanically milled BaCO3 particles accelerated the diffusion process and decreased the calcinations temperature. It can be deduced from the results that the size control is possible and nano-sized BaTiO3 particles with about 60 nm can be synthesized by using the conventional solid-state reaction between BaCO3 and TiO2.

  7. Using Terrestrial Sulfate Efflorescences as an Analogue of Hydrated Sulfate Formation in Valles Marineris on Mars

    Science.gov (United States)

    Smith, P. C.; Szynkiewicz, A.

    2015-12-01

    Hydrated sulfate minerals provide conclusive evidence that a hydrologic cycle was once active on the surface of Mars. Two classes of hydrated sulfate minerals have been detected by robotic instruments on Mars: monohydrated sulfate minerals comprised of kieserite and gypsum, and various polyhydrated sulfates with Fe-Ca-Na-Mg-rich compositions. These minerals are found in various locations on Mars, including large surface exposures in valley settings of Valles Marineris. However, the sulfate sources and formation mechanisms of these minerals are not yet well understood.Recently, it has been suggested that the sulfate minerals in Valles Marineris might have formed in a manner similar to sulfate efflorescences found in dry environments on Earth. In this study, we use sulfate effloresences from the Rio Puerco Watershed, New Mexico as a terrestrial analogue to assess major factors that might have led to deposition of sulfate minerals in Valles Marineris. In different seasons indicative of dry and wet conditions, we collected field photographs and sediment samples for chemical and stable isotopic analyses (sulfur content, δ34S) to determine major sources of sulfate ions for efflorescences and to assess how the seasonal changes in surface/groundwater activity affect their formation. Preliminary sulfur isotope results suggest that oxidation of bedrock sulfides (0.01-0.05 wt. S %) is a major source of sulfate ion for efflorescences formation because their δ34S varied in negative range (-28 to -20‰) similar to sulfides (average -32‰). Using field photographs collected in Oct 2006, Feb and Nov 2012, May 2013, Mar and Oct 2014, we infer that the highest surface accumulation of sulfate efflorescences in the studied analog site was observed after summer monsoon seasons when more water was available for surface and subsurface transport of solutes from chemical weathering. Conversely, spring snow melt led to enhanced dissolution of sulfate efflorescences.

  8. Di-sulfated Keratan Sulfate as a Novel Biomarker for Mucopolysaccharidosis II, IVA, and IVB.

    Science.gov (United States)

    Shimada, Tsutomu; Tomatsu, Shunji; Mason, Robert W; Yasuda, Eriko; Mackenzie, William G; Hossain, Jobayer; Shibata, Yuniko; Montaño, Adriana M; Kubaski, Francyne; Giugliani, Roberto; Yamaguchi, Seiji; Suzuki, Yasuyuki; Orii, Kenji E; Fukao, Toshiyuki; Orii, Tadao

    2015-01-01

    Keratan sulfate (KS) is a storage material in mucopolysaccharidosis IV (MPS IV). However, no detailed analysis has been reported on subclasses of KS: mono-sulfated KS and di-sulfated KS. We established a novel method to distinguish and quantify mono- and di-sulfated KS using liquid chromatography-tandem mass spectrometry and measured both KS levels in various specimens.Di-sulfated KS was dominant in shark cartilage and rat serum, while mono-sulfated KS was dominant in bovine cornea and human serum. Levels of both mono- and di-sulfated KS varied with age in the blood and urine from control subjects and patients with MPS II and IVA. The mean levels of both forms of KS in the plasma/serum from patients with MPS II, IVA, and IVB were elevated compared with that in age-matched controls. Di-sulfated KS provided more significant difference between MPS IVA and the age-matched controls than mono-sulfated KS. The ratio of di-sulfated KS to total KS in plasma/serum increased with age in control subjects and patients with MPS II but was age independent in MPS IVA patients. Consequently, this ratio can discriminate younger MPS IVA patients from controls. Levels of mono- and di-sulfated KS in urine of MPS IVA and IVB patients were all higher than age-matched controls for all ages studied.In conclusion, the level of di-sulfated KS and its ratio to total KS can distinguish control subjects from patients with MPS II, IVA, and IVB, indicating that di-sulfated KS may be a novel biomarker for these disorders.

  9. Effect of activated sludge in the bottom zone on biogenic sulfate reduction

    Energy Technology Data Exchange (ETDEWEB)

    Yagafarov, G.G.; Bikchentayeva, A.G.; Yagafarov, R.G.

