WorldWideScience

Sample records for barium strontium titanate

  1. Printed Barium Strontium Titanate capacitors on silicon

    Energy Technology Data Exchange (ETDEWEB)

    Sette, Daniele [Univ. Grenoble Alpes, F-38000 Grenoble (France); CEA, LETI, MINATEC Campus, F-38054 Grenoble (France); Luxembourg Institute of Science and Technology LIST, Materials Research and Technology Department, L-4422 Belvaux (Luxembourg); Kovacova, Veronika [Univ. Grenoble Alpes, F-38000 Grenoble (France); CEA, LETI, MINATEC Campus, F-38054 Grenoble (France); Defay, Emmanuel, E-mail: emmanuel.defay@list.lu [Univ. Grenoble Alpes, F-38000 Grenoble (France); CEA, LETI, MINATEC Campus, F-38054 Grenoble (France); Luxembourg Institute of Science and Technology LIST, Materials Research and Technology Department, L-4422 Belvaux (Luxembourg)

    2015-08-31

    In this paper, we show that Barium Strontium Titanate (BST) films can be prepared by inkjet printing of sol–gel precursors on platinized silicon substrate. Moreover, a functional variable capacitor working in the GHz range has been made without any lithography or etching steps. Finally, this technology requires 40 times less precursors than the standard sol–gel spin-coating technique. - Highlights: • Inkjet printing of Barium Strontium Titanate films • Deposition on silicon substrate • Inkjet printed silver top electrode • First ever BST films thinner than 1 μm RF functional variable capacitor that has required no lithography.

  2. Anion and cation diffusion in barium titanate and strontium titanate

    International Nuclear Information System (INIS)

    Perovskite oxides show various interesting properties providing several technical applications. In many cases the defect chemistry is the key to understand and influence the material's properties. In this work the defect chemistry of barium titanate and strontium titanate is analysed by anion and cation diffusion experiments and subsequent time-of-flight secondary ion mass spectrometry (ToF-SIMS). The reoxidation equation for barium titanate used in multi-layer ceramic capacitors (MLCCs) is found out by a combination of different isotope exchange experiments and the analysis of the resulting tracer diffusion profiles. It is shown that the incorporation of oxygen from water vapour is faster by orders of magnitude than from molecular oxygen. Chemical analysis shows the samples contain various dopants leading to a complex defect chemistry. Dysprosium is the most important dopant, acting partially as a donor and partially as an acceptor in this effectively acceptor-doped material. TEM and EELS analysis show the inhomogeneous distribution of Dy in a core-shell microstructure. The oxygen partial pressure and temperature dependence of the oxygen tracer diffusion coefficients is analysed and explained by the complex defect chemistry of Dy-doped barium titanate. Additional fast diffusion profiles are attributed to fast diffusion along grain boundaries. In addition to the barium titanate ceramics from an important technical application, oxygen diffusion in cubic, nominally undoped BaTiO3 single crystals has been studied by means of 18O2/16O2 isotope exchange annealing and subsequent determination of the isotope profiles in the solid by ToF-SIMS. It is shown that a correct description of the diffusion profiles requires the analysis of the diffusion through the surface space-charge into the material's bulk. Surface exchange coefficients, space-charge potentials and bulk diffusion coefficients are analysed as a function of oxygen partial pressure and temperature. The data

  3. Microwave-hydrothermal synthesis of barium strontium titanate nanoparticles

    International Nuclear Information System (INIS)

    Research highlights: → Barium strontium titanate nanoparticles were obtained by the Hydrothemal microwave technique (HTMW) → This is a genuine technique to obtain nanoparticles at low temperature and short times → Barium strontium titanate free of carbonates with tetragonal structure was grown at 130 oC. - Abstract: Hydrothermal-microwave method (HTMW) was used to synthesize crystalline barium strontium titanate (Ba0.8Sr0.2TiO3) nanoparticles (BST) in the temperature range of 100-130 oC. The crystallization of BST with tetragonal structure was reached at all the synthesis temperatures along with the formation of BaCO3 as a minor impurity at lower syntheses temperatures. Typical FT-IR spectra for tetragonal (BST) nanoparticles presented well defined bands, indicating a substantial short-range order in the system. TG-DTA analyses confirmed the presence of lattice OH- groups, commonly found in materials obtained by HTMW process. FE/SEM revealed that lower syntheses temperatures led to a morphology that consisted of uniform grains while higher syntheses temperature consisted of big grains isolated and embedded in a matrix of small grains. TEM has shown BST nanoparticles with diameters between 40 and 80 nm. These results show that the HTMW synthesis route is rapid, cost effective, and could serve as an alternative to obtain BST nanoparticles.

  4. Barium strontium titanate powders prepared by spray pyrolysis

    International Nuclear Information System (INIS)

    Ultasonic spray pyrolysis (SP) has been investigated for the production of the barium strontium titanate (BST) powders from the polymeric precursors. The processing parameters, such as flux of aerosol and temperature profile inside the furnace, were optimized to obtain single phase BST. The powders were characterized by the methods of X-ray diffraction analysis, SEM, EDS and TEM. The obtained powders were submicronic, consisting of spherical, polycrystalline particles, with internal nanocrystalline structure. Crystallite size of 10 nm, calculated using Rietveld refinement, is in a good agreement with results of HRTEM

  5. Strain engineered barium strontium titanate for tunable thin film resonators

    Energy Technology Data Exchange (ETDEWEB)

    Khassaf, H.; Khakpash, N. [Department of Materials Science and Engineering and Institute of Materials Science, University of Connecticut, Storrs, Connecticut 06269 (United States); Sun, F. [Department of Physics, University of Connecticut, Storrs, Connecticut 06269 (United States); Sbrockey, N. M.; Tompa, G. S. [Structured Materials Industries, Inc., Piscataway, New Jersey 08854 (United States); Kalkur, T. S. [Department of Electrical and Computer Engineering, University of Colorado at Colorado Springs, Colorado Springs, Colorado 80918 (United States); Alpay, S. P., E-mail: p.alpay@ims.uconn.edu [Department of Materials Science and Engineering and Institute of Materials Science, University of Connecticut, Storrs, Connecticut 06269 (United States); Department of Physics, University of Connecticut, Storrs, Connecticut 06269 (United States)

    2014-05-19

    Piezoelectric properties of epitaxial (001) barium strontium titanate (BST) films are computed as functions of composition, misfit strain, and temperature using a non-linear thermodynamic model. Results show that through adjusting in-plane strains, a highly adaptive rhombohedral ferroelectric phase can be stabilized at room temperature with outstanding piezoelectric response exceeding those of lead based piezoceramics. Furthermore, by adjusting the composition and the in-plane misfit, an electrically tunable piezoelectric response can be obtained in the paraelectric state. These findings indicate that strain engineered BST films can be utilized in the development of electrically tunable and switchable surface and bulk acoustic wave resonators.

  6. Optical-induced absorption tunability of Barium Strontium Titanate film

    Science.gov (United States)

    Luo, Chunya; Ji, Jie; Yue, Jin; Rao, Yunkun; Yao, Gang; Li, Dan; Zeng, Ying; Li, Renkui; Xiao, Longsheng; Liu, Xinxing; Yao, Jianquan; Ling, Furi

    2016-10-01

    The absorption tunability of 100 nm thickness of ferroelectric Barium Strontium Titanate (Ba0.5Sr0.5TiO3) thin films with different densities of pumped optical field is measured by terahertz time-domain spectroscopy in the range of 0.2 THz - 1.2 THz at 19 °C. Experimental results show that the absorption coefficient of BST film is approximately at 5000 cm-1-20000 cm-1 in the range of 0.2 THz - 1.2 THz and the absorption coefficient reached up to 16% when we applied the optical field up to 600 mW. The theoretical calculations reveal that increasing photoexcitation fluences is responsible for the increasing of transmission change in the conduction current density cause the absorption coefficient varied.

  7. Study on a flexoelectric microphone using barium strontium titanate

    Science.gov (United States)

    Kwon, S. R.; Huang, W. B.; Zhang, S. J.; Yuan, F. G.; Jiang, X. N.

    2016-04-01

    In this study, a flexoelectric microphone was, for the first time, designed and fabricated in a bridge structure using barium strontium titanate (Ba0.65Sr0.35TiO3) ceramic and tested afterwards. The prototyped flexoelectric microphone consists of a 1.5 mm  ×  768 μm  ×  50 μm BST bridge structure and a silicon substrate with a cavity. The sensitivity and resonance frequency were designed to be 0.92 pC/Pa and 98.67 kHz, respectively. The signal to noise ratio was measured to be 74 dB. The results demonstrate that the flexoelectric microphone possesses high sensitivity and a wide working frequency range simultaneously, suggesting that flexoelectricity could be an excellent alternative sensing mechanism for microphone applications.

  8. Properties of barium strontium titanate at millimeter wave frequencies

    Energy Technology Data Exchange (ETDEWEB)

    Osman, Nurul [Department of Physics, Universiti Putra Malaysia (Malaysia); Free, Charles [Department of Engineering and Design, University of Sussex (United Kingdom)

    2015-04-24

    The trend towards using higher millimetre-wave frequencies for communication systems has created a need for accurate characterization of materials to be used at these frequencies. Barium Strontium Titanate (BST) is a ferroelectric material whose permittivity is known to change as a function of applied electric field and have found varieties of application in electronic and communication field. In this work, new data on the properties of BST characterize using the free space technique at frequencies between 145 GHz and 155 GHz for both thick film and bulk samples are presented. The measurement data provided useful information on effective permittivity and loss tangent for all the BST samples. Data on the material transmission, reflection properties as well as loss will also be presented. The outcome of the work shows through practical measurement, that BST has a high permittivity with moderate losses and the results also shows that BST has suitable properties to be used as RAM for high frequency application.

  9. Properties of barium strontium titanate at millimeter wave frequencies

    International Nuclear Information System (INIS)

    The trend towards using higher millimetre-wave frequencies for communication systems has created a need for accurate characterization of materials to be used at these frequencies. Barium Strontium Titanate (BST) is a ferroelectric material whose permittivity is known to change as a function of applied electric field and have found varieties of application in electronic and communication field. In this work, new data on the properties of BST characterize using the free space technique at frequencies between 145 GHz and 155 GHz for both thick film and bulk samples are presented. The measurement data provided useful information on effective permittivity and loss tangent for all the BST samples. Data on the material transmission, reflection properties as well as loss will also be presented. The outcome of the work shows through practical measurement, that BST has a high permittivity with moderate losses and the results also shows that BST has suitable properties to be used as RAM for high frequency application

  10. Anion and cation diffusion in barium titanate and strontium titanate; Anionen- und Kationendiffusion in Barium- und Strontiumtitanat

    Energy Technology Data Exchange (ETDEWEB)

    Kessel, Markus Franz

    2012-12-19

    Perovskite oxides show various interesting properties providing several technical applications. In many cases the defect chemistry is the key to understand and influence the material's properties. In this work the defect chemistry of barium titanate and strontium titanate is analysed by anion and cation diffusion experiments and subsequent time-of-flight secondary ion mass spectrometry (ToF-SIMS). The reoxidation equation for barium titanate used in multi-layer ceramic capacitors (MLCCs) is found out by a combination of different isotope exchange experiments and the analysis of the resulting tracer diffusion profiles. It is shown that the incorporation of oxygen from water vapour is faster by orders of magnitude than from molecular oxygen. Chemical analysis shows the samples contain various dopants leading to a complex defect chemistry. Dysprosium is the most important dopant, acting partially as a donor and partially as an acceptor in this effectively acceptor-doped material. TEM and EELS analysis show the inhomogeneous distribution of Dy in a core-shell microstructure. The oxygen partial pressure and temperature dependence of the oxygen tracer diffusion coefficients is analysed and explained by the complex defect chemistry of Dy-doped barium titanate. Additional fast diffusion profiles are attributed to fast diffusion along grain boundaries. In addition to the barium titanate ceramics from an important technical application, oxygen diffusion in cubic, nominally undoped BaTiO{sub 3} single crystals has been studied by means of {sup 18}O{sub 2}/{sup 16}O{sub 2} isotope exchange annealing and subsequent determination of the isotope profiles in the solid by ToF-SIMS. It is shown that a correct description of the diffusion profiles requires the analysis of the diffusion through the surface space-charge into the material's bulk. Surface exchange coefficients, space-charge potentials and bulk diffusion coefficients are analysed as a function of oxygen partial

  11. Dielectric properties of lead zirconate titanate thin films seeded with barium strontium titanate nanoparticles

    International Nuclear Information System (INIS)

    A low temperature synthetic method recently proposed by the authors was applied to the fabrication of lead zirconate titanate (PZT) thin films containing crystalline seeds of barium strontium titanate (BST) nanoparticles. PZT precursor and the BST particles were prepared with complex alkoxide methods. Precursor solution suspending the BST particles was spin-coated on Pt/Ti/SiO2/Si substrate to film thickness of 500-800 nm at particle concentrations of 0-25.1 mol%, and annealed at various temperatures. Seeding of BST particles prevented the formation of pyrochlore phases, which appeared at temperatures above 400 deg. C in unseeded PZT films, and induced crystallization of PZT into perovskite structures at 420 deg. C, which was more than 100 deg. C below the crystallization temperature of the unseeded PZT films. Measurement of dielectric properties at 1 kHz showed that the 25.1 mol% BST-seeded PZT films annealed at 450 deg. C had a dielectric constant as high as 300 with a dissipation factor of 0.05. Leakage current density of the film was less than 1x10-6 A/cm2 at applied electric field from 0 to 64 kV/cm

  12. Barium strontium titanate thin film varactors for room-temperature microwave device applications

    International Nuclear Information System (INIS)

    Recent progress in the development of barium strontium titanate thin film varactors for room temperature tunable microwave devices applications is reviewed, with emphasis on efforts towards the improvement in the quality of BST thin films and the fabrication issues crucial for the performance of microwave devices based on BST varactors. The paper provides examples of tunable microwave devices employing BST varactors. Other thin film materials currently competing with BST thin films are discussed. Topics which deserve further investigation are suggested. (topical review)

  13. Electronic structure of barium strontium titanate by soft-x-ray absorption spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Uehara, Y. [Mitsubishi Electric Co., Hyogo (Japan); Underwood, J.H.; Gullikson, E.M.; Perera, R.C.C. [Ernest Orlando Lawrence Berkeley National Lab., CA (United States)

    1997-04-01

    Perovskite-type titanates, such as Strontium Titanate (STO), Barium Titanate (BTO), and Lead Titanate (PTO) have been widely studied because they show good electric and optical properties. In recent years, thin films of Barium Strontium Titanate (BST) have been paid much attention as dielectrics of dynamic random access memory (DRAM) capacitors. BST is a better insulator with a higher dielectric constant than STO and can be controlled in a paraelectric phase with an appropriate ratio of Ba/Sr composition, however, few studies have been done on the electronic structure of the material. Studies of the electronic structure of such materials can be beneficial, both for fundamental physics research and for improving technological applications. BTO is a famous ferroelectric material with a tetragonal structure, in which Ti and Ba atoms are slightly displaced from the lattice points. On the other hand, BST keeps a paraelectric phase, which means that the atoms are still at the cubic lattice points. It should be of great interest to see how this difference of the local structure around Ti atoms between BTO and BST effects the electronic structure of these two materials. In this report, the authors present the Ti L{sub 2,3} absorption spectra of STO, BTO, and BST measured with very high accuracy in energy of the absorption features.

  14. Synthesis and characterization of highly-ordered barium-strontium titanate nanotube arrays fabricated by sol-gel method

    Institute of Scientific and Technical Information of China (English)

    Chen Yu; Chen Wei; Guo Feng; Li Mei-Ya; Liu Wei; Zhao Xing-Zhong

    2009-01-01

    Highly uniformed barium-strontium titanate nanotube arrays were fabricated using a porous anodic aluminum oxide template from a barium-strontium titanate sol-gel solution. Electron microscope results showed that nanotubes with uniform length and diameter were obtained. The diameters and lengths of these nanotubes were dependent on the pore diameter and the thickness of the applied anodic aluminum oxide template. High resolution transmission electron microscopy and the selected-area electron diffraction pattern investigations demonstrated the perovskite structure and the polycrystaltine of the fabricated barium-strontium titanate nanotubes. The characterization of the electrical and dielectric properties had also been made. Compared to thin film material,the intrinsic leakage current density is almost the same. Besides,at 30 ℃,the dielectric constant and dielectric loss of the fabricated nanotube is 80 and 0.027 at 1 MHz respectively.

  15. Capacitively coupled electrolyte-conductivity sensor based on high-k material of barium strontium titanate

    OpenAIRE

    Huck, C.; Poghossian, A; Baecker, M; Chaudhuri, S.; Zander, W; Schubert, J.; Begoyan, V. K.; Buniatyan, V. V.; Wagner, Patrick Hermann; Schoening, M. J

    2014-01-01

    A miniaturized capacitively coupled contactless conductivity detection (C4D) sensor based on high-kperovskite oxide of barium strontium titanate (BST) has been implemented for the first time. The BST films(∼120 nm thick) of Ba0.25Sr0.75TiO3composition were prepared on a p-Si-SiO2-Pt structure by pulsed laserdeposition technique using BST targets fabricated by the self-propagating high-temperature synthesismethod. The Pt electrodes were buried into the SiO2layer to obtain a planar structure. F...

  16. Development of a metrology method for composition and thickness of barium strontium titanate thin films

    International Nuclear Information System (INIS)

    Thin films of barium strontium titanate (BST) are being investigated as the charge storage dielectric in advanced memory devices, due to their promise for high dielectric constant. Since the capacitance of BST films is a function of both stoichiometry and thickness, implementation into manufacturing requires precise metrology methods to monitor both of these properties. This is no small challenge, considering the BST film thicknesses are 60 nm or less. A metrology method was developed based on X-ray Fluorescence and applied to the measurement of stoichiometry and thickness of BST thin films in a variety of applications

  17. Investigation of thickness effects on the dielectric constant barium strontium titanate thin films

    CERN Document Server

    Grattan, L J

    2002-01-01

    The collapse in dielectric constant at small thickness commonly observed in ferroelectric thin films was measured and investigated in barium strontium titanate (Ba sub 0 sub . sub 5 Sr sub 0 sub . sub 5 TiO sub 3). The possible mechanisms responsible for this effect are reviewed. Functional measurements were performed on BST thin films, of 7.5 to 950 nm, by incorporating them into capacitor structures with bottom electrodes of strontium ruthenate (SRO) and thermally- evaporated Au top electrodes. A discussion on thin film growth considerations, optimal PLD conditions and the measurement techniques employed in the project is presented. The experimentally determined dielectric constant - thickness profile was fitted using the series capacitor model assuming low dielectric constant interfacial layers in series with the bulk. Consideration of the case where the combined 'dead layer' thickness was close to the total BST thickness revealed that, for this system, the total 'dead layer' thickness had to be less than ...

  18. Microstructure and blue photoluminescence enhancement of silicon nanoporous pillar array embedded in ferroelectric barium strontium titanate

    International Nuclear Information System (INIS)

    A silicon nanoporous pillar array (Si-NPA) with micrometer/nanometer hierarchical structure was fabricated by hydrothermal etching, followed by spin-coating barium strontium titanate (BST) on Si-NPA substrate. The photoluminescence (PL) spectra of the Si-NPA and BST/Si-NPA thin film were investigated. The emission band of freshly prepared Si-NPA located at ∼630 nm, and a blueshift at ∼425 nm as well as degradation in intensity after annealing at 600 deg. C for 1 h was observed, which might be explained by a quantum confinement effect model. BST ferroelectric material provided a static-electric field and induced the excited carriers in Si-NPA to migrate toward the opposite direction and recombine in an interfacial oxide layer. Therefore, BST enhanced blue emission of Si-NPA as well as passivated Si-NPA

  19. Influence of processing parameters on the structure and properties of barium strontium titanate ceramics

    International Nuclear Information System (INIS)

    Barium strontium titanate (BST) with the molar formula (Ba0.8Sr0.2TiO3) has been prepared by two different processing methods: mixed-oxide (BST-MO) and reaction-sintering (BST-RS). X-ray powder diffraction study shows differences in grain size and crystal symmetry for both these ceramics. The former shows a tetragonal symmetry while the latter presents a cubic symmetry. The occurrence of polar micro-regions associated with the higher chemical non-homogeneous distribution of ion defects from the influence of the processing parameters is the main reason for the higher peak dielectric constant (Km), the higher remanent polarization (Pr), the higher coercive field (Ec), the higher peak current density (Jm), and the lower temperature of peak dielectric constant (Tm) in BST-MO ceramics

  20. Microstructural, dielectric and magnetic properties of multiferroic composite system barium strontium titanate – nickel cobalt ferrite

    Energy Technology Data Exchange (ETDEWEB)

    Pahuja, Poonam, E-mail: poonampahuja123@gmail.com; Tandon, R. P., E-mail: ram-tandon@hotmail.com [Department of Physics and Astrophysics, University of Delhi, Delhi-110007 (India)

    2015-05-15

    Multiferroic composites (1-x) Ba{sub 0.95}Sr{sub 0.05}TiO{sub 3} + (x) Ni{sub 0.8}Co{sub 0.2}Fe{sub 2}O{sub 4} (where x = 0.1, 0.2, 0.3, 0.4) has been prepared by solid state reaction method. X-ray diffraction analysis of the composite samples confirmed the presence of both barium strontium titanate (BST) and nickel cobalt ferrite (NCF) phases. FESEM images indicated the well dispersion of NCF grains among BST grains. Dielectric constant and loss of the composite samples decreases with increase in frequency following Maxwell-Wagner relaxation mechanism. Composite sample with highest ferrite content possesses highest values of remanent and saturation magnetization.

  1. Multi-parameter sensing using high-k oxide of barium strontium titanate

    Energy Technology Data Exchange (ETDEWEB)

    Huck, Christina; Poghossian, Arshak; Baecker, Matthias; Schoening, Michael J. [Institute of Nano- and Biotechnologies (INB), FH Aachen, 52428, Juelich (Germany); Peter Gruenberg Institute (PGI-8), Forschungszentrum Juelich GmbH, 52525, Juelich (Germany); Reisert, Steffen; Kramer, Friederike [Institute of Nano- and Biotechnologies (INB), FH Aachen, 52428, Juelich (Germany); Begoyan, Vardges K.; Buniatyan, Vahe V. [Department of Microelectronics and Biomedical Devices, State Engineering University of Armenia, 0009, Yerevan (Armenia)

    2015-06-15

    High-k perovskite oxide of barium strontium titanate (BST) represents a very attractive multi-functional transducer material for the development of (bio-)chemical sensors. In this work, a Si-based sensor chip containing Pt interdigitated electrodes covered with a thin BST layer (485 nm) has been developed for multi-parameter chemical sensing. The chip has been applied for the contactless measurement of the electrolyte conductivity, the detection of adsorbed charged macromolecules (positively charged polyelectrolytes of polyethylenimine) and the concentration of hydrogen peroxide (H{sub 2}O{sub 2}) vapor. The experimental results of functional testing of individual sensors are presented. The mechanism of the BST sensitivity to charged polyelectrolytes and H{sub 2}O{sub 2} vapor has been proposed and discussed. (copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  2. Studies on gas sensing performance of pure and modified barium strontium titanate thick film resistors

    Indian Academy of Sciences (India)

    G H Jain; L A Patil; P P Patil; U P Mulik; K R Patil

    2007-02-01

    Barium strontium titanate ((Ba0.87Sr0.13)TiO3–BST) ceramic powder was prepared by mechanochemical process. The thick films of different thicknesses of BST were prepared by screen-printing technique and gas-sensing performance of these films was tested for various gases. The films showed highest response and selectivity to ammonia gas. The effect of film thickness on gas response was also studied. As prepared BST thick films were surface modified by dipping them into an aqueous solution of titanium chloride (TiCl3) for different intervals of time. Surface modification shifted response to H2S gas suppressing the responses to ammonia and other gases. The surface modification, using dipping process, altered the adsorbate–adsorbent interactions, which gave the unusual sensitivity and selectivity effect. Sensitivity, selectivity, thermal stability, response and recovery time of the sensor were measured and presented.

  3. Multicomponent doped barium strontium titanate thin films for tunable microwave applications

    Science.gov (United States)

    Alema, Fikadu Legesse

    In recent years there has been enormous progress in the development of barium strontium titanate (BST) films for tunable microwave applications. However, the properties of BST films still remain inferior compared to bulk materials, limiting their use for microwave technology. Understanding the film/substrate mismatch, microstructure, and stoichiometry of BST films and finding the necessary remedies are vital. In this work, BST films were deposited via radio frequency magnetron sputtering method and characterized both analytically and electrically with the aim of optimizing their properties. The stoichiometry, crystal structure, and phase purity of the films were studied by varying the oxygen partial pressure (OPP) and total gas pressure (TGP) in the chamber. A better stoichiometric match between film and target was achieved when the TGP is high (> 30 mTorr). However, the O2/Ar ratio should be adjusted as exceeding a threshold of 2 mTorr in OPP facilitates the formation of secondary phases. The growth of crystalline film on platinized substrates was achieved only with a lower temperature grown buffer layer, which acts as a seed layer by crystallizing when the temperature increases. Concurrent Mg/Nb doping has significantly improved the properties of BST thin films. The doped film has shown an average tunability of 53%, which is only ˜8 % lower than the value for the undoped film. This drop is associated with the Mg ions whose detrimental effects are partially compensated by Nb ions. Conversely, the doping has reduced the dielectric loss by ˜40 % leading to a higher figure of merit. Moreover, the two dopants ensure a charge neutrality condition which resulted in significant leakage current reduction. The presence of large amounts of empty shallow traps related to Nb Ti localize the free carriers injected from the contacts; thus increase the device control voltage substantially (>10 V). A combinatorial thin film synthesis method based on co-sputtering of two BST

  4. Tuned sensitivity towards H{sub 2}S and NH{sub 3} with Cu doped barium strontium titanate materials

    Energy Technology Data Exchange (ETDEWEB)

    Simion, C. E., E-mail: simion@infim.ro; Teodorescu, V. S.; Stănoiu, A. [National Institute of Materials Physics, Atomistilor 105bis, P.O. Box MG-7, 077125, Bucharest-Magurele (Romania); Sackmann, A. [AG Weimar, Institute of Physical and Theoretical Chemistry, University of Tübingen, Auf der Morgenstelle 15, D-72076 Tübingen (Germany); Ruşti, C. F.; Piticescu, R. M. [National R and D Institute for Non-ferrous and Rare Metals, 102 Biruintei Blvd, Ilfov (Romania)

    2014-11-05

    The different amount of Cu-doped Barium Strontium Titanate (BST) thick film materials have been tested for their gas-sensing performances towards NH{sub 3} and H{sub 2}S under dry and 50% relative humidity (RH) background conditions. The optimum NH{sub 3} sensitivity was attained with 0.1mol% Cu-doped BST whereas the selective detection of H{sub 2}S was highlighted using 5mol% Cu-doped BST material. No cross-sensitivity effects to CO, NO{sub 2}, CH{sub 4} and SO{sub 2} were observed for all tested materials operated at their optimum temperature (200°C) under humid conditions (50% RH). The presence of humidity clearly enhances the gas sensitivity to NH{sub 3} and H{sub 2}S detection.

  5. Photonic crystal cavity embedded barium strontium titanate thin-film rib waveguide prepared by focused ion beam etching

    International Nuclear Information System (INIS)

    A photonic crystal (PC) cavity embedded Ba0.7Sr0.3TiO3 (barium strontium titanate, or BST) rib waveguide, which functions as an optical filter at λ = 1550 nm, is designed using finite-difference time-domain (FDTD) simulation. The PC cavity is composed of two 5-row photonic crystal mirrors, which are formed by air holes (radii 250 nm) arranged in triangular lattice (periodicity 625 nm) in the BST matrix. Calculations suggested that the required cavity length should be 800 nm for the resonant peak to be situated at 1550 nm. Based on this design, PC cavities were fabricated on BST thin-film rib waveguides by focused ion beam etching with satisfactory results. The transmission spectra of the BST thin-film rib waveguides with PC cavities have been measured. The results agreed well with the FDTD simulation.

  6. Brillouin light scattering study of transverse mode coupling in confined yttrium iron garnet/barium strontium titanate multiferroic

    Energy Technology Data Exchange (ETDEWEB)

    Sadovnikov, A. V., E-mail: sadovnikovav@gmail.com; Nikitov, S. A. [Laboratory “Metamaterials,” Saratov State University, Saratov 410012 (Russian Federation); Kotel' nikov Institute of Radioengineering and Electronics, Russian Academy of Sciences, Moscow 125009 (Russian Federation); Beginin, E. N.; Bublikov, K. V.; Grishin, S. V.; Sheshukova, S. E.; Sharaevskii, Yu. P. [Laboratory “Metamaterials,” Saratov State University, Saratov 410012 (Russian Federation)

    2015-11-28

    Using the space-resolved Brillouin light scattering spectroscopy we study the transformation of dynamic magnetization patterns in a bilayer multiferroic structure. We show that in the comparison with a single yttrium iron garnet (YIG) film magnetization distribution is transformed in the bilayer structure due to the coupling of waves propagating both in an YIG film (magnetic layer) and in a barium strontium titanate slab (ferroelectric layer). We present a simple electrodynamic model using the numerical finite element method to show the transformation of eigenmode spectrum of confined multiferroic. In particular, we demonstrate that the control over the dynamic magnetization and the transformation of spatial profiles of transverse modes in magnetic film of the bilayer structure can be performed by the tuning of the wavevectors of transverse modes. The studied confined multiferroic stripe can be utilized for fabrication of integrated dual tunable functional devices for magnonic applications.

  7. Sputter-etching characteristics of barium-strontium-titanate and bismuth-strontium-tantalate using a surface-wave high-density plasma reactor

    International Nuclear Information System (INIS)

    The etching of barium-strontium-titanate (BST) and bismuth-strontium-tantalate (SBT) deposited using a pulsed laser deposition technique has been investigated using a nonreactive (argon) surface-wave high-density plasma source. The etch rate of the rf-biased thin films was determined as a function of the self-bias voltage, of the magnetic field intensity and of the gas pressure. It was found that high etch rates with a good selectivity over resist can be achieved without any plasma chemistry, provided the plasma is operated in the very low pressure regime (i.e., below 1 mTorr). For SBT, etch rates as high as 3000 Aa/min with a selectivity of 0.2 over HPR-504 photoresist were obtained with self-bias voltages lower than 150 V. It is also found that even though BST and SBT present similar sputter-etching characteristics, SBT is etched about two times faster than BST as a result of the difference in the atomic density of each material

  8. Wafer–to–wafer transfer process of barium strontium titanate for frequency tuning applications using laser pre-irradiation

    International Nuclear Information System (INIS)

    This paper describes laser-assisted film transfer technology for barium strontium titanate (BST) deposited on a sapphire substrate. BST is a promising ferroelectric material for varactors, which are required for frequency-tunable RF applications. However, the deposition temperature of BST (600 ∼ 700 °C) is too high for surface acoustic wave (SAW) substrates. In this study, BST grown on a sapphire substrate at 650 °C was transferred at low temperature (140 °C) to a borosilicate glass substrate as well as a LiTaO3 substrate. The transferred BST films were characterized as tunable capacitors. A key process in the BST film transfer technology is the laser pre-irradiation of a buffer Pt layer beneath BST from the backside of the sapphire substrate to weaken the BST-to-Pt adhesion. The mechanism of delamination at the BST/Pt interface is discussed using a simple 1D heat transfer model. (paper)

  9. Processing science of barium titanate

    Science.gov (United States)

    Aygun, Seymen Murat

    Barium titanate and barium strontium titanate thin films were deposited on base metal foils via chemical solution deposition and radio frequency magnetron sputtering. The films were processed at elevated temperatures for densification and crystallization. Two unifying research goals underpin all experiments: (1) To improve our fundamental understanding of complex oxide processing science, and (2) to translate those improvements into materials with superior structural and electrical properties. The relationships linking dielectric response, grain size, and thermal budget for sputtered barium strontium titanate were illustrated. (Ba 0.6Sr0.4)TiO3 films were sputtered on nickel foils at temperatures ranging between 100-400°C. After the top electrode deposition, the films were co-fired at 900°C for densification and crystallization. The dielectric properties were observed to improve with increasing sputter temperature reaching a permittivity of 1800, a tunability of 10:1, and a loss tangent of less than 0.015 for the sample sputtered at 400°C. The data can be understood using a brick wall model incorporating a high permittivity grain interior with low permittivity grain boundary. However, this high permittivity value was achieved at a grain size of 80 nm, which is typically associated with strong suppression of the dielectric response. These results clearly show that conventional models that parameterize permittivity with crystal diameter or film thickness alone are insufficiently sophisticated. Better models are needed that incorporate the influence of microstructure and crystal structure. This thesis next explores the ability to tune microstructure and properties of chemically solution deposited BaTiO3 thin films by modulation of heat treatment thermal profiles and firing atmosphere composition. Barium titanate films were deposited on copper foils using hybrid-chelate chemistries. An in-situ gas analysis process was developed to probe the organic removal and the

  10. Synthesis of nanoparticles of barium strontium titanate using hydrothermal microwave method; Sintese de nanoparticulas de titanato de bario estroncio utilizando o metodo hidrotermal assistido por microondas

    Energy Technology Data Exchange (ETDEWEB)

    Silva, R.A.; Souza, A.E.; Teixeira, S.R. [Universidade Estadual Paulista (DFQB/FCT/UNESP), Presidente Prudente, SP (Brazil). Fac. de Ciencia e Tecnologia. Dept. de Fisica, Quimica e Biologia; Moreira, M.L.; Volanti, D.P. [Universidade Federal de Sao Carlos (LiEC/UFSCAR), SP (Brazil). Lab. Interdisciplinar de Eletroquimica e Ceramica; Longo, E. [Universidade Estadual Paulista (UNESP/LiEC), Araraquara, SP (Brazil). Lab. Interdisciplinar de Eletroquimica e Ceramica

    2009-07-01

    Nanoparticles of barium strontium titanate Ba{sub x}Sr{sub 1}-{sub x}TiO{sub 3} (BST) had been prepared, with x = 0.5, using the hydrothermal method attended by microwaves (HTMW). A solution was prepared using deionized water, barium chloride (BaCl{sub 2}.2H{sub 2}O), strontium chloride (SrCl{sub 2}.6H{sub 2}O), titanium (IV) isopropoxide (C{sub 12}H28O{sub 4}Ti) and potassium hydroxide (KOH). Afterward the solution was heated to 140 deg C in a microwave oven, at a heating rate of 140 deg C/min, and maintained at this temperature for 40 min, under a pressure of 3 to 4 bar. X-ray diffraction (DRX) and field emission scanning electron microscopy (FE-SEM) had been used in the particles characterization. DRX was used to identify the crystallized phases and the images taken from (FE-SEM) show that the material has a wide particle-size distribution with most of them between 10 and 30 nm. (author)

  11. Doped barium titanate nanoparticles

    Indian Academy of Sciences (India)

    T K Kundu; A Jana; P Barik

    2008-06-01

    We have synthesized nickel (Ni) and iron (Fe) ion doped BaTiO3 nanoparticles through a chemical route using polyvinyl alcohol (PVA). The concentration of dopant varies from 0 to 2 mole% in the specimens. The results from X-ray diffractograms and transmission electron micrographs show that the particle diameters in the specimen lie in the range 24–40 nm. It is seen that the dielectric permittivity in doped specimens is enhanced by an order of magnitude compared to undoped barium titanate ceramics. The dielectric permittivity shows maxima at 0.3 mole% doping of Fe ion and 0.6 mole% of Ni ion. The unusual dielectric behaviour of the specimens is explained in terms of the change in crystalline structure of the specimens.

  12. Influence of sintering temperature on microstructures and energy-storage properties of barium strontium titanate glass-ceramics prepared by sol-gel process

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Jia; Zhang, Yong; Song, Xiaozhen; Zhang, Qian; Yang, Dongliang; Chen, Yongzhou [Beijing Key Laboratory of Fine Ceramics, State Key Laboratory of New Ceramics and Fine Processing, Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing, 100084 (China)

    2015-12-15

    The sol-gel processing, microstructures, dielectric properties and energy-storage properties of barium strontium titanate glass-ceramics over the sintering temperature range of 1000-1150 C were studied. Through the X-ray diffraction result, it is revealed that the crystallinity increases as the sintering temperature increased from 1000 to 1080 C and has reached a steady-state regime above 1100 C. Scanning electron microscopy images showed that with the increase of sintering temperature, the crystal size increased. Dielectric measurements revealed that the increase in the sintering temperature resulted in a significant increase in the dielectric constant, a strong sharpness of the temperature-dependent dielectric response and a pronounced decrease of the temperature of the dielectric maximum. The correlation between charge spreading behavior and activation energies of crystal and glass was discussed by the employment of the impedance spectroscopy studies. As a result of polarization-electric field hysteresis loops, both the charged and discharged densities increased with increasing sintering temperature. And the maximum value of energy storage efficiency was found to occur at 1130 C. Finally, the dependence of released energy and power densities calculated from the discharged current-time (I-t) curves on the sintering temperature was studied. The relationship between the energy storage properties and microstructure was correlated. Polarization-electric field hysteresis loops for the BST glass-ceramics sintered at different temperatures. (copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  13. Improvement in crystallization and electrical properties of barium strontium titanate thin films by gold doping using metal-organic deposition method

    International Nuclear Information System (INIS)

    The effect of gold (Au) on the crystallization, dielectric constant and leakage current density of barium strontium titanate (BST) thin films was investigated. BST thin films with various gold concentrations were prepared via a metal-organic deposition process. The X-ray diffraction shows enhanced crystallization as well as expanded lattice constants for the gold-doped BST films. Thermal analysis reveals that the gold dopant induces more complete decomposition of precursor for the doped films than those of undoped ones. The leakage current density of BST films is greatly reduced by the gold dopant over a range of biases (1-5 V). The distribution of gold was confirmed by electron energy loss spectroscopy and found to be inside the BST grains, not in the grain-boundaries. Gold acted as a catalyst, inducing the nucleation of crystallites and improving the crystallinity of the structure. Its addition is shown to be associated to the improvement of the electrical properties of BST films

  14. High temperature dielectric relaxation anomaly of Y³⁺ and Mn²⁺ doped barium strontium titanate ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Shiguang; Mao, Chaoliang, E-mail: maochaoliang@mail.sic.ac.cn, E-mail: xldong@mail.sic.ac.cn; Wang, Genshui; Yao, Chunhua; Cao, Fei; Dong, Xianlin, E-mail: maochaoliang@mail.sic.ac.cn, E-mail: xldong@mail.sic.ac.cn [Key Laboratory of Inorganic Functional Materials and Devices, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050 (China)

    2014-10-14

    Relaxation like dielectric anomaly is observed in Y³⁺ and Mn²⁺ doped barium strontium titanate ceramics when the temperature is over 450 K. Apart from the conventional dielectric relaxation analysis method with Debye or modified Debye equations, which is hard to give exact temperature dependence of the relaxation process, dielectric response in the form of complex impedance, assisted with Cole-Cole impedance model corrected equivalent circuits, is adopted to solve this problem and chase the polarization mechanism in this paper. Through this method, an excellent description to temperature dependence of the dielectric relaxation anomaly and its dominated factors are achieved. Further analysis reveals that the exponential decay of the Cole distribution parameter n with temperature is confirmed to be induced by the microscopic lattice distortion due to ions doping and the interaction between the defects. At last, a clear sight to polarization mechanism containing both the intrinsic dipolar polarization and extrinsic distributed oxygen vacancies hopping response under different temperature is obtained.

  15. Effect of working pressure and annealing temperature on microstructure and surface chemical composition of barium strontium titanate films grown by pulsed laser deposition

    Indian Academy of Sciences (India)

    Zahra Saroukhani; Nemat Tahmasebi; Seyed Mohammad Mahdavi; Ali Nemati

    2015-10-01

    Barium strontium titanate (BST, Ba1−SrTiO3) thin films have been extensively used in many dielectric devices such as dynamic random access memories (DRAMs). To optimize its characteristics, a microstructural control is essential. In this paper, Ba0.6Sr0.4TiO3 thin film has been deposited on the SiO2/Si substrate by the pulsed laser deposition (PLD) technique at three different oxygen working pressures of 100, 220 and 350 mTorr. Then the deposited thin films at 100 mTorr oxygen pressure were annealed for 50 min in oxygen ambient at three different temperatures: 650, 720 and 800°C. The effect of oxygen working pressure during laser ablation and thermal treatment on the films was investigated by using X-ray diffraction (XRD), atomic force microscopy (AFM) and scanning electron microscopy (SEM) analysis methods. X-ray photoelectron spectroscopy analysis was used to determine the surface chemical composition of the samples. The results indicate that the deposited BST film at low working pressure (100 mTorr) in PLD chamber shows a lower surface roughness than other working pressures (220 and 350 mTorr). The as-deposited films show an amorphous structure and would turn into polycrystalline structure at annealing temperature above 650°C. Increase of temperature would cause the formation of cubic and per-ovskite phases, improvement in crystalline peaks and also result in the decomposition of BST at high temperature (above 800°C). In addition, rising of temperature leads to the increase in size of grains and clusters. Therefore more roughness was found at higher temperatures as a result of a more heterogeneous growth and less tensions.

  16. Oxygen octahedral rotation mapping in calcium titanate/strontium titanate superlattices by transmission electron microscopy

    Science.gov (United States)

    Stone, Greg; Ciston, Jim; Haislmaier, Ryan; Vanleeuwen, Brian; Alem, Nasim; Schlom, Darrell; Gopalan, Venkatraman

    2014-03-01

    We report the investigation of oxygen octahedral rotation mapping in calcium titanate/barium titanate superlattices epitaxially grown on LSAT (001) with transmission electron microscopy. Analysis of the images shows induced antiphase rotations of the oxygen octahedral the strontium titanate layers that is absent in the bulk material at room temperature. These rotations play a key role in breaking the centrosymmetry of the material leading to polar properties as seen by second harmonic generation. We also map the local position of the cations to provide a complete picture of any relative local displacements and the oxygen-cation-oxygen bond angles.

  17. The influences of mole composition of strontium (x) on properties of barium strontium titanate (Ba{sub 1−x}Sr{sub x}TiO{sub 3}) prepared by solid state reaction method

    Energy Technology Data Exchange (ETDEWEB)

    Sandi, Dianisa Khoirum; Supriyanto, Agus; Iriani, Yofentina, E-mail: yopen-2005@yahoo.com [Physics Department, Faculty of Mathematics and Natural Science, Sebelas Maret University (Indonesia); Jamaluddin, Anif [Physics Department, Faculty of Teacher Training and Education, Sebelas Maret University (Indonesia)

    2016-02-08

    Barium Strontium Titanate (Ba{sub 1-x}Sr{sub x}TiO{sub 3}) or BST was prepared by solid state reaction method. Raw materials are BaCO{sub 3}, SrCO{sub 3}, and TiO{sub 2}. Those materials are mixed for 8 h, pressed, and sintered at temperature 1200°C for 2 h. Mole composition of Sr (x) was varied to study its influences on structural, morphological, and electrical properties of BST. Variation of (x) are x = 0; x = 0.1; and x = 0.5. XRD patterns showed a single phase of BST, which mean that mixture of raw materials was homogenous. Crystal structure was influenced by x. BaTiO{sub 3} and Ba{sub 0.9}Ti{sub 0.1}TiO{sub 3} have tetragonal crystal structure, while Ba{sub 0.5}Sr{sub 0.5}TiO{sub 3} is cubic. The diffraction angle shifted to right side (angle larger) as the increases of x. Crystalline size of BaTiO{sub 3}, Ba{sub 0.9}Sr{sub 0.1}TiO{sub 3}, and Ba{sub 0.5}Sr{sub 0.5}TiO{sub 3} are 38.13 nm; 38.62 nm; and 37.13 nm, respectively. SEM images showed that there are still of pores which were influenced by x. Ba{sub 0.9}Sr{sub 0.1}TiO{sub 3} has densest surface (pores are few and small in size). Sawyer Tower circuit showed that BaTiO{sub 3} and Ba{sub 0.9}Sr{sub 0.1} TiO{sub 3} is ferroelectric, while Ba{sub 0.5}Sr{sub 0.5}TiO{sub 3} is paraelectric. The dielectric constants of BaTiO{sub 3}, Ba{sub 0.9}Sr{sub 0.1}TiO{sub 3} and Ba{sub 0.5}Sr{sub 0.5}TiO{sub 3} at frequency of 1 KHz are 156; 196; and 83, respectively. Ba{sub 0.9}Sr{sub 0.1}TiO{sub 3} has relatively highest dielectric constant. It is considered that Ba{sub 0.9}Sr{sub 0.1}TiO{sub 3} has densest surface.

  18. Lanthanide doped strontium-barium cesium halide scintillators

    Energy Technology Data Exchange (ETDEWEB)

    Bizarri, Gregory; Bourret-Courchesne, Edith; Derenzo, Stephen E.; Borade, Ramesh B.; Gundiah, Gautam; Yan, Zewu; Hanrahan, Stephen M.; Chaudhry, Anurag; Canning, Andrew

    2015-06-09

    The present invention provides for a composition comprising an inorganic scintillator comprising an optionally lanthanide-doped strontium-barium, optionally cesium, halide, useful for detecting nuclear material.

  19. Electronic structure of nanograin barium titanate ceramics

    Institute of Scientific and Technical Information of China (English)

    DENG Xiangyun; WANG Xiaohui; LI Dejun; LI Longtu

    2007-01-01

    The density of states and band structure of 20 nm barium titanate(BaTiO3,BT)ceramics are investigated by first-principles calculation.The full potential linearized augmented plane wave(FLAPW)method is used and the exchange correlation effects are treated by the generalized gradient approximation(GGA).The results show that there is substantial hybridization between the Ti 3d and O 2p states in 20 nm BT ceramics and the interaction between barium and oxygen is typically ionic.

  20. La2O3与Sb2O3掺杂钛酸锶钡陶瓷的介电性能及相变%Dielectric properties and phase transitions of La2O3-and Sb2O3-doped barium strontium titanate ceramics

    Institute of Scientific and Technical Information of China (English)

    张晨; 曲远方

    2012-01-01

    The dielectric properties and phase transition characteristics of La2O3-and Sb2O3-doped barium strontium titanate ceramics prepared by solid state route were investigated.The microstructure was identified by X-ray diffraction method and scanning electron microscope was also employed to observe the surface morphologies.It is found that (La,Sb)-codoped barium strontium titanate ceramics exhibit typical perovskite structure and the average grain size decreases dramatically with increasing the content of Sb2O3.Both La3+ ions and Sb3+ ions occupy the A-sites in perovskite lattice.The dielectric constant and dielectric loss of barium strontium titanate based ceramics are obviously influenced by La2O3 as well as Sb2O3 addition content.The tetragonal-cubic phase transition of La2O3 modified barium strontium titanate ceramics is of second order and the Curie temperature shifts to lower value with increasing the La2O3 doping content.The phase transition of (La,Sb)-codoped barium strontium titanate ceramics diffuses and the deviation from Curie-Weiss law becomes more obvious with the increase in Sb2O3 concentration.The temperature corresponding to the dielectric constant maximum of (La,Sb)-codoped barium strontium titanate ceramics decreases with increasing the Sb2O3 content,which is attributed to the replacement of host ions by the Sb3+ ions.%采用固相法制备La2O3与Sb2O3掺杂的钛酸锶钡陶瓷,研究其介电性能及相变特性.通过X射线衍射法分析体系微观结构并利用扫描电镜观察其表面微观形貌.(La,Sb)共掺杂的钛酸锶钡陶瓷具有典型的钙钛矿结构,且随着Sb2O3掺杂量的增多其平均粒径显著减小.La3+离子以及Sb3+离子均占据钙钛矿晶格的A位.La2O3与Sb2O3添加量的改变显著影响钛酸锶钡基陶瓷的介电常数以及介电损耗.La2O3改性的钛酸锶钡陶瓷其四方-立方相变为二级相变,且居里温度随着La2O3掺杂量的增多向低温方向移动.(La,Sb)共掺杂的钛酸锶

  1. Ceria and strontium titanate based electrodes

    DEFF Research Database (Denmark)

    2010-01-01

    A ceramic anode structure obtainable by a process comprising the steps of: (a) providing a slurry by dispersing a powder of an electronically conductive phase and by adding a binder to the dispersion, in which said powder is selected from the group consisting of niobium-doped strontium titanate......) with the precursor solution of step (c),(e) subjecting the resulting structure of step (d) to calcination, and (f) conducting steps (d)-(e) at least once....

  2. The Novel Formation of Barium Titanate Nanodendrites

    Directory of Open Access Journals (Sweden)

    Chien-Jung Huang

    2014-01-01

    Full Text Available The barium titanate (BaTiO3 nanoparticles with novel dendrite-like structures have been successfully fabricated via a simple coprecipitation method, the so-called BaTiO3 nanodendrites (BTNDs. This method was remarkable, fast, simple, and scalable. The growth solution is prepared by barium chloride (BaCl2, titanium tetrachloride (TiCl4, and oxalic acid. The shape and size of BaTiO3 depend on the amount of added BaCl2 solvent. To investigate the influence of amount of BaCl2 on BTNDs, the amount of BaCl2 was varied in the range from 3 to 6 mL. The role of BaCl2 is found to have remarkable influence on the morphology, crystallite size, and formation of dendrite-like structures. The thickness and length of the central stem of BTND were ~300 nm and ~20 μm, respectively. The branchings were found to occur at irregular intervals along the main stem. Besides, the formation mechanism of BTND is proposed and discussed.

  3. Effects of surrounding powder in sintering process on the properties of Sb and Mn- doped barium-strontium titanate PTCR ceramics

    Directory of Open Access Journals (Sweden)

    Pornsuda Bomlai

    2006-05-01

    Full Text Available In this research, the effects of surrounding powder used during sintering of Sb and Mn doped bariumstrontium titanate (BST ceramics were studied. The ceramic samples were prepared by a conventional mixed-oxide method and placed on different powders during sintering. Phase formation, microstructure and PTCR behavior of the samples were then observed. Microstructures and PTCR behavior varied with the type of surrounding powder, whereas the crystal structure did not change. The surrounding powder has more effects on the shape of the grain than on the size. The grain size of samples was in the range of 5-20 μm. The most uniform grain size and the highest increase of the ratio of ρmax/ρRT were found to be about 106 for samples which had been sintered on Sb-doped BST powder. This value was an order of magnitude greater than for samples sintered on a powder of the equivalent composition to that of the sample pellet.

  4. Electrorheological behavior of rare earth-doped barium titanate suspensions

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Doping Y, La, Ce into barium titanate is found to be able to improve its electrorheological (ER) effect in DC electrical field. The yield stress of a typical doped barium titanate/silicone oil suspension is approximately 3.2 -*7〗kPa at 3.5 -*7〗kV/mm, which is 10 times larger than that of pure barium titanate/silicone oil suspensions. The ER effect increases with the decrease of ionic radius of rare earth (RE) dopant when RE concentration remains constant, and the suspensions exhibit a relatively high shear stress when Y, La, Ce mole fractions are 15%, 10%~15%, and 5%, respectively. Dielectric measurements show that the suitable doping with RE element increases dielectric loss of barium titanate and causes very marked dielectric relaxation at low frequency. By measuring X-ray diffraction patterns of doped barium titanate, it is considered that the occurrence of lattice distortion or defects may be responsible for the change of dielectric properties which results in the improvement of ER effect of barium titanate in DC electrical field.

  5. Liquid-phase-deposited barium titanate thin films on silicon

    International Nuclear Information System (INIS)

    Using a mixture of hexafluorotitanic acid, barium nitrate and boric acid, high refractive index (1.54) barium titanate films can be deposited on silicon substrates. The deposited barium titanate films have featureless surfaces. The deposition temperature is near room temperature (800C). However, there are many fluorine and silicon incorporations in the films. The refractive index of the as-deposited film is 1.54. By current-voltage measurement, the leakage current of the as-deposited film with a thickness of 1000 A is about 9.48x10-7 A cm-2 at the electrical field intensity of 0.3 MV cm-1. By capacitance-voltage measurement, the effective oxide charge of the liquid-phase-deposited barium titanate film is 3.06x1011 cm-2 and the static dielectric constant is about 22. (author)

  6. Flexoelectricity in barium strontium titanate thin film

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Seol Ryung; Huang, Wenbin; Yuan, Fuh-Gwo; Jiang, Xiaoning, E-mail: xjiang5@ncsu.edu [Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, North Carolina 27695 (United States); Shu, Longlong [Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, North Carolina 27695 (United States); Electronic Materials Research Laboratory, International Center for Dielectric Research, Xi' an Jiao Tong University, Xi' an, Shaanxi 710049 (China); Maria, Jon-Paul [Department of Material Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695 (United States)

    2014-10-06

    Flexoelectricity, the linear coupling between the strain gradient and the induced electric polarization, has been intensively studied as an alternative to piezoelectricity. Especially, it is of interest to develop flexoelectric devices on micro/nano scales due to the inherent scaling effect of flexoelectric effect. Ba{sub 0.7}Sr{sub 0.3}TiO{sub 3} thin film with a thickness of 130 nm was fabricated on a silicon wafer using a RF magnetron sputtering process. The flexoelectric coefficients of the prepared thin films were determined experimentally. It was revealed that the thin films possessed a transverse flexoelectric coefficient of 24.5 μC/m at Curie temperature (∼28 °C) and 17.44 μC/m at 41 °C. The measured flexoelectric coefficients are comparable to that of bulk BST ceramics, which are reported to be 10–100 μC/m. This result suggests that the flexoelectric thin film structures can be effectively used for micro/nano-sensing devices.

  7. Barium titanate thick films prepared by screen printing technique

    Directory of Open Access Journals (Sweden)

    Mirjana M. Vijatović

    2010-06-01

    Full Text Available The barium titanate (BaTiO3 thick films were prepared by screen printing technique using powders obtained by soft chemical route, modified Pechini process. Three different barium titanate powders were prepared: i pure, ii doped with lanthanum and iii doped with antimony. Pastes for screen printing were prepared using previously obtained powders. The thick films were deposited onto Al2O3 substrates and fired at 850°C together with electrode material (silver/palladium in the moving belt furnace in the air atmosphere. Measurements of thickness and roughness of barium titanate thick films were performed. The electrical properties of thick films such as dielectric constant, dielectric losses, Curie temperature, hysteresis loop were reported. The influence of different factors on electrical properties values was analyzed.

  8. Modified strontium titanates: From defect chemistry to SOFC anodes

    DEFF Research Database (Denmark)

    Verbraeken, M.C.; Ramos, Tania; Agersted, Karsten;

    2015-01-01

    Modified strontium titanates have received much attention recently for their potential as anode material in solid oxide fuel cells (SOFC). Their inherent redox stability and superior tolerance to sulphur poisoning and coking as compared to Ni based cermet anodes could improve durability of SOFC...... systems dramatically. Various substitution strategies can be deployed to optimise materials properties in these strontium titanates, such as electronic conductivity, electrocatalytic activity, chemical stability and sinterability, and thus mechanical strength. Substitution strategies not only cover choice...

  9. Compact pulse forming line using barium titanate ceramic material.

    Science.gov (United States)

    Kumar Sharma, Surender; Deb, P; Shukla, R; Prabaharan, T; Shyam, A

    2011-11-01

    Ceramic material has very high relative permittivity, so compact pulse forming line can be made using these materials. Barium titanate (BaTiO(3)) has a relative permittivity of 1200 so it is used for making compact pulse forming line (PFL). Barium titanate also has piezoelectric effects so it cracks during high voltages discharges due to stresses developed in it. Barium titanate is mixed with rubber which absorbs the piezoelectric stresses when the PFL is charged and regain its original shape after the discharge. A composite mixture of barium titanate with the neoprene rubber is prepared. The relative permittivity of the composite mixture is measured to be 85. A coaxial pulse forming line of inner diameter 120 mm, outer diameter 240 mm, and length 350 mm is made and the composite mixture of barium titanate and neoprene rubber is filled between the inner and outer cylinders. The PFL is charged up to 120 kV and discharged into 5 Ω load. The voltage pulse of 70 kV, 21 ns is measured across the load. The conventional PFL is made up of oil or plastics dielectrics with the relative permittivity of 2-10 [D. R. Linde, CRC Handbook of Chemistry and Physics, 90th ed. (CRC, 2009); Xia et al., Rev. Sci. Instrum. 79, 086113 (2008); Yang et al., Rev. Sci. Instrum. 81, 43303 (2010)], which increases the length of PFL. We have reported the compactness in length achieved due to increase in relative permittivity of composite mixture by adding barium titanate in neoprene rubber. PMID:22129008

  10. HYBRID AND CHARACTERISTIC OF POLYANILINE- BARIUM TITANATE NANOCOMPOSITE PARTICLES

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Polyaniline-barium titanate (PAn-BaTiO3) ultrafine composite particles were prepared by the oxidative polymerization of aniline with H2O2 while barium titanate nanoparticles were synthesized with a sol-gel method. The infrared spectrogram shows that the polymerization of PAn in the hybrid process of PAn-BaTiO3 is similar with the polymeric process of pure aniline, and there is interaction of PAn and BaTiO3 in the PAn-BaTiO3. SEM and TEM results show that the average diameter of the composite particles is 1.50 μm and the diameters of BaTiO3 nanoparticles are 5-15 nm in the composite particle. The electrical conductivity of the ultrafine composite particles is transformable from 100 to 10-11S/cm by equilibrium doping or dedoping method using various concentration of HCl or NaOH solutions.

  11. Barium titanate nanoparticles: promising multitasking vectors in nanomedicine

    Science.gov (United States)

    Graziana Genchi, Giada; Marino, Attilio; Rocca, Antonella; Mattoli, Virgilio; Ciofani, Gianni

    2016-06-01

    Ceramic materials based on perovskite-like oxides have traditionally been the object of intense interest for their applicability in electrical and electronic devices. Due to its high dielectric constant and piezoelectric features, barium titanate (BaTiO3) is probably one of the most studied compounds of this family. Recently, an increasing number of studies have been focused on the exploitation of barium titanate nanoparticles (BTNPs) in the biomedical field, owing to the high biocompatibility of BTNPs and their peculiar non-linear optical properties that have encouraged their use as nanocarriers for drug delivery and as label-free imaging probes. In this review, we summarize all the recent findings about these ‘smart’ nanoparticles, including the latest, most promising potential as nanotransducers for cell stimulation.

  12. Electromagnetic properties of carbon black and barium titanate composite materials

    Energy Technology Data Exchange (ETDEWEB)

    Wang Guiqin [School of Material Science and Engineering, Dalian University of Technology, Dalian 116023 (China)], E-mail: c2b2chen@163.com; Chen Xiaodong; Duan Yuping; Liu Shunhua [School of Material Science and Engineering, Dalian University of Technology, Dalian 116023 (China)

    2008-04-24

    Nanocrystalline carbon black/barium titanate compound particle (CP) was synthesized by sol-gel method. The phase structure and morphology of compound particle were investigated by X-ray diffraction (XRD), transmission electron microscope (TEM) and Raman spectrum measurements, the electroconductivity was test by trielectrode arrangement and the precursor powder was followed by differential scanning calorimetric measurements (DSC) and thermal gravimetric analysis (TGA). In addition, the complex relative permittivity and permeability of compound particle were investigated by reflection method. The compound particle/epoxide resin composite (CP/EP) with different contents of CP were measured. The results show barium titanate crystal is tetragonal phase and its grain is oval shape with 80-100 nm which was coated by carbon black film. As electromagnetic (EM) complex permittivity, permeability and reflection loss (RL) shown that the compound particle is mainly a kind of electric and dielectric lossy materials and exhibits excellent microwave absorption performance in the X- and Ku-bands.

  13. Niobium-doped strontium titanates as SOFC anodes

    DEFF Research Database (Denmark)

    Blennow Tullmar, Peter; Kammer Hansen, Kent; Wallenberg, L. Reine;

    2008-01-01

    been synthesized with a recently developed modified glycine-nitrate process. The synthesized powders have been calcined and sintered in air or in 9% H(2) / N(2) between 800 - 1400 degrees C. After calcination the samples were single phase Nb-doped strontium titanate with grain sizes of less than 100 nm...

  14. Thermal expansion behaviour of barium and strontium zirconium phosphates

    Indian Academy of Sciences (India)

    P Srikari Tantri; K Geetha; A M Umarji; Sheela K Ramasesha

    2000-12-01

    Ba1.5–SrZr4P5SiO24 compounds with = 0, 0.25, 0.5, 0.75, 1.0, 1.25 and 1.5, belonging to the low thermal expansion NZP family were synthesized by the solid state reaction method. The XRD pattern could be completely indexed with respect to R$\\bar{3}$ space group indicating the ordering of vacancy at the divalent cation octahedral sites. The microstructure and bulk thermal expansion coefficient from room temperature to 800°C of the sintered samples have been studied. All the samples show very low coefficient of thermal expansion (CTE), with = 0 samples showing negative expansion. A small substitution of strontium in the pure barium compound changes the sign of CTE. Similarly, = 1.5 sample (pure strontium) shows a positive CTE and a small substitution of barium changes its sign. = 1.0 and 1.25 samples have almost constant CTE over the entire temperature range. The low thermal expansion of these samples can be attributed to the ordering of the ions in the crystal structure of these materials.

  15. Energy dependence of radioluminescence spectra from strontium titanate

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Y., E-mail: wyfemail@gmail.com [School of Science, China University of Geosciences, Beijing 100083 (China); Zhao, Y.; Zhang, Z.; Zhao, C.; Wu, X. [School of Science, China University of Geosciences, Beijing 100083 (China); Finch, A.A. [Department of Earth & Environmental Sciences, University of St. Andrews, Fife KY16 9AL (United Kingdom); Townsend, P.D. [Physics Building, University of Sussex, Brighton BN1 9QH (United Kingdom)

    2015-10-15

    X-ray excited luminescence spectra of strontium titanate are reported over the temperature range from 20 to 300 K. The range includes several crystalline phases, each with different emission spectra. The signals are thermally quenched above ~220 K. There are spectral shifts and intensity changes around the temperatures associated with phase changes and overall there are nominally three spectral emission bands. A remarkable observation is that at fixed lower temperatures the spectra undergo major changes with the energy of the X-rays. A possible cause of the effect is discussed in terms of inner shell excitation from the K shell of the strontium. Comparisons with thermoluminescence spectra from the strontium titanate are reported. - Highlights: • Radioluminescence spectra of SrTiO{sub 3} are reported from 20 to 300 K. • X-ray luminescence spectra depend on crystal phase. • Direct evidence for inner shell excitation of Sr controlling emission spectra.

  16. Study of barium bismuth titanate prepared by mechanochemical synthesis

    Directory of Open Access Journals (Sweden)

    Lazarević Z.Ž.

    2009-01-01

    Full Text Available Barium-bismuth titanate, BaBi4Ti4O15 (BBT, a member of Aurivillius bismuth-based layer-structure perovskites, was prepared from stoichiometric amounts of barium titanate and bismuth titanate obtained via mechanochemical synthesis. Mechanochemical synthesis was performed in air atmosphere in a planetary ball mill. The reaction mechanism of BaBi4Ti4O15 and the preparation and characteristics of BBT ceramic powders were studied using XRD, Raman spectroscopy, particle analysis and SEM. The Bi-layered perovskite structure of BaBi4Ti4O15 ceramic forms at 1100 °C for 4 h without a pre-calcination step. The microstructure of BaBi4Ti4O15 exhibits plate-like grains typical for the Bi-layered structured material and spherical and polygonal grains. The Ba2+ addition leads to changes in the microstructure development, particularly in the change of the average grain size.

  17. A new method for the preparation of strontium titanate and strontium hypovanadate

    International Nuclear Information System (INIS)

    Strontium titanate has been a prized chemical by virtue of its dielectric, photoelectric and surface properties. The compound crystallises with the cubic perovskite structure. Till now only two techniques (and a few variants therein) have been employed for its synthesis, one of them is a solid state reaction between SrCO3 and TiO2 at 1100deg, and the other is a coprecipitation of strontium titanyl oxalate followed by calcination at 850deg. As ternary oxides, such as copper chromite, have been prepared by complex formation, the author found it interesting to apply this method to the preparation of strontium titanate. The most easily accessible and versatile complexing agent, EDTA, was used. (author)

  18. Redox processes in highly yttrium-doped barium titanate

    International Nuclear Information System (INIS)

    The changes of microstructure occurring during oxidation of the reduced form of yttrium-doped barium titanate (Ba1-xYx?Ti1-x4+Tix3+O3) have been studied. Samples were sintered under reduction conditions at PO2=10-4Pa and oxidized by annealing at high temperatures (1150 and 1350 deg. C) in air. Depending on yttrium concentration, the oxidation of the reduced form of the yttrium-doped BaTiO3 caused precipitation of the phase Ba6Ti17O40 or the phases Ba6Ti17O40 and Y2Ti2O7. The precipitates had well-defined orientational relationships with the perovskite matrix. Oxidation of the reduced form of doped barium titanate results in formation of the phase Ba1-xYx?Ti1-x/44+(VTi-bar )x/4O3 responsible for increase in the resistance of outer grain layers, which lie between grain boundaries and grain

  19. Preparation of Barium Titanate Nanopowder through Thermal Decomposition of Peroxide Precursor and Its Formation Mechanism

    Institute of Scientific and Technical Information of China (English)

    PENG, Yangxi; CHEN, Qiyuan; LIU, Shijun

    2009-01-01

    H_2TiO_3 was dissolved in the mixture of hydrogen formed peroxide and ammonia under the pH range of 8-10 with a transparent yellow solution formed. When an equivalent mole of Ba~(2+) solution was added into the yellow solution, the precipitate produced was the peroxide precursor of barium titanate. The cubic nanopowder of barium titanate was obtained when the precipitate was washed, stoved, and then calcined at 600 ℃ for 1 h. The peroxide precursor of barium titanate and barium titanate nanopowder prepared were characterized to be BaTi(H_2O_2)_2O_3 by TGA-DTA, XRD, TEM, SEM, and XREDS. The peroxide precursor of barium titanate was determined to be BaTi(H_2O_2)_2O_3. The particle size of the barium titanate nanopowder, the calcined product of BaTi(H_2O_2)_2O_3, was in the range of 20-40 nm. A formation mechanism of the barium titanate nanopowder through thermal decomposition of its peroxide precursor was proposed and then validated.

  20. Barium titanate core – gold shell nanoparticles for hyperthermia treatments

    Directory of Open Access Journals (Sweden)

    FarrokhTakin E

    2013-06-01

    Full Text Available Elmira FarrokhTakin,1,2 Gianni Ciofani,1 Gian Luigi Puleo,1 Giuseppe de Vito,3,4 Carlo Filippeschi,1 Barbara Mazzolai,1 Vincenzo Piazza,3 Virgilio Mattoli1 1Center for Micro-BioRobotics @SSSA, Fondazione Istituto Italiano di Tecnologia, Pontedera, Pisa, Italy; 2The Biorobotics Institute, Scuola Superiore Sant'Anna, Pontedera, Pisa, Italy; 3Center for Nanotechnology Innovation @NEST, Fondazione Istituto Italiano di Tecnologia, Pisa, Italy; 4NEST, Scuola Normale Superiore, Pisa, Italy Abstract: The development of new tools and devices to aid in treating cancer is a hot topic in biomedical research. The practice of using heat (hyperthermia to treat cancerous lesions has a long history dating back to ancient Greece. With deeper knowledge of the factors that cause cancer and the transmissive window of cells and tissues in the near-infrared region of the electromagnetic spectrum, hyperthermia applications have been able to incorporate the use of lasers. Photothermal therapy has been introduced as a selective and noninvasive treatment for cancer, in which exogenous photothermal agents are exploited to achieve the selective destruction of cancer cells. In this manuscript, we propose applications of barium titanate core–gold shell nanoparticles for hyperthermia treatment against cancer cells. We explored the effect of increasing concentrations of these nanoshells (0–100 µg/mL on human neuroblastoma SH-SY5Y cells, testing the internalization and intrinsic toxicity and validating the hyperthermic functionality of the particles through near infrared (NIR laser-induced thermoablation experiments. No significant changes were observed in cell viability up to nanoparticle concentrations of 50 µg/mL. Experiments upon stimulation with an NIR laser revealed the ability of the nanoshells to destroy human neuroblastoma cells. On the basis of these findings, barium titanate core–gold shell nanoparticles resulted in being suitable for hyperthermia treatment

  1. Effect of Nb on barium titanate prepared from citrate solutions

    Directory of Open Access Journals (Sweden)

    Stojanović Biljana D.

    2002-01-01

    Full Text Available The influence of the addition of dopants on the microstructure development and electrical properties of BaTiO3 doped with 0.2, 0.4, 0.6, 0.8 mol% of Nb and 0.01 mol% of Mn based compounds was studied. Doped barium titanate was prepared using the polymeric precursor method from citrate solutions. The powders calcined at 700°C for 4 hours were analysed by infrared (IR spectroscopy to verify the presence of carbonates, and by X-ray diffraction (XRD for phase formation. The phase composition, microstructure and dielectric properties show a strong dependence on the amount of added niobium.

  2. Structural and functional characterization of barium zirconium titanate / epoxy composites

    Directory of Open Access Journals (Sweden)

    Filiberto González Garcia

    2011-12-01

    Full Text Available The dielectric behavior of composite materials (barium zirconium titanate / epoxy system was analyzed as a function of ceramic concentration. Structure and morphologic behavior of the composites was investigated by X-ray Diffraction (XRD, Fourier transformed infrared spectroscopy (FT-IR, Raman spectroscopy, field emission scanning electron microscopy (FE-SEM and transmission electron microscopy (TEM analyses. Composites were prepared by mixing the components and pouring them into suitable moulds. It was demonstrated that the amount of inorganic phase affects the morphology of the presented composites. XRD revealed the presence of a single phase while Raman scattering confirmed structural transitions as a function of ceramic concentration. Changes in the ceramic concentration affected Raman modes and the distribution of particles along into in epoxy matrix. Dielectric permittivity and dielectric losses were influenced by filler concentration.

  3. Characterization and growth dynamics of barium titanate crystallite on nanometer scale

    Institute of Scientific and Technical Information of China (English)

    Sen Wang; Yue Zhang; Zhen Ji; Yousong Gu; Yunhua Huang; Cheng Zhou

    2005-01-01

    Barium titanate powder on nanometer scale was synthesized by means of co-precipitation. The thermal mass loss, crystal grain growth and phase transition of the barium titanate nanometer powder were investigated by TG (Thermogravimetric)-DTA (Differential scanning calorimetric) and XRD (X-ray powder diffractometer) at different heat treatment temperatures. The results show that amorphous barium titanate powder can transfer into tetragonal symmetry structure after heat treatment. When the heat treatment temperature is below 900℃, the grains grow rapidly because the activation energy at low temperature is greatly less than that at high temperature. By controlling theheat treatment temperature, the optimization of the barium titanate crystallite size and formation of tetragonal phase can be realized.

  4. Strontium titanate resistance modulation by ferroelectric field effect

    International Nuclear Information System (INIS)

    Among perovskite oxides strontium titanate (STO) SrTiO3 undergoes a metal-insulator transition at very low carrier concentration and exhibits high mobility values at low temperature. We exploited such electrical properties and the structural compatibility of perovskite oxide materials in realizing ferroelectric field effect epitaxial heterostructures. By pulsed laser deposition, we grew patterned field effect devices, consisting of lanthanum doped STO and Pb(Zr,Ti)O3. Such devices showed a resistance modulation up to 20%, consistent with geometrical parameters and carrier concentration of the semiconducting channel

  5. Strontium titanate resistance modulation by ferroelectric field effect

    CERN Document Server

    Marré, D; Bellingeri, E; Pallecchi, I; Pellegrino, L; Siri, A S

    2003-01-01

    Among perovskite oxides strontium titanate (STO) SrTiO sub 3 undergoes a metal-insulator transition at very low carrier concentration and exhibits high mobility values at low temperature. We exploited such electrical properties and the structural compatibility of perovskite oxide materials in realizing ferroelectric field effect epitaxial heterostructures. By pulsed laser deposition, we grew patterned field effect devices, consisting of lanthanum doped STO and Pb(Zr,Ti)O sub 3. Such devices showed a resistance modulation up to 20%, consistent with geometrical parameters and carrier concentration of the semiconducting channel.