    1981-01-01

    It is shown that sulfate destruction in the Arlansk group of fields is caused by infection of the formation by sulfate reducing bacteria in the drilling process and flooding by surface water. For the first time, the necessity is shown of considering the activated sludge formed from particles suspended in water and biocenosis of microorganisms during microbiological investigation of wells. It is suggested that biodecomposition of surfactants is possible only in the area of formation of activated sludge around the bottom of the injection well.

  10. Sulfated binary and trinary oxide solid superacids

    Institute of Scientific and Technical Information of China (English)

    缪长喜; 华伟明; 陈建民; 高滋

    1996-01-01

    A series of sulfated binary and trinary oxide solid superacids were prepared, and their catalytic activities for n-butane isomerization at low temperature were measured. The incorporation of different metal oxides into ZrO2 may produce a positive or negative effect on the acid strength and catalytic activity of the solid superacids. Sulfated oxides of Cr-Zr, Fe-Cr-Zr and Fe-V-Zr are 2 - 3 times more active than the reported sulfated Fe-Mn-Zr oxide. The enhancement in the superacidity and catalytic activity of these new solid superacids has been discussed on account of the results of various characteriation techniques.

  11. 紫外分光光度法直接测定常量硫酸根%Direct Deternimatiom of Macro-Anoumts of Sulfate by UV Spectrophotonetry

    Institute of Scientific and Technical Information of China (English)

    詹文毅; 江国庆; 姜国民; 葛存旺; 田澍; 李建华

    2016-01-01

    提出了紫外分光光度法直接测定常量硫酸根。将脱硫石膏样品以盐酸溶解并使其中的硫酸根沉淀为硫酸钡,通过磷酸钠置换使硫酸根全部溶出,在紫外波段193,210 nm 处分别测定吸光度。硫酸根的线性范围为0.002~0.01 mol·L-1,方法的检出限(3s/k)为3.2×10-4 mol·L-1。方法用于脱硫石膏样品的分析,测定结果与硫酸钡重量法测定值相符,测定结果的相对标准偏差(n=5)在0.18%~0.23%之间。%A method of UV spectrophotometry for the direct determination of macro-amounts of sulfate was proposed.The desulfurized gypsum sample was dissolved with hydrochloric acid and the sulfate ion in the solution was precipitated as barium sulfate.Sodium phosphate was added for substitution and full dissolution of sulfate was achieved.Values of ultraviolet absorbances were measured at 193 nm and 210 nm separately.Linearity range of sulfate ion was found between 0.002 mol·L-1 and 0.01 mol·L-1 with detection limit (3s/k)of 3.2×10-4 mol· L-1 .The proposed method was applied to the analysis of desulfurized gypsum sample,giving results in consistency with those obtained by barium sulfate gravimetric method,giving values of RSD′s (n=5)in the range of 0.18%-0.23%.

  12. Sulfated cellulose thin films with antithrombin affinity

    Directory of Open Access Journals (Sweden)

    2009-11-01

    Full Text Available Cellulose thin films were chemically modified by in situ sulfation to produce surfaces with anticoagulant characteristics. Two celluloses differing in their degree of polymerization (DP: CEL I (DP 215–240 and CEL II (DP 1300–1400 were tethered to maleic anhydride copolymer (MA layers and subsequently exposed to SO3•NMe3 solutions at elevated temperature. The impact of the resulting sulfation on the physicochemical properties of the cellulose films was investigated with respect to film thickness, atomic composition, wettability and roughness. The sulfation was optimized to gain a maximal surface concentration of sulfate groups. The scavenging of antithrombin (AT by the surfaces was determined to conclude on their potential anticoagulant properties.

  13. ROE Wet Sulfate Deposition 2009-2011

    Data.gov (United States)

    U.S. Environmental Protection Agency — The raster data represent the amount of wet sulfate deposition in kilograms per hectare from 2009 to 2011. Summary data in this indicator were provided by EPA’s...

  14. Effects of barium on the nonlinear electrical characteristics and dielectric properties of SnO2-based varistors

    Institute of Scientific and Technical Information of China (English)

    Wang Chun-Ming; Wang Jin-Feng; Wang Chun-Lei; Chen Hong-Cun; Su Wen-Bin; Zang Guo-Zhong; Qi Peng; Zhao Ming-Lei; Ming Bao-Quan

    2004-01-01

    The effects of barium on electrical and dielectric properties of the SnO2·Co2Oa.Ta2O5 varistor system sintered at 1250℃ for 60min were investigated. It is found that barium significantly improves the nonlinear properties. The breakdown electrical field increases from 378.0 to 2834.5V/mm, relative dielectric constant (at 1kHz) falls from 1206 to 161 and the resistivity (at 1kHz) rises from 60.3 to 1146.5kΩ·cm with an increase of BaCO3 concentration from 0mol%to 1.00mol%. The sample with 1.00mol% barium has the best nonlinear electrical property and the highest nonlinear coefficient (α=29.2). A modified defect barrier model is introduced to illustrate the grain-boundary barrier formation of barium-doped SnO2-based varistors.