  6. Impact of Biofield Treatment on Atomic and Structural Characteristics of Barium Titanate Powder

    OpenAIRE

    Trivedi, Mahendra; Nayak, Gopal

    2015-01-01

    Barium titanate, perovskite structure is known for its high dielectric constant and piezoelectric properties, which makes it interesting material for fabricating capacitors, transducer, actuator, and sensors. The perovskite crystal structure and lattice vibrations play a crucial role in its piezoelectric and ferroelectric behavior. In the present study, the barium titanate powder was subjected to biofield treatment. Further, the control and treated samples were characterized using X-ray diffr...

  7. Barium and strontium sulfate solid solution formation in relation to North Sea scaling problems

    International Nuclear Information System (INIS)

    This paper presents the results of laboratory experiments carried out to investigate barium sulphate and strontium sulphate solid solution formation in multi-pressure tapped cores. Two brines, one barium and strontium rich and the other sulphate rich, were mixed in a core plug. Pressure differentials were measured and the changing permeability distribution along the length of the core calculated. The morphology and chemical analysis of scaling crystals are presented based on Scanning electron Microsocpy (SEM) and Energy Dispersive X-ray Analysis (EDAX). The results show the large extent of permeability damage caused by (Ba, SR) SO/sub 4/ solid solution depositing on the rock pore surface. The rock permeability decline and morphology and size of the scaling crystals indicate the influence of the supersaturations of BaSO/sub 4/ and SrSO/sub 4/ as well as the concentration ratio of barium ions to strontium ions

  8. Removal of uranyl ions from aqueous solutions using barium titanate

    International Nuclear Information System (INIS)

    Remediation of water sources contaminated with radioactive waste products is a major environmental issue that demands new and more efficient technologies. For this purpose, we report a highly efficient ion-exchange material for the removal of radioactive nuclides from aqueous solutions. The kinetic characteristics of adsorption of uranyl ions on the surface of barium titanate were investigated using a spectrophotometric method under a wide range of conditions. By controlling the pH it was possible to exert fine control over the speciation of uranium, and by optimizing the temperature and grain size of the exchanger, almost total removal was achieved in a matter of just hours. The highest efficiency (>90 % removal) was realized at high temperature (80 deg C). Moreover, the effect of competitive ion adsorption from a range of different cations and anions was quantified. Adsorption was found to follow first-order kinetics and both Freundlich and Langmuir isotherms could be applied to this system. The results of a mathematical treatment of the kinetic data combined with the observation that adsorption was independent of stirring speed and dependent on the ion-exchanger grain size, indicate that the dominant mechanism influencing adsorption is particle spreading. The adsorption behavior was not influenced by exposure to high-intensity gamma radiation, indicating potential for use of this ion-exchanger in systems containing radioactive material. These results will be of use in the development of uranium extraction systems for contaminated water sources. (author)

  9. Structure and ferroelectric properties of barium titanate films synthesized by sol-gel method

    Energy Technology Data Exchange (ETDEWEB)

    Xiao Shunhua, E-mail: xiaoshunhua@glite.edu.cn [College of Chemistry and Bioengineering, Guilin University of Technology, Guangxi Key Laboratory of Information Materials, Guilin 541004 (China); Jiang Weifen [Department of Mathematics and Information Science, North China Institute of Water Conservancy and Hydroelectric Power, Zhengzhou 450011 (China); Luo Kun [College of Materials Science and Engineering, Guilin University of Technology, Guilin 541004 (China); Xia Jinhong; Zhang Lin [College of Chemistry and Bioengineering, Guilin University of Technology, Guangxi Key Laboratory of Information Materials, Guilin 541004 (China)

    2011-06-15

    The barium strontium titanate (Ba{sub 0.7}Sr{sub 0.3}TiO{sub 3}, BST) thin films were synthesized by a sol-gel technique on a silicon nanoporous pillar array (Si-NPA) substrate. SEM observation reveals that the as-prepared BST thin film has uniformly covered the inherited pillar-like surface of the Si-NPA substrate. X-ray diffraction analysis indicates that the perovskite phase was able to be generated in the BST film when the annealing temperature was higher than 600 deg. C. The remnant polarization (Pr) and coercive field (Ec) values were also found to increase with the annealing temperature, with the maxima of 4.57 {mu}C cm{sup -2} for Pr and 7.61 kV mm{sup -1} for Ec at 800 deg. C, respectively. The measurement of leakage current density against voltage applied suggested that the BST films are excellent insulators along with fair resistance to breakdown, and the mechanism of leakage current was discussed.

  10. Investigating electronic defects in strontium titanate by surface photovoltage analysis

    Energy Technology Data Exchange (ETDEWEB)

    Beyreuther, Elke; Becherer, Jana; Grafstroem, Stefan; Eng, Lukas M. [Institut fuer Angewandte Photophysik, Technische Universitaet Dresden (Germany)

    2011-07-01

    The energy distribution of electronic defect states within the bandgap of oxygen-reduced n-type strontium titanate has been analyzed by means of wavelength-dependent surface photovoltage (SPV) measurements using a Kelvin probe set-up. As a further result, the parameters of several surface states, i.e. the trap state density and the thermal and optical cross sections, were extracted from SPV transients. Finally, the appropriateness of the method as a general tool for electrical characterization of complex oxide surfaces is illustrated by applying the SPV technique to comparable oxide crystals such as undoped SrTiO{sub 3}, Nb-doped SrTiO{sub 3}, or BaTiO{sub 3}.

  11. Adsorption of Pb(II) present in aqueous solution on calcium, strontium and barium hydroxy apatites

    International Nuclear Information System (INIS)

    Calcium, strontium and barium hydroxy apatites were successfully synthesized by chemical precipitation method, the obtained powders were characterized by the techniques of X-ray diffraction (XRD), scanning electron microscopy (Sem), semi-quantitative elemental analysis (EDS), infrared spectroscopy (IR), and N2 physisorption studies, complementary to these analytical techniques, was determined the surface fractal dimension (Df), and the amount of surface active sites of the materials, in order to know application as ceramic for water remediation. The ability of Pb(II) ion adsorption present in aqueous solution on the hydroxy apatites synthesized by batch type experiments was studied as a function of contact time, concentration of the adsorbate and temperature. The maximum lead adsorption efficiencies obtained were 0.31, 0.32 and 0.26 mg/g for calcium, strontium and barium hydroxy apatites respectively, achieved an equilibrium time of 20 minutes in the three solid-liquid systems studied. Experimental data were adequately adjusted at the adsorption kinetic model pseudo-second order, for the three cases. Moreover, experimental data of the strontium and calcium hydroxy apatites were adjusted to the Langmuir adsorption isotherm, indicating that the adsorption was through a monolayer, whereas barium hydroxyapatite was adjusted to the Freundlich adsorption isotherm, indicating a multilayer adsorption. The thermodynamic parameters obtained during adsorption studies as a function of temperature showed physisorption, exothermic and spontaneous processes respectively. The results showed that the calcium hydroxyapatite, strontium and barium are an alternative for the Pb(II) ion adsorption present in wastewaters. (Author)

  12. AFM studies of swift heavy ion and electron irradiated mixed barium strontium borate nonlinear optical crystal

    International Nuclear Information System (INIS)

    Single crystals of novel nonlinear optical material of mixed barium strontium borate is grown in our laboratory by employing the low-temperature solution technique. Equal proportion (1:1 molar ratio) of AR grade barium borate and strontium borate are mixed together in double distilled water to prepare a supersaturated solution. The solution is allowed to evaporate at constant temperature (30 deg. C) in a Petri dish for about a week which resulted in the formation of seed crystals. These seed crystals are used to grow larger crystals by suspending them using fine silk thread in the supersaturated mother solution. The solution is allowed to evaporate at constant temperature. This resulted in the growth of good transparent crystals of dimension 15 mmx10 mmx1 mm after about one month. These crystals show good second harmonic generation (SHG) efficiency. The mixed barium strontium borate crystal is found to be a promising nonlinear optical crystal, which possibly can be used for fabrication of photonic devices. The single crystals of mixed barium strontium borate are irradiated by 120 MeV Ag+13 swift heavy ions (SHI) of fluence 5x1011 ions/cm2 at Nuclear Science Centre, New Delhi and also by electrons of 8 MeV energy with a fluence 5.7x109/cm2 using Microtron accelerator at Mangalore University. Surface morphology studies of these crystals are carried out using atomic force microscope. The AFM topographical images of these SHI/electron irradiated single crystals of mixed barium strontium borate are obtained from different frames of the sample taken at different magnifications using atomic force microscope. An attempt is made to explain the surface damage caused due to SHI/electron irradiation using the observed AFM images

  13. Highly aligned arrays of high aspect ratio barium titanate nanowires via hydrothermal synthesis

    International Nuclear Information System (INIS)

    We report on the development of a hydrothermal synthesis procedure that results in the growth of highly aligned arrays of high aspect ratio barium titanate nanowires. Using a multiple step, scalable hydrothermal reaction, a textured titanium dioxide film is deposited on titanium foil upon which highly aligned nanowires are grown via homoepitaxy and converted to barium titanate. Scanning electron microscope images clearly illustrate the effect the textured film has on the degree of orientation of the nanowires. The alignment of nanowires is quantified by calculating the Herman's Orientation Factor, which reveals a 58% improvement in orientation as compared to growth in the absence of the textured film. The ferroelectric properties of barium titanate combined with the development of this scalable growth procedure provide a powerful route towards increasing the efficiency and performance of nanowire-based devices in future real-world applications such as sensing and power harvesting

  14. Sputtered Modified Barium Titanate for Thin-Film Capacitor Applications

    Directory of Open Access Journals (Sweden)

    Robert Mamazza

    2012-04-01

    Full Text Available New apparatus and a new process for the sputter deposition of modified barium titanate thin-films were developed. Films were deposited at temperatures up to 900 °C from a Ba0.96Ca0.04Ti0.82Zr0.18O3 (BCZTO target directly onto Si, Ni and Pt surfaces and characterized by X-ray diffraction (XRD, scanning electron microscopy (SEM and X-ray photoelectron spectroscopy (XPS. Film texture and crystallinity were found to depend on both deposition temperature and substrate: above 600 °C, the as-deposited films consisted of well-facetted crystallites with the cubic perovskite structure. A strongly textured Pt (111 underlayer enhanced the (001 orientation of BCZTO films deposited at 900 °C, 10 mtorr pressure and 10% oxygen in argon. Similar films deposited onto a Pt (111 textured film at 700 °C and directly onto (100 Si wafers showed relatively larger (011 and diminished intensity (00ℓ diffraction peaks. Sputter ambients containing oxygen caused the Ni underlayers to oxidize even at 700 °C: Raising the process temperature produced more diffraction peaks of NiO with increased intensities. Thin-film capacitors were fabricated using ~500 nm thick BCZTO dielectrics and both Pt and Ni top and bottom electrodes. Small signal capacitance measurements were carried out to determine capacitance and parallel resistance at low frequencies and from these data, the relative permittivity (er and resistivity (r of the dielectric films were calculated; values ranged from ~50 to >2,000, and from ~104 to ~1010 Ω∙cm, respectively.

  15. Enhanced dielectric properties from barium strontium titanate films with strontium titanate buffer layers

    Science.gov (United States)

    Cole, M. W.; Ngo, E.; Hubbard, C.; Hirsch, S. G.; Ivill, M.; Sarney, W. L.; Zhang, J.; Alpay, S. P.

    2013-10-01

    In order to enhance the permittivity and tunability of the dielectric component, a thin film dielectric composite consisting of a radio frequency sputtered SrTiO3 (STO) buffer layer and metalorganic solution deposited Mg-doped BaxSr1-xTiO3 (Mg-BST) thin film overgrowth was developed using affordable industry standard processes and materials. The effect of the STO buffer layer thickness on the dielectric response of the heterostructure was investigated. Our results demonstrate that the composite film heterostructure, evaluated in the metal-insulator-metal configuration Pt/STO/Mg-BST/Pt on sapphire substrate, with the thinner (9-17 nm) STO buffer layers possessed enhanced permittivity (ɛr ˜ 491) with respect to the thicker 41 nm buffer layer (ɛr ˜ 360) and that of a control Mg-BST film without a STO buffer layer (ɛr ˜ 380). Additionally, the composite film with the thinner buffer layers were shown to have low losses (tan δ ˜ 0.02), low leakage characteristics (J = 7.0 × 10-9 A/cm2), high breakdown voltage (VBR > 10 V), a large grain microstructure (˜125 nm), and smooth pin-hole free surfaces. The enhanced permittivity of the composite dielectric film resulted from three major factors: (i) the template-effect of the thin STO buffer layer on the thicker Mg-BST over-layer film to achieve a large grain microstructure, (ii) the low viscosity of the metallo-organic solution deposition (MOSD) solution, which ensured heterogeneous nucleation of the Mg-BST overgrowth film on the surface of the STO buffer layer, and (iii) minimization of the low permittivity grain boundary phase (TiO2-x phase). The dielectric response of the BST can be explained using a thermodynamic model taking into account interlayer electrostatic and electromechanical interactions. Additionally, Mg doping of the BST enabled low loss and low leakage characteristics of the heterostructure. The large permittivity, low loss, low leakage characteristics, and defect free surfaces of the composite dielectric heterostructure promote tunable device miniaturization and hold the potential to enable enhanced electromagnetic coupling in ferromagnetic/high permittivity dielectric heterostructures, which in turn would facilitate the realization of integrated charge mediated voltage controlled magnetic radio frequency/microwave communication devices.

  16. Physical states and properties of barium titanate films in a plane electric field

    Science.gov (United States)

    Shirokov, V. B.; Kalinchuk, V. V.; Shakhovoi, R. A.; Yuzyuk, Yu. I.

    2016-07-01

    The influence of a plane electric field on the phase states of barium titanate thin films under the conditions of forced deformation has been studied. The field dependence of a complete set of material constants has been taken in the region of the c-phase, where polarization losses are absent. The material constants are calculated using equations of the piezoelectric effect derived by linearizing the nonlinear equations of state from the phenomenological; theory for barium titanate. It has been shown that there is a critical value of the field at which the electromechanical coupling coefficient reaches a maximum.

  17. Dielectric properties of piezoelectric 3–0 composites of lithium ferrite/barium titanate

    Indian Academy of Sciences (India)

    P Sarah; S V Suryanarayana

    2003-12-01

    Piezoelectric 3–0 composite ceramics are prepared from a mixture of barium titanate and lithium ferrite phase constituents. Dielectric properties of composites are affected by a number of parameters that include electrical properties, size, shape and amount of constituent phases. The frequency dependent measurements can provide additional insight into mechanisms controlling electrical response. Frequency dependence of dielectric constant plots of lithium ferrite/barium titanate composites will be given and the relevance of trends seen in them will be discussed. Connectivity in composites developed is studied.

  18. A novel solvothermal route for obtaining strontium titanate nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Marquez-Herrera, A., E-mail: alfredo.marquez@uaslp.mx [Universidad Autonoma de San Luis Potosi, Departamento de Ingenieria Mecanica Administrativa, Coordinacion Academica Region Altiplano (COARA) (Mexico); Ovando-Medina, Victor M.; Corona-Rivera, Miguel A. [Universidad Autonoma de San Luis Potosi, Departamento de Ingenieria Quimica, Coordinacion Academica Region Altiplano (COARA) (Mexico); Hernandez-Rodriguez, E.; Zapata-Torres, M. [Centro de Investigacion en Ciencia Aplicada y Tecnologia Avanzada, Unidad Legaria IPN (Mexico); Campos-Gonzalez, E.; Guillen-Cervantes, A.; Zelaya-Angel, O.; Melendez-Lira, M. [CINVESTAV-IPN, Departamento de Fisica (Mexico)

    2013-04-15

    Strontium titanate (SrTiO{sub 3}) has attracted a lot of attention because of its possible applications in new microelectronic devices. It is a material with a high dielectric constant, low leakage current, and some of its properties can be changed by adding or modifying the concentration of a dopant, which can be used for a wide range of functional purposes, from simple capacitors to complicated microwave devices. Therefore, in this work, we report the development of a new route to synthesize SrTiO{sub 3} nanoparticles based on the solvothermal method by employing two precursor solutions: strontium chloride and titanium(IV) butoxide. Our route allows the production of cubic SrTiO{sub 3} nanoparticles with a narrow size distribution. The particle sizes range between 8 and 24 nm, forming agglomerates of SrTiO{sub 3} in the range of 128-229 nm. It was demonstrated that the Ti/Sr molar ratio employed into the precursor solution has an important effect onto the chemical composition of the resulting SrTiO{sub 3} nanoparticles: when using Ti/Sr < 1, the formation and incorporation of the SrCO{sub 3} compound into the nanoparticles was observed while with Ti/Sr {>=} 1 nanoparticles are free of contaminants. The as-prepared nanoparticles were characterized by energy-dispersive X-ray spectroscopy, X-ray diffraction, transmission electron microscopy, high-resolution TEM, selected area electron diffraction, scanning electron microscopy, and dynamic light scattering.

  19. A plasmonic modulator based on metal-insulator-metal waveguide with barium titanate core

    DEFF Research Database (Denmark)

    Babicheva, Viktoriia; Lavrinenko, Andrei

    2013-01-01

    We design a plasmonic modulator which can be utilized as a compact active device in photonic integrated circuits. The active material, barium titanate (BaTiO3), is sandwiched between metal plates and changes its refractive index under applied voltage. Some degree of switching of ferroelectric...

  20. Magnetic and dielectric properties of 3Y-TZP/strontium doped barium ferrite composite

    Science.gov (United States)

    Zhang, Chao; Wang, Shan-Shan; Guo, Rui-Song; Cai, Guang-Lan; Guo, Wei-Na; Wu, Chen

    2015-02-01

    Magnetic and dielectric properties of 3Y-TZP/20 wt.% Ba1-xSrxFe12O19 (x = 0, 0.25, 0.5, 0.75) composites prepared by solid state reaction method are investigated. The magnetic properties are improved in the composites with the strontium doped barium ferrite. When x = 0.25, the saturation magnetization of the ferrite reaches the maximum. This is due to the migration of Fe3+ induced by the Sr2+ doping. The dielectric properties are also improved in the composite with the strontium doped barium ferrite. When x = 0.5, the dielectric constant and dielectric loss possess the maximum. This is caused by the lattice distortion resulting from the Sr2+ doping. The dielectric properties are analyzed by the universal relaxation law.

  1. Correlated Strontium and Barium Isotopic Compositions of Acid-Cleaned Single Silicon Carbides from Murchison

    CERN Document Server

    Liu, Nan; Gallino, Roberto; Davis, Andrew M; Bisterzo, Sara; Gyngard, Frank; Kaeppeler, Franz; Cristallo, Sergio; Dauphas, Nicolas; Pellin, Michael J; Dillmann, Iris

    2015-01-01

    We present strontium, barium, carbon, and silicon isotopic compositions of 61 acid-cleaned presolar SiC grains from Murchison. Comparison with previous data shows that acid washing is highly effective in removing both strontium and barium contamination. For the first time, by using correlated $^{88}Sr$/$^{86}Sr$ and $^{138}Ba$/$^{136}Ba$ ratios in mainstream SiC grains, we are able to resolve the effect of $^{13}C$ concentration from that of $^{13}C$-pocket mass on s-process nucleosynthesis, which points towards the existence of large $^{13}C$-pockets with low $^{13}C$ concentration in AGB stars. The presence of such large $^{13}$R-pockets with a variety of relatively low $^{13}C$ concentrations seems to require multiple mixing processes in parent AGB stars of mainstream SiC grains.

  2. Persistent optically induced magnetism in oxygen-deficient strontium titanate.

    Science.gov (United States)

    Rice, W D; Ambwani, P; Bombeck, M; Thompson, J D; Haugstad, G; Leighton, C; Crooker, S A

    2014-05-01

    Strontium titanate (SrTiO3) is a foundational material in the emerging field of complex oxide electronics. Although its bulk electronic and optical properties are rich and have been studied for decades, SrTiO3 has recently become a renewed focus of materials research catalysed in part by the discovery of superconductivity and magnetism at interfaces between SrTiO3 and other non-magnetic oxides. Here we illustrate a new aspect to the phenomenology of magnetism in SrTiO3 by reporting the observation of an optically induced and persistent magnetization in slightly oxygen-deficient bulk SrTiO3-δ crystals using magnetic circular dichroism (MCD) spectroscopy and SQUID magnetometry. This zero-field magnetization appears below ~18 K, persists for hours below 10 K, and is tunable by means of the polarization and wavelength of sub-bandgap (400-500 nm) light. These effects occur only in crystals containing oxygen vacancies, revealing a detailed interplay between magnetism, lattice defects, and light in an archetypal complex oxide material.

  3. High Performance, Low Temperature Solution-Processed Barium and Strontium Doped Oxide Thin Film Transistors

    OpenAIRE

    Banger, Kulbinder K.; Peterson, Rebecca L.; Mori, Kiyotaka; Yamashita, Yoshihisa; Leedham, Timothy; Sirringhaus, Henning

    2013-01-01

    Amorphous mixed metal oxides are emerging as high performance semiconductors for thin film transistor (TFT) applications, with indium gallium zinc oxide, InGaZnO (IGZO), being one of the most widely studied and best performing systems. Here, we investigate alkaline earth (barium or strontium) doped InBa(Sr)ZnO as alternative, semiconducting channel layers and compare their performance of the electrical stress stability with IGZO. In films fabricated by solution-processing from metal alkoxide ...

  4. Modification of gray iron produced by induction melting with barium strontium

    Science.gov (United States)

    Modzelevskaya, G.; Feoktistov, A. V.; Selyanin, I. F.; Kutsenko, A. I.; Kutsenko, A. A.

    2016-09-01

    The article provides analysis of results of gray iron experimental melts in induction furnace and the following melt modification with barium-strontium carbonate (BSC-2). It is shown that modification positively affects mechanical and casting properties and as-cast iron structure. It was established that BSC-2 granulated immediately prior to use has greater impact on melt than BSC-2 of the same faction, supplied by the manufacturer.

  5. A study of the Arrhenius behavior of the co-precipitation of radium, barium and strontium sulfate

    International Nuclear Information System (INIS)

    Co-precipitation of radium, barium and strontium is an important process in many contexts, such as uranium mining, oil extraction and in the safety assessment of a final repository for used nuclear fuel. Co-precipitation to a solid solution is possible since radium, barium and strontium act as chemical analogues. In this work the co-precipitation of radium, barium and strontium was studied and the kinetic behavior of the co-precipitation process was investigated. It was shown that radium, barium and strontium co-precipitate congruently and that the precipitation followed an Arrhenius behavior and the Arrhenius parameters for the systems was determined. When studying the differences of the Arrhenius constants by using a student t test (95 % confidence interval) it was observed that the only significant difference in the activation energy, Ea, is between radium and barium and between radium and strontium respectively, the pure strontium having the larger activation energy in comparison. This is most likely coupled to the metal ion size; since the hydration waters are more strongly bound, which leads to them having a slower exchange rate, which in turn effects the rate of co-precipitation to the metal these reactions will be slower. (author)

  6. Studies of the processes of incorporation of calcium, strontium, barium and radium into bone tissue

    International Nuclear Information System (INIS)

    Alkaline earth elements incorporation into bone tissue are investigated. The study is aimed at collecting the data on improvement of metabolism model of these elements. The study includes kinetics of calcium, strontium, barium and radium - carried out on 120 rats of Wistar strain: incorporation processes of light and heavy alkaline earth elements (strontium and barium) as a function of age of the organism - carried out on 30 rabbits of Chinchilla strain in different age groups, as well as the rate of incorporation of calcium and barium into different bone tissue areas - carried out on 68 rabbits of the same strain in one age group. The main investigative techniques are: radiochemical methods, whole-body counting technique, quantitative autoradiography and microradiography, ''tetracycline test'', computer calculation methods. The following conclusions are reached: incorporation of alkaline earth elements into bone tissue is differentiated and depends on whether or not it is a light element (Ca, Sr) or heavy one (Ba, Ra), it depends also on the area of bone tissue in which the incorporation occurs

  7. Phase conjugation, isotropic and anisotropic higher order diffraction generation, and image correlation using photorefractive barium titanate

    Science.gov (United States)

    Buranasiri, Prathan

    2005-04-01

    Using barium titanate as the photorefractive material, we demonstrate phase conjugation, beam coupling, higher diffraction order generation. At small incident angles less than 0.015 radian, both codirectional isotropic self-diffraction (CODIS) and contradirectional isotropic self-diffraction (CONDIS) are generated simultaneously. At bigger incident angles approximately more than 0.2094 radian, only codirectional anisotropic-self diffraction (CODAS) are generated. On going imaging correlation is also showing.

  8. Electrical Properties of Thin-Film Capacitors Fabricated Using High Temperature Sputtered Modified Barium Titanate

    OpenAIRE

    Robert Mamazza; Heinz Felzer; Martin Dubs; Glyn J. Reynolds; Martin Kratzer

    2012-01-01

    Simple thin-film capacitor stacks were fabricated from sputter-deposited doped barium titanate dielectric films with sputtered Pt and/or Ni electrodes and characterized electrically. Here, we report small signal, low frequency capacitance and parallel resistance data measured as a function of applied DC bias, polarization versus applied electric field strength and DC load/unload experiments. These capacitors exhibited significant leakage (in the range 8–210 μA/cm2) and dielectric loss. Measur...

  9. A study of the microchemistry of nanocrystalline barium titanate with tetragonal and pseudocubic room temperature symmetries

    Science.gov (United States)

    Lacey, Robert A.

    The investigation of possible effects of undesired surface species on barium titanate, one of the most utilized ferroelectric ceramics, constitutes the focus of this work. Six commercial barium titanate powders from three manufacturers representing two different synthesis processes, with average particle sizes from 40 nm to 470 nm, were analyzed in this study. Four of the nanopowders exhibited pseudocubic room temperature symmetry. Diffuse Reflectance Infrared Fourier Transform (DRIFT) spectroscopic analysis of the nanopowders was conducted in ambient atmosphere at room temperature. High temperature DRIFT followed incorporating four avenues of analysis: moisture adsorption studies, deuterium oxide exchange studies, carbon dioxide adsorption studies, and high temperature analysis under dry air and UHP nitrogen atmospheres. At the highest temperature used in this study, 1173K, moisture and the accompanying incorporated protonic impurities were still present. The powders readily readsorbed moisture during rapid cooling, 170K/minute, to room temperature. The smallest powder, as received, formed spherical agglomerates up to 10 mum diameter. These sintered as separate units attaining diameters up to 60 mum during intermediate stage sintering. X-ray photoelectron spectroscopy indicated a surface contamination layer of 10 A to 18 A; 50--70% of which was barium carbonate, the balance being atmospheric adsorbed species. Samples cooled at 3K/minute after an 1173K calcine retained cubic symmetry as indicated with high temperature X-ray diffraction. However, spectral evidence was obtained indicating that upon the rapid cooling from the 1173K calcine, a reorientation to the room temperature tetragonal symmetry was observed. Further, SEM and TEM supported this finding with visual evidence of interfacial rearrangement including corroborating electron diffraction analysis. This data, therefore, substantiated the hypothesis that the cause of the room temperature pseudocubic

  10. Effects of Dysprosium Oxide Doping on Microstructure and Properties of Barium Titanate Ceramic

    Institute of Scientific and Technical Information of China (English)

    Pu Yongping; Ren Huijun; Chen Wei; Chen Shoutian

    2005-01-01

    Different amounts of dysprosium oxide were incorporated into barium titanate powders synthesized by hydrothermal method. Relations of substitution behaviors and lattice parameters with solid-solubility were studied. Furthermore, the influences of dysprosium oxide doping fraction on grain size and dielectric properties of barium titanate ceramic, including dielectric constant and breakdown electric field strength, were investigated via scanning electron microscope, X-ray diffraction and electric property tester. The results show that dysprosium oxide can restrain abnormal grain growth during sintering and that fine-grained and high density of barium titanate ceramic can result in excellent dielectric properties. As mass fraction of dysprosium oxide is 0.6%, the lattice parameters of grain increase to the maximum because of the lowest vacancy concentration. The electric property parameters are cited as following: dielectric constant (25 ℃) reaches 4100, the change in relative dielectric constant with temperature is -10% to 10% within the range of -15~100 ℃, breakdown electric field strength (alternating current) achieves 3.2 kV·mm-1, which can be used in manufacturing high voltage ceramic capacitors.

  11. Hydrothermal Synthesis and Characterization of Europium-dop ed Barium Titanate Nano crys-tallites

    Institute of Scientific and Technical Information of China (English)

    Margarita Garca-Hernandez; Genevieve Chadeyron; Damien Boyer; Antonieta Garca-Murillo; Felipe Carrillo-Romo; Rachid Mahiou

    2013-01-01

    Barium titanate nanocrystallites were synthesized by a hydrothermal technique from barium chlo-ride and tetrabutyl titanate. Single-crystalline cubic perovskite BaTiO3 consisting of spherical particles with diameters ranging from 10 to 30 nm was easily achieved by this route. In order to study the influence of the syn-thesis process on the morphology and the optical properties, barium titanate was also prepared by a solid-state reaction. In this case, only the tetragonal phase which crystallizes above 900℃ was observed. High-temperature X-ray diffraction measurements were performed to investigate the crystallization temperatures as well as the particle sizes via the Scherrer formula. The lattice vibrations were evidenced by infrared spectroscopy. Eu3+was used as a structural probe, and the luminescence properties recorded from BaTiO3:Eu3+and elaborated by a solid-state reaction and hydrothermal process were compared. The reddish emission of the europium is increased by the nanometric particles.

  12. Direct writing of ferroelectric domains on strontium barium niobate crystals using focused ultraviolet laser light

    Energy Technology Data Exchange (ETDEWEB)

    Boes, Andreas; Crasto, Tristan; Steigerwald, Hendrik; Mitchell, Arnan [School of Electrical and Computer Engineering and ARC Center for Ultra-High Bandwidth Devices for Optical Systems (CUDOS), RMIT University, Melbourne, Victoria 3001 (Australia); Wade, Scott [Faculty of Engineering and Industrial Sciences, Swinburne University of Technology, Hawthorn, Victoria 3122 (Australia); Frohnhaus, Jakob; Soergel, Elisabeth [Institute of Physics, University of Bonn, Wegelerstr. 8, 53115 Bonn (Germany)

    2013-09-30

    We report ferroelectric domain inversion in strontium barium niobate (SBN) single crystals by irradiating the surface locally with a strongly focused ultraviolet (UV) laser beam. The generated domains are investigated using piezoresponse force microscopy. We propose a simple model that allows predicting the domain width as a function of the irradiation intensity, which indeed applies for both SBN and LiNbO{sub 3}. Evidently, though fundamentally different, the domain structure of both SBN and LiNbO{sub 3} can be engineered through similar UV irradiation.

  13. Low temperature preparation of nanocrystalline solid solution of strontium barium niobate by chemical process

    Indian Academy of Sciences (India)

    Asit B Panda; Amita Pathak; Panchanan Pramanik

    2002-11-01

    SrBa1–Nb2O6 (with = 0.4, 0.5 and 0.6) powders have been prepared by thermolysis of aqueous precursor solutions consisting of triethanolamine (TEA), niobium tartarate and, EDTA complexes of strontium and barium ions. Complete evaporation of the precursor solution by heating at ∼ 200°C, yields in a fluffy, mesoporous carbon rich precursor material, which on calcination at 750°C/2 h has resulted in the pure SBN powders. The crystallite and average particle sizes are found to be around 15 nm and 20 nm, respectively.

  14. Low-resistance and high-resistance states in strontium titanate films formed by the sol-gel method

    Science.gov (United States)

    Sohrabi Anaraki, H.; Gaponenko, N. V.; Litvinov, V. G.; Ermachikhin, A. V.; Kolos, V. V.; Pyatlitski, A. N.; Ivanov, V. A.

    2015-10-01

    A change in the resistance of strontium titanate structures formed by the sol-gel method has been demonstrated. The transition of a strontium titanate film with a thickness of about 300 nm from the highresistance to low-resistance state occurs when the bias voltage on the silicon/titanium dioxide/platinum/strontium titanate/nickel capacitor structure reaches the values of about 10 V. The resistance changes from several ohms to several tens of kiloohms. For a thicker film (~400 nm), the switching voltage increases while the resistance of the structure in the high-resistance state reaches several hundreds of kiloohms. Supposedly, the main role in changing the resistance is played by deep levels whose population changes by the applied voltage. The prospects for the application of strontium titanate films in memory memristor elements have been discussed.

  15. Rapid synthesis of barium titanate microcubes using composite-hydroxides-mediated avenue

    Energy Technology Data Exchange (ETDEWEB)

    He, Xi; Ouyang, Jing, E-mail: jingouyang@csu.edu.cn; Jin, Jiao; Yang, Huaming, E-mail: hmyang@csu.edu.cn

    2014-04-01

    Highlights: • Barium titanate oxides microcubes can be synthesized within 1 min. • Composite-hydroxides-mediated strategy provided a possible large scale production. • BST obtained in the strategy showed fairly good crystallinity and tetragonality. - Abstract: This paper reports the rapid synthesis of barium titanate (BaTiO{sub 3}, BTO) microcubes via composite-hydroxides-mediated reaction within 1 min. X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersion spectrum (EDS) results confirmed both cubic and tetragonal lattices in the sample and the uniform microcubes with an average size of 1 μm. Ultraviolet–visible (UV–vis) spectrum indicated that the band gap of the BTO powder was 3.05 eV. Ferroelectric polarization vs. electric field (P–E) tests showed that the ferroelectric domains had formed in the as-synthesized BTO microcubes and sintered ceramics. BTO ceramics sintered at 1100 °C for 3 h showed fairly good tetragonality and possessed a maximum polarization of 0.21 μC/cm{sup 2}, indicating that the sintering temperature for the BTO powders prepared via this method was relatively low. The process and equipment reported herein provided a potential method for the rapid synthesis of titanate based perovskites.

  16. Single-step synthesis of well-crystallized and pure barium titanate nanoparticles in supercritical fluids

    Science.gov (United States)

    Reverón, Helen; Aymonier, Cyril; Loppinet-Serani, Anne; Elissalde, Catherine; Maglione, Mario; Cansell, François

    2005-08-01

    Single-step synthesis of ultra-fine barium titanate powder with a crystallinity as high as 90% and without barium carbonate contamination has been successfully performed under supercritical conditions using a continuous-flow reactor in the temperature range 150-380 °C at 16 MPa. To synthesize this bimetallic oxide, alkoxides, ethanol and water were used. The influence of the synthesis parameters on the BaTiO3 powder characteristics was investigated. The results show that the water to alkoxide precursor ratio, the reactor temperature and the Ba:Ti molar ratio of alkoxide precursor play a major role in the crystallization of pure and well-crystallized BaTiO3 nanoparticles. The continuous mode of operation without post-treatments for powder washing, drying or crystallization increase the industrial interest.

  17. Hydrothermal Synthesis and Processing of Barium Titanate Nanoparticles Embedded in Polymer Films.

    Science.gov (United States)

    Toomey, Michael D; Gao, Kai; Mendis, Gamini P; Slamovich, Elliott B; Howarter, John A

    2015-12-30

    Barium titanate nanoparticles embedded in flexible polymer films were synthesized using hydrothermal processing methods. The resulting films were characterized with respect to material composition, size distribution of nanoparticles, and spatial location of particles within the polymer film. Synthesis conditions were varied based on the mechanical properties of the polymer films, ratio of polymer to barium titanate precursors, and length of aging time between initial formulations of the solution to final processing of nanoparticles. Block copolymers of poly(styrene-co-maleic anhydride) (SMAh) were used to spatially separate titanium precursors based on specific chemical interactions with the maleic anhydride moiety. However, the glassy nature of this copolymer restricted mobility of the titanium precursors during hydrothermal processing. The addition of rubbery butadiene moieties, through mixing of the SMAh with poly(styrene-butadiene-styrene) (SBS) copolymer, increased the nanoparticle dispersion as a result of greater diffusivity of the titanium precursor via higher mobility of the polymer matrix. Additionally, an aminosilane was used as a means to retard cross-linking in polymer-metalorganic solutions, as the titanium precursor molecules were shown to react and form networks prior to hydrothermal processing. By adding small amounts of competing aminosilane, excessive cross-linking was prevented without significantly impacting the quality and composition of the final barium titanate nanoparticles. X-ray diffraction and X-ray photoelectron spectroscopy were used to verify nanoparticle compositions. Particle sizes within the polymer films were measured to be 108 ± 5 nm, 100 ± 6 nm, and 60 ± 5 nm under different synthetic conditions using electron microscopy. Flexibility of the films was assessed through measurement of the glass transition temperature using dynamic mechanical analysis. Dielectric permittivity was measured using an impedance analyzer. PMID

  18. Spectroscopic studies of Nb- and Hf-doped barium titanate crystals

    International Nuclear Information System (INIS)

    One studied the absorption spectra of barium titanate single crystals doped with niobium and hafnium, as well as, those of pure BaTiO3 single crystal. One detected peculiarities both under ferro-paraelectric phase transition at 120 deg C and in paraelectric phase within 150-170 deg C. One observed increase of intensity of λmax = 700 nm band within beyond 150-170 deg C range that was adequate to the increase of number of F-centres

  19. Screen printed barium titanate thick films prepared from mechanically activated powders

    Energy Technology Data Exchange (ETDEWEB)

    Stojanovic, B.D. [Universidad Estadual Paulista, Sao Paulo (Brazil). Inst. de Quimica; Belgrade Univ. (Yugoslavia). Center for Multidisciplinary Studies; Foschini, C.R.; Varela, J.A. [Universidad Estadual Paulista, Sao Paulo (Brazil). Inst. de Quimica; Pejovic, V.Z. [IRITEL, Belgrade (Yugoslavia); Pavlovic, V.B. [Faculty for Agriculture, Dept. of Physics, UB (Yugoslavia); Pavlovic, V.P. [Faculty for Mechanical Engineering, Dept. of Physics, UB (Yugoslavia)

    2002-07-01

    Barium titanate thick films were prepared from mechanically activated powders based on BaCO{sub 3} and TiO{sub 2}. The thick films were screen-printed on alumina substrates electroded with Ag/Pd. The BT films were sintered at 850 C for 1 hour. The thickness was 30-75 {mu}m depending of number of layers. The microstructure of thick films and the compatibility between BT layers and substrate was investigated by SEM. The dielectric properties were measured and the results were reported. (orig.)

  20. Comparison of barium titanate thin films prepared by inkjet printing and spin coating

    Directory of Open Access Journals (Sweden)

    Jelena Vukmirović

    2015-09-01

    Full Text Available In this paper, barium titanate films were prepared by different deposition techniques (spin coating, office Epson inkjet printer and commercial Dimatix inkjet printer. As inkjet technique requires special rheological properties of inks the first part of the study deals with the preparation of inks, whereas the second part examines and compares structural characteristics of the deposited films. Inks were synthesized by sol-gel method and parameters such as viscosity, particle size and surface tension were measured. Deposited films were examined by optical and scanning electron microscopy, XRD analysis and Raman spectroscopy. The findings consider advantages and disadvantages of the particular deposition techniques.

  1. Properties of composition sinter prepared from fibrous barium titanate and nanometer zirconia

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Fibrous Batium Titanate particles,30-50 μm long,prepared by a hydrothermal reaction,and the monoclinic phase and nanometer Zirconia,11.6 nm long were prepared by citric acid reaction respectively.Then,the two were composite sintered to produce a new functional material by making full use of crystal-axis orientation of fibers and the activity of nanometer powder.The analydid of composition and microstructure of the new material in terms of XRD and SEM.shows that the solid solution was formed between fibers and nanometer powder,and the distance between lattice(d value)of Barium Titanate changed.But the crystal-axis orientations of fibers remain unchanged.

  2. A FAMILY OF PEROXO-TITANATE MATERIALS TAILORED FOR OPTIMAL STRONTIUM ANDACTINIDE SORPTION

    Energy Technology Data Exchange (ETDEWEB)

    Hobbs, D

    2006-08-07

    Achieving global optimization of inorganic sorbent efficacy, as well as tailoring sorbent specificity for target sorbates would facilitate increased wide-spread use of these materials in applications such as producing potable water or nuclear waste treatment. Sodium titanates have long been known as sorbents for radionuclides; {sup 90}Sr and transuranic elements in particular. We have developed a related class of materials, which we refer to as peroxo-titanates: these are sodium titanates or hydrous titanates synthesized in the presence of or treated post-synthesis with hydrogen peroxide. Peroxo-titanates show remarkable and universal improved sorption behavior with respect to separation of actinides and strontium from Savannah River Site (SRS) nuclear waste simulants. Enhancement in sorption kinetics can potentially result in as much as an order of magnitude increase in batch processing throughput. Peroxo-titanates have been produced by three different synthetic routes: post-synthesis peroxide-treatment of a commercially produced monosodium titanate, an aqueous-peroxide synthetic route, and an isopropanol-peroxide synthetic route. The peroxo-titanate materials are characteristically yellow to orange, indicating the presence of protonated or hydrated Ti-peroxo species; and the chemical formula can be generally written as H{sub v}Na{sub w}Ti{sub 2}O{sub 5}-(xH{sub 2}O)[yH{sub z}O{sub 2}] where (v+w) = 2, z = 0-2, and total volatile species accounts for 25-50 wt % of the solid. Further enhancement of sorption performance is achieved by processing, storing and utilizing the peroxo-titanate as an aqueous slurry rather than a dry powder, and post-synthesis acidification. All three synthesis modifications; addition of hydrogen peroxide, use of a slurry form and acidification can be applied more broadly to the optimization of other metal oxide sorbents and other ion separations processes.

  3. Strontium and Actinide Separations from High Level Nuclear Waste Solutions using Monosodium Titanate - Actual Waste Testing

    Energy Technology Data Exchange (ETDEWEB)

    Peters, T.B.; Barnes, M.J.; Hobbs,D.T.; Walker, D.D.; Fondeur, F.F.; Norato, M.A.; Pulmano, R.L.; Fink, S.D.

    2005-11-01

    Pretreatment processes at the Savannah River Site will separate {sup 90}Sr, alpha-emitting and radionuclides (i.e., actinides) and {sup 137}Cs prior to disposal of the high-level nuclear waste. Separation of {sup 90}Sr and alpha-emitting radionuclides occurs by ion exchange/adsorption using an inorganic material, monosodium titanate (MST). Previously reported testing with simulants indicates that the MST exhibits high selectivity for strontium and actinides in high ionic strength and strongly alkaline salt solutions. This paper provides a summary of data acquired to measure the performance of MST to remove strontium and actinides from actual waste solutions. These tests evaluated the effects of ionic strength, mixing, elevated alpha activities, and multiple contacts of the waste with MST. Tests also provided confirmation that MST performs well at much larger laboratory scales (300-700 times larger) and exhibits little affinity for desorption of strontium and plutonium during washing.

  4. Diffusion of Barium, Strontium and Cerium in Various Grades of Reactor Graphite

    International Nuclear Information System (INIS)

    Experiments designed to study the diffusion of barium, strontium and cerium in various grades of graphite of interest to the Dragon reactor project will be described. In these experiments specimens of the graphite are immersed in the vapour of the fission product metal under controlled conditions of temperature and pressure for known periods of time. After appropriate grinding and polishing, the distribution of the solute metal in the specimen is determined by means of an electron microprobe. The electron microprobe recordings are then interpreted to obtain apparent values of the diffusion coefficients and their dependence upon temperature. The results indicate that migration occurs primarily via defects in the graphite structure, with only a negligible contribution from in-grain diffusion. The significance of the results is discussed, with particular reference to the differences in behaviour encountered between various grades of graphite. (author)

  5. INVESTIGATION OF PHOTOREFRACTIVE TWO-WAVE COUPLING IN Cr-DOPED STRONTIUM BARIUM NIOBATE CRYSTAL

    Institute of Scientific and Technical Information of China (English)

    ZHAO JIAN-LIN; WANG BIN; WU JIAN-JUN; YANG DE-XING; S. KAPPHANb; R. PANKRATHb

    2001-01-01

    We present here the experimental results of photorefractive two-wave coupling in the congruent strontium barium niobate (SBN:61) crystal doped with 1000ppm Cr. Employing a He-Ne laser (632.8nm), we observed the coupling characteristics under different conditions. The crystal shows excellent photorefractive properties, with a high coupling coefficient nearly 6cm-1 as the beam intensity ratio m is less than 100. The saturated coupling coefficient of SBN:61:Cr shows a maximum at a certain external beam crossing angle 2θpeak, which varies with different m, showing a nearly linear dependence on m. The saturated coupling response time τ is measured to be less than 0.8 s. The response time decreased with increasing beam crossing angles no matter how large m is. We also observed the behaviour of the probe beam in reversed experimental procedures. We found that the probe beam shows a bistable state in both procedures.

  6. Dopant Behaviours of Sm2O3 on Microstructure and Properties of Barium Zirconium Titanate Ceramics

    Institute of Scientific and Technical Information of China (English)

    王永力; 李龙土; 齐建全; 桂治轮

    2001-01-01

    The effect of Sm2O3-dopant on the sintering characteristics and dielectric properties of barium zirconium titanate ceramics (BaZrxTi1-xO3) was investigated. It is shown that trace amount of Sm2O3 can greatly affect the grain growth and densification of barium zirconium titanate ceramics during sintering. At the same time, the dielectric peak at high temperature shifts to lower temperature and that at low temperature shifts to higher temperature. The two dielectric peaks overlap with each other when the Sm2O3-dopant content varies from 0.25% to 1%, and the maximum relative dielectric constant is greatly enhanced. These effects may be attributed to the substitution actions of the rare earth element in perovskite lattice. At the doping content of 0.75%, the dielectric constant maximum of 23570 can be obtained. By adopting some proper additives, an excellent Y5V dielective material is obtained, and the room temperature properties are as follows: relative dielectric constant εRT≥23,000, dielectric loss tgδ≤0.0075 and the breakdown strength under alternating field Eb≥5 kV·mm-1.

  7. Influence of preparation route and slip casting conditions on titania and barium titanate ceramics

    Institute of Scientific and Technical Information of China (English)

    Arvind K.Nikumbh; Parag V.Adhyapak

    2012-01-01

    Titania (TiO2) and barium titanate (BaTiO3) were synthesized using three different dicarboxylates,which included oxalate,malate and tartarate.These powders were characterized by X-ray powder diffraction,scanning electron micrographs,BET specific surface area and particle size distribution.Their properties depended to a great extent on the nature of the precursor.The titania and barium titanate powders obtained from the tartarate precursor were found to be good for slip casting.Slips of these oxides with different solids contents were prepared at different pH values using both distilled water and ethanol as the dispersing agent and also with and without deflocculant.The theological behaviors of the suspensions were then determined,and the slip,green and sedimentation bulk densities were measured.The minimum viscosities were observed at pH 8.2 for the TiO2-water and pH 10.2 for the BaTiO3-water system.

  8. Synthesis of nanosized barium titanate/epoxy resin composites and measurement of microwave absorption

    Indian Academy of Sciences (India)

    M Murugan; V K Kokate; M S Bapat; A M Sapkal

    2010-12-01

    Barium titanate/epoxy resin composites have been synthesized and tested for microwave absorption/transmission. Nanocrystalline barium titanate (BaTiO3 or BT) was synthesized by the hydrothermal method and the composites of BT/epoxy resin were fabricated as thin solid slabs of four different weight ratios. BT was obtained in the cubic phase with an average particle size of 21 nm, deduced from the X-ray diffraction data. The reflection loss (RL) and transmission loss (TL) of the composite materials were measured by the reflection/transmission method using a vector network analyser R&S: ZVA40, in the frequency range 8.0–18.5 GHz (X and Ku-bands). The RL was found to be better than −10 dB over wide frequency bands. The higher RL for lower concentration of BT could be due to increase in impedance matching effects. Low TL values indicate that the absorption by BT is quite low. This could be due to formation of BT in the cubic paraelectric phase.

  9. Mapping of strain mechanisms in barium titanate by three-dimensional X-ray diffraction

    DEFF Research Database (Denmark)

    Majkut, Marta

    This thesis presents an in-situ three-dimensional study of the grain-scale response of a prototypical piezoelectric ceramic, barium titanate (BT), to an exernally applied electric field. Piezoceramics take advantage of the coupling of electrical and mechanical energies for use in sensors and actu......This thesis presents an in-situ three-dimensional study of the grain-scale response of a prototypical piezoelectric ceramic, barium titanate (BT), to an exernally applied electric field. Piezoceramics take advantage of the coupling of electrical and mechanical energies for use in sensors...... and actuators, found in both common applications such as fuel injectors and specialized applications such as medical imaging equipment. Since piezoceramics are typically used in the polycrystalline state it is important to consider not just the crystal structure but also the role of intergranular effects...... local environment at the cubic to tetragonal transition during processing. When a field is applied, we observe a first-order orientation dependence with second order deviations, again attributed to the grain neighbourhood effect. Corellation of this with microstructural parameters such as grain size...

  10. Experimental investigation of the effect of titanium dioxide and barium titanate additives on DC transient currents in low density polyethylene

    DEFF Research Database (Denmark)

    Khalil, M.S; Henk, Peter O; Henriksen, Mogens;

    1988-01-01

    The effect of titanium dioxide as a semiconductive additive and barium titanate as a highly polar additive on the DC transient currents in low-density polyethylene is investigated. Experiments were made using thick specimens under a high electric field (>25×106 V/m) and a constant temperature of 40...

  11. Influence of light on the coercive field of repoled strontium barium niobate (SBN); the role of secondary repoling

    OpenAIRE

    P.G.R.Smith; Eason, R. W.

    1996-01-01

    We have found that the application of light to strontium barium niobate (SBN) during electrical repoling stabilises the newly formed domains. This stabilisation becomes apparent when repoling the crystal back into its original domain direction as a change in the distribution of displacement current as a function of voltage. This appears to be the process underlying the other recent work in the area of optical control of domain structures for quasi phase-matching of nonlinear processes. We pre...

  12. Impact of vacancy clusters on characteristic resistance change of nonstoichiometric strontium titanate nano-film

    Energy Technology Data Exchange (ETDEWEB)

    Su Kim, Yong, E-mail: ysukim@phya.snu.ac.kr; Jee Yoon, Moon; Hee Sohn, Chang; Buhm Lee, Shin; Lee, Daesu; Chul Jeon, Byung; Keun Yoo, Hyang; Won Noh, Tae [CFI-CES, IBS and Department of Physics and Astronomy, Seoul National University, Seoul 151-747 (Korea, Republic of); Kim, Jiyeon; Yu, Jaejun [CSCMR, Department of Physics and Astronomy, Seoul National University, Seoul 151-747 (Korea, Republic of); Bostwick, Aaron; Rotenberg, Eli [Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Don Bu, Sang [Department of Physics, Chonbuk National University, Jeonju 561-756 (Korea, Republic of); Simon Mun, Bongjin [Department of Physics and Photon Science, School of Physics and Chemistry, Ertl Center for Electrochemistry and Catalyst, Gwangju Institute of Science and Technology, Gwangju 500-712 (Korea, Republic of)

    2014-01-06

    In practical applications to bipolar resistance switching (BRS) memory devices with enhanced performance and high-scalability, oxide materials are commonly fabricated to highly nonstoichiometric and nanometer scale films. In this study, we fabricated ultrathin strontium titanate film, which shows two types of BRS behavior. By using micro-beam X-ray photoemission spectroscopy, the changes of core-level spectra depending on the resistance states are spatially resolved. Experimental and calculated results demonstrated that the fundamental switching mechanism in the two types of BRS is originated from the migration of anion and cation vacancies and the formation of insulating vacancy clusters near vicinity of the interface.

  13. Formation of quasi-ordered structures on the surface of strontium titanate in a plasma field

    International Nuclear Information System (INIS)

    The X-ray diffraction and X-ray spectroscopic properties of strontium titanate single crystals and their surface exposed to plasma have been investigated. Both undoped SrTiO3 crystals and crystals containing impurity ions of the iron or lanthanum groups have been analyzed. Data on the plasma-induced formation of ordered crystallites on the sample surface were obtained by electron and atomic force microscopy. The crystallites are from 10-7 to 10-9 m in size and their hypothetical orientation [321] is independent of the sample orientation and irradiation dose.

  14. Barium Titanate Nanoparticles: Highly Cytocompatible Dispersions in Glycol-chitosan and Doxorubicin Complexes for Cancer Therapy

    Science.gov (United States)

    Ciofani, Gianni; Danti, Serena; D'Alessandro, Delfo; Moscato, Stefania; Petrini, Mario; Menciassi, Arianna

    2010-07-01

    In the latest years, innovative nanomaterials have attracted a dramatic and exponentially increasing interest, in particular for their potential applications in the biomedical field. In this paper, we reported our findings on the cytocompatibility of barium titanate nanoparticles (BTNPs), an extremely interesting ceramic material. A rational and systematic study of BTNP cytocompatibility was performed, using a dispersion method based on a non-covalent binding to glycol-chitosan, which demonstrated the optimal cytocompatibility of this nanomaterial even at high concentration (100 μg/ml). Moreover, we showed that the efficiency of doxorubicin, a widely used chemotherapy drug, is highly enhanced following the complexation with BTNPs. Our results suggest that innovative ceramic nanomaterials such as BTNPs can be realistically exploited as alternative cellular nanovectors.

  15. Dielectric property of polyimide/barium titanate composites and its influence factors (Ⅱ)

    Institute of Scientific and Technical Information of China (English)

    Weidong LIU; Baoku ZHU; Shuhui XIE; Zhikang XU

    2008-01-01

    Using poly(amic acid) (PAA) as a precursor followed by thermal imidization, the polyimide/barium titanate composite films were successfully prepared by a direct mixing method and in situ process. The influence of processing factors, such as particle size, distribution mode and polymerization method on dielectric prop-erties was studied. Results revealed that the dielectric constant (ε) of the composite film increased by using bigger fillers or employing in situ polymerization and bimodal distribution. When the composite film contain-ing 50 Vol-% of BaTiO3 with size in 100 nm was pre-pared via in situ process, its dielectric constant reached 45 at 10 kHz.

  16. Poly (vinylidene fluoride-trifluoroethylene/barium titanate nanocomposite for ferroelectric nonvolatile memory devices

    Directory of Open Access Journals (Sweden)

    Uvais Valiyaneerilakkal

    2013-04-01

    Full Text Available The effect of barium titanate (BaTiO3 nanoparticles (particle size <100nm on the ferroelectric properties of poly (vinylidenefluoride-trifluoroethylene P(VDF-TrFE copolymer has been studied. Different concentrations of nanoparticles were added to P(VDF-TrFE using probe sonication, and uniform thin films were made. Polarisation - Electric field (P-E hysteresis analysis shows an increase in remnant polarization (Pr and decrease in coercive voltage (Vc. Piezo-response force microscopy analysis shows the switching capability of the polymer composite. The topography and surface roughness was studied using atomic force microscopy. It has been observed that this nanocomposite can be used for the fabrication of non-volatile ferroelectric memory devices.

  17. Ferroelectric domain pattern in barium titanate single crystals studied by means of digital holographic microscopy

    Science.gov (United States)

    Mokrý, Pavel; Psota, Pavel; Steiger, Kateřina; Václavík, Jan; Doleček, Roman; Vápenka, David; Lédl, Vít

    2016-06-01

    In this article, we report on the observation of a ferroelectric domain pattern in the whole volume of the ferroelectric barium titanate single crystal by means of digital holographic microscopy (DHM). Our particular implementation of DHM is based on the Mach–Zehnder interferometer and the numerical processing of data employs the angular spectrum method. A modification of the DHM technique, which allows a fast and accurate determination of the domain walls, i.e. narrow regions separating the antiparallel domains, is presented. Accuracy and sensitivity of the method are discussed. Using this approach, the determination of important geometric parameters of the ferroelectric domain patterns (such as domain spacing or the volume fraction of the anti-parallel domains) is possible. In addition to the earlier DHM studies of domain patterns in lithium niobate and lithium tantalate, our results indicate that the DHM is a convenient method to study a dynamic evolution of ferroelectric domain patterns in all perovskite single crystals.

  18. Structural and Mössbauer investigation on barium titanate-cobalt ferrite composites

    Science.gov (United States)

    Leonel, Liliam V.; Silva, Juliana B.; Albuquerque, Adriana S.; Ardisson, José D.; Macedo, Waldemar A. A.; Mohallem, Nelcy D. S.

    2012-11-01

    Perovskite and spinels oxides have received renewed attention due to the possibility of combining both structures in di-phase composites to obtain multifunctional materials. In this work, barium titanate (perovskite)-cobalt ferrite (spinel) composite powders with different microstructures were obtained from thermal treatment of amorphous precursors at 500-1100 °C. The precursors were prepared by combining coprecipitation and sol-gel routes. Lyophilization of ferrite prior to mixing was used as a strategy to control interphase reaction. Mössbauer spectroscopy showed that the dispersion of coprecipitated ferrite in a viscous BaTiO3 precursor gel resulted in superparamagnetic behavior and reduction of the local magnetic field of site [B].

  19. Optimized growth and dielectric properties of barium titanate thin films on polycrystalline Ni foils

    Institute of Scientific and Technical Information of China (English)

    Liang Wei-Zheng; Ji Yan-Da; Nan Tian-Xiang; Huang Jiang; Zeng Hui-Zhong; Du Hui; Chen Chong-Lin; Lin Yuan

    2012-01-01

    Barium titanate (BTO) thin films were deposited on polycrystalline Ni foils by using the polymer assisted deposition (PAD) technique.The growth conditions including ambient and annealing temperatures were carefully optimized based on thermal dynamic analysis to control the oxidation processing and interdiffusion.Crystal structures,surface morphologies,and dielectric performance were examined and compared for BTO thin films annealed under different temperatures.Correlations between the fabrication conditions,microstructures,and dielectric properties were discussed.BTO thin films fabricated under the optimized conditions show good crystalline structure and promising dielectric properties with εr ~ 400 and tanδ < 0.025 at 100 kHz.The data demonstrate that BTO films grown on polycrystalline Ni substrates by PAD are promising in device applications.

  20. Study of grain boundary tunneling in barium-titanate ceramic films

    CERN Document Server

    Wong, H; Poon, M C

    1999-01-01

    The temperature and the electric-field dependences of the current-voltage characteristics and the low-frequency noise of barium-titanate ceramic films are studied. An abnormal field dependence is observed in the resistivity of BaTiO sub 3 materials with a small average grain size. In addition, experiments show that the low-frequency noise behaviors are governed by grain-boundary tunneling at room temperature and by trapping-detrapping of grain-boundary states at temperatures above the Curie point. Physical models for the new observations are developed. Results suggest that grain-boundary tunneling of carriers is as important as the double Schottky barrier in the current conduction in BaTiO sub 3 materials with small grain sizes.

  1. Barium Titanate Nanoparticles: Highly Cytocompatible Dispersions in Glycol-chitosan and Doxorubicin Complexes for Cancer Therapy

    Directory of Open Access Journals (Sweden)

    Danti Serena

    2010-01-01

    Full Text Available Abstract In the latest years, innovative nanomaterials have attracted a dramatic and exponentially increasing interest, in particular for their potential applications in the biomedical field. In this paper, we reported our findings on the cytocompatibility of barium titanate nanoparticles (BTNPs, an extremely interesting ceramic material. A rational and systematic study of BTNP cytocompatibility was performed, using a dispersion method based on a non-covalent binding to glycol-chitosan, which demonstrated the optimal cytocompatibility of this nanomaterial even at high concentration (100 μg/ml. Moreover, we showed that the efficiency of doxorubicin, a widely used chemotherapy drug, is highly enhanced following the complexation with BTNPs. Our results suggest that innovative ceramic nanomaterials such as BTNPs can be realistically exploited as alternative cellular nanovectors.

  2. Electrical Properties of Thin-Film Capacitors Fabricated Using High Temperature Sputtered Modified Barium Titanate

    Directory of Open Access Journals (Sweden)

    Robert Mamazza

    2012-04-01

    Full Text Available Simple thin-film capacitor stacks were fabricated from sputter-deposited doped barium titanate dielectric films with sputtered Pt and/or Ni electrodes and characterized electrically. Here, we report small signal, low frequency capacitance and parallel resistance data measured as a function of applied DC bias, polarization versus applied electric field strength and DC load/unload experiments. These capacitors exhibited significant leakage (in the range 8–210 μA/cm2 and dielectric loss. Measured breakdown strength for the sputtered doped barium titanate films was in the range 200 kV/cm −2 MV/cm. For all devices tested, we observed clear evidence for dielectric saturation at applied electric field strengths above 100 kV/cm: saturated polarization was in the range 8–15 μC/cm2. When cycled under DC conditions, the maximum energy density measured for any of the capacitors tested here was ~4.7 × 10−2 W-h/liter based on the volume of the dielectric material only. This corresponds to a specific energy of ~8 × 10−3 W-h/kg, again calculated on a dielectric-only basis. These results are compared to those reported by other authors and a simple theoretical treatment provided that quantifies the maximum energy that can be stored in these and similar devices as a function of dielectric strength and saturation polarization. Finally, a predictive model is developed to provide guidance on how to tailor the relative permittivities of high-k dielectrics in order to optimize their energy storage capacities.

  3. Optical behavior of Pr3+-doped barium titanate-calcium titanate material prepared by sol-gel method

    Science.gov (United States)

    Wang, Xiaoyan; Tang, Yanxue; He, Xiyun; Qiu, Pingsun; He, Qizhuang; Peng, Zifei; Sun, Dazhi

    2009-07-01

    Photoluminescence performances of Pr-doped alkaline-earth titanates (Ba,Ca)TiO3 (with rich barium) prepared by a solgel technique are investigated at room temperature. A relatively strong red luminescence is observed in (Ba0.80Ca0.20)TiO3 material when Pr-BaTiO3 material does not exhibit obvious red luminescence. The phenomenon is discussed with respect to the substitute of Ca and the two-photon luminescence effect. The red luminescence is enhanced by a fast thermal treatment. The wavelength range of luminescence near red and infrared light is broadened by the same process as well. These behaviors are ascribed to the randomization of distribution of Ca and Ba at A site in ABO3 perovskite structure. The experimental results provide not only a possible way to develop new materials with pastel visual impression, but also a potential technique to modify photoluminescence properties that can be controlled by external fields because the microscopic structure of BaTiO3, such as electric domains, can be changed by electric field, temperature, and so on.

  4. Low-Temperature Synthesis and Thermodynamic and Electrical Properties of Barium Titanate Nanorods

    Directory of Open Access Journals (Sweden)

    Florentina Maxim

    2015-01-01

    Full Text Available Studies regarding the morphology dependence of the perovskite-type oxides functional materials properties are of recent interest. With this aim, nanorods (NRs and nanocubes (NCs of barium titanate (BaTiO3 have been successfully synthesized via a hydrothermal route at temperature as low as 408 K, employing barium acetate, titanium isopropoxide, and sodium hydroxide as reagents without any surfactant or template. Scanning electron microscopy (SEM, transmission electron microscopy (TEM, and X-ray powder diffraction (XRD, used for the morphology and structure analyses, showed that the NRs were formed by an oriented attachment of the NCs building-blocks with 20 nm average crystallites size. The thermodynamic properties represented by the relative partial molar free energies, enthalpies, and entropies of the oxygen dissolution in the perovskite phase, as well as the equilibrium partial pressure of oxygen, indicated that NRs powders have lower oxygen vacancies concentration than the NCs. This NRs characteristic, together with higher tetragonallity of the structure, leads to the enhancement of the dielectric properties of BaTiO3 ceramics. The results presented in this work show indubitably the importance of the nanopowders morphology on the material properties.

  5. Size effects of 109° domain walls in rhombohedral barium titanate single crystals—A molecular statics analysis

    Energy Technology Data Exchange (ETDEWEB)

    Endres, Florian, E-mail: florian.endres@ltm.uni-erlangen.de; Steinmann, Paul, E-mail: paul.steinmann@ltm.uni-erlangen.de [Department of Mechanical Engineering, University of Erlangen - Nuremberg, Paul-Gordan Str. 3, 91052 Erlangen (Germany)

    2016-01-14

    Ferroelectric functional materials are of great interest in science and technology due to their electromechanically coupled material properties. Therefore, ferroelectrics, such as barium titanate, are modeled and simulated at the continuum scale as well as at the atomistic scale. Due to recent advancements in related manufacturing technologies the modeling and simulation of smart materials at the nanometer length scale is getting more important not only to predict but also fundamentally understand the complex material behavior of such materials. In this study, we analyze the size effects of 109° nanodomain walls in ferroelectric barium titanate single crystals in the rhombohedral phase using a recently proposed extended molecular statics algorithm. We study the impact of domain thicknesses on the spontaneous polarization, the coercive field, and the lattice constants. Moreover, we discuss how the electromechanical coupling of an applied electric field and the introduced strain in the converse piezoelectric effect is affected by the thickness of nanodomains.

  6. Site-selective spectroscopy of the solid-state defect chemistry in erbium-doped barium titanate.

    Science.gov (United States)

    Bak, John D; Wright, John C

    2005-10-01

    Erbium-doped barium titanate crystals were studied by laser-induced fluorescence spectroscopy. Thirteen spectroscopically distinct erbium ion sites were found. The relative concentrations of the different sites changed as a function of the crystal and its preparation and treatment. One major site was present in all crystals. The site distribution was changed either by growing codoped crystals with donor (La3+) and acceptor (Sc3+) ions or by changing the temperature and partial pressure of the oxygen in the annealing atmosphere. Equilibrium calculations were done to simulate the defect distributions that result from the charge compensation of the erbium ions. Comparison with the observed dependence of the site spectral intensities indicated that the erbium enters the lattice on barium sites. We assigned the dominant site to an erbium ion on a barium site that is locally compensated by a barium vacancy, whereas the other lower-intensity sites corresponded to erbium ions that are locally compensated by an electron and a more complex center of an erbium, a barium vacancy, and a hole. The spectra of one sample showed that its defects were different and were characteristic of a sample that had not equilibrated. The new sites in this sample were assigned to erbium entering the lattice on a titanium site, which was then locally compensated by an oxygen vacancy or a hole. Heating equilibrated the sample and changed the erbium to a barium site. PMID:16853368

  7. Nanocomposite thin films for miniaturized multi-ayer ceramic capacitors prepared from barium titanate nanoparticle based hybrid solutions

    OpenAIRE

    Schneller, T.; Halder, S; Waser, R.; Pithan, C.; Dornseiffer, J.; Shiratori, Y; Houben, L.; Vyshnavi, N.; Majumber, S.B.

    2011-01-01

    In the present work a flexible approach for the wet chemical processing of nanocomposite functional thin films is demonstrated. Barium titanate (BTO) based nanocomposite thin films for future miniaturized multi-layer ceramic capacitors are chosen as model systems to introduce the concept of "hybrid solutions" which consist of stabile mixtures of reverse micelle derived BTO nanoparticle dispersions and conventional molecular precursor solutions of either the same (BTO:BTO) or a specifically di...

  8. Localized devitrifiation in Er{sup 3+}-doped strontium barium niobate glass by laser irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Haro-Gonzalez, P.; Martin, I.R.; Lahoz, F.; Gonzalez-Perez, S. [Universidad de La Laguna, Departamento de Fisica Fundamental, Electronica y Sistemas, La Laguna, Tenerife (Spain); Capuj, N.E. [Universidad de La Laguna, Departamento de Fisica Basica, La Laguna, Tenerife (Spain); Jaque, D. [Universidad Autonoma de Madrid, Departamento de Fisica de Materiales, Madrid (Spain)

    2008-12-15

    Localized devitrifiation in strontium barium niobate glass doped with Er{sup 3+} under laser irradiation has been carried out. The samples of this study have been fabricated by the melt quenching method and doped with 5% mol of Er{sup 3+}. A 1.5-W cw Ar laser was focused on the sample to obtain devitrifiation of the glass. Evidence of the changes induced by the Ar laser has been observed through the analysis of the photoluminescence of the Er{sup 3+} ions. The transitions corresponding to {sup 2}H{sub 11/2}{yields}{sup 4}I{sub 15/2}, {sup 4}S{sub 3/2}{yields}{sup 4}I{sub 15/2} and {sup 4}F{sub 9/2}{yields}{sup 4}I{sub 15/2} have been studied to analyze structure changes. Microluminescence measurements have been carried out to spatially select positions inside and outside the irradiated area. We have observed changes in the emission bands corresponding to these transitions. The emission bands from Er{sup 3+} ions in the irradiated zone show a resolved structure while they are broadened outside that area. These changes in the optical properties of the Er{sup 3+} ions indicate that the Ar-laser irradiation has produced a change in the local structure of the material. These results show that a localized devitrifiation has been produced after the laser action and the transition from glass to glass ceramic has been completed. (orig.)

  9. SELECTIVE REMOVAL OF STRONTIUM AND CESIUM FROM SIMULATED WASTE SOLUTION WITH TITANATE ION-EXCHANGERS IN A FILTER CARTRIDGE CONFIGURATIONS-12092

    Energy Technology Data Exchange (ETDEWEB)

    Oji, L.; Martin, K.; Hobbs, D.

    2012-01-03

    Experimental results for the selective removal of strontium and cesium from simulated waste solutions with monosodium titanate and crystalline silicotitanate laden filter cartridges are presented. In these proof-of-principle tests, effective uptake of both strontium-85 and cesium-137 were observed using ion-exchangers in this filter cartridge configuration. At low salt simulant conditions, the instantaneous decontamination factor for strontium-85 with monosodium titanate impregnated filter membrane cartridges measured 26, representing 96% strontium-85 removal efficiency. On the other hand, the strontium-85 instantaneous decontamination factor with co-sintered active monosodium titanate cartridges measured 40 or 98% Sr-85 removal efficiency. Strontium-85 removal with the monosodium titanate impregnated membrane cartridges and crystalline silicotitanate impregnated membrane cartridges, placed in series arrangement, produced an instantaneous decontamination factor of 41 compared to an instantaneous decontamination factor of 368 for strontium-85 with co-sintered active monosodium titanate cartridges and co-sintered active crystalline silicotitanate cartridges placed in series. Overall, polyethylene co-sintered active titanates cartridges performed as well as titanate impregnated filter membrane cartridges in the uptake of strontium. At low ionic strength conditions, there was a significant uptake of cesium-137 with co-sintered crystalline silicotitanate cartridges. Tests results with crystalline silicotitanate impregnated membrane cartridges for cesium-137 decontamination are currently being re-evaluated. Based on these preliminary findings we conclude that incorporating monosodium titanate and crystalline silicotitanate sorbents into membranes represent a promising method for the semicontinuous removal of radioisotopes of strontium and cesium from nuclear waste solutions.