  15. Similarities Across Mars: Acidic Fluids at Both Meridiani Planum and Gale Crater in the Formation of Magnesium-Nickel Sulfates

    Science.gov (United States)

    Yen, Albert S.; Ming, Douglas W.; Gellert, Ralf; Mittlefehldt, David W.; Vaniman, David T.; Thompson, Lucy M.; Morris, Richard V.; Clark, Benton C.; Arvidson, Raymond

    2016-01-01

    In-situ identification of sulfates at the martian surface by the Mars Exploration Rovers and the Mars Science Laboratory have included calcium sulfates with various states of hydration (gypsum, bassanite, anhydrite), iron sulfates of likely fumarolic origin, massive deposits of iron hydroxysulfates indicative of an acidic history, and minor occurrences of magnesium sulfates. Recent measurements by the Opportunity and Curiosity Alpha Particle X-ray Spectrometers (APXS) have indicated the presence of Ni-substituted Mg-sulfates at the Meridiani Planum and Gale Crater landing sites. The Opportunity rover has traversed nearly 43 km and is currently exploring the impact breccias of the rim of Endeavour crater, near a location where signatures of aqueous alteration have been established from orbit. APXS analyses of subsurface materials excavated by a rover wheel show clear evidence for a Mg(Ni)-sulfate with Mg:Ni (is) approximately 100:1 (molar). On the other side of the planet, Curiosity is continuing its climb up Mount Sharp after driving (is) approximately 13 km since landing. Over the last 4 km of the traverse, there have been multiple chemical analyses of erosionally-resistant nodules and dendritic features in a finely laminated mudstone unit which also indicate Mg(Ni)-sulfate (Mg:Ni (is) approximately 30:1, molar). The geologic settings for the Endeavour rim and the Mount Sharp mudstones are clearly different, but similar formation conditions for these sulfates may be possible. Ni(2+) readily substitutes for Mg(2+) in a variety of geochemical processes due to their comparable ionic radii. The availability of soluble Ni at the time of Mg-sulfate precipitation suggests acidic solutions. The fluids responsible for alteration in the Endeavour rim and for the formation of nodules in Gale mudstones may have had similar chemical characteristics at the time the Mg-sulfates were formed.

  16. Chlorophenol Degradation Coupled to Sulfate Reduction

    OpenAIRE

    Häggblom, M M; Young, L. Y.

    1991-01-01

    We studied chlorophenol degradation under sulfate-reducing conditions with an estuarine sediment inoculum. These cultures degraded 0.1 mM 2-, 3-, and 4-chlorophenol and 2,4-dichlorophenol within 120 to 220 days, but after refeeding with chlorophenols degradation took place in 40 days or less. Further refeeding greatly enhanced the rate of degradation. Sulfate consumption by the cultures corresponded to the stoichiometric values expected for complete oxidation of the chlorophenol to CO2. Forma...

  17. Heparan Sulfate Dependent Mechanisms of Amyloidosis

    OpenAIRE

    Noborn, Fredrik

    2012-01-01

    A common theme in amyloid disorders is the deposition of disease-specific protein aggregates in tissues. Amyloid proteins bind to heparan sulfate (HS), a sulfated glycosaminoglycan, and HS has been found to promote the aggregation process. The present work relates to HS mediated mechanisms of amyloidosis, particularly transthyretin (TTR) amyloidosis, AA-amyloidosis and Alzheimer’s disease (AD). TTR is a transport protein present in the blood and cerebrospinal fluid, which under unclear circum...

  18. Enhanced sintering and conductivity study of cobalt or nickel doped solid solution of barium cerate and zirconate

    DEFF Research Database (Denmark)

    Ricote, Sandrine; Bonanos, Nikolaos

    2010-01-01

    atmospheres and compared to the undoped compounds. The ionic and p-type conductivities have been determined, as well as the activation energy in wet reducing atmospheres, in which protonic conduction is dominant. A decrease of the ionic conductivity is noticeable for the cobalt or nickel doped barium...... zirconate (x = 0), while not for cobalt or nickel solid solution of barium cerate and zirconate (x = 0.2)....

  19. Hormonal control of sulfate uptake and assimilation.

    Science.gov (United States)

    Koprivova, Anna; Kopriva, Stanislav

    2016-08-01

    Plant hormones have a plethora of functions in control of plant development, stress response, and primary metabolism, including nutrient homeostasis. In the plant nutrition, the interplay of hormones with responses to nitrate and phosphate deficiency is well described, but relatively little is known about the interaction between phytohormones and regulation of sulfur metabolism. As for other nutrients, sulfate deficiency results in modulation of root architecture, where hormones are expected to play an important role. Accordingly, sulfate deficiency induces genes involved in metabolism of tryptophane and auxin. Also jasmonate biosynthesis is induced, pointing to the need of increase the defense capabilities of the plants when sulfur is limiting. However, hormones affect also sulfate uptake and assimilation. The pathway is coordinately induced by jasmonate and the key enzyme, adenosine 5'-phosphosulfate reductase, is additionally regulated by ethylene, abscisic acid, nitric oxid, and other phytohormones. Perhaps the most intriguing link between hormones and sulfate assimilation is the fact that the main regulator of the response to sulfate starvation, SULFATE LIMITATION1 (SLIM1) belongs to the family of ethylene related transcription factors. We will review the current knowledge of interplay between phytohormones and control of sulfur metabolism and discuss the main open questions. PMID:26810064

  20. THE IMPACT OF RELATIVE HUMIDITY ON THE RADIATIVE PROPERTY AND RADIATIVE FORCING OF SULFATE AEROSOL

    Institute of Scientific and Technical Information of China (English)

    张立盛; 石广玉

    2001-01-01

    With the data of complex refractive index of sulfate aerosol, the radiative properties of the aerosol under 8 relative humidity conditions are calculated in this paper. By using the concentration distribution from two CTM models and LASG GOALS/AGCM, the radiative forcing due to hygroscopic sulfate aerosol is simulated. The results show that: (1) With the increase of relative humidity, the mass extinction coefficiency factor decreases in the shortwave spectrum: single scattering albedo keeps unchanged except for a little increase in longwave spectrum, and asymmetry factor increases in whole spectrum. (2) Larger differences occur in radiative forcing simulated by using two CTM data, and the global mean forcing is -0. 268 and -0. 816 W/m2,respectively. (3) When the impact of relative humidity on radiative property is taken into account,the distribution pattern of radiative forcing due to the wet particles is very similar to that of dry sulfate, but the forcing value decreases by 6%.

  1. Synthesis of nano-crystalline hydroxyapatite and ammonium sulfate from phosphogypsum waste

    Energy Technology Data Exchange (ETDEWEB)

    Mousa, Sahar, E-mail: dollyriri@yahoo.com [Inorganic Chemistry Department, National Research Centre, Dokki, P.O.Box:12622, Postal code: 11787 Cairo (Egypt); King Abdulaziz University, Science and Art College, Chemistry Department, Rabigh Campus, P.O. Box:344, Postal code: 21911 Rabigh (Saudi Arabia); Hanna, Adly [Inorganic Chemistry Department, National Research Centre, Dokki, P.O.Box:12622, Postal code: 11787 Cairo (Egypt)

    2013-02-15

    Graphical abstract: TEM micrograph of dried HAP at 800 °C. -- Abstract: Phosphogypsum (PG) waste which is derived from phosphoric acid manufacture by using wet method was converted into hydroxyapatite (HAP) and ammonium sulfate. Very simple method was applied by reacting PG with phosphoric acid in alkaline medium with adjusting pH using ammonia solution. The obtained nano-HAP was dried at 80 °C and calcined at 600 °C and 900 °C for 2 h. Both of HAP and ammonium sulfate were characterized by X-ray diffraction (XRD) and infrared spectroscopy (IR) to study the structural evolution. The thermal behavior of nano-HAP was studied; the particle size and morphology were estimated by using transmission electron microscopy (TEM) and scanning electron microscopy (SEM). All the results showed that HAP nano-crystalline and ammonium sulfate can successfully be produced from phosphogypsum waste.