  10. Extended phase homogeneity and electrical properties of barium calcium titanate prepared by the wet chemical methods

    International Nuclear Information System (INIS)

    Ca-substituted BaTiO3 with extended homogeneity range upto ∼50 mol% CaTiO3 have been prepared by three different chemical routes namely carbonate-oxalate (COBCT), gel-carbonate (GCBCT), and gel-to-crystallite conversion (GHBCT) followed by heat treatment above 1150 deg. C. X-ray powder diffraction (XRD) data show continuous decrease in the tetragonal unit cell parameters as well as c0/a0 ratio with CaTiO3 content, which are in accordance with the substitution of smaller sized Ca2+ ions at the barium sites. The microstructure as well as the dielectric properties are greatly influenced by the cationic ratio, α=(Ba+Ca)/Ti. The grain size decreases with CaTiO3 content for the stoichiometric samples (α=1), whereas ultrafine microstructure is observed in the case of off-stoichiometric samples (α>1) for the whole compositional range of CaTiO3 concentrations. Sharper εr-T characteristics at lower calcium content and broader εr-T with decreased εmax, in the higher calcium range are observed in the case of α=1. Whereas nanometer grained ceramics exhibiting diffuse εr-T characteristics are obtained in the case of α>1. The positive temperature coefficient of resistivity (PTCR) is realized for barium calcium titanate ceramics having 0.3 at.% Sb as the donor dopant for higher CaTiO3 (typically 30 mol%) containing samples (α=1), indicating that Ca2+ ions do not behave as acceptors if they were to substitute at the Ti4+ sites. Whereas the off-stoichiometric (α>1) ceramics retained high resistivity, indicative of the Ti-site occupancy for Ca2+ in fine grain ceramics

  11. Preparation of meta-stable phases of barium titanate by Sol-hydrothermal method

    Energy Technology Data Exchange (ETDEWEB)

    Selvaraj, Mahalakshmi [Department of Physics, R.D. Govt. Arts College, Tamilnadu, Sivaganga - 630561 (India); Department of Material Science, School of Chemistry, Madurai Kamaraj University, Tamilnadu Madurai-625 021 (India); Venkatachalapathy, V. [Department of Physics/Centre for Materials Science and Nanotechnology, University of Oslo, P.O Box 1048 Blindern, NO-0316 Oslo (Norway); Mayandi, J., E-mail: pearce@mtu.edu, E-mail: jeyanthinath@yahoo.co.in [Department of Material Science, School of Chemistry, Madurai Kamaraj University, Tamilnadu Madurai-625 021 (India); Department of Materials Science & Engineering, Michigan Technological University (United States); Karazhanov, S. [Department of Solar Energy, Institute for Energy Technology, P.O. Box 40, NO-2027 Kjeller (Norway); Pearce, J. M., E-mail: pearce@mtu.edu, E-mail: jeyanthinath@yahoo.co.in [Department of Materials Science & Engineering, Michigan Technological University (United States); Department of Electrical & Computer Engineering, Michigan Technological University (United States)

    2015-11-15

    Two low-cost chemical methods of sol–gel and the hydrothermal process have been strategically combined to fabricate barium titanate (BaTiO{sub 3}) nanopowders. This method was tested for various synthesis temperatures (100 °C to 250 °C) employing barium dichloride (BaCl{sub 2}) and titanium tetrachloride (TiCl{sub 4}) as precursors and sodium hydroxide (NaOH) as mineralizer for synthesis of BaTiO{sub 3} nanopowders. The as-prepared BaTiO{sub 3} powders were investigated for structural characteristics using x-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The overall analysis indicates that the hydrothermal conditions create a gentle environment to promote the formation of crystalline phase directly from amorphous phase at the very low processing temperatures investigated. XRD analysis showed phase transitions from cubic - tetragonal - orthorhombic - rhombohedral with increasing synthesis temperature and calculated grain sizes were 34 – 38 nm (using the Scherrer formula). SEM and TEM analysis verified that the BaTiO{sub 3} nanopowders synthesized by this method were spherical in shape and about 114 - 170 nm in size. The particle distribution in both SEM and TEM shows that as the reaction temperature increases from 100 °C to 250 °C, the particles agglomerate. Selective area electron diffraction (SAED) shows that the particles are crystalline in nature. The study shows that choosing suitable precursor and optimizing pressure and temperature; different meta-stable (ferroelectric) phases of undoped BaTiO{sub 3} nanopowders can be stabilized by the sol-hydrothermal method.

  12. Preparation of meta-stable phases of barium titanate by Sol-hydrothermal method

    Directory of Open Access Journals (Sweden)

    Mahalakshmi Selvaraj

    2015-11-01

    Full Text Available Two low-cost chemical methods of sol–gel and the hydrothermal process have been strategically combined to fabricate barium titanate (BaTiO3 nanopowders. This method was tested for various synthesis temperatures (100 °C to 250 °C employing barium dichloride (BaCl2 and titanium tetrachloride (TiCl4 as precursors and sodium hydroxide (NaOH as mineralizer for synthesis of BaTiO3 nanopowders. The as-prepared BaTiO3 powders were investigated for structural characteristics using x-ray diffraction (XRD, scanning electron microscopy (SEM and transmission electron microscopy (TEM. The overall analysis indicates that the hydrothermal conditions create a gentle environment to promote the formation of crystalline phase directly from amorphous phase at the very low processing temperatures investigated. XRD analysis showed phase transitions from cubic - tetragonal - orthorhombic - rhombohedral with increasing synthesis temperature and calculated grain sizes were 34 – 38 nm (using the Scherrer formula. SEM and TEM analysis verified that the BaTiO3 nanopowders synthesized by this method were spherical in shape and about 114 - 170 nm in size. The particle distribution in both SEM and TEM shows that as the reaction temperature increases from 100 °C to 250 °C, the particles agglomerate. Selective area electron diffraction (SAED shows that the particles are crystalline in nature. The study shows that choosing suitable precursor and optimizing pressure and temperature; different meta-stable (ferroelectric phases of undoped BaTiO3 nanopowders can be stabilized by the sol-hydrothermal method.

  13. Barium titanate nanoparticles and hypergravity stimulation improve differentiation of mesenchymal stem cells into osteoblasts

    Directory of Open Access Journals (Sweden)

    Rocca A

    2015-01-01

    Full Text Available Antonella Rocca,1,2 Attilio Marino,1,2 Veronica Rocca,3 Stefania Moscato,4 Giuseppe de Vito,5,6 Vincenzo Piazza,5 Barbara Mazzolai,1 Virgilio Mattoli,1 Thu Jennifer Ngo-Anh,7 Gianni Ciofani1 1Istituto Italiano di Tecnologia, Center for Micro-BioRobotics @SSSA, Pontedera, Italy, 2Scuola Superiore Sant’Anna, The BioRobotics Institute, Pontedera, Italy, 3Università di Pisa, Dipartimento di Ingegneria dell’Informazione, Pisa, Italy, 4Università di Pisa, Dipartimento di Medicina Clinica e Sperimentale, Pisa, Italy, 5Istituto Italiano di Tecnologia, Center for Nanotechnology Innovation @NEST, Pisa, Italy, 6Scuola Normale Superiore, NEST, Pisa, Italy, 7Directorate of Human Spaceflight and Operations, European Space Agency, Noordwijk, the Netherlands Background: Enhancement of the osteogenic potential of mesenchymal stem cells (MSCs is highly desirable in the field of bone regeneration. This paper proposes a new approach for the improvement of osteogenesis combining hypergravity with osteoinductive nanoparticles (NPs.Materials and methods: In this study, we aimed to investigate the combined effects of hypergravity and barium titanate NPs (BTNPs on the osteogenic differentiation of rat MSCs, and the hypergravity effects on NP internalization. To obtain the hypergravity condition, we used a large-diameter centrifuge in the presence of a BTNP-doped culture medium. We analyzed cell morphology and NP internalization with immunofluorescent staining and coherent anti-Stokes Raman scattering, respectively. Moreover, cell differentiation was evaluated both at the gene level with quantitative real-time reverse-transcription polymerase chain reaction and at the protein level with Western blotting.Results: Following a 20 g treatment, we found alterations in cytoskeleton conformation, cellular shape and morphology, as well as a significant increment of expression of osteoblastic markers both at the gene and protein levels, jointly pointing to a substantial

  14. Synthesis, characterization and thermochemistry of Cs-, Rb- and Sr-substituted barium aluminium titanate hollandites

    International Nuclear Information System (INIS)

    Highlights: • Cs-, Rb- and Sr-substituted barium titanate hollandites were synthesized using sol–gel methods. • Chemical compositions were determined by electron microprobe analyses. • Crystal structures were analyzed using powder synchrotron X-ray diffraction coupled with Rietveld refinements. • Enthalpies of formation were measured using high temperature oxide melt solution calorimetry. • Stability relations with respect to BaTiO3 and SrTiO3 perovskites and other oxides were determined. - Abstract: Titanate hollandites are of considerable interest for immobilization of radioactive Cs, its daughter product Ba and related radionuclides Rb and Sr. In this study, we synthesized three hollandites, Ba1.18Cs0.21Al2.44Ti5.53O16, Ba1.17Rb0.19Al2.46Ti5.53O16 and Ba1.14Sr0.10Al2.38Ti5.59O16, using sol–gel methods. Rietveld analysis of synchrotron XRD data shows that they adopt the tetragonal structure (space group I4/m), and their cell parameters increase with increasing cation size (Sr2+ → Rb+ → Cs+). Standard enthalpies of formation of these hollandites were determined from drop solution calorimetric measurements with lead borate as the solvent at 973 K. Their formation enthalpies are similar, consistent with the occurrence of extensive cation substitutions in hollandites. Further energetic analysis with respect to BaTiO3 and SrTiO3 perovskites and other oxides reveals decreased thermodynamic stability from Cs- to Rb- to Sr-hollandite. This trend is consistent with the phase assemblage observed in Synroc, where Cs+, Rb+ and Ba2+ enter into hollandite, whereas Sr2+ occurs in perovskite

  15. Doping site dependent thermoelectric properties of epitaxial strontium titanate thin films

    KAUST Repository

    Abutaha, Anas I.

    2014-01-01

    We demonstrate that the thermoelectric properties of epitaxial strontium titanate (STO) thin films can be improved by additional B-site doping of A-site doped ABO3 type perovskite STO. The additional B-site doping of A-site doped STO results in increased electrical conductivity, but at the expense of Seebeck coefficient. However, doping on both sites of the STO lattice significantly reduces the lattice thermal conductivity of STO by adding more densely and strategically distributed phononic scattering centers that attack wider phonon spectra. The additional B-site doping limits the trade-off relationship between the electrical conductivity and total thermal conductivity of A-site doped STO, leading to an improvement in the room-temperature thermoelectric figure of merit, ZT. The 5% Pr3+ and 20% Nb5+ double-doped STO film exhibits the best ZT of 0.016 at room temperature. This journal is

  16. STRONTIUM AND ACTINIDE SEPARATIONS FROM HIGH LEVEL NUCLEAR WASTE SOLUTIONS USING MONOSODIUM TITANATE 1. SIMULANT TESTING

    Energy Technology Data Exchange (ETDEWEB)

    HOBBS, D. T.; BARNES, M. J.; PULMANO, R. L.; MARSHALL, K. M.; EDWARDS, T. B.; BRONIKOWSKI, M. G.; FINK, S. D.

    2005-04-14

    High-level nuclear waste produced from fuel reprocessing operations at the Savannah River Site (SRS) requires pretreatment to remove {sup 137}Cs, {sup 90}Sr and alpha-emitting radionuclides (i.e., actinides) prior to disposal. Separation processes planned at SRS include caustic side solvent extraction, for {sup 137}Cs removal, and ion exchange/sorption of {sup 90}Sr and alpha-emitting radionuclides with an inorganic material, monosodium titanate (MST). The predominant alpha-emitting radionuclides in the highly alkaline waste solutions include plutonium isotopes {sup 238}Pu, {sup 239}Pu and {sup 240}Pu. This paper provides a summary of data acquired to measure the performance of MST to remove strontium and actinides from simulated waste solutions. These tests evaluated the influence of ionic strength, temperature, solution composition and the oxidation state of plutonium.

  17. Combining x-ray diffraction contrast tomography and mesoscale grain growth simulations in strontium titanate: An integrated approach for the investigation of microstructure evolution

    DEFF Research Database (Denmark)

    Syha, Melanie; Baürer, Michael; Rheinheimer, Wolfgang;

    2013-01-01

    Motivated by the recently reported a growth anomaly in strontium titatate bulk samples1, the microstructure of bulk strontium titanate has been investigated by an integrated approach comprising conventional metallography, three dimensional X-ray diffraction contrast tomography (DCT)2, and the obs......Motivated by the recently reported a growth anomaly in strontium titatate bulk samples1, the microstructure of bulk strontium titanate has been investigated by an integrated approach comprising conventional metallography, three dimensional X-ray diffraction contrast tomography (DCT)2......, and the observation of pore shapes in combination with mesoscale grain growth simulations. The microstructural evolution in strontium titanate has been characterized alternating ex-situ annealing and high energy X-ray DCT measurements, resulting in three dimensional microstructure reconstructions which...

  18. Study of the dielectric properties of barium titanate-polymer composites

    Energy Technology Data Exchange (ETDEWEB)

    Pant, H.C. [R and D Laboratory, Defence Laboratory, Camouflage Division, Defence Laboratory Ratanada Palace, Jodhpur 342011, Rajasthan (India); Patra, M.K. [R and D Laboratory, Defence Laboratory, Camouflage Division, Defence Laboratory Ratanada Palace, Jodhpur 342011, Rajasthan (India); Verma, Aditya [R and D Laboratory, Defence Laboratory, Camouflage Division, Defence Laboratory Ratanada Palace, Jodhpur 342011, Rajasthan (India); Vadera, S.R. [R and D Laboratory, Defence Laboratory, Camouflage Division, Defence Laboratory Ratanada Palace, Jodhpur 342011, Rajasthan (India); Kumar, N. [R and D Laboratory, Defence Laboratory, Camouflage Division, Defence Laboratory Ratanada Palace, Jodhpur 342011, Rajasthan (India)]. E-mail: nkjainjd@yahoo.com

    2006-07-15

    A comparative study of complex dielectric properties has been carried out at the X-band of microwave frequencies of composites of barium titanate (BaTiO{sub 3}) with two different polymer matrices: insulating polyaniline (PANI) powder (emeraldine base) and maleic resin. From these studies, it is observed that the composites of BaTiO{sub 3} with maleic resin show normal composite behavior and the dielectric constant follows the asymmetric Bruggeman model. In contrast, the composites of BaTiO{sub 3} with PANI show an unusual behavior wherein even at a low concentration of PANI (5 wt.%) there is a drastic reduction in the dielectric constant of BaTiO{sub 3}. This behavior of the dielectric constant is explained on the basis of coating of BaTiO{sub 3} particles by PANI which in turn is attributed to the highly surface adsorbing character. The materials have also been characterized using Fourier transform infrared spectroscopy, powder X-ray diffraction, scanning electron microscopy and optical microscopy studies.

  19. Microstructural studies of nanocrystalline barium zirconium titanate (BZT) for piezoelectric applications

    Energy Technology Data Exchange (ETDEWEB)

    Jamil, Nor Huwaida Janil, E-mail: huwaidajamil@gmail.com; Izzuddin, Izura; Zainuddin, Zalita; Jumali, Mohammad Hafizuddin Haji, E-mail: hafizhj@ukm.edu.my [School of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan (Malaysia)

    2015-09-25

    Lead-free piezoelectric ceramics based on barium titanate (BaTiO{sub 3}) with substitution of Zr{sup 4+} were prepared using sol-gel method. The Ba(Zr{sub x}Ti{sub 1-x})O{sub 3}, (BZT) powders with x = 0.0, 0.1, 0.2 and 0.3 were pressed into pellets and sintered at 1250 °C for 2 h. Focusing on the effect of Zr{sup 4+} substitutions into BaTiO{sub 3} perovskite system, the phase transition and microstructural properties of BZT ceramics were studied using XRD, SEM and EDX spectroscopy. All X-ray diffractograms were fitted using Pawley refinement model. The XRD diffractograms revealed the progressive phase transition from tetragonal to cubic phase as Zr content increased. The crystallite exhibited decreasing trend and was supported by shrinkage in grain size. The EDX analysis confirmed the successful substitution of Ti{sup 4+} with Zr{sup 4+} in BaTiO3 crystal.

  20. Dielectric properties of micropatterns consisting of barium titanate single-crystalline nanocubes

    Science.gov (United States)

    Mimura, Ken-ichi; Kato, Kazumi

    2015-10-01

    Micropatterns of barium titanate nanocube (BT NC) assemblies were fabricated by dip-coating self-assembly using a micropatterned mold made of Si or polyimide (PI). The microstructure of the BT NC assembly in the micropatterned mold made of PI showed the closest packing structure. This result indicated that the polymer wall in the micropatterns is swollen by the organic solvent used in the dip-coating self-assembly process. As a result, this swelling might work effectively for the self-assembly of the NCs with high ordering assisted by capillary force. Moreover, it is clarified that the line-and-space-molds with a taper angle and a large width were more useful for the self-assembly of BT NCs in microtrenches selectively. The micropatterned mold made of PI could be removed by immersing in N-methyl-2-pyrrolidone at 65 °C. The ordered structure was not destroyed during the removal process. Micropatterned BT NC capacitor structures were obtained by this method after sintering at 850 °C. The interfaces of BT NCs were conjugated face-to-face, as shown by the obtained high-resolution transmission electron microscopy (HR-TEM) cross-sectional profiles. This process has a great potential for fabricating patterned assemblies directly on substrates. The dielectric properties of BT NC micropatterned assemblies in micropatterned molds made of Si were also characterized and compared with those of BT NC assemblies on Pt/Si substrates without micropatterning.

  1. Studies on electrophoretically deposited nanostructured barium titanate systems and carrier transport phenomena

    Science.gov (United States)

    Borah, Manjit; Mohanta, Dambarudhar

    2016-06-01

    We report on the development of nanostructured barium titanate (BaTiO3, BT) films on ~200-μm-thick Ag substrates by employing a cathodic electrophoretic deposition (EPD) technique, where solid-state-derived BT nanoparticles are used as the starting material. Structural, morphological and compositional analyses of the as-synthesized BT nanoparticles and films were performed by X-ray diffraction, electron microscopy and energy-dispersive spectroscopy studies. The synthesized nano-BT system has an average crystallite size of ~8.1 nm and a tetragonality ( c/ a) value ~1.003. To reveal current transport mechanism, the BT films possessing microporous structures and surrounded by homogeneously grown islands were assessed in a metal-insulator-metal (MIM) conformation. The forward current conduction was observed to be purely thermionic up to respective voltages of ~1.4 and 2.2 V as for the fresh and 3-day aged samples. On the other hand, direct tunneling (DT)-mediated Ohmic feature was witnessed at a comparatively higher voltage, beyond which Fowler-Nordheim tunneling (FN) dominates in the respective MIM junctions. The magnitude of current accompanied by FN process was observed to be stronger in reverse biasing than that of forward biasing case. The use of microporous BT films can offer new insights as regards regulated tunneling events meant for miniaturized nanoelectronic elements/components.

  2. Dielectric and Ferroelectric Behavior of Bismuth-Doped Barium Titanate Ceramic Prepared by Microwave Sintering

    Science.gov (United States)

    Mahapatra, A.; Parida, S.; Sarangi, S.; Badapanda, T.

    2015-08-01

    Bismuth-doped barium titanate ceramics with the general formula Ba1- x Bi2 x/3TiO3 ( x = 0.0, 0.01, 0.025, 0.05) have been prepared by the solid state reaction technique. The phase formation and structural property of all compositions have been studied by x-ray diffraction (XRD) pattern and Rietveld refinement. XRD pattern reports the single phase tetragonal crystal system with space group of P4mm. All compositions have been sintered at 1100°C in a microwave furnace for 30 min. The variation of dielectric constant with respect to temperature and frequency was studied and it was found that the dielectric constant decreases whereas transition temperature increased with the increase in Bi content. The diffusivity parameter was calculated by the modified Curie-Weiss law and the diffusivity increased with the increase in Bi content. The ferroelectric property was studied by the P-E hysteresis loop and it was observed that the saturation polarization decreased, but the coercive field increased with Bi content. The optical band gap was calculated from UV-Visible spectroscopy and found to decrease with Bi content.

  3. A Search for the Electron EDM using Europium-Barium Titanates

    Science.gov (United States)

    Eckel, Stephen P.

    The discovery of a permanent electric dipole moment (EDM) of a fundamental particle would prove a great discovery in modern physics; such an EDM would violate two or three of the core symmetries of the fundamental forces of nature. Many models that go beyond the standard model of particle physics produce EDMs with magnitudes approaching the level detectable by the next generation of experiments. One possibility for such an experiment involves the use of a solid sample at low temperatures. In a paramagnetic material, the unpaired electrons, if they possess an EDM, can interact with the polarization of the sample and produce a magnetization that can be detected. This dissertation discusses an incarnation of such an experiment based on mixed europium-barium titanates. Such an experiment offers several advantages over other solid-state and atomic EDM searches including larger electron EDM induced interactions and the ability to measure without an applied electric field. This experiment has produced the world's best limit on the electron EDM to date from a solid sample, at |de| < 6.05 × 10-25 ecm (90% confidence limit). While this limit represents an improvement in the realm of solid-state experiments, it is not yet competitive with similar molecular and atomic experiments. However, there are many possibilities that could produce a superior solid-state experiment, and these will be discussed.

  4. Synthesis of Silver-Strontium Titanate Hybrid Nanoparticles by Sol-Gel-Hydrothermal Method

    Directory of Open Access Journals (Sweden)

    Shintaro Ueno

    2015-03-01

    Full Text Available Silver (Ag nanoparticle-loaded strontium titanate (SrTiO3 nanoparticles were attempted to be synthesized by a sol-gel-hydrothermal method. We prepared the titanium oxide precursor gels incorporated with Ag+ and Sr2+ ions with various molar ratios, and they were successfully converted into the Ag-SrTiO3 hybrid nanoparticles by the hydrothermal treatment at 230 °C in strontium hydroxide aqueous solutions. The morphology of the SrTiO3 nanoparticles is dendritic in the presence and absence of Ag+ ions. The precursor gels, which act as the high reactive precursor, give rise to high nucleation and growth rates under the hydrothermal conditions, and the resultant diffusion-limited aggregation phenomena facilitate the dendritic growth of SrTiO3. From the field-emission transmission electron microscope observation of these Ag-SrTiO3 hybrid nanoparticles, the Ag nanoparticles with a size of a few tens of nanometers are distributed without severe agglomeration, owing to the competitive formation reactions of Ag and SrTiO3.

  5. REVIEW OF EXPERIMENTAL STUDIES INVESTIGATING THE RATE OF STRONTIUM AND ACTINIDE ADSORPTION BY MONOSODIUM TITANATE

    Energy Technology Data Exchange (ETDEWEB)

    Hobbs, D.

    2010-10-01

    A number of laboratory studies have been conducted to determine the influence of mixing and mixing intensity, solution ionic strength, initial sorbate concentrations, temperature, and monosodium titanate (MST) concentration on the rates of sorbate removal by MST in high-level nuclear waste solutions. Of these parameters, initial sorbate concentrations, ionic strength, and MST concentration have the greater impact on sorbate removal rates. The lack of a significant influence of mixing and mixing intensity on sorbate removal rates indicates that bulk solution transport is not the rate controlling step in the removal of strontium and actinides over the range of conditions and laboratory-scales investigated. However, bulk solution transport may be a significant parameter upon use of MST in a 1.3 million-gallon waste tank such as that planned for the Small Column Ion Exchange (SCIX) program. Thus, Savannah River National Laboratory (SRNL) recommends completing the experiments in progress to determine if mixing intensity influences sorption rates under conditions appropriate for this program. Adsorption models have been developed from these experimental studies that allow prediction of strontium (Sr), plutonium (Pu), neptunium (Np) and uranium (U) concentrations as a function of contact time with MST. Fairly good agreement has been observed between the predicted and measured sorbate concentrations in the laboratory-scale experiments.

  6. On the sol-gel synthesis of strontium-titanate thin films and the prospects of their use in electronics

    Energy Technology Data Exchange (ETDEWEB)

    Sohrabi Anaraki, H.; Gaponenko, N. V., E-mail: nik@nano.bsuir.edu.by; Rudenko, M. V.; Guk, A. F.; Zavadskij, S. M.; Golosov, D. A.; Kolosnitsyn, B. S. [Belarusian State University of Informatics and Radioelectronics (Belarus); Kolos, V. V.; Pyatlitskij, A. N.; Turtsevich, A. S. [Integral Enterprise (Belarus)

    2014-12-15

    Strontium-titanate films obtained by the sol-gel technique are deposited onto silicon and silicon/oxide titanium/platinum substrates. The strontium-titanate phase is detected by the method of X-ray diffraction analysis after heat treatment at temperatures of 750 and 800°C. The thickness of the films obtained by the spin-on method increases from 50 to 250 nm as the number of deposited layers is increased and is accompanied with an increase in the grain size in the films. Prospects of the development of the sol-gel technique for the formation of film components of electronic devices based on SrTiO{sub 3} xerogels are discussed.

  7. Synthesis, characterization and thermochemistry of Cs-, Rb- and Sr-substituted barium aluminium titanate hollandites

    Energy Technology Data Exchange (ETDEWEB)

    Xu, H., E-mail: hxu@lanl.gov [Earth and Environmental Sciences Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Wu, L. [Peter A. Rock Thermochemistry Laboratory and NEAT ORU, University of California at Davis, Davis, CA 95616 (United States); Zhu, J. [Los Alamos Neutron Science Center, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Navrotsky, A. [Peter A. Rock Thermochemistry Laboratory and NEAT ORU, University of California at Davis, Davis, CA 95616 (United States)

    2015-04-15

    Highlights: • Cs-, Rb- and Sr-substituted barium titanate hollandites were synthesized using sol–gel methods. • Chemical compositions were determined by electron microprobe analyses. • Crystal structures were analyzed using powder synchrotron X-ray diffraction coupled with Rietveld refinements. • Enthalpies of formation were measured using high temperature oxide melt solution calorimetry. • Stability relations with respect to BaTiO{sub 3} and SrTiO{sub 3} perovskites and other oxides were determined. - Abstract: Titanate hollandites are of considerable interest for immobilization of radioactive Cs, its daughter product Ba and related radionuclides Rb and Sr. In this study, we synthesized three hollandites, Ba{sub 1.18}Cs{sub 0.21}Al{sub 2.44}Ti{sub 5.53}O{sub 16}, Ba{sub 1.17}Rb{sub 0.19}Al{sub 2.46}Ti{sub 5.53}O{sub 16} and Ba{sub 1.14}Sr{sub 0.10}Al{sub 2.38}Ti{sub 5.59}O{sub 16}, using sol–gel methods. Rietveld analysis of synchrotron XRD data shows that they adopt the tetragonal structure (space group I4/m), and their cell parameters increase with increasing cation size (Sr{sup 2+} → Rb{sup +} → Cs{sup +}). Standard enthalpies of formation of these hollandites were determined from drop solution calorimetric measurements with lead borate as the solvent at 973 K. Their formation enthalpies are similar, consistent with the occurrence of extensive cation substitutions in hollandites. Further energetic analysis with respect to BaTiO{sub 3} and SrTiO{sub 3} perovskites and other oxides reveals decreased thermodynamic stability from Cs- to Rb- to Sr-hollandite. This trend is consistent with the phase assemblage observed in Synroc, where Cs{sup +}, Rb{sup +} and Ba{sup 2+} enter into hollandite, whereas Sr{sup 2+} occurs in perovskite.

  8. Elastic effects of vacancies in strontium titanate: Short- and long-range strain fields, elastic dipole tensors, and chemical strain

    OpenAIRE

    Freedman, Daniel A.; Roundy, D.; Arias, T. A.

    2008-01-01

    We present a study of the local strain effects associated with vacancy defects in strontium titanate and report the first calculations of elastic dipole tensors and chemical strains for point defects in perovskites. The combination of local and long-range results will enable determination of x-ray scattering signatures that can be compared with experiments. We find that the oxygen vacancy possesses a special property -- a highly anisotropic elastic dipole tensor which almost vanishes upon ave...

  9. First-Principles Study of Lattice Dynamics, Structural Phase Transition, and Thermodynamic Properties of Barium Titanate

    Science.gov (United States)

    Zhang, Huai-Yong; Zeng, Zhao-Yi; Zhao, Ying-Qin; Lu, Qing; Cheng, Yan

    2016-08-01

    Lattice dynamics, structural phase transition, and the thermodynamic properties of barium titanate (BaTiO3) are investigated by using first-principles calculations within the density functional theory (DFT). It is found that the GGA-WC exchange-correlation functional can produce better results. The imaginary frequencies that indicate structural instability are observed for the cubic, tetragonal, and orthorhombic phases of BaTiO3 and no imaginary frequencies emerge in the rhombohedral phase. By examining the partial phonon density of states (PDOSs), we find that the main contribution to the imaginary frequencies is the distortions of the perovskite cage (Ti-O). On the basis of the site-symmetry consideration and group theory, we give the comparative phonon symmetry analysis in four phases, which is useful to analyze the role of different atomic displacements in the vibrational modes of different symmetry. The calculated optical phonon frequencies at Γ point for the four phases are in good agreement with other theoretical and experimental data. The pressure-induced phase transition of BaTiO3 among four phases and the thermodynamic properties of BaTiO3 in rhombohedral phase have been investigated within the quasi-harmonic approximation (QHA). The sequence of the pressure-induced phase transition is rhombohedral→orthorhombic→tetragonal→cubic, and the corresponding transition pressure is 5.17, 5.92, 6.65 GPa, respectively. At zero pressure, the thermal expansion coefficient αV, heat capacity CV, Grüneisen parameter γ, and bulk modulus B of the rhombohedral phase BaTiO3 are estimated from 0 K to 200 K.

  10. Charge Carrier Relaxation Study in Glass-Added Barium Titanate Ceramics Using Thermally Stimulated Depolarization Current

    Science.gov (United States)

    Zhang, Qian; Zhang, Yong; Liu, Xiaolin; Song, Xiaozhen; Zhu, Jia; Baturin, Ivan

    2016-08-01

    The depolarization process of glass-added barium titanate (BaTiO3) ceramics with two different glass concentrations was investigated using a thermally stimulated depolarization current (TSDC) technique. The TSDC spectra of the glass-added BaTiO3 ceramics show three peaks. The first sharp peak near the Curie temperature is due to pyroelectric current associated with ferroelectric-paraelectric phase transition. The middle temperature peak at about 200°C showed no dependence on the depolarization current peak position in the polarization field, and the activation energies of this peak were between 0.43 eV and 0.55 eV, which are attributed to the behavior of defect dipoles related to oxygen vacancies within the BaTiO3 grains. Moreover, the high temperature peak at around 300°C indicated that the depolarization current peak position depends on the polarization temperature and decreases with increasing polarization field. The activation energy of this high temperature peak was between 0.78 eV and 0.98 eV, which is similar to the activation energy for the motion of oxygen vacancies in perovskite oxides. The high temperature peak could be attributed to the migration of oxygen vacancies across grain boundaries. In this work we developed a model in which oxygen vacancies that originated from the defect within grains migrated from the anode to the cathode and some were trapped at the grain boundaries. It is presented here and successfully interprets the appearance and behavior of these peaks.

  11. Magnetoelectric coupling of multiferroic chromium doped barium titanate thin film probed by magneto-impedance spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Shah, Jyoti, E-mail: shah.jyoti1@gmail.com; Kotnala, Ravinder K., E-mail: rkkotnala@nplindia.org, E-mail: rkkotnala@gmail.com [Multiferroic and Magnetics Laboratory, CSIR-National Physical Laboratory, Dr. K.S. Krishnan Road, New Delhi 110012 (India)

    2014-04-07

    Thin film of BaTiO{sub 3} doped with 0.1 at. % Cr (Cr:BTO) has been prepared by pulsed laser deposition technique. Film was deposited on Pt/SrTiO{sub 3} substrate at 500 °C in 50 mTorr Oxygen gas pressure using KrF (298 nm) laser. Polycrystalline growth of single phase Cr:BTO thin film has been confirmed by grazing angle X-ray diffraction. Cr:BTO film exhibited remnant polarization 6.4 μC/cm{sup 2} and 0.79 MV/cm coercivity. Magnetization measurement of Cr:BTO film showed magnetic moment 12 emu/cc. Formation of weakly magnetic domains has been captured by magnetic force microscopy. Theoretical impedance equation fitted to experimental data in Cole-Cole plot for thin film in presence of transverse magnetic field resolved the increase in grain capacitance from 4.58 × 10{sup −12} to 5.4 × 10{sup −11} F. Film exhibited high value 137 mV/cm-Oe magneto-electric (ME) coupling coefficient at room temperature. The high value of ME coupling obtained can reduce the typical processing steps involved in multilayer deposition to obtain multiferrocity in thin film. Barium titanate being best ferroelectric material has been tailored to be multiferroic by non ferromagnetic element, Cr, doping in thin film form opens an avenue for more stable and reliable spintronic material for low power magnetoelectric random excess memory applications.

  12. DEVELOPMENT OF PROTOTYPE TITANATE ION EXCHANGE LOADED MEMBRANES FOR STRONTIUM, CESIUM AND ACTINIDE DECONTAMINATION FROM AQUEOUS MEDIA

    Energy Technology Data Exchange (ETDEWEB)

    Oji, L; Keisha Martin, K; David Hobbs, D

    2008-05-30

    We have successfully incorporated high surface area particles of titanate ion exchange materials (monosodium titanate and crystalline silicotitanate) with acceptable particle size distribution into porous and inert support membrane fibrils consisting of polytetrafluoroethylene (Teflon{reg_sign}), polyethylene and cellulose materials. The resulting membrane sheets, under laboratory conditions, were used to evaluate the removal of surrogate radioactive materials for cesium-137 and strontium-90 from high caustic nuclear waste simulants. These membrane supports met the nominal requirement for nonchemical interaction with the embedded ion exchange materials and were porous enough to allow sufficient liquid flow. Some of this 47-mm size stamped out prototype titanium impregnated ion exchange membrane discs was found to remove more than 96% of dissolved cesium-133 and strontium-88 from a caustic nuclear waste salt simulants. Since in traditional ion exchange based column technology monosodium titanate (MST) is known to have great affinity for the sorbing of other actinides like plutonium, neptunium and even uranium, we expect that the MST-based membranes developed here, although not directly evaluated for uptake of these three actinides because of costs associated with working with actinides which do not have 'true' experimental surrogates, would also show significant affinity for these actinides in aqueous media. It was also observed that crystalline silicotitanate impregnated polytetrafluoroethylene or polyethylene membranes became less selective and sorbed both cesium and strontium from the caustic aqueous salt simulants.

  13. Image correlation using isotropic and anisotropic higher-order generation and mutually pumped phase conjugation in photorefractive barium titanate

    Science.gov (United States)

    Buranasiri, Prathan; Banerjee, Partha P.; Polejaev, Vladimir; Sun, Ching-Cherng

    2003-10-01

    Using two beam coupling geometry, high order copropagating and contrapropagating isotropic and copropagating anisotropic self-diffraction are demonstrated using photorefractive cerium doped barium titanate. At small incident angles, typically less than 0.015 radians, both codirectional isotropic self-diffraction (CODIS) and contradirectional isotropic self-diffraction (CONDIS) orders are generated simultaneously. At larger incident angles, typically approximately more than 0.2094 radians, only codirectional anisotropic-self diffraction (CODAS) orders are generated. Ongoing work on image auto/cross correlation results are also shown.

  14. Gamma ray induced decomposition of barium and strontium nitrates dispersed in sulphate and carbonate matrices in solid state

    International Nuclear Information System (INIS)

    The G(NO-2) values in gamma radiolytic decomposition of barium and strontium nitrates are enhanced by their respective sulphate and carbonate additives, their concentration and the absorbed dose. The enhancement is more significant at > 95 mol% of the additive after which the increasing trend is not so significant. Thermoluminescence and ESR spectral studies suggest the formation of radical species such as SO-4, SO-3, O-2, CO-3, CO-2, etc. which may interact with the radical species of nitrates (NO2-3, NO2 etc) causing enhanced decomposition by energy transfer. A comparison of the carbonate and sulphate additives shows the former to be more efficient medium of energy transfer. (author). 31 refs., 4 tabs., 6 figs

  15. Effect of temperature on polarization reversal of strontium-doped lead zirconate titanate (PSZT) ceramics

    Indian Academy of Sciences (India)

    N Nwathore; C M Lonkar; D K Kharat

    2011-02-01

    The effect of temperature on polarization reversal of strontium-doped lead zirconate titanate ceramics was studied. The piezoelectric properties viz. dielectric constant and piezoelectric coupling coefficient, were used for polarization reversal characteristic. These properties and apparent coercive field weremeasured during polarization reversal at different temperatures. Results indicated that at higher temperature apparent coercive field decreased. Polarization reversal and further polarization reversal was quite asymmetric. After polarization reversal, dielectric constant was found to increase at all temperatures while piezoelectric coupling coefficient increased above the temperature of polarization. The trend shown by dielectric constant indicates that at 25°C, 1.5 kV/mm field can be applied safely to this material without much compromising the properties. D.c. field of 3.0 kV/mm and 100°C temperature can be predicted as poling parameters from their effect on kp. Apparent coercive field has shown non-linear relationship with temperature. It was of exponential decay type.

  16. Mechanisms of Strontium and Uranium Removal From Radioactive Waste Simulant Solutions by the Sorbent Monosodium Titanate

    Energy Technology Data Exchange (ETDEWEB)

    DUFF, MARTINE

    2004-12-03

    High-Level Radioactive Waste (HLW) is the priority problem for the U.S. Dept. of Energy's Environmental Management Program. Current HLW treatment processes at the Savannah River Site (Aiken, SC) include the use of monosodium titanate (MST, similar to NaTi{sub 2}O{sub 5}xH{sub 2}O) to concentrate radioactive strontium (Sr) and actinides. Mechanistic information about radionuclide uptake will provide us with insight about the reliability of MST treatments. We characterized the morphology of MST and the chemistry of sorbed Sr{sup 2+} and uranium [U(VI)] on MST with x-ray based spectroscopic and electron microscopic techniques. Sorbed Sr{sup 2+} exhibited specific adsorption as partially-hydrated species, whereas sorbed U exhibited site-specific adsorption as monomeric and dimeric U(VI)-carbonate complexes. These differences in site specificity and mechanism may account for the difficulties associated with predicting MST loading and removal kinetics.

  17. Growth and micro structural studies on Yittria Stabilized Zirconia (YSZ) and Strontium Titanate (STO) buffer layers

    Energy Technology Data Exchange (ETDEWEB)

    Srinivas, S.; Bhatnagar, A.K. [Univ. of Hyderabad (India); Pinto, R. [Solid State Electronics Group, Bombay (India)] [and others

    1994-12-31

    Microstructure of Yittria Stabilized Zirconia (YSZ) and Strontium Titanate (STO) of radio frequency magnetron sputtered buffer layers was studied at various sputtering conditions on Si<100>, Sapphire and LaAlO{sub 3} <100> substrates. The effect of substrate temperatures upto 800 C and sputtering gas pressures in the range of 50 mTorr. of growth conditions was studied. The buffer layers of YSZ and STO showed a strong tendency for columnar structure with variation growth conditions. The buffer layers of YSZ and STO showed orientation. The tendency for columnar growth was observed above 15 mTorr sputtering gas pressure and at high substrate temperatures. Post annealing of these films in oxygen atmosphere reduced the oxygen deficiency and strain generated during growth of the films. Strong c-axis oriented superconducting YBa{sub 2}Cu{sub 9}O{sub 7-x} (YBCO) thin films were obtained on these buffer layers using pulsed laser ablation technique. YBCO films deposited on multilayers of YSZ and STO were shown to have better superconducting properties.

  18. Very stable electron field emission from strontium titanate coated carbon nanotube matrices with low emission thresholds.

    Science.gov (United States)

    Pandey, Archana; Prasad, Abhishek; Moscatello, Jason P; Engelhard, Mark; Wang, Chongmin; Yap, Yoke Khin

    2013-01-22

    Novel PMMA-STO-CNT matrices were created by opened-tip vertically aligned multiwalled carbon nanotubes (VA-MWCNTs) with conformal coatings of strontium titanate (STO) and poly(methyl methacrylate) (PMMA). Emission threshold of 0.8 V/μm was demonstrated, about 5-fold lower than that of the as-grown VA-MWCNTs. This was obtained after considering the related band structures under the perspective of work functions and tunneling width as a function of the STO thickness. We showed that there is an optimum thickness of STO coatings to effectively reduce the work function of CNTs and yet minimize the tunneling width for electron emissions. Furthermore, simulation and modeling suggest that PMMA-STO-CNT matrices have suppressed screening effects and Coulombs' repulsion forces between electrons in adjacent CNTs, leading to low emission threshold, high emission density, and prolonged emission stability. These findings are important for practical application of VA-MWCNTs in field emission devices, X-ray generation, and wave amplification.

  19. Electromagnetic wave absorption properties of barium titanate/carbon nanotube hybrid nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Melvin, Gan Jet Hong [Interdisciplinary Graduate School of Science and Technology, Shinshu University, Tokida, Ueda 386-8576 (Japan); Ni, Qing-Qing, E-mail: niqq@shinshu-u.ac.jp [Department of Functional Machinery and Mechanics, Shinshu University, Tokida, Ueda 386-8576 (Japan); Key Laboratory of Advanced Textile Materials and Manufacturing Technology, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou (China); Natsuki, Toshiaki [Department of Functional Machinery and Mechanics, Shinshu University, Tokida, Ueda 386-8576 (Japan)

    2014-12-05

    Highlights: • BTO/CNT hybrid nanocomposites was prepared by sol–gel method. • BTO/CNT 60 wt.%, t = 1.1 mm showed a minimum reflection loss of ∼−56.5 dB. • Weight fraction and thickness can be manipulated for various absorption bands. - Abstract: Barium titanate/carbon nanotube (BTO/CNT) hybrid nanocomposites were fabricated by sol–gel method. The BTO/CNT hybrid nanomaterials were characterized using X-ray diffraction, transmission electron microscopy, field emission scanning electron microscopy, Raman and X-ray photoelectron spectroscopy. The BTO/CNT hybrid nanomaterials were then loaded in paraffin wax with different weight percentage, and pressed into toroidal shape with thickness of 1.0 mm to evaluate their complex permittivity and complex permeability using vector network analyzer. The reflection loss of the samples was calculated according to their measured complex permittivity and permeability. The minimum reflection loss of the BTO/CNT 60 wt.% hybrid nanocomposites sample with a thickness of 1.0 mm reached 29.6 dB (over 99.9% absorption) at 13.6 GHz, and also exhibited a wide response bandwidth where the frequency bandwidth of the reflection loss of less than −10 dB (over 90% absorption) was from 12.1 to 13.8 GHz. The BTO/CNT 60 wt.% hybrid nanocomposites with thickness of 1.1 mm showed a minimum reflection loss of ∼−56.5 dB (over 99.999% absorption) at 13.2 GHz and was the best absorber when compared with the other samples of different thickness. The reflection loss peak shifted to lower frequency and wider response bandwidth can be obtained as the thickness of the samples increased. The capability to modulate the absorption band of these samples to suit various applications in different frequency bands simply by manipulating their weight percentage and thickness indicates that these hybrid nanocomposites could be a promising electromagnetic wave absorber.

  20. Characterization of barium titanate powder doped with sodium and potassium ions by using Rietveld refining; Caracterizacao do po de titanato de bario dopado com ions sodio e potasio com o refinamento de Rietveld

    Energy Technology Data Exchange (ETDEWEB)

    Andrade, M.C.; Assis, J.T.; Pereira, F.R., E-mail: mcalixto@iprj.uerj.b [Universidade do Estado do Rio de Janeiro (IPRJ/UERJ), Nova Friburgo, RJ (Brazil). Instituto Politecnico; Araujo, J.C. [Universidade do Estado do Rio de Janeiro (FFP/UERJ), Sao Goncalo, RJ (Brazil). Fac. de Formacao de Professores; Moreira, E.L.; Moraes, V.C.A.; Lopes, A.R. [Centro Brasileiro de Pesquisas Fisicas (CBPF/MCT), Rio de Janeiro, RJ (Brazil)

    2009-07-01

    A solid-reaction synthesis of doped barium titanate was done by employing barium carbonates, sodium, potassium and titanium oxides with classic procedures. Rietveld refining of X ray diffraction data of perovskite samples with tetragonal symmetry was applying and show good agreement. Besides, the treatment performed from 600 deg C produces nanocrystals of barium titanate with average size of 33 nm. The presence of endothermic peaks related to BaTiO{sub 3} formation at relatively low temperatures was determined by thermal analysis. A pseudo-Voigt Thompson-Cox-Hastings function was used to fit the standard samples of barium titanate. The Rietveld method has showed be efficient to detect the influences of temperature and doping on barium titanate microstructures. (author)

  1. Dielectric characterization of low-loss calcium strontium titanate fibers produced by laser floating zone technique for wireless communication

    International Nuclear Information System (INIS)

    Wireless communication technology assisted to a huge development during the last two decades, responding to the growing demand for small size and low weight devices such as cell phones and global positioning systems. The need for miniaturization and higher autonomy resulted in the development of new dielectric oxide ceramics with very specific properties, to be applied as dielectric resonators in filters, oscillators, and antennas. Some crucial properties as a high quality factor, high dielectric constant, and near zero temperature coefficient of resonant frequency must be considered during the selection of the appropriate materials. The present work deals with the preparation of calcium titanate (CaTiO3), strontium titanate (SrTiO3), and calcium strontium titanate (CaxSr1-xTiO3) fibers produced by laser floating zone (LFZ) technique. Our results show that fibers grown at lower pulling rates exhibit higher ε', for all the studied frequency range, including the microwave region. Moreover, the quality factor is always high envisaging the possibility to include these materials in future wireless device applications. (copyright 2014 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  2. TAILORING INORGANIC SORBENTS FOR SRS STRONTIUM AND ACTINIDE SEPARATIONS: OPTIMIZED MONOSODIUM TITANATE PHASE II FINAL REPORT

    Energy Technology Data Exchange (ETDEWEB)

    Hobbs, D; Thomas Peters, T; Michael Poirier, M; Mark Barnes, M; Major Thompson, M; Samuel Fink, S

    2007-06-29

    This document provides a final report of Phase II testing activities for the development of a modified monosodium titanate (MST) that exhibits improved strontium and actinide removal characteristics compared to the baseline MST material. The activities included determining the key synthesis conditions for preparation of the modified MST, preparation of the modified MST at a larger scale by a commercial vendor, demonstration of the strontium and actinide removal characteristics with actual tank waste supernate and measurement of filtration characteristics. Key findings and conclusions include the following. Testing evaluated three synthetic methods and eleven process parameters for the optimum synthesis conditions for the preparation on an improved form of MST. We selected the post synthesis method (Method 3) for continued development based on overall sorbate removal performance. We successfully prepared three batches of the modified MST using Method 3 procedure at a 25-gram scale. The laboratory prepared modified MST exhibited increased sorption kinetics with simulated and actual waste solutions and similar filtration characteristics to the baseline MST. Characterization of the modified MST indicated that the post synthesis treatment did not significantly alter the particle size distribution, but did significantly increase the surface area and porosity compared to the original MST. Testing indicated that the modified MST exhibits reduced affinity for uranium compared to the baseline MST, reducing risk of fissile loading. Shelf-life testing indicated no change in strontium and actinide performance removal after storing the modified MST for 12-months at ambient laboratory temperature. The material releases oxygen during the synthesis and continues to offgas after the synthesis at a rapidly diminishing rate until below a measurable rate after 4 months. Optima Chemical Group LLC prepared a 15-kilogram batch of the modified MST using the post synthesis procedure (Method

  3. Comparative analysis of sorption-desorption parameters of oxygen in barium and strontium cerates

    International Nuclear Information System (INIS)

    it is suggested the equation for description of experimental dependences of oxygen index from partial pressure of oxygen for doped strontium cerate. It is shown, that oxygen index came off on saturation with the growth of partial pressure and does mot exceed value x/2, e.g. in these condition it is impossible to introduce extra-stoichiometric oxygen

  4. Strontium

    Science.gov (United States)

    Ober, J.A.

    2013-01-01

    In 2012, U.S. apparent consumption of strontium (contained in celestite and manufactured strontium compounds) decreased to 16.7 kt (18,400 st) from 17.3 kt (19,100 st) in 2011. Gross weight of imports was 34.3 kt (37,800 st), 86 percent of which originated in Mexico.

  5. Structural phase transitions in Ruddlesden-Popper phases of strontium titanate: {\\em ab initio} and inhomogeneous Ginzburg-Landau approaches

    CERN Document Server

    Lee, Jeehye

    2010-01-01

    We present the first systematic {\\em ab initio} study of anti-ferrodistortive (AFD) order in Ruddlesden-Popper (RP) phases of strontium titanate, Sr$_{1+n}$Ti$_n$O$_{3n+1}$, as a function of both compressive epitaxial strain and phase number $n$. We find all RP phases to exhibit AFD order under a significant range of strains, recovering the bulk AFD order as $\\sim 1/n^2$. A Ginzburg-Landau Hamiltonian generalized to include inter-octahedral interactions reproduces our {\\em ab initio} results well, opening a pathway to understanding other nanostructured perovskite systems.

  6. Screening of plant species for phytoremediation of uranium, thorium, barium, nickel, strontium and lead contaminated soils from a uranium mill tailings repository in South China.

    Science.gov (United States)

    Li, Guang-yue; Hu, Nan; Ding, De-xin; Zheng, Ji-fang; Liu, Yu-long; Wang, Yong-dong; Nie, Xiao-qin

    2011-06-01

    The concentrations of uranium, thorium, barium, nickel, strontium and lead in the samples of the tailings and plant species collected from a uranium mill tailings repository in South China were analyzed. Then, the removal capability of a plant for a target element was assessed. It was found that Phragmites australis had the greatest removal capabilities for uranium (820 μg), thorium (103 μg) and lead (1,870 μg). Miscanthus floridulus had the greatest removal capabilities for barium (3,730 μg) and nickel (667 μg), and Parthenocissus quinquefolia had the greatest removal capability for strontium (3,920 μg). In this study, a novel coefficient, termed as phytoremediation factor (PF), was proposed, for the first time, to assess the potential of a plant to be used in phytoremediation of a target element contaminated soil. Phragmites australis has the highest PFs for uranium (16.6), thorium (8.68), barium (10.0) and lead (10.5). Miscanthus floridulus has the highest PF for Ni (25.0). Broussonetia papyrifera and Parthenocissus quinquefolia have the relatively high PFs for strontium (28.1 and 25.4, respectively). On the basis of the definition for a hyperaccumulator, only Cyperus iria and Parthenocissus quinquefolia satisfied the criteria for hyperaccumulator of uranium (36.4 μg/g) and strontium (190 μg/g), and could be the candidates for phytoremediation of uranium and strontium contaminated soils. The results show that the PF has advantage over the hyperaccumulator in reflecting the removal capabilities of a plant for a target element, and is more adequate for assessing the potential of a plant to be used in phytoremediation than conventional method.

  7. Investigation of resistive switching in barium strontium titanate thin films for memory applications

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Wan

    2010-11-17

    Resistive random access memory (RRAM) has attracted much attention due to its low power consumption, high speed operation, non-readout disturbance and high density integration potential and is regarded as one of the most promising candidates for the next generation non-volatile memory. The resistive switching behavior of Mn-doped BaSrTiO{sub 3} (BST) thin films with different crystalline properties was investigated within this dissertation. The laser fluence dependence was checked in order to optimize the RRAM properties. Although the film epitaxial quality was improved by reducing the laser energy during deposition process, the yields fluctuated and only 3% RRAM devices with highest epitaxial quality of BST film shows resistive switching behavior instead of 67% for the samples with worse film quality. It gives a clue that the best thin film quality does not result in the best switching performance, and it is a clear evidence of the importance of the defects to obtain resistive switching phenomena. The bipolar resistive switching behavior was studied with epitaxial BST thin films on SRO/STO. Compared to Pt top electrode, the yield, endurance and reliability were strongly improved for the samples with W top electrode. Whereas the samples with Pt top electrode show a fast drop of the resistance for both high and low resistance states, the devices with W top electrode can be switched for 10{sup 4} times without any obvious degradation. The resistance degradation for devices with Pt top electrode may result from the diffusion of oxygen along the Pt grain boundaries during cycling whereas for W top electrode the reversible oxidation and reduction of a WO{sub x} layer, present at the interface between W top electrode and BST film, attributes to the improved switching property. The transition from bipolar to unipolar resistive switching in polycrystalline BST thin films was observed. A forming process which induces a metallic low resistance state is prerequisite for the observation of unipolar switching behavior. The absence of unipolar switching in single crystalline samples may relate to space charge depletion layers at grain boundaries and their impact on the electronic conduction properties as well as the different local heat transfer in thin films. By controlling the switching voltage, the bipolar and unipolar resistive switching can be alternated in polycrystalline BST thin films. The bipolar/unipolar alternation is dynamically repeatable and the alternation may relate to the local modification of broken filaments by breakdown or oxygen vacancy movement. (orig.)

  8. Direct-write inkjet printing for fabrication of barium strontium titanate-based tunable circuits

    International Nuclear Information System (INIS)

    Tunable capacitors with up to 30% tuning and a loss tangent (tanδ) less than 0.002 at 1 MHz were fabricated from Ba0.6Sr0.4TiO3 (BST) films using inkjet-printed liquid metalorganic precursors. BST films of various thicknesses were produced by printing multiple stacks of the individual inkjet-printed layers. The dielectric constant of the printed films increased as a function of thickness. The largest dielectric constant, 1000, and the highest tunability, 30%, were measured on a 420 nm thick film, the thickest film studied in this work. Spray-printed silver contacts were employed and demonstrated good adhesion and good electrical contact to the inkjet-printed BST films. This also demonstrated proof of principle for direct-write printing of metal contacts onto BST films from metalorganic sources

  9. Structural and dielectric properties of barium strontium titanate produced by high temperature hydrothermal method

    International Nuclear Information System (INIS)

    The preparation procedure, structural and dielectric properties of hydrothermally derived BaxSr1-xTiO3 (BST) were studied. BST with initial Ba compositions of 75, 80, 85 and 90 mol.% were prepared by a high temperature hydrothermal synthesis. The obtained powders were pressed into pellet, cold isostatically pressed and sintered at 1200 deg. C for 3 hours. The phase compositions and lattice parameters of the as prepared powders and sintered samples were analysed using X-ray diffractometry. A fitting software was used to analyse the XRD spectra to separate different phases. It was found that BST powder produced by the high temperature hydrothermal possessed a two-phase structure. This structure became more homogeneous during sintering due to interdiffusion but a small amount of minor phase can still be traced. Samples underwent an abnormal grain growth, whereby some grains grow faster than the other due to the presence of two-phase structure. The grain size increased with increasing Ba amount. Dielectric constant and polarisation increased with increasing Ba content but it was also affected by the electronic state and grain size of the compositions

  10. Influence of Tm-doping on microstructure and luminescence behavior of barium strontium titanate thick films

    Energy Technology Data Exchange (ETDEWEB)

    Wang Jingyang [School of Materials Science and Engineering, Hubei University, Wuhan, 430062 (China); Zhang Tianjin, E-mail: tj65zhang@yahoo.com.cn [School of Materials Science and Engineering, Hubei University, Wuhan, 430062 (China); Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei University, Wuhan, 430062 (China); Pan Ruikun; Ma Zhijun; Wang Jinzhao [School of Materials Science and Engineering, Hubei University, Wuhan, 430062 (China)

    2012-01-15

    Tm-doped Ba{sub 0.8}Sr{sub 0.2}TiO{sub 3} thick films were prepared by the screen-printing technique on the alumina substrate. The microstructure of the Tm-doped BST thick films was characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and Raman spectroscopy, respectively. All the samples showed a typical perovskite polycrystalline structure when sintered at 1260 Degree-Sign C. The substitution behavior of Tm{sup 3+} ion in BST was found to change with increasing the Tm{sup 3+} concentration. The observed Tm-related red emission reaches the maximum at 0.2 mol% Tm{sup 3+} concentration. The effects of concentration quenching on the luminescence intensity were discussed.

  11. Investigation of resistive switching in barium strontium titanate thin films for memory applications

    International Nuclear Information System (INIS)

    Resistive random access memory (RRAM) has attracted much attention due to its low power consumption, high speed operation, non-readout disturbance and high density integration potential and is regarded as one of the most promising candidates for the next generation non-volatile memory. The resistive switching behavior of Mn-doped BaSrTiO3 (BST) thin films with different crystalline properties was investigated within this dissertation. The laser fluence dependence was checked in order to optimize the RRAM properties. Although the film epitaxial quality was improved by reducing the laser energy during deposition process, the yields fluctuated and only 3% RRAM devices with highest epitaxial quality of BST film shows resistive switching behavior instead of 67% for the samples with worse film quality. It gives a clue that the best thin film quality does not result in the best switching performance, and it is a clear evidence of the importance of the defects to obtain resistive switching phenomena. The bipolar resistive switching behavior was studied with epitaxial BST thin films on SRO/STO. Compared to Pt top electrode, the yield, endurance and reliability were strongly improved for the samples with W top electrode. Whereas the samples with Pt top electrode show a fast drop of the resistance for both high and low resistance states, the devices with W top electrode can be switched for 104 times without any obvious degradation. The resistance degradation for devices with Pt top electrode may result from the diffusion of oxygen along the Pt grain boundaries during cycling whereas for W top electrode the reversible oxidation and reduction of a WOx layer, present at the interface between W top electrode and BST film, attributes to the improved switching property. The transition from bipolar to unipolar resistive switching in polycrystalline BST thin films was observed. A forming process which induces a metallic low resistance state is prerequisite for the observation of unipolar switching behavior. The absence of unipolar switching in single crystalline samples may relate to space charge depletion layers at grain boundaries and their impact on the electronic conduction properties as well as the different local heat transfer in thin films. By controlling the switching voltage, the bipolar and unipolar resistive switching can be alternated in polycrystalline BST thin films. The bipolar/unipolar alternation is dynamically repeatable and the alternation may relate to the local modification of broken filaments by breakdown or oxygen vacancy movement. (orig.)

  12. Ferroelectric properties of barium strontium titanate thin films grown by RF co-sputtering

    International Nuclear Information System (INIS)

    In this work, we present the variation of the ferroelectric properties of Ba1-xSrxTiO3 films deposited on Pt/TiO2/SiO2/Si substrates by RF co-sputtering with 0≤x≤1. The co-sputtering was done using a single magnetron with BaTiO3/SrTiO3 targets in a pie mosaics configuration. Smooth and uniform films were obtained using the same conditions of growth and annealing temperature. The X-ray diffraction and EDS results show that the processes were managed to obtain crystalline materials with x from 0 to 1. The behaviour of P-E loops suggests that the ferroelectric properties of the films were tuned by changing the concentration of the cation. (copyright 2005 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  13. Optical properties of Er{sup 3+}-doped strontium barium niobate nanocrystals obtained by thermal treatment in glass

    Energy Technology Data Exchange (ETDEWEB)

    Haro-Gonzalez, P. [Dep. of Fisica Fundamental Experimental, Electronica y Sistemas, Universidad de La Laguna Avda Astrofisico Franscisco Sanchez, 38206 La Laguna, S/C de Tenerife (Spain)], E-mail: patharo@ull.es; Lahoz, F. [Dep. of Fisica Fundamental Experimental, Electronica y Sistemas, Universidad de La Laguna Avda Astrofisico Franscisco Sanchez, 38206 La Laguna, S/C de Tenerife (Spain); Gonzalez-Platas, J. [Dep. of Fisica Fundamental II, Universidad de La Laguna, 38206 La Laguna, S/C de Tenerife (Spain); Caceres, J.M. [Dep. of Edafologia y Geologia, Universidad de La Laguna, 38206 La Laguna, S/C de Tenerife (Spain); Gonzalez-Perez, S. [Dep. of Fisica Fundamental Experimental, Electronica y Sistemas, Universidad de La Laguna Avda Astrofisico Franscisco Sanchez, 38206 La Laguna, S/C de Tenerife (Spain); Marrero-Lopez, D. [Dep. of Quimica Inorganica, Universidad de La Laguna, 38206 La Laguna, S/C de Tenerife (Spain); Capuj, N. [Dep. of Fisica Basica, Universidad de La Laguna, 38206 La Laguna, S/C de Tenerife (Spain); Martin, I.R. [Dep. of Fisica Fundamental Experimental, Electronica y Sistemas, Universidad de La Laguna Avda Astrofisico Franscisco Sanchez, 38206 La Laguna, S/C de Tenerife (Spain)

    2008-05-15

    Measurements of the optical properties of Er{sup 3+} ions in strontium barium niobate glass and glass ceramics have been carried out. The glasses have been fabricated using a melt-quenching method, and the glass ceramic samples have been obtained from the glass precursor by a thermal treatment. The ceramic samples formed by a glassy phase, and a crystalline phase contains nanocrystals of Sr{sub 1-x}Ba{sub x}Nb{sub 2}O{sub 6} (SBN) doped with Er{sup 3+} ions with a mean size of {approx}50 nm, as confirmed with XRD. Green up-conversion emission has been obtained under excitation at 800 nm, and the temporal evolution of this emission has been reported with the purpose of determining the involved up-conversion mechanism. These optical measures have confirmed that the Er{sup 3+} ions have been incorporated into the SBN matrix, after a thermal treatment, which produced an increment of the up-conversion efficiency.

  14. Synthesis and characterization of barium titanate, doped with europium and neodymium

    International Nuclear Information System (INIS)

    This work aims at synthesize and characterize mixed oxides in Barium Titanium matrix in doping with Neodymium and Europium analyzing thermogravimetric curves, characteristic bands at infrared region of the polymer complex, which are intermediates to mixed oxides, and identify the formation thereof, and the crystallinity using XRD analysis

  15. Dynamic pyroelectric response of composite based on ferroelectric copolymer of poly(vinylidene fluoride-trifluoroethylene) and ferroelectric ceramics of barium lead zirconate titanate

    Energy Technology Data Exchange (ETDEWEB)

    Solnyshkin, A.V. [Tver State University, Department of Condensed Matter Physics, Tver (Russian Federation); National Research University ' ' MIET' ' , Department of Intellectual Technical Systems, Zelenograd, Moscow (Russian Federation); Morsakov, I.M.; Bogomolov, A.A. [Tver State University, Department of Condensed Matter Physics, Tver (Russian Federation); Belov, A.N.; Vorobiev, M.I.; Shevyakov, V.I.; Silibin, M.V. [National Research University ' ' MIET' ' , Department of Intellectual Technical Systems, Zelenograd, Moscow (Russian Federation); Shvartsman, V.V. [University of Duisburg-Essen, Institute for Materials Science, Essen (Germany)

    2015-10-15

    In this work, pyroelectric properties of composite films on the basis of poly(vinylidene fluoride-trifluoroethylene) copolymer with a various level of ferroelectric ceramics inclusions of barium lead zirconate titanate solid solution were investigated by the dynamic method. The composite films were prepared by the solvent cast method. The unusual spike-like dynamic response with a quasi-stationary component was observed. It is supposed that composite films may be effectively used for pyroelectric applications. (orig.)

  16. Eu-doped barium strontium silicate phosphor particles prepared from spray solution containing NH4Cl flux by spray pyrolysis

    International Nuclear Information System (INIS)

    Eu-doped barium strontium silicate phosphor particles with high photoluminescence intensity under long wavelength ultraviolet were prepared from the spray solution containing NH4Cl flux by spray pyrolysis. It was found that the addition of NH4Cl to the spray solution makes it possible to greatly improve the photoluminescence intensity of Ba1.488Sr0.5SiO4:Eu0.012 phosphor particles under long wavelength ultraviolet of 410 nm. The highest photoluminescence intensity, which was achieved when the NH4Cl content was 5 wt.%, was about 150% of Ba1.488Sr0.5SiO4:Eu0.012 particles prepared from the spray solution without flux material at the post-treatment temperature of 1050 deg. C. The particle size of Ba1.488Sr0.5SiO4:Eu0.012 phosphor particles were enlarged by using the NH4Cl flux in the spray solution because of the large grain growth which was identified from the sharpening of the XRD peaks. Adding the NH4Cl flux into the spray solution was found to lower the optimal post-treatment temperature at which the Ba1.488Sr0.5SiO4:Eu0.012 phosphor particles are fully crystallized and have the maximum photoluminescence intensity. The phosphor particles prepared from spray solution containing 5 wt.% NH4Cl flux had the maximum photoluminescence intensity at post-treatment temperature of 1100 deg. C

  17. Effects of focused ion beam milling on electron backscatter diffraction patterns in strontium titanate and stabilized zirconia

    DEFF Research Database (Denmark)

    Saowadee, Nath; Agersted, Karsten; Bowen, Jacob R.

    2012-01-01

    This study investigates the effect of focused ion beam (FIB) current and accelerating voltage on electron backscatter diffraction pattern quality of yttria‐stabilized zirconia (YSZ) and Nb‐doped strontium titanate (STN) to optimize data quality and acquisition time for 3D‐EBSD experiments by FIB...... serial sectioning. Band contrast and band slope were used to describe the pattern quality. The FIB probe currents investigated ranged from 100 to 5000 pA and the accelerating voltage was either 30 or 5 kV. The results show that 30 kV FIB milling induced a significant reduction of the pattern quality...... milling. For 3D‐EBSD experiments of a material such as STN, it is recommended to combine a high kV FIB milling and low kV polishing for each slice in order to optimize the data quality and acquisition time....

  18. Atomic layer deposition of epitaxial layers of anatase on strontium titanate single crystals: Morphological and photoelectrochemical characterization

    Energy Technology Data Exchange (ETDEWEB)

    Kraus, Theodore J.; Nepomnyashchii, Alexander B.; Parkinson, B. A., E-mail: bparkin1@uwyo.edu [Department of Chemistry, School of Energy Resources, University of Wyoming, Laramie, Wyoming 82071 (United States)

    2015-01-15

    Atomic layer deposition was used to grow epitaxial layers of anatase (001) TiO{sub 2} on the surface of SrTiO{sub 3} (100) crystals with a 3% lattice mismatch. The epilayers grow as anatase (001) as confirmed by x-ray diffraction. Atomic force microscope images of deposited films showed epitaxial layer-by-layer growth up to about 10 nm, whereas thicker films, of up to 32 nm, revealed the formation of 2–5 nm anatase nanocrystallites oriented in the (001) direction. The anatase epilayers were used as substrates for dye sensitization. The as received strontium titanate crystal was not sensitized with a ruthenium-based dye (N3) or a thiacyanine dye (G15); however, photocurrent from excited state electron injection from these dyes was observed when adsorbed on the anatase epilayers. These results show that highly ordered anatase surfaces can be grown on an easily obtained substrate crystal.

  19. An Experimental Investigation towards Improvement of Thermoelectric Properties of Strontium Titanate Ceramics

    Science.gov (United States)

    Mehdizadeh Dehkordi, Arash

    The direct energy conversion between heat and electricity based on thermoelectric effects is a topic of long-standing interest in condensed matter materials science. Experimental and theoretical investigations in order to understand the mechanisms involved and to improve the materials properties and conversion efficiency have been ongoing for more than half a century. While significant achievements have been accomplished in improving the properties of conventional heavy element based materials (such as Bi2Te 3 and PbTe) as well as the discovery of new materials systems for the close-to-room temperature and intermediate temperatures, high-temperature applications of thermoelectrics is still limited to one materials system, namely SiGe. Recently, oxides have exhibited great potential to be investigated for high-temperature thermoelectric power generation. The objective of this dissertation is to synthesize and investigate both electronic and thermal transport in strontium titanate (SrTiO3) ceramics in order to experimentally realize its potential and to ultimately investigate the possibility of further improvement of the thermoelectric performance of this perovskite oxide for mid- to high temperature applications. Developing a synthesis strategy and tuning various synthesis parameters to benefit the thermoelectric transport form the foundation of this study. It is worth mentioning that the results of this study has been employed to prepare targets for pulsed-laser deposition (PLD) to study the thermoelectric properties of corresponding thin films and superlattice structures at Dr. Husam Alshareef's group at King Abdullah University of Science and Technology (KAUST), Saudi Arabia. Considering the broad range of functionality of SrTiO3, the findings of this work will surely benefit other fields of research and application of this functional oxide such as photoluminescence, ferroelectricity or mixed-ionic electronic conductivity. This dissertation will ultimately

  20. Opptak av barium og strontium i naturlig vegetasjon i områder med berggrunn av biotitt-karbonatitt på Stjernøy, Alta

    OpenAIRE

    Hillersøy, Maria Hestholm

    2011-01-01

    Formålet med dette arbeidet var å undersøke innhold av barium (Ba) og strontium (Sr) i naturlig vegetasjon fra tre ulike prøvetakingsområder på Stjernøy, nordvest for Alta i Finnmark. Karbonatitt fra Stjernøy, en av Norges mest apatittrike bergarter med kalkspat som hovedmineral, har vist seg å ha potensial for utvinning av steinmel brukt som gjødsel eller jordforbedringsmiddel. Karbonatitten innholder også mye biotitt, litt nefelin og sulfider. Viktige plantenæringsstoff som frigis fra miner...

  1. Selective removal of cesium(I), strontium(II), barium(II) and lead(II) with ionizable lariat ethers in ion flotation process

    International Nuclear Information System (INIS)

    The work deals an application of ion flotation for selective removal of ion cesium(I), strontium(II), barium(II) and lead(II) from: (a) dilute and slightly acidic (pH=4 - 6) aqueous solutions of those ions at concentration -5 M; (b) radioactive sewages and waste solutions. The collective removal and separation of Cs(I), Sr(II), Ba(II), Pb(II) with macrocycle compounds, e.g. ionizable lariat ethers and non-ionizable foaming agent is shown

  2. TAILORING INORGANIC SORBENTS FOR SRS STRONTIUM AND ACTINIDE SEPARATIONS: MODIFIED MONOSODIUM TITANATE PHASE III FINAL REPORT

    Energy Technology Data Exchange (ETDEWEB)

    Taylor-Pashow, K.; Hobbs, D.

    2010-09-01

    This document provides a final report of Phase III testing activities for the development of modified monosodium titanate (mMST), which exhibits improved strontium and actinide removal characteristics compared to the baseline MST material. The activities included characterization of the crystalline phases present at varying temperatures, solids settling characteristics, quantification of the peroxide content; evaluation of the post-synthesis gas release under different conditions; the extent of desorption of {sup 85}Sr, Np, and Pu under washing conditions; and the effects of age and radiation on the performance of the mMST. Key findings and conclusions include the following. The peroxide content of several mMST samples was determined using iodometric titration. The peroxide content was found to decrease with age or upon extended exposure to elevated temperature. A loss of peroxide was also measured after exposure of the material to an alkaline salt solution similar in composition to the simulated waste solution. To determine if the loss of peroxide with age affects the performance of the material, Sr and actinide removal tests were conducted with samples of varying age. The oldest sample (4 years and 8 months) did show lower Sr and Pu removal performance. When compared to the youngest sample tested (1 month), the oldest sample retained only 15% of the DF for Pu. Previous testing with this sample indicated no decrease in Pu removal performance up to an age of 30 months. No loss in Np removal performance was observed for any of the aged samples, and no uptake of uranium occurred at the typical sorbent loading of 0.2 g/L. Additional testing with a uranium only simulant and higher mMST loading (3.0 g/L) indicated a 10% increase of uranium uptake for a sample aged 3 years and 8 months when compared to the results of the same sample measured at an age of 1 year and 5 months. Performance testing with both baseline-MST and mMST that had been irradiated in a gamma source to

  3. Simulations of high permittivity materials for 7 T neuroimaging and evaluation of a new barium titanate-based dielectric.

    Science.gov (United States)

    Teeuwisse, W M; Brink, W M; Haines, K N; Webb, A G

    2012-04-01

    High permittivity "dielectric pads" have been shown to increase image quality at high magnetic fields in regions of low radiofrequency transmit efficiency. This article presents a series of electromagnetic simulations to determine the effects of pad size and geometry, relative permittivity value, as well as thickness on the transmit radiofrequency fields for neuroimaging at 7 T. For a 5-mm thick pad, there is virtually no effect on the transmit field for relative permittivity values lower than ∼90. Significant improvements are found for values between 90 and ∼180. If the relative permittivity is increased above ∼180 then areas of very low transmit efficiency are produced. For a 1-cm thick pad, the corresponding numbers are ∼60 and ∼120, respectively. Based upon the findings, a new material (barium titanate, relative permittivity ∼150) is used to produce thin (∼5 mm) dielectric pads which can easily be placed within a standard receive head array. Experimental measurements of transmit sensitivities, as well as acquisition of T(2) - and T 2*-weighted images show the promise of this approach. PMID:22287360

  4. An efficient approach to derive hydroxyl groups on the surface of barium titanate nanoparticles to improve its chemical modification ability.

    Science.gov (United States)

    Chang, Shinn-Jen; Liao, Wei-Sheng; Ciou, Ci-Jin; Lee, Jyh-Tsung; Li, Chia-Chen

    2009-01-15

    Highly hydroxylated barium titanate (BaTiO(3)) nanoparticles have been prepared via an easy and gentle approach which oxidizes BaTiO(3) nanoparticles using an aqueous solution of hydrogen peroxide (H(2)O(2)). The hydroxylated BaTiO(3) surface reacts with sodium oleate (SOA) to form oleophilic layers that greatly enhance the dispersion of BaTiO(3) nanoparticles in organic solvents such as tetrahydrofuran, toluene, and n-octane. The results of Fourier transform infrared spectroscopy confirmed that the major functional groups on the surface of H(2)O(2)-treated BaTiO(3) nanoparticles are hydroxyl groups which are chemically active, favoring chemical bonding with SOA. The results of transmission electron microscopy of SOA-modified BaTiO(3) nanoparticles suggested that the oleate molecules were bonded to the surfaces of nanoparticles and formed a homogeneous layer having a thickness of about 2 nm. Furthermore, the improved dispersion capability of the modified BaTiO(3) nanoparticles in organic solvents was verified through analytic results of its settling and rheological behaviors. PMID:18977001

  5. Structure and Rheology of Poloxamine T1107 and Its Nanocomposite Hydrogels with Cyclodextrin-Modified Barium Titanate Nanoparticles.

    Science.gov (United States)

    Serra-Gómez, Rafael; Dreiss, Cécile A; González-Benito, Javier; González-Gaitano, Gustavo

    2016-06-28

    We report the preparation of a nanocomposite hydrogel based on a poloxamine gel matrix (Tetronic T1107) and cyclodextrin (CD)-modified barium titanate (BT) nanoparticles. The micellization and sol-gel behavior of pH-responsive block copolymer T1107 were fully characterized by small-angle neutron scattering (SANS), dynamic light scattering (DLS), and Fourier transform infrared attenuated total reflectance (FTIR-ATR) spectroscopy as a function of concentration, pH and temperature. SANS results reveal that spherical micelles in the low concentration regime present a dehydrated core and highly hydrated shell, with a small aggregation number and size, highly dependent on the degree of protonation of the central amine spacer. At high concentration, T1107 undergoes a sol-gel transition, which is inhibited at acidic pH. Nanocomposites were prepared by incorporating CD-modified BT of two different sizes (50 and 200 nm) in concentrated polymer solutions. Rheological measurements show a broadening of the gel region, as well as an improvement of the mechanical properties, as assessed by the shear elastic modulus, G' (up to 200% increase). Initial cytocompatibility studies of the nanocomposites show that the materials are nontoxic with viabilities over 70% for NIH3T3 fibroblast cell lines. Overall, the combination of Tetronics and modified BaTiO3 provides easily customizable systems with promising applications as soft piezoelectric materials. PMID:27245639

  6. Synthesis and Characterization of Barium Titanate Powders by Sol-Gel Method

    International Nuclear Information System (INIS)

    BaTiO3 powders were prepared by the sol gel method starting from soluble precursors of barium and titanium. The synthesized powders were calcined for 2 h at different temperatures ranges from 800 to 1000 degree Celsius. Phase formation, crystal structure and crystallite size of the calcined powders were investigated using the x-ray diffraction (XRD). A scanning electron microscope (SEM) equipped with energy-dispersive x-ray spectroscopy (EDX) was used for determination of morphology and elemental composition. The XRD results showed that BaTiO3 transformed from the (pseudo)cubic to the ferroelectric tetragonal phase with increasing calcination temperature. The purity and crystallite size of BaTiO3 powders were found to increase with increasing calcination temperature in the range of 32 nm to 140 nm. Higher temperatures led to the particle growth and agglomeration. (author)

  7. Effect of Change in Ba Concentration on Crystallintiy and Dielectric Constant of the Sol-Gel Deposited Barium Strontium Titante (BST Films on n-Type Si Wafer

    Directory of Open Access Journals (Sweden)

    C.C. Tripathi

    2011-01-01

    Full Text Available Thin (Bax, Sr1 – xTiO3 (BST films of different chemical compositions (x = 0.3 0.5 & 0.7 were prepared by the sol-gel process using barium acetate, strontium acetate and titanium isopropoxide as metal alkoxides. The titanium isopropoxide was dissolved in acetyl acetone (chelating agent and mixing the resultant solution with barium and strontium acetate dissolved in acetic acid solution. The alkoxide group in titanium isopropoxide was replaced by acetate ligand and after hydrolysis and condensation process a complex solution was obtained. This solution was deposited on n-type (111 Si wafers by spin coating and after drying at 350 ºC the samples were annealed at 700 ºC in oxygen ambient. The precise control of composition of different species is important for producing good quality films having high crystallinity and dielectric constant. The crystallinity of the film was found to increase with the increase of Ba concentration as found from X-ray diffraction. The calculated value of dielectric constant from CV measurements revealed that the film of (Ba0.7, Sr0.3 TiO3 had the maximum dielectric constant as 463 and the surface was examined by SEM.

  8. Fabrication of barium- and strontium-doped silica/titania hollow nanoparticles and their synergetic effects on promoting neuronal differentiation by activating ERK and p38 pathways.

    Science.gov (United States)

    Kim, Sojin; Jang, Yoonsun; Oh, Wan-Kyu; Kim, Chanhoi; Jang, Jyongsik

    2014-07-01

    Pristine, barium-doped, and strontium-doped hollow nanoparticles (p-HNPs, Ba-HNP, and Sr-HNP; HNPs) are prepared by sonication-mediated etching and redeposition (SMER) method and alkali-earth-metal hydroxide solution treatment. The HNPs are investigated to facilitate synergetic neuronal differentiation through alkali-earth-metal doping and in conjunction with nerve growth factor (NGF). PC12 cells are used as model cells for neuronal differentiation. The differentiation efficiency is improved in the presence of the HNPs+NGF, and the neurite length is in the order of Sr-HNP+NGF > Ba-HNP+NGF > p-HNP+NGF > NGF. Silica/titania have increasing effect on both differentiation efficiency and neurite length, and doped barium/strontium influences additional elongation of the average neurite length. Take advantage of hollow structure, NGF is encapsulated into HNPs, and they are further applied for directly inducing differentiation. The maximum differentiation efficiency is 67% in presence of the NGF-encapsulated Sr-HNP, which was 1.3 times higher than previous research. Furthermore, the neurite length is also 2.7 times higher than MnO2 decorated poly(3,4-ethylenedioxythiophene) nanoellipsoids. Ba- and Sr-HNP may offer a possibility for novel application of metal-hybrid nanomaterials for cell differentiation, and can be expanded to other cellular applications.

  9. Fabrication of barium- and strontium-doped silica/titania hollow nanoparticles and their synergetic effects on promoting neuronal differentiation by activating ERK and p38 pathways.

    Science.gov (United States)

    Kim, Sojin; Jang, Yoonsun; Oh, Wan-Kyu; Kim, Chanhoi; Jang, Jyongsik

    2014-07-01

    Pristine, barium-doped, and strontium-doped hollow nanoparticles (p-HNPs, Ba-HNP, and Sr-HNP; HNPs) are prepared by sonication-mediated etching and redeposition (SMER) method and alkali-earth-metal hydroxide solution treatment. The HNPs are investigated to facilitate synergetic neuronal differentiation through alkali-earth-metal doping and in conjunction with nerve growth factor (NGF). PC12 cells are used as model cells for neuronal differentiation. The differentiation efficiency is improved in the presence of the HNPs+NGF, and the neurite length is in the order of Sr-HNP+NGF > Ba-HNP+NGF > p-HNP+NGF > NGF. Silica/titania have increasing effect on both differentiation efficiency and neurite length, and doped barium/strontium influences additional elongation of the average neurite length. Take advantage of hollow structure, NGF is encapsulated into HNPs, and they are further applied for directly inducing differentiation. The maximum differentiation efficiency is 67% in presence of the NGF-encapsulated Sr-HNP, which was 1.3 times higher than previous research. Furthermore, the neurite length is also 2.7 times higher than MnO2 decorated poly(3,4-ethylenedioxythiophene) nanoellipsoids. Ba- and Sr-HNP may offer a possibility for novel application of metal-hybrid nanomaterials for cell differentiation, and can be expanded to other cellular applications. PMID:24574036

  10. SELECTIVE REMOVAL OF STRONTIUM AND CESIUM FROM SIMULATED WASTE SOLUTION WITH TITANATE ION-EXCHANGERS IN A FILTER CARTRIDGE CONFIGURATIONS-12092

    Energy Technology Data Exchange (ETDEWEB)

    Oji, L.; Martin, K.; Hobbs, D.

    2011-11-10

    Experimental results for the selective removal of strontium and cesium from simulated waste solutions with monosodium titanate (MST) and crystalline silicotitanate (CST) laden filter cartridges are presented. In these proof-of-principle tests, effective uptake of both Sr-85 and Cs-137 were observed using ion-exchangers in this filter cartridge configuration. At low salt simulant conditions, the instantaneous decontamination factor (D{sub F}) for Sr-85 with MST impregnated filter membrane cartridges measured 26, representing 96% Sr-85 removal efficiency. On the other hand, the Sr-85 instantaneous D{sub F} with co-sintered active MST cartridges measured 40 or 98% Sr-85 removal efficiency. Strontium-85 removal with the MST impregnated membrane cartridges and CST impregnated membrane cartridges, placed in series arrangement, produced an instantaneous decontamination factor of 41 compared to an instantaneous decontamination factor of 368 for strontium-85 with co-sintered active MST cartridges and co-sintered active CST cartridges placed in series. Overall, polyethylene co-sintered active titanates cartridges performed as well as titanate impregnated filter membrane cartridges in the uptake of strontium. At low ionic strength conditions, there was a significant uptake of Cs-137 with co-sintered CST cartridges. Tests results with CST impregnated membrane cartridges for Cs-137 decontamination are currently being re-evaluated. Based on these preliminary findings we conclude that incorporating MST and CST sorbents into membranes represent a promising method for the semi-continuous removal of radioisotopes of strontium and cesium from nuclear waste solutions.

  11. Enhanced dielectric properties of poly(vinylidene fluoride) composites filled with nano iron oxide-deposited barium titanate hybrid particles.

    Science.gov (United States)

    Zhang, Changhai; Chi, Qingguo; Dong, Jiufeng; Cui, Yang; Wang, Xuan; Liu, Lizhu; Lei, Qingquan

    2016-01-01

    We report enhancement of the dielectric permittivity of poly(vinylidene fluoride) (PVDF) generated by depositing magnetic iron oxide (Fe3O4) nanoparticles on the surface of barium titanate (BT) to fabricate BT-Fe3O4/PVDF composites. This process introduced an external magnetic field and the influences of external magnetic field on dielectric properties of composites were investigated systematically. The composites subjected to magnetic field treatment for 30 min at 60 °C exhibited the largest dielectric permittivity (385 at 100 Hz) when the BT-Fe3O4 concentration is approximately 33 vol.%. The BT-Fe3O4 suppressed the formation of a conducting path in the composite and induced low dielectric loss (0.3) and low conductivity (4.12 × 10(-9) S/cm) in the composite. Series-parallel model suggested that the enhanced dielectric permittivity of BT-Fe3O4/PVDF composites should arise from the ultrahigh permittivity of BT-Fe3O4 hybrid particles. However, the experimental results of the BT-Fe3O4/PVDF composites treated by magnetic field agree with percolation theory, which indicates that the enhanced dielectric properties of the BT-Fe3O4/PVDF composites originate from the interfacial polarization induced by the external magnetic field. This work provides a simple and effective way for preparing nanocomposites with enhanced dielectric properties for use in the electronics industry. PMID:27633958

  12. Enhanced dielectric properties of poly(vinylidene fluoride) composites filled with nano iron oxide-deposited barium titanate hybrid particles

    Science.gov (United States)

    Zhang, Changhai; Chi, Qingguo; Dong, Jiufeng; Cui, Yang; Wang, Xuan; Liu, Lizhu; Lei, Qingquan

    2016-09-01

    We report enhancement of the dielectric permittivity of poly(vinylidene fluoride) (PVDF) generated by depositing magnetic iron oxide (Fe3O4) nanoparticles on the surface of barium titanate (BT) to fabricate BT–Fe3O4/PVDF composites. This process introduced an external magnetic field and the influences of external magnetic field on dielectric properties of composites were investigated systematically. The composites subjected to magnetic field treatment for 30 min at 60 °C exhibited the largest dielectric permittivity (385 at 100 Hz) when the BT–Fe3O4 concentration is approximately 33 vol.%. The BT–Fe3O4 suppressed the formation of a conducting path in the composite and induced low dielectric loss (0.3) and low conductivity (4.12 × 10‑9 S/cm) in the composite. Series-parallel model suggested that the enhanced dielectric permittivity of BT–Fe3O4/PVDF composites should arise from the ultrahigh permittivity of BT–Fe3O4 hybrid particles. However, the experimental results of the BT–Fe3O4/PVDF composites treated by magnetic field agree with percolation theory, which indicates that the enhanced dielectric properties of the BT–Fe3O4/PVDF composites originate from the interfacial polarization induced by the external magnetic field. This work provides a simple and effective way for preparing nanocomposites with enhanced dielectric properties for use in the electronics industry.

  13. Enhanced dielectric properties of poly(vinylidene fluoride) composites filled with nano iron oxide-deposited barium titanate hybrid particles.

    Science.gov (United States)

    Zhang, Changhai; Chi, Qingguo; Dong, Jiufeng; Cui, Yang; Wang, Xuan; Liu, Lizhu; Lei, Qingquan

    2016-01-01

    We report enhancement of the dielectric permittivity of poly(vinylidene fluoride) (PVDF) generated by depositing magnetic iron oxide (Fe3O4) nanoparticles on the surface of barium titanate (BT) to fabricate BT-Fe3O4/PVDF composites. This process introduced an external magnetic field and the influences of external magnetic field on dielectric properties of composites were investigated systematically. The composites subjected to magnetic field treatment for 30 min at 60 °C exhibited the largest dielectric permittivity (385 at 100 Hz) when the BT-Fe3O4 concentration is approximately 33 vol.%. The BT-Fe3O4 suppressed the formation of a conducting path in the composite and induced low dielectric loss (0.3) and low conductivity (4.12 × 10(-9) S/cm) in the composite. Series-parallel model suggested that the enhanced dielectric permittivity of BT-Fe3O4/PVDF composites should arise from the ultrahigh permittivity of BT-Fe3O4 hybrid particles. However, the experimental results of the BT-Fe3O4/PVDF composites treated by magnetic field agree with percolation theory, which indicates that the enhanced dielectric properties of the BT-Fe3O4/PVDF composites originate from the interfacial polarization induced by the external magnetic field. This work provides a simple and effective way for preparing nanocomposites with enhanced dielectric properties for use in the electronics industry.

  14. Effect of sulfur hexafluoride gas and post-annealing treatment for inductively coupled plasma etched barium titanate thin films

    Science.gov (United States)

    Wang, Cong; Li, Yang; Yao, Zhao; Kim, Hong-Ki; Kim, Hyung-Jun; Kim, Nam-Young

    2014-09-01

    Aerosol deposition- (AD) derived barium titanate (BTO) micropatterns are etched via SF6/O2/Ar plasmas using inductively coupled plasma (ICP) etching technology. The reaction mechanisms of the sulfur hexafluoride on BTO thin films and the effects of annealing treatment are verified through X-ray photoelectron spectroscopy (XPS) analysis, which confirms the accumulation of reaction products on the etched surface due to the low volatility of the reaction products, such as Ba and Ti fluorides, and these residues could be completely removed by the post-annealing treatment. The exact peak positions and chemicals shifts of Ba 3d, Ti 2p, O 1 s, and F 1 s are deduced by fitting the XPS narrow-scan spectra on as-deposited, etched, and post-annealed BTO surfaces. Compared to the as-deposited BTOs, the etched Ba 3d 5/ 2 , Ba 3d 3/ 2 , Ti 2p 3/ 2 , Ti 2p 1/ 2 , and O 1 s peaks shift towards higher binding energy regions by amounts of 0.55, 0.45, 0.4, 0.35, and 0.85 eV, respectively. A comparison of the as-deposited film with the post-annealed film after etching revealed that there are no significant differences in the fitted XPS narrow-scan spectra except for the slight chemical shift in the O 1 s peak due to the oxygen vacancy compensation in O2-excessive atmosphere. It is inferred that the electrical properties of the etched BTO film can be restored by post-annealing treatment after the etching process. Moreover, the relative permittivity and loss tangent of the post-annealed BTO thin films are remarkably improved by 232% and 2,695%, respectively.

  15. SELECTIVE REMOVAL OF STRONTIUM AND CESIUM FROM SIMULATED WASTE SOLUTION WITH TITANATE ION EXCHANGERS IN A FILTER CARTRIDGE CONFIGURATION

    Energy Technology Data Exchange (ETDEWEB)

    Oji, L.; Martin, K.; Hobbs, D.

    2011-05-26

    This report describes experimental results for the selective removal of strontium and cesium from simulated waste solutions using monosodium titanate (MST) and crystalline silicotitanate (CST)-laden filter cartridges. Four types of ion exchange cartridge media (CST and MST designed by both 3M and POROX{reg_sign}) were evaluated. In these proof-of-principle tests effective uptake of both Sr-85 and Cs-137 was observed. However, the experiments were not performed long enough to determine the saturation levels or breakthrough curve for each filter cartridge. POREX{reg_sign} MST cartridges, which by design were based on co-sintering of the active titanates with polyethylene particles, seem to perform as well as the 3M-designed MST cartridges (impregnated filter membrane design) in the uptake of strontium. At low salt simulant conditions (0.29 M Na{sup +}), the instantaneous decontamination factor (D{sub F}) for Sr-85 with the 3M-design MST cartridge measured 26, representing the removal of 96% of the Sr-85. On the other hand, the Sr-85 instantaneous D{sub F} with the POREX{reg_sign} design MST cartridge measured 40 or 98% removal of the Sr-85. Strontium removal with the 3M-design MST and CST cartridges placed in series filter arrangement produced an instantaneous decontamination factor of 41 or 97.6% removal compared to an instantaneous decontamination factor of 368 or 99.7% removal of the strontium with the POREX{reg_sign} MST and CST cartridge design placed in series. At high salt simulant conditions (5.6 M Na{sup +}), strontium removal with 3M-designed MST cartridge only and with 3M-designed MST and CST cartridges operated in a series configuration were identical. The instantaneous decontamination factor and the strontium removal efficiency, under the above configuration, averaged 8.6 and 88%, respectively. There were no POREX{reg_sign} cartridge experiments using the higher ionic strength simulant solution. At low salt simulant conditions, the uptake of Cs-137 with

  16. Growth temperature-dependent metal-insulator transition of vanadium dioxide epitaxial films on perovskite strontium titanate (111) single crystals

    Science.gov (United States)

    Wang, Liangxin; Yang, Yuanjun; Zhao, Jiangtao; Hong, Bin; Hu, Kai; Peng, Jinlan; Zhang, Haibin; Wen, Xiaolei; Luo, Zhenlin; Li, Xiaoguang; Gao, Chen

    2016-04-01

    Vanadium dioxide (VO2) epitaxial films were grown on perovskite single-crystal strontium titanate (SrTiO3) substrates by reactive radio-frequency magnetron sputtering. The growth temperature-dependent metal-insulator transition (MIT) behavior of the VO2 epitaxial films was then investigated. We found that the order of magnitude of resistance change across the MIT increased from 102 to 104 with increasing growth temperature. In contrast, the temperature of the MIT does not strongly depend on the growth temperature and is fairly stable at about 345 K. On one hand, the increasing magnitude of the MIT is attributed to the better crystallinity and thus larger grain size in the (010)-VO2/(111)-SrTiO3 epitaxial films at elevated temperature. On the other hand, the strain states do not change in the VO2 films deposited at various temperatures, resulting in stable V-V chains and V-O bonds in the VO2 epitaxial films. The accompanied orbital occupancy near the Fermi level is also constant and thus the MIT temperatures of VO2 films deposited at various temperatures are nearly the same. This work demonstrates that high-quality VO2 can be grown on perovskite substrates, showing potential for integration into oxide heterostructures and superlattices.

  17. Low-sintering condenser materials on the basis of barium titanate; Niedrig-sinternde Kondensatorwerkstoffe auf der Basis von Bariumtitanat

    Energy Technology Data Exchange (ETDEWEB)

    Naghib zadeh, Hamid

    2010-07-01

    The main objective of this work was the development of new barium titanate capacitor materials, which fully densified at a sintering temperature of 900 C and exhibit a high and almost temperature-independent dielectric constant as well as low dielectric loss. In order to decrease the sintering temperature of barium titanate from ca. 1300 C to 900 C, addition of various types of sintering aids have been tested. Li-containing sintering additives show the best result concerning densification and dielectric properties. By addition of 2 to 3 wt% (SrO-B{sub 2}O{sub 3}-Li{sub 2}O) -, (ZnO-B{sub 2}O{sub 3}-Li{sub 2}O) - or (LiF-SrCO{sub 3})-additive combinations to commercially available barium titanate powder 95 % of the theoretical density was achieved after sintering at 900 C. The sintered capacitor materials with the above mentioned additive combinations possess high dielectric constants from 1800 to 3590. It is well known that for a high temperature stability of dielectric constant the formation of core-shell structure in a fine-grained microstructure is required (average grain size < 1 {mu}m). For BaTiO{sub 3} samples contained 2 wt% LiF-SrCO{sub 3} is temperature coefficient of capacitance (TCC) relatively low. The TCC in temperature range between 0 C and 80 C is less than {+-} 15%. The formation of the core-shell structure in a fine-grained microstructure of this sample, which is required to have low TCC, was detected by TEM / EDX analyses. The significantly higher TCC for the BaTiO{sub 3} samples contained 3 wt% SrO-B{sub 2}O{sub 3}-Li{sub 2}O is due to the strong grain growth during sintering. To reduce the TCC in this sample Nb{sub 2}O{sub 5}-Co{sub 2}O{sub 3} was added. By addition of 1.5 wt% Nb{sub 2}O{sub 5}-Co{sub 2}O{sub 3} the temperature stability of the dielectric constant could be significantly improved as a result of the grain growth inhibition and the core-shell formation during sintering. For BaTiO{sub 3} samples contained ZnO-B{sub 2}O{sub 3}-Li

  18. An overview on the progresses of high performance barium titanate/polymer composites%高性能钛酸钡/聚合物复合材料的研究进展

    Institute of Scientific and Technical Information of China (English)

    张亮; 肖定全

    2012-01-01

    具有高介电常数(k)的钛酸钡/聚合物复合材料,兼有钛酸钡陶瓷和聚合物的各自优势,是一种有广泛应用前景的电子材料,因而备受关注。综合给出了近5年来高性能钛酸钡/聚合物复合材料的研究进展,分析指出了原材料选择、制备工艺及其对复合材料介电性能的影响,概括介绍了这类复合材料的主要应用,预测展望了其未来的发展趋势。%Barium titanate/polymer composites with high dielectric constant (k) were very promising electronic materials because the composites combined the advantages of barium titanate ceramics and polymers individual- ly. In this paper, the research progresses of high performance barium titanate/polymer composites in recent five years are outlined, the choosing of raw materials and the preparation technologies and their influence on the die- lectric properties of the composites are pointed out, the major applications of the composites are introduced, and the development trend and the future prospect of barium titanate/polymer composites are reviewed.

  19. CHARACTERIZATION OF MODIFIED MONOSODIUM TITANATE - AN IMPROVED SORBENT FOR STRONTIUM AND ACTINIDE SEPARATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Hobbs, D.; Taylor-Pashow, K.; Missimer, D.

    2010-12-21

    High-level nuclear waste produced from fuel reprocessing operations at the Savannah River Site (SRS) requires pretreatment to remove {sup 134,137}Cs, {sup 90}Sr, and alpha-emitting radionuclides (i.e., actinides) prior to disposal onsite as low level waste. An inorganic sorbent, monosodium titanate (MST), is currently used to remove {sup 90}Sr and alpha-emitting radionuclides, while a caustic-side solvent extraction process is used for removing {sup 134,137}Cs. A new peroxotitanate material, modified MST, or mMST, has recently been developed and has shown increased removal kinetics and capacity for {sup 90}Sr and alpha-emitting radionuclides compared to the current baseline material, MST. This paper describes recent results focused on further characterization of this material.

  20. Study of the effect of ionizing radiation on composites of wood flour in polypropylene matrix using barium titanate as coupling agent

    International Nuclear Information System (INIS)

    The purpose of this work was to study the effects of ionizing radiation on the properties of wood flour composites in polypropylene matrix, using barium titanate as a coupling agent and the reactive monomer tripropylene glycol diacrylate (TPDGA). An electron accelerator was used in the study as the radiation source. The physical properties of virgin compounds and of the polypropylene/wood flour composite, with and without barium titanate and TPDGA addition, were investigated. The composites were developed from the load treatment, which first consisted of incorporating additives to the wood flour reinforcement and after that, the fusion process of polypropylene and composite mixing in a 'calander'. Subsequently, the samples to be irradiated and submitted to thermal and mechanical assays were molded by injection. The mechanical properties (hardness, impact resistance and molten fluidity index (MFI)), as well as the thermal properties (HDT and Vicat) of the composites were determined. The investigated compositions consisted of polypropylene/wood flour, polypropylene/wood flour with barium titanate and polypropylene/wood flour with barium titanate and TPDGA, using different wood flour concentrations of 10 por cent, 15 por cent and 20 por cent in the polypropylene matrix. The samples were separated in groups and irradiated to doses of 10 kGy and 20 kGy in the samples of the essays of traction. Besides these doses, it was also used doses of 15 kGy and 25 kGy to be observed the behavior of the sample of the sample due to the increase of the radiation. These doses were chosen to show that with low doses the composite material presents reticulation, what represents a viable commercial option. There was a reduction of the flow rate for the composites containing wood flour, being this reduction more effective in the presence of TiBa. The superficial treatment using TPDGA monomer influence in the composite samples because it acted as a plastic additive becoming the sample

  1. Effects of focused ion beam milling on electron backscatter diffraction patterns in strontium titanate and stabilized zirconia.

    Science.gov (United States)

    Saowadee, N; Agersted, K; Bowen, J R

    2012-06-01

    This study investigates the effect of focused ion beam (FIB) current and accelerating voltage on electron backscatter diffraction pattern quality of yttria-stabilized zirconia (YSZ) and Nb-doped strontium titanate (STN) to optimize data quality and acquisition time for 3D-EBSD experiments by FIB serial sectioning. Band contrast and band slope were used to describe the pattern quality. The FIB probe currents investigated ranged from 100 to 5000 pA and the accelerating voltage was either 30 or 5 kV. The results show that 30 kV FIB milling induced a significant reduction of the pattern quality of STN samples compared to a mechanically polished surface but yielded a high pattern quality on YSZ. The difference between STN and YSZ pattern quality is thought to be caused by difference in the degree of ion damage as their backscatter coefficients and ion penetration depths are virtually identical. Reducing the FIB probe current from 5000 to 100 pA improved the pattern quality by 20% for STN but only showed a marginal improvement for YSZ. On STN, a conductive coating can help to improve the pattern quality and 5 kV polishing can lead to a 100% improvement of the pattern quality relatively to 30 kV FIB milling. For 3D-EBSD experiments of a material such as STN, it is recommended to combine a high kV FIB milling and low kV polishing for each slice in order to optimize the data quality and acquisition time. PMID:22582798

  2. Adsorption of Pb(II) present in aqueous solution on calcium, strontium and barium hydroxy apatites; Adsorcion de Pb(II) presente en solucion acuosa sobre hidroxiapatitas de calcio, estroncio y bario

    Energy Technology Data Exchange (ETDEWEB)

    Vilchis G, J.

    2013-07-01

    Calcium, strontium and barium hydroxy apatites were successfully synthesized by chemical precipitation method, the obtained powders were characterized by the techniques of X-ray diffraction (XRD), scanning electron microscopy (Sem), semi-quantitative elemental analysis (EDS), infrared spectroscopy (IR), and N{sub 2} physisorption studies, complementary to these analytical techniques, was determined the surface fractal dimension (Df), and the amount of surface active sites of the materials, in order to know application as ceramic for water remediation. The ability of Pb(II) ion adsorption present in aqueous solution on the hydroxy apatites synthesized by batch type experiments was studied as a function of contact time, concentration of the adsorbate and temperature. The maximum lead adsorption efficiencies obtained were 0.31, 0.32 and 0.26 mg/g for calcium, strontium and barium hydroxy apatites respectively, achieved an equilibrium time of 20 minutes in the three solid-liquid systems studied. Experimental data were adequately adjusted at the adsorption kinetic model pseudo-second order, for the three cases. Moreover, experimental data of the strontium and calcium hydroxy apatites were adjusted to the Langmuir adsorption isotherm, indicating that the adsorption was through a monolayer, whereas barium hydroxyapatite was adjusted to the Freundlich adsorption isotherm, indicating a multilayer adsorption. The thermodynamic parameters obtained during adsorption studies as a function of temperature showed physisorption, exothermic and spontaneous processes respectively. The results showed that the calcium hydroxyapatite, strontium and barium are an alternative for the Pb(II) ion adsorption present in wastewaters. (Author)

  3. Short-range order and fractal cluster structure of aggregates of barium titanate microparticles in a composite based on cyano-ethyl ester of polyvinyl alcohol

    Science.gov (United States)

    Krasovskii, A. N.; Novikov, D. V.; Vasina, E. S.; Matveichikova, P. V.; Sychev, M. M.; Rozhkova, N. N.

    2015-12-01

    The distribution of barium titanate (BaTiO3) microparticles in the matrix of cyano-ethyl ester of polyvinyl alcohol and the change in the surface energy upon introduction of shungite carbon nanoclusters into the dielectric composite have been investigated using the methods of scanning electron microscopy and contact angles. The computer processing of the electron microscopy data has demonstrated that the introduction of 0.04% shungite carbon nanoparticles into the composite leads to a decrease in the spatial homogeneity of the quasi-lattice and to an increase in the local density distribution of BaTiO3 microparticles, as well as in the correlation length corresponding to the formation of an infinite cluster of BaTiO3 particles. It has been found that, in this case, the surface energy and dielectric permittivity of the composite extremely increase.

  4. Synthesis of barium titanate crystalline nanoparticles using hydrothermal microwave method; Obtencao de nanoparticulas cristalinas de titanato de bario usando metodo hidrotermal assistido por microondas

    Energy Technology Data Exchange (ETDEWEB)

    Souza, A.E.; Silva, R.A.; Teixeira, S.R. [Universidade Estadual Paulista (DFQB/FCT/UNESP), Presidente Prudente, SP (Brazil). Dept. de Fisica, Quimica e Biologia. Lab. de Compositos e Ceramicas Funcionais; Moreira, M.L. [Universidade Federal de Sao Carlos (LiEC/UFSCAR), SP (Brazil). Lab. Interdisciplinar de Eletroquimica e Ceramica; Volanti, D.P.; Longo, E. [Universidade Estadual Paulista (LiEC/UNESP), Araraquara, SP (Brazil). Lab. Interdisciplinar de Eletroquimica e Ceramica

    2009-07-01

    The hydrothermal microwave method (HTMW) was used in the synthesis of barium titanate (BaTiO{sub 3}) nanoparticles. The solution was prepared in deionized water by using titanium (IV) isopropoxide (C{sub 12}H{sub 28}O{sub 4}Ti), barium chloride (BaCl{sub 2}.2H{sub 2}O) and potassium hydroxide (KOH). Afterwards it was heated in an adapted conventional microwave oven. The system is composed of a temperature controller with thermocouple, a hermetic camera of reaction made of teflon, a manometer and a safety valve. The solution was heated to 140 deg C, at a 140 deg C/min heating rate, and maintained at this temperature for 40 minutes. The obtained ceramic powder was characterized by using X-ray diffraction (XRD) and field emission scanning electron microscopy (FE-SEM). The XRD data confirms the formation of a high crystalline ceramic material with perovskite structure. The FE-SEM images reveal morphologies with dimensions varying from 27 to 54 nm. (author)

  5. Performance study on a new type of strontium and barium scale inhibitor TH-607B for oil fields%一种新型油田用钡锶阻垢剂TH-607B的性能研究

    Institute of Scientific and Technical Information of China (English)

    贺茂才; 孙群峰; 田忠伟; 刘见; 高灿柱

    2012-01-01

    针对油田生产中结垢严重,尤其是锶、钡垢难以解决的问题,研制了一种新型油田用钡锶阻垢剂TH-607B.通过与多种常规油田阻垢剂的阻垢性能进行对比,研究了其抑制碳酸钙、硫酸钙、硫酸钡、硫酸锶垢的情况.通过考察各种条件对TH-607B的阻垢率的影响,探究了TH-607B对油田水中钡、锶阻垢的适用范围.试验结果表明,TH-607B在高温、高盐、低pH或高pH下均具有良好的阻钡锶垢能力;其良好的耐高温、耐盐性、宽pH范围适应性将使其具有广泛的应用.现场应用表明,TH-607B对油田水结垢和腐蚀问题起到很大改善作用,阻垢率达90%以上.%Due to the serious scaling problem in oil fields,especially strontium and barium scaling,a new type of barium and strontium scale inhibitor TH-607B for oil fields is developed. TH-607B is compared with several conventional scale inhibitors used in oil field. Inhibition scale performance of TH-607B and several scale inhibitors for calcium carbonate, calcium sulfate, barium sulfate and strontium sulfate is studied. The inhibition efficiency is measured according to Trade Standard SY/ T 5673-1993. The factors affecting the inhibiting rate of barium sulfate and strontium sulfate are studied. The experimental results demonstrate that TH-607B has good inhibition scale effect on barium sulfate and strontium sulfate under high temperature, high salts, high pH or low pH conditions. It will have extensive application because of its good performance in circumstance of high temperature, high salts and wide pH range. The practical application of TH-607B oil fields indicates that TH-607B has good inhibition scale and corrosion effect. The scale inhibiting rate can be over 90%.

  6. Quasi-rapid thermal annealing studies on barium strontium titanate thin films deposited on fused silica substrates

    Energy Technology Data Exchange (ETDEWEB)

    Venkata Saravanan, K., E-mail: vsk@ua.pt; James Raju, K.C., E-mail: kcjrsp@uohyd.ernet.in

    2013-09-15

    Highlights: •Nano-crystalline BST films were obtained on amorphous fused silica substrates. •Crystallization was induced by quasi-RTA, a cost effective approach. •No evidence of residual strain or surface layer was observed in the annealed films. •Dielectric properties @10 GHz were measured using split post dielectric resonator. •Crystallization result in higher density, conductivity, dielectric const. and tan δ. -- Abstract: Thin films of (Ba{sub 0.5},Sr{sub 0.5})TiO{sub 3} (BST5) were deposited at ambient temperature on fused silica substrates by RF magnetron sputtering technique. Nano-crystalline films were obtained upon quasi-rapid thermal annealing (Q-RTA) at temperatures ⩾800 °C for 60 s. The influence of Q-RTA temperature on the structural, morphological, optical and microwave dielectric properties of BST5 thin films have been investigated. The as-deposited and Q-RTA films annealed up to 700 °C were amorphous in nature. On increasing the Q-RTA temperature to 800 °C and above resulted in an amorphous–crystalline phase transition in the films. All the crystalline films show similar full width at half maxima (FWHM) and hence, similar crystallite size of about 12 ± 1 nm. The amorphous–crystalline transition was accompanied by a decrease in the optical band gap from 4.5 to 3.6 and increase in the refractive index from 1.9 to 2.2 as well as in the microwave dielectric constant from 40 to 262. The Root Mean Square roughness (RMS{sub roughness}) as measured from AFM show an increase from 0.6 nm to 5.6 nm with an increase in Q-RTA temperature from 400 °C to 1000 °C.

  7. Discontinuous temperature-dependent macroscopic strain due to ferroelastic domain switching and structural phase transitions in barium strontium titanate

    International Nuclear Information System (INIS)

    Remnant strain has been measured as a function of temperature in (Ba0.8Sr0.2)TiO3 (BST) ceramic by mechanical poling in three point bending configuration. BST ceramic exhibits recoverable macroscopic strain with shape memory effect and three jumps in the temperature-dependent strain during thermal cycling under applied force. The jumps are associated with the three structural phase transitions of BST, as confirmed by the simultaneous measurements of dynamic modulus and internal friction. In addition, the orthorhombic phase of BST exhibits a significantly higher strain comparing to that in the tetragonal and rhombohedral phases. X-ray diffraction confirms that the macroscopic strain is due to ferroelastic domain switching and particularly the dominant contribution to the higher macroscopic strain at orthorhombic phase is the higher probability of non-180 deg. domain switching rather than the variation of domain switching strain at different phases

  8. Study on the Microstructure and Dielectric Properties of Barium Strontium Titanate Thin Films Prepared by Sol-gel Method

    Institute of Scientific and Technical Information of China (English)

    SHAN Lian-wei; ZHANG Xian-you; DONG Li-min; WU Ze; HAN Zhi-dong; FU Xing-hua; HOU Wen-ping

    2006-01-01

    Sr0.5Ba0.5-xBixTiO3 (BST) thin films were fabricated on a Pt/SiO2/Si substrate by the sol-gel method. Then follows an investigation of the influences of bismuth (Bi) on the microstructures and the dielectric properties of Sr0.5Ba0.5-xBixTiO3 (BST) thin films. The microstructures of the BST thin films were examined by the XRD and the TEM techniques. Tetragonal perovskite crystal grains were observed in BST thin films. Increasing Bi3+ doping ration in BST will lead to decrease of the grain size. It is found that Bi3+ doping decreases the dielectric loss and improves the frequency dispersion of the BST thin films. Not only is compressed the peak of temperature-dependence of dielectric constant of Bi3+-doped BST thin films but also moves into the low-temperature region. Moreover, the average Curie temperature decreases gradually with the Bi3+ contents increasing.

  9. Effect of rare earth substitution on properties of barium strontium titanate ceramic and its multiferroic composite with nickel cobalt ferrite

    Energy Technology Data Exchange (ETDEWEB)

    Pahuja, Poonam [Department of Physics and Astrophysics, University of Delhi, Delhi 110007 (India); Kotnala, R.K. [National Physical Laboratory, Delhi 110012 (India); Tandon, R.P., E-mail: rt241150@gmail.com [Department of Physics and Astrophysics, University of Delhi, Delhi 110007 (India)

    2014-12-25

    Highlights: • Rare earth ions Dy{sup 3+}, Gd{sup 3+} and Sm{sup 3+} have been substituted in Ba{sub 0.95}Sr{sub 0.05}TiO{sub 3} (BST). • Ni{sub 0.8}Co{sub 0.2}Fe{sub 2}O{sub 4} has been used as ferrimagnetic phase to obtain composites. • Substitution of these ions increases dielectric constant of BST and composites. • Magnetoelectric coefficient of composites increases on substitution of these ions. - Abstract: Effect of substitution of rare earth ions (Dy{sup 3+}, Gd{sup 3+} and Sm{sup 3+}) on various properties of Ba{sub 0.95}Sr{sub 0.05}TiO{sub 3} (BST) i.e. the composition Ba{sub 0.95−1.5x}Sr{sub 0.05}R{sub x}TiO{sub 3} (where x = 0.00, 0.01, 0.02, 0.03 and R are rare earths Dy, Gd, Sm) and that of their multiferroic composite with Ni{sub 0.8}Co{sub 0.2}Fe{sub 2}O{sub 4} (NCF) has been studied. Shifting of peaks corresponding to different compositions in the X-ray diffraction pattern confirmed the substitution of rare earth ions at both Ba{sup 2+} and Ti{sup 4+} sites in BST. It is clear from scanning electron microscopy (SEM) images that rare earth substitution in BST increases its grain size in both pure and composite samples. Substitution of rare earth ions results in increase in value of dielectric constant of pure and composite samples. Sm substitution in BST significantly decreases its Curie temperature. Dy substituted pure and composite samples possess superior ferroelectric properties as confirmed by polarization vs electric field (P–E) loops. Composite samples containing Dy, Gd and Sm substituted BST as ferroelectric phase possess lower values of remanent and saturation magnetizations in comparison to composite sample containing pure BST as ferroelectric phase (BSTC). Rare earth substituted composite samples possess higher value of magnetoelectric coefficient as compared to that for BSTC.

  10. Analysis of the optical properties of Er{sup 3+}-doped strontium barium niobate nanocrystals using time-resolved laser spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Kowalska, D.; Haro-Gonzalez, P. [Universidad de La Laguna, Departamento de Fisica Fundamental, Experimental, Electronica y Sistemas, La Laguna, Tenerife (Spain); Martin, I.R. [Universidad de La Laguna, Departamento de Fisica Fundamental, Experimental, Electronica y Sistemas, La Laguna, Tenerife (Spain); Malta Consolider Team, La Laguna, Tenerife (Spain); Caceres, J.M. [Universidad de La Laguna, Departamento de Edafologia y Geologia, La Laguna, Tenerife (Spain)

    2010-06-15

    This paper reports the results obtained in strontium barium niobate (SBN) nanocrystals in glasses doped with 1, 2.5 and 5 mol% of Er{sup 3+} ions. The melt-quenching method was applied to fabricate the glasses with composition SrO-BaO-Nb{sub 2}O{sub 5}-B{sub 2}O{sub 3} and further thermal treatment was used to obtain glass ceramic samples from the glass precursor. X-ray diffraction patterns confirmed the formation of SBN nanocrystals with an average size of about 50 nm in diameter. Time-resolved fluorescence spectra for the emission of Er{sup 3+} ions at 1550 nm have been analyzed in order to confirm the incorporation of the Er{sup 3+} ions into the nanocrystals. Green frequency upconversion emission under excitation at 975 nm coming from the ions in the nanocrystals has been obtained. This intense upconversion is about a factor of 500 higher than that obtained from the ions which reside in the glassy phase. Moreover, temporal evolution studies have been carried out with the purpose of determining the involved upconversion mechanism and the importance of these processes as a source of losses for the optical amplification at 1550 nm. (orig.)

  11. Low leakage Ru-strontium titanate-Ru metal-insulator-metal capacitors for sub-20 nm technology node in dynamic random access memory

    Energy Technology Data Exchange (ETDEWEB)

    Popovici, M., E-mail: Mihaela.Ioana.Popovici@imec.be; Swerts, J.; Redolfi, A.; Kaczer, B.; Aoulaiche, M.; Radu, I.; Clima, S.; Everaert, J.-L.; Van Elshocht, S.; Jurczak, M. [Imec, Leuven 3001 (Belgium)

    2014-02-24

    Improved metal-insulator-metal capacitor (MIMCAP) stacks with strontium titanate (STO) as dielectric sandwiched between Ru as top and bottom electrode are shown. The Ru/STO/Ru stack demonstrates clearly its potential to reach sub-20 nm technology nodes for dynamic random access memory. Downscaling of the equivalent oxide thickness, leakage current density (J{sub g}) of the MIMCAPs, and physical thickness of the STO have been realized by control of the Sr/Ti ratio and grain size using a heterogeneous TiO{sub 2}/STO based nanolaminate stack deposition and a two-step crystallization anneal. Replacement of TiN with Ru as both top and bottom electrodes reduces the amount of electrically active defects and is essential to achieve a low leakage current in the MIM capacitor.

  12. Co-precipitation of radium with barium and strontium sulfate and its impact on the fate of radium during treatment of produced water from unconventional gas extraction.

    Science.gov (United States)

    Zhang, Tieyuan; Gregory, Kelvin; Hammack, Richard W; Vidic, Radisav D

    2014-04-15

    Radium occurs in flowback and produced waters from hydraulic fracturing for unconventional gas extraction along with high concentrations of barium and strontium and elevated salinity. Radium is often removed from this wastewater by co-precipitation with barium or other alkaline earth metals. The distribution equation for Ra in the precipitate is derived from the equilibrium of the lattice replacement reaction (inclusion) between the Ra(2+) ion and the carrier ions (e.g., Ba(2+) and Sr(2+)) in aqueous and solid phases and is often applied to describe the fate of radium in these systems. Although the theoretical distribution coefficient for Ra-SrSO4 (Kd = 237) is much larger than that for Ra-BaSO4 (Kd = 1.54), previous studies have focused on Ra-BaSO4 equilibrium. This study evaluates the equilibria and kinetics of co-precipitation reactions in Ra-Ba-SO4 and Ra-Sr-SO4 binary systems and the Ra-Ba-Sr-SO4 ternary system under varying ionic strength (IS) conditions that are representative of brines generated during unconventional gas extraction. Results show that radium removal generally follows the theoretical distribution law in binary systems and is enhanced in the Ra-Ba-SO4 system and restrained in the Ra-Sr-SO4 system by high IS. However, the experimental distribution coefficient (Kd') varies widely and cannot be accurately described by the distribution equation, which depends on IS, kinetics of carrier precipitation and does not account for radium removal by adsorption. Radium removal in the ternary system is controlled by the co-precipitation of Ra-Ba-SO4, which is attributed to the rapid BaSO4 nucleation rate and closer ionic radii of Ra(2+) with Ba(2+) than with Sr(2+). Carrier (i.e., barite) recycling during water treatment was shown to be effective in enhancing radium removal even after co-precipitation was completed. Calculations based on experimental results show that Ra levels in the precipitate generated in centralized waste treatment facilities far

  13. Atomic layer deposition of strontium titanate films from Sr({sup i}Pr{sub 3}Cp){sub 2}, Ti[N(CH{sub 3}){sub 2}]{sub 4} and H{sub 2}O

    Energy Technology Data Exchange (ETDEWEB)

    Rentrop, S., E-mail: solveig.rentrop@physik.tu-freiberg.de [Institut für Experimentelle Physik, TU Bergakademie Freiberg, Leipziger Str. 23, 09596 Freiberg (Germany); Moebus, T.; Abendroth, B.; Strohmeyer, R. [Institut für Experimentelle Physik, TU Bergakademie Freiberg, Leipziger Str. 23, 09596 Freiberg (Germany); Schmid, A. [Institut für Angewandte Physik, TU Bergakademie Freiberg, Leipziger Str. 23, 09596 Freiberg (Germany); Weling, T. [Institut für Physikalische Chemie, TU Bergakademie Freiberg, Leipziger Str. 29, 09596 Freiberg (Germany); Hanzig, J.; Hanzig, F.; Stöcker, H.; Meyer, D.C. [Institut für Experimentelle Physik, TU Bergakademie Freiberg, Leipziger Str. 23, 09596 Freiberg (Germany)

    2014-01-01

    Strontium titanate is a promising insulator material in resistance switching random access memories. Strontium titanate thin films are prepared by atomic layer deposition from bis(tri-isopropylcyclopentadienyl)-strontium (Sr({sup i}Pr{sub 3}Cp){sub 2}), Tetrakis-(dimethylamido)titanium(IV) (Ti[N(CH{sub 3}){sub 2}]{sub 4}) and water at a substrate temperature of 300 °C. The layer stoichiometry is analyzed by X-ray fluorescence spectroscopy for the main element composition and by X-ray photoelectron spectroscopy to detect light element contamination. A significant carbon contamination is found whereas nitrogen is not detected. These results are discussed with possible decomposition reactions of the Sr({sup i}Pr{sub 3}Cp){sub 2} molecule at the given deposition temperature. The film microstructure is characterized by grazing incidence X-ray diffraction. Optical and electrical characterizations show that the strontium titanate layers are transparent up to an optical gap of 3.85 eV and insulating. - Highlights: • Strontium titanate layers were grown from Ti[N(CH{sub 3}){sub 2}]{sub 4}, Sr({sup i}Pr{sub 3}Cp){sub 2} and H{sub 2}O. • A Sr/Ti pulse ratio of 1:1 results in a layer stoichiometry of Sr/Ti ≈ 1.25. • X-ray photoelectron spectroscopy shows C contamination after surface sputtering. • C incorporation can be caused by incomplete dissociation of Sr({sup i}Pr{sub 3}Cp){sub 2}. • We suppose that at 300 °C Sr({sup i}Pr{sub 3}Cp){sub 2} dissociated not at the desired Sr-Cp bond.

  14. Preparation and Characterization on Nano-Sized Barium Titanate Powder Doped with Lanthanum by Sol-Gel Process

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The nano-sized BaTiO3:La3+ powders were prepared by sol-gel process using butyl phthalate, barium acetate and lanthanum oxide as raw material, and these samples were tested by means of TG-DTA, XRD and SEM. The results indicate that with the annealing temperature and the doped concentration rising, the powders' particle sizes will increase and decrease respectively. When annealing temperature is 900 ℃ and doped concentration is 7%, the phase is cubic without other phases, and the particle size of power is 43.34 nm.

  15. Barium titanate particle model inquiry through effective permittivity measurements and boundary integral equation method based simulations of the BaTiO{sub 3}-epoxy resin composite material

    Energy Technology Data Exchange (ETDEWEB)

    Orlowska, S [Ecole Centrale de Lyon, Centre de Genie Electrique de Lyon, CNRS UMR 5005, 69134 Ecully (France); Beroual, A [Ecole Centrale de Lyon, Centre de Genie Electrique de Lyon, CNRS UMR 5005, 69134 Ecully (France); Fleszynski, J [Institute of Fundamental Electrotechnics and Electrotechnology, University of Technology of Wroclaw, Wroclaw (Poland)

    2002-10-21

    The heterogeneous mixture properties depend on its constituents' characteristics. We examine the effective permittivity of a two-phase composite material made of epoxy resin host matrix and barium titanate (BaTiO{sub 3}) filler for different volume fractions in the matrix. The task we undertake consists in finding a model of BaTiO{sub 3} particles through the computer simulations executed in PHI3D-electric field calculating package, based on the resolution of the Laplace equation using boundary integral equation method. With this aim in view we compare the measured results of the effective permittivity of the BaTiO{sub 3}-epoxy resin composite samples with the simulation results for different BaTiO{sub 3} particle geometric models and for the same experimental conditions, with regard to the given volume fraction of the powder in the matrix. The experimental results are obtained through the measurements with an impedance meter in the range of frequencies from 50 Hz to 1 MHz.

  16. INFLUENCE OF REOXIDATION ON SILICA-CONTAINING BARIUM TITANATE CERAMICS FOR PTCR THERMISTORS PREPARED BY TAPE CASTING

    Directory of Open Access Journals (Sweden)

    Jianqiao Liu

    2016-03-01

    Full Text Available Silica-containing barium-rich BaTiO₃ ceramics for thermistors with a positive temperature coefficient of resistance are prepared by a tape-casting technique. The ceramics are sintered in a reducing atmosphere at low temperatures of 1175-1225°C. The influences of reoxidation are investigated after the reduced ceramics are reoxidized in air at 700-900°C. An anomalous correlation is illustrated between room temperature resistivity and reoxidation temperature. The anomaly results from the ferroelectricity rebuilding mechanism, which includes the spontaneous polarization theory and the ferroelectricity degradation caused by oxygen vacancies. The acceptor-state densities are estimated from the temperature-dependent resistivity. A critical temperature of 750-800°C is concluded for the grain boundary reoxidation.

  17. Structural Properties of Nonstoichiometric Barium and Strontium Peroxides: BaO 2- x (1.97≥2- x≥1.72) and SrO 2- x (1.98≥2- x≥1.90)

    Science.gov (United States)

    Königstein, Markus

    1999-11-01

    The crystal structures of eight single crystals of barium and strontium peroxide, prepared by high pressure-high temperature synthesis, were determined by X-ray diffraction. The crystallographic data were successfully refined in the calcium carbide structure (space group I4/mmm, Z=2). The results clearly indicate that the peroxides are nonstoichiometric compounds, MO2-x (M=Ba, Sr), with a peroxide deficiency and that oxide ions are present on interstitial lattice sites. The composition rage extends from near stoichiometry to compounds with a total oxygen content of 1.72 in the barium and 1.90 in the strontium peroxide. We find that the oxide ions, replacing the peroxide molecular ions, occupy an interstitial position that is in the middle of the replaced peroxide molecular ion. A decrease of the peroxide content in the crystals results in a decreased c-axis of the tetragonal unit cell of the structure, while the a-axis is almost constant. Furthermore, the peroxide bond length decreases, as was confirmed by Raman spectroscopy.

  18. 简捷水热前驱物技术制备钛酸钡纳米棒与纳米球%Facile Hydrothermal Single-source Approach to Barium Titanate Nanorods and Nanospheres Preparation

    Institute of Scientific and Technical Information of China (English)

    安长华; 王淑涛; 刘春英; 柳云骐

    2006-01-01

    A facile synthesis route has been developed to prepare barium titanate nanoparitcles via a low temperature (120 ℃) hydrothermal decomposition of single-source metal-organic precursor. A mixture of tetramethylam-monium hydroxide (TMAH) and distilled water was used as reaction media, and Barium titanium ethyl-hexano-isoproxide [BaTi(O2CC7H15)(OC3H7)5] was used as precursor. The architecture of products can be selectively controlled from nanorods to nanospheres by adjusting the precursor's concentration in the reaction system. Powder Xray diffraction (XRD) analysis indicated that the products were in cubic phase. Transmission electronic microscopy (TEM) observation showed that the nanospheres were 30~50 nm in diameter, and the nanorods were 5~10 nm in diameter and 100~600 nm in length, respectively. Phase transformation behavior of the as-prepared products was also investigated.

  19. Participation of MicroRNA-34a and RANKL on bone repair induced by poly(vinylidene-trifluoroethylene)/barium titanate membrane.

    Science.gov (United States)

    Lopes, Helena B; Ferraz, Emanuela P; Almeida, Adriana L G; Florio, Pedro; Gimenes, Rossano; Rosa, Adalberto L; Beloti, Marcio M

    2016-09-01

    The poly(vinylidene-trifluoroethylene)/barium titanate (PVDF) membrane enhances in vitro osteoblast differentiation and in vivo bone repair. Here, we hypothesized that this higher bone repair could be also due to bone resorption inhibition mediated by a microRNA (miR)/RANKL circuit. To test our hypothesis, the large-scale miR expression of bone tissue grown on PVDF and polytetrafluoroethylene (PTFE) membranes was evaluated to identify potential RANKL-targeted miRs modulated by PVDF. The animal model used was rat calvarial defects implanted with either PVDF or PTFE. At 4 and 8 weeks, the bone tissue grown on membranes was submitted to a large-scale analysis of miRs by microarray. The expression of miR-34a and some of its targets, including RANKL, were evaluated by real-time polimerase chain reaction and osteoclast activity was detected by tartrate-resistant acid phosphatase (TRAP) staining. Among more than 250 miRs, twelve, including miR-34a, were simultaneously higher expressed (≥2 fold) at 4 and 8 weeks on PVDF. The higher expression of miR-34a was concomitant with a reduced expression of all its evaluated targets, including RANKL. Additionally, more TRAP-positive cells were observed in bone tissue grown on PTFE compared with PVDF in both time points. In conclusion, our results suggest that the higher bone formation induced by PVDF could be, at least in part, triggered by a miR-34a increase and RANKL decrease, which may inhibit osteoclast differentiation and activity, and bone resorption. PMID:27312544

  20. DEVELOPMENT OF AN IMPROVED TITANATE-BASED SORBENT FOR STRONTIUM AND ACTINIDE SEPARATIONS UNDER STRONGLY ALKALINE CONDITIONS

    Energy Technology Data Exchange (ETDEWEB)

    Hobbs, D.; Peters, T.; Taylor-Pashow, K.; Fink, S.

    2010-02-18

    High-level nuclear waste produced from fuel reprocessing operations at the Savannah River Site (SRS) requires pretreatment to remove {sup 134,137}Cs, {sup 90}Sr, and alpha-emitting radionuclides (i.e., actinides) prior to disposal onsite as low level waste. Separation processes at SRS include the sorption of {sup 90}Sr and alpha-emitting radionuclides onto monosodium titanate (MST) and caustic side solvent extraction of {sup 137}Cs. The MST and separated {sup 137}Cs is encapsulated along with the sludge fraction of high-level waste (HLW) into a borosilicate glass waste form for eventual entombment at a federal repository. The predominant alpha-emitting radionuclides in the highly alkaline waste solutions include plutonium isotopes {sup 238}Pu, {sup 239}Pu, and {sup 240}Pu; {sup 237}Np; and uranium isotopes, {sup 235}U and {sup 238}U. This paper describes recent results evaluating the performance of an improved sodium titanate material that exhibits increased removal kinetics and capacity for {sup 90}Sr and alpha-emitting radionuclides compared to the current baseline material, MST.

  1. Synthesis and characterization of Ho{sup 3+}-doped strontium titanate downconversion nanocrystals and its application in dye-sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Li, Y.Y. [Department of Inorganic Nonmetallic Materials Engineering, Dalian Polytechnic University, Dalian 116034 (China); Liaoning Provincial College Key Laboratory of New Materials and Material Modification, Dalian Polytechnic University, Dalian 116034 (China); Hao, H.S., E-mail: beike1952@163.com [Department of Inorganic Nonmetallic Materials Engineering, Dalian Polytechnic University, Dalian 116034 (China); Liaoning Provincial College Key Laboratory of New Materials and Material Modification, Dalian Polytechnic University, Dalian 116034 (China); Qin, L. [National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034 (China); Wang, H.L.; Nie, M.Q.; Hu, Z.Q.; Gao, W.Y.; Liu, G.S. [Department of Inorganic Nonmetallic Materials Engineering, Dalian Polytechnic University, Dalian 116034 (China); Liaoning Provincial College Key Laboratory of New Materials and Material Modification, Dalian Polytechnic University, Dalian 116034 (China)

    2015-02-15

    Highlights: • A new downconversion (DC) nanocrystal (SrTiO{sub 3}:Ho{sup 3+}) was synthesized. • The effect of SrTiO{sub 3}:Ho{sup 3+} as a photoanode in DSSCs was investigated. • SrTiO{sub 3}:Ho{sup 3+} absorb ultraviolet light and downconvert it to visible light. • DC SrTiO{sub 3}:Ho{sup 3+} as a photoanode achieve the higher photoelectric conversion efficiency. - Abstract: Ho{sup 3+}-doped strontium titanate (SrTiO{sub 3}:Ho{sup 3+}) downconversion (DC) nanocrystals are synthesized by the solid state interaction of titanium dioxide, strontium nitrate, holmium oxide and sodium chloride and then used as a photoanode in dye-sensitized solar cells (DSSCs) to investigate the effect of DC nanocrystals in DSSCs. Differential thermal analysis, X-ray diffraction, scanning electronic microscope, energy dispersive spectroscopy and Brunauer-Emmet-Teller analysis confirmed the formation of cubic structured SrTiO{sub 3}:Ho{sup 3+} nanocrystals with diameters of 40-400 nm, pore size of ∼45 nm, sintering temperature of 950 °C. The photofluorescence and UV-Vis absorption spectra of the SrTiO{sub 3}:Ho{sup 3+} nanocrystals revealed strong emission intensity and visible light absorption when doped content of holmium oxide was between 1 wt% and 3 wt%. Compared with the pure SrTiO{sub 3} photoanode, SrTiO{sub 3}:Ho{sup 3+} DC photoanode showed a greater photovoltaic efficiency. The photoelectric conversion efficiency (η) of the DSSCs with a SrTiO{sub 3}:Ho{sup 3+} photoanode doped with 1 wt% holmium oxide was 59% higher than that with a pure SrTiO{sub 3} photoanode. This phenomenon could be explained by SrTiO{sub 3}:Ho{sup 3+} nanocrystals’ ability to absorb ultraviolet light and downconvert it to visible light, which extends spectral response range of DSSC to the ultraviolet region and increased the short-circuit current density (Jsc) of DSSCs.

  2. 聚苯胺/钛酸钡复合材料的电磁性能研究%Electromagnetic Properties of Polyaniline/Barium Titanate Composite

    Institute of Scientific and Technical Information of China (English)

    何倩; 黄英; 王娜; 丁晓

    2012-01-01

    通过溶胶-凝胶法制备纳米钛酸钡(BaTiO3),并以十二烷基苯磺酸钠(DBSA)为掺杂剂,通过原位聚合法制备了DBSA掺杂聚苯胺(PANI)/BaTiO3复合材料.通过X射线衍射仪、傅立叶变换红外光谱仪、透射电子显微镜和矢量网络分析仪对复合材料进行了结构和形态表征并研究了其电磁性能.结果表明,复合材料中的PANI与BaTiO3两者之间存在化学键合作用;复合材料的吸波特性随PANI含量的变化而不同,且不是简单的加和效应.当PANI质量分数为25%时,复合材料的电损耗角正切值(tanδ)在频率11.0 GHz附近出现最大值,为0.31;当PANI质量分数为75%时,复合材料的tanδ新出现2个峰值,在11.0 GHz处的tanδ峰值则向高频方向移动,且峰宽达2.0 GHz.%Nano Barium titanate (BaTiO3) was prepared by sol-gel method and dodecylbenzensulfonic acid (DBSA) was adopted as dopant, then polyaniline (PANI) /BaTiO3 composites were prepared by in-situ polymerization method. The structure and morphology of the composites were characterized by X-ray diffratometer, FTIR, TEM and vector analyzer, the electromagnetic properties of the composites were studied also. The results indicated that there was chemical bonding interaction in the composites between PANI and BaTiO3, the microwave absorbing characteristics of the composites were different with the change of PANI content and they were not simple addition effect. When the mass fraction of PANI was 25% and the frequency was about 11.0 GHz, the dielectric loss angle tangent value (tanδ) of the composite was maximum and it was 0.31. When the mass fraction of PANI was 75%, tanδ of the composite had 2 new peak values, besides, the peak value of tanδ correspond to 11.0 GHz shifted to high frequencies and its peak width was 2.0 GHz.

  3. Physical properties and electronic structure of a new barium titanate suboxide Ba{sub 1+δ}Ti{sub 13−δ}O{sub 12} (δ = 0.11)

    Energy Technology Data Exchange (ETDEWEB)

    Rotundu, Costel R.; Jiang, Shan; Ni, Ni [Department of Physics and Astronomy, University of California Los Angeles, Los Angeles, California 90095 (United States); CNSI, University of California Los Angeles, Los Angeles, California 90095 (United States); Deng, Xiaoyu; Kotliar, Gabriel [Department of Physics, Rutgers University, Piscataway, New Jersey 08854 (United States); Qian, Yiting; Hawthorn, David G. [Department of Physics and Astronomy, University of Waterloo, Waterloo N2L 3G1 (Canada); Khan, Saeed [UCLA Molecular Instrumentation Center, University of California Los Angeles, Los Angeles, California 90095 (United States)

    2015-04-01

    The structure, transport, thermodynamic properties, x-ray absorption spectra (XAS), and electronic structure of a new barium titanate suboxide, Ba{sub 1+δ}Ti{sub 13−δ}O{sub 12} (δ = 0.11), are reported. It is a paramagnetic poor metal with hole carriers dominating the transport. Fermi liquid behavior appears at low temperature. The oxidization state of Ti obtained by the XAS is consistent with the metallic Ti{sup 2+} state. Local density approximation band structure calculations reveal the material is near the Van Hove singularity. The pseudogap behavior in the Ti-d band and the strong hybridization between the Ti-d and O-p orbitals reflect the characteristics of the building blocks of the Ti{sub 13} semi-cluster and the TiO{sub 4} quasi-squares, respectively.

  4. Microstructure and dielectric properties of dysprosium-doped barium titanate ceramics Microestrutura e propriedades dielétricas de cerâmicas de titanato de bário dopado com disprósio

    Directory of Open Access Journals (Sweden)

    Y. Pu

    2005-09-01

    Full Text Available The substitution behavior and lattice parameter of barium titanate between solid_solubility with a dopant concentration in the range of 0.25 to 1.5 mol% are studied. The influences of dysprosium-doped fraction on the grain size and dielectric properties of barium titanate ceramic, including dielectric constant and breakdown electric field strength, are investigated via scanning electronic microscopy, X-ray diffraction and electric property tester. The results show that, at a dysprosium concentration of 0.75 mol%, the abnormal grain growth is inhibited and the lattice parameters of grain rise up to the maximum because of the lowest vacancy concentration. In addition, the finegrain and high density of barium titanate ceramic result in its excellent dielectric properties. The relative dielectric constant (25 °C reaches to 4100. The temperature coefficient of the capacitance varies from -10 to 10% within the temperature range of -15 °C -100 °C, and the breakdown electric field strength (alternating current achieves 3.2 kV/mm. These data suggest that our barium titanate could be used in the manufacture of high voltage ceramic capacitors.Foram estudados o comportamento da substituição e o parâmetro de rede de titanato de bário da solubilidade sólida com uma concentração de dopante na faixa 0,25-1,5 mol%. As influências da fração do dopante disprósio no tamanho de grão e nas propriedades dielétricas da cerâmica de titanato de bário, incluindo constante dielétrica e rigidez dielétrica foram investigadas por meio de microscopia eletrônica de varredura, difração de raios X e teste de propriedades elétricas. Os resultados mostram que a uma concentração de disprósio de 0,75 mol% o crescimento anormal de grão é inibido e os parâmetros de rede aumentam até um máximo devido a menor concentração de vacâncias. Além disso, as cerâmicas de grãos pequenos e alta densidade resultam em excelentes propriedades dielétricas. A

  5. Barium Sulfate

    Science.gov (United States)

    Barium sulfate is used to help doctors examine the esophagus (tube that connects the mouth and stomach), stomach, and ... pictures of the inside of the body). Barium sulfate is in a class of medications called radiopaque ...

  6. Synthesis and characterization of barium titanate, doped with europium and neodymium; Sintese e caracterizacao de titanato de bario, dopados com europio e neodimio

    Energy Technology Data Exchange (ETDEWEB)

    Sousa, Fernanda L.C.; Cabral, Alciney M.; Silva, Ademir O.; Oliveiro, Joao B.L., E-mail: nanda_louise@yahoo.com.br [Universidade Federal do Rio Grande do Norte (UFRN), Natal (Brazil). Instituto de Quimica

    2013-07-01

    This work aims at synthesize and characterize mixed oxides in Barium Titanium matrix in doping with Neodymium and Europium analyzing thermogravimetric curves, characteristic bands at infrared region of the polymer complex, which are intermediates to mixed oxides, and identify the formation thereof, and the crystallinity using XRD analysis.

  7. Efficient 1.54-μm emission through Eu{sup 2+} sensitization of Er{sup 3+} in thin films of Eu{sup 2+}/Er{sup 3+} codoped barium strontium silicate under broad ultraviolet light excitation

    Energy Technology Data Exchange (ETDEWEB)

    Li, Leliang; Zheng, Jun, E-mail: zhengjun@semi.ac.cn; Zuo, Yuhua; Cheng, Buwen; Wang, Qiming

    2015-01-15

    Thin films of Eu{sup 2+}/Er{sup 3+} codoped barium strontium silicate were deposited on a thermal oxide Si substrate by magnetron sputtering. Optical properties suggest that after a rapid annealing process, these films can lead to efficient Er{sup 3+} emission at 1.54 μm with a lifetime of about 7.9 ms. Intense 1.54-μm light emission was achieved under broad ultraviolet light excitation through efficient energy transfer from Eu{sup 2+} to Er{sup 3+}. These results indicate that the Eu{sup 2+}/Er{sup 3+} thin films have potential applications as low cost and compact erbium doped waveguide amplifiers pumped by LEDs. - Highlights: • The Er{sub 0.07}Eu{sub 0.14}Sr{sub 1.14}Ba{sub 0.79}SiO{sub 4} films are fabricated by magnetron sputtering. • Efficient energy transfer from Eu{sup 2+} to Er{sup 3+} ions by the dipole–dipole interaction. • Intense 1.54 μm emission is achieved under broad excitation spectrum. • The films have potential applications as low cost and compact EDWAs.

  8. Improved properties of barium strontium titanate thin films grown on copper foils by pulsed laser deposition using a self-buffered layer

    International Nuclear Information System (INIS)

    Ba0.6Sr0.4TiO3 (BST) films were deposited by pulsed laser deposition on copper foils with low-temperature self-buffered layers. The deposition conditions included a low oxygen partial pressure and a temperature of 700 °C to crystallize the films without the formation of secondary phases and substrate oxidation. The results from x-ray diffraction and scanning electron microscopy indicated that the microstructure of the BST films strongly depended on the growth temperature. The use of the self-buffered layer improved the dielectric properties of the deposited BST films. The leakage current density of the BST films on the copper foil was 4.4 × 10-9 A cm-2 and 3.3 × 10-6 A cm-2 with and without the self-buffered layer, respectively. The ferroelectric hysteresis loop for the BST thin film with buffer layer was slim, in contrast to the distorted loop observed for the film without the buffer layer. The permittivity (700) and dielectric loss tangent (0.013) of the BST film on the copper foil with self-buffered layer at room temperature were comparable to those of the film on metal and single-crystal substrates. (paper)

  9. Abnormal cubic-tetragonal phase transition of barium strontium titanate nanoparticles studied by in situ Raman spectroscopy and transmission electron microscopy heating experiments

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yin; Chen, Chen; Gao, Ran; Xia, Feng; Li, YueSheng; Che, Renchao, E-mail: rcche@fudan.edu.cn [Laboratory of Advanced Materials, Department of Materials Science, Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, Shanghai 200438 (China)

    2015-11-02

    Phase stability of the ferroelectric materials at high temperature is extremely important to their device performance. Ba{sub x}Sr{sub 1−x}TiO{sub 3} (BST) nanoparticles with different Sr contents (x = 1, 0.91, 0.65, 0.4, and 0) are prepared by a facile hydrothermal method. Using Raman spectroscopy and transmission electron microscopy (TEM) analyses under in situ heating conditions (up to 300 °C), the phase transitions of BST nanoparticles between 25 °C and 280 °C are comprehensively investigated. The original Curie temperature of BST nanoparticles decreases abruptly with the increase in Sr content, which is more obvious than in the bulk or film material. Besides, an abnormal phase transition from cubic to tetragonal structure is observed from BST nanoparticles and the transition temperature rises along with the increase in Sr content. Direct TEM evidences including a slight lattice distortion have been provided. Differently, BaTiO{sub 3} nanoparticles remained in the tetragonal phase during the above temperature ranges.

  10. Sputtered (barium(x), strontium(1-x))titanate, BST, thin films on flexible copper foils for use as a non-linear dielectric

    Science.gov (United States)

    Laughlin, Brian James

    Ferroelectric thin film dielectrics have a non-linear DC bias dependent permittivity and can be used as the dielectric between metal electrodes to make tunable Metal-Insulator-Metal (MIM) capacitors. Varactors can be used to change the resonance frequency of a circuit allowing high speed frequency switching intra- and inter-band. 2-D geometric arrays of circuitry, where resonant frequency is independently controlled by tunable elements in each section of the array, allow electromagnetic radiation to be focused and the wave front spatial trajectory controlled. BST thin films varactors allow large DC fields to be applied with modest voltages providing large tunabilities. If ferroelectric thin film based devices are to complement or supplant semiconductor varactors as tunable elements then devices must be synthesized using a low cost processing techniques. The Film on Foil process methodology for depositing BST thin films on copper foil substrates was used to create BST/Cu specimens. Sputtering conditions were determined via BST deposition on platinized silicon. Sputtered BST thin films were synthesized on Cu foil substrates and densified using high T, controlled pO2 anneals. XRD showed the absence of Cu2O in as-deposited, post crystallization annealed, and post "re-ox" annealed state. Data showed a polycrystalline BST microstructure with a 55--80 nm grain size and no copper oxidation. HRTEM imaging qualitatively showed evidence of an abrupt BST/Cu interface free from oxide formation. Dielectric properties of Cu/BST/Pt MIM devices were measured as a function of DC bias, frequency, and temperature. A permittivity of 725 was observed with tunability >3:1 while zero bias tan delta of 0.02 saturating to tan delta series connected film stacks show only modest temperature profile broadening. Parallel connected dual composition film stacks showed a 75°C temperature range with essentially flat capacitance by simulating compositions that create a DeltaTC = 283°C. Maximum permittivity and temperature profile shape independent of film thickness or composition were assumed for simulations. BST/Cu thickness and compositions series were fabricated and dielectric properties characterized. These studies showed films could be grown from 300 nm and approaching 1 mum without changing the dielectric temperature response. In studying BST composition, an increasing TC shift was observed when increasing Ba mole fraction in BST thin films while tunability >3:1 was maintained. These results provide a route for creating temperature stable capacitors using a BST/Cu embodiment. An effort to reduce surface roughness of copper foil substrates adversely impacted BST film integrity by impairing adhesion. XPS analysis of high surface roughness commercially obtained Cu foils revealed a surface treatment of Zn-Cu-O that was not present on smooth Cu, thus an investigation of surface chemistry was conducted. Sessile drop experiments were performed to characterize Cu-BST adhesion and the effects of metallic Zn and ZnO in this system. The study revealed the work of adhesion of Cu-BST, WCu-BSTa ≈ 0.60 J m-2, an intermediate value relative to noble metals commonly used as electrodes and substrates for electroceramics. Examination of metallic Zn-BST adhesion revealed a dramatic decrease of WZn-BSTa ≈ 0.13 J m-2, while increasing the content of Zn in metallic (Cux,Zn1-x) alloys monotonically reduced WCux,Zn1-x -BSTa . Conversely, a Cu-ZnO interface showed a large work of adhesion, WCu-ZnOa = 2.0 J m-2. These results indicate that a ZnO interlayer between the substrate Cu and the BST thin film provides adequate adhesion for robust films on flexible copper foil substrates. Additionally, this study provided characterization of adhesion for Zn-Al2O3 and Zn-BST; data that does not exist in the open literature. A process has been developed for preparing ultra-smooth copper foils by evaporation and subsequent peel-off of copper metal layers from glass slides. These 15 mum thick substrates exhibited roughness values between 1 and 2 nm RMS and 9 nm RMS over 25 mum2 and

  11. Effect of growth mechanisms on the deformation of a unit cell and polarization reversal in barium-strontium titanate heterostructures on magnesium oxide

    Science.gov (United States)

    Mukhortov, V. M.; Golovko, Yu. I.; Biryukov, S. V.; Anokhin, A.; Yuzyuk, Yu. I.