  2. Immunological detection of keratan sulfate in meat products with and without mechanically separated chicken meat.

    Science.gov (United States)

    Nakano, Takuo; Ozimek, Lech; Betti, Mirko

    2012-12-01

    Keratan sulfate is a glycosaminoglycan found in the structure of cartilage proteoglycans, aggrecan and fibromodulin. This study was undertaken to detect this glycosaminoglycan in meat products containing mechanically separated chicken meat (MSCM) having cartilage particles. Dry-defatted samples of MSCM and meat products with or without MSCM were digested with papain, and a non-dialyzable fraction from each papain digest was examined by immunodiffusion analysis using anti-keratan sulfate monoclonal antibody (IgM). No precipitine line was formed with the antibody for all samples of meat products without MSCM, while a sample of MSCM and all samples of meat products with MSCM gave clear precipitine lines with the antibody. The immunodiffusion test described here appears to be a simple sensitive specific method for qualitative analysis of keratan sulfate, which in combination with other methods may be useful for detection of MSCM in meat products. PMID:22748309

  3. Comparative study on the mechanisms of rotavirus inactivation by sodium dodecyl sulfate and ethylenediaminetetraacetate

    Energy Technology Data Exchange (ETDEWEB)

    Ward, R.L. (Sandia Labs., Albuquerque, NM); Ashley, C.S.

    1980-06-01

    This report describes a comparative study on the effects of the anionic detergent sodium dodecyl sulfate and the chelating agent ethylenediaminetetraacetate on purified rotavirus SA-11 particles. Both chemicals readily inactivated rotavirus at quite low concentrations and under very mild conditions. In addition, both agents modified the viral capsid and prevented the adsorption of inactivated virions to cells. Capsid damage by ethylenediaminetetraacetate caused a shift in the densities of rotavirions from about l.35 to about 1.37 g/ml and a reduction in their sedimentation coefficients. Sodium dodcyl sulfate, on the other hand, did not detectably alter either of these physical properties of rotavirions. Both agents caused some alteration of the isoelectric points of the virions. Finally, analysis of rotavirus proteins showed that ethylenediaminetetraacetate caused the loss of two protein peaks from the electrophoretic pattern of virions but sodium dodecyl sulfate caused the loss of only one of these same protein peaks.

  4. Intra-individual comparison of patient acceptability of multidetector-row CT colonography and double-contrast barium enema

    International Nuclear Information System (INIS)

    AIMS: To compare the subjective acceptability of CT colonography in comparison with barium enema in older symptomatic patients, and to ascertain preferences for future colonic investigation. MATERIALS AND METHODS: The study population comprised 78 persons aged 60 years or over with symptoms suggestive of colorectal neoplasia, who underwent CT colonography followed the same day by barium enema. A 25-point questionnaire was administered after each procedure and an additional follow-up questionnaire a week later. Responses were compared using Wilcoxon matched pairs testing, Mann-Whitney test statistics and binomial exact testing. RESULTS: Participants suffered less physical discomfort during CT colonography (p=0.03) and overall satisfaction was greater compared with barium enema (p=0.03). On follow-up, respondents reported significantly better tolerance of CT colonography (p=0.002), and were less prepared to undergo barium enema again (p<0.001). Of 52 subjects expressing an opinion, all preferred CT to barium enema. CONCLUSION: Patient satisfaction was higher with CT colonography than barium enema. CT colonography caused significantly less physical discomfort and was overwhelmingly preferred by patients

  5. Site-selective spectroscopy of the solid-state defect chemistry in erbium-doped barium titanate.

    Science.gov (United States)

    Bak, John D; Wright, John C

    2005-10-01

    Erbium-doped barium titanate crystals were studied by laser-induced fluorescence spectroscopy. Thirteen spectroscopically distinct erbium ion sites were found. The relative concentrations of the different sites changed as a function of the crystal and its preparation and treatment. One major site was present in all crystals. The site distribution was changed either by growing codoped crystals with donor (La3+) and acceptor (Sc3+) ions or by changing the temperature and partial pressure of the oxygen in the annealing atmosphere. Equilibrium calculations were done to simulate the defect distributions that result from the charge compensation of the erbium ions. Comparison with the observed dependence of the site spectral intensities indicated that the erbium enters the lattice on barium sites. We assigned the dominant site to an erbium ion on a barium site that is locally compensated by a barium vacancy, whereas the other lower-intensity sites corresponded to erbium ions that are locally compensated by an electron and a more complex center of an erbium, a barium vacancy, and a hole. The spectra of one sample showed that its defects were different and were characteristic of a sample that had not equilibrated. The new sites in this sample were assigned to erbium entering the lattice on a titanium site, which was then locally compensated by an oxygen vacancy or a hole. Heating equilibrated the sample and changed the erbium to a barium site. PMID:16853368

  6. Seasonal variations of oxygen-18 in atmospheric sulfates

    Energy Technology Data Exchange (ETDEWEB)

    Holt, B.D.; Cunningham, P.T.; Kumar, R.