    2016-01-01

    The effect of a growth mechanism on the unit cell strain and the related change in the properties of single-crystal Ba0.8Sr0.2TiO3 films grown on MgO substrates according to the Frank-van der Merwe and Volmer-Weber growth mechanisms is studied. The unit cell strain is shown to depend substantially on the film thickness and the growth mechanism. It is found that the same film-substrate pair can be used to vary stresses in the film from two-dimensional tensile to compressive stresses due to a change in the growth mechanism and the film thickness.

  12. Pyroelectric response mechanism of barium strontium titanate ceramics in dielectric bolometer mode: The underlying essence of the enhancing effect of direct current bias field

    Energy Technology Data Exchange (ETDEWEB)

    Mao, Chaoliang; Cao, Sheng; Yan, Shiguang; Yao, Chunhua; Cao, Fei; Wang, Genshui; Dong, Xianlin [Key Laboratory of Inorganic Functional Materials and Devices, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Changning, Shanghai 200050 (China); Hu, Xu; Yang, Chunli [Kunming Institute of Physics, Kunming 650223 (China)

    2013-06-17

    Pyroelectric response mechanism of Ba{sub 0.70}Sr{sub 0.30}TiO{sub 3} ceramics under dielectric bolometer (DB) mode was investigated by dielectric and pyroelectric properties measurement. The variations of total, intrinsic, and induced pyroelectric coefficients (p{sub tot}, p{sub int}, p{sub ind}) with temperatures and bias fields were analyzed. p{sub int} plays the dominant role to p{sub tot} through most of the temperature range and p{sub ind} will be slightly higher than p{sub int} above T{sub 0}. The essence of the enhancing effect of DC bias field on pyroelectric coefficient can be attributed to the high value of p{sub int}. This mechanism is useful for the pyroelectric materials (DB mode) applications.

  13. Rb-Sr age and content of potassium, rubidium strontium, barium, and rare earths in surface material from the Sea of Fertility

    Science.gov (United States)

    Allegre, C. J.; Birck, J. L.; Loubet, M.; Provost, A.

    1974-01-01

    The Luna 16 automatic station returned from the Sea of Fertility a 35 cm long column of lunar surface material. 1 g of the Luna 16 lunar surface material, taken at a depth of 22 cm, consists of fine material: surface material and fine fragments of rocks from 1 to 4 mm in diameter. Analyses made on 17 mg of the fine lunar surface material are presented. The results obtained for the Luna 16 surface material are plotted on the diagram of the isotopic evolution of strontium and show that this surface material is most depleted of radiogenic Sr-87 of all the known lunar surface materials and that the point characterizing Lunar 16 lies somewhat to the right of the line corresponding to an age of 4.6 billion years.

  14. 低温水相一步合成钛酸钡:热力学模型化及实验合成研究%Low Temperature One-Step Synthesis of Barium Titanate:Thermodynamic Modeling and Experimental Synthesis

    Institute of Scientific and Technical Information of China (English)

    沈志刚; 李世刚; 刘朝文; 张建文; 陈建峰

    2005-01-01

    A thermodynamic model has been developed to determine the reaction conditions favoring low temperature direct synthesis of barium titanate (BaTiO3). The method utilizes standard-state thermodynamic data for solid and aqueous species and a Debye-Hiickel coefficients model to represent solution nonideality. The method has been used to generate phase stability diagrams that indicate the ranges of pH and reagent concentrations, for which various species predominate in the system at a given temperature. Also, yield diagrams have been constructed that indicate the concentration, pH and temperature conditions for which different yields of crystalline BaTiO3 can be obtained. The stability and yield diagrams have been used to predict the optimum synthesis conditions (e.g.,reagent concentrations, pH and temperature). Subsequently, these predictions have been experimentally verified.As a result, phase-pure perovskite BaTiO3 has been obtained at temperature ranging from 55 to 85℃ using BaCl2,TiCl4 as a source for Ba and Ti, and NaOH as a precipitator.

  15. Solid solution barium–strontium chlorides with tunable ammonia desorption properties and superior storage capacity

    DEFF Research Database (Denmark)

    Bialy, Agata; Jensen, Peter Bjerre; Blanchard, Didier;

    2015-01-01

    with spray drying and in situ thermogravimetric and structural characterization, we synthesize a range of new, stable barium-strontium chloride solid solutions with superior ammonia storage densities. By tuning the barium/strontium ratio, different crystallographic phases and compositions can be obtained...

  16. Fabrication and investigation on properties of barium titanate/titanium carbide/polyimide composite films%钛酸钡/碳化钛/聚酰亚胺三元复合薄膜的制备及性能研究

    Institute of Scientific and Technical Information of China (English)

    张大兴

    2013-01-01

    随着微电子工业的不断发展,高介电常数材料的发展已成为制约电子器件微型化、高速化的关键因素之一.本文以钛酸钡核碳化钛为填料,经硅烷偶联剂改性后按一定比例添加到聚酰亚胺中,制备出钛酸钡/碳化钛/聚酰亚胺(BaTiO3/TiC/PI)三元复合薄膜.对复合薄膜的显微结构及性能进行了分析.实验结果表明,无机填料在复合薄膜中具有较好的分散性,说明硅烷偶联剂改性后无机粉体与聚酰亚胺基体的相容性增加.性能测试表明,随着无机填料含量的增加,三元复合薄膜的拉伸强度和断裂伸长率均下降,而导电性能则逐渐提高.%With the development of the microelectronics industry, the development of high dielectric constant materials have become one of the key factors restricting the rapid miniaturization of electronic devices. In this paper, the barium titanate (BaTiO3) and titanium carbide (TiC) are chosen as fillers and added into the polyimide matrix to fabricate the BaTiO3/TiC/PI composite films. The microstructure and properties of the composite films were analyzed. The experimental results showed that the inorganic fillers had a rather good dispersion in the composite film, which should be attributed to the increased compatibility between inorganic powders and polyimide matrix after the inorganic powders were modified by silane coupling agent. The performance test showed that, with the increase of inorganic filler content, the tensile strength and elongation at break of composite films decreased, while the conductivity increase.

  17. Phase IV Simulant Testing of Monosodium Titanate Adsorption Kinetics

    International Nuclear Information System (INIS)

    The Salt Disposition Systems Engineering Team identified the adsorption kinetics of actinides and strontium onto monosodium titanate (MST) as a technical risk in several of the processing alternatives selected for additional evaluation in Phase III of their effort

  18. Study of the effect of ionizing radiation on composites of wood flour in polypropylene matrix using barium titanate as coupling agent; Estudo do efeito da radiacao ionizante em compositos de polipropileno/po de madeira usando titanato de bario como agente de acoplagem

    Energy Technology Data Exchange (ETDEWEB)

    Ulloa, Maritza Eliza Perez

    2007-07-01

    The purpose of this work was to study the effects of ionizing radiation on the properties of wood flour composites in polypropylene matrix, using barium titanate as a coupling agent and the reactive monomer tripropylene glycol diacrylate (TPDGA). An electron accelerator was used in the study as the radiation source. The physical properties of virgin compounds and of the polypropylene/wood flour composite, with and without barium titanate and TPDGA addition, were investigated. The composites were developed from the load treatment, which first consisted of incorporating additives to the wood flour reinforcement and after that, the fusion process of polypropylene and composite mixing in a 'calander'. Subsequently, the samples to be irradiated and submitted to thermal and mechanical assays were molded by injection. The mechanical properties (hardness, impact resistance and molten fluidity index (MFI)), as well as the thermal properties (HDT and Vicat) of the composites were determined. The investigated compositions consisted of polypropylene/wood flour, polypropylene/wood flour with barium titanate and polypropylene/wood flour with barium titanate and TPDGA, using different wood flour concentrations of 10 por cent, 15 por cent and 20 por cent in the polypropylene matrix. The samples were separated in groups and irradiated to doses of 10 kGy and 20 kGy in the samples of the essays of traction. Besides these doses, it was also used doses of 15 kGy and 25 kGy to be observed the behavior of the sample of the sample due to the increase of the radiation. These doses were chosen to show that with low doses the composite material presents reticulation, what represents a viable commercial option. There was a reduction of the flow rate for the composites containing wood flour, being this reduction more effective in the presence of TiBa. The superficial treatment using TPDGA monomer influence in the composite samples because it acted as a plastic additive becoming the

  19. Synthesis of barium-zinc-titanate ceramics

    Directory of Open Access Journals (Sweden)

    Obradović N.

    2012-01-01

    Full Text Available Mixtures of BaCO3, ZnO and TiO2 powders, with molar ratio of 1:2:4, were mechanically activated for 20, 40 and minutes in a planetary ball mill. The resulting powders were compacted into pellets and isothermally sintered at 1250°C for 2h with a heating rate of 10°C/min. X-ray diffraction analysis of obtained powders and sintered samples was performed in order to investigate changes of the phase composition. The microstructure of sintered samples was examined by scanning electron microscopy. The photoacoustic phase and amplitude spectra of sintered samples were measured as a function of the laser beam modulating frequency using a transmission detection configuration. Fitting of experimental data enabled determination of photoacoustic properties including thermal diffusivity. Based on the results obtained correlation between thermal diffusivity and experimental conditions, as well the samples microstructure characteristics, was discussed.

  20. Isolation of yttrium and strontium from soil samples and rapid determination of Sr-90

    OpenAIRE

    Grahek, Željko; Eškinja, Ivan; Košutić, Katarina; Cerjan-Stefanović, Štefica

    2000-01-01

    A procedure of yttrium and strontium separation from calcium and other cations has been developed for rapid determination of Sr-90 in soil samples. The procedure involves yttrium, strontium and other cations bound on cation exchanger AMBERLITE IR-120, separtion of yttrium and strontium from other cations, e.g, potassium, calcium, sodium, barium, on anion exchangers AMBERLITE CG-400 or DOWEX AG Ix 8 with 0.25 mol l(-1) HNO3 in alcohol mixture as eluent, separation of yttrium from strontium on ...

  1. Isolation of Yttrium and Strontium from Soil Samples and Rapid Determination of 90Sr

    OpenAIRE

    Grahek, Željko; Eškinja, Ivan; Košutić, Katarina; Cerjan-Stefanović, Štefica

    2000-01-01

    A procedure of yttrium and strontium separation from calcium and other cations has been developed for rapid determination of 90Sr in soil samples. The procedure involves yttrium, strontium and other cations bound on cation exchanger AMBERLITE IR-120, separtion of yttrium and strontium from other cations, e.g. potassium, calcium, sodium, barium, on anion exchangers AMBERLITE CG-400 or DOWEX AG 1 × 8 with 0.25 mol l-1 HNO3 in alcohol mixture as eluent, separation of yttrium from strontium on ca...

  2. Time-resolved X-ray absorption spectroscopy for the study of solid state reactions: synthesis of nanocrystalline barium titanate and thermal decomposition of ammonium hexachlorometallate compounds; Zeitaufgeloeste Roentgenabsorptionspektroskopie zur Untersuchung von Festkoerperreaktionen: Synthese von nanokristallinem Bariumtitanat und thermische Zersetzung von Ammoniumhexachlorometallat-Verbindungen

    Energy Technology Data Exchange (ETDEWEB)

    Rumpf, H.

    2001-07-01

    This report presents investigations on the mechanism of two different types of solid-state reactions: At first, barium titanate nanopowders were prepared through a combined polymerization and pyrolysis of a metallo-organic precursor. The mean particle size d{sub m} could be adjusted by choosing appropriate reaction temperatures and tempering atmospheres. In the present in situ study of this particular solid-phase reaction, X-ray absorption near edge structure (XANES) spectroscopy at the Ti K and Ba L{sub 3}-edges was applied in the preparation route of BaTiO{sub 3} nanopowders. A pronounced distortion of the lattice symmetry was found to occur in very fine BaTiO{sub 3} nanopowders (d{sub m} < 20 nm). Secondly, in situ XANES investigations were carried out at the Cl K, Pd L{sub 3}, Rh L{sub 3}, and Pt L{sub 3}-edges to study the mechanism of the thermal decomposition of ammonium hexachlorometallates. The results exceed structural information obtained by in situ X-ray diffraction methods and thermal analysis. Feff8 multiple scattering simulations have been carried out to disclose new intermediate phases of unknown reference compounds. (orig.)

  3. Radioisotope analyzer of barium

    International Nuclear Information System (INIS)

    Principle of operation and construction of radioisotope barium sulphate analyzer type MZB-2 for fast determination of barium sulphate content in barite ores and enrichment products are described. The gauge equipped with Am-241 and a scintillation detector enables measurement of barium sulphate content in prepared samples of barite ores in the range 60% - 100% with the accuracy of 1%. The gauge is used in laboratories of barite mine and ore processing plant. 2 refs., 2 figs., 1 tab. (author)

  4. [alpha]-Decay damage effects in curium-doped titanate ceramic containing sodium-free high-level nuclear waste

    Energy Technology Data Exchange (ETDEWEB)

    Mitamura, Hisayoshi; Matsumoto, Seiichiro; Tsuboi, Takashi; Hashimoto, Masaaki; Togashi, Yoshihiro; Kanazawa, Hiroyuki (Japan Atomic Energy Research Inst., Ibaraki (Japan)); Stewart, M.W.A.; Vance, E.R.; Hart, K.P.; Ball, C.J. (Australian Nuclear Science and Technology Organization, Lucas Heights, New South Wales (Australia). Lucas Heights Research Labs.); White, T.J.

    1994-09-01

    A polyphase titanate ceramic incorporating sodium-free simulated high-level nuclear waste was doped with 0.91 wt% of [sup 224]Cm to accelerate the effects of long-term self-irradiation arising from [alpha] decays. The ceramic included three main constituent minerals: hollandite, perovskite, and zirconolite, with some minor phases. Although hollandite showed the broadening of its X-ray diffraction lines and small lattice parameter changes during damage in growth, the unit cell was substantially unaltered. Perovskite and zirconolite, which are the primary hosts of curium, showed 2.7% and 2.6% expansions, respectively, of their unit cell volumes after a dose of 12 [times] 10[sup 17] [alpha] decays[center dot]g[sup [minus]1]. Volume swelling due to damage in growth caused an exponential (almost linear) decrease in density, which reached 1.7% after a dose of 12.4 [times] 10[sup 17] [alpha] decays[center dot]g[sup [minus]1]. Leach tests on samples that had incurred doses of 2.0 [times] 10[sup 17] and 4.5 [times] 10[sup 17] [alpha] decays[center dot]g[sup [minus]1] showed that the rates of dissolution of cesium and barium were similar to analogous leach rates from the equivalent cold ceramic, while strontium and calcium leach rates were 2--15 times higher. Although the cerium, molybdenum, strontium, and calcium leach rates in the present material were similar to those in the curium-doped sodium-bearing titanate ceramic reported previously, the cesium leach rate was 3--8 times lower.

  5. Coated conductors

    Energy Technology Data Exchange (ETDEWEB)

    Arendt, Paul N.; Foltyn, Stephen R.; Stan, Liliana; Usov, Igor O.; Wang, Haiyan

    2010-06-15

    Articles are provided including a base substrate having a layer of an IBAD oriented material thereon, and, a layer of barium-containing material selected from the group consisting of barium zirconate, barium hafnate, barium titanate, barium strontium titanate, barium dysprosium zirconate, barium neodymium zirconate and barium samarium zirconate, or a cubic metal oxide material selected from the group consisting of rare earth zirconates and rare earth hafnates upon the layer of an IBAD oriented material. Such articles can further include thin films of high temperature superconductive oxides such as YBCO upon the layer of barium-containing material selected from the group consisting of barium zirconate, barium hafnate, barium titanate, barium strontium titanate, barium dysprosium zirconate, barium neodymium zirconate and barium samarium zirconate, or a cubic metal oxide material selected from the group consisting of rare earth zirconates and rare earth hafnates.

  6. Determination of forbidden and restricted elements lead, cadmium, arsenic, mercury, antimony, chromium, nickel, barium and strontium in cosmetic products by ICP-AES%ICP-AES法测定化妆品中铅、镉、砷、汞、锑、铬、镍、钡、锶等禁限用元素含量

    Institute of Scientific and Technical Information of China (English)

    戴骐; 林晓娜; 吴艳燕; 楼士铭; 陈俊晓

    2012-01-01

    建立了化妆品中铅(Pb)、镉(Cd)、砷(As)、汞(Hg)、锑(Sb)、铬(Cr)、镍(Ni)、钡(Ba)、锶(Sr)含量的电感耦合等离子体原子发射光谱法(ICP-AES)同步检测技术.采用微波消解,在较难消化的化妆品中加HF进行消化,铑(Rh)为内标元素消除基体干扰,以配备耐HF进样系统的ICP-AES进行测定.在0~1.0 mg/L 范围内呈现良好的线性关系(相关系数≥0.9999),Pb、Cd、As、Hg、Sb、Cr、Ni、Ba、Sr 检出限分别为0.0016,0.0007,0.0021,0.0013,0.0003,0.0009,0.0008,0.0009,0.0021 mg/L,方法回收率80.2%~111%,精密度1.7%~8.2%.结果表明,该方法适用于检测基体复杂的化妆品中Pb、Cd、As、Hg、Sb、Cr、Ni、Ba、Sr.%A method for the determination of the forbidden and restricted elements lead(Pb), cadmium (Cd), arsenic (As), mercur(Hg), antimony (Sb), Chroium(Cr), Nickel (Ni) , barium (Ba)and strontiume (Sr) in cosmetic products by inductively coupled plasma mass spectrometry( ICP-AES) was developed. The sample was microwave digested with HNO3 H2O2 and HF, then detected by ICP-AES. This method achieves practical quantitation limits for the 9 elements of 0.0016,0.0007,0.0021,0.0013,0.0003,0. 0009,0.0008,0.0009, 0. 0021 mg/L, respectively. The correlation coefficients of calibration curves in the range of 0 to 1.0 mg/L were more than 0. 9999. The recoveries and precision of the method were 80. 2% -111% and 1. 7% ~ 8. 2%. This level of measurement allows for the accurate assessment of 9 forbidden and restricted elements in cosmetic food.

  7. Lower GI Series (Barium Enema)

    Science.gov (United States)

    ... barium into a bedpan or nearby toilet. A health care professional may give you an enema to flush out the rest of the barium. An x-ray technician and a radiologist perform a lower gastrointestinal (GI) series at a ...

  8. Calcium barium niobate as a functional material for broadband optical frequency conversion.

    Science.gov (United States)

    Sheng, Yan; Chen, Xin; Lukasiewicz, Tadeusz; Swirkowicz, Marek; Koynov, Kaloian; Krolikowski, Wieslaw

    2014-03-15

    We demonstrate the application of as-grown calcium barium niobate (CBN) crystal with random-sized ferroelectric domains as a broadband frequency converter. The frequency conversion process is similar to broadband harmonic generation in commonly used strontium barium niobate (SBN) crystal, but results in higher conversion efficiency reflecting a larger effective nonlinear coefficient of the CBN crystal. We also analyzed the polarization properties of the emitted radiation and determined the ratio of d32 and d33 components of the second-order susceptibility tensor of the CBN crystal. PMID:24690779

  9. New barium tantalum sulphides

    International Nuclear Information System (INIS)

    The authors discuss a new barium tantalum sulphide, Ba3Ta2S8, prepared by sulphurization of a mixture of BaCO3 and Ta2O5. The electron and powder X-ray diffraction patterns of the compound are indexed on the basis of a monoclinic cell with lattice constants. A structure model is proposed. The refinement based on the powder X-ray diffraction intensities is performed

  10. Titan Aerial Daughtercraft Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Saturn's giant moon Titan has become one of the most fascinating bodies in the Solar System. Titan is the richest laboratory in the solar system for studying...

  11. Effect of elevated concentrations of strontium and iron on the structural and dielectric characteristics of Ba{sub (1-x-y)}Sr{sub (x)}Ti Fe{sub (y)}O{sub 3} prepared through sol-gel technique

    Energy Technology Data Exchange (ETDEWEB)

    Nur, Omer; Willander, Magnus; Israr, Muhammad Q. [Department of Science and Technology, Campus Norrkoeping, Linkoeping University, SE-60174, Norrkoeping (Sweden); Desouky, Fawzy G. El; Salem, Mohamed A.; Abou Hamad, Ali B. [National Research Center (NRC), Solid State Physics Department, Giza (Egypt); Battisha, Inas K., E-mail: szbasha@yahoo.com [National Research Center (NRC), Solid State Physics Department, Giza (Egypt)

    2012-07-15

    Nano-composite Ba{sub 1-x}Sr{sub (x)}TiO{sub 3} (BST), where x=0.01-0.50 and doped with different concentrations of iron Ba{sub (1-x-y)}Sr{sub (x)}TiFe {sub (y)}O{sub 3} (BSTF), where x=0.01 and y=0.01-0.05 powders were prepared by sol-gel method. The effect of increasing the iron and strontium concentrations substituted in Barium strontium titanate system will be studied. The prepared samples have a tetragonal crystalline phase after sintering for 1 h at 750 Degree-Sign C in air. The structural and the morphological features of the systems have been studied using X-ray diffraction (XRD), transmission electron microscope (TEM) and scanning electron microscope (SEM). The dielectric properties of the BST and BSTF systems have been investigated as a function of temperature and frequency. The dielectric measurements are carried out in the frequency range 42 Hz-1 MHz, at a temperature ranging between 25 and 250 Degree-Sign C. The results showed a decrease in T{sub c} temperature giving the following values 90 and 85 Degree-Sign C for B{sub 10}ST and B{sub 10}ST{sub 5}F prepared powder samples, respectively, implying tetragonal, feroelectric phase at lower temperature into cubic, para-electric phase at temperature higher than T{sub c}.

  12. Titan Haze

    Science.gov (United States)

    Anderson, Carrie M.; West, Robert; Lavvas, Panayotis

    2011-01-01

    The Titan haze exerts a dominating influence on surface visibility and atmospheric radiative heating at optical and near-infrared wavelengths and our desire to understand surface composition and atmospheric dynamics provides a strong motivation to study the properties of the haze. Prior to the Cassini/Huygens missions the haze was known to be global in extent, with a hemispheric contrast asymmetry, with a complicated structure in the polar vortex region poleward of about 55 deg latitude, and with a distinct layer near 370 km altitude outside of the polar vortex at the time of the Voyager 2 flyby. The haze particles measured by the Pioneer and Voyager spacecraft were both highly polarizing and strongly forward scattering, a combination that seems to require an aggregation of small (several tens of nm radius) primary particles. These same properties were seen in the Cassini orbiter and Huygens Probe data. The most extensive set of optical measurements were made inside the atmosphere by the Descent Imager/Spectral Radiometer (DISR) instrument on the Huygens Probe. At the probe location as determined by the DISR measurements the average haze particle contained about 3000 primary particles whose radius is about 40 nm. Three distinct vertical regions were seen in the DISR data with differing particle properties. Refractive indices of the particles in the main haze layer resemble those reported by Khare et al. between O.3S and about 0.7 micron but are more absorbing than the Khare et al. results between 0.7 micron and the long-wavelength limit of the DISR spectra at 1.6 micron. These and other results are described by Tomasko et al., and a broader summary of results was given by Tomasko and West,. New data continue to stream in from the Cassini spacecraft. New data analyses and new laboratory and model results continue to move the field forward. Titan's 'detached' haze layer suffered a dramatic drop in altitude near equinox in 2009 with implications for the circulation

  13. The Climate of Titan

    Science.gov (United States)

    Mitchell, Jonathan L.; Lora, Juan M.

    2016-06-01

    Over the past decade, the Cassini-Huygens mission to the Saturn system has revolutionized our understanding of Titan and its climate. Veiled in a thick organic haze, Titan's visible appearance belies an active, seasonal weather cycle operating in the lower atmosphere. Here we review the climate of Titan, as gleaned from observations and models. Titan's cold surface temperatures (˜90 K) allow methane to form clouds and precipitation analogously to Earth's hydrologic cycle. Because of Titan's slow rotation and small size, its atmospheric circulation falls into a regime resembling Earth's tropics, with weak horizontal temperature gradients. A general overview of how Titan's atmosphere responds to seasonal forcing is provided by estimating a number of climate-related timescales. Titan lacks a global ocean, but methane is cold-trapped at the poles in large seas, and models indicate that weak baroclinic storms form at the boundary of Titan's wet and dry regions. Titan's saturated troposphere is a substantial reservoir of methane, supplied by deep convection from the summer poles. A significant seasonal cycle, first revealed by observations of clouds, causes Titan's convergence zone to migrate deep into the summer hemispheres, but its connection to polar convection remains undetermined. Models suggest that downwelling of air at the winter pole communicates upper-level radiative cooling, reducing the stability of the middle troposphere and priming the atmosphere for spring and summer storms when sunlight returns to Titan's lakes. Despite great gains in our understanding of Titan, many challenges remain. The greatest mystery is how Titan is able to retain an abundance of atmospheric methane with only limited surface liquids, while methane is being irreversibly destroyed by photochemistry. A related mystery is how Titan is able to hide all the ethane that is produced in this process. Future studies will need to consider the interactions between Titan's atmosphere, surface

  14. Barium titanate core – gold shell nanoparticles for hyperthermia treatments

    OpenAIRE

    FarrokhTakin E; Ciofani G; Puleo GL; de Vito G; Filippeschi C; Mazzolai B; Piazza V; Mattoli V

    2013-01-01

    Elmira FarrokhTakin,1,2 Gianni Ciofani,1 Gian Luigi Puleo,1 Giuseppe de Vito,3,4 Carlo Filippeschi,1 Barbara Mazzolai,1 Vincenzo Piazza,3 Virgilio Mattoli1 1Center for Micro-BioRobotics @SSSA, Fondazione Istituto Italiano di Tecnologia, Pontedera, Pisa, Italy; 2The Biorobotics Institute, Scuola Superiore Sant'Anna, Pontedera, Pisa, Italy; 3Center for Nanotechnology Innovation @NEST, Fondazione Istituto Italiano di Tecnologia, Pisa, Italy; 4NEST, Scuola Normale Superiore, Pisa, Italy ...

  15. A modified method for barium titanate nanoparticles synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Ashiri, R., E-mail: ro_ashiri@iaud.ac.ir [Department of Materials Science and Engineering, Dezful Branch, Islamic Azad University, P.O. Box 313, Dezful (Iran, Islamic Republic of); Nemati, Ali [Department of Materials Science and Engineering, Sharif University of Technology, P.O. Box 11365-9466, Tehran (Iran, Islamic Republic of); Sasani Ghamsari, M. [Solid State Lasers Research Group, Laser and Optics Research School, NSTRI, P.O. Box 11365-8486, Tehran (Iran, Islamic Republic of); Sanjabi, S. [Nanomaterials Group, Department of Materials Engineering, Tarbiat Modares University, P.O. Box 14115-143, Tehran (Iran, Islamic Republic of); Aalipour, M. [Department of Materials Science and Engineering, Sharif University of Technology, P.O. Box 11365-9466, Tehran (Iran, Islamic Republic of)

    2011-12-15

    Graphical abstract: TEM micrograph of BaTiO{sub 3} powders synthesized at 800 Degree-Sign C for 1 h and SAED pattern (inset) of BaTiO{sub 3} powders. In this research, a modified, cost efficient and quick sol-gel procedure was used for preparation of BaTiO{sub 3} nanoparticles. Highlights: Black-Right-Pointing-Pointer A modified process was used for preparation. Black-Right-Pointing-Pointer The modified process led to preparation of finer BaTiO{sub 3} nanoparticles in shorter period of time and lower temperature contrary to previous researches. Black-Right-Pointing-Pointer The proposed procedure seems to be more preferable for mass production. -- Abstract: In this research, a modified, cost effective sol-gel procedure applied to synthesize BaTiO{sub 3} nanoparticles. XRD and electron microscopy (SEM and TEM) applied for microstructural characterization of powders. The obtained results showed that the type of precursors, their ratio and the hydrolysis conditions had a great effect on time, temperature and therefore the costs of the synthesis process. By selection, utilization of optimized precursor's type, hydrolysis conditions, fine cubic BaTiO{sub 3} nanoparticles were synthesized at low temperature and in short time span (1 h calcination at 800 Degree-Sign C). The proposed procedure seems to be more preferable for mass production. The result indicated that the polymorphic transformation to tetragonal (ferroelectric characteristic) occurred at 900 Degree-Sign C, which might be an indication of being nanosized.

  16. Preparation and characterization of barium titanate stannate solid solutions

    Energy Technology Data Exchange (ETDEWEB)

    Horchidan, Nadejda, E-mail: NHorchidan@stoner.phys.uaic.ro [Department of Physics, ' Al. I. Cuza' University, Bv. Carol 11, Iasi 700506 (Romania); Ianculescu, Adelina C. [Department of Oxide Materials Science and Engineering, Polytechnics University, 1-7 Gh. Polizu, P.O. Box 12-134, 011061 Bucharest (Romania); Curecheriu, Lavinia P.; Tudorache, Florin [Department of Physics, ' Al. I. Cuza' University, Bv. Carol 11, Iasi 700506 (Romania); Musteata, Valentina [Institute of Macromolecular Chemistry ' Petru Poni' , Aleea Grigore Ghica Voda 41A, 700487 Iasi (Romania); Stoleriu, Stefania [Department of Oxide Materials Science and Engineering, Polytechnics University, 1-7 Gh. Polizu, P.O. Box 12-134, 011061 Bucharest (Romania); Dragan, Nicolae; Crisan, Dorel [Institute of Physical Chemistry ' Ilie Murgulescu' , Lab. of Oxide Materials Science, 202 Splaiul Independentei, 060021 Bucharest (Romania); Tascu, Sorin; Mitoseriu, Liliana [Department of Physics, ' Al. I. Cuza' University, Bv. Carol 11, Iasi 700506 (Romania)

    2011-04-07

    Research highlights: > BaSnxTi1-xO3 (x = 0; 0.05; 0.1; 0.15; 0.2) ceramics were prepared by solid state reaction and sintered at 13000C for 4h. > The phase purity, structural parameters and microstructural characteristics were investigated. > The dielectric properties were studied as function of temperature and frequency and empirical parameters {eta} and {delta} were calcutate. > The non-linear dielectric properties (tunability) of the samples were studied at room temperature. > By increasing the Sn addition, the {epsilon}(E) dependence tends to reduce its hysteresis behaviour. - Abstract: BaSn{sub x}Ti{sub 1-x}O{sub 3} (x = 0; 0.05; 0.1; 0.15; 0.2) solid solutions were prepared via conventional solid state reaction and sintered at 1300 {sup o}C for 4 h, resulting in dense single phase ceramics with homogeneous microstructures. Tetragonal symmetry for x {<=} 0.1, cubic for x = 0.2 and a superposition of tetragonal and cubic for x = 0.15 compositions were found by X-ray diffraction analysis. The temperature and frequency dependence of the complex dielectric constant and dc tunability were determined. A transformation from normal ferroelectric to relaxor with diffuse phase transition was observed with increasing the Sn concentration. All the investigated compositions show a relative tunability between 0.55 (for x = 0.2) and 0.74 (for x = 0.1), at a field amplitude of E = 20 kV/cm.

  17. Microstructure tuning and magnetism switching of ferroelectric barium titanate

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Wenliang [Key Laboratory of Polar Materials and Devices, Ministry of Education, Department of Electronic Engineering, East China Normal University, Shanghai 200241 (China); Deng, Hongmei [Instrumental Analysis and Research Center, Institute of Materials, Shanghai University, 99 Shangda Road, Shanghai 200444 (China); Ding, Nuofan; Yu, Lu [Key Laboratory of Polar Materials and Devices, Ministry of Education, Department of Electronic Engineering, East China Normal University, Shanghai 200241 (China); Yue, Fangyu, E-mail: fyyue@ee.ecnu.edu.cn [Key Laboratory of Polar Materials and Devices, Ministry of Education, Department of Electronic Engineering, East China Normal University, Shanghai 200241 (China); Yang, Pingxiong, E-mail: pxyang@ee.ecnu.edu.cn [Key Laboratory of Polar Materials and Devices, Ministry of Education, Department of Electronic Engineering, East China Normal University, Shanghai 200241 (China); Chu, Junhao [Key Laboratory of Polar Materials and Devices, Ministry of Education, Department of Electronic Engineering, East China Normal University, Shanghai 200241 (China)

    2015-09-15

    Single-crystal and polycrystal BaTiO{sub 3} (BTO) materials synthesized by the physical and chemical methods, respectively, have been studied based on microstructural characterizations and magnetic measurements. The results of X-ray diffraction and Raman scatting spectra show that a single crystal tetragonal to polycrystalline pseudo-cubic structure transformation occurs in BTO ferroelectrics, dependent of growth conditions and interface effects. High-resolution transmission electron microscope data indicate that the as-prepared BTO/SrTiO{sub 3} (001) and BTO/SrRuO{sub 3}/SrTiO{sub 3} (001) heterostructures are highly c-axis oriented with atomic sharp interfaces. Lattice defects (i.e., edge-type misfit dislocations and stacking faults) in the heterostructures could be identified clearly and showed tunable with the variations of interface strain. Furthermore, the effects of vacancy defects on magnetic properties of BTO are discussed, which shows a diamagnetism–ferromagnetism switching as intrinsic vacancies increase. This work opens up a possible avenue to prepare magnetic BTO ferroelectrics. - Highlights: • Structure of BTO is tunable, depending on growth conditions and interface strain. • STEM–EDX data indicate the presence of lattice defects in BTO ferroelectrics. • BTO magnetism could be controlled by defects showing dia-ferromagnetism switching. • BTO with more vacancies shows RTFM, as evidence of vacancy magnetism effects.

  18. DEVELOPMENT OF MONOSODIUM TITANATE (MST) PURCHASE SPECIFICATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Hobbs, D

    2006-04-30

    Savannah River National Laboratory (SRNL) evaluated the previous monosodium titanate (MST) purchase specifications for particle size and strontium decontamination factor. Based on the measured particle size and filtration performance characteristics of several MST samples with simulated waste solutions and various filter membranes we recommend changing the particle size specification as follows. The recommended specification varies with the size and manufacturer of the filter membrane as shown below. We recommend that future batches of MST received at SRS be tested for particle size and filtration performance. This will increase the available database and provide increased confidence that particle size parameters are an accurate prediction of filtration performance. Testing demonstrated the feasibility of a non-radiochemical method for evaluating strontium removal performance of MST samples. Using this analytical methodology we recommend that the purchase specification include the requirement that the MST exhibits a strontium DF factor of >1.79 upon contact with a simulated waste solution with composition as reported for simulated waste solution SWS-7-2005-1 in Table 1 and containing 5.2 to 5.7 mg L{sup -1} strontium with 0.1 g L{sup -1} of the MST. We also recommend performing additional tests with these simulants and MST samples and, if available, new MST samples, to determine the reproducibility and increase the available database for the measurements by the ICP-ES instrument. These measurements will provide increased confidence that the non-radiological method provides a reliable method for evaluating the strontium and actinide removal performance for MST samples.

  19. 氯化钡除杂制取高纯氢氧化钡%Preparation of high purity barium hydroxide by impurity - removed barium chloride

    Institute of Scientific and Technical Information of China (English)

    翁贤芬; 毛逢银; 何琳; 李莉

    2009-01-01

    Removal technology of strontium and iron from crude barium chloride raw material were studied.Optimization of process conditions of strontium and iron removal were discussed.When crude barium chloride stiring and dissolving the mixture at 60 ℃ for 40 min,impurities of stromtium and calcuim can be removed and mass fraction of strontium in the obatined solid barium chloride was below 1×10-4.Then add oxydol (H2O2) at proportion of 100 g raw materials per 8 mL H2O2,and add active carbon and small quantity of sodium hydroxide.Finally,iron could be get rid of when pH was controlled below 10.Mass fraction of iron in barium hydroxide product was less than 1×10-5 when using the iron - removed barium chaloride as raw material.Therefore,purified barium chloride by this method can be used to produce purity barium hydroxide.%研究了粗氯化钡原料中锶和铁杂质的脱除工艺,探讨了脱除锶和铁的优化工艺条件.在粗氯化钡原料中加入去离子水,液固质量比为0.25: 1,在60 ℃下搅拌溶解40 min,可除去锶和钙杂质,所得氯化钡固体中锶质量分数低于1×10-4.在氯化钡溶液中加入双氧水,每100 g原料中加入双氧水8 mL,加入活性炭和少量氢氧化钠,控制pH低于10时,可除去铁杂质,用除铁后的氯化钡制取氢氧化钡,产品中铁质量分数低于1×10-5.用除杂后的氯化钡可制得高纯氢氧化钡.

  20. On Barium Oxide Solubility in Barium-Containing Chloride Melts

    Science.gov (United States)

    Nikolaeva, Elena V.; Zakiryanova, Irina D.; Bovet, Andrey L.; Korzun, Iraida V.

    2016-08-01

    Oxide solubility in chloride melts depends on temperature and composition of molten solvent. The solubility of barium oxide in the solvents with barium chloride content is essentially higher than that in molten alkali chlorides. Spectral data demonstrate the existence of oxychloride ionic groupings in such melts. This work presents the results of the BaO solubility in two molten BaCl2-NaCl systems with different barium chloride content. The received data together with earlier published results revealed the main regularities of BaO solubility in molten BaO-BaCl2-MCl systems.

  1. Comparison of Barium and Arsenic Concentrations in Well Drinking Water and in Human Body Samples and a Novel Remediation System for These Elements in Well Drinking Water

    Science.gov (United States)

    Kato, Masashi; Kumasaka, Mayuko Y.; Ohnuma, Shoko; Furuta, Akio; Kato, Yoko; Shekhar, Hossain U.; Kojima, Michiyo; Koike, Yasuko; Dinh Thang, Nguyen; Ohgami, Nobutaka; Ly, Thuy Bich; Jia, Xiaofang; Yetti, Husna; Naito, Hisao; Ichihara, Gaku; Yajima, Ichiro

    2013-01-01

    Health risk for well drinking water is a worldwide problem. Our recent studies showed increased toxicity by exposure to barium alone (≤700 µg/L) and coexposure to barium (137 µg/L) and arsenic (225 µg/L). The present edition of WHO health-based guidelines for drinking water revised in 2011 has maintained the values of arsenic (10 µg/L) and barium (700 µg/L), but not elements such as manganese, iron and zinc. Nevertheless, there have been very few studies on barium in drinking water and human samples. This study showed significant correlations between levels of arsenic and barium, but not its homologous elements (magnesium, calcium and strontium), in urine, toenail and hair samples obtained from residents of Jessore, Bangladesh. Significant correlation between levels of arsenic and barium in well drinking water and levels in human urine, toenail and hair samples were also observed. Based on these results, a high-performance and low-cost adsorbent composed of a hydrotalcite-like compound for barium and arsenic was developed. The adsorbent reduced levels of barium and arsenic from well water in Bangladesh and Vietnam to <7 µg/L within 1 min. Thus, we have showed levels of arsenic and barium in humans and propose a novel remediation system. PMID:23805262

  2. Comparison of Barium and Arsenic Concentrations in Well Drinking Water and in Human Body Samples and a Novel Remediation System for These Elements in Well Drinking Water.

    Directory of Open Access Journals (Sweden)

    Masashi Kato

    Full Text Available Health risk for well drinking water is a worldwide problem. Our recent studies showed increased toxicity by exposure to barium alone (≤700 µg/L and coexposure to barium (137 µg/L and arsenic (225 µg/L. The present edition of WHO health-based guidelines for drinking water revised in 2011 has maintained the values of arsenic (10 µg/L and barium (700 µg/L, but not elements such as manganese, iron and zinc. Nevertheless, there have been very few studies on barium in drinking water and human samples. This study showed significant correlations between levels of arsenic and barium, but not its homologous elements (magnesium, calcium and strontium, in urine, toenail and hair samples obtained from residents of Jessore, Bangladesh. Significant correlation between levels of arsenic and barium in well drinking water and levels in human urine, toenail and hair samples were also observed. Based on these results, a high-performance and low-cost adsorbent composed of a hydrotalcite-like compound for barium and arsenic was developed. The adsorbent reduced levels of barium and arsenic from well water in Bangladesh and Vietnam to <7 µg/L within 1 min. Thus, we have showed levels of arsenic and barium in humans and propose a novel remediation system.

  3. Strontium Diibuprofenate Dihydrate, Strontium Malonate Sesquihydrate, Strontium Diascorbate Dihydrate and Strontium 2-Oxidobenzoate Hydrate at 120 K

    DEFF Research Database (Denmark)

    Stahl, Kenny; Andersen, Jens Enevold Thaulov; Cristgau, Stephan

    2006-01-01

    Four strontium(II) salts with organic acids have been studied. Poly[diaquadi--ibuprofenato-strontium(II)] or poly[diaquabis[-2-(4-isobutylphenyl)propionato]strontium(II)], [Sr(C13H17O2)2(H2O)2]n, crystallizes with eight-coordinated Sr atoms. The coordination polyhedra are interconnected by edge...

  4. MR Colonography with fecal tagging: Barium vs. barium ferumoxsil

    DEFF Research Database (Denmark)

    Achiam, M.P.; Chabanova, E.; Logager, V.B.;

    2008-01-01

    and Methods. Twenty patients referred to CC underwent dark lumen MRC prior to the colonoscopy. Two groups of patients received two different oral contrast agents (barium sulfate and barium sulfate/ferumoxsil) as a laxative-free fecal tagging prior to the MRC. After MRC, the contrast agent was rated...... qualitatively (with the standard method using contrast-to-wall ratio) and subjectively (using a visual analog scale [VAS]) by three different blinded observers. Results. Evaluated both qualitatively and subjectively, the tagging efficiency of barium sulfate/ferumoxsil was significantly better (P ... barium sulfate alone. The VAS method for evaluating the tagging efficiency of contrast agents showed a high correlation (observer 11, r = 0.91) to the standard method using contrast-to-wall ratio and also a high interclass correlation (observer 11 and III = 0.89/0.85). MRC found I of 22 (5%) polyps

  5. New barium tantalum sulphides

    International Nuclear Information System (INIS)

    A new barium tantalum sulphide has been synthesized by the reaction of CS2 with a mixture of BaCO3 and Ta2O5. The chemical analysis of the compound was performed for 3 components (Ba, Ta and S), and the chemical composition was found to be BaTa2S5. The powder X-ray diffraction peaks were indexable on the basis of a hexagonal cell with lattices constants of a=3.32A, c=25.13A. However, the electron diffraction measurements show that the structure is more complex than that observed by powder X-ray diffraction. The compound indicates metallic behavior and Pauli paramagnetism

  6. Future Titan Missions

    Science.gov (United States)

    Waite, J. H.; Coustenis, A.; Lorenz, R.; Lunine, J.; Stofan, E.

    2012-04-01

    New discoveries about Titan from the Cassini-Huygens mission have led to a broad range of mission class studies for future missions, ranging from NASA Discovery class to International Flagship class. Three consistent science themes emerge and serve as a framework for discussing the various mission concepts: Goal A: Explore Titan, an Earth-Like System - How does Titan function as a system? How are the similarities and differences with Earth, and other solar system bodies, a result of the interplay of the geology, hydrology, meteorology, and aeronomy present in the Titan system?; Goal B: Examine Titan’s Organic Inventory—A Path to Prebiological Molecules - What is the complexity of Titan’s organic chemistry in the atmosphere, within its lakes, on its surface, and in its putative subsurface water ocean and how does this inventory differ from known abiotic organic material in meteorites and therefore contribute to our understanding of the origin of life in the Solar System?; and Goal C: Explore Enceladus and Saturn’s magnetosphere—clues to Titan’s origin and evolution - What is the exchange of energy and material with the Saturn magnetosphere and solar wind? What is the source of geysers on Enceladus? Does complex chemistry occur in the geyser source? Within this scientific framework the presentation will overview the Titan Explorer, Titan AND Enceladus Mission, Titan Saturn System Mission, Titan Mare Explorer, and Titan Submersible. Future timelines and plans will be discussed.

  7. Abundance analysis of barium and mild barium stars

    CERN Document Server

    Smiljanic, R; Silva, L

    2007-01-01

    High signal to noise, high resolution spectra were obtained for a sample of normal, mild barium, and barium giants. Atmospheric parameters were determined from the FeI and FeII lines. Abundances for Na, Mg, Al, Si, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Sr, Y, Zr, Ba, La, Ce, Nd, Sm, Eu, and Gd, were determined from equivalent widths and model atmospheres in a differential analysis, with the red giant Eps Vir as the standard star. The different levels of s-process overabundances of barium and mild barium stars were earlier suggested to be related to the stellar metallicity. Contrary to this suggestion, we found in this work no evidence for barium and mild barium to have a different range in metallicity. However, comparing the ratio of abundances of heavy to light s-process elements, we found some evidence that they do not share the same neutron exposure parameter. The exact mechanism controlling this difference is still not clear. As a by-product of this analysis we identify two normal red giants misclass...

  8. Early history of strontium

    International Nuclear Information System (INIS)

    This paper discusses early experiments that led to the discovery that the compounds of Sr2- contain a peculiar earth (Sr0) different from barytes and lime. The characterization of strontium compounds and of strontium minerals was the result of experiments by Crawford and Cruickshank, Sulzer and Blumenbach, Kalproth, Kirwan, Schmeisser, Hope, A. Meyer, and Lowitz, each of whom contributed some new material or confirmed some experiments reported by predecessors. An account of their contributions is given. The attention of the author was drawn to the subject by the conflicting statements to be found in works of reference

  9. Discovery of the Barium Isotopes

    OpenAIRE

    SHORE, A.; A. Fritsch; Ginepro, J. Q.; Heim, M.; Schuh, A.; Thoennessen, M

    2009-01-01

    Thirty-eight barium isotopes have so far been observed; the discovery of these isotopes is discussed. For each isotope a brief summary of the first refereed publication, including the production and identification method, is presented.

  10. AC Complex Impedance Analysis of Doped Strontium Titanate Multifunctional Ceramics

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Doped SrTiO3 capacitor-varistor multifunctional ceramics were fabricated by a single sintering process. AC compleximpedance analysis was performed to investigate electrical features ofgrains and grain boundaries for both as-reducedceramic and reoxidized ceramics. The results showed that the as-reduced ceramic exhibited inductive response athigh frequencies above 2 MHz, which is attributed to the contribution of electron behavior in semiconducting grains.The high frequency inductive response disappeared in impedance plots of reoxidized ceramics.

  11. Niobium-doped strontium titanates as SOFC anodes

    DEFF Research Database (Denmark)

    Blennow Tullmar, Peter; Kammer Hansen, Kent; Wallenberg, L. Reine;

    2008-01-01

    Sr-vacancy compensated Nb-doped SrTiO(3) with the nominal composition Sr(0.94)Ti(0.9)Nb(0.1)O(3) has been evaluated as part of a solid oxide fuel cell (SOFC) anode material in terms of redox stability, electrical conductivity, as well as electrochemical properties. Sr(0.94)Ti(0.9)Nb(0.1)O(3) has ...

  12. Thermoelectric properties of strontium titanate superlattices incorporating niobium oxide nanolayers

    KAUST Repository

    Kumar, Sunil R Sarath

    2014-04-22

    A novel superlattice structure based on epitaxial nanoscale layers of NbOx and Nb-doped SrTiO3 is fabricated using a layer-by-layer approach on lattice matched LAO substrates. The absolute Seebeck coefficient and electrical conductivity of the [(NbOx) a/(Nb-doped SrTiO3)b]20 superlattices (SLs) were found to increase with decreasing layer thickness ratio (a/b ratio), reaching, at high temperatures, a power factor that is comparable to epitaxial Nb-doped SrTiO3 (STNO) films (∼0.7 W m-1 K-1). High temperature studies reveal that the SLs behave as n-type semiconductors and undergo an irreversible change at a varying crossover temperature that depends on the a/b ratio. By use of high resolution X-ray photoelectron spectroscopy and X-ray diffraction, the irreversible changes are identified to be due to a phase transformation from cubic NbO to orthorhombic Nb2O5, which limits the highest temperature of stable operation of the superlattice to 950 K. © 2014 American Chemical Society.

  13. Barium light source method and apparatus

    Science.gov (United States)

    Curry, John J. (Inventor); MacDonagh-Dumler, Jeffrey (Inventor); Anderson, Heidi M. (Inventor); Lawler, James E. (Inventor)

    2002-01-01

    Visible light emission is obtained from a plasma containing elemental barium including neutral barium atoms and barium ion species. Neutral barium provides a strong green light emission in the center of the visible spectrum with a highly efficient conversion of electrical energy into visible light. By the selective excitation of barium ionic species, emission of visible light at longer and shorter wavelengths can be obtained simultaneously with the green emission from neutral barium, effectively providing light that is visually perceived as white. A discharge vessel contains the elemental barium and a buffer gas fill therein, and a discharge inducer is utilized to induce a desired discharge temperature and barium vapor pressure therein to produce from the barium vapor a visible light emission. The discharge can be induced utilizing a glow discharge between electrodes in the discharge vessel as well as by inductively or capacitively coupling RF energy into the plasma within the discharge vessel.

  14. Synthesis of BaTiO3 powder from barium titanyl oxalate (BTO) precursor employing microwave heating technique

    Indian Academy of Sciences (India)

    Y S Malghe; A V Gurjar; S R Dharwadkar

    2004-06-01

    Cubic barium titanate (BaTiO3) powder was synthesized by heating barium titanyl oxalate hydrate, BaTiO(C2O4)$_{2}\\cdot$4H2O (BTO) precursor in microwave heating system in air at 500°C. Heating BTO in microwave above 600°C yielded tetragonal form of BaTiO3. Experiments repeated in silicon carbide furnace showed that BaTiO3 was formed only above 700°C. The product obtained was cubic.

  15. Accumulation of bone strontium measured by in vivo XRF in rats supplemented with strontium citrate and strontium ranelate.

    Science.gov (United States)

    Wohl, Gregory R; Chettle, David R; Pejović-Milić, Ana; Druchok, Cheryl; Webber, Colin E; Adachi, Jonathan D; Beattie, Karen A

    2013-01-01

    Strontium ranelate is an approved pharmacotherapy for osteoporosis in Europe and Australia, but not in Canada or the United States. Strontium citrate, an alternative strontium salt, however, is available for purchase over-the-counter as a nutritional supplement. The effects of strontium citrate on bone are largely unknown. The study's objectives were 1) to quantify bone strontium accumulation in female Sprague Dawley rats administered strontium citrate (N=7) and compare these levels to rats administered strontium ranelate (N=6) and vehicle (N=6) over 8 weeks, and 2) to verify an in vivo X-ray fluorescence spectroscopy (XRF) system for measurement of bone strontium in the rat. Daily doses of strontium citrate and strontium ranelate were determined with the intention to achieve equivalent amounts of elemental strontium. However, post-hoc analyses of each strontium compound conducted using energy dispersive spectrometry microanalysis revealed a higher elemental strontium concentration in strontium citrate than strontium ranelate. Bone strontium levels were measured at baseline and 8 weeks follow-up using a unique in vivo XRF technique previously used in humans. XRF measurements were validated against ex vivo measurements of bone strontium using inductively coupled plasma mass spectrometry. Weight gain in rats in all three groups was equivalent over the study duration. A two-way ANOVA was conducted to compare bone strontium levels amongst the three groups. Bone strontium levels in rats administered strontium citrate were significantly greater (p<0.05) than rats administered strontium ranelate and vehicle. ANCOVA analyses were performed with Sr dose as a covariate to account for differences in strontium dosing. The ANCOVA revealed differences in bone strontium levels between the strontium groups were not significant, but that bone strontium levels were still very significantly greater than vehicle. PMID:22995463

  16. Étude cinétique d'une voie de synthèse du titanate de baryum à partir de réactants (nitrate de baryum et dioxyde de titane) à l'état solide

    OpenAIRE

    Valdivieso, Françoise; Pijolat, Michèle; Soustelle, Michel

    1997-01-01

    National audience; The aim of this work is to study the solid state synthesis of barium titanate, from barium nitrate and titanium dioxide. L'objet de ce travail est l'étude d'une voie de synthèse du titanate de baryum à partir de nitrate de baryum et de dioxyde de titane à l'état solide. Une première étape a consisté à identifier les chemins réactionnels, c'est à dire, les produits intermédiaires qui peuvent se former au cours de la réaction, par une étude thermodynamique et expérimentale du...

  17. Titan's organic chemistry

    Science.gov (United States)

    Sagan, C.; Thompson, W. R.; Khare, B. N.

    1985-01-01

    Voyager discovered nine simple organic molecules in the atmosphere of Titan. Complex organic solids, called tholins, produced by irradiation of the simulated Titanian atmosphere, are consistent with measured properties of Titan from ultraviolet to microwave frequencies and are the likely main constituents of the observed red aerosols. The tholins contain many of the organic building blocks central to life on earth. At least 100-m, and possibly kms thicknesses of complex organics have been produced on Titan during the age of the solar system, and may exist today as submarine deposits beneath an extensive ocean of simple hydrocarbons.

  18. Phase IV testing of monosodium titanate adsorption with radioactive waste

    Energy Technology Data Exchange (ETDEWEB)

    Hobbs, D.T.

    1999-12-08

    Testing examined the extent and rate of strontium, plutonium, uranium, and neptunium removal from radioactive waste solutions at 4.5M and 7.5M in Na concentration by adsorption onto monosodium titanate (MST) at 0.2 g/L. Results indicate that the extents and rates of strontium, plutonium, and neptunium removal in radioactive waste solutions agree well with those previously measured using simulated waste solutions. Uranium removal in the 7.5M Na radioactive waste solution proved similar to that observed with simulated waste solutions. Uranium removal in the 4.5M Na radioactive waste solution proved lower than expected from previous simulant tests. The authors conclude that MST adsorption data obtained from simulated waste solutions provide reliable predictions for use in facility design and flowsheet modeling studies in the Salt Disposition Alternatives program.

  19. Spectrographic determination of strontium in yttrium-90 solutions; Determinacion espectrografica de estroncio en soluciones de itrio-90

    Energy Technology Data Exchange (ETDEWEB)

    Roca, M.; Capdevila, C.

    1970-07-01

    The copper spark method has been used for determining strontium in the concentration range 1-100 g/ml in yttrium-90 solutions containing 0,5 % or thereabouts of ammonium citrate. The influence of the citric acid as well as the ammonium citrate with regard to 2N HCL solutions has been studied: the citric acid enhances the line intensities of strontium. The employment of either barium or lanthanum as reference element compensates for this enhancement. Because of the increase in sensitivity mentioned above, the study of influence of the citric acid has been extended and several impurities usually determined in radioisotope solutions have been considered. (Author) 4 refs.

  20. Study of mineral ion exchangers for strontium removal from nuclear waste waters

    International Nuclear Information System (INIS)

    The problems of chemical pollution of water have become a major concern and a priority for the nuclear industry. The aim of this work is to study some ion exchangers used for the removal of strontium ions because 90Sr is one of a major pollutant in nuclear liquid wastes. This study allows linking the physical and chemical properties of these materials and their sorption properties. This work presents therefore the synthesis of two materials - sodium nona-titanate and zeolite A - selected for their specific sorption properties of strontium: A second part of this work is dedicated to the study of specific exchange capacities of these materials for the strontium in presence of other elements such as sodium and calcium. Batch experiments were performed and kinetic and ion exchange models have been applied to understand the selectivity of the materials for strontium removal. Sodium nona-titanate and zeolite A are also studied in actual effluents. Monoliths of zeolite A have been also tested in dynamic ion exchange process. This material is promising for the treatment of radioactive effluents in continuous flow because it joins the sorption properties of the zeolite powder with the advantage of a solid with a macroporous network. (author)

  1. Titans of Service

    OpenAIRE

    Lindberg-Repo, Kirsti Helena; Dube, Apramey

    2014-01-01

    TITANS OF SERVICE combines theory with practical insights, examples and references from experts. Bringing together 14 service experts, this book offers the most up-to-date knowledge from this field of academia in the U.S., Europe and Asia. In addition to offering theoretical insights, practical guidance and examples, this book also gives an overview of the current and future role of services. Titans of Service provides a framework for thinking about ways in which new knowledge on services is ...

  2. Is Titan Partially Differentiated?

    Science.gov (United States)

    Mitri, G.; Pappalardo, R. T.; Stevenson, D. J.

    2009-12-01

    The recent measurement of the gravity coefficients from the Radio Doppler data of the Cassini spacecraft has improved our knowledge of the interior structure of Titan (Rappaport et al. 2008 AGU, P21A-1343). The measured gravity field of Titan is dominated by near hydrostatic quadrupole components. We have used the measured gravitational coefficients, thermal models and the hydrostatic equilibrium theory to derive Titan's interior structure. The axial moment of inertia gives us an indication of the degree of the interior differentiation. The inferred axial moment of inertia, calculated using the quadrupole gravitational coefficients and the Radau-Darwin approximation, indicates that Titan is partially differentiated. If Titan is partially differentiated then the interior must avoid melting of the ice during its evolution. This suggests a relatively late formation of Titan to avoid the presence of short-lived radioisotopes (Al-26). This also suggests the onset of convection after accretion to efficiently remove the heat from the interior. The outer layer is likely composed mainly of water in solid phase. Thermal modeling indicates that water could be present also in liquid phase forming a subsurface ocean between an outer ice I shell and a high pressure ice layer. Acknowledgments: This work was conducted at the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration.

  3. Titan's surface and atmosphere

    Science.gov (United States)

    Hayes, Alexander G.; Soderblom, Jason M.; Ádámkovics, Máté

    2016-05-01

    Since its arrival in late 2004, the NASA/ESA Cassini-Huygens mission to Saturn has revealed Titan to be a world that is both strange and familiar. Titan is the only extraterrestrial body known to support standing bodies of stable liquid on its surface and, along with Earth and early Mars, is one of three places in the Solar System known to have had an active hydrologic cycle. With atmospheric pressures of 1.5 bar and temperatures of 90-95 K at the surface, methane and ethane condense out of Titan's nitrogen-dominated atmosphere and flow as liquids on the surface. Despite vast differences in environmental conditions and materials from Earth, Titan's methane-based hydrologic cycle drives climatic and geologic processes which generate landforms that are strikingly similar to their terrestrial counterparts, including vast equatorial dunes, well-organized channel networks that route material through erosional and depositional landscapes, and lakes and seas of liquid hydrocarbons. These similarities make Titan a natural laboratory for studying the processes that shape terrestrial landscapes and drive climates, probing extreme conditions impossible to recreate in earthbound laboratories. Titan's exotic environment ensures that even rudimentary measurements of atmospheric/surface interactions, such as wind-wave generation or aeolian dune development, provide valuable data to anchor physical models.

  4. Enhanced airglow at Titan

    Science.gov (United States)

    Royer, Emilie; Esposito, Larry; Wahlund, Jan-Erik

    2016-06-01

    The Cassini Ultraviolet Imaging Spectrograph (UVIS) instrument made thousand of observations of Titan since its arrival in the Saturnian system in 2004, but only few of them have been analyzed yet. Using the imaging capability of UVIS combined to a big data analytics approach, we have been able to uncover an unexpected pattern in this observations: on several occasions the Titan airglow exhibits an enhanced brightness by approximately a factor of 2, generally combined with a lower altitude of the airglow emission peak. These events typically last from 10 to 30 minutes and are followed and preceded by an airglow of regular and expected level of brightness and altitude. Observations made by the Cassini Plasma Spectrometer (CAPS) instrument onboard Cassini allowed us to correlate the enhanced airglow observed on T-32 with an electron burst. The timing of the burst and the level of energetic electrons (1 keV) observed by CAPS correspond to a brighter and lower than typical airglow displayed on the UVIS data. Furthermore, during T-32 Titan was inside the Saturn's magnetosheath and thus more subject to bombardment by energetic particles. However, our analysis demonstrates that the presence of Titan inside the magnetosheath is not a necessary condition for the production of an enhanced airglow, as we detected other similar events while Titan was within Saturn's magnetosphere. The study presented here aims to a better understanding of the interactions of Titan's upper atmosphere with its direct environment.

  5. The TITAN reversed-field-pinch fusion reactor study

    International Nuclear Information System (INIS)

    This report discusses the following topics: overview of titan-2 design; titan-2 fusion-power-core engineering; titan-2 divertor engineering; titan-2 tritium systems; titan-2 safety design and radioactive-waste disposal; and titan-2 maintenance procedures

  6. The TITAN reversed-field-pinch fusion reactor study

    Energy Technology Data Exchange (ETDEWEB)

    1990-01-01

    This report discusses the following topics: overview of titan-2 design; titan-2 fusion-power-core engineering; titan-2 divertor engineering; titan-2 tritium systems; titan-2 safety design and radioactive-waste disposal; and titan-2 maintenance procedures.

  7. Witnessing Springtime on Titan

    Science.gov (United States)

    Kohler, Susanna

    2016-02-01

    Have you ever wondered what springtime is like on Saturns largest moon, Titan? A team of researchers has analyzed a decade of data from the Cassini spacecraft to determine how Titans gradual progression through seasons has affected its temperatures.Observing the Saturn SystemThough Titan orbits Saturn once every ~16 days, it is Saturns ~30-year march around the Sun that sets Titans seasons: each traditional season on Titan spans roughly 7.5 years. Thus, when the Cassini spacecraft first arrived at Saturn in 2004 to study the giant planet and its ring system and moons, Titans northern hemisphere was in early winter. A decade later, the season in the northern hemisphere had advanced to late spring.A team scientists led by Donald Jennings (Goddard Space Flight Center) has now used data from the Composite Infrared Spectrometer (CIRS) on board Cassini to analyze the evolution of Titans surface temperature between 2004 and 2014.Changing of SeasonsSurface brightness temperatures (with errors) on Titan are shown in blue for five time periods between 2004 and 2014. The location of maximum temperature migrates from 19S to 16N over the decade. Two climate models are also shown in green (high thermal inertia) and red (low thermal inertia). [Jennings et al. 2016]CIRS uses the decreased opacity of Titans atmosphere at 19 m to detect infrared emission from Titans surface at this wavelength. From this data, Jennings and collaborators determine Titans surface temperature for five time intervals between 2004 and 2014. They bin the data into 10 latitude bins that span from the south pole (90S) to the north pole (90N).The authors find that the maximum temperature on the moon stays stable over the ten-year period at 94 K, or a chilly -240F). But as time passes, the latitude with the warmest temperature shifts from 19S to 16N, marking the transition from early winter to late spring. Over the decade of monitoring, the surface temperature near the south pole decreased by ~2 K, and that

  8. Interferometry with Strontium Ions

    Science.gov (United States)

    Jackson, Jarom; Lambert, Enoch; Otterstrom, Nils; Jones, Tyler; Durfee, Dallin

    2014-05-01

    We describe progress on a cold ion matter-wave interferometer. Cold Strontium atoms are extracted from an LVIS. The atoms will be photo-ionized with a two-photon transition to an auto-ionizing state in the continuum. The ions will be split and recombined using stimulated Raman transitions from a pair of diode lasers injection locked to two beams from a master laser which have been shifted up and down by half the hyperfine splitting. We are developing laser instrumentation for this project including a method to prevent mode-hopping by analyzing laser frequency noise, and an inexpensive, robust wavelength meter. Supported by NSF Award No. 1205736.

  9. Methane ocean on Titan?

    Science.gov (United States)

    Bell, Peter M.

    There was an impressive list of names on a recent scientific communication that argues for the existence on Titan of an ocean of liquid methane (CH4) perhaps several hundred meters deep. C. Sagan and S. Dermott with helpful comments by S. Oter, S. Ostro, S. Peale, C. Yoder, W. Thompson, S. Squyres, G. Pettengill, P. Gierasch, and B. Khare speculate that such a methanic ocean, with its Saturnian tides and its tholinian floor, should exist all over Titan's surface; it should unless, they conclude, there is the ‘distracting coincidence [that] … the position of the surface of Titan [is] … near the liquidus in the CH4phase diagram [and, consequently, there is] …almost no methane ocean at all’ (Nature, 300, 731, 1982).We know very little about Titan and its surface; the way of checking into Sagan and Dermott's ideas appears to rest on the interpretation of radar reflectivity data. Preliminary attempts to obtain radar data were made in 1979 with the 305-m Arecibo telescope, but only broad limits resulted. The next opportunity for a measurement at Arecibo comes in the 1990's. Of course, the ideal circumstance would be to send spacecraft equipped with a radar reflectometer for a Titan flyby.

  10. Preparation of adsorptive fiber by a combination of peroxo complex of titanium anion and DMAPAA-grafted fiber for the removal of strontium from seawater

    International Nuclear Information System (INIS)

    In order to remove strontium from seawater, sodium titanate was impregnated onto a commercially available 6-nylon fiber by means of radiation-induced graft polymerization and subsequent chemical modifications. First, dimethyaminopropyl acrylamide as an originally anion-exchange-group-containing vinyl monomer was graft-polymerized onto the electron-beam-irradiated nylon fiber, followed by binding of a peroxo complex of titanium anions to the anion-exchange group of the graft chain. Then, bound titanium species were converted into insoluble sodium titanate through a reaction with sodium hydroxide. The equilibrium binding capacity of the sodium-titanate-impregnated fiber for strontium in seawater was calculated as 1.7 mg/g-Sr of the fiber from Langmuir adsorption isotherm. (author)

  11. The tides of Titan.

    Science.gov (United States)

    Iess, Luciano; Jacobson, Robert A; Ducci, Marco; Stevenson, David J; Lunine, Jonathan I; Armstrong, John W; Asmar, Sami W; Racioppa, Paolo; Rappaport, Nicole J; Tortora, Paolo

    2012-07-27

    We have detected in Cassini spacecraft data the signature of the periodic tidal stresses within Titan, driven by the eccentricity (e = 0.028) of its 16-day orbit around Saturn. Precise measurements of the acceleration of Cassini during six close flybys between 2006 and 2011 have revealed that Titan responds to the variable tidal field exerted by Saturn with periodic changes of its quadrupole gravity, at about 4% of the static value. Two independent determinations of the corresponding degree-2 Love number yield k(2) = 0.589 ± 0.150 and k(2) = 0.637 ± 0.224 (2σ). Such a large response to the tidal field requires that Titan's interior be deformable over time scales of the orbital period, in a way that is consistent with a global ocean at depth.

  12. Models of Titan's Ionosphere

    Science.gov (United States)

    Robertson, I. P.; Cravens, T. E.; Waite, J. H.; Wahlund, J.; Yelle, R. V.; Vuitton, V.; Coates, A.; Magee, B.; Gell, D. A.

    2007-12-01

    During the TA and T18 encounters with Titan, in situ measurements were made of Titan's atmosphere and ionosphere by several instruments on board the Cassini Orbiter, including the Ion and Neutral Mass Spectrometer (INMS), the Langmuir probe on the Cassini Radio and Plasma Wave Experiment (RPWS), and the Cassini Plasma Spectrometer Subsystem (CAPS). Both of these encounters were on the day as well as the night side of Titan. The model uses neutral densities measured by the INMS instrument and the electron temperature was measured by the RPWS instrument. The model also includes energetic electron fluxes measured by the CAPS instrument, which act as an important source of ionization on the night side. The modeled ion densities are compared with densities measured by INMS in its Open Source mode.

  13. Impact craters on Titan

    Science.gov (United States)

    Wood, Charles A.; Lorenz, Ralph; Kirk, Randy; Lopes, Rosaly; Mitchell, Karl; Stofan, Ellen; ,

    2010-01-01

    Five certain impact craters and 44 additional nearly certain and probable ones have been identified on the 22% of Titan's surface imaged by Cassini's high-resolution radar through December 2007. The certain craters have morphologies similar to impact craters on rocky planets, as well as two with radar bright, jagged rims. The less certain craters often appear to be eroded versions of the certain ones. Titan's craters are modified by a variety of processes including fluvial erosion, mass wasting, burial by dunes and submergence in seas, but there is no compelling evidence of isostatic adjustments as on other icy moons, nor draping by thick atmospheric deposits. The paucity of craters implies that Titan's surface is quite young, but the modeled age depends on which published crater production rate is assumed. Using the model of Artemieva and Lunine (2005) suggests that craters with diameters smaller than about 35 km are younger than 200 million years old, and larger craters are older. Craters are not distributed uniformly; Xanadu has a crater density 2-9 times greater than the rest of Titan, and the density on equatorial dune areas is much lower than average. There is a small excess of craters on the leading hemisphere, and craters are deficient in the north polar region compared to the rest of the world. The youthful age of Titan overall, and the various erosional states of its likely impact craters, demonstrate that dynamic processes have destroyed most of the early history of the moon, and that multiple processes continue to strongly modify its surface. The existence of 24 possible impact craters with diameters less than 20 km appears consistent with the Ivanov, Basilevsky and Neukum (1997) model of the effectiveness of Titan's atmosphere in destroying most but not all small projectiles.

  14. Diurnal variations of Titan

    Science.gov (United States)

    Cui, J.; Galand, M.; Yelle, R. V.; Vuitton, V.; Wahlund, J.-E.; Lavvas, P. P.; Mueller-Wodarg, I. C. F.; Kasprzak, W. T.; Waite, J. H.

    2009-04-01

    We present our analysis of the diurnal variations of Titan's ionosphere (between 1,000 and 1,400 km) based on a sample of Ion Neutral Mass Spectrometer (INMS) measurements in the Open Source Ion (OSI) mode obtained from 8 close encounters of the Cassini spacecraft with Titan. Though there is an overall ion depletion well beyond the terminator, the ion content on Titan's nightside is still appreciable, with a density plateau of ~700 cm-3 below ~1,300 km. Such a plateau is associated with the combination of distinct diurnal variations of light and heavy ions. Light ions (e.g. CH5+, HCNH+, C2H5+) show strong diurnal variation, with clear bite-outs in their nightside distributions. In contrast, heavy ions (e.g. c-C3H3+, C2H3CNH+, C6H7+) present modest diurnal variation, with significant densities observed on the nightside. We propose that the distinctions between light and heavy ions are associated with their different chemical loss pathways, with the former primarily through "fast" ion-neutral chemistry and the latter through "slow" electron dissociative recombination. The INMS data suggest day-to-night transport as an important source of ions on Titan's nightside, to be distinguished from the conventional scenario of auroral ionization by magnetospheric particles as the only ionizing source on the nightside. This is supported by the strong correlation between the observed night-to-day ion density ratios and the associated ion lifetimes. We construct a time-dependent ion chemistry model to investigate the effects of day-to-night transport on the ionospheric structures of Titan. The predicted diurnal variation has similar general characteristics to those observed, with some apparent discrepancies which could be reconciled by imposing fast horizontal thermal winds in Titan's upper atmosphere.

  15. Rapid determination of strontium-90 by solid phase extraction using DGA Resin® for seawater monitoring

    Science.gov (United States)

    Tazoe, H.; Obata, H.; Yamagata, T.; Karube, Z.; Yamada, M.

    2015-12-01

    Strontium-90 concentrations in seawater exceeding the background level have been observed at the accidents of nuclear facilities, such as Chernobyl and Fukushima. However, analytical procedure for strontium-90 in seawater is still quite complicated and challenging. Here we show a simple and rapid analytical technique for the determination of strontium-90 in seawater samples without time-consuming separation of strontium from calcium. The separation with DGA Resin® is used to determine the abundance of strontium-90, which selectively collects yttrium-90, progeny of strontium-90. Naturally occurring radioactive nuclides (such as potassium, lead, bismuth, uranium, and thorium) and anthropogenic radionuclides (such as cesium, barium, lanthanum, and cerium) were separated from yttrium. Through a sample separation procedure, a high chemical yield of yttrium-90 was achieved at 93.9 % for seawater. The result of IAEA 443 certified seawater analysis was in good agreement with the certified value. At 20 hrs counting a lower detection limit of 1.5 mBq L-1 was obtained from 3 L of seawater. The proposed method can finish analyzing 8 samples per day, which is a reasonably fast throughput in actual seawater monitoring. Reproducibility was found to be 3.4 % according to 10 separate analyses of natural seawater samples from the vicinity of Fukushima Daiichi Nuclear Power Plant in September 2013.

  16. Radioisotope barium sulphate gauge MZB-2

    International Nuclear Information System (INIS)

    A method and the gauge for measuring content of barium sulphate are described. The gauge is intended for fast determination of barium sulphate in barite ore and in output products of the enrichment process. The measuring range 60-100% of BaSO4, accuracy ±1% and measuring time 60 s were reached. The barium sulphate gauge is used in barite mine ''Boguszow'' in Poland. (author)

  17. The problem of the barium stars

    Science.gov (United States)

    Bohm-Vitense, E.; Nemec, J.; Proffitt, C.

    1984-01-01

    Ultraviolet observations of barium stars and other cool stars with peculiar element abundances are reported. Those observations attempted to find hot white dwarf companions. Among six real barium stars studied, only Zeta Cap was found to have a white dwarf companion. Among seven mild, or marginal, barium stars studied, at least three were found to have hot subluminous companions. It is likely that all of them have white dwarf companions.

  18. Demonstration of strontium removal from Hanford N-Area well water

    Energy Technology Data Exchange (ETDEWEB)

    Carlson, C.D.; DesChane, J.R.; Corneillie, T.M.

    1998-09-01

    As part of the Efficient Separations and Processing Crosscutting Program, the Pacific Northwest National Laboratory conducted this study to demonstrate the efficiency of several ion-exchange materials in removing strontium-90 from actual groundwater from the Hanford N-Springs Pump and Treat Demonstration Facility. The objective of this experiment was to determine the strontium-loading distribution coefficients (Kds) for some titanate ion-exchange materials, modified minerals, and organic ion-exchange resins. The equilibrium uptake data presented in this report are useful for identifying potential materials that are capable of removing strontium from N-area groundwaters. The data show the relative selectivities of the ion-exchange materials under similar operating conditions, and show that additional flow studies are needed to predict materials capacities and to develop complete ion-exchange process flow sheets. The materials investigated in this study include commercially available ion exchangers such as IONSIV IE-911 (manufactured by UOP) and SuperLig 644 (IBC Advanced Technologies, Inc.), and materials produced on an experimental basis by Allied Signal (nontitanates), Selion Inc. (titanates), and Pennsylvania State University (modified mica). In all, the performance of seven different ion-exchange materials was evaluated using actual N-Area groundwater. The evaluation consisted of the determining strontium batch distribution coefficients, loading, and decontamination factors. Tests were performed at two different solution-to-exchanger mass ratios (i.e., phase ratios) of 2000 and 4000 using actual N-Area groundwater samples from three different wells. Actual N-Area groundwater used in the present study was obtained from three monitoring wells in FY 1998. These samples were taken from wells with strontium-90 concentrations ranging from 0.25 to 3.9 pCi/L.

  19. Barium aspiration and alveolarisation of barium in an infant: A case report and review of management

    Directory of Open Access Journals (Sweden)

    Alan F. Isles

    2014-05-01

    Full Text Available We describe a case of bilateral inhalation and alveolarisation of barium in an infant following a barium swallow for investigation of dusky spells associated with feeds. A bronchoscopy subsequently revealed the presence of a mid-tracheal tracheo-oesophageal cleft. We review the literature on barium aspiration, its consequences and make recommendations for management.

  20. ONE CASE REPORT OF ACUTE POISONING BY BARIUM CARBONATE

    Institute of Scientific and Technical Information of China (English)

    GE Qin-min; BIAN Fan; WANG Shu-yun; SHEN Sheng-hui

    2009-01-01

    @@ Most barium poisoning cases were caused by oral intake by mistake. Recent years, barium carbonate poisoning has been rare to be reported. Here we reported a case of acute barium carbonate toxication taken orally on purpose.

  1. A Cold Strontium Ion Source

    Science.gov (United States)

    Erickson, Christopher J.; Lyon, Mary; Blaser, Kelvin; Harper, Stuart; Durfee, Dallin

    2010-03-01

    We present a cold ion source for strontium 87. The source is based off of a standard Low-Velocity-Intense-Source (LVIS) for strontium using permanent magnets in place of anti-Helmholtz coils. Atoms from the LVIS are then ionized in a two photon process as they pass a 20kV anode plate. The result is a mono-energetic beam of ions whose velocity is tunable. Applications for the ions include spectroscopy and ion interferometry.

  2. Titanic Weather Forecasting

    Science.gov (United States)

    2004-04-01

    New Detailed VLT Images of Saturn's Largest Moon Optimizing space missions Titan, the largest moon of Saturn was discovered by Dutch astronomer Christian Huygens in 1655 and certainly deserves its name. With a diameter of no less than 5,150 km, it is larger than Mercury and twice as large as Pluto. It is unique in having a hazy atmosphere of nitrogen, methane and oily hydrocarbons. Although it was explored in some detail by the NASA Voyager missions, many aspects of the atmosphere and surface still remain unknown. Thus, the existence of seasonal or diurnal phenomena, the presence of clouds, the surface composition and topography are still under debate. There have even been speculations that some kind of primitive life (now possibly extinct) may be found on Titan. Titan is the main target of the NASA/ESA Cassini/Huygens mission, launched in 1997 and scheduled to arrive at Saturn on July 1, 2004. The ESA Huygens probe is designed to enter the atmosphere of Titan, and to descend by parachute to the surface. Ground-based observations are essential to optimize the return of this space mission, because they will complement the information gained from space and add confidence to the interpretation of the data. Hence, the advent of the adaptive optics system NAOS-CONICA (NACO) [1] in combination with ESO's Very Large Telescope (VLT) at the Paranal Observatory in Chile now offers a unique opportunity to study the resolved disc of Titan with high sensitivity and increased spatial resolution. Adaptive Optics (AO) systems work by means of a computer-controlled deformable mirror that counteracts the image distortion induced by atmospheric turbulence. It is based on real-time optical corrections computed from image data obtained by a special camera at very high speed, many hundreds of times each second (see e.g. ESO Press Release 25/01 , ESO PR Photos 04a-c/02, ESO PR Photos 19a-c/02, ESO PR Photos 21a-c/02, ESO Press Release 17/02, and ESO Press Release 26/03 for earlier NACO

  3. Sintered bentonite ceramics for the immobilization of cesium- and strontium-bearing radioactive waste

    Science.gov (United States)

    Ortega, Luis Humberto

    The Advanced Fuel Cycle Initiative (AFCI) is a Department of Energy (DOE) program, that has been investigating technologies to improve fuel cycle sustainability and proliferation resistance. One of the program's goals is to reduce the amount of radioactive waste requiring repository disposal. Cesium and strontium are two primary heat sources during the first 300 years of spent nuclear fuel's decay, specifically isotopes Cs-137 and Sr-90. Removal of these isotopes from spent nuclear fuel will reduce the activity of the bulk spent fuel, reducing the heat given off by the waste. Once the cesium and strontium are separated from the bulk of the spent nuclear fuel, the isotopes must be immobilized. This study is focused on a method to immobilize a cesium- and strontium-bearing radioactive liquid waste stream. While there are various schemes to remove these isotopes from spent fuel, this study has focused on a nitric acid based liquid waste. The waste liquid was mixed with the bentonite, dried then sintered. To be effective sintering temperatures from 1100 to 1200°C were required, and waste concentrations must be at least 25 wt%. The product is a leach resistant ceramic solid with the waste elements embedded within alumino-silicates and a silicon rich phase. The cesium is primarily incorporated into pollucite and the strontium into a monoclinic feldspar. The simulated waste was prepared from nitrate salts of stable ions. These ions were limited to cesium, strontium, barium and rubidium. Barium and rubidium will be co-extracted during separation due to similar chemical properties to cesium and strontium. The waste liquid was added to the bentonite clay incrementally with drying steps between each addition. The dry powder was pressed and then sintered at various temperatures. The maximum loading tested is 32 wt. percent waste, which refers to 13.9 wt. percent cesium, 12.2 wt. percent barium, 4.1 wt. percent strontium, and 2.0 wt. percent rubidium. Lower loadings of waste

  4. Laser cooling and trapping of barium

    NARCIS (Netherlands)

    De, Subhadeep

    2008-01-01

    Laser cooling and trapping of heavy alkaline-earth element barium have been demonstrated for the first time ever. For any possible cycling transition in barium that could provide strong cooling forces, the excited state has a very large branching probability to metastable states. Additional lasers a

  5. Titan's global geologic processes

    Science.gov (United States)

    Malaska, Michael; Lopes, Rosaly M. C.; Schoenfeld, Ashley; Birch, Samuel; Hayes, Alexander; Williams, David A.; Solomonidou, Anezina; Janssen, Michael A.; Le Gall, Alice; Soderblom, Jason M.; Neish, Catherine; Turtle, Elizabeth P.; Cassini RADAR Team

    2016-10-01

    We have mapped the Cassini SAR imaged areas of Saturn's moon Titan in order to determine the geological properties that modify the surface [1]. We used the SAR dataset for mapping, but incorporated data from radiometry, VIMS, ISS, and SARTopo for terrain unit determination. This work extends our analyses of the mid-latitude/equatorial Afekan Crater region [2] and in the southern and northern polar regions [3]. We placed Titan terrains into six broad terrain classes: craters, mountain/hummocky, labyrinth, plains, dunes, and lakes. We also extended the fluvial mapping done by Burr et al. [4], and defined areas as potential cryovolcanic features [5]. We found that hummocky/mountainous and labyrinth areas are the oldest units on Titan, and that lakes and dunes are among the youngest. Plains units are the largest unit in terms of surface area, followed by the dunes unit. Radiometry data suggest that most of Titan's surface is covered in high-emissivity materials, consistent with organic materials, with only minor exposures of low-emissivity materials that are consistent with water ice, primarily in the mountain and hummocky areas and crater rims and ejecta [6, 7]. From examination of terrain orientation, we find that landscape evolution in the mid-latitude and equatorial regions is driven by aeolian processes, while polar landscapes are shaped by fluvial, lacrustine, and possibly dissolution or volatilization processes involving cycling organic materials [3, 8]. Although important in deciphering Titan's terrain evolution, impact processes play a very minor role in the modification of Titan's landscape [9]. We find no evidence for large-scale aqueous cryovolcanic deposits.References: [1] Lopes, R.M.C. et al. (2010) Icarus, 205, 540–558. [2] Malaska, M.J. et al. (2016) Icarus, 270, 130–161. [3] Birch et al., in revision. [4] Burr et al. (2013) GSA Bulletin 125, 299–321. [5] Lopes et al. JGR: Planets, 118, 1–20. [6] Janssen et al., (2009) Icarus, 200, 222–239. [7

  6. The Use of Strontium-87/Strontium-86 Ratios to Measure Atmospheric Transport into Forested Watersheds

    Science.gov (United States)

    Graustein, William C.; Armstrong, Richard L.

    1983-01-01

    Strontium-87/strontium-86 ratios indicate the sources of strontium in samples of natural waters, vegetation, and soil material taken from watersheds in the Sangre de Cristo Mountains of New Mexico. More than 75 percent of the strontium in the vegetation is ultimately derived from atmospheric transport and less than 25 percent from the weathering of the underlying rock. Much of the airborne strontium enters the watersheds by impacting on coniferous foliage, but deciduous foliage apparently traps little, if any, strontium-bearing aerosol. The strontium and presumably other nutrients are continuously recycled in a nearly closed system consisting of upper soil horizons, forest litter, and the standing crop of vegetation.

  7. Strontium Carbonate Industry Needs Urgent Upgrade

    Institute of Scientific and Technical Information of China (English)

    Jin Tianxin

    2007-01-01

    @@ Strontium carbonate is an important inorganic chemical product mainly used in the manufacture of magnetic materials such as glass shell for picture tubes,cathode-ray tubes (CRT) for color TVs,electromagnets and strontium ferrite.

  8. Process for strontium-82 separation

    International Nuclear Information System (INIS)

    A process for selective separation of strontium-82 and strontium-85 from proton irradiated molybdenum targets comprises dissolving the molybdenum target in a hydrogen peroxide solution to form a first solution containing ions selected from a group consisting of molybdenum, niobium, technetium, selenium, vanadium, arsenic, germanium, zirconium, rubidium, zinc, beryllium, cobalt, iron, manganese, chromium, strontium, and yttrium; passing the solution through a first cationic resin whereby ions selected from a group consisting of zinc, beryllium, cobalt, iron, manganese, chromium, strontium, yttrium a portion of zirconium and a portion of rubidium are selectively absorbed by the first resin; contacting the first resin with an acid solution to strip and remove the absorbed ions from the first cationic exchange resin to form a second solution; evaporating the second solution for a time sufficient to remove substantially all of the acid and water from the solution whereby a residue remains; dissolving the residue in a dilute acid to form a third solution; passing the third solution through a second cationic resin whereby the ions are absorbed by the second resin; contacting the second resin with a dilute sulfuric acid solution whereby the absorbed ions selected from the group consisting of rubidium, zinc, beryllium, cobalt, iron, manganese, chromium and zirconium are selectively removed from the second resin; and contacting the second resin with a dilute acid solution whereby the absorbed strontium ions are selectively removed. 1 fig

  9. Simulations of Titan's paleoclimate

    CERN Document Server

    Lora, Juan M; Russell, Joellen L; Hayes, Alexander G

    2014-01-01

    We investigate the effects of varying Saturn's orbit on the atmospheric circulation and surface methane distribution of Titan. Using a new general circulation model of Titan's atmosphere, we simulate its climate under four characteristic configurations of orbital parameters that correspond to snapshots over the past 42 kyr, capturing the amplitude range of long-period cyclic variations in eccentricity and longitude of perihelion. The model, which covers pressures from the surface to 0.5 mbar, reproduces the present-day temperature profile and tropospheric superrotation. In all four simulations, the atmosphere efficiently transports methane poleward, drying out the low- and mid-latitudes, indicating that these regions have been desert-like for at least tens of thousands of years. Though circulation patterns are not significantly different, the amount of surface methane that builds up over either pole strongly depends on the insolation distribution; in the present-day, methane builds up preferentially in the no...

  10. Titan's Eccentricity Tides

    Science.gov (United States)

    Iess, L.; Jacobson, R.; Ducci, M.; Stevenson, D. J.; Lunine, J. I.; Armstrong, J. W.; Asmar, S.; Racioppa, P.; Rappaport, N. J.; Tortora, P.

    2011-12-01

    The large eccentricity (e=0.03) of Titan's orbit causes significant variations in the tidal field from Saturn and induces periodic stresses in the satellite body at the orbital period (about 16 days). Peak-to-peak variations of the tidal field (from pericenter to apocenter) are about 18% (6e). If Titan hosts a liquid layer (such as an internal ocean), the gravity field would exhibit significant periodic variations. The response of the body to fast variations of the external, perturbing field is controlled by the Love numbers, defined for each spherical harmonic as the ratio between the perturbed and perturbing potential. For Titan the largest effect is by far on the quadrupole field, and the corresponding Love number is indicated by k2 (assumed to be identical for all degree 2 harmonics). Models of Titan's interior generally envisage a core made up of silicates, surrounded by a layer of high pressure ice, possibly a liquid water or water-ammonia ocean, and an ice-I outer shell, with variations associated with the dehydration state of the core or the presence of mixed rock-ice layers. Previous analysis of Titan's tidal response [1] shows that k2 depends crucially on the presence or absence of an internal ocean. k2 was found to vary from about 0.03 for a purely rocky interior to 0.48 for a rigid rocky core surrounded by an ocean and a thin (20 km) ice shell. A large k2 entails changes in the satellite's quadrupole coefficients by a few percent, enough to be detected by accurate range rate measurements of the Cassini spacecraft. So far, of the many Cassini's flybys of Titan, six were used for gravity measurements. During gravity flybys the spacecraft is tracked from the antennas of NASA's Deep Space Network using microwave links at X- and Ka-band frequencies. A state-of-the-art instrumentation enables range rate measurements accurate to 10-50 micron/s at integration times of 60 s. The first four flybys provided the static gravity field and the moment of inertia factor

  11. Organic chemistry on Titan

    Science.gov (United States)

    Chang, S.; Scattergood, T.; Aronowitz, S.; Flores, J.

    1979-01-01

    Features taken from various models of Titan's atmosphere are combined in a working composite model that provides environmental constraints within which different pathways for organic chemical synthesis are determined. Experimental results and theoretical modeling suggest that the organic chemistry of the satellite is dominated by two processes: photochemistry and energetic particle bombardment. Photochemical reactions of CH4 in the upper atmosphere can account for the presence of C2 hydrocarbons. Reactions initiated at various levels of the atmosphere by cosmic rays, Saturn 'wind', and solar wind particle bombardment of a CH4-N2 atmospheric mixture can account for the UV-visible absorbing stratospheric haze, the reddish appearance of the satellite, and some of the C2 hydrocarbons. In the lower atmosphere photochemical processes will be important if surface temperatures are sufficiently high for gaseous NH3 to exist. It is concluded that the surface of Titan may contain ancient or recent organic matter (or both) produced in the atmosphere.

  12. Landscape Evolution of Titan

    Science.gov (United States)

    Moore, Jeffrey

    2012-01-01

    Titan may have acquired its massive atmosphere relatively recently in solar system history. The warming sun may have been key to generating Titan's atmosphere over time, starting from a thin atmosphere with condensed surface volatiles like Triton, with increased luminosity releasing methane, and then large amounts of nitrogen (perhaps suddenly), into the atmosphere. This thick atmosphere, initially with much more methane than at present, resulted in global fluvial erosion that has over time retreated towards the poles with the removal of methane from the atmosphere. Basement rock, as manifested by bright, rough, ridges, scarps, crenulated blocks, or aligned massifs, mostly appears within 30 degrees of the equator. This landscape was intensely eroded by fluvial processes as evidenced by numerous valley systems, fan-like depositional features and regularly-spaced ridges (crenulated terrain). Much of this bedrock landscape, however, is mantled by dunes, suggesting that fluvial erosion no longer dominates in equatorial regions. High midlatitude regions on Titan exhibit dissected sedimentary plains at a number of localities, suggesting deposition (perhaps by sediment eroded from equatorial regions) followed by erosion. The polar regions are mainly dominated by deposits of fluvial and lacustrine sediment. Fluvial processes are active in polar areas as evidenced by alkane lakes and occasional cloud cover.

  13. Synthesis of barium titanium oxide from barium sulphate and anatase. Study of equimolar mixtures under different atmospheres

    International Nuclear Information System (INIS)

    To enable the ceramization of a barium sulphate-rich radioactive waste the synthesis of barium titanium oxide is studied by using anatase and barium sulphate. As a function of the calcination atmosphere, helium (or air) and Ar/H2, two reactions are studied. A mechanism of barium titanium oxide synthesis in helium (or in air) is proposed

  14. Double contrast barium meal and acetylcysteine

    International Nuclear Information System (INIS)

    In a prospective double blind study, acetylcysteine, a local and systemic respiratory tract mucolytic agent, or a placebo, were given to 100 patients prior to a double contrast barium meal to decrease the gastric mucus viscosity and to make the mucus layer thinner, in order to permit barium to outline the furrows surrounding the areae gastricae instead of the overlying thick mucus. However, acetylcysteine failed to improve either visualization of the areae gastricae or the general quality of the double contrast barium meal. (orig.)

  15. Synthesis of Nano-sized Barium Titanate Powder by Solid-state Reaction between Barium Carbonate and Titania

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Size control of BaTiO3 in solid-state reaction between BaCO3 and TiO2 was demonstrated by varying the size of TiO2 and milling conditions of BaCO3. The smaller TiO2 particles had higher surface area, resulting in faster initial reaction. The mechanically milled BaCO3 particles accelerated the diffusion process and decreased the calcinations temperature. It can be deduced from the results that the size control is possible and nano-sized BaTiO3 particles with about 60 nm can be synthesized by using the conventional solid-state reaction between BaCO3 and TiO2.

  16. Acetylene on Titan

    Science.gov (United States)

    Singh, Sandeep; McCord, Thomas B.; Combe, Jean-Philippe; Rodriguez, Sebastien; Cornet, Thomas; Le Mouélic, Stéphane; Clark, Roger Nelson; Maltagliati, Luca; Chevrier, Vincent

    2016-10-01

    Saturn's moon Titan possesses a thick atmosphere that is mainly composed of N2 (98%), CH4 (2 % overall, but 4.9% close to the surface) and less than 1% of minor species, mostly hydrocarbons [1]. A dissociation of N2 and CH4 forms complex hydrocarbons in the atmsophere and acetylene (C2H2) and ethane (C2H6) are produced most abundently. Since years, C2H2 has been speculated to exist on the surface of Titan based on its high production rate in the stratosphere predicted by photochemical models [2,3] and from its detection as trace gas sublimated/evaporated from the surface after the landing of the Huygens probe by the Gas Chromatograph Mass Spectrometer (GCMS) [1]. Here we show evidence of acetylene (C2H2) on the surface of Titan by detecting absorption bands at 1.55 µm and 4.93 µm using Cassini Visual and Infrared Mapping Spectrometer (VIMS) [4] at equatorial areas of eastern Shangri-La, and Fensal-Aztlan/Quivira.An anti-correlation of absorption band strength with albedo indicates greater concentrations of C2H2 in the dark terrains, such as sand dunes and near the Huygens landing site. The specific location of the C2H2 detections suggests that C2H2 is mobilized by surface processes, such as surface weathering by liquids through dissolution/evaporation processes.References:[1]Niemann et al., Nature 438, 779–784 (2005).[2]Lavvas et al., Planetary and Space Science 56, 67 – 99 (2008).[3]Lavvas et al., Planetary and Space Science 56, 27 – 66 (2008).[4] Brown et al., The Cassini-Huygens Mission 111–168 (Springer, 2004).

  17. The Tides of Titan

    Science.gov (United States)

    Iess, L.; Jacobson, R.; Ducci, M.; Stevenson, D. J.; Lunine, J. I.; Armstrong, J. W.; Asmar, S.; Racioppa, P.; Rappaport, N. J.; Tortora, P.

    2012-12-01

    Titan has long been thought to host a subsurface water ocean. A liquid water or water-ammonia layer underneath the outer icy shell was invoked to explain the Voyager and Cassini observations of abundant methane (an easily dissociated species) in the atmosphere of the satellite. Given the paucity of surface hydrocarbon reservoirs, the atmospheric methane must be supplied by the interior, and an ocean can both provide a large storage volume and facilitate the outgassing from the deeper layers of the satellite to the surface. Huygens probe observations of a Schumann-like resonance point to the presence of an electrically conductive layer at a depth of 50-100 km, which has been interpreted to be the top of an ammonia-doped ocean [1]. Cassini gravity observations provide stronger evidence of the existence of such subsurface ocean. By combining precise measurements of the spacecraft range rate during six flybys, suitably distributed along Titan's orbit (three near pericenter, two near apocenter one near quadrature), we have been able to determine the k2 Love number to be k2 = 0.589±0.150 and k2 = 0.637±0.224 in two independent so-lutions (quoted uncertainties are 2-sigma) [2]. Such a large value indicates that Titan is highly deformable over time scales of days, as one would expect if a global ocean were hidden beneath the outer icy shell. The inclusion of time-variable gravity in the solution provided also a more reliable estimate of the static field, including an updated long-wavelength geoid. We discuss the methods adopted in our solutions and some implications of our results for the interior structure of Titan, and outline the expected improvements from the additional gravity flybys before the end of mission in 2017. [1] C. Beghin, C. Sotin, M. Hamelin, Comptes Rendue Geoscience, 342, 425 (2010). [2] L. Iess, R.A. Jacobson, M. Ducci, D.J. Stevenson, J.I. Lunine, J.W. Armstrong, S.W. Asmar, P. Racioppa, N.J. Rappaport, P. Tortora, Science, 337, 457 (2012).

  18. Titan Airship Surveyor

    Science.gov (United States)

    Kerzhanovich, V.; Yavrouian, A.; Cutts, J.; Colozza, A.; Fairbrother, D.

    2001-01-01

    Saturn's moon Titan is considered to be one of the prime candidates for studying prebiotic materials - the substances that precede the formation of life but have disappeared from the Earth as a result of the evolution of life. A unique combination of a dense, predominantly nitrogen, atmosphere (more than four times that of the Earth), low gravity (six times less than on the Earth) and small temperature variations makes Titan the almost ideal planet for studies with lighter-than-air aerial platforms (aerobots). Moreover, since methane clouds and photochemical haze obscure the surface, low-altitude aerial platforms are the only practical means that can provide global mapping of the Titan surface at visible and infrared wavelengths. One major challenge in Titan exploration is the extremely cold atmosphere (approx. 90 K). However, current material technology the capability to operate aerobots at these very low temperatures. A second challenge is the remoteness from the Sun (10 AU) that makes the nuclear (radioisotopic) energy the only practical source of power. A third challenge is remoteness from the Earth (approx. 10 AU, two-way light-time approx. 160 min) which imposes restrictions on data rates and makes impractical any meaningful real-time control. A small-size airship (approx. 25 cu m) can carry a payload approximately 100 kg. A Stirling engine coupled to a radioisotope heat source would be the prime choice for producing both mechanical and electrical power for sensing, control, and communications. The cold atmospheric temperature makes Stirling machines especially effective. With the radioisotope power source the airship may fly with speed approximately 5 m/s for a year or more providing an excellent platform for in situ atmosphere measurements and a high-resolution remote sensing with unlimited access on a global scale. In a station-keeping mode the airship can be used for in situ studies on the surface by winching down an instrument package. Floating above the

  19. Neutral Barium Cloud Evolution at Different Altitudes

    Institute of Scientific and Technical Information of China (English)

    李磊; 徐荣栏

    2002-01-01

    Considering the joint effects of diffusion, collision, oxidation and photoionization, we study the evolution of the barium cloud at different altitudes in the space plasma active experiment. The results present the variation of the loss rate, number density distribution and brightness of the barium cloud over the range from 120 to 260km.This can be divided into oxidation, oxidation plus photoionization and photoionization regions.

  20. Small barium rail gun for plasma injection.

    Science.gov (United States)

    Kiwamoto, Y

    1980-03-01

    A small rail gun with a barium electrode can be operated at higher than one shot per second to produce more than 2x10(16) barium ions with energy 10-20 eV. The operation of the gun takes advantage of the external magnetic field for cross-field plasma injection into a trap. Up to 7 kG of the magnetic field examined, the gun performance improves with the increased magnetic field strength.

  1. Bacterial Reduction Of Barium Sulphate By Sulphate-Reducing Bacteria

    Directory of Open Access Journals (Sweden)

    Luptáková Alena

    2015-12-01

    Full Text Available Acid mine drainage (AMD is a worldwide problem leading to contamination of water sources. AMD are characterized by low pH and high content of heavy metals and sulphates. The barium salts application presents one of the methods for the sulphates removing from AMD. Barium chloride, barium hydroxide and barium sulphide are used for the sulphates precipitation in the form of barium sulphate. Because of high investment costs of barium salts, barium sulphide is recycled from barium sulphate precipitates. It can be recycled by thermic or bacterial reduction of barium sulphate. The aim of our study was to verify experimentally the possibility of the bacterial transformation of BaSO4 to BaS by sulphate-reducing bacteria. Applied BaSO4 came from experiments of sulphates removal from Smolnik AMD using BaCl2.

  2. Venous barium embolization, a rare, potentially fatal complication of barium enema: 2 case reports

    International Nuclear Information System (INIS)

    Venous embolization of barium has been recognized for 4 decades as one of the most dreaded complications of barium enema. Fortunately, the condition is extremely rare. In this report, the radiographic findings in 2 cases of venous embolization (one involving the portal vein and one systematic) are described, and ways to decrease the risk of this complication are discussed. (author)

  3. Thermochemical hydrogen production via a cycle using barium and sulfur - Reaction between barium sulfide and water

    Science.gov (United States)

    Ota, K.; Conger, W. L.

    1977-01-01

    The reaction between barium sulfide and water, a reaction found in several sulfur based thermochemical cycles, was investigated kinetically at 653-866 C. Gaseous products were hydrogen and hydrogen sulfide. The rate determining step for hydrogen formation was a surface reaction between barium sulfide and water. An expression was derived for the rate of hydrogen formation.

  4. Synthesis of barium mercaptides and application of antimony/barium mercaptides

    Institute of Scientific and Technical Information of China (English)

    瞿龙; 张露露; 舒万艮

    2001-01-01

    Mercaptoacetic acid, isooctyl thioglycolate and barium hydroxide used as start materials, barium bis (2-ethylhexyl thioglycolate) (Ba(2EHTG)2), barium thioglycolate (Ba(TG)) and barium bisthioglycolate (Ba(TG)2) were synthesized. Their optimum synthetic techniques were discussed, and some physicochemical data were reported. Infrared spectroscopy and elemental analysis methods were used to identify the structures. They were put into PVC plastic products together with antimony tris (2-ethylhexyl thioglycolate) (Sb(2EHTG)3) under the suitable compounding, and their heat stability to PVC was studied. It is shown that these barium mercaptides have remarkable synergisms with antimony mercaptides and the long-term stabilizing effect of organoantimony stabilizer can be effectively improved, reducing the amount of antimony compounds so as to avoid the decrease of its stabilizing effect.

  5. Chemical abundances and kinematics of barium stars

    Science.gov (United States)

    de Castro, D. B.; Pereira, C. B.; Roig, F.; Jilinski, E.; Drake, N. A.; Chavero, C.; Sales Silva, J. V.

    2016-07-01

    In this paper, we present an homogeneous analysis of photospheric abundances based on high-resolution spectroscopy of a sample of 182 barium stars and candidates. We determined atmospheric parameters, spectroscopic distances, stellar masses, ages, luminosities and scaleheight, radial velocities, abundances of the Na, Al, α-elements, iron-peak elements, and s-process elements Y, Zr, La, Ce, and Nd. We employed the local thermodynamic equilibrium model atmospheres of Kurucz and the spectral analysis code MOOG. We found that the metallicities, the temperatures and the surface gravities for barium stars cannot be represented by a single Gaussian distribution. The abundances of α-elements and iron peak elements are similar to those of field giants with the same metallicity. Sodium presents some degree of enrichment in more evolved stars that could be attributed to the NeNa cycle. As expected, the barium stars show overabundance of the elements created by the s-process. By measuring the mean heavy-element abundance pattern as given by the ratio [s/Fe], we found that the barium stars present several degrees of enrichment. We also obtained the [hs/ls] ratio by measuring the photospheric abundances of the Ba-peak and the Zr-peak elements. Our results indicated that the [s/Fe] and the [hs/ls] ratios are strongly anticorrelated with the metallicity. Our kinematical analysis showed that 90 per cent of the barium stars belong to the thin disc population. Based on their luminosities, none of the barium stars are luminous enough to be an asymptotic giant branch star, nor to become self-enriched in the s-process elements. Finally, we determined that the barium stars also follow an age-metallicity relation.

  6. Titan's greenhouse and antigreenhouse effects

    Science.gov (United States)

    Mckay, Christopher P.; Pollack, James B.; Courtin, Regis

    1992-01-01

    Thermal mechanisms active in Titan's atmosphere are discussed in a brief review of data obtained during the Voyager I flyby in 1980. Particular attention is given to the greenhouse effect (GHE) produced by atmospheric H2, N2, and CH4; this GHE is stronger than that on earth, with CH4 and H2 playing roles similar to those of H2O and CO2 on earth. Also active on Titan is an antigreenhouse effect, in which dark-brown and orange organic aerosols block incoming solar light while allowing IR radiation from the Titan surface to escape. The combination of GHE and anti-GHE leads to a surface temperature about 12 C higher than it would be if Titan had no atmosphere.

  7. Seasonal Changes in Titan's Meteorology

    Science.gov (United States)

    Turtle, E. P.; DelGenio, A. D.; Barbara, J. M.; Perry, J. E.; Schaller, E. L.; McEwen, A. S.; West, R. A.; Ray, T. L.

    2011-01-01

    The Cassini Imaging Science Subsystem has observed Titan for 1/4 Titan year, and we report here the first evidence of seasonal shifts in preferred locations of tropospheric methane clouds. South \\polar convective cloud activity, common in late southern summer, has become rare. North \\polar and northern mid \\latitude clouds appeared during the approach to the northern spring equinox in August 2009. Recent observations have shown extensive cloud systems at low latitudes. In contrast, southern mid \\latitude and subtropical clouds have appeared sporadically throughout the mission, exhibiting little seasonality to date. These differences in behavior suggest that Titan s clouds, and thus its general circulation, are influenced by both the rapid temperature response of a low \\thermal \\inertia surface and the much longer radiative timescale of Titan s cold thick troposphere. North \\polar clouds are often seen near lakes and seas, suggesting that local increases in methane concentration and/or lifting generated by surface roughness gradients may promote cloud formation. Citation

  8. Degenerate quantum gases of strontium

    OpenAIRE

    Stellmer, Simon; Schreck, Florian; Killian, Thomas C.

    2013-01-01

    Degenerate quantum gases of alkaline-earth-like elements open new opportunities in research areas ranging from molecular physics to the study of strongly correlated systems. These experiments exploit the rich electronic structure of these elements, which is markedly different from the one of other species for which quantum degeneracy has been attained. Specifically, alkaline-earth-like atoms, such as strontium, feature metastable triplet states, narrow intercombination lines, and a non-magnet...

  9. Life on Titan

    Science.gov (United States)

    Potashko, Oleksandr

    Volcanoes engender life on heavenly bodies; they are pacemakers of life. All planets during their period of formation pass through volcanism hence - all planets and their satellites pass through the life. Tracks of life If we want to find tracks of life - most promising places are places with volcanic activity, current or past. In the case of just-in-time volcanic activity we have 100% probability to find a life. Therefore the most perspective “search for life” are Enceladus, Io and comets, further would be Venus, Jupiter’s satellites, Saturn’s satellites and first of all - Titan. Titan has atmosphere. It might be result of high volcanic activity - from one side, from other side atmosphere is a necessary condition development life from procaryota to eucaryota. Existence of a planet means that all its elements after hydrogen formed just there inside a planet. The forming of the elements leads to the formation of mineral and organic substances and further to the organic life. Development of the life depends upon many factors, e.g. the distance from star/s. The intensity of the processes of the element formation is inversely to the distance from the star. Therefore we may suppose that the intensity of the life in Mercury was very high. Hence we may detect tracks of life in Mercury, particularly near volcanoes. The distance from the star is only one parameter and now Titan looks very active - mainly due to interior reason. Its atmosphere compounds are analogous to comet tail compounds. Their collation may lead to interesting result as progress occurs at one of them. Volcanic activity is as a source of life origin as well a reason for a death of life. It depends upon the thickness of planet crust. In the case of small thickness of a crust the probability is high that volcanoes may destroy a life on a planet - like Noachian deluge. Destroying of the life under volcano influences doesn’t lead to full dead. As result we would have periodic Noachian deluge or

  10. The TITAN magnet configuration

    International Nuclear Information System (INIS)

    The TITAN study uses copper-alloy ohmic-heating coils (OHC) to startup inductively a reversed-field-pinch (RFP) fusion reactor. The plasma equilibrium is maintained with a pair of superconducting equilibrium-field coils (EFCs). A second pair of copper EFCs provides the necessary trimming of the equilibrium field during plasma transients. A compact toroidal-field-coil (TFC) set is provided by an integrated blanket/coil (IBC). The IBC concept also is applied to the toroidal-field divertor coils. Steady-state operation is achieved with oscillating-field current drive, which oscillates at low amplitude and frequency the OHCs, EFCs, the TFCs, and divertor coils about their steady-state currents. An integrated magnet design, which uses low-field, low technology coils, and the related design basis is given. 18 refs

  11. Strontium mineralization of shark vertebrae.

    Science.gov (United States)

    Raoult, Vincent; Peddemors, Victor M; Zahra, David; Howell, Nicholas; Howard, Daryl L; de Jonge, Martin D; Williamson, Jane E

    2016-01-01

    Determining the age of sharks using vertebral banding is a vital component of management, but the causes of banding are not fully understood. Traditional shark ageing is based on fish otolith ageing methods where growth bands are assumed to result from varied seasonal calcification rates. Here we investigate these assumptions by mapping elemental distribution within the growth bands of vertebrae from six species of sharks representing four different taxonomic orders using scanning x-ray fluorescence microscopy. Traditional visual growth bands, determined with light microscopy, were more closely correlated to strontium than calcium in all species tested. Elemental distributions suggest that vertebral strontium bands may be related to environmental variations in salinity. These results highlight the requirement for a better understanding of shark movements, and their influence on vertebral development, if confidence in age estimates is to be improved. Analysis of shark vertebrae using similar strontium-focused elemental techniques, once validated for a given species, may allow more successful estimations of age on individuals with few or no visible vertebral bands. PMID:27424768

  12. From Titan's chemistry and exobiology to Titan's astrobiology

    Science.gov (United States)

    Raulin, François

    2015-04-01

    When the IDS proposal « Titan's chemistry and exobiology » was submitted to ESA 25 years ago, in the frame of what will become the Cassini-Huygens mission, Titan was already seen as a quite interesting planetary object in the solar system for Exobiology. Several organic compounds of prebiotic interest were identified in its atmosphere, which was thus was expected to be chemically very active, especially in term of organic processes. Atmospheric aerosols seemed to play a key role in this chemistry. Moreover, the presence of an internal aqueous ocean, compatible with life was suspected. A few years later, when astrobiology was (re)invented, Titan became one of the most interesting planetary target for this new (but very similar to exobiology) field. With the Cassini-Huygens mission, the exo/astrobiological interest of Titan has become more and more important. However, the mission has been providing a vision of Titan quite different from what it was supposed. Its atmospheric organic chemistry is very complex and starts in much higher zones than it was believed before, involving high molecular weight species in the ionosphere. Titan's surface appears to be far from homogeneous: instead of been covered by a global methane-ethane ocean, it is very diversified, with dunes, lakes, bright and dark areas, impact and volcanic craters with potential cryovolcanic activity. These various geological areas are continuously feeded by atmospheric aerosols, which represent an important step in the complexity of Titan's organic chemistry, but probably not the final one. Indeed, after being deposited on the surface, in the potential cryovolvanic zones, these particles may react with water ice and form compounds of exo/astrobiological interest, such as amino acids, purine and pyrimidine bases. Moreover, The Cassini-Huygens data strongly support the potential presence of an internal water ocean, which becomes less and less hypothetical and of great interest for exobiology. These

  13. The TITAN reversed-field-pinch fusion reactor study

    International Nuclear Information System (INIS)

    This report discusses research on the titan-1 fusion power core. The major topics covered are: titan-1 fusion-power-core engineering; titan-1 divertor engineering; titan-1 tritium systems; titan-1 safety design and radioactive-waste disposal; and titan-1 maintenance procedures

  14. The TITAN reversed-field-pinch fusion reactor study

    Energy Technology Data Exchange (ETDEWEB)

    1990-01-01

    This report discusses research on the titan-1 fusion power core. The major topics covered are: titan-1 fusion-power-core engineering; titan-1 divertor engineering; titan-1 tritium systems; titan-1 safety design and radioactive-waste disposal; and titan-1 maintenance procedures.

  15. Influence of strontium on the cubic to ordered hexagonal phase transformation in barium magnesium niobate

    Indian Academy of Sciences (India)

    M Thirumal; A K Ganguli

    2000-12-01

    Oxides of the type Ba3–SrMgNb2O9 were synthesized by the solid state route. The = 0 composition (Ba3MgNb2O9) was found to crystallize in a disordered (cubic) perovskite structure when sintered at 1000C. For higher Sr doping ( ≥ 0.5), there was clearly the presence of an ordered hexagonal phase indicated by the growth of superstructure reflections in the powder X-ray diffraction patterns. In all the compositions there was the presence of a minor amount of Ba5–SrNb4O15 phase which increased with Sr substitution up to = 1 and then it remained nearly constant at about 5%. Samples sintered at 1300C showed the hexagonally ordered phase for the entire range of composition (0 ≤ ≤ 3). The degree of ordering being considerably greater than in the 1000C heated samples as evidenced by several superstructure reflections.

  16. Results of critical velocity experiments with barium, strontium, and calcium releases from CRRES satellite

    Science.gov (United States)

    Wescott, E. M.; Stenbaek-Nielsen, H. C.; Hampton, D. L.; Delamere, P. A.

    1994-01-01

    As part of the NASA Combined Release and Radiation Effects Satellite (CRRES) chemical release program in September 1990, two Ba and also one each Sr and Ca canisters of a boron-titanium thermite mixture, which vaporizes the element on ignition, were released near perigee after dusk in the South Pacific to study the critical velocity effect proposed by Alfven. The critical velocities of these three elements are 2.7, 3.5, and 5.4 km/s respectively, all well below the orbital velocity of 9.4 km/s. On September 10, 1990, a Sr and Ba pair (G-13, or critical ionization velocity (CIV) I) was released near Rarotonga at approximately 515 km altitude in a background electron density of 3.4 x 10(exp 6)/cu cm. On September 14, 1990, G-14 or CIV II released a Ca and Ba pair west of New Caledonia near 595 km at an electron density of 1.5 x 10(exp 6)/cu cm. Ions of all three elements were observed with low-light level imagers from two aircraft after they had transited up the magnetic field lines into the sunlight. Emissions from the spherically expanding neutral gas shells below the solar terminator, observed with cameras filtered for the Ba(+) ion line at 4554 A and also in unfiltered imagers for approximately 15 s after release, are probably due to excitation by hot electrons created in the CIV process. The ions created clearly lost much of their energy, which we now show can be explained by elastic collisions: Ba(+) + O. Inventories of the observed ions indicate yields of 0.15% and 1.84% for Ba in the first and second experiments, 0.02% for Sr and 0.27% for Ca. Ionization from all the releases continued along the satellite trajectory much longer (greater than 45 s) than expected for a CIV process. The ion production along the satellite track versus time typically shows a rapid rise to a peak in a few seconds followed by an exponential decrease to a level essentially constant rate. The characteristic distances for CIV I and II are 47 and 62 km, respectively. We interpret the early time rise and exponential fall to be due to CIV ionization, of 0.014% (CIV I) and 0.40% (CIV II) for the Ba releases. The later ions produced at a constant rate probably have origins from other such processes as stripping and associative ionization collisions with atmospheric constituents primarily O, and charge exchange with O(+), He(+), and H(+). We suggest that the much larger Ba ionization rate in CIV II than CIV I is due to the fact that the release occurred in the peak Ca density where hot electrons were already present.

  17. Barium iodide and strontium iodide crystals and scintillators implementing the same

    Energy Technology Data Exchange (ETDEWEB)

    Payne, Stephen A.; Cherepy, Nerine; Pedrini, Christian; Burger, Arnold

    2016-09-13

    In one embodiment, a crystal includes at least one metal halide; and an activator dopant comprising ytterbium. In another general embodiment, a scintillator optic includes: at least one metal halide doped with a plurality of activators, the plurality of activators comprising: a first activator comprising europium, and a second activator comprising ytterbium. In yet another general embodiment, a method for manufacturing a crystal suitable for use in a scintillator includes mixing one or more salts with a source of at least one dopant activator comprising ytterbium; heating the mixture above a melting point of the salt(s); and cooling the heated mixture to a temperature below the melting point of the salts. Additional materials, systems, and methods are presented.

  18. Life history inhomogeneity in Baltic Sea whitefish populations revealed by otolith strontium signatures – identification of stocked fish

    Directory of Open Access Journals (Sweden)

    Henry Hägerstrand

    2015-11-01

    The strontium concentrations in the otolith cores of whitefish from River Tornionjoki were higher than that of the four otoliths with low core strontium from fishes caught at sea (Table 1. Supposing that this latter group represent stocked fish raised in freshwater ponds, the vast majority of River Tornionjoki whitefish is naturally reproduced fish. This is plausible because in River Tornionjoki, the major whitefish spawning river in Finland, no larger stocking have been made since 1990s (Jokikokko and Huhmarniemi 2014. In conclusion, the concentration of otolith core strontium differs in whitefish hatched in fresh-water and in whitefish hatched in river water or in brackish Baltic Sea water. This difference can be used to reveal stocked whitefish. Barium concentration may be an even better indicator in this respect than strontium, as previous results indicate (Hägerstrand et al., 2015. Stocked river spawning whitefish appear in large amount at the southern feeding grounds around the Åland Islands, as already indicated by e.g. Leskelä et al. (2009.

  19. Coherent Dark Resonances in Atomic Barium

    CERN Document Server

    Dammalapati, U; Jungmann, K; Willmann, L

    2007-01-01

    The observation of dark-resonances in the two-electron atom barium and their influence on optical cooling is reported. In heavy alkali earth atoms, i.e. barium or radium, optical cooling can be achieved using n^1S_0-n^1P_1 transitions and optical repumping from the low lying n^1D_2 and n^3D_{1,2} states to which the atoms decay with a high branching ratio. The cooling and repumping transition have a common upper state. This leads to dark resonances and hence make optical cooling less inefficient. The experimental observations can be accurately modelled by the optical Bloch equations. Comparison with experimental results allows us to extract relevant parameters for effective laser cooling of barium.

  20. Titan Montgolfiere Terrestrial Test Bed Project

    Data.gov (United States)

    National Aeronautics and Space Administration — With the Titan Saturn System Mission, NASA is proposing to send a Montgolfiere balloon to probe the atmosphere of Titan. In order to better plan this mission and...

  1. Titan Montgolfiere Terrestrial Test Bed Project

    Data.gov (United States)

    National Aeronautics and Space Administration — With the Titan Saturn System Mission, NASA is proposing to send a Montgolfiere balloon to probe the atmosphere of Titan. To better plan this mission and create a...

  2. Refractory oxides containing aluminium and barium

    OpenAIRE

    Davies T.J.; Biedermann M.; Q-G. Chen; Emblem H. G.; Al-Douri W. A.

    1998-01-01

    Oxides containing aluminium and barium, optionally with chromium, are refractory with several possible industrial uses. A gel precursor of an oxide having the formula BaO.n(Al2xCr2yO3), where 1barium salt with a solution of an aluminium salt or a solution of an aluminium salt and a chromium III salt, then forming a gel which was fired to obtain the desired oxide. Filaments may be drawn as the gel is forming or extr...

  3. Radium and barium removal through blending hydraulic fracturing fluids with acid mine drainage.

    Science.gov (United States)

    Kondash, Andrew J; Warner, Nathaniel R; Lahav, Ori; Vengosh, Avner

    2014-01-21

    Wastewaters generated during hydraulic fracturing of the Marcellus Shale typically contain high concentrations of salts, naturally occurring radioactive material (NORM), and metals, such as barium, that pose environmental and public health risks upon inadequate treatment and disposal. In addition, fresh water scarcity in dry regions or during periods of drought could limit shale gas development. This paper explores the possibility of using alternative water sources and their impact on NORM levels through blending acid mine drainage (AMD) effluent with recycled hydraulic fracturing flowback fluids (HFFFs). We conducted a series of laboratory experiments in which the chemistry and NORM of different mix proportions of AMD and HFFF were examined after reacting for 48 h. The experimental data combined with geochemical modeling and X-ray diffraction analysis suggest that several ions, including sulfate, iron, barium, strontium, and a large portion of radium (60-100%), precipitated into newly formed solids composed mainly of Sr barite within the first ∼ 10 h of mixing. The results imply that blending AMD and HFFF could be an effective management practice for both remediation of the high NORM in the Marcellus HFFF wastewater and beneficial utilization of AMD that is currently contaminating waterways in northeastern U.S.A. PMID:24367969

  4. Organic chemistry on Titan: Surface interactions

    Science.gov (United States)

    Thompson, W. Reid; Sagan, Carl

    1992-01-01

    The interaction of Titan's organic sediments with the surface (solubility in nonpolar fluids) is discussed. How Titan's sediments can be exposed to an aqueous medium for short, but perhaps significant, periods of time is also discussed. Interactions with hydrocarbons and with volcanic magmas are considered. The alteration of Titan's organic sediments over geologic time by the impacts of meteorites and comets is discussed.

  5. Structure of Titan's evaporites

    CERN Document Server

    Cordier, D; Barnes, J W; MacKenzie, S M; Bahers, T Le; Nna-Mvondo, D; Rannou, P; Ferreira, A G

    2015-01-01

    Numerous geological features that could be evaporitic in origin have been identified on the surface of Titan. Although they seem to be water-ice poor, their main properties -chemical composition, thickness, stratification- are essentially unknown. In this paper, which follows on a previous one focusing on the surface composition (Cordier et al., 2013), we provide some answers to these questions derived from a new model. This model, based on the up-to-date thermodynamic theory known as "PC-SAFT", has been validated with available laboratory measurements and specifically developed for our purpose. 1-D models confirm the possibility of an acetylene and/or butane enriched central layer of evaporitic deposit. The estimated thickness of this acetylene-butane layer could explain the strong RADAR brightness of the evaporites. The 2-D computations indicate an accumulation of poorly soluble species at the deposit's margin. Among these species, HCN or aerosols similar to tholins could play a dominant role. Our model pre...

  6. Structure of Titan's evaporites

    Science.gov (United States)

    Cordier, D.; Cornet, T.; Barnes, J. W.; MacKenzie, S. M.; Le Bahers, T.; Nna-Mvondo, D.; Rannou, P.; Ferreira, A. G.

    2016-05-01

    Numerous geological features that could be evaporitic in origin have been identified on the surface of Titan. Although they seem to be water-ice poor, their main properties - chemical composition, thickness, stratification - are essentially unknown. In this paper, which follows on a previous one focusing on the surface composition (Cordier, D., Barnes, J.W., Ferreira, A.G. [2013b]. Icarus 226(2),1431-1437), we provide some answers to these questions derived from a new model. This model, based on the up-to-date thermodynamic theory known as "PC-SAFT", has been validated with available laboratory measurements and specifically developed for our purpose. 1-D models confirm the possibility of an acetylene and/or butane enriched central layer of evaporitic deposit. The estimated thickness of this acetylene-butane layer could explain the strong RADAR brightness of the evaporites. The 2-D computations indicate an accumulation of poorly soluble species at the deposit's margin. Among these species, HCN or aerosols similar to tholins could play a dominant role. Our model predicts the existence of chemically trimodal "bathtub rings" which is consistent with what it is observed at the south polar lake Ontario Lacus. This work also provides plausible explanations to the lack of evaporites in the south polar region and to the high radar reflectivity of dry lakebeds.

  7. Large Particle Titanate Sorbents

    Energy Technology Data Exchange (ETDEWEB)

    Taylor-Pashow, K. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-10-08

    This research project was aimed at developing a synthesis technique for producing large particle size monosodium titanate (MST) to benefit high level waste (HLW) processing at the Savannah River Site (SRS). Two applications were targeted, first increasing the size of the powdered MST used in batch contact processing to improve the filtration performance of the material, and second preparing a form of MST suitable for deployment in a column configuration. Increasing the particle size should lead to improvements in filtration flux, and decreased frequency of filter cleaning leading to improved throughput. Deployment of MST in a column configuration would allow for movement from a batch process to a more continuous process. Modifications to the typical MST synthesis led to an increase in the average particle size. Filtration testing on dead-end filters showed improved filtration rates with the larger particle material; however, no improvement in filtration rate was realized on a crossflow filter. In order to produce materials suitable for column deployment several approaches were examined. First, attempts were made to coat zirconium oxide microspheres (196 µm) with a layer of MST. This proved largely unsuccessful. An alternate approach was then taken synthesizing a porous monolith of MST which could be used as a column. Several parameters were tested, and conditions were found that were able to produce a continuous structure versus an agglomeration of particles. This monolith material showed Sr uptake comparable to that of previously evaluated samples of engineered MST in batch contact testing.

  8. Magnetic properties of ferrite-titanate nanostructured composites synthesized by the polyol method and consolidated by spark plasma sintering

    Science.gov (United States)

    Acevedo, Ulises; Gaudisson, Thomas; Ortega-Zempoalteca, Raul; Nowak, Sophie; Ammar, Souad; Valenzuela, Raul

    2013-05-01

    Multiferroic systems formed by a mixing of a ferroelectric phase and a ferrimagnetic phase are receiving significant attention because of their wide possibilities for tailoring properties. In this work, the magnetic properties of the cobalt ferrite-barium titanate system were investigated on samples prepared by an original combination of synthesis methods. Cobalt ferrite and barium titanate nanoparticles were synthesized separately by hydrolysis of the metal acetates in a polyol method. Both materials were mixed in a 1:1 ratio and consolidated by spark plasma sintering at 500 °C for 5 min. A high density nanostructured ceramic was obtained with grains smaller than 100 nm and a density about 80% of the theoretical value. Magnetic hysteresis loops showed a hard magnet behavior, with a coercive field larger than cobalt ferrite alone prepared under the same conditions. δM reversible magnetization plots exhibited dipolar interactions with a maximum at the coercive field. These results are interpreted in terms of an efficient mixing of the components, which strongly decreases the magnetic percolation in the composite by separating ferrite grains by titanate grains.

  9. Thermal decomposition of barium valerate in argon

    DEFF Research Database (Denmark)

    Torres, P.; Norby, Poul; Grivel, Jean-Claude

    2015-01-01

    The thermal decomposition of barium valerate (Ba(C4H9CO2)(2)/Ba-pentanoate) was studied in argon by means of thermogravimetry, differential thermal analysis, IR-spectroscopy, X-ray diffraction and hot-stage optical microscopy. Melting takes place in two different steps, at 200 degrees C and 280...

  10. 75 FR 19657 - Barium Chloride From China

    Science.gov (United States)

    2010-04-15

    ... Commission found that the domestic interested party group response to its notice of institution (74 FR 31757... COMMISSION Barium Chloride From China AGENCY: United States International Trade Commission. ACTION: Notice of... chloride from China. SUMMARY: The Commission hereby gives notice that it will proceed with a full...

  11. 75 FR 20625 - Barium Chloride From China

    Science.gov (United States)

    2010-04-20

    ... established a schedule for the conduct of this review (74 FR 62587, November 30, 2010). Subsequently, counsel... From the Federal Register Online via the Government Publishing Office INTERNATIONAL TRADE COMMISSION Barium Chloride From China AGENCY: United States International Trade Commission. ACTION:...

  12. BaxSr1−xTi1.02O3 metal–insulator–metal capacitors on planarized alumina substrates

    NARCIS (Netherlands)

    Tiggelman, M.P.J.; Reimann, K.; Klee, M.; Mauczok, R.; Keur, W.; Hueting, R.J.E.

    2010-01-01

    Nanocrystalline barium strontium titanate (BaxSr1−xTi1.02O3) thin films with a barium content of x=0.8, 0.9 and 1 have been fabricated in a metal–insulator–metal configuration on glass-planarized alumina substrates. Cost-effective processing measures have been utilized by using poly-crystalline alum

  13. The trade-off between tuning ratio and quality factor of BaxSr1-xTiO3 MIM capacitors on alumina substrates

    NARCIS (Netherlands)

    Tiggelman, M.P.J.; Reimann, K.; Liu, J.; Klee, M.; Mauczok, R.; Keur, W.; Schmitz, J.; Hueting, R.J.E.

    2008-01-01

    Barium strontium titanate with different compositions is deposited using wet-chemical processing on a glass planarization layer, on top of alumina substrates. Three samples were fabricated with BaxSr1-xTiO3 (BST) with the barium content x varying between 0.8 and 1. The poly-crystalline films are 530

  14. Diurnal variations of Titan's ionosphere

    Science.gov (United States)

    Cui, J.; Galand, M.; Yelle, R. V.; Vuitton, V.; Wahlund, J.-E.; Lavvas, P. P.; Müller-Wodarg, I. C. F.; Cravens, T. E.; Kasprzak, W. T.; Waite, J. H.

    2009-06-01

    We present our analysis of the diurnal variations of Titan's ionosphere (between 1000 and 1300 km) based on a sample of Ion Neutral Mass Spectrometer (INMS) measurements in the Open Source Ion (OSI) mode obtained from eight close encounters of the Cassini spacecraft with Titan. Although there is an overall ion depletion well beyond the terminator, the ion content on Titan's nightside is still appreciable, with a density plateau of ˜700 cm-3 below ˜1300 km. Such a plateau is a combined result of significant depletion of light ions and modest depletion of heavy ones on Titan's nightside. We propose that the distinctions between the diurnal variations of light and heavy ions are associated with their different chemical loss pathways, with the former primarily through “fast” ion-neutral chemistry and the latter through “slow” electron dissociative recombination. The strong correlation between the observed night-to-day ion density ratios and the associated ion lifetimes suggests a scenario in which the ions created on Titan's dayside may survive well to the nightside. The observed asymmetry between the dawn and dusk ion density profiles also supports such an interpretation. We construct a time-dependent ion chemistry model to investigate the effect of ion survival associated with solid body rotation alone as well as superrotating horizontal winds. For long-lived ions, the predicted diurnal variations have similar general characteristics to those observed. However, for short-lived ions, the model densities on the nightside are significantly lower than the observed values. This implies that electron precipitation from Saturn's magnetosphere may be an additional and important contributor to the densities of the short-lived ions observed on Titan's nightside.

  15. Ion cyclotron waves at Titan

    Science.gov (United States)

    Russell, C. T.; Wei, H. Y.; Cowee, M. M.; Neubauer, F. M.; Dougherty, M. K.

    2016-03-01

    During the interaction of Titan's thick atmosphere with the ambient plasma, it was expected that ion cyclotron waves would be generated by the free energy of the highly anisotropic velocity distribution of the freshly ionized atmospheric particles created in the interaction. However, ion cyclotron waves are rarely observed near Titan, due to the long growth times of waves associated with the major ion species from Titan's ionosphere, such as CH4+ and N2+. In the over 100 Titan flybys obtained by Cassini to date, there are only two wave events, for just a few minutes during T63 flyby and for tens of minutes during T98 flyby. These waves occur near the gyrofrequencies of proton and singly ionized molecular hydrogen. They are left-handed, elliptically polarized, and propagate nearly parallel to the field lines. Hybrid simulations are performed to understand the wave growth under various conditions in the Titan environment. The simulations using the plasma and field conditions during T63 show that pickup protons with densities ranging from 0.01 cm-3 to 0.02 cm-3 and singly ionized molecular hydrogens with densities ranging from 0.015 cm-3 to 0.25 cm-3 can drive ion cyclotron waves with amplitudes of ~0.02 nT and of ~0.04 nT within appropriate growth times at Titan, respectively. Since the T98 waves were seen farther upstream than the T63 waves, it is possible that the instability was stronger and grew faster on T98 than T63.

  16. OPTIMIZED MONOSODIUM TITANATE PHASE II SUPPLEMENTAL TESTING REPORT URANIUM ADSORPTION AND SHELF-LIFE MEASUREMENTS

    International Nuclear Information System (INIS)

    The DOE Office of Waste Processing recently funded supplemental Phase II testing to further investigate the uranium affinity and shelf-life of modified monosodium titanate (mMST). Testing results confirmed earlier findings that the mMST exhibits much lower affinity for uranium than the baseline monosodium titanate (MST) material. The loading of uranium onto the mMST sample measured more than an order of magnitude lower than that of the MST. This finding indicates that the use of mMST provides a significant advantage over MST in that the mMST will not concentrate enriched uranium to the degree that MST does. The reduced affinity of mMST for uranium allows more operational flexibility in treating waste solutions from a nuclear criticality safety perspective. Testing results also indicate that the mMST exhibits good shelf-life with no measurable loss in plutonium and neptunium removal upon storage of samples at ambient laboratory temperatures for up to 30-months. Testing did exhibit a change in strontium removal performance for both the mMST and MST samples at the most recent testing event. However, the decrease in strontium removal performance proved lower for the mMST than the MST sample. Given these positive findings SRNL recommends continued development of mMST as a replacement for MST in pretreatment facilities at the Savannah River Site (SRS)

  17. OPTIMIZED MONOSODIUM TITANATE PHASE II SUPPLEMENTAL TESTING REPORT URANIUM ADSORPTION AND SHELF-LIFE MEASUREMENTS

    Energy Technology Data Exchange (ETDEWEB)

    Hobbs, D

    2008-01-01

    The DOE Office of Waste Processing recently funded supplemental Phase II testing to further investigate the uranium affinity and shelf-life of modified monosodium titanate (mMST). Testing results confirmed earlier findings that the mMST exhibits much lower affinity for uranium than the baseline monosodium titanate (MST) material. The loading of uranium onto the mMST sample measured more than an order of magnitude lower than that of the MST. This finding indicates that the use of mMST provides a significant advantage over MST in that the mMST will not concentrate enriched uranium to the degree that MST does. The reduced affinity of mMST for uranium allows more operational flexibility in treating waste solutions from a nuclear criticality safety perspective. Testing results also indicate that the mMST exhibits good shelf-life with no measurable loss in plutonium and neptunium removal upon storage of samples at ambient laboratory temperatures for up to 30-months. Testing did exhibit a change in strontium removal performance for both the mMST and MST samples at the most recent testing event. However, the decrease in strontium removal performance proved lower for the mMST than the MST sample. Given these positive findings SRNL recommends continued development of mMST as a replacement for MST in pretreatment facilities at the Savannah River Site (SRS).

  18. The Titan Saturn System Mission

    Science.gov (United States)

    Coustenis, A.; Lunine, J.; Lebreton, J.; Matson, D.; Erd, C.; Reh, K.; Beauchamp, P.; Lorenz, R.; Waite, H.; Sotin, C.; Tssm Jsdt, T.

    2008-12-01

    A mission to return to Titan after Cassini-Huygens is a high priority for exploration. Recent Cassini-Huygens discoveries have revolutionized our understanding of the Titan system, rich in organics, containing a vast subsurface ocean of liquid water, surface repositories of organic compounds, and having the energy sources necessary to drive chemical evolution. With these recent discoveries, interest in Titan as the next scientific target in the outer Solar System is strongly reinforced. Cassini's discovery of active geysers on Enceladus adds an important second target in the Saturn system. The mission concept consists of a NASA-provided orbiter and an ESA-provided probe/lander and a Montgolfiere. The mission would launch on an Atlas 551 around 2020, travelling to Saturn on an SEP gravity assist trajectory, and reaching Saturn about 9.5 years later. The flight system would go into orbit around Saturn for about 2 years. During the first Titan flyby, the orbiter would release the lander to target a large northern polar sea, Kraken Mare, and the balloon system to a mid latitude region. During the tour phase, TSSM will perform Saturn system and Enceladus science, with at least 5 Enceladus flybys. Instruments aboard the orbiter will map Titan's surface at 50 m resolution in the 5 micron window, provide a global data set of topography and sound the immediate subsurface, sample complex organics, provide detailed observations of the atmosphere, and quantify the interaction of Titan with the Saturn magnetosphere. A subset of the instruments would provide spectra, imaging, plume sampling and particles and fields data on Enceladus. Instruments aboard the balloon will acquire high resolution vistas of the surface of Titan as the balloon cruises at 10 km altitude, as well as make compositional measurements of the surface, detailed sounding of crustal layering, and chemical measurements of aerosols. A magnetometer, will permit sensitive detection of induced or intrinsic fields

  19. Barium carbonate as an agent to improve the electrical properties of neodymium-barium-copper system at high temperature

    Energy Technology Data Exchange (ETDEWEB)

    Fernandes, J.P. [Post-Graduate Program in Chemical Engineering, Universidade Federal de Santa Catarina (UFSC), Florianópolis, SC, 88040-900 (Brazil); Duarte, G.W. [Post-Graduate Program in Chemical Engineering, Universidade Federal de Santa Catarina (UFSC), Florianópolis, SC, 88040-900 (Brazil); Research Group in Technology and Information, Centro Universitário Barriga Verde (UNIBAVE), Santa Catarina, SC (Brazil); Caldart, C. [Post-Graduate Program in Science and Materials Engineering, Universidade do Extremo Sul Catarinense (UNESC), Criciúma, SC, 88806-000 (Brazil); Kniess, C.T. [Post-Graduate Program in Professional Master in Management, Universidade Nove de Julho, São Paulo, SP (Brazil); Montedo, O.R.K.; Rocha, M.R. [Post-Graduate Program in Science and Materials Engineering, Universidade do Extremo Sul Catarinense (UNESC), Criciúma, SC, 88806-000 (Brazil); Riella, H.G. [Post-Graduate Program in Chemical Engineering, Universidade Federal de Santa Catarina (UFSC), Florianópolis, SC, 88040-900 (Brazil); Fiori, M.A., E-mail: fiori@unochapeco.edu.br [Post-Graduate Program in Environmental Science, Universidade Comunitária da Região de Chapecó (UNOCHAPECÓ), Chapecó, SC, 89809-000 (Brazil); Post-Graduate Program in Technology and Management of the Innovation, Universidade Comunitária da Região de Chapecó (UNOCHAPECÓ), Chapecó, SC, 89809-000 (Brazil)

    2015-11-15

    Specialized ceramics are manufactured under special conditions and contain specific elements. They possess unique electrical and thermal properties and are frequently used by the electronics industry. Ceramics containing neodymium-barium-copper (NBC) exhibit high conductivities at low temperatures. NBC-based ceramics are typically combined with oxides, i.e., NBCo produced from neodymium oxide, barium oxide and copper oxide. This study presents NBC ceramics that were produced with barium carbonate, copper oxide and neodymium oxide (NBCa) as starting materials. These ceramics have good electrical conductivities at room temperature. Their conductivities are temperature dependent and related to the starting amount of barium carbonate (w%). - Highlights: • The new crystalline structure were obtained due presence of the barium carbonate. • The NBCa compound has excellent electrical conductivity at room temperature. • The grain crystalline morphology was modified by presence of the barium carbonate. • New Phases α and β were introduced by carbonate barium in the NBC compound.

  20. Strontium clusters: electronic and geometry shell effects

    DEFF Research Database (Denmark)

    Lyalin, Andrey G.; Solov'yov, Ilia; Solov'yov, Andrey V.;

    2008-01-01

    charged strontium clusters consisting of up to 14 atoms, average bonding distances, electronic shell closures, binding energies per atom, and spectra of the density of electronic states (DOS). It is demonstrated that the size-evolution of structural and electronic properties of strontium clusters...... is governed by an interplay of the electronic and geometry shell closures. Influence of the electronic shell effects on structural rearrangements can lead to violation of the icosahedral growth motif of strontium clusters. It is shown that the excessive charge essentially affects the optimized geometry...

  1. Obtaining the highly pure barium titanate nanocrystals by a new approach

    Energy Technology Data Exchange (ETDEWEB)

    Ashiri, Rouholah, E-mail: ro_ashiri@yahoo.com; Heidary Moghadam, Ali; Ajami, Reza

    2015-11-05

    Purity and synthesis temperature of nanocrystals are key challenges facing the scientific community. Herein a novel solid-state approach to synthesize fine BaTiO{sub 3} nanocrystals with narrow size distribution using a high-speed ball-milling process is reported. In order to improve the kinetics of this reaction, the starting materials, BaCO{sub 3} and TiO{sub 2}, were milled for 10 h before mixing and initiating the synthesis reaction. The contribution of this step to the BaTiO{sub 3} formation is analyzed by XRD diffractometry and FE-SEM techniques. It was found that the use of the mechanically activated starting materials favors the decomposition of BaCO{sub 3} at low temperatures and improves the Ba{sup 2+} diffusion through the formed BaTiO{sub 3} layer. In consequence, very fine BaTiO{sub 3} nanocrystals free from the secondary phases were obtained at a lower temperature in contrast to the previous works. - Highlights: • Very fine BaTiO{sub 3} nanocrystals were obtained at a lower temperature. • Method is able to obtain highly-pure BTO nanocrystals. • The approach is simple, and useful for large-scale production purposes.

  2. Effect of Fe3+ substitution on structural, optical and magnetic properties of barium titanate ceramics

    International Nuclear Information System (INIS)

    Multiferroic BaTi1−xFexO3 (0≤x≤0.12) materials were synthesized using the solid-state reaction method. The influence of Fe on the crystalline structure, the electronic structure, the optical properties and the magnetic property of BaTi1−xFexO3 samples were investigated. The obtained X-ray diffraction patterns, Raman and UV–vis spectra showed that the structure of the material sensitively depends on Fe dopant content, x, and transforms gradually from the tetragonal (P4mm) phase to the hexagonal (P63/mmc) one with increasing x. The photoluminescence emission of BaTi1−xFexO3 was attributed to structural disorder. All of the samples exhibit both ferroelectricity and ferromagnetism at room temperature. The relaxor like behavior was observed for all samples. The magnetization at a magnetic field of 1 T abnormally depends on x, increases up to 0.1 then decreases monotonously afterward. This anomaly in the magnetic behavior can be explained in terms of the changes in the oxidation state of ions such as the Fe3+-to-Fe4+ and/or Ti4+-to-Ti3+ change induced by oxygen vacancies. The substitution of Fe into Ti sites also causes the changes in the conductivity of the material and impurity (acceptor) levels in the band gap, which can be evident from the absorption spectra, and time-dependent leakage current measured at room temperature

  3. Epitaxially-Grown Europium-Doped Barium Titanate Films on Various Substrates for Red Emission.

    Science.gov (United States)

    Hwang, Kyu-Seog; Jeon, Young-Sun; Lee, Young-Hwan; Hwangbo, Seung; Kim, Jin-Tae

    2015-10-01

    Intense red photoluminescence under ultraviolet excitation was observed in epitaxially-grown europium-doped perovskite BaTiO3 thin films deposited on the SrTiO3 (100), MgO (100) and sapphire (0001) substrates using metal carboxylate complexes. Precursor films prepared by spin coating were pyrolyzed at 250 °C for 120 min in argon, followed by final annealing at 850 °C for 60 min in argon. Crystallinity and epitaxy of the films were analyzed by X-ray diffraction θ-2θ scan and pole-figure analysis. Photoluminescence of the thin films at room temperature under 254 nm was confirmed by a fluorescent spectrophotometer. The obtained epitaxial BaTiO3 thin films on the SrTiO3 (100) and MgO (100) substrates show an intense red-emission lines at 615 nm corresponding to the (5)D0 --> (7)F2 transitions on Eu(3+) with broad bands at 595 and 650 nm. PMID:26726427

  4. STRUCTURAL CHARACTERISTICS & DIELECTRIC PROPERTIES OF TANTALUM OXIDE DOPED BARIUM TITANATE BASED MATERIALS

    Directory of Open Access Journals (Sweden)

    Md. Fakhrul Islam

    2013-01-01

    Full Text Available In this research, the causal relationship between the dielectric properties and the structural characteristics of 0.5 & 1.0 mole % Ta2O5 doped BaTiO3 based ceramic materials were investigated under different sintering conditions. Dielectric properties and microstructure of BaTio3 ceramics were significantly influenced by the addition of a small amount of Ta2O5. Dielectric properties were investigated by measuring the dielectric constant (k as a function of temperature and frequency. Percent theoretical density (%TD above 90 % was achieved for 0.5 and 1.0 mole %Ta2O5 doped BaTiO3. It was observed that the grain size decreased markedly above a doping concentration of 0.5 mole % Ta2O5. Although fine grain size down to 200 - 300 nm was attained, grain sizes in the range of 1-1.8µm showed the most alluring properties. The fine-grain quality and high density of the Ta2O5 doped BaTiO3 ceramic resulted in tenfold increase of dielectric constant. Stable value of dielectric constant as high as 13000 - 14000 was found in the temperature range of 55 to 80 °C, for 1.0 mole % Ta2O5 doped samples with corresponding shift of Curie point to ~82 °C. Experiments divulged that incorporation of a proper content of Ta2O5 in BaTiO3 could control the grain growth, shift the Curie temperature and hence significantly improve the dielectric property of the BaTiO3 ceramics.