    1979-01-01

    Oxygen-isotope analyses were made on samples of aerosol sulfates, SO/sub 2/, water vapor, precipitation water, and precipitation sulfates collected over a two-year period near Chicago, Illinois, USA. The purpose of this isotopic study was to help to elucidate the mechanisms of sulfate formation in the atmosphere. Oxygen-18 enrichments in precipitation sulfates varied seasonally and in phase with the corresponding enrichments in precipitation water. The ratio of the amplitudes of the enrichment-vs-time curves indicated isotopic equilibration between SO/sub 2/ and atmospheric water prior to oxidation. Oxygen-18 enrichments in aerosol sulfates appeared to vary randomly with season, but averaged about the same as precipitation sulfates. If aerosol sulfates and precipitation sulfates were formed by the same hydrolysis-oxidation mechanism in clouds, relatively long residence times and transport distances of sulfate aerosols may have provided sufficient mixing to obscure seasonal effects such as were observed in the short-residence precipitation sulfates.

  7. Barium enema carried out by digital luminescent radiography (DLR) and conventional screen-film system combinations

    International Nuclear Information System (INIS)

    120 double-contrast barium enemas were obtained by both digital luminescent radiography (DLR) and conventional screen-film systems, the digital exposure dose being 50% of the conventional one. In DLR two differently post processed images were obtained from one X-ray exposure: a display with low spatial frequency enhancement was processed to look like a conventional radiograph and was complemented by a display with high spatial frequency enhancement. Analysing the results statistically DLR proved to be diagnostically equivalent to conventional radiography despite the reduction in exposure dose and a slightly diminished image quality. High spatial frequency enhancement did not provide further diagnostic information and is therefore superfluous in barium enemas. (orig.)

  8. Elastic properties investigation of gamma-radiated barium lead borosilicate glass using ultrasonic technique

    International Nuclear Information System (INIS)

    Highlights: → Change in acoustical parameter due to composition effect and irradiation effect. → Changes in the structure of the glass (BO3 → BO4) due to the effect of radiation. → Structural changes in the BO3 to BO4 have a more compactness structure. - Abstract: The ultrasonic velocities were measured in barium lead borosilicate glass samples of different compositions before and after irradiation with γ-rays. Measurements were carried out at room temperature and 4 MHz frequency using ultrasonic technique. The ultrasonic velocities data of glass samples have been used to find the elastic modulus and micro-hardness. Densities of glass samples were measured by Archimedes's principle using n-hexane as immersion liquid. It was found that ultrasonic velocity, elastic modulus and micro-hardness increase with increasing barium oxide content and increasing γ-radiation dose.

  9. Synthesis and Fluorescence of Europium-Doped Barium Fluoride Cubic Nanocolumns

    Institute of Scientific and Technical Information of China (English)

    连洪州; 刘洁; 叶泽人; 石春山

    2004-01-01

    Europium-doped barium fluoride cubic nanocolumns were synthesized from the quaternary water in oil reverse microemulsions. In this process, the aqueous cores of water/cetyl trimethyl ammonium bromide(CTAB)/n-butanol/n-octane reverse microemulsions were used as microreactors for the precipitation of europium doped barium fluoride. XRD analysis shows that under the dopant concentration of 0.06%(molar fraction), the products are single phase. The result products are cubic column-like with about 30~50 nm edge length of cross section, and about 200 nm of length obtained from the transmission electron microscopy(TEM), and atomic force microscopy(AFM). Under the 0.06%(molar fraction) of dopant concentration, the fluorescence of Eu2+ and Eu3+ under the 589 of excitation wavelength is observed.

  10. Barium phosphate conversion coating on die-cast AZ91D magnesium alloy

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Poor corrosion resistance limits the application of magnesium alloys.Conversion coating is widely used to protect magnesium alloys because of easy operation and low cost.A novel conversion coating on die.cast AZ91D magnesium alloy containing barium salts was studied.The optimum concentrations of Ba(NO3)2,Mn(NO3)2 and NH4H2PO4 are 25 g/L,15 mL/L and 20 g/L,respectively,based on orthogonal test resulm.The treating time,solution temperature and PH value are settled to be 5-30 min,50-70℃and 2.35-3.0.respectively.The corrosion resistance of barium conversion coating is better than that of manganese-based phosphate conversion coating by immersion test.The coating is composed of Ba,P, O,Mg,Zn,Mn and Al by EDX analysis.