  5. Structural Characteristics & Dielectric Properties of Tantalum Oxide Doped Barium Titanate Based Materials

    Directory of Open Access Journals (Sweden)

    Rubayyat Mahbub

    2012-11-01

    Full Text Available In this research, the causal relationship between the dielectric properties and the structural characteristics of 0.5 & 1.0 mol% Ta2O5 doped BaTiO3 based ceramic materials were investigated under different sintering conditions. Dielectric properties and microstructure of BaTio3 ceramics were significantly influenced by the addition of a small amount of Ta2O5. Dielectric properties were investigated by measuring the dielectric constant (k as a function of temperature and frequency. Percent theoretical density (%TD above 90% was achieved for 0.5 and 1.0 mol% Ta2O5 doped BaTiO3. It was observed that the grain size decreased markedly above a doping concentration of 0·5 mol% Ta2O5. Although fine grain size down to 200-300nm was attained, grain sizes in the range of 1-1.8µm showed the most alluring properties. The fine-grain quality and high density of the Ta2O5 doped BaTiO3 ceramic resulted in tenfold increase of dielectric constant. Stable value of dielectric constant as high as 13000-14000 was found in the temperature range of  55 to 80°C, for 1.0 mol% Ta2O5 doped samples with corresponding shift of Curie point to ~82°C. Experiments divulged that incorporation of a proper content of Ta2O5 in BaTiO3 could control the grain growth, shift the Curie temperature and hence significantly improve the dielectric property of the BaTiO3 ceramics.

  6. Characterization of Bismuth-Sodium-Barium-Titanate Electro ceramics Synthesized by Mechanical Alloying

    International Nuclear Information System (INIS)

    In this study, the synthesis of BNBT6 electro ceramics by milling was evaluated. The chemical composition, structural analysis, and particle size evolution of the as-milled powders were studied by X-ray florescence analyzer (XRF), X-ray diffractometer (XRD), and transmission electron microscopy (TEM), respectively. The chemical composition assessment indicated that the amount of impurities is negligible. The structural analysis revealed that the crystallite size was decreased to nano-size scales and the amorphization process was developed. It was found that perovskite and pyrochlore phases were nucleated at initial stages of milling and after sufficient milling times, BNBT phase prevailed over the other phases. (author)

  7. Electrical characterization of zirconium substituted barium titanate using complex impedance spectroscopy

    Indian Academy of Sciences (India)

    Priyanka; A K Jha

    2013-02-01

    This paper reports complex impedance analysis of polycrystalline complex perovskite structured BaZr0.025Ti0.975O3 prepared by solid state reaction method. XRD analysis reveals the formation of single phase perovskite structure. SEM has been used to investigate grain morphology of the material. Impedance plots have been used as a tool to analyse electrical properties of the sample as a function of frequency and temperature. Bulk resistance is observed to decrease with an increase in temperature showing a typical negative temperature coefficient of resistance (NTCR) type behaviour. Nyquist (Cole–Cole) plots show both inter and intra grain boundary effects. Relaxation time is found to decrease with increasing temperature and it obeys the Arrhenius relationship. The variation of d.c. and a.c. conductivity as a function of temperature is also reported.

  8. Nanocrystalline barium titanate films on flexible plastic substrates via pulsed laser annealing

    Science.gov (United States)

    Tsagarakis, Evangelos D.; Lew, Connie; Thompson, Michael O.; Giannelis, Emmanuel P.

    2006-11-01

    The drive towards ubiquitous electronics requires fundamental shifts in our approach to microelectronic fabrication as well as advances in materials and processing technologies. For large area electronics, low cost manufacturing, including roll-to-roll and printing technologies, will be required. These techniques present continuing challenges to develop processing technologies compatible with the low thermal budgets required for flexible polymeric substrates. The authors report here the deposition and dielectric properties of nanocrystalline BaTiO3 films on polyethylene terephthalate utilizing laser annealing as part of their effort to develop methods and tools for depositing various functional coatings and films on flexible substrates.

  9. Interfacial diffusion in a MOCVD grown barium titanate film[Metal Organic Chemical Vapor Deposition

    Energy Technology Data Exchange (ETDEWEB)

    Datta, A.; Chattopadhyay, S.; Richter, A.G.; Kmetko, J.; Lee, C.B.

    2000-07-01

    A combination of two nondestructive techniques, Grazing Incidence X-ray Reflectivity and High Resolution X-ray Diffraction, is used to study (at around 10{angstrom} resolution) the composition profile across a 500{angstrom} thick film of BaTiO{sub 3} grown epitaxially on (100) MgO by MOCVD. Results form both studies indicate diffusion of Mg to about 250{angstrom} into the film at film-substrate interface, consistent with the diffuse ferroelectric phase transition observed in this film. The lattice parameter a shows a progressive decrease as the authors move into the film from the interface, and an anomalously low value in the Mg-free portion of the film.

  10. Adsorption of water-soluble polymers onto barium titanate and its effect on colloidal stability.

    NARCIS (Netherlands)

    Laat, de A.W.M.

    1995-01-01

    Ceramic products are usually made from powders which are processed into a green body, with a shape dictated by the final product. Organic binders are used to give the green product sufficient mechanical strength. A sintering process at high temperature converts the green body into the final ceramic

  11. Fabrication and electrical properties of barium titanate based solid solution nanocube assembly films

    Science.gov (United States)

    Mimura, Ken-ichi; Kato, Kazumi

    2016-10-01

    Ba(Zr x ,Ti1- x )O3 nanocubes (BZT x NCs) of 15 nm size were synthesized by a hydrothermal method with Ti and Zr aqueous compounds and a surfactant at the Zr contents (x) of 0.1 and 0.2. An individual BZT0.2 NC is a high-quality single crystal without any voids. The elemental mapping of a BZT0.2 NC showed a homogeneous Zr distribution in the NC. BZT x NC assembly films were fabricated by a dip-coating method. BZT x NC assemblies after heat treatment at 850 °C formed joined interfaces between the NCs. Raman spectra appearing at approximately 305 and 250 cm-1 in the BT NC assembly merged into a single band around 288 cm-1 in the BZT0.2 NC assembly. These results indicate that Zr ions substituted a portion of Ti sites homogeneously. Relaxor-like piezoresponse properties of BZT x NC assemblies were obtained by piezoresponse force microscopy (PFM). The BZT0.1 NC assembly had a high saturation d 33-PFM value of 42 pm/V.

  12. Cyclodextrin-grafted barium titanate nanoparticles for improved dispersion and stabilization in water-based systems

    Energy Technology Data Exchange (ETDEWEB)

    Serra-Gómez, R. [Universidad de Navarra, Departamento de Química y Edafología (Spain); Martinez-Tarifa, J. M. [Universidad Carlos III de Madrid, Departamento de Ingeniería Eléctrica (Spain); González-Benito, J. [Universidad Carlos III de Madrid, Departamento de Ciencia e Ingeniería de Materiales e Ingeniería Química, IQMAAB (Spain); González-Gaitano, G., E-mail: gaitano@unav.es [Universidad de Navarra, Departamento de Química y Edafología (Spain)

    2016-01-15

    Ceramic nanoparticles with piezoelectric properties, such as BaTiO{sub 3} (BT), constitute a promising approach in the fields of nanocomposite materials and biomaterials. In the latter case, to be successful in their preparation, the drawback of their fast aggregation and practically null stability in water has to be overcome. The objective of this investigation has been the surface functionalization of BaTiO{sub 3} nanoparticles with cyclodextrins (CDs) as a way to break the aggregation and improve the stability of the nanoparticles in water solution, preventing and minimizing their fast precipitation. As a secondary goal, we have achieved extra-functionality of the nanoparticles, bestowed from the hydrophobic cavity of the macrocycle, which is able to lodge guest molecules that can form inclusion complexes with the oligosaccharide. The nanoparticle functionalization has been fully tracked and characterized, and the cytotoxicity of the modified nanoparticles with fibroblasts and pre-osteoblasts cell lines has been assessed with excellent results in a wide range of concentrations. The modified nanoparticles were found to be suitable for the easy preparation of nanocomposite hydrogels, via dispersion in hydrophilic polymers of typical use in biomedical applications (PEG, Pluronics, and PEO), and further processed in the form of films via water casting, showing very good results in terms of homogeneity in the dispersion of the filler. Likewise, as examples of application and with the aim of exploring a different range of nanocomposites, rhodamine B was included in the macrocycles as a model molecule, and films prepared from a thermoplastic matrix (EVA) via high-energy ball milling have been tested by impedance spectroscopy to discuss their dielectric properties, which indicated that even small modifications in the surface of the nanoparticles generate a different kind of interaction with the polymeric matrix. The CD-modified nanoparticles are thus suitable for easy preparation of the water-based nanocomposites either as hydrogels or as nanocomposites based on thermoplastic matrices.

  13. Synthesis, Microstructure and the Crystalline Structure of the Barium Titanate Ceramics Doped with Lanthanum

    Directory of Open Access Journals (Sweden)

    Wodecka-Duś B.

    2013-12-01

    Full Text Available W prezentowanej pracy przeprowadzono badania ceramiki BaTiO3 i Ba1-xLąxTi1-x/4O3 (BLT dla koncentracji z prze- działu 0,001< x <0,004 (0,l-0,4mol.% La. Ceramikę BLT wytworzono z mieszaniny prostych tlenków La203, TiOi i BaCOj (wszystkie o czystości 99,9+%, Aldrich Chemical Co. Proszki ceramiczne otrzymano metodą konwencjonalną w stanie stałym (metodą MOM i poddano badaniu mikrostruktury i struktury krystalicznej. Mieszaniny proszków poddano analizie termicznej. Wyniki analizy termicznej określiły optymalną temperaturę syntezy oraz procesy zachodzące podczas ogrzewania proszków. Następnie proszki formowano w dyski pod ciśnieniem 300MPa w matrycach ze stali nierdzewnej o średnicy 10 mm. Syntezę przeprowadzono w Ts =950°C t =2godz. Ostatnim krokiem technologii było bezciśnieniowe spiekanie metodą swobodnego spiekania w T = 1350^ przez / =2 godziny. Morfologię otrzymanego materiału ceramicznego obserwowano metodą skaningowej mikroskopii elektronowej. Ceramikę BLT badano również pod względem składu chemicznego metodą EDS. Analizę strukturalną przeprowadzono metodą dyfrakcji rentgenowskiej. Badania mikrostruktury i struktury krystalicznej ceramiki przeprowadzono w temperaturze pokojowej. Badania EDS potwierdziły zachowanie stechiometrii otrzymanych próbek według wzoru chemicznego. Rentgenowska analiza dyfrakcyjna potwierdziły wytworzenie pożądanej struktury krystalicznej zarówno czystej ceramiki BaTiOj jak i z domieszką Lau. Otrzymana ceramika wykazuje strukturę typu perowskitu A BO? o symetrii tetragonalnej P4 mm. Stwierdzono, że wraz ze wzrostem stężenia La3* w BaTiOj następuje zmniejszenie wielkości ziam krystalicznych, zmniejszenie średniego wymiaru krystalitów, zmniejszenie objętości komórki elementarnej oraz wzrost obliczonej rentgenowskiej gęstości.

  14. Highly efficient visible light mediated azo dye degradation through barium titanate decorated reduced graphene oxide sheets

    Science.gov (United States)

    Rastogi, Monisha; Kushwaha, H. S.; Vaish, Rahul

    2016-03-01

    This study investigates BaTiO3 decorated reduced graphene oxide sheets as a potential visible light active catalyst for dye degradation (Rhodamine B). The composites were prepared through conventional hydrothermal synthesis technique using hydrazine as a reducing agent. A number of techniques have been employed to affirm the morphology, composition and photocatalytic properties of the composites; these include UV-visible spectrophotoscopy that assisted in quantifying the concentration difference of Rhodamine B. The phase homogeneity of the composites was examined through x-ray powder diffraction (XRD) and high resolution transmission electron microscopy (HRTEM) was employed to confirm the orientation of the BaTiO3 particles over the reduced graphene oxide sheets. Photoluminescence (PL) emission spectra assisted in determining the surface structure and excited state of the catalyst. Fourier transformed-infrared (FTIR) spectra investigated the vibrations and adsorption peak of the composites, thereby ascertaining the formation of reduced graphene oxide. In addition, diffuse reflectance spectroscopy (DRS) demonstrated an enhanced absorption in the visible region. The experimental investigations revealed that graphene oxide acted as charge collector and simultaneously facilitated surface adsorption and photo-sensitization. It could be deduced that BaTiO3-reduced graphene oxide composites are of significant interest the field of water purification through solar photocatalysis. [Figure not available: see fulltext.

  15. Magnetoelectric effect in cobalt ferrite–barium titanate composites and their electrical properties

    Indian Academy of Sciences (India)

    R P Mahajan; K K Patankar; M B Kothale; S C Chaudhari; V L Mathe; S A Patil

    2002-05-01

    CoFe2O4–BaTiO3 composites were prepared using conventional ceramic double sintering process with various compositions. Presence of two phases in the composites was confirmed using X-ray diffraction. The dc resistivity and thermoemf as a function of temperature in the temperature range 300 K to 600 K were measured. Variation of dielectric constant (') with frequency in the range 100 Hz to 1 MHz and also with temperature at a fixed frequency of 1 kHz was studied. The ac conductivity was derived from dielectric constant (') and loss tangent (tan ). The nature of conduction is discussed on the basis of small polaron hopping model. The static value of magnetoelectric conversion factor has been studied as a function of magnetic field.

  16. Conductivity, dielectric behaviour and magnetoelectric effect in copper ferrite–barium titanate composites

    Indian Academy of Sciences (India)

    R P Mahajan; K K Patankar; M B Kothale; S A Patil

    2000-08-01

    Composites of CuFe2O4 and BaTiO3 were prepared using a conventional ceramic double sintering process. The presence of both phases was confirmed by X-ray diffraction. The variations of resistivity and thermo emf with temperature in these samples were studied. All the composites showed -type behaviour. The variation of dielectric constant (') in the frequency range 100 Hz to 1 MHz and with temperature at constant frequency were studied. The conduction phenomenon was explained on the basis of a small polaronhopping model. Also confirmation of this phenomenon was made with the help of a.c. conductivity measurements. The static value of the magnetoelectric conversion factor, i.e. d.c. (ME)H was studied as a function of intensity of the magnetic field. The maximum value of ME coefficient was observed for 75% ferroelectric phase composite.

  17. Titan Aeromony and Climate Workshop

    Science.gov (United States)

    Bézard, Bruno; Lavvas, Panayotis; Rannou, Pascal; Sotin, Christophe; Strobel, Darrell; West, Robert A.; Yelle, Roger

    2016-06-01

    The observations of the Cassini spacecraft since 2004 revealed that Titan, the largest moon of Saturn, has an active climate cycle with a cloud cover related to the large scale atmospheric circulation, lakes of methane and hyrdrocarbons with variable depth, a dried fluvial system witnessing a past wetter climate, dunes, and deep changes in the weather and atmospheric structure as Titan went through the North Spring equinox. Moreover, the upper atmosphere is now considered the cradle of complex chemistry leading to aerosol formation, as well as the manifestation place of atmospheric waves. However, as the Cassini mission comes to its end, many fundamental questions remain unresolved... The objective of the workshop is to bring together international experts from different fields of Titan's research in order to have an overview of the current understanding, and to determine the remaining salient scientific issues and the actions that could be implemented to address them. PhD students and post-doc researchers are welcomed to present their studies. This conference aims to be a brainstorming event leaving abundant time for discussion during oral and poster presentations. Main Topics: - Atmospheric seasonal cycles and coupling with dynamics. - Composition and photochemistry of the atmosphere. - Formation and evolution of aerosols and their role in the atmosphere. - Spectroscopy, optical properties, and radiative transfer modeling of the atmosphere. - Surface composition, liquid reservoirs and interaction with atmosphere. - Evolution of the atmosphere. - Titan after Cassini, open questions and the path forward.

  18. Organic chemistry in Titan's atmosphere

    Science.gov (United States)

    Scattergood, T.

    1982-01-01

    Laboratory photochemical simulations and other types of chemical simulations are discussed. The chemistry of methane, which is the major known constituent of Titan's atmosphere was examined with stress on what can be learned from photochemistry and particle irradiation. The composition of dust that comprises the haze layer was determined. Isotope fractionation in planetary atmospheres is also discussed.

  19. Lattice dynamics of strontium tungstate

    Indian Academy of Sciences (India)

    Prabhatasree Goel; R Mittal; S L Chaplot; A K Tyagi

    2008-11-01

    We report here measurements of the phonon density of states and the lattice dynamics calculations of strontium tungstate (SrWO4). At ambient conditions this compound crystallizes to a body-centred tetragonal unit cell (space group I41/a) called scheelite structure. We have developed transferable interatomic potentials to study the lattice dynamics of this class of compounds. The model parameters have been fitted with respect to the experimentally available Raman and infra-red frequencies and the equilibrium unit cell parameters. Inelastic neutron scattering measurements have been carried out in the triple-axis spectrometer at Dhruva reactor. The measured phonon density of states is in good agreement with the theoretical calculations, thus validating the inter-atomic potential developed.

  20. Ionic flotation of strontium 89

    International Nuclear Information System (INIS)

    The experimental results on 89Sr ionic flotation out of sewage after deactivation using sodium dodecylbenzene sulfonate (DBSNa) as a foamer. Strontium was used in the form of SrCl2 at the 1.5-2.0 μCi/l isotopic concentration. It is established that the best condition of 89Sr flotation is the 2.0-2.5 pH range. During ionic flotation interaction of 89Sr microquantities with DBSNa has in the main an ion exchange character. The experimental data satisfactorily obey the equation being a consequence of the law of mass action. The process kinetics can be described by the equation of the first-order reaction

  1. Matter Wave Interferometery with Strontium 87 Ions

    Science.gov (United States)

    Erickson, Christopher; Lyon, Mary; Archibald, James; Durfee, Dallin

    2010-10-01

    We present progress on a strontium ion interferometer for use as an electromagnetic field sensor with unprecedented sensitivity. Applications include measurements of fringing fields, studies of image charge scattering in superconductors, and ultra-precise tests of electromagnetism.

  2. Surface adsorption in strontium chloride ammines

    DEFF Research Database (Denmark)

    Ammitzbøll, Andreas L.; Lysgaard, Steen; Klukowska, Agata;

    2013-01-01

    An adsorbed state and its implications on the ab- and desorption kinetics of ammonia in strontium chloride ammine is identified using a combination of ammonia absorption measurements, thermogravimetric analysis, and density functional theory calculations. During thermogravimetric analysis, ammoni...

  3. Fixation of Radioactive Strontium in Soil

    DEFF Research Database (Denmark)

    Gregers-Hansen, Birte

    1964-01-01

    The contamination of agricultural areas by fission products from nuclear events is a possibility, and would in turn lead to contamination of plants. Of special importance is the long-lived strontium-90, as it has been shown1 that this isotope is taken up by plants to a much greater extent than an...... been considered6,7. In general, these methods appear to be of little practical value, except for deep ploughing and the liming of acid soils, both of which will reduce the strontium uptake by a factor of 3–4....... of the other long-lived fission products. Much work2–5 has, therefore, been concerned with the possibility of bringing down the strontium-90 uptake by plants through ploughing or through the addition of lime or fertilizer to the soil. Another factor, the effect of ageing on the availability of strontium, has...

  4. Cesium and strontium ion specific exchangers

    Energy Technology Data Exchange (ETDEWEB)

    Yates, S.

    1996-10-01

    This work is one of two parallel projects that are part of an ESP task to develop high-capacity, selective, solid extractants for cesium, strontium, and technetium from nuclear wastes. In this subtask, Pacific Northwest National Laboratory (PNNL) is collaborating with AlliedSignal, Inc. (Des Plaines, Illinois) to develop inorganic ion exchangers that are selective for strontium and cesium from alkaline high-level waste and groundwater streams.

  5. Mineral resource of the month: strontium

    Science.gov (United States)

    Ober, Joyce A.

    2008-01-01

    Last month as Americans sat transfixed watching fireworks on July 4, they were probably unaware that strontium was responsible for the beautiful reds in the display. Strontium, a soft silver-white or yellowish metallic element that turns yellow when exposed to air (and red when it burns), is prized for its brilliant red flame. Because it reacts with air and water, the metal is only present naturally in compounds, such as celestite and strontianite.

  6. Radioactive Barium Ion Trap Based on Metal-Organic Framework for Efficient and Irreversible Removal of Barium from Nuclear Wastewater.

    Science.gov (United States)

    Peng, Yaguang; Huang, Hongliang; Liu, Dahuan; Zhong, Chongli

    2016-04-01

    Highly efficient and irreversible capture of radioactive barium from aqueous media remains a serious task for nuclear waste disposal and environmental protection. To address this task, here we propose a concept of barium ion trap based on metal-organic framework (MOF) with a strong barium-chelating group (sulfate and sulfonic acid group) in the pore structures of MOFs. The functionalized MOF-based ion traps can remove >90% of the barium within the first 5 min, and the removal efficiency reaches 99% after equilibrium. Remarkably, the sulfate-group-functionalized ion trap demonstrates a high barium uptake capacity of 131.1 mg g(-1), which surpasses most of the reported sorbents and can selectively capture barium from nuclear wastewater, whereas the sulfonic-acid-group-functionalized ion trap exhibits ultrafast kinetics with a kinetic rate constant k2 of 27.77 g mg(-1) min(-1), which is 1-3 orders of magnitude higher than existing sorbents. Both of the two MOF-based ion traps can capture barium irreversibly. Our work proposes a new strategy to design barium adsorbent materials and provides a new perspective for removing radioactive barium and other radionuclides from nuclear wastewater for environment remediation. Besides, the concrete mechanisms of barium-sorbent interactions are also demonstrated in this contribution.

  7. Production of translationally cold barium monohalide ions

    OpenAIRE

    DePalatis, M. V.; Chapman, M.S.

    2013-01-01

    We have produced sympathetically cooled barium monohalide ions BaX$^+$ (X = F, Cl, Br) by reacting trapped, laser cooled Ba$^+$ ions with room temperature gas phase neutral halogen-containing molecules. Reaction rates for two of these (SF$_6$ and CH$_3$Cl) have been measured and are in agreement with classical models. BaX$^+$ ions are promising candidates for cooling to the rovibrational ground state, and our method presents a straightforward way to produce these polar molecular ions.

  8. Chemical abundances and kinematics of barium stars

    CERN Document Server

    de Castro, D B; Roig, F; Jilinski, E; Drake, N A; Chavero, C; Silva, J V Sales

    2016-01-01

    In this paper we present an homogeneous analysis of photospheric abundances based on high-resolution spectroscopy of a sample of 182 barium stars and candidates. We determined atmospheric parameters, spectroscopic distances, stellar masses, ages, luminosities and scale height, radial velocities, abundances of the Na, Al, $alpha$-elements, iron-peak elements, and s-process elements Y, Zr, La, Ce, and Nd. We employed the local-thermodynamic-equilibrium model atmospheres of Kurucz and the spectral analysis code {\\sc moog}. We found that the metallicities, the temperatures and the surface gravities for barium stars can not be represented by a single gaussian distribution. The abundances of $alpha$-elements and iron peak elements are similar to those of field giants with the same metallicity. Sodium presents some degree of enrichment in more evolved stars that could be attributed to the NeNa cycle. As expected, the barium stars show overabundance of the elements created by the s-process. By measuring the mean heav...

  9. Engineered Materials for Cesium and Strontium Storage Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Sean M. McDeavitt

    2010-04-14

    Closing the nuclear fuel cycle requires reprocessing spent fuel to recover the long-lived components that still have useful energy content while immobilizing the remnant waste fission products in stable forms. At the genesis of this project, next generation spent fuel reprocessing methods were being developed as part of the U.S. Department of Energy's Advanced Fuel Cycle Initiative. One of these processes was focused on solvent extraction schemes to isolate cesium (Cs) and strontium (Sr) from spent nuclear fuel. Isolating these isotopes for short-term decay storage eases the design requirements for long-term repository disposal; a significant amount of the radiation and decay heat in fission product waste comes from Cs-137 and Sr-90. For the purposes of this project, the Fission Product Extraction (FPEX) process is being considered to be the baseline extraction method. The objective of this project was to evaluate the nature and behavior of candidate materials for cesium and strontium immobilization; this will include assessments with minor additions of yttrium, barium, and rubidium in these materials. More specifically, the proposed research achieved the following objectives (as stated in the original proposal): (1) Synthesize simulated storage ceramics for Cs and Sr using an existing labscale steam reformer at Purdue University. The simulated storage materials will include aluminosilicates, zirconates and other stable ceramics with the potential for high Cs and Sr loading. (2) Characterize the immobilization performance, phase structure, thermal properties and stability of the simulated storage ceramics. The ceramic products will be stable oxide powders and will be characterized to quantify their leach resistance, phase structure, and thermophysical properties. The research progressed in two stages. First, a steam reforming process was used to generate candidate Cs/Sr storage materials for characterization. This portion of the research was carried out at

  10. Engineered Materials for Cesium and Strontium Storage. Final Technical Report

    International Nuclear Information System (INIS)

    Closing the nuclear fuel cycle requires reprocessing spent fuel to recover the long-lived components that still have useful energy content while immobilizing the remnant waste fission products in stable forms. At the genesis of this project, next generation spent fuel reprocessing methods were being developed as part of the U.S. Department of Energy's Advanced Fuel Cycle Initiative. One of these processes was focused on solvent extraction schemes to isolate cesium (Cs) and strontium (Sr) from spent nuclear fuel. Isolating these isotopes for short-term decay storage eases the design requirements for long-term repository disposal; a significant amount of the radiation and decay heat in fission product waste comes from Cs-137 and Sr-90. For the purposes of this project, the Fission Product Extraction (FPEX) process is being considered to be the baseline extraction method. The objective of this project was to evaluate the nature and behavior of candidate materials for cesium and strontium immobilization; this will include assessments with minor additions of yttrium, barium, and rubidium in these materials. More specifically, the proposed research achieved the following objectives (as stated in the original proposal): (1) Synthesize simulated storage ceramics for Cs and Sr using an existing labscale steam reformer at Purdue University. The simulated storage materials will include aluminosilicates, zirconates and other stable ceramics with the potential for high Cs and Sr loading. (2) Characterize the immobilization performance, phase structure, thermal properties and stability of the simulated storage ceramics. The ceramic products will be stable oxide powders and will be characterized to quantify their leach resistance, phase structure, and thermophysical properties. The research progressed in two stages. First, a steam reforming process was used to generate candidate Cs/Sr storage materials for characterization. This portion of the research was carried out at Purdue

  11. Sources of Pressure in Titan's Plasma Environment

    CERN Document Server

    Achilleos, N; Bertucci, C; Guio, P; Romanelli, N; Sergis, N

    2013-01-01

    In order to analyze varying plasma conditions upstream of Titan, we have combined a physical model of Saturn's plasmadisk with a geometrical model of the oscillating current sheet. During modeled oscillation phases where Titan is furthest from the current sheet, the main sources of plasma pressure in the near-Titan space are the magnetic pressure and, for disturbed conditions, the hot plasma pressure. When Titan is at the center of the sheet, the main source is the dynamic pressure associated with Saturn's cold, subcorotating plasma. Total pressure at Titan (dynamic plus thermal plus magnetic) typically increases by a factor of five as the current sheet center is approached. The predicted incident plasma flow direction deviates from the orbital plane of Titan by < 10 deg. These results suggest a correlation between the location of magnetic pressure maxima and the oscillation phase of the plasmasheet.

  12. TiME - The Titan Mare Explorer

    Science.gov (United States)

    Stofan, E.; Lorenz, R.; Lunine, J.; Bierhaus, E. B.; Clark, B.; Mahaffy, P. R.; Ravine, M.

    The Titan Mare Explorer (TiME) is a Discovery-class mission concept that underwent a detailed Phase A study in 2011-2012. The mission would splashdown a capsule on Titan's ethane sea Ligeia Mare as early as the summer of 2023, and would spend multiple Titan days performing science measurements and transmitting data directly back to Earth. This paper reviews briefly the mission concept.

  13. Titan Montgolfiere Buoyancy Modulation System Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Titan is ideally suited for balloon exploration due to its low gravity and dense atmosphere. Current NASA mission architectures baseline Montgolfiere balloon...

  14. The Global Energy Balance of Titan

    Science.gov (United States)

    Li, Liming; Nixon, Conor A.; Achterberg, Richard K.; Smith, Mark A.; Gorius, Nicolas J. P.; Jiang, Xun; Conrath, Barney J.; Gierasch, Peter J.; Simon-Miller, Amy A.; Flasar, F. Michael; Baines, Kevin H.; Ingersoll, Andrew P.; West, Robert A.; Vasavada, Ashwin R.; Ewald, Shawn P.

    2011-01-01

    We report the first measurement of the global emitted power of Titan. Longterm (2004-2010) observations conducted by the Composite Infrared Spectrometer (CIRS) onboard Cassini reveal that the total emitted power by Titan is (2.84 plus or minus 0.01) x 10(exp 8) watts. Together with previous measurements of the global absorbed solar power of Titan, the CIRS measurements indicate that the global energy budget of Titan is in equilibrium within measurement error. The uncertainty in the absorbed solar energy places an upper limit on the energy imbalance of 5.3%.

  15. Nitrogen fractionation in Titan's aerosols

    Science.gov (United States)

    Carrasco, Nathalie; Kuga, Maia; Marty, Bernard; Fleury, Benjamin; Marrocchi, Yves

    2016-06-01

    A strong nitrogen fractionation is found by Cassini in Titan's atmosphere with the detection of 15N-rich HCN relative to N2. Photodissociation of N2 associated or not to self-shielding might involve 15N-rich radicals prone to incorporation into forming organics. However the isotopic composition is only available for very simple gaseous N-bearing compounds, and the propagation and conservation of such a large N-isotopic fractionation upon polymerization is actually out of reach with the instruments onboard Cassini. We will therefore present a first laboratory investigation of the possible enrichment in the solid organic aerosols. We will also discuss the space instrumention required in the future to answer this pending issue on Titan.

  16. Oxygen Chemistry in Titan's Atmosphere

    Science.gov (United States)

    Wilson, E. H.; Atreya, S. K.

    2002-09-01

    Oxygen chemistry in the atmosphere of Titan is controlled by the presence of CO and a likely influx of extraplanetary oxygen. The presence of water vapor, corroborated by the Infrared Space Observatory (ISO) stratospheric detection [1], combined with CO induces the formation of CO2, which has also been observed [2]. However, the high CO/H2O ratio in Titan's atmosphere causes the propagation of oxygen chemistry to follow a different path than what is predicted for the Jovian planets. Specifically, the efficient CO recycling mechanisms serve to inhibit significant formation of larger oxygen compounds such as CH3OH (methanol) and CH2CO (ketene). The results of a 1-D photochemical model are presented in the context of identifying possible oxygen compounds that might be detected by the Cassini/Huygens mission which will arrive at Titan in 2004. This work was supported by the NASA Planetary Atmospheres Program and by the GCMS Project of the Cassini/Huygens mission. [1] A. Coustenis et al., Astron. Astrophys., 336, L85-L89, 1998. [2] A. Coustenis et al., Icarus, 80, 54-76, 1989.

  17. Distribution of strontium in milk component

    International Nuclear Information System (INIS)

    The distribution of strontium between the milk components, i.e., serum, casein micelles, whey and hydroxyapatite was determined. The sorption on hydroxyapatite was investigated using batch method and radiotracer technique. The aqueous phase comprised of either milk or whey. The sorption of strontium on hydroxyapatite depended on the method of its preparation and on the composition of the aqueous phase. The sorption of strontium was increased with an increase of pH. The presence of citrate species resulted in decrease of the sorption of strontium on hydroxyapatite. The sorption of 85Sr on hydroxyapatite decreased with the increasing concentration of Ca2+ ions. Addition of Ca2+ ions to milk resulted in milk pH decrease. The decrease in pH value after calcium addition to milk is related to exchanges between added calcium and micellar H+. The average value of strontium sorption on casein micelles in milk with presence of hydroxyapatite was (47.3 ± 5.6) %. The average value of sorption of 85Sr on casein micelles in milk without the addition of hydroxyapatite was (68.9 ± 2.2) %. (author)

  18. Europium-doped barium bromide iodide

    Energy Technology Data Exchange (ETDEWEB)

    Gundiah, Gautam; Hanrahan, Stephen M.; Hollander, Fredrick J.; Bourret-Courchesne, Edith D.

    2009-10-21

    Single crystals of Ba0.96Eu0.04BrI (barium europium bromide iodide) were grown by the Bridgman technique. The title compound adopts the ordered PbCl2 structure [Braekken (1932). Z. Kristallogr. 83, 222-282]. All atoms occupy the fourfold special positions (4c, site symmetry m) of the space group Pnma with a statistical distribution of Ba and Eu. They lie on the mirror planes, perpendicular to the b axis at y = +-0.25. Each cation is coordinated by nine anions in a tricapped trigonal prismatic arrangement.

  19. Barium dithionate as an EPR dosemeter.

    Science.gov (United States)

    Baran, M P; Bugay, O A; Kolesnik, S P; Maksimenko, V M; Teslenko, V V; Petrenko, T L; Desrosiers, M F

    2006-01-01

    Electron paramagnetic resonance (EPR) dosimetry is growing in popularity and this success has encouraged the search for other dosimetric materials. Previous studies of gamma-irradiated barium dithionate (BaS(2)O(6) x 2H(2)O) have shown promise for its use as a radiation dosemeter. This work studies in greater detail several essential attributes of the system. Special attention has been directed to the study of EPR response dependences on microwave power, irradiation temperature, minimum detectable dose and post-irradiation stability. PMID:16565205

  20. Scattering lengths of calcium and barium isotopes

    OpenAIRE

    Dammalapati, U.; Willmann, L.; Knoop, S.

    2011-01-01

    We have calculated the s-wave scattering length of all the even isotopes of calcium (Ca) and barium (Ba), in order to investigate the prospect of Bose-Einstein condensation (BEC). For Ca we have used an accurate molecular potential based on detailed spectroscopic data. Our calculations show that Ca does not provide other isotopes alternative to the recently Bose condensed 40Ca that suffers strong losses because of a very large scattering length. For Ba we show by using a model potential that ...

  1. Barium enema findings of milk allergy in infants

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Gyoung Ju; Kim, Mi Jeong; Lee, Hee Jung [Keimyung University School of Medicine, Daegu (Korea, Republic of)

    2006-09-15

    We wanted to evaluate the barium enema findings of milk allergy in infants. Retrospective evaluation of the plain abdominal radiography and barium enema findings was performed in fifteen young infants suffering with milk allergy. The presence of gaseous distension, rectal gas, paralytic ileus and mechanical obstruction was evaluated on the plain radiography. The presence of spasm, a transitional zone, a reversed rectosigmoid index and mucosal irregularity was analyzed on the barium enema; the presence of barium retention was also evaluated on 24-hour-delayed plain radiography. Paralytic ileus was the most common finding on the plain radiography (93%). On the barium enema, continuous spasm of the colon, ranging from the rectum to the descending colon, was revealed in ten infants (67%). A transitional zone was observed in one infant and a reversed rectosigmoid index was revealed in four. Mucosal irregularity was observed in two infants. Barium retention was demonstrated in 11 of fifteen cases: throughout the entire colon (n = 3), from the rectum to the descending colon (n = 7), and up to the transverse colon (n = 1). The most common barium enema finding of milk allergy in infants was spasm of the distal colon. The other findings were a transitional zone, a reversed rectosigmoid index, mucosal irregularity and barium retention.

  2. Enhanced Magnetic Trap Loading for Atomic Strontium

    CERN Document Server

    Barker, D S; Pisenti, N C; Campbell, G K

    2015-01-01

    We report on a technique to improve the continuous loading of atomic strontium into a magnetic trap from a Magneto-Optical Trap (MOT). This is achieved by adding a depumping laser tuned to the 3P1 to 3S1 (688-nm) transition. The depumping laser increases atom number in the magnetic trap and subsequent cooling stages by up to 65 % for the bosonic isotopes and up to 30 % for the fermionic isotope of strontium. We optimize this trap loading strategy with respect to the 688-nm laser detuning, intensity, and beam size. To understand the results, we develop a one-dimensional rate equation model of the system, which is in good agreement with the data. We discuss the use of other transitions in strontium for accelerated trap loading and the application of the technique to other alkaline-earth-like atoms.

  3. Barium and radium migration in unconsolidated Canadian geological materials

    International Nuclear Information System (INIS)

    This report describes the results of laboratory studies on the distribution coefficients of radium and barium in samples of unconsolidated geologic materials. Graphs of Ksub(d) versus solution concentration for the respective elements showed constant Ksub(d) values in the low concentration range suggesting that, at low concentrations, a distribution coefficient is a valid means of representing the geochemical reactions of both barium and radium. The Ksub(d) values for barium range between 60 and 3500 ml/g. The values appear to be influenced by the amount of barium occurring naturally in the soil materials and thus there is little possiblility of using barium as an analog of radium in laboratory experiments. The Ksub(d) values of radium vary from 50 to 1000 ml/g indicating that a wide range of geological materials have a substantial capacity to retard the migration of radium

  4. Strontium Titanate-based Composite Anodes for Solid Oxide Fuel Cells

    DEFF Research Database (Denmark)

    Blennow Tullmar, Peter; Kammer Hansen, Kent; Wallenberg, L.R.;

    2008-01-01

    Surfactant-assisted infiltration of Gd-doped ceria (CGO) in Nb-doped SrTiO3 (STN) was investigated as a potential fuel electrode for solid oxide fuel cells (SOFC). An electronically conductive backbone structure of STN was first fabricated at high temperatures and then combined with the mixed...... conducting and electrochemically active nano-sized CGO phase at low temperatures. Symmetrical cell measurements at open circuit voltage (OCV), showed that the electrochemical activity was maintained or even improved compared to Ni/YSZ fuel electrodes. The novel electrode had an electrode polarization...

  5. Temperature effect on uranyl retention by phosphated substrates and strontium titanate

    Energy Technology Data Exchange (ETDEWEB)

    Almazan-Torres, G.; Finck, N.; Garcia, G.; Drot, R.; Simoni, E. [University Paris XI, Nuclear Physics Institute, Radiochemistry Group, 91406 Orsay (France); Charbonnel, M.C. [CEA Valrho, DRCP/SCPS/LCAM, 30207 Bagnols/ceze (France); Catalette, H. [Electricite de France, Development and Research, Les Renardieres, 77818 Moret-sur-Loing cedex (France)

    2005-07-01

    Full text of publication follows: The assessment of an underground disposal of nuclear wastes requires an accurate knowledge of all the processes involved in the solid/liquid interactions. Sorption/desorption phenomena are part of them and could enhance retardation of radio-toxic elements migration. Radionuclides sorption onto various mineral substrates was extensively studied at room temperature but the literature is very poor for higher temperatures more relevant for storage conditions (e.g. 360 K). The knowledge of thermodynamic values such as {delta}H is required to extrapolate room temperature data to higher temperatures but such a prediction implies to assume that the mechanisms remain the same. The goal of this study is to investigate the uranyl sorption mechanisms onto various minerals (Zr{sub 2}O(PO{sub 4}){sub 2}, ZrP{sub 2}O{sub 7} and SrTiO{sub 3}) for temperature ranged from 298 K to 363 K in order to check if the processes remain unchanged for the overall conditions. The powdery solids were synthesized to avoid impurities and characterized using XRD and IR spectroscopy. The specific surface area of all substrates is a few square-meters per gram. Classical batch experiments were performed for an initial uranyl concentration of 10{sup -4} M, in NaClO{sub 4} medium and for a solid-over-solution ratio equals 10 g.L{sup -1}. The systems were studied at room temperature and the retention mechanisms were perfectly defined. Potentiometric titrations of the three substrates were carried out to determine the acid-base behavior of the solid surfaces (pH{sub pzc}, acidity constants) together with a structural investigation of the uranyl surface species. This last point was achieved by performing X-ray photoelectron (XPS) and time-resolved laser-induced fluorescence (TRLIF) spectroscopies. Then, the reacting uranyl species as well as the active surface sites were identified for room temperature conditions which allows one to model the sorption edges on the basis of these experimental constraints and thus to determine accurate sorption constants ({delta}G). Batch experiments together with potentiometric titrations were then performed at 323 K and 363 K to check the temperature effects. TRLIF experiments were performed as a function of temperature to check that the surface species remain the same for the temperature range under study. Moreover, micro-calorimetric investigations were performed to determine the reaction heats corresponding to solid hydration and metal sorption. Then, since it was shown that the mechanisms are the same for 298 K and 323 K, the knowledge of the {delta}H{sub reaction} allows one to extrapolate, with a reasonable trust, the room temperature data to higher temperature conditions and also to determine the corresponding {delta}S. (authors)

  6. Electronic and plasmonic properties of nano-sized gold/strontium titanate interface

    Science.gov (United States)

    Hou, Jiechang

    In this thesis, nano-sized metal/oxide interfaces are fabricated to determine the size dependence of electronic and resistive switching properties, effect of atomic structure on the orientation dependence of electronic properties, and mechanisms of plasmon-induced current enhancement. A combination of drop-casting and high temperature annealing enables orientation control over nano-sized metal/oxide interfaces. To examine the electronic properties, individual Au nanoparticle/SrTiO3 interfaces with sizes ranging from 20 to 150 nm are characterized via conductive atomic force microscopy, for two distinct interface orientations. Current-voltage characterization enables the determination of dominant electron transport mechanisms. The development of a depletion region results in the transition of electron transport mechanism from edge-effect-induced tunneling to inhomogeneity-induced statistical variations, as the interface decreases below a critical size. The resultant size-dependent Schottky properties dictate the size dependence of interface-controlled resistive switching behaviors, in addition to geometrical scaling of resistance. The effect of atomic structure on electronic properties is also investigated, via correlation of atomic structure characterized by high resolution transmission electron microscopy, electronic structure probed by electron energy loss spectroscopy, and measured electronic properties. The observed orientation dependence of reverse tunneling is attributed to interface defects induced by different atomic structures. Nanofabrication procedures are optimized to develop Au nano-antenna arrays on SrTiO3 substrate, to determine the photocurrent dependence on illumination condition and mechanisms of hot electron effect. Device design is assisted by finite-difference time-domain simulation of optical properties, targeted at near-infrared working range. Plasmon resonance frequency and intensity are demonstrated to be systematically tunable by varying device geometry. Photocurrent enhancement occurs around the resonance frequency, resulting from amplified absorption of plasmon resonance. Finally, possible approaches are proposed to optimize quantum yield of plasmon-induced current enhancement.

  7. Defect-induced photoluminescence of strontium titanate and its modulation by electrostatic gating

    Science.gov (United States)

    Kumar, Dushyant; Budhani, R. C.

    2015-12-01

    The photoluminescence (PL) spectra of Ar+-ion irradiated single crystals of SrTiO3 (STO) excited by the 325 nm line of a He-Cd laser are compared with those of pristine crystals, epitaxial films, and amorphous layers of STO at several temperatures down to 20 K. The 550 eV Ar+-beam irradiation activates three distinctly visible PL peaks: blue (˜430 nm), green (˜550 nm), and infrared (˜820 nm) at room temperature, making the photoluminescence multicolored. The abrupt changes in PL properties below ≈100 K are discussed in relation with the antiferrodistortive structural phase transition in SrTiO3 from cubic to tetragonal symmetry, which makes it a direct bandgap semiconductor. The photoluminescence spectra are also tuned by an electrostatic gate field in a field-effect transistor geometry. At 20 K, we observed a maximum increase of ˜20 % in PL intensity under back gating of SrTiO3.

  8. Combined experimental and computational modelling studies of the solubility of nickel in strontium titanate

    NARCIS (Netherlands)

    Beale, A.M.; Paul, M.; Sankar, G.; Oldman, R.J.; Catlow, R.A.; French, S.; Fowles, M.

    2009-01-01

    A combination of X-ray techniques and atomistic computational modelling has been used to study the solubility of Ni in SrTiO3 in relation to the application of this material for the catalytic partial oxidation of methane. The experiments have demonstrated that low temperature, hydrothermal synthesis

  9. Full Ceramic Fuel Cells Based on Strontium Titanate Anodes, An Approach Towards More Robust SOFCs

    DEFF Research Database (Denmark)

    Holtappels, Peter; Irvine, J.T.S.; Iwanschitz, B.;

    2013-01-01

    intact and tolerant to redox cycles, cell performance degradation appears linked to the infiltrated electro catalysts. The materials have also been assessed with respect to their electrical and mechanical properties, in order to further evaluate their potential use as anode and anode support layers in...

  10. Searching Room Temperature Ferromagnetism in Wide Gap Semiconductors Fe-doped Strontium Titanate and Zinc Oxide

    CERN Document Server

    Pereira, LMC; Wahl, U

    Scientific findings in the very beginning of the millennium are taking us a step further in the new paradigm of technology: spintronics. Upgrading charge-based electronics with the additional degree of freedom of the carriers spin-state, spintronics opens a path to the birth of a new generation of devices with the potential advantages of non-volatility and higher processing speed, integration densities and power efficiency. A decisive step towards this new age lies on the attribution of magnetic properties to semiconductors, the building block of today's electronics, that is, the realization of ferromagnetic semiconductors (FS) with critical temperatures above room temperature. Unfruitful search for intrinsic RT FS lead to the concept of Dilute(d) Magnetic Semiconductors (DMS): ordinary semiconductor materials where 3 d transition metals randomly substitute a few percent of the matrix cations and, by some long-range mechanism, order ferromagnetically. The times are of intense research activity and the last fe...

  11. Influence of stoichiometry on the dielectric properties of sputtered strontium titanate thin films

    International Nuclear Information System (INIS)

    The dielectric permittivity, dielectric quality factor (inverse dielectric loss), and lattice parameter of 140 nm sputtered SrTiO3 films were dependent on the oxygen partial pressure and total chamber pressure (O2+Ar) during film growth. Films were grown at 25 and 75 mTorr (mT) in an oxygen rich and oxygen deficient sputtering gas environment concurrently on (100) SrTiO3 and (111) Pt/(0001) Al2O3 substrates. Films were deposited on platinized sapphire for electrical characterization and the homoepitaxial films were used as a structural and chemical standard. High resolution triple axis x-ray diffraction results showed an increase in mismatch between the film and substrate (200) peak in homoepitaxial SrTiO3 films with higher total growth and lower oxygen pressures. Dielectric quality factors of the SrTiO3 films on platinized sapphire at 1 MHz for the 25 mT (50 sccm Ar/50 sccm O2), 25 mT (90 sccm Ar/10 sccm O2), 75 mT (50 sccm Ar/50 sccm O2), and 75 mT (90 sccm Ar/10 sccm O2) film growths were 320, 251, 209, and 102, respectively; likewise, the dielectric constants follow as 241, 230, 220, and 170, respectively. Improved film dielectric properties were observed for films closer to stoichiometric SrTiO3

  12. First principle electronic, structural, elastic, and optical properties of strontium titanate

    Directory of Open Access Journals (Sweden)

    Chinedu E. Ekuma

    2012-03-01

    Full Text Available We report self-consistent ab-initio electronic, structural, elastic, and optical properties of cubic SrTiO3 perovskite. Our non-relativistic calculations employed a generalized gradient approximation (GGA potential and the linear combination of atomic orbitals (LCAO formalism. The distinctive feature of our computations stem from solving self-consistently the system of equations describing the GGA, using the Bagayoko-Zhao-Williams (BZW method. Our results are in agreement with experimental ones where the later are available. In particular, our theoretical, indirect band gap of 3.24 eV, at the experimental lattice constant of 3.91 Å, is in excellent agreement with experiment. Our predicted, equilibrium lattice constant is 3.92 Å, with a corresponding indirect band gap of 3.21 eV and bulk modulus of 183 GPa.

  13. Strontium Titanate Buffer Layers on Cu/33%Ni Substrates using a Novel Solution Chemistry

    DEFF Research Database (Denmark)

    Pallewatta, Pallewatta G A P; Yue, Zhao; Hui, Tian;

    2013-01-01

    SrTiO3 is a widely studied perovskite material due to its advantages as a buffer template which can be simply applied between a metal substrate tape and a superconducting layer in 2G high temperature superconducting (HTS) tapes. In this study, heteroepitaxial SrTiO3 thin films were deposited...

  14. High temperature thermoelectric properties of strontium titanate thin films with oxygen vacancy and niobium doping

    KAUST Repository

    Kumar, Sunil R Sarath

    2013-08-14

    We report the evolution of high temperature thermoelectric properties of SrTiO3 thin films doped with Nb and oxygen vacancies. Structure-property relations in this important thermoelectric oxide are elucidated and the variation of transport properties with dopant concentrations is discussed. Oxygen vacancies are incorporated during growth or annealing in Ar/H2 above 800 K. An increase in lattice constant due to the inclusion of Nb and oxygen vacancies is found to result in an increase in carrier density and electrical conductivity with simultaneous decrease in carrier effective mass and Seebeck coefficient. The lattice thermal conductivity at 300 K is found to be 2.22 W m-1 K-1, and the estimated figure of merit is 0.29 at 1000 K. © 2013 American Chemical Society.

  15. Charge-carrier transport in epitactical strontium titanate layers for the application in superconducting components

    International Nuclear Information System (INIS)

    In this thesis thin STO layers were epitactically deposited on YBCO for a subsequent electrical characterization. YBCO layers with a roughness of less than 2 nm (RMS), good out-of-plane orientation with a half-width in the rocking curve in the range (0.2..0.3) at only slightly diminished critical temperature could be reached. The STO layers exhibited also very good crystallographic properties. The charge-carrier transport in STO is mainly dominated by interface-limited processes. By means of an in thesis newly developed barrier model thereby the measured dependencies j(U,T) respectively σ(U,T) could be described very far-reachingly. At larger layer thicknesses and low temperatures the charge-carrier transport succeeds by hopping processes. So in the YBCO/STO/YBCO system the variable-range hopping could be identified as dominating transport process. Just above U>10 V a new behaviour is observed, which concerning its temperature dependence however is also tunnel-like. The STO layers exhibit here very large resistances, so that fields up to 107..108 V/m can be reached without flowing of significant leakage currents through the barrier. In the system YBCO/STO/Au the current transport can be principally in the same way as in the YBCO/STO/YBCO system. The special shape and above all the asymmetry of the barrier however work out very distinctly. It could be shown that at high temperatures according to the current direction a second barrier on the opposite electrode must be passed. So often observed breakdown effects can be well described. For STO layer-thicknesses in the range around 25 nm in the whole temperature range studied inelastic tunneling over chains of localized states was identified as dominating transport process. It could however for the first time be shown that at very low temperatures in the STO layers Coulomb blockades can be formed.

  16. Electrical Transport in Nanoscale Complex Oxide Thin Films: Strontium titanate and RNiO3

    Science.gov (United States)

    Son, Junwoo

    Complex oxide thin films have attracted significant attention due to a wealth of physical phenomena, such as ferroelectricity and Mott transitions arising from strong interactions in d-bands. Moreover, the physical phenomena observed in these materials exhibit sensitivities, which are not found in conventional semiconductors and give rise to abrupt changes in their physical properties. The richness of electronic phases and unique functionalities of complex oxides are attractive for applications in next-generation electronic devices. To realize new electronic devices with complex oxides, it is essential to understand the mechanisms of the electrical transport and to control the transport properties of complex oxide thin films. In this dissertation, electrical transport phenomena and their electrical control are experimentally studied in two different complex oxide thin film systems, exhibiting resistive switching and Mott metal-insulator transitions. The first part will briefly discuss resistive switching in ultrathin SrTiO3 tunnel junctions in metal-insulator-metal (MIM) geometry. The current-voltage characteristics provide hints of the origin of the resistive switching phenomena in SrTiO3 tunnel barriers, which are also relevant for resistive switching in thicker films. The second part focuses on the control of metal-insulator transitions in RNiO3, where R = trivalent rare earth ion, using different strategies: band-width control and band-filling control. The electrical transport in low-dimensional, strongly correlated LaNiO3 is explored in terms of band-width control by strain and dimensionality. A new concept of band-filling control in nanoscale NdNiO3 thin films by modulation doping is discussed, and the experimental charge injection from high-quality La-doped SrTiO3 into NdNiO3 thin films is experimentally studied. The potential and limitations of a Modulation-doped Mott Field Effect Transistor (MM-FET) for future "Mott" electronic devices is discussed.

  17. Optical Properties of Nitrogen-Substituted Strontium Titanate Thin Films Prepared by Pulsed Laser Deposition

    Directory of Open Access Journals (Sweden)

    Alexander Wokaun

    2009-09-01

    Full Text Available Perovskite-type N-substituted SrTiO3 thin films with a preferential (001 orientation were grown by pulsed laser deposition on (001-oriented MgO and LaAlO3 substrates. Application of N2 or ammonia using a synchronized reactive gas pulse produces SrTiO3-x:Nx films with a nitrogen content of up to 4.1 at.% if prepared with the NH3 gas pulse at a substrate temperature of 720 °C. Incorporating nitrogen in SrTiO3 results in an optical absorption at 370-460 nm associated with localized N(2p orbitals. The estimated energy of these levels is ≈2.7 eV below the conduction band. In addition, the optical absorption increases gradually with increasing nitrogen content.

  18. Epitaxial Growth of Perovskite Strontium Titanate on Germanium via Atomic Layer Deposition.

    Science.gov (United States)

    Lin, Edward L; Edmondson, Bryce I; Hu, Shen; Ekerdt, John G

    2016-01-01

    Atomic layer deposition (ALD) is a commercially utilized deposition method for electronic materials. ALD growth of thin films offers thickness control and conformality by taking advantage of self-limiting reactions between vapor-phase precursors and the growing film. Perovskite oxides present potential for next-generation electronic materials, but to-date have mostly been deposited by physical methods. This work outlines a method for depositing SrTiO3 (STO) on germanium using ALD. Germanium has higher carrier mobilities than silicon and therefore offers an alternative semiconductor material with faster device operation. This method takes advantage of the instability of germanium's native oxide by using thermal deoxidation to clean and reconstruct the Ge (001) surface to the 2×1 structure. 2-nm thick, amorphous STO is then deposited by ALD. The STO film is annealed under ultra-high vacuum and crystallizes on the reconstructed Ge surface. Reflection high-energy electron diffraction (RHEED) is used during this annealing step to monitor the STO crystallization. The thin, crystalline layer of STO acts as a template for subsequent growth of STO that is crystalline as-grown, as confirmed by RHEED. In situ X-ray photoelectron spectroscopy is used to verify film stoichiometry before and after the annealing step, as well as after subsequent STO growth. This procedure provides framework for additional perovskite oxides to be deposited on semiconductors via chemical methods in addition to the integration of more sophisticated heterostructures already achievable by physical methods. PMID:27501462

  19. Assessment of full ceramic solid oxide fuel cells based on modified strontium titanates

    DEFF Research Database (Denmark)

    Holtappels, Peter; Ramos, Tania; Sudireddy, Bhaskar Reddy;

    2014-01-01

    -catalysts and various infiltrated metals including Ni and Ru have been studied. Stable power output has been observed for Ru and Ni-CGO as infiltrate. While redox tolerance is maintained, both types of cells degrade rapidly under exposure to sulfur. An initial assembly of a 60 cell stack in a one kW Hexis Galileo...

  20. Prediction Models for Plutonium, Strontium, Uranium and Neptunium Loading onto Monosodium Titanate (MST)

    Energy Technology Data Exchange (ETDEWEB)

    Fondeur, F. F.; Hobbs, D. T.; Barnes, M. J.; Peters, T. B.; Fink, S. D.

    2005-07-11

    The DA isotherm parameters for U, Pu, Sr and Np have been updated to include additional data obtained since the original derivation. The DA isotherms were modified to include a kinetic function derived by Rahn to describe sorbate loading from the beginning of sorption up to equilibrium. The final functions describe both kinetic and thermodynamic sorption. We selected the Rahn function to describe radionuclide sorption because it originates from diffusion and absorption controlled sorption. An investigation of the thermal behavior of radionuclide sorption on MST as shown by this data revealed the sorption process is diffusion (or transport) controlled (in solution). Transport in solution can in theory be accelerated by vigorous mixing but the range of available mixing speed in the facility design will probably not be sufficient to markedly increase radionuclide sorption rate on MST from diffusion-controlled sorption. The laboratory studies included mixing energies hydraulically-scaled to match those of the Actinide Removal Process and these likely approximate the range of energies available in the Salt Waste Processing Facility.

  1. Development of Strontium Titanate Thin films on Technical Substrates for Superconducting Coated Conductors

    DEFF Research Database (Denmark)

    Pallewatta, Pallewatta G A P; Yue, Zhao; Grivel, Jean-Claude

    2012-01-01

    SrTiO3 is a widely studied perovskite material due to its advantages as a template for high temperature superconducting tapes. Heteroepitaxial SrTiO3 thin films were deposited on Ni/W tapes using dip-coating in a precursor solution followed by drying and annealing under reducing conditions. Nearly...

  2. Measurements of the dielectric properties of strontium titanate at submillimetre wavelengths using Josephson junction driven oscillators

    Energy Technology Data Exchange (ETDEWEB)

    McBrien, P.F.; Booij, W.E.; Kahlmann, F.; Blamire, M.G.; Tarte, E.J. [IRC in Superconductivity, University of Cambridge, Cambridge CB3 0HE (United Kingdom); Romans, E.J.; Pegrum, C.M. [Department of Physics and Applied Physics, Strathclyde University, Glasgow, G4 0NG (United Kingdom)

    1999-11-01

    Measurements of the dielectric constant {epsilon}{sub R} of thin-film SrTiO{sub 3} made using Josephson junction driven oscillators are reported. {epsilon}{sub R} for a 100nm SrTiO{sub 3} film was found to vary between 120 and 245 in the temperature range from 4.2 K to 65 K and to be independent of frequency from 50 GHz to 340 GHz. (author)

  3. Fatigue properties and impedance analysis of potassium sodium niobate-strontium titanate transparent ceramics

    Science.gov (United States)

    Liu, Zhiyong; Fan, Huiqing; Lei, Shenhui; Wang, Ju; Tian, Hailin

    2016-10-01

    Highly transparent ferroelectric ceramics based on 0.9K0.5Na0.5NbO3-0.1SrTiO3 were prepared using a pressure-less solid-state sintering method without using hot isostatic pressing and spark plasma sintering. An independence electromechanical response of bipolar switching cycles ( S 33 only degraded 3.2 % up to 107 cycles) was presented in this transparent ceramics, which indicated an extremely stable property under electric field. From impedance spectroscopy and X-ray photoelectron spectroscopy analyses, it was concluded that such optical transparency and fatigue-resistant behaviors were mainly attributed to the lower density of oxygen vacancies in the ceramics.

  4. Kinetics and Equilibrium Sorption Models: Fitting Plutonium, Strontium, Uranium and Neptunium Loading on Monosodium Titanate (MST)

    Energy Technology Data Exchange (ETDEWEB)

    Fondeur, F

    2006-03-08

    The Dubinin-Astashov (DA) isotherm parameters for U, Pu, Sr and Np have been updated to include additional data obtained since the original derivation. The DA isotherms were modified to include a kinetic function derived by Rahn to describe sorbate loading from the beginning of sorption up to steady state. The final functions describe both kinetic and thermodynamic sorption.

  5. FY06 ANNUAL REPORT FOR ENVIRONMENTAL MANAGEMENT SCIENCE PROGRAM PROJECT #95061STRATEGIC DESIGN AND OPTIMIZATION OF INORGANIC SORBENTSFOR CESIUM, STRONTIUM AND ACTINIDES

    Energy Technology Data Exchange (ETDEWEB)

    Hobbs, D

    2006-08-10

    The basic science goal in this project identifies structure/affinity relationships for selected radionuclides and existing sorbents. The task will apply this knowledge to the design and synthesis of new sorbents that will exhibit increased affinity for cesium, strontium and actinide separations. The target problem focuses on the treatment of high-level nuclear wastes. The general approach can likewise be applied to nonradioactive separations. During the fifth year of the project our studies focused along the following paths: (1) determination of Cs{sup +} ion exchange mechanism in sodium titanium silicates with sitinikite topology and the influence of crystallinity on ion exchange, (2) synthesis and characterization of novel peroxo-titanate materials for strontium and actinide separations, and (3) further refinements in computational models for the CST and polyoxoniobate materials.

  6. Effect of TiO2 on the optical, structural and crystallization behavior of barium borate glasses

    Science.gov (United States)

    Marzouk, M. A.; ElBatal, F. H.; ElBatal, H. A.

    2016-07-01

    Collective characterizations of prepared binary barium borate glass (50 mol % BaO - 50 mol % B2O3) together with samples containing increasing added TiO2 contents (5% → 30%) were carried out by optical and FT infrared absorption measurements. FT infrared and X-ray diffraction analysis were done for heat treated glass - ceramic derivatives prepared through two step regime process. Optical spectra of the glasses reveal the presence of titanium ions mainly in the tetravalent state imparting additional UV band beside strong UV absorption due to trace iron impurity. IR spectral studies indicate the presence of triangular and tetrahedral borate groups through the modification of BaO to some BO3 to BO4 groups beside the presence of titanium ions as interfering or overlapping TiO4 or Bsbnd Osbnd Ti groupings in the glassy network. Crystalline X-ray diffraction results indicate the separation of crystalline barium borate of the composition (2BaO.5 B2O3) as a main constituent together with some crystalline alkali titanates confirming the role of TiO2 of both as nucleating agent beside acting as structural forming through reaction with alkali oxides to form crystalline titanates. The optical band gap values reveal progressive decrease and increase of Urbach energy with TiO2 content and the same for the refractive index values and all these parameters are correlated with the proposed changes in the glass constitution with the introduction of TiO2. The additional thermal expansion measurements indicate the peculiar characteristic negative expansion up to 300 °C and after which an increase in the coefficient of thermal expansion is identified with the increase in temperature. The thermal parameters are also correlated with the modification of the glass structure by the introduction of titanium ions.

  7. Research on Rule of Barium Carbonate Scaling by Cold Finger Experiment%冷指实验研究碳酸钡结垢规律

    Institute of Scientific and Technical Information of China (English)

    刘振; 王丽玲

    2014-01-01

    The main component of scale is calcium carbonate, the rest of which includes barium carbonate, barium sulfate, magnesium salt, strontium sulfate and so on. Many researchers at home and abroad have studied the rules of calcium carbonate scaling, less on barium carbonate scaling. In this paper, through controlling ion concentration, reaction temperature, pH value, reaction time, stirring rate and supersaturation of solution,effects of these parameters on barium carbonate scaling were investigated by cold finger experiment. The results show that the growth rate of barium carbonate scaling increases with the increasing of temperature, decreases with the increasing of flow rate, and is the slowest when the pH value is 9. However, ion concentration has little influence on the growth rate of barium carbonate scaling. The cold finger experiment to study the rules of barium carbonate scaling is a relative new method, the research results can provide theory basis for decaling and scale prevention of oil field.%污垢中的主要成分是碳酸钙,还有碳酸钡、硫酸钡、镁盐、硫酸锶等。国内外学者对碳酸钙结垢规律的研究很多,对碳酸钡的研究相对较少一些。通过冷指实验,控制离子浓度、反应温度、pH 值、反应时间和搅拌速度以及溶液的过饱和度,以研究这些参数对碳酸钡结垢的影响。结果表明,碳酸钡垢的生长速率随着温度的增加而增加,随着流速的增加而减小,pH 为9时最小,浓度对其生长速率的影响不甚明显。利用冷指实验研究碳酸钡结垢规律是一种较新的方法,其研究成果为油田除垢防垢提供一定的理论依据。

  8. Barium appendicitis: A single institution review in Japan

    Science.gov (United States)

    Katagiri, Hideki; Lefor, Alan Kawarai; Kubota, Tadao; Mizokami, Ken

    2016-01-01

    AIM To review clinical experience with barium appendicitis at a single institution. METHODS A retrospective review of patients admitted with a diagnosis of acute appendicitis, from January 1, 2013 to December 31, 2015 was performed. Age, gender, computed tomography (CT) scan findings if available, past history of barium studies, pathology, and the presence of perforation or the development of complications were reviewed. If the CT scan revealed high density material in the appendix, the maximum CT scan radiodensity of the material is measured in Hounsfield units (HU). Barium appendicitis is defined as: (1) patients diagnosed with acute appendicitis; (2) the patient has a history of a prior barium study; and (3) the CT scan shows high density material in the appendix. Patients who meet all three criteria are considered to have barium appendicitis. RESULTS In total, 396 patients were admitted with the diagnosis of acute appendicitis in the study period. Of these, 12 patients (3.0%) met the definition of barium appendicitis. Of these 12 patients, the median CT scan radiodensity of material in the appendix was 10000.8 HU, ranging from 3066 to 23423 HU (± 6288.2). In contrast, the median CT scan radiodensity of fecaliths in the appendix, excluding patients with barium appendicitis, was 393.1 HU, ranging from 98 to 2151 HU (± 382.0). The CT scan radiodensity of material in the appendices of patients with barium appendicitis was significantly higher than in patients with nonbarium fecaliths (P < 0.01). CONCLUSION Barium appendicitis is not rare in Japan. Measurement of the CT scan radiodensity of material in the appendix may differentiate barium appendicitis from routine appendicitis.

  9. The Lakes and Seas of Titan

    Science.gov (United States)

    Hayes, Alexander G.

    2016-06-01

    Analogous to Earth's water cycle, Titan's methane-based hydrologic cycle supports standing bodies of liquid and drives processes that result in common morphologic features including dunes, channels, lakes, and seas. Like lakes on Earth and early Mars, Titan's lakes and seas preserve a record of its climate and surface evolution. Unlike on Earth, the volume of liquid exposed on Titan's surface is only a small fraction of the atmospheric reservoir. The volume and bulk composition of the seas can constrain the age and nature of atmospheric methane, as well as its interaction with surface reservoirs. Similarly, the morphology of lacustrine basins chronicles the history of the polar landscape over multiple temporal and spatial scales. The distribution of trace species, such as noble gases and higher-order hydrocarbons and nitriles, can address Titan's origin and the potential for both prebiotic and biotic processes. Accordingly, Titan's lakes and seas represent a compelling target for exploration.

  10. Interaction of Titan's ionosphere with Saturn's magnetosphere.

    Science.gov (United States)

    Coates, Andrew J

    2009-02-28

    Titan is the only Moon in the Solar System with a significant permanent atmosphere. Within this nitrogen-methane atmosphere, an ionosphere forms. Titan has no significant magnetic dipole moment, and is usually located inside Saturn's magnetosphere. Atmospheric particles are ionized both by sunlight and by particles from Saturn's magnetosphere, mainly electrons, which reach the top of the atmosphere. So far, the Cassini spacecraft has made over 45 close flybys of Titan, allowing measurements in the ionosphere and the surrounding magnetosphere under different conditions. Here we review how Titan's ionosphere and Saturn's magnetosphere interact, using measurements from Cassini low-energy particle detectors. In particular, we discuss ionization processes and ionospheric photoelectrons, including their effect on ion escape from the ionosphere. We also discuss one of the unexpected discoveries in Titan's ionosphere, the existence of extremely heavy negative ions up to 10000amu at 950km altitude. PMID:19073464

  11. Three-dimensional labeling of newly formed bone using synchrotron radiation barium K-edge subtraction imaging

    Science.gov (United States)

    Panahifar, Arash; Swanston, Treena M.; Pushie, M. Jake; Belev, George; Chapman, Dean; Weber, Lynn; Cooper, David M. L.

    2016-07-01

    Bone is a dynamic tissue which exhibits complex patterns of growth as well as continuous internal turnover (i.e. remodeling). Tracking such changes can be challenging and thus a high resolution imaging-based tracer would provide a powerful new perspective on bone tissue dynamics. This is, particularly so if such a tracer can be detected in 3D. Previously, strontium has been demonstrated to be an effective tracer which can be detected by synchrotron-based dual energy K-edge subtraction (KES) imaging in either 2D or 3D. The use of strontium is, however, limited to very small sample thicknesses due to its low K-edge energy (16.105 keV) and thus is not suitable for in vivo application. Here we establish proof-of-principle for the use of barium as an alternative tracer with a higher K-edge energy (37.441 keV), albeit for ex vivo imaging at the moment, which enables application in larger specimens and has the potential to be developed for in vivo imaging of preclinical animal models. New bone formation within growing rats in 2D and 3D was demonstrated at the Biomedical Imaging and Therapy bending magnet (BMIT-BM) beamline of the Canadian Light Source synchrotron. Comparative x-ray fluorescence imaging confirmed those patterns of uptake detected by KES. This initial work provides a platform for the further development of this tracer and its exploration of applications for in vivo development.

  12. High resolution studies of barium Rydberg states

    International Nuclear Information System (INIS)

    The subtle structure of Rydberg states of barium with orbital angular momentum 0, 1, 2 and 3 is investigated. Some aspects of atomic theory for a configuration with two valence electrons are reviewed. The Multi Channel Quantum Defect Theory (MQDT) is concisely introduced as a convenient way to describe interactions between Rydberg series. Three high-resolution UV studies are presented. The first two, presenting results on a transition in indium and europium serve as an illustration of the frequency doubling technique. The third study is of hyperfine structure and isotope shifts in low-lying p states in Sr and Ba. An extensive study of the 6snp and 6snf Rydberg states of barium is presented with particular emphasis on the 6snf states. It is shown that the level structure cannot be fully explained with the model introduced earlier. Rather an effective two-body spin-orbit interaction has to be introduced to account for the observed splittings, illustrating that high resolution studies on Rydberg states offer an unique opportunity to determine the importance of such effects. Finally, the 6sns and 6snd series are considered. The hyperfine induced isotope shift in the simple excitation spectra to 6sns 1S0 is discussed and attention is paid to series perturbers. It is shown that level mixing parameters can easily be extracted from the experimental data. (Auth.)

  13. NANOSCALE BARIUM HYDROSILICATES: CHOOSING THE SYNTHESIS TECHNOLOGY

    Directory of Open Access Journals (Sweden)

    GRISHINA Anna Nikolaevna

    2013-08-01

    Full Text Available Cement concretes are the most used materials in modern civil engineering. Due to that such materials draw great attention both in the Russian Federation and abroad. The possibility to enhance the manufacturability and operational properties of concretes results in significant reduction of overall operating costs. Many enhancement methods have been elaborated. Among them there is one based on introduction of calcium hydrosilicates into construction composition. The authors set up a hypothesis that similarity between properties and structures of different hydrosilicates (for example, alkaline earth metals and metals of the second group will provide similar increased operational characteristics. The specialists of Research and Educational Center «Nanotechnology» are developing cement composites nanomodification methods which include introduction of nanodimensional barium hydrosilicates particles. The synthesis of barium hydrosilicates particles can be done with the use of many technologies, different by energy consumption or performing complexity. Taking into account both these factors, one can assume that low-temperature sol-gel synthesis from diluted water solutions is the proper technology. The present paper shows that this assumption is correct. The selection of certain technology is made by the means of multiobjective optimization, which is in turn is performed by the means of linear scalarization. This method, while not always giving the Pareto optimal solutions, can be easily implemented. The particle size distribution is taken into consideration during selection of objectives and weights. It is shown that selected technology allows manufacturing nanoparticles with median size about 30 nm.

  14. Coprecipitation of europium with barium sulphate

    International Nuclear Information System (INIS)

    The distribution behaviour of the trivalent europium ion at a micro-component scale, between barium sulphate and aqueous solution, was studied at ambient temperature. Experiments were carried out using radioactive tracers. Results indicate an enrichment of the micro component in the solid phase relative to the solution. The effects of the concentrations of the micro and macro-elements on the coprecipitation have been examined. Europium distribution coefficient DEu increases from 1.1 ± 0.2 to 3.2 ± 0.4 when initial europium concentration decreases from more than 17 x 10-5 to 1.4 x 10-5 M, in sulphuric media with SO42- in excess or CBa2+/CSO42- Eu. The coprecipitation of europium with barium sulphate as a heterovalent solid-solution is described by heterogeneous model obeying the Doerner and Hoskins logarithmic partition law. The weaker partition coefficients lower than unity (λ = 0.25 when CEu(III) ∼ 1.4 x 10-5 M and λ = 0.13 when CBa2+/CSO42- -5 ≤ CEu(III) = 153.5 x 10-5 M) lead to crystals increasingly enriched in the trace element. (orig.)

  15. Titan as the Abode of Life

    Science.gov (United States)

    Mckay, Christopher P.

    2016-01-01

    Titan is the only world we know other than Earth that has a liquid on its surface. It has a thick atmosphere composed of nitrogen and methane with a thick organic haze. There are lakes, rain, and clouds of methane and ethane. Here, we address the question of carbon-based life living in Titan liquids. Photochemically produced organics, particularly acetylene, in Titan's atmosphere could be a source of biological energy when reacted with atmospheric hydrogen. Light levels on the surface of Titan are more than adequate for photosynthesis but the biochemical limitations due to the few elements available in the environment may lead only to simple ecosystems that only consume atmospheric nutrients. Life on Titan may make use of the trace metals and other inorganic elements produced by meteorites as they ablate in the atmosphere. It is conceivable that H2O molecules on Titan could be used in a biochemistry that is rooted in hydrogen bonds in a way that metals are used in enzymes by life on Earth. Previous theoretical work has shown possible membrane structures in Titan liquids, azotosomes, composed of small organic nitrogen compounds, such as acrylonitrile. The search for a plausible information molecule for life in Titan liquids remains an open research topic - polyethers have been considered and shown to be insoluble at Titan temperatures. Possible search strategies for life on Titan include looking for unusual concentrations of certain molecules reflecting biological selection. Homochirality is a special and powerful example of such biology selection. Environmentally, a depletion of hydrogen in the lower atmosphere may be a sign of metabolism. A discovery of life in liquid methane and ethane would be our first compelling indication that the Universe is full of diverse and wondrous life forms.

  16. This is Commercial Titan, Inc

    Science.gov (United States)

    van Rensselaer, F. L.; Slovikoski, R. D.; Abels, T. C.

    1989-10-01

    Out of a quarter-century heritage of eminently successful expendable launch vehicle history with the U.S government, a commercial launch services enterprise which challenges the corporation as well as the competition has been launched within the Martin Marietta Corporation. This paper is an inside look at the philosophy, structure, and success of the new subsidiary, Commercial Titan, Inc., which is taking on its U.S. and foreign rocket-making competitors to win a share of the international communication satellite market as well as the U.S. government commercial launch services market.

  17. Aerosol growth in Titan's ionosphere.

    Science.gov (United States)

    Lavvas, Panayotis; Yelle, Roger V; Koskinen, Tommi; Bazin, Axel; Vuitton, Véronique; Vigren, Erik; Galand, Marina; Wellbrock, Anne; Coates, Andrew J; Wahlund, Jan-Erik; Crary, Frank J; Snowden, Darci

    2013-02-19

    Photochemically produced aerosols are common among the atmospheres of our solar system and beyond. Observations and models have shown that photochemical aerosols have direct consequences on atmospheric properties as well as important astrobiological ramifications, but the mechanisms involved in their formation remain unclear. Here we show that the formation of aerosols in Titan's upper atmosphere is directly related to ion processes, and we provide a complete interpretation of observed mass spectra by the Cassini instruments from small to large masses. Because all planetary atmospheres possess ionospheres, we anticipate that the mechanisms identified here will be efficient in other environments as well, modulated by the chemical complexity of each atmosphere. PMID:23382231

  18. Controls over the strontium isotope composition of river water

    Energy Technology Data Exchange (ETDEWEB)

    Palmer, M.R. (Univ. of Bristol (United Kingdom)); Edmond, J.M. (Massachusetts Inst. of Tech., Cambridge (United States))

    1992-05-01

    Strontium concentrations and isotope ratios have been measured in river and ground waters from the Granges, Orinoco, and Amazon river basins. When compared with major element concentrations, the data set has allowed a detailed examination of the controls over the strontium isotope systematics of riverine input to the oceans in the following environments: (1) typical drainage basins containing limestones, evaporites, shales, and alumino-silicate metamorphic and igneous rocks; (2) shield terrains containing no chemical or biogenic sediments; and (3) the flood plains that constitute the largest areas of many large rivers. The strontium concentration and isotope compositions of river waters are largely defined by mixing of strontium derived from limestones and evaporites with strontium derived from silicate rocks. The strontium isotope composition of the limestone end member generally lies within the Phanerozoic seawater range, which buffers the [sup 87]Sr/[sup 86]Sr ratios of major rivers. A major exception is provided by the rivers draining the Himalayas, where widescale regional metamorphism appears to have led to an enrichment in limestones of radiogenic strontium derived from coexisting silicate rocks. The strontium isotope systematics of rivers draining shield areas are controlled by the intense, transport-limited, nature of the weathering reactions, and thereby limits variations in the strontium flux from these terrains. Flood plains are only a minor source of dissolved strontium to river waters, and precipitation of soil salts in some flood plains can reduce the riverine flux of dissolved strontium to the oceans.

  19. Titan's Obliquity as evidence for a subsurface ocean?

    OpenAIRE

    Baland, Rose-Marie; Van Hoolst, Tim; Yseboodt, Marie; Karatekin, Ozgur

    2011-01-01

    On the basis of gravity and radar observations with the Cassini spacecraft, the moment of inertia of Titan and the orientation of Titan's rotation axis have been estimated in recent studies. According to the observed orientation, Titan is close to the Cassini state. However, the observed obliquity is inconsistent with the estimate of the moment of inertia for an entirely solid Titan occupying the Cassini state. We propose a new Cassini state model for Titan in which we assume the presence of ...

  20. Strengthening mechanism of steels treated by barium-bearing alloys

    Institute of Scientific and Technical Information of China (English)

    Zhouhua Jiang; Yang Liu

    2008-01-01

    The deoxidation, desulfurization, dephosphorization, microstructure, and mechanical properties of steels treated by barium-bearing alloys were investigated in laboratory and by industrial tests. The results show that barium takes part in the deoxidation reaction at the beginning of the experiments, generating oxide and sulfide compound inclusions, which easily float up from the molten steel, leading to the rapid reduction of total oxygen content to a very low level. The desulfurization and dephosphorization capabilities of calcium-bearing alloys increase with the addition of barium. The results of OM and SEM observations and mechanical property tests show that the structure of the steel treated by barium-bearing alloys is refined remarkably, the iamellar thickness of pearlitic structure decreases, and the pearlitic morphology shows clustering distribution. Less barium exists in steel substrate and the enrichment of barium-bearing precipitated phase mostly occurs in grain boundary and phase boundary, which can prevent the movement of grain boundary and dislocation during the heat treatment and the deformation processes. Therefore, the strength and toughness of barium-treated steels are improved by the effect of grain-boundary strengthening and nail-prick dislocation.

  1. Cesium and Strontium Separation Technologies Literature Review

    Energy Technology Data Exchange (ETDEWEB)

    T. A. Todd; T. A. Todd; J. D. Law; R. S. Herbst

    2004-03-01

    Integral to the Advanced Fuel Cycle Initiative (AFCI) Program’s proposed closed nuclear fuel cycle, the fission products cesium and strontium in the dissolved spent nuclear fuel stream are to be separated and managed separately. A comprehensive literature survey is presented to identify cesium and strontium separation technologies that have the highest potential and to focus research and development efforts on these technologies. Removal of these high-heat-emitting fission products reduces the radiation fields in subsequent fuel cycle reprocessing streams and provides a significant short-term (100 yr) heat source reduction in the repository. This, along with separation of actinides, may provide a substantial future improvement in the amount of fuel that could be stored in a geologic repository. The survey and review of the candidate cesium and strontium separation technologies are presented herein. Because the AFCI program intends to manage cesium and strontium together, technologies that simultaneously separate both elements are of the greatest interest, relative to technologies that separate only one of the two elements.

  2. Designed microstructures in textured barium hexaferrite

    Science.gov (United States)

    Hovis, David Brian

    It is a fundamental principle of materials science that the microstructure of a material defines its properties and ultimately its performance for a given application. A prime example of this can be found in the large conch shell Strombus gigas, which has an intricate microstructure extending across five distinct length scales. This microstructure gives extraordinary damage tolerance to the shell. The structure of Strombus gigas cannot be replicated in a modern engineering ceramic with any existing processing technique, so new processing techniques must be developed to apply this structure to a model material. Barium hexaferrite was chosen as a model material to create microstructures reminiscent of Strombus gigas and evaluate its structure-property relations. This work describes novel processing methods to produce textured barium hexaferrite with no coupling between the sample geometry and the texture direction. This technique, combining magnetic field-assisted gelcasting with templated grain growth, also allows multilayer samples to be fabricated with different texture directions in adjacent layers. The effects of adding either B2O3 or excess BaCO 3 on the densification and grain growth of barium hexaferrite was studied. The texture produced using this technique was assessed using orientation imaging microscopy (OIM) at Oak Ridge National Laboratory. These measurements showed peak textures as high as 60 MRD and sharp interfaces between layers cast with different texture directions. The effect of oxygen on the quality of gelcasting is also discussed, and it is shown that with proper mold design, it is possible to gelcast multiple layers with differing texture directions without delamination. Monolithic and multilayer samples were produced and tested in four point bending to measure the strength and work of fracture. Modulus measurements, made with the ultrasonic pulse-echo technique, show clear signs of microcracking in both the isotropic and textured samples

  3. Neutral Chemistry in Titan's Ionospheric Simulated Conditions

    Science.gov (United States)

    Dubois, David; Carrasco, Nathalie; Petrucciani, Marie; Tigrine, Sarah; Vettier, Ludovic

    2016-10-01

    Titan's atmospheric gas phase chemistry leading to the formation of organic aerosols can be simulated in laboratory experiments. Typically, plasma reactors can be used to achieve Titan-like conditions. Such a discharge induces dissociation and ionization processes to the N2-CH4 mixture by electron impact. This faithfully reproduces the electron energy range of magnetospheric electrons entering Titan's atmosphere and can also approximate the solar UV input at Titan's ionosphere. In this context, it is deemed necessary to apply and exploit such a technique in order to better understand the chemical reactivity occurring in Titan-like conditions.In the present work, we use the PAMPRE cold dusty plasma experiment with an N2-CH4 gaseous mixture under controlled pressure and gas influx, hence, emphasizing on the gas phase which we know is key to the formation of aerosols on Titan. Besides, an internal cryogenic trap has been developed to accumulate the gas products during their formation and facilitate their detection. These products are identified and quantified by in situ mass spectroscopy and Fourier-Transform Infrared Spectroscopy. We present here results from this experiment in two experimental conditions: 90-10% and 99-1% N2-CH4 mixing ratios respectively. We use a quantitative approach on nitriles and polycyclic aromatic hydrocarbons.Key organic compounds reacting with each other are thus detected and quantified in order to better follow the chemistry occuring in the gas phase of Titan-like conditions. Indeed, these species acting as precursors to the solid phase are assumed to be relevant in the formation of Titan's organic aerosols. These organic aerosols are what make up Titan's hazy atmosphere.

  4. Chemical composition of Eu2+ luminescence in the barium hexaaluminates

    International Nuclear Information System (INIS)

    This paper consists of two parts. In the first part the chemical composition of two kinds of barium hexaaluminate (one poor and one rich in barium) is explained using the local electroneutrality concept. In the second part a reinvestigation of the Eu2+ luminescence in these compounds is reported. The emission spectrum of each of the two compounds shows a blue and a green emission bank. The blue emission bank is ascribed to Eu2+ ions at barium sites, whereas the green emission band is identified with Eu2+ ions incorporated at aluminum sites within spinel blocks of the structure

  5. Barium concentration in grain of Aegilops and Triticum species

    Directory of Open Access Journals (Sweden)

    Denčić Srbislav S.

    2015-01-01

    Full Text Available The aim of this study was to evaluate the concentration of barium in grain of various Aegilops and Triticum species with different genomes. The studied species differed significantly with respect to the concentration of barium. The grain of wild diploid Aegilops speltoides, the donor of B genome, contained significantly higher Ba concentration than all other analyzed genotypes. Wild and cultivated tetraploid wheats (Triticum diciccoides, Triticum dicoccon, Triticum turgidum and Triticum durum had the lowest Ba concentration in grain. The modern cultivated hexaploid varieties presented substantial variation in grain concentration of barium. The highest Ba concentration (3.42 mg/kg occurred in Serbian winter wheat variety Panonnia.

  6. Surface Roughness and Grain Size Characterization of Annealing Temperature Effect For Growth Gallium and Tantalum Doped Ba0.5 Sr0.5TiO3Thin Film

    OpenAIRE

    Irzaman; H. Darmasetiawan; H. Hardhienata

    2009-01-01

    Thin films 10 % gallium oxide doped barium strontium titanate (BGST) and 10 % tantalum oxide doped barium strontium titanate (BTST) were prepared on p-type Si (100) substrates using chemical solution deposition (CSD) method with 1.00 M precursor. The films were deposited by spin coating method with spinning speed at 3000 rpm for 30 seconds. The post deposition annealing of the films were carried out in a furnace at 200oC, 240oC, 280oC (low temperature) for 1 hour in oxygen gas atmosphere. The...

  7. The greenhouse and antigreenhouse effects on Titan

    Science.gov (United States)

    Mckay, Christopher P.; Pollack, James B.; Courtin, Regis

    1991-01-01

    The parallels between the atmospheric thermal structure of the Saturnian satellite Titan and the hypothesized terrestrial greenhouse effect can serve as bases for the evaluation of competing greenhouse theories. Attention is presently drawn to the similarity between the roles of H2 and CH4 on Titan and CO2 and H2O on earth. Titan also has an antigreenhouse effect due to a high-altitude haze layer which absorbs at solar wavelengths, while remaining transparent in the thermal IR; if this haze layer were removed, the antigreenhouse effect would be greatly reduced, exacerbating the greenhouse effect and raising surface temperature by over 20 K.

  8. Titan's organic chemistry: Results of simulation experiments

    Science.gov (United States)

    Sagan, Carl; Thompson, W. Reid; Khare, Bishun N.

    1992-01-01

    Recent low pressure continuous low plasma discharge simulations of the auroral electron driven organic chemistry in Titan's mesosphere are reviewed. These simulations yielded results in good accord with Voyager observations of gas phase organic species. Optical constants of the brownish solid tholins produced in similar experiments are in good accord with Voyager observations of the Titan haze. Titan tholins are rich in prebiotic organic constituents; the Huygens entry probe may shed light on some of the processes that led to the origin of life on Earth.

  9. Titan the earth-like moon

    CERN Document Server

    Coustenis, Athena

    1999-01-01

    This is the first book to deal with Titan, one of the most mysterious bodies in the solar system. The largest satellite of the giant planet Saturn, Titan is itself larger than the planet Mercury, and is unique in being the only known moon with a thick atmosphere. In addition, its atmosphere bears a startling resemblance to the Earth's, but is much colder.The American and European space agencies, NASA and ESA, have recently combined efforts to send a huge robot spacecraft to orbit Saturn and land on Titan. This book provides the background to this, the greatest deep space venture of our time, a

  10. Structure of barium sodium trimetaphosphate trihydrate

    Energy Technology Data Exchange (ETDEWEB)

    Averbuch-Pouchot, M.T.; Durif, A.

    1987-03-15

    BaNaP/sub 3/O/sub 9/ . 3H/sub 2/O, M/sub r/=451.29, triclinic, Panti 1, a=7.067(3), b=9.071(3), c=9.906(4) A, ..cap alpha..=116.46(5), ..beta..=95.97(5), ..gamma..=74.03(5)/sup 0/, V=546.4 A/sup 3/, Z=2, D/sub m/ not measured, D/sub x/=2.743 Mg m/sup -3/, lambda(Mo K..cap alpha..)=0.7107 A, ..mu..=4.28 mm/sup -1/, F(000)=428, T=293 K, R=0.028 for 3775 independent reflexions. The P/sub 3/O/sub 9/ ring anions and the water molecules build up a three-dimensional network through hydrogen bonds. Inside this network barium and sodium have respectively nine- and sevenfold coordinations.

  11. Analysis of europium doped luminescent barium thioaluminate

    Institute of Scientific and Technical Information of China (English)

    张东璞; 喻志农; 薛唯; 章婷; 丁瞾; 王武育

    2010-01-01

    Europium-doped barium thioaluminate sputtering target was synthesized by powder sintering method and thin film was deposited by radio frequency(RF) sputtering.X-ray diffractometer(XRD) pattern indicated that the main compound of the target was BaAl4S7.Oxygen was the main impurity which led to the formation of BaAl2O4.It was shown that both BaAl4S7 and BaAl2S4 were contained in the as-grown thin films and a 471.7 nm emission peak in the PL spectra appeared due to a combination of BaAl4S7:Eu2+ and BaAl2S4:Eu2...

  12. Chemical abundance analysis of 19 barium stars

    CERN Document Server

    Yang, G C; Spite, M; Chen, Y Q; Zhao, G; Zhang, B; Liu, G Q; Liu, Y J; Liu, N; Deng, L C; Spite, F; Hill, V; Zhang, C X

    2016-01-01

    We aim at deriving accurate atmospheric parameters and chemical abundances of 19 barium (Ba) stars, including both strong and mild Ba stars, based on the high signal-to-noise ratio and high resolution Echelle spectra obtained from the 2.16 m telescope at Xinglong station of National Astronomical Observatories, Chinese Academy of Sciences. The chemical abundances of the sample stars were obtained from an LTE, plane-parallel and line-blanketed atmospheric model by inputting the atmospheric parameters (effective temperatures, surface gravities, metallicity and microturbulent velocity) and equivalent widths of stellar absorption lines. These samples of Ba stars are giants indicated by atmospheric parameters, metallicities and kinematic analysis about UVW velocity. Chemical abundances of 17 elements were obtained for these Ba stars. Their light elements (O, Na, Mg, Al, Si, Ca, Sc, Ti, V, Cr, Mn and Ni) are similar to the solar abundances. Our samples of Ba stars show obvious overabundances of neutron-capture (n-ca...

  13. A novel barium polymeric membrane sensor for selective determination of barium and sulphate ions based on the complex ion associate barium(II)-Rose Bengal as neutral ionophore

    Energy Technology Data Exchange (ETDEWEB)

    Othman, A.M. [Genetic Engineering and Biotechnology Research Institute (GEBRI), Minufiya University, Sadat City (Egypt); El-Shahawi, M.S. [Chemistry Department, Faculty of Science at Damiatta, Mansoura University, Damiatta, Dumyat 34517 (Egypt)]. E-mail: mohammad_el_shahawi@yahoo.co.uk; Abdel-Azeem, M. [Chemistry Department, Faculty of Science at Damiatta, Mansoura University, Damiatta, Dumyat 34517 (Egypt)

    2006-01-12

    A simple, long life, rapid response and sensitive barium(II)-PVC membrane sensor that typically follows Nernstian behavior has been developed for the assay of barium(II) ions. The developed sensor has been made by incorporating the complex ion associate of barium(II)-Rose Bengal (Ba-RB) as an ionophore into a plasticized PVC matrix. The sensor is stable and exhibited fast potential response of 20 s and gave a good linear response with a Nernstian slope of 28.5 {+-} 0.4 mV/decade of activity within the concentration range 5 x 10{sup -5} to 10{sup -1} M over a wide range of pH 4.5-10.0 for barium(II) ions. The developed sensor showed comparatively good selectivity for barium(II) ions with respect to other alkali, alkaline earth, transition and heavy metal ions. The plasticizer o-nitrophenyloctyl ether controlled significantly the calibration slope and the lifetime of the fabricated sensor. The proposed sensor was used successfully for the analysis of barium(II) ions in wastewater samples and in lithophone pigment with excellent recovery percentages in the range 98.9-99.8 {+-} 1.6%. The determination of sulphate in fresh and potable water samples with the developed sensor has been also achieved successfully. The described sensor provides a reliable means with good correlation with the data obtained by atomic absorption spectrometry (AAS) and other spectrophotometric methods for the analysis of trace amounts of barium(II) and/or sulphate ions in different matrices.

  14. A novel barium polymeric membrane sensor for selective determination of barium and sulphate ions based on the complex ion associate barium(II)-Rose Bengal as neutral ionophore

    International Nuclear Information System (INIS)

    A simple, long life, rapid response and sensitive barium(II)-PVC membrane sensor that typically follows Nernstian behavior has been developed for the assay of barium(II) ions. The developed sensor has been made by incorporating the complex ion associate of barium(II)-Rose Bengal (Ba-RB) as an ionophore into a plasticized PVC matrix. The sensor is stable and exhibited fast potential response of 20 s and gave a good linear response with a Nernstian slope of 28.5 ± 0.4 mV/decade of activity within the concentration range 5 x 10-5 to 10-1 M over a wide range of pH 4.5-10.0 for barium(II) ions. The developed sensor showed comparatively good selectivity for barium(II) ions with respect to other alkali, alkaline earth, transition and heavy metal ions. The plasticizer o-nitrophenyloctyl ether controlled significantly the calibration slope and the lifetime of the fabricated sensor. The proposed sensor was used successfully for the analysis of barium(II) ions in wastewater samples and in lithophone pigment with excellent recovery percentages in the range 98.9-99.8 ± 1.6%. The determination of sulphate in fresh and potable water samples with the developed sensor has been also achieved successfully. The described sensor provides a reliable means with good correlation with the data obtained by atomic absorption spectrometry (AAS) and other spectrophotometric methods for the analysis of trace amounts of barium(II) and/or sulphate ions in different matrices

  15. The Karlsruhe 4π barium fluoride detector

    International Nuclear Information System (INIS)

    A new experimental approach has been implemented for accurate measurements of neutron capture cross sections in the energy range from 5 to 200 keV. The Karlsruhe 4π Barium Fluoride Detector consists of 42 crystals shaped as hexagonal and pentagonal truncated pyramids forming a spherical shell with 10 cm inner radius and 15 cm thickness. All crystals are supplied with reflector and photomultiplier, thus representing independent gamma-ray detectors. Each detector module covers the same solid angle with respect to a gamma-ray source located in the centre. The energy resolution of the 4π detector is 14% at 662 keV and 7% at 2.5 MeV gamma-ray energy, the overall time reslution is 500 ps and the peak efficiency 90% at 1 MeV. The detector allows to register capture cascades with 95% probability above a threshold energy of 2.5 MeV in the sum energy spectrum. Neutrons are produced via the 7Li(p,n)7Be reaction using the pulsed proton beam of a Van de Graaff accelerator. The neutron spectrum can be taylored according to the experimental requirements in an energy range from 5 to 200 keV by choosing appropriate proton energies. A collimated neutron beam is passing through the detector and hits the sample in the centre. The energy of captured neutrons is determined via time of flight, the primary flight path being 77 cm. The combination of short primary flight path, a 10 cm inner radius of the spherical BaF2 shell, and the low capture cross section of barium allows to discriminate background due to capture of sample scattered neutrons in the scintillator by time of flight, leaving part of the neutron energy range completely undisturbed. (orig./HSI)

  16. Titan Mare Explorer (TiME) : A Discovery Mission to Titan's Hydrocarbon Seas

    Science.gov (United States)

    Lorenz, Ralph D.; Stofan, Ellen; T. H. E. Time Team

    2010-05-01

    The discovery of lakes in Titan's high latitudes confirmed the expectation that liquid hydrocarbons exist on the surface of the haze-shrouded moon. The lakes fill through drainage of subsurface runoff and/or intersection with the subsurface alkanofer, providing the first evidence for an active condensable-liquid hydrological cycle on another planetary body. The unique nature of Titan's methane cycle, along with the prebiotic chemistry and implications for habitability of Titan's lakes, make the lakes of the highest scientific priority for in situ investigation. The Titan Mare Explorer mission is an ASRG (Advanced Stirling Radioisotope Generator)-powered mission to a lake on Titan. The mission would be the first exploration of a planetary sea beyond Earth, would demonstrate the ASRG both in deep space and a non-terrestrial atmosphere environment, and pioneer low-cost outer planet missions. The scientific objectives of the mission are to: determine the chemistry of a Titan lake to constrain Titan's methane cycle; determine the depth of a Titan lake; characterize physical properties of liquids; determine how the local meteorology over the lakes ties to the global cycling of methane; and analyze the morphology of lake surfaces, and if possible, shorelines, in order to constrain the kinetics of liquids and better understand the origin and evolution of Titan lakes. The focused scientific goals, combined with the new ASRG technology and the unique mission design, allows for a new class of mission at much lower cost than previous outer planet exploration has required.

  17. TSSM: The in situ exploration of Titan

    Science.gov (United States)

    Coustenis, A.; Lunine, J. I.; Lebreton, J. P.; Matson, D.; Reh, K.; Beauchamp, P.; Erd, C.

    2008-09-01

    The Titan Saturn System Mission (TSSM) mission was born when NASA and ESA decided to collaborate on two missions independently selected by each agency: the Titan and Enceladus mission (TandEM), and Titan Explorer, a 2007 Flagship study. TandEM, the Titan and Enceladus mission, was proposed as an L-class (large) mission in response to ESA's Cosmic Vision 2015-2025 Call. The mission concept is to perform remote and in situ investigations of Titan primarily, but also of Enceladus and Saturn's magentosphere. The two satellites are tied together by location and properties, whose remarkable natures have been partly revealed by the ongoing Cassini-Huygens mission. These bodies still hold mysteries requiring a complete exploration using a variety of vehicles and instruments. TSSM will study Titan as a system, including its upper atmosphere, the interactions with the magnetosphere, the neutral atmosphere, surface, interior, origin and evolution, as well as the astrobiological potential of Titan. It is an ambitious mission because its targets are two of the most exciting and challenging bodies in the Solar System. It is designed to build on but exceed the scientific and technological accomplishments of the Cassini- Huygens mission, exploring Titan and Enceladus in ways that are not currently possible (full close-up and in situ coverage over long periods of time for Titan, several close flybys of Enceladus). One overarching goal of the TSSM mission is to explore in situ the atmosphere and surface of Titan. In the current mission architecture, TSSM consists of an orbiter (under NASA's responsibility) with a large host of instruments which would perform several Enceladus and Titan flybys before stabilizing in an orbit around Titan alone, therein delivering in situ elements (a Montgolfière, or hot air balloon, and a probe/lander). The latter are being studied by ESA. The balloon will circumnavigate Titan above the equator at an altitude of about 10 km for several months. The

  18. Titan's Atmospheric Dynamics and Meteorology

    Science.gov (United States)

    Flasar, F. M.; Baines, K. H.; Bird, M. K.; Tokano, T.; West, R. A.

    2008-01-01

    Titan, after Venus, is the second example of an atmosphere with a global cyclostrophic circulation in the solar system, but a circulation that has a strong seasonal modulation in the middle atmosphere. Direct measurement of Titan's winds, particularly observations tracking the Huygens probe at 10degS, indicate that the zonal winds are generally in the sense of the satellites rotation. They become cyclostrophic approx. 35 km above the surface and generally increase with altitude, with the exception of a sharp minimum centered near 75 km, where the wind velocity decreases to nearly zero. Zonal winds derived from the temperature field retrieved from Cassini measurements, using the thermal wind equation, indicate a strong winter circumpolar vortex, with maximum winds at mid northern latitudes of 190 ms-' near 300 km. Above this level, the vortex decays. Curiously, the zonal winds and temperatures are symmetric about a pole that is offset from the surface pole by approx.4 degrees. The cause of this is not well understood, but it may reflect the response of a cyclostrophic circulation to the offset between the equator, where the distance to the rotation axis is greatest, and the solar equator. The mean meridional circulation can be inferred from the temperature field and the meridional distribution of organic molecules and condensates and hazes. Both the warm temperatures in the north polar region near 400 km and the enhanced concentration of several organic molecules suggests subsidence there during winter and early spring. Stratospheric condensates are localized at high northern latitudes, with a sharp cut-off near 50degN. Titan's winter polar vortex appears to share many of the same characteristics of winter vortices on Earth-the ozone holes. Global mapping of temperatures, winds, and composition in he troposphere, by contrast, is incomplete. The few suitable discrete clouds that have bee found for tracking indicate smaller velocities than aloft, consistent with the

  19. A NOVEL HYDROTHERMAL SYNTHESIS METHOD FOR BARIUM FERRITE

    Institute of Scientific and Technical Information of China (English)

    Kang Li; Hongchen Gu; Qun Wei

    2004-01-01

    In the present work, fine barium ferrite powder has been synthesized through a one-step hydrothermal process in an autoclave at [OH-]/[Cl-] ratio of 2:1 in the temperature range from 180 to 260 ℃ using barium chloride (BaCl2), ferrous chloride (FeCl2) and potassium nitrate (KNO3) as the starting materials. Both particle size and saturation magnetization (Ms) increase with increasing hydrothermal reaction temperature, while the intrinsic coercivity (iHc) peaks at 685 Oe at 230 ℃. Morphology progress from the barium ferrite precursor particles to the barium hexaferrite particles has been monitored with increasing hydrothermal reaction time at 230 ℃ in the autoclave.

  20. Upper gastrointestinal barium evaluation of duodenal pathology: A pictorial review

    Institute of Scientific and Technical Information of China (English)

    Pankaj; Gupta; Uma; Debi; Saroj; Kant; Sinha; Kaushal; Kishor

    2014-01-01

    Like other parts of the gastrointestinal tract(GIT), duodenum is subject to a variety of lesions both congenital and acquired. However, unlike other parts of the GIT viz. esophagus, rest of the small intestine and large intestine, barium evaluation of duodenal lesions is technically more challenging and hence not frequently reported. With significant advances in computed tomography technology, a thorough evaluation including intraluminal, mural and extramural is feasible in a single non-invasive examination. Notwithstanding, barium evaluation still remains the initial and sometimes the only imaging study in several parts of the world. Hence,a thorough acquaintance with the morphology of various duodenal lesions on upper gastrointestinal barium examination is essential in guiding further evaluation. We reviewed our experience with various common and uncommon barium findings in duodenal abnormalities.

  1. Peritonite por bário Barium peritonitis

    Directory of Open Access Journals (Sweden)

    Gerson Alves Pereira Júnior

    1999-10-01

    Full Text Available We report a case of a 49 years-old man who underwent a barium meal examination for an epigastric pain. A perforated gastric ulcer with barium extravasation into peritoneal cavity was seen on X-rays. During an emergency laparotomy, a perforated pyloric ulcer was noted, along with barium contamination in the peritoneal cavity. The ulcer was closed with an omental patch and an extensive peritoneal lavage with saline was performed. During the postoperative period, the patient developed signs of peritonitis and underwent a new laparotomy was at the 9th day showing a subfrenic abscess with a large barium contamination. The patient presented septic shock and multiple organ failure. dying on the 21th day.

  2. The tide in the seas of Titan

    Science.gov (United States)

    Sagan, C.; Dermott, S. F.

    1982-01-01

    The parameters of the tides in the near-global ocean that may exist on Titan are assessed. A formula for the difference between the maximum heights of the oceanic and body tides is used to determine that the amplitude of the apparent, near-stationary, oceanic tide on Titan is greater than about 100 m. The effects of tidal dissipation are evaluated, showing that the amplitude of the tide will vary by nine percent over its 15.95-day period. The observed eccentricity of Titan's orbit is used to establish limits on the satellite's surface topography and oceanic depths. It is concluded that either Titan is covered by a near-global methane ocean over 400 m deep, or that there is no methane ocean at all. Reflectivity measurements can decide between these alternatives.

  3. Cyanide Soap? Dissolved material in Titan's Seas

    Science.gov (United States)

    Lorenz, R. D.; Lunine, J. I.; Neish, C. D.

    2011-10-01

    Although it is evident that Titan's lakes and seas are dominated by ethane, methane, nitrogen, and (in some models) propane, there is divergence on the predicted relative abundance of minor constituents such as nitriles and C-4 alkanes. Nitriles such as hydrogen cyanide and acetonitrile, which have a significant dipole moment, may have a disproportionate influence on the dielectric properties of Titan seas and may act to solvate polar molecules such as water ice. The hypothesis is offered that such salvation may act to enhance the otherwise negligible solubility of water ice bedrock in liquid hydrocarbons. Such enhanced solubility may permit solution erosion as a formation mechanism for the widespread pits and apparently karstic lakes on Titan. Prospects for testing this hypothesis in the laboratory, and with measurements on Titan, will be discussed.

  4. Rheology Of MonoSodium Titanate (MST) And Modified Mst (mMST) Mixtures Relevant To The Salt Waste Processing Facility

    Energy Technology Data Exchange (ETDEWEB)

    Koopman, D. C.; Martino, C. J.; Shehee, T. C.; Poirier, M. R.

    2013-07-31

    The Savannah River National Laboratory performed measurements of the rheology of suspensions and settled layers of treated material applicable to the Savannah River Site Salt Waste Processing Facility. Suspended solids mixtures included monosodium titanate (MST) or modified MST (mMST) at various solid concentrations and soluble ion concentrations with and without the inclusion of kaolin clay or simulated sludge. Layers of settled solids were MST/sludge or mMST/sludge mixtures, either with or without sorbed strontium, over a range of initial solids concentrations, soluble ion concentrations, and settling times.

  5. Parallel contingency statistics with Titan.

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, David C.; Pebay, Philippe Pierre

    2009-09-01

    This report summarizes existing statistical engines in VTK/Titan and presents the recently parallelized contingency statistics engine. It is a sequel to [PT08] and [BPRT09] which studied the parallel descriptive, correlative, multi-correlative, and principal component analysis engines. The ease of use of this new parallel engines is illustrated by the means of C++ code snippets. Furthermore, this report justifies the design of these engines with parallel scalability in mind; however, the very nature of contingency tables prevent this new engine from exhibiting optimal parallel speed-up as the aforementioned engines do. This report therefore discusses the design trade-offs we made and study performance with up to 200 processors.

  6. Cassini UVIS observations of Titan nightglow spectra

    OpenAIRE

    Ajello, Joseph M.; West, Robert A.; Gustin, Jacques; Larsen, Kristopher; Stewart, A. Ian F.; Esposito, Larry W.; Mcclintock, William E.; Holsclaw, Gregory M.; Bradley, E. Todd

    2012-01-01

    In this paper we present the first nightside EUV and FUV airglow limb spectra of Titan showing molecular emissions. The Cassini Ultraviolet Imaging Spectrograph (UVIS) observed photon emissions of Titan's day and night limb-airglow and disk-airglow on multiple occasions, including during an eclipse observation. The 71 airglow observations analyzed in this paper show EUV (600-1150 Å) and FUV (1150-1900 Å) atomic multiplet lines and band emissions arising from either photoelectron induced fluor...

  7. Lifetime Measurement for 6snp Rydberg States of Barium

    Institute of Scientific and Technical Information of China (English)

    SHEN Li; WANG Lei; YANG Hai-Feng; LIU Xiao-Jun; LIU Hong-Ping

    2011-01-01

    @@ We present a simple and efficient method for measuring the atomic lifetimes in order of tens of microseconds and demonstrate it in the lifetime determination of barium Rydberg states.This method extracts the lifetime information from the time-of-flight spectrum directly, which is much more efficient than other methods such as the time-delayed field ionization and the traditional laser induced fluorescence.The lifetimes determined with our method for barium Rydberg 6snp(n=37-59)series are well coincident with the values deduced from the absolute oscillator strengths of barium which were given in the literature [J.Phys.B 14(1981)4489, 29(1996)655]on experiments.%We present a simple and efficient method for measuring the atomic lifetimes in order of tens of microseconds and demonstrate it in the lifetime determination of barium Rydberg states. This method extracts the lifetime information from the time-of-flight spectrum directly, which is much more efficient than other methods such as the time-delayed field ionization and the traditional laser induced fluorescence. The lifetimes determined with our method for barium Rydberg 6snp (n=37-59) series are well coincident with the values deduced from the absolute oscillator strengths of barium which were given in the literature [J. Phys. B 14 (1981) 4489, 29 (1996) 655] onexperiments.

  8. Fibrous growth of strontium substituted hydroxyapatite and its drug release

    International Nuclear Information System (INIS)

    The effect of strontium on the crystallization of helical ribbon of hydroxyapatite (HAp) was investigated by single diffusion technique in silica gel matrix at 27 deg. C and physiological pH. Fibers of HAp were obtained on addition of strontium. The length of the HAp fibers, were found to decrease as the strontium substitution increases. The presence of strontium ion increased the crystallinity as well as crystallite size of HAp. The strontium substituted HAp (Sr-HAp) has similar stoichiometry to that of biological apatite. Sr-HAp was found to have increased surface area (35%) compared to control. Further, strontium substitution leads to an enhancement of in vitro bioactivity. The cumulative in-vitro amoxicillin drug release in phosphate buffer solution (PBS, pH 7.2) showed a prolonged release profile for Sr-HAp.

  9. The Chemical Evolution of Titan's Atmosphere

    Science.gov (United States)

    Kaiser, Ralf I.

    2010-11-01

    Astrochemistry or Astrochemical Dynamics presents a newly emerging, interdisciplinary and innovative field comprising scientists in chemistry, physics, biology, astronomy, and planetary chemistry. The prime directive of Astrochemical Dynamics is to understand the origin and chemical evolution of the interstellar medium and of our Solar System. Here, the arrival of the Cassini-Huygens probe at Saturn's moon Titan - the only Solar System body besides Earth and Venus with a solid surface and thick atmosphere - in 2004 opened up a new chapter in the history of Solar System exploration. Titan's most prominent optically visible features are the aerosol-based haze layers, which give Titan its orange-brownish color. However, the underlying chemical processes, which initiate the haze formation, have been the least understood to date. This talk reviews recent laboratory studies on the role of polyacetylenes (polyynes) and (hetero)aromatic molecules like the phenyl radical, benzene, and pyridine in the formation of Titan's organic haze layers utilizing crossed molecular beam experiments. Those investigations provide key concepts on the formation mechanisms of unsaturated hydrocarbon molecules - in particular polyynes and aromatic compounds - together with their hydrogen deficient precursors from the "bottom up" in the atmosphere of Saturn's moon Titan. A brief outline to future research directions tackling also the heterogeneous chemistry on Titan and in hydrocarbon-rich atmospheres in the outer Solar System in general will also be presented.

  10. Zeolite for strontium separation from concentrated sodium salt solutions

    International Nuclear Information System (INIS)

    Strontium sorption from solutions with concentration of 5 mol/l sodium chloride on zeolites of different structure is investigated. Synthetic potassium zeolite of the K-G(13) chabasite type is established to be used to purify the solutions given from strontium radionuclides. Capacity of K-G(13) zeolite for strontium in the solution with concentration of 5 mol/l sodium chloride is 0.65 mmol/g

  11. Determination of mineral radioactive strontium-90 in urines

    International Nuclear Information System (INIS)

    An analytical procedure for radioactive strontium in urine is described. As a first step, a precipitation of calcium oxalate performed on the urine, allows to detect the presence of various fission products and particularly of strontium which is carried by the precipitate. Strontium can then be selectively separated on ion exchange resins. By studying the growth curve of β activity, it is possible to determine the activities which may be attributed to 89Sr and 90Sr respectively. (author)

  12. Strontium isotope stratigraphy of the Pelotas Basin

    Energy Technology Data Exchange (ETDEWEB)

    Zerfass, Geise de Santana dos Anjos, E-mail: geise.zerfass@petrobras.com.br [Petroleo Brasileiro S.A. (PETROBRAS/CENPES/PDGEO/BPA), Rio de Janeiro, RJ (Brazil). Centro de Pesquisas e Desenvolvimento Leopoldo Americo Miguez de Mello; Chemale Junior, Farid, E-mail: fchemale@unb.br [Universidade de Brasilia (UnB), DF (Brazil). Instituto de Geociencias; Moura, Candido Augusto Veloso, E-mail: candido@ufpa.br [Universidade Federal do Para (UFPA), Belem, PA (Brazil). Centro de Geociencias. Dept. de Geoquimica e Petrologia; Costa, Karen Badaraco, E-mail: karen.costa@usp.br [Instituto Oceanografico, Sao Paulo, SP (Brazil); Kawashita, Koji, E-mail: koji@usp.br [Unversidade de Sao Paulo (USP), SP (Brazil). Centro de Pesquisas Geocronologicas

    2014-07-01

    Strontium isotope data were obtained from foraminifera shells of the Pelotas Basin Tertiary deposits to facilitate the refinement of the chronostratigraphic framework of this section. This represents the first approach to the acquisition of numerical ages for these strata. Strontium isotope stratigraphy allowed the identification of eight depositional hiatuses in the Eocene-Pliocene section, here classified as disconformities and a condensed section. The reconnaissance of depositional gaps based on confident age assignments represents an important advance considering the remarkably low chronostratigraphic resolution in the Cenozoic section of the Pelotas Basin. The recognition of hiatuses that match hiatuses is based on biostratigraphic data, as well as on global events. Furthermore, a substantial increase in the sedimentation rate of the upper Miocene section was identified. Paleotemperature and productivity trends were identified based on oxygen and carbon isotope data from the Oligocene-Miocene section, which are coherent with worldwide events, indicating the environmental conditions during sedimentation. (author)

  13. Strontium isotope stratigraphy of the Pelotas Basin

    International Nuclear Information System (INIS)

    Strontium isotope data were obtained from foraminifera shells of the Pelotas Basin Tertiary deposits to facilitate the refinement of the chronostratigraphic framework of this section. This represents the first approach to the acquisition of numerical ages for these strata. Strontium isotope stratigraphy allowed the identification of eight depositional hiatuses in the Eocene-Pliocene section, here classified as disconformities and a condensed section. The reconnaissance of depositional gaps based on confident age assignments represents an important advance considering the remarkably low chronostratigraphic resolution in the Cenozoic section of the Pelotas Basin. The recognition of hiatuses that match hiatuses is based on biostratigraphic data, as well as on global events. Furthermore, a substantial increase in the sedimentation rate of the upper Miocene section was identified. Paleotemperature and productivity trends were identified based on oxygen and carbon isotope data from the Oligocene-Miocene section, which are coherent with worldwide events, indicating the environmental conditions during sedimentation. (author)

  14. Exploring the Seas of Titan: The Titan Mare Explorer (TiME) Mission

    Science.gov (United States)

    Stofan, E. R.; Lunine, J. I.; Lorenz, R. D.; Aharonson, O.; Bierhaus, E.; Clark, B.; Griffith, C.; Harri, A.-M.; Karkoschka, E.; Kirk, R.; Kantsiper, B.; Mahaffy, P.; Newman, C.; Ravine, M.; Trainer, M.; Waite, H.; Zarnecki, J.

    2010-03-01

    The Titan Mare Explorer (TiME) is a Discovery-class mission that would constrain Titan’s active methane cycle as well as its intriguing prebiotic organic chemistry by providing in situ measurements from the surface of a Titan sea.

  15. Constraining the Role of Seas and Lakes in Titan's Climate: The Titan Mare Explorer Mission

    Science.gov (United States)

    Stofan, E. R.; Lunine, J. I.; Lorenz, R. D.; Aharonson, O.; Bierhaus, E.; Clark, B.; Griffith, C.; Harri, A. M.; Karkoschka, E.; Kirk, R.; Mahaffy, P.; Newman, C.; Ravine, M.; Trainer, M.; Turtle, E.; Waite, H.; Yelland, M.; Zarnecki, J.; Hayes, A.

    2012-06-01

    Lakes and seas on Titan provide the first evidence for an extraterrestrial active liquid cycle and play a key role in its climate. Constraints on Titan's methane cycle, analogous to Earth’s hydrologic cycle, can be made through in situ measurements.

  16. Structure and magnetic properties of nanostructural strontium ferrite prepared by mechanochemical treatment

    International Nuclear Information System (INIS)

    Full text: It was recently-established for hexagonal barium ferrite-industrially important magnetically hard material that refinement of the crystallite dimensions into the nanoscale regime, typically ≤ 10 nm, leads after heat treatment at temperatures 800-1000 deg C to significant coercivity increase of up to 6.5 kOe (∼3-4 times) with saturation magnetisation values of 50-55 emu/g (∼95% of bulk at room temperature). High-energy mechanochemical processing has been applied to prepare nanostructural (nanocrystalline-amorphous) composites. High resolution electron microscopy studies reveal that the enhancement of the final magnetic properties was due to formation of magnetically noninteracting ∼l,μm Ba-ferrite particles with 5-10 nm amorphous surface layer - depending on annealing parameters. Similar situation was established also for ball milled strontium ferrite (SrFe12O19) powders where short annealing 4 h at 1000 deg C produced increased Hc value of up to ∼5 kOe compared to typical ∼3.6 kOe for anisotropic ceramic material. In this presentation we concentrate on microstructural features to be able to understand significant enlargement of coercivity values for such powders. The evolution of phases and magnetic properties in nanostructural powder obtained by prolonged ball milling of SrFe12O19 ferrite in vacuum and air atmosphere will be presented. We will address the following changes in strontium ferrite induced by mechanochemical processing: 1) generation of amorphous (disordered) and nanocrystalline phases, 2) polymorphic transformations due to solid-gas reactions at the surface and 3) alternations in magnetic properties due to nanostructure development

  17. Growth and characterization of strontium tartrate pentahydrate crystals

    Energy Technology Data Exchange (ETDEWEB)

    Firdous, A.; Ahmad, M.M. [Department of Physics, National Institute of Technology, Kashmir (India); Quasim, I.; Kotru, P.N. [Crystal Growth and Materials Research Laboratory, Department of Physics and Electronics, University of Jammu (India)

    2008-10-15

    Silica gel impregnated with L-tartaric acid and using strontium nitrate as the second reactant leads to the growth of well faceted strontium tartrate pentahydrate single crystals.The morphological developmen and internal cell dimensions are observed to be different from the ones reported in the literature for strontium tartrate trihydrate crystals. The crystals are characterized using XRD, CH analysis, SEM, FTIR spectroscopy and thermoanalytical techniques. The crystals are observed to be thermally stable upto about 105 C but thereafter start decomposing and ejecting water of hydration at various stages, finally reducing to strontium oxide. (copyright 2008 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  18. Synthesis of Strontium Carbonate by the Induction of Microbiology

    Institute of Scientific and Technical Information of China (English)

    HUO Ji-Chuan; LIU Shu-Xin; WANG Li-Na; LEI Hong

    2012-01-01

    Spherical strontium carbonate was synthesized by the induction of microbial bacillus pasteurii at ambient temperature with strontium chloride and urea as the raw materials. The phase composition, particle size and morphology of the product were studied by XRD and SEM. The results indicated that the strontium carbonate synthesized by the induction of microbial bacillus pasteurii was of good dispersion and uniform particle size. The spherical strontium carbonate particles obtained by adding different control agents were constructed by numerous flakes or olive-shaped nano-particles. The products were orthorhombic according to their XRD patterns.

  19. Dissolution on Titan and on Earth: Towards the age of Titan's karstic landscapes

    CERN Document Server

    Cornet, Thomas; Bahers, Tangui Le; Bourgeois, Olivier; Fleurant, Cyril; Mouélic, Stéphane Le; Altobelli, Nicolas

    2015-01-01

    Titan's polar surface is dotted with hundreds of lacustrine depressions. Based on the hypothesis that they are karstic in origin, we aim at determining the efficiency of surface dissolution as a landshaping process on Titan, in a comparative planetology perspective with the Earth as reference. Our approach is based on the calculation of solutional denudation rates and allow inference of formation timescales for topographic depressions developed by chemical erosion on both planetary bodies. The model depends on the solubility of solids in liquids, the density of solids and liquids, and the average annual net rainfall rates. We compute and compare the denudation rates of pure solid organics in liquid hydrocarbons and of minerals in liquid water over Titan and Earth timescales. We then investigate the denudation rates of a superficial organic layer in liquid methane over one Titan year. At this timescale, such a layer on Titan would behave like salts or carbonates on Earth depending on its composition, which mea...

  20. The Dynamics of Titan's Convective Clouds

    Science.gov (United States)

    Rafkin, S. C.

    2012-12-01

    Titan's deep convective clouds are the most dynamic phenomena known to operate within the atmosphere of the moon. Previous studies have focused primarily on the control of these storms by the large scale thermodynamic environment, especially methane abundance, which determines the amount of convective available potential energy (CAPE). This study looks at factors in addition to the thermodynamic environment that may have a first order impact on the evolution and structure of Titan's deep convective clouds. To the extent that thunderstorms on Earth provide a reasonable analog to the storms on Titan, it is well established that CAPE alone is insufficient to determine the structure and behavior of deep convection. Wind shear—both directional and speed—is also known to exert a first order effect. The influence of both CAPE and wind speed shear is typically expressed as the ratio of the two parameters in the form of the Bulk Richardson Number. On Earth, for a fixed value of CAPE, the addition of wind speed shear (i.e., the reduction of the Bulk Richardson Number) will tend to produce storms that are longer lived, tilted upshear with height, and multi-cellular in nature. These multi-cellular storms also tend to be more violent than storms generated in low wind speed shear environments: strong winds and large hail are common. The addition of directional shear (i.e., helicity) can transform the multi-cell storms into single, intense supercell storms. These are the storms associated typically associated with tornadoes. With respect to Titan, if there is a similar dependence on the Bulk Richardson Number, then this would have implications for how long Titan's storms live, how much precipitation they can produce, the area they cover, and the strength and duration of winds. A series of numerical simulations of Titan's deep convective clouds from the Titan Regional Atmospheric Modeling System are presented. A reasonable sweep of the parameter space of CAPE and shear for

  1. Leachability of barium-radium sulphate sludges

    International Nuclear Information System (INIS)

    This paper presents results from the first phase of a research program designed to examine the leachability of radium-226 from barium-radium sulphate sludges. Batch leaching tests were performed. Results showed that liquid:solid contact time was relatively unimportant; radium in the sludge was stable in the presence of deionized water with a slight increase in the amount leached per gram of sludge occurring at higher liquid:solid ratios. Not unexpectedly, low and high values of leachant pH increased radium leaching. Both monovalent and divalent salt solutions also increased leaching; however, dissolved radium-226 activity levels in the leachate decreased as leachant molarity increased. For divalent salts this can be explained by the common ion effect; for monovalent salts it is opposite to results expected from solubility considerations. The interpretation of all results is complicated by the fact that in most tests, the amount of radium-226 present in the leachate was lower than the calculated contribution from the mother liquour present with the sludge. This apparent ability of the sludge to absorb radium from solution may be related to dissolution and reprecipitation of the sludge during the leaching tests

  2. The diagnostic value of barium enema in acute appendicitis

    International Nuclear Information System (INIS)

    Acute appendicitis is the most common acute surgical condition of the abdomen. When the clinical presentation is atypical, barium enema has proven to be safe and useful in confirming the diagnosis and reducing the negative surgical exploration. However, the performance of barium enema in acute appendicitis has known contraindication primarily because of fear of leakage by perforation of the inflamed appendix. This study using barium enema as a diagnostic aid in acute appendicitis with atypical clinical presentation was performed to further support the previously noted efficacy and safety of this procedure. The results were as followings: 1. In case of acute appendicitis with atypical clinical presentation, the use of barium enema as a diagnostic aid increased the accuracy of diagnosis and decreased the negative surgical exploration. In women between 11 to 50 years old age, especially, it played important role differentiating appendicitis from nonsurgical acute abdomen. 2. The results of the study were 92.31% in sensitivity, 7.69% in false positive, 6.9% in false negative, and 10.26% in negative appendectomy. 3. None of case of leakage of barium by perforation of the inflamed appendix was noted, therefore, barium enema was thought to be safe as a diagnostic aid in acute appendicitis. 4. A simple partial or non filling of appendix without other associated positive finding could not exclude appendicitis, therefore, close clinical observation was necessary. 5. The positive findings of barium enema and their sensitivity were as followings: 1. Non filling of appendix: 90% 2. Partial filling of appendix: 91.7% 3. Displacement or a local impression on terminal ileum: 100%

  3. The enhancement of photoluminescence characteristics of Eu-doped barium strontium silicate phosphor particles by co-doping materials

    International Nuclear Information System (INIS)

    Green light emitting (Ba,Sr)2SiO4:Eu phosphor particles with high photoluminescence intensity under long wavelength ultraviolet (UV) were prepared by spray pyrolysis from colloidal spray solution. Yttrium, cerium and holmium components were introduced as co-doping materials to improve the photoluminescence characteristics of (Ba,Sr)2SiO4:Eu phosphor particles in the spray pyrolysis. The photoluminescence intensities of co-doped (Ba,Sr)2SiO4:Eu phosphor particles were about 120∼143% of (Ba,Sr)2SiO4:Eu phosphor particles without co-dopant. The highest photoluminescence intensity was achieved when the doping concentration of yttrium was about 1.7 times of the doping concentration of europium. The photoluminescence intensity of the sieved phosphor particles using 20 μm sieve was comparable to that of the original (Ba,Sr)2SiO4:Eu phosphor particles

  4. Phase transitions and electric conductivity in high-temperature proton conductors on the base of barium and strontium cerates

    International Nuclear Information System (INIS)

    In the work the examinations of phase transitions on ceramic samples BaCe1-xNdxO3-δ (x=0-0.16) and SrCe(1-x)YxO(3-δ) (x=0-1.05). For the samples of these systems the temperature dependences of linear expansion and electric conductivity were studied

  5. Enhanced aggregation of alginate-coated iron oxide (hematite) nanoparticles in the presence of calcium, strontium, and barium cations.

    Science.gov (United States)

    Chen, Kai Loon; Mylon, Steven E; Elimelech, Menachem

    2007-05-22

    Early-stage aggregation kinetics studies of alginate-coated hematite nanoparticles in solutions containing alkaline-earth metal cations revealed enhanced aggregation rates in the presence of Ca2+, Sr2+, and Ba2+, but not with Mg2+. Transmission electron microscopy (TEM) imaging of the aggregates provided evidence that alginate gel formation was essential for enhanced aggregation to occur. Dynamic light scattering (DLS) aggregation results clearly indicated that a much lower concentration of Ba2+ compared to Ca2+ and Sr2+ was required to achieve a similar degree of enhanced aggregation in each system. To elucidate the relationship between the alginate's affinities for divalent cations and the enhanced aggregation of the alginate-coated hematite nanoparticles, atomic force microscopy (AFM) was employed to probe the interaction forces between alginate-coated hematite surfaces under the solution chemistries used for the aggregation study. Maximum adhesion forces, maximum pull-off distances, and the work of adhesion were used as indicators to gauge the alginate's affinity for the divalent cations and the resulting attractive interactions between alginate-coated hematite nanoparticles. The results showed that alginate had higher affinity for Ba2+ than either Sr2+ or Ca2+. This same trend was consistent with the cation concentrations required for comparable enhanced aggregation kinetics, suggesting that the rate of alginate gel formation controls the enhanced aggregation kinetics. An aggregation mechanism incorporating the gelation of alginate is proposed to explain the accelerated aggregate growth in the presence of Ca2+, Sr2+, and Ba2+. PMID:17469860

  6. Propagation characteristics of a focused laser beam in a strontium barium niobate photorefractive crystal under reverse external electric field.

    Science.gov (United States)

    Guo, Q L; Liang, B L; Wang, Y; Deng, G Y; Jiang, Y H; Zhang, S H; Fu, G S; Simmonds, P J

    2014-10-01

    The propagation characteristics of a focused laser beam in a SBN:75 photorefractive crystal strongly depend on the signal-to-background intensity ratio (R=Is/Ib) under reverse external electric field. In the range 20>R>0.05, the laser beam shows enhanced self-defocusing behavior with increasing external electric field, while it shows self-focusing in the range 0.03>R>0.01. Spatial solitons are observed under a suitable reverse external electric field for R=0.025. A theoretical model is proposed to explain the experimental observations, which suggest a new type of soliton formation due to "enhancement" not "screening" of the external electrical field. PMID:25322227

  7. Exploring the Origin of Lithium, Carbon, Strontium and Barium with four new Ultra Metal-Poor Stars

    CERN Document Server

    Hansen, T; Christlieb, N; Yong, D; Bessell, M S; Pérez, A E García; Beers, T C; Placco, V M; Frebel, A; Norris, J E; Asplund, M

    2014-01-01

    We present an elemental abundance analysis for four newly discovered ultra metal-poor stars from the Hamburg/ESO survey, with $\\mathrm{[Fe/H]}\\leq-4$. Based on high-resolution, high signal-to-noise spectra, we derive abundances for 17 elements in the range from Li to Ba. Three of the four stars exhibit moderate to large over-abundances of carbon, but have no enhancements in their neutron-capture elements. The most metal-poor star in the sample, HE~0233$-$0343 ($\\mathrm{[Fe/H]} = -4.68$), is a subgiant with a carbon enhancement of $\\mathrm{[C/Fe]}= +3.5$, slightly above the carbon-enhancement plateau suggested by Spite et al. No carbon is detected in the spectrum of the fourth star, but the quality of its spectrum only allows for the determination of an upper limit on the carbon abundance ratio of $\\mathrm{[C/Fe]} < +1.7$. We detect lithium in the spectra of two of the carbon-enhanced stars, including HE~0233$-$0343. Both stars with Li detections are Li-depleted, with respect to the Li plateau for metal-poo...

  8. Neutral calcium, strontium and barium - Determination of f values of the principal series by the hook method

    Science.gov (United States)

    Parkinson, W. H.; Reeves, E. M.; Tomkins, F. S.

    1976-01-01

    The hook method is used to measure the absolute gf values of the following lines: the first 13 members of the principal series, the ground-level transition at 2275.46 A, and the intercombination line at 6572.78 A in Ca I; the first 22 members of the principal series, the ground-level transitions at 2428.1 and 2680.08 A, and the intercombination line at 6892.6 A in Sr I; and the members from principal quantum numbers 12 to 21, inclusive, as well as the ground-level transitions at 2432.5, 2444.6, and 2454.06 A in Ba I. The results are compared with those of previous measurements, and the quantum-defect method is applied to plot the oscillator strengths of the discrete transitions in the principal series of Mg I, Ca I, and Sr I in order to obtain estimates of the photoionization cross sections at the first ionization limit. The resulting cross sections are found to be about twice as large as previous values based on vapor-pressure data.

  9. Propagation characteristics of a focused laser beam in a strontium barium niobate photorefractive crystal under reverse external electric field.

    Science.gov (United States)

    Guo, Q L; Liang, B L; Wang, Y; Deng, G Y; Jiang, Y H; Zhang, S H; Fu, G S; Simmonds, P J

    2014-10-01

    The propagation characteristics of a focused laser beam in a SBN:75 photorefractive crystal strongly depend on the signal-to-background intensity ratio (R=Is/Ib) under reverse external electric field. In the range 20>R>0.05, the laser beam shows enhanced self-defocusing behavior with increasing external electric field, while it shows self-focusing in the range 0.03>R>0.01. Spatial solitons are observed under a suitable reverse external electric field for R=0.025. A theoretical model is proposed to explain the experimental observations, which suggest a new type of soliton formation due to "enhancement" not "screening" of the external electrical field.

  10. Sorption--desorption studies on argillite. I. Initial studies of strontium, technetium, cesium, barium, cerium, and europium

    International Nuclear Information System (INIS)

    Distribution ratios were determined for sorption--desorption of radioactive tracers between Eleana argillite available from the Nevada Test Site and a water prepared to be representative of the natural groundwater composition. The measurements were preformed at 220C and 700C under atmospheric oxygen conditions. The order of increasing distribution coefficient by element at both temperatures is Tc(VII), Sr, Cs, Ba, Eu, and Ce. The effects of surface area and mineralogy were also investigated. 34 figures, 26 tables

  11. One-Step Synthesis of Hollow Titanate (Sr/Ba Ceramic Fibers for Detoxification of Nerve Agents

    Directory of Open Access Journals (Sweden)

    Satya R. Agarwal

    2012-01-01

    Full Text Available Poly(vinyl pyrrolidone(PVP/(strontium/barium acetate/titanium isopropoxide composite fibers were prepared by electrospinning technique via sol-gel process. Diameters of fibers prepared by calcinations of PVP composite fibers were 80–140 nm (solid and 1.2-2.2 μm (hollow fibers prepared by core-shell method. These fibers were characterized using scanning electron microscope (SEM, X-ray diffraction (XRD, and transmission electron microscope (TEM analytical techniques. XRD results showed better crystalline nature of the materials when calcined at higher temperatures. SEM and TEM results clearly showed the formation of hollow submicrometer tubes. The surface area of the samples determined by BET analysis indicated that hollow fibers have ~20% higher surface area than solid fibers. The UV studies indicate better detoxification properties of the hollow fibers compared to solid fibers.

  12. ISO observations of Titan with SWS/grating

    Science.gov (United States)

    Coustenis, A.; Encrenaz, T.; Salama, A.; Lellouch, E.; Gautier, D.; Kessler, M. F.; deGraauw, T.; Samuelson, R. E.; Bjoraker, G.; Orton, G.

    1997-01-01

    The observations of Titan performed by the Infrared Space Observatory (ISO) short wavelength spectrometer (SWS), in the 2 micrometer to 45 micrometer region using the grating mode, are reported on. Special attention is given to data from Titan concerning 7 micrometer to 45 micrometer spectral resolution. Future work for improving Titan's spectra investigation is suggested.

  13. Transient features in a Titan sea

    Science.gov (United States)

    Hofgartner, J. D.; Hayes, A. G.; Lunine, J. I.; Zebker, H.; Stiles, B. W.; Sotin, C.; Barnes, J. W.; Turtle, E. P.; Baines, K. H.; Brown, R. H.; Buratti, B. J.; Clark, R. N.; Encrenaz, P.; Kirk, R. D.; Le Gall, A.; Lopes, R. M.; Lorenz, R. D.; Malaska, M. J.; Mitchell, K. L.; Nicholson, P. D.; Paillou, P.; Radebaugh, J.; Wall, S. D.; Wood, C.

    2014-07-01

    Titan's surface-atmosphere system bears remarkable similarities to Earth's, the most striking being an active, global methane cycle akin to Earth's water cycle. Like the hydrological cycle of Earth, Titan's seasonal methane cycle is driven by changes in the distribution of solar energy. The Cassini spacecraft, which arrived at Saturn in 2004 in the midst of northern winter and southern summer, has observed surface changes, including shoreline recession, at Titan's south pole and equator. However, active surface processes have yet to be confirmed in the lakes and seas in Titan's north polar region. As the 2017 northern summer solstice approaches, the onset of dynamic phenomena in this region is expected. Here we present the discovery of bright features in recent Cassini RADAR data that appeared in Titan's northern sea, Ligeia Mare, in July 2013 and disappeared in subsequent observations. We suggest that these bright features are best explained by the occurrence of ephemeral phenomena such as surface waves, rising bubbles, and suspended or floating solids. We suggest that our observations are an initial glimpse of dynamic processes that are commencing in the northern lakes and seas as summer nears in the northern hemisphere.

  14. High Resolution Camera for Mapping Titan Surface

    Science.gov (United States)

    Reinhardt, Bianca

    2011-01-01

    Titan, Saturn's largest moon, has a dense atmosphere and is the only object besides Earth to have stable liquids at its surface. The Cassini/Huygens mission has revealed the extraordinary breadth of geological processes shaping its surface. Further study requires high resolution imaging of the surface, which is restrained by light absorption by methane and scattering from aerosols. The Visual and Infrared Mapping Spectrometer (VIMS) onboard the Cassini spacecraft has demonstrated that Titan's surface can be observed within several windows in the near infrared, allowing us to process several regions in order to create a geological map and to determine the morphology. Specular reflections monitored on the lakes of the North Pole show little scattering at 5 microns, which, combined with the present study of Titan's northern pole area, refutes the paradigm that only radar can achieve high resolution mapping of the surface. The present data allowed us to monitor the evolution of lakes, to identify additional lakes at the Northern Pole, to examine Titan's hypothesis of non-synchronous rotation and to analyze the albedo of the North Pole surface. Future missions to Titan could carry a camera with 5 micron detectors and a carbon fiber radiator for weight reduction.

  15. Titan's night-glow mechanisms

    Science.gov (United States)

    Lavvas, P.; West, R. A.; Gronoff, G.

    2014-04-01

    Observations of Titan's emissions during its 2009 eclipse by Saturn revealed a weak airglow around the moon, as well as a brighter emission from its disk (Fig.1). We explore here the potential mechanisms that could generate these emissions and more specifically the role of magnetospheric plasma and cosmic rays in the upper and lower atmosphere, respectively [2]. We consider excitation of N2 by these energy sources and calculate the resulting emissions through a detailed model of N2 airglow [3](Fig.2), followed by careful radiation transfer of the emitted photons through the atmosphere, and into the UVIS and ISS instruments (Figs 3 & 4). Our results indicate that the observed limb emissions are consistent with magnetospheric plasma energy input, while emissions instigated by cosmic ray excitation deep in the atmosphere are strongly attenuated by the haze and can not explain the observed disk emissions [4](Tables 1 & 2). We discuss possible contributions from other sources that could potentially explain the disk observations. These include airglow from other species, chemiluminescence, aerosol particle fluorescence, and scattered light from the stellar background.

  16. TAILORING INORGANIC SORBENTS FOR SRS STRONTIUM AND ACTINIDE SEPARATIONS: OPTIMIZED MONOSODIUM TITANATEPHASE II INTERIM REPORT FOR EXTERNAL RELEASE

    Energy Technology Data Exchange (ETDEWEB)

    Hobbs, D; Michael Poirier, M; Mark Barnes, M; Mary Thompson, M

    2006-08-31

    This document provides an interim summary report of Phase II testing activities for the development of a modified monosodium titanate (MST) that exhibits improved strontium and actinide removal characteristics compared to the baseline MST materials. The activities included determining the key synthesis conditions for preparation of the modified MST, preparation of the modified MST at a larger laboratory scale, demonstration of the strontium and actinide removal characteristics with actual tank waste supernate and characterization of the modified MST. Key findings and conclusions include the following: (1) Samples of the modified MST prepared by Method 2 and Method 3 exhibited the best combination of strontium and actinide removal. (2) We selected Method 3 to scale up and test performance with actual waste solution. (3) We successfully prepared three batches of the modified MST using the Method 3 procedure at a 25-gram scale. (4) Performance tests indicated successful scale-up to the 25-gram scale with excellent performance and reproducibility among each of the three batches. For example, the plutonium decontamination factors (6-hour contact time) for the modified MST samples averaged 13 times higher than that of the baseline MST sample at half the sorbent concentration (0.2 g L{sup -1} for modified MST versus 0.4 g L{sup -1} for baseline MST). (5) Performance tests with actual waste supernate demonstrated that the modified MST exhibited better strontium and plutonium removal performance than that of the baseline MST. For example, the decontamination factors for the modified MST measured 2.6 times higher for strontium and between 5.2 to 11 times higher for plutonium compared to the baseline MST sample. The modified MST did not exhibit improved neptunium removal performance over that of the baseline MST. (6) Two strikes of the modified MST provided increased removal of strontium and actinides from actual waste compared to a single strike. The improved performance

  17. Age and gender specific biokinetic model for strontium in humans

    Energy Technology Data Exchange (ETDEWEB)

    Shagina, N. B.; Tolstykh, E. I.; Degteva, M. O.; Anspaugh, L. R.; Napier, Bruce A.

    2015-03-01

    A biokinetic model for strontium in humans is necessary for quantification of internal doses due to strontium radioisotopes. The ICRP-recommended biokinetic model for strontium has limitation for use in a population study, because it is not gender specific and does not cover all age ranges. The extensive Techa River data set on 90Sr in humans (tens of thousands of measurements) is a unique source of data on long-term strontium retention for men and women of all ages at intake. These, as well as published data, were used for evaluation of age- and gender-specific parameters for a new compartment biokinetic model for strontium (Sr-AGe model). The Sr-AGe model has similar structure as the ICRP model for the alkaline earth elements. The following parameters were mainly reevaluated: gastro-intestinal absorption and parameters related to the processes of bone formation and resorption defining calcium and strontium transfers in skeletal compartments. The Sr-AGe model satisfactorily describes available data sets on strontium retention for different kinds of intake (dietary and intravenous) at different ages (0–80 years old) and demonstrates good agreement with data sets for different ethnic groups. The Sr-AGe model can be used for dose assessment in epidemiological studies of general population exposed to ingested strontium radioisotopes.

  18. Age and gender specific biokinetic model for strontium in humans

    International Nuclear Information System (INIS)

    A biokinetic model for strontium in humans is necessary for quantification of internal doses due to strontium radioisotopes. The ICRP-recommended biokinetic model for strontium has limitations for use in a population study, because it is not gender specific and does not cover all age ranges. The extensive Techa River data set on 90Sr in humans (tens of thousands of measurements) is a unique source of data on long-term strontium retention for men and women of all ages at intake. These, as well as published data, were used for evaluation of age- and gender-specific parameters for a new compartment biokinetic model for strontium (Sr–AGe model). The Sr–AGe model has a similar structure to the ICRP model for the alkaline earth elements. The following parameters were mainly re-evaluated: gastrointestinal absorption and parameters related to the processes of bone formation and resorption defining calcium and strontium transfers in skeletal compartments. The Sr–AGe model satisfactorily describes available data sets on strontium retention for different kinds of intake (dietary and intravenous) at different ages (0–80 years old) and demonstrates good agreement with data sets for different ethnic groups. The Sr–AGe model can be used for dose assessment in epidemiological studies of general populations exposed to ingested strontium radioisotopes. (paper)

  19. Process for the extraction of strontium from acidic solutions

    Energy Technology Data Exchange (ETDEWEB)

    Horwitz, E.P.; Dietz, M.L.

    1993-01-01

    The invention is a process for selectively extracting strontium values from aqueous nitric acid waste solutions containing these and other fission product values. The extractant solution is a macrocyclic polyether in an aliphatic hydrocarbon diluent containing a phase modifier. The process will selectively extract strontium values from nitric acid solutions which are up to 6 molar in nitric acid.

  20. Occupational doses in pediatric barium meal procedures

    International Nuclear Information System (INIS)

    Ionizing radiation has become an indispensable tool when it comes to diagnosis and therapy. However, its use should happen in a rational manner, taking into account the risks to which the staff is being exposed. Barium meal (BM), or upper gastrointestinal (GI) studies, using fluoroscopy, are widely used for gastroesophageal reflux disease diagnostic in children and professionals are required to stay inside the examination room to position and immobilize pediatric patients during the procedure. Therefore, it is very important that proffessionals strictly follow the technical standards of radiation protection. According to the ICRP and the NCRP recommendations, the annual limit equivalent doses for eyes, thyroid and hands are, espectively, 20 mSv, 150 mSv and 500 mSv. Based on those data, the aim of the current study is to estimate the annual equivalent dose for eyes, thyroid and hands of professionals who perform BM procedures in children. This was done using properly package LiF:Mg,Cu,P thermoluminescent dosimeters in 37 procedures; 2 pairs were positioned near each staff´s eye, 2 pairs on each professional´s neck (on and under the lead protector) and 2 pairs on both staff´s hands. The range of the estimative annual equivalent doses, for eyes, thyroid and hands, are, respectively: 14 – 36 mSv, 7 – 22 mSv and 14 – 58 mSv. Only the closest staff to the patient exceeded the annual equivalent doses in the eyes (around 80% higher than the limit set by ICRP). However, the results from this study, for hands and thyroid, compared to similar studies, show higher values. Therefore, the optimization implementation is necessary, so that the radiation levels can be reduced. (authors)