  11. Absolute Te$_2$ reference for barium ion at $455.4~$nm

    CERN Document Server

    Dutta, T; Mukherjee, M

    2016-01-01

    Precision atomic spectroscopy is presently the work horse in quantum information technology, metrology, trace analysis and even for fundamental tests in physics. Stable lasers are inherent part of precision spectroscopy which in turn requires absolute wavelength markers suitably placed corresponding to the atomic species being probed. Here we present, new lines of tellurium (Te$_2$) which allows locking of external cavity diode laser (ECDL) for precision spectroscopy of singly charged barium ions. In addition, we have developed an ECDL with over 100 GHz mod-hop-free tuning range using commercially available diode from $\\textit{Nichia}$. These two developments allow nearly drift-free operation of a barium ion trap set-up with one single reference cell thereby reducing the complexity of the experiment.

  12. Efficient photoionization for barium ion trapping using a dipole-allowed resonant two-photon transition

    CERN Document Server

    Leschhorn, G; Schaetz, T

    2011-01-01

    Two efficient and isotope-selective resonant two-photon ionization techniques for loading barium ions into radio-frequency (RF)-traps are demonstrated. The scheme of using a strong dipole-allowed transition at \\lambda=553 nm as a first step towards ionization is compared to the established technique of using a weak intercombination line (\\lambda=413 nm). An increase of two orders of magnitude in the ionization efficiency is found favoring the transition at 553 nm. This technique can be implemented using commercial all-solid-state laser systems and is expected to be advantageous compared to other narrowband photoionization schemes of barium in cases where highest efficiency and isotope-selectivity are required.

  13. Scaled-energy spectroscopy of a |M|=1 Rydberg barium atom in an electric field

    Institute of Scientific and Technical Information of China (English)

    Wang Lei; Quan Wei; Shen Li; Yang Hai-Feng; Shi Ting-Yun; Liu Xiao-Jun; Liu Hong-Ping; Zhan Ming-Sheng

    2009-01-01

    We observe strong energy-dependent quantum defects in the scaled-energy Stark spectra for |M|=1 Rydberg states of barium atoms at three scaled energies: ε= -2.000, ε= -2.500 and ε=-3.000. In an attempt to explain the observations, theoretical calculations of closed orbit theory based on a model potential including core effect are performed for non-hydrogenic atoms. While such a potential has been uniformly successful for alkali atoms with a single valence electron, it fails to match experimental results for barium atoms in the 6snp Rydberg states with two valence electrons. Our study points out that this discrepancy is due to the strong perturbation from the 5d8p state, which voids the simple approximation for constant quantum defects of principle quantum number n.

  14. Laser plasma channel formation in barium vapor based on superelastic heating of electrons

    International Nuclear Information System (INIS)

    Computational study of plasma channel formation kinetics in optically dense barium vapor irradiated by pulsed laser light tuned to the Ba I resonance transition at λ = 553.5 nm has been performed. Seed electrons are produced due to the mechanism of atoms associative ionization, which then gain energy in superelastic collisions and initiate the avalanche ionization of atoms by electron impact. We have studied the influence of radiative transfer effects in cylindrically symmetric gas volume on the excitation kinetics of multilevel barium atoms, dynamics of absorption of laser radiation, and the plasma channel expansion in the form of a halo in condition of competition between the ionizing and quenching electron collisions with excited atoms. (paper)

  15. Effect of CaF2 addition on optical properties of barium phosphate glasses

    Science.gov (United States)

    Kumar, N. Manoj; Rao, G. Venkateswara; Akhila, B. E.; Shashikala, H. D.

    2014-04-01

    Ternary barium phosphate glasses, (50-X)BaO-XCaF2-50P2O5 have been prepared by adding 0-10 mol% of CaF2 to binary barium phosphate glasses. The amorphous nature of the prepared glasses was confirmed by X-ray diffraction technique. The UV-Visible absorption spectra have been recorded, optical band gap energy Eopt and Urbach energy Etail were determined. Shift in Eopt and Etail with increase in concentration of CaF2 is noted. FTIR analysis was carried out to investigate the short and intermediate-range orders in glasses. Shift of (P-O-P) band to higher wave number with the substitution of BaO with CaF2 shows the shortening of the phosphate chains. Hardness and density of glass samples were measured and correlated with the composition of glasses.

  16. Removal of hexavalent chromium from aqueous solution by barium ion cross-linked alginate beads

    Directory of Open Access Journals (Sweden)

    Uzaşçı Sesil

    2014-07-01

    Full Text Available Barium ion cross-linked alginate beads have shown great affinity to toxic hexavalent chromium ions in aqueous solution, contrary to the traditional calcium alginate beads. The adsorption experiments were carried out by the batch contact method. The optimal pH for removal was found to be pH 4. The equilibrium was established in 4 h and the removal efficiency of chromium (VI was found as 95%. The adsorption data fit well with Langmuir and Freundlich isotherms. The maximum chromium (VI adsorption capacity determined from Langmuir isotherm was 36.5 mg/g dry alginate beads. Our study suggests that barium alginate beads can be used as cost-effective and efficient adsorbents for the removal of chromium (VI from contaminated waters.

  17. Single-step synthesis of well-crystallized and pure barium titanate nanoparticles in supercritical fluids

    Science.gov (United States)

    Reverón, Helen; Aymonier, Cyril; Loppinet-Serani, Anne; Elissalde, Catherine; Maglione, Mario; Cansell, François

    2005-08-01

    Single-step synthesis of ultra-fine barium titanate powder with a crystallinity as high as 90% and without barium carbonate contamination has been successfully performed under supercritical conditions using a continuous-flow reactor in the temperature range 150-380 °C at 16 MPa. To synthesize this bimetallic oxide, alkoxides, ethanol and water were used. The influence of the synthesis parameters on the BaTiO3 powder characteristics was investigated. The results show that the water to alkoxide precursor ratio, the reactor temperature and the Ba:Ti molar ratio of alkoxide precursor play a major role in the crystallization of pure and well-crystallized BaTiO3 nanoparticles. The continuous mode of operation without post-treatments for powder washing, drying or crystallization increase the industrial interest.

  18. Magnetic and dielectric properties of 3Y-TZP/strontium doped barium ferrite composite

    Science.gov (United States)

    Zhang, Chao; Wang, Shan-Shan; Guo, Rui-Song; Cai, Guang-Lan; Guo, Wei-Na; Wu, Chen

    2015-02-01

    Magnetic and dielectric properties of 3Y-TZP/20 wt.% Ba1-xSrxFe12O19 (x = 0, 0.25, 0.5, 0.75) composites prepared by solid state reaction method are investigated. The magnetic properties are improved in the composites with the strontium doped barium ferrite. When x = 0.25, the saturation magnetization of the ferrite reaches the maximum. This is due to the migration of Fe3+ induced by the Sr2+ doping. The dielectric properties are also improved in the composite with the strontium doped barium ferrite. When x = 0.5, the dielectric constant and dielectric loss possess the maximum. This is caused by the lattice distortion resulting from the Sr2+ doping. The dielectric properties are analyzed by the universal relaxation law.

  19. The CAMEO barium release - E/parallel/ fields over the polar cap

    Science.gov (United States)

    Heppner, J. P.; Miller, M. L.; Pongratz, M. B.; Smith, G. M.; Smith, L. L.; Mende, S. B.; Nath, N. R.

    1981-01-01

    Four successive thermite barium releases at an altitude of 965 km over polar cap invariant latitudes 84 to 76 deg near magnetic midnight were conducted from the orbiting second stage of the vehicle that launched Nimbus 7; the releases were made as part of the CAMEO (Chemically Active Material Ejected in Orbit) program. This was the first opportunity to observe the behavior of conventional barium release when conducted at orbital velocity in the near-earth magnetic field. The principal unexpected characteristic in the release dynamics was the high, 1.4 to 2.6 km/s, initial Ba(+) expansion velocity relative to an expected velocity of 0.9 km/s. Attention is also given to neutral cloud expansion, initial ion cloud expansion, convective motion, and the characteristics of field-aligned motion. The possibility of measuring parallel electric fields over the polar cap by observing perturbations in the motion of the visible ions is assessed.

  20. Examination of colon with diluted barium contrast medium by the irrigoscopic (irrigographic) method

    International Nuclear Information System (INIS)

    By analogy with the work of C.Tavernier et al. (1974), who examined the eosophagus, stomach and duodenum with diluted 23% barium sulphate solution, the authors examined 58 patients by irrigoscopy (irrigography) with 20% barium sulphate solution. The rationality and the advantages of the method over the standard one were demonstrated. Early lesions measuring 3 or 4 mm were detected; the mucosal relief was very well presented. The injurious effect of tannic acid on the liver parenchyma was avoided by the use of low 0.15% tannin solution. In comparison with the method of Fischer (with double contrast) the examination time was shortened and the radiation load to the patients and attending personal reduced. The method is technically easy to perform. (author)